
SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering

 Academic Session 2023-24

 LECTURE NOTE

Nameof Faculty : Mr. Jayanta Kumar Behera
Name of Subject : Principle Of Programming Language
Subject code : RCS4D003
Subject Credit : 3
Semester : 4th
Course : B.Tech
Branch : Computer Science And Engineering
Admission Batch : 2022-26

Module-1

A) Introduction:-(overview of different programming paradiagram)

Paradigm can also be termed as method to solve some problem or do some task. Programming paradigm is

an approach to solve problem using some programming language or also we can say it is a method to solve

a problem using tools and techniques that are available to us following some approach. There are lots for

programming language that are known but all of them need to follow some strategy when they are

implemented and this methodology/strategy is paradigms. Apart from varieties of programming language

there are lots of paradigms to fulfill each and every demand. They are discussed below:

1. Imperative programming paradigm: It is one of the oldest programming paradigm. It features close

relation to machine architecture. It is based on Von Neumann architecture. It works by changing the

program state through assignment statements. It performs step by step task by changing state. The main

focus is on how to achieve the goal. The paradigm consist of several statements and after execution of all

the result is stored.

Advantages:

1. Very simple to implement

2. It contains loops, variables etc.

Disadvantage:

1. Complex problem cannot be solved

2. Less efficient and less productive

3. Parallel programming is not possible

Object oriented programming –

The program is written as a collection of classes and object which are meant for communication. The

smallest and basic entity is object and all kind of computation is performed on the objects only. More

emphasis is on data rather procedure. It can handle almost all kind of real life problems which are

today in scenario.

Advantages:

 Data security

 Inheritance

 Code reusability

 Flexible and abstraction is also present

Parallel processing approach –

Parallel processing is the processing of program instructions by dividing them among multiple

processors. A parallel processing system posses many numbers of processor with the objective of

running a program in less time by dividing them. This approach seems to be like divide and conquer.

Examples are NESL (one of the oldest one) and C/C++ also supports because of some library function.

2. Declarative programming paradigm:

It is divided as Logic, Functional, Database. In computer science the declarative programming is a style of

building programs that expresses logic of computation without talking about its control flow. It often

considers programs as theories of some logic.It may simplify writing parallel programs. The focus is on

what needs to be done rather how it should be done basically emphasize on what code is actually doing. It

just declares the result we want rather how it has be produced. This is the only difference between

imperative (how to do) and declarative (what to do) programming paradigms. Getting into deeper we

would see logic, functional and database.

Logic programming paradigms –

It can be termed as abstract model of computation. It would solve logical problems like puzzles, series

etc. In logic programming we have a knowledge base which we know before and along with the

question and knowledge base which is given to machine, it produces result. In normal programming

languages, such concept of knowledge base is not available but while using the concept of artificial

intelligence, machine learning we have some models like Perception model which is using the same

mechanism.

In logical programming the main emphasize is on knowledge base and the problem. The execution of

the program is very much like proof of mathematical statement, e.g., Prolog

Functional programming paradigms –

The functional programming paradigms has its roots in mathematics and it is language independent.

The key principle of this paradigms is the execution of series of mathematical functions. The central

model for the abstraction is the function which are meant for some specific computation and not the

data structure. Data are loosely coupled to functions.The function hide their implementation. Function

can be replaced with their values without changing the meaning of the program. Some of the languages

like perl, javascript mostly uses this paradigm.

Database/Data driven programming approach –

This programming methodology is based on data and its movement. Program statements are defined by

data rather than hard-coding a series of steps. A database program is the heart of a business information

system and provides file creation, data entry, update, query and reporting functions. There are several

programming languages that are developed mostly for database application. For example SQL. It is

applied to streams of structured data, for filtering, transforming, aggregating (such as computing

statistics), or calling other programs. So it has its own wide application.

B) compiler

 A compiler is a translator that converts the high-level language into the machine language.

 High-level language is written by a developer and machine language can be understood by the

processor.

 Compiler is used to show errors to the programmer.

 The main purpose of compiler is to change the code written in one language without changing the

meaning of the program.

o When you execute a program which is written in HLL programming language then it executes into

two parts.

o In the first part, the source program compiled and translated into the object program (low level

language).

o In the second part, object program translated into the target program through the assembler.

Fig: Execution process of source program in Compiler

C) Compiler Phases

The compilation process contains the sequence of various phases. Each phase takes source program in one

representation and produces output in another representation. Each phase takes input from its previous stage.

There are the various phases of compiler:

Fig: phases of compiler

 Lexical Analysis: Lexical analyzer phase is the first phase of compilation process. It takes source

code as input. It reads the source program one character at a time and converts it into meaningful

lexemes. Lexical analyzer represents these lexemes in the form of tokens.

 Syntax Analysis:- Syntax analysis is the second phase of compilation process. It takes tokens as

input and generates a parse tree as output. In syntax analysis phase, the parser checks that the

expression made by the tokens is syntactically correct or not.

 Semantic Analysis:- Semantic analysis is the third phase of compilation process. It checks whether

the parse tree follows the rules of language. Semantic analyzer keeps track of identifiers, their types

and expressions. The output of semantic analysis phase is the annotated tree syntax.

 Intermediate Code Generation:- In the intermediate code generation, compiler generates

the source code into the intermediate code. Intermediate code is generated between the high-level

language and the machine language. The intermediate code should be generated in such a way that

you can easily translate it into the target machine code.

 Code Optimization:- Code optimization is an optional phase. It is used to improve the intermediate

code so that the output of the program could run faster and take less space. It removes the

unnecessary lines of the code and arranges the sequence of statements in order to speed up the

program execution.

 Code Generation:- Code generation is the final stage of the compilation process. It takes the

optimized intermediate code as input and maps it to the target machine language. Code generator

translates the intermediate code into the machine code of the specified computer.

D) Finite state machine

 Finite state machine is used to recognize patterns.

 Finite automata machine takes the string of symbol as input and changes its state accordingly. In the

input, when a desired symbol is found then the transition occurs.

 While transition, the automata can either move to the next state or stay in the same state.

 FA has two states: accept state or reject state. When the input string is successfully processed and the

automata reached its final state then it will accept.

A finite automata consists of following:

 Q: finite et of states

 ∑: finite set of input symbol

 q0: initial state

 F: final state

 δ: Transition function

Transition function can be define as δ: Q x ∑ →Q

FA is 2 types 1. DFA (finite automata) 2.NDFA (non deterministic finite automata)

DFA:- DFA stands for Deterministic Finite Automata. Deterministic refers to the uniqueness of the

computation. In DFA, the input character goes to one state only. DFA doesn't accept the null move that

means the DFA cannot change state without any input character.

DFA has five tuples {Q, ∑, q0, F, δ}

Q: set of all states

∑: finite set of input symbol where δ: Q x ∑ →Q

q0: initial state

F: final state

δ: Transition function

Example

See an example of deterministic finite automata:

1. Q = {q0, q1, q2}

2. ∑ = {0, 1}

3. q0 = {q0}

4. F = {q3}

NDFA:- NDFA refer to the Non Deterministic Finite Automata. It is used to transit the any

number of states for a particular input. NDFA accepts the NULL move that means it can change state without

reading the symbols.

NDFA also has five states same as DFA. But NDFA has different transition function.

Transition function of NDFA can be defined as:

δ: Q x ∑ →2Q

Example

See an example of non deterministic finite automata:

1. Q = {q0, q1, q2}

2. ∑ = {0, 1}

3. q0 = {q0}

4. F = {q3}

LEX:-

o Lex is a program that generates lexical analyzer. It is used with YACC parser generator.

o The lexical analyzer is a program that transforms an input stream into a sequence of tokens.

o It reads the input stream and produces the source code as output through implementing the lexical

analyzer in the C program.

E) Formal grammar:-

 Formal grammar is a set of rules. It is used to identify correct or incorrect strings of tokens in a

language. The formal grammar is represented as G.

 Formal grammar is used to generate all possible strings over the alphabet that is syntactically correct

in the language.

 Formal grammar is used mostly in the syntactic analysis phase (parsing) particularly during the

compilation.

Formal grammar G is written as follows:

1. G = <V, N, P, S>

Where:

N describes a finite set of non-terminal symbols.

V describes a finite set of terminal symbols.

P describes a set of production rules

S is the start symbol.

Example:

1. L = {a, b}, N = {S, R, B}

Production rules:

1. S = bR

2. R = aR

3. R = aB

4. B = b

This production describes the string of shape banab.

F) Context free grammar

Context free grammar is a formal grammar which is used to generate all possible strings in a given formal

language.Context free grammar G can be defined by four tuples as:

G= (V, T, P, S)

Where, G describes the grammar T describes a finite set of terminal symbols.

