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UNIT I: INTRODUCTION TO DIGITAL SIGNAL PROCESSING 

 

 
 INTRODUCTION 

Signals constitute an important part of our daily life. Anything that carries some information 

is called a signal. A signal is defined as a single-valued function of one or more independent 

variables which contain some information. A signal is also defined as a physical quantity that varies 

with time, space or any other independent variable. A signal may be represented in time domain or 

frequency domain. Human speech is a familiar example of a signal. Electric current and voltage are 

also examples of signals. A signal can be a function of one or more independent variables. A signal 

may be a function of time, temperature, position, pressure, distance etc. If a signal depends on only 

one independent variable, it is called a one- dimensional signal, and if a signal depends on two 

independent variables, it is called a two- dimensional signal. 

A system is defined as an entity that acts on an input signal and transforms it into an output 

signal. A system is also defined as a set of elements or fundamental blocks which are connected 

together and produces an output in response to an input signal. It is a cause-and- effect relation 

between two or more signals. The actual physical structure of the system determines the exact 

relation between the input x (n) and the output y (n), and specifies the output for every input. 

Systems may be single-input and single-output systems or multi-input and multi-output systems. 

Signal processing is a method of extracting information from the signal which in turn depends 

on the type of signal and the nature of information it carries. Thus signal processing is concerned 

with representing signals in the mathematical terms and extracting information by carrying out 

algorithmic operations on the signal. Digital signal processing has many advantages over analog 

signal processing. Some of these are as follows: 

Digital circuits do not depend on precise values of digital signals for their operation. Digital 

circuits are less sensitive to changes in component values. They are also less sensitive to variations 

in temperature, ageing and other external parameters. 

In a digital processor, the signals and system coefficients are represented as binary words. This 

enables one to choose any accuracy by increasing or decreasing the number of bits in the binary 

word. 

Digital processing of a signal facilitates the sharing of a single processor among a number of 

signals by time sharing. This reduces the processing cost per signal. 

Digital implementation of a system allows easy adjustment of the processor characteristics 

during processing. 

Linear phase characteristics can be achieved only with digital filters. Also multirate processing 

is possible only in the digital domain. Digital circuits can be connected in cascade without any 

loading problems, whereas this cannot be easily done with analog circuits. 

Storage of digital data is very easy. Signals can be stored on various storage media such as 

magnetic tapes, disks and optical disks without any loss. On the other hand, stored analog signals 

deteriorate rapidly as time progresses and cannot be recovered in their original form. 

Digital processing is more suited for processing very low frequency signals such as seismic 

signals. 

Though the advantages are many, there are some drawbacks associated with processing a 

signal in digital domain. Digital processing needs ‘pre’ and ‘post’ processing devices like analog-to- 

digital and digital-to-analog converters and associated reconstruction filters. This increases the 

complexity of the digital system. Also, digital techniques suffer from frequency limitations. Digital 

systems are constructed using active devices which consume power whereas analog processing 

algorithms can be implemented using passive devices which do not consume power. Moreover, 

active devices are less reliable than passive components. But the advantages of digital processing 

techniques outweigh the disadvantages in many applications. Also the cost of DSP hardware is 

decreasing continuously. Consequently, the applications of digital signal processing are increasing 

rapidly. 



The digital signal processor may be a large programmable digital computer or a small 

microprocessor programmed to perform the desired operations on the input signal. It may also be 

a hardwired digital processor configured to perform a specified set of operations on    the input 

signal. 

DSP has many applications. Some of them are: Speech processing, Communication, Biomedical, 

Consumer electronics, Seismology and Image processing. 

The block diagram of a DSP system is shown in Figure 1.1. 
 

Figure 1.1    Block diagram of a digital signal processing system. 

 
In this book we discuss only about discrete one-dimensional signals and consider only single- 

input and single-output discrete-time systems. In this chapter, we discuss about various basic 

discrete-time signals available, various operations on discrete-time signals and classification of 

discrete-time signals and discrete-time systems. 

 REPRESENTATION OF DISCRETE-TIME SIGNALS 

Discrete-time signals are signals which are defined only at discrete instants of time. For those 

signals, the amplitude between the two time instants is just not defined. For discrete-    time signal 

the independent variable is time n, and it is represented by x (n). 

There are following four ways of representing discrete-time signals: 

1. Graphical representation 

2. Functional representation 

3. Tabular representation 

4. Sequence representation 

 

 

Graphical Representation 
Consider a single x (n) with values 

X (-2) = -3, x(-1) = 2, x(0) = 0, x(1) = 3, x(2) = 1 and x(3) = 2 
This discrete-time single can be represented graphically as shown in Figure 1.2 

 

Figure 1.2    Graphical representation of discrete-time signal 

 
 Functional Representation 

In this, the amplitude of the signal is written against the values of n. The signal given in section 

1.2.1 can be represented using the functional representation as follows: 



{ } 

 

 
 

Another example is: 
 

X (n) = 2nu (n) 

2𝑛 𝑓𝑜𝑟 𝑛 ≥ 0 
Or x (n) = {0   𝑓𝑜𝑟 𝑛 < 0 

Tabular Representation 

In this, the sampling instant n and the magnitude of the signal at the sampling instant are represented 

in the tabular form. The signal given in section 1.2.1 can be represented in tabular form as follows: 

 
 

n  2  1 0 1 2 3 

x (n)  3 2 0 3 1 2 

 Sequence Representation 

A finite duration sequence given in section 1.2.1 can be represented as follows: 
 

X(n) = 
−3,2,0,3,1,2 

𝗍 

Another example is:  
 

X(n) = 

 
 

…2,3,0,1,−2… 

𝗍 } 
 

The arrow mark 𝗍 denotes the n = 0 term. When no arrow is indicated, the first term corresponds 

to n = 0. 

So a finite duration sequence, that satisfies the condition x(n) = 0 for n < 0 can be represented as: 

 
x(n) = {3, 5, 2, 1, 4, 7} 

 
SuN and product of discrete-tiNe sequences 
The sum of two discrete-time sequences is obtained by adding the corresponding elements of 

sequences 

 
{Cn} = {an} + {bn} → Cn = an + bn 

The product of two discrete-time sequences is obtained by multiplying the corresponding 

elements of the sequences. 

 
{Cn} = {an}{bn} → Cn = anbn 

The multiplication of a sequence by a constant k is obtained by multiplying each element of the 

sequence by that constant. 

{Cn} = k{an} → Cn = kan 

 ELEMENTARY DISCRETE-TIME SIGNALS 

{ 



There are several elementary signals which play vital role in the study of signals and   systems. 

These elementary signals serve as basic building blocks for the construction of more complex 

signals. Infact, these elementary signals may be used to model a large number of physical signals, 

which occur in nature. These elementary signals are also called standard signals. 

The standard discrete-time signals are as follows: 

1. Unit step sequence 

2. Unit ramp sequence 

3. Unit parabolic sequence 

4. Unit impulse sequence 

5. Sinusoidal sequence 

6. Real exponential sequence 

7. Complex exponential sequence 

 

 

Unit Step Sequence 

The step sequence is an important signal used for analysis of many discrete-time systems. It exists 

only for positive time and is zero for negative time. It is equivalent to applying a signal whose 

amplitude suddenly changes and remains constant at the sampling instants forever after application. 

In between the discrete instants it is zero. If a step function has      unity magnitude, then it is 

called unit step function. 

The usefulness of the unit-step function lies in the fact that if we want a sequence to      start at 

n = 0, so that it may have a value of zero for n < 0, we only need to multiply the given sequence 

with unit step function u (n). 

The discrete-time unit step sequence u (n) is defined as: 

1 𝑓𝑜𝑟 𝑛 ≥ 0 
U (n) = {0 𝑓𝑜𝑟 𝑛 < 0 

 
The shifted version of the discrete-time unit step sequence u(n – k) is defined as: 

1 𝑓𝑜𝑟 𝑛 ≥ 𝑘 
U (n - k) = {0 𝑓𝑜𝑟 𝑛 < 𝑘 

It is zero if the argument (n – k) < 0 and equal to 1 if the argument (n – k) S 0. 

The graphical representation of u (n) and u (n – k) is shown in Figure 1.3[(a) and (b)]. 

 
 

 

 

 
 

Figure 1.3   Discrete–time  (a) Unit  step  function  (b)  Shifted  unit step  function 

 Unit Ramp Sequence 

The discrete-time unit ramp sequence r (n) is that sequence which starts at n = 0 and increases 

linearly with time and is defined as: 

𝑛 𝑓𝑜𝑟 𝑛 ≥ 0 
r(n) = {0 𝑓𝑜𝑟 𝑛 < 0 

 
or r(n) = nu(n) 

 
 

It starts at n = 0 and increases linearly with n. 

The shifted version of the discrete-time unit ramp sequence r(n – k) is defined as: 

R(n – k) = 
𝑛 − 𝑘 𝑓𝑜𝑟 𝑛 ≥ 𝑘 

{ 
0 𝑓𝑜𝑟 𝑛 < 𝑘 

Or r(n – k) = (n – k) u(n – k) 



The graphical representation of r(n) and r(n – 2) is shown in Figure 1.4[(a) and (b)]. 

Figure 1.4   Discrete–time  (a)  Unit  ramp  sequence  (b)  Shifted  ramp  sequence. 

 Unit Parabolic Sequence 

The discrete-time unit parabolic sequence p (n) is defined as: 
𝑛2 

𝑓𝑜𝑟 𝑛 ≥ 0 
{ 2 

0 𝑓𝑜𝑟 𝑛 < 0 

Or P(n) = 𝑁
2 

u(n) 
2 

The shifted version of the discrete-time unit parabolic sequence p(n – k) is defined as: 
(𝑛−𝑘)2 

𝑓𝑜𝑟 𝑛 ≥ 𝑘 
 

P(n – k) = { 2 

0 𝑓𝑜𝑟 𝑛 < 𝑘 

Or p(n – k) = (𝑛−𝑘 )
2 

u(n – k) 
2 

The graphical representation of p(n) and p(n – 3) is shown in Figure 1.5[(a) and (b)]. 

 

Figure 1.5   Discrete–time (a) ParaboFic sequence (b)  Shifted paraboFic sequence. 

 Unit Impulse Function or Unit Sample Sequence 

The discrete-time unit impulse function (n), also called unit sample sequence, is defined as: 
 

𝛿 (𝑛) 
1 𝑓𝑜𝑟 𝑛 = 0 

= { 
0 𝑓𝑜𝑟 𝑛 ≠ 0 

This means that the unit sample sequence is a signal that is zero everywhere, except at n = 0, where its 

value is unity. It is the most widely used elementary signal used for the analysis of signals and systems. 

 

The shifted unit impulse function (n – k) is defined as: 

𝛿 (𝑛 − 𝑘) = { 
1 𝑓𝑜𝑟 𝑛 = 𝑘

 
0 𝑓𝑜𝑟 𝑛 ≠ 𝑘 

The graphical representation of (n) and (n – k) is shown in Figure 1.6[(a) and (b)]. 

Figure 1.6   Discrete–time (a) Unit sample sequence (b) Delayed unit sample sequence. 

P (n) = 



𝑘= −∞ 

𝑚=0 

Properties of discrete-time unit sample sequence 

 
1.   (n) = u(n) – u(n – 1) 2. (n – k) = { 

1 𝑓𝑜𝑟 𝑛 = 𝑘 
0 

𝑓𝑜𝑟 𝑛 ≠ 𝑘 
3.   X(n) = ∑∞ 𝑥(𝑘)𝛿 (𝑛 − 𝑘) ∞ 

𝑛= −∞ (𝑛)𝛿 (𝑛 − 𝑛0 ) = x(n0) 

 

Relation Between The Unit Sample Sequence And The Unit Step Sequence 

The unit sample sequence (n) and the unit step sequence u(n) are related as: 

U(n) = ∑𝑛 𝛿 (𝑚), 𝛿(n) = u(n) – u(n - 1) 

 

Sinusoidal Sequence 

The discrete-time sinusoidal sequence is given by 

X(n) = A sin (𝜔𝑛 + ∅) 

Where A is the amplitude, is angular frequency, is phase angle in radians and n is an integer. 

 
The period of the discrete-time sinusoidal sequence is: 

N = 2𝜋 𝑚 
𝜔 

Where N and m are integers. 

All continuous-time sinusoidal signals are periodic, but discrete-time sinusoidal sequences may 

or may not be periodic depending on the value of. 

For a discrete-time signal to be periodic, the angular frequency must be a rational multiple of 2. 
The graphical representation of a discrete-time sinusoidal signal is shown in Figure 1.7. 

 

Figure 1.7 Discrete-time sinusoidal signal 
 

 Real Exponential Sequence 

The discrete-time real exponential sequence an is defined as: 

X(n) = an for all n 

Figure 1.8 illustrates different types of discrete-time exponential signals. 

When a > 1, the sequence grows exponentially as shown in Figure 1.8(a). 

When 0 < a < 1, the sequence decays exponentially as shown in Figure 1.8(b). 

When a < 0, the sequence takes alternating signs as shown in Figure 1.8[(c) and 
 

(d)]. 

4. ∑ 



𝑛= − ∞ 

0 

𝑛= −∞ 𝑛= −∞ 

𝑛=0 

𝒏=−∞ 

 

 
 

 

Figure 1.8 Discrete-time exponential signal an for (a) a > 1 (b) 0 < a < 1 (c) a < -1 (d) -1 < a < 0. 

Complex Exponential Sequence 

The discrete-time complex exponential sequence is defined as: 

X(n) = anej(𝜔0 n+∅) 

= an cos(𝜔0𝑛 + ∅) + jan sin(𝜔0𝑛 = ∅) 

For |a| = 1, the real and imaginary parts of complex exponential sequence are sinusoidal. 

For |a| > 1, the amplitude of the sinusoidal sequence exponentially grows as shown in 

Figure 1.9(a). 

For |a| < 1, the amplitude of the sinusoidal sequence exponentially decays as shown in 

Figure 1.9(b). 

EXAMPLE 1.1 Find the following summations: 
 
 

∞ 
𝑛= −∞ 

 
𝑒3𝑛 𝛿 (𝑛 − 3) (b)  ∑∞ 

 
𝛿 (𝑛 − 2) cos 3𝑛 

 

 
 
 
 
 

 

     

Figure 1.9 complex exponential sequence x(n) = anej(𝜔 𝑛 + ∅) for (a)a > 1 (b) a < 1.  
 

(c )   ∑∞ 𝑛2 𝛿 (𝑛 + 4)      (d)∑∞   (n – 2)𝑒𝑛
2 
  

 

(e)    ∑∞   𝛿 (𝑛 + 1) 4𝑛  
 

Solution: 

(a) Given ∑∞ 

 
 

𝜹𝟑𝒏 𝜹(𝒏 − 𝟑) 

(a) ∑ 



𝑛=−∞ 

𝑛=−∞ 

𝑛=−∞ 

𝑛=0 

= [𝑒    ]=2 

We know that ( ) 1 𝑓𝑜𝑟 𝑛 = 3 
𝛿 𝑛 − 3 

∞ 

= {
0   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

∑ 𝑒3𝑛 𝛿 (𝑛 − 3) = [𝑒3𝑛]=3 = 𝑒9 
𝑛=−∞ 

(a) Given ∑∞ (𝑛 − 2) cos 3𝑛 

We know that (𝑛 − 2) = {
1   𝑓𝑜𝑟 𝑛 = 2

 
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

∞ 

∑ (𝑛 − 2)𝑜𝑠3𝑛 = [cos 3𝑛]𝑛=2 = cos 6 

𝑛=−∞ 

 

(b) Given ∑∞ 𝑛2 (𝑛 = 4) 

We know that (𝑛 = 4) = {
1 𝑓𝑜𝑟 𝑛 = −4

 
0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 
 

 
(c) Given ∑∞ 

∞ 

∑  2𝛿(𝑛 = 4) = [𝑛2]𝑛=−4 = 16 

𝑛=𝑛−∞ 

(𝑛 − 2)𝑒𝑛
2

 

We know that (𝑛 − 2) = { 
1 𝑓𝑜𝑟 𝑛 = 2

 
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 
 
 

(d) Given ∑∞ 

∞ 

∑ (𝑛 − 2)𝑛
2 𝑛2 

= 𝑒2
2 

= 𝑒4 

𝑛=−∞ 

(𝑛 = 1)4𝑛 

We know that (𝑛 = 1) = { 
1 𝑓𝑜𝑟 𝑛 = −1

 
0 𝑓𝑜𝑟 𝑛 ≠ −1 

∞ 

∑ (𝑛 + 1)4𝑛 = 0 

𝑛=0 
 

 BASIC OPERATIONS ON SEQUENCES 
 

When we process a sequence, this sequence may undergo several manipulations involving the 

independent variable or the amplitude of the signal. 

The basic operations on sequences are as follows: 

1. Time shifting 

2. Time reversal 

3. Time scaling 

4. Amplitude scaling 

5. Signal addition 

6. Signal multiplication 

The first three operations correspond to transformation in independent variable n of a signal. 

The last three operations correspond to transformation on amplitude of a signal. 

 Time Shifting 

The time shifting of a signal may result in time delay or time advance. The time shifting operation 

of a discrete-time signal x(n) can be represented by 

y(n) = x(n – k) 

This shows that the signal y (n) can be obtained by time shifting the signal x(n) by k units. If k is 

positive, it is delay and the shift is to the right, and if k is negative, it is advance and the shift is to 

the left. 



An arbitrary signal x(n) is shown in Figure 1.10(a). x(n – 3) which is obtained by shifting 

x(n) to the right by 3 units (i.e. delay x(n) by 3 units) is shown in Figure 1.10(b).       x(n + 2) which 

is obtained by shifting x(n) to the left by 2 units (i.e. advancing x(n) by 2 units) is shown in 
 

Figure 1.10(c). 

 

 

 

 Time Reversal 

Figure 1.10 (a) Sequence x(n) (b) x(n – 3) (c) x(n + 2). 

The time reversal also called time folding of a discrete-time signal x(n) can be obtained by 

foldingthe sequence about n = 0. The time reversed signal is the reflection of the original 

signal. It is obtained by replacing the independent variable n by –n. Figure 1.11(a) shows an 

arbitrary discrete-time signal x(n), and its time reversed version x(–n) is shown in Figure 1.11(b). 

Figure 1.11[(c) and (d)] shows the delayed and advanced versions of reversed signal x(–n). 

The signal x(–n + 3) is obtained by delaying (shifting to the right) the time reversed 

signal x(–n) by 3 units of time. The signal x(–n – 3) is obtained by advancing (shifting to the 

left) the time reversed signal x(–n) by 3 units of time. 

Figure 1.12 shows other examples for time reversal of signals 

EXAMPLE 1.2 Sketch the following signals: 

(a) U(n+2) u(-n+3) (b) x(n) = u(n+4) – u(n-2) 

Solutions: 

(a) Given x(n)=u(n+2) u(-n+3) 

The signal u (n + 2) u(–n + 3) can be obtained by first drawing the signal u(n + 2) as shown in 

Figure 1.13(a), then drawing u (–n + 3) as shown in Figure 1.13(b), 

  
 

  
 
 

Figure 1.11 (a) Original signal x(n) (b) Time reversed signal x(-n) (c) Time reversed and 

delayed 

signal x(-n+3) (d) Time reversed and advanced signal x(-n-3). 



 
 

 
 
 

Figure 1.12 Time reversal operations. 

 

and then multiplying these sequences element by element to obtain u(n + 2) u(–n + 3) as 

shown in Figure 1.13(c). 

x(n) = 0 for n < –2 and n > 3; x(n) = 1 for –2 < n < 3 

(a) Given x(n) = u(n + 4) – u(n – 2) 

The signal u(n + 4) – u(n – 2) can be obtained by first plotting u(n + 4) as shown in 

Figure 1.14(a), then plotting u(n – 2) as shown in Figure 1.14(b), and then subtracting 

each element of u(n – 2) from the corresponding element of u(n + 4) to obtain the result 

shown in Figure 1.14(c). 

 

 
 

 
 

 

 

Figure 1.13  Plots of (a) u(n + 2) (b) u(–n + 3) (c) u(n + 2) u(–n + 3). 

 
 

 

 
 

 
 

             



 
Figure 1.14 Plots of (a) u(n + 4) (b) u(n – 2) (c) u(n + 4) – u(n – 2). 

 Amplitude Scaling 

The amplitude scaling of a discrete-time signal can be represented by 

y(n) = ax(n) 

where a is a constant. 

The amplitude of y(n) at any instant is equal to a times the amplitude of x(n) at that instant. If 

a > 1, it is amplification and if a < 1, it is attenuation. Hence the amplitude is rescaled. Hence the 

name amplitude scaling. 

Figure 1.15(a) shows a signal x(n) and Figure 1.15(b) shows a scaled signal y(n) = 2x(n). 

 

1.4.1 Time Scaling 

Time scaling may be time expansion or time compression. The time scaling of a discrete- time 

signal x(n) can be accomplished by replacing n by an in it. Mathematically, it can be expressed as: 

y(n) = x(an) 

When a > 1, it is time compression and when a < 1, it is time expansion. 

Let x(n) be a sequence as shown in Figure 1.16(a). If a = 2, y(n) = x(2n). Then 

y(0) = x(0) = 1 

y(–1) = x(–2) = 3 

y(–2) = x(–4) = 0 

y(1) = x(2) = 3 

y(2) = x(4) = 0 

and so on. 

So to plot x(2n) we have to skip odd numbered samples in x(n). 

We can plot the time scaled signal y(n) = x(2n) as shown in Figure 1.16(b). Here the signal 

is 

compressed by 2. 

If a = (1/2), y(n) = x(n/2), then 

y(0) = x(0) = 1 

y(2) = x(1) = 2 

y(4) = x(2) = 3 

y(6) = x(3) = 4 

y(8) = x(4) = 0 

y(–2) = x(–1) = 2 

y(–4) = x(–2) = 3 

y(–6) = x(–3) = 4 

y(–8) = x(– 4) = 0 

We can plot y(n) = x(n/2) as shown in Figure 1.16(c). Here the signal is expanded by 2. All 

odd 

components in x(n/2) are zero because x(n) does not have any value in between the sampling 

instants. 



  
 

 

Figure 1.16   Discrete –time  sca l i ng  ( a )  P l ot  of  x ( n )  ( b)  P l ot  o f  x ( 2 n )  ( c)  Pl ot  of  x( n / 2 ) 

Time scaling is very useful when data is to be fed at some rate and is to be taken out at a different 

rate. 

 

1.45 Signal Addition 

In discrete-time domain, the sum of two signals x1(n)   and x2(n) can be obtained by 

adding the corresponding sample values and the subtraction of x2(n) from x1(n) can be obtained 

by subtracting each sample of x2(n) from the corresponding sample of x1(n) as illustrated 

below. 

