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Theories of Failure 
 

 

THEORIES OF FAILURE UNDER STATIC LOADING 

It has already been discussed in the previous chapter that strength of machine members is 

based upon the mechanical properties of the materials used. Since these properties are usually 

determined from simple tension or compression tests, therefore, predicting failure in 

members subjected to uniaxial stress is both simple and straight-forward. But the problem of 

predicting the failure stresses for members subjected to bi-axial or tri-axial stresses is much 

more complicated. In fact, the problem is so complicated that a large number of different 

theories have been formulated. The principal theories of failure for a member subjected to bi- 

axial stress are as follows: 

 Maximum principal (or normal) stress theory (also known as Rankine’s theory). 

 Maximum shear stress theory (also known as Guest’s or Tresca’s theory). 

 Maximum principal (or normal) strain theory (also known as Saint Venant theory). 

 Maximum strain energy theory (also known as Haigh’s theory). 

 Maximum distortion energy theory (also known as Hencky and Von Mises theory). 

Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the 

material and brittle materials fail by fracture, therefore the limiting strength for these two 

classes of materials is normally measured by different mechanical properties. For ductile 

materials, the limiting strength is the stress at yield point as determined from simple tension 

test and it is, assumed to be equal in tension or compression. For brittle materials, the limiting 

strength is the ultimate stress in tension or compression. 

1. Maximum principal stress theory (Rankine’s theory) 

According this theory failure or yielding occurs at a point in a member when the maximum 

principal or normal stress in a bi-axial stress system reaches the limiting strength of the 

material in a simple tension test. Since the limiting strength for ductile materials is yield point 

stress and for brittle materials (which do not have well defined yield point) the limiting 

strength is ultimate stress, therefore according to the above theory, taking factor of safety 

(F.S.) into consideration, the maximum principal or normal stress 

system is given by 

t1 in a bi-axial stress 



 
 

Since the maximum principal or normal stress theory is based on failure in tension or 

compression and ignores the possibility of failure due to shearing stress, therefore it is not 

used for ductile materials. However, for brittle materials which are relatively strong in shear 

but weak in tension or compression, this theory is generally used. 

2. Maximum shear stress theory (Guest’s or Tresca’s theory) 

According to this theory, the failure or yielding occurs at a point in a member when the 

maximum shear stress in a bi-axial stress system reaches a value equal to the shear stress at 

yield point in a simple tension test. Mathematically, 

This theory is mostly used for designing members of ductile materials. 

3. Maximum principal strain theory (Saint Venant theory) 

According to this theory, the failure or yielding occurs at a point in a member when the 

maximum principal (or normal) strain in a bi-axial stress system reaches the limiting value of 

strain (i.e. strain at yield point) as determined from a simple tensile test. The maximum 

principal (or normal) strain in a bi-axial stress system is given by 



 

 
 

4. Maximum strain energy theory (Haigh’s theory) 

According to this theory, the failure or yielding occurs at a point in a member when the strain 

energy per unit volume in a bi-axial stress system reaches the limiting strain energy (i.e. 

strain energy at the yield point ) per unit volume as determined from simple tension test. 

We know that strain energy per unit volume in a bi-axial stress system, 
 
 
 

5. Maximum distortion energy theory (also known as Hencky and Von Mises theory) 

According to this theory, the failure or yielding occurs at a point in a member when the 

distortion strain energy (also called shear strain energy) per unit volume in a bi-axial stress 

system reaches the limiting distortion energy (i.e. distortion energy at yield point) per unit 

volume as determined from a simple tension test. Mathematically, the maximum distortion 

energy theory for yielding is expressed as 

 

Example 1: 

The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 

5 kN. Find the diameter of bolt required according to 1. Maximum principal stress theory; 2. 

Maximum shear stress theory; 3. Maximum principal strain theory; 4. Maximum strain 

energy theory; and 5. Maximum distortion energy theory. Take permissible tensile stress at 

elastic limit = 100 MPa and poisson’s ratio = 0.3. 



 
 

 



 
 

 



 

Example 2: 
 

A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000 N-m and a 

torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of this 

torque without causing yielding of the shaft according to 1. the maximum principal stress; 2. 

The maximum shear stress; and 3. the maximum distortion strain energy theory of yielding. 

 



 
 
 

 

 



 

STRESS DUE TO VARIABLE LOADING CONDITIONS 

A few machine parts are subjected to static loading. Since many of the machine parts (such as 

axles, shafts, crankshafts, connecting rods, springs, pinion teeth etc.) are subjected to variable 

or alternating loads (also known as fluctuating or fatigue loads). 

Completely Reversed or Cyclic Stresses 

Consider a rotating beam of circular cross-section and carrying a load W, as shown in the 

figure. This load induces stresses in the beam which are cyclic in nature. A little 

consideration will show that the upper fibres of the beam (i.e. at point A) are under 

compressive stress and the lower fibres (i.e. at point B) are under tensile stress. After half a 

revolution, the point B occupies the position of point A and the point A occupies the position 

of point B. Thus the point B is now under compressive stress and the point A under tensile 

stress. The speed of variation of these stresses depends upon the speed of the beam. From 

above we see that for each revolution of the beam, the stresses are reversed from compressive 

to tensile. The stresses which vary from one value of compressive to the same value of tensile 

or vice versa, are known as completely reversed or cyclic stresses. 

Fatigue and Endurance Limit 

It has been found experimentally that when a material is subjected to repeated stresses, it fails 

at stresses below the yield point stresses. Such type of failure of a material is known as 

fatigue. The failure is caused by means of a progressive crack formation which are usually 

fine and of microscopic size. The failure may occur even without any prior indication. The 



fatigue of material is effected by the size of the component, relative magnitude of static and 

fluctuating loads and the number of load reversals. In order to study the effect of fatigue of a 

material, a rotating mirror beam method is used. In this method, a standard mirror polished 

specimen, as shown in Fig. 2, is rotated in a fatigue testing machine while the specimen is 

loaded in bending. As the specimen rotates, the bending stress at the upper fibres varies from 

maximum compressive to maximum tensile while the bending stress at the lower fibres varies 

from maximum tensile to maximum compressive. In other words, the specimen is subjected 

to a completely reversed stress cycle. This is represented by a time-stress diagram as shown 

in Fig. 3. A record is kept of the number of cycles required to produce failure at a given 

stress, and the results are plotted in stress-cycle curve as shown in Fig. 4. A little 

consideration will show that if the stress is kept below a certain value as shown by dotted line 

in Fig. 4, the material will not fail whatever may be the number of cycles. This stress, as 

represented by dotted line, is known as endurance or fatigue limit (σe). It is defined as 

maximum value of the completely reversed bending stress which a polished standard 

specimen can withstand without failure, for infinite number of cycles (usually 107 cycles).It 

may be noted that the term endurance limit is used for reversed bending only while for other 

types of loading, the term endurance strength may be used when referring the fatigue strength 

of the material. It may be defined as the safe maximum stress which can be applied to the 

machine part working under actual conditions. We have seen that when a machine member is 

subjected to a completely reversed stress, the maximum stress in tension is equal to the 

maximum stress in compression as shown in Fig. 3. In actual practice, many machine 

members undergo different range of stress than the completely reversed stress. The stress 

verses time diagram for fluctuating stress having values σmin and σmax is shown in Fig. 5. 

The variable stress, in general, may be considered as a combination of steady (or mean or 

average) stress and a completely reversed stress component σv. The following relations are 

derived from Fig. 5: 

 

 

Fig. 2 standard specimen 
Fig. 3 completely reversed stress 



 
 

Fig. 4 Endurance/fatigue limit 
Fig. 5 fluctuating stress 

 

 

 

EFFECT OF MISCELLANEOUS FACTORS ON ENDURANCE LIMIT 
 

Corrected endurance limit for variable bending load 

data handbook by Jalaludeen) 

Corrected endurance limit for variable axial load 

data handbook by Jalaludeen) 

Corrected endurance limit for variable torsional load 
 

data handbook by Jalaludeen) 

Where, 

Ka = load correction factor for revered axial load 

Kb = load correction factor for revered bending load 

Ksr = surface finish factor 

Ksz = size factor 

(Page 4.14, Design 

 

 

(Page 4.14, Design 

 

 

(Page 4.14, Design 

e  = endurance limit/fatigue stress 

Factor of Safety for Fatigue Loading 

When a component is subjected to fatigue loading, the endurance limit is the criterion for 

faliure. Therefore, the factor of safety should be based on endurance limit. Mathematically, 

   .K .K .K ' 

e e b sr sz 

   .K .K .K ' 

e e a sr sz 

   .K .K .K ' 

e e s sr sz 



 
And 

e  0.5u 

 0.85 y 

 
(for steel) (Page 4.14, Design data handbook by Jalaludeen) 

 

Stress Concentration 

Whenever a machine component changes the shape of its cross-section, the simple stress 

distribution no longer holds good and the neighborhood of the discontinuity is different. This 

irregularity in the stress distribution caused by abrupt changes of form is called stress 

concentration. It occurs for all kinds of stresses in the presence of fillets, notches, holes,  

keyways, splines, surface roughness or scratches etc. In order to understand fully the idea of 

stress concentration, consider a member with different cross-section under a tensile load as 

shown in Figure 6. A little consideration will show that the nominal stress in the right and left  

hand sides will be uniform but in the region where the cross-section is changing, a re- 

distribution of the force within the member must take place. The material near the edges is 

stressed considerably higher than the average value. The maximum stress occurs at some 

point on the fillet and is directed parallel to the boundary at that point. 