V describes a finite set of non-terminal symbols P describes a set of production rules

S is the start symbol.

In CFG, the start symbol is used to derive the string. You can derive the string by repeatedly replacing a non-

terminal by the right hand side of the production, until all non-terminal have been replaced by terminal

symbols.

Example:

L= {wcwR | w € (a, b)*}

Production rules:

S → aSa

S → bSb

S → c

Now check that abbcbba string can be derived from the given CFG.

S ⇒ aSa

S ⇒ abSba

S ⇒ abbSbba

S ⇒ abbcbba

By applying the production S → aSa, S → bSb recursively and finally applying the production S → c, we get

the string abbcbba.

G) Derivation

Derivation is a sequence of production rules. It is used to get the input string through these production rules.

During parsing we have to take two decisions. These are as follows:

o We have to decide the non-terminal which is to be replaced.

o We have to decide the production rule by which the non-terminal will be replaced.

We have two options to decide which non-terminal to be replaced with production rule.

Left-most Derivation:- In the left most derivation, the input is scanned and replaced with the

production rule from left to right. So in left most derivatives we read the input string from left to right.

Example:

Production rules:

S = S + S

S = S - S

S = a | b |c

Input:

a - b + c

The left-most derivation is:

S = S + S

S = S - S + S

S = a - S + S

S = a - b + S

S = a - b + c

Right-most Derivation:- In the right most derivation, the input is scanned and replaced with the

production rule from right to left. So in right most derivatives we read the input string from right to left.

Example:

S = S + S

S = S - S

S = a | b |c

Input:

a - b + c

The right-most derivation is:

S = S - S

S = S - S + S

S = S - S + c

S = S - b + c

S = a - b + c

H) Parse tree

 Parse tree is the graphical representation of symbol. The symbol can be terminal or non-terminal.

 In parsing, the string is derived using the start symbol. The root of the parse tree is that start symbol.

 It is the graphical representation of symbol that can be terminals or non-terminals.

 Parse tree follows the precedence of operators. The deepest sub-tree traversed first. So, the operator in

the parent node has less precedence over the operator in the sub-tree.

The parse tree follows these points:

 All leaf nodes have to be terminals.

 All interior nodes have to be non-terminals.

 In-order traversal gives original input string.

Example:

Production rules:

T= T + T | T * T

T = a|b|c

Input:

a * b + c

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

I) Ambigus Grammar:-

A grammar is said to be ambiguous if there exists more than one leftmost derivation or more than one

rightmost derivative or more than one parse tree for the given input string. If the grammar is not ambiguous

then it is called unambiguous.

Example:

S = aSb | SS

S = ∈

For the string aabb, the above grammar generates two parse trees:

If the grammar has ambiguity then it is not good for a compiler construction. No method can automatically

detect and remove the ambiguity but you can remove ambiguity by re-writing the whole grammar without

ambiguity.

J) syntax specification and semiformal semantic specification using attribute grammar.

We have learnt how a parser constructs parse trees in the syntax analysis phase. The plain parse-tree

constructed in that phase is generally of no use for a compiler, as it does not carry any information of how to

evaluate the tree. The productions of context-free grammar, which makes the rules of the language, do not

accommodate how to interpret them.

For example

E → E + T

The above CFG production has no semantic rule associated with it, and it cannot help in making any sense of

the production.

Semantics

Semantics of a language provide meaning to its constructs, like tokens and syntax structure. Semantics help

interpret symbols, their types, and their relations with each other. Semantic analysis judges whether the

syntax structure constructed in the source program derives any meaning or not.

CFG + semantic rules = Syntax Directed Definitions

For example:

int a = “value”;

should not issue an error in lexical and syntax analysis phase, as it is lexically and structurally correct, but it

should generate a semantic error as the type of the assignment differs. These rules are set by the grammar of

the language and evaluated in semantic analysis. The following tasks should be performed in semantic

analysis:

 Scope resolution

 Type checking

 Array-bound checking

Semantic Errors

We have mentioned some of the semantics errors that the semantic analyzer is expected to recognize:

 Type mismatch

 Undeclared variable

 Reserved identifier misuse.

 Multiple declaration of variable in a scope.

 Accessing an out of scope variable.

 Actual and formal parameter mismatch.

K)Attribute Grammar

Attribute grammar is a special form of context-free grammar where some additional information (attributes)

are appended to one or more of its non-terminals in order to provide context-sensitive information. Each

attribute has well-defined domain of values, such as integer, float, character, string, and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar and it can help specify the

syntax and semantics of a programming language. Attribute grammar (when viewed as a parse-tree) can pass

values or information among the nodes of a tree.

Example:

E → E + T { E.value = E.value + T.value }

The right part of the CFG contains the semantic rules that specify how the grammar should be interpreted.

Here, the values of non-terminals E and T are added together and the result is copied to the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of parsing and evaluated at

the time of assignment or conditions. Based on the way the attributes get their values, they can be broadly

divided into two categories : synthesized attributes and inherited attributes.

Synthesized attributes

These attributes get values from the attribute values of their child nodes. To illustrate, assume the following

production:

S → ABC

If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized attribute, as the values of

ABC are synthesized to S.

As in our previous example (E → E + T), the parent node E gets its value from its child node. Synthesized

attributes never take values from their parent nodes or any sibling nodes.

Inherited attributes

In contrast to synthesized attributes, inherited attributes can take values from parent and/or siblings. As in the

following production,

S → ABC

A can get values from S, B and C. B can take values from S, A, and C. Likewise, C can take values from S,

A, and B.

Expansion : When a non-terminal is expanded to terminals as per a grammatical rule

Reduction : When a terminal is reduced to its corresponding non-terminal according to grammar rules.

Syntax trees are parsed top-down and left to right. Whenever reduction occurs, we apply its corresponding

semantic rules (actions).

Semantic analysis uses Syntax Directed Translations to perform the above tasks.

Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax analysis).

Semantic analyzer attaches attribute information with AST, which are called Attributed AST.

Attributes are two tuple value, <attribute name, attribute value>

For example:

int value = 5;

<type, “integer”>

<presentvalue, “5”>

For every production, we attach a semantic rule.

L)S-attributed SDT

If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These attributes are evaluated

using S-attributed SDTs that have their semantic actions written after the production (right hand side).

As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as the values of the

parent nodes depend upon the values of the child nodes.

L-attributed SDT

This form of SDT uses both synthesized and inherited attributes with restriction of not taking values from

right siblings.

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes. As in the

following production

S → ABC

S can take values from A, B, and C (synthesized). A can take values from S only. B can take values from S

and A. C can get values from S, A, and B. No non-terminal can get values from the sibling to its right.

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner.

We may conclude that if a definition is S-attributed, then it is also L-attributed as L-attributed definition

encloses S-attributed definitions.

Module-2

A) Names :- Variables, subprograms, labels, user defined types, formal parameters all have names.

 Design issues for names:-

 What is the maximum length of a name? –

 Are names case sensitive or not? –

 Are special words reserved words or keywords?

Length:-

 – If too short, they cannot be connotative

– Language examples: • Earliest languages : single character

 • FORTRAN 95: maximum of 31 characters

 • C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of

31 characters

 • C#, Ada, and Java: no limit, and all are significant

 • C++: no limit, but implementers often impose one

Name Forms

 • Names in most PL have the same form:

 – A letter followed by a string consisting of letters, digits, and underscore characters – In

some, they use special characters before a variable’s name

 • Today “camel” notation is more popular for C-based languages (e.g. myStack)

 • In early versions of Fortran

 – embedded spaces were ignored. e.g. following two names are equivalent

 Sum Of Salaries

 SumOfSalaries

Special characters

 – PHP: all variable names must begin with dollar signs

 – Perl: all variable names begin with special characters ($, @, %), which specify the variable’s type

 – Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class

 variables

Case sensitivity

 – In many languages (e.g. C-based languages) uppercase and lowercase letters in names are distinct

 • e.g. rose, ROSE, Rose

 – Disadvantage: readability (names that look alike are different)

 • Names in the C-based languages are case sensitive

 • Names in others are not

 • Worse in C++, Java, and C# because predefined names are mixed case (e.g.

IndexOutOfBoundsException)

 – Also bad for writability since programmer has to remember the correct cases 9 Names (continued)

 • Special words

 – An aid to readability; used to delimit or separate statement clauses

 • A keyword is a word that is special only in certain contexts, e.g., in Fortran

 real VarName (Real is a data type followed with a name, therefore Real is a keyword)

 Real = 3.4 (Real is a variable)

 INTEGER REAL

 REAL INTEGER

This is allowed but not readable

Special words

 – A reserved word is a special word that cannot be used as a user-defined name

 • Can’t define for or while as function or variable names.

