
1 | P a g e

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Computer Science & Engineering
Academic Session 2023-24

LECTURE NOTE

Name of Faculty : Mr. Pratyusabhanu Khuntia
Name of Subject : Object Oriented Programming using Java

 Subject Code : ROP3B001
 Subject Credit : 3
 Semester : III
 Year : 2nd
 Course : B.Tech
 Branch : All
 Admission Batch : 2020-24

2 | P a g e

Introduction to Java

HISTORY OF JAVA

In 1991, a group of Sun Microsystems engineers led by James Gosling decided to
develop a language for consumer devices (cable boxes, etc.). Java team members (also
known as Green Team), initiated a revolutionary task to develop a language for digital
devices such as set-top boxes, televisions etc.

They wanted the language to be small and use efficient code since these devices do not
have powerful CPUs. They also wanted the language to be hardware independent since
different manufacturers would use different CPUs. The project was code-named
Green.

Firstly, it was called "Greentalk" by James Gosling and file extension was .gt.
After that, it was called Oak and was developed as a part of the Green project.
However, they soon discovered that there was already a programming language called
Oak, so they changed the name to Java

Sun Microsystems released the first public implementation as Java 1.0 in 1995.

Currently, Java is used in internet programming, mobile devices, games, e-business
solutions etc. There are given the major points that describe the history of java.

EDITION OF JAVA

 Java Standard Edition (J2SE)
o J2SE can be used to develop client-side standalone applications or applets.

 Java Enterprise Edition (J2EE)
o J2EE can be used to develop server-side applications such as Java servlets and Java

Server Pages.
 Java Micro Edition (J2ME).

o J2ME can be used to develop applications for mobile devices such as cell phones.

RELEASE VERSION OF JAVA WITH DATE

 JDK 1.0 (January 21, 1996)
 JDK 1.1 (February 19, 1997)
 J2SE 1.2 (December 8, 1998)
 J2SE 1.3 (May 8, 2000)
 J2SE 1.4 (February 6, 2002)
 J2SE 5.0 (September 30, 2004)

http://en.wikipedia.org/wiki/Sun_Microsystems

3 | P a g e

 Java SE 6 (December 11, 2006)
 Java SE 7 (July 28, 2011)
 Java SE 8 (March 18, 2014)

Java programming Environment

The Java Development Kit (JDK) is an Oracle Corporation product aimed at Java developers. Since
the introduction of Java, it has been by far the most widely used Java Software Development Kit
(SDK).

JDK = JRE + JVM.

The JDK includes the Java Runtime Environment, the Java compiler and the Java APIs. It's easy for
both new and experienced programmers to get started.

A Java virtual machine (JVM) is a virtual machine that can execute Java byte code. It is the code
execution component of the Java software platform.

Java Runtime Environment, is also referred to as the Java Runtime, Runtime Environment Java
Runtime Environment contains JVM, class libraries, and other supporting files. JRE is targeted for
execution of Java files. Java Runtime Environment (JRE) The Java Runtime Environment (JRE)
provides the libraries, the Java Virtual Machine, and other components to run applets and
applications written in the Java programming language

SOFTWARE & TOOLS USED TO EXECUTE THE JAVA

You have to download the JDK from internet and install the software in your machine. For your
practice jdk1.5 or higher version is advisable to install.

You can write the program any one of the text editor say example Notepad.

Now a day’s many text editors are used like eclipse and net beans to run the program.

STEPS TO EXECUTE THE JAVA PROGRAM

1. Creating a Java source file

2. Compiling a Java source file: java Hello.java

3. Running a Java program: java Hello

BASIC CONCEPTS OF OOPS

The following are the basic concepts applied in object-oriented programming language.

1. Object
2. class
3. Abstraction & Encapsulation
4. Inheritance

4 | P a g e

5. Polymorphism
6. Dynamic binding
7. Message passing

1) Object :

Object is the basic unit of object-oriented programming. Objects are identified by its unique name. An
object represents a particular instance of a class. There can be more than one instance of an object.
Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known as methods.

For example whenever a class name is created according to the class an object should be created
without creating object can’t able to use class.

The class of Dog defines all possible dogs by listing the characteristics and behaviors they can have;
the object Lassie is one particular dog, with particular versions of the characteristics. A Dog has fur;
Lassie has brown-and-white fur.

2) Class:

Classes are data types based on which objects are created. Objects with similar properties and
methods are grouped together to form a Class. Thus a Class represents a set of individual objects.
Characteristics of an object are represented in a class as Properties. The actions that can be
performed by objects become functions of the class and is referred to as Methods.

For example consider we have a Class of Cars under which Santro Xing, Alto and WaganR
represents individual Objects. In this context each Car Object will have its own, Model, Year of
Manufacture, Colour, Top Speed, Engine Power etc., which form Properties of the Car class and the
associated actions i.e., object functions like Start, Move, Stop form the Methods of Car Class.No
memory is allocated when a class is created. Memory is allocated only when an object is created, i.e.,
when an instance of a class is created.

3) Data abstraction & Encapsulation :
The wrapping up of data and its functions into a single unit is called Encapsulation.

When using Data Encapsulation, data is not accessed directly, it is only accessible through the
functions present inside the class.

Data Abstraction increases the power of programming language by creating user defined data
types. Data Abstraction also represents the needed information in the program without presenting the
details.

Abstraction refers to the act of representing essential features without including the background
details or explanation between them.

For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and many
more components. To build the Car class, one does not need to know how the different components

5 | P a g e

work internally, but only how to interface with them, i.e., send messages to them, receive messages
from them, and perhaps make the different objects composing the class interact with each other.

4) Inheritance:
Inheritance is the process of forming a new class from an existing class or base class.

The base class is also known as parent class or super class, the new class that is formed is called
derived class.

Derived class is also known as a child class or sub class. Inheritance helps in reducing the overall
code size of the program, which is an important concept in object-oriented programming.

It is classifieds into different types, they are

 Single level inheritance
 Multi-level inheritance
 Hybrid inheritance
 Hierarchial inheritance

5) Polymorphism:
Polymorphism allows routines to use variables of different types at different times. An operator or
function can be given different meanings or functions. Polymorphism refers to a single function or
multi-functioning operator performing in different ways.

Poly a Greek term ability to take more than one form. Overloading is one type of Polymorphism. It
allows an object to have different meanings, depending on its context. When an exiting operator or
function begins to operate on new data type, or class, it is understood to be overloaded.

6. Dynamic binding: Binding means linking. It involves linking of function definition to a function call.

1. If linking of function call to function definition, i.e., a place where control has to be transferred is
done at compile time, it is known as static binding.

2. When linking is delayed till run time or done during the execution of the program then this type of
linking is known as dynamic binding. Which function will be called in response to a function call is find
out when program executes.

. Message passing: In C++, objects communicate each other by passing messages to each other. A
message contains the name of the member function and arguments to pass. The message passing is
shown below:

object. method (parameters);

Message passing here means object calling the method and passing parameters. Message passing
is nothing but calling the method of the class and sending parameters. The method in turn executes
in response to a message.

6 | P a g e

Features of java

Java has the following characteristics:

 Object oriented - Java provides the basic object technology of C++ with some enhancements
and some deletions.

 Architecture neutral/plat form independent - Java source code is compiled into
architecture-independent object code. The object code is interpreted by a Java Virtual Machine
(JVM) on the target architecture.

 Portable - Java implements additional portability standards. For example, ints are always 32-
bit, 2's-complemented integers. User interfaces are built through an abstract window system
that is readily implemented in Solaris and other operating environments.

 Distributed - Java contains extensive TCP/IP networking facilities. Library routines support
protocols such as HyperText Transfer Protocol (HTTP) and file transfer protocol (FTP).

 Robust - Both the Java compiler and the Java interpreter provide extensive error checking.
Java manages all dynamic memory, checks array bounds, and other exceptions.

 Secure - Features of C and C++ that often result in illegal memory accesses are not in the
Java language. The interpreter also applies several tests to the compiled code to check for
illegal code. After these tests, the compiled code causes no operand stack over- or underflows,
performs no illegal data conversions, performs only legal object field accesses, and all opcode
parameter types are verified as legal.

 High performance - Compilation of programs to an architecture independent machine-like
language, results in a small efficient interpreter of Java programs. The Java environment also
compiles the Java bytecode into native machine code at runtime.

 Multithreaded - Multithreading is built into the Java language. It can improve interactive
performance by allowing operations, such as loading an image, to be performed while
continuing to process user actions.

 Dynamic - Java does not link invoked modules until runtime.
 Simple - Java is similar to C++, but with most of the more complex features of C and C++

removed

Data type

Java Primitive Types

Type Size Range Default*

boolean 1 bit true or false false

byte 8 bits [-128, 127] 0

short 16 bits [-32,768, 32,767] 0

char 16 bits ['\u0000', '\uffff'] or [0, 65535] '\u0000'

int 32 bits [-2,147,483,648 to 2,147,483,647] 0

long 64 bits [-263, 263-1] 0

float 32 bits 32-bit IEEE 754 floating-point 0.0

double 64 bits 64-bit IEEE 754 floating-point 0.0

7 | P a g e

Declaring and Assigning Variables

 The syntax for declaring a variable is:

Data Type variable Name [= expression];

 Examples: float j; int i = 5 + 3;

Conversion between Types (Typecasting)

ype Casting

Assigning a value of one type to a variable of another type is known as Type Casting.

Example :

int x = 10;

byte y = (byte)x;

In Java, type casting is classified into two types,

 Widening Casting(Implicit)

 Narrowing Casting(Explicitly done)

Automatic Type casting take place when,

 the two types are compatible

 the target type is larger than the source type

8 | P a g e

Implicit up-casting: a lower-precision type is automatically converted to a higher precision type if
needed:

 int i = 'A';

 Explicit down-casting: a manual conversion is required if there is a potential for a loss of precision,
using the notation: (lowerPrecType) higherPrecValue

 int i = (int) 123.456;

Declaring Arrays

 An array is a simple data structure to hold a series of data elements of the same type.
 Declare an array variable in one of two ways:

o With [] after the variable type: int[] values;
o With [] after the variable name: int values[];

 Arrays can be single- or multi-dimensional.
o A two dimensional array could be declared with: double values[][];

 Array elements are integer indexed.
o Use arrayName.length to get the array length.
o Elements are indexed from 0 to arrayName.length - 1
o Access individual elements with arrayName[index]

Operator

Arithmetic Operators

perator Use Description

+ x + y Adds x and y

-
x - y Subtracts y from x

-x Arithmetically negates x

* x * y Multiplies x by y

/ x / y Divides x by y

% x % y Computes the remainder of dividing x by y

Shortcut Arithmetic Operators

x++ y = x++; is the same as y = x; x = x + 1;

++x y = ++x; is the same as x = x + 1; y = x;

--
x-- y = x--; is the same as y = x; x = x - 1;

--x y = --x; is the same as x = x - 1; y = x;

9 | P a g e

Relational Operators

Operator Use Description

> x > y x is greater than y

>= x >= y x is greater than or equal to y

< x < y x is less than y

<= x <= y x is less than or equal to y

== x == y x is equal to y

!= x != y x is not equal to y

Logical Boolean Operators

Operator Use Evaluates to true if

&& x && y Both x and y are true

|| x || y Either x or y are true

! !x x is not true

Bitwise Operators

Operator Use Evaluates to true if

& x & y AND all bits of x and y

| x | y OR all bits of x and y

Assignment Operators

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

 Other Operators

new d = new Date(); Create a new object

instanceof o instanceof String Check for object type, returning boolean

?: z = b ? x : y Equivalent to: if (b) { z = x; } else { z = y; }

Operator Precedence

1. [], (), .
2. ++, --, ~, !, (type), new, -
3. *, /, %

When evaluation is done it will be from left to write.

10 | P a g e

First Java Program | Hello World Example

1. Software Requirements

2. Creating Hello Java Example

3. Resolving javac is not recognized

In this page, we will learn how to write the simple program of java. We can write a simple hello java
program easily after installing the JDK.

To create a simple java program, you need to create a class that contains the main method. Let's

understand the requirement first.

The requirement for Java Hello World Example

For executing any java program, you need to

o Install the JDK if you don't have installed it, download the JDK and install it.

o Set path of the jdk/bin directory. Create the java program

o Compile and run the java program

Creating Hello World Example

Let's create the hello java program:

1. class Simple{

2. public static void main(String args[]){

3. System.out.println("Hello Java");

4. }

5. }

Test it Now

save this file as Simple.java

To compile: javac Simple.java

To execute: java Simple

Output:Hello Java

Compilation Flow:

When we compile Java program using javac tool, java compiler converts the source code into byte code.

https://www.javatpoint.com/simple-program-of-java#hellojavareq
https://www.javatpoint.com/simple-program-of-java#hellojavaex
https://www.javatpoint.com/simple-program-of-java#hellojavawhatjavacnot
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.javatpoint.com/opr/test.jsp?filename=Simple

11 | P a g e

Parameters used in First Java Program

Let's see what is the meaning of class, public, static, void, main, String[], System.out.println().

o class keyword is used to declare a class in java.

o public keyword is an access modifier which represents visibility. It means it is visible to all.

o static is a keyword. If we declare any method as static, it is known as the static method. The core

advantage of the static method is that there is no need to create an object to invoke the static

method. The main method is executed by the JVM, so it doesn't require to create an object to

invoke the main method. So it saves memory.

o void is the return type of the method. It means it doesn't return any value.

o main represents the starting point of the program.

o String[] args is used for command line argument. We will learn it later.

o System.out.println() is used to print statement. Here, System is a class, out is the object of

PrintStream class, println() is the method of PrintStream class. We will learn about the internal

working of System.out.println statement later.

To write the simple program, you need to open notepad by start menu -> All Programs ->

Accessories -> notepad and write a simple program as displayed below:

As displayed in the above diagram, write the simple program of java in notepad and saved it as

Simple.java. To compile and run this program, you need to open the command prompt by start

menu -> All Programs -> Accessories -> command prompt.

To compile and run the above program, go to your current directory first; my current directory is

c:\new. Write here:

To compile: javac Simple.java

To execute: java Simple

12 | P a g e

How many ways can we write a Java program

There are many ways to write a Java program. The modifications that can be done in a Java program are
given below:

1) By changing the sequence of the modifiers, method prototype is not changed in Java.

Let's see the simple code of the main method.

1. static public void main(String args[])

2) The subscript notation in Java array can be used after type, before the variable or after the

variable.

Let's see the different codes to write the main method.

1. public static void main(String[] args)

2. public static void main(String []args)

3. public static void main(String args[])

3) You can provide var-args support to the main method by passing 3 ellipses (dots)

Let's see the simple code of using var-args in the main method. We will learn about var-args later in Java

New Features chapter.

1. public static void main(String... args)

4) Having a semicolon at the end of class is optional in Java.

Let's see the simple code.