Figure 6 stress concentration 

Theoretical Stress Concentration Factor (Kt) 

The theoretical or form stress concentration factor is defined as the ratio of the maximum 

stress in a member (at a notch or a fillet) to the nominal stress at the same section based upon 

net area. Mathematically, theoretical or form stress concentration factor, 

 

The value of Kt depends upon the material and geometry of the part. (Table 4.9 to 4.16, 

Design data handbook by Jalaludeen). 

Methods of Reducing Stress Concentration 

1. By providing fillets as shown in Fig. 7 
 

Figure 7 Fillets to improve stress concentration 

2. By providing notches shown in Fig. 8 



 

Figure 8 Notches to improve stress concentration 

Fatigue Stress Concentration Factor 

When a machine member is subjected to cyclic or fatigue loading, the value of fatigue stress 

concentration factor shall be applied instead of theoretical stress concentration factor. Since 

the determination of fatigue stress concentration factor is not an easy task, therefore from 

experimental tests it is defined as 

Fatigue stress concentration factor, 
 

Notch Sensitivity 

In cyclic loading, the effect of the notch or the fillet is usually less than predicted by the use 

of the theoretical factors as discussed before. The difference depends upon the stress gradient 

in the region of the stress concentration and on the hardness of the material. The term notch 

sensitivity is applied to this behaviour. It may be defined as the degree to which the 

theoretical effect of stress concentration is actually reached. The stress gradient depends 

mainly on the radius of the notch, hole or fillet and on the grain size of the material. 

When the notch sensitivity factor q is used in cyclic loading, then fatigue stress concentration 

factor may be obtained from the following relations: 

 

(Page 4.14, Design data handbook by Jalaludeen) 

Where, 

Combined Steady and Variable Stress 

The failure points from fatigue tests made with different steels and combinations of mean and 

variable stresses are plotted in Fig. 9 as functions of variable stress (σv) and mean stress (σm). 



The most significant observation is that, in general, the failure point is little related to the 

mean stress when it is compressive but is very much a function of the mean stress when it is 

tensile. In practice, this means that fatigue failures are rare when the mean stress is 

compressive (or negative). Therefore, the greater emphasis must be given to the combination 

of a variable stress and a steady (or mean) tensile stress. 

Figure 9 Combined mean and variable stress 

There are several ways in which problems involving this combination of stresses may be 

solved, but the following are important from the subject point of view : 

1. Goodman method, and 2. Soderberg method. 

Goodman Method for Combination of Stresses 

A straight line connecting the endurance limit (σe) and the ultimate strength (σu), as shown by 

line AB in Fig. 10, follows the suggestion of Goodman. A Goodman line is used when the 

design is based on ultimate strength and may be used for ductile or brittle materials. 

 

Figure 10 Goodman method 

 
σu is called Goodman's failure stress line. If a suitable factor of safety (F.S.) is applied to 

endurance limit and ultimate strength, a safe stress line CD may be drawn parallel to the line 



AB. Let us consider a design point P on the line CD. Now from similar triangles COD and 

PQD, 
 

This expression does not include the effect of stress concentration. It may be noted that for 

ductile materials, the stress concentration may be ignored under steady loads. Since many 

machine and structural parts that are subjected to fatigue loads contain regions of high stress 

concentration, therefore equation (i) must be altered to include this effect. In such cases, the 

fatigue stress concentration factor (Kf) is used to multiply the variable stress (σv). The 

equation (i) may now be written as 

 

(Equation 4.50, pp. 4.14, Design data handbook by Jalaludeen) 

Considering the load factor, surface finish factor and size factor, the equation (ii) may be 

written as 

 
 

Soderberg Method for Combination of Stresses 

A straight line connecting the endurance limit (σe) and the yield strength (σy), as shown by the 

line AB in Fig. 11, follows the suggestion of Soderberg line. This line is used when the design 



 

is based on yield strength. the line AB connecting σe and σy, as shown in Fig. 11, is called 

Soderberg's failure stress line. If a suitable factor of safety (F.S.) is applied to the 

endurance limit and yield strength, a safe stress line CD may be drawn parallel to the line 

AB. Let us consider a design point P on the line CD. Now from similar triangles COD and 

PQD, 

Figure 11 Soderberg method 

 
 
 

(Equation 4.51, pp. 4.14, Design data handbook by Jalaludeen) 

 

 

 

 

 

 

 

 

 



 

 (DESIGN OF JOINTS) 

Riveted Joint  
 

Often small machine components are joined together to form a larger machine part. 

Design of joints is as important as that of machine components because a weak joint may 

spoil the utility of a carefully designed machine part. Mechanical joints are broadly classified 

into two classes viz., non-permanent joints and permanent joints. Non-permanent joints can 

be assembled and dissembled without damaging the components. Examples of such joints are 

threaded fasteners (like screw-joints), keys and couplings etc. 

Permanent joints cannot be dissembled without damaging the components. These 

joints can be of two kinds depending upon the nature of force that holds the two parts. The 

force can be of mechanical origin, for example, riveted joints, joints formed by press or 

interference fit etc, where two components are joined by applying mechanical force. The 

components can also be joined by molecular force, for example, welded joints, brazed joints, 

joints with adhesives etc. Not until long ago riveted joints were very often used to join 

structural members permanently. However, significant improvement in welding and bolted 

joints has curtained the use of these joints. Even then, rivets are used in structures, ship body, 

bridge, tanks and shells, where high joint strength is required. 

Rivets and riveting 
 

A Rivet is a short cylindrical rod having a head and a tapered tail. The main body of 

the rivet is called shank (see figure 2.1). 

 

Fig. 2.1 Rivets and its parts 



 

According to Indian standard specifications rivet heads are of various types. Rivets 

heads for general purposes are specified by Indian standards IS: 2155-1982 (below 12 mm 

diameter) and IS: 1929-1982 (from 12 mm to 48 mm diameter). Rivet heads used for boiler 

works are specified by IS: 1928-1978. To get dimensions of the heads see any machine 

design handbook. 

Riveting is an operation whereby two plates are joined with the help of a rivet. 

Adequate mechanical force is applied to make the joint strong and leak proof. Smooth holes 

are drilled (or punched and reamed) in two plates to be joined and the rivet is inserted. 

Holding, then, the head by means of a backing up bar as shown in figure 2.2, necessary force 

is applied at the tail end with a die until the tail deforms plastically to the required shape. 

Depending upon whether the rivet is initially heated or not, the riveting operation can be of 

two types: (a) cold riveting is done at ambient temperature and (b) hot riveting rivets are 

initially heated before applying force. After riveting is done, the joint is heat-treated by 

quenching and tempering. In order to ensure leak-proofness of the joints, when it is required, 

additional operation like caulking is done. 
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Fig. 2.2 Riveting operation 
 

Types of rivet joints 
 

Riveted joints are mainly of two types 

1. Lap joints 

2. Butt joints 

Die 

B 



 

Lap joints 

The plates that are to be joined are brought face to face such that an overlap exists, as 

shown in figure 10.1.3. Rivets are inserted on the overlapping portion. Single or multiple 

rows of rivets are used to give strength to the joint. Depending upon the number of rows the 

riveted joints may be classified as single riveted lap joint, double or triple riveted lap joint 

etc. When multiple joints are used, the arrangement of rivets between two neighbouring rows 

may be of two kinds. In chain riveting the adjacent rows have rivets in the same transverse 

line. In zig-zag riveting, on the other hand, the adjacent rows of rivets are staggered. 

Fig. 2.3 Lap joint 
 

But joints 
 

In this type of joint, the plates are brought to each other without forming any overlap. 

Riveted joints are formed between each of the plates and one or two cover plates. Depending 

upon the number of cover plates the butt joints may be single strap or double strap butt joints. 

A single strap butt joint is shown in figure 2.4. Like lap joints, the arrangement of the rivets 

may be of various kinds, namely, single row, double or triple chain or zigzag. 

 

 
Fig. 2.4 Butt joint 



 

pb 

p pd 

m 

Important terms used in rivet joints 
 

Few parameters, which are required to specify arrangement of rivets in a riveted joint are as 

follows: 

a) Pitch: This is the distance between two centers of the consecutive rivets in a 

single row. (usual symbol p) 

b) Back Pitch: This is the shortest distance between two successive rows in a 

multiple riveted joint. (usual symbol bp) 

c) Diagonal pitch: This is the distance between the centers of rivets in adjacent 

rows of zigzag riveted joint. (usual symbol pd) 

d) Margin or marginal pitch: This is the distance between the centre of the rivet 

hole to the nearest edge of the plate. (usual symbol m) 

These parameters are shown in figure 2.5. 

 

 

Fig. 2.5 Important design parameters of riveted joints 

Modes of failure of rivet joints 

(1) Tearing of the plate at the edge: Figure 2.6 shows the nature of failure due to tearing 

of the plate at the edge. 

Such a failure occurs due to insufficient margin. This type of failure can be avoided 

by keeping margin, m = 1.5d, where d is the diameter of the rivet. 



 

 

 

 

Fig. 2.6 Tearing of the plate at the edge 

 
 

(2) Tearing of the plate across a row of rivets: In this, the main plate or cover plates may 

tear-off across a row of rivets, as shown in Fig. 2.7. Considering one pitch length, 

Tearing strength per pitch length, Ft   t ( p  d )t (2.1) 

Where,  t = permissible tensile stress for the plate material; p = pitch; d = diameter of the 
 

rivet; t = thickness of the plate. 

