

DBMS

Lecture Notes

On

Name of Faculty: Sidharth Dash

Name of subject: DBMS

Subject code:RCS5C002

Subject credit:3

Semester :5th

Course :BTech

Branch :CSE

Admisiion Batch 2020-24

[Type text]

DBMS: Basic Concepts

1. Introduction

2. Disadvantages of file oriented approach

3. Database

4. Why Database

5. Database Management System(DBMS)

6. Function of DBMS

7. Advantages of DBMS and disadvantage of DBMS

8. Database Basics

9. Three level architecture of DBMS

10. Database users

11. Database language

12. Database structure

Introduction:

In computerized information system data is the basic resource of the organization.

So, proper organization and management for data is required fro organization to run

smoothly. Database management system deals the knowledge of how data stored and

managed on a computerized information system. In any organization, it requires accurate

and reliable data for better decision making, ensuring privacy of data and controlling data

efficiently.

The examples include deposit and/or withdrawal from a bank,hotel,airline or railway

reservation, purchase items from supermarkets in all cases, a database is accessed.

What is data:

Data is the known facts or figures that have implicit meaning. It can also be defined as it

is the representation of facts ,concepts or instruction in a formal manner, which is suitable

for understanding and processing. Data can be represented in alphabets(A-Z, a-z),in

digits(0-9) and using special characters(+,-.#,$, etc)

e.g: 25, “ajit” etc.

Information:

Information is the processed data on which decisions and actions are based. Information

can be defined as the organized and classified data to provide meaningful values.

Eg: “The age of Ravi is 25”

File:

File is a collection of related data stored in secondary memory.

File Oriented approach:

The traditional file oriented approach to information processing has for each application a

separate master file and its own set of personal file. In file oriented approach the program

dependent on the files and files become dependent on the files and files become

dependents upon the programs

Disadvantages of file oriented approach:

1) Data redundancy and inconsistency:

The same information may be written in several files. This redundancy leads to

higher storage and access cost. It may lead data inconsistency that is the various

copies of the same data may longer agree for example a changed customer address

may be reflected in single file but not else where in the system.

2) Difficulty in accessing data :

The conventional file processing system do not allow data to retrieved in a

convenient and efficient manner according to user choice.

3) Data isolation :

Because data are scattered in various file and files may be in different formats

with new application programs to retrieve the appropriate data is difficult.

4) Integrity Problems:

Developers enforce data validation in the system by adding appropriate code in

the various application program. How ever when new constraints are added, it is

difficult to change the programs to enforce them.

5) Atomicity:

It is difficult to ensure atomicity in a file processing system when transaction

failure occurs due to power failure, networking problems etc.

(atomicity: either all operations of the transaction are reflected properly in the

database or non are)

6) Concurrent access:

In the file processing system it is not possible to access a same file for

transaction at same time

7) Security problems:

There is no security provided in file processing system to secure the data from

unauthorized user access.

Database:

A database is organized collection of related data of an organization stored in

formatted way which is shared by multiple users.

The main feature of data in a database are:

[Type text]

1. It must be well organized

2. it is related

3. It is accessible in a logical order without any difficulty

4. It is stored only once

for example:

consider the roll no, name, address of a student stored in a student file. It is collection of

related data with an implicit meaning.

Data in the database may be persistent, integrated and shared.

Persistent:

If data is removed from database due to some explicit request from user to remove.

Integrated:

A database can be a collection of data from different files and when any redundancy

among those files are removed from database is said to be integrated data.

Sharing Data:

The data stored in the database can be shared by multiple users simultaneously with out

affecting the correctness of data.

Why Database:

In order to overcome the limitation of a file system, a new approach was required.

Hence a database approach emerged. A database is a persistent collection of logically

related data. The initial attempts were to provide a centralized collection of data. A

database has a self describing nature. It contains not only the data sharing and integration

of data of an organization in a single database.

A small database can be handled manually but for a large database and having

multiple users it is difficult to maintain it, In that case a computerized database is useful.

The advantages of database system over traditional, paper based methods of record

keeping are:

 compactness:

No need for large amount of paper files

 speed:

The machine can retrieve and modify the data more faster way then human being

 Less drudgery: Much of the maintenance of files by hand is eliminated

 Accuracy: Accurate,up-to-date information is fetched as per requirement of the

user at any time.

Database Management System (DBMS):

A database management system consists of collection of related data and refers to a set of

programs for defining, creation, maintenance and manipulation of a database.

Function of DBMS:

1. Defining database schema: it must give facility for defining the database

structure also specifies access rights to authorized users.

2. Manipulation of the database: The dbms must have functions like insertion of

record into database updation of data, deletion of data, retrieval of data

3. Sharing of database: The DBMS must share data items for multiple users by

maintaining consistency of data.

4. Protection of database: It must protect the database against unauthorized users.

5. Database recovery: If for any reason the system fails DBMS must facilitate data

base recovery.

Advantages of dbms:

Reduction of redundancies:

Centralized control of data by the DBA avoids unnecessary duplication of data and

effectively reduces the total amount of data storage required avoiding duplication in the

elimination of the inconsistencies that tend to be present in redundant data files.

Sharing of data:

A database allows the sharing of data under its control by any number of application

programs or users.

Data Integrity:

Data integrity means that the data contained in the database is both accurate and

consistent. Therefore data values being entered for storage could be checked to ensure

that they fall with in a specified range and are of the correct format.

Data Security:

The DBA who has the ultimate responsibility for the data in the dbms can ensure that

proper access procedures are followed including proper authentication schemas for access

to the DBS and additional check before permitting access to sensitive data.

Conflict resolution:

DBA resolve the conflict on requirements of various user and applications. The DBA

chooses the best file structure and access method to get optional performance for the

application.

Data Independence:

[Type text]

Data independence is usually considered from two points of views; physically data

independence and logical data independence.

Physical data Independence allows changes in the physical storage devices or

organization of the files to be made without requiring changes in the conceptual view or

any of the external views and hence in the application programs using the data base.

Logical data independence indicates that the conceptual schema can be changed without

affecting the existing external schema or any application program.

Disadvantage of DBMS:

1. DBMS software and hardware (networking installation) cost is high

2. The processing overhead by the dbms for implementation of security, integrity

and sharing of the data.

3. centralized database control

4. Setup of the database system requires more knowledge, money, skills, and time.

5. The complexity of the database may result in poor performance.

Database Basics:

Data item:

The data item is also called as field in data processing and is the smallest unit of data

that has meaning to its users.

Eg: “e101”,”sumit”

Entities and attributes:

An entity is a thing or object in the real world that is distinguishable from all other

objects

Eg:

Bank,employee,student

Attributes are properties are properties of an entity.

Eg:

Empcode,ename,rolno,name

Logical data and physical data :

Logical data are the data for the table created by user in primary memory.

Physical data refers to the data stored in the secondary memory.

Schema and sub-schema :

View

User n

A schema is a logical data base description and is drawn as a chart of

the types of data that are used . It gives the names of the entities and attributes and

specify the relationships between them.

A database schema includes such information as :

 Characteristics of data items such as entities and attributes .

 Logical structures and relationships among these data items .

 Format for storage representation.

 Integrity parameters such as physical authorization and back up policies.

A subschema is derived schema derived from existing schema as per the user

requirement. There may be more then one subschema create for a single conceptual

schema.

Three level architecture of DBMS :

External level

Conceptual

level

Mapping supplied by DBMS

Mapping supplied by DBMS/OS

A database management system that provides three level of data is said to follow three-

level architecture .

External level :

 External level

 Conceptual level

 Internal level

Conceptual view

View

user1

View

User2

Internal level

[Type text]

The external level is at the highest level of database abstraction . At this level, there will

be many views define for different users requirement. A view will describe only a subset

of the database. Any number of user views may exist for a given global or subschema.

for example , each student has different view of the time table. the view of a student of

Btech (CSE) is different from the view of the student of Btech(ECE).Thus this level of

abstraction is concerned with different categories of users.

Each external view is described by means of a schema called schema or

schema.

Conceptual level :

At this level of database abstraction all the database entities and the

relationships among them are included . One conceptual view represents the entire

database . This conceptual view is defined by the conceptual schema.

The conceptual schema hides the details of physical storage structures and concentrate on

describing entities , data types, relationships, user operations and constraints.

It describes all the records and relationships included in the conceptual view

. There is only one conceptual schema per database . It includes feature that specify the

checks to relation data consistency and integrity.

Internal level :

It is the lowest level of abstraction closest to the physical storage method used .

It indicates how the data will be stored and describes the data structures and access

methods to be used by the database . The internal view is expressed by internal schema.

The following aspects are considered at this level:

1. Storage allocation e.g: B-tree,hashing

2. access paths eg. specification of primary and secondary keys,indexes etc

3. Miscellaneous eg. Data compression and encryption techniques,optimization of

the internal structures.

Database users :

Naive users :

Users who need not be aware of the presence of the database system or any other

system supporting their usage are considered naïve users . A user of an automatic teller

machine falls on this category.

Online users :

These are users who may communicate with the database directly via an online

terminal or indirectly via a user interface and application program. These users are

aware of the database system and also know the data manipulation language system.

Application programmers :

Professional programmers who are responsible for developing application programs

or user interfaces utilized by the naïve and online user falls into this category.

Database Administration :

A person who has central control over the system is called database administrator .

The function of DBA are :

Database language :

1. creation and modification of conceptual Schema

definition

2. Implementation of storage structure and access method.

3. schema and physical organization modifications .

4. granting of authorization for data access.

5. Integrity constraints specification.

6. Execute immediate recovery procedure in case of failures

7. ensure physical security to database

1) Data definition language(DDL) :

DDL is used to define database objects .The conceptual schema is

specified by a set of definitions expressed by this language. It also give some

details about how to implement this schema in the physical devices used to store

the data. This definition includes all the entity sets and their associated attributes

and their relation ships. The result of DDL statements will be a set of tables that

are stored in special file called data dictionary.

2) Data manipulation language(DML) :

A DML is a language that enables users to access or manipulate data stored in

the database. Data manipulation involves retrieval of data from the database,

insertion of new data into the database and deletion of data or modification of

existing data.

There are basically two types of DML:

 procedural: Which requires a user to specify what data is needed and

how to get it.

 non-rocedural: which requires a user to specify what data is needed

with out specifying how to get it.

[Type text]

3) Data control language(DCL):

This language enables user to grant authorization and canceling

authorization of database objects.

Elements of DBMS:

DML pre-compiler:

It converts DML statement embedded in an application program to normal procedure

calls in the host language. The pre-complier must interact with the query processor in

order to generate the appropriate code.

DDL compiler:

The DDL compiler converts the data definition statements into a set of tables. These

tables contains information concerning the database and are in a form that can be used by

other components of the dbms.

File manager:

File manager manages the allocation of space on disk storage and the data structure used

to represent information stored on disk.

Database manager:

A database manager is a program module which provides the interface between the low

level data stored in the database and the application programs and queries submitted to

the system.

The responsibilities of database manager are:

1. Interaction with file manager: The data is stored on the disk using the file

system which is provided by operating system. The database manager translate

the the different DML statements into low-level file system commands. so The

database manager is responsible for the actual storing,retrieving and updating

of data in the database.

2. Integrity enforcement:The data values stored in the database must satisfy

certain constraints(eg: the age of a person can't be less then zero).These

constraints are specified by DBA. Data manager checks the constraints and if

it satisfies then it stores the data in the database.

3. Security enforcement:Data manager checks the security measures for

database from unauthorized users.