1. class A{

2. static public void main(String... args){

3. System.out.println("hello java4");

4. }

5. };

Valid java main method signature

1. public static void main(String[] args)

2. public static void main(String []args)

3. public static void main(String args[])

4. public static void main(String... args)

5. static public void main(String[] args)

6. public static final void main(String[] args)

7. final public static void main(String[] args)

13 | P a g e

8. final strictfp public static void main(String[] args)

Invalid java main method signature

1. public void main(String[] args)

2. static void main(String[] args)

3. public void static main(String[] args)

4. abstract public static void main(String[] args)

Resolving an error "javac is not recognized as an internal or external
command"?

If there occurs a problem like displayed in the below figure, you need to set path. Since DOS doesn't know

javac or java, we need to set path. The path is not required in such a case if you save your program inside
the JDK/bin directory. However, it is an excellent approach to set the path.

Command line in java

A command-line argument is an information that directly follows the program's name on the command line

when it is executed. To access the command-line arguments inside a Java program is quite easy. They are stored

as strings in the String array passed to main().

Example

The following program displays all of the command-line arguments that it is called with -

public class CommandLine {

 public static void main(String args[]) {

 for(int i = 0; i<args.length; i++) {

 System.out.println("args[" + i + "]: " + args[i]);

 }

 }

}

Try executing this program as shown here -

$java CommandLine this is a command line 200 -100

Output

This will produce the following result -

args[0]: this

14 | P a g e

args[1]: is

args[2]: a

args[3]: command

args[4]: line

args[5]: 200

args[6]: -100

Selection statements

The if Statement:

An if statement consists of a Boolean expression followed by one or more statements.

Syntax:

If (Boolean expression)
{
 //Statements will execute if the Boolean expression is true
}

Example:

public class Test {public static void main(String args[]){
 int x = 10;
 if(x < 20){ System.out.print ("This is if statement");}}} o/p: This is if statement

The if...else Statement:

Syntax:

If (Boolean expression){
 //Executes when the Boolean expression is true
} else {
 //Executes when the Boolean expression is false
}

Example:

public class Test {public static void main(String args[]){int x = 30;
 if(x < 20){
 System.out.print ("This is if statement"); }else{System.out.print("This is else statement"); }}} o/p
:This is else statement

The if...else if...else Statement:.Syntax:

The syntax of an if...else is:

if(Boolean_expression 1){
 //Executes when the Boolean expression 1 is true
}else if(Boolean_expression 2){
 //Executes when the Boolean expression 2 is true

15 | P a g e

}else if(Boolean_expression 3){
 //Executes when the Boolean expression 3 is true
}else {
 //Executes when the none of the above condition is true.
}

Example:

public class Test {
 public static void main(String args[]){
 int x = 30;
 if(x == 10){System.out.print("Value of X is 10");
 }else if(x == 20){
 System.out.print("Value of X is 20");
 }else if(x == 30){
 System.out.print("Value of X is 30");
 }else{
 System.out.print("This is else statement"); } }} o/p: Value of X is 30

Nested if...else Statement:Syntax:

The syntax for a nested if...else is as follows:

if(Boolean expression 1){
 //Executes when the Boolean expression 1 is true
 if(Boolean expression 2){
 //Executes when the Boolean expression 2 is true} }

Example:

public class Test {
 public static void main(String args[]){
 int x = 30;
 int y = 10;
 if(x == 30){
 if(y == 10){
 System.out.print ("X = 30 and Y = 10");
 } }}}
 O/p: X = 30 and Y = 10

The switch Statement:A switch statement allows a variable to be tested for equality against a
list of values. Each value is called a case, and the variable being switched on is checked for
each case.

Syntax:

Switch (expression){
 case value:
 //Statements
 break; //optional
 case value :
 //Statements
 break; //optional

16 | P a g e

 //You can have any number of case statements.
 default : //Optional
 //Statements
}

The following rules apply to a switch statement:

 The variable used in a switch statement can only be a byte, short, int, or char.
 You can have any number of case statements within a switch. Each case is followed by the

value to be compared to and a colon.
 The value for a case must be the same data type as the variable in the switch and it must be a

constant or a literal.
 When the variable being switched on is equal to a case, the statements following that case will

execute until a break statement is reached.
 When a break statement is reached, the switch terminates, and the flow of control jumps to the

next line following the switch statement.
 Not every case needs to contain a break. If no break appears, the flow of control will fall

through to subsequent cases until a break is reached.
 A switch statement can have an optional default case, which must appear at the end of the

switch. The default case can be used for performing a task when none of the cases is true. No
break is needed in the default case.

Example:

public class Test {
 public static void main(String args[]){
 char grade = 'C';

 switch(grade)
 {
 case 'A' :
 System.out.println("Excellent!");
 break;
 case 'B' :
 case 'C' :
 System.out.println("Well done");
 break;
 case 'D' :
 System.out.println("You passed");
 case 'F' :
 System.out.println("Better try again");
 break;
 default :
 System.out.println("Invalid grade");
 }
 System.out.println("Your grade is " + grade);
 }
}
Well done
Your grade is a C

17 | P a g e

Loop in java

There may be a situation when we need to execute a block of code several number of times, and is
often referred to as a loop.

Java has very flexible three looping mechanisms. You can use one of the following three loops:

 while Loop
 do...while Loop
 for Loop

As of Java 5, the enhanced for loop was introduced. This is mainly used for Arrays.

The while Loop:

A while loop is a control structure that allows you to repeat a task a certain number of times.

Syntax:

while(Boolean expression)
{ //Statements }

When executing, if the boolean_expression result is true, then the actions inside the loop will be
executed. This will continue as long as the expression result is true.

Here, key point of the while loop is that the loop might not ever run. When the expression is tested
and the result is false, the loop body will be skipped and the first statement after the while loop will be
executed.

Example:

public class Test {

 public static void main(String args[]) {
 int x = 10;
 While(x < 20) {
 System.out.print (x);
 x++;
 }}

This would produce the following result: 10 11….. 19

The do...while Loop:

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at
least one time.

18 | P a g e

Syntax:

do
{
 //Statements
}while(Boolean_expression);

Notice that the Boolean expression appears at the end of the loop, so the statements in the loop
execute once before the Boolean is tested.

If the Boolean expression is true, the flow of control jumps back up to do, and the statements in the
loop execute again. This process repeats until the Boolean expression is false.

Example:

public class Test {
 public static void main(String args[]){
 int x = 10;
 do{
 System.out.print(x);
 x++;
 }while(x < 20); }}

This would produce the following result: 10 11….. 19

The for Loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

A for loop is useful when you know how many times a task is to be repeated.

Syntax:

For (initialization; Boolean_expression; update)
{
 //Statements
}

Here is the flow of control in a for loop:

 The initialization step is executed first, and only once. Next, the Boolean expression is
evaluated. If it is true, the body of the loop is executed. If it is false, the body of the loop does
not execute and flow of control jumps to the next statement past the for loop.

 After the body of the for loop executes, the flow of control jumps back up to the update
statement. This statement allows you to update any loop control variables. The Boolean
expression is now evaluated again. If it is true, the loop executes and the process repeats itself
(body of loop, then update step, then Boolean expression). After the Boolean expression is
false, the for loop terminates.

19 | P a g e

Example:

public class Test {
 public static void main(String args[]) {
 for(int x = 10; x < 20; x = x+1) {
 System.out.print(x);}}}

This would produce the following result: 10 11….. 19

Enhanced for loop in Java:

As of Java 5, the enhanced for loop was introduced. This is mainly used for Arrays.

Syntax:

For (declaration : expression)
{
 //Statements
}

 Declaration: The newly declared block variable, which is of a type compatible with the
elements of the array you are accessing. The variable will be available within the for block and
its value would be the same as the current array element.

 Expression: This evaluates to the array you need to loop through. The expression can be an
array variable or method call that returns an array.

Java provides a data structure, the array, which stores a fixed-size sequential collection of elements
of the same type. An array is used to store a collection of data, but it is often more useful to think of
an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare
one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to
represent individual variables.

This tutorial introduces how to declare array variables, create arrays, and process arrays using
indexed variables.

Declaring Array Variables

To use an array in a program, you must declare a variable to reference the array, and you must
specify the type of array the variable can reference. Here is the syntax for declaring an array variable
−

Syntax

dataType[] arrayRefVar; // preferred way.

or

dataType arrayRefVar[]; // works but not preferred way.

Note − The style dataType[] arrayRefVar is preferred. The style dataType arrayRefVar[] comes
from the C/C++ language and was adopted in Java to accommodate C/C++ programmers.

20 | P a g e

Example

The following code snippets are examples of this syntax −

double[] myList; // preferred way.

or

double myList[]; // works but not preferred way.

Creating Arrays

You can create an array by using the new operator with the following syntax −

Syntax

arrayRefVar = new dataType[arraySize];

The above statement does two things −

 It creates an array using new dataType[arraySize].

 It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the
variable can be combined in one statement, as shown below −

dataType[] arrayRefVar = new dataType[arraySize];

Alternatively you can create arrays as follows −

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based; that is, they start
from 0 to arrayRefVar.length-1.

Example

Following statement declares an array variable, myList, creates an array of 10 elements of double
type and assigns its reference to myList −

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the indices are
from 0 to 9.

21 | P a g e

Processing Arrays

When processing array elements, we often use either for loop or foreach loop because all of the
elements in an array are of the same type and the size of the array is known.

Example

Here is a complete example showing how to create, initialize, and process arrays −

public class TestArray {

 public static void main(String[] args) {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

 for (int i = 0; i < myList.length; i++) {

 System.out.println(myList[i] + " ");

 }

 // Summing all elements

 double total = 0;

 for (int i = 0; i < myList.length; i++) {

 total += myList[i];

 }

 System.out.println("Total is " + total);

 // Finding the largest element

 double max = myList[0];

 for (int i = 1; i < myList.length; i++) {

 if (myList[i] > max) max = myList[i];

 }

 System.out.println("Max is " + max);

 }

}

22 | P a g e

This will produce the following result −

Output

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

Example

The following code displays all the elements in the array myList −

public class TestArray {

 public static void main(String[] args) {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

 for (double element: myList) {

 System.out.println(element);

 }

 }

}

This will produce the following result −

Output

1.9

2.9

3.4

3.5

Example:

public class Test {

 public static void main(String args[]){
 int [] numbers = {10, 20, 30, 40, 50};

 for(int x : numbers){
 System.out.print(x);
 System.out.print(",");
 }
 System.out.print("\n");
 String [] names ={"James", "Larry", "Tom", "Lacy"};
 for(String name : names) {

23 | P a g e

 System.out.print(name);
 System.out.print(",");}}}

This would produce the following result:

10,20,30,40,50,
James,Larry,Tom,Lacy,

The break Keyword:

The break keyword is used to stop the entire loop. The break keyword must be used inside any loop
or a switch statement.

The break keyword will stop the execution of the innermost loop and start executing the next line of
code after the block.

Syntax:

The syntax of a break is a single statement inside any loop:

break;

Example:

public class Test {

 public static void main(String args[]) {
 int [] numbers = {10, 20, 30, 40, 50};

 for(int x : numbers) {
 if(x == 30) {
 break;
 }
 System.out.print(x);
 System.out.print("\n");
 }
 }
}

This would produce the following result:

10
20The continue Keyword:

The continue keyword can be used in any of the loop control structures. It causes the loop to
immediately jump to the next iteration of the loop.

 In a for loop, the continue keyword causes flow of control to immediately jump to the update
statement.

 In a while loop or do/while loop, flow of control immediately jumps to the Boolean expression.

24 | P a g e

Syntax:

The syntax of a continue is a single statement inside any loop:

continue;

Example:

public class Test {

 public static void main(String args[]) {
 int [] numbers = {10, 20, 30, 40, 50};

 for(int x : numbers) {
 if(x == 30) {
 continue;
 }
 System.out.print(x);
 System.out.print ("\n"); }}}

This would produce the following result:

10 20 40 50

Declaring Class

You've seen classes defined in the following way:

Class cs{
 // field, constructor and method declarations
}

 The class body (the area between the braces) contains all the code like Field, constructor, and
method declarations

In general, class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that you will encounter later.
2. The class name, with the initial letter capitalized by convention.
3. The name of the class's parent (superclass), if any, preceded by the keyword extends. A

class can only extend (subclass) one parent.
4. A comma-separated list of interfaces implemented by the class, if any, preceded by the

keyword implements. A class can implement more than one interface.
5. The class body, surrounded by braces, {}.

Creating Objects

To create a Cs class object, you use the new operator, which returns a reference to a new object. A
reference is a kind of pointer to an object, which you can use to invoke methods on the object. In
other words, to send an object a message (by invoking a method on the object), you have to have a

25 | P a g e

reference to that object. To keep track of references, you can declare variables in which you can
store the references.

Cs obj1 = new Cs(); // here obj1 is object

Creating Method:

Considering the following example to explain the syntax of a method:

public static int funcName(int a, int b) {
 // body
}Here,

 public static : modifier.
 int: return type
 funcName: function name
 a, b: formal parameters
 int a, int b: list of parameters

Methods are also known as Procedures or Functions:

 Procedures: They don't return any value.
 Functions: They return value.

Method definition consists of a method header and a method body. The same is shown below:

modifier returnType nameOfMethod (Parameter List) {
 // method body
}

How to access the data using object

ClassName object=new ClassName();

Object.methodname();

Method Overloading in Java

If a class have multiple methods by same name but different parameters, it is known as Method
Overloading.

Suppose you have to perform addition of the given numbers but there can be any number of
arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for three
parameters then it may be difficult for you as well as other programmers to understand the behaviour
of the method because its name differs. So, we perform method overloading to figure out the program
quickly.

26 | P a g e

here are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type

In java, Methood Overloading is not possible by changing the return type of the method.

Example of Method Overloading by changing the no. of arguments

class Calculation{

 void sum(int a,int b){System.out.println(a+b);}

 void sum(int a,int b,int c){System.out.println(a+b+c);}

 public static void main(String args[]){

 Calculation obj=new Calculation();

 obj.sum(10,10,10); obj.sum(20,20);

 } }

2)Example of Method Overloading by changing data type of argument

1. class Calculation{
2. void sum(int a,int b){System.out.println(a+b);}
3. void sum(double a,double b){System.out.println(a+b);}
4. public static void main(String args[]){
5. Calculation obj=new Calculation();
6. obj.sum(10.5,10.5);
7. obj.sum(20,20);
8.
9. }
10. }
11. Output:21.0
12. 40

Que) Why Method Overloaing is not possible by changing the return type of method?

In java, method overloading is not possible by changing the return type of the method because there
may occur ambiguity. Let's see how ambiguity may occur:because there was problem:

1. class Calculation{
2. int sum(int a,int b){System.out.println(a+b);}
3. double sum(int a,int b){System.out.println(a+b);}

27 | P a g e

4. public static void main(String args[]){
5. Calculation obj=new Calculation();
6. int result=obj.sum(20,20); //Compile Time Error
7.
8. }
9. }
10. int result=obj.sum(20,20); //Here how can java determine which sum() method should be called

Can we overload main() method?