 

 

Fig. 2.7 Tearing of the plate across a row of rivets 

 
(3) Shearing of rivets: Rivets are in single shear (Fig. 2.8a)in lap joints and in double 

shear in double strap butt joints (Fig. 2.8b). Considering one pitch length, 

 
 

 

(b) 

 
 

(a) 

 

Fig. 2.8 Shearing of rivets 



 

 
Shearing resistance per pitch length, Fs 



d 2 
n 

4 

d 2 
 

 

 
in single shear (2.2) 

2 
4 

Where, n = number of rivets per pitch length 

 n in double shear (2.3) 

(4) Crushing of rivets (plates): When the joint is loaded, compressive stress is induced 

over the contact area between rivet and the plate (Fig. 2.9). 

 

 
Fig. 2.9 Crushing of a rivets 

The contact area is given by the projected area of the contact. Considering one pitch length, 

Crushing resistance per pitch length, Fc  ndt c (2.4) 

Where, n = number of rivets per pitch length; σc = permissible compressive stress. 

Note: Number of rivets under crushing is equal to the number of rivets under shear. 

Efficiency of a riveted joint 

The efficiency of a riveted joint is defined as the ratio of the strength of the joint 

(least of calculated resistances) to the strength of the solid plate. 

Efficiency of a riveted joint,   
Ft , Fs , orFc (least)

 
pt t 

Where, ‘ pt t ’ is the strength of the solid plate per pitch length. 

Design of boiler joints 

(2.5) 

In general, for longitudinal joint, butt joint is adopted, while for circumferential 

joint, lap joint is preferred. 

Design of longitudinal butt joint 

1. Thickness of the plate: The thickness of the boiler shell is determined, by using thin 

cylinder formula, i.e. 

t  
Pi di 

2t
 1mm (2.6) 





 

Where, 1 mm is the allowance for corrosion; Pi = internal steam pressure; di = internal 

diameter of the boiler shell; σt = permissible stress of the shell material. 

2. Diameter of rivets: The diameter of the rivets may be determined from the empirical 

relation, d  6 for t ≥ 8mm 

Note: (1) The diameter of rivet should not be less than the plate thickness. 

(2) If the plate thickness is less than 8 mm, the diameter of the rivet is determined by 

equating the shearing resistance of the rivet to its crushing resistance. 

3. Pitch of the rivets: The pitch of the rivets may be obtained by equating the tearing 

resistance of the plate to the shearing resistance of the rivets. However, it should be 

noted that, 

(i) the pitch of the rivets should not be less than 2d. 

(ii) the maximum value of the pitch, for a longitudinal joint is given by, 

Pmax  ct  41.28mm where ‘c’ is a constant. 

Note: If the pitch of the rivets obtained by equating the tearing resistance to the 

shearing resistance is more than Pmax, then the value of Pmax can be adopted. 

4. Row (transverse) pitch: 

(i) For equal number of rivets in more than one row for lap joint or butt joint, the row 

pitch should not be less than, 0.33 p  0.67d 

riveting. 

for zig-zag riveting and 2d, for chain 

(ii) For joints in which the number of rivets in the rows is half the number of rivets in 

the inner rows, and if the inner rows are chain riveted, the distance between the 

outer row and the next row, should not be less than, 0.33 p  0.67d or 2d, 

whichever is greater. The distance between the rows in which there are full 

number of rivets, should not be less than 2d. 

(iii) For joints in which the number of rivets in outer row is half the number of rivets in 

inner rows, and if the inner rows are zig-zag riveted, the distance between the 

outer row and the next row, should not be less than, 0.2 p  1.15d . The distance 

between the rows in which there are full number of rivets (zig-zag), should not be 

less than, 0.165 p  0.67d . 

Note: p is the pitch of the rivets in the outer row. 

5. Thickness of butt straps: The thickness of butt strap(s) is given by, (in no case it 

should not be less than 10 mm). 

t1  1.125t , for ordinary single butt strap (chain riveting) 

t 



 

 p  d 
 1.125t  , for a single butt strap, with alternate rivets in the outer rows p  2d 

 

omitted 

 0.625t , for ordinary double straps of equal width (chain riveting) 

 p  d 
 0.625t  , for double straps of equal width, with alternate rivets in the p  2d 

 

outer rows omitted 

When two unequal widths of butt straps are employed, the thickness of butt straps are 

given by, t1  0.75t , for wide strap on the inside and t2  0.625t , for narrow strap on 

the outside. 

Note: The thickness of butt strap, in no case, shall be less than 10 mm. 

6. Margin: The margin ‘m’ is generally followed as 1.5d. 

Design of circumferential lap joint 

1. Diameter of rivets: It is usual practice to adopt the rivet diameter and plate thickness, 

same as those used for longitudinal joint. 

2. Number of rivets: The rivets are in single shear, since lap joint is used for 

circumferential joint. 

Total number of rivets to be used for the joint, 
 

steam load d 2 d 2  d 
2 

p 
N = = ( i  p ) /( 

 

 )   i     i  

Shear strength of one 
4 i 4

 
 d  

Where, di = inner diameter of boiler; d = rivet diameter; τ = allowable shear strength 

of rivet material 

3. Pitch of rivets: In general, the efficiency of the circumferential joint may be taken as 

50% of the tearing efficiency of the longitudinal joint. If intermediate circumferential 

joints are used, the strength of the seam should not be less than 62% of the strength of 

the undrilled plate. Knowing the (tearing) efficiency of the circumferential joint, the 

pitch of the rivets can be obtained from, 

Efficiency,   
( p  d )t t

 

pt t 


 p  d 

p 

4. Number of rows: Number of rivets per row, n  
 (di  t)

 
p 

Number of rows, Z 
   Total number of rivets 

No. of rivets per row 



 

5. Selection of the type of joint: After determining the number of rows, the type of joint 

(single riveted, double riveted etc.) may be decided. 

6. Row (back) pitch and margin: The proportions suggested for longitudinal joint, may 

be followed for the circumferential joint as well. 

 

Example problem – 1: Design a triple riveted lap joint, to join two plates of 6 

mm thick. The allowable stresses are: σt = 80 MPa, σc = 100 MPa, and τ = 60 

MPa. Calculate the rivet diameter, rivet pitch, and distance between the rows of 

rivets. Use zig-zag riveting. State how the joint will fail. 

 
Solution: As the thickness of the plate is less than 8 mm, the diameter of the 

rivet may be determined by equating the shearing resistance to the crushing 

resistance. Further, as the joint is triple riveted zig-zag lap joint, there will be 

three rivets per pitch length (Fig. 2.10) and are under single shear, and same 

number of rivets under crushing. 

 

 
 

Fig. 2.10 

d 2 d 2
 2 

Shearing resistance, Fs    
4   

n = 3    
4   

 60  141.37d (i) 

Crushing resistance, Fc  ndt c = 3 d  6 100  1800d (ii) 
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Page-68A; 

 
Reference 



 

 

Equating equations (i) and (ii) we have, 141.37d 2  1800d 

d = 12.73 mm 

The nearest standard diameter of the rivet recommended, d = 14 mm 

 
 

Pitch of the rivets: The pitch of the rivets may be obtained by equating the 

tearing resistance of the plate to the shearing resistance of the rivets. 

Tearing resistance, Ft   t ( p  d )t  ( p  14)  6  80 N (iii) 

d 2 142 
Shearing resistance, Fs  n    

4   
 = 3  

4 
 60  27708.8 N (iv) 

Equating equations (i) and (ii) we have, ( p  14)  480  27708.8 

p = 71.73 mm, say 72 mm. 

Distance between the rows of rivets, pb (or pt) = 0.33 p  0.67d  33.14mm , say 

34 mm. 

Mode of failure of the joint: 

Tearing efficiency = 
p  d 

 
72  14 

= 0.801 = 80.1% 
p 72 

Crushing efficiency = 
ndt c  

314  6 100 
= 0.802 = 80.2% 

pt t 72  6  80 

The lowest efficiency indicates the mode of failure of the joint. In the present 

case, the joint will fail by crushing of the rivets. 

 

 

 

 

 

 

 

 
Page-66, 

Eq. 5.31b 

 
Example problem – 2: A double riveted, zig-zag butt joint, in which the pitch 

 
Reference 
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of the rivets in the outer row is twice that in the inner rows; connects two 16 

mm plates with two cover plates, each 12 mm thick. Determine the diameter of 

the rivets and pitch of the rivets and pitch of the rivets, if the working stresses 

are: σt = 100 MPa, σc = 150 MPa, and τ = 75 MPa. 

 

Solution: 

Diameter of the rivet: 

Diameter of the rivet, d  6 t  24mm 

Pitch of the rivets: 

Let po = pitch of the rivets in the outer row 

Pi = pitch of the rivets in the outer row 



 

 

The pitch of the rivets may be obtained by equating the tearing resistance of the 

plate to the shearing resistance of the rivets. 

Referring Fig. 2.11, since the pitch in the outer row is twice the pitch of inner 

row; for one pitch length in the outer row, there are three rivets, which are 

under double shear. 