4. Backup and recovery:Database manager detects the failures occurs due to

different causes (like disk failure, power failure,deadlock,s/w error) and

restores the database to original state of the database.

5. Concurrency control:When several users access the same database file

simultaneously, there may be possibilities of data inconsistency. It is

responsible of database manager to control the problems occurs for concurrent

transactions.

query processor:

The query processor used to interpret to online user’s query and convert it into an

efficient series of operations in a form capable of being sent to the data manager for

execution. The query processor uses the data dictionary to find the details of data file

and using this information it create query plan/access plan to execute the query.

Data Dictionary:

Data dictionary is the table which contains the information about database objects. It

contains information like

1. external, conceptual and internal database description

2. description of entities , attributes as well as meaning of data elements

3. synonyms, authorization and security codes

4. database authorization

The data stored in the data dictionary is called meta data.

DBMS STRUCTURE:

Q. List four significant differences between a file-processing system and a DBMS.

Answer: Some main differences between a database management system and a file-

processing system are:

• Both systems contain a collection of data and a set of programs which access that

data. A database management system coordinates both the physical and the logical

Naïve user

Database manager

DBMS

Ddl compiler System calls Application

programs

DBA On line user

Query processor

Application

programers

Data dictionary

Data file

File manager

Ddl compiler Dml precomplier Application prog

obj code

[Type text]

access to the data, whereas a file-processing system coordinates only the physical

access.

• A database management system reduces the amount of data duplication by

ensuring that a physical piece of data is available to all programs authorized to

have access to it, where as data written by one program in a file-processing system

may not be readable by another program.

• A database management system is designed to allow flexible access to data (i.e.,

queries), whereas a file-processing system is designed to allow predetermined

access to data (i.e., compiled programs).

• A database management system is designed to coordinate multiple users accessing

the same data at the same time. A file-processing system is usually designed to

allow one or more programs to access different data files at the same time. In a

file-processing system, a file can be accessed by two programs concurrently only

if both programs have read-only access to the file.

Q.Explain the difference between physical and logical data independence.

Answer:

• Physical data independence is the ability to modify the physical scheme without

making it necessary to rewrite application programs. Such modifications include

changing from unblocked to blocked record storage, or from sequential to random

access files.

• Logical data independence is the ability to modify the conceptual scheme without

making it necessary to rewrite application programs. Such a modification might

be adding a field to a record; an application program’s view hides this change

from the program.

Q. List five responsibilities of a database management system. For each

responsibility, explain the problems that would arise if the responsibility were not

discharged.

Answer: A general purpose database manager (DBM) has five responsibilities:

a. interaction with the file manager.

b. integrity enforcement.

c. security enforcement.

d. backup and recovery.

e. concurrency control.

If these responsibilities were not met by a given DBM (and the text points out that

sometimes a responsibility is omitted by design, such as concurrency control on a

single-user DBM for a micro computer) the following problems can occur,

respectively:

a. No DBM can do without this, if there is no file manager interaction then

nothing stored in the files can be retrieved.

b. Consistency constraints may not be satisfied, account balances could go

below the minimum allowed, employees could earn too much overtime

(e.g.,hours > 80) or, airline pilots may fly more hours than allowed by law.

c. Unauthorized users may access the database, or users authorized to access

part of the database may be able to access parts of the database for which

they lack authority. For example, a high school student could get access to

national defense secret codes, or employees could find out what their

supervisors earn.

d. Data could be lost permanently, rather than at least being available in a

consistent state that existed prior to a failure.

e. Consistency constraints may be violated despite proper integrity

enforcement in each transaction. For example, incorrect bank balances

might be reflected due to simultaneous withdrawals and deposits, and so

on.

Q. What are five main functions of a database administrator?

Answer: Five main functions of a database administrator are:

 To create the scheme definition

 To define the storage structure and access methods

 To modify the scheme and/or physical organization when necessary

 To grant authorization for data access

 To specify integrity constraints

Q. List six major steps that you would take in setting up a database for a particular

enterprise.

Answer: Six major steps in setting up a database for a particular enterprise are:

 Define the high level requirements of the enterprise (this step generates a

document known as the system requirements specification.)

 Define a model containing all appropriate types of data and data

relationships.

 Define the integrity constraints on the data.

 Define the physical level.

 For each known problem to be solved on a regular basis (e.g., tasks to be

carried out by clerks or Web users) define a user interface to carry out the

task, and write the necessary application programs to implement the user

interface.

 Create/initialize the database.

EXERCISES:

1. What is database management system

2. What are the disadvantage of file processing system

[Type text]

3. State advantage and disadvantage of database management system

4. What ate different types of database users

5. What is data dictionary and what are its contents

6. What are the function of DBA

7. What are the different database languages explain with example.

8. Explain the three layer architecture of DBMS.

9. Differentiate between physical data independence and logical data independence

10. Explain the function of data base manager

11. Explain meta data

CHAPTER-2

ER-MODEL

Data model:

The data model describes the structure of a database. It is a collection of conceptual tools

for describing data, data relationships and consistency constraints and various types of

data model such as

1. Object based logical model

2. Record based logical model

3. Physical model

Types of data model:

1. Object based logical model

a. ER-model

b. Functional model

c. Object oriented model

d. Semantic model

2. Record based logical model

a. Hierarchical database model

b. Network model

c. Relational model

3. Physical model

Entity Relationship Model

The entity-relationship data model perceives the real world as consisting of basic objects,

called entities and relationships among these objects. It was developed to facilitate data

base design by allowing specification of an enterprise schema which represents the

overall logical structure of a data base.

Main features of ER-MODEL:

 Entity relationship model is a high level conceptual model

 It allows us to describe the data involved in a real world enterprise in terms of

objects and their relationships.

 It is widely used to develop an initial design of a database

 It provides a set of useful concepts that make it convenient for a developer to

move from a baseid set of information to a detailed and description of information

that can be easily implemented in a database system

 It describes data as a collection of entities, relationships and attributes.

[Type text]

Basic concepts:

The E-R data model employs three basic notions : entity sets, relationship sets and

attributes.

Entity sets:

An entity is a “thing” or “object” in the real world that is distinguishable from all other

objects. For example, each person in an enterprise is an entity. An entity has a set

properties and the values for some set of properties may uniquely identify an entity.

BOOK is entity and its properties(calles as attributes) bookcode, booktitle, price etc .

An entity set is a set of entities of the same type that share the same properties, or

attributes. The set of all persons who are customers at a given bank, for example, can be

defined as the entity set customer.

Attributes:

An entity is represented by a set of attributes. Attributes are descriptive properties

possessed by each member of an entity set.

Customer is an entity and its attributes are customerid, custmername, custaddress etc.

An attribute as used in the E-R model , can be characterized by the following attribute

types.

a) Simple and composite attribute:

simple attributes are the attributes which can’t be divided into sub parts

eg: customerid,empno

composite attributes are the attributes which can be divided into subparts.

eg: name consisting of first name, middle name, last name

address consisting of city,pincode,state

b) single-valued and multi-valued attribute:

The attribute having unique value is single –valued attribute

eg: empno,customerid,regdno etc.

The attribute having more than one value is multi-valued attribute

eg: phone-no, dependent name, vehicle

c) Derived Attribute:

The values for this type of attribute can be derived from the values of existing

attributes

eg: age which can be derived from (currentdate-birthdate)

experience_in_year can be calculated as (currentdate-joindate)

d) NULL valued attribute:

The attribute value which is unknown to user is called NULL valued attribute.

Relationship sets:

A relationship is an association among several entities.

A relationship set is a set of relationships of the same type. Formally, it is a mathematical

relation on n>=2 entity sets. If E1,E2…En are entity sets, then a relation ship set R is a

subset of

{(e1,e2,…en)|e1Є E1,e2 Є E2..,en Є En}

where (e1,e2,…en) is a relation ship.

Consider the two entity sets customer and loan. We define the relationship set borrow to

denote the association between customers and the bank loans that the customers have.

Mapping Cardinalities:

Mapping cardinalities or cardinality ratios, express the number of entities to which

another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, although they

can contribute to the description of relationship sets that involve more than two entity

sets.

For a binary relationship set R between entity sets A and B, the mapping cardinalities

must be one of the following:

one to one:

An entity in A is associated with at most one entity in B, and an entity in B is associated

with at most one entity in A.

Eg: relationship between college and principal

One to many:

An entity in A is associated with any number of entities in B. An entity in B is associated

with at the most one entity in A.

Eg: Relationship between department and faculty

1 1 1 1

has college principal

borro customer

1 1 M 1

Works

in

Department Faculty

loan

[Type text]

1□

Teach

es

M□

 Course Faculty

Many to one:

An entity in A is associated with at most one entity in B. An entity in B is associated with

any number in A.

Many –to-many:

Entities in A and B are associated with any number of entities from each other.

More about entities and Relationship:

Recursive relationships:

When the same entity type participates more than once in a relationship type in different

roles, the relationship types are called recursive relationships.

Participation constraints:

The participation constraints specify whether the existence of any entity depends on its

being related to another entity via the relationship. There are two types of participation

constraints

Total :

.When all the entities from an entity set participate in a relationship type , is called total

participation. For example, the participation of the entity set student on the relationship

set must ‘opts’ is said to be total because every student enrolled must opt for a course.

Partial:

When it is not necessary for all the entities from an entity set to particapte ion a

relationship type, it is called participation. For example, the participation of the entity set

student in ‘represents’ is partial, since not every student in a class is a class

representative.

Weak Entity:

Entity types that do not contain any key attribute, and hence can not be identified

independently are called weak entity types. A weak entity can be identified by uniquely

only by considering some of its attributes in conjunction with the primary key attribute of

another entity, which is called the identifying owner entity.

Generally a partial key is attached to a weak entity type that is used for unique

identification of weak entities related to a particular owner type. The following

restrictions must hold:

 The owner entity set and the weak entity set must participate in one to may

relationship set. This relationship set is called the identifying relationship set of

the weak entity set.

1□ M□

Depos Customer Account

 The weak entity set must have total participation in the identifying relationship.

Example:

Consider the entity type dependent related to employee entity, which is used to keep

track of the dependents of each employee. The attributes of dependents are : name

,birthrate, sex and relationship. Each employee entity set is said to its own the

dependent entities that are related to it. How ever, not that the ‘dependent’ entity does

not exist of its own., it is dependent on the employee entity. In other words we can say

that in case an employee leaves the organization all dependents related to without the

entity ‘employee’. Thus it is a weak entity.

Keys:

Super key:

A super key is a set of one or more attributes that taken collectively, allow us to

identify uniquely an entity in the entity set.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

In a relation R, a candidate key for R is a subset of the set of attributes of R, which

have the following properties:

 Uniqueness: no two distinct tuples in R have the same values for

the candidate key

 Irreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.

Eg: (cname,telno)

Primary key:

The primary key is the candidate key that is chosen by the database designer as the

principal means of identifying entities with in an entity set. The remaining candidate

keys if any, are called alternate key.

[Type text]

ER-DIAGRAM:

The overall logical structure of a database using ER-model graphically with the help

of an ER-diagram.

Symbols use ER- diagram:

entity

Weak entity

attribute

composite attribute

Relationship

Multi valued attribute

Derived attribute

Key attribute

Identifying

Relationship

1 m
 1 1

One-to -one One-to -many

m 1
 m n

many-to -one many-to -many

Total participation Partial participation

[Type text]

[Type text]

Advanced ER-diagram:

Abstraction is the simplification mechanism used to hide superfluous details of a set of

objects. It allows one to concentrate on the properties that are of interest to the

application.