If x1(n) = {1, 2, 3, 1, 5} and x2(n) = {2, 3, 4, 1, –2} 

Then x1(n) + x2(n) = {1 + 2, 2 + 3, 3 + 4, 1 + 1, 5 – 2} = {3, 5, 7, 2, 3} 

and x1(n) – x2(n) = {1 – 2, 2 – 3, 3 – 4, 1 – 1, 5 + 2} = {–1, –1, –1, 0, 7} 

 

 

Signal multiplication 

The multiplication of two discrete-time sequences can be performed by multiplying their values at 

the sampling instants as shown below. 

If x1(n) = {1, –3, 2, 4, 1.5} and x2(n) = {2, –1, 3, 1.5, 2} 

Then x1 (n) x2 (n) = {1 × 2,- 3 ×-1, 2 × 3, 4 × 1.5, 1.5 × 2} 

= {2, 3, 6, 6, 3} 

EXAMPLE 1.3 Express the signals shown in Figure 1.17 as the sum of singular functions. 
 

  

 

Solution: 

Figure 1.17   Waveforms for Example 1. 3 

(a) The given signal shown in Figure 1.17(a) is: 

x(n) = δ (n + 2) + δ (n + 1) + δ(n) + δ(n -1) 

0 𝑓𝑜𝑟 𝑛 ≤ −3 

x(n) = {1   𝑓𝑜𝑟 − 2 ≤ 𝑛 ≤ 1 
0 𝑓𝑜𝑟 𝑛 ≥ 2 

 
∴ x(n) = u(n+2) – u(n-2) 



(b) The signal shown in Figure 1.17(b) is: 



x(n) = 𝛿(n – 2) + 𝛿 (n – 3) + δ (n – 4) + δ (n – 5) 

0 𝑓𝑜𝑟 𝑛 ≤ 1 

x(n) = {1 𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 5 
0 𝑓𝑜𝑟 𝑛 ≥ 6 

∴ x(n) = u(n – 2) – u(n – 6) 

CLASSIFICATION OF DISCRETE-TIME SIGNALS 

The signals can be classified based on their nature and characteristics in the time domain. They are 

broadly classified as: (i) continuous-time signals and (ii) discrete-time signals. 

The signals that are defined for every instant of time are known as continuous-time signals. 

The continuous-time signals are also called analog signals. They are denoted by x (t). They are 

continuous in amplitude as well as in time. Most of the signals available are continuous-time 

signals. 

The signals that are defined only at discrete instants of time are known as discrete-time signals. 

The discrete-time signals are continuous in amplitude, but discrete in time. For discrete- time signals, 

the amplitude between two time instants is just not defined. For discrete-time signals, the 

independent variable is time n. Since they are defined only at discrete instants of time, they are 

denoted by a sequence x (nT) or simply by x(n) where n is an integer. 

Figure 1.18 shows the graphical representation of discrete-time signals. The discrete- time 

signals may be inherently discrete or may be discrete versions of the continuous-time signals. 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Figure 1.18 Discrete-time signals 
Both continuous-time and discrete-time signals are further classified as follows: 

1. Deterministic and random signals 

2. Periodic and non-periodic signals 

3. Energy and power signals 

4. Causal and non-causal signals 

5. Even and odd signals 

 

Deterministic and Random Signals 

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of time is called 

deterministic signal. A deterministic signal can be completely represented by mathematical equation 

at any time and its nature and amplitude at any time can be predicted. 

Examples: Sinusoidal sequence x(n) = cos n, Exponential sequence x(n) = ej n, ramp sequence 

x(n) = n. 

A signal characterized by uncertainty about its occurrence is called a non-deterministic or 

random signal. A random signal cannot be represented by any mathematical equation. The behavior 

of such a signal is probabilistic in nature and can be analyzed only stochastically. The pattern of 

such a signal is quite irregular. Its amplitude and phase at any time instant cannot be predicted in 

advance. A typical example of a non-deterministic signal is thermal noise. 

 

 Periodic and Non-periodic Sequences 



A signal which has a definite pattern and repeats itself at regular intervals of time is called a periodic 

signal, and a signal which does not repeat at regular intervals of time is called a non-periodic or 

aperiodic signal. 

A discrete-time signal x(n) is said to be periodic if it satisfies the condition x(n) = x(n + N) for all 

integers n. 

The smallest value of N which satisfies the above condition is known as fundamental period. 

If the above condition is not satisfied even for one value of n, then the discrete-time signal 

is aperiodic. Sometimes aperiodic signals are said to have a period equal to infinity. 

The angular frequency is given by 

 

Fundamental period N = 2𝜋 
𝜔 

𝜔 = 
2𝜋 

 
 

𝑁 

The sum of two discrete-time periodic sequence is always periodic. 

 

 

 
 

 

 
 

 
 

some examples of discrete-time periodic/non-periodic signals are shown in Figure 1.19. 

Figure 1.19 Example of discrete-time: (a) Periodic and (b) Non-periodic signals 

EXAMPLE 1.4 Show that the complex exponential sequence x(n) = ej 0n is periodic only if 

0/2 is a rational number. 

Solution: Given x(n) = 𝑒𝑗𝜔0𝑛
 

X (n) will be periodic if x(n + N) = x(n) 

i.e. 
[𝜔0(𝑛=𝑁0]  

= 𝑒𝑗𝜔0𝑛  

i.e. 𝑒𝑗𝜔0  𝜔0𝑛
=  𝑒𝑗𝜔0𝑛 

This is possible only if e j 0 N = 1 

This is true only if 𝜔0N = 2𝜋k 

Where k is an integer 
𝜔0  

= 𝑘 
2𝜋 𝑁 

 

 

 Energy Signals And Power Signals 

 
Signals may also be classified as energy signals and power signals. However there are some 

signals which can neither be classified as energy signals nor power signals. 

The total energy E of a discrete-time signal x(n) is defined as: 
 

 

and the average power P of a discrete-time signal x(n) is defined as: 



A signal is said to be an energy signal if and only if its total energy E over the interval   (– 

∞, ∞) is finite (i.e., 0 < E < ∞). For an energy signal, average power P = 0. Non-periodic signals 

which are defined over a finite time (also called time limited signals) are the examples of energy 

signals. Since the energy of a periodic signal is always either zero or infinite, any periodic signal 

cannot be an energy signal. 

A signal is said to be a power signal, if its average power P is finite (i.e., 0 < P < ∞). For a 

power signal, total energy E = ∞. Periodic signals are the examples of power signals. Every 

bounded and periodic signal is a power signal. But it is true that a power signal is not necessarily a 

bounded and periodic signal. 

Both energy and power signals are mutually exclusive, i.e. no signal can be both energy 

signal and power signal. 

The signals that do not satisfy the above properties are neither energy signals nor power 

signals. For example, x(n) = u(n), x(n) = nu(n), x(n) = n2u(n). 

These are signals for which neither P nor   E are finite. If the signals contain infinite energy 

and zero power or infinite energy and infinite power, they are neither energy nor power signals. 

If the signal amplitude becomes zero as |n| → ∞, it is an energy signal, and if the signal 

amplitude does not become zero as |n| → ∞, it is a power signal. 

 

Causal and Non-causal Signals 

A discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise the signal is non- 

causal. A discrete-time signal x(n) is said to be anti-causal if x(n) = 0 for n > 0. 

A causal signal does not exist for negative time and an anti-causal signal does not exist for 

positive time. A signal which exists in positive as well as negative time is called a   non-casual 

signal. 

u(n) is a causal signal and u(– n) an anti-causal signal, whereas x(n) = 1 for – 2 ≤ n ≤ 3 is a 
non-causal signal. 

 

 
Even and Odd Signals 

 
Any signal x(n) can be expressed as sum of even and odd components. That is 

x(n) = xe(n) + xo(n) 

where xe(n) is even components and xo(n) is odd components of the signal. 

 

Even (syMMetric) signal 

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the condition: 

x(n) = x(–n) for all n 

Even signals are symmetrical about the vertical axis or time origin. Hence they are also called 

symmetric signals: cosine sequence is an example of an even signal. Some even signals are 

shown in Figure 1.20(a). An even signal is identical to its reflection about the origin. For an even 

signal x0(n) = 0. 

 

Odd (anti-syMMetric) signal 

A discrete-time signal x(n) is said to be an odd (anti-symmetric) signal if it satisfies the condition: 

x(–n) = –x(n) for all n 

Odd signals are anti-symmetrical about the vertical axis. Hence they are called anti- symmetric 

signals. Sinusoidal sequence is an example of an odd signal. For an odd signal      xe(n) = 0. Some 

odd signals are shown in Figure 1.20(b). 



 

  
  

Figure 1.20   (a) Even sequences (b) Odd sequences. 



 
 
 
 
 

Thus, the product of two even signals or of two odd signals is an even signal, and the 

product of even and odd signals is an odd signal. 

Every signal need not be either purely even signal or purely odd signal, but every 

signal can be decomposed into sum of even and odd parts. 

 
 
 

CLASSIFICATIOK OF DISCRETE-TImE  SYSTEmS 

A system is defined as an entity that acts on an input signal and transforms it into an output 

signal. A system may also be defined as a set of elements or functional blocks which are 

connected together and produces an output in response to an input signal. The response or 

output of the system depends on the transfer function of the system. It is a cause and effect 

relation between two or more signals. 

As signals, systems are also broadly classified into continuous-time and discrete-time 

systems. A continuous-time system is one which transforms continuous-time   input   signals 

into continuous-time output signals, whereas a discrete-time system is one which transforms 

discrete-time input signals into discrete-time output signals. 

For example microprocessors, semiconductor memories, shift registers, etc. are discrete- 

time systems. 

A discrete-time system is represented by a block diagram as shown in Figure 1.22. An 

arrow entering the box is the input signal (also called excitation, source or driving function) 

and an arrow leaving the box is an output signal (also called response). Generally, the input 

is denoted by x(n) and the output is denoted by y(n). 



The relation between the input x(n) and the output y(n) of a system has the form: 

y(n) = Operation on x(n) 

Mathematically, 

y(n) = T[x(n)] 

which represents that x(n) is transformed to y(n). In other words, y(n) is the transformed 

version of x(n). 
 

Figure 1.22   BFock diagram of  discrete–time system. 

 
Both continuous-time and discrete-time systems are further classified as follows: 

1. Static (memoryless) and dynamic (memory) systems 

2. Causal and non-causal systems 

3. Linear and non-linear systems 

4. Time-invariant and time varying systems 

5. Stable and unstable systems. 

6. Invertible and non-invertible systems 

7. FIR and IIR systems 

 
Static and Dynamic Systems 

A system is said to be static or memoryless if the response is due to present input alone, i.e., 

for a static or memoryless system, the output at any instant n depends only on the   input 

applied at that instant n but not on the past or future values of input or past values of output. 

For example, the systems defined below are static or memoryless systems. 

y(n) = x(n) 

y(n) = 2x2(n) 

In contrast, a system is said to be dynamic or memory system if the response depends upon 

past or future inputs or past outputs. A summer or accumulator, a delay element is a discrete- 

time system with memory. 

For example, the systems defined below are dynamic or memory systems. 

y(n) = x(2n) 

y(n) = x(n) + x(n – 2) 

y(n) + 4y(n – 1) + 4y(n – 2) = x(n) 

Any discrete-time system described by a difference equation is a dynamic system. 

A purely resistive electrical circuit is a static system, whereas an electric circuit having 

inductors and/or capacitors is a dynamic system. 



 

 

 

 

 

A discrete-time LTI system is memoryless (static) if its impulse response h(n) is zero 

for n s 0. If the impulse response is not identically zero for n s 0, then the system is called 

dynamic system or system with memory. 

EXAMPLE 1.12 Find whether the following systems are dynamic or not: 

(a) y(n) = x(n + 2) (b) y(n) = x2(n) 

(c) y(n) = x(n – 2) + x(n) 

Solution: 

(a) Given y(n) = x(n + 2) 

The output depends on the future value of input. Therefore, the system is dynamic. 

(b) Given y(n) = x2(n) 

The output depends on the present value of input alone. Therefore, the system is 

static. 

(c) Given y(n) = x(n – 2) + x(n) 

The system is described by a difference equation. Therefore, the system is dynamic. 

 
Causal and Non-causal Systems 

A system is said to be causal (or non-anticipative) if the output of the system at any instant 

n depends only on the present and past values of the input but not on future inputs, i.e., for 

a causal system, the impulse response or output does not begin before the input function is 

applied, i.e., a causal system is non anticipatory. 

Causal systems are real time systems. They are physically realizable. 

The impulse response of a causal system is zero for n < 0, since (n) exists only at n = 0, 

 h(n) = 0 for n < 0 

The examples for causal systems are: 

y(n) = nx(n) 

y(n) = x(n – 2) + x(n – 1) + x(n) 

A system is said to be non-causal (anticipative) if the output of the system at any instant n 

depends on future inputs. They are anticipatory systems. They produce an output even before 

the input is given. They do not exist in real time. They are not physically realizable. 

A delay element is a causal system, whereas an image processing system is a non-causal 

system. 

The examples for non-causal systems are: 

y(n) = x(n) + x(2n) 

y(n) = x2(n) + 2x(n + 2) 



 

 

 

 

 

EXAMPLE 1.13 Check whether the following systems are causal or not: 

(a) y(n) x(n) x(n 2) (b) y(n) = x(2n) 

(c) y(n) = sin[x(n)] (d) y(n) = x(–n) 

Solution: 

(a) Given 

For n = –2 

For n = 0 

For n = 2 

 
 

y(n) x(n) x(n 2) 
 

 

y( 2) x( 2) x( 4) 
 

 

y(0) x(0) x( 2) 
 

 

y(2) x(2) x(0) 

For all values of n, the output depends only on the present and past inputs. 

Therefore, the system is causal. 

(a) Given y(n) x(2n) 

For n = –2 
 

y( 2) x( 4) 

For n = 0 
 

y(0) x(0) 

For n = 2 
 

 

y(2) x(4) 

For positive values of n, the output depends on the future values of input. 

Therefore, the system is non-causal. 

(a) Given 

For n = –2 

For n = 0 

For n = 2 

 
 

y(n) sin [x(n)] 
 

 

y( 2) sin [x( 2)] 
 

 

y(0) sin [x(0)] 
 

 

y(2) sin [x(2)] 

For all values of n, the output depends only on the present value of input. Therefore, 

the system is causal. 

(d)   Given y(n) = x(–n) 

For n = –2 y( 2) x(2) 

For n = 0 y(0) x(0) 

For n = 2 y(2) x( 2) 

For negative values of n, the output depends on the future values of input. 

Therefore, the system is non-causal. 

 
Linear and Non-linear Systems 

A system which obeys the principle of superposition and principle of homogeneity is called 

a linear system and a system which does not obey the principle of superposition and 

homogeneity is called a non-linear system. 

Homogeneity property means a system which produces an output y(n) for an input x(n) 

must produce an output ay(n) for an input ax(n). 
 

Superposition property means a system which produces an output y1(n) for   an   input 

x1(n) and an output y2(n) for an input x2(n) must produce an output y1(n) + y2(n) for an input 

x1(n) + x2(n). 
Combining them we can say that a system is linear if an arbitrary input x1(n)  produces 

an output y1(n) and an arbitrary input x2(n)   produces an output y2(n), then the weighted sum 

of inputs ax1(n)   + bx2(n) where a and b are constants produces an output   ay1(n)   + by2(n) 

which is the sum of weighted outputs. 



 

T(ax1(n) + bx2(n)] = aT[x1(n)] + bT[x2(n)] 

Simply we can say that a system is linear if the output due to weighted sum of inputs is 

equal to the weighted sum of outputs. 

In general, if the describing equation contains square or higher order terms of input 

and/or output and/or product of input/output and its difference or a constant, the system will 

definitely be non-linear. 

 
Shift-invariant  and  Shift-varying  Systems 

Time-invariance is the property of a system which makes the behaviour of the system 

independent of time. This means that the behaviour of the system does not depend on the 

time at which the input is applied. For discrete-time systems, the time invariance property is 

called shift invariance. 

A system is said to be shift-invariant if its input/output characteristics do not change 

with time, i.e., if a time shift in the input results in a corresponding time shift in the output 

as shown in Figure 1.23, i.e. 

If T[x(n)] = y(n) 

Then T[x(n – k)] = y(n – k) 

A system not satisfying the above requirements is called a time-varying system (or shift- 

varying system). A time-invariant system is also called a fixed system. 

The time-invariance property of the given discrete-time system can be tested as 

follows: 

Let x(n) be the input and let x(n – k) be the input delayed by k units. 

y(n) = T[x(n)] be the output for the input x(n). 

 
Stable and Unstable Systems 

A bounded signal is a signal whose magnitude is always a finite value, i.e.      x (n) ≤ M , where 

M is a positive real finite number. For example a sinewave is a bounded signal. A system is 

said to be bounded-input, bounded-output (BIBO) stable, if and only if every bounded input 

produces a bounded output. The output of such a system does not diverge or does not grow 

unreasonably large. 

Let         the          input          signal          x(n)          be          bounded          (finite),          i.e., 

x (n) ≤   Mx for all n 

where Mx is a positive real number. If 

y (n) ≤ My ≤∞ 

i.e. if the output y(n) is also bounded, then the system is BIBO stable. Otherwise, the system 

is unstable. That is, we say that a system is unstable even if one bounded input produces an 

unbounded output. 

It is very important to know about the stability of the system. Stability indicates the 

usefulness of the system. The stability can be found from the impulse response of the system 

which is nothing but the output of the system for a unit impulse input. If   the   impulse 

response is absolutely summable for a discrete-time system, then the system is stable. 

 

BlBO stability criterion 

The necessary and sufficient condition for a discrete-time system to be BIBO stable is given 

by the expression: 



 

 

where h(n) is the impulse response of the system. This is called BIBO stability criterion. 

Proof: Consider a linear time-invariant system with x(n) as input and y(n) as output. The 

input and output of the system are related by the convolution integral. 



 

 

SOLUTION OF DIFFERENCE EQUATIONS USING Z-TRANSFORMS. 

 
 

To solve the difference equation, first it is converted into algebraic equation by taking its Z- 

transform. The solution is obtained in z-domain and the time domain solution is obtained by 

taking its inverse Z-transform. The system response has two components. The source free 
response and the forced response. The response of the system due to input alone when the initial 

conditions are neglected is called the forced response of the system. It is also called the steady 

state response of the system. It represents the component of the response due to the driving 
force. The response of the system due to initial conditions alone when the input is neglected is 

called the free or natural response of the system. It is also called the transient response of the 

system. It represents the component of the response when the driving function is made zero. The 

response due to input and initial conditions considered simultaneously is called the total 
response of the system. For a stable system, the source free component always decays with time. 

In fact a stable system is one whose source free component decays with time. For this reason the 

source free component is also designated as the transient component and the component due to 
source is called the steady state component. When input is a unit impulse input, the response is 

called the impulse response of the system and when the input is a unit step input, the response is 

called the step response of the system. 
 

EXAMPLE 1 A linear shift invariant system is described by the difference equation 
 

(𝑛) - 3  ( 
 

 

) 1  ( 
 

 

) ( ) 

 

with y(–1) = 0 and y(–2) = –1. 

𝑦 𝑛 − 1 
4 

+   𝑦 𝑛 − 2 
8 

= 𝑥 𝑛 + (𝑛 − 1) 

Find (a) the natural response of the system (b) the forced response of the system for a 

step input and (c) the frequency response of the system. 

 

Solution: 
(a) The natural response is the response due to initial conditions only. So make x(n) = 0. Then 

the difference equation becomes 
(𝑛) - 3   ( ) 

1    
( ) 𝑦 𝑛 − 1 

4 
+   𝑦 𝑛 − 2   = 0 

8 
 

Taking Z-transform on both sides, we have 
 

 

 

Taking inverse Z-transform on both sides, we get the natural response as: 



 

 
(a) To find the forced response due to a step input, put x(n) = u(n). So we have 

 

We know that the forced response is due to input alone. So for forced response, the 

initial conditions are neglected. Taking Z-transform on both sides of the above 

equation and neglecting the initial conditions, we have 

y(n)  
3 

y(n  1) + 
1 

y (n  2) = u(n) + u(n  1) 
4 8 

We know that the forced response is due to input alone. So for forced response, the 

initial conditions are neglected. Taking Z-transform on both sides of the above 

equation and neglecting the initial conditions, we have 

Y(z)  
3 

z1Y (z) + 
1 

z2Y (z) = U(z) + z1U(z) = 4 8 



 



 

 

Taking partial fractions of Y(z)/z, we have 
 

 

 
Taking the inverse Z-transform on both sides, we have the forced response for a 

step input. 

 

© The frequency response of the system H( ) is obtained by putting z = ejw in H(z). 

 

 

 

 

 
EXAMPLE 2 (a) Determine the free response of the system described by the difference equation 

(b) Determine the forced response for an input 

 

Solution: 
(a) The free response, also called the natural response or transient response is the 

response due to initial conditions only [i.e. make x(n) = 0]. So, the difference 

equation is: 

 



 

 
 

Taking Z-transform on both sides, we get 

 

Taking inverse Z-transform on both sides, we get the free response of the system as: 
 

 

(a) To determine the forced response, i.e. the steady state response, the initial conditions 

are to be neglected. 

The given difference equation is: 
 
 

 

Taking Z-transform on both sides and neglecting the initial conditions, we have 

 
 

Partial fraction expansion of Y(z)/z gives 

 

 
Multiplying both sides by z, we get 

 



 

Taking inverse Z-transform on both sides, the forced response of the system is: 
 

EXAMPLE 3 Find the impulse and step response of the system 
 

 

 

 
Solution: For impulse response, x(n) =δ (n) 

The impulse response of the system is: 
 

 

For step response, x(n) = u(n) 

The step response of the system is: 
 

y(n)= 2u(n)- 3u(n 1) +u(n 2) -4u(n 3) 
 

EXAMPLE 4 Solve the following difference equation 

y(n) + 2y(n- 1) = x(n) 

with x(n) = (1/3)n u(n) and the initial condition y(–1) = 1. 

Solution: The solution of the difference equation considering the initial condition and input 

simultaneously gives the total response of the system. 

