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Module-1 

Waves and Oscillations 

Periodic & Oscillatory Motion:- 

The motion in which repeats after a regular interval of time is called 

periodic motion. 

1. The periodic motion in which there is existence of a restoring 

force and the body moves along the same path to and fro about a 

definite point called equilibrium position/mean position, is 

called oscillatory motion. 

2. In all type of oscillatory motion one thing is common i.e each 

body (performing oscillatory motion) is subjected to a restoring 

force that increases with increase in displacement from mean 

position. 

3. Types of oscillatory motion:- 

It is of two types such as linear oscillation and circular 

oscillation. 

Example of linear oscillation:- 

1. Oscillation of mass spring system. 

2. Oscillation of fluid column in a U-tube. 

3. Oscillation of floating cylinder. 

4. Oscillation of body dropped in a tunnel along 

earth diameter. 

5. Oscillation of strings of musical instruments. 

Example of circular oscillation:- 

1. Oscillation of simple pendulum. 

2. Oscillation of solid sphere in a cylinder (If 

solid sphere rolls without slipping). 

3. Oscillation of a circular ring suspended on a 

nail. 



4. Oscillation of balance wheel of a clock. 

5. Rotation of the earth around the sun. 

 

 
Oscillatory system:- 

1. The system in which the object exhibit to & fro 

motion about the equilibrium position with a 

restoring force is called oscillatory system. 

2. Oscillatory system is of two types such as 

mechanical and non- mechanical system. 

3. Mechanical oscillatory system:- 

 In this type of system body itself changes 

its position. 

 For mechanical oscillation two things are 

specially responsible i.e Inertia & 

Restoring force. 

 E.g oscillation of mass spring system, 

oscillation of fluid-column in a U-tube, 

oscillation of simple pendulum, rotation 

of earth around the sun, oscillation of 

body dropped in a tunnel along earth 

diameter, oscillation of floating cylinder, 

oscillation of a circular ring suspended on 

a nail, oscillation of atoms and ions of 

solids, vibration of swings…etc. 

4. Non-mechanical oscillatory system:- 

In this type of system, body itself doesn‟t change its 

position but its physical property varies periodically. 

e.g:-The electric current in an oscillatory circuit, the lamp of a body 

which is heated and cooled periodically, the pressure in a gas through 



a medium in which sound propagates, the electric and magnetic waves 

propagates undergoes oscillatory change. 

 

 

 

Simple Harmonic Motion:- 

It is the simplest type of oscillatory motion. 

A particle is said to be execute simple harmonic oscillation is the 

restoring force is directed towards the equilibrium position and its 

magnitude is directly proportional to the magnitude and displacement 

from the equilibrium position. 

If F is the restoring force on the oscillator when its displacement 

from the equilibrium position is x, then 

F𝖺 –x 

Here, the negative sign implies that the direction of 

restoring force is opposite to that of displacement of body i.e towards 

equilibrium position. 
 

F= -kx .................. (1) 

Where, k= proportionality constant called force constant. 

Ma=-kx 
 

M𝑑2𝑦=-kx 
𝑑𝑡2 

 
M𝑑2𝑦 +kx=0 

𝑑𝑡2 
 

𝑑2𝑦
+ 
𝑘 

x=0
 

𝑑𝑡2 𝑀 

𝑑2𝑦 +ω2x=0................. (2) 
𝑑𝑡2 



√ 

Where ω2= 𝑘 
𝑀 

 
 

Here ω=√𝑘 
𝑀 

is the angular frequency of the oscillation. 

 

Equation (2) is called general differential equation of SHM. 

By solving these differential equation 

x=𝛼𝑒−i𝜔𝑡 + 𝛽𝑒i𝜔𝑡 ……… (3) 

Where 𝛼, 𝛽 are two constants which can be determined from the 

initial condition of a physical system. 

Appling de-Moiver‟s theorem 

x= (cos𝜔𝑡+isin𝜔𝑡) + 𝛽(cos𝜔𝑡-isin𝜔𝑡) 

x= (𝛼+ 𝛽) cos𝜔𝑡+ (𝛼 − 𝛽) sin𝜔𝑡 

x= Ccos𝜔𝑡+Dsin𝜔𝑡 ………(4) 

Where C = 𝛼 + 𝛽 

& D= 𝛼 − 𝛽 
 

Let assume,  

C=Asin 𝜃 

D=Acos 𝜃 
 

Putting these value in equation (4) 

x=Asin 𝜃cos𝜔𝑡 +Acos 𝜃sin𝜔𝑡 

x=A (sin 𝜃cos𝜔𝑡 + cos 𝜃 sin𝜔𝑡) 

x=A sin( 𝜔𝑡 + 𝜃) ............... (5) 

Where A= (𝐶2+D2) &𝜃 = tan−1(𝐶) 
𝐷 



Similarly, the solution of differential equation can be given as 

x=Acos( 𝜃 + 𝜔𝑡) ………(6) 

Here A denotes amplitude of oscillatory system, (  + 𝜔𝑡) is called 

phase and 𝜃 is called epoch/initial phase/phase constant/phase angel. 

Equation (5) and (6) represents displacement of SHM. 

Velocity in SHM:- 
 

𝑥=Asin( 𝜔𝑡 + 𝜃) 
 

𝑑𝑥=A𝜔cos( 𝜔𝑡 + 𝜃) 
𝑑𝑡 

v=A𝜔cos( 𝜔𝑡 + 𝜃) ................. (7) 

The minimum value of v is 0(as minimum value of Asin( 𝜃 + 𝜔𝑡)=0 

& maximum value is A𝜔. The maximum value of v is called velocity 

amplitude. 

Acceleration in SHM:- 

a= -A𝜔2sin( 𝜔𝑡 + 𝜃) .................. (8) 

The minimum value of „a‟ is 0 & maximum value is A𝜔2. The 

maximum valueof „a‟ is called acceleration amplitude. 

Also, a= 𝜔2x (from equation (5)) 

a 𝖺 –y 

It is also the condition for SHM. 

Time period in SHM:- 

The time required for one complete oscillation is called the time 

period (T). It is related to the angular frequency(𝜔) by. 

T=2𝜋
 ......................... 

(9) 
𝜔 



0 

0 

Frequency in SHM:- 

The number of oscillation per time is called frequency or it is the 

reciprocal of time period. 

ʋ=1= 𝜔 ……………(10) 
  2𝜋 

 

Potential energy in SHM:- 

The potential energy of oscillator at any instant of time is, 

U=-∫
𝑥 
𝐹𝑑𝑥 

=-∫
𝑥
(−𝑘𝑥) 𝑑𝑥 

 

=1 𝑘𝑥2 
2 

 

=1 𝑘𝐴2sin2( 𝜃 + 𝜔𝑡) ................. (11) 
2 

 

(By using equation (5)). 

Kinetic energy in SHM:- 

The kinetic energy of oscillator at any instant of time is, 
 

K=1 (𝑑𝑥)2 
2 𝑑𝑡 

=1 𝑀v2 
2 

 

K=1 𝑀A2ω2 cos2( 𝜃 + 𝜔𝑡) ……. (12) 
2 

(By using equation (7)) 

Both kinetic and potential energy oscillate with time when the kinetic 

energy is maximum, the potential energy is minimum and vice versa. 

Both kinetic and potential energy attain their maximum value twice in 

one complete oscillation. 

Total energy in SHM:- 



Total energy= K.E+P.E 
 

=1 𝑀A2ω2 cos2( 𝜃 + 𝜔𝑡) + 1 

 

𝑘𝐴2sin2( 𝜃 + 𝜔𝑡) 
2 

 

=1 𝑘𝐴2cos2( 𝜃 + 𝜔𝑡) +1 
2 2 

2 
 

𝑘𝐴2sin2( 𝜃 + 𝜔𝑡) 

Total energy =1 
2 
𝑘𝐴2 

Total energy =1 𝑀A2ω2 
2 

The total energy of an oscillatory system is constant. 

Graphical relation between different characteristics in SHM. 



 



 
 

COMPOUND PENDULUM (Physical pendulum):- 

Compound /physical pendulum is a rigid body of any arbitrary shape 

capable of rotating in a vertical plane about an axis passing through 

the pendulum but not through the pendulum but not through centre of 

gravity of pendulum. 

The distance between the point of suspension the centre of gravity is 

called the length of length of the pendulum &denoted by 

When the pendulum is displaced through a angle θ from the mean 

position,a restoring torque come to play which tries to bring the 

pendulum back to the mean position .But the oscillation continues due 

to the inertia of restoring force. 
 



Here the restoring force is -mgsinθ. So the restoring torque about the 

point of suspension “O” is 

τ=-mg𝑙sinθ . 

If the moment of inertia of the body about “OA” is “I”, the angular 

acceleration becomes, 

α=τ/I 

α=      ................................... (1) 

For very small angular displace “θ “, we assume that 

Sin θ~θ. 

So, α=-mglθ/I. 

α=-(mg𝑙/I) θ ............. (2) 

Also α=d2θ/dt2 

Now we can write 

d2θ/dt2+ ( mg𝑙/I) θ =0 ..................... (3) 

d2θ/dt2+ω2θ=0 .................... (4) 

Where, ω2= mg𝑙/I. And eqn(4) is the general equation of simple 

harmonic. 

T=2π(I/mg𝑙)1/2 

T=2π( M(k2 +L2)/Mg𝑙)1/2. 

T=2π( (K2/l+l)/g)1/2 .......................................... (5). 
 

Here k2+𝑙=L, Called as equivalent length of pendulum.. 
𝑙 

If a line which is drawn along the line joining the point of 

suspension  & Centre of gravity by the distance “ k2/l”.we have 



another Point on the line called centre of Oscillation is equivalent 

Length of pendulum . 

So,the distance between centre of suspension & centre of Oscillation 

is equivalent length of pendulum .If these two points are interchanged 

then “time period” will be constant. 

L.C CIRCUIT(NON MECHANICAL OSCILLATION ):- 
 

 

 

 

 

 

 

 
In this region,it is combination “L” &”C” with the DC source through 

the key.If we Press the Key for a while then capacitor get charged & 

restores the charge as “+Q” and”-Q” with the potential “v=q/c” 

between the plates .When the switch is off the capacitor gets 

discharged. 

As capacitor gets discharged, q also decreases. So, current at that 

situation is given by 

I=dq/dt. 



As q decreases, electric field energy (Energy stored in electric field ) 

gradually decreases .This energy is transferred to magnetic field that 

appears around the inductor. At a time,all the charge on the capacitor 

becomes zero,the energy of capacitor is also Zero. Even though q 

equals to zero,the current is zero at this time. 

Mathematically, Let the potential difference across the two plates of 

capacitor at any instance” V” is given by 

V=q/c… ...................... (1) 

In the inductor due to increases in the value of flow of current, the 

strength of magnetic field ultimately the magnetic lines of force cut/ 

link with inductor changes. So a back emfdevelops which is given by 

ε =-L𝑑i
 .................... 

(2) 
𝑑𝑡 

Now applying KVL to this LC circuit, 

+v-ε=0 
 

𝑞+L𝑑i=0 
𝑐 𝑑𝑡 

𝑞 
+
𝑑2q

=0
 

𝐿𝑐 𝑑2𝑡 

𝑑2q+ 𝑞 =0 ..................................... (3). 
𝑑2𝑡 𝐿𝑐 

 
 

 

This represents the general equation of SHM, 

Here there is periodic execution of energy between electric field of 

capacitor & magnetic field of inductor. 

Here this LC oscillation act as an source of electromagnetic wave. 

Here, ω2=1⁄𝐿𝐶 



ω=1⁄  𝐿𝐶 
 

√ 

T=2π√𝐿𝐶 

Damped oscillation:- 

For a free oscillation the energy remains constant. 

Hence oscillation continues indefinitely. However in real fact, the 

amplitude of the oscillatory system gradually decreases due to 

experiences of damping force like friction and resistance of the media. 

The oscillators whose amplitude, in successive 

oscillations goes on decreasing due to the presence of resistive forces 

are called damped oscillators, and oscillation called damping 

oscillation. 
 

The damping force always acts in a opposite 

directions to that of motion of oscillatory body and velocity 

dependent. 
 

Fdam𝖺 –v 

Fdam=-bv 

b= damping constant which is a positive quantity defined as 

damping force/velocity, 

Fnet = Fres+ Fdam 

Fnet= -kx –bv 

F = -kx– b𝑑𝑥 
net 

𝑑𝑡 

M𝑑2𝑥+kx+ b𝑑𝑥 = 0 
𝑑𝑡2 𝑑𝑡 

𝑑2𝑥
+ 
𝑏 𝑑𝑥

+ 
𝑘 

x = 0
 

𝑑𝑡2 𝑀 𝑑𝑡 𝑀 



𝑑2𝑥
+2β

𝑑𝑥
+ω

 
 

  

2x = 0 .................. (2) 
𝑑𝑡2 𝑑𝑡 0

 

 
 

Where β= 𝑏 is the damping co-efficient & ω 
 

 

=√𝑘 is 
 

 

2𝑀 

called the natural frequency of oscillating body. 

0 𝑀 

 

The above equation is second degree linear homogeneous equation. 

The general solution of above equation is found out by assuming x(t), 

a function which is given by 

x(t) = A𝑒𝛼𝑡 

𝑑𝑥 = A𝛼𝑒𝛼𝑡 = 𝛼x 
𝑑𝑡 

 
𝑑2𝑥 = Aα2𝑒𝛼𝑡 = α2x 
𝑑𝑡2 

Putting these values in equation 

α2x + 2α2βx + ω0
2x =0 

α2 + 2α2β + ω0
2 =0 ................. (3) 

α = -β±√𝛽2 −ω0
2, is the general solution of above 

quadratic equation. 

As we know, 

x(t) =A1𝑒𝖺𝑡+ A2𝑒𝖺𝑡 
 

x(t) = A1𝑒(−𝛽+√𝛽2− 𝜔02)t+ A2𝑒(−𝛽−√𝛽2− 𝜔02)t 

 

x(t) = 𝑒−𝛽𝑡 (A1𝑒√𝛽2− 𝜔02 t+ A2𝑒−√𝛽2− 𝜔02 t) … (4) 

Depending upon the strength of damping force the quantity (β2-ω0
2) 

can be positive /negative /zero giving rise to three different cases. 

Case-1:- if β<ω0
2=> underdamping (oscillatory) 

Case-2:- if β>ω0
2=> overdamping (non-oscillatory) 



0 

0 

0 

1 

0 0 

1 2 

1 1 

1 2 1 

0 1 0 1 

1 

1 

Case-3:- if β=ω 2 => critical damping (non-oscillatory) 

Case-1: [Under damping ω 2>β2] 

If β2<ω 2, then β2- ω 2= -ve 

let β2-ω 2=-ω2 ⇒ √𝛽2 − 𝜔 2=i ω 

whereω1= √ ω 2- β2 = Real quantity 

So the general equation of damped oscillation/equation (IV) becomes 

X (t) = e-βt (A1eiω t +A e-iω1t) 

By setting 

A1=r/2eiθ and A2= r/2e-iθ, 

X(t)= e-βt[r/2e
i(θ+ω t)+ r/ e-i(θ+ω t)] 

=re-βt[ei(θ+ω t)+ e-i(θ+ω t)]/2 

X(t)= re-βt cos(θ+ ω t)………(v) 
 

Here cos(θ+ ω t) represents the motion is oscillatory having angular 

frequency „ω ‟ .The constant „r‟ and ‟ θ‟ are determined from initial 

potion & velocity of oscillatior 

T1=2π/ ω1 

T1=2π/√ ω0
2- β2……(vi) (time period of damped oscillator) 

T1>T (where T= time period of undamped oscillator 

Implies f1< f 

Frequency of damped oscillator is less than that of the 

undamped oscillator. 

In under damped condition amplitude is no more constant and 

decreases exponentially with time, till the oscillation dies out. 



𝑚 

Mean life time:The time interval in which the oscillation falls to 1/e 

of its initial value is called mean life time of the oscillator. (τ) 

1/e a= a e-βτm=> 𝑒−𝛽𝑐𝑚= 1 , 
𝑒 

 

=> -β 𝑟𝑚=loge1/e 

=> 𝑟 =1 
𝛽 

 

 
 
 

Velocity of underdamped oscillation: 

X(t)=r𝑒−𝛽𝑡cos(ω1t+ θ) 
 

⇒ 
𝑑𝑥 

𝑑𝑡 
= r[-βe-βt cos(ω 1t+ θ)-e-βtω1 sin( ω 1t+ θ) 

⇒ 𝑑𝑥 = v=-re-βt[βcos(ω 
𝑑𝑡 

Now , x=0& t=0, 

X(t)= re-βt cos(ω1t+ θ) 

⇒ 0 = re0 cos(0+ θ) 

⇒0 = cosθ 

1t+ θ)+ω1 sin( ω 1t+ θ)…(vi) 



 

 

 

 0= -r ω1 

⇒ 𝜃 = 
𝜋

 
2 

Using the value of θ & t=0 in the equation (vii) we have 

 

 
Where value of V0 in …………… 

 

Calculation of Energy(instantaneous): 
 

K.E = 1mv2 
2 

 
K.E = 1mv2𝑒−2𝛽[β2cos2(ω 

2 

Potential Enegy: 
 

P.E=1kx2 
2 

1t+ θ)+ ω 2sin2(ω 1t+ θ)+ βω 1sin2(ω 1t+ θ)] 

 

 

Total Energy: 

T.E=K.E+P.E 

=1kr2𝑒−2𝛽𝑡cos2 (ω 
2 

1t+ θ) 

 

=𝑒−2𝛽[(1mv2+1kr2)cos2(ω t+θ)+1mr2ω 2sin2(ω 
 

  

t+θ) 
2 2 1 2 1 1 

+ 1mv2 βω 
2 

1sin2(ω 1t+ θ)] 
 

Total average energy: 
 

< 𝐸 >=1mr2 ω 
2 

2𝑒−2𝛽𝑡 

=E0𝑒−2𝛽𝑡 

Where, E0 =Total energy of free oscillation 

The average energy decipated during one cycle 

< (𝑡) > =Rate of energy 

1 

0 



0 

= 
𝑑 

𝑑𝑡 
< 𝐸 > 

 

=2𝛽𝐸 

Decrement 
 

The decrement measures the rate at which amplitude dies 

away. 
 