There are two main abstraction mechanism used to model information:

Generalization and specialization:

. Generalization is the abstracting process of viewing set of objects as a single

general class by concentrating on the general characteristics of the constituent sets while

suppressing or ignoring their differences. It is the union of a number of lower-level entity

types for the purpose of producing a higher-level entity type. For instance, student is a

generalization of graduate or undergraduate, full-time or part-time students. Similarly,

employee is generalization of the classes of objects cook, waiter, and cashier.

Generalization is an IS_A relationship; therefore, manager IS_AN employee, cook IS_AN

employee, waiter IS_AN employee, and so forth.

Specialization is the abstracting process of introducing new characteristics to an

existing class of objects to create one or more new classes of objects. This involves taking

a higher-level, and using additional characteristics, generating lower-level entities. The

lower-level entities also inherits the, characteristics of the higher-level entity. In applying

the characteristics size to car we can create a full-size, mid-size, compact or subcompact

car. Specialization may be seen as the reverse process of generalization addition specific

properties are introduced at a lower level in a hierarchy of objects.

[Type text]

name

employee

Generalization Specialization

EMPLOYEE(empno,name,dob)

FULL_TIME_EMPLOYEE(empno,sala

ry)
PART_TIME_EMPLOYEE(empno,type)

Faculty(empno,degree,intrest)

Staff(empno,hour-rate)

Teaching (empno,stipend)

dob
empno

Is Is

degree

Is Is Is

casual

degree

faculty

Intrest

Intrest

teaching staff

Classificatio hourrat

degree

Full time

employee

Is

Part-time

employee

Aggregation:

Aggregation is the process of compiling information on an object, there by abstracting a

higher level object. In this manner, the entity person is derived by aggregating the

characteristics of name, address, ssn. Another form of the aggregation is abstracting a

relationship objects and viewing the relationship as an object.

[Type text]

Works

on

Manag

Manager

Employe
Branch

Job

[Type text]

Student

rollno name addres

ER- Diagram For College Database

Conversion of ER-diagram to relational database

Conversion of entity sets:

1. For each strong entity type E in the ER diagram, we create a relation R containing

all the single attributes of E. The primary key of the relation R will be one of the

key attribute of R.

STUDENT(rollno (primary key),name, address)

FACULTY(id(primary key),name ,address, salary)

COURSE(course-id,(primary key),course_name,duration)

DEPARTMENT(dno(primary key),dname)

coursei cname duratio

opts
N 1

1
M

has enroll

ed

Taug

1 N
N 1 Work N fid

dno addre

Head
name

addres

dnam 1
1

name sal

relationship

Date

Faculty Department gaurdian

Course

2. for each weak entity type W in the ER diagram, we create another relation R that

contains all simple attributes of W. If E is an owner entity of W then key attribute

of E is also include In R. This key attribute of R is set as a foreign key attribute of

R. Now the combination of primary key attribute of owner entity type and partial

key of the weak entity type will form the key of the weak entity type

GUARDIAN((rollno,name) (primary key),address,relationship)

Conversion of relationship sets:

Binary Relationships:

 One-to-one relationship:

For each 1:1 relationship type R in the ER-diagram involving two entities E1 and

E2 we choose one of entities(say E1) preferably with total participation and add

primary key attribute of another E as a foreign key attribute in the table of

entity(E1). We will also include all the simple attributes of relationship type R in

E1 if any, For example, the department relationship has been extended tp include

head-id and attribute of the relationship.

DEPARTMENT(D_NO,D_NAME,HEAD_ID,DATE_FROM)

 One-to-many relationship:

For each 1:n relationship type R involving two entities E1 and E2, we identify the

entity type (say E1) at the n-side of the relationship type R and include primary

key of the entity on the other side of the relation (say E2) as a foreign key attribute

in the table of E1. We include all simple attribute(or simple components of a

composite attribute of R(if any) in he table E1)

For example:

The works in relationship between the DEPARTMENT and FACULTY. For this

relationship choose the entity at N side, i.e, FACULTY and add primary key

attribute of another entity DEPARTMENT, ie, DNO as a foreign key attribute in

FACULTY.

FACULTY(CONSTAINS WORKS_IN RELATIOSHIP)

(ID,NAME,ADDRESS,BASIC_SAL,DNO)

 Many-to-many relationship:

For each m:n relationship type R, we create a new table (say S) to represent R, We

also include the primary key attributes of both the participating entity types as a

foreign key attribute in s. Any simple attributes of the m:n relationship type(or

simple components as a composite attribute) is also included as attributes of S.

For example:

The M:n relationship taught-by between entities COURSE; and FACULTY shod

be represented as a new table. The structure of the table will include primary key

of COURSE and primary key of FACULTY entities.

[Type text]

,loanno,empno

TAUGHT-BY(ID (primary key of FACULTY table),course-id (primary key of

COURSE table)

 N-ary relationship:

For each n-anry relationship type R where n>2, we create a new table S to

represent R, We include as foreign key attributes in s the primary keys of the

relations that represent the participating entity types. We also include any simple

attributes of the n-ary relationship type(or simple components of complete

attribute) as attributes of S. The primary key of S is usually a combination of all

the foreign keys that reference the relations representing the participating entity

types.

Loan -

sanctio

LOAN-SANCTION(cusomet-id

 Multi-valued attributes:

,sancdate,loan_amount)

For each multivalued attribute ‘A’, we create a new relation R that includes an

attribute corresponding to plus the primary key attributes k of the relation that

represents the entity type or relationship that has as an attribute. The primary key

of R is then combination of A and k.

For example, if a STUDENT entity has rollno,name and phone number where

phone numer is a multivalued attribute the we will create table

PHONE(rollno,phoneno) where primary key is the combination,In the STUDENT

table we need not have phone number, instead if can be simply (rollno,name)

only.

PHONE(rollno,phoneno)

Employee

Customer Loan

name

 branch

specialisation

generalisation

 Converting Generalisation /specification hierarchy to tables:

A simple rule for conversion may be to decompose all the specialized entities into

table in case they are disjoint, for example, for the figure we can create the two

table as:

Account(account_no,name,branch,balance)

Saving account(account-no,intrest)

Current_account(account-no,charges)

Account_n

Account

Is-a

intrest

Saving

charges

Current

[Type text]

Record Based Logical Model

Hierarchical Model:

 A hierarchical database consists of a collection of records which are connected to

one another through links.

 a record is a collection of fields, each of which contains only one data value.

 A link is an association between precisely two records.

 The hierarchical model differs from the network model in that the records are

organized as collections of trees rather than as arbitrary graphs.

Tree-Structure Diagrams:

 The schema for a hierarchical database consists of

o boxes, which correspond to record types

o lines, which correspond to links

 Record types are organized in the form of a rooted tree.

o No cycles in the underlying graph.

o Relationships formed in the graph must be such that only
one-to-many or one-to-one relationships exist between a parent and a

child.

Database schema is represented as a collection of tree-structure diagrams.

 single instance of a database tree

 The root of this tree is a dummy node

 The children of that node are actual instances of the

appropriate record type

When transforming E-R diagrams to corresponding tree-structure diagrams, we must

ensure that the resulting diagrams are in the form of rooted trees.

Single Relationships:

 Example E-R diagram with two entity sets, customer and account, related through

a binary, one-to-many relationship depositor.

 Corresponding tree-structure diagram has

o the record type customer with three fields: customer-name, customer-
street, and customer-city.

o the record type account with two fields: account-number and balance

o the link depositor, with an arrow pointing to customer

 If the relationship depositor is one to one, then the link depositor has two arrows.

 Only one-to-many and one-to-one relationships can be directly represented in the

hierarchical mode.

Transforming Many-To-Many Relationships:

 Must consider the type of queries expected and the degree to which the database

schema fits the given E-R diagram.

 In all versions of this transformation, the underlying database tree (or trees) will

have replicated records.

 Create two tree-structure diagrams, T1, with the root customer, and T2, with

the root account.

 In T1, create depositor, a many-to-one link from account to customer.

 In T2, create account-customer, a many-to-one link from customer to account.

[Type text]

Virtual Records:

 For many-to-many relationships, record replication is necessary to preserve the

tree-structure organization of the database.

o Data inconsistency may result when updating takes place

o Waste of space is unavoidable
 Virtual record — contains no data value, only a logical pointer to a particular

physical record.

 When a record is to be replicated in several database trees, a single copy of that

record is kept in one of the trees and all other records are replaced with a virtual

record.

 Let R be a record type that is replicated in T1, T2, . . ., Tn. Create a new virtual

record type virtual-R and replace R in each of the n – 1 trees with a record of type

virtual-R.

 Eliminate data replication in the diagram shown on page B.11; create virtual-

customer and virtual-account.

 Replace account with virtual-account in the first tree, and replace customer with
virtual-customer in the second tree.

 Add a dashed line from virtual-customer to customer, and from virtual-account to

account, to specify the association between a virtual record and its corresponding

physical record.

[Type text]

Network Model:

 Data are represented by collections of records.

o similar to an entity in the E-R model

o Records and their fields are represented as record type
 type customer = record type account = record type

customer-name: string; account-number: integer;

customer-street: string; balance: integer;

customer-city: string;

 end end

 Relationships among data are represented by links

o similar to a restricted (binary) form of an E-R relationship
o restrictions on links depend on whether the relationship is many-many,

many-to-one, or one-to-one.

Data-Structure Diagrams:

 Schema representing the design of a network database.

 A data-structure diagram consists of two basic components:

o Boxes, which correspond to record types.

o Lines, which correspond to links.
 Specifies the overall logical structure of the database.

For every E-R diagram, there is a corresponding data-structure diagram.

Since a link cannot contain any data value, represent an E-R relationship with

attributes with a new record type and links.

To represent an E-R relationship of degree 3 or higher, connect the participating
record types through a new record type that is linked directly to each of the original

record types.

1. Replace entity sets account, customer, and branch with record types account,

customer, and branch, respectively.

2. Create a new record type Rlink (referred to as a dummy record type).

3. Create the following many-to-one links:

o CustRlink from Rlink record type to customer record type

o AcctRlnk from Rlink record type to account record type

o BrncRlnk from Rlink record type to branch record type

[Type text]

The DBTG CODASYL Model:

o All links are treated as many-to-one relationships.
o To model many-to-many relationships, a record type is defined to represent the

relationship and two links are used.

DBTG Sets:

o The structure consisting of two record types that are linked together is referred

to in the DBTG model as a DBTG set

o In each DBTG set, one record type is designated as the owner, and the other is
designated as the member, of the set.

o Each DBTG set can have any number of set occurrences (actual instances of
linked records).

o Since many-to-many links are disallowed, each set occurrence has precisely
one owner, and has zero or more member records.

o No member record of a set can participate in more than one occurrence of the
set at any point.

o A member record can participate simultaneously in several set occurrences of

different DBTG sets.

o

[Type text]

[Type text]

[Type text]

RELATIONAL MODEL

Relational model is simple model is simple model in which database is represented as a

collection of “relations” where each relation is represented by two-dimensional table.

The relational model was founded by E.F.Codd of the IBM in 1972.The basic concept in

the relational model is that of a relation.

Properties:

o It is column homogeneous. In other words, in any given column of a table, all
items are of the same kind.

o Each item is a simple number or a character string. That is a table must be in first
normal form.

o All rows of a table are distinct.

o The ordering of rows with in a table is immaterial.

