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New to this Edition

Preface

Thomas’ Calculus: Early Transcendentals, Thirteenth Edition, provides a modern intro-
duction to calculus that focuses on conceptual understanding in developing the essential
elements of a traditional course. This material supports a three-semester or four-quarter
calculus sequence typically taken by students in mathematics, engineering, and the natural
sciences. Precise explanations, thoughtfully chosen examples, superior figures, and time-
tested exercise sets are the foundation of this text. We continue to improve this text in
keeping with shifts in both the preparation and the ambitions of today’s students, and the
applications of calculus to a changing world.

Many of today’s students have been exposed to the terminology and computational
methods of calculus in high school. Despite this familiarity, their acquired algebra and
trigonometry skills sometimes limit their ability to master calculus at the college level. In
this text, we seek to balance students’ prior experience in calculus with the algebraic skill
development they may still need, without slowing their progress through calculus itself. We
have taken care to provide enough review material (in the text and appendices), detailed
solutions, and variety of examples and exercises, to support a complete understanding of
calculus for students at varying levels. We present the material in a way to encourage stu-
dent thinking, going beyond memorizing formulas and routine procedures, and we show
students how to generalize key concepts once they are introduced. References are made
throughout which tie a new concept to a related one that was studied earlier, or to a gen-
eralization they will see later on. After studying calculus from Thomas, students will have
developed problem solving and reasoning abilities that will serve them well in many im-
portant aspects of their lives. Mastering this beautiful and creative subject, with its many
practical applications across so many fields of endeavor, is its own reward. But the real gift
of studying calculus is acquiring the ability to think logically and factually, and learning
how to generalize conceptually. We intend this book to encourage and support those goals.

In this new edition we further blend conceptual thinking with the overall logic and struc-
ture of single and multivariable calculus. We continue to improve clarity and precision,
taking into account helpful suggestions from readers and users of our previous texts. While
keeping a careful eye on length, we have created additional examples throughout the text.
Numerous new exercises have been added at all levels of difficulty, but the focus in this
revision has been on the mid-level exercises. A number of figures have been reworked and
new ones added to improve visualization. We have written a new section on probability,
which provides an important application of integration to the life sciences.

We have maintained the basic structure of the Table of Contents, and retained im-
provements from the twelfth edition. In keeping with this process, we have added more
improvements throughout, which we detail here:
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Continuing Features

¢ Functions In discussing the use of software for graphing purposes, we added a brief
subsection on least squares curve fitting, which allows students to take advantage of
this widely used and available application. Prerequisite material continues to be re-
viewed in Appendices 1-3.

® Continuity We clarified the continuity definitions by confining the term “endpoints” to
intervals instead of more general domains, and we moved the subsection on continuous
extension of a function to the end of the continuity section.

e Derivatives We included a brief geometric insight justifying 1’Hopital’s Rule. We also
enhanced and clarified the meaning of differentiability for functions of several vari-
ables, and added a result on the Chain Rule for functions defined along a path.

¢ Integrals We wrote a new section reviewing basic integration formulas and the Sub-
stitution Rule, using them in combination with algebraic and trigonometric identities,
before presenting other techniques of integration.

e Probability We created a new section applying improper integrals to some commonly
used probability distributions, including the exponential and normal distributions.
Many examples and exercises apply to the life sciences.

® Series We now present the idea of absolute convergence before giving the Ratio and
Root Tests, and then state these tests in their stronger form. Conditional convergence is
introduced later on with the Alternating Series Test.

® Multivariable and Vector Calculus We give more geometric insight into the idea of
multiple integrals, and we enhance the meaning of the Jacobian in using substitutions
to evaluate them. The idea of surface integrals of vector fields now parallels the notion
for line integrals of vector fields. We have improved our discussion of the divergence
and curl of a vector field.

e Exercises and Examples Strong exercise sets are traditional with Thomas’ Calculus,
and we continue to strengthen them with each new edition. Here, we have updated,
changed, and added many new exercises and examples, with particular attention to in-
cluding more applications to the life science areas and to contemporary problems. For
instance, we updated an exercise on the growth of the U.S. GNP and added new exer-
cises addressing drug concentrations and dosages, estimating the spill rate of a ruptured
oil pipeline, and predicting rising costs for college tuition.

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think
starting with a more intuitive, less formal, approach helps students understand a new or dif-
ficult concept so they can then appreciate its full mathematical precision and outcomes. We
pay attention to defining ideas carefully and to proving theorems appropriate for calculus
students, while mentioning deeper or subtler issues they would study in a more advanced
course. Our organization and distinctions between informal and formal discussions give the
instructor a degree of flexibility in the amount and depth of coverage of the various top-
ics. For example, while we do not prove the Intermediate Value Theorem or the Extreme
Value Theorem for continuous functions on a = x = b, we do state these theorems precisely,
illustrate their meanings in numerous examples, and use them to prove other important re-
sults. Furthermore, for those instructors who desire greater depth of coverage, in Appendix
6 we discuss the reliance of the validity of these theorems on the completeness of the real
numbers.
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Preface Xi

WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of
each chapter contains a list of questions for students to review and summarize what they
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after
each section, each chapter culminates with review questions, practice exercises covering
the entire chapter, and a series of Additional and Advanced Exercises serving to include
more challenging or synthesizing problems. Most chapters also include descriptions of
several Technology Application Projects that can be worked by individual students or
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the
Internet at www.pearsonhighered.com/thomas and in MyMathLab.

WRITING AND APPLICATIONS  As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand
examples and is then reinforced by its application to real-world problems of immediate
interest to students. A hallmark of this book has been the application of calculus to science
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY In a course using the text, technology can be incorporated according to
the taste of the instructor. Each section contains exercises requiring the use of technology;
these are marked with a | T |if suitable for calculator or computer use, or they are labeled
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

INSTRUCTOR’S SOLUTIONS MANUAL

Single Variable Calculus (Chapters 1-11), ISBN 0-321-88408-6 | 978-0-321-88408-4
Multivariable Calculus (Chapters 10-16), ISBN 0-321-87901-5 | 978-0-321-87901-1
The Instructor’s Solutions Manual contains complete worked-out solutions to all of the
exercises in Thomas’ Calculus: Early Transcendentals.

STUDENT’S SOLUTIONS MANUAL

Single Variable Calculus (Chapters 1-11), ISBN 0-321-88410-8 | 978-0-321-88410-7
Multivariable Calculus (Chapters 10-16), ISBN 0-321-87897-3 | 978-0-321-87897-7
The Student’s Solutions Manual is designed for the student and contains carefully
worked-out solutions to all the odd-numbered exercises in Thomas’ Calculus: Early
Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR

EARLY TRANSCENDENTALS CALCULUS, Fourth Edition

ISBN 0-321-67103-1 1 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in
the order in which students will need them as they study calculus.
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Technology Resource Manuals

Maple Manual by Marie Vanisko, Carroll College

Mathematica Manual by Marie Vanisko, Carroll College

TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University
These manuals cover Maple 17, Mathematica 8, and the TI-83 Plus/TI-84 Plus and TI-89,
respectively. Each manual provides detailed guidance for integrating a specific software
package or graphing calculator throughout the course, including syntax and commands.
These manuals are available to qualified instructors through the Thomas’ Calculus: Early
Transcendentals Web site, www.pearsonhighered.com/thomas, and MyMathLab.

WEB SITE www.pearsonhighered.com/thomas

The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the ex-
panded historical biographies and essays referenced in the text. The Technology Resource
Manuals and the Technology Application Projects, which can be used as projects by in-
dividual students or groups of students, are also available.

MyMathLah® Online Course (access code required)

MyMathLab from Pearson is the world’s leading online resource in mathematics, integrat-

ing interactive homework, assessment, and media in a flexible, easy-to-use format.
MyMathLab delivers proven results in helping individual students succeed.

e MyMathLab has a consistently positive impact on the quality of learning in higher
education math instruction. MyMathLab can be successfully implemented in any
environment—Ilab-based, hybrid, fully online, traditional—and demonstrates the quan-
tifiable difference that integrated usage makes in regard to student retention, subse-
quent success, and overall achievement.

e MyMathLab’s comprehensive online gradebook automatically tracks your students’ re-
sults on tests, quizzes, homework, and in the study plan. You can use the gradebook to
quickly intervene if your students have trouble, or to provide positive feedback on a job
well done. The data within MyMathLab are easily exported to a variety of spreadsheet
programs, such as Microsoft Excel. You can determine which points of data you want
to export, and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure
learning for each student.

o “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

e Exercises: The homework and practice exercises in MyMathLab are correlated to the
exercises in the textbook, and they regenerate algorithmically to give students unlim-
ited opportunity for practice and mastery. The software offers immediate, helpful feed-
back when students enter incorrect answers.

® Multimedia Learning Aids: Exercises include guided solutions, sample problems,
animations, Java™ applets, videos, and eText access for extra help at point-of-use.

e Expert Tutoring: Although many students describe the whole of MyMathLab as “like
having your own personal tutor,” students using MyMathLab do have access to live
tutoring from Pearson, from qualified math and statistics instructors.
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And, MyMathLab comes from an experienced partner with educational expertise and an
eye on the future.

e Knowing that you are using a Pearson product means knowing that you are using qual-
ity content. It means that our eTexts are accurate and our assessment tools work. It also
means we are committed to making MyMathLab as accessible as possible.

® Whether you are just getting started with MyMathLab, or have a question along the
way, we’re here to help you learn about our technologies and how to incorporate them
into your course.

To learn more about how MyMathLab combines proven learning applications with power-
ful assessment, visit www.mymathlab.com or contact your Pearson representative.

Video Lectures with Optional Captioning

The Video Lectures with Optional Captioning feature an engaging team of mathemat-
ics instructors who present comprehensive coverage of topics in the text. The lecturers’
presentations include examples and exercises from the text and support an approach that
emphasizes visualization and problem solving. Available only through MyMathLab and
MathXL.

MathXL® Online Course (access code required)
MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is
MathXL plus a learning management system.)

With MathXL, instructors can:

® C(Create, edit, and assign online homework and tests using algorithmically generated ex-
ercises correlated at the objective level to the textbook.

® (Create and assign their own online exercises and import TestGen tests for added flexibility.
® Maintain records of all student work tracked in MathXL’s online gradebook.
With MathXL, students can:

e Take chapter tests in MathXL and receive personalized study plans and/or personalized
homework assignments based on their test results.

e Use the study plan and/or the homework to link directly to tutorial exercises for the
objectives they need to study.

® Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at
www.mathxl.com, or contact your Pearson representative.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and ad-
minister tests using a computerized bank of questions developed to cover all the objec-
tives of the text. TestGen is algorithmically based, allowing instructors to create multiple
but equivalent versions of the same question or test with the click of a button. Instructors
can also modify test bank questions or add new questions. The software and test bank are
available for download from Pearson Education’s online catalog.

PowerPoint® Lecture Slides

These classroom presentation slides are geared specifically to the sequence and philosophy
of the Thomas’ Calculus series. Key graphics from the book are included to help bring the
concepts alive in the classroom.These files are available to qualified instructors through
the Pearson Instructor Resource Center, www.pearsonhighered/irc, and MyMathLab.
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Functions

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses
are reviewed in the Appendices.

1 . 1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length of
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x”” and write this
symbolically as

y = f(x) (“y equals f of x).

In this notation, the symbol f represents the function, the letter x is the independent variable
representing the input value of f, and y is the dependent variable or output value of f at x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique
(single) element f(x) € Y to each element x € D.

The set D of all possible input values is called the domain of the function. The set of
all output values of f(x) as x varies throughout D is called the range of the function. The
range may not include every element in the set Y. The domain and range of a function can
be any sets of objects, but often in calculus they are sets of real numbers interpreted as
points of a coordinate line. (In Chapters 13—16, we will encounter functions for which the
elements of the sets are points in the coordinate plane or in space.)



2 Chapter 1: Functions

X — f > f(x)
Input Output

(domain) (range)

FIGURE 1.1 A diagram showing a
function as a kind of machine.

TN
of(a) “ef(x)

a

D = domain set Y = set containing
the range
FIGURE 1.2 A function from a set D
to a set Y assigns a unique element of Y
to each element in D.

Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation A = 7772 is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not stated
explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, which is called the natural domain. If
we want to restrict the domain in some way, we must say so. The domain of y = x is the
entire set of real numbers. To restrict the domain of the function to, say, positive values of
x, we would write “y = x%, x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x2 is [0, 00). The range of y = x2, x = 2, is the set of all numbers
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1),
the range is {x?|x = 2} or {y|y = 4} or [4,0).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider are intervals or combinations of intervals. The intervals may be open, closed, or half
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever we
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an
example of a function as a machine. For instance, the Vix key on a calculator gives an output
value (the square root) whenever you enter a nonnegative number x and press the Vix key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates
an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but each input element x is assigned a single output value f(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)
y =x (=00, 00) [0, 00)
y=1/x (=00, 0) U (0, 00) (=00, 0) U (0, o0)
y=Vx [0, 00) [0,00)
y=V4-—x (=00, 4] [0, 00)
y=VI1 — x? [—1,1] [0,1]

Solution The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x2 is [ 0, 00) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = (\/y)2
fory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
y = 1/(1/y). That is, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vix gives a real y-value only if x = 0. The range of y = Vi is
[ 0, 00) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — x is [0, 00),
the set of all nonnegative numbers.
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FIGURE 1.5 Graph of the function
in Example 2.
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The formula y = V1 — x? gives a real y-value for every x in the closed interval from
—1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real number.
The values of 1 — x? vary from O to 1 on the given domain, and the square roots of these
values do the same. The range of V1 — x?is [0, 1]. |

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f. In set notation, the graph is

{(x, f(x)) | xeD}.

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the
graph, then y = f(x) is the height of the graph above (or below) the point x. The height
may be positive or negative, depending on the sign of f(x) (Figure 1.4).

y=x+2

X
200
FIGURE 1.3 The graph of f(x) = x + 2 FIGURE 1.4 If (x, y) lies on the graph of
is the set of points (x, y) for which y has the f, then the value y = f(x) is the height of

value x + 2. the graph above the point x (or below x if
f(x) is negative).

EXAMPLE 2 Graph the function y = x? over the interval [—2,2].

Solution Make a table of xy-pairs that satisfy the equation y = x. Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5). |

How do we know that the graph of y = x? doesn’t look like one of these curves?

y=x2? y = x2?
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To find out, we could plot more points. But how would we then connect them? The basic
question still remains: How do we know for sure what the graph looks like between the
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile,
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note
produced by a tuning fork. The table provides a representation of the pressure function
over time. If we first make a scatterplot and then connect approximately the data points
(t, p) from the table, we obtain the graph shown in the figure.

p (pressure)

Time Pressure Time Pressure 0
0.00091 ~0.080 0.00362 0217 081 * Pua
0.00108 0.200 0.00379 0.480 04 F
0.00125 0.480 0.00398 0.681 0.2 Rs
0.00144 0.693 0.00416 0.810 “oa| 90T 0002 Q07 0004 006 006 e
0.00162 0.816 0.00435 0.827 el
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581 FIGURE 1.6 A smooth curve through the plotted points
0.00216 0.603 0.00489 0.346 gives a graph of the pressure function represented by the
0.00234 0.368 0.00507 0.077 accompanying tabled data (Example 3).
0.00253 0.099 0.00525 —0.164
0.00271 —0.141 0.00543 —0.320
0.00289 —0.309 0.00562 —0.354
0.00307 —0.348 0.00579 —0.248
0.00325 —0.248 0.00598 —0.035
0.00344 —0.041

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can
have only one value f(x) for each x in its domain, so no vertical line can intersect the
graph of a function more than once. If a is in the domain of the function f, then the vertical
line x = a will intersect the graph of f at the single point (a, f(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of
x, such as the upper semicircle defined by the function f(x) = V1 — x? and the lower
semicircle defined by the function g(x) = —V'1 — x? (Figures 1.7b and 1.7c¢).
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FIGURE 1.8 The absolute value
function has domain (—00, 0) and
range [0, 00).

y=x
I I
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FIGURE 1.9 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain
(Example 4).
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FIGURE 1.10 The graph of the
greatest integer function y = | x |
lies on or below the line y = x, so
it provides an integer floor for x
(Example 5).
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Y Y Y
-1 1
x x ! ! x
-1 0 1 -1 0 1 0
@ x*+y* =1 0 y=Vi-a ©y=-Vi-2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The
upper semicircle is the graph of a function f(x) = V1 — x2. (c) The lower semicircle is the graph

of a function g(x) = —V1 — x%

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts
of its domain. One example is the absolute value function

’ | { X, x=0 First formula
x =
—X, x <0, Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if x = 0, and equals —x if x < 0. Piecewise-defined functions often
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4 The function

—X, x <0 First formula
fx) = X2, 0=x=1 Second formula
1, x> 1 Third formula

is defined on the entire real line but has values given by different formulas, depending on
the position of x. The values of f are given by y = —x when x < 0, y = x> when
0 =x=1,and y = | when x > 1. The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9). |

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. It
is denoted | x |. Figure 1.10 shows the graph. Observe that

[24] =2, [19] =1, o] =0, [—-12] = -2,
2] =2, 102] =0, [-03]=-1, [|-2]=-2. -
EXAMPLE 6 The function whose value at any number x is the smallest integer

greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted [ x |. Figure 1.11 shows the graph. For positive values of x, this function
might represent, for example, the cost of parking x hours in a parking lot that charges $1
for each hour or part of an hour. |
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FIGURE 1.11 The graph

of the least integer function

y = [x] lies on or above the line
Yy = X, so it provides an integer
ceiling for x (Example 6).

(=x,y) (x, y)

(=x, =)

(b)

FIGURE 1.12 (a) The graph of y = x?
(an even function) is symmetric about the
y-axis. (b) The graph of y = x> (an odd
function) is symmetric about the origin.

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

DEFINITIONS Let f be a function defined on an interval I and let x; and x, be
any two points in /.

1. If f(x,) > f(x;) whenever x; < x,, then f is said to be increasing on /.
2. If f(xy) < f(x;) whenever x; < x,, then f is said to be decreasing on /.

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points x; and x, in I with x; < x,. Because we use the
inequality < to compare the function values, instead of =, it is sometimes said that f is
strictly increasing or decreasing on 1. The interval I may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on (—00, 0 ] and increas-
ing on [0, 1]. The function is neither increasing nor decreasing on the interval [ 1, 00)
because of the strict inequalities used to compare the function values in the definitions. M

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in
y = x> or y = x* itis an even function of x because (—x)> = x? and (—x)* = x* If yis an
odd power of x, asin y = x or y = x%, it is an odd function of x because (—x)' = —x and
(—x)? = —x3.

The graph of an even function is symmetric about the y-axis. Since f(—x) = f(x), a
point (x, y) lies on the graph if and only if the point (—x, y) lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f(—x) = —f(x), a
point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the
graph unchanged. Notice that the definitions imply that both x and —x must be in the domain of f.

EXAMPLE 8 Here are several functions illustrating the definition.

flx) = x? Even function: (—x)? = x? for all x; symmetry about y-axis.

fx) =x* + 1 Even function: (—x)?> + 1 = x> + 1 for all x; symmetry about
y-axis (Figure 1.13a).

f&) =x Odd function: (—x) = —x for all x; symmetry about the origin.
f)=x+1 Not odd: f(—x) = —x + 1, but —f(x) = —x — 1. The two are not
equal.

Noteven: (—x) + 1 # x + 1 forall x # 0 (Figure 1.13b). |
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y=x+1

(a) (b)

FIGURE 1.13 (a) When we add the constant term 1 to the function

y = x?, the resulting function y = x> + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd,
since the symmetry about the origin is lost. The function y = x + 1 is
also not even (Example 8).

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is called
a linear function. Figure 1.14a shows an array of lines f(x) = mx where b = 0, so these
lines pass through the origin. The function f(x) = x where m = 1 and b = 0 is called the
identity function. Constant functions result when the slope m = 0 (Figure 1.14b).
A linear function with positive slope whose graph passes through the origin is called a
proportionality relationship.

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

DEFINITION Two variables y and x are proportional (to one another) if one
is always a constant multiple of the other; that is, if y = kx for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x¢ where a is a constant, is called a power function.
There are several important cases to consider.
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(a) a = n, apositive integer.

The graphs of f(x) = x", for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and to rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval
(—00,0] and increasing on [0, 00); the odd-powered functions are increasing over the
entire real line (—00, 00).

y y=x Y y:.xz y y:.x3 Y y:.x4 y y:xs
1+ 1+ 1+ \1 - 1
1 1 1 1 1 1 1 1 1

-1 /o * -1 o] 1 * “100 1 * -1 o] 1 * “170] 1 *

—-1F —1F —1F —1F —1+
FIGURE 1.15 Graphs of f(x) = x",n = 1,2, 3,4, 5, defined for —00 < x < o0,
(b)) a=—-1 or a=-2.
The graphs of the functions f(x) = x ' = 1/x and g(x) = x2 = 1/x> are shown in

Figure 1.16. Both functions are defined for all x ¥ 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1, which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes. The graph of the
function f is symmetric about the origin; f is decreasing on the intervals (—00, 0) and
(0,00). The graph of the function g is symmetric about the y-axis; g is increasing on
(=09, 0) and decreasing on (0, ©0).

Domain: x # 0
Range: y# 0 0

Domain: x # 0
Range: y>0

(@ (b)

FIGURE 1.16 Graphs of the power functions f(x) = x“ for part (a) a = —1
and for part (b) a = —2.

s %, and %
The functions f(x) = x'/2 = Vx and g(x) = x!/3 = Vx are the square root and cube
root functions, respectively. The domain of the square root function is [0, ©0), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along
with the graphs of y = x¥? and y = x?/3. (Recall that x*? = (x'/2)* and x?* = (x'/3)2)

W —

E}

DN [—

() a=

Polynomials A function p is a polynomial if
px) = a,x" + an_lx”fl + -t ax+ oag

where n is a nonnegative integer and the numbers ag, a;, a, . . ., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If the
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y
y y
y= Vx y= x3/2
Ir y=Va
1+ 1+
L X L X 1 X
0 ! I o] 1
Domain: 0 = x < Domain: —o < x < Domain: 0 < x < ®
Range: 0=y<wo Range: —oo<y<o Range: 0=y<®
FIGURE 1.17 Graphs of the power functions f(x) = x* fora = %, %, %, and %

0l
Domain: —o0 < x <

Range: 0=y<»

leading coefficient a, # 0 and n > 0, then n is called the degree of the polynomial. Lin-
ear functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usually
written as p(x) = ax> + bx + c, are called quadratic functions. Likewise, cubic functions
are polynomials p(x) = ax’ + bx*> + cx + d of degree 3. Figure 1.18 shows the graphs
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

y
y=38x*—14

[38)

3 2
T=Oxt+1lx— 1
X X X 16

(a)

FIGURE 1.18

(b)

Graphs of three polynomial functions.

y
y=x=-2%+ D}x—1)

-1

—

()

Rational Functions A rational function is a quotient or ratio f(x) = p(x)/q(x), where
p and ¢q are polynomials. The domain of a rational function is the set of all real x for which
q(x) # 0. The graphs of several rational functions are shown in Figure 1.19.

y
" y _5x*+8x—3
i 3x2+2
o [T~ T
_2x*-3|hL . 5
)’—7x+4}2 \ 1{ Llney:§
1 1 / 1 1 1 X
4 22Tt 2 4 7 I 0[ 5 0"
{ !
-2 -4
NOT TO SCALE
Bt -6
-8

()

(b)

(©

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called

asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.
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Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the
class of algebraic functions. All rational functions are algebraic, but also included are
more complicated functions (such as those satisfying an equation like y> — 9xy + x> = 0,

studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

— 1/3 —4
y y=x"(x-4) y y=x(1- x5
_3,.2_ 13
L y—4(x 1)
B y
2t r
1 L
] * 1ol 1 * 051 *
1+ 5
-2 1k
_3 -
(a) (b) (©

FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

N
\VAEVARY,

(b) f(x) = cos x

LI A
VARV N

(a) f(x) =sinx

FIGURE 1.21 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a*, where the base a > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—00, >0) and range (0, 0), so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

y y
y=10* y=107"
12+ 12
10 10
S+
y=3" 6
4+
y=27% 2r
I I \I'=§=_)x

FIGURE 1.22 Graphs of exponential functions.
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Logarithmic Functions These are the functions f(x) = log,x, where the base a # 1
is a positive constant. They are the inverse functions of the exponential functions, and
we discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four loga-

rithmic functions with various bases. In each case the domain is (0, ©0) and the range
is (=00, 00).

I X
v = logsx

y = logjpx

FIGURE 1.23 Graphs of four logarithmic ~ FIGURE 1.24  Graph of a catenary or
functions. hanging cable. (The Latin word catena
means “chain.”)

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises m

Functions 8. a b.
In Exercises 1-6, find the domain and range of each function.
1. f) =1+ x2 2. f) =1- Vx
3. F(x) = V5x + 10 4. glx) = Vx* — 3x
__4 _ 2
5. f(t)_3—t 6. G(t)_t2716
In Exercises 7 and 8, which of the graphs are graphs of functions of x, x x
and which are not? Give reasons for your answers. 0 0
7. a. b. ¥
Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

X X 11. Express the edge length of a cube as a function of the cube’s
0 0

diagonal length d. Then express the surface area and volume of
the cube as a function of the diagonal length.
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12. A point P in the first quadrant lies on the graph of the function
fx) = V. Express the coordinates of P as functions of the
slope of the line joining P to the origin.

31. a. y b.
(=1, 1)1 1,1 2

13. Consider the point (x,y) lying on the graph of the line X

2x + 4y = 5. Let L be the distance from the point (x, y) to the I 3 X

origin (0, 0). Write L as a function of x. (—Zﬂl, “HG -1
14. Consider the point (x, y) lying on the graph of y = Vx — 3. Let

L be the distance between the points (x, y) and (4, 0). Write L as a 32.a. vy b. y

function of y.

-

—~
!

—_
=

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15-20.

<

| |
[ t
T 3T 2T

N
=

15. f(x) =5 — 2x 16. f(x) =1 —2x — x° 3T
17. gx) = \/H 18. g(x) = V—x 5 ¥ XT x - ‘
19. F(t) = t/|1| 20. G(1) = 1/[1 7
21. Find the domain of y = 4 _X +x23— 9 The Greatest and Least Integer Functions

) 2 33. For what values of x is
22. F1ndtherangeofy=2+x2+4. a |x| =07 b. [x] =02

23. Graph the following equations and explain why they are not 34. What real numbers x satisfy the equation [x | = [x]?

graphs of functions of x. 35. Does [—x] = —|x] for all real x? Give reasons for your answer.

36. Graph the function

_ |x], x=0
& = {M, £ <0,

a. [y =x
24. Graph the following equations and explain why they are not
graphs of functions of x.
a.‘x‘+|y|=l b.|x+y|=1
. . . . Why is f(x) called the integer part of x?
Piecewise-Defined Functions Y serp

Graph the functions in Exercises 25-28. Increasing and Decreasing Functions

X 0=x=1 Graph the functions in Exercises 37-46. What symmetries, if any, do
25. fx) = { 2~ x l<x=2 the graphs have? Specify the intervals over which the function is
’ B increasing and the intervals where it is decreasing.
26 ()_{1—x, 0=x=1
VT Loy 1<x=2 37,y = - 38 y=-1
X
27. F(x) {4_x2’ r=1 1 !
. F(x) =
X2 + 2x, x> 1 39-)’:_} 40-)’:m
_ [1/x, x<0
8. G = ] 0=, a1, y = V[ 42. y=\V—x
-3 = _
Find a formula for each function graphed in Exercises 29-32. 43. y=x/8 M.y 4Vx
45, y = —x32 46. y = (—x)?
29. a.
Even and Odd Functions
1 (1D In Exercises 47-58, say whether the function is even, odd, or neither.
Give reasons for your answer.
47. f(x) =3 48. f(x) = x7
» X
of 2 49. f(x) = x* + 1 50. f(x) = x> + x
= 43 — 4 2 _
30. a. 51. glx) = x° + x 52, g(x) = x* + 3x 1
X
53. g) = 5 54. gx) = -
2 PR x =1 x* =1
N 55. h(t) = ! 56. h(t) = |7|
2 5 t—1

57. h() =2t + 1

Theory and Examples

58. h(H) = 2]t + 1

59. The variable s is proportional to f, and s = 25 when t = 75.

Determine f when s = 60.



60.

61.

62.

63.

64.

Kinetic energy The kinetic energy K of a mass is proportional
to the square of its velocity v. If K = 12,960 joules when
v = 18 m/sec, what is K when v = 10 m/sec?

The variables » and s are inversely proportional, and » = 6 when
s = 4. Determine s when r = 10.

Boyle’s Law Boyle’s Law says that the volume V of a gas at
constant temperature increases whenever the pressure P decreases,
so that V and P are inversely proportional. If P = 14.7 Ib/in?
when V = 1000 in, then what is V when P = 23.4 1b/in??

A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 in. by 22 in. by cutting out
equal squares of side x at each corner and then folding up the
sides as in the figure. Express the volume V of the box as a func-
tion of x.

1 22 1
: X X
[x X

L
|

The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

y

P(x, ?)

In Exercises 65 and 66, match each equation with its graph. Do not
use a graphing device, and give reasons for your answer.

65.

a. y=x b. y =X’ c.y=x"

N

66.

67.

68.

69.

70.

71.

72.

1.1 Functions and Their Graphs 13

a. y = 5x b. y =5* c.

Y

a. Graph the functions f(x) = x/2 and g(x) = 1 + (4/x) to-
gether to identify the values of x for which
X 4
E > 1+ X
b. Confirm your findings in part (a) algebraically.
a. Graph the functions f(x) = 3/(x — 1) and g(x) = 2/(x + 1)
together to identify the values of x for which
3 2
x—1 = x+ 1
b. Confirm your findings in part (a) algebraically.

For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point (x, —y) lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the function is y = 0.

Three hundred books sell for $40 each, resulting in a revenue of
(300)($40) = $12,000. For each $5 increase in the price, 25
fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

A pen in the shape of an isosceles right triangle with legs of
length x ft and hypotenuse of length £ ft is to be built. If fencing
costs $5/ft for the legs and $10/ft for the hypotenuse, write the
total cost C of construction as a function of A.

Industrial costs A power plant sits next to a river where the
river is 800 ft wide. To lay a new cable from the plant to a loca-
tion in the city 2 mi downstream on the opposite side costs $180
per foot across the river and $100 per foot along the land.

I 2 mi |
\Pﬁ_x\ 0 S

I
800 ft |

I

I

|

Power plant
NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x ft from the point P directly opposite the
plant. Write a function C(x) that gives the cost of laying the
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 2000 ft or greater than 2000 ft
from point P.
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1 2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x € D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

(f + 9 = flo) + g)
(f — 9 = f) — gx)
(fe)x) = f(x)gx).
Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition
of the real numbers f(x) and g(x).

At any point of D(f) N D(g) at which g(x) # 0, we can also define the function f/g
by the formula

(g)(x) = % (where g(x) # 0).

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by
(cHx) = cf).

EXAMPLE 1 The functions defined by the formulas
f)=Vx and  g) = V1 —x

have domains D(f) = [0,00) and D(g) = (=00, 1]. The points common to these
domains are the points

[0,00)N (=00, 1] = [0,1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f - g for the product function fg.

Function Formula Domain
f+g f + 9w = Vx+ VI —x [0,1] = D(f) N D(g)
f—3 f — 9@ = Vx— VI —x [0,1]
g—f ¢ Hw) =V1I-x—-Vx [0,1]
f-g (f-9x) = fgkx) = Vx(1 — x) [0,1]
fls N Rl [0, 1) = 1 excluded)
e/f ?(x) - % e (0,1] (x = 0 excluded)

The graph of the function f + g is obtained from the graphs of f and g by adding the
corresponding y-coordinates f(x) and g(x) at each point x € D(f) M D(g), as in Figure 1.25.
The graphs of f + g and f + g from Example 1 are shown in Figure 1.26.
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= (oW

FIGURE 1.25 Graphical addition of two

functions.

Composite Functions

15

y

y=f+tg
g0 =V1-x f) =Vax

1

1L
y=r-g

x ) R S R *
5 5 5 5

FIGURE 1.26 The domain of the function f + g
is the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

Composition is another method for combining functions.

posed with g”) is defined by

lies in the domain of f.

DEFINITION If f and g are functions, the composite function fo g (“f com-

(fe

The domain of f o g consists of the numbers x in the domain of g for which g(x)

2)x) = f(gx)).

The definition implies that f ° g can be formed when the range of g lies in the domain
of f. To find (f ° g)(x), first find g(x) and second find f(g(x)). Figure 1.27 pictures f o g as
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

X — 8 [ — flg(x)
FIGURE 1.27 A composite function f ° g uses
the output g(x) of the first function g as the input

for the second function f.

fog

f(g(x))

gx)

FIGURE 1.28 Arrow diagram for f o g. If x lies in the
domain of g and g(x) lies in the domain of f, then the
functions f and g can be composed to form (f © g)(x).

To evaluate the composite function g © f (when defined), we find f(x) first and then
g(f(x)). The domain of g ° f is the set of numbers x in the domain of f such that f(x) lies

in the domain of g.

The functions f o g and g ° f are usually quite different.
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y:x2+2
y=x2+1
y=x?
y=x2-2
— X
-2 0 |\2
-1 |/ 2 units
—

FIGURE 1.29 To shift the graph
of f(x) = x* up (or down), we add

positive (or negative) constants

to the formula for f (Examples 3a

and b).