The ratio between amplitude of two successive maxima, is the 

decrement of the oscillator. 

re-βt/ re-β(t+T) = re+βt 

The logarithmic decrement of oscillator is „λ‟ 

𝜆 =loga𝑒𝛽𝑡 

⇒ 𝛽𝑇 = 2π𝛽/√ ω 2- β2 

⇒ 𝜆 =logaa0/a1=loga1/a2= ......... =eβt=𝑒 0 

Rate of two amplitudes of oscillation whichare separated by one period 

Relaxation time(𝑟): 

It is the time taken by damped oscillation by 

decaying of its energy 1/e of its initial energy. 

⇒ 1ε 
𝑒 

0=ε 0𝑒−2𝛽𝑟 

⇒ 
1
=𝑒−2𝛽𝑟 

𝑒 

⇒Loge-1=log𝑒−2𝛽𝑟 

⇒-1=−2𝛽𝑟 

⇒ 𝑟=1/2𝛽=m/b 



0 

0 

Case-II:(over damping oscillation) 

Here β2>ω 2 

 

= α (say) 

√ β2-ω 2=+ve quantity 

 
 

X (t) = e-βt (A1eαt +A2e-αt)… ........... (viii) 
 

Depending upon the relative values of α, β ,A1 , A2& initial position 

and velocity the oscillator comes back to equilibrium position. 
 



0 

The motion of simple pendulum in a highly viscous medium is an 

example of  over damped oscillation. 

Quality factor: 
 

Q=2𝜋. 
Energy stored in system 

= 2π.  
<𝐸> 

= 
2  

.𝑟
 

 
 
 

Critical damping: 

β2 = ω 2 

Energy loss per period 
 

⇒ Q = m𝑟 

<𝑃> 𝑇 𝑇 

 

The general solution of equation (ii) in this case, 

X(t) = (Ct+D) e-βt ...................................................... (ix) 

Here the displacement approaches to zero asymptotically for given 

value of initial position and velocity a critically damped oscillator 

approaches equilibrium position faster than other two cases. 

Example: The springs of automobiles or the springs of dead beat 

galvanometer. 



 

Curves of three Cases: 
 

 

 
Forced Oscillation 

The oscillation of a oscillator is said to be forced oscillator or driven 

oscillation if the oscillator is subjected to external periodic force. 

If an external periodic sinusoidal force „Fcosωt‟ acts on a damped 

oscillator, its equation of motion is written as, 
 

 

 

F = -kx- b 𝑑𝑥 +Fcosωt 
net 

𝑑𝑡 

m 𝑑
2𝑥

+ = -kx –b 𝑑𝑥 +Fcosωt 
  

𝑑𝑡2 

𝑑2𝑥
+ + 

𝑏 𝑑𝑥 
+ 

𝑘 
  

𝑑𝑡 

 
x = F cosωt 

 

𝑑𝑡2 𝑚 𝑑𝑡 𝑚 m 
 

𝑑2𝑥
+ 2β

𝑑𝑥 

𝑑𝑡2 𝑑𝑡 
+ ω 2x = f cosωt 0 0 



0 

c 1 2 

 
Where β= 𝑏 

 
,   ω 2= 

𝑘 

 

 
and f 

 
= 
𝐹 

 

 
, and β and ω 

(i) 
 
2 respectively called as 

 
 

2𝑚 0 𝑚 0 𝑚 0 

damping coefficient, natural frequency. 

Equation (i) is also represented as 

 

 
Equation (i) represents the general equation of forced oscillation. 

Equation (i) is a non-homogenous differential equation with constant 

co-efficient. For weak damping (ω 2 >β 2) , the general equation 

contains, 

x(t) = xc(t) + xp(t) 

Where xc(t) is called complementary solution and its value is 

x (t)=𝑒−𝛽𝑡 (A 𝑒√𝛽2−𝜔0
2 
+A 𝑒−√𝛽2−𝜔0

2 
) ......................... (ii) 

Now xp(t) is called the particular integral part. 

Let us choose 

xp(t) = P cos (ωt-δ) 

𝑥 (t)= -Pωsin(ωt-δ) 

𝑥 (t)=-Pω2cos(ωt-δ) ................................... (iii) 

 
Putting xp(t) ,𝑥 (𝑡) , 𝑥 (t) in eqn (i) we get 

- Pω2cos (ωt-δ)-2βPω sin (ωt-δ) + ω0
2Pcos(ωt-δ) = f0cosωt 

- Pω2cos (ωt-δ)-2βPω sin (ωt-δ) + ω0
2Pcos(ωt-δ) = f0cos (ωt-δ + δ ) 

𝑥  + 2𝛽𝑥 + 𝜔0 x= f0cosωt 
2 



0 0 

0 0 

0 0 

𝜔2−𝜔2 

- Pω2cos(ωt-δ)-2βPω sin(ωt-δ) + ω 2Pcos(ωt-δ) = f [ cos (ωt-δ ) .cos 

δ – sin(ωt-δ ) .sinδ ] 

Now, compairing the coefficient of cos(ωt-δ) and sin (ωt-δ) on both 

sides, 

(ω 2-ω2)P = f cosδ .................................................. (iv) 

2βPω = f0sinδ .............................................................. (v) 

Squaring and adding eqn (iv) & (v) 

{(ω 2-ω2)P}2 +4 β2 P 2ω2 =f 2 
 

P =
 ƒ0  …………………(vi) 
√ 2 2  2 2 2 

(𝜔0− )  +4   
 

Now dividing eqn (v) by (iv) 
 

δ= tan−1 ( 2𝛽𝜔  ) ............................. (vii) 
0 

x  =   ƒ0  cos(ωt-δ) (steady state solution) p 
√ 2 2  2 2    2 

(𝜔0− )  +4   
 

Now, x(t) = xc(t) + xp(t) 
 

x(t) = 𝑒−𝛽𝑡 (A 
 

 

𝑒√𝛽
2−𝜔0

2 
+ A 

 
 𝑒−√𝛽2−𝜔0

2   
) +   ƒ0  cos(ωt- 

 
 1 2 √ 2 2  2 2 2 

 
δ) 

Steady state behavior: 

(𝜔0−𝜔 ) +4   

 

Frequency:-The Oscillator oscillates with the same frequency as that 

of the periodic force. 

ω0and ω are very close to each other then beats will be produced and 

these beats are transient as it lasts as long as the steady state lasts. The 

duration between transient beats is determined by the damping 

coefficient „β‟. 



𝜔2−𝜔2 

Phase: The phase difference „δ‟ between the oscillator and the driving 

force or between the displacement and driving is 

δ=tan−1 ( 2𝛽𝜔 ) 
0 

 

This shows that there is a delay between the action of the driving 

force and response of the oscillator. 
 

(In the above figure fQ= ω0 and fp= ω ) 

At ω=ω0 , φ₌𝜋, the displacement of the oscillator lags behind the 
2 

driving force by 𝜋 . 
2 

At ω<<ω0 then δ=0→ δ=0 
 

For ω>> ω0 then δ =-2𝑝 → -0=𝜋 
𝜔 

 

Amplitude: The amplitude of driven oscillator , in the steady state , 

is given by 

A=
 𝐹/𝑚 

=
 ƒ0  

√ 2 2  2 2    2 √ 2 2  2 2 2 
(𝜔0−  )  +4   (𝜔0−𝜔 )  +4𝛽  𝜔 



0 

2 

0 

0 0 

𝜔2 

It depends upon (ω 2-ω2). If it is very small, then the amplitude of 

forced oscillation increases. 

Case-1: At very high driving force i.e ω>>ω0 and damping is small 

(β is small) or ( β→0) 

A =
 ƒ0  

√𝜔4+0 

A =
 ƒ0  

𝜔 
 

 
 

Amplitude is inversely proportional to the mass of the oscillator & 

hence the motion is mass controlled motion. 

Case-2: At very low driving force (ω<<ω0) and damping is small 

( β→0), 

i.e. ω 2 - ω2≅ ω 2 

A =
 ƒ0  

√𝜔4 

 

A =
 ƒ0  

0 
 

 
 

So, when the low driving force is applied to oscillator, the 

amplitude remains almost constant for low damping. The 

amplitude of the forced oscillator in the region ω<<ω0and β< ω0 

is inversely proportional to the stiffness constant (k) and hence 

motion is called the stiffness controlled motion. 

A = 
𝐹 

𝑚𝜔2 

A = 
𝐹 

𝑚𝜔2 0 



0 

0 

0 

0 

Case:-iii (Resistance controlled motion) 

When angular frequency of driving force=natural 

frequency of oscillator i.e.(ω=ω0) 

A=f0/√4𝛽2𝜔2 =f0/2βω 

A=f/bω=f/bω0 

RESONANCE:- 

The amplitude of vibration becomes large for small damping(β is less) 

and the maximum amplitude is inversely proportional to resistive term 

(b) hence called as resonance. It is the phenomenon of a body setting 

a body into vibrations with its natural frequency by the application of 

a periodic force of same frequency. 

If the amplitude of oscillation is maximum when the driving 

frequency is same as natural frequency of oscillator. (I.e. ω =ω0). 

„A‟ will be the max. Only the denominator of the expression 
 

√(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2is minimum i.e. 

𝑑 

d𝜔 

 
 

[√(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2 =0 

=>-4ωω 2+4ω3+8β2ω=0 

=>-ω 2+ω2+2β2=0 
 

=>ω= √(𝜔2 − 2𝛽2) =ω0√(1 − 2𝛽2/𝜔2) 
0 0 

 

It is the value of angular frequency, where „A‟ will be maximum in 

presence of damping force 

But when damping is very small, 

ω=ω0 (β→0) 

The max value of „A „when damping is present 



0 

0 

0 

0 

 
 

A=f0/√[(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2] 
 

=f0/√[𝜔2 − (𝜔2 − 2𝛽2)]2 + 4𝛽(𝜔2 − 2𝛽2) 
0 0 0 

 

=f0/√4𝛽4 + 4𝛽2𝜔2 − 8𝛽4 

 

=f0/√[4𝛽2𝜔2 − 4𝛽4] 
 

Amax=f0/2𝛽√(𝜔2 − 𝛽2) =f/2mβ√(𝜔2 − 𝛽2) 
0 0 

 

This is called amplitude Resonance. 

Value of the frequency at which amplitude resonance occurs i.e. 

amplitude becomes maximum. 

Β1<β2 fr=ω/2π 

=√(ω2 -2β2)/2π 
 

Damping is small, 

fr=ω0/2π 

Here, fr‟ is called resonant frequency. 

Phase at resonance:- 

Φ=π/2 

Velocity of oscillator is in same phase with the driving force 

.Therefore, the driving force always acts in the direction of motion 

of oscillator. So energy transfers from driving force to oscillation 

are maxim. 

Sharpness of resonance:- 

The amplitude is maximum at resonance frequency which 

decreases rapidly as the frequency increases or decreases from the 

resonant frequency. 



 
 

 

 

 

 

 

The rate at which the amplitude decreases with the driving frequency 

on either side of resonant frequency is termed as „‟sharpness of 

resonance‟‟. 

Different condition:- 

(i) For ω=ω0±β, the amp. Becomes A=Amax/√2.The width of resonance 

curve i.e. the range of frequency over which the amplitude remains 

more than Amax/√2. 

∆ω= (ω0+β)-(ω0-β)=2β 

Thus if β‟ is small,∆ω is small. 

(ii) For β=0, A→∞ at ω=ω0. 

(iii) If there is small „β‟, amp. Resonance occurs lesser value amp is max at 

ω=ωr. 

(iv) If β‟‟is high, A‟ is max but the peak moves towards left &max. amp 

decreases. 

(v) So resonance is sharp for low „β‟ & flat for high „β‟. 



V=ωf /√[(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2] sin (mt − 𝛿 + 𝜋) 0 0 2 

0 

0 

0 

 
 

 

 
 

 

 

Velocity:- 
 

X=xp=f0/√[[(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2] cos (mt − 𝛿) 
 

V=-ωf0/√[(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2] sin (mt − 𝛿) 
 
 
 

 

Vmax=ωf0/√(𝜔2 − 𝜔2)2 + 4𝛽2𝜔2 

*here also „v‟is max. When ω0=ω. 

(Vmax.amp)=f/b 

Calculation of energy:- 
 

x=  ƒ0 cos(𝜔𝑡 − 𝛿) 
√ 2 2  2 2    2 

(𝜔0− )  +4   



                      ƒ 

A 

0 

Where   ƒ0 =A 
√ 2 2  2 2 2 

(𝜔0− )  +4   
 

V=  ƒ0𝜔 cos(pt-δ+π/2) 
√ 2 2  2 2 2 

(𝜔0− )  +4   
 

Average potential energy:- 
 

P.E=1 kx2 
2 

 

 
=1 k 0 cos 

 

2(ωt-δ) 2 
√ 2 2  2 2 2 

(𝜔0− )  +4   
 

=1 kA2cos2(ωt-δ) 
2 

<P.E>=1 kA2 
4 

 
 
=1mω 

4 

 
 
 
 
2 2 

0 

(average of cos2θ=1/2) 
 

Average kinetic energy:- 
 

K.E=1 mv2 
2 

1 ƒ2𝜔2 
2 

= m 0 cos (ωt-δ+π/2) 
2 (𝜔2−𝜔2) +4𝛽2𝜔2 

 

=
1 

2 

 
mω2A2cos2(pt-δ+π/2) 

<K.E>=1 mω2A2 
4 

Total average energy:- 

<∈> = < 𝐾. 𝐸 > + < 𝑃. 𝐸 > 

 
= 1 mm2A2 + 1 mm02A2 

4 4 

2 

2 



 
 

POWER:- 
 

i). Power absorption: 

Pab = FPe
. v 

= F Cos (mt − 𝛿). f0 𝜔  
√(𝜔0

2− 𝜔2)2 +4𝛽2𝜔2 

= A F Cos (mt − 𝛿) Sin (mt − 𝛿) 

 
 
Cos (mt − 𝛿 + 𝜋⁄2) 

= 1 AF Sin 2 (mt − 𝛿) 
2 

 

< Pabs > = 
f0

2  𝜔2 

[(𝜔0
2− 𝜔2)2 +4𝛽2𝜔2] 

 

= m A2 𝛽 m2 

 
 Pmaxabsorbed when mo = m 

 Pmax =  
f0

2𝛽𝜔0
2 

4𝛽2𝜔0
2 

= 
f0

2 
 

4𝛽 

ii). Power dissipation: 

Pdis = Fdamp. v Or Fresistive × Inst. velocity 

= + b. dX . v 
dt 

= + b v2 

Pdis = 2m 𝛽 v2 (𝛽 = b⁄2m) 
 

 Pdis 
= 2m𝛽. f0

2𝜔2

 

[(𝜔0
2− 𝜔2)2 +4𝛽2𝜔2] 

. Cos2 (pt − 𝛿 +    ) 
2 

<∈> = 1 mA2 (m02 + m2) 
4 



 < Pdis > = 2m𝛽A2m2 × 1⁄2 

 < Pdis > = 𝑚𝛽A2m2 

Thus in the steady state of forced vibration, the average rate of power 

supplied by the forcing system is equal to the average of work done 

by the forced system against the damping force. 

QUALITY FACTOR:- 
 

Quality factor is a measure of sharpness of resonance. 

Q- Factor is defined as, 

Q = 2𝜋 ×  
average energy stored per cycle 

average energy dissipated per cycle 
 

= 2𝜋 ×  Eav   
T.Pav 

 
1

m A2(𝜔0
2+ 𝜔2) 

 

= 2×  4    2   2 
T × m 𝛽𝜔 A 

 

= 
(𝜔0

2+ 𝜔2) 
= 

(𝜔0
2+ 𝜔2) 

  

4𝛽𝜔2 4(𝛽𝜔) 

 

At m = m0 , for weak damping 

 

Q = 
2𝜔0

2 

4(𝛽𝜔0) 
 

=> 

 

 
 

𝛽Small, Q  Large, sharpness of resonance is more. 

Q = 𝜔0 
2𝛽 



Q 

Resonant frequency 

width of resonance curve 
= 

= 

𝜔0 

2𝛽 

Again, 
 
 

 

Larger value of Quality factor (less ), sharper is the resonance. 
 
 

System Q value 

Earthquake 250 – 

1400 

Violin string 103 

Microwave 

resonator 

105 

Crystalosill 106 

Excetetation 108 

 

 

 

 

 
 
 

Amplitude Resonance Velocity Resonance 



1. In amp. Resonance, the amp. 

of oscillator is maximumfor 

a particular frequency of the 

applied force. 

2. Amplitude resonance occurs 

at mr = (m0 − 2𝛽2)1⁄2 

3. At applied frequency m = 

0, the amp. of the freq. 

oscillator is F/k 

4. The phase of the forced 

oscillator with respect to that 

of applied force is 𝜋⁄2 

1. The velocity amplitude of the 

forced oscillator is the 

maximum at a particular 

frequency of applied force. 

2. Velocity resonance occurs at 

m = m 

3. Applied frequency m = 0, the 

velocity amplitude is zero. 

4. Phase of the forced oscillator 

with respect to that of applied 

force is …. 