 • Good design choice

 • Potential problem with reserved words: If there are too many, many collisions occur (e.g., COBOL

has 300 reserved words!)

Special Words

 • Predefined names: have predefined meanings, but can be redefined by the user

 • Between special words and user-defined names.

 • For example, built-in data type names in Pascal, such as INTEGER, normal input/output

subprogram names, such as readln, writeln, are predefined.

 • In Ada, Integer and Float are predefined, and they can be redefined by any Ada program. 12 13

Variables

B)Scope:

 » The region of program text where a binding is active is called its scope

 » Notice that scope is different from lifetime Two major scoping disciplines:

 » Static or lexical: binding of a name is given by its declaration in the innermost enclosing

block

 • binding of a name is determined by rules that refer only to the program text

 • Typically, the scope is the smallest block in which the variable is declared

 • Most languages use some variant of this

 • Scope can be determined at compile time Most languages use some variant of this

 » dynamic: binding of a name is given by the most recent declaration encountered at runtime

 • binding of a name is given by the most recent declaration encountered during run-

time

 • Used in SNOBOL, APL, some versions of LISP

C) Binding time:-

A binding is an association between two things, such as a name and the thing it names .

In general, binding time refers to the notion of resolving any design decision in a language implementation

(e.g., an example of a static binding is a function call: the function referenced by the identifier cannot change

at runtime).

Binding Time is the point at which a binding is created or, more generally, the point at which any

implementation decision is made. There are many times when decision about the binding are taken:

language design time: the control flow constructs, the set of fundamental (primitive) types, the available

constructors for creating complex types, and many other aspects of language semantics are chosen when the

language is designed

 language implementation time: precision (number of bits) of the fundamental types, the coupling of

I/O to the operating system’s notion of files, the organization and maximum sizes of stack and heap, and the

handling of run-time exceptions such as arithmetic overflow

 program writing time: programmers choose algorithms and names

 compile time: compilers plan for data layout (the mapping of high-level constructs to machine code,

including the layout of statically defined data in memory)

 link time: layout of whole program in memory (virtual addresses are chosen at link time), the linker

chooses the overall layout of the modules with respect to one another, and resolves intermodule references

 load time: choice of physical addresses (the processor’s memory management hardware translates

virtual addresses into physical addresses during each individual instruction at run time)

 Run time: is a very broad term that covers the entire span from the beginning to the end of execution:

 program start-up time

 module entry time

 elaboration time (point a which a declaration is first "seen")

 procedure entry time

 block entry time

 statement execution time

 The terms STATIC and DYNAMIC are generally used to refer to things bound before run time and at run

time.

D)Binding Types:-

 Static Binding

 Static Binding is also known as Compile Time Binding.

 Static binding occurs when the connection between a function call and its definition is set when your

program is being prepared for running, called Compile Time.

 Think of default settings as how something works, like how a tool behaves when you use it. In

programming, the default way of connecting a function call to its definition in C++ is called Static

Binding. It’s like having a pre-set rule that says, “Hey, link these things together when the program is

being made.”

 Static binding is all about making this link between a function call and its definition while the

program is being prepared, usually before it starts running. This is why it’s also called Compile time

binding or Early Binding.

 You can think of it as putting labels on things beforehand. You can match things up quickly if you

know what the labels on the items say.

 Static binding is used automatically for regular function calls in your program. It is also used when

using multiple iterations of a function or when using operators in unique ways.

 When methods are marked as static, private, or final, their linking is always done during compile-

time. This is because the class type is known beforehand, so the connection between calls and

definitions can be decided immediately.

Some of the advantages of using the Static Binding are as follows:

 Static binding is faster than dynamic binding. The program runs faster because the computer is

already aware of all the methods in a class. This also implies that the computer will not require

additional time to make sense of things while running the program.

 Programs run more quickly and efficiently because they are faster.

However, static binding has a small downside and is a bit less flexible. Before the program executes, all

decisions about the function’s call and input values are made. Changing anything while the program is

running is difficult.

Examples of Static Binding are:

 Function Overloadin

 Operator Overloading

Dynamic Binding

When the connection between a function call and its definition happens while the program is running, this is

called Dynamic Binding.

At compile time or during the preparation of our program, the computer sometimes cannot understand all the

information in a function call. Instead, it sorts things out while the program is actually running. This kind of

linking is known as dynamic binding.

It is also known as Run time binding or Late binding because everything is decided while the program is

running.

Some of the advantages of using dynamic binding are given here.

 The fact that the same function can handle a variety of objects gives it a lot of flexibility.

 It can help make programs smaller and easier to understand.

There exist a drawback to it as well, as all the calculations must be made while the program is running,

which can slow down operations. This is one of the less desirable aspects of dynamic binding.

Examples of dynamic binding is:

 Virtual Function

Static Binding VS Dynamic Binding

Static Binding Dynamic Binding

 It happens at compile time.

 This type of binding is also called early

binding.

 It takes place when all the information

needed to call a function is known during

compile time.

 It is achieved during normal function

calls, like function overloading or operator

overloading.

 It is faster in execution, and the function

call is resolved before run time.

 It provides less flexibility as compared to

dynamic binding.

 It happens at run time.

 This type of binding is also called late

binding.

 It takes place when all the information

needed to call a function is not known

during compile time.

 It is achieved with the help of virtual

functions.

 It is slower in execution, but the function

call is resolved during run time.

 It provides more flexibility as compared to

static binding.

Control flow:

Control Structures are just a way to specify flow of control in programs. Any algorithm or program can be

more clear and understood if they use self-contained modules called as logic or control structures. It basically

analyzes and chooses in which direction a program flows based on certain parameters or conditions. There

are three basic types of logic, or flow of control, known as:

1. Sequence logic, or sequential flow

2. Selection logic, or conditional flow

3. Iteration logic, or repetitive flow

Let us see them in detail:

1. Sequential Logic (Sequential Flow)
Sequential logic as the name suggests follows a serial or sequential flow in which the flow depends on

the series of instructions given to the computer. Unless new instructions are given, the modules are

executed in the obvious sequence. The sequences may be given, by means of numbered steps

explicitly. Also, implicitly follows the order in which modules are written. Most of the processing,

even some complex problems, will generally follow this elementary flow pattern.

Selection Logic (Conditional Flow)

Selection Logic simply involves a number of conditions or parameters which decides one out of several

written modules. The structures which use these type of logic are known as Conditional Structures.

These structures can be of three types:

1.

 Single AlternativeThis structure has the form:

 If (condition) then:

 [Module A]

 [End of If structure]

Implementation:
 C/C++ if statement with Examples

 Java if statement with Examples

 Double AlternativeThis structure has the form:

 If (Condition), then:

 [Module A]

 Else:

 [Module B]

 [End if structure]

Implementation:

 C/C++ if-else statement with Examples

 Java if-else statement with Examples

 Multiple AlternativesThis structure has the form:

 If (condition A), then:

 [Module A]

 Else if (condition B), then:

 [Module B]

 ..

https://www.geeksforgeeks.org/c-c-if-statement-with-examples/
https://www.geeksforgeeks.org/java-if-statement-with-examples/
https://www.geeksforgeeks.org/c-c-if-else-statement-with-examples/
https://www.geeksforgeeks.org/java-if-else-statement-with-examples/

 ..

 Else if (condition N), then:

 [Module N]

 [End If structure]

Implementation:

 C/C++ if-else if statement with Examples

 Java if-else if statement with Examples

In this way, the flow of the program depends on the set of conditions that are written. This can be more

understood by the following flow charts:

Double Alternative Control Flow

2. Iteration Logic (Repetitive Flow)

The Iteration logic employs a loop which involves a repeat statement followed by a module known as

the body of a loop.

The two types of these structures are:

 Repeat-For Structure

This structure has the form:

 Repeat for i = A to N by I:

 [Module]

 [End of loop]

Here, A is the initial value, N is the end value and I is the increment. The loop ends when A>B. K

increases or decreases according to the positive and negative value of I respectively.

Repeat-For Flow

Implementation:
 C/C++ for loop with Examples

 Java for loop with Examples

 Repeat-While Structure

It also uses a condition to control the loop. This structure has the form:

 Repeat while condition:

 [Module]

 [End of Loop]

https://www.geeksforgeeks.org/c-c-if-else-if-ladder-with-examples/
https://www.geeksforgeeks.org/java-if-else-if-ladder-with-examples/
https://www.geeksforgeeks.org/c-c-for-loop-with-examples/
https://www.geeksforgeeks.org/java-for-loop-with-examples/

Repeat While Flow

Implementation:

 C/C++ while loop with Examples

 Java while loop with Examples

In this, there requires a statement that initializes the condition controlling the loop, and there must also

be a statement inside the module that will change this condition leading to the end of the loop.