Yes, by method overloading. You can have any number of main methods in a class by method
overloading. Let's see the simple example:

1. class Simple{
2. public static void main(int a){
3. System.out.println(a);
4. }
5.
6. public static void main(String args[]){
7. System.out.println("main() method invoked");
8. main(10);
9. }
10. } Output:main() method invoke

Constructors in Java

1. Types of constructors

1. Default Constructor

2. Parameterized Constructor

2. Constructor Overloading

3. Does constructor return any value?

4. Copying the values of one object into another

5. Does constructor perform other tasks instead of the initialization

In Java, a constructor is a block of codes similar to the method. It is called when an instance of the class is

created. At the time of calling constructor, memory for the object is allocated in the memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one constructor is called.

It calls a default constructor if there is no constructor available in the class. In such case, Java compiler provides

a default constructor by default.

https://www.javatpoint.com/java-constructor#constypes
https://www.javatpoint.com/java-constructor#consdef
https://www.javatpoint.com/java-constructor#conspara
https://www.javatpoint.com/java-constructor#consoverloading
https://www.javatpoint.com/java-constructor#consdoesreturn
https://www.javatpoint.com/java-constructor#conscopy
https://www.javatpoint.com/java-constructor#consothertask
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java

28 | P a g e

There are two types of constructors in Java: no-arg constructor, and parameterized constructor.

Note: It is called constructor because it constructs the values at the time of object creation. It is not necessary to

write a constructor for a class. It is because java compiler creates a default constructor if your class doesn't have

any.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Note: We can use access modifiers while declaring a constructor. It controls the object creation. In other words,

we can have private, protected, public or default constructor in Java.

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Java Default Constructor

A constructor is called "Default Constructor" when it doesn't have any parameter.

Syntax of default constructor:

1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of object

creation.

1. //Java Program to create and call a default constructor

2. class Bike1{

3. //creating a default constructor

4. Bike1(){System.out.println("Bike is created");}

5. //main method

6. public static void main(String args[]){

7. //calling a default constructor

8. Bike1 b=new Bike1();

9. }

https://www.javatpoint.com/access-modifiers

29 | P a g e

10. }

Test it Now

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a default constructor.

Q) What is the purpose of a default constructor?

The default constructor is used to provide the default values to the object like 0, null, etc., depending on the

type.

Example of default constructor that displays the default values

1. //Let us see another example of default constructor

2. //which displays the default values

3. class Student3{

4. int id;

5. String name;

6. //method to display the value of id and name

7. void display(){System.out.println(id+" "+name);}

8.

9. public static void main(String args[]){

10. //creating objects

11. Student3 s1=new Student3();

12. Student3 s2=new Student3();

13. //displaying values of the object

14. s1.display();

15. s2.display();

16. }

17. }

Test it Now

Output:

0 null

0 null

Explanation:In the above class,you are not creating any constructor so compiler provides you a default

constructor. Here 0 and null values are provided by default constructor.

https://www.javatpoint.com/opr/test.jsp?filename=Bike1
https://www.javatpoint.com/opr/test.jsp?filename=Student3

30 | P a g e

Java Parameterized Constructor

A constructor which has a specific number of parameters is called a parameterized constructor.

Why use the parameterized constructor?

The parameterized constructor is used to provide different values to distinct objects. However, you can provide

the same values also.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We can have any

number of parameters in the constructor.

1. //Java Program to demonstrate the use of the parameterized constructor.

2. class Student4{

3. int id;

4. String name;

5. //creating a parameterized constructor

6. Student4(int i,String n){

7. id = i;

8. name = n;

9. }

10. //method to display the values

11. void display(){System.out.println(id+" "+name);}

12.

13. public static void main(String args[]){

14. //creating objects and passing values

15. Student4 s1 = new Student4(111,"Karan");

16. Student4 s2 = new Student4(222,"Aryan");

17. //calling method to display the values of object

18. s1.display();

19. s2.display();

20. }

21. }

Test it Now

Output:

111 Karan

222 Aryan

https://www.javatpoint.com/opr/test.jsp?filename=Student4

31 | P a g e

Constructor Overloading in Java

In Java, a constructor is just like a method but without return type. It can also be overloaded like Java methods.

Constructor overloading in Java is a technique of having more than one constructor with different parameter

lists. They are arranged in a way that each constructor performs a different task. They are differentiated by the

compiler by the number of parameters in the list and their types.

Example of Constructor Overloading

1. //Java program to overload constructors

2. class Student5{

3. int id;

4. String name;

5. int age;

6. //creating two arg constructor

7. Student5(int i,String n){

8. id = i;

9. name = n;

10. }

11. //creating three arg constructor

12. Student5(int i,String n,int a){

13. id = i;

14. name = n;

15. age=a;

16. }

17. void display(){System.out.println(id+" "+name+" "+age);}

18.

19. public static void main(String args[]){

20. Student5 s1 = new Student5(111,"Karan");

21. Student5 s2 = new Student5(222,"Aryan",25);

22. s1.display();

23. s2.display();

24. }

25. }

Test it Now

Output:

111 Karan 0

222 Aryan 25

Difference between constructor and method in Java

https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/opr/test.jsp?filename=Student5

32 | P a g e

There are many differences between constructors and methods. They are given below.

Java Constructor Java Method

A constructor is used to initialize the state of an object. A method is used to expose the

behavior of an object.

A constructor must not have a return type. A method must have a return

type.

The constructor is invoked implicitly. The method is invoked explicitly.

The Java compiler provides a default constructor if you don't have any

constructor in a class.

The method is not provided by the

compiler in any case.

The constructor name must be same as the class name. The method name may or may not

be same as the class name.

Java Copy Constructor

There is no copy constructor in Java. However, we can copy the values from one object to another like copy

constructor in C++.

There are many ways to copy the values of one object into another in Java. They are:

o By constructor

o By assigning the values of one object into another

o By clone() method of Object class

In this example, we are going to copy the values of one object into another using Java constructor.

1. //Java program to initialize the values from one object to another object.

2. class Student6{

3. int id;

4. String name;

5. //constructor to initialize integer and string

6. Student6(int i,String n){

7. id = i;

8. name = n;

9. }

10. //constructor to initialize another object

33 | P a g e

11. Student6(Student6 s){

12. id = s.id;

13. name =s.name;

14. }

15. void display(){System.out.println(id+" "+name);}

16.

17. public static void main(String args[]){

18. Student6 s1 = new Student6(111,"Karan");

19. Student6 s2 = new Student6(s1);

20. s1.display();

21. s2.display();

22. }

23. } Test it Now

Output:

111 Karan

111 Karan

Copying values without constructor

We can copy the values of one object into another by assigning the objects values to another object. In this case,

there is no need to create the constructor.

1. class Student7{

2. int id;

3. String name;

4. Student7(int i,String n){

5. id = i;

6. name = n;

7. }

8. Student7(){}

9. void display(){System.out.println(id+" "+name);}

10.

11. public static void main(String args[]){

12. Student7 s1 = new Student7(111,"Karan");

13. Student7 s2 = new Student7();

14. s2.id=s1.id;

15. s2.name=s1.name;

16. s1.display();

17. s2.display();

18. }

19. }

20. 111 Karan

https://www.javatpoint.com/opr/test.jsp?filename=Student6

34 | P a g e

21. 111 Karan

Java static keyword

1. Static variable

2. Program of the counter without static variable

3. Program of the counter with static variable

4. Static method

5. Restrictions for the static method

6. Why is the main method static?

7. Static block

8. Can we execute a program without main method?

The static keyword in Java is used for memory management mainly. We can apply static keyword

with variables, methods, blocks and nested classes. The static keyword belongs to the class than an instance of

the class.

The static can be:

1. Variable (also known as a class variable)

2. Method (also known as a class method)

3. Block

4. Nested class

1) Java static variable

If you declare any variable as static, it is known as a static variable.

o The static variable can be used to refer to the common property of all objects (which is not unique for

each object), for example, the company name of employees, college name of students, etc.

o The static variable gets memory only once in the class area at the time of class loading.

Advantages of static variable

It makes your program memory efficient (i.e., it saves memory).

Understanding the problem without static variable

1. class Student{

2. int rollno;

3. String name;

https://www.javatpoint.com/static-keyword-in-java#staticv
https://www.javatpoint.com/static-keyword-in-java#staticvcounter1
https://www.javatpoint.com/static-keyword-in-java#staticvcounter2
https://www.javatpoint.com/static-keyword-in-java#staticm
https://www.javatpoint.com/static-keyword-in-java#staticmr
https://www.javatpoint.com/static-keyword-in-java#staticwhymain
https://www.javatpoint.com/static-keyword-in-java#staticblock
https://www.javatpoint.com/static-keyword-in-java#staticwithoutmain
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-inner-class

35 | P a g e

4. String college="ITS";

5. }

Suppose there are 500 students in my college, now all instance data members will get memory each time when

the object is created. All students have its unique rollno and name, so instance data member is good in such

case. Here, "college" refers to the common property of all objects. If we make it static, this field will get the

memory only once.

Java static property is shared to all objects.

Example of static variable

1. //Java Program to demonstrate the use of static variable

2. class Student{

3. int rollno;//instance variable

4. String name;

5. static String college ="ITS";//static variable

6. //constructor

7. Student(int r, String n){

8. rollno = r;

9. name = n;

10. }

11. //method to display the values

12. void display (){System.out.println(rollno+" "+name+" "+college);}

13. }

14. //Test class to show the values of objects

15. public class TestStaticVariable1{

16. public static void main(String args[]){

17. Student s1 = new Student(111,"Karan");

18. Student s2 = new Student(222,"Aryan");

19. //we can change the college of all objects by the single line of code

20. //Student.college="BBDIT";

21. s1.display();

22. s2.display();

23. }

24. }

Test it Now

Output:

111 Karan ITS

222 Aryan ITS

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/opr/test.jsp?filename=TestStaticVariable1

36 | P a g e

Program of the counter without static variable

In this example, we have created an instance variable named count which is incremented in the constructor.

Since instance variable gets the memory at the time of object creation, each object will have the copy of the

instance variable. If it is incremented, it won't reflect other objects. So each object will have the value 1 in the

count variable.

1. //Java Program to demonstrate the use of an instance variable

2. //which get memory each time when we create an object of the class.

3. class Counter{

4. int count=0;//will get memory each time when the instance is created

5.

6. Counter(){

7. count++;//incrementing value

8. System.out.println(count);

9. }

10.

11. public static void main(String args[]){

12. //Creating objects

13. Counter c1=new Counter();

14. Counter c2=new Counter();

15. Counter c3=new Counter();

16. }

17. }

Test it Now

Output:

1

1

1

Program of counter by static variable

As we have mentioned above, static variable will get the memory only once, if any object changes the value of

the static variable, it will retain its value.

1. //Java Program to illustrate the use of static variable which

2. //is shared with all objects.

3. class Counter2{

4. static int count=0;//will get memory only once and retain its value

5.

6. Counter2(){

7. count++;//incrementing the value of static variable

8. System.out.println(count);

https://www.javatpoint.com/opr/test.jsp?filename=Counter

37 | P a g e

9. }

10.

11. public static void main(String args[]){

12. //creating objects

13. Counter2 c1=new Counter2();

14. Counter2 c2=new Counter2();

15. Counter2 c3=new Counter2();

16. }

17. }

Test it Now

Output:

1

2

3

2) Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an instance of a class.

o A static method can access static data member and can change the value of it.

Example of static method

1. //Java Program to demonstrate the use of a static method.

2. class Student{

3. int rollno;

4. String name;

5. static String college = "ITS";

6. //static method to change the value of static variable

7. static void change(){

8. college = "BBDIT";

9. }

10. //constructor to initialize the variable

11. Student(int r, String n){

12. rollno = r;

13. name = n;

14. }

15. //method to display values

16. void display(){System.out.println(rollno+" "+name+" "+college);}

https://www.javatpoint.com/opr/test.jsp?filename=Counter2

38 | P a g e

17. }

18. //Test class to create and display the values of object

19. public class TestStaticMethod{

20. public static void main(String args[]){

21. Student.change();//calling change method

22. //creating objects

23. Student s1 = new Student(111,"Karan");

24. Student s2 = new Student(222,"Aryan");

25. Student s3 = new Student(333,"Sonoo");

26. //calling display method

27. s1.display();

28. s2.display();

29. s3.display();

30. }

31. }

Test it Now
Output:111 Karan BBDIT

 222 Aryan BBDIT

 333 Sonoo BBDIT

Another example of a static method that performs a normal calculation

1. //Java Program to get the cube of a given number using the static method

2.

3. class Calculate{

4. static int cube(int x){

5. return x*x*x;

6. }

7.

8. public static void main(String args[]){

9. int result=Calculate.cube(5);

10. System.out.println(result);

11. }

12. }

Test it Now
Output:125

Restrictions for the static method

There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static method directly.

2. this and super cannot be used in static context.

https://www.javatpoint.com/opr/test.jsp?filename=TestStaticMethod
https://www.javatpoint.com/opr/test.jsp?filename=Calculate

39 | P a g e

1. class A{

2. int a=40;//non static

3.

4. public static void main(String args[]){

5. System.out.println(a);

6. }

7. }

Test it Now
Output:Compile Time Error

Q) Why is the Java main method static?

Ans) It is because the object is not required to call a static method. If it were a non-static method, JVM creates

an object first then call main() method that will lead the problem of extra memory allocation.

o Is used to initialize the static data member.

o It is executed before the main method at the time of classloading.

Static Class

A class can be made static only if it is a nested class.

1. Nested static class doesn’t need reference of Outer class

2. A static class cannot access non-static members of the Outer class

We will see these two points with the help of an example:

Static class Example

class JavaExample1{

 private static String str = "BeginnersBook";

 //Static class

 static class MyNestedClass{

 //non-static method

 public void disp() {

 /* If you make the str variable of outer class

 * non-static then you will get compilation error

 * because: a nested static class cannot access non-

 * static members of the outer class.

 */

 System.out.println(str);

 }

https://www.javatpoint.com/opr/test.jsp?filename=A
https://www.javatpoint.com/jvm-java-virtual-machine

40 | P a g e

 }

 public static void main(String args[])

 {

 /* To create instance of nested class we didn't need the outer

 * class instance but for a regular nested class you would need

 * to create an instance of outer class first

 */

 JavaExample1.MyNestedClass obj = new JavaExample1.MyNestedClass();

 obj.disp();

 }

}

Output:

BeginnersBook

Constructors and Constructor overloading

A constructor looks more like a method but without return type. Moreover, the name of the
constructor and the class name should be the same. The advantage of constructors over methods is
that they are called implicitly whenever an object is created. In case of methods, they must be
called explicitly. To create an object, the constructor must be called. Constructor gives properties to
an object at the time of creation only. Programmer uses constructor to initialize variables, instantiating
objects, and setting colors.