 

 

Mechanical Impedance 

The force required to produce unit velocity is called the mechanical 

impedance of the oscillator. 

z = F⁄v 

 

x = A ei(𝜔t− 𝜑) 

v = 
dx 

= miAei(𝜔t− 𝜑) 
dt 

F ei𝜔t 

i𝜔Aei(𝜔t−𝜑) 

= 
mf 

i𝜔 
𝐹 

2 

 

F 
 

 

i𝜔Ae−i𝜑 

mf 

i𝜔Ae−i𝜑 

((𝜔02− 𝜔2)   +2𝛽𝜔i) 

=>z = = = 



 

z*  = 2𝛽m + 
im(𝜔0

2− 𝜔2) 

𝜔 

= 2𝛽m − 
im(𝜔0

2− 𝜔2) 

𝜔 

1 
1⁄2

 

|z| = z* z = m [4𝛽2 + 
m2 

(m02 − m2)2 ] 

A = 
F

 
m|z| 

For a particular m, 

 

Module-II 
INTERFERENCE 

Coherent Superposition: 

The superposition is said to be coherent if two waves having constant 

phase or zero phase difference. 

In this case, the resultant intensity differs from the sum of intensities 

of individual waves due to interfering factor. 

i.e. I  I1  I 2 

Incoherent Superposition: 

The superposition is said to be incoherent if phase changes frequently 

or randomly. 

In this case, the resultant intensity is equal to the sum of the 

intensities of the individual waves. 

i.e. I  I1  I 2 

Two Beam Superposition: 

When two beam having same frequency, wavelength and different in 

amplitude and phase propagates in a medium, they undergo principle 

of superposition which is known as two beam superposition. 

A 𝖺 
1 

|z| 

 



2 

Let us consider two waves having different amplitude and phase 

are propagated in a medium is given as 

ƒ1 = 𝑎1 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑1) 

(1) 

ƒ2 = 𝑎2 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑2) 

(2) 

Applying the principle of superposition 

 ƒ = ƒ1 + ƒ2 
ƒ = 𝑎1 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑1) + 𝑎2 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑2) 

= 𝑎1 sin(𝑘𝑥 − 𝜔𝑡) cos 𝜑1 + 𝑎2 cos(𝑘𝑥 − 𝜔𝑡) sin 𝜑1 + 
𝑎2 sin(𝑘𝑥 − 𝜔𝑡) cos 𝜑2 + 𝑎2 cos(𝑘𝑥 − 𝜔𝑡) sin 𝜑2 
= (𝑎1 cos 𝜑1 + 𝑎2 cos 𝜑2) sin(𝑘𝑥 − 𝜔𝑡) + (𝑎1 sin 𝜑1 + 
𝑎2 sin 𝜑2) cos(𝑘𝑥 − 𝜔𝑡) (3) 
Let 

𝑎1 cos 𝜑1 + 𝑎2 cos 𝜑2 = 𝐴 cos 𝜃 
(4) 

and 𝑎1 sin 𝜑1 + 𝑎2 sin 𝜑2 = 𝐴 sin 𝜃 
(5) 

ƒ = 𝐴 cos 𝜃 sin(𝑘𝑥 − 𝜔𝑡) + 𝐴 sin 𝜃 cos(𝑘𝑥 − 𝜔𝑡) 
 

= [sin(𝑘𝑥 − 𝜔𝑡) cos 𝜃 + cos(𝑘𝑥 − 𝜔𝑡) sin 𝜃] ƒ 
= 𝐴 sin(𝑘𝑥 − 𝜔𝑡 + 𝜃) 

(6) 
 

Squaring and adding equation (4) and (5) 

𝐴2 = (𝑎1 cos 𝜑1 +𝑎2 cos 𝜑2)2 + (𝑎1 sin 𝜑1 + 𝑎2 sin 𝜑2)2 
= 𝑎2𝑐𝑜𝑠2𝜑1 + 𝑎2𝑐𝑜𝑠2𝜑2 + 2𝑎1𝑎2 cos 𝜑1 cos 𝜑2 + 𝑎2𝑠i𝑛2𝜑1 

1 2 1 

+ 𝑎2𝑠i𝑛2𝜑2 + 2𝑎1𝑎2 sin 𝜑1 sin 𝜑2 
𝐴2 = 𝑎2 + 𝑎2 + 2𝑎1𝑎2[cos 𝜑1 cos 𝜑2 + sin 𝜑1 sin 𝜑2] 

1 2 
𝐴2 = 𝑎2 + 𝑎2 + 2𝑎1𝑎2 cos( 𝜑2 − 𝜑1) 

1 2 
A= √𝑎2 + 𝑎2 + 2𝑎1𝑎2 cos( 𝜑2 − 𝜑1) 

1 2 

(7) 

We know, 𝐼  𝐴2 

    = 𝐾𝐴2 



1 2 

= (𝑎2 + 𝑎2 + 2𝑎1𝑎2 cos( 𝜑2 − 𝜑1) 
1 2 

    = 𝐾𝑎2 + 𝐾𝑎2 + 𝐾2𝑎1𝑎2 cos( 𝜑2 − 𝜑1) 

    = 𝐼1 + 𝐼2 + 2√𝐼1√𝐼2 cos( 𝜑2 − 𝜑1) 
(8) 

Dividing equation (5) by (4), we get, 

tan 𝜃 = 
𝑎1 sin 𝜑1 + 𝑎2 sin 𝜑2 

𝑎1 cos 𝜑1 +𝑎2 cos 𝜑2 

Coherent Superposition: 

In coherent superposition, the phase difference remains constant 

between two beams. 

i. e. cos( 𝜑2 − 𝜑1) = 1𝑜𝑟 − 1 

𝐼ƒ cos( 𝜑2 − 𝜑1) = 1 

Now equation (7) and (8) becomes, 

𝐴 = √𝑎2 + 𝑎2 + 2𝑎1𝑎2 
1 2 

 

    = (𝑎1 + 𝑎2)2 

𝐴𝑚𝑎𝑥 = 𝑎1 + 𝑎2 and 𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 
  

 𝐼𝑚𝑎𝑥 = (√𝐼1 + √𝐼2)2 

The two beams having same amplitude, 

𝑎1 = 𝑎2 = 𝑎 

    𝐴𝑚𝑎𝑥 = 2𝑎 

 𝐼𝑚𝑎𝑥 = 4𝐼0 

Again, if cos( 𝜑2 − 𝜑1) = −1 

𝐴𝑚i𝑛 = √𝑎2 + 𝑎2 − 2𝑎1𝑎2 
1 2 

𝐴𝑚i𝑛 = 𝑎1 − 𝑎2 

𝐼 = 𝐼1 + 𝐼2 − 2√𝐼1𝐼2 
  

𝐼𝑚i𝑛 = (√𝐼1 − √𝐼2)2 

For same amplitude, 

𝐴𝑚i𝑛 = 0 

 𝐼𝑚i𝑛 = 0 



i=1 

Incoherent Superposition: 

In incoherent superposition the phase difference between the waves 

changes frequently or randomly, so the time average of the interfering 

term(2√𝐼1𝐼2 cos( 𝜑2 − 𝜑1)) vanishes as the cos value varies from -1 

to 1. 
Here, 𝐴 = √𝑎2 + 𝑎2 

1 2 

    = 𝐼1 + 𝐼2 
Multiple beam superpositions: 

When a number of beams having same frequency, wavelength and 

different amplitude and phase are undergoing the superposition, such 

superposition is known as multiple beam superpositions. 

Let ƒ1,ƒ2,ƒ3,  ƒ4.............ƒ𝑛  be  the  number  of  beams  having  same 

frequency, wavelength and different in amplitude and phase are 

propagating in a medium are given as, 

ƒ1 = 𝐴1 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑1) 

ƒ2 = 𝐴2 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑2) 

: 
: 
: 

 

ƒ  = 𝐴𝑁 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑𝑁) 
According to principle of superposition, 

ƒ = ƒ1,ƒ2,ƒ3, ƒ4  ................. ƒ𝑁 
𝑁 

= ∑ ƒi 

i=1 

𝑁 

   ƒ = ∑ 𝐴i sin(𝑘𝑥 − 𝜔𝑡 + 𝜑i) 
i=1 

   ƒ = ∑𝑁 𝐴i sin(𝑘𝑥 − 𝜔𝑡 + 𝜑i) (1) 
 

where 𝐴i = resultant amplitude of the ith component. 

𝜑i =Phase of the ith component. 



i=1 

i=1 

i 

i 

1 

1 

 I  N  I 

i=1 

𝐴 sin 𝜑 = ∑𝑁 

𝐴 cos 𝜑 = ∑𝑁 

𝐴i sin 𝜑i (2) 

𝐴i cos 𝜑i (3) 
 

Squaring and adding (2) and (3) we get, 
𝑁 𝑁 

𝐴2 = ∑ 𝐴2 + 2 ∑ 𝐴i𝐴j cos(𝜑j − 𝜑i) 

i=1 i=1 
i❜ j 

The phase angle is given as, 

tan 𝜑 = 
𝑁 
i=1 
𝑁 
i=1 

𝐴i sin 𝜑i 

𝐴i cos 𝜑i 

Coherent Superposition: 

In this case the phase difference between the waves remains constant 

i.e. (cos 𝜑j − 𝜑i) = +1 
𝑁 𝑁 

𝐴2 = ∑ 𝐴2 + 2 ∑ 𝐴i𝐴j 

i=1 i=1 
i❜ j 

If all the beams having equal amplitudes. 

i.e.𝐴1 = 𝐴2 = ⋯ = 𝐴𝑁 = 𝐴1 

 
𝐴2 = (𝑁𝐴1)2 = 𝑁2𝐴2 

 

Now, 𝐼 = 𝑘𝐴2 

    = 𝑘𝑁2𝐴2 
 

2 

coherent 1 

Incoherent Superposition 

In incoherent superposition, the phase difference between the beams 

changes frequently or randomly due to which the time average of 

factor < ∑𝑁 𝐴i𝐴j cos(𝜑j − 𝜑i) > vanishes as cos value varies from- 

1 to +1 

∑ 

∑ 



i 

I  KA 

1 

𝑁 

∑ 𝐴i𝐴j cos(𝜑j − 𝜑i) = 0 

i=1 

𝑁 

𝐴2 = 𝑁 ∑ 𝐴2 

 
Now , 

 
𝐾𝑁 ∑𝑁 

i=1 
 

2 

incoherent 

= 
𝐴2 

i=1 i 

= 𝐾𝑁𝐴2 

 
 I  NI 

 

 
 

 N 




Icoherent 

 

incoherent 1 
Iicoherent 

Interference: 

The phenomenon of modification in distribution of energy due 

to superposition of two or more number of waves is known as 

interference. 

To explain the interference, let us consider a monochromatic source 

of light having wavelength 𝜆 and emitting light in all possible 

directions. 

According to Huygens‟s principle, as each point of a given wavefront 

will act as centre of disturbance they will emit secondary wave front 

on reaching slit S1 and S2. 

As a result of which, the secondary wave front emitted from slit S1 

and S2 undergo the Principle of superposition. 
 

 



 

 

 

 

During the propagation, the crest or trough of one wave falls upon the 

crest and trough of other wave forming constructive interference, 

while the crest of one wave of trough of other wave producing 

destructive interference. 

Thus, the interfering slit consisting of alternate dark and bright 

fringes, which explain the phenomenon of interference. 

Mathematical treatment: 

Let us consider two harmonic waves of same frequency and 

wavelength and different amplitude and phase are propagating in a 

medium given as 
 

𝑌 = 𝑦1 + 𝑦2 

= asin 𝜔𝑡 + 𝑏 sin(𝜔𝑡 + 𝜑) 

= 𝑎 sin 𝜔𝑡 + 𝑏 sin 𝜔𝑡 cos 𝜑 + 𝑏 cos 𝜔𝑡 sin 𝜑 

= (𝑎 + 𝑏 cos 𝜑) sin 𝜔𝑡 + 𝑏 sin 𝜑 cos 𝜔𝑡 

Let 𝑎 + 𝑏 cos 𝜑 = 𝐴 cos 𝜃 

𝑏 sin 𝜑 = 𝐴 sin 𝜃 

𝑦 = 𝐴 cos 𝜃 sin 𝜔𝑡 + 𝐴 sin 𝜃 cos 𝜔𝑡 

𝑦 = 𝐴 sin(𝜔𝑡 + 𝜃) 

Squaring and adding (2) and (3) 

𝐴2𝑐𝑜𝑠2𝜃 + 𝐴2𝑠i𝑛2𝜃 = (𝑎 + 𝑏 cos 𝜑)2 + 𝑏2𝑠i𝑛2𝜑 

𝐴2 = 𝑎2 + 𝑏2 + 2𝑎𝑏 cos 𝜑 
 

*𝐴 = √𝑎2  + 𝑏2  + 2𝑎𝑏 cos 𝜑+ 



As, I  𝐴2 

𝐼 = 𝐾𝐴2 

= (𝑎2 + 𝑏2 + 2𝑎𝑏 cos 𝜑) 
 

[𝐼 = 𝐼1 + 𝐼2 + √𝐼1 + √𝐼2 cos 𝜑] 

Dividing equation (3) by (2) we get, 

tan 𝜃 = 
𝑏 sin 𝜑 

𝑎 + 𝑏 cos 𝜑 
 
 

 

Condition for maxima: 

The intensity will be maximum when the constructive interference 

takes place i.e. 

cos 𝜑 = +1 

cos 𝜑 = cos 2𝑛𝜋 

𝜑 = ±2𝑛 , n=0, 1, 2... 

⇒ 
2𝜋 

× 𝑝𝑎𝑡ℎ 𝑑iƒƒ𝑒𝑟𝑒𝑛𝑐(∆𝑥) = ±2𝑛𝜋 
𝜆 

[∆𝑥 = ±𝑛𝜆] 

𝜆 
[∆𝑥 = 2𝑛 

2
] 

The constructive interference is when 𝜑 difference is even multiple of 

𝜋 or integral multiple of 2 𝜋 and path difference is an integral 

multiple of . 
2 

 

Now, [𝐼 = 𝐼𝑚𝑎𝑥 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2] 



𝑚𝑎𝑥 

[𝐼𝑚𝑎𝑥 = (√𝐼1 + √𝐼2)2] 

[𝐴𝑚𝑎𝑥 = 𝑎 + 𝑏] 

If the waves having equal amplitude, 
 

[𝐴𝑚𝑎𝑥 = 2𝑎] 
 

𝐼𝑚𝑎𝑥 = 𝐾𝐴2 
 

= (2𝑎)2 
 

= 𝐾4𝑎2 

[𝐼𝑚𝑎𝑥 = 4𝐼0] 

Condition for minima 

 

The intensity will be minimum destructive interference takes place 

 

i.e. cos 𝜑 = −1 
 

[𝜑 = ±(2𝑛 + 1)𝜋] Where n = 0, 1, 2, 3... 

⇒ 
2𝜋 

× (∆𝑥) = ±(2𝑛 + 1)𝜋 
𝜆 

𝜆 
[∆𝑥 = ±(2𝑛 + 1) 

2
] 

Thus destructive interference takes place when phase difference is 

odd multiple of 𝜋 and path difference is odd multiple of . 
2 

 

Now, [𝐼 = 𝐼𝑚i𝑛 = 𝐼1 + 𝐼2 − 2√𝐼1𝐼2] 

[𝐼𝑚i𝑛 = (√𝐼1 − √𝐼2)2] 



[𝐴𝑚i𝑛 = 𝑎 − 𝑏] 

Intensity distribution curve 

 

If we plot a graph between phase difference or path difference along 

X-axis and intensity along Y-axis, the nature of the graph will be 

symmetrical on either side. 

 

 

 
 

 

 

 

 

 

 

 

 
 

𝐼𝑎𝑣𝑒 = 
𝐼𝑚𝑎𝑥 + 𝐼𝑚i𝑛 

2 
= 2𝐼0 

 

From the graph, it is observed that, 

 

1) The fringes are of equal width 
 

2) Maxima having equal intensities 
 

3) All the minima‟s are perfectly dark 
 

The phenomenon of interference tends to conservation of energy i.e. 

the region where intensity is 0, actually the energy present is maxima. 

As the minima‟s and maxima position changes alternatively so the 

disappearance of energy appearing is same as the energy appearing in 

other energy which leads to the principle of conservation of energy. 



 

Sustained Interference 

The interference phenomenon in which position of the maxima and 

minima don‟t changes with time is called sustained interference. 

Condition for Interference 

1) The two waves must have same frequency and wavelength. 

2) The two source of light should be coherent. 

3) The amplitude of wave may be equal or nearly equal. 

Condition for good Contrast 

I. The two slit must be narrow. 

II. The distance between the two slit must be small. 

III. The background should be perfectly dark. 

IV. The distribution between the slit and the screen should be large. 

V. The two waves may have equal or nearly equal amplitude (for 

sharp superposition). 

Coherent Sources 

The two sources are said to be coherent if they have same phase 

difference, zero phase difference or their relative phase is constant 

with respect to time. 

Practical resolution of Coherent 

Coherent sources from a single source of light can be realised as 

follows 

A narrow beam of light can be split into its number of component 

waves and multiple reflections. 



Component light waves are allowed to travel different optical path so 

that they will suffer a path difference and hence phase difference. 

[𝑝ℎ𝑎𝑠𝑒 𝑑iƒƒ𝑒𝑟𝑒𝑛𝑐𝑒 = 
2𝜋 

× 𝑝𝑎𝑡ℎ 𝑑iƒƒ𝑒𝑟𝑒𝑛𝑐𝑒] 
𝜆 

Methods for producing coherent sources/Types of interferences 

Coherent sources can be produced by two methods 

1) Division of wave front 

2) Division of amplitude 

Division of Wave front 

The process of coherent source or interference by dividing the wave 

front of a given source of light is known as division of wave front. 