The given difference equation is: 

 

Taking Z-transform on both sides, we get 

 
 

Substituting the initial conditions, we have 

 

Taking partial fractions of Y1(z)/z, we have 
 



 

 
 

 

Multiplying both sides by z, we have 
 

Taking inverse Z-transform on both sides, the solution of the difference equation is: 

 
 

 

EXAMPLE 5 Solve the following difference equation using unilateral Z-transform. with initial 

conditions 

 
Solution: The solution of the difference equation gives the total response of the system 

(i.e., the sum of the natural (free) response and the forced response) 

The given difference equation is: 

with initial conditions y(–1) = 2 and y(–2) = 4. Taking Z-transform on both sides, we have 

 

 

 
 



 



Taking partial fractions of Y(z)/z, we have 
 

 

 

 
EXAMPLE 6 Using Z-transform determine the response of the LTI system described by 

y(n)  2r cos y(n  1) + r2 y(n  2) = x(n) to an excitation x(n) = anu(n). 

Solution: Taking Z-transform on both sides of the difference equation, we have 
 

 

 
EXAMPLE 7 Determine the step response of an LTI system whose impulse response 

h(n) is given by h(n) = anu(  n); 0 < a < 1 . 

Solution: The impulse response is 
 

 

We have to find the step response 



The step response of the system is given by 

So the step response is 

 

 
EXAMPLE 8 The step response of an LTI system is 

The system function H(z) is 
 

The impulse response of the system is 
 



1.2. INTRODUCTION 

Systems may be continuous-time systems or discrete-time systems.   Discrete-time   systems 

may be FIR (Finite Impulse Response) systems or IIR (Infinite Impulse Response) systems. 

FIR systems are the systems whose impulse response has finite number of samples and IIR 

systems are systems whose impulse response has infinite number of samples. Realization of a 

discrete-time system means obtaining a network corresponding to the difference equation or 

transfer function of the system. In this chapter, various methods of realization of discrete- 

time systems are discussed. 

 

 

 

REALIZATION OF DISCRETE-TIME SYSTEMS 

To realize a discrete-time system, the given difference equation in time domain is to be 

converted into an algebraic equation in z-domain, and each term of that equation is to be 

represented by a suitable element (a constant multiplier or a delay element).   Then   using 

adders, all the elements representing various terms of the equation are to be connected to 

obtain the output. The symbols of the basic elements used for constructing the block diagram 

of a discrete-time system (adder, constant multiplier and unit delay element) are shown in 

Figure 4.1. 
 

 

   

Figure 1.2.1 (a) Adder (b)  Constant multiplier and (c) Unit delay element. 
 
 
 

Adder:   An adder is used to add two or more signals. The output of adder is equal to the 

sum of all incoming signals. 

Constant multiplier: A constant multiplier is used to multiply the signals by a constant. The 

output of the multiplier is equal to the product of the input signal and the constant of the 

multiplier. 

Unit delay element: A unit delay element is used to delay the signal passing through it by 

one sampling time. 

 

EXAMPLE 1.2.1 Construct the block diagram for the discrete-time systems whose input- 

output relations are described by the following difference equations: 

(a) y(n) = 0.7x(n) + 0.3x (n  1),  (b) y(n) = 0.5y(n  1) + 0.8 x(n) + 0.4 x (n  1) 

 

Solution: 

(a) Given y(n) = 0.7x(n) + 0.3x (n  1) 

The system may be realized by using the difference equation directly or by using 

the Z-transformed version of that. The individual terms of the given difference 

equation are 0.7x(n) and 0.3x(n – 1). They are represented by the basic elements as 

shown in Figure 4.2. 

Alternatively 

Taking Z-transform on both sides of the given difference equation, we have 

Y(z) = 0.7X(z) + 0.3z–1X(z) 

The individual terms of the above equation are: 0.7X(z) and 0.3 z1X(z). 



 

 

 

 

They are represented by the basic elements as shown in Figure 1.2.2. 

 

 

 
Figure 1.2.2 BFock diagram representation of (a) 0.7X(z) and (b) 0.3z–1X(z). 

 

The input to the system is X(z) [or x(n)] and the output of the system is Y(z) [or 

y(n)]. The above elements are connected as shown in Figure 4.3 to get the output 

Y(z) [or y(n)]. 

 

 
 

Figure 1.2.3 Realization of system described by y(n) = 0.7x(n) + 0.3x(n–1). 



(a) Given y(n) = 0.5y (n  1) + 0.8x(n) + 0.4x(n  1) 

The individual terms of the above equations are 0.5y(n  1), 0.8x(n) and 0.4x(n  1). 

They are represented by the basic elements as shown in Figure 4.4. 

Alternatively 

Taking Z-transform on both sides of the given difference equation, we have 

Y (z) = 0.5 z1Y (z) + 0.8X(z) + 0.4 z1X(z) 

 
The individual terms of the above equation are :0.5 z 1Y (z), 0.8X(z) and 0.4 z1X(z). 

They are represented by the basic elements as shown in Figure 1.2.4. 

   
 

   

 

Figure 1.2.4 BFock diagram representation of (a) 0.8X(z) (b) 0.4z–1X(z) and (c) 0.5z–1Y(z). 

 

The input to the system is X(z)[or x(n)] and the output of the system is Y(z)[or y(n)]. 

The above elements are connected as shown in Figure 4.5 to get the output Y(z)[or y(n)]. 
 

Figure 1.2.5 Realization of the system described by y(n) = 0.5y(n–1) + 0.8x(n) + 0.4x(n–1). 

 

 
Discrete-time LTI systems may be divided into two types: IIR systems (those that have 

an infinite duration impulse response) and FIR systems (those that have a finite duration 

impulse response). 

 
STRUCYURES FOR REALIZATIOK OF IIR SYSTEMS 

IIR systems are systems whose impulse response has infinite number of samples. They are 

designed by using all the samples of the infinite duration impulse response. The convolution 

formula for IIR systems is given by 
 



y(n) =  h(k) x(n  k) 
k 0 

 

Since this weighted sum involves the present and all the past input samples, we can say that 
the IIR system has an infinite memory. 



A system whose output y(n) at time n depends on the present input and any number of 

past values of input and output is called a recursive system. The past outputs are 

y(n – 1), y(n – 2), y(n – 3), ... 

Hence, for recursive system, the output y(n) is given by 

y(n) = F[y(n  1), y(n  2), ..., y(n  N ), x(n), x(n  1), ..., x(n  M )] 

In recursive system, in order to compute y(n0), we need to compute all the previous values 

y(0), y(1), y(2), ..., y(n0 – 1) before calculating y(n0). Hence, output of recursive system has 

to be computed in order [y(0), y(1), y(2), ... ]. 

 

Transfer function of llR SYSTEM 

In general, an IIR system is described by the difference equation 

 

i.e. in general, IIR systems are those in which the output at any instant of time depends not 

only on the present and past inputs but also on the past outputs. Hence, in general, an IIR 

system is of recursive type. 

On taking Z-transform of the above equation for y(n), we get 
 

The system function or the transfer function of the IIR system is: 

 
 
 

The above equations for Y(z) and H(z) can be viewed as a computational procedure (or 

algorithm) to determine the output sequence y(n) from the input sequence x(n). The 

computations in the above equation can be arranged into various equivalent sets of difference 

equations with each set of equations defining a computational procedure or algorithm for 

implementing the system. 

For each set of equations, we can construct a block diagram consisting   of   delays, 

adders and multipliers. Such block diagrams are referred to as realization of the system or 

equivalently as structure for realizing the system. 

The main advantage of re-arranging the sets of difference equations (i.e.   the   main 

criteria for selecting a particular structure) is to reduce the computational complexity, 

memory requirements and finite word length effects in computations. 

So the factors that influence the choice of structure for realization of LTI system are: 

computational complexity, memory requirements and finite word length effects in computations. 

Computational complexity refers to the number of arithmetic operations required to 



compute the output value y(n) for the system. 

Memory requirements refer to the number of memory locations required to store the 

system parameters, past inputs and outputs and any intermediate computed values. 

Finite-word-length effects or finite precision effects refer to the quantization effects that 

are inherent in any digital implementation of the system either in hardware or in software. 

Although the above three factors play a major role in influencing our choice of the 

realization of the system, other factors such as whether the structure lends itself to parallel 

processing or whether the computations can be pipelined may play a role in   selecting   a 

specific structure. 

The different types of structures for realizing IIR systems are: 

1. Direct form-I structure 2. Direct form-II structure 

3. Transposed form structure 4. Cascade form structure 

5. Parallel form structure 6. Lattice structure 

7. Ladder structure 

 

 

 

1.2.3. Direct Form-I Structure 

Direct form-I realization of an IIR system is nothing, but the direct implementation of the 

difference equation or transfer function. It is the simplest and most straight forward 

realization structure available. 

The difference equation governing the behaviour of an IIR system is 
 

On taking the Z-transform of the above equation for y(n), we get 

 

 
The equation for Y(z) [or y(n)] can be directly represented by a block   diagram   as 

shown in Figure 4.6 and this structure is called Direct form-I structure. This structure uses 

separate delays (z–1) for input and output samples. Hence, for realizing this structure more 

memory is required. The direct form structure provides a direct relation between time domain 

and z-domain equations. 

The structure shown in Figure 4.6 is called a non-canonical structure because the 

number of delay elements used is more than the order of the difference equation. 

If the IIR system is more complex, that is of higher order, then introduce an 

intermediate variable W(z) so that 

 



 

 

So, the direct form-I structure is in two parts. The first part contains only zeros [that is, the 

input components either x(n) or X(z)] and the second part contains only poles [that is, the 

output components either y(n) or Y(z)]. In direct form-I, the zeros are realized first and poles 

are realized second. 

 

LIMITATIONS of  Direct  FORM-1 

• Since the number of delay elements used in direct form-I is more than (double) the 
order of the difference equation, it is not effective. 

• It lacks hardware flexibility. 

• There are chances of instability due to the quantization noise. 
 

 

Figure 1.2.6  Direct  form–I structure. 

 

Direct Form-II Structure 

The Direct form-II structure is an alternative to direct form-I structure. It is more 

advantageous to use direct form-II technique than direct form-I, because it uses less number 

of delay elements than the direct form-I structure. 

In direct form-II, an intermediate variable is introduced and the given transfer function 

is split into two, one containing only poles and the other containing only zeros. The poles 

[that is, the output components y(n) or Y(z) which is the denominator part of the transfer 

function] are realized first and the zeros [that is, the input components either x(n) or X(z), 

which is the numerator part of the transfer function] second. 

If the coefficient of the present output sample y(n) or the non-delay constant at 



denominator is non unity, then transform it to unity. The systematic procedure is given as 

follows: 

 
 

 
Consider the general difference equation governing an IIR system 

 
 

 

On taking Z-transform of the above equation and neglecting initial conditions, we get 
 

 

 
 

 

 

 

 
 

 

On cross multiplying the above equations, we get 
 

W (z) + a1z
1W (z) + a2 z

2W (z) + ... + aN zNW (z) = X(z) 

W (z) = X(z)  a1z
1W (z)  a2 z 2W (z)  ...  aN zNW (z) 

Y (z) = b0W (z) + b1z
1W (z) + b2 z

2W (z) + ... + bM zMW (z) 



The realization of an IIR system represented by these equations in direct form-II is shown in 

Figure 1.2.7. 

 

ADvantage of the Direct FORM-II over the Direct FORM-I 

The number of delay elements used in direct form-II is less than that of direct form-I. 

 

 

LIMITATIONS of  Direct  FORM-II 

• It also lacks hardware flexibility 

• There are chances of instability due to the quantization noise 
 

Figure 1.2.7 Direct form–II structure of IIR system for N = N. 

 
Since the number of delay elements used in direct form-II is the same as that of the 

order of the difference equation, direct form-II is called a canonical structure. 

The comparison of direct form-I and direct form-II structures is given in Table 4.1 

 
TABLE 1.2.1 Comparison of direct form–I and direct form–II structures 

Direct form-I structure Direct form-II structure 
 

This realization uses separate delays (memory) This realization uses a single delay (memory) 

for both the input and  output signal samples. for both the input and output signal samples. 

For the (M – 1)th or (N – 1)th order IIR system, For the (M – 1)th or (N – 1)th order IIR system, 

direct form-I requires M + N – 1 multipliers,   direct form-II requires M + N – 1 multipliers, 

M + N – 2 adders and M + N – 2 delays. M + N – 2 adders and max [(M – 1), (N – 1)] 

delays. 

It is also called non-canonical, because it It is called canonical, because it requires a 

requires more number of delays. minimum number of delays. 

It is not efficient in terms of memory require- It is more efficient in terms of memory require- 

ments compared to direct form-II. ments. 

Direct form-I can be viewed as two linear Direct form-II can also be viewed as two linear 

time-invariant systems in cascade. The first time-invariant systems in cascade. The first 

one is non-recursive and the second one one is recursive and the second one non- 

recursive. recursive. 



Conversion of Direct FORM-I structure to Direct FORM-II structure 

The direct form-I structure can be converted to direct form-II structure by considering the direct 

form-I structure as cascade of two systems H1(z) and H2(z) as shown in Figure 4.8(a).   By 

linearity property, the order of cascading can be interchanged as shown in Figure 4.8(b). 
 

 

 

 

Figure 1.2.8 (a) Direct form–I structure as cascade of two systems (b) Direct form–I structure after 
interchanging the order of cascading. 

 

In Figure 4.8(b), we can observe that the inputs to the delay elements in H1(z) and H2(z) 

are the same and so the outputs of the delay elements in H1(z) and H2(z) are same. Therefore, 

instead of having separate delays for H1(z) and H2(z), a single set of delays can be used. Hence, the 

delays can be merged to combine the cascaded systems to a single system. The resultant structure 

will be direct form-II structure as that of Figure 1.2.7. The process of converting direct form-I 

structure to direct form-II structure is shown in Figure 1.2.9. 

 

Figure 1.2.9 Conversion of direct form–I structure to direct form–II. 
 
 
 
 

EXAMPLE 1.2.2 Realize an FIR system 

y(n) + 2y(n  1) + 3y(n  2) = 4x(n) + 5x(n  1) + 6x(n  2) 

using the transposed form structure. 

Solution: Taking Z-transform on both sides of the given difference equation and neglecting initial 

conditions, we get 

Y (z) + 2z1Y (z) + 3z2Y (z) = 4X(z) + 5z1X(z) + 6z2 X (z) 

Therefore, the transfer function of the given IIR system is 



 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1.2.10 (a) General transposed structure realization of IIR system through direct form–I, 
(b) General transposed structure realization of IIR system through direct form–II. 

 

The direct form-II realization structure, the recovered realization structure and the transposed 

form realization structure of this system are shown in Figure 4.11[(a), (b) and (c) respectively]. 

a1 = 2, a2 = 3, b0 = 4, b1 = 5, b2 = 6 

EXAMPLE 1.2.3 Obtain the direct form-I, direct form-II, cascade and parallel form realizations of the 

LTI system governed by the equation 

 



The direct form-I structure can be obtained from the above equation as shown in Figure 1.2.11 

 

Figure 1.2.11 Realization of IIR system through direct form–I 
 

Direct form-II 
Taking Z-transform of the given difference equation, we have 

 



 

 

The above equations for W(z) and Y(z) can be realized by a direct form-II structure as shown in Figure 

1.2.13. 

 

 
Figure 1.2.12 Realization of IIR system through direct form–II 

 
 

 
EXAMPLE 1.2.4 Find the direct form-I and direct form-II realizations of a discrete-time 

system represented by the transfer function 
 

 

 
 



 
 

The direct form-I structure of the above equation for Y(z) can be obtained as shown in Figure 1.2.13 
 

Figure 1.2.13 Realization of IIR system through direct form–I 
 

 

On cross multiplying the above equations, we get 

 



 

The above equations for Y(z) and W(z) can be realized by a direct form-II structure as shown in Figure 

1.1.14 

 

 

Figure 1.2.14 Realization of IIR system through direct form–II 

. 
EXAMPLE 1.2.5 Find the digital network in direct and transposed form for the system 

described by the difference equation 

 

 

Direct form 
The direct form-I digital network can be realized using the above equation for Y(z) as shown 

in Figure 1.2.15 

On rearranging the equation for Y(z), we get 
 

 



 

Figure 1.2.15 Realization of IIR system through direct form–I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

. 
Figure 1.2.16 Realization of IIR system through direct form–II 



FIR and IIR Systems 

Linear time-invariant discrete-time systems can be classified according to the type of impulse 

response. If the impulse response sequence is of finite duration, the system is called a finite 
impulse response (FIR) system, and if the impulse response sequence is of infinite duration, 

the system is called an infinite impulse response (IIR) system 



UNIT II 

 
Discrete Fourier Transforms 

 
INTRODUCTION :The DFT of a discrete-time signal x(n) is a finite duration discrete frequency 

sequence. The DFT sequence is denoted by X(k). The DFT is obtained by sampling one period of the 

Fourier transform X(W) of the signal x(n) at a finite number of frequency points. This sampling is 

conventionally performed at N equally spaced points in the period 0 ≤w≤2w or at wk  = 2πk/N; 

0 ≤ k≤ N – 1. We can say that DFT is used for transforming discrete-time sequence x(n) of finite length 

into discrete frequency sequence X(k) of finite length. The DFT is important for two reasons. First it 

allows us to determine the frequency content of a signal, that is to perform spectral analysis. The 

second application of the DFT is to perform filtering operation in the frequency domain. Let x(n) be a 

discrete-time sequence with Fourier transform X(W), then the DFT of x(n) denoted by X(k) is defined 

as 

 

The DFT of x(n) is a sequence consisting of N samples of X(k). The DFT sequence starts at k = 0, 

corresponding to w = 0, but does not include k = N corresponding to w = 2π (since the sample at w = 0 

is same as the sample at w = 2 π). Generally, the DFT is defined as 

 

EXAMPLE 2.1 (a) Find the 4-point DFT of x(n) = {1, –1, 2, –2} directly. 
(b) Find the IDFT of X(k) = {4, 2, 0, 4} directly. 

 

Solution: 
(a) Given sequence is x(n) = {1, –1, 2, –2}. Here the DFT X(k) to be found is N =4-point 

and length of the sequence L = 4. So no padding of zeros is required. We know that the DFT 

{x(n)} is given by 



 
 

 
 

 

EXAMPLE 2.2 (a) Find the 4-point DFT of x(n) = {1, –2, 3, 2}. 

(b) Find the IDFT of X(k) = {1, 0, 1, 0}. 



 
 
 

 

EXAMPLE 2.3 Compute the DFT of the 3-point sequence x(n) = {2, 1, 2}. Using the same sequence, 

compute the 6-point DFT and compare the two DFTs. 



 

To compute the 6-point DFT, convert the 3-point sequence x(n) into 6-point sequence by 

padding with zeros. 

 



 
 

MATRIX FORMULATION OF THE DFT AND IDFT 



THE IDFT FROM THE MATRIX FORM 

 
The matrix x may be expressed in terms of the inverse of WN as: 

 
WN is called the IDFT matrix. We may also obtain x directly from the IDFT relation in matrix form, 

where the change of index from n to k and the change in the sign of the exponent in e j(2/N)nk lead to 

the conjugate transpose of WN. We then have 

EXAMPLE 2.4 Find the DFT of the sequence x(n) = {1, 2, 1, 0} 

Solution: The DFT X(k) of the given sequence x(n) = {1, 2, 1, 0} may be obtained by solving the 

matrix product as follows. Here N = 4. 

 

 
EXAMPLE 2.5 Find the DFT of x(n) = {1, –1, 2, –2}. 

Solution: The DFT, X(k) of the given sequence x(n) = {1, –1, 2, –2} can be determined using matrix as 

shown below. 

EXAMPLE 2.6. Find the 4-point DFT of x(n) = {1, –2, 3, 2}. 

Solution: Given x(n) = {1, –2, 3, 2}, the 4-point DFT{x(n)} = X(k) is determined using matrix as 

shown below. 

 



EXAMPLE 2.6 Find the IDFT of X(k)={4, –j2, 0, j2} using DFT. 

Solution: Given X(k) = {4, –j2, 0, j2} _ X*(k) = {4, j2, 0, –j2} 

The IDFT of X(k) is determined using matrix as shown below. 

To find IDFT of X(k) first find X*(k), then find DFT of X*(k), then take conjugate of DFT {X*(k)} and 

divide by N. 
 
 

 
EXAMPLE 2.7Find the IDFT of X(k) = {4, 2, 0, 4} using DFT. 

Solution: Given X(k) = {4, 2, 0, 4} 

X*(k) = {4, 2, 0, 4} 

The IDFT of X(k) is determined using matrix as shown below. 

To find IDFT of X(k), first find X*(k), then find DFT of X*(k), then take conjugate of DFT {X*(k)} and 

divide by N 

 

EXAMPLE2.8 Find the IDFT of X(k) = {1, 0, 1, 0}. 

Solution: Given X(k) = {1, 0, 1, 0}, the IDFT of X(k), i.e. x(n) is determined using matrix 

as shown below. 

 
 

PROPERTIES OF DFT 
 

Like the Fourier and Z-transforms, the DFT has several important properties that are used to 

process the finite duration sequences. Some of those properties are discussed as follows 

 

Periodicity: 
If a sequence x(n) is periodic with periodicity of N samples, then N-point DFT of the sequence, X(k) is 

also periodic with periodicity of N samples. 

Hence, if x(n) and X(k) are an N-point DFT pair, then 



 

Linearity 
 

DFT of Even and Odd Sequences 
The DFT of an even sequence is purely real, and the DFT of an odd sequence is purely 

imaginary. Therefore, DFT can be evaluated using cosine and sine transforms for even and 

odd sequences respectively. 

Time Reversal of the Sequence 
The time reversal of an N-point sequence x(n) is obtained by wrapping the sequence x(n) 

around the circle in the clockwise direction. It is denoted as x[(–n), mod N] and 



 

 

Circular Frequency Shift 
 
 



Complex Conjugate Property 

 
 

 

DFT of Real Valued Sequences 



 
 

Multiplication of Two Sequences 

 
 

 
 

Circular Convolution of Two Sequences 



 



 
 

 
 

Parseval’s Theorem 
 

Parseval’s theorem says that the DFT is an energy-conserving transformation and allows us 

to find the signal energy either from the signal or its spectrum. This implies that the sum of 

squares of the signal samples is related to the sum of squares of the magnitude of the DFT 

samples. 