EXAMPLE 2  If f(x) = Vxand g(x) = x + 1, find
@ (feo) (b) (g°Hx) (© (feHx) d) (g°9x).
Solution

Composite Domain
@ (feo) = f(glx) = Vgx) = Vx + 1 [—1,00)
(b) (g°H) = g(f(®) = fx) + 1 = Vax + 1 [0,00)
(© (fFoHx) = f(f) = Vfx) = VVx = x/* [0,00)
d (gegx) =gg) =gx)+1=x+DH+1=x+2 (—00, 00)

To see why the domain of f o g is [—1, ©0), notice that g(x) = x + 1 is defined for all real
x but belongs to the domain of f only if x + 1 = 0, that is to say, when x = —1. |

Notice that if f(x) = x* and g(x) = \/x, then (fegx) = <\/);)2 = x. However, the
domain of f o g is [0, 00), not (—00, 00), since Vx requires x = 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to
each output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y=fx)+k Shifts the graph of f up kunits if k > 0
Shifts it down ‘k\ units if k < 0

Horizontal Shifts

y=fx+h Shifts the graph of f left h units if h > 0
Shifts it right |h| units if 2 < 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x? to get y = x> + 1 shifts the
graph up 1 unit (Figure 1.29).

(b) Adding —2 to the right-hand side of the formula y = x? to get y = x> — 2 shifts the
graph down 2 units (Figure 1.29).

(¢) Adding3toxiny = x*>to get y = (x + 3)? shifts the graph 3 units to the left, while
adding —2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding —2toxiny = |x , and then adding —1 to the result, gives y = \x — 2] -1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). |

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f, or the independent variable
x, by an appropriate constant c. Reflections across the coordinate axes are special cases
where ¢ = —1.



-1

FIGURE 1.32 Vertically stretching
and compressing the graph y = Vx by a

factor of 3 (Example 4a).
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Add a positive Add a negative
constant to x. constant to x.
-« >
y=(x+3)7? y=x* [y=&-2)?
] ] ] |
=3 12 *

FIGURE 1.30 To shift the graph of y = x? to
the left, we add a positive constant to x (Example
3c). To shift the graph to the right, we add a nega-

tive constant to x.

FIGURE 1.31 The graph of y = |x]
shifted 2 units to the right and 1 unit
down (Example 3d).

Vertical and Horizontal Scaling and Reflecting Formulas

For ¢ > 1, the graph is scaled:

y = cf(x) Stretches the graph of f vertically by a factor of c.
y = % fx) Compresses the graph of f vertically by a factor of c.
y = f(cx) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
For ¢ = —1, the graph is reflected:
y =—f(x) Reflects the graph of f across the x-axis.
y = f(—x) Reflects the graph of f across the y-axis.
EXAMPLE 4 Here we scale and reflect the graph of y = V/x.

(a) Vertical: Multiplying the right-hand side of y = Vix by 3to gety = 3\V/x stretches
the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of y = \/3x is a horizontal compression of the graph of
y = Vx by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3
(Figure 1.33). Note that y = V3x = V/3Vx s0 a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

(c) Reflection: The graph of y = —V/x is a reflection of y = V/x across the x-axis, and

y = V—x is areflection across the y-axis (Figure 1.34). |
y y
y=V-x
4+ y= Vi
3 y=V3x 1+
compress \/ ] ] ] ] ] ]
2+ =Vx x
»stretch -3 =2 -1 1 2 3
Iy y=Va/3 L
—— 34 * Y=V

FIGURE 1.33 Horizontally stretching and
compressing the graph y = V/x by a factor of

3 (Example 4b).

FIGURE 1.34 Reflections of the graph
y = VXx across the coordinate axes
(Example 4c).
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EXAMPLE 5

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the
x-axis (Figure 1.35¢).

Given the function f(x) = x* — 4x* + 10 (Figure 1.35a), find formulas to

y y=16x*+32x>+10 Y A

fo =x*—4x3+10
20+ 20+
10+
10+ /\
x | | | | X

-1 o 1 3 /4 -2 -1 0 1 -1 0o 172 3

—10k —10
—10+

(©)

y:*%x4+2x3*5

—20 —20

(a) (b)

FIGURE 1.35 (a) The original graph of f. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed by
a reflection across the y-axis. (c) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection across
the x-axis (Example 5).

Solution
(a) We multiply x by 2 to get the horizontal compression, and by —1 to give reflection
across the y-axis. The formula is obtained by substituting —2x for x in the right-hand
side of the equation for f:
y = f(=2x) = (—2x)* — 4(=2x)* + 10
= l6x* + 32x% + 10.
(b) The formula is

y=—%f(x)=—%x4+2x3—5. [ |
Exercises m
Algebraic Combinations e. f(f(=5) f. g(g(2)
In Exercises 1 and 2, find the domains and ranges of f, g, f + g, and g. f(f(x) h. g(g(x))

fe
1. fx) =x, gx) = Vx — 1

6. If f(x) = x — 1 and g(x) = 1/(x + 1), find the following.

a. f(g(1/2) b. g(f(1/2))
2= Vol g0 = Ve e f(gt) d. g(f()
In Exercises 3 and 4, find the domains and ranges of f, g, f/g, and e. f(f(2) f. g(g(2)
&/f- g F(f0) h. g(s(v)

3. f) =2, gx)y=x2+1
4. f) =1, gx) =1+ Vx

Composites of Functions
5. If f(x) = x + 5 and g(x) = x> — 3, find the following.

In Exercises 7-10, write a formula for f o g o h.

7. fx) =x + 1,

g(x) = 3x,

hix) =4 — x

8. f(x) =3x+4, gx)y=2x—1, hkx =x>

_ _ 1 _1
a. f(2(0) b. g(f(0) % f@)=Vx+ 1l g =y, )=y
¢ f(g) d. g(f(x) 10. foo =212 x hx) = V2 — x
3 - IR



Let f(x) = x — 3, gk = \/);, h(x) = x3, and j(x) = 2x. Express
each of the functions in Exercises 11 and 12 as a composite involving
one or more of f, g, h, and j.

1l.a. y=Vx—-3 b. y=2Vx

c. y=x'/4 d. y=4x

e. y= V-3 f.y=@c-06]
12. a. y=2x — 3 b. y = x3/?

c. y=2x° d y=x—-6

e. y=2Vx—3 f.y=Vx-3
13. Copy and complete the following table.

g(x) f) (feg)x)

a. x —7 Vix ?

b. x +2 3x ?

c. ? Vx —35 Vit =5

d. xf 1 xf 1 ?

e. ? 1 +% X

f. )17 ? X

14. Copy and complete the following table.

8() f) (feg)x)
1
a |x] ?
x—1 X
b. 7 X x+1
c ? Vx |x|
d. Vx ? |x|
15. Evaluate each expression using the given table of values:
x -2 -1 0 1 2
fx) 1 0 | -2 1| 2
8(x) 2 1 0| -1 |0
a. f(g(=1) b. g(£(0) ¢ f(f(=1)
d. 2(g(2) e. g(f(=2)) £ fe()
16. Evaluate each expression using the functions
—X, —2=x<0
fo) =2 - x, A@{XL b—ren
a. f(g(0) b. g(f(3)) c. glg(=1)
d. f(f(2) e. g(f(0) f. f(g(1/2))

In Exercises 17 and 18, (a) write formulas for f o g and g © f and find
the (b) domain and (c) range of each.

17. ) = Va + 1 go) = -
18. f(x) =x% gx) =1 — Vax

1.2 Combining Functions; Shifting and Scaling Graphs 19

19. Let f(x) = ﬁ Find a function y = g(x) so that
(feo)x) = x.
20. Let f(x) = 2x> — 4. Find a function y = g(x) so that

(feo)x) =x+ 2.

Shifting Graphs
21. The accompanying figure shows the graph of y = —x shifted to
two new positions. Write equations for the new graphs.

Position (a)

y=-—x

Position (b)

22. The accompanying figure shows the graph of y = x? shifted to
two new positions. Write equations for the new graphs.

y
Position (a)
L y =x?
! ! X
0
B Position (b)
75 -

23. Match the equations listed in parts (a)—(d) to the graphs in the
accompanying figure.

a y=x-—-1>—4 b. y=(@x—272+2
. y=@x+2?2+2 d y=x+3?2>-2

Position 1

Position 2

3

2 —
(=2,2)
Position 3 1
Lo
—4-3-2-0\0| 1 2
Position 4

(=3,-2)

1, -4



20 Chapter 1: Functions

24. The accompanying figure shows the graph of y = —x? shifted to
four new positions. Write an equation for each new graph.

(1, 4)
(=2,3)

(b) (a)

2.0)
- X
—4. -1/ /

(c) ()

Exercises 25-34 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
labeling each graph with its equation.

25. x> +y> =49 Down 3, left 2
26. x>+ y> =25 Up3,left4
27. y =x* Left1,down 1

28. y = x** Right 1, down 1
29. y = Vx Left0.81

30. y =—Vx Right3

3. y=2x—7 Up7

32. y= %(x + 1) +5 Down 5, right 1

33. y=1/x Upl,right1
34. y = 1/x* Left2,down 1

Graph the functions in Exercises 35-54.

35. y=Vx+4 36. y=V9 —x
37. y=|x — 2] 8. y=1]1—-x] -1
39.y=1+Vx—1 40. y=1- Vx
41. y = (x + 1?3 42. y = (x — 83
43. y=1—x 44. y+ 4 =3P
45. y=Vx—-1-1 46. y = (x + 22 + 1

_ 1 _1_
47.y—xi2 48. y =51 —2

1 1
49. y =1 +2 SO'y_x-l-Z

1 1

51, y = 52, y=——1

YT a— e YT

1 1

53, y=—+1 54. y =

YT e YTty

55. The accompanying figure shows the graph of a function f(x) with
domain [0, 2] and range [0, 1 ]. Find the domains and ranges of
the following functions, and sketch their graphs.

y
1 y =fx)
0 >
a. f(x) +2 b. fx) — 1
c. 2f(x) d. —f(x)
e. fx+2) f. foe— 1)
g f(=x h. —f(x +1) + 1

56. The accompanying figure shows the graph of a function g(¢) with
domain [—4,0] and range [—3,0]. Find the domains and
ranges of the following functions, and sketch their graphs.

y
| ! ¢
) ) 0
y =28
_3 -

a. g(—1 b. —g(»)
c. g+ 3 d 1 —g@®
e. g-—t+2) f. gt —2)
g. g(1 — 1) h. —g(t — 4)

Vertical and Horizontal Scaling

Exercises 57-66 tell by what factor and direction the graphs of the
given functions are to be stretched or compressed. Give an equation
for the stretched or compressed graph.

57. y = x> — 1, stretched vertically by a factor of 3

58. y = x> — 1, compressed horizontally by a factor of 2

59. y =

—_

1 .
+ 2 compressed vertically by a factor of 2

60. y =1+ é, stretched horizontally by a factor of 3

61. y = Vx + 1, compressed horizontally by a factor of 4
62. y = Vx + 1, stretched vertically by a factor of 3

63. y = V4 — x%, stretched horizontally by a factor of 2
64. y = V4 — x?, compressed vertically by a factor of 3
65. y =1 — x°, compressed horizontally by a factor of 3
66. y = 1 — x% stretched horizontally by a factor of 2
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Graphing Combining Functions
In Exercises 67-74, graph each function, not by plotting points, but by 77. Assume that f is an even function, g is an odd function, and both
starting with the graph of one of the standard functions presented in f and g are defined on the entire real line (—00, ©0). Which of the
Figures 1.14—1.17 and applying an appropriate transformation. following (where defined) are even? odd?
6. y=—Va+ 1 68. y= 1% o Jg b. /8 e &/f

d. f*=ff e g =gg f. fog
69. y=(x—173+2 70. y=(1—x?*+2 g gof h. fof i gog

. P
M.y = 1 1 72, y = 2 4 78. Can a function be both even and odd? Give reasons for your
2x x2 answer.

73,y = —Vx 74. y = (—2x)/3 79. (Continuation of Example 1.) Graph the functions f(x) = Vi

75. Graph the function y = [x* — 1.
76. Graph the function y = V/|x|.

and g(x) = V1 — x together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

80. Let f(x) = x — 7 and g(x) = x* Graph f and g together with
fegand gof.
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QfCI e of (a&‘\)%

FIGURE 1.36 The radian measure
of the central angle A’CB’ is the num-
ber § = s/r. For a unit circle of radius
r = 1, 0 is the length of arc AB that
central angle ACB cuts from the unit
circle.

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle
A'CB' within a circle of radius r is defined as the number of “radius units” contained in
the arc s subtended by that central angle. If we denote this central angle by # when mea-
sured in radians, this means that 6 = s/r (Figure 1.36), or

s =rf (6 in radians). (D

If the circle is a unit circle having radius r = 1, then from Figure 1.36 and Equation (1),
we see that the central angle 6§ measured in radians is just the length of the arc that the
angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or
277 radians, we have

7 radians = 180° ()

and
. 180 T .
I radian = — (=57.3) degrees or 1 degree = 120 (=0.017) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic
angles.

TABLE 1.1 Angles measured in degrees and radians

-9 —-45 0 30 45 60 90 120 135 150 180 270 360

-7 -7

Degrees —180 —-135
0 (radians) - _:ﬂ

2 4

0

ENE
INE
w3
B
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An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

y y

Terminal ray

Initial ray

x
< Positive Initial ray \/Negative
\ measure / Terminal measure

ray \

FIGURE 1.37 Angles in standard position in the xy-plane.

Angles describing counterclockwise rotations can go arbitrarily far beyond 27 radi-
ans or 360°. Similarly, angles describing clockwise rotations can have negative measures
of all sizes (Figure 1.38).

y
3 Sm
\ 2
X X X X
3m -/
om 4
4
hypotenuse . FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 2.
opposite
Angle Convention: Use Radians From now on, in this book it is assumed that all angles
\ 6 are measured in radians unless degrees or some other unit is stated explicitly. When we talk
adjacent about the angle 77 /3, we mean 7 /3 radians (which is 60°), not 7 /3 degrees. We use radians
g OPP g — hop because it simplifies many of the operations in calculus, and some results we will obtain
Ty Y T opp involving the trigonometric functions are not true when angles are measured in degrees.
j h
cos 0 = % sec 6 = aid?
opp adj The Six Basic Trigonometric Functions
tanf = —  cotf = —
adj ©opp You are probably familiar with defining the trigonometric functions of an acute angle in
FIGURE 1.39 Trigonometric terms of the sides of a right triangle (Figure 1.39). We extend this definition to obtuse and
ratios of an acute angle. negative angles by first placing the angle in standard position in a circle of radius r. We
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.40).
y . . _Y _r
sine: sinf = cosecant: cscf = y
P(x, y) ¥~ ine: =7 . =
2y y cosine: cosf = 7 secant: secf =
| r
LN Yy X
! \ . tangent: tan6 =  cotangent: cotf = y
X0 r
These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,
__sinf 1
FIGURE 1.40 The trigonometric tan 6 = cos 0 cot = tan 6
functions of a general angle 6 are
& £ sec = 1 csc O = 1

defined in terms of x, y, and r. cos 0 sin 6
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FIGURE 1.41 Radian angles and side

lengths of two common triangles.

Y
S A
sin pos all pos
X
T C
tan pos cos pos

FIGURE 1.42 The CAST rule,
remembered by the statement
“Calculus Activates Student Thinking,”
tells which trigonometric functions

are positive in each quadrant.

23

1.3 Trigonometric Functions

As you can see, tan 6 and sec 6 are not defined if x = cos § = 0. This means they are not
defined if 6 is =7 /2, £37r/2, .. .. Similarly, cot  and csc 0 are not defined for values
of 6 for which y = 0, namely 6 = 0, T, X2, ....

The exact values of these trigonometric ratios for some angles can be read from the
triangles in Figure 1.41. For instance,

sinﬂzL sinEzl sinﬂzﬁ
4 V2 6 2 3 2

cosﬂzL cosz=ﬁ cosz=l
4 V2 6 2 3 2
T _ m_ 1 T _

tan 4= 1 tan 6 \6 tan 3 \/§

The CAST rule (Figure 1.42) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

V3 i 1 tan 2?77 = —\V3.

27 _ V3 2 _ 1
N3m =, ST T

27 2@\ _ (1 \/3
<cosT,smT> (2, 2)

/

2 "\3

FIGURE 1.43 The triangle for
calculating the sine and cosine of 277/3
radians. The side lengths come from the
geometry of right triangles.

Using a similar method we determined the values of sin 6, cos 6, and tan 6 shown in Table 1.2.

TABLE 1.2 Values of sin 6, cos 6, and tan 6 for selected values of 6

Degrees —-180 —-135 -90 -—-45 0 30 45 60
. -3 —@wT - T T o
0 (radians) — 4 2 3 0 6 4 3
0 0o V2 o, -V2 1 V2 V3
2 2 2 2 2
cos 6 -1 ;\6 0 ﬁ 1 ﬁ ﬁ 1
2 2 2 2 2
tan 0 0 1 ~1 0 fgg 1 \3

90

(3

N‘ﬁ u‘
— [0%]

™
S|

135 150

3 Sar
4 6
V2ol
2 2

V2 -\3
2 2

-1 ﬂ
3

180 270
s 3F
2
0 -1
-1 0
0

360
2w
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Periods of Trigonometric Functions
Period 7r:

tan(x + ) = tan x
cot(x + ) = cotx

Period 27r: sin(x + 27) = sinx
cos(x + 2m) = cos x
sec(x + 2m) = secx
csc(x + 27) = cscx

Even
cos(—x) = cos x
sec(—x) = sec x
Odd
sin(—x) = —sin x
tan(—x) = —tan x
csc(—x) = —cscx
cot(—x) = —cotx
y
P(cos 6, sin 0) 2+ y2 =1
|sin 6| A/—\G
X
|cos 0] |O 1

FIGURE 1.45 The reference
triangle for a general angle 0.

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure § + 27 are in standard position,
their terminal rays coincide. The two angles therefore have the same trigonometric func-
tion values: sin(f + 27) = sinf, tan(f + 27w) =tanf, and so on. Similarly,
cos(f — 2m) = cos 0, sin(@ — 27) = sin 6, and so on. We describe this repeating behav-
ior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period of f.

When we graph trigonometric functions in the coordinate plane, we usually denote the
independent variable by x instead of 6. Figure 1.44 shows that the tangent and cotangent
functions have period p = 7, and the other four functions have period 2. Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other
four functions are odd (although this does not prove those results).

y
y =tanx
y y
y =cosx y =sinx
| :
1 3 S 0
—m _fr 0 1‘r 7 ™ 3m
AN T \g

+7T+3l
Domain: x #* 7 5

—o<Jly<®©

Domain: — < x < ®
Range: —-1=y=1
Period: 27

Domain: — <x < ®
Range: —-1=y=1
Period: 27 .
(a) (b) Period: 7 ©

Range:

ialisi

Domain: x #‘*'77' + 37T

AT

DomamA x#0,*m7, X2, ...
Range: y=—-lory=1
Period: 2

Domain: x # 0, 7, 27, ...

Range: —»o<y<w
Period:

(d) (e) ®

Range: y= *1 ory=1
Period: 27

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading
for each trigonometric function indicates its periodicity.

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s
distance r from the origin and the angle 6 that ray OP makes with the positive x-axis (Fig-

ure 1.40). Since x/r = cos 0 and y/r = sin 6, we have
X = rcos 0, y = rsin 6.

When r = 1 we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.45 and obtain the equation

cos? @ + sin?fh = 1.

3)
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This equation, true for all values of 6, is the most frequently used identity in trigonometry.
Dividing this identity in turn by cos? 6 and sin” 6 gives

1 + tan%? 6 = sec? 6
1 + cot?6 = csc? 6

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

cos(A + B) = cos Acos B — sin Asin B

4
sin(A + B) = sinAcos B + cos Asin B “)

There are similar formulas for cos(A — B) and sin(A — B) (Exercises 35 and 36).
All the trigonometric identities needed in this book derive from Equations (3) and (4). For
example, substituting 6 for both A and B in the addition formulas gives

Double-Angle Formulas

cos 20 = cos? @ — sin% 0

. o (5)
sin 20 = 2sin 6 cos 0

Additional formulas come from combining the equations
cos2f + sin?26 = 1, cos2 6 — sin? 6 = cos 26.

We add the two equations to get 2cos” = 1 + cos 20 and subtract the second from the
first to get 2 sin6 = 1 — cos 26. This results in the following identities, which are useful
in integral calculus.

Half-Angle Formulas
cos? f = Lzos% (6)
sin2 = 1 =520 %)

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if 6 is the angle opposite c, then

2 =a® + b* — 2abcos 6. (8)

This equation is called the law of cosines.
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B(a cos 0, a sin 6)

A

C b A®b,0)

FIGURE 1.46 The square of the distance
between A and B gives the law of cosines.

y
P
1/ |, \0
z.
0 >
X
o o A1, 0)
c0s 0 1 —cosf

FIGURE 1.47 From the
geometry of this figure, drawn
for & > 0, we get the inequality
sin?@ + (1 — cos 0)> = 62

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of A
are (b, 0); the coordinates of B are (acos 6, asin 6). The square of the distance between A
and B is therefore
c® = (acos 8 — b)*> + (asin 6)?
a* (cos? 6 + sin®> §) + b*> — 2ab cos 0
N

1
= a* + b* — 2abcos 6.

The law of cosines generalizes the Pythagorean theorem. If § = 7 /2, then cos § = 0
and ¢* = a> + b~

Two Special Inequalities

For any angle 8 measured in radians, the sine and cosine functions satisfy

—|6] =sind =0 and —|] =1 —cosd =10

To establish these inequalities, we picture 6 as a nonzero angle in standard position
(Figure 1.47). The circle in the figure is a unit circle, so || equals the length of the circular
arc AP. The length of line segment AP is therefore less than [6)].

Triangle APQ is a right triangle with sides of length

QP = |sinf|, AQ =1 — cos#.
From the Pythagorean theorem and the fact that AP < ]0 , we get
sin? @ + (1 — cos 0)> = (AP)> = 0. 9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than
their sum and hence is less than or equal to 6%:

sin’f = 62 and (1 — cos 0)> = 2.
By taking square roots, this is equivalent to saying that

sing| = |0 and 1 —cosO| = |60

s

SO
—[0| =sind =0 and —|0] =1 —cosh = |0].

These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed
in this section.

Vertical stretch or compression; Vertical shift
reflection about y = d if negative\ /

y =af(b(x +c)) +d

Horizontal stretch or compression; / \Horizonml shift

reflection about x = —c if negative
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The transformation rules applied to the sine function give the general sine function

or sinusoid formula

where |A| is the amplitude,

f(x) = A sin <2;T x — C)> + D,

B| is the period, C is the horizontal shift, and D is the vertical

shift. A graphical interpretation of the various terms is given below.

y
y:Asin<2£(x* C9+D
D+ Al B
Horizontal litud
shift (C) Amplitude (4) This axis is the
(—>| liney =D
D 777777777777777777777777777777777
Vertical
Do shift (D)
<——This distance is —
the period (B).
0 X
Exercises m
Radians and Degrees 0 —3/2 -m/3 —-x/6 /4 57/6
1. On acircle of radius 10 m, how long is an arc that subtends a cen-
tral angle of (a) 477 /5 radians? (b) 110°? sin
2. A central angle in a circle of radius 8 is subtended by an arc of cos 0
length 107r. Find the angle’s radian and degree measures. tan 6
3. You want to make an 80° angle by marking an arc on the perime- cot Z
ter of a 12-in.-diameter disk and drawing lines from the ends of sec 0
csc

the arc to the disk’s center. To the nearest tenth of an inch, how
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions
5. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

0 - -2 /3 0 w2 3w /4

sin 6
cos 0
tan 6
cot @
sec 6
csc O

6. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

In Exercises 7-12, one of sin x, cos x, and tan x is given. Find the
other two if x lies in the specified interval.

o3 m _ ™
7. s1nx—5, xe|:2,7T:| 8. tanx = 2, xe{O,z}

| —

_ _7 __35 m
9. cosx = 3, xe{ 2,0} 10. cos x 13 xe{z,w}

11. tanx =

N[—= W

IS 3m 12. sin -1 € 3m
s Xe|m, . X 3 Xe|m

Graphing Trigonometric Functions
Graph the functions in Exercises 13-22. What is the period of each
function?

13. sin 2x 14. sin(x/2)
15. cos mx 16. cos %

. TX
17. —sin 3

19. cos (x — %)

18. —cos 2mx

20. sin (x + %)
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22. cos <x + 21) -2

. T
21. sm(x — 4) + 1 3

Graph the functions in Exercises 23-26 in the fs-plane (#-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23. 5 = cot 2t

sec( 2!
2

24. s = —tan 7t

26. s = csc (é)

[

\n

©
Il

27. a. Graph y = cosx and y = secx together for —37/2 =< x

= 37 /2. Comment on the behavior of sec x in relation to the
signs and values of cos x.

b. Graph y = sinx and y = csc x together for —7 = x = 2.
Comment on the behavior of csc x in relation to the signs and
values of sin x.

28. Graph y = tanx and y = cot x together for =7 = x = 7. Com-

ment on the behavior of cot x in relation to the signs and values of
tan x.

29. Graph y = sinx and y = | sin x| together. What are the domain
and range of | sin x |?

30. Graph y = sinx and y = [sin x| together. What are the domain
and range of [sinx]?

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31-36.

31. cos (x - %) = sinx 32. cos <x + g) = —sinx
33. sin (x + E) = cosx

. T\ _
> 34. s1n(xf§> = —Cos x

35. cos(A — B) = cos Acos B + sin Asin B (Exercise 57 provides a
different derivation.)

36. sin(A — B) = sinAcos B — cos Asin B

37. What happens if you take B = A in the trigonometric identity
cos(A — B) = cos Acos B + sin Asin B? Does the result agree
with something you already know?

38. What happens if you take B = 27 in the addition formulas? Do
the results agree with something you already know?

In Exercises 39-42, express the given quantity in terms of sin x and cos x.

39. cos(m + x) 40. sin(2m — x)

. (37 3
41. sin (7 - x) 42. cos <7 + x)

. Im (T
43. Evaluate sin o as sin (Z + ?)

117 T 27
44. Evaluate cos 1o as cos(4 + 3 )

45. Evaluate cos % 46. Evaluate sin 51%

Using the Half-Angle Formulas
Find the function values in Exercises 47-50.

2 T 2 5T
47. cos 3 48. cos B
49. sin2 = 50. sin? 3m

12 8

Solving Trigonometric Equations
For Exercises 51-54, solve for the angle 6, where 0 = 6 = 2.

51. sin?6 = % 52. sin? 6 = cos? 6

53. sin260 — cos 6 =0 54. cos26 + cosf =0

Theory and Examples
55. The tangent sum formula The standard formula for the tan-
gent of the sum of two angles is

_ tanA + tan B
an@d + B) = i Aan B

Derive the formula.
56. (Continuation of Exercise 55.) Derive a formula for tan(A — B).

57. Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for cos (A — B).

58. a. Apply the formula for cos(A — B) to the identity sin§ =

2
b. Derive the formula for cos(A + B) by substituting —B for B
in the formula for cos (A — B) from Exercise 35.
59. A triangle has sides ¢ = 2 and b = 3 and angle C = 60°. Find
the length of side c.

60. A triangle has sides ¢ = 2 and b = 3 and angle C = 40°. Find
the length of side c.

cos (E - 9) to obtain the addition formula for sin(A + B).

61. The law of sines The law of sines says that if a, b, and ¢ are the
sides opposite the angles A, B, and C in a triangle, then

sinA _ sinB _ sinC

a b c

Use the accompanying figures and the identity sin(m — 0) =
sin 0, if required, to derive the law.

A A

B C B C

62. A triangle has sides @ = 2 and b = 3 and angle C = 60° (as in
Exercise 59). Find the sine of angle B using the law of sines.



63. A triangle has side ¢ = 2 and angles A = /4 and B = 7/3.
Find the length a of the side opposite A.

64. The approximation sin x = x It is often useful to know that,

when x is measured in radians, sin x = x for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds.
The approximation error is less than 1 in 5000 if |x| < 0.1.

a. With your grapher in radian mode, graph y = sin x and
y = x together in a viewing window about the origin. What
do you see happening as x nears the origin?

b. With your grapher in degree mode, graph y = sin x and
y = x together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

General Sine Curves
For

f(x) = Asin (%T(x - C)) + D,

identify A, B, C, and D for the sine functions in Exercises 65-68 and
sketch their graphs.

65. y = 2sin(x + ) — 1 66. y = %sin(ﬂ'x — ) +%
2. (T 1 _ L . 2m
67. y = 71.sm(2t)+77_ 68. y=5osinT L>0

COMPUTER EXPLORATIONS
In Exercises 69-72, you will explore graphically the general sine
function

fx) = Asin<%r(x — C)> + D

as you change the values of the constants A, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.

1 .4 Graphing with Software
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69. The period B Set the constants A = 3, C = D = 0.

a. Plot f(x) for the values B = 1, 3, 277, 57 over the interval
—4m = x = 4. Describe what happens to the graph of the
general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it
with B = =3 and B = —27r.
70. The horizontal shift C Settheconstants A = 3,B = 6,D = 0.
a. Plot f(x) for the values C = 0, 1, and 2 over the interval
—47 = x = 4. Describe what happens to the graph of the
general sine function as C increases through positive values.
b. What happens to the graph for negative values of C?

c¢. What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot.
71. The vertical shift D Set the constants A = 3, B = 6, C = 0.
a. Plot f(x) for the values D = 0, 1, and 3 over the interval
—4m = x = 4. Describe what happens to the graph of the
general sine function as D increases through positive values.
b. What happens to the graph for negative values of D?
72. The amplitude A Set the constants B = 6,C = D = (.
a. Describe what happens to the graph of the general sine func-

tion as A increases through positive values. Confirm your
answer by plotting f(x) for the values A = 1, 5, and 9.

b. What happens to the graph for negative values of A?

Today a number of hardware devices, including computers, calculators, and smartphones,
have graphing applications based on software that enables us to graph very complicated
functions with high precision. Many of these functions could not otherwise be easily
graphed. However, some care must be taken when using such graphing software, and in
this section we address some of the issues that may be involved. In Chapter 4 we will see
how calculus helps us determine that we are accurately viewing all the important features
of a function’s graph.

Graphing Windows

When using software for graphing, a portion of the graph is displayed in a display or viewing
window. Depending on the software, the default window may give an incomplete or mislead-
ing picture of the graph. We use the term square window when the units or scales used on both
axes are the same. This term does not mean that the display window itself is square (usually it
is rectangular), but instead it means that the x-unit is the same length as the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of
scaling in order to capture essential features of the graph. This difference in scaling can
cause visual distortions that may lead to erroneous interpretations of the function’s behavior.
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Some graphing software allows us to set the viewing window by specifying one or both of
the intervals, a = x = b and ¢ = y = d, and it may allow for equalizing the scales used
for the axes as well. The software selects equally spaced x-values in [a, b] and then plots
the points (x, f(x)). A point is plotted if and only if x lies in the domain of the function and
f(x) lies within the interval [ ¢, d]. A short line segment is then drawn between each plotted
point and its next neighboring point. We now give illustrative examples of some common
problems that may occur with this procedure.

EXAMPLE 1 Graph the function f(x) = x3 — 7x*> + 28 in each of the following
display or viewing windows:

@ [—10,10]by [—10,10] (b) [~4,4] by [~50,10] (c) [—4,10] by [—60,60]

Solution

(a) Weselecta = —10,b = 10, ¢ = —10, and d = 10 to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure 1.48a.
It appears that the window is cutting off the bottom part of the graph and that the
interval of x-values is too large. Let’s try the next window.

10 10 60

WL 7~ s/
—10| : : 110 —4] / t \/ — (10
_(lao) _(Sl?) - (o)

FIGURE 1.48 The graph of f(x) = x* — 7x?> + 28 in different viewing windows. Selecting a window that gives a clear
picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically
display the graph in (c).

(b) We see some new features of the graph (Figure 1.48b), but the top is missing and we
need to view more to the right of x = 4 as well. The next window should help.

(c) Figure 1.48c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window, and it is a reasonable graph of a
third-degree polynomial. |

EXAMPLE 2 When a graph is displayed, the x-unit may differ from the y-unit, as in
the graphs shown in Figures 1.48b and 1.48c. The result is distortion in the picture, which
may be misleading. The display window can be made square by compressing or stretching
the units on one axis to match the scale on the other, giving the true graph. Many software
systems have built-in options to make the window “square.” If yours does not, you may
have to bring to your viewing some foreknowledge of the true picture.

Figure 1.49a shows the graphs of the perpendicular lines y = x and y = —x + 3V2,
together with the semicircle y = V9 — x2, in a nonsquare [—4, 4] by [—6, 8] display
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be elliptical in shape.

Figure 1.49b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for
Figure 1.49a has been compressed in Figure 1.49b to make the window square. Figure 1.49¢c
gives an enlarged view of Figure 1.49b with a square [—3,3] by [0, 4] window. [ |
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6 3 0
(a) (b) (c)

FIGURE 1.49 Graphs of the perpendicular lines y = x and y = —x + 32 and of the semicircle
y = V9 — x? appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2).
Some software may not provide options for the views in (b) or (c).

If the denominator of a rational function is zero at some x-value within the viewing
window, graphing software may produce a steep near-vertical line segment from the top to
the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-
ing software plots the points of the graph and connects them, many of the maximum and
minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3 Graph the function f(x) = sin 100x.