 

 
Fig. 2.11- Double riveted, double strap, zig-zag butt joint 

Tearing resistance, Ft  ( p  d )t t  ( p0  14) 16 100  ( po  24) 1600 N 

(i) 

d 2 
Shearing resistance, Fs  n 1.875    

4 
 , assuming that the rivets under 

double shear are 1.875 times as strong as those under single shear = 

31.875 
 
 242  75  190851.8 N (ii) 

4 

Equating equations (i) and (ii) we have, ( po  24) 1600  190851.8 

po = 143.3, say 144 mm 

Pitch of rivets in the inner row, pi = 
po = 

144 
= 72 mm 

2 2 

Distance between the rows of rivets: 

For zig-zag riveting, the row (back) pitch, pb ≥ 0.2 po  1.15d ≥ 

0.2 144  1.15  24 ≥ 56.4 mm. 

A back/row pitch of 60 mm may be recommended. 
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Welded joints 
 

Welded joints and their advantages: 



 

Welding is a very commonly used permanent joining process. Thanks to great 

advancement in welding technology, it has secured a prominent place in manufacturing 

machine components. A welded joint has following advantages: 

(i) Compared to other type of joints, the welded joint has higher efficiency. An 

efficiency > 95 % is easily possible. 

(ii) Since the added material is minimum, the joint has lighter weight. 

(iii) Welded joints have smooth appearances. 

(iv) Due to flexibility in the welding procedure, alteration and addition are possible. 

(v) It is less expensive. 

(vi) Forming a joint in difficult locations is possible through welding. 

The advantages have made welding suitable for joining components in various machines and 

structures. 

Types of welded joints 

Welded joints are primarily of two kinds 

a) Lap or fillet joint: obtained by overlapping the plates and welding their edges. The fillet 

joints may be single transverse fillet, double transverse fillet or parallel fillet joints (see figure 

2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Single transverse lap joint 



 

 

 
 

Double transverse lap joint 

 

Parallel lap joint 
 

Fig. 2.12 – Different types of lap joint 

 

b) Butt joints: formed by placing the plates edge to edge and welding them. Grooves are 

sometimes cut (for thick plates) on the edges before welding. According to the shape of the 

grooves, the butt joints may be of different types, e.g., 



 

 Square butt joint 

 Single V-butt joint, double V-butt joint 

 Single U-butt joint, double U-butt joint 

 Single J-butt joint, double J-butt joint 

 Single bevel-butt joint, double bevel butt joint 

These are schematically shown in figure 2.13. 

 

 

Square butt joint 
 
 

Single – V butt joint 
 
 

Double – V butt joint 

Fig. 2.13 – Different types of butt joints 

Strength of welds: in-plane loading 

There are different forms of welded joints, subjected to in-plane loading under tension. 

1. Transverse fillet weld 

Figure 2.14a shows a double transverse fillet weld under tension. It is assumed that 

the section of the weld is an isosceles right angled triangle, ABC, i.e. 45o fillet weld (Fig. 

2.14b). 

 

 

 

 

 

 
 

(a) (b) 
 

Fig. 2.14 – Double transverse fillet weld 



 

2 

2 

2 

2 

2 

2 

t 

The length of each side (AB=BC) is known as leg length or size of the weld. The minimum 

cross-sectional dimension, BD (at 45o from the plate surface or edge) is termed as throat 

thickness. Transverse fillet welds are assumed to fail in tension across the throat. 

Let t = thickness of the plate or size of the weld 

l = length of the weld 

σt = allowable tensile stress for the weld material 

From the geometry of Fig. 2.14b, 

Throat thickness, BD(=h) = tsin45o = 
t
 

 

Resisting throat area = hl = 
tl

 

 
 

Tensile strength of the joint = 
tl 

t 

 

, for single fillet 

 

 

 
 

2. Parallel fillet weld 

= 
2tl 

 


2tl t 
 

, for double fillet 

 

Figure 2.15a shows a double parallel fillet weld under tension. Parallel fillet welds are 

assumed to fail in shear across the throat. 

(a) Double parallel fillet weld (b) Combination of transverse and 

parallel fillet weld 

Fig. 2.15 
 

Let τ = allowable shear stress for the weld material 

Resisting throat area = 
tl

 

 

Shear strength of the joint = 

(Tensile strength) 

tl 
 , for single fille 

= 
2tl 

 


2tl , for double fillet 

2 




 

2 

3. Butt weld 
 

Fig. 2.15a shows a single V-butt joint under tension. 
 

(a) Single-V butt joint (b) Double-V butt joint 

Fig. 2.15 – Butt joints under tension 

In case of single V-butt weld, the throat thickness of the weld is considered to be equal to the 

plate thickness, t. Hence, tensile strength of the joint = tl t 

Where, l = length of the weld = width of the plate. 

Figure 2.15b shows a double V-butt joint under tension. 

Let h1 = throat thickness at the top 

h2 = throat thickness at the bottom 

Then tensile strength of the joint = (h1  h2 )l t 

4. Fillet welds under torsion 

Circular fillet weld: Figure 2.16 shows a circular shaft, connected to a plate, by a fillet weld 

of leg length, t and subjected to torque, T. The shear stress in 

the weld, in a horizontal plane, coinciding with the pate surface 

 
is given by,   

T  d / 2 

J 

 d 
2

 

Where, J  td 

 2 

  
T  d / 2 

 d 
2

 

 
 

2T 
td 2 

 
 

Fig. 2.16 

td  

 2 

The maximum value of the shear stress occurs in the weld throat, the length of which is 
t
 

 
 

Therefore,  max 

td 2 

 
2.83T 

td 2 

2T   2 



 

Long adjacent fillet welds: Fig 2.17 shows a vertical plate, connected to a horizontal plate by 

two identical fillet welds, and subjected to torque, T about the vertical axis of the joint. 

Let l = length of the joint 

T = leg length of the weld 

The effect of the applied torque is to produce shear stress, 

varying from zero at the axis and maximum at the plate ends 

(This is similar to the variation of normal stress over the depth 

of a beam, subjected to bending). 

The torsional shear stress, induced at the plate ends, and in a Fig. 2.17 

horizontal plane, coinciding with the top surface of the horizontal plane, is given by, 
 

 max 


tl 2 
 

4.2T 

tl 2 

5. Fillet welds under bending moment 
 

Annular fillet weld: Figure 2.18 shows one example of an annular fillet weld, subjected to 

bending moment, M. To determine the maximum bending stress induced in the joint; let us 

consider a small element of the weld, at an angle, θ, subtending an angle, dθ at the centre of 

the shaft. 

Area of the element = r.dθ.t 

Where,   t = size of the weld 

Normal force acting on the weld element, 

dF  r  d  t   t 
 

Fig. 2.18 

Since the normal stress in the element is proportional to the distance from the neutral plane, 

 t max 

r 
 

 t 

r sin 

Where, σ = normal (bending) stress induced in the weld element 

σtmax = maximum bending stress 

 t   t max sin 

Moment due to the force, dF about the neutral plane, 

 dF  r sin

 r  d  t  t  rdin

 r  d  t  t max  sin  r sin

3T 2 



 

2 

2 

2 

t max 

t max 

t max 

 r 2t  sin 2   d




Total resisting moment offered by weld 

2

 r 2t t max  sin 2   d
0 

 

 

Therefore, 

 

 
M  r 2t 

 r 2t  = external moment, M 

 

or 




t max 

    
M 

r 2t


Considering the throat area, for evaluation of the stress, 
 

 t max 
 

M 
 d 

2 
t  

5.66M 
d 2t 

    



Parallel fillet weld: 

 2 



Figure 2.19 shows a double parallel fillet weld, subjected to bending moment, M. The joint is 

symmetric about the neutral plane. 

Area resisting bending on the tensile (compressive) side, 

 
= throat area = 

t 
 l 

 

Where, t = size of the weld 

Assuming the moment arm equal to (b+t), 

Resisting moment = 
t 

 l(b  t)


Where, b = thickness of the plate Fig. 2.19 

 
Therefore, M  

t
  l(b  t) t 

 
 

And  t 


tl(b  t) 
 

6. Welded joints under eccentric loading 

Case – I 

Figure 2.20 shows a T-joint, with double parallel fillet weld, subjected to an eccentric load, F 

at a distance, e 

Let t = size of the weld 

l = length of the weld and b = thickness of the plate 

2 

2M 

t 



 

2 

2 

2 

To analyse the effect of the eccentric load, F, introduce two equal and opposite forces, F1 – 

F2 such that F1 = F2 = F, as shown in Fig. 2.20. 
 
 

Fig. 2.20 

The effect of F1 (=F) is to produce transverse shear stress, given by, Fig. 2.21 

  
F 



2  
t 

 l 

 
 

Where, 
t   

= throat thickness (h) 

 

The effect of F - F2 (F - F) is to produce bending moment, M, given by, Fe. 

Bending stress induced due to M is, 

 b 





tl(b  t) 
  

2Fe 

tl(b  t) 

The resultant (maximum) normal stress is given by, 
 

 

 
 

Case – II 

 max 
 

F 


tl(b  t) 

Figure 2.21 shows a T-joint with double parallel fillet weld, loaded eccentrically, but very 

much different from that of the joint as shown in Fig. 2.20. 

Let F = load; e = eccentricity; t = leg length; l = length of the weld 

Similar to previous case, to analyse the effect of the eccentric load, F, introduce two equal 

and opposite forces, F1 - F2 such that F1 = F2 = F, as shown in Fig. 2.21. 

The effect of F1 = F is to produce transverse shear stress, given by, 

  
F 



2  
t 

 l 

2M 

F 

2tl 

  2 2 

b 2e 
2 
 

(b  t)2 

2 

F 

2tl 



 

2 

  2 2 

b 

2F 

 

Where, 
t   

= throat thickness 
 

The effect of F - F2 (F - F) is to produce bending moment, M, given by, Fe. 