Default Constructor – No Argument Constructor

A constructor without parameters is called as "default constructor" or "no-args constructor". It is
called default because if the programmer does not write himself, JVM creates one and supplies. The
default constructor supplied by the JVM does not have any functionality (output).

1
2
3
4
5
6
7
8
9
10
11
12

public class Demo
{
 public Demo()
 {
 System.out.println("From default constructor");
 }
 public static void main(String args[])
 {
 Demo d1 = new Demo();
 Demo d2 = new Demo();
 }
}

public Demo()

"public" is the access specifier and "Demo()" is the constructor. Notice, it does not have return type
and the name is that of the class name.

http://way2java.com/oops-concepts/constructors-and-constructor-overloading/
http://way2java.com/packages/access-specifiers-accessibility-permissions-restrictions/

41 | P a g e

Demo d1 = new Demo();

In the above statement, d1 is an object of Demo class. To create the object, the constructor "Demo()"
is called. Like this, any number of objects can be created like d2 and for each object the constructor
is called.

Constructor Overloading

Just like method overloading, constructors also can be overloaded. Same constructor declared with
different parameters in the same class is known as constructor overloading. Compiler differentiates
which constructor is to be called depending upon the number of parameters and their sequence of
data types.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public class Perimeter
{
 public Perimeter() // I
 {
 System.out.println("From default");
 }
 public Perimeter(int x) // II
 {
 System.out.println("Circle perimeter: " + 2*Math.PI*x);
 }
 public Perimeter(int x, int y) // III
 {
 System.out.println("Rectangle perimeter: " +2*(x+y));
 }
 public static void main(String args[])
 {
 Perimeter p1 = new Perimeter(); // I
 Perimeter p2 = new Perimeter(10); // II
 Perimeter p3 = new Perimeter(10, 20); // III
 }
}

Perimeter constructor is overloaded three times. As per the parameters, an appropriate constructor is
called. To call all the three constructors three objects are created.

Static methods

The static keyword is used in java mainly for memory management. We may apply static keyword
with variables, methods, blocks and nested class. The static keyword belongs to the class than
instance of the class.

The static can be:

1. variable (also known as class variable)

42 | P a g e

2. method (also known as class method)
3. block

Example of static variable

1. //Program of static variable
2.
3. class Student{
4. int rollno;
5. String name;
6. static String college ="ITS";
7.
8. Student(int r,String n){
9. rollno = r;
10. name = n;
11. }
12. void display (){System.out.println(rollno+" "+name+" "+college);}
13.
14. public static void main(String args[]){
15. Student s1 = new Student (111,"Karan");
16. Student s2 = new Student (222,"Aryan");
17.
18. s1.display();
19. s2.display();
20. }
21. }

static method

If you apply static keyword with any method, it is known as static method

 A static method belongs to the class rather than object of a class.
 A static method can be invoked without the need for creating an instance of a class.
 static method can access static data member and can change the value of it.

Restrictions for static method

There are two main restrictions for the static method.
They are:

1. The static method can not use non static data member or call non-static method directly.
2. this and super cannot be used in static context.

1. class A{
2. int a=40;//non static
3.

43 | P a g e

4. public static void main(String args[]){
5. System.out.println(a);
6. }
7. }

Output: Compile Time Error

Q) why main method is static?

Ans) because object is not required to call static method if it were non-static method, jvm create
object first then call main() method that will lead the problem of extra memory allocation.

Static block

 Is used to initialize the static data member.
 It is executed before main method at the time of classloading.

Example of static block

1. class A{
2.
3. static{System.out.println("static block is invoked");}
4.
5. public static void main(String args[]){
6. System.out.println("Hello main");
7. }
8. }

Output: static block is invoked
 Hello main

Can we execute a program without main () method?

Ans) Yes, one of the way is static block but in previous version of JDK not in JDK 1.7.

1. class A{
2. static{
3. System.out.println("static block is invoked");
4. System.exit(0);
5. }
6. }

Output: static block is invoked (if not JDK7)

Usage of this keyword

Here is given the 6 usage of this keyword.

1. this keyword can be used to refer current class instance variable.

44 | P a g e

2. this() can be used to invoke current class constructor.
3. this keyword can be used to invoke current class method (implicitly)
4. this can be passed as an argument in the method call.
5. this can be passed as argument in the constructor call.
6. this keyword can also be used to return the current class instance.

Final Keyword

 A java variable can be declared using the keyword final. Then the final variable can be
assigned only once.

 Java classes declared as final cannot be extended.

 Methods declared as final cannot be overridden. In methods private is equal to final, but in
variables it is not.

Access Modifiers in Java

1. Private access modifier

2. Role of private constructor

3. Default access modifier

4. Protected access modifier

5. Public access modifier

6. Access Modifier with Method Overriding

There are two types of modifiers in Java: access modifiers and non-access modifiers.

The access modifiers in Java specify the accessibility or scope of a field, method, constructor, or class. We

can change the access level of fields, constructors, methods, and class by applying the access modifier on

it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed from

outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be accessed

from outside the package. If you do not specify any access level, it will be the default.

3. Protected: The access level of a protected modifier is within the package and outside the package

through child class. If you do not make the child class, it cannot be accessed from outside the

package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from within the

class, outside the class, within the package and outside the package.

There are many non-access modifiers, such as static, abstract, synchronized, native, volatile, transient,

etc. Here, we are going to learn the access modifiers only.

https://www.javatpoint.com/access-modifiers#accessprivate
https://www.javatpoint.com/access-modifiers#accessprivatecons
https://www.javatpoint.com/access-modifiers#accessdefault
https://www.javatpoint.com/access-modifiers#accessprotected
https://www.javatpoint.com/access-modifiers#accesspublic
https://www.javatpoint.com/access-modifiers#accessoverriding

45 | P a g e

Understanding Java Access Modifiers

Let's understand the access modifiers in Java by a simple table.

1) Private

The private access modifier is accessible only within the class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and

private method. We are accessing these private members from outside the class, so there is a compile-
time error.

1. class A{

2. private int data=40;

3. private void msg(){System.out.println("Hello java");}

4. }

5.

6. public class Simple{

7. public static void main(String args[]){

8. A obj=new A();

9. System.out.println(obj.data);//Compile Time Error

10. obj.msg();//Compile Time Error

11. }

12. }

Role of Private Constructor

If you make any class constructor private, you cannot create the instance of that class from outside the

class. For example:

1. class A{

2. private A(){}//private constructor

3. void msg(){System.out.println("Hello java");}

4. }

5. public class Simple{

6. public static void main(String args[]){

7. A obj=new A();//Compile Time Error

8. }

9. }

46 | P a g e

Note: A class cannot be private or protected except nested class.

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is accessible only

within package. It cannot be accessed from outside the package. It provides more accessibility than
private. But, it is more restrictive than protected, and public.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A class from
outside its package, since A class is not public, so it cannot be accessed from outside the package.

1. //save by A.java

2. package pack;

3. class A{

4. void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. import pack.*;

4. class B{

5. public static void main(String args[]){

6. A obj = new A();//Compile Time Error

7. obj.msg();//Compile Time Error

8. }

9. }

In the above example, the scope of class A and its method msg() is default so it cannot be accessed from

outside the package.

3) Protected

The protected access modifier is accessible within package and outside the package but through
inheritance only.

The protected access modifier can be applied on the data member, method and constructor. It can't be
applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

47 | P a g e

In this example, we have created the two packages pack and mypack. The A class of pack package is

public, so can be accessed from outside the package. But msg method of this package is declared as

protected, so it can be accessed from outside the class only through inheritance.

1. //save by A.java

2. package pack;

3. public class A{

4. protected void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. import pack.*;

4.

5. class B extends A{

6. public static void main(String args[]){

7. B obj = new B();

8. obj.msg();

9. }

10. }

Output:Hello

4) Public

The public access modifier is accessible everywhere. It has the widest scope among all other modifiers.

Example of public access modifier

1. //save by A.java

2.

3. package pack;

4. public class A{

5. public void msg(){System.out.println("Hello");}

6. }

1. //save by B.java

2.

3. package mypack;

4. import pack.*;

5.

6. class B{

7. public static void main(String args[]){

8. A obj = new A();

9. obj.msg();

10. }

48 | P a g e

11. }

Output:Hello

Java Access Modifiers with Method Overriding

If you are overriding any method, overridden method (i.e. declared in subclass) must not be more
restrictive.

1. class A{

2. protected void msg(){System.out.println("Hello java");}

3. }

4.

5. public class Simple extends A{

6. void msg(){System.out.println("Hello java");}//C.T.Error

7. public static void main(String args[]){

8. Simple obj=new Simple();

9. obj.msg();

10. }

11. }

The default modifier is more restrictive than protected. That is why, there is a compile-time error.

A class that is derived from another class is called subclass and inherits all fields and methods of its
superclass. In Java, only single inheritance is allowed and thus, every class can have at most one
direct superclass. A class can be derived from another class that is derived from another class and so
on. Finally, we must mention that each class in Java is implicitly a subclass of the Object class.

Suppose we have declared and implemented a class A. In order to declare a class B that is derived
from A, Java offers the extend keyword that is used as shown below:

class A {
 //Members and methods declarations.
}

class B extends A {
 //Members and methods from A are inherited.
 //Members and methods declarations of B.
}

public class Animal {
public void sleep() {System.out.println("An animal sleeps...");}

 public void eat() {System.out.println("An animal eats...");}
}
public class Bird extends Animal {

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

49 | P a g e

public void fly() {

 System.out.println ("A bird flies...");

}

public class MainClass {

 public static void main(String[] args)
{

 Bird b1= new Bird();

 b1.sleep ();
 }

Methode Overriding:-

when a method in a Subclass has the same name and same return-type and same parameters as
that of method in its Superclass, then the method in the Subclass is said to Override the method in
the Superclass"

50 | P a g e

It should be noted that, method overriding occurs only when the names & type signatures fo the two
methodes are same. If they are not, then the two methodes are simply overloaded. Following
example will explain mehtod overriding in details.

public class A
 {
 void show(int i){
 System.out.println("i inside superclass : " + i);
 }
 }

 //Subclass B
 public class B extends A
 {
 //overriedn methode "show(int i)"
 void show(int i){

 System.out.println ("i inside subclass: " + i);

//Access Superclass version of
 //an overriden method show()
 //super.methodname()
 super.show(20);

 }
 }
 public class Main
 {
 public static void main(String[] args)
 {
 B objB= new B();
 objB.show(10);
 }
 }

Output:-
i inside subclass : 10
i inside superclass : 20

 this() : to invoke current class constructor

The this() constructor call can be used to invoke the current class constructor. It is used to reuse the

constructor. In other words, it is used for constructor chaining.

Calling default constructor from parameterized constructor:

1. class A{

51 | P a g e

2. A(){System.out.println("hello a");}

3. A(int x){

4. this();

5. System.out.println(x);

6. }

7. }

8. class TestThis5{

9. public static void main(String args[]){

10. A a=new A(10);

11. }}

Test it Now

Output:

hello a

10

Calling parameterized constructor from default constructor:

1. class A{

2. A(){

3. this(5);

4. System.out.println("hello a");

5. }

6. A(int x){

7. System.out.println(x);

8. }

9. }

10. class TestThis6{

11. public static void main(String args[]){

12. A a=new A();

13. }}

Test it Now

Output:

5

hello a

http://www.javatpoint.com/opr/test.jsp?filename=TestThis5
http://www.javatpoint.com/opr/test.jsp?filename=TestThis6

52 | P a g e

 Dynamic method dispatch:-

 Dynamic method dispatch is one type of mechanism by which a call to an overridden method is
resolved at run time, rather than at compile time. Dynamic method dispatch allow Java to implement
run-time polymorphism.

 When an overridden method is called through the obeject of superclass then Java determines
which version of that method to execute, based upon the type of the object being referred to at the
time the call occurs, hence determination is made at run time. Go througn following example to clear
this concept.

class A {
void callme() {
System.out.println("Inside A's callme method");
}
}
class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme method");
}
}
class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme method");
}
}
class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A
r = a; // r refers to an A object
r.callme(); // calls A's version of callme
r = b; // r refers to a B object
r.callme(); // calls B's version of callme
THE JAVA LANGUAGE
r = c; // r refers to a C object
r.callme(); // calls C's version of callme
}
}

53 | P a g e

Abstract class

If a class contain any abstract method then the class is declared as abstract class. An abstract class
is never instantiated. It is used to provide abstraction. Although it does not provide 100% abstraction
because it can also have concrete method

The syntax is
abstract class class_name { }

Method that are declared without any body within an abstract class is known as abstract method
The method body will be defined by its subclass. Abstract method can never be final and static. Any
class that extends an abstract class must implement all the abstract methods declared by the super
class.

Syntax
Abstract return type function name ();

Example of Abstract class

abstract class A
{
 abstract void callme();
}
class B extends A
{
 void callme()
 {
 System.out.println("this is callme.");
 }
 public static void main(String[] args)
 {
 B b=new B();
 b.callme();
 }
}

Abstract class with concrete (normal) method

abstract class A
{
 abstract void callme();
 public void normal()
 {
 System.out.println("this is concrete method");
 }
}
class B extends A
{

54 | P a g e

 void callme()
 {
 System.out.println("this is callme.");
 }
 public static void main(String[] args)
 {
 B b=new B();
 b.callme();
 b.normal();
 }
}

When to use Abstract Methods & Abstract Class?

Abstract methods are usually declared where two or more subclasses are expected to do a similar
thing in different ways through different implementations. These subclasses extend the same Abstract
class and provide different implementations for the abstract methods Abstract classes are used to
define generic types of behaviors at the top of an object-oriented programming class hierarchy, and
use its subclasses to provide implementation details of the abstract class

final is used to prevent overriding

You can use final keyword to declare a method, and methods declared with final cannot be
overridden. There are certain situations where we need to prevent method overriding and so final is
used to achieve that.

class Super
{
final void Display()
{
 System.out.println (“Display is final method”);
}
}

/*This is not possible because Display method is declared final in superclass*/

class SubClass extends Super
{

public void Display()
{System.out.println (“Overriding is not possible for final methods”);}

}

3) final is used to prevent Inheritance

You can also use final to prevent inheritance as well, you just need to declare a class as final to do
this.

55 | P a g e

Example:

final class Super
{
 statement 1;
 statement 2;
}

/*This is not possible as
final class cannot be inherited*/

public class SubClass extends Super
{
 statement 3;
 statement 4;
}

Java String

In Java, string is basically an object that represents sequence of char values. An array of characters

works same as Java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch);

is same as:

1. String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such as compare(), concat(),

equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

The java.lang.String class implements Serializable, Comparable and CharSequence interfaces.

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters.