Solution Figure 1.50a shows the graph of f in the viewing window [—12,12] by
[—1, 1]. We see that the graph looks very strange because the sine curve should oscillate
periodically between —1 and 1. This behavior is not exhibited in Figure 1.50a. We might
experiment with a smaller viewing window, say [—6,6] by [—1, 1 ], but the graph is not
better (Figure 1.50b). The difficulty is that the period of the trigonometric function
y = sin 100x is very small (27/100 = 0.063). If we choose the much smaller viewing
window [—0.1,0.1] by [—1,1] we get the graph shown in Figure 1.50c. This graph
reveals the expected oscillations of a sine curve. |

m,t O A % A
Ll w " T \/ M v

-1 -1
(a) (b) (C)

FIGURE 1.50 Graphs of the function y = sin 100x in three viewing windows. Because the period is 277 /100 = 0.063,
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

EXAMPLE 4 Graph the function y = cos x + 2(1)fosin 200x.

Solution In the viewing window [—6, 6] by [—1, 1] the graph appears much like the
cosine function with some very small sharp wiggles on it (Figure 1.51a). We get a better
look when we significantly reduce the window to [—0.2,0.2] by [0.97, 1.01 ], obtaining
the graph in Figure 1.51b. We now see the small but rapid oscillations of the second term,
(1/200) sin 200x, added to the comparatively larger values of the cosine curve. |
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1 1.01

RNl
VIV L Y

-1 0.97
(@) (b)

FIGURE 1.51 1In (b) we see a close-up view of the function

y =cosx + ﬁsin 200x graphed in (a). The term cos x clearly dominates

, ﬁsin 200x, which produces the rapid oscillations along the
cosine curve. Both views are needed for a clear idea of the graph (Example 4).

the second term

Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for f(x) when x < 0. Usu-
ally that happens because of the algorithm the software is using to calculate the function
values. Sometimes we can obtain the complete graph by defining the formula for the func-
tion in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function y = x!/3.

Solution Some graphing software displays the graph shown in Figure 1.52a. When we
compare it with the graph of y = x!/3 = Vx in Figure 1.17, we see that the left branch for
x < 0 is missing. The reason the graphs differ is that the software algorithm calculates
x'/3 as e/Ix_Since the logarithmic function is not defined for negative values of x, the
software can produce only the right branch, where x > 0. (Logarithmic and exponential
functions are introduced in the next two sections.)

2 2
—3 L | | | | | 3 -3 L | | | | J 3
-2 -2
(a) (b)
FIGURE 1.52 The graph of y = x'/? is missing the left branch in (a). In (b) we
graph the function f(x) = R |x|'/3, obtaining both branches. (See Example 5.)

]
To obtain the full picture showing both branches, we can graph the function
X
f@) = e |a
x|

This function equals x'/? except at x = 0 (where f is undefined, although 03 = 0). A
graph of f is displayed in Figure 1.52b. |
Capturing the Trend of Collected Data

We have pointed out that applied scientists and analysts often collect data to study a par-
ticular issue or phenomenon of interest. If there is no known principle or physical law



TABLE 1.3 Tuition and fees at
the University of California

Year, x Cost, y
1990 1,820
1995 4,166
2000 3,964
2005 6,802
2010 11,287
2011 13,218
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relating the independent and dependent variables, the data can be plotted in a scatterplot to
help find a curve that captures the overall trend of the data points. This process is called
regression analysis, and the curve is called a regression curve.

Many graphing utilities have software that finds the regression curve for a particular
type of curve (such as a straight line, a quadratic or other polynomial, or a power curve) and
then superimposes the graph of the found curve over the scatterplot. This procedure results
in a useful graphical visualization, and often the formula produced for the regression curve
can be used to make reasonable estimates or to help explain the issue of interest.

One common method, known as least squares, finds the desired regression curve by
minimizing the sum of the squares of the vertical distances between the data points and the
curve. The least squares method is an optimization problem. (In Section 14.7 exercises, we
discuss how the regression curve is calculated when fitting a straight line to the data.) Here
we present a few examples illustrating the technique by using available software to find
the curve. Keep in mind that different software packages may have different ways of enter-
ing the data points, and different output features as well.

EXAMPLE 6 Table 1.3 shows the annual cost of tuition and fees for a full-time stu-
dent attending the University of California for the years 1990-2011. The data in the list
cite the beginning of the academic year when the corresponding cost was in effect. Use the
table to find a regression line capturing the trend of the data points, and use the line to
estimate the cost for academic year 2018-19.

Solution We use regression software that allows for fitting a straight line, and we enter
the data from the table to obtain the formula

y = 506.25x — 1.0066 - 10,

where x represents the year and y the cost that took effect that year. Figure 1.53 displays
the scatterplot of the data together with the graph of this regression line. From the equation
of the line, we find that for x = 2018,

y = 506.25(2018) — 1.0066 - 10° = 15,013

is the estimated cost (rounded to the nearest dollar) for the academic year 2018—-19. The
last two data points rise above the trend line in the figure, so this estimate may turn out to
be low. [ |

14,000
12,000
10,000
8,000
6,000
4,000
2,000 *

0
1985 1990 1995 2000 2005 2010 2015

FIGURE 1.53 Scatterplot and regression
line for the University of California tuition
and fees from Table 1.3 (Example 6).

EXAMPLE 7 The Centers for Disease Control and Prevention recorded the deaths
from tuberculosis in the United States for 1970-2006. We list the data in Table 1.4 for
5-year intervals. Find linear and quadratic regression curves capturing the trend of the data
points. Which curve might be the better predictor?
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TABLE 1.4 U.S. deaths from

tuberculosis

Year, x Deaths, y
1970 5,217
1975 3,333
1980 1,978
1985 1,752
1990 1,810
1995 1,336
2000 776
2005 648

Exercises m

Choosing a Viewing Window

Solution Using regression software that allows us to fit a straight line as well as a qua-
dratic curve, we enter the data to obtain the formulas

y = 22279-10° — 111.04x, line fit
and

_ 1451, 3483953 464757147
~ 350" 210 28

quadratic fit

where x represents the year and y represents the number of deaths that occurred. A scat-
terplot of the data, together with the two trend curves, is displayed in Figure 1.54. In look-
ing at the figure, it would appear that the quadratic curve most closely captures the trend
of the data, except for the years 1990 and 1995, and would make the better predictor. How-
ever, the quadratic seems to have a minimum value near the year 2000, rising upward
thereafter, so it would probably not be a useful tool for making good estimates in the years
beyond 2010. This example illustrates the danger of using a regression curve to predict
values beyond the range of the data used to construct the curve. [ |

y

6,000
5,000 [\
4,000
3,000
2,000 °
1,000

1970 1980 1990 2000 2010
FIGURE 1.54  Scatterplot with the
regression line and quadratic curves for
tuberculosis deaths in the United States,
based on Table 1.4 (Example 7).

should give a picture of the overall behavior of the function. There is

In Exercises 1-4, use graphing software to determine which of the more than one choice, but incorrect choices can miss important
given viewing windows displays the most appropriate graph of the aspects of the function.
o . 3 2
specified function. 5. f(x) = x* — 48 + 15 6. f(x) = x? _ xE o+ 1
1. f(x) = x* — 7x* + 6x
a. [-1,1]by [-1,1] b. [—2,2] by [-5,5] 7. fx) = x> —5x* + 10 8. f(x) = 4x> — x*
c. [-10,10] by [-10,10] d. [=5,5] by [—25, 15] 9. f(x) = xV9 —x* 10. f(x) = x*(6 — xY)
2. f(x) — x3 — 4X2 — 4x + 16 11. y = 2x — 3x2/3 12. y = x1/3(x2 - 8)
a. [~1,1]by [-5,5] b. [~3,3] by [~10,10] 13. y = 5x%7 — 2 4. y =G5 — 0
c. [-5,5]by [—10,20]  d. [—20,20] by [—100, 100] 15. y = [ — 1 16. y = [x* — a
3 f) =5+ 12c— & _x+3 —p -
fx) X — X 17. y T2 18. y =1 13
a. [—-1,1]by [-1,1] b. [-5,5] by [—10, 10]
4.4 20, 2 4 15.2 1. f = S+2 20. f =51
e [~44]by [-20.20]  d [~4,5] by [~15,25] =5 =5
4. f(x) = V5 + 4x — x? 1 3
— x —_— =
a. [—2,2] by [-2,2] b. [-2,6] by [—1,4] 2L fo =5 2. f0) = 7
c. [=3,7] by [0,10] d. [—10,10] by [—10, 10] 6 — L5c 4 6 P
- - . 2. fo=— 5 24. f(x) =
Finding a Viewing Window 4x* — 10x x—2
In Exercises 5-30, find an appropriate graphing software viewing win- 25. y = sin 250x 26. y = 3 cos 60x

dow for the given function and use it to display its graph. The window



— X
27. y = cos <50)

29. y

8. y= IIOSin(le)
1
=2 + =
30. y =x"+ 5008 100x

Use graphing software to graph the functions specified in Exercises 31-36.
Select a viewing window that reveals the key features of the function.

1 .
x + Tosin 30x

31. Graph the lower half of the circle defined by the equation
X2+ 20 =4+ 4y — Y

32. Graph the upper branch of the hyperbola y*> — 16x> = 1.

33. Graph four periods of the function f(x) = — tan 2x.

34. Graph two periods of the function f(x) = 3 cot% + 1.

35. Graph the function f(x) = sin 2x + cos 3x.
36. Graph the function f(x) = sin’x.

Regression Lines or Quadratic Curve Fits

Use a graphing utility to find the regression curves specified in Exer-

cises 37-42.

37. Weight of males The table shows the average weight for men
of medium frame based on height as reported by the Metropolitan
Life Insurance Company (1983).

Height (in.) Weight (Ib) | Height (in.) Weight (Ib)

62 136 70 157

63 138 71 160

64 141 72 163.5

65 141.5 73 167

66 145 74 171

67 148 75 174.5

68 151 76 179

69 154

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on
the scatterplot.

c. Does the regression line reasonably capture the trend of the
data? What weight would you predict for a male of height 6"7"?

38. Federal minimum wage The federal minimum hourly wage
rates have increased over the years. The table shows the rates at
the year in which they first took effect, as reported by the U.S.
Department of Labor.

Year Wage ($) Year Wage ($)
1978 2.65 1996 4.75
1979 2.90 1997 5.15
1980 3.10 2007 5.85
1981 3.35 2008 6.55
1990 3.80 2009 7.25
1991 4.25

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on
the scatterplot.

¢. What do you estimate as the minimum wage for the year 2018?
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39. Median home price The median price of single-family homes
in the United States increased quite consistently during the years
1976-2000. Then a housing “bubble” occurred for the years
2001-2010, in which prices first rose dramatically for 6 years and
then dropped in a steep “crash” over the next 4 years, causing
considerable turmoil in the U.S. economy. The table shows some
of the data as reported by the National Association of Realtors.

Year Price ($) Year Price ($)
1976 37400 2000 122600
1980 56250 2002 150000
1984 66500 2004 187500
1988 87500 2006 247500
1992 95800 2008 183300
1996 104200 2010 162500

a. Make a scatterplot of the data.

b. Find and plot the regression line for the years 1976-2002,
and superimpose the line on the scatterplot in part (a).

c¢. How would you interpret the meaning of a data point in the
housing “bubble”?

40. Average energy prices The table shows the average residential
and transportation prices for energy consumption in the United
States for the years 2000-2008, as reported by the U.S. Depart-
ment of Energy. The prices are given as dollars paid for one mil-
lion BTU (British thermal units) of consumption.

Year  Residential (§)  Transportation ($)

2000 15 10
2001 16 10
2002 15 9
2003 16 11
2004 18 13
2005 19 16
2006 21 19
2007 21 20
2008 23 25

a. Make a scatterplot of the data sets.

b. Find and plot a regression line for each set of data points, and
superimpose the lines on their scatterplots.

c. What do you estimate as the average energy price for resi-
dential and transportation use for a million BTU in year
2017?

d. Inlooking at the trend lines, what do you conclude about the
rising costs of energy across the two sectors of usage?

41. Global annual mean surface air temperature A NASA God-
dard Institute for Space Studies report gives the annual global
mean land-ocean temperature index for the years 1880 to the
present. The index number is the difference between the mean
temperature over the base years 1951-1980 and the actual tem-
perature for the year recorded. For the recorded year, a positive
index is the number of degrees Celsius above the base; a negative
index is the number below the base. The table lists the index for
the years 1940-2010 in 5-year intervals, reported in the NASA
data set.
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Year Index (°C)

Year Index (°C) 42. Growth of yeast cells The table shows the amount of yeast

1940 0.04
1945 0.06
1950 —0.16
1955 —0.11
1960 —0.01
1965 —0.12
1970 0.03
1975 —0.04

cells (measured as biomass) growing over a 7-hour period in a

1980 0.20 nutrient, as recorded by R. Pearl (1927) during a well-known bio-
1985 0.05 logical experiment.

1990 0.36

1995 0.39 Hour 0 1 2 3 4 5 6 7
2000 0.35 Biomass 9.6 183 29.0 472 71.1 119.1 174.6 257.3
2005 0.62

2010 0.63

a. Make a scatterplot of the data.

b. Find and plot a regression quadratic, and superimpose the

a. Make a scatterplot of the data.

quadratic curve on the scatterplot.

c. What do you estimate as the biomass of yeast in the nutrient

b. Find and plot a regression line, and superimpose the line on after 11 hours?

the scatterplot.

d. Do you think the quadratic curve would provide a good estimate

c¢. Find and plot a quadratic curve that captures the trend of the of the biomass after 18 hours? Give reasons for your answer.
data, and superimpose the curve on the scatterplot.

1 .5 Exponential Functions

Don’t confuse the exponential 2* with
the power function x2. In the exponen-
tial, the variable x is in the exponent,

whereas the variable x is the base in the
power function.

Exponential functions are among the most important in mathematics and occur in a wide
variety of applications, including interest rates, radioactive decay, population growth, the
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure, tem-
perature change of a heated object placed in a cooler environment, and the dating of fossils.
In this section we introduce these functions informally, using an intuitive approach. We give
arigorous development of them in Chapter 7, based on important calculus ideas and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P, If it doubles again, it becomes 2(2P) = 2?P, and a third doubling gives 2(2°P) = 23P.
Continuing to double in this fashion leads us to consider the function f(x) = 2. We call
this an exponential function because the variable x appears in the exponent of 2*. Func-
tions such as g(x) = 10~ and A(x) = (1/2)* are other examples of exponential functions.
In general, if @ # 1 is a positive constant, the function

f&x) =a*, a>0

is the exponential function with base a.

EXAMPLE 1 In 2014, $100 is invested in a savings account, where it grows by
accruing interest that is compounded annually (once a year) at an interest rate of 5.5%.
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount A in the account after x years have
elapsed.

Solution If P = 100, at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

P+ (15(')%)1) = (1 + 0.055)P = (1.055)P.

At the end of the second year the account earns interest again and grows to

(1 + 0.055) - (1.055P) = (1.055)*P = 100 - (1.055)% P = 100
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FIGURE 1.55 Graphs of exponential
functions.
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Continuing this process, after x years the value of the account is
A =100+ (1.055)"

This is a multiple of the exponential function with base 1.055. Table 1.5 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

TABLE 1.5 Savings account growth

Year Amount (dollars) Increase (dollars)
2014 100

2015 100(1.055) = 105.50 5.50

2016 100(1.055)> = 111.30 5.80

2017 100(1.055)* = 117.42 6.12

2018 100(1.055)* = 123.88 6.46

In general, the amount after x years is given by P(1 + r)*, where r is the interest rate
(expressed as a decimal). [ |

For integer and rational exponents, the value of an exponential function f(x) = a*is
obtained arithmetically as follows. If x = n is a positive integer, the number a” is given by
multiplying a by itself n times:

an = aoac .« .. .a'
~Se "
n factors
If x = 0, then ¢® = 1, and if x = —n for some positive integer n, then

If x

1/n for some positive integer n, then
allm = Va,

which is the positive number that when multiplied by itself n times gives a. If x = p/q is
any rational number, then

arlt = far = (%)p.

If x is irrational, the meaning of a* is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function, as we are about to describe. In Chapter 7
we define the meaning in a rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again in Figure 1.55. These graphs indicate the values of the exponential functions
for all real inputs x. The value at an irrational number x is chosen so that the graph of a*
has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they do
convey the informal idea. We mean that the value of a*, when x is irrational, is chosen so
that the function f(x) = a* is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior when a > 1, or
decreasing behavior when 0 < a < 1 (see Figure 1.55).

Arithmetically, the graphical idea can be described in the following way, using the
exponential function f(x) = 2* as an illustration. Any particular irrational number, say
X = \/5, has a decimal expansion

V3 = 1.732050808 . . ..
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TABLE 1.6 Values of 2V3 for

rational r closer and closer to\V/3

r 2"
1.0 2.000000000
1.7 3.249009585
1.73 3.317278183
1.732 3.321880096
1.7320 3.321880096
1.73205 3.321995226
1.732050 3.321995226
1.7320508 3.321997068
1.73205080 3.321997068

1.732050808

3.321997086

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

1 1.7 1.73 1.732 1.7320 1.73205
21,217 Q173 pL732 917320 9173205 (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to V'3 given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to V/3, it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be 2V3,

Table 1.6 illustrates how taking better approximations to V3 gives better approxima-
tions to the number 2V3 =~ 3.321997086. It is the completeness property of the real num-
bers (discussed briefly in Appendix 7) which guarantees that this procedure gives a single
number we define to be 2V3 (although it is beyond the scope of this text to give a proof). In
a similar way, we can identify the number 2* (or a*, @ > 0) for any irrational x. By identi-
fying the number a* for both rational and irrational x, we eliminate any “holes” or “gaps” in
the graph of @*. In practice you can use a calculator to find the number a* for irrational x by
taking successive decimal approximations to x and creating a table similar to Table 1.6.

Exponential functions obey the familiar rules of exponents listed below. It is easy to
check these rules using algebra when the exponents are integers or rational numbers. We
prove them for all real exponents in Chapters 4 and 7.

Rules for Exponents
If a > 0 and b > 0, the following rules hold true for all real numbers x and y.

X y x+y at X—y
1. a*a’ = a 2.;=a

3. () = (@) = a¥ 4. a*-b* = (ab)*
5.

a _ (a)
- \b

EXAMPLE 2  We illustrate using the rules for exponents to simplify numerical expressions.
1. 31.1.30.7 — 31.l+0.7 — 31.8 Rule 1
(Vo)

2. = (V10)' = (V10)’ =10 Rue>

V10 ( ) ( ) wie
3. (5V2)V2 =52 V2= 52 =25 Rule 3
4. 7787 = (56)7 Rule 4

4\'"? _42 2
5. <9> = W =3 Rule 5 |

The Natural Exponential Function e*

The most important exponential function used for modeling natural, physical, and economic
phenomena is the natural exponential function, whose base is the special number e.
The number e is irrational, and its value is 2.718281828 to nine decimal places. (In Sec-
tion 3.8 we will see a way to calculate the value of e.) It might seem strange that we would
use this number for a base rather than a simple number like 2 or 10. The advantage in
using e as a base is that it simplifies many of the calculations in calculus.

If you look at Figure 1.55a you can see that the graphs of the exponential functions
y = a* get steeper as the base a gets larger. This idea of steepness is conveyed by the slope
of the tangent line to the graph at a point. Tangent lines to graphs of functions are defined
precisely in the next chapter, but intuitively the tangent line to the graph at a point is a line
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FIGURE 1.56 Among the exponential functions, the graph of y = ¢* has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as 2*, and larger for a base greater than e, such as 3*.

that just touches the graph at the point, like a tangent to a circle. Figure 1.56 shows the
slope of the graph of y = a* as it crosses the y-axis for several values of a. Notice that the
slope is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if
a < e, and larger than 1 if a > e. This is the property that makes the number e so useful
in calculus: The graph of y = ¢* has slope 1 when it crosses the y-axis.

Exponential Growth and Decay

The exponential functions y = ¢*, where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function y = y,e** is a model for exponential
growth if k > 0 and a model for exponential decay if k < 0. Here y, represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by y = P - ¢, where P is the initial monetary investment, r is the
interest rate as a decimal, and 7 is time in units consistent with r. An example of exponen-
tial decay is the model y = A+ e 12X10™ which represents how the radioactive isotope
carbon-14 decays over time. Here A is the original amount of carbon-14 and ¢ is the time in
years. Carbon-14 decay is used to date the remains of dead organisms such as shells,
seeds, and wooden artifacts. Figure 1.57 shows graphs of exponential growth and expo-
nential decay.

() (b)

FIGURE 1.57 Graphs of (a) exponential growth, k = 1.5 > 0, and (b) exponential decay,
k=-12<0.

EXAMPLE 3 Investment companies often use the model y = Pe’ in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2014 at an
annual interest rate of 5.5%.

Solution Let ¢ = 0 represent 2014, ¢ = 1 represent 2015, and so on. Then the exponen-
tial growth model is y(f) = Pe”, where P = 100 (the initial investment), r = 0.055 (the
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Exercises m

Sketching Exponential Curves

annual interest rate expressed as a decimal), and ¢ is time in years. To predict the amount in
the account in 2018, after four years have elapsed, we take + = 4 and calculate
y(4) = 100 60.055(4)
= 10022
= 124.61. Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1. |

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If y, is the number of radioactive nuclei present at time zero, the number
still present at any later time 7 will be

y = yye ", r> 0.

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined
experimentally to be about » = 1.2 X 10™* when ¢ is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount y, of carbon-14 nuclei, after 866 years we are left
with the amount

y(866) =y 6(71.2><10’4)(866)
(0.901)yy. Calculator evaluation

U

That is, after 866 years, we are left with about 90% of the original amount of carbon-14,
so about 10% of the original nuclei have decayed. In Example 7 in the next section, you
will see how to find the number of years required for half of the radioactive nuclei present
in a sample to decay (called the half-life of the substance). |

You may wonder why we use the family of functions y = ¢ for different values of the
constant k instead of the general exponential functions y = a*. In the next section, we show
that the exponential function a* is equal to ¢** for an appropriate value of k. So the formula
y = € covers the entire range of possibilities, and we will see that it is easier to use.

Applying the Laws of Exponents

In Exercises 1-6, sketch the given curves together in the appropriate Use the laws of exponents to simplify the expressions in Exercises
coordinate plane and label each curve with its equation. 11-20.
1y =2%y=4y=3%y= (/5" 11. 16%-16717 12. 9'/3.91/6
Aty — QY — Xy — . 42 5/3
2. y=3y=8,y=2"%y=(1/4 13_477 14. 327/3
3.y=2"andy = —2 4. y=3"andy = -3 4 3
5. y=c¢"andy = 1/e" 6. y=—¢‘andy = —¢* 15. (251/8)4 16. (13\6)\/2/2
In each of Exercises 7-10, sketch the shifted exponential curves. 17. 2V3.7V3 18. (\/,;,)1/2 . ( \Y% 12)1/2
= )X — — X _ 4 2
7.y=2—lady=2"—1 1. (L) 0. (?)
8 y=3+2andy=3%+2 V2
9. y=1—¢"'andy=1—¢*

10. y

—1—¢e¢'andy =—1—¢"*



Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises

21-24.

1 - —
21. f(x) = PR 22. g(t) = cos(e™)
23. g() = VI + 37 24. f(x) = 1 N

—e
Applications
In Exercises 25-28, use graphs to find approximate solutions.

25. 2* =5 26. ¢ =4
27. 3* = 05=0 28. 3 — 2=

In Exercises 29-36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.

29.

30.

Population growth The population of Knoxville is 500,000
and is increasing at the rate of 3.75% each year. Approximately
when will the population reach 1 million?

Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.
b. Approximately when did the population reach 50,0007

1 6 Inverse Functions and Logarithms

31.

32.

33.

34.

35.

36.
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Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

a. Express the amount of phosphorus-32 remaining as a func-
tion of time 7.

b. When will there be 1 gram remaining?

If Jean invests $2300 in a retirement account with a 6% interest rate
compounded annually, how long will it take until Jean’s account
has a balance of $4150?

Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

Tripling your money Determine how much time is required
for an investment to triple in value if interest is earned at the rate
of 5.75% compounded continuously.

Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

A function that undoes, or inverts, the effect of a function f is called the inverse of f.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function y = In x as the inverse of the exponential function
y = ¢*, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion f(x) = x? assigns the same value, 1, to both of the numbers —1 and +1; the sines of
/3 and 277 /3 are both \/3 /2. Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

DEFINITION A function f(x) is one-to-one on a domain D if f(x;) # f(x,)
whenever x; # x, in D.

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
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(a) One-to-one: Graph meets each
horizontal line at most once.

y y= xz
Same y-value
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T Same y-value
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y =sinx
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(b) Not one-to-one: Graph meets one or
more horizontal lines more than once.
FIGURE 1.58 (a)y =x’and y = Vx
are one-to-one on their domains (—00, 00)
and [0,00). (b) y = x? and y = sin x are
not one-to-one on their domains (—090, 00),

Caution Do not confuse the inverse
function ! with the reciprocal

function 1/f.

two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.

@ fix) = Vx is one-to-one on any domain of nonnegative numbers because \/xT #=
\/xj whenever x; # x,.

(b) g(x) = sin xisnot one-to-one on the interval [ 0, 77 | because sin (7/6) = sin (57/6).
In fact, for each element x; in the subinterval [0, 7/2) there is a corresponding ele-
ment x, in the subinterval (7 /2, 7r] satisfying sin x; = sin x,, so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on [0, 7/2 ], however, because it is an increasing function on [0, /2] giving
distinct outputs for distinct inputs. [ |

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one (Figure 1.58).

The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

DEFINITION Suppose that f is a one-to-one function on a domain D with range
R. The inverse function f ! is defined by

fib) =a if f(a) = b.
The domain of f ! is R and the range of f~!is D.

The symbol f~! for the inverse of f is read “f inverse.” The “—1” in f! is not an
exponent; f!(x) does not mean 1/f(x). Notice that the domains and ranges of f and f~!
are interchanged.

EXAMPLE 2 Suppose a one-to-one function y = f(x) is given by a table of values

B I IS T A N I A

A table for the values of x = f~!(y) can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for f:

If we apply f to send an input x to the output f(x) and follow by applying f~! to f(x),
we get right back to x, just where we started. Similarly, if we take some number y in the
range of f, apply f~! to it, and then apply f to the resulting value f~'(y), we get back the



1.6 Inverse Functions and Logarithms 43

value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

(f'ef)(x) =x,  forall xin the domain of f
fef Ho =y, for all y in the domain of £~ (or range of f)

Only a one-to-one function can have an inverse. The reason is that if f(x;) = y and
f(x,) = y for two distinct inputs x; and x,, then there is no way to assign a value to f~'(y)
that satisfies both f~'(f(x))) = x; and f~'(f(xp) = x,.

A function that is increasing on an interval satisfies the inequality f(x,) > f(x;) when
X, > X, so it is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function f(x) = 1/x for x # 0 and f(0) = 0, defined on (—00, 00)
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function from
its graph, we start at a point x on the x-axis, go vertically to the graph, and then move horizon-
tally to the y-axis to read the value of y. The inverse function can be read from the graph by
reversing this process. Start with a point y on the y-axis, go horizontally to the graph of
y = f(x), and then move vertically to the x-axis to read the value of x = f~(y) (Figure 1.59).

y = f(x) x=f

RANGE OF f
<
DOMAIN OF f !

<

0 X 0 X
1
DOMAIN OF f RANGE OF f

(a) To find the value of fat x, we start at x, (b) The graph of f~!is the graph of f, but

go up to the curve, and then over to the y-axis. with x and y interchanged. To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of £~ is the
range of f. The range of ! is the domain of f.

X y
l ’
. Sy=x
= |on : A
a, . A
2 S x= b
< 7/ o
< ’ @
4 o
/7 (b, a) Z
7 o~
)
7 y 0 x
7 -1 -1
7 DOMAIN OF f DOMAIN OF f
//
7
7/
7
(¢) To draw the graph of f ! in the (d) Then we interchange the letters x and y.
more usual way, we reflect the We now have a normal-looking graph of !
system across the line y = x. as a function of x.

FIGURE 1.59 The graph of y = f~!(x) is obtained by reflecting the graph of y = f(x)
about the line y = x.
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FIGURE 1.60 Graphing

f@) = (1/2)x + 1and f7'(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x (Example 3).

0

FIGURE 1.61 The functions y = Vx

2

and y = x°, x = 0, are inverses of one

another (Example 4).

We want to set up the graph of f~! so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x-
and y-axes by reflecting across the 45° line y = x. After this reflection we have a new
graph that represents f~'. The value of f~'(x) can now be read from the graph in the usual
way, by starting with a point x on the x-axis, going vertically to the graph, and then horizon-
tally to the y-axis to get the value of f~!(x). Figure 1.59 indicates the relationship between
the graphs of f and f~!. The graphs are interchanged by reflection through the line y = x.

The process of passing from f to f ! can be summarized as a two-step procedure.

1. Solve the equation y = f(x) for x. This gives a formula x = £ '(y) where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula y = f~'(x) where f~' is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3 Find the inverse of y = lx + 1, expressed as a function of x.

2
Solution
. 1 The graph is a straight line satisfying the
1. Solve for x in terms of y: y = Ex +1 horizontal line test (Fig. 1.60).
2y=x+2
x =2y — 2.

2. Interchange x andy: y = 2x — 2.
The inverse of the function f(x) = (1/2)x + 1 is the function f~'(x) = 2x — 2. (See
Figure 1.60.) To check, we verify that both composites give the identity function:

f_](f(x))=2<éx+1)—2=x+2—2=x

f(f*1(x))=%(2x—2)+1:x—1+1:x, -

EXAMPLE 4 Find the inverse of the function y = x?, x = 0, expressed as a function
of x.

Solution For x = 0, the graph satisfies the horizontal line test, so the function is one-to-
one and has an inverse. To find the inverse, we first solve for x in terms of y:

y = x*
\/ = \/; = ]x| =X |x| = x because x = 0
We then interchange x and y, obtaining

y = Va.

The inverse of the function y = x?, x = 0, is the function y = Vx (Figure 1.61).
Notice that the function y = x2, x = 0, with domain restricted to the nonnegative real
numbers, is one-to-one (Figure 1.61) and has an inverse. On the other hand, the function y = x2,

with no domain restrictions, is not one-to-one (Figure 1.58b) and therefore has no inverse. M

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function f(x) = a* is one-
to-one. It therefore has an inverse. Its inverse is called the logarithm function with base a.

DEFINITION The logarithm function with base a, y = log,x, is the inverse of
the base a exponential function y = a*(a > 0,a # 1).




(a)

(b)

FIGURE 1.62 (a) The graph of 2* and
its inverse, log, x. (b) The graph of e*
and its inverse, In x.

HISTORICAL BIOGRAPHY *
John Napier

(1550-1617)
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The domain of log,x is (0, 00), the range of a*. The range of log, x is (—00, 00), the
domain of a*.

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions with a > 1.
Figure 1.62a shows the graph of y = log,x. The graph of y = a*, a > 1, increases rap-
idly for x > 0, so its inverse, y = log,x, increases slowly for x > 1.

Because we have no technique yet for solving the equation y = a* for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of y = log,x by reflecting the graph of the exponential
y = a* across the line y = x. Figure 1.62 shows the graphs for a = 2 and a = e.

Logarithms with base 2 are commonly used in computer science. Logarithms with
base e and base 10 are so important in applications that many calculators have special keys
for them. They also have their own special notation and names:

log,x is writtenas Inx.

log|gx 1is written as logx.

The function y = In x is called the natural logarithm function, and y = log x is
often called the common logarithm function. For the natural logarithm,

Inx=y & ¢ =nx

In particular, if we set x = e, we obtain

Ine =1

because e! = e.

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in
arithmetic calculation before the modern electronic computer. What made them so useful
is that the properties of logarithms reduce multiplication of positive numbers to addition of
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case
when r is an irrational number cannot be dealt with properly until Chapter 4. We also
establish the validity of the rules for logarithmic functions with any base a in Chapter 7.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any num-
bers b > 0 and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule: Inbx = Inb + Inx

2. Quotient Rule: lng = Inb — Inx

3. Reciprocal Rule: ln)lc = —Inx Rule 2 with b = 1
4. Power Rule: Inx" = rinx

*To learn more about the historical figures mentioned in the text and the development of many major
elements and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 5 Here we use the properties in Theorem 1 to simplify three expressions.

(a) In4 + Insinx = In(4 sin x) Product Rule
(b) 1n2xx+_13 — @+ 1) — In@x —3)  Quotient Rule
(c) ln% = —In8 Reciprocal Rule

= —In23> = —31n2 Power Rule [ |

Because a* and log,x are inverses, composing them in either order gives the identity function.

Inverse Properties for a¢* and log, x
1. Base a: a'°%* = y, log,a* = x, a>0,a# 1,x>0

2. Base e: ™ = y, Ine* = x, x>0

Substituting a* for x in the equation x = ™~ enables us to rewrite a* as a power of e:

*
at = @ Substitute @* for x in x = e'"*,
= g¥lna Power Rule for logs
= elnax, Exponent rearranged

Thus, the exponential function a* is the same as e for k = Ina.

Every exponential function is a power of the natural exponential function.
a = e* Ina

That is, a* is the same as e* raised to the power Ina: a* = ¢ for k = In a.

For example,

X = e(1n2)x — exan’ and 5—3x — e(lnS)(—3x) — e—3x ln5.
Returning once more to the properties of a* and log, x, we have
Inx = In (alog" ) Inverse Property for a* and log,, x
= (loga x) (Ina). Power Rule for logarithms, with r = log,x

Rewriting this equation as log,x = (Inx)/(Ina) shows that every logarithmic function is a
constant multiple of the natural logarithm In x. This allows us to extend the algebraic
properties for Inx to log, x. For instance, log, bx = log,b + log,x.