Bending stress induced due to M is, 

 b (  t   c )  
M

 
Z 

1  t  2 2 2 tl 2 
Where, Z  2  

6 

l  tl 
2  6 


4.242 

  
4.242Fe 

b tl 2 

The resultant (maximum) normal stress is given by, 
 

0.707F 
 

 
Case – III 

 max   
tl 



A more general case of eccentric loading is shown in 

Fig. 2.22. Here, the fillet welds are subjected to the action of 

a load, F acting at a distance, e from the centre of gravity of 

the weld system. To understand the effect of eccentric load, 

F; introduce two equal and opposite forces, F1 - F2 (=F) and 

passing through G, the centre of gravity of the weld system, 

as shown. Fig. 2.22 

The effect of F1(=F) is to produce direct or primary shear 

stress, 1 , and the effect of F - F2 (=F-F) is to produce twisting moment, Fe; resulting in 

secondary shear stress,  2  in the welds. 
 

Primary shear stress,  1  
tl

 

Where, t = size of the weld 

l = total length of the weld  a  2b 

Considering bending action, the shear stress induced is proportional to the distance of the 

weld section from G. Obviously, it is maximum at the corners of the weld. 

Let  2 = maximum secondary shear stress at, say corner, A. Then from Fig. 2.22, 

1   
 6e 

2

 

 l 



 

 a 
2

 
    

 b 
2

 

 2   2 

a 2  b2 

Fe  a 2  b 2 

a 2  b 2 

 
 
 2 

 
 2 

r GA 

 

 

  2 2 




Where, τ is the secondary shear stress at distance, r from G. 
 

The moment of the shear force on the weld element of area, dA and at distance, r from G is, 
 

2 r 2  dA 

dM    dA  r  2  
 
 

Total resisting moment due to the welds AB, BC, CD shall be equal to the external (applied) 

twisting moment, Fe. 

 
Fe  2 2 


B

r 2  dA  
C

r 2  dA  
D 

r 2  dA  2 2 
 J

 

 A B C 


Where J  r 2  dA = polar moment of inertia of the throat area about G. 

 

 2  
2I

  
Fe 




J 
rmax 

 

The resultant stress, max is obtained by adding 1 and  2 vectorially. Thus, 

 

 max 


Where θ is the angle between primary and secondary shear loads, and is obtained from, 
 

cos  
b
 

 

 

Example Problem-1: Figure 2.23 shows a cylindrical rod of 50 mm diameter, Reference 

welded to a flat plate. The cylindrical fillet weld is loaded eccentrically, by a  

force of 10 kN acting at 200 mm from the welded end. If the size of the weld is  

20 mm, determine the maximum normal stress in the weld.  

Solution: Let h = throat thickness = 
t
 

2 

Referring Fig. 2.23, let us introduce two equal and opposite forces, F1 - F2 and 
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a 2  b 2 

a 2  b2 a 2  b2 

    2 2 2 

1 2   cos1   2 

r 

G 



 

 

parallel to F, and passing through the centre of the rod at the fixed end such that 

F1 = F2 = F. Effect of F1 (=F) is to produce transverse shear stress, τ. 

Throat area, A  dh    50  
t 
   50  

20 
 2221.8mm2 

2 2 

Transverse shear stress, 

  
F 
 

10 1000 
= 4.5 N/mm2 

A     2221.8 

Effect of F1 – F2 (=F - F) is to 

produce bending moment, M, 

given by, 

M  FL  10 1000  200  20 105 N-mm Fig. 2.23 

For a circular fillet weld, section modulus, Z is given by, 

td 2   20  502 3 
Z      2.7752.6mm 

5.66 5.66 

M 20 105 2 
Bending stress,  b          72.1N/mm 

Z 27752.6 

Resultant (maximum) normal stress, 

   
2 
  

2   
 4.52  72.12  72.24 N/mm2 

b b 

& K. B. 

Reddy 

Example Problem-2: Figure 2.24a shows an eccentrically loaded welded joint. 

Determine the fillet weld size. Allowable shear stress in the weld is 80 MPa. 

 
(a) (b) 

Fig. 2.24 

Solution: Given data: F= 50kN; b = 200 mm; l = 150 mm; τ = 80 MPa 

Let t = size of the weld; h = throat thickness = 
t
 
2 

The distance of the centre of gravity, G from the left edge of the plate, x is 

given by, 

 



 

 

l 2
 

1502 
x      45 mm 

2l  b  2 150  200 

Eccentrically, e  400  (150  x)  400  (150  45)  505 mm 

Polar moment of inertia of the weld throat about G, 

t   (b  2l)3  l 2 (b  l)2  
J         

2  12 b  2l 

   
t   (200  2 150)3 

 
1502  (200  150) 2  3 4 

2 
 

12 (200  2 150) 
 = 3468.3×10 t mm 

 

Maximum radius of the weld, GA = rmax = 

AB 2  AC 2  1002  1052  145 mm 

cos  
GB 

 
105 

 0.724 
GA 145 

Throat area of the weld, A  (b  2l)    
t 

 353.6t mm2 

2 

Referring Fig. 2.24b, let us introduce two equal and opposite forces, F1 - F2 

through G, and parallel to F such that F1 = F2 = F. 

The effect of F1 (= F) is to produce primary shear stress. 

Primary shear stress,     
F 

 
50 1000 

 
141.4 

N/mm2 
1 A 353.6t t 

The effect of F – F2 (=F-F) is to produce moment, Fe; inducing secondary shear 

stress. Maximum secondary shear stress, 

  
Fe 

 r  
50 1000  505 

145  
1055.6 

2 J max 3468.3 103  t t 

Resultant (maximum) shear stress, 

   2   2  2  cos
max 1 2 1 2 

 

 141.6 
2 

 1055.6 
2 

141.6 1055.6 
       2    0.724 

 t   t  t t 

 
1162.1 

t 

80  
1162.1 

t 

t  14.5 mm 

 



 

Design of Bolted Joints 
 

Threaded fasteners 
 

Bolts, screws and studs are the most common types of threaded fasteners. They are 

used in both permanent and removable joints. 

Bolts: They are basically threaded fasteners normally used with nuts. 

Screws: They engage either with a preformed or a self made internal thread. 

Studs: They are externally threaded headless fasteners. One end usually meets a tapped 

component and the other with a standard nut. 

There are different forms of bolt and screw heads for a different usage. These include 

bolt heads of square, hexagonal or eye shape and screw heads of hexagonal, Fillister, button 

head, counter sunk or Phillips type. These are shown in Figs. 2.25 and 2.26. 

 

Fig. 2.25 – Types of screw heads 

 

 

Fig. 2.26 – Types of bolt heads 
 

Tapping screws 



 

These are one piece fasteners which cut or form a mating thread when driven into a 

preformed hole. These allow rapid installation since nuts are not used. 

There are two types of tapping screws. They are known as thread forming which 

displaces or forms the adjacent materials and thread cutting which have cutting edges and 

chip cavities which create a mating thread. 

Set Screws 

These are semi permanent fasteners which hold collars, pulleys, gears etc on a shaft. 

Different heads and point styles are available. Some of them are shown in Fig. 2.27. 
 

Fig. 2.27 – Different types of set screws 

Thread forms 

Basically when a helical groove is cut or generated over a cylindrical or conical section, 

threads are formed. When a point moves parallel to the axis of a rotating cylinder or cone 

held between centers, a helix is generated. Screw threads formed in this way have two 

functions to perform in general: (a) to transmit power – Square, ACME, Buttress, Knuckle 

types of thread forms are useful for this purpose. (b) to secure one member to another- V- 

threads are most useful for this purpose. 

Some standard forms are shown in Fig. 2.28. 



 

V-threads are generally used for securing because they do not shake loose due to the 

wedging action provided by the thread. Square threads give higher efficiency due to a low 

friction. This is demonstrated in Fig. 2.29. 

 
 

 

 

Fig. 2.28 – Different types of thread forms 
 

Fig. 2.29 – Loading on square and V-threads 



 

c 

 

Design of bolted joints 

Stresses in screw fastenings 

It is necessary to determine the stresses in screw fastening due to both static and 

dynamic loading in order to determine their dimensions. In order to design for static loading 

both initial tightening and external loadings need be known. 

Initial tightening load 

When a nut is tightened over a screw following stresses are induced: 

(a) Tensile stresses due to stretching of the bolt 

(b) Torsional shear stress due to frictional resistance at the threads. 

(c) Shear stress across threads 

(d) Compressive or crushing stress on the threads 

(e) Bending stress if the surfaces under the bolt head or nut are not perfectly normal to the 

bolt axis. 

(a) Tensile stress 

Since none of the above mentioned stresses can be accurately determined bolts are 

usually designed on the basis of direct tensile stress with a large factor of safety. The initial 

tension in the bolt may be estimated by an empirical relation P1=284 d kN, where the 

nominal bolt diameter d is given in mm. The relation is used for making the joint leak proof. 

If leak proofing is not required half of the above estimated load may be used. However, since 

initial stress is inversely proportional to square of the diameter   
284d 

, bolts of smaller 

 
d 

2 

4 

diameter such as M16 or M8 may fail during initial tightening. In such cases torque wrenches 

must be used to apply known load. The torque in wrenches is given by T= C P1d where, C is 

a constant depending on coefficient of friction at the mating surfaces, P is tightening up load 

and d is the bolt diameter. 