 

 

Circular Correlation 

 

 



−∞ 

Linear Convolution using DFT 

 
The DFT supports only circular convolution. When two numbers of N-point sequence are circularly 

convolved, it produces another N-point sequence. For circular convolution, one of the sequence should 

be periodically extended. Also the resultant sequence is periodic with period N. The linear convolution 

of two sequences of length N1 and N2 produces an output sequence of length N1 + N2 – 1. To perform 

linear convolution using DFT, both the sequences should be converted to N1 + N2 – 1 sequences by 

padding with zeros. Then take N1 + N2 – 1-point DFT of both the sequences and determine the product 

of their DFTs. The resultant sequence is given by the IDFT of the product of DFTs. [Actually the 

response is given by the circular convolution of the N1 + N2 – 1 sequences]. Let x(n) be an N1-point 

sequence and h(n) be an N2-point sequence. The linear convolution of x(n) and h(n) produces a 

sequence y(n) of length N1 + N2 – 1. So pad x(n) with N2 – 1 zeros and h(n) with N1 – 1 zeros and make 

both of them of length N1 + N2 – 1. Let X(k) be an N1 + N2 – 1-point DFT of x(n), and H(k) be an N1 + 

N2 – 1-point DFT of h(n). Now, the sequence y(n) is given by the inverse DFT of the product X(k) 

H(k). 

y(n) = IDFT {X(k)H(k)} 

 

This technique of convolving two finite duration sequences using DFT techniques is called fast 

convolution. The convolution of two sequences by convolution sum formula. This technique of 

convolving two finite duration sequences using DFT techniques is called fast convolution. The 

convolution of two sequences by convolution sum formula. 
 

Y(n)=∑∞ 𝑥(𝑘)ℎ(𝑛 − 𝑘) 
 

 
is called direct convolution or slow convolution. The term fast is used because the DFT can be 

evaluated rapidly and efficiently using any of a large class of algorithms called Fast Fourier Transform 

(FFT). In a practical sense, the size of DFTs need not be restricted to N1 + N2 – 1-point transforms. 

Any number L can be used for the transform size subject to the restriction L _ (N1 + N2 – 1). If 

L > (N1 + N2 – 1), then y(n) will have zero valued samples at the end of the period. 

 
 

EXAMPLE 2.1 Find the linear convolution of the sequences x(n) and h(n) using DFT. 

x(n) = {1, 2}, h(n) = {2, 1} 

Solution: Let y(n) be the linear convolution of x(n) and h(n). x(n) and h(n) are of length 2 each. So 

the linear convolution of x(n) and h(n) will produce a 3 sample sequence (2 + 2 – 1 = 3). To avoid time 

aliasing, we convert the 2 sample input sequences into 3 sample sequences by padding with zeros. 

 

x(n) = {1, 2, 0} and h(n) = {2, 1, 0} 

 

By the definition of N-point DFT, the 3-point DFT of x(n) is: 



 

The sequence y(n) is obtained from IDFT of Y(k). By definition of IDFT, 



 
    __       
The linear convolution of x(n) = {1, 2} and h(n) = {2, 1} is obtained using the tabular 

method as shown below. 

 

From the above table, y(n) = {2, 1 + 4, 2} = {2, 5, 2}. 

 

EXAMPLE 2.2 Find the linear convolution of the sequences x(n) and h(n) using DFT. 

x(n) = {1, 0, 2}, h(n) = {1, 1} 

Solution: Let y(n) be the linear convolution of x(n) and h(n). x(n) is of length 3 and h(n) is 

of length 2. So the linear convolution of x(n) and h(n) will produce a 4-sample sequence 

(3 + 2 – 1 = 4). To avoid time aliasing, we convert the 2-sample and 3-sample sequences 

into 4-sample sequences by padding with zeros. 

x(n) = {1, 0, 2, 0} and h(n) = {1, 1, 0, 0} 

By the definition of N-point DFT, the 4-point DFT of x(n) is: 



 



 
Therefore, the linear convolution of x(n) and h(n) is: 

y(n) = x(n) * h(n) = {1, 1, 2, 2} 

 

The linear convolution of x(n) = {1, 0, 2} and h(n) = {1, 1} is obtained using the tabular 

method as shown below. 

From the above table, y(n) = {1, 1, 2, 2}. 

 

OVERLAP-ADD METHOD : 
 

In overlap-add method, the longer sequence x(n) of length L is split into m number of smaller 

sequences of length N equal to the size of the smaller sequence h(n). (If required zero padding may be 

done to L so that L = mN). The linear convolution of each section (of length N) of longer sequence with 

the smaller sequence of length N is performed. This gives an output sequence of length 2N – 1. 

In t his method, the last N – 1 samples of each output sequence overlaps with the first N – 1 
samples of next section. While combining the output sequences of the various sectioned convolutions, 

the corresponding samples of overlapped regions are added and the samples of non-overlapped regions 

are retained as such. If the linear convolution is to be performed by DFT (or FFT), since DFT supports 

only circular convolution and not linear convolution directly, we have to pad each section of the longer 

sequence (of length N) and also the smaller sequence (of length N) with N – 1 zeros before computing 

the circular convolution of each section with the smaller sequence. The steps for this fast convolution 

by overlap-add method are as follows: 

Step 1: N – 1 zeros are padded at the end of the impulse response sequence h(n) which isof length N 
and a sequence of length 2N – 1 is obtained. Then the 2N – 1 point FFT is performed and the output 

values are stored. 

Step 2: Split the data, i.e. x(n) into m blocks each of length N and pad N – 1 zeros to each block to 

make them 2N – 1 sequence blocks and find the FFT of each block. 



Step 3: The stored frequency response of the filter, i.e. the FFT output sequence obtained 

in Step 1 is multiplied by the FFT output sequence of each of the selected block in 

Step 2. 

Step 4: A 2N – 1 point inverse FFT is performed on each product sequence obtained in Step 3. 
Step 5: The first (N – 1) IFFT values obtained in Step 4 for each block, overlapped with the last N – 1 

values of the previous block. Therefore, add the overlapping values and keep the non-overlapping 

values as they are. The result is the linear convolution of x(n) and h(n). 

 

OVERLAP-SAVE METHOD 
 

In overlap-save method, the results of linear convolution of the various sections are obtained 

using circular convolution. Let x(n) be a longer sequence of length L and h(n) be a smaller 

sequence of length N. The regular convolution of sequences of length L and N has L + N – 1 

samples. If L > N, we have to zero pad the second sequence h(n) to length L. So their linear 

convolution will have 2L – 1 samples. Its first N – 1 samples are contaminated by 

 

wraparound and the rest corresponds to the regular convolution. To understand this let L = 

12 and N = 5. If we pad N by 7 zeros, their regular convolution has 23 (or 2L – 1) samples 

with 7 trailing zeros (L – N = 7). For periodic convolution, 11 samples (L – 1 = 11) are 

wrapped around. Since the last 7 (or L – N) are zeros only, first four samples (2L – 1) – (L) 

– (L – N) = N – 1 = 5 – 1 = 4 of the periodic convolution are contaminated by wraparound. 

This idea is the basis of overlap-save method. First, we add N – 1 leading zeros to the longer 

sequence x(n) and section it into k overlapping (by N – 1) segments of length M. Typically 

we choose M = 2N. Next, we zero pad h(n) (with trailing zeros) to length M, and find the periodic 

convolution of h(n) with each section of x(n). Finally, we discard the first N – 1 (contaminated) 

samples from each convolution and glue (concatenate) the results to give the required convolution. 

Step 1: N zeros are padded at the end of the impulse response h(n) which is of length N and a sequence 

of length M = 2N is obtained. Then the 2N point FFT is performed 

and the output values are stored. 
Step 2: A 2N point FFT on each selected data block is performed. Here each data block begins with the 

last N – 1 values in the previous data block, except the first data 

block which begins with N – 1 zeros. 

Step 3: The stored frequency response of the filter, i.e. the FFT output sequence obtained in Step 1 is 

multiplied by the FFT output sequence of each of the selected blocks 

obtained in Step 2. 

Step 4: A 2N point inverse FFT is performed on each of the product sequences obtained in 

Step 3. 

Step 5: The first N – 1 values from the output of each block are discarded and the remaining values are 

stored. That gives the response y(n). 

In either of the above two methods, the FFT of the shorter sequence need be found only once, stored, 

and reused for all subsequent partial convolutions. Both methods allow online implementation if we 

can tolerate a small processing delay that equals the time required for each section of the long sequence 

to arrive at the processor 

 

Fast Fourier Transform 

 
2.2 INTRODUCTION 

The N-point DFT of a sequence x(n) converts the time domain N-point sequence x(n) to a 

frequency domain N-point sequence X(k). The direct computation of an N-point DFT requires 

N x N complex multiplications and N(N – 1) complex additions. Many methods were 

developed for reducing the number of calculations involved. The most popular of these is the 

Fast Fourier Transform (FFT), a method developed by Cooley and Turkey. The FFT may be 

defined as an algorithm (or a method) for computing the DFT efficiently (with   reduced 

number of calculations). The computational efficiency is achieved by adopting a divide and 

conquer approach. This approach is based on the decomposition of an N-point DFT into 





N 

N 

successively smaller DFTs and then combining them to give the total transform. Based on 

this basic approach, a family of computational algorithms were developed and they are 

collectively known as FFT algorithms. Basically there are two FFT algorithms; Decimation- in- 

time (DIT) FFT algorithm and Decimation-in-frequency (DIF) FFT algorithm. In this chapter, 

we discuss DIT FFT and DIF FFT algorithms and the computation of DFT by these methods. 

 
FAST FOURIER TRANSFORM 

The DFT of a sequence x(n) of length N is expressed by a complex-valued sequence X(k) as 
 

 
N 1 

X (K )  x(n)e j2nk/N , K  0,1, 2,....N 1 where 
n0 

 

Let WN be the complex valued phase factor, which is an Nth root of unity given by 

W   e j 2nk / N 

Thus, 

 
X(k) becomes, 

 
N 1 

X (K )  x(n)W  nk , K  0,1, 2,.... N 1 
n0 

 

Similarly, IDFT is written as 
 
 

N 1 
x(n)   X (K )WN , n  0,1, 2,.... N 1 

nk 
 

n0 

From the above equations for X(k) and x(n), it is clear that for each value of k, the direct 

computation of X(k) involves N complex multiplications (4N real multiplications) and N – 1 

complex additions (4N – 2 real additions). Therefore, to compute all N values of DFT, N2 
complex multiplications and N(N – 1) complex additions are required. In fact the DFT and 

IDFT involve the same type of computations. 
If x(n) is a complex-valued sequence, then the N-point DFT given in equation for X(k) 

can be expressed as 

X(k) = XR(k) + jXI(k) 



N N 

N N 



The direct computation of the DFT needs 2N2 evaluations of trigonometric functions,   4N2 

real multiplications and 4N(N – 1) real additions. Also this is primarily inefficient   as   it 

cannot exploit the symmetry and periodicity properties of the phase factor WN, which are 
 

Symmetry property 

 
Periodicity property 

W k  N /2   W K 

W k  N  W K 

 

FFT algorithm exploits the two symmetry properties and so is an efficient algorithm for DFT 

computation. 

By adopting a divide and conquer approach, a computationally efficient algorithm can 

be developed. This approach depends on the decomposition of an N-point DFT into 

successively smaller size DFTs. An N-point sequence, if N can be expressed as N = r1r2r3, ..., rm. 

where r1 = r2 = r3 = ... = rm, then N = rm, can be decimated into r-point sequences. For each r- 

point sequence, r-point DFT can be computed. Hence the DFT is of size r. The number r is 

called the radix of the FFT algorithm and the number m indicates the number of stages in 

computation. From the results of r-point DFT, the r2-point DFTs are computed. From the 

results of r2-point DFTs, the r3-point DFTs are computed and so on, until we get rm-point 

DFT. If r = 2, it is called radix-2 FFT. 

 
DECIMATION IN TIME (DIT) RADIX-2 FFT 

In Decimation in time (DIT) algorithm, the time domain sequence x(n) is decimated   and 

smaller point DFTs are computed and they are combined to get the result of N-point DFT. 

In general, we can say that, in DIT algorithm the N-point DFT can be realized from 

two numbers of N/2-point DFTs, the N/2-point DFT can be realized from two numbers of N/4- 

point DFTs, and so on. 

In DIT radix-2 FFT, the N-point time domain sequence is decimated into 2-point 

sequences and the 2-point DFT for each decimated sequence is computed. From the results 

of 2-point DFTs, the 4-point DFTs, from the results of 4-point DFTs, the 8-point DFTs and 

so on are computed until we get N-point DFT. 

For performing radix-2 FFT, the value of r should be such that, N = 2m. Here, the 

decimation can be performed m times,   where m = log2N. In direct   computation   of N- 

point DFT, the total number of complex additions are N(N – 1) and the total number of complex 

multiplications are N2. In radix-2 FFT, the total number of complex additions are reduced to N 

log2N and the total number of complex multiplications are reduced to (N/2) log2N. 
Let x(n) be an N-sample sequence, where N is a power of 2. Decimate or break this 

sequence into two sequences f1(n) and f2(n) of length N/2, one composed of the even indexed 

values of x(n) and the other of odd indexed values of x(n). 
 

 

Given sequence x(n) : x(0), x(1), x(2),.....x( 
N 
1) ....x(N 1) 

2 
 

Even indexed sequence 

Odd indexed sequence 

f1(n)  x(2n) : x(0), x(2), x(4), ....... x(N  2) 

 
f2 (n)  x(2n 1) : x(1), x(3), x(5), ....... x(N 1) 

We know that the transform X(k) of the N-point sequence x(n) is given by 
 

 
 

N 1 

X (K )  x(n)WN 
nk , K  0,1, 2, .... N 1 

n0 

Breaking the sum into two parts, one for the even and one for the odd indexed values, gives 



 

 

 



 

N N 



X (K ) 
N /21  

x(n)W nk 
N 1  

x(n)W nk , K  0,1, 2, .... N 1. 
 

n0 

N N 

nN /2 

 

X (K ) 
N / 21  

x(n)W nk W nk 
N 1  

x(n)W nk 
N N N 

neven nodd 

When n is replaced by 2n, the even numbered samples are selected and when n is replaced by 

2n + 1, the odd numbered samples are selected. Hence, 

X (K ) 
N / 21 

x(2n)W 2nk 
N / 21 

x(2n 1)W 
 

(2n1)k 

 

n0 

N N 

n0 
 

Rearranging each part of X(k) into (N/2)-point transforms using 
 

 
W 2nk  (W 2 )nk   j

 2  2nk 

e N 
 
 W nk 

 and 
 

W (2n1)k  (W k )W nk 

N N 

 

We can write 

 
 


N / 21 

N /2  
 

 

 

 
N / 21 

N N N /2  

X (K )   f (n)W nk W k  f (n)W nk 
1 

n0 

N / 2 N 2 

n0 

N / 2 

By definition of DFT, the N/2-point DFT of f1(n) and f2(n) is given by 

F (K ) 
N / 21 

f (n)W nk & F (K ) 
N / 21 

f (n) W nk 
1 1 

n0 

N / 2 2 2 

n0 

N / 2 

X (k)  F (K ) W k F (K ),...k  0,1, 2, 3, .... N 1 
1 N 2 

The implementation of this equation for X(k) is shown in the following Figure . This first step in 

the decomposition breaks the N-point transform into two (N/2)-point transforms and the k WN 
provides the N-point combining algebra. The DFT of a sequence is periodic with period given by 

the number of points of DFT. Hence, F1(k) and F2(k) will be periodic with period N/2. 

F1 (k  N / 2)  F1(K), &F2 (k  N / 2)  F2 (K ) 

F1 (k  N / 2)  F1(K), &F2 (k  N / 2)  F2 (K ) 

In addition, the phase factor W (k  N / 2)   (W k ) 

 

Therefore, for k ≥ N/2, X(k) is given by 
X (K )  F (k  N / 2) W  k F (K  N / 2) 

1 N 2 

 

The implementation using the periodicity property is also shown in following Figure 

Figure 2.1 Illustration of flow graph of the first stage DIT FFT algorithm for N = 8. 

 

 
Having performed the decimation in time once, we can repeat the process for each of the 



sequences f1(n) and f2(n). Thus f1(n) would result in two (N/4)-point sequences and f2(n) would 

result in another two (N/4)-point sequences. 

THE 8-POINT DFT USIKG RADIX-2 DIT FFT 

The computation of 8-point DFT using radix-2 FFT involves three stages of   computation. 

Here N = 8 = 23, therefore, r =   2 and m   = 3. The given 8-point sequence is decimated into 

four 2-point sequences. For each 2-point sequence, the two point DFT is computed. From the 

results of four 2-point DFTs, two 4-point DFTs are obtained and from the results of two    4- 

point DFTs, the 8-point DFT is obtained. 

Let the given 8-sample sequence x(n) be {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}. 

The 8-samples should be decimated into sequences of two samples. Before decimation they 

are arranged in bit reversed order as shown in Table 2.1. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

Figure 2.4 Illustration of complete flow graph obtained by combining all the three stages for N = 8. 

 

TABLE 2.1 Normal and bit reversed order for N = 8. 
 

Normal order Bit reversed order 
 

x(0) x(000) x(0) x(000) 

x(1) x(001) x(4) x(100) 

x(2) x(010) x(2) x(010) 

x(3) x(011) x(6) x(110) 

x(4) x(100) x(1) x(001) 

x(5) x(101) x(5) x(101) 

x(6) x(110) x(3) x(011) 

x(7) x(111) x(7) x(111) 

 

The x(n) in bit reversed order is decimated into 4 numbers of 2-point sequences as 

shown below. 

(i) x(0) and x(4) 

(ii) x(2) and x(6) 

(iii) x(1) and x(5) 

(iv) x(3) and x(7) 

Using the decimated sequences as input, the 8-point DFT is computed. Figure 7.5 shows the 

three stages of computation of an 8-point DFT. 

The computation of 8-point DFT of an 8-point sequence in detail is given below. The 8- 

point sequence is decimated into 4-point sequences and 2-point sequences as shown below. 
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(a) (b) (c) 

Figure 7.6 (a)–(c) Flow graphs for implementation of first, 2nd and 3rd stages of computation. 

 
Butterfly Diagram 

Observing the basic computations performed at each stage, we can arrive at the following 

conclusions: 

(i) In each computation, two complex numbers a and b are considered. 

(ii) The complex number b is multiplied by a phase factor Wk . 

(iii) The product bWk is added to the complex number a to form a new complex number A. 

(i) The product bWk N 

number B. 

is subtracted from complex number a to form new complex 

The above basic computation can be expressed by a signal flow graph shown in Figure 7.7. 

The signal flow graph is also called butterfly diagram since it resembles a butterfly. 

 

 

 
 
 

Figure 7.7 Basic butterfFy diagram or fFow graph of radix–2 DI† FF†. 
 

The complete flow graph for 8-point DIT FFT considering periodicity drawn in a way 

to remember easily is shown in Figure 7.8. In radix-2 FFT, N/2 butterflies per stage   are 

required to represent the computational process. In the butterfly diagram for 8-point   DFT 

shown in Figure 7.8, for symmetry, W 0 , W 0 and W 0 are shown on the graph eventhough they 

are unity. The subscript 2 indicates that it is the first stage of computation. Similarly, 

subscripts 4 and 8 indicate the second and third stages of computation. 
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Figure 7.8 †he signal flow graph or butterfly diagram for 8–point radix–2 DIT FFT. 

 

DECIMATION IN FREQUENCY (DIF) RADIX-2 FFT 

In decimation in frequency algorithm, the frequency domain sequence X(k) is decimated. In 

this algorithm, the N-point time domain sequence is converted to two numbers of N/2-point 
 

sequences. Then each N/2-point sequence is converted to two numbers of N/4-point 

sequences. This process is continued until we get   N/2 numbers of 2-point sequences. Finally, 

the 2-point DFT of each 2-point sequence is computed. The 2-point DFTs of N/2 numbers of 2- 

point sequences will give N-samples, which is the N-point DFT of the time domain sequence. 

Here the equations for N/2-point sequences, N/4-point sequences, etc., are obtained by 

decimation of frequency domain sequences. Hence this method is called DIF. 

To derive the decimation-in-frequency form of the FFT algorithm for N, a power of 2, 

we can first divide the given input sequence x(n) = {x(0),   x(1), x(2), x(3), x(4), x(5), x(6), 

x(7) into the first half and last half of the points so that its DFT X(k) is 
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It is important to observe that while the above equation for X(k) contains two summations 

over N/2-points, each of these summations is not an N/2-point DFT, since 

W nk N/2 

Wnk rather than 
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Let us split X(k) into even and odd numbered samples. For even values of k, the X(k) can be 
written as 

 

N / 21 X (2K ) 
 

x(n)  (1)2k x(n  
N 

)W 2nk 

n0  2 
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N 

)

W nk 

n0  2  
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For odd values of k, the X(k) can be written as 

N 
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x(n)  (1)2k1 x(n  
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)W (2k 1)n 
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The above equations for X(2k) and X(2k + 1) can be recognized as N/2-point DFTs. X(2k) is 

the   DFT   of   the   sum   of   first   half   and   last   half   of   the   input   sequence,   i.e.   of 
{x(n) + x(n + N/2)} and X(2k + 1) is the DFT of the product W n with the difference of first 

half and last half of the input, i.e. of 

N 

{x(n) x(n + N/2)}WN 
n 
. 

If we define new time domain sequences, u1(n) and u2(n) consisting of N/2-samples, such that 
 

 

 
then the DFTs U1(k) = X(2k) and U2(k) = X(2k + 1) can be computed by first forming the 

sequences u1(n) and u2(n), then computing the N/2-point DFTs of these two sequences   to 

obtain the even numbered output points and odd numbered output points respectively. The 

procedure suggested above is illustrated in Figure 7.9 for the case of an 8-point sequence. 

 
 
 

Figure 7.9 FFow graph of the DIF decomposition of an N–point DF† computation into two N/2–point 
DF† computations N = 8. 
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Now each of the N/2-point frequency domain sequences, U1(k) and U2(k) can be decimated 

into two numbers of N/4-point sequences and four numbers of new N/4-point sequences can be 

obtained from them. 

Let the new sequences be v11(n), v12(n), v21(n), v22(n). On similar lines as   discussed 

above, we can get 

 

 

 
This process is continued till we get only 2-point sequences. The DFT of those 2-point 

sequences is the DFT of x(n), i.e. X(k) in bit reversed order. 

The third stage of computation for N = 8 is shown in Figure 7.11. 

The entire process of decimation involves m stages of   decimation where m   = log2N. 

The computation of the N-point DFT via the DIF FFT algorithm requires (N/2) log2N 

complex multiplications and (N – 1) log2N complex additions (i.e. total number of 

computations remains same in both DIF and DIT). 

 
Observing the basic calculations, each stage involves N/2 butterflies of the type shown 

in Figure 7.12. 

The butterfly computation involves the following operations: 

(i) In each computation two complex numbers a and b are considered. 

(ii) The sum of the two complex numbers is computed which forms a new complex 

number A. 

(iii) Subtract the complex number b from a to get the term (a – b). The difference term 

(a – b) is multiplied with the phase factor or twiddle factor 

complex number B. 

 

 

 
 

 
Figure 7.12 Basic butterfFy diagram for DIF FI†. 

W n to form a new 

 

The signal flow graph or butterfly diagram of all the three stages together is shown in Figure 

7.13. 