String, StringBuffer and StringBuilder classes implement it. It means, we can create strings in java

by using these three classes.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/StringBuffer-class
https://www.javatpoint.com/StringBuilder-class

56 | P a g e

The Java String is immutable which means it cannot be changed. Whenever we change any string, a new

instance is created. For mutable strings, you can use StringBuffer and StringBuilder classes.

We will discuss immutable string later. Let's first understand what is String in Java and how to create the
String object.

What is String in java

Generally, String is a sequence of characters. But in Java, string is an object that represents a sequence
of characters. The java.lang.String class is used to create a string object.

How to create a string object?

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool" first. If the string already

exists in the pool, a reference to the pooled instance is returned. If the string doesn't exist in the pool, a
new string instance is created and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//It doesn't create a new instance

In the above example, only one object will be created. Firstly, JVM will not find any string object with the

value "Welcome" in string constant pool, that is why it will create a new object. After that it will find the

string with the value "Welcome" in the pool, it will not create a new object but will return the reference to

the same instance.

Note: String objects are stored in a special memory area known as the "string constant pool".

57 | P a g e

Why Java uses the concept of String literal?

To make Java more memory efficient (because no new objects are created if it exists already in the string
constant pool).

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the literal

"Welcome" will be placed in the string constant pool. The variable s will refer to the object in a heap (non-
pool).

Java String Example

1. public class StringExample{

2. public static void main(String args[]){

3. String s1="java";//creating string by java string literal

4. char ch[]={'s','t','r','i','n','g','s'};

5. String s2=new String(ch);//converting char array to string

6. String s3=new String("example");//creating java string by new keyword

7. System.out.println(s1);

8. System.out.println(s2);

9. System.out.println(s3);

10. }}

Test it Now
java

strings

example

Java String class methods

The java.lang.String class provides many useful methods to perform operations on sequence of char
values.

No. Method Description

1 char charAt(int index) returns char value for the

particular index

https://www.javatpoint.com/jvm-java-virtual-machine
http://www.javatpoint.com/opr/test.jsp?filename=StringExample
https://www.javatpoint.com/java-string-charat

58 | P a g e

2 int length() returns string length

3 static String format(String format, Object... args) returns a formatted string.

4 static String format(Locale l, String format, Object... args) returns formatted string

with given locale.

5 String substring(int beginIndex) returns substring for given

begin index.

6 String substring(int beginIndex, int endIndex) returns substring for given

begin index and end index.

7 boolean contains(CharSequence s) returns true or false after

matching the sequence of

char value.

8 static String join(CharSequence delimiter, CharSequence...

elements)

returns a joined string.

9 static String join(CharSequence delimiter, Iterable<?

extends CharSequence> elements)

returns a joined string.

10 boolean equals(Object another) checks the equality of string

with the given object.

11 boolean isEmpty() checks if string is empty.

12 String concat(String str) concatenates the specified

string.

13 String replace(char old, char new) replaces all occurrences of

the specified char value.

14 String replace(CharSequence old, CharSequence new) replaces all occurrences of

the specified

CharSequence.

15 static String equalsIgnoreCase(String another) compares another string. It

doesn't check case.

16 String[] split(String regex) returns a split string

https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split

59 | P a g e

matching regex.

17 String[] split(String regex, int limit) returns a split string

matching regex and limit.

18 String intern() returns an interned string.

19 int indexOf(int ch) returns the specified char

value index.

20 int indexOf(int ch, int fromIndex) returns the specified char

value index starting with

given index.

21 int indexOf(String substring) returns the specified

substring index.

22 int indexOf(String substring, int fromIndex) returns the specified

substring index starting

with given index.

23 String toLowerCase() returns a string in

lowercase.

24 String toLowerCase(Locale l) returns a string in

lowercase using specified

locale.

25 String toUpperCase() returns a string in

uppercase.

26 String toUpperCase(Locale l) returns a string in

uppercase using specified

locale.

27 String trim() removes beginning and

ending spaces of this string.

28 static String valueOf(int value) converts given type into

string. It is an overloaded

method.

https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-intern
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof

60 | P a g e

Do You Know?

o Why are String objects immutable?

o How to create an immutable class?

o What is string constant pool?

o What code is written by the compiler if you concatenate any string by + (string concatenation

operator)?

o What is the difference between StringBuffer and StringBuilder class?

What will we learn in String Handling?

o Concept of String

o Immutable String

o String Comparison

o String Concatenation

o Concept of Substring

o String class methods and its usage

o StringBuffer class

o StringBuilder class

o Creating Immutable class

o toString() method

o StringTokenizer class

Immutable String in Java

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once string object is created its data or state can't be changed but a new string object is created.

Let's try to understand the immutability concept by the example given below:

1. class Testimmutablestring{

2. public static void main(String args[]){

3. String s="Sachin";

4. s.concat(" Tendulkar");//concat() method appends the string at the end

5. System.out.println(s);//will print Sachin because strings are immutable objects

6. }

7. }

Test it Now
Output:Sachin

http://www.javatpoint.com/opr/test.jsp?filename=Testimmutablestring

61 | P a g e

Now it can be understood by the diagram given below. Here Sachin is not changed but a new object is

created with sachintendulkar. That is why string is known as immutable.

As you can see in the above figure that two objects are created but s reference variable still refers to
"Sachin" not to "Sachin Tendulkar".

But if we explicitely assign it to the reference variable, it will refer to "Sachin Tendulkar" object.For

example:

1. class Testimmutablestring1{

2. public static void main(String args[]){

3. String s="Sachin";

4. s=s.concat(" Tendulkar");

5. System.out.println(s);

6. }

7. }

Test it Now
Output:Sachin Tendulkar

In such case, s points to the "Sachin Tendulkar". Please notice that still sachin object is not modified.

Why string objects are immutable in java?

Because java uses the concept of string literal.Suppose there are 5 reference variables,all referes to one

object "sachin".If one reference variable changes the value of the object, it will be affected to all the

reference variables. That is why string objects are immutable in java.

OBJECT CLASS

The java.lang.Object class is the root of the class hierarchy. Every class has Object as a superclass.
All objects, including arrays, implement the methods of this class.
Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects,
including arrays, implement the methods of this class.

Methods in object class

clone()

Creates a new object of the same class as this object.

equals(Object)

Compares two Objects for equality.
finalize()

Called by the garbage collector on an object when garbage collection determines that there
are no more references to the object.

http://www.javatpoint.com/opr/test.jsp?filename=Testimmutablestring1
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#clone%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#equals%28java.lang.Object%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#finalize%28%29

62 | P a g e

getClass()
Returns the runtime class of an object.

hashCode()
Returns a hash code value for the object.

notify()
Wakes up a single thread that is waiting on this object's monitor.

notifyAll()
Wakes up all threads that are waiting on this object's monitor.

toString()
Returns a string representation of the object.

wait()
Waits to be notified by another thread of a change in this object.

wait(long)
Waits to be notified by another thread of a change in this object.

wait(long, int)
Waits to be notified by another thread of a change in this object.

Java String compare

We can compare string in java on the basis of content and reference.

It is used in authentication (by equals() method), sorting (by compareTo() method), reference

matching (by == operator) etc.

There are three ways to compare string in java:

1. By equals() method

2. By = = operator

3. By compareTo() method

1) String compare by equals() method

The String equals() method compares the original content of the string. It compares values of string for

equality. String class provides two methods:

o public boolean equals(Object another) compares this string to the specified object.

o public boolean equalsIgnoreCase(String another) compares this String to another string,

ignoring case.

1. class Teststringcomparison1{

2. public static void main(String args[]){

3. String s1="Sachin";

4. String s2="Sachin";

5. String s3=new String("Sachin");

http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#getClass%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#hashCode%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#notify%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#notifyAll%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#toString%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#wait%28%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#wait%28long%29
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.lang.Object.html#wait%28long,%20int%29

63 | P a g e

6. String s4="Saurav";

7. System.out.println(s1.equals(s2));//true

8. System.out.println(s1.equals(s3));//true

9. System.out.println(s1.equals(s4));//false

10. }

11. }

Test it Now
Output:true

 true

 false

1. class Teststringcomparison2{

2. public static void main(String args[]){

3. String s1="Sachin";

4. String s2="SACHIN";

5.

6. System.out.println(s1.equals(s2));//false

7. System.out.println(s1.equalsIgnoreCase(s2));//true

8. }

9. }

Test it Now

Output:

false

true

Click here for more about equals() method

2) String compare by == operator

The = = operator compares references not values.

1. class Teststringcomparison3{

2. public static void main(String args[]){

3. String s1="Sachin";

4. String s2="Sachin";

5. String s3=new String("Sachin");

6. System.out.println(s1==s2);//true (because both refer to same instance)

7. System.out.println(s1==s3);//false(because s3 refers to instance created in nonpool)

8. }

9. }

Test it Now
Output:true

 false

http://www.javatpoint.com/opr/test.jsp?filename=Teststringcomparison1
http://www.javatpoint.com/opr/test.jsp?filename=Teststringcomparison2
https://www.javatpoint.com/java-string-equals
http://www.javatpoint.com/opr/test.jsp?filename=Teststringcomparison3

64 | P a g e

3) String compare by compareTo() method

The String compareTo() method compares values lexicographically and returns an integer value that

describes if first string is less than, equal to or greater than second string.

Suppose s1 and s2 are two string variables. If:

o s1 == s2 :0

o s1 > s2 :positive value

o s1 < s2 :negative value

1. class Teststringcomparison4{

2. public static void main(String args[]){

3. String s1="Sachin";

4. String s2="Sachin";

5. String s3="Ratan";

6. System.out.println(s1.compareTo(s2));//0

7. System.out.println(s1.compareTo(s3));//1(because s1>s3)

8. System.out.println(s3.compareTo(s1));//-1(because s3 < s1)

9. }

10. }

Test it Now
Output:0

 1

 -1

String Concatenation in Java

In java, string concatenation forms a new string that is the combination of multiple strings. There are

two ways to concat string in java:

1. By + (string concatenation) operator

2. By concat() method

1) String Concatenation by + (string concatenation) operator

Java string concatenation operator (+) is used to add strings. For Example:

1. class TestStringConcatenation1{

2. public static void main(String args[]){

3. String s="Sachin"+" Tendulkar";

4. System.out.println(s);//Sachin Tendulkar

5. }

6. }

http://www.javatpoint.com/opr/test.jsp?filename=Teststringcomparison4

65 | P a g e

Test it Now
Output:Sachin Tendulkar

The Java compiler transforms above code to this:

1. String s=(new StringBuilder()).append("Sachin").append(" Tendulkar).toString();

In java, String concatenation is implemented through the StringBuilder (or StringBuffer) class and its

append method. String concatenation operator produces a new string by appending the second operand

onto the end of the first operand. The string concatenation operator can concat not only string but
primitive values also. For Example:

1. class TestStringConcatenation2{

2. public static void main(String args[]){

3. String s=50+30+"Sachin"+40+40;

4. System.out.println(s);//80Sachin4040

5. }

6. }

Test it Now
80Sachin4040

Note: After a string literal, all the + will be treated as string concatenation operator.

2) String Concatenation by concat() method

The String concat() method concatenates the specified string to the end of current string. Syntax:

1. public String concat(String another)

Let's see the example of String concat() method.

1. class TestStringConcatenation3{

2. public static void main(String args[]){

3. String s1="Sachin ";

4. String s2="Tendulkar";

5. String s3=s1.concat(s2);

6. System.out.println(s3);//Sachin Tendulkar

7. }

8. }

Test it Now
Sachin Tendulkar

Substring in Java

A part of string is called substring. In other words, substring is a subset of another string. In case of
substring startIndex is inclusive and endIndex is exclusive.

http://www.javatpoint.com/opr/test.jsp?filename=TestStringConcatenation1
http://www.javatpoint.com/opr/test.jsp?filename=TestStringConcatenation2
http://www.javatpoint.com/opr/test.jsp?filename=TestStringConcatenation3

66 | P a g e

Note: Index starts from 0.

You can get substring from the given string object by one of the two methods:

1. public String substring(int startIndex): This method returns new String object containing the

substring of the given string from specified startIndex (inclusive).

2. public String substring(int startIndex, int endIndex): This method returns new String object

containing the substring of the given string from specified startIndex to endIndex.

In case of string:

o startIndex: inclusive

o endIndex: exclusive

Let's understand the startIndex and endIndex by the code given below.

1. String s="hello";

2. System.out.println(s.substring(0,2));//he

In the above substring, 0 points to h but 2 points to e (because end index is exclusive).

Example of java substring
1. public class TestSubstring{

2. public static void main(String args[]){

3. String s="SachinTendulkar";

4. System.out.println(s.substring(6));//Tendulkar

5. System.out.println(s.substring(0,6));//Sachin

6. }

7. }

Test it Now
Tendulkar

Sachin

Interface is a pure abstract class. They are syntactically similar to classes, but you cannot create
instance of an interface. Interface is used to achieve complete abstraction in Java

interface interface_name { }

interface Moveable
{
 int AVG-SPEED = 40;
 void move();
}

http://www.javatpoint.com/opr/test.jsp?filename=TestSubstring

67 | P a g e

class Vehicle implements Moveable
{
 public void move()
 {
 System .out. print in ("Average speed is"+AVG-SPEED");
 }
 public static void main (String[] arg)
 {
 Vehicle vc = new Vehicle();
 vc.move();
 }
}

Interfaces supports Multiple Inheritance

interface Moveable
{
 boolean isMoveable();
}

interface Rollable
{
 boolean isRollable
}

class Tyre implements Moveable, Rollable
{
 int width;

 boolean isMoveable()
 {
 return true;
 }

 boolean isRollable()
 {
 return true;
 }
 public static void main(String args[])
 {
 Tyre tr=new Tyre();
 System.out.println(tr.isMoveable());
 System.out.println(tr.isRollable());
 }
}

68 | P a g e

interface extends other interface

interface NewsPaper
{
 news();
}

interface Magazine extends NewsPaper
{
 colorful();
}

A package can be defined as a group of similar types of classes, interface, enumeration and sub-
package. Using package it becomes easier to locate the related classes"/>

Package access protection

Classes within a package can access classes and members declared with default access and class
members declared with the protected access modifier. Default access is enforced when neither the
public, protected, nor private access modifier is specified in the declaration. By contrast, classes in
other packages cannot access classes and members declared with default access. Class members
declared as protected can be accessed from the classes in the same package as well as classes in
other packages that are subclasses of the declaring class.