[Type text]

o The column of a table are assigned distinct names and the ordering of these
columns in immaterial.

Domain, attributes tuples and relational:

Tuple:

Each row in a table represents a record and is called a tuple .A table containing ‘n’

attributes in a record is called is called n-tuple.

Attributes:

The name of each column in a table is used to interpret its meaning and is called an

attribute.Each table is called a relation.

In the above table, account_number, branch name, balance are the attributes.

Domain:

A domain is a set of values that can be given to an attributes. So every attribute in a

table has a specific domain. Values to these attributes can not be assigned outside

their domains.

Relation:

A relation consist of

o Relational schema

o Relation instance

Relational schema:

A relational schema specifies the relation’ name, its attributes and the domain of each

attribute. If R is the name of a relation and A1,A2,… and is a list of attributes

representing R then R(A1,A2,…,an) is called a relational schema. Each attribute in

this relational schema takes a value from some specific domain called domain(Ai).

Example:

PERSON(PERSON_IDinteger,NAME: STRING,AGE:INTEGER,ADDRESS:string)

Total number of attributes in a relation denotes the degree of a relation.since the

PERSON relation schemea contains four attributes ,so this relation is of degree 4.

Relation Instance:

A relational instance denoted as r is a collection of tuples for a given relational

schema at a specific point of time.

A relation state r to the relations schema R(A1,A2…,An) also denoted by r® is a set

of n-tuples

R{t1,t2,…tm}

Where each n-tuple is an ordered list of n values

T=<v1,v2,….vn>

Where each vi belongs to domain (Ai) or contains null values.

The relation schema is also called ‘intension’ and the relation state is also called

‘extension’.

Eg:

Relation schema for student:

STUDENT(rollno:strinhg,name:string,city:string,age:integer)

Relation instance:

Student:

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keys:

Super key:

A super key is an attribute or a set of attributes used to identify the records uniquely in

a relation.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

Super keys of a relation can contain extra attributes . candidate keys are minimal

super keys. i.e, such a key contains no extraneous attribute. An attribute is called

extraneous if even after removing it from the key, makes the remaining attributes still

has the properties of a key.

In a relation R, a candidate key for R is a subset of the set of attributes of R, which

have the following properties:

 Uniqueness: no two distinct tuples in R have the same values for

the candidate key

 Irreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.

 A candidate key’s values must exist. It can’t be null.

 The values of a candidate key must be stable. Its value can not change outside

the control of the system.

Eg: (cname,telno)

Primary key:

The primary key is the candidate key that is chosen by the database designer as the

principal means of identifying entities with in an entity set. The remaining candidate

keys if any are called alternate key.

RELATIONAL CONSTRAINTS:

There are three types of constraints on relational database that include

o DOMAIN CONSTRAINTS

o KEY CONSTRAINTS

o INTEGRITY CONSTRAINTS

DOMAIN CONSTRAINTS:

It specifies that each attribute in a relation an atomic value from the corresponding

domains. The data types associated with commercial RDBMS domains include:

[Type text]

o Standard numeric data types for integer

o Real numbers

o Characters

o Fixed length strings and variable length strings
Thus, domain constraints specifies the condition that we to put on each instance of the

relation. So the values that appear in each column must be drawn from the domain

associated with that column.

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Key constraints:

This constraints states that the key attribute value in each tuple msut be unique .i.e, no

two tuples contain the same value for the key attribute.(null values can allowed)

Emp(empcode,name,address) . here empcode can be unique

Integrity constraints:

There are two types of integrity constraints:

o Entity integrity constraints

o Referential integrity constraints

Entity integrity constraints:

It states that no primary key value can be null and unique. This is because the primary key

is used to identify individual tuple in the relation. So we will not be able to identify the

records uniquely containing null values for the primary key attributes. This constraint is

specified on one individual relation.

Referential integrity constraints:

It states that the tuple in one relation that refers to another relation must refer to an

existing tuple in that relation. This constraints is specified on two relations .

If a column is declared as foreign key that must be primary key of another table.

Department(deptcode,dname)

Here the deptcode is the primary key.

Emp(empcode,name,city,deptcode).

Here the deptcode is foreign key.

CODD'S RULES

Rule 1 : The information Rule.

"All information in a relational data base is represented explicitly at the logical level and

in exactly one way - by values in tables."

Everything within the database exists in tables and is accessed via table access routines.

Rule 2 : Guaranteed access Rule.

"Each and every datum (atomic value) in a relational data base is guaranteed to be

logically accessible by resorting to a combination of table name, primary key value and

column name."

To access any data-item you specify which column within which table it exists, there is

no reading of characters 10 to 20 of a 255 byte string.

Rule 3 : Systematic treatment of null values.

"Null values (distinct from the empty character string or a string of blank characters and

distinct from zero or any other number) are supported in fully relational DBMS for

representing missing information and inapplicable information in a systematic way,

independent of data type."

If data does not exist or does not apply then a value of NULL is applied, this is

understood by the RDBMS as meaning non-applicable data.

Rule 4 : Dynamic on-line catalog based on the relational model.

"The data base description is represented at the logical level in the same way as-ordinary

data, so that authorized users can apply the same relational language to its interrogation as

they apply to the regular data."

The Data Dictionary is held within the RDBMS, thus there is no-need for off-line

volumes to tell you the structure of the database.

Rule 5 : Comprehensive data sub-language Rule.

"A relational system may support several languages and various modes of terminal use

(for example, the fill-in-the-blanks mode). However, there must be at least one language

whose statements are expressible, per some well-defined syntax, as character strings and

that is comprehensive in supporting all the following items

 Data Definition

 View Definition

 Data Manipulation (Interactive and by program).

 Integrity Constraints

 Authorization.

[Type text]

Every RDBMS should provide a language to allow the user to query the contents of the

RDBMS and also manipulate the contents of the RDBMS.

Rule 6 : .View updating Rule

"All views that are theoretically updateable are also updateable by the system."

Not only can the user modify data, but so can the RDBMS when the user is not logged-in.

Rule 7 : High-level insert, update and delete.

"The capability of handling a base relation or a derived relation as a single operand

applies not only to the retrieval of data but also to the insertion, update and deletion of

data."

The user should be able to modify several tables by modifying the view to which they act

as base tables.

Rule 8 : Physical data independence.

"Application programs and terminal activities remain logically unimpaired whenever any

changes are made in either storage representations or access methods."

The user should not be aware of where or upon which media data-files are stored

Rule 9 : Logical data independence.

"Application programs and terminal activities remain logically unimpaired when

information-preserving changes of any kind that theoretically permit un-impairment are

made to the base tables."

User programs and the user should not be aware of any changes to the structure of the

tables (such as the addition of extra columns).

Rule 10 : Integrity independence.

"Integrity constraints specific to a particular relational data base must be definable in the

relational data sub-language and storable in the catalog, not in the application programs."

If a column only accepts certain values, then it is the RDBMS which enforces these

constraints and not the user program, this means that an invalid value can never be

entered into this column, whilst if the constraints were enforced via programs there is

always a chance that a buggy program might allow incorrect values into the system.

Rule 11 : Distribution independence.

"A relational DBMS has distribution independence."

The RDBMS may spread across more than one system and across several networks,

however to the end-user the tables should appear no different to those that are local.

Rule 12 : Non-subversion Rule.

"If a relational system has a low-level (single-record-at-a-time) language, that low level

cannot be used to subvert or bypass the integrity Rules and constraints expressed in the

higher level relational language (multiple-records-at-a-time)."

[Type text]

RELATION ALGEBRA:

Relational algebra is a set of basic operations used to manipulate the data in relational

model. These operations enable the user to specify basic retrieval request. The result of

retrieval is anew relation, formed from one or more relation. These operation can be

classified in two categories.

 Basic Set Operation

 Union

 Intersection

 Set difference

 Cartesian product

 Relational operations

 Select

 Project

 Join

 Division

Basic set operation:

These are the binary operations; i.e, each is applied to two sets or relations. These two

relations should be union compatible except in case of Cartesian product.

Two relations R(A1,A2…,AN) and S(B1,B2…BN) are said to be union compatible if

they have the same degree n and domains of the corresponding attributes are also the

same; domain(Ai)=Domain(bI) for 1<=i<=n.

Union Operation – Example

Relations r, s: r  s:

A B

r s

UNION OPERATION:

Notation: r  s

Defined as:

r  s = {t | t  r or t  s}

For r  s to be valid.

r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column of r deals

with the same type of values as does the 2nd column of s)

E.g. to find all customers with either an account or a loan customer-name

(depositor)  customer-name (borrower)

OOppeerraattiioonn –– EExxaammppllee

RReellaattiioonnss rr,, ss::

SSeett DDiiffffeerreennccee

rr –– ss::

A B

2
3





1
2
1







B A B A









1
2
1
3

[Type text]

s

r

SSeett DDiiffffeerreennccee OOppeerraattiioonn

 NNoottaattiioonn rr –– ss

 DDeeffiinneedd aass::

 rr –– ss == {{tt || tt  rr aanndd tt  ss}}

 SSeett ddiiffffeerreenncceess mmuusstt bbee ttaakkeenn bbeettwweeeenn ccoommppaattiibbllee rreellaattiioonnss..

oo rr aanndd ss mmuusstt hhaavvee tthhee ssaammee aarriittyy

oo aattttrriibbuuttee ddoommaaiinnss ooff rr aanndd ss mmuusstt bbee ccoommppaattiibbllee

2
3





B A B A

1
2
1











1
1

trib

r(R)

utes

and

) an

re n

d s(

t d

A

Notation: r xA,sC = {t q | t  r and q  s}

CCaarrtteessiiaann pprroodduucctt –– EExxaammppllee

r

PPrroojjeeccttsOOppeerraattiioonn EE

Relation r:

r x s:

Notation r x s

□

Define

(r
d
)

as: C

Assume that at  1 of r(R S) are disjoint. (That is, R  S =

). (r)
 1

=
I
A
f

1
a
,
tt
A
r
2
ib
, …
ut

,
e
A
s

k
of  1 s(S) a isjoint, then renaming must be

where A1, A2 are attribu2te name is a relation name.

□
used. 

The result is defined as the relation of k columns obtained by erasing the

columns that are not listed

□
Duplicate rows removed from result, since relations are sets

□
E.g. To eliminate the branch-name attribute of account

account-number, balance (account)

1
2





C A

C B A

A









 ––
 




B

1
1
1
1

xx2aa
 2
 2
2

C D E



10 a

 10 a

 20 b

 10 b

mmppll
 

ee10
 10
 20

a
a
b


 10 b









10 a
10 a
20 b

10 b

 10 1

 20 1





30
40

1
2

 1

  1
 o2

s an d r

A B C D E

[Type text]

A B C D

















1

5

12

23

7

7

3

10

A B C D









1

23

7

10

SSeelleecctt OOppeerraattiioonn –– EExxaammppllee

• Relation r

  1 7

  5 7

  12 3

  23 10

• A=B ^ D > 5 (r)

  1 7

  23 10

Notation:  p(r)
p is called the selection predicate

Defined as:

p(r) = {t | t  r and p(t)}

Where p is a formula in propositional calculus consisting of

terms connected by :  (and),  (or),  (not) Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of: =, , >, . <. 

Example of selection:

Q: Display the account details belonging to the branch “perryridge”.  branch-

name=“Perryridge”(account)

A B C D

A B C D

RReennaammee OOppeerraattiioonn

Allows us to name, and therefore to refer to, the results of relational-

algebra expressions.