TKE 8-POINT DFT USIKG RADIX-2 DIF FFT 

The DIF computations for an 8-sample sequence are given below in detail. 

Let x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} be the given 8-sample sequence. 



First stage of COMPUTATION 

In the first stage of computation, two numbers of 4-point sequences u1(n) and u2(n) are 

obtained from the given 8-point sequence x(n) as shown below. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 
 

Figure 7.13 SignaF fFow graph or butterfFy diagram for the 8–point radix–2 DIF FF† aFgorithm. 

 

Seconb stage of CONPUTATION 

In the second stage of computation, four numbers of 2-point sequences v11(n), v12(n)   and 

v21(n), v22(n) are obtained form the two 4-point sequences u1(n) and u2(n) obtained in stage 

one 

Thirb stage of CONPUTATION 

In the third stage of computation, the 2-point DFTs of the 2-point sequences obtained in the 

second stage . The computation of 2-point DFTs is done by the butterfly operation shown in 

Figure 7.14(c). 
 

 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 7.14   (a)–(c) †he first, second and third stages of computation of 8–point DF† by Radix–2 DIF    FF†. 

 

 
 

CONPARISON of DlT (DECIMATION-IN-TINE)  and DlF (DECINATION-IN- 

FREQUENCY) ALGORITHMS 

Difference between DIT and DIF 

1. In DIT, the input is bit reversed while the output is in normal order. For DIF, the 

reverse is true, i.e. the input is in normal order, while the output is bit reversed. 

However, both DIT and DIF can go from normal to shuffled data or vice versa. 

2. Considering the butterfly diagram, in DIT, the complex multiplication takes place 

before the add subtract operation, while in DIF, the complex multiplication takes 

place after the add subtract operation. 

Similarities 



1. Both algorithms require the same number of operations to compute DFT. 

2. Both algorithms require bit reversal at some place during computation. 

 
 

 Computation of IDFT through FFT 
 

The term inside the square brackets in the above equation for x(n) is same as the DFT 

computation of a sequence X*(k) and may be computed using any FFT algorithm. So we can 

say that the IDFT of   X(k) can be obtained by finding the DFT of X*(k), taking the conjugate 

of that DFT and dividing by N. Hence, to compute the IDFT of X(k) the following procedure 

can be followed 

1. Take conjugate of X(k), i.e. determine X*(k). 

2. Compute the N-point DFT of X*(k) using radix-2 FFT. 

3. Take conjugate of the output sequence of FFT. 

4. Divide the sequence obtained in step-3 by N. 

The resultant sequence is x(n).Thus, a single FFT algorithm serves the evaluation of both direct and 

inverse DFTs. 

 

EXAMPLE 1 Draw the butterfly line diagram for 8-point FFT calculation and briefly explain. 

Use decimation-in-time algorithm. 

Solution: The butterfly line diagram for 8-point DIT FFT algorithm is shown in following 

Figure 

Solution: For 8-point DIT FFT 

1. The input sequence x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}, 

2. bit reversed order, of input as i.e. as xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}. 

Since N = 2m = 23, the 8-point DFT computation 

3. Radix-2 FFT involves 3 stages of computation, each stage involving 4 butterflies. The output 

X(k) will be in normal order. 

4. In the first stage, four 2-point DFTs are computed. In the second stage they are combined 

into two 4-point DFTs. In the third stage, the two 4-point DFTs are combined into one 8- 

point DFT. 

5. The 8-point FFT calculation requires 8 log28 = 24 complex additions and (8/2) log28 = 12 

complex multiplications. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure : Butterfly Fine diagram for 8–point DIT FFT algorithm for N = 8. 

 

EXAMPLE 2 Implement the decimation-in-frequency FFT algorithm of N-point DFT where 

N = 8. Also explain the steps involved in this algorithm. 

Solution: The 8-point radix-2 DIF FFT algorithm 

1. It involves 3 stages of computation. The input to the first stage is the input time sequence 

x(n) in normal order. The output of first      stage is the input to the second stage and the 

output of second stage is the input to the third stage. The output of third stage is the 8- 

point DFT in bit reversed order. 

2. In DIF algorithm, the frequency domain sequence X(k) is decimated. 

3. In this algorithm, the N-point time domain sequence is converted to two numbers of N/2- 

point sequences. Then each N/2-point sequence is converted to two numbers of N/4-point 

sequences. Thus, we get 4 numbers of N/4, i.e. 2-point sequences. 

4. Finally, the 2-point DFT of each 2-point sequence is computed. The 2-point DFTs of N/2 

number of 2-point sequences will give N-samples which is the N-point DFT of the time 

domain sequence. The implementation of the 8-point radix-2 DIF FFT algorithm is shown 

in Figure 7.16. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

Figure 7.16 Butterfly Fine diagram for 8–point radix–2 DIF FFT algorithm. 



EXAMPLE 7.4 What is FFT? Calculate the number of multiplications needed in the calculation 

of DFT using FFT algorithm with 32-point sequence. 

Solution: The FFT, i.e. Fast Fourier transform is a method (or algorithm) for computing 

the DFT with reduced number of calculations. The computational efficiency is achieved by 

adopting a divide and conquer approach. This approach is based on the decomposition of an N- 

point DFT into successively smaller DFTs. This basic approach leads to a family of efficient 

computational algorithms known as FFT algorithms. Basically there are two FFT algorithms. (i) 

DIT FFT algorithm and (ii) DIF FFT algorithm. If the length of the sequence    N = 2m, 2 

indicates the radix and m indicates the number of stages in the computation. In radix-2 FFT, the 

N-point sequence is decimated into two N/2-point sequences, each N/2-point sequence is 

decimated into two N/4-point sequences and so on till we get two   point   sequences. The DFTs 

of two point sequences are computed and DFTs of two 2-point sequences are combined into 

DFT of one 4-point sequence, DFTs of two 4-point sequences are combined into DFT of one 8-

point sequence and so on till we get the N-point DFT. 

The number of multiplications needed in the computation of DFT using FFT algorithm 

with N = 32-point sequence is = 
N 

log N = 
32 

log 25 = 80 . 
2 

2 
2 

2 

The number of complex additions 
= N log2 N = 32 log2 32 = 32 log2 2

5 = 160
 

EXAMPLE 7.5 Explain the inverse FFT algorithm to compute inverse DFT of a 8-point 

DFT. Draw the flow graph for the same. 

Solution: The IDFT of an 8-point sequence {X(k), k = 0, 1, 2, ..., 7} is defined as 
 

 

 
 

The term inside the square brackets in the RHS of the above expression for x(n) is the 8- point DFT 

of X *(k). Hence, in order to compute the IDFT of X(k) the following procedure can be followed: 

1. Given X(k), take conjugate of X (k) i.e. determine X *(k). 

2. Compute the DFT of X*(k) using radix-2 DIT or DIF FFT, [This gives 8x*(n)] 
 

1. Take conjugate of output sequence of FFT. This gives 8x(n). 

2. Divide the sequence obtained in step 3 by 8. The resultant sequence is x(n). 

The flow graph for computation of N = 8-point IDFT using DIT FFT algorithm is 

shown in Figure 7.18. 
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Figure 7.18 Computation of 8–point DF† of X*(k) by radix–2, DI† FF†. 

 

From Figure 7.18, we get the 8-point DFT of X*(k) by DIT FFT as 

 
8x*(n) = {8x* (0), 8x*(1), 8x* (2), 8x* (3), 8x*(4), 8x* (5), 8x* (6), 8x* (7)} 

1 * * * 

 

* * * 

 

* * * 

x(n) = {8x (0), 8x (1), 8x 
8 

(2), 8x (3), 8x (4), 8x (5), 8x (6), 8x (7)} 

 

EXAMPLE 7.11 Compute the DFT of the sequence x(n) = {1, 0, 0, 0, 0, 0, 0, 0} (a) directly, 

(b) by FFT. 

Solution: (a) Direct computation of DFT 

The given sequence is x(n) = {1, 0, 0, 0, 0, 0, 0, 0}. We have to compute 8-point DFT. So 

N = 8. 
 

N   1 DFT {x(n)} = X(k) = x(n) e j 
2 

nk N   1 7 x(n) W   = x(n) W 
N 

N 8 

n n n 0 





8 8 

8 8 8 8 8 8 8 8 
= x(0)W 0 + x(1)W 1 + x(2)W 2 + x(3)W 3 + x(4) W 4 + x(5)W 5 + x(6)W 6 + x(7)W 7 

= (1) (1) + (0) (W8 
1) + (0)W8 

2 + (0) W8 
3 + (0)W8

4 + (0)W 5 + (0)W 6 + (0)W 78= 1 

X(k) = 1 for all k 

X(0) = 1, X(1) = 1, X(2) = 1, X(3) = 1, X(4) = 1, X(5) = 1, X(6) = 1, X(7) = 1 

X(k) = {1, 1, 1, 1, 1, 1, 1, 1} 

(b) Computation by FFT. Here N = 8 = 23 

The computation of 8-point DFT of x(n) = {1, 0, 0, 0, 0, 0, 0, 0} by radix-2 DIT FFT 

algorithm is shown in Figure 7.31. x(n) in bit reverse order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} 

= {1, 0, 0, 0, 0, 0, 0, 0} 

For DIT FFT input is in bit reversed order and output is in normal order. 

From Figure 7.31, the 8-point DFT of the given x(n) is X(k) = {1, 1, 1, 1, 1, 1, 1, 1} 

 
EXAMPLE 7.12 An 8-point sequence is given by x(n) = {2, 2, 2, 2, 1, 1, 1, 1}. 

Compute the 8-point DFT of x(n) by 

(a) Radix-2 DIT FFT algorithm 

(b) Radix-2 DIF FFT algorithm 

Also sketch the magnitude and phase spectrum. 
 

 

Solution: (a) 8-point DFT by Radix-2 DIT FFT algorithm 

The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} 

= {2, 2, 2, 2, 1, 1, 1, 1} 

The given sequence in bit reversed order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} 

= {2, 1, 2, 1, 2, 1, 2, 1} 

For DIT FFT, the input is in bit reversed order and the output is in normal order. The 

computation of 8-point DFT of   x(n), i.e. X(k) by Radix-2 DIT FFT algorithm is shown in 

Figure 7.32. 



 

From Figure 7.32, we get the 8-point DFT of x(n) as 

X(k) = {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414} 
 

(b) 8-point DFT by radix-2 DIF FFT algorithm 

For DIF FFT, the input is in normal order and the output is in bit reversed order. The 

computation of DFT by radix-2 DIF FFT algorithm is shown in Figure 7.33. 

 

Figure 7.33 Computation of 8–point DF† of x(n) by radix–2 DIF FF† aFgorithm. 

 

From Figure 7.33, we observe that the 8-point DFT in bit reversed order is 

Xr (k) = {X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)} 

= {12, 0, 0, 0, 1 j2.414, 1 + j0.414, 1 j0.414, 1 + j2.414} 

The 8-point DFT in normal order is 
 

X(k) = {X(0), X(1), X(2), X(3), X(4), X (5), X(6), X(7)} 

= {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414} 

Magnitude and Phase Spectrum 

Each element of the sequence X(k) is a complex number and they are expressed in 

rectangular coordinates. If they are converted to polar coordinates, then the magnitude and 

phase of each element can be obtained. 

The magnitude spectrum is the plot of the magnitude of each sample of X(k)   as   a 

function of k. The phase spectrum is the plot of phase of each sample of X(k) as a function of k. 

When N-point DFT is performed on a sequence x(n) then the DFT sequence X(k) will have a 

periodicity of N. Hence, in this example, the magnitude and phase spectrum will have a 

periodicity of 8 as shown below. 



X(k) = {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414} 

= {12 0   , 2.61 67   , 0 0   , 1.08 22 , 0 0   , 1.08 22   , 0 0   , 2.61 67 

= {12 0, 2.61 0.37 , 0 0   , 1.08 0.12 , 0 0 , 1.08 0.12 , 0 0   , 2.61 0.37 } 

 

X(k) = {12, 2.61, 0, 1.08, 0, 1.08, 0, 2.61} 

= {0, 0.37 , 0, 0.12 , 0, 0.12 , 0, 0.37 } 

The magnitude and phase spectrum are shown in Figures 7.34(a) and (b). 

 

 

 

 
 

 

 
 

 

 

 

 
Figure 7.34 (a) Magnitude spectrum, (b) Phase spectrum. 

 

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm. 

x(n) = {2, 1, 2, 1, 2, 1, 2, 1} 

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} 
 

= {2, 1, 2, 1, 2, 1, 2, 1} 

For DIT FFT computation, the input sequence must be in bit reversed order and the output 

sequence will be in normal order. 

x(n) in bit reverse order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} 

= {2, 2, 2, 2, 1, 1, 1, 1} 

The computation of 8-point DFT of x(n) by radix-2 DIT FFT algorithm is shown in Figure 7.35. 

From Figure 7.35, we get the 8-point DFT of x(n) as X(k) = {12, 0, 0, 0, 4, 0, 0, 0} 

 

} 

X(k) 



Figure 7.35 Computation of 8–point DF† of x(n) by radix–2, DI† FF†. 

 

EXAMPLE 7.14 Compute the DFT for the sequence x(n) = {1, 1, 1, 1, 1, 1, 1, 1}. 

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} 

= {1, 1, 1, 1, 1, 1, 1, 1} 

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm is shown 

in Figure 7.36. 

The given sequence in bit reversed order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} 

= {1, 1, 1, 1, 1, 1, 1, 1} 

For DIT FFT, the input is in bit reversed order and output is in normal order. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 7.36   Computation of 8–point DF† of x(n) by radix–2, DI† FF†. 

 

From Figure 7.36, we get the 8-point DFT of x(n) as X(k) = {8, 0, 0, 0, 0, 0, 0, 0}. 



EXAMPLE 7.15 Given a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1}, determine X(k) using 

DIT FFT algorithm. 

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} 

= {1, 2, 3, 4, 4, 3, 2, 1} 

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm is shown 

in Figure 7.37. For DIT FFT, the input is in bit reversed order and the output is in normal 

order. 

The given sequence in bit reverse order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} = {1, 4, 3, 2, 2, 3, 4, 1} 
 

Figure 7.37 Computation of 8–point DF† of x(n) by radix–2, DI† FF†. 

 

From Figure 7.37, we get the 8-point DFT of x(n) as 

X(k) = {20, 5.828 j2.414, 

0, 

0.172 j0.414, 

0, 

0.172 + j0.414, 

0, 

5.828 + j2.414} 

 

EXAMPLE 7.16 Given a sequence x(n) = {0, 1, 2, 3, 4, 5, 6, 7}, determine X(k) using 

DIT FFT algorithm. 

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} 

= {0, 1, 2, 3, 4, 5, 6, 7} 

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm is shown 

in Figure 7.38. For DIT FFT, the input is in bit reversed order and output is in normal order. 

The given sequence in bit reverse order is 

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} 

= {0, 4, 2, 6, 1, 5, 3, 7} 



 

 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 7.38 Computation of 8–point DF† of x(n) by radix–2, DI† FF†. 

 

From Figure 7.38, we get the 8-point DFT of x(n) as 
 

X(k) = {28, 4 + j9.656, 4 + 4 +  4 j1.656, 4 j4, j9.656} 

j4,  j1.656, 4, 4    

 

EXAMPLE 7.18 Find the IDFT of the sequence 

X(k) = {4, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414} 

using DIF algorithm. 

Solution: The IDFT x(n) of the given 8-point sequence X(k) can be obtained by finding 

X*(k), the conjugate of X(k), finding the 8-point DFT of X*(k), using DIF algorithm to get 



r 

8x*(n), taking the conjugate of that to get 8x(n) and then dividing the result by 8 to get x(n). 

For DIF algorithm, input X *(k) must be in normal order. The output will be in bit reversed 

order for the given X(k). 
 

 

X*(k) = {4, 1 + j2.414, 0, 1 + j0.414, 0, 1 j0.414, 0, 
1 

j2.414} 

The DFT of X*(k) using radix-2, DIF FFT algorithm is computed as shown in Figure 7.42. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.42 Computation of 8–point DF† of X*(k) by radix–2 DIF FF†. 

 

From the DIF FFT algorithm of Figure 7.42, we get 

8x* (n) = {8, 0, 8, 0, 8, 0, 8, 0} 
 

8xr (n) = {8, 0, 8, 0, 8, 0, 8, 0}* = {8, 0, 8, 0, 8, 0, 8, 0} 

1 
x(n) = {8, 8, 8, 8, 0, 0, 0, 0} = {1, 1, 1, 1, 0, 0, 0, 0} 

8 

EXAMPLE 7.19 Compute the IDFT of the sequence 
 

 

X(k) = {7, 0.707 j0.707, 
j, 

using DIT algorithm. 

0.707 j0.707, 1, 0.707 + j0.707, 0.707 + j0.707} 

Solution: The IDFT x(n) of the given sequence X(k) can be obtained by finding X*(k), the 

conjugate of X(k), finding the 8-point DFT of X*(k) using radix-2 DIT FFT algorithm to get 

8x*(n), taking the conjugate of that to get 8x(n) and then dividing by 8 to get x(n). For DIT 

FFT, the input X*(k) must be in bit reverse order. The output 8x*(n) will be in normal order. 

For the given X(k). 
 

 

X* (k) = {7, 0.707 + j0.707, j, 0.707 + j0.707, 1, 0.707  

j0.707, 

X*(k) in bit reverse order is 

j, 0.707 j0.707} 

 
 

X
r 

(k) = {7, 1, j, j, 0.707 + j0.707, 
0.707 

j0.707, 0.707 + j0.707, 0.707 j0.707} 

j, 



 

The 8-point DFT of X*(k) using radix-2, DIT FFT algorithm is computed as shown in 

Figure 7.43. 

 

 

   
 

 

 

 

 

 

Figure 7.43 Computation of 8–point DF† of X*(k) by radix–2, DI† FF†. 

 

From the DIT FFT algorithm of Figure 7.43, we have 

8x*(n) = {8, 8, 8, 8, 8, 8, 8, 0} 

8x(n) = {8, 8, 8, 8, 8, 8, 8, 0} 

x(n) = {1, 1, 1, 1, 1, 1, 1, 0} 

 
EXAMPLE 7.20 Compute the IDFT of the square wave sequence X(k) = {12, 0, 0, 0, 4, 0, 

0, 0} using DIF algorithm. 
 

Solution: The IDFT x(n) of the given sequence X(k) can be obtained by finding X*(k), the 

conjugate of X(k), finding the 8-point DFT of X*(k) using DIF algorithm to get 8x*(n) taking 

the conjugate of that to get 8x(n) and then dividing the result by 8 to get x(n). For DIF 

algorithm, the input X*(k) must be in normal order and the output 8x*(n) will be in bit 

reversed order. 

For the given X(k) 

X*(k) = {12, 0, 0, 0, 4, 0, 0, 0} 

The 8-point DFT of X*(k) using radix-2, DIF FFT algorithm is computed as shown in Figure 

7.44. 

 

From Figure 7.44, we have 

8 xr 
* (n) = {16, 16, 16, 16, 8, 8, 8, 8} 

8xr (n) = {16, 16, 16, 16, 8, 8, 8, 8}* = {16, 16, 16, 16, 8, 8, 8, 8} 

x(n) = 
1 

{16, 8, 16, 8, 16, 8, 16, 8} = {2, 1, 2, 1, 2, 1, 2, 1} 



 

 



UNIT-III 

 

Introduction 

Filters are of two types—FIR and IIR. The types of filters which make use of feedback 

connection to get the desired filter implementation are known as recursive filters. Their impulse 

response is of infinite duration. So they are called IIR filters. The type of filters which do not 

employ any kind of feedback connection are known as non-recursive filters. Their impulse 

response is of finite duration. So they are called FIR filters. IIR filters are designed by 

considering all the infinite samples of the impulse response. The impulse   response is obtained 

by taking inverse Fourier transform of ideal frequency response. There are several techniques 

available for the design of digital filters having an infinite duration unit impulse response. The 

popular methods for such filter design uses the technique of first designing the digital filter in 

analog domain and then transforming the analog filter into an equivalent digital filter because the 

analog filter design techniques are well developed. Various methods of transforming an analog 

filter into a digital filter and methods of designing digital filters are discussed. 

 
Requirements for transformation 

The system function describing an analog filter may be written as 
 

 
H (s) = 

Y (s) 
= 

a X(s) 

M 

 bk sk 
k  0  

N 

ak sk 
k 

where {ak} and {bk} are filter coefficients. 
 

The impulse response of these filter coefficients is related to Ha(s) by the Laplace 

transform. 



Ha (s) = h(t) estdt 






The analog filter having the rational system function Ha(s) is expressed by a linear constant 

coefficient differential equation. 
 

N 

 ak 

k 0 

dk y(t) 

dtk 

M 

=  bk 
k  0 

dk x(t) 

dtk 

IIR DIGITAL FILTERS 



 

 

 

 
 

where x(t) is the input signal and y(t) is the output of the filter. 

The above three equivalent characterizations of an analog filter leads to three alternative 

methods for transforming the analog filter into digital domain. The restriction on the design is 

that the filters should be realizable and stable. 

For stability and causality of analog filter, the analog transfer function should satisfy 

the following requirements: 

1. The Ha(s) should be a rational function of s, and the coefficients of s should be real. 
2. The poles should lie on the left half of s-plane. 

3. The number of zeros should be less than or equal to the number of poles. 

For stability and causality of digital filter, the digital transfer function should satisfy the 

following requirements: 

1. The H(z) should be a rational function of z and the coefficients of z should be real. 

2. The poles should lie inside the unit circle in z-plane. 

3. The number of zeros should be less than or equal to the number of poles. 

We know that the analog filter with transfer function Ha(s) is stable if all its poles lie 

in the left half of the s-plane. Consequently for the conversion technique to be effective, it 

should possess the following desirable properties: 

1. The imaginary axis in the s-plane should map into the unit circle in the z-plane. 

Thus, there will be a direct relationship between the two frequency variables in the two 

domains. 

2. The left half of the s-plane should map into the interior of the unit circle centered at 

the origin in z-plane. Thus, a stable analog filter will be converted to a stable digital 

filter. 

The physically realizable and stable IIR filter cannot have a linear phase. For a filter to 

have a linear phase, the condition to be satisfied is h(n) = h(N –   1   – n) where N is the length 

of the filter and the filter would have a mirror image pole outside the unit circle for every 

pole inside the unit circle. This results in an unstable filter. As a result, a causal and stable 

IIR filter cannot have linear phase. In the design of IIR filters, only the desired magnitude 

response is specified and the phase response that is obtained from the design methodology is 

accepted. 

The comparison of digital and analog filters is given below. 