(b) Torsional shear stress 

 
This is given by   

16T 
where T is the torque and dc the core diameter. We may 

d 3 

relate torque T to the tightening load P1 in a power screw configuration (figure-2.30) and 

taking collar friction into account we may write 

dm  1  dm sec 


 

P1 c dcm 
 

T  P1 

2 
 
d  L sec 

  
2 m 



 

where dm and dcm dare the mean thread diameter and mean collar diameter respectively, and µ 

and µc are the coefficients of thread and collar friction respectively and α is the semi thread 

 
angle. If we consider that 

 
dcm 

 
dm  1.5dm , then we may write T= C P1 dm where C is a 

2 

constant for a given arrangement. As discussed earlier, similar equations are used to find the 

torque in a wrench. 

 

 
Fig. 2.30 – A typical power screw configuration 

 

(c) Shear stress across the threads 

This is given by  
3P 

 

 

dcbn 

 
where dc is the core diameter and b is the base width of 

the thread and n is the number of threads sharing the load. 

(d) Crushing stress on threads 

This is given by  c  



P 
where do and dc are the outside and core diameters 

2 2 

 

 
as shown in Fig. 2.30. 

(e) Bending stress 

4 
(do  dc )n 



 

If the underside of the bolt and the bolted part are not parallel as shown in Fig. 2.31, 

the bolt may be subjected to bending and the bending stress may be given by   
xE 

B 2L 

 
where 

x is the difference in height between the extreme corners of the nut or bolt head, L is length of 

the bolt head shank and E is the young’s modulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.31 - Development of bending stress in a bolt 

Combined effect of initial tightening load and external load 

When a bolt is subjected to both initial tightening and external loads i.e. when a 

preloaded bolt is in tension or compression the resultant load on the bolt will depend on the  

relative elastic yielding of the bolt and the connected members. 

Fig. 2.32 - A bolted joint subjected to both initial tightening and external load 



 

K K 

This situation may occur in steam engine cylinder cover joint for example. In this case 

the bolts are initially tightened and then the steam pressure applies a tensile load on the bolts. 

This is shown in Fig. 2.32a and b. 

Initially due to  preloading the bolt  is elongated and the connected members are 

compressed. When the external load P is applied, the bolt deformation increases and the 

compression of the connected members decrease. Here, P and P in Fig. 2.32a are the tensile 
1 2 

loads on the bolt due to initial tightening and external load respectively. The increase in bolt 

 
deformation is given by   

Pb 
 
and decrease in member compression is   

Pc 
 
where, Pb 

B C 

b c 

is the share of P in bolt, and Pc is the share of P in members, Kb and Kc are the stiffnesses of 
2 2 

 
bolt and members. If the parts are not separated then δb = δc and this gives, 

Pb    
Pc   .

 

Kb Kc 

Therefore, the resultant load on bolt is P+KP. Sometimes connected members may be more 

yielding than the bolt and this may occurs when a soft gasket is placed between the surfaces. 

Under these circumstances Kb >>Kc or 
Kc 

<< 1 and this gives K  1 . Therefore the total load 

Kb 

P  P1  P2 Normally K has a value around 0.25 or 0.5 for a hard copper gasket with long 

through bolts. On the other hand if Kc>>Kb, K approaches zero and the total load P equals the 

initial tightening load. This may occur when there is no soft gasket and metal to metal contact 

occurs. This is not desirable. Some typical values of the constant K are given in Table 2.1. 

Table 2.1 
 

Type of joint K 

Metal to metal contact with through bolt 0-0.1 

Hard copper gasket with long through bolt 0.25-0.5 

Soft copper gasket with through bolts 0.75 

Soft packing with through bolts 0.75-1.00 

Soft packing with studs 1.00 



 

Cotter Joint 

A cotter is a flat wedge-shaped piece of steel as shown in Fig. 2.33. This is used to connect 

rigidly two rods which transmit motion in the axial direction, without rotation. These joints 

may be subjected to tensile or compressive forces along the axes of the rods. Examples of 

cotter joint connections are: connection of piston rod to the crosshead of a steam engine, 

valve rod and its stem etc. 

A typical cotter joint is as shown in Fig. 2.34. One of the 

rods has a socket end into which the other rod is inserted and the 

cotter is driven into a slot, made in both the socket and the rod. 

The cotter tapers in width (usually 1:24) on one side only and 

when this is driven in, the rod is forced into the socket. However, 

if the taper is provided on both the edges it must be less than the sum 

of the friction angles for both the edges to make it self locking i.e. 

α1 + α2 < φ1 + φ2 where α1 , α2 are the angles of taper on the 

rod edge and socket edge of the cotter respectively and φ1, Fig. 2.33 

φ2 are the corresponding angles of friction. This also means that if taper is given on one side 

only then α < φ1 + φ2 for self locking. Clearances between the cotter and slots in the rod end 

and socket allows the driven cotter to draw together the two parts of the joint until the socket 

end comes in contact with the cotter on the rod end. 

 
 

Fig. 2.34 – Cross-sectional views of a typical cotter joint 



 

4 

4 

 

 

 

Fig. 2.35 – An isometric view of a typical cotter joint 

Design of a cotter joint: 

If the allowable stress in tension, compression and shear for the socket, rod and cotter 

be σt, σc, and τ respectively, assuming that they are all made of the same material, we may 

write the following failure criteria: 

1. Tension failure of the rod at diameter d (Fig. 2.36) 

 
d 2  P 

4 
t 

Fig. 2.36 
 

 

 

2. Tension failure of the rod across slot (Fig. 2.37) 
  

d 2  d t 

  P 

 1  t 
 

Fig. 2.37 
 

 

 

 

3. Tension failure of the socket across slot (Fig. 2.38) 
  d 2  d 2  d  d t   P 
 2 1 


2 1      t 





Fig. 2.38 

 

 

 

 

4. Shear failure of cotter (Fig. 2.39) 

2bt  P 

 

 

 

 
Fig. 2.39 
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5. Shear failure of the rod end (Fig. 2.40) 

2l1d1  P 

 

 
Fig. 2.40 

 

 

 
 

6. Shear failure of socket end (Fig. 2.41) 

2ld2  d1   P 

7. Crushing failure of rod or cotter (Fig. 2.42) 

 

 

Fig. 2.41 

 

d1t c  P 
 

Fig. 2.42 

 

 

 

 

 

8. Crushing failure of socket or rod (Fig. 2.43) 

 

d 3   d1 t c   P Fig. 2.43 

 

 

 

9. Crushing failure of collar (Fig. 2.44) 
 
 

  d 2  d 2   P 
 4 1  c 

 

Fig. 2.44 
 
 

10. Shear failure of collar (Fig. 2.45) 
 
 

d1t1  P Fig. 2.45 

 

 

 
 

Cotters may bend when driven into position. When this occurs, the bending moment 

cannot be correctly estimated since the pressure distribution is not known. However, if we 

assume a triangular pressure distribution over the rod, as shown in Fig. 2.46 (a), we may 

approximate the loading as shown in Fig. 2.46 (b) 



 

 

 

 

 

 
 

 

 

 

Fig. 2.46 
 

 This gives maximum bending moment = 
P  d3  d1  

d1  
and the bending stress, 

  
2  6 4 



P  d3  d1 
 

d1  b 
3P

 d3  d1 
 

d1 
    

 
 2  6 4  2 

b tb3 
 

 

12 


  6 4 

tb 2 

 

Tightening of cotter introduces initial stresses which are again difficult to estimate. 

Sometimes therefore it is necessary to use empirical proportions to design the joint. Some 

typical proportions are given below: 

d1  1.21d ; d 2  1.75d ; d3  2.4d ; d 4  1.5d ; t  0.31d ; b  1.6d ; l  l1  0.75d ; 

t1  0.45d ; s  clearance. 

Design of a cotter joint: 

 
 

Knuckle Joint 

A knuckle joint (as shown in Fig. 2.47) is used to connect two rods under tensile load. 

This joint permits angular misalignment of the rods and may take compressive load if it is 

guided. 

 



 

 2 

1 

Fig. 2.47 – A typical knuckle joint 
 

These joints are used for different types of connections e.g. tie rods, tension links in 

bridge structure. In this, one of the rods has an eye at the rod end and the other one is forked 

with eyes at both the legs. A pin (knuckle pin) is inserted through the rod-end eye and fork- 

end eyes and is secured by a collar and a split pin. Normally, empirical relations are available 

to find different dimensions of the joint and they are safe from design point of view. The 

proportions are given in the Fig. 2.47. 

d = diameter of rod 

d1 = d t = 1.25d 

 

d2 = 2d t1 = 0.75d 

d3 =1.5d t2 = 0.5d 

Mean diameter of the split pin = 0.25 d 

However, failures analysis may be carried out for checking. The analyses are 

shown below assuming the same materials for the rods and pins and the yield 

stresses in tension, compression and shear are given by σt, σc and τ. 

1. Failure of rod in tension: 

 
d 2  P 

4 
t 

 

2. Failure of knuckle pin in double shear: 

 

2 
4 

d1   P 

3. Failure of knuckle pin in bending (if the pin is loose in the fork): 

Assuming a triangular pressure distribution on the pin, the loading on the pin is shown in 

Fig. 2.48. 