Allows us to refer to a relation by more than one name.

Example:

 x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

SSeett--IInntteerrsseeccttiioonn OOppeerraattiioonn

□ Notation: r  s

□ Defined as:

□ r  s ={ t | t  r and t  s }

□ Assume:
□ r, s have the same arity
□ attributes of r and s are compatible

□ Note: r  s = r - (r - s)

SSeett--IInntteerrsseeccttiioonn OOppeerraattiioonn -- EExxaammppllee

n Relation r, s:

r s

n r  s

A B

 1
 2

 1

A B

 2

 3

A B

 2

[Type text]

NNaattuurraall--JJooiinn OOppeerraattiioonn

□ NLoettartiaonnd: srbe relations on schemas R and S respectively.

s Then, r s is a relation on schema R  S obtained as follows:

□ Consider each pair of tuples tr from r and ts from s.

□ If tr and ts have the same value on each of the attributes in R  S,

add a tuple t to the result, where

□ t has the same value as tr on r

□ t has the same value as ts on s

□ Example:
R = (A, B, C, D)
S = (E, B, D)
□ Result schema = (A, B, C, D, E)

□ r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

NNaattuurraall JJooiinn OOppeerraattiioonn –– EExxaammppllee

□ Relations r, s:

A B C D

 1  a

 2  a

 4  b




1 


a

2 b

r s

r s

B

1

3

1

2

3

D

a

a

a

b

b

E











A B C D E

 1  a 
 1  a 
 1  a 




1 


a 
2 b





A

DDiivviissiioonn OOppeerraattiioonn

r  s

Suited to queries that include the phrase “for all”.

Let r and s be relations on schemas R and S

respectively where

R = (A1, …, Am, B1, …, Bn)

S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

r  s = { t | t   R-S(r)   u  s (tu  r) }

DDiivviissiioonn OOppeerraattiioonn –– EExxaammppllee

Relations r, s:

s

r  s: r

B
B A

 1
 2

 3

 1
 1

 1

 3
4 
6


1


2



1

2

[Type text]

EExxaammppllee QQuueerriieess

n Find all customers who have an account from at least the

“Downtown” and the Uptown” branches.

Query 1

CN(BN=“Downtown”(depositor account)) 

CN(BN=“Uptown”(depositor account))

where CN denotes customer-name and BN denotes

branch-name.

Query 2

customer-name, branch-name (depositor account)

 temp(branch-name) ({(“Downtown”), (“Uptown”)})

EExxaammppllee QQuueerriieess

n Find all customers who have an account at all branches located

in Brooklyn city.

customer-name, branch-name (depositor account)

 branch-name (branch-city = “Brooklyn” (branch))

[Type text]

BBaannkkiinngg EExxaammppllee

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

EExxaammppllee QQuueerriieess

n Find all loans of over $1200

amount > 1200 (loan)

n Find the loan number for each loan of an amount greater than

$1200

loan-number (amount > 1200 (loan))

EExxaammppllee QQuueerriieess

n Find the names of all customers who have a loan, an account, or

both, from the bank

customer-name (borrower)  customer-name (depositor)

n Find the names of all customers who have a loan and an

account at bank.

customer-name (borrower)  customer-name (depositor)

EExxaammppllee QQuueerriieess

Find the names of all customers who have a loan at the Perryridge
branch.

customer-name (branch-name=“Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan)))

Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

customer-name (branch-name = “Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan))) –

customer-name(depositor)

EExxaammppllee QQuueerriieess

n Find the names of all customers who have a loan at the Perryridge
branch.

Query 1

customer-name(branch-name = “Perryridge” (
borrower.loan-number = loan.loan-number(borrower x loan)))

 Query 2

customer-name(loan.loan-number = borrower.loan-number(

(branch-name = “Perryridge”(loan)) x borrower))

EExxaammppllee QQuueerriieess

Find the largest account balance

n Rename account relation as d

n The query is:

balance(account) - account.balance

(account.balance < d.balance (account x d (account)))

[Type text]

Aggregate functions:

Aggregation function takes a collection of values and returns a single value as
a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values
Aggregate operation in relational algebra

G1, G2, …, Gn g F1(A1), F2(A2),…,

Fn(An) (E)
E is any relational-algebra expression

G1, G2 …, Gn is a list of attributes on which to group (can be empty)

Each Fi is an aggregate function.
Each Ai is an attribute name

Find sum of sal fo all emp records

Gsum(sal) (emp)

Find maximum salalry from emp table

Gmax(salary) (emp)

Find branch name and maximum salalry from emp table

Branch_name G,max(salary) (emp)

AAggggrreeggaattee OOppeerraattiioonn –– EExxaammppllee

n Relation r:

A B C

  7

  7

  3

  10

g sum(c) (r)
27

sum-C

OUTER JOIN:

The outer join operation is an extension of the join operation to deal with missing

information.

There are three forms of outer join

 left outer join

 right outer join

 full outer join

employee:

Empname Street City

Coyote Toon Hollywood

Rabbit Tunnel carrot

Smith Revolver Death valley

William Seaview Seattle

Ft_works:

Empname Branch name Salary

Coyote Mesa 1500

Rabbit Mesa 1300

Gates Redmond 5300

William Redmond 1500

Employee ft_works

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond 1500

Left outer join:

It takes all tuples in the left relation that did not match with any tuple in the right

relation, pads the tuples with null values for all other attributes. The right relation

and adds them to the result of the natural join. In tuple (smith, Revolcer, Death

valley, null, null) is such a tuple. All information from the left relation is present

in the result of the left outer join.

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond 1500

Smith Revolver Death valley Null null

[Type text]

Result of Employee ft_works

Right outer join:

It is symmetric with the left outer join. It pads tuples from the right relation that

did not match any from the left relation with nulls and adds them to the result of

the natural join. tuple(Gates,null,null,Redmond,5300) is such a tuple. Thus, all

information from the right relation is present in the result of the right outer join.

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond 1500

gates Null null Redmond 5300

Full outer join:

It does both of those operations, padding tuples from the left relation that did not

match any from the right relation, as well as tuples from the right relation that did

not match any from the left relation, and adding them to the result of the join.

Figure 3.35 shows the result of a full outer join.

Since outer join operations may generate results containing null values, we need

to specify how the different relation-algebra operations deal with null values. It is

interesting to note that the outer join operations can be expressed by the basic

relational algebra operations. For instance the left outer join operation

Employee ft_works

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel carrot Mesa 1300

William Seaview Seattle Redmond 1500

gates Null null Redmond 5300

BBaannkkiinngg EExxaammppllee
{t | P (t) }

branch (branch-name, branch-city, assets)

cusn tomIt iserthe(csusettomof alerl t-upnamleset, scuuschtomthaterpr-sedtreeticat,ecPusistomtrueerf-orcitty)
ac

n
co

tuntis a(taupccleountvari-abnumle,bt[erA], debrnotancesh-tnamhe
veal,uebalofanctupe)let on attribute A
loan (loan-number, branch-name, amount)

customer-name, account-number) depo
n t

s

ito

r
r
denot

(

PPrreseetddhatiicctupaalteteet isCCin aarelllatcciouunllruuss FFoorrmmuullaa
borrower (customer-name, loan-number)

1. Set of attributes and constants

2. n SPet isof acomparformulisona opersimatilarorst:o(e.thg.a,tof, ,the, ,pr,edi) cate calculus
3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y  x v y
5. Set of quantifiers:

⚫  t  r (Q(t))  ”there exists” a tuple in t in relation r
such that predicate Q(t) is true

⚫ t  r (Q(t))  Q is true “for all” tuples t in relation r

or both at the bank
{t | s  borrower(t[customer-name] = s[customer-name])  u 

TTuuppllee RReellaattiioonnaall CCaallccuulluuss

The tuple relational calculus is a non procedural query language. It describes the

desired information with out giving a specific procedure for obtaining that

information.

A query in the tuple relational calculus is expressed as:

{t|P(t)}

where P is a formula. Several tuple variables may appear in a formula. A tuple

variable is said to be a free variable unless it is quantified by a  or .

n A nonprocedural query language, where each query is of the form
EExxaammppllee QQuueerriieess

n Find the loan-number, branch-name, and amount for loans of

over $1200

{t | t  loan  t [amount]  1200}

n Find the loan number for each loan of an amount greater than $1200

{t |  s  loan (t[loan-number] = s[loan-number]  s [amount]  1200)}

Notice that a relation on schema [loan-number] is implicitly defined

by the query

EExxaammppllee QQuueerriieess

Find the names oEEEf axxxll aacummmstopppmlleeers hQQQavuuineeg rariiloeeeasssn, an account, or both
at the bank

FFiinndd tthhee nnaammeess ooffaallllccuusstotommeersrshhaavivnigngaalolaona,naantathcceount,
Perryridge branch

depositor(t[customer-name] = u[customer-name])

{t{t| |ssbboorrrroowweerr((t[tc[cuusstotommeerr--nnaammee]] == ss[[ccuussttoommeerr--nnaammee]]) 

Find
t
u
hue
n

lo
ad
a
me
npe
(os
us[o

bitfo
ra
ar(
n
llt
c
c[c
h
uu
-
s
nsto
atom

mme
eer
]rs-
=nwa

“
h
Pmo

eerh]
r
a
y=v
ri
eu
d[gac

eul
”
osatonmaenrd-naanmaec])cou


nt

at theub[alonakn-number] = s[loan-number]))}

SSaaffeettyy ooff EExxpprreessssiioonnss
Find{tth|ensambeosrroofwaellrc(ut[sctuosmtoemrsewr-hnoamhaev] e= as[lcouasntoamndera-nname])

accoun

t
u 

a
d
t
e
th
p
e
os

b
it
a
o
n
r(
k

t[customer-name] = u[customer-name])
It is possible to write tuple calculus expressions that generate

in{ftin| ites relbaotiorrnosw.er(t[customer-name] = s[customer-

[Type text]

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

x1, x2, …{, xl,n br,epra es|ent l,domb, aain varloiablanes a > 1200}
P represents a formula similar to that of the predicate calculus

Find the names of all customers who have a loan of over $1200

{ c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

Find the names of all customers who have a loan from the

Perryridge branch and the loan amount:

{ c, a  |  l ( c, l   borrower  b( l, b, a   loan 
b = “Perryridge”))}

or { c, a  |  l ( c, l   borrower   l, “Perryridge”, a   loan)}

over $e1200 m B

DDoommaaiinn RReellaattiioonnaall CCaallccuulluuss

A nonprocedural queEEryxxlaaaangmmuapppgelleeeqQuQivuualeeeenrrrt iiineepssower to the tuple
relational calculus

Each query is an expression of the form:

FinQQQd thuuue leoan

rr
-nyyyum---bbbber,

yy
bra---nEEEch-

xx
namaaaem, and

pp
amllloeeeunt

((
foQQQr loBans

EE
of

))

QQBBEE —— BBaassiicc SSttrruuccttuurree

n A graphical query language which is based (roughly) on the

domain relational calculus

n Two dimensional syntax – system creates templates of relations

that are requested by users

n Queries are expressed “by example”

[Type text]

[Type text]

[Type text]

TThhee RReessuulltt RReellaattiioonn

n Find the customer-name, account-number, and balance for alll

customers who have an account at the Perryridge branch.

H We need to:

4 Join depositor and account.

4 Project customer-name, account-number and balance.

H To accomplish this we:

4 Create a skeleton table, called result, with attributes customer-

name, account-number, and balance.