 

TABLE 1 Comparison of Digital and Analog Filters 
 

Digital filter Analog filter 
 

1. It operates on digital samples (or sampled 1. It operates on analog signals (or actual 

version) of the signal.  signals). 

2. It is governed (or defined) by linear 2. It is governed (or defined) by linear differ- 

difference equations.  ential equations. 

3. It consists of adders, multipliers, and delay 3. It consists of electrical components like 

elements implemented in digital logic  resistors, capacitors, and inductors. 

(either in hardware or software or both). 

4. In digital filters, the filter coefficients are 4. In analog filters, the approximation problem 

designed to satisfy the desired frequency  is solved to satisfy the desired frequency 

response.  response. 



 

 

 

 

 

 

Advantages of digital filters 

1. The values of resistors, capacitors and inductors used in analog filters change with 

temperature. Since the digital filters do not have these components, they have high 

thermal stability. 

2. In digital filters, the precision of the filter depends on the length (or size) of the 

registers used to store the filter coefficients. Hence by increasing the register bit 

length (in hardware) the performance characteristics of the filter like accuracy, 

dynamic range, stability and frequency response tolerance, can be enhanced. 

3. The digital filters are programmable. Hence the filter coefficients can be changed 

any time to implement adaptive features. 

4. A single filter can be used to process multiple signals by using the techniques of 

multiplexing. 

 

Disadvantages of digital filters 

1. The bandwidth of the discrete signal is limited by the sampling frequency. The 

bandwidth of real discrete signal is half the sampling frequency. 

2. The performance of the digital filter depends on the hardware (i.e., depends on the 

bit length of the registers in the hardware) used to implement the filter. 

 

Features of llR filters 

1. The physically realizable IIR filters do not have linear phase. 

2. The IIR filter specifications include the desired characteristics for the magnitude 

response only. 

 

 

 
DESIGN OF IIR FILTER BY BILINEAR TRSFORMATION METHOD 

IIR filter can be designed using (a) approximation of derivatives method and (b) Impulse 

invariant transformation method. However the IIR filter design using these methods is 

appropriate only for the design of low-pass filters and band pass filters whose resonant 

frequencies are small. These techniques are not suitable for high-pass or band rejects filters. The 

limitation is overcome in the mapping technique called the bilinear transformation. This 

transformation is a one-to-one mapping from the s-domain to the z-domain. That is, the bilinear 

transformation is a conformal mapping that transforms the imaginary axis of s-plane into the unit 

circle in the z-plane only once, thus avoiding aliasing of frequency components. In this mapping, 

all points in the left half of s-plane are mapped inside the unit circle in the z-plane, and all points 

in the right half of s-plane are mapped outside the unit circle in the z-plane. So the 

transformation of a stable analog filter results in stable digital filter. The bilinear transformation 

can be obtained by using the trapezoidal formula for the numerical integration. 

Let the system function of the analog filter be Ha (s) = 
b
 

s + a 

The differential equation describing the above analog filter can be obtained as: 
 

H (s) = 
Y (s) 

= 
a X(s) 

   b s 

+ a 



z ] + a [1 + z [1 + z 

 

 

 

 

or sY(s) + aY(s) = bX(s) 

Taking inverse Laplace transform on both sides, we get 

 
dy(t) 

+ a y(t) = bx(t) 
dt 

Integrating the above equation between the limits (nT – T) and nT, we have 

The trapezoidal rule for numeric integration is expressed as: 

 

Therefore, we get 

 
 

Taking z-transform, we get 

Y (z)[1  1 T 1
 

 
T 1 

 
 

2 2 

Therefore, the system function of the digital filter is: 

 

Comparing this with the analog filter system function Ha(s) we get 
 

Rearranging, we can get 
 

This is the relation between analog and digital poles in bilinear transformation. So to convert 

an analog filter function into an equivalent digital filter function, just put 

 

The general characteristic of the mapping z = esT may be obtained by putting s =  and expressing the 

complex variable z in the polar form as in the above equation for s. 

Thus, 
 

] Y (z) = b ] X(z) 



 

 

 

 

 
 

 

Since s = , we get 

And 

 
 

From the above equation for , we observe that if r < 1 then σ < 0 and if r > 1, then σ > 

0, and if r = 1, then σ = 0. Hence the left half of the s-plane maps into points inside 

the unit circle in the z-plane, the right half of the s-plane maps into points outside the unit 

circle in the z-plane and the imaginary axis of s-plane maps into the unit circle in the z-plane. 

This transformation results in a stable digital system. 

 

Relation between analog and digital frequencies 

On the imaginary axis of s-plane σ = 0 and correspondingly in the z-plane r = 1. 

 

 

The relation between analog and digital frequencies is: 
 

 

 

or equivalently, we have = 2tan 

 

The above relation between analog and digital frequencies shows that the entire range in Ω 

is mapped only once into the range –π ≤ ω ≤ π . The entire negative imaginary axis in the s-

plane (from Ω = – ∞ to 0) is mapped into the lower half of the  unit  circle in  z-plane (from 

ω = –π to 0) and the entire positive imaginary axis in the s-plane (from Ω= α to 0) is 

mapped into the upper half of unit circle in z-plane (from ω = 0 to +π ). 

But as seen in Figure 1, the mapping is non-linear and the lower frequencies in analog 

domain are expanded in the digital domain, whereas the higher frequencies are 



 

 

 
 

 

Figure 1 Mapping between Ω and ω in bilinear transformation. 
 

 
compressed. This is due to the nonlinearity of the arctangent function and usually known as 

frequency warping. 

The effect of warping on the magnitude response can be explained by considering an 

analog filter with a number of passbands as shown in Figure 2(a). The corresponding digital 

filter will have same number of passbands, but with disproportionate bandwidth, as shown in 

Figure 2(a). 

In designing digital filter using bilinear transformation, the effect of warping on 

amplitude response can be eliminated by prewarping the analog filter. In this method, the 

specified digital frequencies are converted to analog equivalent using the equation 

These analog frequencies are called prewarp frequencies. Using the prewarp 

 
frequencies, the analog filter transfer function is designed, and then it is transformed to digital 

filter transfer function. 

This effect of warping on the phase response can be explained by considering an analog 

filter with linear phase response as shown in Figure 2(b). The phase response of corresponding 

digital filter will be nonlinear. 
 

 

 

Figure 2 The warping effect on (a) magnitude response and (b) phase response. 

 

It can be stated that the bilinear transformation preserves the magnitude response of an 

analog filter only if the specification requires piecewise constant magnitude, but the phase 

response of the analog filter is not preserved. Therefore, the bilinear transformation can be used 

only to design digital filters with prescribed magnitude response with piecewise constant 

values. A linear phase analog filter cannot be transformed into a linear phase digital filter 



 

 

 

using the bilinear transformation. 

 
 

EXAMPLE 1 
 

Convert the following analog filter with transfer function 

 

into a digital IIR filter by using bilinear transformation. The digital IIR filter is having a 

resonant frequency of ω r =π/2. 

Solution: From  the  transfer  function,  we  observe  that  Ωc  =  3.  The  sampling  period 
T can be determined using the equation: 

 

Using the bilinear transformation, the digital filter system function is: 
 

 

 

 

EXAMPLE 2 

Convert the analog filter with system function 
 

 
Ha (s) = s + 0.5 

(s + 0.5)2 + 16 

 
into a digital IIR filter using the bilinear transformation. The digital filter should have a 

resonant frequency of ω r =π/2. 

Solution: From the system function, we observe that Ωc  = 4. The sampling period T  can be 



 

 

 

 

determined using the equation 
 

 

i.e. 
 

 

Using the bilinear transformation, the digital filter system function is: 
 

 
 

EXAMPLE 3 

Apply the bilinear transformation to 

with T = 0.5 s and find H(z). 

 

 
Solution: Given that 

 

 

and T = 0.5 s 
To obtain H(z) using the bilinear transformation in Ha(s) , replace s by 



 

 

 
 

 
 

 

EXAMPLE 4 

 
 

Obtain H(z) from Ha(s) when T = 1 s and 
 

 
using the bilinear transformation. 

Solution: Given 
 

and T = 1 s. 

To get H(z) using the bilinear transformation, put 

 
 



 

 

 

 
 

 
 

 

EXAMPLE 5 
 

Using the bilinear transformation, obtain H(z) from Ha(s) when T = 1s 

 

Solution: Given that 

 

To obtain H(z) using the bilinear transformation, 

 

 
Given T = 1 s, 

 
 

 

 



 

 

 

EXAMPLE 6 

A digital filter with a 3 dB bandwidth of 0.4 is to be designed from the 

analog filter whose system response is: 
 

 
Use the bilinear transformation and obtain H(z). 

 

 

Solution: We know that 

 
 

Here the 3 dB bandwidth ωc = 0.4  

 

The system response of the digital filter is given by 

 

 

EXAMPLE 7 

The normalized transfer function of an analog filter is given by 
 

 

Convert the analog filter to a digital filter with a cutoff frequency of 0.6, using the bilinear 

transformation. 

Solution: The prewarping of analog filter has to be performed to preserve the magnitude 

response. For this the analog cutoff frequency is determined using the bilinear transformation, 

and the analog transfer function is unnormalized using this analog cutoff frequency. Then the 

analog transfer function is converted to digital transfer function using the bilinear transformation. 

Given that, digital cutoff frequency, ωc = 0.6 π rad/s. Let T = 1s. 

In the bilinear transformation, 
Analog cutoff frequency 

 
Normalized analog transfer function 

 



 

 

 

 

 

The  analog  transfer  function  is  unnormalized  by  replacing  sn   by  s/Ωc. 

Therefore, unnormalized analog filter transfer function is given by 

 
 

The digital filter system function H(z) is obtained by substituting 

Ha(s). Here T = 1. Therefore, the digital filter transfer function is: 
 

 

 

 
SPECIFICATIONS OF THE LOW-PASS FILTER 

The magnitude response of low-pass filter in terms of gain and attenuation are shown 

in Figure 1. 

(a ) (b) 

Figure 3 Magnitude response of low–pass filter (a) Gain vs ω and (b) Attenuation vs ω. 

Let ω1 = Passband frequency in rad/s. 

ω2 = Stopband frequency in rad/s. 

Let the gain at the passband frequency ω1 be A1 and the gain at the stopband frequency 

ω2 be A2, i.e. 



 

 

 

 

 
 

The filter may be expressed in terms of the gain or attenuation at the edge frequencies. 

Let α1 be the attenuation at the passband edge frequency ω1, and α 2 be the attenuation at the 

stopband edge frequency ω2. 

 
The maximum value of normalized gain is unity, so A1 and A2 are less than 1 and α1 

and α2 are greater than 1. In Figure 1, A1 is assumed as 1/ 

Hence α 1 =1.421 = and α 2 = 1/0.1 = 10. 

and A2 is assumed as 0.1. 

Another popular unit that is used for filter specification is dB. When the gain is 
expressed in dB, it will be a negative dB. When the attenuation is expressed in dB, it will be a 

positive dB. 

Let k1 = Gain in dB at a passband frequency ω 1 

k2 = Gain in dB at a stopband frequency ω 2 

 
The gain can be converted into normal values as follows: 

20 log A1 = k1 20 log A2 = k2 

log A1 = k1/20 log A2 = k2/20 

A1 = 10k1/20 A2 = 10k2/20 

When expressed in dB, the gain and attenuation will have only change in sign because 

log α   = log(1/A) = –log   A. (Hence when dB is positive it is attenuation and when dB is 

negative it is gain). 

When A1 = 0.707, k1 = 20 log(0.707) = –3.0116 = –3 dB 

When A2 = 0.1, k2 = 20 log(0.1) = –20 dB 

The magnitude response of low-pass filter in terms of dB-attenuation is shown in Figure 4. 
 

 

Figure 4 Magnitude response of low–pass filter (a) dB–Gain vs ω and (b) dB–attenuation vs ω . 

 
Sometimes the specifications are given in terms of passband ripple    and stopband 

ripple  In this case, the dB gain and attenuation can be estimated as follows: 
 

2 

2 



 

 

 

 
 

If the ripples are specified in dB, then the minimum passband ripple is equal to k1 and 

the negative of maximum passband attenuation is equal to k2. 

 
DESIGN OF LOW-PASS DIGITAL BUTTERWORTH FILTER 

The popular methods of designing IIR digital filter involves the design of equivalent 

analog filter and then converting the analog filter to digital filter. Hence to design a 

Butterworth IIR digital filter, first an analog Butterworth filter transfer function is determined 

using the given specifications. Then the analog filter transfer function is converted to a digital 

filter transfer function using either impulse invariant transformation or bilinear 

transformation 

 
Analog Butterworth filter 

The analog Butterworth filter is designed by approximating the ideal   frequency   response 

using an error function. The error function is selected such that the magnitude is maximally 

flat in the passband and monotonically decreasing in the stopband. (Strictly speaking the 

magnitude is maximally flat at the origin, i.e., at = 0, and monotonically decreasing with 

increasing ). 

The magnitude response of low-pass filter obtained by this approximation is given by 

 

 

where     is the 3 dB cutoff frequency and N is the order of the filter. 

 

Frequency response of the Butterworth filter 

The frequency response of Butterworth filter depends on the order N. The magnitude 

response for different values of N are shown in Figure 5. From Figure 5, it   can be observed 

that the approximated magnitude response approaches the ideal response as the value of N 

increases. However, the phase response of the Butterworth filter becomes more nonlinear with 

increasing N. 

 

Figure 5 Magnitude response of Butterworth low–pass filter for various values of N. 

 
Order of the filter 

Since the frequency response of the filter depends on its order N, the order N has to be 

estimated to satisfy the given specifications. 

Usually the specifications of the filter are given in terms of gain A or attenuation at 

a passband or stopband frequency as given below: 



 

 

 
 

 
                                                 

The order of the filter is determined as given below. 

Let and be the analog filter edge frequencies corresponding to digital frequencies 

and The values of      and are obtained using the bilinear transformation or 
impulse invariant transformation. 

 

 

 

 

These two equations can be written in the form 
 

And 
 

 

Assuming equality we can obtain the filter order N and the 3 dB cutoff frequency 

Dividing the first equation by the second, we have 
 

 

 
From this equation, the order of the filter N is obtained approximately as 

 
 

 

If N is not an integer, the value of N is chosen to be the next nearest integer. Also we can get 
 

 

when parameters A1 and A2 are given in dB. 



 

 

 

 

A1 in dB is given by 

A1 dB = –20 log A1 
 

 

 log A1 
=  

A1 dB 

20 
 

or 

 

i.e. 

 

 
 

 

 
 

Similarly 

 

 
 

 
and is given by 

 

In fact, 
 

 

 

Butterworth low-pass filter transfer function 

The unnormalized transfer function of the Butterworth filter is usually written in factored 

form as: 



 

 
 

 

 

Where 
 

 
 

If (where is the 3 dB cutoff frequency of the low-pass filter) is replaced by sn, then the 

normalized Butterworth filter transfer function is given by 

 

Design proceure for low-pass digital Butterworth llR filter 

The low-pass digital Butterworth filter is designed as per the following steps: 

Let A1 = Gain at a passband frequency 
A2 = Gain at a stopband frequency 

= Analog frequency corresponding to 

= Analog frequency corresponding to 

Step 1 Choose the type of transformation, i.e., either bilinear or impulse invariant transformation. 

Step 2 Calculate the ratio of analog edge frequencies . 

For bilinear transformation 
 

 
For impulse invariant transformation, 

 

Step 3 Decide the order N of the filter. The order N should be such that 
 

 
 

Choose N such that it is an integer just greater than or equal to the value obtained above. 



 

 

 

 

 

 
 

Step 4 Calculate the analog cutoff frequency 
 

 

Step 5 Determine the transfer function of the analog filter. 

Let Ha(s) be the transfer function of the analog filter. When the order N is even, 

for unity dc gain filter, Ha(s) is given by 
 

 

When the order N is odd, for unity dc gain filter, Ha(s) is given by 
 

 

The coefficient bk is given by 
 

 

 
For normalized case, = 1 rad/s 

Step 6 Using the chosen transformation, transform the analog filter transfer function Ha(s) 

to digital filter transfer function H(z). 

Step 7 Realize the digital filter transfer function H(z) by a suitable structure. 

 

Poles of normalized Butterworth filter 

The Butterworth low-pass filter has a magnitude squared response given by 
 
 

 

 
We know that the frequency response of an analog filter is obtained by substituting 

in the analog transfer function Ha(s). Hence the system transfer function is obtained 

by replacing by (s/j) in the above equation. 
 
 



2 

 

 

In the above equation, when is replaced by Sn (i.e. = 1 rad/s), the transfer 

function is called normalized transfer function. 

 
 

 

n 

The transfer function of the above equation will have 2N poles which are given by the 

roots of the denominator polynomial. It can be shown that the poles of the transfer function 

symmetrically lie on a unit circle in s-plane with angular spacing of . 

For a stable and causal filter the poles should lie on the left half of the s-plane. Hence 

the desired filter transfer function is formed by choosing the N-number of left half poles. 

When N is even, all the poles are complex and exist in conjugate pairs. When N is odd, one 

of the pole is real and all other poles are complex and exist as conjugate pairs. Therefore, 

the transfer function of Butterworth filters will be a product of second order factors. 

The poles of the Butterworth polynomial lie on a circle, whose radius is .   To 
determine the number of poles of the Butterworth filter and the angle between them we use 
the following rules. 

• Number of Butterworth poles = 2N 

• Angle between any two poles = 360°/(2N) 

If the order of the filter N is even, then the location of the first pole is at w.r.t. the 

positive real axis, with the angle measured in the counter-clockwise direction. The location 

of the subsequent poles are respectively, at 

 

 
If the order of the filter N is odd, then the location of the first pole is on the X-axis. The 

location of subsequent poles are at θ , 2θ , ..., (360 –θ ) with the angle measured in the counter- 

clockwise direction. 

If   is the angle of a valid pole w.r.t. the X-axis, then the pole and its conjugate are 

located at . 

 
 

Properties of Butterworth filters 

1. The Butterworth filters are all pole designs (i.e. the zeros of the filters exist at œ). 

2. The filter order N completely specifies the filter. 

3. The magnitude response approaches the ideal response as the value of N increases. 

4. The magnitude is maximally flat at the origin. 

5. The magnitude is monotonically decreasing function of 

6. At the cutoff frequency fic, the magnitude of normalized Butterworth filter is 1/ 
. Hence the dB magnitude at the cutoff frequency will be 3 dB less than the 

maximum value. 
 

EXAMPLE 8 

Design a Butterworth digital filter using the bilinear transformation. The 

specifications of the desired low-pass filter are: 

 

with T = 1 s 



Solution: The Butterworth digital filter is designed as per the following steps. 

From the given specification, we have 
 

 
 

 
 

 
 

Step 1 Choice of the type of transformation 

Here the bilinear transformation is already specified. 

Step 2 Determination of the ratio of the analog filter’s edge frequencies, 

 

Step 3 Determination of the order of the filter N 
 

 

 

 

Since N 2.626, choose N = 3. 

Step 4 Determination of the analog cutoff frequency (i.e., –3 dB frequency) 
 

 

 
Step 5 Determination of the transfer function of the analog Butterworth filter Ha(s) 

 
For odd N, we have 

 

 
where 

 

  



 
 

For N = 3, we have 

 

 

where 
 

 

 
 

 
 
 

Step 6 Conversion of Ha(s) into H(z) 
Since bilinear transformation is to be used, the digital filter transfer function is 

 

 

 
EXAMPLE 9 

Design a low-pass Butterworth digital filter to give response of 3 dB or less for 

frequencies upto 2 kHz and an attenuation of 20 dB or more beyond 4 kHz. Use the bilinear 

transformation technique and obtain H(z) of the desired filter. 

Solution: The specifications of the desired filter are given in terms of dB attenuation and 

frequency in Hz. First the gain is to be expressed as a numerical value and frequency in rad/s. 

Here attenuation at passband frequency (ω1) = 3 dB 

Therefore, gain at passband edge frequency ( ω1) is k1 = –3 dB 

A1 =10k1/20 = 103/20 = 0.707 = 

 

Attenuation at stopband frequency (ω2) = 20 dB 

Therefore, gain at stopband edge frequency (ω2) is k2 = –20 dB 

A2 = 10
k2 /20  

= 1020/20 = 0.1 

Passband edge frequency = 2 kHz, 

Stopband edge frequency = 4 kHz, 

The design is performed as given below. 

Let the sampling frequency be 10000 Hz. 
 

 

Normalized ω  =2π 
f1 = 2 π 

 
 

2000  = 0.4 
1 

   

fs 
10000   

 
 

Normalized ω = 2π
 f2 = 2 π 4000 

 
= 0.8 

2    

fs 

Step 1 Bilinear transformation is chosen 

 
 

10000 

1 

2 



Step 2 Ratio of analog filter edge frequencies  
 

 

 

Step 3 Order of the filter 
 
 

 

Step 4 Analog cutoff frequency 

 
 

Unnormalized 

 

Step 5 Transfer function Ha(s) 

 

 



 

 

 

 

Step 6 Conversion of Ha(s) into H(z) 
 

 

 

EXAMPLE 10 

Design a low-pass Butterworth filter using the bilinear transformation 

method for satisfying the following constraints: 

Passband: 0–400 Hz Stopband: 2.1– 4 kHz 

Passband ripple: 2 dB Stopband attenuation: 20 dB 

Sampling frequency: 10 kHz 

Solution: Given 

α1  =  2  dB, k1  = –2 dB an1d A1= 10 = 10 2/20 = 0.794 

α2  =  20  dB, k2  = –20  dB 

Step 1 Type of transformation 

A 2 = 10 
k2 /20 

= 10 20/20 = 0.1 

Bilinear transformation is already specified. 

Step 2    Ratio of analog edge frequencies . 
Here fs = 10 kHz 

Passband edge frequency f1 = 400 Hz 

Stopband edge frequency f2 = 2.1 kHz 

Normalizing the frequencies, we have 

 
 

 

 

 

 
Therefore, the analog filter edge frequencies are: 

 

 
 

k1/20 

f 



 

 

 

 
 

Step 3 Order of the filter N 
 

 

Step 4 The cutoff frequency 
 
 

Step 5 The system function Ha(s) 
 

 
(4915.788)2 

=     
s2 + 1.414  4915.788 s + (4915.788)2 

2.416  107 
= 

s2 + 6950.92 s + 2.416  107 

Step 6 Digital transfer function H(z) 

 

 
 



 

The poles are given by 
 

 

EXAMPLE 11 

A digital low-pass filter is required to meet the following specifications. 

Passband attenuation ≤ 1 dB Passband edge = 4 kHz 

Stopband attenuation      40 dB Stopband edge = 8 kHz 

Sampling rate = 24 kHz 

The filter is to be designed by performing the bilinear transformation on an   analog 

system function. Design the Butterworth filter. 
 