 Control Abstraction:-

Subroutine:

Control abstraction is association of a name with a program fragment that performs an operation, and is

thought of its purpose or function, rather than its implementation.

 Subroutine is a principal mechanism for control abstraction.

 Procedure is a subroutine that does not return a value.

 Function is a subroutine that returns a value.

Parameter Passing

Parameter names that appear in the declaration of a subroutine are formal parameters. Expressions that are

passed to a subroutine in a particular call are actual parameters or arguments.

Parameter Passing Modes

We will talk about three common modes. For a language with a value model of variables

• Call by value

• Call by reference For a language with a reference model of variables

• Call by sharing

https://www.geeksforgeeks.org/c-c-while-loop-with-examples/
https://www.geeksforgeeks.org/java-while-loop-with-examples/

Exception

Exception is unexpected or unusual condition that arises during program execution. It may be

detected automatically by language implementation, or program may raise it explicitly, e.g.

• Unexpected end of file when reading input

• Reading in a string when expecting a number

• Arithmetic overflow

• Division by zero

• Subscript error

• Null pointer dereference Exception handling facility is provided by more recent languages, e.g. Ada,

C++, Java, C#, ML, Python, PHP, Ruby.

We can also represent exception in –

Multiple catch statement.

A try block can be followed by one or more catch blocks. Each catch block must contain a different

exception handler. So, if you have to perform different tasks at the occurrence of different exceptions, use

multi-catch block.

Catching multiple exception.

Catching multiple exceptions using the catch statement in Java 7 allows developers to handle

multiple exception types in a single catch block, reducing code redundancy and making the code

more concise.

 catch(FirstException | SecondException | ThirdException e)

 {

 ……

 …..

 }

Data Types:-

An attribute that identifies a piece of data and instructs a computer system on how to interpret its value is

called a data type.

The term “data type” in software programming describes the kind of value a variable possesses and the

kinds of mathematical, relational, or logical operations that can be performed on it without leading to an

error. Numerous programming languages, for instance, utilize the data types string, integer, and floating

point to represent text, whole numbers, and values with decimal points, respectively. An interpreter or

compiler can determine how a programmer plans to use a given set of data by looking up its data type.

The data comes in different forms. Examples include:

 your name – a string of characters

 your age – usually an integer

 the amount of money in your pocket- usually decimal type

 today’s date – written in date time format

Common Data Types in Programming:

1. Primitive Data Types:

Primitives are predefined data types that are independent of all other kinds and include basic values of

particular attributes, like text or numeric values. They are the most fundamental type and are used as the

foundation for more complex data types. Most computer languages probably employ some variation of

these simple data types.

2. Composite Data Types:

Composite data types are made up of various primitive kinds that are typically supplied by the user. They

are also referred to as user-defined or non-primitive data types. Composite types fall into four main

categories: semi-structured (stores data as a set of relationships); multimedia (stores data as images,

music, or videos); homogeneous (needs all values to be of the same data type); and tabular (stores data in

tabular form).

3. User Defined Data Types:

A user-defined data type (UDT) is a data type that derived from an existing data type. You can use other

built-in types already available and create your own customized data types.

Common Primitive Data Types in Programming:

Some common primitive datatypes are as follow:

Data Type Definition Examples

Integer (int)

represent numeric data type for

numbers without fractions
300, 0 , -300

Floating Point (float)

represent numeric data type for

numbers with fractions
34.67, 56.99, -78.09

Character (char)

represent single letter, digit,

punctuation mark, symbol, or

blank space

a , 1, !

Boolean (bool) True or false values true- 1, false- 0

Date

Date in the YYYY-MM-DD

format (ISO 8601 syntax)
2024-01-01

Time

Time in the hh:mm:ss format for

the time of day, time since an

event, or time interval between

events

12:34:20

Datetime

Date and time together in the

YYYY-MM-DD hh:mm:ss

format

2024 -01-01 12:34:20

Common Composite Data Types:

Some common composite data types are as follow:

Data Type Definition Example

String (string)

Sequence of characters, digits, or

symbols—always treated as text
hello , ram , i am a girl

array

List with a number of elements in

a specific order—typically of the

same type

arr[4]= [0 , 1 , 2 , 3]

pointers

Blocks of memory that are

dynamically allocated are

managed and stored

*ptr=9

Common User-Defined Data Types:

Some common user defined data types are as follow:

Data Type Definition Example

Enumerated Type (enum)

Small set of predefined unique

values (elements or enumerators)

that can be text-based or

numerical

Sunday -0, Monday -1

Structure

allows to combining of data

items of different kinds
struct s{ …}

Union

contains a group of data objects

that can have varied data types
union u {…}

Static vs. Dynamic Typing in Programming:

Characteristic Static Typing Dynamic Typing

Definition of Data Types

Requires explicit definition of

data types

Data types are determined at

runtime

Type Declaration

Programmer explicitly declares

variable types
Type declaration is not required

Error Detection

Early error detection during

compile time
Errors may surface at runtime

Code Readability

Explicit types can enhance code

readability

Code may be more concise but

less explicit

Flexibility

Less flexible as types are fixed at

compile time

More flexible, allows variable

types to change

Compilation Process

Requires a separate compilation

step

No separate compilation step

needed

Example Languages C, Java, Swift Python, JavaScript, Ruby

Abstraction:

Abstraction is used to hide background details or any unnecessary implementation about the data so that

users only see the required information. It is one of the most important and essential features of object-

oriented programming.

Types of Abstraction

Abstraction using classes

Abstraction can be implemented with classes. Classes have private and public identifiers to limit the scope of

any variable or a function.

Abstraction in header files

Header files of many languages store some pre-defined function, for example, the pow() function in

C++, .sort(), etc. A user knows how and when to use them; however, their workings are kept hidden in these

header files/libraries.

An example of Data Abstraction

Users cannot access the private variables in the above illustration. However, they can be accessed and

modified by the set() and get() methods. Let’s look at an example below:

Although members declared as public in a class can be accessed from anywhere in the program, members

declared as private in a class can only be accessed from within the class.

Inheritance:-

Inheritance in Java is a mechanism in which one object acquires all the properties and behaviors of a parent

object. It is an important part of OOPs (Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes that are built upon existing classes.

When you inherit from an existing class, you can reuse methods and fields of the parent class. Moreover, you

can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Types of inheritance:-

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

Module-3

 Lambda Calculus:

 The Lambda-calculus is the computational model the functional languages are based on.

It is a very simple mathematical formalism. In the theory of the λ-calculus one is enabled to formalize, study

and investigate properties and notions common to all the functional languages, without being burdened by all

the technicalities of actual languages, useless from a theoretical point of view.

In a sense, the λ-calculus it is a paradigmatic and extremely simple functional language.

The concepts the Lambda-calculus is based on are those that are fundamental in all functional programming

languages:

variable (formalisable by x, y ,z,…)

abstraction (anonymous function) (formalisable by λx.M

 where M is a term and x a variable)

application (formalizable by MN, where M and N are terms)

We have seen that these are indeed fundamental notions in functional programming. It seems, however, that

there are other important notions: basic elements, basic operators and the possibility of giving names to

expressions.

Even if it could appear very strange, this notions actually are not really fundamental ones: they can be

derived from the first ones.

This means that our fucntional computational model can be based on the concepts of variable, functional

abstracion and application alone.

Using the formalization of these three concepts we form the lambda-terms. These terms represent

both programs and data in our computational model (whose strenght in fact strongly depends on the fact it

does not distinguish between "programs" and "data".)

 The formal definition of the terms of the Lambda-calculus (lambda-terms) is given by the following

grammar:

Λ ::= X | (ΛΛ) | λX.Λ

where Λ stands for the set of lambda-terms and X is a metavariable that ranges over the (numerable) set of

variables (x, y, v, w, z, x2, x2,...)

Variable and application are well-known concepts, but what is abstraction?

Abstraction is needed to create anonymous functions (i.e. functions without a name). We have seen that

being able to specify an anonymous function is very important in fucntional programming, but it is also

important to be able to associate an identifier to an anonymous function. Nonetheless we can avoid to

introduce in our model the notion of "giving a name to a function". You could ask: how is it possible to

define a function like fac without being able to refer to it trought its name??? Believe me, it is possible!.

The term λx. M represents the anonymous function that, given an input x, returns the "value" of the body M.

Other notions, usually considered as primitive, like basic operators (+, *, -, ...) or natural numbers, are not

strictly needed in our computational model (indeed they can actually be treated as derived concepts.)