4 Write the query.

[Type text]

AAggggrreeggaattee OOppeerraattiioonnss ((CCoonntt..))

n UNQ is used to specify that we want to eliminate duplicates

n Find the total number of customers having an account at the bank.

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– DDeelleettiioonn

n Deletion of tuples from a relation is expressed by use of a D.

command. In the case where we delete information in only some

of the columns, null values, specified by –, are inserted.

n Delete customer Smith

n Delete the branch-city value of the branch whose name is

“Perryridge”.

[Type text]

DDeelleettiioonn QQuueerryy EExxaammpplleess

n Delete all loans with a loan amount between $1300 and $1500.

H For consistency, we have to delete information from loan and

borrower tables

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– IInnsseerrttiioonn

n Insertion is done by placing the I. operator in the query

expression.

n Insert the fact that account A-9732 at the Perryridge

branch has a balance of $700.

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– UUppddaatteess

Use the U. operator to change a value in a tuple without changing all
values in the tuple. QBE does not allow users to update the
primary key fields.

Update the asset value of the Perryridge branch to $10,000,000.

RELATIONAL DATABASE DEGIN

Increase all balances by 5 percent.

[Type text]

Data base design is a process in which you create a logical data model for a database,

which store data of a company. It is performed after initial database study phase in the

database life cycle. You use normalization technique to create the logical data model for a

database and eliminate data redundancy. Normalization also allows you to organize data

efficiently in a data base and reduce anomalies during data operation. Various normal

forms, such as first, second and third can be applied to create a logical data model for a

database. The second and third normal forms are based on partial dependency and

transitivity dependency. Partial dependency occurs when a row of table is uniquely

identified by one column that is a part of a primary key. A transitivity dependency ours

when a non key column is uniquely identified by values in another non-key column of a

table.

Data base design process:

We can identify six main phases of the database design process:

1. Requirement collection and analysis

2. Conceptual data base design

3. Choice of a DBMS

4. Data model mapping(logical database design)

5. physical data base design

6. database system implementation and tuning

1. Requirement collection and analysis

Before we can effectively design a data base we must know and analyze the

expectation of the users and the intended uses of the database in as much as detail.

2. Conceptual data base design

The goal for this phase I s to produce a conceptual schema for the database that is

independent of a specific DBMS.

 We often use a high level data model such er-model during this

phase

 We specify as many of known database application on

transactions as possible using a notation the is independent of

any specific dbms.

 Often the dbms choice is already made for the organization the

intent of conceptual design still to keep , it as free as possible

from implementation consideration.

3. Choice of a DBMS

The choice of dbms is governed by a no. of factors some technical other economic

and still other concerned with the politics of the organization.

The economics and organizational factors that offer the choice of the dbms are:

Software cost, maintenance cost, hardware cost, database creation and conversion

cost, personnel cost, training cost, operating cost.

4. Data model mapping (logical database design)

During this phase, we map the conceptual schema from the high level data model

used on phase 2 into a data model of the choice dbms.

5. Physical databse design

During this phase we design the specification for the database in terms of physical

storage structure ,record placement and indexes.

6. Database system implementation and tuning

During this phase, the database and application programs are implemented, tested

and eventually deployed for service.

[Type text]

FUNCTIONAL DEPENDENCIES:

The functional dependency x→y

Holds on scema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r

such that t1[x]=t2[x]. it is also the case that t1[y]=t2[y]

[Type text]

[Type text]

CLOSURE OF A SET OF FUNCTIONAL DEPEDENCIES

Given a relational schema R, a functional dependencies f on R is logically implied

by a set of functional dependencies F on R if every relation instance r(R) that

satisfies F also satisfies f.

The closure of F, denoted by F+, is the set of all functional dependencies logically

implied by F.

The closure of F can be found by using a collection of rules called Armstrong

axioms.

Reflexivity rule: If A is a set of attributes and B is subset or equal to A,

then A→B holds.

Augmentation rule: If A→B holds and C is a set of attributes, then CA→CB

holds

Transitivity rule: If A→B holds and B→C holds, then A→C holds.

Union rule: If A→B holds and A→C then A→BC holds

Decomposition rule: If A→BC holds, then A→B holds and A→C holds.

Pseudo transitivity rule: If A→B holds and BC→D holds, then AC→D holds.

Suppose we are given a relation schema R=(A,B,C,G,H,I) and the set of function

dependencies

A→B,A→C,CG→H,CG→I,B→H

We list several members of F+ here:
 A→H, since A→B and B→H hold, we apply the transitivity rule.

 CG→HI. Since CG→H and CG→I , the union rule implies that CG→HI

 AG→I, since A→C and CG→I, the pseudo transitivity rule implies that

AG→I holds

Algorithm of compute F+ :
To compute the closure of a set of functional dependencies F:

F+ = F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F+

until F+ does not change any further

Closure of Attribute sets:-

To test whether a set  is a super key, we must devise an algorithm for omputing

the set of attributes functionally determined by alpha. One way of doing this is to

compute F+ take all functional dependencies. However doing so can be

expensive, since F+ can be large.

[Type text]

CClloossuurree ooff AAttttrriibbuuttee SSeettss

Given a set of attributes  define the closure of  under F (denoted

by +) as the set of attributes that are functionally determined by 

under F:   
+

is in F <=>   +

Algorithm to compute +, the closure of  under F result := ; while

(changes to result) do for each    in F do

begin if   result then result :=

result   end

[Type text]

EExxaammppllee ooff AAttttrriibbuuttee SSeett CClloossuurree

R = (A, B, C, G, H, I)

F = {A  B A  C CG  H CG  I B  H}
(AG)+

1. result = AG

2. result = ABCG (A  C and A  B)

3. result = ABCGH (CG  H and CG  AGBC)

4. result = ABCGHI (CG  I and CG  AGBCH)

Is AG a candidate key?
Is AG a super key?

Does AG  R? == Is (AG)
+ 

R

Is any subset of AG a superkey?

Does A  R? == Is (A)
+ 

R

Does G  R? == Is (G)
+ 

R

[Type text]

UUsseess ooff AAttttrriibbuuttee CClloossuurree

There are several uses of the attribute closure algorithm:
Testing for superkey:

To test if  is a superkey, we compute +, and check if + contains all
attributes of R.

Testing functional dependencies
To check if a functional dependency    holds (or, in other words,

+ +

is in F), just check if    .

That is, we compute + by using attribute closure, and then check if it

contains .
Is a simple and cheap test, and very useful

Computing closure of F
For each   R, we find the closure +, and for each S  +, we output

a functional dependency   S.

[Type text]

CCaannoonniiccaall CCoovveerr

Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

Eg: A  C is redundant in: {A  B, B  C, A  C}
Parts of a functional dependency may be redundant

E.g. on RHS: {A  B, B  C, A  CD} can be simplified

to {A  B, B  C, A  D}

E.g. on LHS: {A  B, B  C, AC  D} can be simplified

to {A  B, B  C, A  D}

Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies
or redundant parts of dependencies

[Type text]

EExxttrraanneeoouuss AAttttrriibbuutteess

Consider a set F of functional dependencies and the functional dependency

   in F.
Attribute A is extraneous in  if A   and F logically implies (F – { 

})  {( – A)  }.

Attribute A is extraneous in  if A   and the set of functional

dependencies (F – {  })  { ( – A)} logically implies F.

Note: implication in the opposite direction is trivial in each of the cases
above, since a “stronger” functional dependency always implies a weaker
one

Example: Given F = {A  C, AB  C }
B is extraneous in AB  C because {A  C, AB  C} logically implies A 

C (I.e. the result of dropping B from AB  C).

Example: Given F = {A  C, AB  CD}
C is extraneous in AB  CD since AB  C can be inferred even after
deleting C

TTeessttiinngg iiff aann AAttttrriibbuuttee iiss EExxttrraanneeoouuss

Consider a set F of functional dependencies and the functional

dependency    in F.

To test if attribute A   is extraneous in 
compute ({} – A)+ using the dependencies in F

check that ({} – A)+ contains A; if it does, A is extraneous

To test if attribute A   is extraneous in 
compute + using only the dependencies in F’ = (F – {  })

 { ( – A)},

check that + contains A; if it does, A is extraneous

[Type text]

CCaannoonniiccaall CCoovveerr

A canonical cover for F is a set of dependencies Fc such that

F logically implies all dependencies in Fc, and
Fc logically implies all dependencies in F, and

No functional dependency in Fc contains an extraneous attribute, and

Each left side of functional dependency in Fc is unique.

To compute a canonical cover for F: repeat Use the union rule to

replace any dependencies in F 1  1 and 1  2 with

1  1 2 Find a functional dependency    with an

extraneous attribute either in  or in  If an extraneous

attribute is found, delete it from    until F does not change
Note: Union rule may become applicable after some extraneous
attributes have been deleted, so it has to be re-applied

[Type text]

EExxaammppllee ooff CCoommppuuttiinngg aa CCaannoonniiccaall CCoovveerr

R = (A, B, C) F = {A  BC B  C A  B AB  C}

Combine A  BC and A  B into A  BC
Set is now {A  BC, B  C, AB  C}

A is extraneous in AB  C
Check if the result of deleting A from AB  C is implied by the other
dependencies

Yes: in fact, B  C is already present!

Set is now {A  BC, B  C}

C is extraneous in A  BC
Check if A  C is logically implied by A  B and the other dependencies

Yes: using transitivity on A  B and B  C.
Can use attribute closure of A in more complex cases

The canonical cover is: A  B B  C

LOSS LESS DECOMPOSITION:

A decomposition of a relation scheme R<S,F> into the relation schemes

Ri(1<=i<=n) is said to be a lossless join decomposition or simply lossless if for

every relation R that satisfies the FDs in F, the natural join of the projections or R

gives the original relation R, i.e,

R=R1(R) R2(R) Rn(R)

If R is subset of R1(R) R2(R) Rn(R)

Then the decomposition is called lossy.

DEPEDENCY PRSERVATION:

Given a relation scheme R<S,F> where F is the associated set of functional

dependencies on the attributes in S,R is decomposed into the relation schemes

R1,R2,…Rn with the fds F1,F2…Fn, then this decomposition of R is dependency

preserving if the closure of F’ (where F’=F1 U F2 U … Fn)

Example:

Let R(A,B,C) AND F={A→B}. Then the decomposition of R into R1(A,B) and

R2(A,C) is lossless because the FD { A→B} is contained in R1 and the common

attribute A is a key of R1.

Example:

Let R(A,B,C) AND F={A→B}. Then the decomposition of R into R1(A,B) and

R2(B,C) is not lossless because the common attribute B does not functionally

determine either A or C. i.e, it is not a key of R1 or R 2.

Example:

Let R(A,B,C,D) and F={A→B, A→C, C→D,}. Then the decomposition of R into

R1(A,B,C) with the FD F1={ A→B , A→C }and R2(C,D) with FD F2={ C→D} .

In this decomposition all the original FDs can be logically derived from F1 and

F2, hence the decomposition is dependency preserving also . the common attribute

C forms a key of R2. The decomposition is lossless.

Example:

Let R(A,B,C,D) and F={A→B, A→C, A→D,}. Then the decomposition of R into

R1(A,B,D) with the FD F1={ A→B , A→D }and R2(B,C) with FD F2={ } is

lossy because the common attribute B is not a candidate key of either R1 and R2 .

In addition , the fds A→C is not implied by any fds R1 or R2. Thus the

decomposition is not dependency preserving.