This can be done by method of reflection or refraction. In this case a 

point source is used. 

 

 
 

Examples 

1. YDSE 

2. Lylord‟s single mirror method 

3.Fresnel‟s bi-prism 

4.Bilet splitting lens method 

DIVISION OF AMPLITUDE 

The process of obtaining a coherent source by splitting the amplitude 

of light waves is called division of amplitude which can be done by 

multiple reflections. 

In this case, extended source of light is used. 



1.Newton‟s ring method 

2.Thin film method 

3. Michelson‟s interferometer 

Young’sDouble Slit Experiment: 
 

 

 

In 1801 Thomas Young demonstrated the phenomenon of interference 

in the laboratory with a suitable arrangement. It is based on the 

principle of division of wavefront of interference. The experiential 

arrangement consists of two narrow slits, S1 and S2 closely spaced, 

illuminated by a monochromatic source of light S. A screen is placed 

at a distance D from the slit to observe the interference pattern. 

In the figure, 

d → Slit separation 

D → Slit and screen separation 

     Wavelength of light 

Y distance of interfering point from the centre of slit 

x Path difference coming from the light S1 and S2 

Optical path difference between the rays coming through 

S1 and S2 



2 

2 

1 

2𝐷2 

Now the path difference, 

∆𝑥 = 𝑆2𝑃 − 𝑆1𝑃 

In figure, 𝑆2𝑃 = [𝑆2𝐶2 + 𝑃𝐶2]1/2 

= [𝐷2 + (𝑦 + 𝑑)2]1/2 
2 

 

 
 
 
 
 
 
 
 

Similarly, 

(𝑦+
𝑑

)2 

= [1 + 2 ]1/2 
𝐷2 

(𝑦+
𝑑

)2 

= 𝐷 [1 + 2 ] (Using binomial theorem) 
2𝐷 

 
(𝑦+

𝑑
)2 

𝑆2𝑃 = 𝐷 + 2  

 
 

(𝑦−
𝑑

)2 

𝑆 𝑃 = 𝐷 + 2  
2𝐷 

(𝑦 + 𝑑)2 
∆𝑥 = 𝐷 + 2 − 𝐷 − 

2𝐷 

 

(𝑦 − 𝑑/2)2 

2𝐷 

= 
1 

2𝐷 

= 
1 

2𝐷 
 

= 𝑦 𝑑 
𝐷 

∆𝑥 = 𝑦 
𝑑
 

*(𝑦 + 𝑑)2 − (𝑦 − 𝑑/2)2+ 
2 

 
× 4𝑦 𝑑 

2 

𝐷 

The alternative dark and bright patches obtained on the interference 

screen due to superposition of light waves are known as fringe. 

Condition for bright fringe 



𝑛 

2 

The bright fringe is obtained when the path difference is integral 

multiple of  i.e. 

x  n

From equation (4) and (5), we get 
 

𝑦 
𝑑  = 𝑛𝜆 

𝑛 𝐷 

𝑦 = 
𝑛 𝐷 

𝑑 

 
 

Where n = 0, 1, 2 …… 
 

Condition for dark fringe 

It will be obtained when the path difference is an odd multiple of λ/2 

i.e. 

∆𝑥 = 
(2𝑛+1) 

2  

From (4) and (6), we get 
 

𝑦𝑛𝑑 
= 

(2𝑛+1)  

𝐷 

𝑦𝑛 = 
(2𝑛+1)  

Fringe Width 

2 

 

Where n = 0, 1, 2 …… 

 

The separation between two consecutive dark fringes and bright 

fringes is known as fringe width. 

If 𝑦𝑛 and 𝑦𝑛−1 be the two consecutive bright fringe. 

𝛽 = 𝑦𝑛 − 𝑦𝑛−1 

= 
𝑛𝜆𝐷 

− 
(𝑛 − 1)𝐷 

  

𝑑 𝑑 

𝛽 = 
𝜆𝐷 

𝑑 



𝑚 

Similarly, is 𝑦𝑛 and 𝑦𝑛−1 be the two consecutive dark fringes. 

𝛽′ = (2𝑛 + 1) 
𝜆𝐷 

− [2(𝑛 − 1) + 1] × 
𝜆𝐷

 
  

 
= 

  𝐷 
+ 

  𝐷 

2𝑑 2𝑑 

2𝑑 

𝛽′  = 
𝜆𝐷 

𝑑 

2𝑑 

It is concluded that the separation between the two consecutive bright 

fringes is equal to the consecutive dark fringes. 

So 𝛽 = 𝛽′ 

Hence bright and dark fringes are equispaced. 

Discussion: 

 
From the expression for 𝛽 = 𝛽′ = 𝐷 

𝑑 

⇒ 𝛽  𝜆 

⇒ 𝛽  𝐷 

⇒ 𝛽  
1

 
𝑑 

If young double slit apparatus is shifted from air to any medium 

having refractive index (µ), fringe pattern will remain unchanged and 

the fringe width decreases (1/µ) as λ decreases. 

𝐶 = ƒ𝜆0 
 

µ = 𝐶 
𝑉 

= 
ƒ 0 

ƒ 𝑚 
 

⇒ 𝜆 = 0 
𝜇 

 

If YDSE is shifted from air to water, the fringe width decreases3/4 

times width in air. 



𝛽w = 
𝜆w𝐷 

𝑑 
 
 
 

When YDSE is performed with white light instead of monochromatic 

light we observed, 

I. Fringe pattern remains unchanged 

II. Fringe width decreases gradually 

III. Central fringe is white and others are coloured fringes 

overlapping 

When YDSE is performed with red, blue and green light 

𝜆𝑅 > 𝜆𝐺 > 𝜆𝐵 

So 𝛽𝑅 > 𝛽𝐺 > 𝛽𝐵  
µ = 

𝐶
 
𝑉 

 
= 
ƒ𝜆0 

ƒ𝜆𝑚 

µ = 
𝜆0

 

𝜆𝑚 
 

⟹ [𝜆𝑚 = 
𝜆0

] 
µ 

 

Wavelength of light in any given medium, decreases to1/µ times of 

wavelength in vacuum. 

𝛽 𝜆𝑚 

𝛽 = 
𝜆𝑚𝐷 

 
 
 

So, it decreases 1/µ times. 

𝑚 
 

[𝛽𝑚 

𝑑 

= 
𝜆0𝐷

] 
µ𝑑 



Newton’s Ring 

The alternate dark and bright fringe obtained at the point of contact of 

a Plano convex lens with its convex side placed over a plane glass 

plate are known as Newton‟s ring as it was first obtained by Newton. 
 

The formation of the Newton‟s ring is based on the 

principle of interference due to division of amplitude. 

Experimental Arrangement 

 

The experimental arrangement consist of 

 
a) S: Monochromatic source of monochromatic light 

b) P: A plane glass plate 
 
 

 

c) L: A convex lens which is placed at its focal length to make the 

rays parallel after refraction 



d) G: A plane glass plate inclined at on 450 to make the parallel 

rays travel vertically downwards 

e) L‟: A plane convex lens of long focal length whose convex side 

kept in contact with plane glass plate 

f) T: Travelling microscope mounted over the instrument to focus 

the Newton‟s ring. 

Formation of Newton’s Ring 

 

I. To explain the formation of Newton‟s ring, let us consider a 

plano-convex lens with its convex side kept in contact with a 

plane glass plate. 

II. At the point of contact air film is formed whose thickness 

gradually goes on increasing towards outside. 

III. When a beam of monochromatic light is incident on the 

arrangement, a part of it get reflected from the upward surface 

of the air film and the part of light get reflected from the lower 

surface of the air film. 

 

 

IV. The light which reflected from glass to air undergoes a phase 

change of „π‟ and those are reflected from air glass suffers no 

phase change. 



V. As a result of which they super-impose constructively and 

destructively forming the alternate dark and bright fringe at the 

point of contact. 

Condition for bright and dark fringe in Reflected light 

 

In Newton‟s ring experiment, the light travels from upper and lower 

part of the air film suffers a path difference of λ/2 (phase change of 

π). Again, as the ray of light reflected twice between the air films 

having thickness„t‟. Then the total path travelled by the light is given 

as(2𝑡 + ). 
2 

 

Now, from the condition for bright ring, we have, 

 
𝜆
2𝑡 + 

 = 𝑛𝜆        
2 

2𝑡 = 𝑛𝜆 − 
𝜆

 
2 

2𝑡 = (2𝑛 − 1) 
𝜆

 
2 

From the condition for the dark fringe we have, 

𝜆 𝜆 
2𝑡 + 

2 
= (2𝑛 + 1) 

2
 

⇒ 2𝑡 = 
𝜆 

(2𝑛 + 1 − 1) = 𝑛𝜆 
2 

⇒ 2𝑡 = 𝑛𝜆 

Newton’s ring in transmitted light 

 

The Newton‟s rings obtained in transmitted light are complementary 

to that of Newton‟s ring obtained in reflected light i.e. 



In transmitted light, the condition for bright ring is, 

2𝑡 = 𝑛𝜆 

And for dark ring is, 

2𝑡 = (2𝑛 − 1) 
𝜆

 
2 

Newton’s ring in Reflected Light and Transmitted Light 
 

In reflected light In transmitted light 

(a) Condition for bright ring; 

2𝑡 = (2𝑛 − 1)   
2 

(b) Condition for bright 

ring; 

2𝑡 = 𝑛𝜆 

(c) Newton‟s rings are more 

intense. 

(a) Condition for bright ring; 

2𝑡 = 𝑛𝜆 

(b) Condition for dark 

ring; 

2𝑡 = (2𝑛 − 1)   
2 

(c) Newton‟s rings are less 

intense. 

 
 

DETRMINATION OF DIAMETER OF NEWTON‟S RING 
 
 

 

LOL‟ is the section of lens placed on glass plate AB. C is the centre 

of curvature of curved surface LOL‟. R is its radius of curvature and r 

is the radius of Newton‟s ring corresponding to film if thickness t. 



𝑛 

From the property of circles, 
 

 

 

 
t = thickness of air film 

 

 

𝑟2 = 2𝑅( t« 1) 

𝑃𝑁 × 𝑁𝑄 = 𝑂𝑁 × 𝑁𝐵 

𝑟 × 𝑟 = 𝑡 × (2𝑅 − 𝑡) 

 
 

𝑟2 = 2𝑅𝑡 − 𝑡2 

 

𝑟2 

⇒ 𝑡 = 
2𝑅

 

From the condition for bright Newton‟s ring, 
 

2𝑡 = (2𝑛 − 1) 
𝜆

 
2 

𝑟2 𝜆 
⇒ 2 × 

2𝑅 
= (2𝑛 − 1) 

2
 

⇒ 𝑟2 = (2𝑛 − 1) 
𝜆𝑅

 
2 

 

𝐷2 

⇒ 
4 

= 

 
(2𝑛 − 1 

 
)𝜆𝑅 

 

⇒ 𝐷2 = 2(2𝑛 − 1)𝑅 
 

⇒ 𝐷2 = 2(2𝑛 − 1)𝑅, For the nth ring. 

 
Q) Show that diameter of Newton‟s dark or bright fringe is 

proportional to root of natural numbers. 

 

𝐷 = √2(2𝑛 − 1)𝜆𝑅 



 
 

= √2𝜆𝑅 × (2𝑛 − 1) 
 
 

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × √(2𝑛 − 1) 
 

⇒ 𝐷𝑛  √2𝑛 − 1 , n = 1, 2, 3……. 

 
Thus the diameter of Newton‟s bright ring is proportional to square 

root of odd natural numbers. 

Similarly from the Newton‟s dark ring, 

 
2𝑡 = 𝑛𝜆 

 
𝑟2 

⇒ 2 × 
2𝑅 

= 𝑛𝜆 

𝑟2 

⇒ 
𝑅 

= 𝑛𝜆 

⇒ 𝑟2 = 𝑛𝜆𝑅 

𝐷2 

⇒ 
4 

= 𝑛𝜆𝑅 

⇒ 𝐷2 = 4𝑛𝜆𝑅 
 

⇒ 𝐷𝑛 = √4𝑛𝜆𝑅 
 

= √4𝜆𝑅√𝑛 

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × √𝑛 

𝐷𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × √𝑛 

𝐷𝑛  √𝑛 

Thus the diameter of Newton‟s dark ring is proportional to square root 

of natural numbers. 



𝑛 

(𝑛+𝑝) 

Determination of wavelength of light using Newton’s ring method 

 

To determine the wavelength of light, let us consider the arrangement 

which involves a travelling microscope mounted over the Newton‟s 

ring. 

Apparatus, on focusing the microscope over the ring system and 

placing the crosswire of the eye piece on tangent position, the 

readings are noted. On taking readings on different positions of the 

crosswire on various rings we are able to calculate the wavelength of 

light used. 

Let 𝐷𝑛 and (𝑛+𝑝) be the nth and (n+p)th dark ring, then we have, 

 
𝐷2 = 4𝑛𝜆𝑅 

 
𝐷2 = 4(𝑛 + 𝑝)𝑅 

 
Subtracting equation (1) from (2) we get, 

 
𝐷2 − 𝐷2 = 4(𝑛 + 𝑝)𝑅 − 4𝑛𝜆𝑅 
(𝑛+𝑝) 𝑛 

 
𝐷2 − 𝐷2 

(𝑛+𝑝) 

4𝑃𝑅 
𝑛 = 𝜆 

 

This is the required expression from the wavelength of light for 

Newton‟s ring method. 

If we plot a graph between the orders of ring along X-axis and the 

diameter of the ring along Y-axis, the nature of the graph will be a 

straight line passing through origin. 



𝐷 − 𝐷 

 

 

From the graph the wavelength of light can be calculated the slope of 

the slope of the graph. 

1 
 

 

4𝑅 
Slope of the graph = wavelength of light 

 

⇒ 
𝐴𝐵 

=
 

𝐶𝐷 

2 2 
(𝑛+𝑝) 𝑛 

 
 

𝑃 
 

𝐷2 − 𝐷2 

𝑆𝑙𝑜𝑝𝑒 = 
(𝑛+𝑝) 𝑛 

 
 

𝑃 
 

Determination of refractive index of liquid by Newton’s ring 

 

The liquid whose refractive index is to be determined is to be placed 

between the gap focused between plane convex lens and plane glass 

plate. Now the optical path travelled by the light is to be 2µt, instead 

of 2t where µ be the refractive index of the liquid from the condition 

for the Newton‟s ring we have, 

2µt = n𝜆 

 
r2 

⇒ 2µ 
2R 

= n𝜆 

r2 

⇒ µ 
R 

= n𝜆 



n 

n   air 

r2 

⇒ 
R 

= 

𝐷2 

⇒ 
4𝑅 

= 

n𝜆 

µ 

n𝜆 

µ 

 

 
For nth ring, 𝐷2 = 4𝑛 𝑅 

µ 

⇒ 𝐷2 = 
4𝑛𝜆𝑅 

µ 

 

Let 𝐷′ and 𝐷′ be the diameter of the (n+p)th and nth dark ring in 
𝑛+𝑝 𝑛 

presence of liquid then 
 

 
D'2  

4n  pR and D
'2   
 

4nR 
n p 

 
n 






Now , 
 

 
D'2 - D '2 = 4n  pR - 4nR = 4 pR (1) 

n p n 
  





If the same order ring observed in air then 
 

2 

n p 
 D2  4 pR (2) 

 

Dividing equation (2) by (1) ,we have 
 

  




2 

n p 
 D 2 


'2 n p 
 D'2 

liquid 

 

This is the required expression for refractive index of the liquid. 

D 

D 

D n 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

DIFFRACTION 

Fundamental Idea about diffraction: 

 The phenomenon of bending of light around the corner of an 

aperture or at the edge of an obstacle is known as diffraction 

 The diffraction is possible for all types of waves 

 The diffraction verifies the wave nature of light 

 Diffraction takes place is due to superposition of light waves 

coming from two different points of a single wave front 

 Diffraction takes place when the dimension of the obstacle is 

comparable with the wavelength of the incident light. 

Explanation of diffraction: 

To explain diffraction, let us consider an obstacle AB is placed 

on the path of an monochromatic beam of light coming from a source 

„S‟ which produces the geometrical shadow CD on the screen. This 

proves the rectilinear propagation of light. 
 



If the dimension or size of the obstacle is comparable with the 

wave length of the incident light, then light bends at the edge of the 

obstacle and enters in to the geometrical shadow region of the 

obstacle. According to Fresnel inside a well region, the destructive 

interference takes place for which we get brightest central maxima, 

which is associated with the diminishing lights on either side of the 

shadow as the constructive interference takes place out side the well 

region. This explains the diffraction phenomena. 

Types of Diffraction: 

Depending on the relative position of the obstacle from the source and 

screen, the diffraction is of 2 types. 

a. Fresnel Diffraction 

b. Fraunhoffer Diffraction 
 

 

 
 

Fresnel’s Diffraction Fraunhoffer Diffraction 

(1) The type of diffraction 

in which the distance of 
either source or screen or 

both from the obstacle is 

finite, such diffraction is 
known as Fresnel‟s 

diffraction. 

(2) No lenses are used to 
make the rays converge or 

parallel. 

(3) The incident wave 
front is either cylindrical or 

spherical. 

Ex:The diffraction at the 

straight edge. 

(1) The type of diffraction 

in which the distance of 
either source or screen or 

both from the obstacle is 

infinite, such diffraction is 
known as Fraunhoffer 

diffraction. 

(2) Lenses are used to 
make the rays converge or 

parallel. 
(3) The incident wave 

front is plane. 

Ex:. The diffraction at the 

narrow. 