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

_ Inx
log,x = Ina (a>0,a #1)

Applications
In Section 1.5 we looked at examples of exponential growth and decay problems. Here we

use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6 If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?



Amount
present

|
i |
0 139 278
<—Half-life—|

FIGURE 1.63 Amount of polo-

nium-210 present at time 7, where Yy
represents the number of radioactive
atoms initially present (Example 7).
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Solution From Example 1, Section 1.5, with P = 1000 and r = 0.0525, the amount in
the account at any time 7 in years is 1000(1.0525), so to find the time ¢ when the account
reaches $2500 we need to solve the equation

1000(1.0525)" = 2500.

Thus we have

(1.0525)" = 2.5 Divide by 1000.
1n(1.0525)’ =1In2.5 Take logarithms of both sides.
tIn 1.0525 = In2.5 Power Rule
t= % =~ 179 Values obtained by calculator
The amount in the account will reach $2500 in 18 years, when the annual interest payment
is deposited for that year. [ |

EXAMPLE 7 The half-life of a radioactive element is the time required for half of the
radioactive nuclei present in a sample to decay. It is a notable fact that the half-life is a
constant that does not depend on the number of radioactive nuclei initially present in the
sample, but only on the radioactive substance.

To see why, let y, be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time 7 will be y = y,e *. We seek the value of 7 at
which the number of radioactive nuclei present equals half the original number:

_ 1
Yoe ' = 5%
efkt — %
—kt = 111% = —In2 Reciprocal Rule for logarithms
In2
= & (N

This value of ¢ is the half-life of the element. It depends only on the value of k; the number
¥y does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in
days rather than years. The number of radioactive atoms remaining after # days in a sample
that starts with y, radioactive atoms is

y = yoe—5><10*3 r
The element’s half-life is
Half-life = % Eq. (1)
= L The k from polonium’s decay equation
5% 1073 : S
~ 139 days.

This means that after 139 days, 1/2 of y, radioactive atoms remain; after another
139 days (or 278 days altogether) half of those remain, or 1/4 of y, radioactive atoms
remain, and so on (see Figure 1.63). [ |

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Section 1.3.
These functions are not one-to-one (their values repeat periodically). However, we can
restrict their domains to intervals on which they are one-to-one. The sine function
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Y increases from —1 at x = —7 /2 to +1 at x = 77 /2. By restricting its domain to the inter-
X =siny val [—/2, 7 /2] we make it one-to-one, so that it has an inverse sin"!x (Figure 1.64).
Similar domain restrictions can be applied to all six trigonometric functions.
| y = sin"lx
2 Domain: —1=x=1 ; [ ; ; : A
Range: —7/2 = y = /2 Domain restrictions that make the trigonometric functions one-to-one
! ! ¥ y Y tanx
-1 1 |
Ccos x }
_m| |
2 0 T T _ 0 m *
-1 2 ‘ 2 2
|
|
FIGURE 1.64 The graphof y = sin”'x. » = sinx y = cosx y = tanx
Domain: [—7/2,7/2] Domain: [0, 7] Domain: (—7/2, 7/2)
Range: [—1,1] Range: [—1,1] Range: (—00, 00)
y y sec x Y cscx
| ! I I
cotx ‘ } } }
| | | |
|
[ ! } | in |
: | 1 X | | X
0 T m 0 % m T 0 ™
|
2\ | o =0
1 : : 1
! I | |
! I I I
|
y = cotx y = secx y =cscx
Domain: (0, ) Domain: [0, 7/2) U (w/2, 7]  Domain: [—/2,0) U (0, 7 /2]
y y=sinx, fg =x 5721 Range: (—00, 00) Range: (—00,—1] U [1,00) Range: (—00,—1] U [1,00)
Domain: [—/2, 7/2]
Range: [—1,1] . . . . .
1 ~. Since these restricted functions are now one-to-one, they have inverses, which we
| L denote by
-z o =w NG
3 2 y=sin'x  or y = arcsin x
@) y=cos'x or y= arccosx
y=tan 'x  or y = arctan x
" y=cot'x or y = arccot x
X =siny -1
y=sec'x  or y = arcsec x
y= sin~lx _ - _
- Domain: [—1, 1] y=-csc'x or y = arccsc x
2 Range:  [=m/2, /2] Thege equations are read “y equals the arcsine of x or “y equals arcsin x” and so on.
| | x
-1 70 1 Caution The —1 in the expressions for the inverse means “inverse.” It does not mean
- reciprocal. For example, the reciprocal of sin x is (sin x)™' = 1/sin x = csc x.
s
The graphs of the six inverse trigonometric functions are obtained by reflecting the

graphs of the restricted trigonometric functions through the line y = x. Figure 1.65b
shows the graph of y = sin™!x and Figure 1.66 shows the graphs of all six functions. We
FIGURE 1.65 The graphs of now take a closer look at two of these functions.

(@ y=sinx,—7/2 =x = 7/2, and
(b) its inverse, y = sin”'x. The graph
of sin”!x, obtained by reflection across
the line y = x, is a portion of the curve We define the arcsine and arccosine as functions whose values are angles (measured in

X = siny. radians) that belong to restricted domains of the sine and cosine functions.

(b)

The Arcsine and Arccosine Functions



The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the
arc length equation s = rf becomes

s = 6, so central angles and the arcs
they subtend have the same measure.
If x = siny, then, in addition to being
the angle whose sine is x, y is also the
length of arc on the unit circle that
subtends an angle whose sine is x. So
we call y “the arc whose sine is x.”

y

Arc whose sine is x

Arc whose
Angle whose cosine is x
sine is x
\
o[ \ X 1 *
Angle whose
cosine is x
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Domain: -1 =x=1 Domain: -1 =x=1 Domain: —o < x < ®
L T =y=T : =y= T <y< T
Range: ) =y= > Range: O=y=mw Range 7 <V<3
y y y
m
20 1 T oo =
y =sin"'x y =cos x 2 y = tan~lx
JRR S A N L T I I I I X
1 1 2 -2 -1 1
_T
S I e 20
2 -1 1 *
(@) (b) ()
Domain: x< —lorx=1 Domain: x=< —lorx=1 Domain: —o0 < x <
Range: OSySTr,y#g Range: —gSyS%,y#O Range: O<y<m
y y y
L | mL
T 2 y = csclx »
- y = sec”x y = cot™'x
7777777 Z o | | | | X L %
=2 -1 1 2
| 1 ! I -7 I I 1 1 X
2 1 P 2 -2 -1 1 2
(d) (e ()
FIGURE 1.66 Graphs of the six basic inverse trigonometric functions.
DEFINITION
y = sin~lx is the number in [—7/2, /2] for which siny = x.
y = cos™!x is the numberin [0, 7 ] for which cosy = x.

The graph of y = sin~'x (Figure 1.65b) is symmetric about the origin (it lies along the

graph of x = sin y). The arcsine is therefore an odd function:
The graph of y = cos™

EXAMPLE 8 Evaluate (a) sinl(

Solution
(a) We see that

1

sin”!(—x) = —sin~

x.

@)

x (Figure 1.67b) has no such symmetry.

\2@) and (b) cosl(—;)

Sil’l_l ﬁ — s
2 3
because sin(7/3) = \/3/2 and /3 belongs to the range [—/2, /2] of the arc-
sine function. See Figure 1.68a.
(b) We have
cos M — 1) _ 2w
2 3
because cos (27 /3) = —1/2 and 27 /3 belongs to the range [0, 7 ] of the arccosine

function. See Figure 1.68b.
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Using the same procedure illustrated in Example 8, we can create the following table of
common values for the arcsine and arccosine functions.

sin 1x

1

y y=cosx,0=x=m
Domain: [0, 7]
1 Range: [—1,1]
-
// |
% 0 z\\z 7 X
1k 2 -7
(a)
y
X =cosy
P
y= cos'x
Domain: [—1, 1]
m Range: [0, 7]
| 1 x
-1 0 1

(b)

FIGURE 1.67 The graphs of (a) y = cos x,

0 = x = m, and (b) its inverse, y = cos~
X, obtained by reflection
across the line y = x, is a portion of the curve

The graph of cos™

X = cosy.

1

x.

Chicago

FIGURE 1.69 Diagram for drift correc-
tion (Example 9), with distances surrounded
to the nearest mile (drawing not to scale).

y
cos ™ (—x)
cos lx
\
—1\—x 0 x |1
FIGURE 1.70 cos™

x and cos !(—x) are

supplementary angles (so their sum is 7).

X cos x
\V3/2 /3 /6
V2/2 w/4 /4

1/2 /6 /3
-1/2 —/6 2m/3
-V2/2 —/4 3w /4
-\V3/2 —m/3 57/6
y y
sin"\7/3 = %T coqfl( >: %77
2 V3
3

sim

]

wIiy

N
() (b)

FIGURE 1.68 Values of the arcsine and arccosine functions
(Example 8).

EXAMPLE 9 During a 240 mi airplane flight from Chicago to St. Louis, after flying
180 mi the navigator determines that the plane is 12 mi off course, as shown in Figure
1.69. Find the angle a for a course parallel to the original correct course, the angle b, and
the drift correction angle ¢ = a + b.

Solution From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 mi, had the plane been flying along the original
correct course (see Figure 1.69). Knowing the flight distance from Chicago to St. Louis, we
next calculate the remaining leg of the original course to be 61 mi. Applying the Pythagorean
theorem again then gives an approximate distance of 62 mi from the position of the plane to
St. Louis. Finally, from Figure 1.69, we see that 180 sina = 12 and 62 sinb = 12, so

= g _1£ ~ 1 == ©
a = sin" Je5 0.067 radian 3.8
b= sin’12 ~ (.195 radian =~ 11.2°
62 ’ )
c=a+ b= 15° [ |

Identities Involving Arcsine and Arccosine
As we can see from Figure 1.70, the arccosine of x satisfies the identity
cos 'x + cos l(—x) = m, 3)
or
cos '(—x) = 7 — cos 'x. 4)
Also, we can see from the triangle in Figure 1.71 that for x > 0,

sin"'x 4+ coslx = 7/2. 35



(Exercise 76).

FIGURE 1.71 sin 'x and cos ' x are
complementary angles (so their sum is 7 /2).

Exercises m

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1-6 are one-to-one, and
which are not?

1. y 2. y
y = —3x3
X x
0 -1 1
y=x*—x?
3 y 4. y
y =intx =0
e
0
y = 2/x| e}
e
X e
[Se}
0
5. 6. y
1/3

In Exercises 7-10, determine from its graph if the function is one-to-
one.

7. 00 = {3—x, x<0

x=0

2x + 6, = -3
Sf()—{x S
x=0

9. flx) =
x+2’ x>0
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Equation (5) holds for the other values of x in [—1, 1] as well, but we cannot conclude this
from the triangle in Figure 1.71. It is, however, a consequence of Equations (2) and (4)

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in Sec-
tion 3.9. There we develop additional properties of the inverse trigonometric functions in a
calculus setting using the identities discussed here.

Graphing Inverse Functions

Each of Exercises 11-16 shows the graph of a function y = f(x).
Copy the graph and draw in the line y = x. Then use symmetry with
respect to the line y = x to add the graph of f' to your sketch. (It is
not necessary to find a formula for f~'.) Identify the domain and
range of f .

11. 12.
y y 1
y=fx)=1——-,x>0
= f(x ,x=0 - x
=0 = 51— 1 i
! o] SN *
| X
0 1
13. 14.
y y
y =f(x) = sinux, y = f(x) = tanx,
T =<7 L T T
3 X 5 1 —§<x<§
_7& 0 7 -7 0o m "
> B 2 2
71_
15.
y
6
f(x) =6 —2x,
0=x=3
X
0 3

17. a. Graph the function f(x) = V1 — x%,0 = x = 1. What sym-
metry does the graph have?

b. Show that f is its own inverse. (Remember that Va2 = xif
x=0.)

18. a. Graph the function f(x) = 1/x. What symmetry does the
graph have?

b. Show that f is its own inverse.
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Formulas for Inverse Functions
Each of Exercises 19-24 gives a formula for a function y = f(x) and
shows the graphs of f and f~!. Find a formula for ! in each case.

19. f)=x>+1, x=0 20. fx) =x% x=0
y y
y=fx)

y=f\ 1

1 y=f"x o] 1

I
0 1

y=f"

21, fx) =23 — 1 2. foy=x*—2x+1, x=1

y y
y =1

s = 1 y=f"
1
I x 1 y = fx)

—1/A

23. f) =(x+ D% x=-1 24. f(x) =x*¥3, x=0
y y

y =/ y=77"00

y=f"

1 =
,/ | y=f

-1 0
—1+ \

—_

Each of Exercises 25-36 gives a formula for a function y = f(x). In
each case, find f~'(x) and identify the domain and range of f~'. Asa
check, show that f(f '(x)) = f'(f(x)) = x.

25. f(x) = x° 26. f(x) =x% x=0

27. fx) = x>+ 1 28. f(x)=(1/2)x —7/2

29. f(x) =1/x%, x>0 30. f(x) =1/x%, x#0
_x+3 . Vi

31. f(x) = " 32, fix) = 7\/; 3

3B.f)=x*—2x, x=1 34 fx) =2 + D'/
(Hint: Complete the square.)

35. fix) = ﬁ J_r 12], b > —2 and constant

36. f(x) = x> — 2bx, b > 0 and constant, x = b

Inverses of Lines

37. a. Find the inverse of the function f(x) = mx, where m is a con-
stant different from zero.

b. What can you conclude about the inverse of a function
y = f(x) whose graph is a line through the origin with a non-
zero slope m?

38. Show that the graph of the inverse of f(x) = mx + b, where m
and b are constants and m # 0, is a line with slope 1/m and
y-intercept —b/m.

39. a. Find the inverse of f(x) = x + 1. Graph f and its inverse
together. Add the line y = x to your sketch, drawing it with
dashes or dots for contrast.

b. Find the inverse of f(x) = x + b (b constant). How is the
graph of £~ related to the graph of £?

¢. What can you conclude about the inverses of functions whose
graphs are lines parallel to the line y = x?

40. a. Find the inverse of f(x) = —x + 1. Graph the line
y = —x + 1 together with the line y = x. At what angle do
the lines intersect?

b. Find the inverse of f(x) = —x + b (b constant). What angle
does the line y = —x + b make with the line y = x?

¢. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line y = x?

Logarithms and Exponentials
41. Express the following logarithms in terms of In 2 and In 3.

a. In0.75 b. In (4/9)
c. In(1/2) d. InV9
e. In3V2 f. In\V135
42. Express the following logarithms in terms of In 5 and In 7.
a. In(1/125) b. In9.8
c. In7V7 d. In 1225
e. In0.056 f. (In35 + In(1/7))/(In25)

Use the properties of logarithms to write the expressions in Exercises
43 and 44 as a single term.

. sin 0 5 1
43. a. Insin6 ln( 5 ) b. In(3x 9x) + ln<3x)

[ %11‘1(4[4) — Inb

44. a. Insec # + Incos 0

¢ 3nVA2 -1 —In@t+ 1

Find simpler expressions for the quantities in Exercises 45-48.

b. In(8x + 4) — 2Inc

45. a. "72 b. e ¥ c. elnx-Iny
46. a. et b. ¢ 1n03 c. enmi—in2
47. a. 2InVe b. In(Ine°) c. In(e™™)
48. a. In(e*? b. In(e®)) c. In(e2n)

In Exercises 49-54, solve for y in terms of ¢ or x, as appropriate.
49. lny =2r + 4 50. Iny=—-r+5

51. In(y — b) = 5t 52. In(c —2y) =1t

53. In(y — 1) = In2 = x + Inx

54. In(y>* — 1) — In(y + 1) = In(sin x)



In Exercises 55 and 56, solve for k.

55.

56.

k/1000 —

a. & =4 b. 100¢'% = 200 coe

a %=1 b. 80" = c. 0Bk =08

4

In Exercises 57-60, solve for t.

57. a. 0¥ =27 b. & = % c. M0 = (4
58. a 670.011 = 1000 b ekt — L ¢ e(]n2)t — l
o ) 10 : 2

59, Vi = 2 60. Ip2xtD — o
Simplify the expressions in Exercises 61-64.
61. a. 5'oss7 b. 81038\6 c. 1.3M08is75

d. logs16 e. log;\V3 f. 10g4<i>
62. a. 203 b. 10'gn01/2) c. grlogs7

d. log;; 121 e. log;y 11 f. log3(é>
63. a. 2loax b. 9los c. log,(en2in)
64. a. 25ke( b. log,(e") ¢ log,(2°m)

Express the ratios in Exercises 65 and 66 as ratios of natural loga-
rithms and simplify.

65.

66.

log, x log,x log,a
a. b. c.

logzx loggx log.a

loggx log+/10 X log,b
a. b. c.

logsx log\/ x log,a

Arcsine and Arccosine
In Exercises 67-70, find the exact value of each expression.

67.

68.

69.

70.

w(3) e s (2Y0)

“ (9

a. cos! 1 b. cos™ -1 c. cos! ﬁ
. 2 . v . >
a. arccos (—1) b. arccos (0)
. . 1
a. arcsin (—1) b. arcsin (_7)
V2

Theory and Examples

71.

72.

73.

If f(x) is one-to-one, can anything be said about g(x) = —f(x)? Is
it also one-to-one? Give reasons for your answer.

If f(x) is one-to-one and f(x) is never zero, can anything be said
about h(x) = 1/f(x)? Is it also one-to-one? Give reasons for your
answer.

Suppose that the range of g lies in the domain of f so that the

composite f o g is defined. If f and g are one-to-one, can any-
thing be said about f ° g? Give reasons for your answer.

74.

75.

717.

78.

79.

80.

. Radioactive decay The half-life of a certain radioactive sub-

83.

53
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If a composite f e g is one-to-one, must g be one-to-one? Give
reasons for your answer.

Find a formula for the inverse function f~! and verify that
(fefHw = (fehHx) = x.

100
1 +2

50
1+ 1.1

a. f(x) = b. f(x) =

. The identity sin !x + cos™'x = &/2 Figure 1.71 establishes

the identity for 0 < x < 1. To establish it for the rest of [—1, 1],
verify by direct calculation that it holds for x = 1, 0, and —1.
Then, for values of x in (—1,0), let x = —a, a > 0, and apply
Egs. (3) and (5) to the sum sin"' (—a) + cos™' (—a).

Start with the graph of y = Inx. Find an equation of the graph
that results from

a. shifting down 3 units.
shifting right 1 unit.

shifting left 1, up 3 units.
shifting down 4, right 2 units.

reflecting about the y-axis.

e ae T

reflecting about the line y = x.

Start with the graph of y = Inx. Find an equation of the graph
that results from

a. vertical stretching by a factor of 2.

b. horizontal stretching by a factor of 3.

c¢. vertical compression by a factor of 4.
d. horizontal compression by a factor of 2.

The equation x2 = 2% has three solutions: x = 2, x = 4, and one
other. Estimate the third solution as accurately as you can by
graphing.

Could x™? possibly be the same as 2"* for x > 0? Graph the
two functions and explain what you see.

stance is 12 hours. There are § grams present initially.

a. Express the amount of substance remaining as a function of
time 7.

b. When will there be 1 gram remaining?

. Doubling your money Determine how much time is required

for a $500 investment to double in value if interest is earned at the
rate of 4.75% compounded annually.

Population growth The population of Glenbrook is 375,000
and is increasing at the rate of 2.25% per year. Predict when the
population will be 1 million.

84. Radon-222 The decay equation for radon-222 gas is known to

be y = ye*!¥, with ¢ in days. About how long will it take the

radon in a sealed sample of air to fall to 90% of its original value?
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Chapter m Questions to Guide Your Review

1.

10.

11.

12.

13.

14.

What is a function? What is its domain? Its range? What is an
arrow diagram for a function? Give examples.

. What is the graph of a real-valued function of a real variable?

What is the vertical line test?

. What is a piecewise-defined function? Give examples.

. What are the important types of functions frequently encountered

in calculus? Give an example of each type.

. What is meant by an increasing function? A decreasing function?

Give an example of each.

. What is an even function? An odd function? What symmetry

properties do the graphs of such functions have? What advantage
can we take of this? Give an example of a function that is neither
even nor odd.

. If f and g are real-valued functions, how are the domains of

f+gf— g fg and f/g related to the domains of f and g?
Give examples.

. When is it possible to compose one function with another? Give

examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

. How do you change the equation y = f(x) to shift its graph verti-

cally up or down by |k| units? Horizontally to the left or right?
Give examples.

How do you change the equation y = f(x) to compress or stretch
the graph by a factor ¢ > 1? Reflect the graph across a coordi-
nate axis? Give examples.

What is radian measure? How do you convert from radians to
degrees? Degrees to radians?

Graph the six basic trigonometric functions. What symmetries do
the graphs have?

What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?

Starting with the identity sin? @ + cos?# = 1 and the formulas
for cos (A + B) and sin (A + B), show how a variety of other
trigonometric identities may be derived.

Chapterm Practice Exercises

Functions and Graphs

1.

. A point P in the first quadrant lies on the parabola y = x°.

Express the area and circumference of a circle as functions of the
circle’s radius. Then express the area as a function of the
circumference.

. Express the radius of a sphere as a function of the sphere’s sur-

face area. Then express the surface area as a function of the
volume.
2

Express the coordinates of P as functions of the angle of inclina-
tion of the line joining P to the origin.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

How does the formula for the general sine function f(x) =
Asin (27 /B)(x — C)) + D relate to the shifting, stretching,
compressing, and reflection of its graph? Give examples.
Graph the general sine curve and identify the constants A, B,
C, and D.

Name three issues that arise when functions are graphed using a
calculator or computer with graphing software. Give examples.

What is an exponential function? Give examples. What laws of
exponents does it obey? How does it differ from a simple power
function like f(x) = x"? What kind of real-world phenomena are
modeled by exponential functions?

What is the number e, and how is it defined? What are the domain
and range of f(x) = ¢*? What does its graph look like? How do
the values of e* relate to x2, x°, and so on?

What functions have inverses? How do you know if two func-
tions f and g are inverses of one another? Give examples of func-
tions that are (are not) inverses of one another.

How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

What procedure can you sometimes use to express the inverse of
a function of x as a function of x?

What is a logarithmic function? What properties does it satisfy?
What is the natural logarithm function? What are the domain and
range of y = In x? What does its graph look like?

How is the graph of log, x related to the graph of In x? What truth
is in the statement that there is really only one exponential func-
tion and one logarithmic function?

How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

. A hot-air balloon rising straight up from a level field is tracked by

a range finder located 500 ft from the point of liftoff. Express the
balloon’s height as a function of the angle the line from the range
finder to the balloon makes with the ground.

In Exercises 5-8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

S.
7.

y = x5 6. y = x*°

y=x*—2x—1 8. y=¢~



In Exercises 9-16, determine whether the function is even, odd, or
neither.

9. y=x>+1 10. y=x —x* — x

11. y =1 — cosx 12. y = secxtanx
4

3.y =2+l 14. y = x — sinx
x> = 2x

15. y = x + cosx 16. y = xcosx

17. Suppose that f and g are both odd functions defined on the entire
real line. Which of the following (where defined) are even? odd?
a. fg b. f3 c. f(sinx)

18. If f(a — x) = f(a + x), show that g(x) = f(x + a) is an even
function.

d. g(secx) e |gl

In Exercises 19-28, find the (a) domain and (b) range.

19. y = |x| -2 20 y=—2+V1-x
21, y = V16 — &2 22, y =327+ 1

23. y =2 — 3 24. y = tan 2x — )
25. y =2sin(3x + m) — 1 26. y = x*°

27. y=1In(x — 3) + 1 28. y=—1+ V2 —x

29. State whether each function is increasing, decreasing, or neither.
a. Volume of a sphere as a function of its radius
b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric
pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

30. Find the largest interval on which the given function is increasing.
a. fx)=|x—2] +1 b. f(x) = (x + 1)*
e gx) = Gx — IS d Rx =V2x-1

Piecewise-Defined Functions
In Exercises 31 and 32, find the (a) domain and (b) range.

31 _{\/—x, —4=x=0
YT\ W 0<x=4

—x — 2, 2=x=-1
32. y= X, “1<x=1
—x + 2, 1<x=2

In Exercises 33 and 34, write a piecewise formula for the function.

33. ¥ 34. Vv

1 \ 5+ 3

& X
0] i 2
4 X
0 4

Composition of Functions
In Exercises 35 and 36, find

a (feo)=D. b. (g°£)(2).

c. (fefH). d. (g°8) ).
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1 1

35 f(0) = 1 =
0 =% 0=

36. f(x) =2 — «x, gx) = Vx + 1

In Exercises 37 and 38, (a) write formulas for f o g and g ° f and find
the (b) domain and (c) range of each.

37. fx) =2 — X2, gx) = Vx+2

38. f) = Vx, g =V1-x

For Exercises 39 and 40, sketch the graphs of f and f © f.
—x—2, —4=x=-1

39. f(x) =4 —1, —“1<x=1
x — 2, 1<x=2
x+1, —2=x<0

40. =

@ {x—l, 0=x=2

Composition with absolute values In Exercises 41-48, graph f,
and f, together. Then describe how applying the absolute value func-
tion in f, affects the graph of f.

fi1x) Fa(x)

41. x |x|

42. x? |x|?

43. x° |3

4. * + x |22 + x|
45. 4 —x2 |4 -2

1 1

46. m

47. Vx Vx|
48. sinx sin |x|

Shifting and Scaling Graphs

49. Suppose the graph of g is given. Write equations for the graphs
that are obtained from the graph of g by shifting, scaling, or
reflecting, as indicated.

a. Up % unit, right 3

b. Down 2 units, left %

c. Reflect about the y-axis
d. Reflect about the x-axis
e. Stretch vertically by a factor of 5
f. Compress horizontally by a factor of 5
50. Describe how each graph is obtained from the graph of y = f(x).
a. y= f(x—5) b. y = f(4x)
c. y= f(—=3x) d. y=f2x+ 1)

e.y=f(’3ﬁ>—4

L oy=-3f()+



67.

68.
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In Exercises 51-54, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.15-1.17, and applying an appropriate transformation.

_ x L
51. y = 1+ > 52. y=1 3
3. y= 41 54, y = (—50'°
2x

Trigonometry
In Exercises 55-58, sketch the graph of the given function. What is
the period of the function?

55. y = cos 2x 56. y = sin%
57. y = sinmx 58. y = cos %

59. Sketch the graph y = 2cos (x - %)

60. Sketch the graph y = 1 + sin (x + %)

In Exercises 61-64, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are a, b, and c, respectively.

61. a. Findaandbifc =2,B = m/3.
b. Findaandcif b = 2, B = 7 /3.

62. a. Express a in terms of A and c.

b. Express a in terms of A and b.
63. a. Express a in terms of B and b.

b. Express c in terms of A and a.
64. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

65. Height of a pole Two wires stretch from the top T of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

Transcendental Functions
In Exercises 69-72, find the domain of each function.

69. a. f(x) =1 + ¢sinx b. g(x) = ¢ + In Vx
70. a. f(x) = /¥ b. g(x) = In|4 — »?|

71. a. h(x) = sin_'(%c) b. f(x) = cos ' (Vx — 1)
72. a. h(x) = In (cos 'x) b. f(x) = V& — sin"lx

73. If f(x) =Inx and g(x) =4 —x? find the functions
fog,g°f,fef,ge°g, and their domains.

74. Determine whether f is even, odd, or neither.
a fx)=e* b. f(x) =1 + sin”'(—x)
¢ fx) = e d. f(y) = enhi*!

75. Graph In x, In 2x, In 4x, In 8x, and In 16x (as many as you can)

together for 0 < x = 10. What is going on? Explain.

76. Graph y = In(x> + ¢) for ¢ = —4,—2,0, 3, and 5. How does the

graph change when ¢ changes?

[T|77. Graph y = In|[sin x| in the window 0 =< x = 22,—2 < y = 0.

Explain what you see. How could you change the formula to turn
the arches upside down?

78. Graph the three functions y = x4 y = a*, and y = log,x to-

gether on the same screen for a = 2, 10, and 20. For large values
of x, which of these functions has the largest values and which
has the smallest values?

Theory and Examples

In Exercises 79 and 80, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers and
comment on any differences you see.

79. a. y = sin !(sinx) b. y = sin (sin”'x)
80. a. y = cos !(cos x) b. y = cos (cos™ ' x)
81. Use a graph to decide whether f is one-to-one.

a. f(x) =x° —)2£

X

b. f(x) =x* + >

66. Height of a weather balloon Observers at positions A and B 82. Use a graph to find to 3 decimal places the values of x for which

2 km apart simultaneously measure the angle of elevation of a
weather balloon to be 40° and 70°, respectively. If the balloon is
directly above a point on the line segment between A and B, find
the height of the balloon.

Graph the function f(x) = sinx + cos(x/2).
What appears to be the period of this function?
Confirm your finding in part (b) algebraically.
Graph f(x) = sin (1/x).

What are the domain and range of f?

I L

Is f periodic? Give reasons for your answer.

' > 10,000,000.

83. a. Show that f(x) = x* and g(x) = WVx are inverses of one
another.
b. Graph f and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and (—1, —1). Be sure the picture
shows the required symmetry in the line y = x.
84. a. Show that h(x) = x*/4 and k(x) = (4x)'/? are inverses of one
another.
b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and (—2, —2). Be sure the picture
shows the required symmetry in the line y = x.
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Chapter m Additional and Advanced Exercises

Functions and Graphs

1.

Are there two functions f and g such that fog = go f? Give
reasons for your answer.

. Are there two functions f and g with the following property? The

graphs of f and g are not straight lines but the graph of fo g isa
straight line. Give reasons for your answer.

. If f(x)is odd, can anything be said of g(x) = f(x) — 2? What if f

is even instead? Give reasons for your answer.

. If g(x) is an odd function defined for all values of x, can anything

be said about g(0)? Give reasons for your answer.

5. Graph the equation |x| + [y| = 1 + x.

6.

Graph the equation y + |y| = x + |x|.

Derivations and Proofs

7.

9.

10.

11.

12.

Prove the following identities.

1 —cosx  sinx 1 —cosx tan? X
sin x 1 + cosx * 1+ cosx 2

. Explain the following “proof without words” of the law of cosines.

(Source: Kung, Sidney H., “Proof Without Words: The Law of
Cosines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990, p. 342.)

Show that the area of triangle ABC is given by
(1/2)absin C = (1/2)bc sin A = (1/2)ca sin B.

c

A - B

Show that the area of triangle ABC is given by
Vis(s — a)(s — b)(s — ¢) where s = (@ + b + ¢)/2 is the
semiperimeter of the triangle.

Show that if f is both even and odd, then f(x) = O for every x in
the domain of f.

a. Even-odd decompositions Let f be a function whose
domain is symmetric about the origin, that is, —x belongs to
the domain whenever x does. Show that f is the sum of an
even function and an odd function:

f&) = E(x) + O(x),
where E is an even function and O is an odd function. (Hint:

Let E(x) = (f(x) + f(=x))/2. Show that E(—x) = E(x), so
that E is even. Then show that O(x) = f(x) — E(x) is odd.)

b. Uniqueness Show that there is only one way to write f as
the sum of an even and an odd function. (Hint: One way is
given in part (a). If also f(x) = E;(x) + O,(x) where E| is
even and O, is odd, show that E — E; = O; — O. Then use
Exercise 11 to show that £ = E; and O = 0,.)

Effects of Parameters on Graphs
13. What happens to the graph of y = ax®> + bx + c as

a. a changes while b and ¢ remain fixed?
b. b changes (a and c fixed, a # 0)?
¢. ¢ changes (a and b fixed, a # 0)?
14. What happens to the graph of y = a(x + b)* + c as
a. a changes while b and ¢ remain fixed?
b. b changes (a and c fixed, a # 0)?
c¢. cchanges (a and b fixed, a # 0)?

Geometry

15. An object’s center of mass moves at a constant velocity v along a
straight line past the origin. The accompanying figure shows the
coordinate system and the line of motion. The dots show posi-
tions that are 1 sec apart. Why are the areas A;, A,, ..., As in the
figure all equal? As in Kepler’s equal area law (see Section 13.6),
the line that joins the object’s center of mass to the origin sweeps
out equal areas in equal times.

Kilometers

Kilometers

16. a. Find the slope of the line from the origin to the midpoint P of
side AB in the triangle in the accompanying figure (a, b > 0).

y

B(0, b)

X
o A(a, 0)

b. When is OP perpendicular to AB?
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17. Consider the quarter-circle of radius 1 and right triangles ABE
and ACD given in the accompanying figure. Use standard area
formulas to conclude that

1. 0 1 sin 0
2sm0c056’ < > < 3 cos B
y
0,1)¢ C
B
{ l
\
\
9 I Ip
A g X
A E  (1,0)

18. Let f(x) = ax + b and g(x) = cx + d. What condition must be
satisfied by the constants a, b, ¢, d in order that (f° g)(x) =
(g ° f)(x) for every value of x?

Theory and Examples
19. Domain and range Suppose that a # 0,5 # 1, and b > 0.
Determine the domain and range of the function.

a. y=alb ™ +d
20. Inverse functions Let

b. y =alog,(x —¢) +d

c #0, ad — bc # 0.

a. Give a convincing argument that f is one-to-one.
b. Find a formula for the inverse of f.

21. Depreciation Smith Hauling purchased an 18-wheel truck for
$100,000. The truck depreciates at the constant rate of $10,000
per year for 10 years.

a. Write an expression that gives the value y after x years.
b. When is the value of the truck $55,000?

22. Drug absorption A drug is administered intravenously for
pain. The function

f) =90 —52In(1+16, 0=t=4

gives the number of units of the drug remaining in the body after ¢
hours.

a. What was the initial number of units of the drug administered?
b. How much is present after 2 hours?
c. Draw the graph of f.