Bracketing conventions

For readability sake, it is useful to abbreviate nested abstractions and applications as follows:

(λx1.(λx2. (λxn.M) ...) is abbreviated by (λx1x2 ... xn.M)

(... ((M1M2)M3) ... Mn) is abbreviated by (M1M2M3 ... Mn)

We also use the convention of dropping outermost parentheses and those enclosing the body of an

abstraction.

Example:

(λx.(x (λy.(yx)))) can be written as λx.x(λy.yx)

In an abstraction λx.P, the term P is said to be the scope of the abstraction.

In a term, the occurrence of a variable is said to be bound if it occurs in the scope of an abstraction (i.e. it

represents the argument in the body of a function).

It is said to be free otherwise.

These two concepts can be formalized by the following definitions.

Definition of bound variable

We define BV(M), the set of the Bound Variables of M, by induction on the term as follows:

BV(x) = Φ (the emptyset)

BV(PQ) = BV(P) U BV(Q)

BV(λx.P) = {x} U BV(P)

Definition of free variable

We define FV(M), the set of the Free Variables of M, by induction on the term as follows:

FV(x) = {x}

FV(PQ) = FV(P) U FV(Q)

FV(λx.P) = FV(P) \ {x}

Substitution

The notation M [L / x] denotes the term M in which any free (i.e. not representing any argument of a

function) occurrence of the variable x in M is replaced by the term L.

Definition of substitution (by induction on the structure of the term)

1. If M is a variable (M = y) then:

y [L/x] ≡ {
L if x=y

y if x≠y

2. If M is an application (M = PQ) then:

PQ [L/x] = P[L/x] Q[L/x]

3. If M is a lambda-abstraction (M = λy.P) then:

λy.P[L/x] ≡ {
λy.P if x=y

λy.(P [L /x]) if x≠y

Notice that in a lambda abstraction a substitution is performed only if the variable to be substituted is free.

Great care is needed when performing a substitution, as the following example shows:

Example:

Both of the terms (λx.z) and (λy.z) obviously represent the constant function which returns z for

any argument

Let us assume we wish to apply to both of these terms the substitution [x / z] (we replace x for the free

variable z). If we do not take into account the fact that the variable x is free in the term x and bound in

(λx.z) we get:

(λx.z) [x / z] => λx.(z[x / z]) => λx.x representing the identity function

(λy.z) [x / z] => λy.(z[x/ z]) => λy.x representing the function that returns always x

This is absurd, since both the initial terms are intended to denote the very same thing (a constant

function returning z), but by applying the substitution we obtain two terms denoting very different things.

Hence a necessary condition in order the substitution M[L/x] be correctly performed is that free

variables in L does not change status (i.e. become not free) after the substitution. More formally:

FV(L) and BV(M) must be disjoint sets.

Such a problem is present in all the programming languages, also imperative ones.

Example:

Let us consider the following substitution:

(λz.x) [zw/x]

The free variable z in the term to be substituted would become bound after the substitution. This is

meaningless. So, what it has to be done is to rename the bound variables in the term on which the

substitution is performed, in order the condition stated above be satisfied:

(λq.x) [zw/x]

 now, by performing the substitution, we correctly get: (λq.zw)

The example above introduces and justifies the notion of alpha-convertibility

The notion of alpha-convertibility

A bound variable is used to represent where, in the body of a function, the argument of the function is used.

In order to have a meaningful calculus, terms which differ just for the names of their bound variables have to

be considered identical. We could introduce such a notion of identity in a very formal way, by defining the

relation of α-convertibility. Here is an example of two terms in such a relation.

λz.z =α λx.x

We do not formally define here such a relation. For us it is sufficient to know that two terms are α-

convertible whenever one can be obtained from the other by simply renaming the bound variables.

Obviously alpha convertibility mantains completely unaltered both the meaning of the term and how much

this meaning is explicit. From now on, we shall implicitely work on λ-terms modulo alpha conversion. This

means that from now on two alpha convertible terms like λz.z and λx.x are for us the very same term.

Higher Order Function:-

Functions are values just like any other value in OCaml. What does that mean exactly? This means that we

can pass functions around as arguments to other functions, that we can store functions in data structures, that

we can return functions as a result from other functions.

Let us look at why it is useful to have higher-order functions. The first reason is that it allows you to write

general, reusable code. Consider these functions double and square on integers:

let double x = 2 * x

let square x = x * x

Let's use these functions to write other functions that quadruple and raise a number to the fourth power:

let quad x = double (double x)

let fourth x = square (square x)

There is an obvious similarity between these two functions: what they do is apply a given function twice to a

value. By passing in the function to another function twice as an argument, we can abstract this

functionality:

let twice f x = f (f x)

(* twice : ('a -> 'a) -> 'a -> 'a *)

Using twice , we can implement quad and fourth in a uniform way:

let quad x = twice double x

let fourth x = twice square x

Higher-order functions either take other functions as input or return other functions as output (or both). The

function twice is higher-order: its input f is a function. And—recalling that all OCaml functions really take

only a single argument—its output is technically fun x -> f (f x) , so twice returns a function hence is also

higher-order in that way. Higher-order functions are also known as functionals, and programming with them

could be called functional programming—indicating what the heart of programming in languages like

OCaml is all about

Evaluation Strategies

The parameter evaluation strategy adopted by a programming language defines when parameters are

evaluated during function calls. There are two main strategies: strict and lazy evaluation.

Strict Evaluation

The strict evaluation strategy consists in the full evaluation of parameters before passing them to functions.

The two most common evaluation strategies: by-value and by-reference, fit into this category.

Call-by-Value: The call-by-value strategy consists in copying the contents of the actual parameters into the

formal parameters. State changes performed in the formal parameters do not reflect back into the actual

parameters. A well-known example of this type of behavior is given by the swap function below,

implemented in C:

void swap(int x, int y) {

 int aux = x;

 x = y;

 y = aux;;

}

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 swap(a, b);

 printf("%d, %d\n", a, b);

}

Once the swap function is called, the contents of variables a and b are copied to the formal parameters x and

y respectively. The data exchange that happens in the body of swap only affect the formal parameters, but not

the actual ones. In other words, the swap call is innocuous in this program. In order to circumvent this

semantics, the language C lets us use pointers to pass the address of a location, instead of its contents. Thus,

the function below swaps the contents of two variables, as intended:

void swap(int *x, int *y) {

 int aux = *x;

 *x = *y;

 *y = aux;

}

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 swap(&a, &b);

 printf("%d, %d\n", a, b);

}

The call-by-value strategy is very common among programming languages. It is the strategy of choice in C,

Java, Python and even C++, although this last language also supports call-by-reference.

Call-by-Reference: whereas in the call-by-value strategy we copy the contents of the actual parameter to the

formal parameter, in the call-by-reference we copy the address of the actual parameter to the formal one. A

few languages implement the call-by-reference strategy. C++ is one of them. The program below re-

implements the swap function, using the call-by-reference policy:

void swap(int &x, int &y) {

 int aux = x;

 x = y;

 y = aux;

}

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 swap(a, b);

 printf("%d, %d\n", a, b);

}

In C++, parameter passing by reference is a syntactic sugar for the use of pointers. If we take a careful look

into the assembly code that g++, the C++ compiler, produces for the function swap, above, and the function

swap with pointers, we will realize that it is absolutely the same.

The call-by-reference might be faster than the call-by-value if the data-structures passed to the function have

a large size. Nevertheless, this strategy is not present in the currently main-stream languages, but C++.

Parameter passing by reference might lead to programs that are difficult to understand. For instance, the

function below also implements the swap function; however, it combines three xor operations to avoid the

need for an auxiliary variable.

void xor_swap(int &x, int &y) {

 x = x ^ y;

 y = x ^ y;

 x = x ^ y;

}

This function might lead to unexpected results if the formal parameters x and y alias the same location. For

instance, the program below, which uses the xor_swap implementation zeros the actual parameter, instead of

keeping its value:

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 xor_swap(a, a);

 printf("%d, %d\n", a, b);

}

Lazy Evaluation

The strict evaluation strategies force the evaluation of the actual parameters before passing them to the called

function. To illustrate this fact, the program below, implemented in python, loops.

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Exclusive_or

def andF(a, b):

 if not a:

 return True

 else:

 return b

def g(x):

 if g(x):

 return True

 else:

 return False

f = andF(False, g(3))

There are parameter passing strategies that do not require the parameters to be evaluated before being passed

to the called function. These strategies are called lazy. The three most well-known lazy strategies are call by

macro expansion, call by name and call by need.