 

 

 

 

Fraunhoffer Diffraction due to a single slit: 

Let us consider a parallel beam of monochromatic light 

inside on a slit „AB‟ having width „e‟. The rays of the light 

which are incident normally on the convex lens „L2‟, they are 

converged to a point „P0‟ on the screen forming a central bright 

image. 
 

Fraunhoffer diffraction due to single slit 



 
 

Schematic digram for Fraunhoffer diffraction due to single 

slit 

The rays of light which get deviated by an angle „θ‟, they are 

converged to a point „P1‟, forming an image having lens 

intensity. 

As the rays get deviated at the slit „AB‟ they suffer a path 

difference. Therefore path difference, BK = AB Sinθ 

= e sinθ 
 

Therefore, Phase difference = 
2 

e sin




Let us divide the single slit into ‟n‟ no. of equal holes and a be 

the amplitude of the light coming from each equal holes. 

Then Avg. phase difference= 
1 2 

e sin
n 



Now the resultant amplitude due to superposition of waves is 

given as 





a sin
 nd  

a sin
 n  1 2 

e sin 
 

a sin
  

e sin 





      

R   2  =  2  n   =   
sin

 d 





 1 2 
e sin 







sin
 1  

e sin 





 
2 


 n    
n  


  sin   

 2 
 

Let   
 

e sin ,then 


R  
a sin 

sin 



n 
 

Since  is very small and n is very large so 

small. 

 
is also very 

n 

Therefore, sin 
 

 



n 

Thus, R = asin


n 

n 

 

 
na sin 






 Asin 






whereA  an 

 

Now the intensity is given as 

A2 sin 2 




sin 2 

Iα R2  I  KR2  I  K = I where I    KA 
  

 2 0 
 2 0 

 

Condition for Central /principal maxima: 

When α = 0, 

 
 

e sin  0  sin  0 





   0 

Thus, the condition for principal maxima will be obtained at 

  0 position for all the rays of light. 

Position for/Condition for minima: 
 

The minimum will be obtained when 

 sin  sin m 

sin  0  sin(m ) 





   m

 
 

e sin  m


 e sin  m

    
m


e 

 

 

 
where 

 

 

 

 
m  1,2,3,4,....... 

 

Thus, the minimas are obtained at  
 

,2 



e e 

,3 



e 

,4 



e 

 
,........ 

 

 

 

Position/Condition for secondary maxima: 

The maxima‟s occurring in between two consecutive secondary 

maxima is known as secondary maxima. 

The positions for secondary maxima will be obtained as 
 

 
 

 
d 




dI  
 0

 

d


sin 2  



d 
I 0

 

2   0 



 2I sin  cos  sin  

 0
 

0 
 

  2 





 
 cos  sin =0 

 2 

 

  cos  sin  0 
 

   tan

This is a transdectional equation.It can be solved by graphical 

method. Taking y   and y  tan ,where the two plots are 

interests, this intersection points gives the position for secondary 

maxima. Thus the secondary maxima‟s are obtained at 

  
3 

,  
5 

,  
7 

......... 

2 2 2 





 
 



2 

 
 

From the expression for amplitude we have 
 

R =
 Asin


 

A 



 3 

 
 5 

 

3! 5! 
 
 7 

7! 


.............




A   2  4 

= x 1 



3! 5! 

 ................ = A, since α ‹‹ 1 




Thus the intensity at the central principal maxima is I0 

Sin 2 (
3 

) 

For α= 3

 , I1 =I0 Sin 2= I0   2  = I 0   

 

2  2  3 
2 22 

 
 



For α= 5
   

, I  =I  Sin
2 

= I0 
 

 

Sin 2 (
5 

) 
  2  = 

I 0 

 
and so on …… 

2 
2 0 

 2
  5 

2 62 
 
 2 

Intensity distribution curve: 
 

The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 





 
 

Intensity distribution curve 

 

 
From the nature of the graph it is clear that 

1. The graph is symmetrical about the central maximum 

2. The maxima are not of equal intensity 

3. The maxima are of not equal width 

The minima are of not perfectly dark 

 
PLANE TRANSMISSION GRATING: 

It is an arrangement consisting of large no.of parallel slits 

of equal width separated by an equal opaque space is known as 

diffraction grating or plane transmission grating. 

Diffraction 

grating 

     Construction: It   can   be 

constructed by drawing a large no. of rulings over a plane 

transparent material or glass plate with a fine diamond point. 



Thus the space between the two lines act as slit and the opaque 

space will acts as obstacle. 

N.B.Though the plane transmission grating and a plane glass 

piece looks like alike but a plane transmission grating executes 

rainbow colour when it exposed to sun light where as a plane 

glass piece does not executes so. 

Grating element: 

The space occurring between the midpoints of two 

consecutive slit in a plane transmission grating is known as 

Grating element. It can be measured by counting the 

no. of rulings present in a given length of grating. 

Let us consider a diffraction grating having 

e = width of the slit 

d = width of the opacity 

If “N” be the no. of rulings present in a given length of grating 

“x” each having width (e+d), then 

N (e+d) = x 

 (e  d )   
x
 

N 
 Grating element 

 

 

For example if a grating contain 15,000 lines per cm in a grating 

then the grating element of the grating 

Grating element, (e+d) = 1 =0.00016933 cm 
15000 

Diffraction due to plane transmission grating /Fraunhoffer 

diffraction due to N-parallel slit: 

Let us consider a plane wave front coming from an infinite 

distance is allowed to incident on a convex lens “L” which is 



placed at its focal length. The rays of light which are allowed to 

incident normally on the lens are converged to a point “Po” 

forming central principal maxima having high intensity and the 

rays of light which are diffracted through an angle are “θ” are 

converge to a point “P1” forming a minima having less intensity 

as compared to central principal maxima. Again those rays of 

light which are diffracted through an angle “θ” are undergoes a 

path difference and hence a phase difference producing 

diffraction. 
 

 

 
 

 

 
Let AB- be the transverse section of the plane transmission 

grating 

WW ' - be a plane wave front coming from infinite distance 

e = width of the slit 

d = width of the opacity 

(e+d) = grating element of the grating 

N = be the no. of rulings present in the grating 

Now the path difference between the deviated light rays is 
 

S2K = S1S2Sinθ = (e  d)Sin



2 

I0 2 

Therefore, Phase difference = 2


x S K =
 2 

(e  d )Sin


= 2 (say) 
 

where   
 

(e  d )Sin




Now the resultant amplitude due to superposition of “N” no .of 

waves coming from “N” parallel slit is given as 

R  A 
Sin SinN

 Sin


and intensity is given as 
2 2 2 Sin 2 Sin 2 N Sin 2 Sin 2 N

IR  I  KR  KA 
 2

 

Sin 2 
 I0 

 2
 

Sin 2 


where 
Sin

2 
=this is contributed due to diffraction at single slit 




and 
Sin2 N 

Sin2
= this is contributed due to interference at ” N” 

parallel slit 

Position for central principal maxima /condition for central 

principal maxima: 

The principal maxima will be obtained when 

Sin  o  Sin(m ) 

   m

 
 

(e  d )Sin  m


 (e  d )Sin  m


where m  0,1,2,3...... .This is called grating equation or condition 

for central principal maxima. 

Position for minima /condition for minima: 

The minima will be obtained when 







SinN  o  Sin(n ) 

 N  n

 N 
 

(e  d )Sin  n


 N (e  d )Sin  n



Where n can take all the values except 

 

 

 

 

 

 

n  0,N,2N,3N,.......... 
 

This is the condition for minima due to diffraction at N-parallel 

slit. 

Position/Condition for secondary maxima: 

The maxima‟s occurring in between two consecutive secondary 

maxima is known as secondary maxima. 

The positions for secondary maxima will be obtained as 
 

dI 
 0

 

d


 
d  Sin 2 Sin 2 N 



d 
I0 

 2 
Sin 2   

 0 




 
Sin 2 Sin N  N cos N sin   sin N cos  

2I0 
 2

 

Sin 

 sin 2 

  0 




  
N cos N sin  sin N cos  =0 

sin2 






 N cos N sin   sin N cos  =0 



N cos N sin   sin N cos 


 N tan N  tan N



This is a transdectional equation. It can be solved by graphical 

method. Taking y  tan N and y  N tan N ,where the two plots are 

interests, this intersection points give the position for secondary 

maxima.Thus the secondary maxima‟s are obtained at 

  
3 

,   
5 

,   
7 

......... 

2 2 2 



 
 

Intensity distribution curve: 

The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 
 

 

 
Characteristics of the spectral lines or grating spectra: 

1. The spectra of different order are situated on either side of 

central principal maximum 

2. Spectral lines are straight and sharp 

3. The spectra lines are more dispersed as we go to the higher 

orders. 



4. The central maxima is the brightest and the intensity decreases 

with the increase of the order of spectra. 

Missing spectra or Absent spectra: 

When the conditions for minima due to diffraction at 

single slit and condition for central principal maxima due to 

diffraction at N-parallel slit is satisfied simultaneously for a 

particular angle of diffraction then, certain order maxima are 

found to be absent or missed on the resulting diffraction pattern 

which are known as missing spectra or absent spectra. 

Condition for Missing spectra: 

We have, 

The condition for central principal maxima due diffraction at N- 

parallel slit 

(e  d)Sin  m


esin  n


 
(e  d )Sin 

 
m 

 
m 

 

e sin n n 

Special case: 
 

1. If d = e,  
m 

 2  m  2n 
n 

where n  1,2,3,..... 

 

i.e second order or multiple of 2 order spectra will found to be 

missed or absent on the resulting diffraction pattern. 
 

2. If d  
e 

,  
m 
 

3 
 m  1.5n  1 

2 n 2 
 

i.e First order spectra will found to be missed or absent on the 

resulting diffraction pattern. 
 

3. If e  
d 

,  
m 
 3  m  3n 

2 n 



i.e Third order spectra or multiple of 3 spectra will found to be 

missed or absent on the resulting diffraction pattern. 

Dispersion: 

The phenomenon of splitting of light wave into different order 

of spectra is known as dispersion. 

Dispersive power: 

The variation of angle of diffraction with the wave length 

of light is known as dispersive power. It is expressed as d
d



Where d  1  2 = difference in angle of diffraction and 

d  1  2 =difference in wave length of light 

Expression for dispersive power: 

We have 

(e  d)Sin  m


d 
(e  d )Sin  m 

d

d 
m 

d


 (e  d ) 
d 
Sin   m 

d


 

d d


 (e  d ) cos 
d 

 m 

d


 
d

d
= m 

(e  d ) cos


 
d 

α m 
d



α 1 

(e  d ) 

 

α  1 

cos



Determination of wave length of light using plane 

transmission grating: 

To determine the wave length of light let us consider a 

plane transmission grating with its rulled surface facing towards 

the source of light perpendicular to the axis of the spectrometer. 

The parallel beam of monochromatic light coming from source 

is allowed to incident on the transmission grating which are now 

defracted by different angle of diffraction.Rotating the telescope 

for different positions of the defracted ray the angles are 

measured. 
 

Using the grating equation , 

(e  d)Sin  m

   
(e  d )Sin

m 

We can calculate the wave length of the monochromatic light. 





MODULE-III 

VECTOR CALCULUS 

The electric field (E) , magnetic induction(B) , magnetic intensity(H ) , 

electric displacement(D) , electrical current density(J ) , magnetic 

vector potential ( A) etc. are, in general, functions of position and time. 

These are vector fields. 

Scalar quantities such as electric potential, electric charge density, 

electromagnetic energy density etc. are also function of position and 

time. They are known of as fields. 

Time Derivative of a Vector Field 
 

If A(t) time dependent vector field, then the Cartesian coordinates 

A(t)  îAx (t)  ĵAy (t)  k̂Az (t) 

 

dA 
 iˆ 

Ax (t)  ˆj 
Ay (t) 

kˆ Az (t)  
    

dt t t t 
 

Notes: d 
( A B)  A 

dB 
 ( 

dA
)  B 

dt dt dt 
 

Gradient of a Scalar Field 

The change of a scalar field with position is described in terms 

of gradient operator. 

grad (V )  V  iˆ 
V 

 ˆj 
V 

 kˆ V
 

   

x y z 
 

Where   i  ̂ 
x 

 ˆj 



y 
 k  ̂ 

z 
is del operator or nabla 

 

V is a vector. The gradient of a scalar is a vector. 

Divergence of a Vector Field 



 
i 

Ax 



x 





The divergence of a vector field A is given by 
 

   (î    ˆj 

  k  ̂ ).(î A  ĵA  k̂A ) = (

Ax   
Ay   

 k̂ Az ) 
 . A 

x y z 
x y z 

x y z 
 

Divergence of a vector field is a scalar. 

 

 
Notes: 

 

                  

.( A B) . A . B 

        

.(V A)  (V ). AV (. A) 

 

where V is a scalar field 

 If the divergence of a vector field vanishes everywhere, it is 

called a solenoidal field. 

 Divergence of a vector field is defined as the net outward flux of 

that field per unit volume at that point. 

Curl of a Vector Field 

The curl of a vector field is given by 
 

 

j k 
      

ˆ Az
 Ay ˆ Ax Az ˆ Ay Ax 

 Curl A= A  Ay Az  i ( 
y 


z 

)  j( 
z

  
x 

)  k ( 
x

  
y 

) 
 

x x 
 

 Curl of a vector field is a vector 
 

 If V is a scalar field, A and B are two vector fields, then 
                  

( A B)  A  B 

     

(V A)  (V )  AV ( A) 

 If curl of a vector field vanishes, then it is called an irrotational 

field. 

Successive Operation of the  operator 







 

 A 


(i) Laplacian 
      

ˆ  ˆ 





ˆ  ˆ  ˆ 


 

ˆ  2 
 

 

2 2 
 

  (i 
x 

 j 
y 

 k 
z 

).(i 
x 

 j 
y 

 k 
z 

)  
x

2 
 
y

2 
 
z

2
 

 2 
2 2 2 

   
x2 

 
y2 

 
z2 

This is called Laplacian Operator 

(ii) Curl of gradient of ascalar 

V  iˆ 
V 

 ĵ 
V 

 kˆ V
 

   

x y z 

Where V is a scalar field 
(V )  iˆ[( 

 
)(
V 

) 


 

 V 
)]  ˆ

 
 

  

 V 
)  ( 

 
)(
V 

)]  kˆ[( 
 

)(
V 

)  ( 
 

)(
V 

)] 
 

y z (
z 

)( 
y 

j[(
z 

)( 
x

 x z x y y x 

 
 

ˆj k 

 





  





x 

V 

x 

ˆ 
2V 

 
 

 

 

x 

V 

x 

2V 
 

 

 

 
ˆ 

2V 

 

 

 
2V 

 

 
ˆ 

2V 

 

 

 
2V 

 

(V )  i (
yz 

 
zy 

)  j(
zx 

 
xz 

)  k(
xy 

 
yx 

)  0
 

Thus Curl of gradient of a scalar field is zero. 

Note: 

 If 
      

 0 , then 

field i.e. A  V 

A can be expressed as gradient of a scalar 

 Conversely if a vector field is gradient of a scalar then 

its curl vanishes. 

(iii) Divergence of Curl of a Vector Field 
      

ˆ Az
 Ay ˆ Ax Az ˆ Ay Ax 

 

 A  i ( 
y 


z 

)  j( 
z

  
x 

)  k( 
x

  
y 

) 
 

       ˆ  ˆ  ˆ 


 

ˆ Az Ay ˆ Ax Az ˆ Ay Ax 
 

. A  (i 
x 

 j 
y 

 k 
z 

).[(i ( 
y 


z 

)  j( 
z

  
x 

)  k( 
x

  
y 

)] 
 

        Az 
 

 

Ay  Ax 
 

 

Az  Ay 
 

 

Ax 
 

 . A  
x 

( 
y 


z 

)  
y 

( 
z 

 
x 

)  
z 

( 
x 

 
y 

) 

       2 A 2 A 2 A 2 A 2 A 2 A 
 . A  z 

xy 

y 



xz 
x 

yz 
z 

yx 

y 



zx 

x 
 

zy 

î  

(V )  



x 

V 

x 








 

 

 

 

 

 

 
(iv) (iv) 

 
(v) (v) 

     

 . A  0 

i.e. divergence of curl of a vector is zero. 

Conversely, if the divergence of a vector field is zero, then 

the vector field can be expressed as the curl of a vector. 
               

 A  (. A) 2 A 

                     

.( A B)  B.(  A)  A.( B) 
 

 

 

 

 

 

 

 
 

Line Integral of a Vector 

The line integral of a vector field between two points a and b, 

along a given path is 
b 
   

IL   A.dl 
a 

dl  elemental length along the given path between a and b. 
The line integral of a vector field is a scalar quantity. 

b b 

IL    (îAx   ĵAy   k̂Az ).(îdx  ĵdy  k̂dz)   ( Axdx  Aydy  Azdz) 
a a 

Notes: 
 If the integral is independent of path of integration between a 

and b, then the vector field is conservative field. 


 The line integral of a conservative field A 

vanishes 
 

along a closed path 

i.e. 

 In general, the line integral depends upon the path between a 
and b. 

 

Surface integral of a Vector 
 

The surface integral of a vector field A , over a given surface S is 
   

Is  A.ds 
S 

Where ds  elemental area of surface S 

 A.dl  0 



 A.ds 

 A.dl 



The direction of ds is along the outward normal to the surface. 


Writting ds  nˆds , where nˆ is unit vector normal to the surface at a 

given point. 
    

So Is   A.ds   A.nˆds   Ands 
S S n 



where  An   A.n̂ , normal to the component of the vector at the area 

element. 

So, surface integral of a vector field over a given area is equal to 

the integral of its normal component over the area. 

Surface area of a vector field is a scalar. 
 