Equating the maximum bending stress to tensile or compressive yield stress we have, 
 

 

16P
 t1  

t 


  

 
  3 4 

t d 3 

4. Failure of rod eye in shear: 

 

d 2  d1 t  P 



 

1 

5. Failure of rod eye in crushing: 
 
 

d1t c  P 
 

 

6. Failure of rod eye in tension: 

 

d 2  d1 t t P 

 

 
 

Fig. 2.48 

 

 

7. Failure of forked end in shear: 

2d 2   d1 t1   P 

8. Failure of forked end in tension: 

2d 2   d1 t1 t   P 
 

9. Failure of forked end in crushing: 

 

2d1t1 c  P 
 

The design may be carried out using  the empirical proportions and then the analytical 

relations may be used as checks. For example using the 2nd equation we have,  
2P 

d 2 

 
. We 

 
may now put value of d1 

 
more than one. 

from empirical relation and then find F.S.  
 y 

which should be 





Example Problem-1: Design a typical cotter joint to transmit a load of 50 kN 

in tension or compression. Consider that the rod, socket and cotter are all made 

of a material with the following allowable stresses: Allowable tensile stress σy 

= 150 MPa; Allowable crushing stress σc = 110 MPa; Allowable shear stress τy 

= 110 MPa. 

Solution: 

Axial load, P  
 

d 2 . On substitution this gives d=20 mm. In general 
4 

y 

standard shaft size in mm are: 

6 mm to 22 mm diameter 2 mm in increment 

25 mm to 60 mm diameter 5 mm in increment 

Reference 














Fig. 2.34 

and 2.36 



 



60 mm to 110 mm diameter 10 mm in increment 

110 mm to 140 mm diameter 15 mm in increment 

140 mm to 160 mm diameter 20 mm in increment 

500 mm to 600 mm diameter 30 mm in increment 

We therefore choose a suitable rod size to be 25 mm. 

For tension failure across slot 
  

d 2  d t 

  P . This gives d t  1.58 104 

 
4 

1  t 1 

 

m2. From empirical relations we may take t = 0.4d i.e. 10 mm and this gives d1 

= 15.8 mm. Maintaining the proportion let d1= 1.2 d = 30 mm. 

The tensile failure of socket across slot, 
  d 2  d 2  d  d t   P . This 
 

4 
2 1 2 1      t 

 

gives d2 = 37 mm. Let d2 = 40 mm. 

For shear failure of cotter 2btτ = P. On substitution this gives b = 22.72 mm. 

Let b = 25 mm. 

For shear failure of rod end 2l1d1  P and this gives l1 = 7.57 mm. Let l1 = 

10 mm. 

For shear failure of socket end 2ld2  d1   P . This gives l = 22.72 mm. Let 

L = 25 mm. 

For crushing failure of socket or rod d3  d1 t c  P . This gives d3 = 75.5 

mm. Let d3 = 77 mm. 

For crushing failure of collar 
  d 2  d 2   P . On substitution this gives 
 

4 
4 1  c 

 

d4 = 38.4 mm. Let d4 = 40 mm. 

For shear failure of collar d1t1  P which gives t1= 4.8 mm. Let t1 = 5 

mm. 

Therefore the final chosen values of dimensions are: 

d = 25 mm; d1= 30 mm; d2 = 40 mm; d3 = 77 mm; d4 = 40 mm; t = 10 mm; 

t1= 5 mm; l = 25 mm; l1= 10 mm; b = 27 mm. 
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
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






Fig. 2.37 
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




Fig. 2.38 


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Fig. 2.39 



Fig. 2.40 





Fig. 2.41 



Fig. 2.43 


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c  D  d 

DESIGN OF JOURNAL BEARING 
 

1. Terms used in Hydrodynamic Journal Bearing 
 

A hydrodynamic journal bearing is shown in Fig. 1, in which O is the centre of the journal 

and O′ is the centre of the bearing. 

Let, D = Diameter of the bearing 

d = diameter of journal 

l= length of bearing 
 

 

 
 

Fig. 1: Hydrodynamic Journal Bearing 

 
The following terms used in hydrodynamic journal bearing are important from the subject 

point of view. 

1. Diametral clearance. It the difference between the diameters of the bearing and the journal. 
 

Mathematically, diametral clearance, . 
 

2. Radial clearance. It is the difference between the radii of the bearing and the journal. 

 

Mathematically, radial clearance, . 

 

3. Diametral clearance ratio. It is the ratio of the diametral clearance to the diameter of the 

 

journal. Mathematically, diametral clearance ratio, . 

 

4. Eccentricity. It is the radial distance between the centre (O) of the bearing and the displaced 

centre (O′) of the bearing under load. It is denoted by e. 

5. Minimum oil film thickness. It is the minimum distance between the bearing and the journal, 

under complete lubrication condition. It is denoted by h0 and occurs at the line of centres as 

shown in Fig. 1. Its value may be assumed as c / 4. 

c  R  r  
D  d 


1 

2 

c 

2 

 

c 


D  d 

d d 

 



 

  
e 
 

c1  ho 
 1 

ho 
 1 

2ho
 

c1 c1 c1 c 

6. Attitude or eccentricity ratio. It is the ratio of the eccentricity to the radial clearance. 

 

Mathematically, attitude or eccentricity ratio, . 

 

7. Short and long bearing. If the ratio of the length to the diameter of the journal (i.e. l / d) is 

less than 1, then the bearing is said to be short bearing. On the other hand, if l / d is greater 

than 1, then the bearing is known as long bearing. 

 

2. Bearing Characteristic Number and Bearing Modulus for Journal Bearings 
 

The coefficient of friction in design of bearings is of great importance, because it affords a 

means for determining the loss of power due to bearing friction. It has been shown by 

experiments that the coefficient of friction for a full lubricated journal bearing is a function of 

three variables, i.e. 
Zn  d l 

, , . 
p c d 

 

Therefore the coefficient of friction may be expressed as 
 

Where , 

μ = Coefficient of friction, 

 = A functional relationship, 

Z = Absolute viscosity of the lubricant, in kg / m-s, 

n = Speed of the journal in r.p.m., 

p = Bearing pressure on the projected bearing area in N/mm2, = Load on the journal ÷ l × d 

d = Diameter of the journal, 

l = Length of the bearing, and 

c = Diametral clearance. 

The factor ZN / p is termed as bearing characteristic number and is a dimensionless number. 

The variation of coefficient of friction with the operating values of bearing characteristic 

number (ZN / p) as obtained by McKee brothers (S.A. McKee and T.R. McKee) in an actual 

test of friction is shown in Fig. 2. The factor ZN/p helps to predict the performance of a 

bearing. 

Notes : 1. When the length of the journal (l ) is equal to the diameter of the journal (d ), then 

the bearing is called square bearing. 

   
 Zn 

, 
d 

, 
l 


 p c d 





 

 

Fig. 2 Variation of coefficient of friction with ZN/p. 

 
The part of the curve PQ represents the region of thick film lubrication. Between Q and R, 

the viscosity (Z) or the speed (N) are so low, or the pressure ( p) is so great that their 

combination ZN / p will reduce the film thickness so that partial metal to metal contact will 

result. The thin film or boundary lubrication or imperfect lubrication exists between R and S 

on the curve. This is the region where the viscosity of the lubricant ceases to be a measure of 

friction characteristics but the oiliness of the lubricant is effective in preventing complete 

metal to metal contact and seizure of the parts. It may be noted that the part PQ of the curve 

represents stable operating conditions, since from any point of stability, a decrease in 

viscosity (Z) will reduce Zn / p. This will result in a decrease in coefficient of friction (μ) 

followed by a lowering of bearing temperature that will raise the viscosity (Z). From Fig. 2, 

we see that the minimum amount of friction occurs at A and at this point the value of Zn / p is 

known as bearing modulus which is denoted by K. The bearing should not be operated at this 

value of bearing modulus, because a slight decrease in speed or slight increase in pressure 

will break the oil film and make the journal to operate with metal to metal contact. This will 

result in high friction, wear and heating. In order to prevent such conditions, the bearing 

should be designed for a value of Zn / p at least three times the minimum value of bearing 

modulus (K). If the bearing is subjected to large fluctuations of load and heavy impacts, the 

value of Zn / p = 15 K may be used. From above, it is concluded that when the value of ZN / 

p is greater than K, then the bearing will operate with thick film lubrication or under 

hydrodynamic conditions. On the other hand, when the value of ZN / p is less than K, then 

the oil film will rupture and there is a metal to metal contact. 

3. Coefficient of Friction for Journal Bearings 



 

  



33.25 
 

Zn 
 

d 
  k

 

 1010 
p c 

S 
Zn  d 

2

 

60106 p  c 
 

Hg  WV 

In order to determine the coefficient of friction for well lubricated full journal bearings, the 

following empirical relation established by McKee based on the experimental data, may be 

used. 

 

Coefficient of friction 
 

 

 

 

 

(Eq. 19.5, pp. 19.3, Jalaludeen) 

 
(When Z in N-s/m2, or kg/m-s and p in N/mm2) 

(Eq. 19.6, pp. 19.3, Jalaludeen) 

(When Z in centipoise, or kg/m-s and p in kgf/cm2) 

k = Factor to correct for end leakage. It depends upon the ratio of length to the diameter of 

the bearing (i.e. l / d). (Refer Fig. 19.2, pp.19.24, Jalaludeen) , and The design values can be 

taken from Table 19.5, pp. 19.13, Jalaludeen. 