Call by Macro Expansion: many programming languages, including C, lisp and scheme, provide

developers with a mechanism to add new syntax to the core language grammar called macros. Macros are

expanded into code by a macro preprocessor. These macros might contain arguments, which are copied in the

final code that the preprocessor produces. As an example, the C program below implements the swap

function via a macro:

#define SWAP(X,Y) {int temp=X; X=Y; Y=temp;}

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 SWAP(a, b);

 printf("%d, %d\n", a, b);

}

This macro implements a valid swap routine. The preprocessed program will look like the code below.

Because the body of the macro is directly copied into the text of the calling program, it operates on the

context of that program. In other words, the macro will refer directly to the variable names that it receives,

and not to their values.

int main() {

 int a = 2;

 int b = 3;

 printf("%d, %d\n", a, b);

 { int tmp = (a); (a) = (b); (b) = tmp; };

 printf("%d, %d\n", a, b);

}

The expressions passed to the macro as parameters are evaluated every time they are used in the body of the

macro. If the argument is never used, then it is simply not evaluated. As an example, the program below will

increment the variable b twice:

https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Preprocessor

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

int main() {

 int a = 2, b = 3;

 int c = MAX(a, b++);

 printf("a = %d, b = %d, c = %d\n", a, b, c);

}

Macros suffer from one problem, called variable capture. If a macro defines a variable v that is already

defined in the environment of the caller, and v is passed to the macro as a parameter, the body of the macro

will not be able to distinguish one occurrence of v from the other. For instance, the program below has a

macro that defines a variable temp. The call inside main causes the variable temp defined inside this function

to be captured by the definition inside the macro's body.

#define SWAP(X,Y) {int temp=X; X=Y; Y=temp;}

int main() {

 int a = 2;

 int temp = 17;

 printf("%d, temp = %d\n", a, temp);

 SWAP(a, temp);

 printf("%d, temp = %d\n", a, temp);

}

Once this program is expanded by the C preprocessor, we get the code below. This program fails to exchange

the values of variables temp and a:

int main() {

 int a = 2;

 int temp = 17;

 printf("%d, temp = %d\n", a, temp);

 {int temp=a; a=temp; temp=temp;};

 printf("%d, temp = %d\n", a, temp);

}

There are a number of lazy evaluation strategies that avoid the variable capture problem. The two best known

techniques are call-by-name and call-by-need.

Call by Name: in this evaluation strategy the actual parameter is only evaluated if used inside the function;

however, this evaluation uses the context of the caller routine. For instance, in the example below, taken

from Weber's book, we have a function g that returns the integer 6. Inside the function f, the first assignment,

e.g., b = 5, stores 5 in variable i. The second assignment, b = a, reads the value of i, currently 5, and adds 1 to

it. This value is then stored at i.

void f(by-name int a, by-name int b) {

 b=5;

 b=a;

}

int g() {

 int i = 3;

 f(i+1,i);

 return i;

http://www.webber-labs.com/mpl.html

}

Very few languages implement the call by name evaluation strategy. The most eminent among these

languages is Algol. Simula, a direct descendent of Algol, also implements call by name, as we can see in

this example. The call by name always causes the evaluation of the parameter, even if this parameter is used

multiple times. This behavior might be wasteful in referentially transparent languages, because, in these

languages variables are immutable. There is an evaluation strategy that goes around this problem: the call by

need.

Call by Need: in this evaluation strategy, a parameter is evaluated only if it is used. However, once the first

evaluation happens, its result is cached, so that further uses of the parameter do not require a re-evaluation.

This mechanism provides the following three guarantees:

 The expression is only evaluated if the result is required by the calling function;

 The expression is only evaluated to the extent that is required by the calling function;

 The expression is never evaluated more than once, called applicative-order evaluation.

Haskell is a language notorious for using call by need. This evaluation strategy is a key feature that the

language designers have used to keep Haskell a purely functional language. For instance, call by need lets the

language to simulate the input channel as an infinite list, which must be evaluated only as much as data has

been read. An an example, the program below computes the n-th term of the Fibonacci Sequence. Yet, the

function fib, that generates this sequence, has no termination condition!

fib m n = m : (fib n (m+n))

getIt [] _ = 0

getIt (x:xs) 1 = x

getIt (x:xs) n = getIt xs (n-1)

getN n = getIt (fib 0 1) n

The getIt function expands the list produced by fib only as many times as it is necessary to read its n-th

element. For instance, below we have a sequence of calls that compute the 4-th element of the Fibonacci

sequence:

getIt (fib 0 1) 4

= getIt (0 : fib 1 1) 4

getIt (fib 1 1) 3

= getIt (1 : fib 1 2) 3

getIt (fib 1 2) 2

= getIt (1 : fib 2 3) 2

getIt (fib 2 3) 1

= getIt (2 : fib 3 5) 1

= 2

Type Checking

Type checking is an essential process in programming where a compiler verifies and enforces constraints on

data types within a program. It ensures that the code follows the syntactic and semantic rules of the

https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Simula#Call_by_name
https://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Fibonacci_number

programming language, including type regulations. Type checking assigns types to values, restricts their

usage accordingly, and detects any violations. The compiler's type checker module plays a crucial role in

managing and computing data types, correcting errors, and maintaining the integrity of the program.

 Types of Type Checking

There are two primary types of type checking:

1. Static Type Checking: Performed at compile time, static type checking verifies types of variables

based on the program's source code. It detects errors before the program runs, enhancing code

reliability.

2. Dynamic Type Checking: Dynamic type checking occurs at runtime and verifies types as the

program executes. While more flexible, dynamic type checking may lead to runtime errors if types

don't match.

Static type checking :-

 Static type checking is defined as type checking performed at compile time. It checks the type variables at

compile-time, which means the type of the variable is known at the compile time. It generally examines the

program text during the translation of the program. Using the type rules of a system, a compiler can infer

from the source text that a function (fun) will be applied to an operand (a) of the right type each time the

expression fun(a) is evaluated.

Examples of Static checks include:

 Type-checks: A compiler should report an error if an operator is applied to an incompatible operand.

For example, if an array variable and function variable are added together.

 The flow of control checks: Statements that cause the flow of control to leave a construct must have

someplace to which to transfer the flow of control. For example, a break statement in C causes control

to leave the smallest enclosing while, for, or switch statement, an error occurs if such an enclosing

statement does not exist.

 Uniqueness checks: There are situations in which an object must be defined only once. For example,

in Pascal an identifier must be declared uniquely, labels in a case statement must be distinct, and else a

statement in a scalar type may not be represented.

 Name-related checks: Sometimes the same name may appear two or more times. For example in Ada,

a loop may have a name that appears at the beginning and end of the construct. The compiler must

check that the same name is used at both places.

The Benefits of Static Type Checking:
1. Runtime Error Protection.

2. It catches syntactic errors like spurious words or extra punctuation.

3. It catches wrong names like Math and Predefined Naming.

4. Detects incorrect argument types.

5. It catches the wrong number of arguments.

6. It catches wrong return types, like return “70”, from a function that’s declared to return an int.

Dynamic Type Checking:

Dynamic Type Checking is defined as the type checking being done at run time. In Dynamic Type

Checking, types are associated with values, not variables. Implementations of dynamically type-checked

languages runtime objects are generally associated with each other through a type tag, which is a reference

to a type containing its type information. Dynamic typing is more flexible. A static type system always

restricts what can be conveniently expressed. Dynamic typing results in more compact programs since it is

more flexible and does not require types to be spelled out. Programming with a static type system often

requires more design and implementation effort.

https://www.geeksforgeeks.org/type-systemsdynamic-typing-static-typing-duck-typing/
https://www.geeksforgeeks.org/type-systemsdynamic-typing-static-typing-duck-typing/

Languages like Pascal and C have static type checking. Type checking is used to check the correctness of

the program before its execution. The main purpose of type-checking is to check the correctness and data

type assignments and type-casting of the data types, whether it is syntactically correct or not before their

execution.

Static Type-Checking is also used to determine the amount of memory needed to store the variable.

The design of the type-checker depends on:
1. Syntactic Structure of language constructs.

2. The Expressions of languages.

3. The rules for assigning types to constructs (semantic rules).

The Position of the Type checker in the Compiler:

.

SLD Resolution:-

Unification:-

o Unification is a process of making two different logical atomic expressions identical by finding a

substitution. Unification depends on the substitution process.

o It takes two literals as input and makes them identical using substitution.

o Let Ψ1 and Ψ2 be two atomic sentences and 𝜎 be a unifier such that, Ψ1𝜎 = Ψ2𝜎, then it can be

expressed as UNIFY(Ψ1, Ψ2).

o Example: Find the MGU for Unify{King(x), King(John)}

Let Ψ1 = King(x), Ψ2 = King(John),

Substitution θ = {John/x} is a unifier for these atoms and applying this substitution, and both

expressions will be identical.

o The UNIFY algorithm is used for unification, which takes two atomic sentences and returns a unifier

for those sentences (If any exist).

o Unification is a key component of all first-order inference algorithms.

o It returns fail if the expressions do not match with each other.

o The substitution variables are called Most General Unifier or MGU.