Example: E   E.ds 
S 

Volume integral of a Vector 


The volume integral of a vector field A over a given volume V is 


IV   AdV 
V 

Where dV is the elemental volume (a scalar) 

Volume integral of a vector field is a vector. 

Gradient, Divergence and Curl in terms of Integrals 

The gradient of a scalar field φ is the limiting value of its surface 

integral per unit volume, as volume tends to zero 

i.e.   lim 
V 0 

 ds 

V 
 

The divergence of a vector field A is the limiting value of its 

surface integral per unit volume, over an area enclosing the 
volume, as volume tends to zero. 

   


 

. A  lim S  
V 0 V 

The curl of a vector field is the limiting value of its line integral 

along a closed path per unit area bounded by the path, as the area 
tends to zero, 

 

    

 A  lim 
S 0 S 

where nˆ is the unit vector normal to the area enclosed. 







Gauss Divergence Theorem 


The volume integral of divergence of a vector A over a given 
volume V is equal to the surface integral of the vector over a closed 

area enclosing the volume. 
 

V S 

This theorem relates volume integral to surface integral. 

Stokes Theorem 

The surface integral of the curl of a vector field A over a given 
surface area S is equal to the line integral of the vector along the 

boundary C of the area 
 

 

 

S C 

For a closed surface C=0. Hence surface integral of the curl of a 
vector over a closed surface vanishes. 

Green’s Theorem 

If there are two scalar functions of space f and g, then Green‟s 
theorem is used to change the volume integral into surface integral. 

This theorem is expressed as 

( f 2 g  g2 f )dV  ( f g  gf )dS 
V S 

V- volume enclosed by surface S. 
 

 

 

 

 
 

 
 

Electric Polarization ( P ) 
 

 

Electric polarization P is defined as the net dipole moment ( p ) 

induced in a specimen per unit volume. 
 




P 
V 

Unit is 1 coul/m2 
The dipole moment is proportional to the applied electric field. 

 

So p   E ,   proportionalitycons tan t, knownas polarizability 

.AdV   A.dS 

( A).dS   A.dl 

p 



  



  





If N is the number of molecules per unit volume then polarization 

is given by 
 

P  N E 


Electric Displacement Vector D 


The electric displacement vector D is given by 

D  P 0 E (1) 

where is the P  polarizationvector 

Unit of 


D 1 
ampere sec 
 

 

m2 

In linear and isotropic dielectric, 
 

D   E  0r  E -------------------- (2) 

Comparing equations (1) and (2), we get 
  

0r  E  P 0  E 
 

 P  0 (r  1) E 

Electric Flux (φE) 

 

The number of lines of force passing through a given area is known as 
electric flux. 

It is given by 

 

 
Unit of flux-1 

 

 
N  m2 

Coul 

    

E  E.dS 
S 

 

 

 

 

 

 

 

Gauss’ Law in Electrostatic: 

Statement: The total electric flux (φE) over a closed surface is equal to 
1 times the net charge enclosed by the surface. 
 0 

    

E  E.dS 
S 

 
qnet 

0 

Here S is known as Gaussian surface. 



 E.dS  . E dV 







In a dielectric medium Gauss‟ law is given by 
    

E  E.dS 
S 

 
qnet 



 - Permittivity of the medium. 

In terms of displacement vector Gauss‟ law is given by 
 

 
 

Notes: 

    

E  D.dS  qnet 

S 

 The charges enclosed by the surface may be point charges or 

continuous charge distribution. 

 The net electric flux may be outward or inward depending upon 
the sign of charges. 

 Electric flux is independent of shape & size of Gaussian 

surface. 
 The Gaussian surface can be chosen to have a suitable 

geometrical shape for evaluation of flux. 

 Limitation of Gauss‟ Law 
(a) Since flux is a scalar quantity Gauss‟ law enables us to find 

the magnitude of electric field only. 

(b) The applicability of the law is limited to situations with 

simple geometrical symmetry. 

 

Gauss’ Law in Differential form 
 

Gauss‟ law is given by 
 

 

   

E.dS 
S 

 
qnet 

 



For a charge distribution 

qnet    dV where   volumech arg edensity 
V 

Using Gauss divergence theorem 
      



S V 

 

 
So 

1 
  dV 

     

 

 . E dV 
0 V V 





 B.dS  0 

 B.dS  . B 







     

Or (. E 
V 

) dV  0 
0 

 

 
    
. E  0 

0 

 

 
    
. E 

0 

This is the differential form of Gauss‟ law. 


Magnetic Intensity (H) and Magnetic Induction (B) 

The magnetic intensity (H ) is related to the magnetic field induction 

(B) by 
 



(H ) 



(B) 
 

 


0 

 

Unit: in SI system (H ) is in amp/m and (B) in tesla. 

Magnetic Flux (m ) 

 

The magnetic flux over a given surface area S is given by 

(m )   B.dS   BdS cos
S S 



where   angle between magnetic field B and normal to the surface 

Unit of flux: 1 weber in SI 

1 maxwell in cgs(emu) 

So 1T= 1 weber/m2 

1 gauss= 1maxwell/cm2 

Gauss’ Law in magnetism 

Since isolated magnetic pole does not exist, by analogy with Gauss‟ 
law of electrostatics, Gauss‟ law of magnetism is given by 

   



S 

Using Gauss divergence theorem 
      



S V 

 

 . B  0 

 

 
dV  0 

This is the differential form of Gauss‟ law of magnetism. 

Ampere’s Circuital law 





   



 B.dl  0I 

 H.dl  I 

  

Statement:-The line integral of magnetic field along a closed loop is 

equal to µ0timesthenetelectriccurrentenclosedbyloop. 
 

 



C 

 

Where I  net current enclosed bythe loop 

C closed path enclosing the current (called ampere loop). 

In terms of magnetic intensity 
 

 



C 

 

Ampere’s Law in Differential form 

Ampere‟s law is 
 

  (i) 
C 

 

Using Stoke‟s theorem, we have 
 

 B.dl  ( B).ds (ii) 
C S 

 

In terms of current density J 

0I  0  J.ds (iii) 
S 

 

Using (ii) and (iii) in equation (i) we have 
 

      

( B).ds  o   J.ds    (o J ).ds 
S S S 

 

      

 B  o J 
 

This is Ampere‟s circuital law in differential form. 

Faraday’s Law of electromagnetic induction 

 B.dl  0I 

 



      



 E .dl 

   



 



 

S 

Statement :-The emf induced in a conducting loop is equal to the 

negative of rate of change of magnetic flux through the surface 

enclosed by the loop. 

       
m (i) 
t 

The induced emf is the line integral of electric field along the loop. 
 

   

 
C 

 

The magnetic flux is 
 

    

m  B.ds 
S 

 

So from the above 
 

     E .dl    
    
B.ds 

C t S 

 

This is Faraday‟s law of electromagnetic induction in terms of E and 


B 
 

Differential form of Faraday’s Law 

Now using Stokes‟ theorem 
 

       

E .dl    ( E).ds 
C S 

 

  

But   
t  

B.ds 

 

From above two equations 
 

 
  (  

 
  



 
 B 

 E).ds   
t 

B.ds  
t 

.ds 
S S S 


C 

E .dl   
t

 
     m 





 J.ds 

 J.ds  . J 

  t 

Or  (
  

 
 B  

 0 
 E 

S 
t 

).ds 

 


       B 

  E 
t 

 0 

 

This is differential form of Faraday‟s law electromagnetic 

induction. 

Equation of Continuity 

The electric current through a closed surface S is 
 

 

I 
S 

 

Using Gauss divergence theorem 
 

     

I 
S V 

dV --------------------- (i) 

 

Where S is boundary of volume V. 
 

Now I   
q

 
t 

 rate of decrease of ch arg e fromthevolumethroughsurface S 

 

 I   
 
  dV   

 
dV ----------------------(ii) 

t V V t 

From (i) and (ii) 

   
. J dV   dV 

V V 

 

  (
     

)dV  0 
. J  

t
 

 

    
 . J  

t 
 0 

 

This is equation of continuity. 

Displacement Current 

V 





  t 

Maxwell associated a current (known as displacement current) with 

the time varying electric field. 

A parallel plate capacitor connected to a cell is considered. 

During charging field E between varies. 

Let q  instantaneous charge on capacitor plates. 

A  area of each plate 

We know that the electric field between the capacitor plates is 
 

E  
q
 

0 A 
 

 
dE 

   
1   dq 

  

dt 0 A dt 
 

 0 A 
dE 

 
dq 

dt dt 
 

 Id  0 A 
dE 

dt 
where Id  displacement current between the plates 

 

Id exists till E⃗→varies with time. 

In general, whenever there is a time-varying electric field, a 

displacement current exists, 

 
Id  0 

S 

 
E.ds  0 

E 
 

 

t 
 

Where E is electric flux. 
 

Modification of Ampere’s circuital law 

Taking displacement current into account Ampere‟s Circuital law is 

modified as 
 

 

C 
 B.dl  o I  Id 





This law is sometimes referred as Ampere- Maxwell law. 

The corresponding differential form is given as, 

 B  


o J  o 

E 
t 




 



Or 
 

 H  

J  

D 
 

t 


 



By using 
 

 E  D , 
B 

 H 
0 



0 

 

 

Here  
E 

 J 
 

 

 
 displacement current density 

0   
t 

d 

 

Distinction between displacement current and conduction current 
 

Conduction current Displacement current 

(i) Due to actual flow of 

charge in conducting 

medium. 

(ii) It obeys ohm‟s law. 

(iii) Depends upon V and R 

(i) Exists in vacuum or any 

medium even in absence of 

free charge carriers. 
(ii) Does not obey ohm‟s law. 

(iii) Depend upon c and 6𝐸 
6𝑡 

Relative magnitudes of displacement current and conduction current 
 

Let E  E0Sint alternating field 
 

Then current density 

J  E  E0Sint          (i)  

 

Displacement current density 
 

J   E 
 




 
E Sint  


E Cost          (ii) 
d 0 

t
 0 t 

0 0    0 



2 
Thus there is a phase difference of  between current density and 

displacement current density. 

The ratio of their peak values 

 J   E 
  max   0     
 Jd max 0E0 0 

 

It means this ratio depends upon frequency of alternating field. 

Notes: 

 For copper conductor the ratio is  
1019 

 

 



 For f>1020 Hz, displacement current is dominant. So normal 

conductors behave as dielectric at extremely high frequencies. 

Maxwell’s Equations 

The Maxwell‟s electromagnetic equations are 
 

 

. D   --------------(1) 
 

  

. B  0 -----------------(2) 
 



       B 
 E   

t
 

 

------------------(3) 

 

 

 
 

Notes: 



   D 

 H  
t 

 J 

 

-------------------(4) 

 

 Equation (1) is the differential form of Gauss‟ law of 

electrostatics. 

 Equation (2) is the differential form of Gauss‟ law of 

magnetism. 

 Equation (3) is the differential form of Faraday‟s law of 

electromagnetic induction. 



 E 

 Equation (4) is the generalized form of Ampere‟s circuital law. 

 Equations (2) and (3) have the same form in vacuum and 

medium. They are also unaffected by the presence of free 

charges or currents. They are usually called the constraint 

equation for electric and magnetic fields. 

 Equations (1) and (4) depend upon the presence of free charges 

and currents and also the medium. 

 Equations (1) and (2) are called steady state equations as they do 

not involve time dependent fields. 

Maxwell’s Equations in terms of E and B 
 

    
. E  


 --------------(1) 
0 

 

  

. B  0 -----------------(2) 
 



       B 
 E   

t
 

 

------------------(3) 

 


     

 B  
t

 

 


  J 

 

-------------------(4) 
 

In absence of charges 
 

  

. E  0 --------------(1) 
 

  

. B  0 -----------------(2) 
 


       B 

 E 
t 

 0 ------------------(3) 
 


       E 

 B 00 
t 

 0 -------------------(4) 
 

Maxwell’s Equations in Integral Form 
 

     1 

 E .dS 
S 

  dV 
0 V 

--------------(1) 




 

 

--------------(2) 
S 

 

 

 

 
   

E .dl    
C 

--------------(3) 

 

 

 
 

 
    


 E 



 B.dl  0 (J  0 
C S 

t 
).dS --------------(4) 

 

Physical Significance of Maxwell’s Equation 

(i) Maxwell equations incorporate all the laws of 

electromagnetism. 

(ii) Maxwell equations lead to the existence of electromagnetic 

waves. 

(iii) Maxwell equations are consistent with the special theory of 

relativity. 

(iv) Maxwell equations are used to describe the classical 

electromagnetic field as well as the quantum theory of 

interaction of charged particles electromagnetic field. 

(v) Maxwell equations provided a unified description of the 

electric and magnetic phenomena which were treated 

independently. 

Electromagnetic Waves 

Wave Equation of electromagnetic wave in free space 

In vacuum, in absence of charges, Maxwell‟s equations are 
 

  

. E  0 --------------(1) 
 

  

. B  0 -----------------(2) 

 B.dS  0 



t 

S 

    

B.dS 

    





       

  
 B 

 
 

------------------(3) 
 E 

t
 

 

     
 E

 
 

 

 -------------------(4) 
 B 0   0   

t
 

 

Taking curl of equation (3) 
 


                 B         

 E   
t

 

Using equation (4) 

  
t 

( B) 

 

 
             E 2 E 

 E   
t 

(00 
t 

)  00 
 

 

t2 
 

 
    


2  2 E 

 (. E)  E  00 
 

 

t2 
 

 
    




2 
 2 E 

 Since(. E)  0, E  00 
t2 

 

Taking 0 0 
1 

, where c  velocity of light 
c2 

 


2 
 1 2 E 

We have E  
c2 t2 

 

This is the wave equation for E . 

Now taking curl of equation (4) 

                   

 B  00 
t 

( E) 

Using equation (3) 
 

 
             B 2 B 

 B  00 
t 

( 
t 

)  00 
 

 

t2 
 

 
    


2  2 B 

 (. B)  B  00 
 

 

t2 





A 

Since 
 

 2   


2 B 
 (. B) 0, B 0    0 
t2 

 

Taking 0 0 
1 

, where c  velocity of light 
c2 

 

 We have 
 

2 


1 2 B 
 

B 
c

2
 t2 

 

This is the wave equation for B . 

The general wave equation in vacuum can be written as 
 

2 
 1 


2 

  
c2 

t 2 
 

Where 
  

  E or B 
 

For charge free non-conducting medium, the general equation will be 
 

2 
 1 


2 

  
v2 

t 2 
 

 
1 

, where v  velocity of light in medium s 
v2 

 

Magnetic Vector Potential 

The vector potential in a vector field is defined as when the 

divergence of a vector field is zero the vector can be expressed as the 

curl of a potential called vector potential ( 
→ 

). 
 

We know that 
   

. B  0 (Maxwell equation) 
 

Then 
  

B    A 

 

(asdiv.ofcurl of avector is zero) 
 

 

The vector A is called magnetic vector potential. The vector A can be 

chosen arbitrarily as addition of a constant vector or gradient of a 

scalar do not change the result. 

Scalar Potential 

      



E  
 A 

 

E   
 A 

 

  

The scalar potential in a scalar field is defined as when the curl of a 

field is zero the vector can be expressed as the negative gradient of a 

potential called scalar potential ( ). 
 

 

 

 We have       

  
 B 

 
 

 (Maxwell‟s equation 3) 
 E 

t
 

 

Putting B    A in above we get 
 

              

 E   
t 

( A) 

  

E  

 A  
 0  

t 


 



We know that curl of grad of a scalar is zero. So we can write 

 
where isascalar functioncalled thescalar potential . 

 

t 

 
So 

t
 

 

 

For atimeindependent field 

 

 
 A 

 0; so 
t 

 

E   here electrostatic potential 
 

Wave equation in terms of scalar & vector potential 

Let us consider the Maxwell‟s equations, 
 

.E  0              (1) 
 

 B    
E

 
 

             (2) 
0 0   

t
 

 

Writing E    
 A

 
t 

; A  vector potential 

In free space and absence of 

charge 



c2 

 

.A    0 



We have 

.E  .
 
  

A  
 0  

t 


 

or 2  
 

.A  0 
t 

Using Lorentz gauge condition 
 

 
1 2



c2 2t 

 
2 

 
1 2

Wehave     0 
 

c2 2t 
 

This is the wave equation in terms of scalar potential. 

Putting E    
A

 
t 

B   A in equation (2) we get 

  A    
 

  
 A 


0   0 

t 
 t 






  

 


2  2 A 

 
 .A   A  00 

t 
   00 t2 

 

   2 2 A 

 
 .A  00 

t 
   A  00 t2 

 

The LHS vanishes by Lorentz gauge condition. 
 

So 2 
2 A 

t2 0 
 

This is the wave equation in terms of vector potential. 

Lorentz gauge potential 

2.A  
 1  

 0 (Lorentz gauge condition) 
t 

.A  0 (Coulomb gauge condition) 

 

Transverse nature of elecromagnetic wave 

A  0 0 



e.  E e 


i (k .r t ) 

0 



. bB e 


i (k .r t ) 

0 



0 

ˆ 

The plane wave solutionof waveequation for E and B are 

       (1) 

       (2) 

where  e, b  unit vector along E and B respectively. 

E0 , B0  amplitudes of E and B respectively. 

k  wave propagationvector 

  angular frequency 
 

Using 

 

 


.E  0 in equation (1) we have 
 

 0 

 

as .V A  V .A V .A


Since eˆ  constant, 
 

 0 



 .ê  0 

or e.ikE ei(k.rt)   0 

Since E0  0, 

e.k  0 

ei (k .r t )  0, 

         (3) 
 

This shows the transverse nature of electric field. 