23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will
it take this single payment to grow to $5000?

24. The rule of 70 If you use the approximation In2 =~ 0.70 (in
place of 0.69314...), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously,
divide r into 70.” For instance, an amount of money invested at
5% will double in about 70/5 = 14 years. If you want it to dou-
ble in 10 years instead, you have to invest it at 70/10 = 7%.
Show how the rule of 70 is derived. (A similar “rule of 72” uses
72 instead of 70, because 72 has more integer factors.)

25. For what x > 0 does x* = (x*)*? Give reasons for your answer.

26. a. If (Inx)/x = (In2)/2, must x = 2?2

b. If (Inx)/x = —2In2, must x = 1/2?
Give reasons for your answers.

27. The quotient (log,x)/(log,x) has a constant value. What value?
Give reasons for your answer.

28. log, (2) vs. log,(x) How does f(x) = log,(2) compare with

g(x) = log, (x)? Here is one way to find out.

a. Use the equation log,b = (Inb)/(Ina) to express f(x) and
g(x) in terms of natural logarithms.

b. Graph f and g together. Comment on the behavior of f in
relation to the signs and values of g.

Chapterm Technology Application Projects

An Overview of Mathematica

An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

Mathematica/Maple Module:

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.



Limits and Continuity

OVERVIEW Mathematicians of the seventeenth century were keenly interested in the
study of motion for objects on or near the earth and the motion of planets and stars. This
study involved both the speed of the object and its direction of motion at any instant, and
they knew the direction at a given instant was along a line tangent to the path of motion.
The concept of a limit is fundamental to finding the velocity of a moving object and the
tangent to a curve. In this chapter we develop the limit, first intuitively and then formally.
We use limits to describe the way a function varies. Some functions vary continuously;
small changes in x produce only small changes in f(x). Other functions can have values
that jump, vary erratically, or tend to increase or decrease without bound. The notion of
limit gives a precise way to distinguish between these behaviors.

2 . 1 Rates of Change and Tangents to Curves

HISTORICAL BIOGRAPHY *
Galileo Galilei

(1564-1642)

Calculus is a tool that helps us understand how a change in one quantity is related to a
change in another. How does the speed of a falling object change as a function of time?
How does the level of water in a barrel change as a function of the amount of liquid poured
into it? We see change occurring in nearly everything we observe in the world and universe,
and powerful modern instruments help us see more and more. In this section we introduce
the ideas of average and instantaneous rates of change, and show that they are closely
related to the slope of a curve at a point P on the curve. We give precise developments of
these important concepts in the next chapter, but for now we use an informal approach so
you will see how they lead naturally to the main idea of this chapter, the limit. The idea of
a limit plays a foundational role throughout calculus.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not
moving) near the surface of the earth and allowed to fall freely will fall a distance proportional
to the square of the time it has been falling. This type of motion is called free fall. It assumes
negligible air resistance to slow the object down, and that gravity is the only force acting on
the falling object. If y denotes the distance fallen in feet after # seconds, then Galileo’s law is

y = 1672,
where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the
constant is 4.9.)
A moving object’s average speed during an interval of time is found by dividing the

distance covered by the time elapsed. The unit of measure is length per unit time: kilome-
ters per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.

*To learn more about the historical figures mentioned in the text and the development of many major
elements and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in
distance, Ay, divided by the length of the time interval, Az. (Increments like Ay and At
are reviewed in Appendix 3, and pronounced “delta y” and “delta ¢.”) Measuring distance
in feet and time in seconds, we have the following calculations:

| Ay 1622 — 1607 _ . g
(a) For the first 2 sec: A 2-0 * 32@
Ay 1612 — 16(1)*

(b) From sec 1 to sec 2: A 21 T 48@ |

We want a way to determine the speed of a falling object at a single instant £, instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at £,.
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2 Find the speed of the falling rock in Example 1 at t = 1 and ¢ = 2sec.

Solution  We can calculate the average speed of the rock over a time interval [ #, t, + h],
having length At = h, as

Ay 16([0 + h)z - 16t02
A h : (D

We cannot use this formula to calculate the “instantaneous” speed at the exact moment %,
by simply substituting &z = 0, because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at f, = 1 and #, = 2.
When we do so, by taking smaller and smaller values of /&, we see a pattern (Table 2.1).

TABLE 2.1 Average speeds over short time intervals [ fy, {y + h]

A d Ai . 16([0 + h)2 - 16[02

verage speed: = = n

Length of Average speed over Average speed over
time interval interval of length & interval of length &
h starting at f, = 1 starting at f, = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 64.16
0.001 32.016 64.016
0.0001 32.0016 64.0016

The average speed on intervals starting at #, = 1 seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft /sec at #, = 1sec. Let’s confirm this algebraically.



Secant

0 X1 X2

FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x;, x,].

FIGURE 2.2 L is tangent to the
circle at P if it passes through P
perpendicular to radius OP.
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If we set #; = 1 and then expand the numerator in Equation (1) and simplify, we find
that

Ay 16(1 + b2 = 16(12  16(1 + 2h + K) — 16
At h N h
_ 32k + 16/
h

= 32 + 16h.

For values of 4 different from 0, the expressions on the right and left are equivalent and the
average speed is 32 + 16h ft/sec. We can now see why the average speed has the limiting
value 32 + 16(0) = 32 ft/sec as h approaches 0.

Similarly, setting #; = 2 in Equation (1), the procedure yields

& 64+ 16n

At
for values of & different from 0. As & gets closer and closer to O, the average speed has the
limiting value 64 ft /sec when £, = 2sec, as suggested by Table 2.1. |

The average speed of a falling object is an example of a more general idea which we
discuss next.

Average Rates of Change and Secant Lines

Given any function y = f(x), we calculate the average rate of change of y with respect to
x over the interval [x;, x,] by dividing the change in the value of y, Ay = f(x,) — f(x)),
by the length Ax = x, — x; = h of the interval over which the change occurs. (We use
the symbol & for Ax to simplify the notation here and later on.)

DEFINITION The average rate of change of y = f(x) with respect to x over the
interval [x;, x,] is

Ay _ fGo) = fGo) _ G+ h) = fn)

Ax X2 — X h

h # 0.

Geometrically, the rate of change of f over [x, x,] is the slope of the line through the
points P(x;, f(x;)) and Q(x,, f(x,)) (Figure 2.1). In geometry, a line joining two points of a
curve is a secant to the curve. Thus, the average rate of change of f from x; to x, is identi-
cal with the slope of secant PQ. Let’s consider what happens as the point Q approaches the
point P along the curve, so the length A of the interval over which the change occurs
approaches zero. We will see that this procedure leads to defining the slope of a curve at a
point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it
rises or falls—its rate of change as a linear function. But what is meant by the slope of a
curve at a point P on the curve? If there is a tangent line to the curve at P—a line that just
touches the curve like the tangent to a circle—it would be reasonable to identify the slope
of the tangent as the slope of the curve at P. So we need a precise meaning for the tangent
at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L
passes through P perpendicular to the radius at P (Figure 2.2). Such a line just touches the
circle. But what does it mean to say that a line L is tangent to some other curve C at a point P?
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HISTORICAL BIOGRAPHY
Pierre de Fermat

(1601-1665)

To define tangency for general curves, we need an approach that takes into account
the behavior of the secants through P and nearby points Q as Q moves toward P along the
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limiting value of the secant slope as Q approaches P along the curve.
(We clarity the limit idea in the next section.)

3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2.
The next example illustrates the geometric idea for the tangent to a curve.

Secants
\

~—
0

Tangen’t/
Secants /

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of
the secant slopes as Q — P from either side.

EXAMPLE 3 Find the slope of the parabola y = x? at the point P(2, 4). Write an
equation for the tangent to the parabola at this point.

Solution  We begin with a secant line through P(2,4) and Q2 + h, (2 + h)?) nearby.
We then write an expression for the slope of the secant PQ and investigate what happens to
the slope as Q approaches P along the curve:

Secantsloe=ﬂ=(2+h)2_22=h2+4h+4—4
p Ax h h

_ R+ 4h
h

If h > 0, then Q lies above and to the right of P, as in Figure 2.4. If 7 < 0, then Q lies to the
left of P (not shown). In either case, as Q approaches P along the curve, & approaches zero
and the secant slope 4 + 4 approaches 4. We take 4 to be the parabola’s slope at P.

—h+ 4.

Q+h>—4_

Secant slope is h+ 4.

—— Tangent slope = 4

NOT TO SCALE

FIGURE 2.4 Finding the slope of the parabola y = x? at the point P(2, 4) as
the limit of secant slopes (Example 3).
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The tangent to the parabola at P is the line through P with slope 4:
y=4+4x — 2) Point-slope equation
y=4x — 4. |

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 are
called instantaneous rates of change. Instantaneous rates and slopes of tangent lines are
closely connected, as we see in the following examples.

EXAMPLE 4  Figure 2.5 shows how a population p of fruit flies (Drosophila) grew
in a 50-day experiment. The number of flies was counted at regular intervals, the counted
values plotted with respect to time 7, and the points joined by a smooth curve (colored blue
in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by 340 — 150 = 190 in 45 — 23 = 22 days. The average rate of change
of the population from day 23 to day 45 was

Ap _ 340 — 150 _ 190 :
Average rate of change: ArC 45-23 2 8.6 flies /day.

350
300
250
200
150
100

50

0(45, 340)

Ap= 190

P23, 150) day

Number of flies

0 10 20 30 40 50
Time (days)

FIGURE 2.5 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line (Example 4).

This average is the slope of the secant through the points P and Q on the graph in
Figure 2.5. u

The average rate of change from day 23 to day 45 calculated in Example 4 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question.

EXAMPLE 5 How fast was the number of flies in the population of Example 4 grow-
ing on day 23?

Solution  To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by
calculating the slopes of secants from P to Q, for a sequence of points Q approaching P
along the curve (Figure 2.6).
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Slope of PQ = Ap/At B(35, 350) <
0 (flies / day) 350 :
45, 340
45,340 30130 _ g6 g nl
(45, 340) 4523 & £ 250
=]
_ = 200
(40, 330) H ~ 10.6 ié 50 P(23. 150)
Z
310 = 150 _ 100
(35, 310) 33— ~ 133 w
(30, 265) 25 =150~ 164 0 AT R R R R

A(14,0) Time (days)

FIGURE 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the #-coordinate
of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher as ¢
continued on toward 23. Geometrically, the secants rotate counterclockwise about P and
seem to approach the red tangent line in the figure. Since the line appears to pass through
the points (14, 0) and (35, 350), it has slope

350 — 0 _ . .
35— 14" 16.7 flies /day (approximately).
On day 23 the population was increasing at a rate of about 16.7 flies /day. |

The instantaneous rates in Example 2 were found to be the values of the average
speeds, or average rates of change, as the time interval of length & approached 0. That is,
the instantaneous rate is the value the average rate approaches as the length / of the inter-
val over which the change occurs approaches zero. The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of the
tangent line as the independent variable approaches a fixed value. In Example 2, the inde-
pendent variable ¢ approached the values = 1 and # = 2. In Example 3, the independent
variable x approached the value x = 2. So we see that instantaneous rates and slopes of
tangent lines are closely connected. We investigate this connection thoroughly in the next
chapter, but to do so we need the concept of a limit.

Exercises m

Average Rates of Change 5. RO) = V46 + 1, [0,2]
In Exercises 1-6, find the average rate of change of the function over 5 )
6. P(6) = 0° — 46% + 56; [1,2]

the given interval or intervals.

Lf)=x+1 Slope of a Curve at a Point
a [23] b [~1,1] In Exercises 7-14, use the method in Example 3 to find (a) the slope
’ 5 ’ of the curve at the given point P, and (b) an equation of the tangent
2. glx) =x" — 2x line at P.
a. [1,3] b. [-2,4] 7.y=x*=35, P2,-1
3. h(t) = cott 8. y=7-x P23
a. [m/4,3m/4] b. [7/6,m/2] 9. y=x>—2x -3, PQ,-3)
4. g(f) =2 + cost 10. y = x> — 4x, P(1,-3)
a. [0, 7] b. [—m 7] 1. y =% P(2,8)



12. y =2 — X3,
13. y = — 12x, P(1,—11)
14. y=x> -3+ 4, P2,0)

P(1,1)

Instantaneous Rates of Change
15. Speed of a car The accompanying figure shows the time-to-

distance graph for a sports car accelerating from a standstill.

N

650
600

500 Q7

400

300

Distance (m)

200

100 ,/

0 5 10 15
Elapsed time (sec)
a. Estimate the slopes of secants PQ;, PQ,, PQ;, and PQ,,
arranging them in order in a table like the one in Figure 2.6.
What are the appropriate units for these slopes?

t
20

b. Then estimate the car’s speed at time ¢ = 20 sec.

16. The accompanying figure shows the plot of distance fallen versus

time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a. Estimate the slopes of the secants PQ,, PQ,, PQs, and PQ,,
arranging them in a table like the one in Figure 2.6.

b. About how fast was the object going when it hit the surface?
y

80 P
[on

93
(05}

60

40

20 0

Distance fallen (m)

t

0 5 10
Elapsed time (sec)

17. The profits of a small company for each of the first five years of

its operation are given in the following table:

Year Profit in $1000s
2010 6
2011 27
2012 62
2013 111
2014 174

a. Plot points representing the profit as a function of year, and
join them by as smooth a curve as you can.

18.

19.

21.

65

2.1 Rates of Change and Tangents to Curves

b. What is the average rate of increase of the profits between
2012 and 20147

¢. Use your graph to estimate the rate at which the profits were
changing in 2012.

Make a table of values for the function F(x) = (x + 2)/(x — 2)
atthe points x = 1.2,x = 11/10,x = 101/100, x = 1001/1000,
x = 10001/10000, and x = 1.

a. Find the average rate of change of F(x) over the intervals
[1,x] foreach x # 1 in your table.

b. Extending the table if necessary, try to determine the rate of
change of F(x) at x = 1.

Let g(x) = Vx for x = 0.

a. Find the average rate of change of g(x) with respect to x over
the intervals [1,2], [1,1.5] and [1,1 + &].

b. Make a table of values of the average rate of change of g with
respect to x over the interval [ 1,1 + i ] for some values of &
approaching zero, say & = 0.1, 0.01, 0.001, 0.0001, 0.00001,
and 0.000001.

c. What does your table indicate is the rate of change of g(x)
with respect to x at x = 1?

d. Calculate the limit as & approaches zero of the average rate of
change of g(x) with respect to x over the interval [ 1, 1 + & ].

. Let f(r) = 1/t fort # 0.

a. Find the average rate of change of f with respect to ¢ over the
intervals (i) fromr = 2 to ¢t = 3, and (ii) fromt = 2tot = T.

b. Make a table of values of the average rate of change of f with
respect to ¢ over the interval [2, T], for some values of T
approaching 2, say 7T = 2.1,2.01,2.001, 2.0001, 2.00001,
and 2.000001.

c¢. What does your table indicate is the rate of change of f with
respecttoratt = 27

d. Calculate the limit as 7 approaches 2 of the average rate of
change of f with respect to 7 over the interval from 2 to 7. You
will have to do some algebra before you can substitute 7 = 2.

The accompanying graph shows the total distance s traveled by a
bicyclist after 7 hours.

S

40
30
20

10

Distance traveled (mi)

0 1 2 3 4
Elapsed time (hr)

a. Estimate the bicyclist’s average speed over the time intervals
[0,1],[1,2.5],and [2.5,3.5].

b. Estimate the bicyclist’s instantaneous speed at the times ¢ = %,
t=2,and t = 3.

c. Estimate the bicyclist’s maximum speed and the specific time
at which it occurs.
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22. The accompanying graph shows the total amount of gasoline A in a. Estimate the average rate of gasoline consumption over the
the gas tank of an automobile after being driven for 7 days. time intervals [0,3], [0,5],and [7,10].
A b. Estimate the instantaneous rate of gasoline consumption at
16 thetimest = 1,¢t = 4,and r = 8.
E c. Estimate the maximum rate of gasoline consumption and the
g 12 specific time at which it occurs.
o
£ s
en
£
=
=
Q
~

0 1 2 3 4 5 6 7 8 9 10

Elapsed time (days)

22 Limit of a Function and Limit Laws

HISTORICAL ESSAY
Limits

y=x+1

FIGURE 2.7 The graph of f is
identical with the line y = x + 1
except at x = 1, where f is not
defined (Example 1).

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of /imit and
show how we can calculate the values of limits. A precise definition is presented in the
next section.

Limits of Function Values

Frequently when studying a function y = f(x), we find ourselves interested in the func-
tion’s behavior near a particular point ¢, but not at c. This might be the case, for instance,
if ¢ is an irrational number, like 7 or V2, whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situ-
ation occurs when trying to evaluate a function at ¢ leads to division by zero, which is
undefined. We encountered this last circumstance when seeking the instantaneous rate of
change in y by considering the quotient function Ay/h for h closer and closer to zero.
Here’s a specific example in which we explore numerically how a function behaves near a
particular point at which we cannot directly evaluate the function.

EXAMPLE 1 How does the function

x2—1
x—1

fx) =
behave near x = 1?

Solution The given formula defines f for all real numbers x except x = 1 (we cannot
divide by zero). For any x # 1, we can simplify the formula by factoring the numerator
and canceling common factors:

x—Dx+1 _

x+1 for x # 1.
x—1

fe) =
The graph of f is the line y = x + 1 with the point (1, 2) removed. This removed point is
shown as a “hole” in Figure 2.7. Even though f(1) is not defined, it is clear that we can make
the value of f(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2). |



TABLE 2.2 As x gets closer to
1, f(x) gets closer to 2.

_x*-1
x fo) ="
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
1.000001 2.000001
y
y=x
o] S——
}
|
. X
C
(a) Identity function
y
k _yTk
*
1
|
| X
0 c

(b) Constant function

FIGURE 2.9 The functions in
Example 3 have limits at all points c.
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Generalizing the idea illustrated in Example 1, suppose f(x) is defined on an open
interval about ¢, except possibly at c itself. If f(x) is arbitrarily close to the number L (as
close to L as we like) for all x sufficiently close to ¢, we say that f approaches the limit L
as x approaches c, and write

lim f(x) = L,
xX—>c
which is read “the limit of f(x) as x approaches c is L.” For instance, in Example 1 we
would say that f(x) approaches the limit 2 as x approaches 1, and write
2

. _ oxt— 1
;E)r}f(x) =2, or ;Eﬂx—l

= 2.

Essentially, the definition says that the values of f(x) are close to the number L whenever x
is close to ¢ (on either side of ¢).

Our definition here is “informal” because phrases like arbitrarily close and sufficiently close
are imprecise; their meaning depends on the context. (To a machinist manufacturing a piston,
close may mean within a few thousandths of an inch. To an astronomer studying distant galaxies,
close may mean within a few thousand light-years.) Nevertheless, the definition is clear enough to
enable us to recognize and evaluate limits of many specific functions. We will need the precise
definition given in Section 2.3, however, when we set out to prove theorems about limits or study
complicated functions. Here are several more examples exploring the idea of limits.

EXAMPLE 2 The limit value of a function does not depend on how the function
is defined at the point being approached. Consider the three functions in Figure 2.8. The
function f has limit 2 as x — 1 even though f is not defined at x = 1. The function g has
limit 2 as x— 1 even though 2 # g(1). The function % is the only one of the three
functions in Figure 2.8 whose limit as x — 1 equals its value at x = 1. For h, we have
lim,,, h(x) = h(1). This equality of limit and function value is of special importance, and
we return to it in Section 2.5. |

/
A1 o e 10 A o e

xX2=1

s X
@ fi) =+ (b) g(}f)=J[x1 (© h(x)=x+1

2 _
x—1
1, x=1

FIGURE 2.8 The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only Ah(x)
has the same function value as its limit at x = 1 (Example 2).

EXAMPLE 3
(a) If f is the identity function f(x) = x, then for any value of ¢ (Figure 2.9a),

lim f(x) = limx = c.

x—>c Xx—c

(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of ¢ (Figure 2.9b),

lim f(x) = lim k = k.
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For instances of each of these rules we have
ling x=3 and 1in_17 @) = lin% “4) = 4.

We prove these rules in Example 3 in Section 2.3. |

A function may not have a limit at a particular point. Some ways that limits can fail to
exist are illustrated in Figure 2.10 and described in the next example.

Y= 0, x<0
1, x=0

0, x=0
y= 1
U sm;,x>0

(a) Unit step function U(x) (b) g(x) (©) f(x)

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

EXAMPLE 4  Discuss the behavior of the following functions, explaining why they
have no limit as x — 0.

@ U {0, x<O0
x =
a 1, x=0
l, x#0
(b) glx) =
0, x=20
0, x=0
(© flx)= .
sin;, x>0
Solution

(a) It jumps: The unit step function U(x) has no limit as x — 0 because its values jump
at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive
values of x arbitrarily close to zero, U(x) = 1. There is no single value L approached
by U(x) as x — 0 (Figure 2.10a).

(b) It grows too “large” to have a limit: g(x) has no limit as x — 0 because the values of
g grow arbitrarily large in absolute value as x — 0 and do not stay close to any fixed
real number (Figure 2.10b). We say the function is not bounded.

(¢) It oscillates too much to have a limit: f(x) has no limit as x — 0 because the func-
tion’s values oscillate between +1 and —1 in every open interval containing 0. The
values do not stay close to any one number as x — 0 (Figure 2.10c). |
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The Limit Laws

To calculate limits of functions that are arithmetic combinations of functions having
known limits, we can use several fundamental rules.

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and
ll_rg fx) =1L and l1_)nl g(x) = M, then
1. Sum Rule: )lci_)ni(f(x) +tgkx) =L+ M
2. Difference Rule: )lci_)ni(f(x) —gx)=L—-M
3. Constant Multiple Rule: )lci—{%(k f(x)) = k-L
4. Product Rule: ;i_)nl(f(x) cgx) =L-M
5. Quotient Rule: ;Lnl% = ]l%’ M # 0
6. Power Rule: )lcl_rg[ f(x)]" = L", n apositive integer
7. Root Rule: )161_)rri V() = VL = LY, n apositive integer
(If n is even, we assume that )lri_r)rz_f(x) =L>0)

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product
is the product of the limits; the limit of a quotient is the quotient of the limits (provided
that the limit of the denominator is not 0); the limit of a positive integer power (or root) of
a function is the integer power (or root) of the limit (provided that the root of the limit is a
real number).

It is reasonable that the properties in Theorem 1 are true (although these intuitive
arguments do not constitute proofs). If x is sufficiently close to ¢, then f(x) is close to L
and g(x) is close to M, from our informal definition of a limit. It is then reasonable that
f(x) + g(x) is close to L + M; f(x) — g(x) is close to L — M; kf(x) is close to kL;
f(x)g(x) is close to LM; and f(x)/g(x) is close to L/M if M is not zero. We prove the Sum
Rule in Section 2.3, based on a precise definition of limit. Rules 2-5 are proved in Appen-
dix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced
texts. The Sum, Difference, and Product Rules can be extended to any number of func-
tions, not just two.

EXAMPLE 5 Use the observations lim,_,. k = k and lim,_,. x = ¢ (Example 3) and
the fundamental rules of limits to find the following limits.

(a) 1im(x3 + 4x2 — 3)

i o il |
b) lim————
()xl—l;r: x2+5

(¢ lim V4x? -3

x—=2
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Identifying Common Factors

It can be shown that if Q(x) is a poly-
nomial and Q(c) = 0, then (x — ¢) is
a factor of Q(x). Thus, if the numerator
and denominator of a rational function
of x are both zero at x = ¢, they have
(x — ¢) as a common factor.

-

Solution
(@ lim(x® + 42> — 3) =
xX—>c¢

lim 3
xX—>c

m x3 + lim 4}C2 - Sum and Difference Rules
—c

li

x—c X
=3 +42 -3 Power and Multiple Rules
lim(x* + 22 — 1

X+ -1 ( )

. —>C
(b) lim 2 =1 C. 5 Quotient Rule
x—c x>+ 5 hm(x + 5)
x—c
lim x* + lim x> — lim 1
x—c x—c x—c L
= ; 5 N Sum and Difference Rules
lim x* + lim 5
x—c x—>c
A+ -1
=5 < Power or Product Rule
cc+5
(© lim V4x* — 3 = \V lim (4% — 3) Root Rule with 7 = 2
x—>=2 x—>=2
= \/lim 4x%2 — lim 3 Difference Rule
x—>2 x—>2

T T
=VI16 -3
SAVE]

Product and Multiple Rules

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions.
To evaluate the limit of a polynomial function as x approaches ¢, merely substitute ¢ for x
in the formula for the function. To evaluate the limit of a rational function as x approaches
a point ¢ at which the denominator is not zero, substitute ¢ for x in the formula for the

function. (See Examples 5a and 5b.) We state these results formally as theorems.

THEOREM 2—Limits of Polynomials
If P(x) = a,x" + a,_;x"" ' + -+ + q,, then

lim P(x) = P(c) = a,c" + a, "'+ -+ + a,
xX—c

THEOREM 3—Limits of Rational Functions
If P(x) and Q(x) are polynomials and Q(c) # O, then

P(x) _ P(c)

Im 5w ~ 00

EXAMPLE 6 The following calculation illustrates Theorems 2 and 3:
B+ 4a?-3 P +4-DP=3 9
lim = =-=0
a1 x*+5 —D*+5 6

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and
denominator may reduce the fraction to one whose denominator is no longer zero at c. If

this happens, we can find the limit by substitution in the simplified fraction.



\—'\ of 1
(b)

FIGURE 2.11 The graph of

fx) = (x> +x—-2)/(x* = x) in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except
at x = 1, where f is undefined. The
functions have the same limit as x — 1
(Example 7).
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EXAMPLE 7 Evaluate

L X2+ x—-2
lim=—————.

x—1 X — X
Solution We cannot substitute x = 1 because it makes the denominator zero. We test
the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x — 1) in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the
same values as the original for x # 1:

PAx—2_ G=-D&x+2) x+2
x2—x x(x — 1) X

ifx # 1.

Using the simpler fraction, we find the limit of these values as x — 1 by Theorem 3:

See Figure 2.11. |

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem 1 because the limit of the denominator
is zero, we can try using a calculator or computer to guess the limit numerically as x gets
closer and closer to c. We used this approach in Example 1, but calculators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there. Usually the problem is associated with round-
ing errors, as we now illustrate.

Vx2 + 100 — 10

EXAMPLE 8 Estimate the value of lim >

x—0 X

Solution  Table 2.3 lists values of the function obtained on a calculator for several points
approaching x = 0. As x approaches 0 through the points =1, 0.5, £0.10, and £0.01,
the function seems to approach the number 0.05.

As we take even smaller values of x, =0.0005, £0.0001, +0.00001, and £ 0.000001,
the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next

example. |
A/ y2 _
TABLE 2.3 Computed values of f(x) = X2+ )1(20 10 near x =0
x f(x)
+1 0.049876
+0.5 0.049969
hes 0.05?
+0.1 0.049999 [ APProacies
+0.01 0.050000
+0.0005 0.050000
+0.0001 0.000000 approaches 07
+0.00001  0.000000 [ PP :
+0.000001 0.000000
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\
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0 c

FIGURE 2.12 The graph of f is sand-
wiched between the graphs of g and h.

Using a computer or calculator may give ambiguous results, as in the last example.
The calculator could not keep track of enough digits to avoid rounding errors in computing
the values of f(x) when x is very small. We cannot substitute x = 0 in the problem, and the
numerator and denominator have no obvious common factors (as they did in Example 7).
Sometimes, however, we can create a common factor algebraically.

EXAMPLE 9 Evaluate
Vx2 + 100 — 10

lim 5

x—0 X

Solution  This is the limit we considered in Example 8. We can create a common factor
by multiplying both numerator and denominator by the conjugate radical expression

Vx? + 100 + 10 (obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

Va2 4100 — 10 _ V? 4+ 100 — 10 Vx> + 100 + 10
x? x? VX2 + 100 + 10

x2 4+ 100 — 100
2(Vx2 + 100 + 10)

2

x
X*(Vx* + 100 + 10)

Common factor x2

Cancel x* for x # 0.

B 1
V2 + 100 + 10

Therefore,

g VA2 100 = 10 _ 1
=0 x? =02 4+ 100 + 10

Denominator not 0 at

x = 0; substitute.

_ 1
V0% + 100 + 10

-1 _
=30~ 0.0s.
This calculation provides the correct answer, in contrast to the ambiguous computer
results in Example 8. |

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with
the aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of calculus (illustrated in Section 4.5). The next theorems give helpful
tools by using function comparisons.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich
Theorem because it refers to a function f whose values are sandwiched between the val-
ues of two other functions g and 4 that have the same limit L at a point c¢. Being trapped
between the values of two functions that approach L, the values of f must also approach L
(Figure 2.12). You will find a proof in Appendix 4.



1 1 x
-1 0 1

FIGURE 2.13 Any function u(x)
whose graph lies in the region between
y=1+@*/2andy =1 — (x*/4)
has limit 1 as x — 0 (Example 10).

y
y =16l
s y =sinf
A 0
-7 P
—1F y =16

(b)

FIGURE 2.14 The Sandwich Theorem
confirms the limits in Example 11.
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THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all x in some open interval containing c, except possibly at x = ¢ itself. Suppose
also that

lim g(x) = lim h(x) = L.

Then lim,_, f(x) = L.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10 Given that
Y cum=1+%  forallx # 0
1 u(x) 5 or all x s

find lim,_,( u(x), no matter how complicated u is.

Solution  Since

lin(l)(l - (x%/4)) =1 and lin%)(l + (x%/2)) =1,
the Sandwich Theorem implies that lim,_,j u(x) = 1 (Figure 2.13). |
EXAMPLE 11 The Sandwich Theorem helps us establish several important limit rules:

(a) limsin® =0 (b) lim cosf =1
60 6—0
(¢) For any function f, lim |f(x)| = 0 implies lim f(x) = 0.

Solution
(a) In Section 1.3 we established that —‘0‘ = sinf = ]9\ for all 0 (see Figure 2.14a).
Since limy_(—[0|) = limy_ |8 = 0, we have

limsin @ = 0.
6—0
(b) From Section 1.3, 0 = 1 — cos § =< |6]| for all 6 (see Figure 2.14b), and we have
limy_o (1 — cos8) = 0 or
limcosf = 1.
6—0
(¢) Since —|f(x)| = f(x) = [f(x)| and —|f(x)| and |f(x)| have limit 0 as x—c, it
follows that lim,_,. f(x) = 0. |

Another important property of limits is given by the next theorem. A proof is given in
the next section.

THEOREM 5 If f(x) = g(x) for all x in some open interval containing ¢, except
possibly at x = c itself, and the limits of f and g both exist as x approaches c,
then

lim f(x) < lim g(x).

Caution The assertion resulting from replacing the less than or equal to (=) inequality by
the strict less than (<C) inequality in Theorem 5 is false. Figure 2.14a shows that for 6 # 0,
—16] < sin® < ||.So limy_sin @ = 0 = limy_ |6/, not limy_, sin & < limy— |6)].
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Exercises m

Limits from Graphs
1. For the function g(x) graphed here, find the following limits or
explain why they do not exist.

a. lirr} g(x) b. lirr% gx) e 1in§ gx) d. lirgl5 g(x)

2. For the function f(#) graphed here, find the following limits or
explain why they do not exist.

a. lim f() b. lim f¢) e limf() d. lm £
t—>-2 t——1 t—0 t—>—0.5

s = f(1)
A 1 | t
I\ —1 0 1

3. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

a. }E)I(l) f(x) exists.
. igr(l) fx) =0
lim f(x) = 1
. igr} fx) =1
e. lgr{ fx) =20

lim f(x) exists at every point ¢ in (—1, 1).
x—c

a o =

ad

g. lirr} f(x) does not exist.
x—

4. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

a. lir‘g f(x) does not exist.
b. lirr; fx)y=2

c. lir‘r} f(x) does not exist.
x—

d. lim f(x) exists at every point ¢ in (—1, 1).
xX—c

e. lim f(x) exists at every point ¢ in (1, 3).
X—c¢

y=f)

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

5. lim 6. lim
x—0 |x| —1x — 1

7. Suppose that a function f(x) is defined for all real values of x
except x = ¢. Can anything be said about the existence of
lim,_,. f(x)? Give reasons for your answer.

8. Suppose that a function f(x) is defined for all x in [—1, 1]. Can
anything be said about the existence of lim,_,, f(x)? Give reasons
for your answer.

9. If lim,—,; f(x) = 5, must f be defined at x = 1? If it is, must
f(1) = 5?7 Can we conclude anything about the values of f at
x = 1?7 Explain.

10. If f(1) =5, must lim,—; f(x) exist? If it does, then must
lim,—,; f(x) = 5? Can we conclude anything about lim,_,; f(x)?
Explain.

Calculating Limits
Find the limits in Exercises 11-22.

11. lin}3 (x2 — 13) 12. lirr;(*x2 +5x —2)
13. 1iné 8t — 51t —17) 14. limz()c3 — 2>+ 4x + 8)
— T —
. 2x+5 .
15, lim S 16. lim (8 = 3925 = 1)
. . y+2
17. lim 4x(3x + 4)? 18. lim ———(——
x——1/2 =2y + 5y + 6
19. lim3 (5 — y)*? 20. lin;l1 V2 — 10
y—> =3 77—
21 lim—— 2. fim Y t4 -2
=030+ 1 + 1 h=0 h
Limits of quotients Find the limits in Exercises 23-42.
23, lim > 24, lim 3
x—=5x° — 25 x—-3x" + 4x + 3
. x>+ 3x—10 . x> —Tx+ 10
25, lim == 2. M=
2 _ 2
27, lim™ 1= 2 28, im 2
=1 7 =1 ==t —t—=2
— _ 5 3 + 8 2
29, lim 24 30. lim —>———
=2 x5 + 2x? y—03y* — 16y?