E.g. Let's say there are two different expressions, P(x, y), and P(a, f(z)).

In this example, we need to make both above statements identical to each other. For this, we will

perform the substitution.

 P(x, y)......... (i)

 P(a, f(z))......... (ii)

o Substitute x with a, and y with f(z) in the first expression, and it will be represented as a/x and f(z)/y.

o With both the substitutions, the first expression will be identical to the second expression and the

substitution set will be: [a/x, f(z)/y].

Conditions for Unification:

Following are some basic conditions for unification:

o Predicate symbol must be same, atoms or expression with different predicate symbol can never be

unified.

o Number of Arguments in both expressions must be identical.

o Unification will fail if there are two similar variables present in the same expression.

Unification Algorithm:

Algorithm: Unify(Ψ1, Ψ2)

Step. 1: If Ψ1 or Ψ2 is a variable or constant, then:

 a) If Ψ1 or Ψ2 are identical, then return NIL.

 b) Else if Ψ1is a variable,

 a. then if Ψ1 occurs in Ψ2, then return FAILURE

 b. Else return { (Ψ2/ Ψ1)}.

 c) Else if Ψ2 is a variable,

 a. If Ψ2 occurs in Ψ1 then return FAILURE,

 b. Else return {(Ψ1/ Ψ2)}.

 d) Else return FAILURE.

Step.2: If the initial Predicate symbol in Ψ1 and Ψ2 are not same, then return FAILURE.

Step. 3: IF Ψ1 and Ψ2 have a different number of arguments, then return FAILURE.

Step. 4: Set Substitution set(SUBST) to NIL.

Step. 5: For i=1 to the number of elements in Ψ1.

 a) Call Unify function with the ith element of Ψ1 and ith element of Ψ2, and put

the result into S.

 b) If S = failure then returns Failure

 c) If S ≠ NIL then do,

 a. Apply S to the remainder of both L1 and L2.

 b. SUBST= APPEND(S, SUBST).

Step.6: Return SUBST.

Implementation of the Algorithm

Step.1: Initialize the substitution set to be empty.

Step.2: Recursively unify atomic sentences:

a. Check for Identical expression match.

b. If one expression is a variable vi, and the other is a term ti which does not contain variable vi, then:

a. Substitute ti / vi in the existing substitutions

b. Add ti /vi to the substitution setlist.

c. If both the expressions are functions, then function name must be similar, and the number of

arguments must be the same in both the expression.

Hence, unification is not possible for these expressions.

4. Find the MGU of UNIFY(prime (11), prime(y))

Negations:

Module-4

Concurrency

 Concurrency means multiple computations are happening at the same time. Concurrency is everywhere in modern

programming, whether we like it or not:

 Multiple computers in a network

 Multiple applications running on one computer

 Multiple processors in a computer (today, often multiple processor cores on a single chip)

In fact, concurrency is essential in modern programming:

 Web sites must handle multiple simultaneous users.

 Mobile apps need to do some of their processing on servers (“in the cloud”).

 Graphical user interfaces almost always require background work that does not interrupt the user. For

example, Eclipse compiles your Java code while you’re still editing it.

Being able to program with concurrency will still be important in the future. Processor clock speeds are no

longer increasing. Instead, we’re getting more cores with each new generation of chips. So in the future, in

order to get a computation to run faster, we’ll have to split up a computation into concurrent pieces.

Two Models for Concurrent Programming

There are two common models for concurrent programming: shared memory and message passing.

Shared memory. In the shared memory model of concurrency, concurrent modules interact by reading and

writing shared objects in memory.

Other examples of the shared-memory model:

 A and B might be two processors (or processor cores) in the same computer, sharing the same

physical memory.

 A and B might be two programs running on the same computer, sharing a common filesystem with

files they can read and write.

 A and B might be two threads in the same Java program (we’ll explain what a thread is below),

sharing the same Java objects.

Message passing. In the message-passing model, concurrent modules interact by sending messages to each

other through a communication channel. Modules send off messages, and incoming messages to each module

are queued up for handling. Examples include:

 A and B might be two computers in a network, communicating by network connections.

 A and B might be a web browser and a web server – A opens a connection to B, asks for a web page,

and B sends the web page data back to A.

 A and B might be an instant messaging client and server.

 A and B might be two programs running on the same computer whose input and output have been

connected by a pipe, like ls | grep typed into a command prompt.

Processes, Threads, Time-slicing

The message-passing and shared-memory models are about how concurrent modules communicate. The

concurrent modules themselves come in two different kinds: processes and threads.

Process. A process is an instance of a running program that is isolated from other processes on the same

machine. In particular, it has its own private section of the machine’s memory.

The process abstraction is a virtual computer. It makes the program feel like it has the entire machine to itself

– like a fresh computer has been created, with fresh memory, just to run that program.

Just like computers connected across a network, processes normally share no memory between them. A

process can’t access another process’s memory or objects at all. Sharing memory between processes

is possible on most operating system, but it needs special effort. By contrast, a new process is automatically

ready for message passing, because it is created with standard input & output streams, which are

the System.out and System.in streams you’ve used in Java.

Thread. A thread is a locus of control inside a running program. Think of it as a place in the program that is

being run, plus the stack of method calls that led to that place to which it will be necessary to return through.

Just as a process represents a virtual computer, the thread abstraction represents a virtual processor. Making

a new thread simulates making a fresh processor inside the virtual computer represented by the process. This

new virtual processor runs the same program and shares the same memory as other threads in process.

Threads are automatically ready for shared memory, because threads share all the memory in the process. It

needs special effort to get “thread-local” memory that’s private to a single thread. It’s also necessary to set up

message-passing explicitly, by creating and using queue data structures. We’ll talk about how to do that in a

future reading.

How can I have many concurrent threads with only one or two processors in my computer? When there are

more threads than processors, concurrency is simulated by time slicing, which means that the processor

switches between threads. The figure on the right shows how three threads T1, T2, and T3 might be time-

sliced on a machine that has only two actual processors. In the figure, time proceeds downward, so at first

one processor is running thread T1 and the other is running thread T2, and then the second processor

switches to run thread T3. Thread T2 simply pauses, until its next time slice on the same processor or another

processor.

Shared Memory Example

Let’s look at an example of a shared memory system. The point of this example is to show that concurrent

programming is hard, because it can have subtle bugs.

Imagine that a bank has cash machines that use a shared memory model, so all the cash machines can read

and write the same account objects in memory.

To illustrate what can go wrong, let’s simplify the bank down to a single account, with a dollar balance

stored in the balance variable, and two operations deposit and withdraw that simply add or remove a dollar:

// suppose all the cash machines share a single bank account

private static int balance = 0;

private static void deposit() {

 balance = balance + 1;

}

private static void withdraw() {

 balance = balance - 1;

}

Customers use the cash machines to do transactions like this:

deposit(); // put a dollar in

withdraw(); // take it back out

In this simple example, every transaction is just a one dollar deposit followed by a one-dollar withdrawal, so

it should leave the balance in the account unchanged. Throughout the day, each cash machine in our network

is processing a sequence of deposit/withdraw transactions.

// each ATM does a bunch of transactions that

// modify balance, but leave it unchanged afterward

private static void cashMachine() {

 for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) {

 deposit(); // put a dollar in

 withdraw(); // take it back out

 }

}

 Inter-thread Communication in Java

Inter-thread communication or Co-operation is all about allowing synchronized threads to communicate

with each other. Cooperation (Inter-thread communication) is a mechanism in which a thread is paused

running in its critical section and another thread is allowed to enter (or lock) in the same critical section to

be executed.It is implemented by following methods of Object class:

 wait()

 notify()

 notifyAll()

1) wait() method
The wait() method causes current thread to release the lock and wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized method only

otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException It waits until object is notified.

public final void wait(long timeout)throws InterruptedException It waits for the specified amount of time.

2) notify() method
The notify() method wakes up a single thread that is waiting on this object's monitor. If any threads are

waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation.

Syntax:

public final void notify()

3) notifyAll() method
Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

Threads enter to acquire lock.

Lock is acquired by on thread.

Now thread goes to waiting state if you call wait() method on the object. Otherwise it releases the lock and

exits.If you call notify() or notifyAll() method, thread moves to the notified state (runnable state).

Now thread is available to acquire lock.After completion of the task, thread releases the lock and exits the

monitor state of the object.