Solution: Given α1 = 1 dB, k1 = –1 dB and 

α2  =  40  dB, k2  = – 40  dB and 

Since fs = 24 kHz, normalized angular frequencies are: 

A1 = 10k1/20 
= 10 1/20 = 0.8912 

A2 = 10k2 /20 
= 1040/20 = 0.01 

 
f1 = 4 kHz, ω1 = 

2 πf1  

fs 
= 2π 

4000 
 

 

24000 

 

= 1.047 rad/s 

 

f2 = 8 kHz, 

 
 

ω2= 
2πf2  = 2π  

8000 
= 2.094 rad/s 

fs 24000 

The Butterworth filter is designed as follows: 

Step 1 Type of transformation 

Bilinear transformation is already specified. 

 
Step 2 Ratio of analog edge frequencies,  

 
Step 3 Order of the filter N 

 

 



Step 4 The cutoff frequency 

 

Step 5 Analog filter transfer function Ha(s) 

 
 

 
Step 6 Digital filter function H(z) 

Using the bilinear transformation, we have 

 

EXAMPLE 12 

Design a digital IIR low-pass filter with passband edge at 1000 Hz and stopband edge at 

1500 Hz for a sampling frequency of 5000 Hz. The filter is to have a passband ripple of 0.5 dB 

and a stopband ripple below 30 dB. Design a Butterworth filter using the bilinear transformation. 

Solution: Given fs = 5000 Hz, the normalized frequencies are given as: 

 



The Butterworth filter is designed as follows: 

Step 1 Type of transformation. 

Bilinear transformation is to be used. 

 

Step 2 Ratio of analog filter edge frequencies, 
 

Step 3 Order of the filter N 

 

Step 4 The cutoff frequency 

 

Step 5 The system function Ha(s) 
 

 

 

 
Step 6 Digital filter function H(z) 

Using the bilinear transformation, we have 



= = 1s. 

 

 

EXAMPLE 13 

Determine the order of a Butterworth low-pass filter satisfying the 

following specifications:  
fp = 0.10 Hz, αp = 0.5 dB 

fs = 0.15 Hz, αs = 15 dB; f = 1 Hz 
 

Solution: Given 

fp = 0.10 Hz, ωp = ω1 = 2 π fp = 2π (0.1) = 0.2π    

fs = 0.15 Hz, ωs = ω2 = 2π fs = 2π (0.15) = 0.30π 

αp = α1 = 0.5 dB, k1 = –0.5 dB, so 

αs = α 2 = 15 dB, k2 = –15 dB, so 

f = 1 Hz,  T =   
1 1

 

f 1 

A1 = 10k1/20 
= 100.5/20 = 0.944 

A2 = 10k2 /20 
= 1015/20 = 0.177 

1. The type of transformation is not specified. Let us use bilinear transformation. 
 

 

 
 

 

 
2. 

3. 




3. 

 

 6.16  7 

So the order of the low-pass Butterworth filter is N = 7. 



DESIGN OF LOW-PASS CHEBYSHEV FILTER 

For designing a Chebyshev IIR digital filter, first an analog filter is designed 

using the given specifications. Then the analog filter transfer function is transformed to digital 

filter transfer function by using either impulse invariant transformation or bilinear 

transformation. 

The analog Chebyshev filter is designed by approximating the ideal frequency response 

using an error function. There are two types of Chebyshev approximations. 

In type-1 approximation, the error function is selected such that the magnitude response is 

equiripple in the passband and monotonic in the stopband. 

In type-2 approximation, the error function is selected such that the magnitude function is 

monotonic in the passband and equiripple in the stopband. The type-2 magnitude response is 

also called inverse Chebyshev response. The type-1 design is discussed. 

The magnitude response of type-1 Chebyshev low-pass filter is given by 

 
Where ε is attenuation constant given by 

 

A1 is the gain at the passband edge frequency ω1 and Chebyshev polynomial of the first kind 
of degree N given by 

 

cN (x) = {cos(N cos1 x), for x  1 

={cos(N cosh1 x), for x  1 

and         is the 3 dB cutoff frequency. 

The frequency response of Chebyshev filter depends on order N. The approximated response 
approaches the ideal response as the order N increases. The phase response of the Chebyshev filter 
is more nonlinear than that of the Butterworth filter for a given filter length 
N. The magnitude response of type-1 Chebyshev filter is shown in Figure 6. 

 

 
(a) (b) 

Figure 6 Magnitude response of type–I Chebyshev filter. 
 
 
 

The design parameters of the Chebyshev filter are obtained by considering the low-pass 

filter with the desired specifications as given below. 
 



The corresponding analog magnitude response is to be obtained in the design process. 

We have 
 

 
Assuming we will have  

. Therefore, from the above inequality involving A2 , we get 
 

Assuming equality in the above equation, the expression for ε is 

 
 
 

The order of the analog filter, N can be determined from the inequality for 

 

 

 

Choose N to be the next nearest integer to the value given above. The values of and 

are determined from ω1 and ω2 using either impulse invariant transformation or bilinear 

transformation. 

The transfer function of Chebyshev filters are usually written in the factored form as 

given below. 

When N is even, 
 

 

 
When N is odd, where 



 

 
 

 

 
For even values of N and unity dc gain filter, the parameter Bk are evaluated using the 

equation: 

 
 

 

For odd values of N and unity dc gain filter, the parameter Bk are evaluated using the 

equation: 

 

Poles of a NORMALIZED  Chebyshev filter 

The transfer function of the analog system can be obtained from the equation for the 

magnitude squared response as: 
 

For the normalized transfer function, let us replace  by sn. 
 

 

The normalized poles in the s-domain can be obtained by equating the denominator of 

the above equation to zero, i.e., 

 
The 

to zero. 

The solution to the above expression gives us the 2N poles of the filter given by 

sn = – sin x sinh y + jcos x cosh y =σn +jΩn 

where n = 1,  2, ..., (N+1)/2 for N odd 

= 1, 2, ..., N/2 for N even 

 
And 

x = 
(2n  1)π                 n = 1,2, ..., N 

2N 

 
The unnormalized poles, s’n can be obtained from the normalized poles as shown below. 

N n 



 

 
 

The normalized poles lie on an ellipse in s-plane. Since for a stable filter all the poles 

should lie in the left half of s-plane, only the N poles on the ellipse which are in the left half of s-

plane are considered. 

For N even, all the poles are complex and exist in conjugate pairs. For N odd, one pole is 

real and all other poles are complex and occur in conjugate pairs. 

 
Design procedure for low-pass digital Chebyshev llR filter 

The low-pass Chebyshev IIR digital filter is designed following the steps given below. 

Step 1 Choose the type of transformation. 

(Bilinear or impulse invariant transformation) 

Step 2 Calculate the attenuation constant . 
 

 

 

Step 3 Calculate the ratio of analog edge frequencies . 

For bilinear transformation, 
 

 

 

Step 4 Decide the order of the filter N such that 
 

 

 
Step 5 Calculate the analog cutoff frequency 

For bilinear transformation, 
 
 

 
 

Step 6 Determine the analog transfer function Ha(s) of the filter. 
When the order N is even, Ha(s) is given by 

 

 

When the order N is odd, Ha(s) is given by 
 

 

where 



 

 

 

For even values of N and unity dc gain filter, find such that 

 

 
For odd values of N and unity dc gain filter, find such that 

 

 

(It is normal practice to take B0 = B1 = B2 = ... = Bk) 
 

Step 7 Using the chosen transformation, transform Ha(s) to H(z), where H(z) is 

the transfer function of the digital filter. 

[The high-pass, band pass and band stop filters are obtained from low- 

pass filter design by frequency transformation]. 

 

Properties of Chebyshev filters (Type 1) 

1. The magnitude response is equiripple in the passband and monotonic inmn the 

stopband. 

2. The chebyshev type-1 filters are all pole designs. 

3. The normalized magnitude function has a value of at 

the cutoff frequency  

4. The magnitude response approaches the ideal response as the value of N increases. 

 
EXAMPLE 14 

 

Design a Chebyshev IIR digital low-pass filter to satisfy the constraints. 
 

0.707  H( ω )  1, 0  ω  0.2π    



 

H( ω )  0.1, 0.5π    ω  π   

 

using bilinear transformation and assuming T = 1 s. 

Solution: Given 

A1 = 0.707, ω1 = 0.2π   

A2 = 0.1, ω2 = 0.5π   

T = 1 s and bilinear transformation is to be used. The low-pass Chebyshev IIR digital filter is 

designed as follows: 

Step 1 Type of transformation 

Here bilinear transformation is to be used. 

Step 2 Attenuation constant    
 

 
 

 
Step 3 Ratio of analog edge frequencies, . 

Since bilinear transformation is to be used, 
 
 

 
Step 4 Order of the filter N 

 

 

 
Step 5 Analog cutoff frequency 

 

 
Step 6 Analog filter transfer function Ha(s) 



 
 

For N even, 

 

 
That is B1 = c1 x 0.707 = 0.707 x 0.707 = 0.5. 
Therefore, the system function is: 

 

On simplifying, we get 

 

 
Step 7 Digital filter transfer function H(z) 

 



 

EXAMPLE 15 

Determine the system function H(z) of the lowest order Chebyshev IIR 

digital filter with the following specifications: 

3 dB ripple in passband 0 ≤ω ≤ 0.2 π   

25 dB attenuation in stopband 0.45π ≤ ω≤ π   

Solution: Given 

α1  =  3 dB, 

α2  =  25 dB, 

 
 

k1 = 

k2 = 

 

 3dB and hence A1 = 10k1/20 
= 103/20 = 0.707 

 25dB and hence A2 = 10k2 /20 
= 1025/20 = 0.0562 

ω 1 = 0.2π and ω2 = 0.45π 

Let T = 1 and bilinear transformation is used 

 

Attenuation constant 

Ratio of analog frequencies 
 
 

 
Order of filter 

 

Analog cutoff frequency 
 

 

Analog filter transfer function for N = 3. 



 
 

For N odd 

 
 

 

Using bilinear transformation, H(z) is given by 

 

 

EXAMPLE 16 

The specification of the desired low-pass filter is: 
 

0.9  H(ω   )  1.0 ; 0  ω  0.3 π  

H ( ω )  0.15; 0.5π  ω    π    

Design a Chebyshev digital filter using the bilinear transformation. 

Solution: Given 

A1 = 0.9, ω 1 = 0.3 π   

A2 = 0.15, ω 2 = 0.5 π   



The Chebyshev filter is designed as per the following steps: 

Step 1 The bilinear transformation is used. 

Step 2 Attenuation constant 
 

                   
 

Step 3 Ratio of analog edge frequencies 

Step 4 Order of the filter N 
 

So order of the filter is N = 3. Let T = 1 s. 

 
Step 5 Analog cutoff frequency 
   

 

 

 
 

 

 

Step 6 Analog transfer function Ha(s) 
 

 

 
 

 
When k = 1, 





 
 

When s = 0 

 

 

, 
 

 

Let Ha(0) = 1, 1.935 B0B1 = 1 

Let B0 = B1, B2 = 
1 

= 0.516 or B 
 

 

 
= 0.718 

0 1.935 0 

B0 = B1 = 0.86 

 
H (s) = 

 

 
0.516 (1.442) 

a 

 

 

= 

 
Step 7 Digital transfer function 

 

 

(s + 0.577) (s2 + 0.577s + 1.29) 

0.744 
 

 

(s + 0.577) (s2 + 0.577s + 1.29) 

 

 

 
 

 

 



 

EXAMPLE 17 

Determine the system function of the lowest order Chebyshev digital 

filter that meets the following specifications. 

2 dB ripple in the passband 0 ≤ω ≤ 0.25 π    

Atleast 50 dB attenuation in stopband 0.4π ≤ω ≤ π   

Solution: Given 

Ripple in passband = 2 dB, i.e. k1 = –2 dB A1 = 10k1/20 = 102/20 = 0.794 
  

Attenuation in stopband = 50 dB, i.e. k2 = –50 dB 

A1 = 0.794, ω1 = 0.25π   

A2 = 0.003, ω2 = 0.4π   

A2 = 10k2 /20 
= 1050/20 = 0.0031 

The Chebyshev filter is designed as per the following steps: 

Step 1 Type of transformation 

Let us choose bilinear transformation. 
 

Step 2 Attenuation constant      

  

 

 

Step 3 Ratio of analog edge frequencies, 
 

 

Step 4 Order of the filter N 

 

 
Step 5 Analog cutoff frequency  

 

 
 



Step 6 Analog transfer function Ha(s) 
 
 

 

 
 

Let B1 = B2 = B3 and let Ha(0) = 1 
 

 



Step 7 Digital filter transfer function H(z) taking T = 1s. 
 

 

 

 

 

EXAMPLE 18 

 
specifications: 

 
Determine the lowest order of Chebyshev filter that meets the following 

(i) 1 dB ripple in the passband 0  ω  0.3π   
 

  

(ii) Atleast 60 dB attenuation in the stopband 0.35π  ω  π 

Use the bilinear transformation. 

Solution: Given ω1 = 0.3 , ω2 = 0.35 

1 dB ripple, so α 1 = 1 dB or k1 = –1 dB A1 = 10k1/20 
= 101/20 = 0.891 

60 dB attenuation, so α2 = 60 dB or k2 = – 60 dB 

Step 1 Bilinear transformation is to be used. 

Step 2 Attenuation constant 
 

 

Step 3 Ratio of analog edge frequencies 



 

 

 

Step 4 Order of the filter 
 

So the lowest order of the filter is N = 14. 



 

 

 

 

 

UNIT-IV              

FIR DIGITAL FILTERS 

 

 
 

INTRODUCTION 

A filter is a frequency selective system. Digital filters are classified as finite duration unit 

impulse response (FIR) filters or infinite duration unit impulse response (IIR) filters, 

depending on the form of the unit impulse response of the system. In the FIR system, the 

impulse response sequence is of finite duration, i.e., it has a finite number of non-zero terms. 

The IIR system has an infinite number of non-zero terms, i.e., its impulse response sequence is 

of infinite duration. IIR filters are usually implemented using recursive structures (feedback- 

poles and zeros) and FIR filters are usually implemented using non-recursive structures (no 

feedback-only zeros). The response of the FIR filter depends only on the present and past input 

samples, whereas for the IIR filter, the present response is a function of the present and past 

values of the excitation as well as past values of the response. 

Advantages of FIR filter over IIR filters: 

1. FIR filters are always stable. 

2. FIR filters with exactly linear phase can easily be designed. 

3. FIR filters can be realized in both recursive and non-recursive structures. 

4. FIR filters are free of limit cycle oscillations, when implemented on a finite word 

length digital system. 

5. Excellent design methods are available for various kinds of FIR filters. 

Disadvantages of FIR filters: 

1. The implementation of narrow transition band FIR filters is very costly, as it requires 

considerably more arithmetic operations and hardware components such as multipliers, 

adders and delay elements. 

2. Memory requirement and execution time are very high. 

 

FIR filters are employed in filtering problems where linear phase characteristics within the 

pass band of the filter are required. If this is not required, either an FIR or an IIR filter may be 

employed. An IIR filter has lesser number of side lobes in the stop band than an FIR filter 

with the same number of parameters. For this reason if some phase distortion is tolerable, 

an IIR filter is preferable. Also, the implementation of an IIR filter involves fewer 

parameters, less memory requirements and lower computational complexity. 

 

Characteristics o f Fir Filters wi th  Linear Phase 

The transfer function of a FIR causal filter is given by 

 
N 1 

H(z) =  h(n) zn 
n  0 

where h(n) is the impulse response of the filter. The frequency response [Fourier transform of 

h(n)] is given by 



 

 

 

 

N 1 

H( ω ) =  h(n) e j n 
n  0 

which is periodic in frequency with period 2 , i.e., 

H( ω ) = H( ω + 2k ), k = 0, 1, 2, ... 

Since H(ω ) is complex it can be expressed as 

where H(ω ) is the magnitude response and (ω) is the phase response 

We define the phase delay τ p and group delay τg of a filter as: 

 

For FIR filters with linear phase, we can define 
 

Where α is constant phase delay in samples 

 

 

i.e. τp = τg =α which means that α is independent of 

frequency. 
 

We have 

 

 

i.e. 

 

N 1 

 h(n) e j n =  H(ω) e j θ(ω ) 
n  0 

 

N 1 

 h(n)[cosω n  j sinωn] =  |𝐻(ω) | [cosθ (ω ) + j sinθ (ω )] 

This gives us 
N 1 

 h(n) cosω n =  |𝐻(ω) | cosθ (ω ) 

n  0 
 

 

 
 

Therefore, 

 

 

 

 
 
 

i.e. 

N 1 

 h(n) sin ω n =  |𝐻(ω) | sin θ (ω ) 

n  0 

 
 

 

N 1 

 

 h(n) [sin ωn cos αω - cosωn sin αω] = 0    

                n  0 

d        



2 

 

 

 
 

i.e. 
 

N 1 

 h(n) sin (α  n)ω = 0 
n  0 

This will be zero when 
 

This shows that FIR filters will have constant phase and group delays when the impulse 

response is symmetrical about α= (N – 1)/2. 

The impulse response satisfying the symmetry condition h(n) = h(N – 1 – n) for odd and even 

values of N is shown in Figure 1. When N = 9, the centre of symmetry 

of the sequence occurs at the fourth sample and when N = 8, the filter delay is 3 1 samples. 
 

(a) (b) 

Figure 1 Impulse response sequence of symmetrical sequences for (a) N odd (b) N even. 

 
 

If only constant group delay is required and not the phase delay, we can write 

θ(ω ) = β – αω    

Now, we have 
 

 
 

 

This gives 

 



 

 

 

 
 

 
 

Cross multiplying and rearranging, we get 
 

If β = π/2, the above equation can be written as: 
 

This equation will be satisfied when 

 

This shows that FIR filters have constant group delay τ g and not constant phase delay when 
the impulse response is antisymmetrical about α= (N – 1)/2. 

The impulse response sa3t
2
isfying the antisymmetry condition is shown in  Figure  2. When 

N = 9, the centre of antisymmetry occurs at fourth sample and when N = 8, the centre of 

 
antisymmetry occurs at samples. From Figure 2, we find that h[(N – 1)/2] = 0 for 

antisymmetric odd sequence. 

 

 

 
 
 

 a      b 

Figure 2 Impulse response sequence of antisymmetric sequences for (a) N odd (b) N even. 



 
 
 
 
 

EXAMPLE 1 The length of an FIR filter is 7. If this filter has a linear phase, show that 

 

 

 
 

is satisfied 

Solution: The length of the filter is 7. Therefore, for linear phase, 
 

 
 

 

The condition for symmetry when N is odd, is h(n) = h(N – 1 – n). 

Therefore, the filter coefficients are h(0) = h(6), h(1) = h(5), h(2) = h(4) and h(3). 

 

 

 
Hence, the equation is satisfied. 

 
 

EXAMPLE 2 

The following transfer function characterizes an FIR filter (N = 9). 

Determine the magnitude response and show that the phase and group delays are constant. 
 
 

Solution: The transfer function of the filter is given by 

 
 
 

The phase delay 

 

Since h(n) = h(N – 1 – n) 
 

The frequency response is obtained by replacing z with e j . 



 

 

 

 
 

 
 

 
 

Thus, the phase delay and the group delay are the same and are constants. 

 

 

 
Design Techniques for FIR FIilters 

The well known methods of designing FIR filters are as follows: 

1. Fourier series method 

2. Window method 

3. Frequency sampling method 

4. Optimum filter design 

In Fourier series method, the desired frequency response Hd (ω ) is converted to a 

Fourier series representation by replacing by 2 π fT, where T is the sampling time. Then 

using this expression, the Fourier coefficients are evaluated by taking inverse Fourier 

transform of Hd(ω ), which is the desired impulse response of the filter hd(n). The   Z- 

transform of hd(n) gives Hd(z) which is the transfer function of the desired filter. The Hd(z) 

obtained from Hd(n) will be a transfer function of unrealizable non causal digital filter   of 

infinite duration. A finite duration impulse response h(n) can be obtained by truncating the 

infinite duration impulse response hd(n) to N-samples. Now, take Z-transform of h(n) to get 

H(z). This H(z) corresponds to a non-causal filter. So multiply this H(z) by z–(N–1)/2 to get the 

transfer function of realizable causal filter of finite duration. 

In window method, we begin with the desired frequency response specification   Hd(ω ) 

and determine the corresponding unit sample response hd(n). The hd(n) is given   by   the 

inverse Fourier transform of Hd(ω ). The unit sample response hd(n) will be an infinite 

sequence and must be truncated at some point, say, at n = N – 1 to yield an FIR filter of 

length N. The truncation is achieved by multiplying hd(n) by a window sequence w(n). The 

resultant sequence will be of length N and can be denoted by h(n). The Z-transform of h(n) 

will give the filter transfer function H(z). There have been many windows proposed like 

Rectangular window, Triangular window, Hanning window, Hamming window, Blackman 

wndow and Kaiser window that approximate the desired characteristics. 

In frequency sampling method of  filter design, we  begin with the desired frequency 

response  specification  Hd(ω),  and  it  is  sampled  at  N-points  to  generate  a  sequence  H̃ (k) 

which  corresponds  to  the  DFT  coefficients.  The  N-point  IDFT  of  the  sequence  H̃ (k)   gives 
the impulse response of the filter h(n). The Z-transform of h(n) gives the transfer function 
H(z) of the filter. 

In optimum filter design method, the weighted approximation error between the desired 

frequency response and the actual frequency response is spread evenly across the pass band 

and evenly across the stop band of the filter. This results in the reduction of maximum error. 

The resulting filter have ripples in both the pass band and the stop band. This concept of 



 

 

 

 

design is called optimum equiripple design criterion. 

The various steps in designing FIR filters are as follows: 

1. Choose an ideal(desired) frequency response, Hd( ω). 
2. Take inverse Fourier transform of Hd(ω ) to get hd (n) or sample Hd(ω ) at finite 

number  of  points  (N-points)  to  get  H̃ (k). 
3. If hd(n) is determined, then convert the infinite duration hd(n) to a finite duration 

h(n)  (usually  h(n)  is  an  N-point  sequence)  or  if   H̃ (k)   is  determined,  then  take 
N-point inverse DFT to get h(n). 

4. Take Z-transform of h(n) to get H(z), where H(z) is the transfer function of the 

digital filter. 

5. Choose a suitable structure and realize the filter. 

 

 

Design OF FIR Filters using Windows 

The procedure for designing FIR filter using windows is: 

1. Choose the desired frequency response of the filter Hd(ω). 
2. Take inverse Fourier transform of Hd(ω ) to obtain the desired impulse response 

hd(n). 
3. Choose a window sequence w(n) and multiply hd(n) by w(n) to convert the infinite 

duration impulse response to a finite duration impulse response h(n). 