1

x1—1 x — 1 + X Jlr 1
31. lim 32, lim>——=**1
x—1 X — 1 x—0 X
4 _ 3 _
33, fim X 1 34, lim Y8
u—1 M3 — 1 v—2 'U4 - 16
— 42
35. 1imM 36. lim X — X
x—9 X — 9 x40 — \/;
_ A /2 _
37, fim——~— L 38, lim YX T8-3
=>I\/x+3 -2 x—>—1 x + 1
/2 —
=2 x =2 =2\ +5 -3
_ 2 _ —
41, lim 2 - YX =S 4. lim— %

=45 — V2 + 9
Limits with trigonometric functions Find the limits in Exercises
43-50.

x—-3 x + 3

43. lln(l) (2sinx — 1) 44. lim/4 sin® x
45. limsec x 46. lim tanx
x—0 x—m/3
.1+ x+sinx . _
47. }gr(l) T Soosx 48. 11% (x 1)(2 — cosx)

49. lim Vx + 4cos(x + ) 50. lim V7 + sec®x

x—>—1 x—0

Using Limit Rules

51. Suppose lim,,, f(x) =1 and lim,,g(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

2f(0) — gx)  IMCS) — g)

XI—I)% (f(x) + 7)2/3 - lﬂ%(f(x) + 7)2/3 (a)
lim 2f(x) — lim g(x)
N 23 (b)
(ligg)(f(x) + 7))
2 lim f(x) — lim g(x)
=7 = ©

- 2/3
(lim f(x) + lim 7)
x—0 x—0

_ @M -5 7

(1+7723 4

52, Let lim,, h(x) = 5,1im,—; p(x) = 1, and lim,, r(x) = 2.
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

0@ = ) lim (p()(4 — r(x))

\/ lirr} Sh(x)

= (b)
(@} p(X))(liLnl (4 - V(X)))

A /SIiLr} h(x)
= : (©
(lin} p(x))(lin} 4 — lirr} r(x))
V()5S 5

T(h@E -2 2
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53. Suppose lim,_,. f(x) = 5 and lim,,. g(x) = —2. Find
a. lim fx)gx) b. lim 2f(x)g(x)
. F)
d. lim ————
o [~ 8@
54. Suppose lim,_,4 f(x) = 0 and lim,_,, g(x) = —3. Find
a. lin}‘(g(x) + 3) b. lin}t xf(x)

¢. lim(f(x) + 3g(x))

. 8(x)
d-lim o — 1

55. Suppose lim,_,, f(x) = 7 and lim,_,, g(x) = —3. Find
a. }i_r)r})(f(x) + g(x)) b. }E}}, fx) - g(x)
c. lin}) 4g(x) d. limb f/gx)

56. Suppose that lim,, , p(x) = 4,lim,_, , r(x) = 0, and
lim,,_, s(x) = —3. Find

a. lirgz(p(x) + r(x) + s(x))
b. l_i)rr_l2 px) - r(x) -+ s(x)
c. l_i)n_lz(—4p(x) + 5r(x))/s(x)

¢ lim (8(x))?

Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

. fx+h) = f(x)
lim———————
h—0 h

occur frequently in calculus. In Exercises 57-62, evaluate this limit
for the given value of x and function f.

57. fx)y =x% x=1

58. f(x) =x%, x=-2

59. fx) =3x—4, x=2

60. f(x)=1/x, x=-2

61. f(x) = Vx, x
62. f) = V3x+1, x=0

Il
<

Using the Sandwich Theorem

63. If V5 — 22 = f(x) = V5 — x> for—1 = x = 1, find
lim, o f(x).

64. If 2 — x* = g(x) = 2 cos x for all x, find lim,_,, g(x).

65. a. It can be shown that the inequalities

X X sin x
! 6 = 2 —2cosx
hold for all values of x close to zero. What, if anything, does
this tell you about
X sin x

lim ~—————7?
x—02 — 2cosx

Give reasons for your answer.

b. Graph y =1 — (x/6),y = (xsinx)/(2 — 2cosx), and
y = 1 together for —2 = x = 2. Comment on the behavior
of the graphs as x — 0.
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66. a.

'T/|b.
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Suppose that the inequalities

21— cosx

1
< 2 <2

N —
S

hold for values of x close to zero. (They do, as you will see in
Section 9.9.) What, if anything, does this tell you about

Jim 1= 08X

x—0 X
Give reasons for your answer.
Graph the equations y = (1/2) — (x2/24),
y = (1 — cosx)/x% and y = 1/2 together for =2 = x = 2.
Comment on the behavior of the graphs as x — 0.

Estimating Limits
You will find a graphing calculator useful for Exercises 67-76.

67. Let f(x) = (x> — 9)/(x + 3).

a.

C.

Make a table of the values of f at the points x = —3.1,
—3.01, —3.001, and so on as far as your calculator can go.
Then estimate lim,_, 3 f(x). What estimate do you arrive at
if you evaluate f at x = —2.9,—2.99, -2.999, . .. instead?

Support your conclusions in part (a) by graphing f near
¢ = —3 and using Zoom and Trace to estimate y-values on
the graph as x — —3.

Find lim,_, 3 f(x) algebraically, as in Example 7.

68. Let gx) = (22 — 2)/(x — V2).

a.

C.

Make a table of the values of g at the points x = 1.4, 1.41,
1.414, and so on through successive decimal approximations
of /2. Estimate lim, 5 g(x).

Support your conclusion in part (a) by graphing g near
c=\V2and using Zoom and Trace to estimate y-values on
the graph as x — V2.

Find lim,—,/ g(x) algebraically.

69. Let G(x) = (x + 6)/(x* + 4x — 12).

a.

C.

Make a table of the values of G at x = —5.9,—5.99, —5.999,
and so on. Then estimate lim,_, 4 G(x). What estimate do
you arrive at if you evaluate G at x = —6.1, —6.01,

—6.001, ... instead?

Support your conclusions in part (a) by graphing G and using
Zoom and Trace to estimate y-values on the graph as
x— —6.

Find lim,_, 4 G(x) algebraically.

70. Let h(x) = (x> — 2x — 3)/(x* — 4x + 3).

a.

C.

Make a table of the values of 4 at x = 2.9, 2.99, 2.999, and
so on. Then estimate lim,_,3 /#(x). What estimate do you
arrive at if you evaluate 4 at x = 3.1, 3.01, 3.001, . . .
instead?

Support your conclusions in part (a) by graphing 4 near
¢ = 3 and using Zoom and Trace to estimate y-values on the
graph as x — 3.

Find lim,_3 A(x) algebraically.

71. Let f(x) = (x> — 1)/(|x| — 1).

a.

Make tables of the values of f at values of x that approach
¢ = —1 from above and below. Then estimate lim,_, ;| f(x).

73.

74.

75.

76.

c.
. Let F(x) = (x* 4+ 3x + 2)/(2 — |x]).
a.

C.

Support your conclusion in part (a) by graphing f near
¢ = —1 and using Zoom and Trace to estimate y-values on
the graph as x — —1.

Find lim,_,_; f(x) algebraically.

Make tables of values of F at values of x that approach
¢ = —2 from above and below. Then estimate lim,_, , F(x).

Support your conclusion in part (a) by graphing F near
¢ = —2 and using Zoom and Trace to estimate y-values on
the graph as x — —2.

Find lim,_, , F(x) algebraically.

Let g(6) = (sin 0)/6.

a.

b.

Make a table of the values of g at values of 6 that approach
6y = 0 from above and below. Then estimate limy_.q g(6).

Support your conclusion in part (a) by graphing g near
90 = 0.

Let G(f) = (1 — cos 1)/t

a.

b.

Make tables of values of G at values of ¢ that approach 7, = 0
from above and below. Then estimate lim,_., G(?).

Support your conclusion in part (a) by graphing G near
to = 0.

Let f(x) = x!/07,

a.

b.

Make tables of values of f at values of x that approach ¢ = 1
from above and below. Does f appear to have a limit as
x— 17 If so, what is it? If not, why not?

Support your conclusions in part (a) by graphing f near ¢ = 1.

Let f(x) = (3* — 1)/x.

a.

Make tables of values of f at values of x that approach ¢ = 0
from above and below. Does f appear to have a limit as
x— 07 If so, what is it? If not, why not?

Support your conclusions in part (a) by graphing f near ¢ = 0.

Theory and Examples

77. If x* < f(x) = x* for x in [—1,1] and x> = f(x) =< x* for
x < —1 and x > 1, at what points ¢ do you automatically know
lim,_,. f(x)? What can you say about the value of the limit at
these points?

78.

79.

80.

Suppose that g(x) = f(x) = h(x) for all x # 2 and suppose that

lim g(x) = lim A(x) = —5.
x—2 x—2

Can we conclude anything about the values of f, g, and & at
x = 2? Could f(2) = 0?7 Could lim,_,, f(x) = 0? Give reasons
for your answers.

1 1im? ™" —  find lim £
x—4 X — 2 ’ x—4 :
If lim &;) =1, find
x—>-2 X
. . f®
a. Xlirgz fx) b. xllnlz X
81 a. I lim? > — 3 find lim £
. o o 2 5 am X).
b 1 1im? ™2 — 4, find lim £
S Y2 - Hnd i J0-



82. If nm&? = 1, find
x—0 X

a. lim f(x)

f0)

X

b. lim

x—0

83. a. Graph g(x) = xsin(1/x) to estimate lim,_,, g(x), zooming in

on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.
84. a. Graph h(x) = x*cos(1/x%) to estimate lim,_, h(x), zooming g9 |

in on the origin as necessary.
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4 _
85. lim ~ 10
—2 X — 2
3,2 _
86. lim ¥ X ~S5x—3
e (x + 1)?

V1+x-—1

87. lim ~——

x—0

88 lim’vz;g
=3V 47— 4

1 — cosx

im————

x—0 Xsinx

b. Confirm your estimate in part (a) with a proof. 90. lim 2

COMPUTER EXPLORATIONS

Graphical Estimates of Limits

x—03 — 3cosx

In Exercises 85-90, use a CAS to perform the following steps:

a. Plot the function near the point ¢ being approached.

b. From your plot guess the value of the limit.
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y
y=2x—1
Upper bound:
y=9
9
To satisfy :
this :
5
: : Lower bound:
I | y=15
I |
I |
Lyl
0 345
\ﬂ_l
Restrict
to this

FIGURE 2.15 Keeping x within 1 unit
of x = 4 will keep y within 2 units of
y = 7 (Example 1).

We now turn our attention to the precise definition of a limit. We replace vague phrases
like “gets arbitrarily close to” in the informal definition with specific conditions that can
be applied to any particular example. With a precise definition, we can avoid misunder-
standings, prove the limit properties given in the preceding section, and establish many
important limits.

To show that the limit of f(x) as x — ¢ equals the number L, we need to show that the
gap between f(x) and L can be made “as small as we choose” if x is kept “close enough”
to ¢. Let us see what this would require if we specified the size of the gap between f(x)
and L.

EXAMPLE 1 Consider the function y = 2x — 1 near x = 4. Intuitively it appears
that y is close to 7 when x is close to 4, so lim,.4,(2x — 1) = 7. However, how close to
x = 4 does x have to be so that y = 2x — 1 differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is |y — 7| < 2? To find the answer we
first express |y — 7| in terms of x:

ly =7 =J@x— 1)~ 7] = [2x — 8].

The question then becomes: what values of x satisfy the inequality |2x — 8| < 2? To find
out, we solve the inequality:

|2x — 8| <2
—2<2x—8<2
6 <2x <10
3<x<5 Solve for x.
1 <x—-4<1 Solve for x — 4.

Keeping x within 1 unit of x = 4 will keep y within 2 units of y = 7 (Figure 2.15). |
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y
L+ %/\
o f(x)
f(x) lies
Le in here
L %\/
forallx # ¢
in here
o) 15
X
——f—o—e ) —x
0 c—86 ¢ c¢+é

FIGURE 2.16 How should we define
6 > 0 so that keeping x within the interval
(¢ — 6, ¢ + ) will keep f(x) within the

. 1 1
— — L+ —=|?
interval (L 0 L 1 O)
y
L+eT
f(x) lies
L 0_f(x) in here
L—el
forallx # ¢
in here
) )
—— >
X
0 e - x

c—96 c c+é

FIGURE 2.17 The relation of § and €
in the definition of limit.

In the previous example we determined how close x must be to a particular value ¢ to
ensure that the outputs f(x) of some function lie within a prescribed interval about a limit
value L. To show that the limit of f(x) as x — c actually equals L, we must be able to show
that the gap between f(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to c.

Definition of Limit

Suppose we are watching the values of a function f(x) as x approaches ¢ (without taking
on the value of c itself). Certainly we want to be able to say that f(x) stays within one-
tenth of a unit from L as soon as x stays within some distance 6 of ¢ (Figure 2.16). But that
in itself is not enough, because as x continues on its course toward ¢, what is to prevent
f(x) from jittering about within the interval from L — (1/10) to L + (1/10) without
tending toward L?

We can be told that the error can be no more than 1/100 or 1/1000 or 1/100,000.
Each time, we find a new dé-interval about ¢ so that keeping x within that interval satisfies
the new error tolerance. And each time the possibility exists that f(x) jitters away from L
at some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents e-challenges to prove that the limit
does not exist or, more precisely, that there is room for doubt. The scholar answers every
challenge with a é-interval around c that keeps the function values within € of L.

How do we stop this seemingly endless series of challenges and responses? We can
do so by proving that for every error tolerance e that the challenger can produce, we can
present a matching distance & that keeps x “close enough” to ¢ to keep f(x) within that
e-tolerance of L (Figure 2.17). This leads us to the precise definition of a limit.

DEFINITION Let f(x) be defined on an open interval about ¢, except possibly at ¢
itself. We say that the limit of f(x) as x approaches c is the number L, and write

lim f() = L,

if, for every number € > 0, there exists a corresponding number & > 0 such
that for all x,

0<|x—c| <6 = |fo-L|<e

One way to think about the definition is to suppose we are machining a generator
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must
be satisfied with a diameter f(x) somewhere between L — € and L + €. The 6 is the mea-
sure of how accurate our control setting for x must be to guarantee this degree of accuracy
in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we may
have to adjust 6. That is, the value of §, how tight our control setting must be, depends on
the value of €, the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it
enables us to verify that a conjectured limit value is correct. The following examples show
how the definition can be used to verify limit statements for specific functions. However,
the real purpose of the definition is not to do calculations like this, but rather to prove gen-
eral theorems so that the calculation of specific limits can be simplified, such as the theo-
rems stated in the previous section.
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y=J y =1 y=i y =1
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€ = 100.000 [x—c| < 8110000 € =

EXAMPLE 2 Show that
lim (5x — 3) = 2.
x—1
Solution Setc = 1, f(x) = 5x — 3, and L = 2 in the definition of limit. For any given

€ > 0, we have to find a suitable & > 0 so that if x # 1 and x is within distance & of
¢ = 1, that is, whenever

0<|x—1] <35,
it is true that f(x) is within distance € of L = 2, so

[f) — 2] <e
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FIGURE 2.18 1If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that
| fx) — 2\ < € (Example 2).
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FIGURE 2.19 For the function

f(x) = x, we find that 0 < |x — ¢| < §
will guarantee | fx) — c| < € whenever
0 = € (Example 3a).

y
=k
k+e€ Y
k | U |
k—€
I P
I ;!
I ;!
I b
I o
| | |
I [ X
0 c—0 ¢ c+9d

FIGURE 2.20 For the function
f(x) = k, we find that |f(x) — k| < €
for any positive 6 (Example 3b).

We find 6 by working backward from the e-inequality:
|(5x —3) = 2| =[5x— 5| <e
S5x—1] <e
|x — 1] < €/5.
Thus, we can take § = €/5 (Figure 2.18). If 0 < |x — 1| < 8 = €/5, then
|5x —3) = 2| = [5x = 5| =5 |x — 1| <5(e/5) =€,

which proves that lim,,;(5x — 3) = 2.

The value of 8 = €/5 is not the only value that will make 0 < |x — 1| < & imply
|5x — 5| < €. Any smaller positive § will do as well. The definition does not ask for a
“best” positive 8, just one that will work. |

EXAMPLE 3 Prove the following results presented graphically in Section 2.2.

(a) limx =c¢

x—c

(b) limk = k (k constant)

x—c

Solution
(a) Let e > 0 be given. We must find 6 > 0 such that for all x
0<|x—c| <& implies |x—¢|<e
The implication will hold if & equals € or any smaller positive number (Figure 2.19).
This proves that lim,,. x = c.
(b) Let € > 0 be given. We must find 6 > 0 such that for all x

0<|x—c| <8 implies |k — k| <e.

Since k — k = 0, we can use any positive number for é and the implication will hold
(Figure 2.20). This proves that lim,_,. k = k. |

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about ¢ for which |f(x) — L| was less than e
was symmetric about ¢ and we could take 6 to be half the length of that interval. When
such symmetry is absent, as it usually is, we can take 6 to be the distance from c to the
interval’s nearer endpoint.

EXAMPLE 4  For the limit lim,_,sVx — 1 = 2, find a § > 0 that works for € = 1.
That is, find a § > 0 such that for all x

0<|x—5<$ = [Vx—1-2|<1.
Solution  We organize the search into two steps.

1. Solve the inequality |N/x — 1 — 2| < 1 to find an interval containing x = 5 on
which the inequality holds for all x # 5.

Vx—-1-2]<1
“1<Vx-1-2<1
1< Vx—-1<3
1<x—-1<9
2 <x<10



FIGURE 2.21 An open interval of ra-
dius 3 about x = 5 will lie inside the open
interval (2, 10).
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FIGURE 2.22 The function and inter-
vals in Example 4.
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FIGURE 2.23 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4] < e.

2.3 The Precise Definition of a Limit 81

The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5 in
this interval as well.

. Find a value of 8 > 0 to place the centered interval 5 — 6 < x < 5 + & (centered

at x = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) is 3 (Figure 2.21). If we take 6 = 3 or any smaller positive number, then the
inequality 0 < |x — 5| < & will automatically place x between 2 and 10 to make

|Vx — 1 — 2| < 1 (Figure 2.22):
IVx—1-2| <1. [

0<|x—5<3 =

How to Find Algebraically a & for a Given f, L,c,and € > 0
The process of finding a § > 0 such that for all x
0<|x—c’<8 = ‘f(x)—L\<e
can be accomplished in two steps.
1. Solve the inequality ] f&x) — L[ < € to find an open interval (a, b) contain-
ing ¢ on which the inequality holds for all x # c.

2. Find a value of 6 > 0 that places the open interval (¢ — 8, ¢ + &) centered
at c inside the interval (a, b). The inequality \ fx) — L\ < € will hold for all
x # c in this o-interval.

EXAMPLE 5

Prove that lim,_,, f(x) = 4 if

X2, x #2
Fo = {1, x = 2.

Solution  Our task is to show that given € > 0 there exists a § > 0 such that for all x

0<]x—2|<8 = ]f(x)—4‘<e.

1. Solve the inequality \ fx) — 4‘ < € to find an open interval containing x = 2 on

which the inequality holds for all x # 2.
For x # ¢ = 2, we have f(x) = x% and the inequality to solve is [x*> — 4| < e:
\xz - 4] <€
—e<x*—4<e
4—-—e<x*<4+c¢€
V4 —e<|x| <Via+e
Va—e<x<V4+e

Assumes € < 4; see below.

An open interval about x = 2
that solves the inequality

The inequality |f(x) — 4| < € holds for all x # 2 in the open interval (V4 — ¢,
\/4 + €) (Figure 2.23).

. Find a value of 6 > 0 that places the centered interval (2 — 8,2 + 8) inside the

interval (V4 — €, V4 + €).

Take & to be the distance from x = 2 to the nearer endpoint of (V4 — €, V4 + €).
In other words, take 6 = min {2 - V4 —€, V4 + € — 2}, the minimum (the
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smaller) of the two numbers 2 — V4 — € and V4 + e — 2. If § has this or any
smaller positive value, the inequality 0 < |x — 2| < § will automatically place x

between V4 — € and V4 + € to make |f(x) — 4| < €. Forall x,
0<|x—2[<8& = |fx)—4]<e

This completes the proof for € < 4.
If € = 4, then we take 6 to be the distance from x = 2 to the nearer endpoint of

the interval (0, V4 + €). In other words, take & = min {2, V4 + e — 2}. (See
Figure 2.23.) |

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as
those in the preceding examples. Rather, we appeal to general theorems about limits, in
particular the theorems of Section 2.2. The definition is used to prove these theorems
(Appendix 5). As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6 Given that lim,_,, f(x) = L and lim, . g(x) = M, prove that
lim (f(x) + g(x)) = L + M.
Solution Let € > 0 be given. We want to find a positive number & such that for all x
0<|x—c| <8 = |f() + g) — (L + M)| < e.
Regrouping terms, we get

|f(x) + g(x) — (L + M)

’(f(x) = L)+ (glx) — M)| Triangle Inequality:
|f) — L] + |gx) — M]. la + b = [a] + [p]

I\

Since lim,—,, f(x) = L, there exists a number 6, > 0 such that for all x
0<|x—rc| <8 = lfx) — L| < e/2.
Similarly, since lim,_,. g(x) = M, there exists a number 8, > 0 such that for all x
0<|x—c|] <8, = lg(x) — M| < €/2.
Let § = min {8, 5,}, the smaller of §; and §,. If 0 < |x — ¢| < §then |x — ¢| < §,,
so |f(x) — L| < €/2,and |x — ¢| < 8,, so |g(x) — M| < €/2. Therefore
[f0) + g0 = L+ M| <5+ 5=
This shows that lim,—,.(f(x) + g(x)) = L + M. [ |

Next we prove Theorem 5 of Section 2.2.

EXAMPLE 7 Given that lim,_,. f(x) = L and lim,_,, g(x) = M, and that f(x) = g(x)
for all x in an open interval containing c (except possibly c itself), prove that L = M.

Solution We use the method of proof by contradiction. Suppose, on the contrary, that
L > M. Then by the limit of a difference property in Theorem 1,

lim (g(x) = f)) =M — L.
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Therefore, for any € > 0, there exists 6 > 0 such that
[(g0) — f(x) — M — L)| <€

Since L — M > 0 by hypothesis, we take € = L — M in particular and we have a num-
ber 6 > 0 such that

[(g) = fx) =M — L)) <L—-M

whenever 0 < |x — ¢| < 8.

whenever 0 < |x — ¢| < 8.

Since @ =< |a| for any number a, we have
gx) —fx) —~M—-L)y<L—-—M whenever 0 < ]x - c[ <$é

which simplifies to

whenever 0 < |x — ¢| < 8.

g(x) < f(x)

But this contradicts f(x) = g(x). Thus the inequality L > M must be false. Therefore
L=M. |

Centering Intervals About a Point 9 10.
In Exercises 1-6, sketch the interval (a, b) on the x-axis with the 00 = /3 v
. . . . X) = X
point ¢ inside. Then find a value of 6 > 0 such that for all y o= =211
£0<|x—¢c <8 = a<x<hb. L=1 c=3
_ _ — 1 L=4
a=1, b=7 ¢c=5 5 €=y y=Vx c— o2
a=1, b=7 c¢c=2 4TI T2 |
a=-17/2, b=-1/2, ¢=-3 N o aol o YZAVEAL
S=—= I
a=-7/2, b=-1/2, ¢c=-3/2 4 Lo | I -
I I I :
a=4/9, b=4/1, c=1/2 Lo ! Lo
= 27591, b=32391, = — x 2 b
‘ ’ CeT? o e o
16 16 [ |
o
| | | x
Finding Deltas Graphically -1 261 3 341
In Exercises 7-14, use the graphs to find a & > 0 such that for all x NOTTO SCALE
0<|X—C‘<52‘f(x)—[,|<€. 11. 12.
8.
y y
=3
foy=mpxts fo) =2
c=-3 c=
L=15 L=4
€=0.15 e=1
=_3
y= 5% +3 U |
——————— 7.65 |
______ 75 4 T (| :
x N 7.35 3b-—- 1|
/ n ]
49 > [ /I I I\ x
NOT TO SCALE b 0 2
R V35
11
L1 1 X NOT TO SCALE
/=3 N\ 0
—=3.1 -29 \
NOT TO SCALE

NOT TO SCALE
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13.

Finding Deltas Algebraically
Each of Exercises 15-30 gives a
€ > (0. In each case, find an open

ity [f(x)
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14.
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function f(x) and numbers L, ¢, and
interval about ¢ on which the inequal-

— L| < € holds. Then give a value for § > 0 such that for

all x satisfying 0 < |x — ¢| < & the inequality |f(x) — L| < e

holds.

15 fo))=x+1, L=5 c=4 €=001

16. f(x) = 2x — 2, L = —06, c=-2, e = 0.02

17. fo) =Vx+1, L=1 ¢=0 e€=0.1

18. fx) =Vx, L=1/2, c¢=1/4 e=01

19. f0) =V19—x, L=3  ¢=10, e=1

20. f)) = Vx—7, L=4, ¢=23, €=

21 f) =1/x, L=1/4 c=4, €=005

22. fx)=x% L=3, c¢=V3 e=01

23. fix) = x2, L =4, c=-2, e =05

24. f(x) = 1/x, L=-1, c=-1, e =0.1

25. f(x) = x> — 5, L =11, c =4, e =1

26. f(x) = 120/x, L =235, c =24, e=1

27. fx) =mx, m>0, L=2m, c=2, €=0.03

28. f(x) = mx, m > 0, L = 3m, c=3 €e=c>0

29. f(&x) =mx + b, m >0, = (m/2) + b,
c=1/2, e=c>0

30. f(x) = mx + b, m > 0, L=m+ b, c=1,

e =0.05

Using the Formal Definition

Each of Exercises 31-36 gives a function f(x), a point ¢, and a posi-
tive number €. Find L = lim f(x). Then find a number 6 > 0 such

x—>c

that for all x

0<|x—c| <8 = l[fo) — L < e
31. f(x) =3 — 2x, c =3, e = 0.02
32. f(x) = —3x — 2, c=-1, e = 0.03
_x—4 _ _
33. f(x)—x_2, c =2, e = 0.05
XX+ 6x+5 _
Mo f0) =" 75> =-5  €=005
35. fx) = VI — 5z, c=-3, e =05
36. f(x) = 4/x, c =2, €e=04

Prove the limit statements in Exercises 37-50.

37. lirr}‘ QO—-x=5 38.

lim 3x = 7) = 2

39. lirr;\/x—5=2 40. 1111(1)\/4—x=2
. . X2, x # 1
41. lim f(x) =1 if f(x) =
x—1 2, x=1
X2 x # =2
42. 1li =4 if = ’
Jlim_ f(x) it f(x0) {], —
1 . 1 1
5.l =1 .l =
. oxX*-9 -1
45'):1223)64-37 6 46. ,lgqx—172
4 — 2x, x <1
47. li =2 if =
Xg}}f(x) it f(x) {6x—4, c=1
. _ . _J2x x<0
48. }gr(l) fx) =0 if f(x) = {x/Z, =0
. 1
49. lim xsin; = 0




50.

lim x2 sin)lc =0

x—0

Theory and Examples

51.
52.

53.

54.

55.

56.

Define what it means to say that 1iII(1) gx) = k.
x>

Prove that lim f(x) = L if and only if ;l’in}) f(h+c¢) = L.

A wrong statement about limits Show by example that the
following statement is wrong.

The number L is the limit of f(x) as x approaches ¢
if f(x) gets closer to L as x approaches c.

Explain why the function in your example does not have the
given value of L as a limit as x — c.

Another wrong statement about limits Show by example that
the following statement is wrong.

The number L is the limit of f(x) as x approaches c if, given any
€ > 0, there exists a value of x for which \ fx) — L| <e.

Explain why the function in your example does not have the
given value of L as a limit as x — c.

Grinding engine cylinders Before contracting to grind engine
cylinders to a cross-sectional area of 9 in?, you need to know how
much deviation from the ideal cylinder diameter of ¢ = 3.385 in.
you can allow and still have the area come within 0.01 in? of the
required 9 in’. To find out, you let A = 7(x/2)? and look for the
interval in which you must hold x to make |A — 9] = 0.01.
What interval do you find?

Manufacturing electrical resistors Ohm’s law for electrical
circuits like the one shown in the accompanying figure states that
V = RI. In this equation, V is a constant voltage, [ is the current
in amperes, and R is the resistance in ohms. Your firm has been
asked to supply the resistors for a circuit in which V will be 120
volts and 7is to be 5 + 0.1 amp. In what interval does R have to
lie for I to be within 0.1 amp of the value [, = 5?

i o &
+‘[ U
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When Is a Number L Not the Limit of f(x) as x— ¢?
Showing L is not a limit We can prove that lim,_,. f(x) ¥ L by
providing an € > 0 such that no possible & > 0 satisfies the condition

for all x, O<\x—c|<8 = \f(x)—L|<e.

We accomplish this for our candidate € by showing that for each
6 > 0 there exists a value of x such that

0<|x—c[ <5 and [fo) — L] = €.

Y=/

'

~
T

L—¢€
Jx)
el 0 0 O
0| c—96 c c

T
|
|
|
|
|
|
|
T
|
|
|
|
|
|
+

8

a value of x for which
0<|x—c| <8 and|f(x)—L| =€

X, x <1
57. Let f(x) =
etf®) {x+1, x>0

y=x+1

y=fx)

a. Let e = 1/2. Show that no possible 6 > 0 satisfies the fol-
lowing condition:

Forallx, 0 <|x— 1/ <8 = |[fx)—2| <1/2.
That is, for each 6 > 0 show that there is a value of x such
that

0<|x—1/ <8 and [f(x) —2| =1/2.
This will show that lim,_,; f(x) # 2.

b. Show that lim,,; f(x) # 1.
c. Show that lim,,; f(x) # 1.5.
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X2, x<?2
58. Leth(x) =93, x=2
2, x> 2.
y
4 y = h(x)
3+ °
y=2
2+ o—_
1F y—x2
L X
0 2
Show that

a. lin; h(x) # 4
b. lin; h(x) # 3

c. lim A(x) # 2
x—2

59. For the function graphed here, explain why

a. lin; fx) # 4
b. ling fx) # 4.8

c. lin; fx) #3

N

y=f)

-

24 One-Sided Limits

60. a. For the function graphed here, show that lim,_, _; g(x) # 2.

b. Does lim,_,_; g(x) appear to exist? If so, what is the value of
the limit? If not, why not?

y =3 /

| X
/—1 0

COMPUTER EXPLORATIONS
In Exercises 61-66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a. Plot the function y = f(x) near the point ¢ being approached.

b. Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

c. Using the value € = 0.2, graph the banding lines y; = L — €
and y, = L + € together with the function f near c.

d. From your graph in part (c), estimate a 6 > 0 such that for all x
0<|x—c] <9 = [fo) — L] <e

Test your estimate by plotting f, y;, and y, over the interval

0 < |x — ¢| < 8. For your viewing window use ¢ — 28 =

x=c+28and L — 2¢ =y = L + 2e. If any function val-

ues lie outside the interval [L — €, L + €], your choice of &
was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for e = 0.1, 0.05, and 0.001.

_xt -8l _ 5% 4 9x? _
61. f(x) = P c=3 62 f(x)—72x5+3x2, c=0

_sin2x o _ _ X zcosn)
63. f(x) = 3 c=0 64. f(x) = PR c=0

3 f—

65. f(x)=%, c=1

32— (Tx + DVx + 5
66. f(x) = P— , ¢=1

In this section we extend the limit concept to one-sided limits, which are limits as x
approaches the number ¢ from the left-hand side (where x < ¢) or the right-hand side

(x > ¢) only.

Approaching a Limit from One Side

To have a limit L as x approaches c, a function f must be defined on both sides of ¢ and its
values f(x) must approach L as x approaches ¢ from either side. That is, f must be defined
in some open interval about ¢, but not necessarily at c¢. Because of this, ordinary limits are

called two-sided.



FIGURE 2.24 Different right-hand and
left-hand limits at the origin.

& X

-2 0 2

FIGURE 2.26 The function

f(x) = V4 — x? has right-hand limit 0
at x = —2 and left-hand limit O at x = 2
(Example 1).
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If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function f(x) = x/ |x\ (Figure 2.24) has limit 1 as x approaches O from the right,
and limit —1 as x approaches O from the left. Since these one-sided limit values are not the
same, there is no single number that f(x) approaches as x approaches 0. So f(x) does not
have a (two-sided) limit at 0.

Intuitively, if f(x) is defined on an interval (¢, b), where ¢ < b, and approaches arbi-
trarily close to L as x approaches ¢ from within that interval, then f has right-hand limit
L at c. We write

lim f(x) = L.
x—c"
The symbol “x — ¢ means that we consider only values of x greater than c.
Similarly, if f(x) is defined on an interval (a, ¢), where a < ¢ and approaches arbi-

trarily close to M as x approaches ¢ from within that interval, then f has left-hand limit M
at c. We write

+ 9

lim f(x) = M.

i

The symbol “x — ¢~ means that we consider only x-values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the
function f(x) = x/|x| in Figure 2.24 we have

lim f(x) =1 and lim f(x) = —1.
x—0" x—0"

y y
—
L f) Fx) M
0 C €= X * 0 X > C *
@ lim fo)=L () Tim f) =M

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

EXAMPLE 1 The domain of f(x) = V4 — x?is [—2,2]; its graph is the semicircle
in Figure 2.26. We have

lim V4 —x*=0  and 1111217\/4—x2=0.

x—=2
The function does not have a left-hand limit at x = —2 or a right-hand limit at x = 2. It
does not have a two-sided limit at either —2 or 2 because each point does not belong to an
open interval over which f is defined. |

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-hand
limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems
for limits of polynomials and rational functions hold with one-sided limits, as do the Sandwich
Theorem and Theorem 5. One-sided limits are related to limits in the following way.