Core packages in Java SE 6

Main article: Java Platform, Standard Edition

java.lang — basic language functionality and fundamental types

java.util — collection data structure classes

java.io — file operations

java.math — multiprecision arithmetics

java.nio — the New I/O framework for Java

http://en.wikipedia.org/wiki/Java_Platform,_Standard_Edition
http://docs.oracle.com/javase/7/docs/api/java/lang/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html
http://en.wikipedia.org/wiki/Data_structure
http://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/math/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://en.wikipedia.org/wiki/New_I/O

69 | P a g e

java.net — networking operations, sockets, DNS lookups, ...

java.security — key generation, encryption and decryption

java.sql — Java Database Connectivity (JDBC) to access databases

java.awt — basic hierarchy of packages for native GUI components

javax.swing — hierarchy of packages for platform-independent rich GUI components

java.applet — classes for creating an applet

http://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html
http://en.wikipedia.org/wiki/DNS_lookup
http://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://en.wikipedia.org/wiki/GUI
http://docs.oracle.com/javase/7/docs/api/java/applet/package-summary.html

70 | P a g e

Exception Hierarchy:

All exception classes are subtypes of the java.lang.Exception class. The exception class is a subclass
of the Throwable class. Other than the exception class there is another subclass called Error which is
derived from the Throwable class.

Errors are not normally trapped form the Java programs. These conditions normally happen in case
of severe failures, which are not handled by the java programs. Errors are generated to indicate
errors generated by the runtime environment. Example: JVM is out of Memory. Normally programs
cannot recover from errors.

The Exception class has two main subclasses: IOException class and RuntimeException Class.

 exceptions: A checked exception is an exception that is typically a user error or a
problem that cannot be foreseen by the programmer. For example, if a file is to be opened, but the file
cannot be found, an exception occurs. These exceptions cannot simply be ignored at the time of
compilation.

 exceptions: A runtime exception is an exception that occurs that probably could have
been avoided by the programmer. As opposed to checked exceptions, runtime exceptions are
ignored at the time of compilation.

71 | P a g e

Catching Exceptions:

A method catches an exception using a combination of the try and catch keywords. A try/catch block
is placed around the code that might generate an exception. Code within a try/catch block is referred
to as protected code, and the syntax for using try/catch looks like the following:

try
{
 //Protected code
}catch(ExceptionName e1)
{
 //Catch block
}

A catch statement involves declaring the type of exception you are trying to catch. If an exception
occurs in protected code, the catch block (or blocks) that follows the try is checked. If the type of
exception that occurred is listed in a catch block, the exception is passed to the catch block much as
an argument is passed into a method parameter.

Example:

The following is an array is declared with 2 elements. Then the code tries to access the 3rd element
of the array which throws an exception.

// File Name: ExcepTest.java
import java.io.*;
public class ExcepTest {

 public static void main(String args[]){
 try{
 int a[] = new int[2];
 System.out.println ("Access element three :" + a[3]);
 }catch(ArrayIndexOutOfBoundsException e){
 System.out.println("Exception thrown :" + e);
 }
 System.out.println("Out of the block");
 }
}

Multiple catch Blocks:

A try block can be followed by multiple catch blocks. The syntax for multiple catch blocks looks like
the following:

try
{
 //Protected code
}catch(ExceptionType1 e1)
{
 //Catch block

72 | P a g e

}catch(ExceptionType2 e2)
{
 //Catch block
}catch(ExceptionType3 e3)
{
 //Catch block
}

The throws/throw Keywords:

If a method does not handle a checked exception, the method must declare it using the throws
keyword. The throws keyword appears at the end of a method's signature.

You can throw an exception, either a newly instantiated one or an exception that you just caught, by
using the throw keyword. Try to understand the different in throws and throw keywords.

The finally Keyword

The finally keyword is used to create a block of code that follows a try block. A finally block of code
always executes, whether or not an exception has occurred.

Using a finally block allows you to run any cleanup-type statements that you want to execute, no
matter what happens in the protected code.

A finally block appears at the end of the catch blocks and has the following syntax:

try
{
 //Protected code
}catch (ExceptionType1 e1)
{
 //Catch block

} finally
{
 //The finally block always executes.
}

Declaring you own Exception:

You can create your own exceptions in Java. Keep the following points in mind when writing your own
exception classes:

 All exceptions must be a child of Throwable.
 If you want to write a checked exception that is automatically enforced by the Handle or

Declare Rule, you need to extend the Exception class.
 If you want to write a runtime exception, you need to extend the RuntimeException class.

We can define our own Exception class as below:

73 | P a g e

Thread Life cycle

New

When we create a new Thread object using new operator, thread state is New Thread. At this point, thread is not

alive and it’s a state internal to Java programming.

Runnable

When we call start () function on Thread object, it’s state is changed to Runnable and the control is given to

Thread scheduler to finish it’s execution. Whether to run this thread instantly or keep it in runnable thread pool

before running it depends on the OS implementation of thread scheduler.

Running

When thread is executing, it’s state is changed to Running. Thread scheduler picks one of the thread from the

runnable thread pool and change it’s state to Running and CPU starts executing this thread. A thread can change

state to Runnable, Dead or Blocked from running state depends on time slicing, thread completion of run()

method or waiting for some resources.

Blocked/Waiting

A thread can be waiting for other thread to finish using thread join or it can be waiting for some resources to

available, for example producer consumer problem or waiter notifier implementation or IO resources, then it’s

state is changed to Waiting. Once the thread wait state is over, its state is changed to Runnable and it’s moved

back to runnable thread pool.

Dead

Once the thread finished executing, it’s state is changed to Dead and it’s considered to be not alive.

http://www.journaldev.com/1024/java-thread-join-example-with-explanation
http://www.journaldev.com/1034/java-blockingqueue-example-implementing-producer-consumer-problem
http://www.journaldev.com/1037/java-thread-wait-notify-and-notifyall-example

74 | P a g e

How to create thread:

There are two ways to create a thread:

1. By extending Thread class
2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a thread.Thread class extends
Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

 Thread()
 Thread(String name)
 Thread(Runnable r)
 Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.
2. public void start(): starts the execution of the thread.JVM calls the run() method on the thread..
3. public int getPriority(): returns the priority of the thread.
4. public int setPriority(int priority): changes the priority of the thread.
5. public String getName(): returns the name of the thread.
6. public void setName(String name): changes the name of the thread.
7. public Thread currentThread(): returns the reference of currently executing thread.
8. public int getId(): returns the id of the thread.
9. public Thread.State getState(): returns the state of the thread.
10. public boolean isAlive(): tests if the thread is alive.
11. public void yield(): causes the currently executing thread object to temporarily pause and allow other threads to

execute.
12. public void suspend(): is used to suspend the thread(depricated).
13. public void resume(): is used to resume the suspended thread(depricated).
14. public void stop(): is used to stop the thread(depricated).
15. public boolean isDaemon(): tests if the thread is a daemon thread.
16. public void setDaemon(boolean b): marks the thread as daemon or user thread.
17. public void interrupt(): interrupts the thread.
18. public boolean isInterrupted(): tests if the thread has been interrupted.

19. public static boolean interrupted(): tests if the current thread has been interrupted.

75 | P a g e

Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be executed by a thread.
Runnable interface have only one method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following tasks:

 A new thread starts(with new callstack).
 The thread moves from New state to the Runnable state.
 When the thread gets a chance to execute, its target run() method will run.

1)By extending Thread class:

1. class Multi extends Thread{
2. public void run(){
3. System.out.println ("thread is running...");
4. }
5. public static void main(String args[]){
6. Multi t1=new Multi();
7. t1.start();
8. }
9. }

2)By implementing the Runnable interface:

1. class Multi3 implements Runnable{

2. public void run(){

3. System.out.println ("thread is running...");

4. }

5.

6. public static void main(String args[]){

7. Multi3 m1=new Multi3();

8. Thread t1 =new Thread(m1);

9. t1.start();

10. }

11. }

Can we start a thread twice?
No. After staring a thread, it can never be started again. If you does so, an IllegalThreadStateException is thrown. For
Example:

1. class Multi extends Thread{
2. public void run(){

76 | P a g e

3. System.out.println("running...");
4. }
5. public static void main(String args[]){
6. Multi t1=new Multi();
7. t1.start();
8. t1.start();
9. }
10. }

Creating multiple threads

Program Example

Thread Priorities

In Java, thread scheduler can use the thread priorities in the form of integer value to each of its
thread to determine the execution schedule of threads . Thread gets the ready-to-run state according
to their priorities. The thread scheduler provides the CPU time to thread of highest priority during
ready-to-run state.
Priorities are integer values from 1 (lowest priority given by the constant Thread.MIN_PRIORITY) to
10 (highest priority given by the constant Thread.MAX_PRIORITY). The default priority is
5(Thread.NORM_PRIORITY).

 Constant Description

 Thread.MIN_PRIORITY
 The maximum priority of any thread
(an int value of 1)

 Thread.MAX_PRIORITY
 The minimum priority of any thread
(an int value of 10)

 Thread.NORM_PRIORITY
 The normal priority of any thread (an
int value of 5)

 The methods that are used to set the priority of thread shown as:

 Method Description

 setPriority()
This is method is used to set the priority
of thread.

 getPriority()
This method is used to get the priority of
thread.

When a Java thread is created, it inherits its priority from the thread that created it. At any given time,
when multiple threads are ready to be executed, the runtime system chooses the runnable thread
with the highest priority for execution. In Java runtime system, preemptive scheduling algorithm is
applied. If at the execution time a thread with a higher priority and all other threads are runnable then
the runtime system chooses the new higher priority thread for execution. On the other hand, if two
threads of the same priority are waiting to be executed by the CPU then the round-robin algorithm is
applied in which the scheduler chooses one of them to run according to their round of time-slice.

77 | P a g e

Synchronization

When we start two or more threads within a program, there may be a situation when multiple threads
try to access the same resource and finally they can produce unforeseen result due to concurrency
issue. For example if multiple threads try to write within a same file then they may corrupt the data
because one of the threads can overrite data or while one thread is opening the same file at the same
time another thread might be closing the same file.

So there is a need to synchronize the action of multiple threads and make sure that only one thread
can access the resource at a given point in time. This is implemented using a concept called
monitors. Each object in Java is associated with a monitor, which a thread can lock or unlock. Only
one thread at a time may hold a lock on a monitor.

Java programming language provides a very handy way of creating threads and synchronizing their
task by using synchronized blocks. You keep shared resources within this block. Following is the
general form of the synchronized statement:

synchronized(objectidentifier) {
 // Access shared variables and other shared resources
}

Here, the objectidentifier is a reference to an object whose lock associates with the monitor that the
synchronized statement represents. Now we are going to see two examples where we will print a
counter using two different threads. When threads are not synchronized, they print counter value
which is not in sequence, but when we print counter by putting inside synchronized() block, then it
prints counter very much in sequence for both the threads.

Multithreading example with Synchronization:

Here is the same example which prints counter value in sequence and every time we run it, it
produces same result.

class PrintDemo {
 public void printCount(){
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Counter --- " + i);
 }
 } catch (Exception e) {
 System.out.println("Thread interrupted.");
 }
 }

}

class ThreadDemo extends Thread {
 private Thread t;
 private String threadName;
 PrintDemo PD;

78 | P a g e

 ThreadDemo(String name, PrintDemo pd){
 threadName = name;
 PD = pd;
 }
 public void run() {
 synchronized(PD) {
 PD.printCount();
 }
 System.out.println("Thread " + threadName + " exiting.");
 }

 public void start ()
 {
 System.out.println("Starting " + threadName);
 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }

}

public class TestThread {
 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);
 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();
 T2.start();

 // wait for threads to end
 try {
 T1.join();
 T2.join();
 } catch(Exception e) {
 System.out.println("Interrupted");
 }
 }
}

This produces same result every time you run this program:

Starting Thread - 1
Starting Thread - 2
Counter --- 5
Counter --- 4

79 | P a g e

Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 1 exiting.
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 2 exiting.

wo ways exist to determine whether a thread has finished. First, you can call isAlive() on the thread.
This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns false
otherwise. While isAlive() is occasionally useful, the method that you will more commonly use to wait
for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the concept
of the calling thread waiting until the specified thread joins it. Additional forms of join() allow you to
specify a maximum amount of time that you want to wait for the specified thread to terminate. Here is
an improved version of the preceding example that uses join() to ensure that the main thread is the
last to stop. It also demonstrates the isAlive() method.

Notify and wait example 1

public class ThreadA {
 public static void main(String[] args){
 ThreadB b = new ThreadB();
 b.start();

 synchronized(b){
 try{
 System.out.println("Waiting for b to complete...");
 b.wait();
 }catch(InterruptedException e){
 e.printStackTrace();
 }

 System.out.println("Total is: " + b.total);
 } } }

class ThreadB extends Thread{
 int total;
 @Override

80 | P a g e

 public void run(){
 synchronized(this){
 for(int i=0; i<100 ; i++){
 total += i;
 }
 notify(); } } }

Creating Strings:

The most direct way to create a string is to write:

String greeting = "Hello world!";

String Length:

int len = palindrome.length();

Concatenating Strings:

The String class includes a method for concatenating two strings:

string1.concat (string2)

String substring (int beginIndex)
Returns a new string that is a substring of this string.

String substring (int beginIndex, int endIndex)
Returns a new string that is a substring of this string.

String compare

string1.equals (string2) is the way.

It returns true, if both string1 is equal to string2. Else, false.

How to modify the string

The StringBuffer and StringBuilder classes are used when there is a necessity to make a lot of
modifications to Strings of characters.

Unlike Strings objects of type StringBuffer and Stringbuilder can be modified over and over again with
out leaving behind a lot of new unused objects.

The StringBuilder class was introduced as of Java 5 and the main difference between the StringBuffer
and StringBuilder is that StringBuilders methods are not thread safe(not Synchronised).

81 | P a g e

It is recommended to use StringBuilder whenever possible because it is faster than StringBuffer.
However if thread safety is necessary the best option is StringBuffer objects.

Example:

public class Test{

 public static void main(String args[]){
 StringBuffer sBuffer = new StringBuffer(" test");
 sBuffer.append(" String Buffer");
 System.ou.println(sBuffer);
 }
}

This would produce the following result:

test String Buffer

StringBuffer Methods:

SN Methods with Description

1
public StringBuffer append(String s)
Updates the value of the object that invoked the method. The method takes boolean, char, int,
long, Strings etc.

2
public StringBuffer reverse()
The method reverses the value of the StringBuffer object that invoked the method.

3
public delete(int start, int end)
Deletes the string starting from start index until end index.

4
public insert(int offset, int i)
This method inserts an string s at the position mentioned by offset.

5
replace(int start, int end, String str)
This method replaces the characters in a substring of this StringBuffer with characters in the
specified String.

The java.io.Interfaces provides for system input and output through data streams, serialization and
the file system.

Interface Summary

S.N. Interface & Description

1
Closeable
This is a source or destination of data that can be closed.

2
DataInput
This provides for reading bytes from a binary stream and reconstructing from them data in any
of the Java primitive types.

3
DataOutput
This provides for converting data from any of the Java primitive types to a series of bytes and
writing these bytes to a binary stream.

4 Externalizable

http://www.tutorialspoint.com/java/stringbuffer_append.htm
http://www.tutorialspoint.com/java/stringbuffer_reverse.htm
http://www.tutorialspoint.com/java/stringbuffer_delete.htm
http://www.tutorialspoint.com/java/stringbuffer_insert.htm
http://www.tutorialspoint.com/java/stringbuffer_replace.htm

82 | P a g e

This provides only the identity of the class of an Externalizable instance is written in the
serialization stream and it is the responsibility of the class to save and restore the contents of its
instances.