[Type text]

Full functional dependency:

Given a relational scheme R and an FD X→Y ,Y is fully functional dependent on

X if there is no Z, where Z is a proper subset of X such that Z→Y. The

dependency X→Y is left reduced, there being no extraneous attributes attributes

in the left hand side of the dependency.

Partial dependency:

Given a relation dependencies F defined on the attributes of R and K as a

candidate key ,if X is a proper subset of K and if F|= X→A, then A is said to be

partial dependent on K

Prime attribute and non prime attribute:

A attribute A in a relation scheme R is a prime attribute or simply prime if A is

part of any candidate key of the relation. If A is not a part of any candidate key of

R, A is called a nonprime attribute or simply non prime .

Trivial functional dependency:

A FD X→Y is said to be a trivial functional dependency if Y is subset of X.

NORMALIZATION

The basic objective of normalization is to reduce redundancy which means that

information is to be stored only once. Storing information several times leads to

wastage of storage space and increase in the total size of the data stored. Relations

are normalized so that when relations in a database are to be altered during the life

time of the database, we do not lose information or introduce inconsistencies. The

type of alterations normally needed for relations are:

o Insertion of new data values to a relation. This should be possible without

being forced to leave blank fields for some attributes.

o Deletion of a tuple, namely, a row of a relation. This should be possible
without losing vital information unknowingly.

o Updating or changing a value of an attribute in a tuple. This should be
possible without exhaustively searching all the tuples in the relation.

PROPERTIES OF NORMALIZED RELATIONS

Ideal relations after normalization should have the following properties so that the

problems mentioned above do not occur for relations in the (ideal) normalized form:

1. No data value should be duplicated in different rows unnecessarily.

2. A value must be specified (and required) for every attribute in a row.

3. Each relation should be self-contained. In other words, if a row from a

relation is deleted, important information should not be accidentally lost.

4. When a mw is added to a relation, other relations in the database should

not be affected.

5. A value of an attribute in a tuple may be changed independent of other

tuples in the relation and other relations.

The idea of normalizing relations to higher and higher normal forms is to attain the goals

of having a set of ideal relations meeting the above criteria.

Unnormalized relation:

Defn: An unnormalized relation contains non atomic values.

Each row may contain multiple set of values for some of the columns, these multiple

values in a single row are also called non atomic values.

FIRST NORMAL FORM:

Defn: A relation scheme is said to be in first normal form(1NF) if the values in the

domain of each attribute of the relation are atomic. In other words, only one value is

associated with each attribute and the value is not a set of values or a list of values.

Functional dependencies are:

orderno → orderdate

SECOND NORMAL FORM:

[Type text]

Defn: A relation scheme R<S,F> is in second normal form(2NF) if it is in the !NF and if

all non prime attributes are fully functionally dependent on the relation keys.

A relation is said to be in2NF if it is in 1NF and non-key attributes are functionally

dependent on the key attribute(s). Further. if the key has more than one attribute then no

non-key attributes should be functionally dependent upon a part of the key attributes.

Consider, for example, the relation given in table 1. This relation is in 1NF. The key is

(Order no.. Item code). The dependency diagram for attributes of this relation is shown in

figure 5. The non-key attribute Price_Unit is functionally dependent on Item code which

is part of the relation key. Also, the non-key attribute Order date is functionally dependent

on Order no. which is a part of the relation key.

Thus the relation is not in 2NF. It can be transformed to 2NF by splitting it into three

relations as shown in table 3.

In table 3 the relation Orders has Order no. as the key. The relation Order details has the

composite key Order no. and Item code. In both relations the non-key attributes are

functionally dependent on the whole key. Observe that by transforming to 2NF relations

the

THIRD NORMAL FORM:

Defn: A relational scheme R<S,F> is in third normal form(3NF) if for all non trivial

function dependencies in F+ of the form X→A, either X contains a key(i.e, X is super

key) or A is a prime key attribute.

A Third Normal Form normalization will be needed where all attributes in a relation tuple

are not functionally dependent only on the key attribute. If two non-key attributes are

functionally dependent, then there will be unnecessary duplication of data. Consider the

relation given in table 4. Here. Roll no. is the key and all other attributes are

functionally dependent on it. Thus it is in 2NF. If it is known that in the college all first

year students are accommodated in Ganga hostel, all second year students in Kaveri, all

third year students in Krishna, and all fourth year students in Godavari, then the non-key

attribute Hostel name is dependent on the non-key attribute Year. This dependency is

shown in figure 6.

[Type text]

Observe that given the year of student, his hostel is known and vice versa. The

dependency of hostel on year leads to duplication of data as is evident from table 4. If it is

decided to ask all first year students to move to Kaveri hostel, and all second year

students to Ganga hostel. this change should be made in many places in table 4. Also,

when a student's year of study changes, his hostel change should also be noted in Table 4.

This is undesirable. Table 4 is said to be in 3NF if it is in 2NF and no non-key attribute

is functionally dependent on any other non-key attribute. Table 4 is thus not in 3NF. To

transform it to 3NF, we should introduce another relation which includes the

functionally related non-key attributes. This is shown in table 5.

BOYCE CODD NORMAL FORM:

Defn: a normalized relation scheme R<S,F> is in Boyce Codd normal form if for every

nontrivial FD in F+ of the form X→A where X is subset of S and AЄS, X is a super key

of R.

Assume that a relation has more than one possible key. Assume further that the composite

keys have a common attribute. If an attribute of a composite key is dependent on an

attribute of the other composite key, a normalization called BCNF is needed. Consider. as

an

example, the relation Professor:

It is assumed that

1. A professor can work in more than one department

2. The percentage of the time he spends in each department is given.

3. Each department has only one Head of Department.

The relationship diagram for the above relation is given in figure 8. Table 6 gives the

relation attributes. The two possible composite keys are professor code and Dept. or

Professor code and Hcad of Dept. Observe that department as well as Head of Dept. are

not non-key attributes. They are a part of a composite key

[Type text]

MULTIVALUED DEPEDENCY:

Defn:Given a relation scheme R, Le X and Y be subsets of attributes of R. then the multi

valued dependency X →→Y holds in a relation R defined on R if given two tuples t1 and

t2 in R with t1(X)=t2(X);

R contains two tuples t3 and t4 with the following characteristics: t1,t2,t3,t4 have the X

value i.e,

T1(X)= T2(X)=T3(X)= T4(X)

The Y values of t1 and t3 are the same and the Y values of t2 and t4 are the same .i.e,

T1(Y)= T2(Y)=T3(Y)= T4(Y)

TRIVIAL MULTIVALED DEPEDENCY:

A trivial multi valued dependency is one that is satisfied by all relations R on a relation

scheme R with XY is subset or equal to R. Thus, a MVD X →→Y is trivial if Y is sub

set or equal to X or XY=R.

FOURTH NORMAL FORM:

Defn:

Given a relation scheme R such that the set D of FDs and MVDs are satisfied, consider a

set attributes X and Y where X is subset or equal to R,Y is subset or equal to Y. The

reltion scheme R is in 4NF if for all mutivalued dependencies of the form X →→Y Є D+

Either X →→Y is a trivial MVD or X is super key of R.

When attributes in a relation have multivalucd dependency, further Normalisation to 4NF

and 5NF are required. We will illustrate this with an example. Consider a vendor

supplying

many items to many projects in an organisation. The following are the assumptions:

1. A vendor is capable of supplying many items.

2. A project uses many items

3. A vendor supplies to many projects.

4. An item may be supplied by many vendors.

Table 8 gives a relation for this problem and figure 10 lhe dependency diagram(s).

[Type text]

TRANSCATION:

A transaction is a unit of program execution that accesses and possibly updates

various data items. Usually, a transaction is initiated by a user program written in a high-

level data-manipulation language or programming language (for example, SQL, COBOL,

C, C++, or Java), where it is delimited by statements (or function calls) of the form begin

transaction and end transaction. The transaction consists of all operations executed

between the begin transaction and end transaction. To ensure integrity of the data, we

require that the database system maintain the following properties of the transactions:

 Atomicity. Either all operations of the transaction are reflected properly in the

database, or none are.

 Consistency. Execution of a transaction in isolation (that is, with no other

transaction executing concurrently) preserves the consistency of the database.

 Isolation. Even though multiple transactions may execute concurrently, the

system guarantees that, for every pair of transactions Ti and Tj , it appears to Ti

that either Tj finished execution before Ti started, or Tj started execution after Ti

finished. Thus, each transaction is unaware of other transactions executing

concurrently in the system.

 Durability. After a transaction completes successfully, the changes it has made

to the database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from

the first letter of each of the four properties.

Let Ti be a transaction that transfers $50 from account A to account B. This transaction

can be defined as

Ti: read(A);

A := A − 50;

write(A);

[Type text]

read(B);

B := B + 50;

write(B).

TRANSCATION STATE:

A transaction must be in one of the following states:

• Active, the initial state; the transaction stays in this state while it is executing

• Partially committed, after the final statement has been executed

• Failed, after the discovery that normal execution can no longer proceed

• Aborted, after the transaction has been rolled back and the database has been

restored to its state prior to the start of the transaction

• Committed, after successful completion

The state diagram corresponding to a transaction appears in Figure 15.1. We say

that a transaction has committed only if it has entered the committed state. Similarly,we

say that a transaction has aborted only if it has entered the aborted state. A transaction is

said to have terminated if has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters the

partially committed state. At this point, the transaction has completed its execution, but it

is still possible that it may have to be aborted, since the actual output may still be

temporarily residing in main memory, and thus a hardware failure may preclude its

successful completion.

The database system then writes out enough information to disk that, even in the event of

a failure, the updates performed by the transaction can be re-created when the system

restarts after the failure. When the last of this information is written out, the transaction

enters the committed state.

 It can restart the transaction, but only if the transaction was aborted as a result of

some hardware or software error that was not created through the internal logic of

the transaction. A restarted transaction is considered to be a new transaction.

 It can kill the transaction. It usually does so because of some internal logical error

that can be corrected only by rewriting the application program, or because the

input was bad, or because the desired data were not found in the database.

Concurrent Executions:

Multiple transactions are allowed to run concurrently in the system.

Advantages are:

increased processor and disk utilization, leading to better transaction

throughput: one transaction can be using the CPU while another is reading

from or writing to the disk

reduced average response time for transactions: short transactions need not

wait behind long ones.

Concurrency control schemes – mechanisms to achieve isolation, i.e., to control the

interaction among the concurrent transactions in order to prevent them from

destroying the consistency of the database

Schedules

Schedules – sequences that indicate the chronological order in which instructions of

concurrent transactions are executed

🟊 a schedule for a set of transactions must consist of all instructions of those
transactions

🟊 must preserve the order in which the instructions appear in each individual

transaction

Example Schedules

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B. The

following is a serial schedule (Schedule 1 in the text), in which T1 is followed by T2.

Let T1 and T2 be the transactions defined previously. The following schedule

(Schedule 3 in the text) is not a serial schedule, but it is equivalent to Schedule 1.

[Type text]

In both Schedule 1 and 3, the sum A + B is preserved.

Serializability:

 Basic Assumption – Each transaction preserves database consistency.

 Thus serial execution of a set of transactions preserves database consistency.

 A (possibly concurrent) schedule is serializable if it is equivalent to a serial

schedule. Different forms of schedule equivalence give rise to the notions of:

o conflict serializability

o view serializability

 We ignore operations other than read and write instructions, and we assume that

transactions may perform arbitrary computations on data in local buffers in

between reads and writes. Our simplified schedules consist of only read and

write instructions.