THEOREM 6 A function f(x) has a limit as x approaches c if and only if it has
left-hand and right-hand limits there and these one-sided limits are equal:

lim f(x) = L = lim f(x) =L and li_)m+ fx) = L.

x—c x—c
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0 1 2 3 4

FIGURE 2.27 Graph of the function
in Example 2.

y
L+er
o f(x)
| f(x) lies
L in here
L—€el
for all x # ¢
in here
I
. - x
0 c c+ 6

FIGURE 2.28 Intervals associated with
the definition of right-hand limit.

y
L+em
o f)
f(x) lies
L in here
L—e€el
forall x # ¢
in here
S S
X
¢ Py
£ o X
0 c— 0 c

FIGURE 2.29 Intervals associated with
the definition of left-hand limit.

EXAMPLE 2 For the function graphed in Figure 2.27,

Atx = 0O lim, o+ f(x) = 1,
lim, .y f(x) and lim,—,( f(x) do not exist. The function is not de-
fined to the left of x = 0.

Atx = 1: lim,_, - f(x) = 0 even though f(1) = 1,
lim, .+ f(x) = 1,
lim,_,; f(x) does not exist. The right- and left-hand limits are not
equal.

Atx = 2: lim,,,- f(x) = 1,
lim, ,,+ f(x) = 1,
lim,_,, f(x) = 1 even though f(2) = 2.

At x = 3: lim, .3 f(x) = lim,—3+ f(x) = lim,—3 f(x) = f(3) = 2.

Atx = 4 lim,_,4 f(x) = 1 even though f(4) # 1,
lim,_,4+ f(x) and lim,_,4 f(x) do not exist. The function is not
defined to the right of x = 4.

At every other point ¢ in [ 0,4 ], f(x) has limit f(c). [ |

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided
limits.

DEFINITIONS We say that f(x) has right-hand limit L at ¢, and write
lim f(x) = L (see Figure 2.28)
x—c

if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

c<x<c+é = lf(x) — L| <e.
We say that f has left-hand limit L at ¢, and write
lim f(x) =L (see Figure 2.29)

if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

c—o0<x<c = |f) — L] < e.

EXAMPLE 3 Prove that
lim Vx = 0.

x—0"

Solution Let € > 0 be given. Here ¢ = 0 and L = 0, so we want to find a 6 > 0 such
that for all x

0<x<d& = |[Vx—-0|<e
or

0<x<3d = Vix < e.



f) =Va

L=0 x 8=€

FIGURE 2.30 lirg\/fc = 0 in Example 3.
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Squaring both sides of this last inequality gives
x<e if 0<x<8é.

If we choose 6 = €* we have

0<x<é=¢& = Vx<e
or

0<x<§¢ = |\/);—0‘<e.
According to the definition, this shows that limx_,0+\/); = 0 (Figure 2.30). |

The functions examined so far have had some kind of limit at each point of interest. In

general, that need not be the case.

EXAMPLE 4 Show that y = sin(1/x) has no limit as x approaches zero from either
side (Figure 2.31).

=|—

y=sin<

_1_

FIGURE 2.31 The function y = sin(1/x) has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). The
graph here omits values very near the y-axis.

Solution  As x approaches zero, its reciprocal, 1/x, grows without bound and the values
of sin (1/x) cycle repeatedly from —1 to 1. There is no single number L that the function’s
values stay increasingly close to as x approaches zero. This is true even if we restrict x to
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x = 0. |

Limits Involving (sin 6)/60

A central fact about (sin 0)/0 is that in radian measure its limit as 6 — 0 is 1. We can see
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see
the importance of this limit in Section 3.5, where instantaneous rates of change of the
trigonometric functions are studied.

= % (radians)

L L 9
37 2~ ™~—"21 3

NOT TO SCALE

FIGURE 2.32 The graph of f(6) = (sin 0)/6 suggests that the right-
and left-hand limits as 6 approaches 0 are both 1.
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y
THEOREM 7—Limit of the Ratio sin /6 as 6 -0
T . sinf _ . .
. ggr(l) 9 1 (6 in radians) (D)
\P
tan 6
1 Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
sin 6 will know that the two-sided limit is 1 as well.
To show that the right-hand limit is 1, we begin with positive values of 6 less than
0 cos . H 7 /2 (Figure 2.33). Notice that
0‘ 0 f‘(l’ 0 Area AOAP < areasector OAP < area AOAT.

1 .
We can express these areas in terms of 6 as follows:

FIGURE 2.33 The figure for the proof of

Theorem 7. By definition, TA/OA = tan 0, Area AOAP = %base X height = %(1)(5111 0) = %sin 0
but OA = 1, so TA = tan 6.

Loy 1y 0
Area sector OAP = 2" 0 = 2(1) 0 = > 2)
_ 1 . _ 1 _ 1
Area AOAT = Ebase X height = 5(1)(tan 0) = Etan 6.
Thus,
Equation (2) is where radian measure 1 sing < 1 9 < 1 tan 6.
comes in: The area of sector OAP is 6/2 2 2 2

only if 6 is measured in radians. . . . . ..
Y This last inequality goes the same way if we divide all three terms by the number

(1/2) sin®, which is positive, since 0 < 6 < 77/2:

0 < 1

I=< sin 0 cos 6°

Taking reciprocals reverses the inequalities:

sin 6

l>0

> cos 6.

Since limy_,y-cos@ = 1 (Example 11b, Section 2.2), the Sandwich Theorem gives

. sinf
lim =
>0t 0

1.

To consider the left-hand limit, we recall that sin 6 and 0 are both odd functions (Sec-
tion 1.1). Therefore, f(6) = (sin 0)/6 is an even function, with a graph symmetric about
the y-axis (see Figure 2.32). This symmetry implies that the left-hand limit at O exists and
has the same value as the right-hand limit:

lim sin 0 -1 = lim sin 9’
6—0 6—0" 6
so limy_, (sin 6) /6 = 1 by Theorem 6. [ |

. cosh —1 _ . sin2x _ 2
EXAMPLE 5 Show that (a) ;ILI—IR)T =0 and (b) ;E)r(l)isx 5
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Solution
(a) Using the half-angle formula cos h = 1 — 2 sin? (h /2), we calculate

cosh — 1 ) 2 sin®(h/2)
==° = lim - —

lim
=0 h h—0 h
. sinf .
= —lim sin 6 Let 6 = h/2.
6—0 0
_ _ Eq. (1) and Example 11a
= —(1)0) = 0.

in Section 2.2

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by 2/5:

sin2¢ _ p,  (2/9) sin2x

5
20 5x xS0 (2/5)-5x
_ 21. sin 2x Now, Eq. (1) applies
=5 with 6 = 2x.
2122
=5 =3 [ |

EXAMPLE 6  Find lim w

—0 3

Solution From the definition of tan r and sec 2¢, we have

iy A0 sec 2t _ liml-l-Sint° 1
—0 3t —03 I COSt cos?2t
_1 im sint, 1 1
3/—»0 I COSTt cos?2t
_ l _ l Eq. (1) and Example 11b
3 (H(HA) = 3 in Section 2.2 u
Exercises m
Finding Limits Graphically y
1. Which of the following statements about the function y = f(x) vy = f(x)
graphed here are true, and which are false?
2 °
y
y =1
1 1+ >0
| 4 & ; | L L X
1 OT 1 5 -1 0 1 2 3
a XEIPV fo =1 b. xlggf f® =0 a. lim1 f =1 b. liné f(x) does not exist.
. i =1 i = li T o
¢ [lim f0 d. lim f = lim fx) e lim f() =2 d. lim f(0 =2
L i ists. f. i = m o .
¢ ng(l) F0) exists XE;% f) =0 e. llnll+ fx) =1 f. lm} f(x) does not exist.
g lim f00 =1 h. lim £ =1 g lim f(0 = lim (v
- lgg f) =0 J- xlgrzl* fo =2 h. lim f(x) exists at every c in the open interval (—1, 1).
k. i ist. L I = e
xJ)Tl’ F(x) does not exist .xgg fo =0 i. lim f(x) exists at every c in the open interval (1, 3).
2. Which of the following statements about the function y = f(x) . _ . .
graphed here are true, and which are false? J- xktllr fe =0 k. xlggl+ J(x) does not exist.
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3—x, x<2 6. Let g(x) = Vaxsin(1/x).
3. Let f(x) =
et fx) Th x>2 y

2 1k y =V
y
L :\/);sin%
3
B PR 1 1 X
i 0 2 1

T
| | | | | x

0 2 4

Find lim,_,,+ f(x) and lim,_,,- f(x).
i ist? is it? 2

Does lim,_,, f(x) exist? If so, what is it? If not, why not? L .

Find lim,—,4 f(x) and lim,_4+ f(x).

Does lim,_,, f(x) exist? If so, what is it? If not, why not?

a. Does lim,_,y+ g(x) exist? If so, what is it? If not, why not?

g o TP

b. Does lim,_.o g(x) exist? If so, what is it? If not, why not?
3—x, <2 . . -
nor c. Does lim,_,, g(x) exist? If so, what is it? If not, why not?

4 Letfm=4%  *72
X > 2 7. a. Graph f(x) {XS’ r~l
5 . . a. Gra =
r 7 PP 0, x=1
b. Find lim,,- f(x) and lim,_,+ f(x).
3 c. Does lim,—,; f(x) exist? If so, what is it? If not, why not?
y=3-x\_[ 1 — X% x # 1
8. a. Graph =
N . b. Find lim,_,+ f(x) and lim,_., f(x).
L y=2z
L L 2 B c. Does lim,_,; f(x) exist? If so, what is it? If not, why not?
-2 0 2
Graph the functions in Exercises 9 and 10. Then answer these questions.
a. Find lim,_,,+ f(x), lim,—, f(x), and f(2). a. What are the domain and range of f?
b. Does lim,_,, f(x) exist? If so, what is it? If not, why not? b. At what points ¢, if any, does lim,_,. f(x) exist?
c¢. Find lim,, ;- f(x) and lim,—,_+ f(x). ¢. At what points does only the left-hand limit exist?
d. Does lim,_,_; f(x) exist? If so, what is it? If not, why not? d. At what points does only the right-hand limit exist?
V1i—-x% 0=x<1
0, x=0
5. Let f(x) = 1 9. fx) =4 L, 1=x<2
sing, x> 0. 2, x=2
x, —1=x<0, or 0<x=1
X 10. fo) =41, x=0
- 0, x<-1 or x>1
Finding One-Sided Limits Algebraically
0 * Find the limits in Exercises 11-18.
0, x=0 _
y=1 . tim A2 12 lim [/~ L
sin}, x>0 x—-05 \ X + 1 —1t\Vx + 2
-iF 13. ( )(
xH72* + x
. . .. 14. lim
a. Does lim,_,y+ f(x) exist? If so, what is it? If not, why not? =1
b. Does lim,_.q f(x) exist? If so, what is it? If not, why not? 5 lim o+ +5-V5

c. Does lim,_,, f(x) exist? If so, what is it? If not, why not? h—0* h



V6 — V5 + 11h + 6

16. li
6 th(;l’ h
) |x + 2] ) |x + 2|
17. a. xll)l}lr(x + 3) P b. XEIPT(X + 3) P
V2 — 1) C V2ax(x— 1)
18. a. lim —————— b. lim ———
x—17 |X — 1| x—1" |x - 1‘

Use the graph of the greatest integer function y = | x|, Figure 1.10 in
Section 1.1, to help you find the limits in Exercises 19 and 20.

6] o]
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41 lim 20 42, lim - 0cot4d
0—0 62 cot 30 0—0 sin® H cot? 26

Theory and Examples

43. Once you know lim,_,,+ f(x) and lim,_,, f(x) at an interior point
of the domain of f, do you then know lim,_,, f(x)? Give reasons
for your answer.

44. If you know that lim,_,. f(x) exists, can you find its value by cal-
culating lim,_, .+ f(x)? Give reasons for your answer.

45. Suppose that f is an odd function of x. Does knowing that
lim,_,y f(x) = 3 tell you anything about lim,_.- f(x)? Give rea-

19. a. lim —— b. lim ——
6—3+ 6 9—3 0 sons for your answer.
20. a. lim(r — E2)) b. lim(t — |z]) 46. Suppose that f is an even function of x. Does knowing that
e . lim,_,,- f(x) = 7 tell you anything about either lim,_, ,- f(x) or
. lim,—, _,+ f(x)? Give reasons for your answer.
. . sin 0
Using Jim =y~ = 1 S
Find the limits in Exercises 2142 Formal Definitions of One-Sided Limits
’ 47. Given € > 0, find an interval I = (5,5 + ), 6 > 0, such that if
~ sin V26 . sin kt x lies in I, then Vx — 5 < e. What limit is being verified and
21. lim————— 22. lim (k constant) ‘o
=0 \/20 —0 1 what is its value?
. sin3y . 48. Given € > 0, find an interval I = (4 — §,4), 6 > 0, such that if
23. }h_rf(l) 4y 24. ,}E{} sin 3K x lies in I, then V4 — x < e. What limit is being verified and
 tan 2x oy what is its value?
25. im =5 26. 1m0 fan 7 Use the definitions of right-hand and left-hand limits t th
x—0 =0 se the definitions of right-hand and left-hand limits to prove the
27. limX.Cs¢ 2x 28. lim 6:%(cot x)(csc 24) limit statements in Exercises 49 and 50.
¥0 008 5 =0 , 49. lim =1 50. lim ; =1
29. limx_+ X COS X 30. limx — X + sinx x—0 |x| =2 |x |
¥0 SINXCOS X 0 2x 51. Greatest integer function Find (a) lim, ., |x] and (b)
31, lim L 080 32, [imX_—Xcosx lim, 400~ | x |; then use limit definitions to verify your findings.
¢—0 sin 26 =0  sin® 3x (c) Based on your conclusions in parts (a) and (b), can you say
3. lim sin(l — cos 1) 4. lim sin(_sin h) anything about lim,_, 4 | x |? Give reasons for your answer.
—0 1 — cost h—0 sinh .
sin @ . sin 5x 52. One-sided limits Let f(x) = {XZ sin(1/x), x <0
3s. (}I—I}(l) sin 260 36. ;EI(]) sin 4x Vi, x>0
37. 1lim 60 cos 0 38. lim sin 6 cot 20 Find (a) lim,_,y+ f(x) and (b) lim,_,y- f(x); then use limit defini-
=0 =0 tions to verify your findings. (¢) Based on your conclusions in
39. lim t?}n 3x 40. hmw parts (a) and (b), can you say anything about lim,_,, f(x)? Give
x—0 sin 8x y=0 ycotdy reasons for your answer.
2 . 5 Continuity
y When we plot function values generated in a laboratory or collected in the field, we often
500 connect the plotted points with an unbroken curve to show what the function’s values are
— 4 likely to have been at the points we did not measure (Figure 2.34). In doing so, we are
ii/ 375 95 assuming that we are working with a continuous function, so its outputs vary regularly and
= 550 0, consistently with the inputs, and do not jump abruptly from one value to another without
E taking on the values in between. Intuitively, any function y = f(x) whose graph can be
§ 125 & sketched over its domain in one unbroken motion is an example of a continuous function.
a Such functions play an important role in the study of calculus and its applications.
t

0 5 10
Elapsed time (sec)

FIGURE 2.34 Connecting plotted points
by an unbroken curve from experimental
data Qy, 0, Qs, . . . for afalling object.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.35, whose
limits we investigated in Example 2 in the last section.
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0 1 2 3 4

FIGURE 2.35 The function is not
continuousat x = 1,x = 2, and x = 4
(Example 1).

Continuity Two-sided

from the right ~ continuity Continuity
i~ from the left
m
| I
} Py =f) |
| I
l ‘ ‘
| | | X
a c b

FIGURE 2.36 Continuity at points a, b,
and c.

EXAMPLE 1 At which numbers does the function f in Figure 2.35 appear to be not
continuous? Explain why. What occurs at other numbers in the domain?

Solution  First we observe that the domain of the function is the closed interval [0, 4 ],
so we will be considering the numbers x within that interval. From the figure, we notice
right away that there are breaks in the graph at the numbers x = 1, x = 2, and x = 4. The
breaks appear as jumps, which we identify later as “jump discontinuities.” These are num-
bers for which the function is not continuous, and we discuss each in turn.

Numbers at which the graph of f has breaks:

At x = 1, the function fails to have a limit. It does have both a left-hand limit,
lim,,- f(x) = 0, as well as a right-hand limit, lim,_,;+ f(x) = 1, but the limit values are
different, resulting in a jump in the graph. The function is not continuous at x = 1.

At x = 2, the function does have a limit, lim,—,, f(x) = 1, but the value of the func-
tion is f(2) = 2. The limit and function values are not the same, so there is a break in the
graph and f is not continuous at x = 2.

Atx = 4, the function does have a left-hand limit at this right endpoint, lim,_,4- f(x) = 1,
but again the value of the function f(4) = % differs from the value of the limit. We see
again a break in the graph of the function at this endpoint and the function is not continu-
ous from the left.

Numbers at which the graph of f has no breaks:

At x = 0, the function has a right-hand limit at this left endpoint, lim,_,q+ f(x) = 1,
and the value of the function is the same, f(0) = 1. So no break occurs in the graph of the
function at this endpoint, and the function is continuous from the right at x = 0.

At x = 3, the function has a limit, lim,_; f(x) = 2. Moreover, the limit is the same
value as the function there, f(3) = 2. No break occurs in the graph and the function is
continuous at x = 3.

At all other numbers x = ¢ in the domain, which we have not considered, the func-
tion has a limit equal to the value of the function at the point, so lim,_,. f(x) = f(c). For
example, lim,—.5/, f(x) = f (%) = % No breaks appear in the graph of the function at any
of these remaining numbers and the function is continuous at each of them. |

The following definitions capture the continuity ideas we observed in Example 1.

DEFINITIONS Let ¢ be a real number on the x-axis.

The function f is continuous at ¢ if
lim f() = f(c).

The function f is right-continuous at ¢ (or continuous from the right) if
lim () = f(c).

The function f is left-continuous at ¢ (or continuous from the left) if

lim () = f().

From Theorem 6, it follows immediately that a function f is continuous at an interior
point ¢ of its domain if and only if it is both right-continuous and left-continuous at ¢ (Fig-
ure 2.36). We say that a function is continuous over a closed interval [ q, b ] if it is right-
continuous at a, left-continuous at b, and continuous at all interior points of the interval.
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FIGURE 2.37 A function that
is continuous over its domain
(Example 2).

y = Uk)

or

FIGURE 2.38 A function
that has a jump discontinuity
at the origin (Example 3).

y
4+ —
3 *——o0
y=|x]
2+ &——0
1+ o——o0
! N ! ! !
—1 1 2 3 4
*—
—_— =2+

FIGURE 2.39 The greatest integer
function is continuous at every noninte-
ger point. It is right-continuous, but not
left-continuous, at every integer point
(Example 4).
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This definition applies to the infinite closed intervals [ a, ©0) and (=00, b ] as well, but only
one endpoint is involved. If a function is not continuous at an interior point c of its domain,
we say that f is discontinuous at ¢, and that ¢ is a point of discontinuity of f. Note that a
function f can be continuous, right-continuous, or left-continuous only at a point ¢ for
which f(c) is defined.

EXAMPLE 2  The function f(x) = V4 — x? is continuous over its domain [—2,2]
(Figure 2.37). It is right-continuous at x = —2, and left-continuous at x = 2. |

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.38, is right-continuous
at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at
x = 0. |

We summarize continuity at an interior point in the form of a test.

Continuity Test

A function f(x) is continuous at a point x = c¢ if and only if it meets the follow-
ing three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim,_,, f(x) exists (f has a limit as x — ¢).
3. lim,_,. f(x) = f(c) (the limit equals the function value).

For one-sided continuity and continuity at an endpoint of an interval, the limits in
parts 2 and 3 of the test should be replaced by the appropriate one-sided limits.

EXAMPLE 4 The function y = | x | introduced in Section 1.1 is graphed in Figure 2.39.
It is discontinuous at every integer because the left-hand and right-hand limits are not
equal as x — n:

lim [x]=n—-1 and lim [x] =n

X—>n x—n
Since | n| = n, the greatest integer function is right-continuous at every integer n (but not
left-continuous).

The greatest integer function is continuous at every real number other than the inte-

gers. For example,

lim x| =1=[15].

x—1.5
In general, if n — 1 < ¢ < n, n an integer, then
lim|x]=n—-1=|c]. [ |
x—c

Figure 2.40 displays several common types of discontinuities. The function in Figure
2.40a is continuous at x = 0. The function in Figure 2.40b would be continuous if it had
f(0) = 1. The function in Figure 2.40c would be continuous if f(0) were 1 instead of 2.
The discontinuity in Figure 2.40c is removable. The function has a limit as x — 0, and we
can remove the discontinuity by setting f(0) equal to this limit.

The discontinuities in Figure 2.40d through f are more serious: lim,_,, f(x) does not
exist, and there is no way to improve the situation by changing f at 0. The step function in
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function f(x) = 1/x* in Figure 2.40e has an infinite discontinuity. The function
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as
x—0.
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=1 y =1 =f®

y = f(x)
1¢—

A x x
17T °

o 1
y=f) = /\ = Yo
/ \/ i |

(e) ()

(=]

FIGURE 2.40 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Continuous Functions

Generally, we want to describe the continuity behavior of a function throughout its entire
domain, not only at a single point. We know how to do that if the domain is a closed interval.
In the same way, we define a continuous function as one that is continuous at every point in
its domain. This is a property of the function. A function always has a specified domain, so if
we change the domain, we change the function, and this may change its continuity property
as well. If a function is discontinuous at one or more points of its domain, we say it is a
discontinuous function.

EXAMPLE 5

(a) The function y = 1/x (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at x = 0, however, because
it is not defined there; that is, it is discontinuous on any interval containing x = 0.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. u

Algebraic combinations of continuous functions are continuous wherever they are defined.

0

THEOREM 8—Properties of Continuous Functions If the functions f and g are
continuous at x = ¢, then the following algebraic combinations are continuous
atx = c.
1. Sums: f+e

FIGURE 2.41 The function y = 1/x 2. Differences: f-g

' Contln.uous over lts.nat.ural dOInalI.l. ,It 3. Constant multiples: k- f, for any number k

has a point of discontinuity at the origin,

so it is discontinuous on any interval 4. Products: f-g

containing x = 0 (Example 5). 5. Quotients: f/g, provided g(c) # 0
6. Powers: f",  napositive integer
7. Roots: W, provided it is defined on an open interval

containing ¢, where n is a positive integer
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Most of the results in Theorem & follow from the limit rules in Theorem 1, Section 2.2.
For instance, to prove the sum property we have

lim(f + &)(x) = im(f(x) + g(x))

= lim f(x) + lim g(x) Sum Rule, Theorem 1
x—c x—c
= f(c) + glo) Continuity of f, g at ¢
= (f + 9.
This shows that f + g is continuous.
EXAMPLE 6
(a) Every polynomial P(x) = a,x" + a,_x" '+ -+ 4+ a, is continuous because

lim P(x) = P(c) by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)/Q(x) is continuous

wherever it is defined (Q(c) # 0) by Theorem 3, Section 2.2. |
EXAMPLE 7 The function f(x) = |x| is continuous. If x > 0, we have f(x) = x,
a polynomial. If x < 0, we have f(x) = —x, another polynomial. Finally, at the origin,
lim,o x| = 0 = [0]. -

The functions y = sinx and y = cos x are continuous at x = 0 by Example 11 of
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 70). It fol-
lows from Theorem 8§ that all six trigonometric functions are then continuous wherever
they are defined. For example, y = tan x is continuous on --- U (=7 /2, 7/2) U
(m/2,37/2) U -~ -.

Inverse Functions and Continuity

The inverse function of any function continuous on an interval is continuous over its
domain. This result is suggested by the observation that the graph of f~!, being the reflec-
tion of the graph of f across the line y = x, cannot have any breaks in it when the graph of
f has no breaks. A rigorous proof that f~! is continuous whenever f is continuous on an
interval is given in more advanced texts. It follows that the inverse trigonometric functions
are all continuous over their domains.

We defined the exponential function y = a* in Section 1.5 informally by its graph.
Recall that the graph was obtained from the graph of y = a@* for x a rational number by
“filling in the holes” at the irrational points x, so the function y = a* was defined to be
continuous over the entire real line. The inverse function y = log,x is also continuous. In
particular, the natural exponential function y = ¢* and the natural logarithm function
y = Inx are both continuous over their domains.

Composites

All composites of continuous functions are continuous. The idea is that if f(x) is continuous
at x = c and g(x) is continuous at x = f(c), then g ° f is continuous at x = ¢ (Figure 2.42).
In this case, the limit as x — ¢ is g(f(¢)).

g-f

Continuous at ¢

8
Continuous m
o atc o atf(c) ‘o
¢ f© 8(f(e)

FIGURE 2.42 Composites of continuous functions are continuous.
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0.4

=27 - 0 T 21r

FIGURE 2.43 The graph suggests that
y = |(xsinx)/(x* + 2)| is continuous
(Example 8d).

THEOREM 9—Composite of Continuous Functions If f is continuous at ¢ and
g is continuous at f(c), then the composite g ° f is continuous at c.

Intuitively, Theorem 9 is reasonable because if x is close to ¢, then f(x) is close to
f(c), and since g is continuous at f(c), it follows that g(f(x)) is close to g(f(c)).

The continuity of composites holds for any finite number of functions. The only
requirement is that each function be continuous where it is applied. For an outline of a
proof of Theorem 9, see Exercise 6 in Appendix 4.

EXAMPLE 8 Show that the following functions are continuous on their natural
domains.
$2/3
@ y= Vi 23 oy =
x—2 X sin x
= d — |ASA
© vy xz_z‘ d y 2 +2
Solution

(a) The square root function is continuous on [0, 00) because it is a root of the continu-
ous identity function f(x) = x (Part 7, Theorem 8). The given function is then the
composite of the polynomial f(x) = x> — 2x — 5 with the square root function
g(n = V/t, and is continuous on its natural domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

(¢) The quotient (x — 2)/(x*> — 2) is continuous for all x # + V/2, and the function
is the composition of this quotient with the continuous absolute value function
(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 70), the numerator term
x sin x is the product of continuous functions, and the denominator term x> + 2 is an
everywhere-positive polynomial. The given function is the composite of a quotient of
continuous functions with the continuous absolute value function (Figure 2.43). |

Theorem 9 is actually a consequence of a more general result, which we now state
and prove.

THEOREM 10—Limits of Continuous Functions If g is continuous at the point b
and lim,_,,. f(x) = b, then

lim, .. g(f(x)) = g(b) = g(lim, f(x)).

Proof Let € > 0 be given. Since g is continuous at b, there exists a number &, > 0
such that

g — g(b)| < € whenever 0 < |y —b| <5,

Since lim,_,.f(x) = b, there exists a & > 0 such that

f(x) — b| <&, whenever 0 < |x —¢| <.
If we let y = f(x), we then have that
ly — b| <& whenever 0 < |x —¢| <8,

which implies from the first statement that |g(y) — g(b)| = |g(f(x)) — g(b)| < € whenever
0 < |x — ¢| < 8. From the definition of limit, this proves that lim,_.g(f(x)) = g(b). H



We sometimes denote e" by exp u
when u is a complicated mathematical

expression.

y
3+ — o
2_
-
& | | | x
0 1 2 3 4

FIGURE 2.44 The function
7{2x—2, 1l=x<2

=93, 2=x=4

does not take on all values between

f(1) = 0 and f(4) = 3; it misses all the

values between 2 and 3.
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EXAMPLE 9 As an application of Theorem 10, we have the following calculations.

(a) lim cos (Zx + sin (37T + x)) cos( lim 2x + lim sin <377 + x))
x—>7/2 2 x—>/2 x—>/2 2

= cos (m + sin27) = cos 7T = —1.
.1 —=x g 1 —x
(b) lim sin”! 5 ) = sin " lim 2 Arcsine is continuous.
x—1 1 —x =11 —x
R 1 . .
= Sin lim ——— Cancel common factor (1 — x).
x—1 1 + x
= sin’! L_m
2 6
(¢) lim Vx + 1" = lim Vx + 1-exp <lim tan x) Exponential is continuous.
x—0 x—0 x—0
=1 =1 |

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A
function is said to have the Intermediate Value Property if whenever it takes on two
values, it also takes on all the values in between.

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If f is
a continuous function on a closed interval [ a, b ], and if y, is any value between
f(a) and f(b), then y, = f(c) for some cin [a, b].

y

Jb)

Yo

fl@)

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any
horizontal line y = y, crossing the y-axis between the numbers f(a) and f(b) will cross
the curve y = f(x) at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property
of the real number system (Appendix 7) and can be found in more advanced texts.

The continuity of f on the interval is essential to Theorem 11. If f is discontinuous at
even one point of the interval, the theorem’s conclusion may fail, as it does for the func-
tion graphed in Figure 2.44 (choose y, as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest
integer function (Figure 2.39), or separate branches like the graph of 1/x (Figure 2.41).
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A Consequence for Root Finding We call a solution of the equation f(x) = 0 a root of
the equation or zero of the function f. The Intermediate Value Theorem tells us that if f is
continuous, then any interval on which f changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point
where the function’s value is zero.

EXAMPLE 10  Show that there is a root of the equation x> — x — 1 = 0 between 1 and 2.

Solution Let f(x) =x> —x—1. Since f(1)=1—-1—-1=—-1<0 and fQ2)=
25 —2—1=52>0, we see that y, = 0 is a value between f(1) and f(2). Since f is
continuous, the Intermediate Value Theorem says there is a zero of f between 1 and 2.

Figure 2.45 shows the result of zooming in to locate the root near x = 1.32. |
5 1
1 ’: [ B / 1.6
—1 | | | ] ) V
-2 -1
(@) (b)
0.02 0.003
1.320 ’:\/ ! ! 1 11.330 1.3240 ﬁV/‘ 1.3248
—0.02 —0.003

(© (d)

FIGURE 2.45 Zooming in on a zero of the function f(x) = x* — x — 1. The zero is near
x = 1.3247 (Example 10).

EXAMPLE 11 Use the Intermediate Value Theorem to prove that the equation

V2x +5=4—x°
has a solution (Figure 2.46).

y=4-—x
/ Solution  We rewrite the equation as
3 -
V2x + 5+ x* =4,

and set f(x) = V2x + 5 + x%. Now g(x) = V2x + 5 is continuous on the interval

[—5/2, 00) since it is the composite of the square root function with the nonnegative linear

function y = 2x + 5. Then f is the sum of the function g and the quadratic function y = x?,

X

\
\
\
\
\
\
1
0 c 2

and the quadratic function is continuous for all values of x. It follows that f(x) = V2x + 5
+ x2 is continuous on the interval [—5/2, 00). By trial and error, we find the function values
FIGURE 2.46 The curves £(0) = V5 = 224 and f(2) = V9 + 4 = 7, and note that f is also continuous on the
y=V2x+5andy=4-x finite closed interval [0,2] C [—5/2, 00). Since the value y, = 4 is between the numbers
have the same value at x = ¢ where 224 and 7, by the Intermediate Value Theorem there is a number ¢ € [0,2] such that

V2x + 5 =4 — x* (Example 11). f(c) = 4. That is, the number c solves the original equation. [ |
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FIGURE 2.48 (a) The graph
of f(x) and (b) the graph of
its continuous extension F(x)

(Example 12).
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Continuous Extension to a Point

Sometimes the formula that describes a function f does not make sense at a point x = c.
It might nevertheless be possible to extend the domain of f, to include x = ¢, creating a
new function that is continuous at x = ¢. For example, the function y = f(x) = (sinx)/x
is continuous at every point except x = 0, since the origin is not in its domain. Since
y = (sinx)/x has a finite limit as x — 0 (Theorem 7), we can extend the function’s
domain to include the point x = 0 in such a way that the extended function is continuous
at x = 0. We define the new function

S
Fx) =
1, x=0

The function F(x) is continuous at x = 0 because
. sinx
lim —— = F(0),
lim =% 0)

so it meets the requirements for continuity (Figure 2.47).

(0, 1)

I <_E g) (71 2) I I 2 I

I 2 2 7 I I

I I I I

N 0 e N 0 T

2 2 2 2
(a) (b)

FIGURE 2.47 The graph (a) of f(x) = (sinx)/x for —m/2 = x = /2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discon-
tinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x)
everywhere else. Note that F(0) = lim,_,q f(x).

More generally, a function (such as a rational function) may have a limit at a point
where it is not defined. If f(c) is not defined, but lim,_,. f(x) = L exists, we can define a
new function F(x) by the rule

fx), if x is in the domain of f
F(x) = .
L, ifx = c.

The function F is continuous at x = c¢. It is called the continuous extension of f to
x = c. For rational functions f, continuous extensions are often found by canceling com-
mon factors in the numerator and denominator.

EXAMPLE 12 Show that

2+x—6
=X EXZ0 s
fx) 24 X

has a continuous extension to x = 2, and find that extension.

Solution  Although f(2) is not defined, if x # 2 we have

x2+x—6:(x_2)(x+3):x+3
P-4 x-2xt2 x+2

flx) =
The new function

x+3
x+2

Flx) =
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Exercises m

Continuity from Graphs

In Exercises 1-4, say whether the function graphed is continuous on

is equal to f(x) for x # 2, butis continuous at x = 2, having there the value of 5/4. Thus
F is the continuous extension of f to x = 2, and

. X2+ x—6 . _5
hmiz_4 —ll_lgf(x)—é‘_.

x=2 X

The graph of f is shown in Figure 2.48. The continuous extension F has the same graph
except with no hole at (2, 5/4). Effectively, F is the function f with its point of disconti-

nuity at x = 2 removed.