4. Critical Pressure of the Journal Bearing 

The pressure at which the oil film breaks down so that metal to metal contact begins, is 

known as critical pressure or the minimum operating pressure of the bearing. It may be 

obtained by the following empirical relation, i.e. Critical pressure or minimum operating 

 

pressure, N/mm2 (Eq. 19.15, pp. 19.6, Jalaludeen) 

 

When, Z in N-s/m2 

 

And kgf.cm2 (Eq. 19.16, pp. 19.6, Jalaludeen), When, Z 

 

centipoise 

5. Sommerfeld Number 

The Sommerfeld number is also a dimensionless parameter used extensively in the design of 

 

journal bearings. Mathematically, (Eq. 19.8, pp. 19.4, Jalaludeen), 

Table 19.7 to Table 19.10. 

 

 

6. Heat Generated in a Journal Bearing 

The heat generated in a bearing is due to the fluid friction and friction of the parts having 
 

relative motion. Mathematically, heat generated in a bearing, watts. 

  



33.25 
 

Zn 
 

d 
  k

 

 108 p c 

p  
Zn  d 

2 

 l 
c 

4.7510   c    l  d 
6     

p  
Zn  d 

2 

 l 
c 

47510   c    l  d 
6     



 

Hd  CA(tb  ta ) 

V 
  dn 

60 

(when the load on bearing W in Newtons and V in m/s) 

 
And 

 
kgf-m/min or 

WV 

J 

 
kcal/min (Eq. 19.10, pp. 19.4, Jalaludeen) 

(when W in Newtons and the rubbing velocity V in m/s) 
 

And m/s 

 

After the thermal equilibrium has been reached, heat will be dissipated at the outer surface of 

the bearing at the same rate at which it is generated in the oil film. The amount of heat 

dissipated will depend upon the temperature difference, size and mass of the radiating surface 

and on the amount of air flowing around the bearing. However, for the convenience in 

bearing design, the actual heat dissipating area may be expressed in terms of the projected 

area of the journal. 

Heat dissipated by the bearing (Eq. 19.12, pp. 19.5, Jalaludeen) 
 

Where C= Heat dissipation coefficient (values can be obtained from pp. 19.5, Jalaludeen) 

A = projected area = l  d 

tb = temp. of bearing in oC 

in m2 

ta = temp. of surroundings in oC 

7. Design Procedure for Journal Bearing 

The following procedure may be adopted in designing journal bearings, when the bearing 

load, the diameter and the speed of the shaft are known. 

1 Determine the bearing length by choosing a ratio of l / d from Table 19.5, pp. 19.13, 

Jalaludeen. 

2 Check the bearing pressure, p = W / l.d (Eq. 19.9, pp. 19.4, Jalaludeen), from Table 19.5, pp. 

pp. 19.13, Jalaludeen, for probable satisfactory value. 

3 Assume a lubricant from Table 19.11, pp. 19.26, Jalaludeen, and its operating temperature 

(t0). This temperature should be between 26.5°C and 60°C with 82°C as a maximum for high 

temperature installations such as steam turbines. 

4 Determine the operating value of Zn / p for the assumed bearing temperature and check this 

value with corresponding values in Table 19.5, pp. 19.13, Jalaludeen to determine the 

possibility of maintaining fluid film operation. 

5 Assume a clearance ratio c / d from Table 19.5, pp. 19.13, Jalaludeen. 

6 Determine the coefficient of friction (μ) by using the relation as discussed in Art. 3. 

7 Determine the heat generated by using the relation as discussed in Art. 6. 

8 Determine the heat dissipated by using the relation as discussed in Art. 6. 

Hg  WV 



 

9 Determine the thermal equilibrium to see that the heat dissipated becomes at least equal to 

the heat generated. In case the heat generated is more than the heat dissipated then either 

the bearing is redesigned or it is artificially cooled by water. 

 

BALL AND ROLLER BEARING 
 

 

Advantages and disadvantages of Roller bearing over sliding bearing 

Advantages 

1. Low starting and running friction except at very high speeds. 

2. Ability to withstand momentary shock loads. 

3. Accuracy of shaft alignment. 

4. Low cost of maintenance, as no lubrication is required while in service. 

5. Small overall dimensions. 

6. Reliability of service. 

7. Easy to mount and erect. 

8. Cleanliness. 

Disadvantages 

1. More noisy at very high speeds. 

2. Low resistance to shock loading. 

3. More initial cost. 

4. Design of bearing housing complicated. 

Types of Rolling Contact Bearings 

Following are the two types of rolling contact bearings: 

1. Ball bearings; and 

2. Roller bearings. 

The ball and roller bearings consist of an inner race which is mounted on the shaft or journal 

and an outer race which is carried by the housing or casing. In between the inner and outer 

race, there are balls or rollers as shown in Fig. 3. A number of balls or rollers are used and 

these are held at proper distances by retainers so that they do not touch each other. The 

retainers are thin strips and is usually in two parts which are assembled after the balls have 

been properly spaced. The ball bearings are used for light loads and the roller bearings are 

used for heavier loads. The rolling contact bearings, depending upon the load to be carried, 

are classified as : (a) Radial bearings, and (b) Thrust bearings. 



 

The radial and thrust ball bearings are shown in Fig. 4 (a) and (b) respectively. When a ball 

bearing supports only a radial load (WR), the plane of rotation of the ball is normal to the 

centre line of the bearing, as shown in Fig. 4 (a). The action of thrust load (WA) is to shift the 

plane of rotation of the balls, as shown in Fig. 4 (b). The radial and thrust loads both may be 

carried simultaneously. 

Fig. 3 Ball and Roller Bearing Fig. 4 Radial and Thrust Bearing 

 
Types of Radial Ball Bearings 

Following are the various types of radial ball bearings: 

1. Single row deep groove bearing. A single row deep groove bearing as shown in Fig. 5 (a). 

During assembly of this bearing, the races are offset and the maximum numbers of balls are 

placed between the races. The races are then centered and the balls are symmetrically located 

by the use of a retainer or cage. The deep groove ball bearings are used due to their high load 

carrying capacity and suitability for high running speeds. The load carrying capacity of a ball 

bearing is related to the size and number of the balls. 

 

 
 

 

 
 

Fig. 5 Types of Radial Ball Bearing 

 
2. Filling notch bearing. 

A filling notch bearing is shown in Fig. 5 (b). These bearings have notches in the inner and 

outer races which permit more balls to be inserted than in a deep groove ball bearing. The 

notches do not extend to the bottom of the race way and therefore the balls inserted through 



 

the notches must be forced in position. Since this type of bearing contains larger number of 

balls than a corresponding un-notched one, therefore it has a larger bearing load capacity. 

3. Angular contact bearing. 

An angular contact bearing is shown in Fig. 5 (c). These bearings have one side of the outer 

race cut away to permit the insertion of more balls than in a deep groove bearing but without 

having a notch cut into both races. This permits the bearing to carry a relatively large axial 

load in one direction while also carrying a relatively large radial load. The angular contact 

bearings are usually used in pairs so that thrust loads may be carried in either direction. 

4. Double row bearing. 

A double row bearing is shown in Fig. 5 (d). These bearings may be made with radial or 

angular contact between the balls and races. The double row bearing is appreciably narrower 

than two single row bearings. The load capacity of such bearings is slightly less than twice 

that of a single row bearing. 

5. Self-aligning bearing. 

A self-aligning bearing is shown in Fig. 5 (e). These bearings permit shaft deflections within 

2-3 degrees. It may be noted that normal clearance in a ball bearing are too small to 

accommodate any appreciable misalignment of the shaft relative to the housing. If the unit is 

assembled with shaft misalignment present, then the bearing will be subjected to a load that 

may be in excess of the design value and premature failure may occur. Following are the two 

types of self-aligning bearings: 

(a) Externally self-aligning bearing, and (b) Internally self-aligning bearing. 

In an externally self-aligning bearing, the outside diameter of the outer race is ground to a 

spherical surface which fits in a mating spherical surface in a housing, as shown in Fig. 5 (e). 

In case of internally self-aligning bearing, the inner surface of the outer race is ground to a 

spherical surface. Consequently, the outer race may be displaced through a small angle 

without interfering with the normal operation of the bearing. The internally self-aligning ball 

bearing is interchangeable with other ball bearings. 

 

 

 

 

 

Types of Roller Bearings 

Following are the principal types of roller bearings : 



 

1. Cylindrical roller bearings. A cylindrical roller bearing is shown in Fig. 6(a). These 

bearings have short rollers guided in a cage. These bearings are relatively rigid against radial 

motion and have the lowest coefficient of friction of any form of heavy duty rolling-contact 

bearings. Such types of bearings are used in high speed service. 

Fig. 6 Types of Roller Bearing 

 
2. Spherical roller bearings. A spherical roller bearing is shown in Fig. 6 (b). These bearings are self-

aligning bearings. The self-aligning feature is achieved by grinding one of the races in the form of 

sphere. These bearings can normally tolerate angular misalignment in the order

of 1
1

 
2 

and when used with a double row of rollers, these can carry thrust loads in either direction



 

 

3. Needle roller bearings. A needle roller bearing is shown in Fig. 6 (c). These bearings 

are relatively slender and completely fill the space so that neither a cage nor a retainer is 

needed. These bearings are used when heavy loads are to be carried with an oscillatory 

motion, e.g. piston pin bearings in heavy duty diesel engines, where the reversal of motion 

tends to keep the rollers in correct alignment. 

4. Tapered roller bearings. A tapered roller bearing is shown in Fig. 6 (d). The rollers 

and race ways of these bearings are truncated cones whose elements intersect at a common 

point. Such type of bearings can carry both radial and thrust loads. These bearings are 

available in various combinations as double row bearings and with different cone angles 

for use with different relative magnitudes of radial and thrust loads. 
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