Similarly, from Maxwell‟s equation 

.B  0 

 

We have 
 

 0 

 b. B ei (k .r t )   .b B ei (k .r t )   0 

 0   0 


Since bˆ  constant, 


.b  0 

E r, t  eE e   i (k .r t ) 

0 

B r, t  bB e   i (k .r t ) 

0 

. eE e 


i(k .r t ) 

0 



e.  E e 


i(k .r t ) 

0 


 .e E e 


i (k .r t ) 

0 


 0 



0 

         



we get(E e )  E ike 

0 0 0 

b. B ei (k .r t )   0 

 0 

or b.ikB ei(k.rt)  0 

Since B0  0, ei (k .r t )  0, 

b.k  0          (4) 
 

This shows the transverse nature of magnetic field. 

Mutual orthogonality of E, B and k 

Now from Maxwell‟s 3rd equation we have 
 



[eE0e 

 
i(k.r t ) ]   

 
[bB e 

t 0 

 
i(k.r t ) 

 
] 

-----------(5) 
 

Using ( AV )  V ( A)  (V )  A , we have 
 

  

[eE ei(k.r t ) ]  E ei(k.r t ) ( e) [(E ei(k.r t ) )] e 
 

Since e is a constant unit vector, ( e)  0 and 
 


i(k.r t ) i(k.r t ) 

0 0 

 



[eE ei(k.r t ) ]  E ikei(k.r t )  e  E iei(k.r t ) (k  e) 

 

Now  
[bB ei(k.r t ) ]  bB   

 
{ei(k.r t )}  bB ei(k.r t ) (i)  

t 0 0 t 0 
 

Then from eqn. 5 
 

E iei(k.r t ) (k  e)  bB ei(k.r t ) (i)  bB iei(k.r t ) 

 
 E0 (k  e)  bB0

 (k  e)  
B0 

b 

E0 

 

So b is perpendicular to both k and e . 

Thus electric field, magnetic field and propagation vector are 

mutually orthogonal. 

0 0 0 

0 0 0 



00 

00 

 

 

Relative magnitudes of E and B 

Now taking magnitudes 
 

 

 k  
B0

 

E0 

 
E0  

 
 c, 

 

 
 

wherec  velocity of light 

B0 k 

 

c  
1
 

 
 

Now using B0  0H0 
 

0   0c  0 
H 

 
0    Z 
 

0 

0 0 

 

 

The quantity Z0 has the dimension of electrical resistance and it is 

called the impedance of vacuum. 
 

Phase relation between E and B 

In an electromagnetic wave electric and magnetic field are in phase. 

Either electric field or magnetic field can be used to describe the 

electromagnetic wave. 

Electromagnetic Energy Density 

The electric energy per unit volume is 
 

u   
1     1 2

 
 E . D  E 

E 
2 2 

       (1) 

The magnetic energy per unit volume is 

u   
1     1 2

 
 B. H  H 

B 2 2 
       (2) 

E 1 

(k  e)  
B0 

b 

E0 



0 0 



 
 

The electromagnetic energy densityis givenby 
 

uEM  
1 

( E2  H 2 ) 
2 

Invacuum 

uEM 
 

1 
(

2 
E2   H 2 ) 

 

Poynting Vector 

The rate of energy transport per unit area in electromagnetic wave is 

described by a vector known as Poynting vector ( S ) which is given as 
 

  

S  E H 

     

E B 
 

 




Poynting vector measures the flow of electromagnetic energy per unit 

time per unit area normal to the direction of wave propagation. 
 

Unit of  1 
watt 

in SI. 
 

S 
m

2
 

 

Poynting Theorem 

We have the Maxwell equations 
 



       B 
 E   

t
 




         (i)  

 

 H 
 D 



t 
 J          (ii) 

 

 

Taking dot product H with (i) and E with (ii) and subtracting 
 

 
                 B     D  

H . E E. H   H . 
t 

 E . 
t 

 E . J        (iii) 

 

      

LHS  .(E H ) 



   



dV   E . J dV 

 
     B   ( H )  H 2 
H . 

t 
 H . 

t
  

t 
( 

2   
) 

Similarly 
 

   D 
E . 

t
 



 E . 
( E) 

 

 

t 
 
 

( 

t 

 E 2 
) 

2 
 

Then from (iii) 
 
 

         E2 H 2    

.(E H )   
t 

( 
2   

 )  E . J 
2 

 
 

 

 . S  
uEM 

t 

   

 E . J 

 
  
E H  S and u  

E2 
 
H 2 

  

EM 
2 2 

This is sometimes called differential form of Poynting theorem. 

Taking the volume integral of above 

. S dV  
uEM 

t 

   

dV  E . J dV 
V V V 

 

Using Gauss divergence theorem to LHS we have 

 



V 

 

This represents Poynting theorem. 

LHS of the equation  rate of flow of electromagnetic energy 

through the closed area enclosing the 

given volume 

1
st 

term of RHS  rate of change of electromagnetic energy in 

volume 

1
st 

term of RHS  work done by the electromagnetic field on the 

source of current. 


A 

 

S.d A   
uEM 

V 
t 

as 



E sin t 
2 2 

0 

2 

rms 

EB 

Thus Poynting theorem is a statement of conservation of energy in 

electromagnetic field. 

 

 

 

 

 
In absence of any source, J=o 

 

 then 
  

uEM    0 
 

. S 
t

 
 

 

This is called equation of continuity of electromagnetic wave. 

Poynting Vector & Intensity of electromagnetic wave 
 

 

Since E and H aremutually perpendicular 
 



S  EH  





Here E and H are instantaneous values. 
 

 

Since E and H arein phase 

E 
 

E0  c 

H H0 

E2  

or S  
c

 

If    E  E0 sin t, thenaveragevalueof Poynting vector is 

S   
c 




2 

0 
 

2c 
as sin2 t    

1
 

2 

  
c E2 

  2 E 
 

S 0 c Erms 

2 
as Erms  0 

 

The average value of Poynting vector is the intensity (I) of the 

electromagnetic wave, 
 

I  S   cE2 

E 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

MODULE-4 

 

 

 
 

QUANTUM PHYSICS 

Need for quantum physics: Historical overview 

 About the end of 19th century, classical physics had attained 

near perfection and successfully explains most of the observed 

physical phenomenon like motion of particles, rigid bodies, fluid 

dynamics etc under the influence of appropriate forces and leads 

to conclusion that there is no more development at conceptual 

level. 



 But some new phenomenon observed during the last decade of 

19th century which is not explained by classical physics. Thus to 

explain their phenomena a new revolutionary concept was born 

which is known as Quantum physics developed by many 

outstanding physicists such as Planck, Einstein, Bohr, De 

Broglie, Heisenberg, Schrodinger, Born, Dirac and others. 

 The quantum idea was 1st introduced by Max Planck in 1900 to 

explain the observed energy distribution in the spectrum of 

black body radiation which is later used successfully by Einstein 

to explain Photoelectric Effect. 

 Neils Bohr used a similar quantum concept to formulate a model 

for H-atom and explain the observed spectra successfully. 

 The concept of dual nature of radiation was extended to Louis 

De Broglie who suggested that particles should have wave 

nature under certain circumstances. Thus the wave particle 

duality is regarded as basic ingredient of nature. 

 The concept of Uncertainty Principle was introduced by 

Heisenberg which explains that all the physical properties of a 

system cannot even in principle, be determined simultaneously 

with unlimited accuracy. 

 In classical physics, any system can be described in any 

deterministic way where as in quantum physics it is described 

by probabilistic description. 

 Every system is characterized by a wave function ψ which 

describes the state of the system completely and developed by 

Max Born. 

 The wave function satisfies a partial differential equation called 

Schrodinger equation formulated by Heisenberg. 

 The relativistic quantum mechanics was formulated by P.A.M. 

Dirac to incorporate the effect of special theory of relativity in 

quantum mechanics. 

In this way, this leads to the development of quantum field 

theory which successfully describes the interaction of radiation 



with matter and describes most of the phenomena in Atomic 

physics, nuclear physics, Particle physics, Solid state physics 

and Astrophysics. 

The Quantum Physics deals with microscopic phenomena 

where as the classical physics deals with macroscopic bodies. 

All the laws of quantum physics reduces to the laws of classical 

physics under certain circumstances of quantum physics are a 

super set then classical physics is a subset. 

i.e., lim𝑛→0 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑝ℎ𝑦𝑠i𝑐𝑠 = 𝐶𝑙𝑎𝑠𝑠i𝑐𝑎𝑙 𝑝ℎ𝑦𝑠i𝑐𝑠 

lim 
𝑛→∞ 

𝐶𝑙𝑎𝑠𝑠i𝑐𝑎𝑙 𝑝ℎ𝑦𝑠i𝑐𝑠 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑝ℎ𝑦𝑠i𝑐𝑠 



PARTICLE ASPECTS OF RADIATION 

The particle nature of radiation includes/are exhibited in 

the phenomena of black body radiation, Photoelectric effect, 

Compton scattering and pair production. 

 
Matter waves and De-Broglie Hypothesis 

The waves associated with all material particles are called Matter 

waves. 



2 

According to De-Broglie hypothesis, the wavelength λ of 

matter wave associated with a moving particle of linear momentum P 

is given by 

 

or, 

 
For a non-relativistic free particle of kinetic energy E, we have 

P2 

E 
2m 

 

 

 
If q=charge of a particle 

m=mass of the particle 

V=potential difference 

 P 

 

2mE 

h 

2mE 

Then, P
2

 

2m 
 qv  P 






If T=absolute temperature, then 

 

P   
 

3 

2m 2 
kT  P 



  
h 

3mkT 


For a free relativistic particle, 

2mqv 

3mkT 

 
h 

mv 

 

 
h 

2mqv 

 

  
h
 

P 



E 

E2  m2c4 
 P  0  

c 
 





 Experimental confirmation of matter wave was demonstrated by 

Davision-Germer experiment. 

 The wave nature of electron was demonstrated by division and 

Germer. 

Transition from deterministic to probabilistic 

In classical physics, the physical properties of a system can be 

specified exactly in principle. If the initial conditions of a system are 

known, its subsequent configurations can be determined by using the 

relevant laws of physics applicable to the system. Thus classical 

physics is deterministic in nature. But this deterministic description is 

inconsistent with observation. In quantum mechanics every physical 

system is characterized by a wave function which contains all the 

information‟s for the probabilistic description of a system. This 

probabilistic description is the basic characteristic of quantum physics 

and is achieved by the wave function. 

Wave function 

 The state function which contains all information‟s about a 

physical system is called wave function  r, t . 

 It describes all information‟s like amplitude, frequency, 

wavelength etc. 

 It is not a directly measurable quantity. 

 It is a mathematical entity by which the observable physical 

properties of a system can be determined. 

Characteristics 

 It is a function of both space and time co-ordinate. 

i.e. r,t    x, y, z;t 

 It is a complex function having both real and imaginary part. 

P2c2  m2c4 
0 

 
hc 

E2  m2c4 
0 

 



 It is a single valued function of its arguments. 



 The wave function  and its first derivative 
x 

all places including boundaries. 

 It is a square integrable function i.e.  2 dv  1. 

are continuous at 

 The quantity  2 represents the probability density. 

 It satisfies the Schrodinger‟s equation. 

Superposition principle 

This principle states that “Any well behaved state of a system can be 

expressed as a linear superposition of different possible allowed states 

in which the system can exists.” 
 

If 1, 2, 3...... be the wave functions representing the allowed states, 

then the state of the system can be expressed as 

 1  2 3   ... n  cn n 

Probability density 

The probability per unit volume of a system being in the state  is 

called probability density. 

i.e.    2 

 

As the probability density is proportional to square of the wave 

function, so the wavefunction is called “probability amplitude”. 

The total probability is, 

 dv    
2

dv  1 
v v 

 

As the total probability is a dimensional quantity, so it has dimension 
L3  and the wavefunction has dimension  3

2  .
 

  
L 




 1

2 
 Dimension of 1-D wave function is 


L 

 
. 



t 

 2 


2
 

  Dimension of 2-D wave function is L-1  . 
 

Observables 

The physical properties associated with the wave function provides 

the complete description of the system state or configuration are 

called observables. 

Ex: energy, angular momentum, position etc. 

Operators 

The tools used for obtaining new function from a given function are 

called operators. 
 

If  Â  be  an  operator  and  f(x)  be  a  function,  then Â f(x)=g(x) ;  g(x)=new 

function 
 

Ex: energy operator, momentum operator, velocity operator etc. 

Physical Quantity Operator 

Energy-E i 





Momentum- p i 
 

Potential Energy(V) V 
 

Kinetic Energy( p
2

 

 
Eigen States: 

2m 
) 

2m 

 

The number of definite allowed states for the system are called 

eigen states. 

 

 
Eigen Values: 





Â i  i i 

The set of allowed values of a physical quantity  for a given 

system is called eigen 

values of the 
 

quantity. 

For any operator 

 
 

Â having eigen values 

 

i corresponding to the eigen 

 

equation is 

Expectation Values: 

states i the eigen value 

 

The expectation values of a variable is the weighted average of the 

eigen values with their 

relative 
 

probabilities. 
 

If q1, q2, q3,...... are the eigen values of a physical quantity Q and they 

occur with probabilities 
 

p1, p2, p3,.... for a given state of the system then weighted average of Q 

is 
 

Q  
p1q1  p2q2  .... 

 
 pnqn 

p1  p2  ....  pn 

 

Since the total probability is 1, so p1  p2  p3 ......  1 
 

 Q  p1q1  p2q2  ....   pnqn 

 

In general if A be a physical quantity, then 
 

A    2 dV 

   dv 

 

A     Â dV Â  



  

t 

2    2 

 
k 

 

For normalized wave function. 

 For any function to be normalized is given as 
 

 r, t 
2 

dV  1 

 The expectation value of energy, 

E     Ĥ dV    
 
i 

 
 dV t 

 

 i dV 

 
Schrodinger‟s Equation:- 

The partial differential equation of a wave function involving the 

derivatives of space and time coordinates is called Schrodinger equation. 

Time-dependent Schrodinger equation 

Let the wave function be represented by 

  x,t   Aeikxt


 


x 
2

 ik , 



t 
 i 







(1) 

  k 2 
x2 

The energy and momentum are given as 

E  h 

p  
h 





2 

We have E 
2m 

 


2m 
 

Using eqn(1) in eqn(2), 

 

 
 

(2) 



k 

p 



p 

 

 

 (3) 
 

This is the time-dependent Schrodinger equation for a free particle in 1- 

dimension. 

If the particle is in a potential V(x), then 
 

2 

E  V 
2m 

 








(4) 
 

Similarly along Y and Z-axis is given as 
 

  2 2i  V
t 2m y2 

 

  2 2i  V
t 2m z2 

 

Time-dependent Schrodinger equation in 3-D: 
 

  2  2 2 2 

i 
t 

 
2m 

 
x2 

 
y2 

 
z2 

 V



(5) 

 

Time-independent Schrodinger equation: 

If the energy of the system does not change with time then 
 

E   remains constant 

Now from eqn (1), 

 
i 

 

 
 2 2 n 

E    V
2m 

[fromeq (5)] 
 




i 
  2 2

t 
 

2m x2 
V



i 
t 

 
2m 

  V
  2 2 
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 i

 

t 
i     E

i 
 




t 

 2 2

2m x2 

 

  2 2m 
2 E V   0 



This is time-independent Schrodinger equation in 3-D. 



Particle in a one dimensional box: 

The physical situation in which the potential between the boundary wall 

is zero and is infinite at the rigid walls is called one dimensional box or 

one dimensional infinite potential well. 

The potential function for the situation is given as 

V  x  0, 0  x  a 

 , x  0 and x  a 



2 
0 

1 2 

x0 

x0 

 
 

Now Schrodinger equation inside the well is given as 

d 2 
 

2m 
 

dx2 2 
E  0 

 
d 

2 
 k 2 

dx 
 

The general solution of eqn(1) is given as 

  x  C e
ikx 
 C e

ikx
 

 
 Asin kx  B cos kx 

 
(1) 

 

 

 

 
(2) 

 

Where A and B are to be determined from the boundary condition at x=0 

and x=a. 

Thus eqn(2) becomes, 0  Asin kx  B cos kx  0  B 

 





Thus the wave function inside the well is given as 

0  x  a






(3) 

 

Energy eigen Values:- 

From eqn(3), 

0  Asin kx  Asin ka 

 

 

 
at x=a 

  x  Asin kx 

B  0 



2 

2 2 

ka  n

2 

 n=1,2,3…. 

 




Thus allowed bound states are possible for those energies for which the 

width of the potential well is equal to integral multiple of half wave 

length. 
 

Since k 
2 
 

2mE 

 

 
 2   2 2mEa2 2 2 

k a   n 







Thus the energy of the particle in the infinite well is quantized. 
 

 The ground state energy is E  which is the minimum energy 
1 2ma2 

of the particle and is called the zero point energy. 

 The energy of the higher allowed levels are multiple of E1 and 

proportional to square of natural numbers. 

 The energy levels are not equispaced. 

Eigen Functions 

En  
2ma

2 
n 

2 2 
2 

a  n 



2 



The eigen functions of the allowed states can be obtained as 
 



  2 dx  1 
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Thus the eigen function for each quantum state are obtained by 
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
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LASER(MODULE V) 
 

Laser' is an acronym for 'light amplification by the stimulation 

emission of radiation'. Its theoretical basis was postulated by Albert 
Einstein. The first tooth exposed to laser light was in 1960. Lasers can 

be applied to almost any clinical situation. 

Lasers 

Lasers are light beams that are powerful enough to travel miles into the sky and cut 

through lumps of metal. Although they seem like a recent invention, they have 
been with us for half a century. The first practical laser was built by Theodore H. 