Example of Inter Thread Communication in Java
Let's see the simple example of inter thread communication.

Test.java

class Customer{

int amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;

System.out.println("withdraw completed...");

}

synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount;

System.out.println("deposit completed... ");

notify();

}

}

class Test{

public static void main(String args[]){

final Customer c=new Customer();

new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

public void run(){c.deposit(10000);}

}.start();

}}

Output:

going to withdraw...
Less balance; waiting for deposit...
going to deposit...
deposit completed...
withdraw completed

Synchronization in Java
Synchronization in Java is the capability to control the access of multiple threads to any shared

resource.Java Synchronization is better option where we want to allow only one thread to access

the shared resource.

Why use Synchronization?
 The synchronization is mainly used to

 To prevent thread interference.

 To prevent consistency problem.

Types of Synchronization
There are two types of synchronization

 Process Synchronization

 Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization
There are two types of thread synchronization mutual exclusive and inter-thread communication.

 Mutual Exclusive

 Synchronized method.

 Synchronized block.

 Static synchronization.

Cooperation (Inter-thread communication in java)

Mutual Exclusive
Mutual Exclusive helps keep threads from interfering with one another while sharing data. It can be

achieved by using the following three ways:

By Using Synchronized Method

By Using Synchronized Block

By Using Static Synchronization

 Understanding the problem without Synchronization

In this example, there is no synchronization, so output is inconsistent. Let's see the example:

TestSynchronization1.java

class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output:
 5

 100

 10

 200

 15

 300

 20

 400

 25

 500

Java Synchronized Method
If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource.

When a thread invokes a synchronized method, it automatically acquires the lock for that object

and releases it when the thread completes its task.

TestSynchronization2.java

//example of java synchronized method

class Table{

 synchronized void printTable(int n){//synchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output:
ADVERTISEMENT

ADVERTISEMENT

 5

 10

 15

 20

 25

 100

 200

 300

 400

 500

 Safety and liveness properties

What is multithreading?

Multithreading is the ability of a program or an operating system to enable more than one user at

a time without requiring multiple copies of the program running on the computer. Multithreading

can also handle multiple requests from the same user. Each user request for a program or system

service is tracked as a thread with a separate identity. As programs work on behalf of the initial

thread request and are interrupted by other requests, the work status of the initial request is

tracked until the work is completed. In this context, a user can also be another program. Fast

central processing unit (CPU) speed and large memory capacities are needed for multithreading.

The single processor executes pieces, or threads, of various programs so fast, it appears the

computer is handling multiple requests simultaneously.

https://www.techtarget.com/searchsoftwarequality/definition/program
https://www.techtarget.com/whatis/definition/operating-system-OS
https://www.techtarget.com/whatis/definition/processor
https://www.techtarget.com/whatis/definition/memory

With multithreading, while the computer system's processor executes one instruction at a time, different threads

from multiple programs are executed so fast it appears the programs are executed simultaneously.

How does multithreading work?

The extremely fast processing speeds of today's microprocessors make multithreading possible.

Even though the processor executes only one instruction at a time, threads from multiple

programs are executed so fast that it appears multiple programs are executing concurrently.

Each CPU cycle executes a single thread that links to all other threads in its stream. This

synchronization process occurs so quickly that it appears all the streams are executing at the

same time. This can be described as a multithreaded program, as it can execute many threads

while processing.

Each thread contains information about how it relates to the overall program. While in the

asynchronous processing stream, some threads are executed while others wait for their turn.

Multithreading requires programmers to pay careful attention to prevent race

conditions and deadlock.

An example of multithreading

Multithreading is used in many different contexts. One example occurs when data is entered into

a spreadsheet and used for a real-time application.

When working on a spreadsheet, a user enters data into a cell, and the following may happen:

 column widths may be adjusted;

 repeating cell elements may be replicated; and

 spreadsheets may be saved multiple times as the file is further developed.

Each activity occurs because multiple threads are generated and processed for each activity

without slowing down the overall spreadsheet application operation.

Example:-

class ABC implements Runnable
{
public void run()
{

https://www.techtarget.com/whatis/definition/instruction
https://www.techtarget.com/searchstorage/definition/race-condition
https://www.techtarget.com/searchstorage/definition/race-condition
https://www.techtarget.com/whatis/definition/deadlock
https://www.techtarget.com/whatis/definition/spreadsheet

// try-catch block
try
{
// moving thread t2 to the state timed waiting
Thread.sleep(100);
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}

System.out.println("The state of thread t1 while it invoked the method join() on thread t2 -
"+ ThreadState.t1.getState());

// try-catch block
try
{
Thread.sleep(200);
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}
}
}

// ThreadState class implements the interface Runnable
public class ThreadState implements Runnable
{
public static Thread t1;
public static ThreadState obj;

// main method
public static void main(String argvs[])
{
// creating an object of the class ThreadState
obj = new ThreadState();
t1 = new Thread(obj);

// thread t1 is spawned
// The thread t1 is currently in the NEW state.
System.out.println("The state of thread t1 after spawning it - " + t1.getState());

// invoking the start() method on
// the thread t1
t1.start();

// thread t1 is moved to the Runnable state
System.out.println("The state of thread t1 after invoking the method start() on it - " + t1.getState());
}

public void run()
{

ABC myObj = new ABC();
Thread t2 = new Thread(myObj);

// thread t2 is created and is currently in the NEW state.
System.out.println("The state of thread t2 after spawning it - "+ t2.getState());
t2.start();

// thread t2 is moved to the runnable state
System.out.println("the state of thread t2 after calling the method start() on it - " + t2.getState());

// try-catch block for the smooth flow of the program
try
{
// moving the thread t1 to the state timed waiting
Thread.sleep(200);
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}

System.out.println("The state of thread t2 after invoking the method sleep() on it - "+ t2.getState());

// try-catch block for the smooth flow of the program
try
{
// waiting for thread t2 to complete its execution
t2.join();
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}
System.out.println("The state of thread t2 when it has completed it's execution - " + t2.getState());
}

}
Output:
The state of thread t1 after spawning it - NEW

The state of thread t1 after invoking the method start() on it - RUNNABLE

The state of thread t2 after spawning it - NEW

the state of thread t2 after calling the method start() on it - RUNNABLE

The state of thread t1 while it invoked the method join() on thread t2 -TIMED_WAITING

The state of thread t2 after invoking the method sleep() on it - TIMED_WAITING

The state of thread t2 when it has completed it's execution - TERMINATED

	C) Compiler Phases
	D) Finite state machine
	FA is 2 types 1. DFA (finite automata) 2.NDFA (non deterministic finite automata)
	DFA:- DFA stands for Deterministic Finite Automata. Deterministic refers to the uniqueness of the computation. In DFA, the input character goes to one state only. DFA doesn't accept the null move that means the DFA cannot change state without any inpu...
	Example

	NDFA:- NDFA refer to the Non Deterministic Finite Automata. It is used to transit the any number of states for a particular input. NDFA accepts the NULL move that means it can change state without reading the symbols.
	Example

	LEX:-
	E) Formal grammar:-
	Where:
	Production rules:

	F) Context free grammar
	G) Derivation
	Left-most Derivation:- In the left most derivation, the input is scanned and replaced with the production rule from left to right. So in left most derivatives we read the input string from left to right.
	Right-most Derivation:- In the right most derivation, the input is scanned and replaced with the production rule from right to left. So in right most derivatives we read the input string from right to left.

	H) Parse tree
	I) Ambigus Grammar:-
	Semantics
	Semantic Errors
	K)Attribute Grammar
	Synthesized attributes
	Inherited attributes

	L)S-attributed SDT
	L-attributed SDT
	 Static Binding
	 Static Binding is also known as Compile Time Binding.
	Dynamic Binding
	Static Binding VS Dynamic Binding
	1. Primitive Data Types:
	2. Composite Data Types:
	3. User Defined Data Types:

	Common Primitive Data Types in Programming:
	Common Composite Data Types:
	Common User-Defined Data Types:
	Static vs. Dynamic Typing in Programming:
	Types of Abstraction
	Abstraction using classes
	Abstraction in header files
	Evaluation Strategies
	Strict Evaluation
	Lazy Evaluation

	Type Checking
	Static type checking :-
	Dynamic Type Checking:

	SLD Resolution:-
	Unification:-
	Conditions for Unification:
	Unification Algorithm:
	Implementation of the Algorithm
	Negations:
	Module-4
	Concurrency
	Two Models for Concurrent Programming
	Processes, Threads, Time-slicing
	Shared Memory Example

	Safety and liveness properties
	What is multithreading?
	How does multithreading work?
	An example of multithreading