5
FileFilter
This is a filter for abstract pathnames.

6
FilenameFilter
This is instances of classes that implement this interface are used to filter filenames.

7
Flushable
This is a destination of data that can be flushed.

8
ObjectInput
This extends the DataInput interface to include the reading of objects.

9
ObjectInputValidation
This is the callback interface to allow validation of objects within a graph.

10
ObjectOutput
This is the objectOutput extends the DataOutput interface to include writing of objects.

11
ObjectStreamConstants
The constants written into the Object Serialization Stream.

12
Serializable
This is enabled by the class implementing the java.io.Serializable interface.

A stream can be defined as a sequence of data. The InputStream is used to read data from a source
and the OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to Files and networks but this tutorial covers
very basic functionality related to streams and I/O. We would see most commonly used example one
by one:

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are , FileInputStream and
FileOutputStream. Following is an example which makes use of these two classes to copy an input
file into an output file:

import java.io.*;

public class CopyFile {
 public static void main(String args[]) throws IOException
 {
 FileInputStream in = null;
 FileOutputStream out = null;

 try {
 in = new FileInputStream("input.txt");
 out = new FileOutputStream("output.txt");

 int c;
 while ((c = in.read()) != -1) {

83 | P a g e

 out.write(c);
 }
 }finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }
}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file with
the same content as we have in input.txt. So let's put above code in CopyFile.java file and do the
following:

$javac CopyFile.java
$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character
streams are used to perform input and output for 16-bit unicode. Though there are many classes
related to character streams but the most frequently used classes are , FileReader and FileWriter..
Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but here
major difference is that FileReader reads two bytes at a time and FileWriter writes two bytes at a time.

We can re-write above example which makes use of these two classes to copy an input file (having
unicode characters) into an output file:

import java.io.*;

public class CopyFile {
 public static void main(String args[]) throws IOException
 {
 FileReader in = null;
 FileWriter out = null;

 try {
 in = new FileReader("input.txt");
 out = new FileWriter("output.txt");

 int c;
 while ((c = in.read()) != -1) {
 out.write(c);

84 | P a g e

 }
 }finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }
}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file with
the same content as we have in input.txt. So let's put above code in CopyFile.java file and do the
following:

$javac CopyFile.java
$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where user's program can take input
from a keyboard and then produce output on the computer screen. If you are aware if C or C++
programming languages, then you must be aware of three standard devices STDIN, STDOUT and
STDERR. Similar way Java provides following three standard streams

 Standard Input: This is used to feed the data to user's program and usually a keyboard is
used as standard input stream and represented as System.in.

 Standard Output: This is used to output the data produced by the user's program and usually
a computer screen is used to standard output stream and represented as System.out.

 Standard Error: This is used to output the error data produced by the user's program and
usually a computer screen is used to standard error stream and represented as System.err.

serialization

Java provides a mechanism, called object serialization where an object can be represented as a
sequence of bytes that includes the object's data as well as information about the object's type and
the types of data stored in the object.

After a serialized object has been written into a file, it can be read from the file and deserialized that
is, the type information and bytes that represent the object and its data can be used to recreate the
object in memory.

Most impressive is that the entire process is JVM independent, meaning an object can be serialized
on one platform and deserialized on an entirely different platform.

85 | P a g e

Classes ObjectInputStream and ObjectOutputStream are high-level streams that contain the
methods for serializing and deserializing an object.

The ObjectOutputStream class contains many write methods for writing various data types, but one
method in particular stands out:

public final void writeObject(Object x) throws IOException

The above method serializes an Object and sends it to the output stream. Similarly, the
ObjectInputStream class contains the following method for deserializing an object:

public final Object readObject() throws IOException,
 ClassNotFoundException

This method retrieves the next Object out of the stream and deserializes it. The return value is Object,
so you will need to cast it to its appropriate data type.

To demonstrate how serialization works in Java, I am going to use the Employee class that we
discussed early on in the book. Suppose that we have the following Employee class, which
implements the Serializable interface:

public class Employee implements java.io.Serializable
{
 public String name;
 public String address;
 public transient int SSN;
 public int number;
 public void mailCheck()
 {
 System.out.println("Mailing a check to " + name
 + " " + address);
 }
}

Notice that for a class to be serialized successfully, two conditions must be met:

 The class must implement the java.io.Serializable interface.
 All of the fields in the class must be serializable. If a field is not serializable, it must be marked

transient.

If you are curious to know if a Java Standard Class is serializable or not, check the documentation for
the class. The test is simple: If the class implements java.io.Serializable, then it is serializable;
otherwise, it's not.

Serializing an Object:

The ObjectOutputStream class is used to serialize an Object. The following SerializeDemo program instantiates
an Employee object and serializes it to a file.

86 | P a g e

When the program is done executing, a file named employee.ser is created. The program does not generate
any output, but study the code and try to determine what the program is doing.

Note: When serializing an object to a file, the standard convention in Java is to give the file a .ser extension.

import java.io.*;

public class SerializeDemo
{
 public static void main(String [] args)
 {
 Employee e = new Employee();
 e.name = "Reyan Ali";
 e.address = "Phokka Kuan, Ambehta Peer";
 e.SSN = 11122333;
 e.number = 101;
 try
 {
 FileOutputStream fileOut =
 new FileOutputStream("/tmp/employee.ser");
 ObjectOutputStream out = new ObjectOutputStream(fileOut);
 out.writeObject(e);
 out.close();
 fileOut.close();
 System.out.printf("Serialized data is saved in /tmp/employee.ser");
 }catch(IOException i)
 {
 i.printStackTrace();
 }
 }
}

Deserializing an Object:

The following DeserializeDemo program deserializes the Employee object created in the SerializeDemo
program. Study the program and try to determine its output:

import java.io.*;
public class DeserializeDemo
{
 public static void main(String [] args)
 {
 Employee e = null;
 try
 {
 FileInputStream fileIn = new FileInputStream("/tmp/employee.ser");
 ObjectInputStream in = new ObjectInputStream(fileIn);

87 | P a g e

 e = (Employee) in.readObject();
 in.close();
 fileIn.close();
 }catch(IOException i)
 {
 i.printStackTrace();
 return;
 }catch(ClassNotFoundException c)
 {
 System.out.println("Employee class not found");
 c.printStackTrace();
 return;
 }
 System.out.println("Deserialized Employee...");
 System.out.println("Name: " + e.name);
 System.out.println("Address: " + e.address);
 System.out.println("SSN: " + e.SSN);
 System.out.println("Number: " + e.number);
 }
}

This would produce the following result:

Deserialized Employee...
Name: Reyan Ali
Address:Phokka Kuan, Ambehta Peer
SSN: 0
Number:101

Here are following important points to be noted:

 The try/catch block tries to catch a ClassNotFoundException, which is declared by the readObject()
method. For a JVM to be able to deserialize an object, it must be able to find the bytecode for the
class. If the JVM can't find a class during the deserialization of an object, it throws a
ClassNotFoundException.

 Notice that the return value of readObject() is cast to an Employee reference.
 The value of the SSN field was 11122333 when the object was serialized, but because the field is

transient, this value was not sent to the output stream. The SSN field of the deserialized Employee
object is 0.

APPLET

An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java application

because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java application, including the

following:

88 | P a g e

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the applet is downloaded to the

user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of the Web browser or a separate

runtime environment.

 The JVM on the user's machine creates an instance of the applet class and invokes various methods

during the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The security of an applet is

often referred to as sandbox security, comparing the applet to a child playing in a sandbox with various

rules that must be followed.

 Other classes that the applet needs can be downloaded in a single Java Archive (JAR) file.

Life Cycle of an Applet:

Four methods in the Applet class give you the framework on which you build any serious applet:

 init: This method is intended for whatever initialization is needed for your applet. It is called after the

param tags inside the applet tag have been processed.

 start: This method is automatically called after the browser calls the init method. It is also called

whenever the user returns to the page containing the applet after having gone off to other pages.

 stop: This method is automatically called when the user moves off the page on which the applet sits. It

can, therefore, be called repeatedly in the same applet.

 destroy: This method is only called when the browser shuts down normally. Because applets are meant

to live on an HTML page, you should not normally leave resources behind after a user leaves the page

that contains the applet.

 paint: Invoked immediately after the start() method, and also any time the applet needs to repaint itself

in the browser. The paint() method is actually inherited from the java.awt.

Passing parameter to applet

import java.awt.*;

import java.applet.*;

public class ParameterExample extends Applet

{

 // We'll save the first HTM parameter as a String

 String parameter1;

 // the second one we will use as an integer

 int parameter2;

 // third one too

 int parameter3;

 // we'll add param2 to param2

 int result;

 public void init()

 {

 // This method will get the specified parameter's value

89 | P a g e

 // out of the HTML code that is calling the applet.

 parameter1 = getParameter("param1");

 // Since those are read as text we need to transform them

 // to integers to be able to count with them.

 parameter2 = Integer.parseInt(getParameter("param2"));

 parameter3 = Integer.parseInt(getParameter("param3"));

 result = parameter2 + parameter3;

 }

 public void paint(Graphics g)

 {

 // Shows what was in the HTML param code.

 g.drawString("Parameter 1 is: " + parameter1,20,20);

 g.drawString("Parameter 2 is: " + parameter2,20,40);

 g.drawString("Parameter 3 is: " + parameter3,20,60);

 g.drawString("Parameter 2 + parameter 3 is: " + result,20,80);

 }

}

/* This only works when those paramters are actually in the HTML code.

 That code for this example is :

 <APPLET CODE="ParameterExample" WIDTH=200 HEIGHT=100>

 <param name="param1" value="Hello">

 <param name="param2" value="14">

 <param name="param3" value="2">

 </APPLET>

 If you make applets for others make sure to use parameters, many

 will appreciate it.

Delegation event model

The event model is based on the Event Source and Event Listeners. Event Listener is an object that receives the

messages / events. The Event Source is any object which creates the message / event. The Event Delegation

model is based on – The Event Classes, The Event Listeners, Event Objects.

There are three participants in event delegation model in Java;

- Event Source – the class which broadcasts the events

- Event Listeners – the classes which receive notifications of events

- Event Object – the class object which describes the event.

An event occurs (like mouse click, key press, etc) which is followed by the event is broadcasted by the event

source by invoking an agreed method on all event listeners. The event object is passed as argument to the

agreed-upon method. Later the event listeners respond as they fit, like submit a form, displaying a message /

alert etc.

90 | P a g e

Following is the list of commonly used event classes.

Sr.

No.
Control & Description

1

AWTEvent

It is the root event class for all AWT events. This class and its subclasses supercede the original

java.awt.Event class.

2
ActionEvent

The ActionEvent is generated when button is clicked or the item of a list is double clicked.

3
InputEvent

The InputEvent class is root event class for all component-level input events.

4
KeyEvent

On entering the character the Key event is generated.

5
MouseEvent

This event indicates a mouse action occurred in a component.

6
TextEvent

The object of this class represents the text events.

7
WindowEvent

The object of this class represents the change in state of a window.

8
AdjustmentEvent

The object of this class represents the adjustment event emitted by Adjustable objects.

9
ComponentEvent

The object of this class represents the change in state of a window.

10
ContainerEvent

The object of this class represents the change in state of a window.

11
MouseMotionEvent

The object of this class represents the change in state of a window.

http://www.tutorialspoint.com/awt/awt_awt_event.htm
http://www.tutorialspoint.com/awt/awt_action_event.htm
http://www.tutorialspoint.com/awt/awt_input_event.htm
http://www.tutorialspoint.com/awt/awt_key_event.htm
http://www.tutorialspoint.com/awt/awt_mouse_event.htm
http://www.tutorialspoint.com/awt/awt_text_event.htm
http://www.tutorialspoint.com/awt/awt_window_event.htm
http://www.tutorialspoint.com/awt/awt_adjustment_event.htm
http://www.tutorialspoint.com/awt/awt_component_event.htm
http://www.tutorialspoint.com/awt/awt_container_event.htm
http://www.tutorialspoint.com/awt/awt_mousemotion_event.htm

91 | P a g e

EventListener Interfaces

An event listener registers with an event source to receive notifications about the events of a particular type.

Various event listener interfaces defined in the java.awt.event package are given below :

 Interface Description

ActionListener
Defines the actionPerformed() method
to receive and process action events.

MouseListener

Defines five methods to receive mouse
events, such as when a mouse is
clicked, pressed, released, enters, or
exits a component

MouseMotionListener
Defines two methods to receive
events, such as when a mouse is
dragged or moved.

AdjustmentListner
Defines the adjustmentValueChanged()
method to receive and process the
adjustment events.

TextListener
Defines the textValueChanged()
method to receive and process an
event when the text value changes.

WindowListener
Defines seven window methods to
receive events.

ItemListener
Defines the itemStateChanged()
method when an item has been
selected or deselected by the user.

The Java programming language class library provides a user interface toolkit called the Abstract Windowing Toolkit, or
the AWT.

What is a user interface

The user interface is that part of a program that interacts with the user of the program.

Components and containers

A graphical user interface is built of graphical elements called components.

Containers contain and control the layout of components
These nine classes are class Button, Canvas, Checkbox, Choice, Label, List, Scrollbar, TextArea, and TextField.

Types of containers

The AWT provides four container classes. They are class Window and its two subtypes -- class Frame and class

Dialog -- as well as the Panel class. In addition to the containers provided by the AWT, the Applet class is a

92 | P a g e

container -- it is a subtype of the Panel class and can therefore hold components. Brief descriptions of each

container class provided by the AWT are provided below.

Window
A top-level display surface (a window). An instance of the Window class is not attached to nor

embedded within another container. An instance of the Window class has no border and no title.

Frame
A top-level display surface (a window) with a border and title. An instance of the Frame class may

have a menu bar. It is otherwise very much like an instance of the Window class.

Dialog
A top-level display surface (a window) with a border and title. An instance of the Dialog class cannot

exist without an associated instance of the Frame class.

Panel
A generic container for holding components. An instance of the Panel class provides a container to

which to add components.

Creating a container

Before adding the components that make up a user interface, the programmer must create a container. When

building an application, the programmer must first create an instance of class Window or class Frame. When

building an applet, a frame (the browser window) already exists. Since the Applet class is a subtype of the Panel

class, the programmer can add the components to the instance of the Applet class itself.

The code in Listing 1 creates an empty frame. The title of the frame ("Example 1") is set in the call to the

constructor. A frame is initially invisible and must be made visible by invoking its show() method.

import java.awt.*;

public class Example1

{

 public static void main(String [] args)

 {

 Frame f = new Frame("Example 1");

 f.show();

 }

}

Canvas control represents a rectangular area where application can draw something or can receive inputs

created by user.