Maiman at Hughes Research Laboratories in 1960. At the time, lasers were an 

example of cutting-edge technology. Today, we have lasers at our homes, offices 
and shopping centres. Whether or not we realise it, all of us use lasers all day. But 
how many of us understand what they are and how they work? 

How does a laser work? 

The output of a laser is a coherent electromagnetic field. In a coherent beam of 

electromagnetic energy, all the waves have the same frequency and phase. 

A basic laser consists of a chamber known as the cavity which is designed to 
reflect infrared, visible or ultraviolet waves so that they reinforce each other. The 

cavity can contain either solids, liquids or gases. The choice of the cavity material 

determines the wavelength of the output. Mirrors are placed at each end of the 
cavity. One of the mirrors is totally reflective, not allowing any of the energy to 

pass through them. The other mirror is partially reflective, allowing 5% percent of 

the energy to pass through them. Through a process known as pumping, energy is 

introduced into the cavity through an external source. 

https://byjus.com/physics/electromagnetic-field/


Due to pumping activity, an electromagnetic field appears inside the laser cavity at 
the natural frequency of the atoms of the material that fills the cavity. The waves 

are reflected back and forth between the mirrors. The length of the cavity is such 

that the reflected waves reinforce each other. The electromagnetic waves in phase 
with each other emerge from the end of the cavity having a partially reflective 

mirror. The output is a continuous beam, or a series of brief, intense pulses. 

Characteristics of Lasers 

We can separate the characteristics of laser beam into four major categories as: 

 Superior Monochromatism 

 Superior Directivity 

 Superior Coherence 

 High Output 

Using these characteristics of lasers, they are applied in various fields such as 

optical communication and defence. In the next section, let us look at the various 

applications of lasers. 

Uses of Laser 

When lasers were first invented, they were called “a solution looking for a 

problem”. Since then they have become ubiquitous finding utility in various 

applications of modern society ranging from consumer electronics to the military. 

Tools 

 Cutting tools that employ CO2 lasers are widely used in industries. They are 

precise, easy-to-automate and don’t need sharpening, unlike knives. 

 We use robot-guided lasers to cut pieces of cloth to make things such as 
denim jeans than using our bare hands. They are faster, more accurate and 

improve efficiency and productivity. 

 The same precision is of utmost importance in the field of medicine. Doctors 
use lasers for everything from blasting cancerous tumours to correcting 

defective eyesight. 

Communication 

 The barcode scanner in a grocery store uses a laser to convert a printed 

barcode into a number that a checkout computer can understand. 

 Every time you play a CD or a DVD, a semiconductor laser beam bounces 

off the spinning disc to convert its printed pattern of data into numbers; a 

computer chip converts these numbers into movies, music, and sound. 



 Lasers are used in fibre optic cables and a technology known as photonics 

which uses photons of light to communicate. 

Defence 

The military uses laser guided weapons and missiles. 

Difference between a Flashlight and Laser 

Flash Light Laser Light 

Flash light produces a white 

light which is a mixture of 
different colours of different 

frequencies 

Laser produces a monochromatic 

light of single colour and 

frequency 

Flash light spreads out 

through a lens into a short 

fuzzy cone 

A laser shoots a much tighter, 

narrower beam over a much 

longer distance 

Light waves in a flashlight 

beam are all jumbled up ( the 
crests of some beams mixed 

with the troughs of others.) 

Light waves in a laser beam are 

aligned (the crest of every wave 
is lined up with the crest of every 

other wave.) 

 PUMPING 

Depending on the laser type, pumping can be achieved through 

various methods, including optical pumping, electrical pumping, and 
chemical pumping. Regardless of the pumping method used, the key to 

achieving laser action is to produce a population inversion in the gain 

medium. 
 

 
 

 
 



 
 

Einstein coefficients 

 

Einstein Coefficient Relation derivation and discussion: 

Einstein showed the interaction of radiation with the matter with the help of three 

processes called stimulated absorption, spontaneous emission, and stimulated 

emission. He showed in 1917 that for a proper description of radiation with matter, 
the process of stimulated emission is essential. Let us first derive the Einstein 

coefficient relation on the basis of the above theory: 

Let R1 be the rate of absorption of light by E1 -> E2 transitions by the process 

called stimulated absorption  

 

Stimulated Absorption 
This rate of absorption R1 is proportional to the number of atoms N1 per unit 

volume in the ground state and proportional to the energy density E of radiation 

 

That is                                    R1∞ N1 E 

https://winnerscience.com/science/physics/laser-physics/stimulated-absorption/


Or                                          R1 = B12N1 E                                               (1) 

Where B12 is known as the Einstein’s coefficient of stimulated absorption and it 
represents the probability of absorption of radiation. Energy density e is defined as 

the incident energy on an atom as per unit volume in a state. 

Einstein Coefficient for Spontaneous Emission: 

Now atoms in the higher energy level E2 can fall to the ground state 

E1 automatically after 10-8 sec by the process called spontaneous emission 

 

Spontaneous Emission 
The rate R2 of spontaneous emission E2-> E1 is independent of energy density E of 

the radiation field. 

R2 is proportional to number of atoms N2 in the excited state E2 thus 

R2∞ N2 

R2=A21 N2 (2) 

Where A21 is known as Einstein’s coefficient for spontaneous emission and it 

represents the probability of spontaneous emission. 

Einstein Coefficient for Stimulated Emission: 

https://winnerscience.com/science/physics/laser-physics/stimulated-absorption/
https://winnerscience.com/science/physics/laser-physics/spntaneous-emission/


Atoms can also fall back to the ground state E1 under the influence of the 
electromagnetic field of an incident photon of energy E2-E1 =hv by the process 

called stimulated emission (Refer below Figure): 

 

 

Stimulated Emission 
Rate R3 for stimulated emission E2-> E1 is proportional to energy density E of the 

radiation field and proportional to the number of atoms N2 in the excited state,thus 

R3α N2 E 

Or                   R3=B21N2 E                                                       (3) 

Where B21 is known as the Einstein coefficient for stimulated emission and it 

represents the probability of stimulated emission. 

Einstein Coefficient Relation Derivation: 

In steady-state (at thermal equilibrium), the two emission rates (spontaneous and 

stimulated) must balance the rate of absorption. 

Thus                                                         R1=R2+R3 

Using equations (1,2, and 3) ,we get 

N1B12E=N2A21+N2B21E 

Or            N1B12E –N2B21E=N2A21 

https://winnerscience.com/science/physics/laser-physics/stimulated-or-induced-emission/


Or         (N1B12-N2B21) E =N2A21 

Or           E= N2A21/N1B12-N2B21 

= N2A21/N2B21[N1B12/N2B21 -1] 

[by taking out common N2B21from the denominator] 

Or                        E=A21/B21 {1/N1/N2(B12/B21-1))                                         (4) 

Einstein proved thermodynamically, that the probability of stimulated absorption is 

equal to the probability of stimulated emission. thus 

B12=B21 

Then equation(4) becomes 

E=A21/B21(1/N1/N2-1)                                                       (5) 

From Boltzman’s distribution law, the ratio of populations of two levels at 

temperature T is expressed as 

N1/N2=e(E
2–E

1
)/KT 

N1/N2=ehv/KT 

Where K is the Boltzman’s constant and h is Planck’s constant. 

Substituting value of N1/N2in equation (5) we get 

E=  A21/B21(1/ehv/KT-1)                                                        (6) 

Now according to Planck’s radiation law, the energy density of the black body 

radiation of frequency v at temperature T is given as 



E =    8πhv3/c3(1/ehv/KT)                                                                  (7) 

By comparing equations (6 and 7),we get 

A21/B21=8πhv3/c3 

This is the relation between Einstein’s coefficients in laser. 

Significance of Einstein coefficient relation: This shows that the ratio of 
Einstein’s coefficient of spontaneous emission to the Einstein’s coefficient of 

stimulated absorption is proportional to the cube of frequency v. It means that at 

thermal equilibrium, the probability of spontaneous emission increases rapidly 

with the energy difference between two states. 

 

 

Construction and working of Ruby laser 

Construction 

Ruby is a crystal of aluminum oxide (Al2O3) in which some of the aluminum ions 
(Al3+) are replaced by chromium ions (Cr3+). This is done by doping small 

amounts of chromium oxide (Cr2O3) in the melt of purified Al2O3. 

These chromium ions give the crystal a pink or red color depending upon the 

concentration of chromium ions. Laser rods are prepared from a single crystal of 
pink ruby which contains 0.05% (by weight) chromium. Al2O3 does not participate 

in the laser action. It only acts as the host. 

The ruby crystal is in the form of a cylinder. The length of ruby crystal is usually 2 

cm to 30 cm and diameter 0.5 cm to 2 cm. As a very high temperature is produced 
during the operation of the laser, the rod is surrounded by liquid nitrogen to cool 

the apparatus. 

Active medium or active center: Chromium ions act as active centers in ruby 

crystals. So it is the chromium ions that produce the laser. 

https://winnerscience.com/science/physics/laser-physics/how-does-a-laser-work/


Pumping source: A helical flash lamp filled with xenon is used as a pumping 
source. The ruby crystal is placed inside a xenon flash lamp. Thus, optical 

pumping is used to achieve population inversion in ruby laser. 

Optical resonator system: The ends of ruby crystal are polished, grounded, and 

made flat. One of the ends is completely silvered while the other one is partially 
silvered to get the output. Thus the two polished ends act as an optical resonator 

system. 

 

Working 

Let us now discuss the working of ruby laser. 

Ruby is a three-level laser system. Suppose there are three levels E1, E2, and (E3 

& E4). E1 is the ground level, E2 is the metastable level, E3 and E4 are the bands. 
E3 & E4 are considered as only one level because they are very closed to each 

other. 

Pumping: The ruby crystal is placed inside a xenon flash lamp and the flash lamp 

is connected to a capacitor which discharges a few thousand joules of energy in a 
few milliseconds. A part of this energy is absorbed by chromium ions in the 

ground state. Thus optical pumping raises the chromium ions to energy levels 

inside the bands E3 and E4. This process is called stimulated absorption. The 
transition to bands E3 and E4 are caused by absorption of radiations corresponding 

to wavelengths approximately 6600 angstroms and 4000 angstroms respectively. 

The levels inside the bands E3 and E4 are also known as pumping levels. 

Achievement of population inversion: Cr3+ ions in the excited state lose a part of 
their energy during interaction with crystal lattice and decay to the metastable state 

E2. Thus, the transition from excited states to metastable states is a non-radiative 

transition or in other words, there is no emission of photons. As E2 is a metastable 
state, chromium ions will stay there for a longer time. Hence, the number of 

chromium ions goes on increasing in the E2 state, while due to pumping, the 

number in the ground state E1 goes on decreasing. As a result, the number of 
chromium ions becomes more in an excited state(metastable state) as compared to 

https://winnerscience.com/science/physics/laser-physics/metastable-state/


ground state E1. Hence, the population inversion is achieved between states E2 and 

E1. 

Achievement of laser: Few of the chromium ions will come back from E2 to 

E1 by the process of spontaneous emission by emitting photons. The wavelength 

of a photon is 6943 Å. This photon travels through the ruby rod and if it is moving 
in a direction parallel to the axis of the crystal, then it is reflected to and fro by the 

silvered ends of the ruby rod until it stimulates the other excited ions and causes it 

to emit a fresh photon in phase with the stimulating photon. Thus, the reflections 
will result in stimulated emission and it will result in the amplification of the 

stimulated emitting photons. This stimulated emission is the laser transition. 

The two stimulated emitted photons will knock out more photons by stimulating 

the chromium ions and their total number will be four and so on. This process is 
repeated again and again, thus photons multiply. When the photon beam becomes 

sufficiently intense, then a very powerful and narrow beam of red light of 

wavelength 6943 Å emerges through the partially silvered end of the ruby crystal. 

In the energy level diagram, E2 is the upper laser level and E1 is the lower laser 
level because the laser beam is achieved in between these levels. Thus, the ruby 

laser fits into the definition of three-level laser system. 

Output: The output wavelength of the ruby laser is 6943 Å and output power is 10 

raise to power 4 to 10 raised to power 6 watts and it is in the form of pulses. 

Spiking in Ruby laser: 

As we have discussed in the working of ruby laser that the terminus of laser action 
is the ground state E1 in ruby laser. Therefore it is difficult to maintain the 

population inversion. This will result in the depletion of the upper laser level E2 

population (due to stimulated emission) more rapidly than it can be restored by the 
flashlight that is an optical pumping source. The laser emission is made up of 

spikes of high-intensity emissions. This phenomenon is called the spiking of the 

laser. 

After the depletion of the E2 state, the laser action ceases for a few microseconds. 
Since the flash lamp is still active, it again pumps the ground state chromium ions 

to the upper level and again laser action begins. A series of such pulses is produced 

https://winnerscience.com/science/physics/laser-physics/population-inversion-in-lasers/


until the intensity of the flashlight has fallen to such a level that it can no longer 
rebuild the necessary population inversion. So the output laser will be in the form 

of pulse in ruby laser or in other words, it will not be continuous. 

Drawbacks of ruby laser 

1. As the terminus of laser action is the ground state, it is difficult to maintain the 

population inversion. This fact results in ruby laser’s low efficiency. 

2. The ruby laser requires a high power pumping source. 

3. The laser output is not continuous but occurs in the form of pulses of 

microsecond duration. 

4. The defects due to crystalline imperfection are also present in ruby laser. 

Uses of ruby laser 

1. Ruby laser has very high output power of the order of 104 – 106 watts. It has a 

wavelength of 6943 Angstroms. 

2. Ruby lasers are used for holography, industrial cutting, and welding. 

This is all about the construction and working of Ruby Laser. We have also 

learned about spiking in Ruby Laser, output, disadvantages, and uses of Ruby 

Laser. In my other articles, I have discussed the first gas laser that 

is construction and working of Helium-Neon laser. 

https://winnerscience.com/construction-of-helium-neon-laser/
https://winnerscience.com/working-of-helium-neon-laser/


 

 

 

 

Helium - Neon Laser (Introduction   

This was the first gas laser to be operated successfully.  It was invented by Ali Javan and his co-workers at 

Bell Telephone Laboratories in the USA in 1961. Vivekananda College of Arts and Science (Women), Sirkali  

Its usual operation wavelength is 6328Å in the red portionof the visible spectrum.  He-Ne laser is a four-level 

l This consists of a mixture of helium and neon gases in a ratioof about 10:1.Construction of a Helium 

Construction of a Helium - Neon laserNeon laser  The setup consists of a long and narrow discharge tube of 

length 80 cm and diameter of 1 cm.  The pressure inside the tube is about 1mm of Hg.  The energy or pump 

source of the laser is provided by anVivekananda College of Arts and Science (Women), Sirkali  The energy 

or pump source of the laser is provided by anelectrical discharge of around 1000 volts through an anodeand 

cathode at each end of the glass tube  The optical cavity of the laser typically consists of a plane, 

highreflecting mirror at one end of the laser tube, and a partiallytransparent mirror of approximately 1% 

transmission at the other end.aser 



 

WORKING OF HE-NE LASER 

 Working of a Helium Working of a Helium - Neon laser Neon laser  Electric discharge is passed through the 

gas. As electrons have a smaller mass than ions, they acquire a higher velocity.  The He atoms are more 

readily excitable than Neon as they are in higher concentration.  The role of He atoms is to assist in pumping 

Ne atoms to higher energy levels via inter atomic collisions Vivekananda College of Arts and Science 

(Women), Sirkali  Electrons collides with the He atoms, excite them to the metastable states F2(19.81eV) and 

F3(20.61eV) stay for a sufficiently long time.  The excited He atoms losses energy through collision with 

unexcited Ne atoms, Ne atoms are excited to the metastablestates E4(18.7eV) & E6(20.66eV) which have 

nearly the same energy as the levels of F2 & F3 of He. 

The probability of energy transfer from He atoms to Neon atoms is more as there are 10 He atoms to 1Neon 

atoms in the medium.  Population inversion is achieved between E6 & E5, E6 &E3, E4 &E3.  E6 E3 

transition generates a laser beam of red colour of Vivekananda College of Arts and Science (Women), Sirkali 

wavelength 6328Å.  E4 E3 transition produces laser beam of wavelength 1.15µm (not in visible region).  E6 

E5 transition results in a laser beam of 3.39µm (not in visible region).  E3 E2 transition generates incoherent 

light due to spontaneous emission (~6000Å) 

From the level E2 , the Ne atoms are brought back to the ground state through collisions with the walls.  Also 

since E2 level is a metastable state , it can decrease the population inversion by exciting atoms from E2 to E3 

. Hence the tube is made narrow so that Ne atoms in level E2 deVivekananda College of Arts and Science 

(Women), Sirkali excite by collision with the walls of the tube.  By a proper design of resonator , laser action 

in Ne is obtained in the visible region (6328Å) 



 

APPLICATION 

The Narrow red beam of He-Ne laser is used in supermarkets to read bar codes.  The He- Ne Laser is used in 

Holography in producing the 3D images of objects. Vivekananda College of Arts and Science (Women), 

Sirkali  He-Ne lasers have many industrial and scientific uses, and are often used in laboratory 

demonstrations of optics. 

ADVANTAGE /DIS ADVANTAGES 

Following are the benefits or advantages of Helium - Neon Laser:  He-Ne laser tube has very small length 

approximately from 10 to 100cm.  Cost of He-Ne laser is less from most of other lasers.  Construction of 

He-Ne laser is also not very complex.  He-Ne laser provide inherent safety due to lower power output 

Vivekananda College of Arts and Science (Women), Sirkali  Following are the drawbacks or disadvantages of 

Helium - Neon Laser:  He-Ne laser is low gain system / device.  High voltage requirement.  Escaping of 

gas from laser plasma tube 
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