Conflict Serializability

 Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if

there exists some item Q accessed by both li and lj, and at least one of these

instructions wrote Q.

o li = read(Q), lj = read(Q). li and lj don’t conflict.

o li = read(Q), lj = write(Q). They conflict.

o li = write(Q), lj = read(Q). They conflict

o li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal order between

them. If li and lj are consecutive in a schedule and they do not conflict, their

results would remain the same even if they had been interchanged in the schedule.

 If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is conflict equivalent to a

serial schedule

 Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule to obtain either the serial

schedule < T3, T4 >, or the serial schedule < T4, T3 >.

T3

read(Q)

T4

write(Q)

write(Q)

 Schedule 3 below can be transformed into Schedule 1, a serial schedule where

T2 follows T1, by series of swaps of non-conflicting instructions. Therefore

Schedule 3 is conflict serializable.

View Serializability

Let S and S´ be two schedules with the same set of transactions. S and S´ are view

equivalent if the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q

in schedule S, then transaction Ti must, in schedule S´, also read

the initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule

S, and that value was produced by transaction Tj (if any), then

transaction Ti must in schedule S´ also read the value of Q that was

produced by transaction Tj .

3. For each data item Q, the transaction (if any) that performs the

final write(Q) operation in schedule S must perform the final

write(Q) operation in schedule S´.

As can be seen, view equivalence is also based purely on reads and writes alone.

 A schedule S is view serializable it is view equivalent to a serial

schedule.

 Every conflict serializable schedule is also view serializable.

 Schedule 9 (from text) — a schedule which is view-serializable but not

conflict serializable.

 Every view serializable schedule that is not conflict

serializable has blind writes.

Cascading rollback – a single transaction failure leads to a series of transaction

rollbacks. Consider the following schedule where none of the transactions has yet

committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

Can lead to the undoing of a significant amount of work

[Type text]

Concurrency Control

 Lock-Based Protocols

 Timestamp-Based Protocols

 Validation-Based Protocols

 Multiple Granularity

 Multiversion Schemes

 Deadlock Handling

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item

 Data items can be locked in two modes :

o exclusive (X) mode. Data item can be both read as well as written. X-lock
is requested using lock-X instruction.

o shared (S) mode. Data item can only be read. S-lock is requested using

lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction can proceed

only after request is granted.

 Lock-compatibility matrix











 A transaction may be granted a lock on an item if the requested lock is compatible

with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item, but if any

transaction holds an exclusive on the item no other transaction may hold any lock

on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till all

incompatible locks held by other transactions have been released. The lock is

then granted.

 Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

 Locking as above is not sufficient to guarantee serializability — if A and B get

updated in-between the read of A and B, the displayed sum would be wrong.

 A locking protocol is a set of rules followed by all transactions while requesting

and releasing locks. Locking protocols restrict the set of possible schedules.

Pitfalls of Lock-Based Protocols:

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait

for T3 to release its lock on B, while executing lock-X(A) causes T3 to wait for

T4 to release its lock on A.

 Such a situation is called a deadlock.

o To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This protocol

requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any

new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as

needed. Once the transaction releases a lock, it enters the shrinking phase, and it

can issue no more lock requests.

[Type text]

For example, transactions T3 and T4 are two phase. On the other hand, transactions

T1 and T2 are not two phase. Note that the unlock instructions do not need to appear

at the end of the transaction. For example, in the case of transaction T3, we could

move the unlock(B) instruction to just after the lock-X(A) instruction, and still retain

the two-phase locking property.

Cascading rollbacks can be avoided by a modification of two-phase locking called the

strict two-phase locking protocol. This protocol requires not only that locking be two

phase, but also that all exclusive-mode locks taken by a transaction be held until that

transaction commits. This requirement ensures that any data written by an uncommitted

transaction are locked in exclusive mode until the transaction commits, preventing any

other transaction from reading the data.

Timestamp-Based Protocols

Timestamps:

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted

by TS(Ti). This timestamp is assigned by the database system before the transaction Ti

starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new

transaction Tj enters the system, then TS(Ti) < TS(Tj). There are two simple methods for

implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a transaction’s

timestampis equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been

assigned; that is, a transaction’s timestamp is equal to the value of the counter

When the transaction enters the system.

The timestamps of the transactions determine the serializability order. Thus, if

TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equivalent

to a serial schedule in which transaction Ti appears before transaction Tj .

To implement this scheme, we associate with each data item Q two timestamp

values:

• W-timestamp(Q) denotes the largest timestamp of any transaction that executed

write(Q) successfully.

• R-timestamp(Q) denotes the largest timestamp of any transaction that executed

read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is

executed.

The Timestamp-Ordering Protocol:

The timestamp-ordering protocol ensures that any conflicting read and write operations

are executed in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q).

 If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was

already overwritten. Hence, the read operation is rejected, and Ti is rolled

back.

 If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and

Rtimestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

o If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was
needed previously, and the system assumed that that value would never be

produced. Hence, the system rejects the write operation and rolls Ti back.

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete

value of Q. Hence, the system rejects this write operation and rolls Ti

back. Otherwise, the system executes the write operation and sets W-

timestamp(Q) to TS(Ti).

o

[Type text]

DDeeaaddlloocckk HHaannddlliinngg

System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction in
the set.

Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :

Require that each transaction locks all its data items before it begins
execution (predeclaration).

Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

DDeeaaddlloocckk HHaannddlliinngg

Consider the following two transactions:

T1: write (X) T2: write(Y)
write(Y) write(X)

Schedule with deadlock

T T

lock-X on

X
write (X)

wait for lock-X on

lock-X on Y
write (X)

wait for lock-X on
X

wait. If T24 requests a data item held by T23, then T24 will be rolled back.
. The wound–wait scheme is a preemptive technique. It is a counterpart to the
ait–die scheme. When transaction Ti requests a data item currently held by Tj ,

Ti is allowed to wait only if it has a timestamp larger than that of Tj (that is, Ti is
younger than Tj). Otherwise, Tj is rolled back (Tj is wounded by Ti). Returning to

ur example, with transactions T22, T23, and T24, if T22 requests a data item
eld by T23, then the data item will be preempted from T23, and T23 will be

rolled back. If T24 requests a data item held by T23, then T24

Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

1. The wait–die scheme is a non preemptive technique. When transaction Ti
requests
a data item currently held by Tj , Ti is allowed to wait only if it has a timestamp
smaller than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back
(dies).
For example, suppose that transactions T22, T23, and T24 have timestamps 5,
10, and 15, respectively. If T22 requests a data item held by T23, then T22 will

2 There are, however, significant differences in the way that the two schemes

woperate.
◼ In the wait–die scheme, an older transaction must wait for a younger one to
release its data item. Thus, the older the transaction gets, the more it tends to wait.

o By contrast, in the wound–wait scheme, an older transaction never waits for a

h younger transaction.
◼ In the wait–die scheme, if a transaction Ti dies and is rolled back because it
requested a data item held by transaction Tj, then Ti may reissue the same
sequence of requests when it is restarted. If the data item is still held by Tj , then Ti
will die again. Thus, Ti may die several times before acquiring the needed data
item. Contrast this series of events with what happens in the wound–wait scheme.
Transaction Ti is wounded and rolled back because Tj requested a data item that it
holds. When Ti is restarted and requests the data item now being held by Tj , Ti
waits. Thus, there may be fewer rollbacks in the wound–wait scheme.
The major problem with both of these schemes is that unnecessary rollbacks may
occur.

□ Timeout-Based Schemes :

🟉 a transaction waits for a lock only for a specified amount of time.
After that, the wait times out and the transaction is rolled back.

🟉 thus deadlocks are not possible

🟉 simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

[Type text]

DDeeaaddlloocckk DDeetteeccttiioonn ((CCoonntt..))

Wait-for graph without a cycle Wait-for graph with a cycle

DDeeaaddlloocckk DDeetteeccttiioonn

Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),
V is a set of vertices (all the transactions in the system)

E is a set of edges; each element is an ordered pair Ti Tj.

If Ti  Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj, then the
edge Ti Tj is inserted in the wait-for graph. This edge is
removed only when Tj is no longer holding a data item needed
by Ti.

The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm
periodically to look for cycles.

[Type text]

Recovery from Deadlock:

When a detection algorithm determines that a deadlock exists, the system must recover

from the deadlock. The most common solution is to roll back one or more transactions to

break the

deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must determine

which transaction (or transactions) to roll back to break the deadlock. We should roll

back those transactions that will incur the minimum cost. Unfortunately, the term

minimum cost is not a precise one. Many factors may determine the cost of a rollback,

including

a. How long the transaction has computed, and how much longer the transaction

will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled back, we

must determine how far this transaction should be rolled back. The simplest solution is a

total rollback: Abort the transaction and then restart it. However, it is more effective to

roll back the transaction only as far as necessary to break the deadlock. Such partial

rollback requires the system to maintain additional information about the state of all the

running transactions. Specially, the sequence of lock requests/grants and updates

performed by the transaction needs to be recorded. The deadlock detection mechanism

should decide which locks the selected transaction needs to release in order to break the

deadlock. The selected transaction must be rolled back to the point where it obtained the

.rst of these locks, undoing all actions it took after that point. The recovery mechanism

must be capable of performing such partial rollbacks. Furthermore, the transactions must

be capable of resuming execution after a partial rollback. See the bibliographical notes for

relevant references.

3. Starvation. In a system where the selection of victims is based primarily on cost

factors, it may happen that the same transaction is always picked as a victim. As a result,

this transaction never completes its designated task, thus there is starvation. We must

ensure that transaction can be picked as a victim only a (small) .nite number of times. The

most common solution is to include the number of rollbacks in the cost factor.

The Phantom Phenomenon

Consider transaction T29 that executes the following SQL query on the bank database:

select sum(balance) from account where branch-name = ’Perryridge’

Transaction T29 requires access to all tuples of the account relation pertaining to the

Perryridge branch.

Let T30 be a transaction that executes the following SQL insertion:

insert into account values (A-201, ’Perryridge’, 900)

Let S be a schedule involving T29 and T30. We expect there to be potential for a conflict

for the following reasons:

· If T29 uses the tuple newly inserted by T30 in computing sum(balance), then

T29 read a value written by T30. Thus, in a serial schedule equivalent to S, T30

must come before T29.

· If T29 does not use the tuple newly inserted by T30 in computing sum(balance),

then in a serial schedule equivalent to S, T29 must come before T30.

The second of these two cases is curious. T29 and T30 do not access any tuple in

common, yet they con.ictwith each other! In effect, T29 and T30 con.ict on a phantom

tuple. If concurrency control is performed at the tuple granularity, this con.ict would go

undetected. This problem is called the phantom phenomenon.

------THANK YOU----

	DBMS: Basic Concepts
	r s
	s
	Cartesian product – Example
	ProjectsOperation E
	Rename Operation
	Set-Intersection Operation
	□ Example:

	Division Operation
	Example Queries
	Example Queries (1)
	Example Queries

	Example Queries (2)
	Example Queries

	Example Queries
	Safety of Expressions
	Domain Relational Calculus
	Modification of the Database – Deletion
	Modification of the Database – Updates
	Closure of Attribute Sets
	Example of Attribute Set Closure
	Uses of Attribute Closure
	Canonical Cover
	Extraneous Attributes
	Testing if an Attribute is Extraneous
	Canonical Cover (1)
	Deadlock Handling

	Deadlock Detection (Cont.)
	Deadlock Detection