4. The transfer function H(z) of the filter is obtained by taking Z-transform of h(n). 

 
Rectangular Window 

The weighting function (window function) for an N-point rectangular window is given by 

 

The spectrum (frequency response) of rectangular window WR(ω) is given by 

the Fourier transform of wR(n). 



 

 

 

 

 

 

The frequency spectrum for N = 31 is shown in Figure 3. The spectrum WR(ω ) has   two 

features that are important. They are the width of the main lobe and the side lobe amplitude. 

The frequency response is real and its zero occurs when      ω   = 2k   /N where k is an integer. 

The response for   between –2π /N and 2π /N is called the main lobe and the other lobes are 

called side lobes. For rectangular window the width of main lobe is 4π /N. The first side lobe 

will be 13 dB down the peak of the main lobe and the roll off will be at 20 dB/decade. As the 

window is made longer, the main lobe becomes narrower and higher, and the side lobes become 

more concentrated around ω= 0, but the amplitude of side lobes is unaffected. So increase in 

length does not reduce the amplitude of ripples, but increases the frequency when rectangular 

window is used. 

If we design a low-pass filter using rectangular window, we find that the frequency 

response differs from the desired frequency response in many ways. It does not follow quick 

transitions in the desired response. The desired response of a low-pass filter changes abruptly 

from pass band to stop band, but the actual frequency response changes slowly. This region 

of gradual change is called filter’s transition region, which is due to the convolution of the 

desired response with the window response’s main lobe. The width of the transition region 

depends on the width of the main lobe. As the filter length N increases, the   main   lobe 

becomes narrower decreasing the width of the transition region. 

The convolution of the desired response and the window response’s side lobes gives 

rise to the ripples in both the pass band and stop band. The amplitude of the ripples is 

dictated by the amplitude of the side lobes. This effect, where maximum ripple occurs just 

before and just after the transition band, is known as Gibb’s phenomenon. 

The Gibbs phenomenon can be reduced by using a less abrupt truncation of filter 

coefficients. This can be achieved by using a window function that tapers smoothly towards 

zero at both ends. 



 
 

 

 

 

 

 

 

Figure 3 (a) Rectangular window sequence, (b) Magnitude response of rectangular window, 
(c) Magnitude response of Now-pass filter approximated using rectangular window. 

 
 

Triangular or Bartlett Kindow 

The triangular window has been chosen such that it has tapered sequences from the middle 

on either side. The window function wT (n) is defined as 
 

 

In magnitude response of triangular window, the side lobe level is smaller than that of 

the rectangular window being reduced from –13 dB to –25 dB. However, the   main lobe 

width is now 8 /N or twice that of the rectangular  window. 

The triangular window produces a smooth magnitude response in both pass band and 

stop band, but it has the following disadvantages when compared to magnitude response 



obtained by using rectangular window: 

1. The transition region is more. 

2. The attenuation in stop band is less. 

Because of these characteristics, the triangular window is not usually a good choice 

 
Raised Cosine Window 

 
The raised cosine window multiplies the central Fourier coefficients by approximately unity 

and smoothly truncates the Fourier coefficients toward the ends of the filter. The smoother 

ends and broader middle section produces less distortion of   hd(n) around n = 0. It is also 

called generalized Hamming window. 

The window sequence is of the form: 
 

Hanning W i ndow 

The Hanning window function is given by 

 

The width of main lobe is 8 /N, i.e., twice that of rectangular window which results in 

doubling of the transition region of the filter. The peak of the first side lobe is –32   dB 

relative to the maximum value. This results in smaller ripples in both pass band and stop 

band of the low-pass filter designed using Hanning window. The minimum stop band 

attenuation of the filter is 44 dB. At higher frequencies the stop band attenuation is even 

greater. When compared to triangular window, the main lobe width is same, but the 

magnitude of the side lobe is reduced, hence the Hanning window is preferable to triangular 

window. 

Hamming Window 

The Hamming window function is given by 
 
 

 

 
 

In the magnitude response for N = 31, the magnitude of the first side lobe is down about 41dB 

from the main lobe peak, an improvement of 10 dB relative to the Hanning window. But this 

improvement is achieved at the expense of the side lobe magnitudes at higher frequencies, 

which are almost constant with frequency. The width of the main lobe is 8 /N. In the magnitude 

response of low-pass filter designed using Hamming window, the first side lobe peak is –51 dB, 

which is –7 dB lesser with respect to the Hanning window filter. However, at higher 

frequencies, the stop band attenuation is low when compared to that of Hanning window. 

Because the Hamming window generates lesser oscillations in the side lobes than the Hanning 

window for the same main lobe width, the Hamming window is generally preferred. 



Blackman Window 

The Blackman window function is another type of cosine window and given by the equation 

 
 

 
In the magnitude response, the width of the main lobe is 12π /N, which is highest among 

windows. The peak of the first side lobe is at –58 dB and the side lobe magnitude decreases with 

frequency. This desirable feature is achieved at the expense of increased main lobe width. 

However, the main lobe width can be reduced by increasing the value of N. The side lobe 

attenuation of a low-pass filter using Blackman window is –78 dB. 

Table 1 gives the important frequency domain characteristics of some window functions. 
 

TABLE 1 Frequency domain characteristics of some window functions. 

Type of 

window 

Approximate 

transition 

width of main lobe 

Minimum stop 

band attenuation 

(dB) 

Peak of first 

side lobe 

(dB) 
 

Rectangular 4π /N –21 –13 

Bartlett 8π /N –25 –25 

Hanning 8π /N – 44 –31 

Hamming 8 π /N –51 – 41 

Blackmann 12π /N –78 –58 

 

EXAMPLE 3 
Design an ideal low-pass filter with N = 11 with a frequency response 

 

Solution: For the given desired frequency response, 
 

 

 

 
 

 
The filter coefficients are given by 



 
 
 

Assuming the window function, 
 
 

 
 

We have 

Therefore, the designed filter coefficients are given as 
 

The above coefficients correspond to a non-causal filter which is not realizable. 

The realizable digital filter transfer function H(z) is given by 
 
 



Therefore, the coefficients of the realizable digital filter are: 
 



UNIT- 5: Multirate Digital Signal Processing 

INTRODUCTION 

Discrete-time systems may be single-rate systems or multi-rate systems. The systems that use 

single sampling rate from A/D converter to D/A converter are known as single-rate systems 

and the discrete-time systems that process data at more than one sampling rate are known as 

multi-rate systems. In digital audio, the different sampling rates used are 32 kHz for 

broadcasting, 44.1 kHz for compact disc and 48 kHz for audio tape. In digital video, the 

sampling rates for composite video signals are 14.3181818 MHz and 17.734475 MHz   for 

NTSC and PAL respectively. But the sampling rates for digital component of video signals 

are 13.5 MHz and 6.75 MHz for luminance and colour difference signal. Different sampling 

rates can be obtained using an up sampler and down sampler. The basic operations in 

multirate processing to achieve this are decimation and interpolation. Decimation is for 

reducing the sampling rate and interpolation is for increasing the sampling rate. There are 

many cases where multi-rate signal processing is used. Few of them are as follows: 

1. In high quality data acquisition and storage systems 

2. In audio signal processing 

3. In video 

4. In speech processing 

5. In transmultiplexers 

6. For narrow band filtering 

The various advantages of multirate signal processing are as follows: 

1. Computational requirements are less. 

2. Storage for filter coefficients is less. 

3. Finite arithmetic effects are less. 

4. Filter order required in multirate application is low. 

5. Sensitivity to filter coefficient lengths is less. 
 

While designing multi-rate systems, effects of aliasing for decimation and pseudoimages 

for interpolators should be avoided. 

 
SAMPLING 

A continuous-time signal x(t) can be converted into a discrete-time signal x(nT) by sampling 

it at regular intervals of time with sampling period T. The sampled signal x(nT) is given by 
 

A sampling process can also be interpreted as a modulation or multiplication process. 

 

SANPLING THEOREM 

Sampling theorem states that a band limited signal x(t) having finite energy, which has no 

spectral components higher than fh     hertz can be completely reconstructed from its samples 

taken at the rate of 2fh or more samples per second. 
The sampling rate of 2fh samples per second is the Nyquist rate and its reciprocal 1/2fh 

is the Nyquist period. 

 
5.3 DOWN SAMPLING 

Reducing the sampling rate of a discrete-time signal is called down sampling. The sampling    rate 

of the discrete-time signal can be reduced by a factor D by taking every Dth value of the 

signal. Mathematically, down sampling is represented by and the symbol for the down sampler is 
shown in Figure 5.1. 



2 

y(n) = x(Dn) 
 
 

 

Figure 5.1    A down sampler. 

 

If x(n) = {1, 2, 3, 1, 2, 3, 1, 2, 3, ...} 

Then, x(2n) = {1, 3, 2, 1, 3, ...} 

and x(3n) = {1, 1, 1, 1, ...} 

x(2n) is obtained by keeping every second sample of x(n) and x(3n) is obtained by keeping 

every 3rd sample of x(n) and removing other samples. 

If the input signal x(n) is not band limited, then there will be overlapping of spectra at 

the output of the down sampler. This overlapping of spectra is called aliasing which is 

undesirable. This aliasing problem can be eliminated by band limiting the input signal by 

inserting a low-pass filter called anti-aliasing filter before the down sampler. The anti- 

aliasing filter and the down sampler together is called decimator. The decimator is also known 

as sub sampler, down sampler or under sampler. Decimation (sampling rate compression) is 

the process of decreasing the sampling rate by an integer factor D by keeping every Dth 

sample and removing D – 1 in between samples. 

Figure 10.2 shows the signal x(n) and its down sampled versions by a factor of 2 and 3. 
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Figure 5.2 Plots of (a) x(n), (b) x(2n) and (c) x(3n). 

 

The block diagram of the decimator is shown in Figure 5.3. The decimator comprises two 

blocks such as anti-aliasing filter and down sampler. Here the anti-aliasing filter is a low-pass 

filter to band limit the input signal so that aliasing problem is eliminated and the down sampler 

is used to reduce the sampling rate by keeping every Dth sample and removing D – 1 in 

betweensamples. 

 

Figure 5.3 Block diagram of decimator. 

 

SPECTRUM of Down SANPLED signal 

Let T be sampling period of input signal x(n), and let F be its sampling rate or frequency. When 

the   signal   is   down   sampled   by   D,   let   T  ’ be   its   new   sampling   period   and   F’ be   its 

sampling frequency, then 



 

 
 

 

Let us derive the spectrum of a down sampled signal x(Dn) and compare it with the 

spectrum of input signal x(n). The Z-transform of the signal x(n) is given by 
 

 

The down sampled signal y(n) is obtained by multiplying the sequence x(n) with a periodic 

train of impulses p(n) with a period D and then leaving out the D – 1 zeros between each 

pair of samples. The periodic train of impulses is given by 

 

 

The discrete Fourier series representation of the signal p(n) is given by 

 
Multiplying the sequence x(n) with p(n) yields 

x’(n)  =  x(n)p(n) 

 

If we leave D – 1 zeros between each pair of samples, we get the output of down 

sampler 

y(n)  =  x’(nD)  =  x(nD)  p(nD) 

= x(nD) 

The Z-transform of the output sequence is given by 

 



 
 

Substituting z = ejw , we get the frequency response 
 

 

From the above relation we find that if the Fourier transform of the input signal x(n) of a 

down sampler is X(W), then the Fourier transform Y(W) of the output signal   y(n) is a sum of 

D uniformly shifted and stretched versions of X(W) scaled by a factor 1/D. 

If the spectrum of the original signal X(W) is band limited to = π/d, as shown in 

Figure 5.4(a), the spectrum being periodic with period 2 , the spectrum of the down sampled 

signal Y(W) is the sum of all the uniformly shifted and stretched versions of X(W) scaled by a 

factor 1/D as shown in Figure 5.4(b). In every interval of 2 in addition to the original spectrum 

we find D – 1 equally spaced replica. 

 

 
 

 

Figure 5.4 Spectrum of (a) input, (b) output, and (c) normalized output. 

 
Aliasing effect and Anti-aliasing filter 

From Figure 5.5, we can find that the spectrum obtained after down sampling will overlap     if 

the original spectrum is not band limited to w=π/D. This overlapping of spectra is called 

aliasing. Therefore, aliasing due to down sampling a signal by a factor of D is absent if and only 

if the signal x(n) is band limited to ±π/D. If the signal x(n) is not band limited to 

± π/D, then a low-pass filter with a cutoff frequency π/D is used prior to down sampling. 

This low-pass filter which is connected before the down sampler to prevent the effect of aliasing 

by band limiting the input signal is called the anti-aliasing filter. 



 
 

Figure 5.5 (a) Input spectrum, (b) aliased output spectrum. 

The signal obtained after filtering is given by 

 

 
For example, consider a factor of D down sampler, then 

 

 

 
The second term X(–W /2) is simply obtained by shifting the first term X(W ) to the right by 

an amount of 2π 



UP SAMPLING 

Increasing the sampling rate of a discrete-time signal is called up sampling. The sampling 

rate of a discrete-time signal can be increased by a factor I by placing I – 1 equally spaced 

zeros between each pair of samples. 

 

Mathematically, up sampling is represented by 

 
 

 

and the symbol for up sampler is shown in Figure 5.6. 
 
 

Figure 5.6 Up sampler 
 
 

Usually an anti-imaging filter is to be kept after the up sampler to remove the 

unwanted images developed due to up sampling. The anti-imaging filter and the up sampler 

together is called interpolator. Interpolation is the process of increasing the sampling rate by 

an integer factor I by interpolating I – 1 new samples between successive values of the signal. 

Figure 5.7 shows the signal x(n) and its two-fold up-sampled signal y1(n) and the 

interpolated signal y2(n). 
The block diagram of the interpolator is shown in Figure 5.8. The interpolator comprises 

two blocks such as up sampler and anti-imaging filter. Here up sampler is used to increase the 

sampling rate by introducing zeros between successive input samples and the interpolation filter, 

also known as anti-imaging filter, is used to remove the unwanted images that are yielded by 

up sampling. 

Expression for output of interpolator 

Let I be an integer interpolating factor of the signal. Let T be sampling period and F = 1/T 

be the sampling frequency (sampling rate) of the input signal. After up sampling, let T ’ be the 

new sampling period and F’ be the new sampling frequency, then 

 

 

 
 



 
 

Figure 5.7  (a) Input signal x(n), (b) Output of 2 fold up sampler  yf(n) = x(n/2), (c) Output of interpolator 

y2(n) = x(n/2). 

 

Figure 5.8 Block diagram of an interpolator. 

 
 

 

 
where W = 2πfT . The spectra of the signal w(n) contains the images of base band placed at 

the harmonics of the sampling frequency ±2 /I, ±4 /I. To remove the   images   an   anti- 

imaging filter is used. The ideal characteristics of low-pass filter is given by 
 

 
 

 

.  



 

ANTI-IMAGING  Filter 

The low-pass filter placed after the up sampler to remove the images created due to up 

sampling is called the anti-imaging filter. 

 
 

 

Figure 5.9 Spectrum of (a) X( ) and (b) X(3 ). 

 
EXAMPLE 10.1 Show that the up sampler and down sampler are time-variant systems. 

Solution: Consider a factor of I up sampler defined by 
 
 

 
 

Therefore, y(n, k) s y(n – k) 

So the up sampler is a time-variant system. 

 

Consider a factor of D down sampler defined by 

y(n) = x(Dn) 

The output due to delayed input is given by 

y(n, k) = x(Dn – k) 

The delayed output is given by 

y(n – k) = x[D(n – k)] 

Therefore, y(n, k) s y(n – k) 

So the down sampler is a time-variant system. 



x(n) = u(n) 

1 

y(n) = x(3n) 

y(n) = x(n/3) 
1 

EXAMPLE 5.2 Consider a signal x(n) = u(n). 

(i) Obtain a signal with a decimation factor 3. 

(ii) Obtain a signal with an interpolation factor 3. 
 

Solution: Given that x(n) = u(n) is the unit step sequence and is defined as: 
 

The graphical representation of unit step sequence is shown in Figure 5.10(a). 

(i) Signal with a decimation factor 3. 

The decimated signal is given by 

y(n) = x(Dn) = x(3n) 

It is obtained by considering only every third sample of x(n). The output signal 

y(n) is shown in Figure 5.10(b). 

(ii) Signal with interpolation factor 3. 

The interpolated signal is given by 

 

The output signal y(n) is shown in Figure 5.10(c). It is obtained by inserting two 

zeros between two consecutive samples. 
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Figure 5.10 Plots of (a) x(n)=u(n), (b) x(3n) and (c) x(n/3). 

 
 

EXAMPLE 5.3 Consider a ramp sequence and sketch its interpolated and decimated 

versions with a factor of 3. 

Solution: The ramp sequence is denoted as r(n) and defined as 

The graphical representation of unit ramp signal is shown in Figure 5.11(a). The 



decimated signal is given by 

y(n) = r(Dn) = r (3n) 

The output signal y(n) = r(3n) is shown in Figure 5.11(b). It is obtained by skipping 2 

samples between every two successive sampling instants. 

 

 
 

 

 

Figure 5.11 Plots of (a) r(n) = nu(n), (b) y(n) = r(3n) and (c) y(n) = r(n/3). 



 

EXAMPLE 5.4 Consider a signal x(n) = sin nu(n). 

(i) Obtain a signal with a decimation factor 2. 

(ii) Obtain a signal with an interpolation factor 2. 

Solution: The given signal is x(n) = sin n u(n). It is as shown in Figure 5.12(a). 

(i) Signal with decimation factor 2. The signal x(n) with a decimation factor 2 is given 

 
Figure 5.12 Plots of (a) x(n) = sin n u(n), (b) y(n) = sin 2n u(n) and (c) y(n) = sin (n /2)u(n). 

 SAMPLIKG RATE CONVERSION 

In some applications sampling rate conversion by a non-integer factor may be required. For example 

transferring data from a compact disc at a rate of 44.1 kHz to a digital audio tape at 48 kHz. Here the 

sampling rate conversion factor is 48/44.1, which is a non-integer. 

A sampling rate conversion by a factor I/D can be achieved by first performing interpolation by 

factor I and then performing decimation by factor D. Figure 5.19(a) shows the cascade configuration of 

interpolator and decimator. The anti-imaging filter Hu(z) and the anti-aliasing filter Hd(z) are operated at 

the sampling rate, hence can be replaced by a simple low-pass filter with transfer function H(z) as 

shown in Figure 5.19(b), where the low-pass 

 

 
 

 

 
Figure 5.19 Cascading of sample rate converters. 

EXAMPLE 5.7     Considering an example 



x(n) = {1, 3, 2, 5, 4, –1, –2, 6, –3, 7, 8, 9, ...} 

show that a cascade of D down sampler and I up sampler is interchangeable only when D 

and I are co-prime. 
 

Solution: Given x(n) = {1, 3, 2, 5, 4, –1, –2, 6, –3, 7, 8, 9, ...} 

(i) Let D = 2 and I = 3. Here D and I are co-prime. 
 

 

 
Figure 5.20 Cascading of D = 2 and l = 3. 

 

Interchanging the cascading as shown in Figure 5.22, we have 

 
 

Figure 5.21 Cascading of l = 3 and D = 2. 

 

 

 

 

 

 
Figure 5.22 Cascading of D = 2 and l = 4. 

 

Interchanging the cascading as shown in Figure 5.23, we have 



 

Figure 5.23 Cascading of l = 4 and D = 2. 

 

 
This shows that the cascading of up sampler and down sampler is not interchangeable when D 

and I are not co-prime, i.e., when D and I have a common factor. 

 

5 Applications of multi-rate digital signal processing 

Here we consider two applications of multi-rate digital signal processing. 

1. Implementation of a narrow band low-pass filter. A narrow band low-pass filter is 

characterized by a narrow pass band and a narrow transition band. It requires a very large 

number of coefficients. Due to high value of N, it is   susceptive to finite word length effects. 

In addition, the number of computations and memory locations required are very high. To 

overcome these problems multi- rate approach is used in implementing a narrow band low-pass 

filter. Figure 10.67 shows the cascading stage of a decimator and interpolator. The filters h1(n) 

and h2(n) in the decimator and interpolator are low-pass filters. The input signal is first passed 

through a low-pass filter. The sampling frequency F of the input sequence x(n) is first reduced 

by a factor D and then raised by the same factor D and then again low-pass filtering is 

performed. 
 

Figure 5.24 A narrow band pass filter. 

 
 

To meet the desired specifications of a narrow band LPF, the filters h1(n) and h2(n) should be identical 

with the same pass band ripple   p/2 and the same stop band ripple s. 

2. Filter banks. Filter banks are usually classified into two types: 

(i) Analysis filter bank and (ii) Synthesis filter bank 

 

Analysis filter bank 

The D-channel analysis filter bank is shown in Figure 10.68. It consists of D sub-filters. All   the sub- 

filters are equally spaced in frequency and each have the same bandwidth. The spectrum of the input 

signal lies in the range 0 ≤   ≤ . The filter bank splits the signal into     a number of sub-bands each having 

a bandwidth π /D. The filter H0(z) is a low-pass filter, H1(z) to HD–2(z) are band pass and HD–1(z) is high-

pass. As the spectrum of the signal is band limited to π /D, the sampling rate can be reduced by a 

factor D. The down sampling moves all the pass band signals to a base band 0 ≤ w ≤ π /D. 



 
 

 

 

Synthesis filter bank bank 

Figure 5.25 Analysis filter bank 

The D-channel synthesis filter bank shown in Figure 10.69 is dual of the analysis filter bank.     In this 

case, each Vd(z) is fed to an up sampler. The up-sampling process produces the signal Vd(z
D). These 

signals are applied to filters Gd (z) and finally added to get the output signal 

X̂ (z).  The filters G0(z) to GD–1(z) have the same characteristics as the analysis filters H0(z) to 

HD–1(z). 
 

Figure 5.26 Synthesis filter bank. 

 
 

Sub-band coding filter bank 

By combining the analysis filter bank of Figure 5.25 and the synthesis filter bank of Figure 5.27, we 

can obtain a D-channel sub-band coding filter bank shown in Figure5.27 . The analysis filter bank 

splits the broad band input signal x(n) into D non-overlapping frequency band signals X0(z), X1(z), 
..., XD–1(z) of equal bandwidth. These outputs are coded 

and  transmitted.  The  synthesis  filter  bank  is  used  to  reconstruct  output  signal  X̂ (z)  which should 
approximate the original signal. Sub-band coding is very much used in speech signal 

processing.  
 

Figure 5.27 Sub–band coding filter bank. 
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