Class declaration

Following is the declaration for java.awt.Canvas class:

public class Canvas

 extends Component

 implements Accessible

93 | P a g e

Class constructors

S.N. Constructor & Description

1
Canvas()
Constructs a new Canvas.

2
Canvas(GraphicsConfiguration config)
Constructs a new Canvas given a GraphicsConfiguration object.

Class methods

S.N. Method & Description

1
void addNotify()
Creates the peer of the canvas.

2
void createBufferStrategy(int numBuffers)
Creates a new strategy for multi-buffering on this component.

3
void createBufferStrategy(int numBuffers, BufferCapabilities caps)
Creates a new strategy for multi-buffering on this component with the required buffer capabilities.

4
AccessibleContext getAccessibleContext()
Gets the AccessibleContext associated with this Canvas.

5
BufferStrategy getBufferStrategy()
Returns the BufferStrategy used by this component.

6
void paint(Graphics g)
Paints this canvas.

7
void pdate(Graphics g)
Updates this canvas.

Methods inherited

This class inherits methods from the following classes:

 java.awt.Component

 java.lang.Object

How to create a canvas

Canvas C1 = new Canvas (); C1.setSize (120,120); C1.setBackground (Color.white); Frame F1 = new Frame
(); F1.add (C1); F1.setLayout (new FlowLayout ()); F1.setSize (250,250); F1.setVisible (true);

What is an Event?

Change in the state of an object is known as event i.e. event describes the change in state of source. Events are

generated as result of user interaction with the graphical user interface components. For example, clicking on a

button, moving the mouse, entering a character through keyboard,selecting an item from list, scrolling the page

are the activities that causes an event to happen.

94 | P a g e

Types of Event

The events can be broadly classified into two categories:

 Foreground Events - Those events which require the direct interaction of user. They are generated as

consequences of a person interacting with the graphical components in Graphical User Interface. For

example, clicking on a button, moving the mouse, entering a character through keyboard, selecting an

item from list, scrolling the page etc.

 Background Events - Those events that require the interaction of end user are known as background

events. Operating system interrupts, hardware or software failure, timer expires, an operation completion

are the example of background events.

What is Event Handling?

Event Handling is the mechanism that controls the event and decides what should happen if an event occurs.

These mechanisms have the code which is known as event handler that is executed when an event occurs. Java

Uses the Delegation Event Model to handle the events. This model defines the standard mechanism to generate

and handle the events. Let’s have a brief introduction to this model.

The Delegation Event Model has the following key participants namely:

 Source - The source is an object on which event occurs. Source is responsible for providing information

of the occurred event to it's handler. Java provide as with classes for source object.

 Listener - It is also known as event handler.Listener is responsible for generating response to an event.

From java implementation point of view the listener is also an object. Listener waits until it receives an

event. Once the event is received, the listener process the event an then returns.

The benefit of this approach is that the user interface logic is completely separated from the logic that generates

the event. The user interface element is able to delegate the processing of an event to the separate piece of code.

In this model ,Listener needs to be registered with the source object so that the listener can receive the event

notification. This is an efficient way of handling the event because the event notifications are sent only to those

listener that want to receive them.

EVENT HANDLING IN JAVA/Event-driven programming

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEvent MouseWheelListener

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

95 | P a g e

Steps to perform EventHandling:

Following steps are required to perform event handling :

1. Implement the Listener interface and overrides its methods

2. Register the component with the Listener

Example of event handling within class:

1. import java.awt.*;

2. import java.awt.event.*;

3.

4. class AEvent extends Frame implements ActionListener{

5. TextField tf;

6. AEvent(){

7.

8. tf=new TextField();

9. tf.setBounds(60,50,170,20);

10.
11. Button b=new Button("click me");

12. b.setBounds(100,120,80,30);

13.
14. b.addActionListener(this);

15.
16. add(b);add(tf);

17.
18. setSize(300,300);

19. setLayout(null);

20. setVisible(true);

21.
22. }

23.
24. public void actionPerformed(ActionEvent e){

25. tf.setText("Welcome");

26. }

27.
28. public static void main(String args[]){

29. new AEvent();

30. }

31. }

96 | P a g e

Layout

Layout means the arrangement of components within the container. In other way we can say that placing the

components at a particular position within the container. The task of layouting the controls is done

automatically by the Layout Manager.

Layout Manager

The layout manager automatically positions all the components within the container. If we do not use layout

manager then also the components are positioned by the default layout manager. It is possible to layout the

controls by hand but it becomes very difficult because of the following two reasons.

 It is very tedious to handle a large number of controls within the container.

 Oftenly the width and height information of a component is not given when we need to arrange them.

Java provide us with various layout manager to position the controls. The properties like size,shape and

arrangement varies from one layout manager to other layout manager. When the size of the applet or the

application window changes the size, shape and arrangement of the components also changes in response i.e.

the layout managers adapt to the dimensions of appletviewer or the application window.

The layout manager is associated with every Container object. Each layout manager is an object of the class that

implements the LayoutManager interface.

Following are the interfaces defining functionalities of Layout Managers.

Sr.
No.

Interface & Description

1
LayoutManager
The LayoutManager interface declares those methods which need to be implemented by the class whose object
will act as a layout manager.

2
LayoutManager2
The LayoutManager2 is the sub-interface of the LayoutManager.This interface is for those classes that know how
to layout containers based on layout constraint object.

AWT Layout Manager Classes:

Following is the list of commonly used controls while designed GUI using AWT.

Sr.
No.

LayoutManager & Description

1
BorderLayout
The borderlayout arranges the components to fit in the five regions: east, west, north, south and center.

2
CardLayout
The CardLayout object treats each component in the container as a card. Only one card is visible at a time.

3
FlowLayout
The FlowLayout is the default layout.It layouts the components in a directional flow.

4 GridLayout

http://www.tutorialspoint.com/swing/swing_layoutmanager.htm
http://www.tutorialspoint.com/swing/swing_layoutmanager2.htm
http://www.tutorialspoint.com/swing/swing_borderlayout.htm
http://www.tutorialspoint.com/swing/swing_cardlayout.htm
http://www.tutorialspoint.com/swing/swing_flowlayout.htm
http://www.tutorialspoint.com/swing/swing_gridlayout.htm

97 | P a g e

The GridLayout manages the components in form of a rectangular grid.

5
GridBagLayout
This is the most flexible layout manager class.The object of GridBagLayout aligns the component
vertically,horizontally or along their baseline without requiring the components of same size.

6
GroupLayout
The GroupLayout hierarchically groups components in order to position them in a Container.

7
SpringLayout
A SpringLayout positions the children of its associated container according to a set of constraints.

The java.awt.Graphics is an abstract class, as the actual act of drawing is system-dependent and device-

dependent. Each operating platform will provide a subclass of Graphics to perform the actual drawing under

the platform, but conform to the specification defined in Graphics.

The Graphics class provides methods for drawing three types of graphical objects:

1. Text strings: via the drawString() method. Take note that System.out.println() prints to the system

console, not to the graphics screen.

2. Vector-graphic primitives and shapes: via methods drawXxx() and fillXxx(), where Xxx could be

Line, Rect, Oval, Arc, PolyLine, RoundRect, or 3DRect.

3. Bitmap images: via the drawImage() method.

// Drawing (or printing) texts on the graphics screen:

drawString(String str, int xBaselineLeft, int yBaselineLeft);

// Drawing lines:

drawLine(int x1, int y1, int x2, int y2);

drawPolyline(int[] xPoints, int[] yPoints, int numPoint);

// Drawing primitive shapes:

drawRect(int xTopLeft, int yTopLeft, int width, int height);

drawOval(int xTopLeft, int yTopLeft, int width, int height);

drawArc(int xTopLeft, int yTopLeft, int width, int height, int startAngle, int arcAngle);

draw3DRect(int xTopLeft, int, yTopLeft, int width, int height, boolean raised);

drawRoundRect(int xTopLeft, int yTopLeft, int width, int height, int arcWidth, int

arcHeight)

drawPolygon(int[] xPoints, int[] yPoints, int numPoint);

// Filling primitive shapes:

fillRect(int xTopLeft, int yTopLeft, int width, int height);

fillOval(int xTopLeft, int yTopLeft, int width, int height);

fillArc(int xTopLeft, int yTopLeft, int width, int height, int startAngle, int arcAngle);

fill3DRect(int xTopLeft, int, yTopLeft, int width, int height, boolean raised);

http://www.tutorialspoint.com/swing/swing_gridbaglayout.htm
http://www.tutorialspoint.com/swing/swing_grouplayout.htm
http://www.tutorialspoint.com/swing/swing_springlayout.htm

98 | P a g e

fillRoundRect(int xTopLeft, int yTopLeft, int width, int height, int arcWidth, int

arcHeight)

fillPolygon(int[] xPoints, int[] yPoints, int numPoint);

// Drawing (or Displaying) images:

drawImage(Image img, int xTopLeft, int yTopLeft, ImageObserver obs); // draw image with

its size

drawImage(Image img, int xTopLeft, int yTopLeft, int width, int height, ImageObserver o);

// resize image on screen

99 | P a g e

Remote Method Invocation (RMI)

The Remote Method Invocation (RMI) is an API that provides a mechanism to create distributed application

in java. The RMI allows an object to invoke methods on an object running in another JVM.

The RMI provides remote communication between the applications using two objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's understand the stub and

skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are routed through it. It

resides at the client side and represents the remote object. When the caller invokes method on the stub object, it

does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),
2. It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),
3. It waits for the result
4. It reads (unmarshals) the return value or exception, and
5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming requests are routed

through it. When the skeleton receives the incoming request, it does the following tasks:

1. It reads the parameter for the remote method
2. It invokes the method on the actual remote object, and
3. It writes and transmits (marshals) the result to the caller.

s we know that every top-level window has a menu bar associated with it. This menu bar consist of various

menu choices available to the end user. Further each choice contains list of options which is called drop down

menus. Menu and MenuItem controls are subclass of MenuComponent class.

100 | P a g e

Menu Hiearchy

Class declaration

Following is the declaration for javax.swing.JLabel class:

public class JLabel

 extends JComponent

 implements SwingConstants, Accessible

Field

Following are the fields for javax.swing.JLabel class:

 protected Component labelFor

Class constructors

S.N. Constructor & Description

1
JLabel()
Creates a JLabel instance with no image and with an empty string for the title.

2
JLabel(Icon image)
Creates a JLabel instance with the specified image.

3
JLabel(Icon image, int horizontalAlignment)
Creates a JLabel instance with the specified image and horizontal alignment.

4
JLabel(String text)
Creates a JLabel instance with the specified text.

5
JLabel(String text, Icon icon, int horizontalAlignment)
Creates a JLabel instance with the specified text, image, and horizontal alignment.

6 JLabel(String text, int horizontalAlignment)

101 | P a g e

Creates a JLabel instance with the specified text and horizontal alignment.

The class JTextField is a component which allows the editing of a single line of text.

Class declaration

Following is the declaration for javax.swing.JTextField class:

public class JTextField

 extends JTextComponent

 implements SwingConstants

Field

Following are the fields for javax.swing.JList class:

 static String notifyAction -- Name of the action to send notification that the contents of the field have

been accepted.

Class constructors

S.N. Constructor & Description

1
JTextField()
Constructs a new TextField.

2
JTextField(Document doc, String text, int columns)
Constructs a new JTextField that uses the given text storage model and the given number of columns.

3
JTextField(int columns)
Constructs a new empty TextField with the specified number of columns.

4
JTextField(String text)
Constructs a new TextField initialized with the specified text.

5
JTextField(String text, int columns)
Constructs a new TextField initialized with the specified text and columns

Introduction

The class JButton is an implementation of a push button. This component has a label and generates an event

when pressed. It can have Image also.

Class declaration

Following is the declaration for javax.swing.JButton class:

public class JButton

 extends AbstractButton

 implements Accessible

102 | P a g e

Class constructors

S.N. Constructor & Description

1
JButton()
Creates a button with no set text or icon.

2
JButton(Action a)
Creates a button where properties are taken from the Action supplied.

3
JButton(Icon icon)
Creates a button with an icon.

4
JButton(String text)
Creates a button with text.

5
JButton(String text, Icon icon)
Creates a button with initial text and an icon.

Introduction

The class JComboBox is a component which combines a button or editable field and a drop-down list.

Class declaration

Following is the declaration for javax.swing.JComboBox class:

public class JComboBox

 extends JComponent

 implements ItemSelectable, ListDataListener,

 ActionListener, Accessible

Class constructors

S.N. Constructor & Description

1
JComboBox()
Creates a JComboBox with a default data model.

2
JComboBox(ComboBoxModel aModel)
Creates a JComboBox that takes its items from an existing ComboBoxModel.

3
JComboBox(Object[] items)
Creates a JComboBox that contains the elements in the specified array.

4
JComboBox(Vector<?> items)
Creates a JComboBox that contains the elements in the specified Vector.

Jtable

public JTable() -- creates an instance of the JTable class that is initialized with a default data model, column

model, and selection model.

public JTable(TableModel dm) -- creates an instance of the JTable class that is initialized with a default

column model and selection model, and with the specified data model.

Jtree:

103 | P a g e

JTree()
JTree(Object[] value)

Memory Management in Java

IN Java, Memory Management means Garbage Collection and memory allocation. Memory allocation
is very small process as compared to Garbage Collection. Indeed, a well playing Garbage collection makes
everything easy for memory allocation. Only major issue before memory allocation is Weather sufficient
Memory available?. And its Garbage Collector responsibility to ensure enough memory is available all the time,
otherwise ready to a face biggest obstacle “OutOfMemory” in running application. Writing a efficient
Garbage Collection algorithm is very tedious task. Thanks to JVM, that they come up with several algorithms,
and by default apply the best one. In day to day programming one might never feel a need to understand those
algorithms, unless you have passion for knowing whats going on under the hood. OR some day after years of
programming you face “OutOfMemory” Exception, and then you check that there are plenty of options which
can be used to avoid such situation, for example JVM comes with several algorithms, and you start googling
which one to use. After so many years of working over Java/J2EE i really need a feel to understand those
algorithms, JVM memory management, memory sizing, and defaults.

Memory Management is all about recognizing which objects are no longer needed, freeing the memory used by such
objects, and making it available. In many modern Object oriented languages this process is automatic, and this
automatic process is called Garbage Collection. There are several Algorithms which are used by Garbage Collector.

Garbage Collection Algorithms -
Reference Counting - Most straight forward GC(Garbage Collection) algorithm is reference counting. Its most

simple algorithm, where we count the number of references to each object. If count is zero for any object,

consider the object to be garbage. Compiler has responsibility of increasing the count, after executing any

assignment statement for any particular object. The major issue with this algorithm is that it can never claim

unreachable cyclic references. for example in the following figure –

http://docs.oracle.com/javase/7/docs/api/javax/swing/JTree.html#JTree%28%29
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTree.html#JTree%28java.lang.Object[]%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