[—1,3]. If not, where does it fail to be continuous and why?

1. 2.

Exercises 510 refer to the function

X2 =1,

2x,

fo = 1,
—2x + 4,

0,

graphed in the accompanying figure.

y

y =/

“-1=x<0
0<x<1
x =1

1 <x<?2
2 <x<3

The graph for Exercises 5-10.

5. a. Does f(—1) exist?
b. Does lim,_, - f(x) exist?
c. Does lim,,_;+ f(x) = f(—=1)?
d. Is f continuous at x = —1?
6. a. Does f(1) exist?
b. Does lim,_,; f(x) exist?
c. Does lim,_,; f(x) = f(1)?
d. Is f continuous at x = 1?
7. a. Is f defined at x = 2? (Look at the definition of f.)
b. Is f continuous at x = 2?

8. At what values of x is f continuous?

9. What value should be assigned to f(2) to make the extended
function continuous at x = 2?

10. To what new value should f(1) be changed to remove the discon-
tinuity?

Applying the Continuity Test

At which points do the functions in Exercises 11 and 12 fail to be con-
tinuous? At which points, if any, are the discontinuities removable?
Not removable? Give reasons for your answers.

11. Exercise 1, Section 2.4 12. Exercise 2, Section 2.4
At what points are the functions in Exercises 13-30 continuous?

1 1

13.y=x72—3x 14.y:m+4
x + 1 x+3
15. y=———7-— 16. y=———7—"—
I R T
2
17. y = |x — 1| + sinx 18.y:||1+1—%
X
cos X x+ 2
19. y=— 20. y = o5
21. y = csc2x 22.y=tan%
tan x X+ 1
23, y=" 24, y=——>+
YTt Y71 + sin?x
25. y = V2x + 3 26. y = V3x — 1
27. y=(2x — ' 28. y=(2 — x)'f



2 _

X & 6, x #3
29. gx) = x =3

5, x =3

xz_i, X # 2x # =2
30. f(x) = 3 =2

4, x=-2

Limits Involving Trigonometric Functions

Find the limits in Exercises 31-38. Are the functions continuous at the
point being approached?

31. lim sin(x — sin x) 32. lim sin(% cos (tan t)>

r

X—=>T —0

33. limI sec (ysec’y — tan’y — 1)
=
; ™ i 1/3

34. lim tan( cos (sin x ))
x—0 4

35. lim cos <+) 36. lim Vesc2x + 5V3 tan x

=0 V19 — 3 sec 2t x—ml6
37. lim sin (E e\/;) 38. lim cos™ (In V)
x—0" 2 x—1

Continuous Extensions
39. Define g(3) in a way that extends g(x) = (x> — 9)/(x — 3) to be
continuous at x = 3.

40. Define h(2) in a way that extends h() = (> + 3t — 10)/(t — 2)
to be continuous at ¢ = 2.

41. Define f(1) in a way that extends f(s) = (s* — 1)/(s*> — 1) to be
continuous at s = 1.

42. Define g(4) in a way that extends
g) = (x* — 16)/ (x*

to be continuous at x = 4.

3x — 4)

43. For what value of a is

f()_{xz—l, x<3
* 2ax, x=3

continuous at every x?

44. For what value of b is
o {x, x <=2
X) =
8 bx:, x = -2
continuous at every x?

45. For what values of a is

) ax —2a, x=2
x) =
12, x <2

continuous at every x?
46. For what value of b is
x—b
gx) = b+ 1
X2+b x>0

x <0

continuous at every x?
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47. For what values of a and b is

-2, x=-1
fxy=qax—>b, —1<x<1
3, x=1
continuous at every x?
48. For what values of a and b is
ax + 2b, x=0
gx)=4x*+3a—b 0<x=2
3x — 5, x> 2

continuous at every x?

In Exercises 49-52, graph the function f to see whether it appears to

have a continuous extension to the origin. If it does, use Trace and Zoom
to find a good candidate for the extended function’s value at x = 0. If
the function does not appear to have a continuous extension, can it be
extended to be continuous at the origin from the right or from the left? If
so, what do you think the extended function’s value(s) should be?

X _ |x| —
19. fy = 0= 1 50. foo =101

51, f(x) = %

52, f(x) = (1 + 2x)'/x

Theory and Examples

53. A continuous function y = f(x) is known to be negative at
x = 0 and positive at x = 1. Why does the equation f(x) = 0
have at least one solution between x = 0 and x = 1? Illustrate
with a sketch.

54. Explain why the equation cosx = x has at least one solution.

55. Roots of a cubic Show that the equation x* — 15x + 1 = 0
has three solutions in the interval [—4, 4].

56. A function value Show that the function F(x) = (x — a)*-
(x — b)*> + x takes on the value (a + b)/2 for some value of x.

57. Solving an equation If f(x) = x* — 8x + 10, show that there
are values ¢ for which f(c) equals (a) 7; (b) -3 (¢) 5,000,000.
58. Explain why the following five statements ask for the same infor-
mation.
a. Find the roots of f(x) = x> — 3x — 1.

b. Find the x-coordinates of the points where the curve y = x
crosses the line y = 3x + 1.

3

c. Find all the values of x for which x> — 3x = 1.

d. Find the x-coordinates of the points where the cubic curve
y = x> — 3x crosses the line y = 1.

e. Solve the equation x* — 3x — 1 = 0.

59. Removable discontinuity Give an example of a function f(x)
that is continuous for all values of x except x = 2, where it has
a removable discontinuity. Explain how you know that f is dis-
continuous at x = 2, and how you know the discontinuity is
removable.

60. Nonremovable discontinuity Give an example of a function
g(x) that is continuous for all values of x except x = —1, where it
has a nonremovable discontinuity. Explain how you know that g
is discontinuous there and why the discontinuity is not removable.
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61.

62.

63.

64.

65.

66.

67.
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A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that the

IunCtion
X
O, if X iS irrational

if x is rational

is discontinuous at every point.
b. Is f right-continuous or left-continuous at any point?

If functions f(x) and g(x) are continuous for 0 = x = 1, could
f(x)/g(x) possibly be discontinuous at a point of [0, 1]? Give
reasons for your answer.

If the product function i(x) = f(x)* g(x) is continuous at x = 0,
must f(x) and g(x) be continuous at x = 0? Give reasons for
your answer.

Discontinuous composite of continuous functions Give an
example of functions f and g, both continuous at x = 0, for
which the composite f ° g is discontinuous at x = 0. Does this
contradict Theorem 9? Give reasons for your answer.

Never-zero continuous functions Is it true that a continuous
function that is never zero on an interval never changes sign on
that interval? Give reasons for your answer.

Stretching a rubber band s it true that if you stretch a rubber
band by moving one end to the right and the other to the left,
some point of the band will end up in its original position? Give
reasons for your answer.

A fixed point theorem Suppose that a function f is continuous
on the closed interval [0, 1] and that 0 =< f(x) = 1 for every x
in [0, 1]. Show that there must exist a number c in [0, 1] such
that f(c) = ¢ (c is called a fixed point of f).

68.

69.

70.

The sign-preserving property of continuous functions Let f
be defined on an interval (a, b) and suppose that f(c) # 0 at
some ¢ where f is continuous. Show that there is an interval
(c — 8, ¢ + 6) about ¢ where f has the same sign as f(c).

Prove that f is continuous at c if and only if
lim f(c + ) = £(0).
Use Exercise 69 together with the identities

sin(h + ¢) =sinhcosc + cos hsinc,

cos(h + ¢) = coshcosc — sinhsinc

to prove that both f(x) = sin x and g(x) = cos x are continuous
at every point x = c.

Solving Equations Graphically

Use the Intermediate Value Theorem in Exercises 71-78 to prove that

each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

71.
72.
73.
74.
75.
76.
77.
78.

X =3x—1=0
23 -2 —2x+1=0
xx—1)r=1
x*=2
Vit VI T a=4

x> —15x + 1 =0 (three roots)

(one root)

cos x = x (one root). Make sure you are using radian mode.

2sinx = x (three roots). Make sure you are using radian
mode.
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y In this section we investigate the behavior of a function when the magnitude of the inde-

FIGURE 2.49 The graphof y = 1/x
approaches 0 as x — 00 or x — —00.

*  Finite Limits as x— o0

pendent variable x becomes increasingly large, or x — 1 00. We further extend the con-
cept of limit to infinite limits, which are not limits as before, but rather a new use of the
term limit. Infinite limits provide useful symbols and language for describing the behavior
of functions whose values become arbitrarily large in magnitude. We use these limit ideas
to analyze the graphs of functions having horizontal or vertical asymptotes.

The symbol for infinity (00) does not represent a real number. We use o0 to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
- For example, the function f(x) = 1/x is defined for all x # 0 (Figure 2.49). When x is
positive and becomes increasingly large, 1/x becomes increasingly small. When x is
negative and its magnitude becomes increasingly large, 1/x again becomes small. We

summarize these observations by saying that f(x) = 1/x has limit 0 as x—00 or

cise definitions.

x—> —00, or that 0 is a limit of f(x) = 1/x at infinity and negative infinity. Here are pre-



No matter what
positive number € is,
the graph enters

this band atx = ¢
and stays.

No matter what
positive number € is,
the graph enters

this band atx = —¢
and stays.

FIGURE 2.50 The geometry behind the

argument in Example 1.
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DEFINITIONS
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) = L
x—>00
if, for every number € > 0, there exists a corresponding number M such that
for all x
x>M = If(x) — L| <e.
2. We say that f(x) has the limit L as x approaches minus infinity and write
lim f(x) =L
x—>—00

if, for every number € > 0, there exists a corresponding number N such that
for all x

x < N = |f(x)—L|<e.

Intuitively, lim,_,« f(x) = L if, as x moves increasingly far from the origin in the positive
direction, f(x) gets arbitrarily close to L. Similarly, lim,_, « f(x) = L if, as x moves
increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as x — $00 is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions y = k and y = x. We then extended these results to other functions by applying
Theorem 1 on limits of algebraic combinations. Here we do the same thing, except that the
starting functions are y = k and y = 1/x instead of y = kand y = x.

The basic facts to be verified by applying the formal definition are
lim k=k and  lim =0 1)

x—+o0 x—+oo X

We prove the second result in Example 1, and leave the first to Exercises 87 and 88.

EXAMPLE 1 Show that

(a) }im % =0 (b) lir{l )17 = 0.
Solution
(a) Let e > 0 be given. We must find a number M such that for all x
1 |1
x> M = X 0| = X < €.

The implication will hold if M = 1/e or any larger positive number (Figure 2.50).
This proves lim, o (1/x) = 0.
(b) Let e > 0 be given. We must find a number N such that for all x

1
$-0

x <N = %<e.

The implication will hold if N = —1/€ or any number less than —1 /€ (Figure 2.50).
This proves lim,,_« (1/x) = 0. |

Limits at infinity have properties similar to those of finite limits.

THEOREM 12 All the Limit Laws in Theorem 1 are true when we replace
lim,,. by lim,, or lim,_,_. That is, the variable x may approach a finite
number ¢ or 00,
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m =2 NOTTOSCALE

FIGURE 2.51 The graph of the func-
tion in Example 3a. The graph approaches
the line y = 5/3 as |x| increases.

FIGURE 2.52 The graph of the
function in Example 3b. The graph
approaches the x-axis as |x| increases.

EXAMPLE 2 The properties in Theorem 12 are used to calculate limits in the same
way as when x approaches a finite number c.

(a) lim (5 + )1(> = lim 5 + lim )17 Sum Rule
X—00

x—> 00 xX—> 00
=5+0=5 Known limits
V3 11
(b) lim > = lim 77\/5'}';
xX—>—X X x——00
. . 1 . 1
= lim 7T\/§' lim x° lim X Product Rule
X——00 x——00 X—>—00
= W\@'O c0=0 Known limits |

Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — * 00, we first divide the numerator
and denominator by the highest power of x in the denominator. The result then depends on
the degrees of the polynomials involved.

EXAMPLE 3 These examples illustrate what happens when the degree of the numera-
tor is less than or equal to the degree of the denominator.

5x> + 8x — 3 -k 5+ (S/X) - (3/x2) Divide numerator and

(a) Xll)ll;o 3x2 + 2 xl)ngo 34+ /XZ) denominator by x?.
= % = % See Fig. 2.51.
. 1x+2 .. (11/)(2) + (2/x3) Divide numerator and
(b) XEIPOO 23 — 1 - ngoo 2 — (1/)63) denominator by x3.
= (2) t 8 =0 See Fig. 2.52. |

Cases for which the degree of the numerator is greater than the degree of the denomi-
nator are illustrated in Examples 10 and 14.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph approaches
the line asymptotically and that the line is an asymptote of the graph.

Looking at f(x) = 1/x (see Figure 2.49), we observe that the x-axis is an asymptote
of the curve on the right because

.1
A=
and on the left because
. 1
Aex =0

We say that the x-axis is a horizontal asymptote of the graph of f(x) = 1/x.

DEFINITION A line y = b is a horizontal asymptote of the graph of a func-
tion y = f(x) if either

lirrolO fx) =b or lirzlOO fx) = b.




Y
2_
y=1
I I 5 '/-x
y=-1 /
X3 =2
xﬂ%(x)— FEET!

FIGURE 2.53 The graph of the
function in Example 4 has two
horizontal asymptotes.

f €
)
1

N=1Ine

FIGURE 2.54 The graphof y = ¢*
approaches the x-axis as x — —00
(Example 5).
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The graph of the function

52+ 8 — 3
I ="

sketched in Figure 2.51 (Example 3a) has the line y = 5/3 as a horizontal asymptote on
both the right and the left because

lim f(x) = % and  lim_f(y) = %

EXAMPLE 4  Find the horizontal asymptotes of the graph of

X =2

fx) = W

Solution  We calculate the limits as x — F00.

3 — 3 — 1 —(2/x%
Forx = 0: lirnu=limx3 2 _ im (/3:
w=oox3 4+ 1w + 1wl + (1/X0)
S - 3 - 1 - (2/x°
Forx < 0: lim xr =2 lim -~ 2 _ (2/+%)

oo )P+ 1 e (—x)P 4 1 a1 + (1/2%)

The horizontal asymptotes are y = —1 and y = 1. The graph is displayed in Figure
2.53. Notice that the graph crosses the horizontal asymptote y = —1 for a positive value
of x. ]

EXAMPLE 5 The x-axis (the line y = 0) is a horizontal asymptote of the graph of
y = ¢* because

lim ¢ = 0.

x—>—00

To see this, we use the definition of a limit as x approaches —00. So let € > 0 be given,
but arbitrary. We must find a constant N such that for all x,

x<N = |- 0|<e
Now |e* — 0] = ¢, so the condition that needs to be satisfied whenever x < N is
et <e.

Let x = N be the number where ¢* = €. Since €' is an increasing function, if x < N,
then e* < €. We find N by taking the natural logarithm of both sides of the equation
e’ =¢€,50 N = Ine€ (see Figure 2.54). With this value of N the condition is satisfied, and
we conclude that lim,—, " = 0. |

EXAMPLE 6 Find (a) lingosin(l/x) and (b) lil}_loox sin (1/x).

Solution
(a) We introduce the new variable ¢ = 1/x. From Example 1, we know that r— 0" as
x — o0 (see Figure 2.49). Therefore,

. 1 ..
lim siny = lim sint = 0.
t—0"

Xx—>00
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[ula !
-1 \/\/ 1

FIGURE 2.55 Theliney = lisa
horizontal asymptote of the function
graphed here (Example 6b).

FIGURE 2.56 The graphof y = ¢!/
for x < 0 shows lim,_,, e'/* = 0
(Example 7).

y
y72+smx
AO\
~—
1k
! ! ! !
=37 2w —m 0 T 2w 37

FIGURE 2.57 A curve may cross one of
its asymptotes infinitely often (Example 8).

(b) We calculate the limits as x — 00 and x — —<:

. in t P
lim xsm1 lim 35 = 1 and lim x sm1 = lim sinf _ 1.

00 =0 1 x—>—00 —0 !
The graph is shown in Figure 2.55, and we see that the line y = 1 is a horizontal
asymptote. -

Likewise, we can investigate the behavior of y = f(1/x) as x — 0 by investigating
y = f(¢) as t— T oo, where r = 1/x.

EXAMPLE 7  Find 11;1()1;‘/&

Solution We let 7 = 1/x. From Figure 2.49, we can see that t — —00 as x —07. (We
make this idea more precise further on.) Therefore,

lime* = lim ¢ =0 Example 5
x—0" t—>—00

(Figure 2.56). |

The Sandwich Theorem also holds for limits as x — +00. You must be sure, though,
that the function whose limit you are trying to find stays between the bounding functions
at very large values of x in magnitude consistent with whether x — 00 or x — —00.

EXAMPLE 8 Using the Sandwich Theorem, find the horizontal asymptote of the curve

y_2+smx

Solution We are interested in the behavior as x — * 0. Since

sin x

1
0=1|7% x

and lim,_ +o0|1/x| = 0, we have lim,_, 1o (sinx)/x = O by the Sandwich Theorem.
Hence,

lim (2+S“”‘):2+0:2,
x—>too
and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many
times. |

EXAMPLE 8 Find lim (x — Va? + 16).

Solution Both of the terms x and Vx> + 16 approach infinity as x — 00, so what hap-
pens to the difference in the limit is unclear (we cannot subtract 00 from ©0 because the
symbol does not represent a real number). In this situation we can multiply the numerator
and the denominator by the conjugate radical expression to obtain an equivalent algebraic
result:

lim (x = VAZ + 16) = fim (x — Vi +16)* T L2 g
x—>00 > 00 B x

2= @+ 16) ) ~16
= lim ——F———

lim ———F————.
x—’o"x + Vx2+ 16 —ox + Vi + 16



X
=414+ —
2x— 4

y The vertical distance
6 between curve and
B line goes to zero as x — %
5
4r r=2 Oblique
3 T asymptote
[
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FIGURE 2.58 The graph of the function
in Example 10 has an oblique asymptote.

y

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
Be goes higher.

=@ ——
=
I
Sl

No matter how
low —B s, the
\ graph goes lower.
s| ¢

/4|><
=)

You can get as low as| ¢ —B
you want by taking

x close enough to 0.

FIGURE 2.59 One-sided infinite limits:

liml=00

and
=0t X
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As x — 00, the denominator in this last expression becomes arbitrarily large, so we see that
the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws:

1

)}

_ 0
16 1+V1+0
2
X

lim — 16 = lim

=0y + \/x2 + 16 o™

X

= 0.

1+ -

ﬁ
SRS

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the
denominator, the graph has an oblique or slant line asymptote. We find an equation for
the asymptote by dividing numerator by denominator to express f as a linear function plus
a remainder that goes to zero as x —> £ 00,

EXAMPLE 10 Find the oblique asymptote of the graph of
o x*-3
T =%
in Figure 2.58.
Solution We are interested in the behavior as x — *oo. We divide (2x — 4) into
2 — 3):
S+l
2x — 4)x* — 3
x2 — 2x
2x — 3
2x — 4

This tells us that

2 _
f(x):;x—?l:<)2€+1>+<2xl—4>'

— —_—
linear g(x) remainder

As x— 100, the remainder, whose magnitude gives the vertical distance between the
graphs of f and g, goes to zero, making the slanted line

ORE RS

an asymptote of the graph of f (Figure 2.58). The line y = g(x) is an asymptote both to the
right and to the left. The next subsection will confirm that the function f(x) grows arbitrarily
large in absolute value as x — 2 (where the denominator is zero), as shown in the graph. B

Notice in Example 10 that if the degree of the numerator in a rational function is greater
than the degree of the denominator, then the limit as |x| becomes large is +00 or —00,
depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function f(x) = 1/x. As x— 0", the values of f grow without
bound, eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of f become larger still (Figure 2.59).
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FIGURE 2.60 Near x = 1, the func-
tion y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1 /x shifted

1 unit to the right (Example 11).

No matter how
Be high B is, the graph

goes higher.
=1
y ‘
[
[
[

ol «x

,/

= ¢

FIGURE 2.61 The graph of f(x) in
Example 12 approaches infinity as x — 0.

Thus, f has no limit as x — 0%. It is nevertheless convenient to describe the behavior of f
by saying that f(x) approaches 00 as x — 0. We write
hm fx) = hmul? = 00,
In writing this equation, we are not saying that the limit exists. Nor are we saying that there
is a real number 00, for there is no such number. Rather, we are saying that lim,_,y (1/x)
does not exist because 1/x becomes arbitrarily large and positive as x —> 0*.
As x— 07, the values of f(x) = 1/x become arbitrarily large and negative. Given
any negative real number —B, the values of f eventually lie below —B. (See Figure 2.59.)
We write
lim f() = lim £ = —oo.
x—0" x—>0’x
Again, we are not saying that the limit exists and equals the number —00. There is no real

number —00, We are describing the behavior of a function whose limit as x — 0~ does not
exist because its values become arbitrarily large and negative.

EXAMPLE 11 Find lim 1 and lim 1.

1 x—>1x—l

Geometric Solution The graph of y = 1/(x — 1) is the graph of y = 1/x shifted 1
unit to the right (Figure 2.60). Therefore, y = 1/(x — 1) behaves near 1 exactly the way
y = 1/x behaves near 0:

lim =0 and lim
x—1t X = x—=1" X —

= —00,

Analytic Solution Think about the number x — 1 and its reciprocal. As x — 1F, we
have (x — 1)—0" and 1/(x — 1)—>00. As x—17, we have (x — 1)—>0" and
1/(x — 1) — —o0. m

EXAMPLE 12 Discuss the behavior of
fo =L as  x—o0.
X

Solution  As x approaches zero from either side, the values of 1/x* are positive and
become arbitrarily large (Figure 2.61). This means that

. N
i 59 = l 5 = .

The function y = 1/x shows no consistent behavior as x — 0. We have 1/x — o0 if
x— 0%, but 1/x—>—00 if x—0". All we can say about lim,_, (1/x) is that it does not
exist. The function y = 1/x? is different. Its values approach infinity as x approaches zero
from either side, so we can say that lim,_, (1/x?) = oo, |

EXAMPLE 13 These examples illustrate that rational functions can behave in various
ways near zeros of the denominator.

i (x—2)2_1. (x — 2)? CumXE=2o
@ Iy T ya+2 MM r2
(b) limx_2 hrn;2 lim ——= L _1

x—2 xz — 4 x—2 (_X — 2)(x + 2) —2 X + 2 4
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FIGURE 2.62 Forc — 86 <x<c¢ + 6,
the graph of f(x) lies above the line y = B.

y
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FIGURE 2.63 Forc — 6 <x<c¢ + 3,
the graph of f(x) lies below the line
y =—B.
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. x—3 . x—3 _ The values are negative
(] xll>n21+ 24 = xll>n21+ x — 2)(x + 2) =~ for x > 2, x near 2.
) x—3 ) x—3 The values are positive
(d) 11H217 )ﬁ = lmzli m = 0 for x < 2, x near 2.
x—> — x—>
(e) lirr; ﬁ = ]irr% % does not exist. See parts (c) and (d).
x—> — x—
0t 2o TG

— = =lm—=lm—5 = -
x—2 (x - 2)2 x—2 (x - 2)3 x—2 (x - 2)2

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled
because the numerator is zero there also. Thus a finite limit exists. This is not true in part

(f), where cancellation still leaves a zero factor in the denominator. |

5 4
Find lim W
x——-00 3x* +x — 7

EXAMPLE 14

Solution We are asked to find the limit of a rational function as x — —00, so we divide
the numerator and denominator by x2, the highest power of x in the denominator:

Lo =6+ 1
lim =—————— =

23 —6xr 4+ X2
5 lim =———————
x——00 3x= +x — 7

x—-00 3 + xfl - 7X72
2P —3) + x?

= lim — —
x——00 3 4+ x 1 — 7x72

= —00

’

xX"—0, x —3—>—-00

because the numerator tends to —00 while the denominator approaches 3 as x ——oc0. N

Precise Definitions of Infinite Limits

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all x sufficiently
close to ¢, the definitions of infinite limits require f(x) to lie arbitrarily far from zero.
Except for this change, the language is very similar to what we have seen before. Figures 2.62
and 2.63 accompany these definitions.

DEFINITIONS
1. We say that f(x) approaches infinity as x approaches c, and write

lim f(x) = o0,
x—c
if for every positive real number B there exists a corresponding 6 > 0 such
that for all x
0<|x—c| <6 = f(x) > B.
2. We say that f(x) approaches minus infinity as x approaches c, and write

lim f(x) = —o0,

x—>c

if for every negative real number —B there exists a corresponding 6 > 0
such that for all x

0<|x—c|<§ = fx) < —B.

The precise definitions of one-sided infinite limits at ¢ are similar and are stated in the
exercises.
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EXAMPLE 15 Prove that lim - = oo,
x—0 X
Solution Given B > 0, we want to find 8 > 0 such that

0<|x—0| <& implies %>B.
x

Now,

&=

L>B  ifandonlyif  x<
X

or, equivalently,

1
x| < —=.
d VB
Thus, choosing 6 = 1/ VB (or any smaller positive number), we see that
|x| <& implies 112 B.
xr 8
Therefore, by definition,
1
lim — = oo. |

x—0 X

Vertical Asymptotes

Notice that the distance between a point on the graph of f(x) = 1/x and the y-axis
approaches zero as the point moves vertically along the graph and away from the origin
(Figure 2.64). The function f(x) = 1/x is unbounded as x approaches 0 because

Vertical asymptote

1 1

lim - = 00 d lim - = —o0,
ligx =oo and - lin g
Horizontal 1
asymptote We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of f(x) = 1/x.

0| 1  Horizontal Observe that the denominator is zero at x = 0 and the function is undefined there.

asymptote,
y=0
DEFINITION A line x = a is a vertical asymptote of the graph of a function
Vertical asymptote, y = f(x) if either

x=0

lim f(x) = *oo or lim f(x) = oo

FIGURE 2.64 The coordinate axes are
asymptotes of both branches of the hyper-
bolay = 1/x.

EXAMPLE 16 Find the horizontal and vertical asymptotes of the curve

:x+3
Y x+2°

Solution We are interested in the behavior as x — 00 and the behavior as x — —2,

where the denominator is zero.
The asymptotes are quickly revealed if we recast the rational function as a polynomial

with a remainder, by dividing (x + 2) into (x + 3):

1
x+2x +3
x+ 2
1
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Vertical
asymptote, 6
x=-2 5 _x+3
4k Y x+2
_ 1
Horizontal 3= x+2
asymptote, P
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FIGURE 2.65 Thelines y = 1 and
x = —2 are asymptotes of the curve in

Example 16.

y=— 8
x2—4
Vertical
Vertical asymptote, x = 2
asymptote, Horizontal
x=-2 asymptote, y = 0
1 -
L1 ! ! A
-3-2-10[ 1 2 3

FIGURE 2.66 Graph of the function
in Example 17. Notice that the curve
approaches the x-axis from only one side.

Asymptotes do not have to be two-sided.

Yol
4l e
7/
3+ .
//
21 ;7 y=Inx
/
1 7
Y
1 z 1 1 L5y
—1//1 2 3 4
/_1_

FIGURE 2.67 Thelinex = 0isa
vertical asymptote of the natural logarithm

function (Example 18).

X
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This result enables us to rewrite y as:

y=1+ P
As x — 100, the curve approaches the horizontal asymptote y = 1; as x — —2, the curve
approaches the vertical asymptote x = —2. We see that the curve in question is the graph
of f(x) = 1/x shifted 1 unit up and 2 units left (Figure 2.65). The asymptotes, instead of
being the coordinate axes, are now the lines y = 1 and x = —2. |

EXAMPLE 17

Find the horizontal and vertical asymptotes of the graph of

8
—4°

f(x) = _x2

Solution We are interested in the behavior as x — T 00 and as x — £ 2, where the
denominator is zero. Notice that f is an even function of x, so its graph is symmetric with
respect to the y-axis.

(a) The behavior as x — 100, Since lim, . f(x) = 0, the line y = 0 is a horizontal
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well
(Figure 2.66). Notice that the curve approaches the x-axis from only the negative side
(or from below). Also, f(0) = 2.

The behavior as x — * 2. Since

(b)

lirrzl+ flx) = —o0 and lirrzlf fx) = o9,
the line x = 2 is a vertical asymptote both from the right and from the left. By sym-

metry, the line x = —2 is also a vertical asymptote.

There are no other asymptotes because f has a finite limit at all other points. |

EXAMPLE 18 The graph of the natural logarithm function has the y-axis (the line
x = 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which
is the reflection of the graph of the natural exponential function across the line y = x) and
the fact that the x-axis is a horizontal asymptote of y = e* (Example 5). Thus,

lim Inx = —oo0.

x—0"

The same result is true for y = log, x whenever a > 1.

EXAMPLE 19

The curves

sin x
COS X

y =secx = and y =tanx =

COS X

both have vertical asymptotes at odd-integer multiples of 7 /2, where cos x = 0 (Figure 2.68).

Dominant Terms

In Example 10 we saw that by long division we could rewrite the function

2 _
0 =5
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y
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| |
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y
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100,000
| L | | X
-20 -10 O 10 20
—100,000 -
(b)

FIGURE 2.69 The graphs of f and
g are (a) distinct for |x| small, and
(b) nearly identical for |x| large
(Example 20).

y = secx y = tanx

FIGURE 2.68 The graphs of sec x and tan x have infinitely many vertical asymptotes
(Example 19). |

as a linear function plus a remainder term:

_(x 1
f(x)—<2+1>+<2x_4).

This tells us immediately that

is near 0.

f) = )2£+ 1 For |x| large,

1

flx) = % — 4 For x near 2, this term is very large in absolute value.

If we want to know how f behaves, this is the way to find out. It behaves like
y = (x/2) + 1 when |x] is large and the contribution of 1/(2x — 4) to the total value of f
is insignificant. It behaves like 1/(2x — 4) when x is so close to 2 that 1 /(2x — 4) makes
the dominant contribution.

We say that (x/2) + 1 dominates when x is numerically large, and we say that
1/(2x — 4) dominates when x is near 2. Dominant terms like these help us predict a
function’s behavior.

EXAMPLE 20 Let f(x) = 3x* — 2x® + 3x> — 5x + 6 and g(x) = 3x*. Show that
although f and g are quite different for numerically small values of x, they are virtually
identical for | x| very large, in the sense that their ratios approach 1 as x — 00 or x — —00.

Solution  The graphs of f and g behave quite differently near the origin (Figure 2.69a),
but appear as virtually identical on a larger scale (Figure 2.69b).

We can test that the term 3x* in f, represented graphically by g, dominates the poly-
nomial f for numerically large values of x by examining the ratio of the two functions as
x —> 00, We find that

&) 3t =2+ 32— 5k + 6
m lim

x—lim@ N x—too 3)64
— 2,15 2
- XEIPoo<1 3 T X2 3y * x4>
=1,
which means that f and g appear nearly identical when |x]| is large. |

Summary

In this chapter we presented several important calculus ideas that are made meaningful and
precise by the concept of the limit. These include the three ideas of the exact rate of change of
a function, the slope of the graph of a function at a point, and the continuity of a function. The
primary methods used for calculating limits of many functions are captured in the algebraic
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Limit Laws of Theorem 1 and in the Sandwich Theorem, all of which are proved from the pre-
cise definition of the limit. We saw that these computational rules also apply to one-sided limits
and to limits at infinity. Moreover, we can sometimes apply these rules when calculating limits
of simple transcendental functions, as illustrated by our examples or in cases like the following:

T D T D T e

e — 1 1 11

e+ 1 1+1 2

However, calculating more complicated limits involving transcendental functions such as

lim
x—0 ¢

Zx_l’ x—0 X x—0

lim —— In.x and hm(l + 1)

requires more than simple algebraic techniques. The derivative is exactly the tool we need
to calculate limits such as these (see Section 4.5), and this notion is the main subject of our

next chapter.

Exercises m

Finding Limits
1. For the function f whose graph is given, determine the following
limits.
a. lin%f(x) b. 1ir_r;+f(x) c. 1ir_r;7f(x)
d. 1in_1g fx) e. lirg+ fx) f. li%lﬁ fx)
g. lirr(l) fx) h. lim f(x) i. lirzl fx)

iz i
654?//4\/2 3045 6

—3

2. For the function f whose graph is given, determine the following

limits.

a. ;11‘1‘ fx) b. Xlirg f(x) c. Xling fx)
d. il_rg fx) e. Xlir_ny fx) f. Xlir_ny fx)
g lim f(x) h. Tim £(x) i lim f(x)
J- lim £x) k. lim £(x) L lim £(x)

In Exercises 3-8, find the limit of each function (a) as x — 00 and
(b) as x— —00. (You may wish to visualize your answer with a
graphing calculator or computer.)

2
3. ) =2-3 4. fo) =7 =5
5 @) = ; 6 ) = ;
C 8 T (v "8 T 5/
-5+ (7/x 3—-Q2/x
P £/ BN bt T
3 — (1/x?) 4+ (V2/x?)
Find the limits in Exercises 9—12.
. sin2x cos 0
o Jim 10 lim =3
1. lim 2/ tsint 12. lim —— L Smr

(—-oco |+ cost r—002r + 7 — Ssinr

Limits of Rational Functions
In Exercises 13-22, find the limit of each rational function (a) as
x—> o0 and (b) as x — —00,

13. f() = gﬁ . ; 4. f) = 5 _Zj; IZ o
15 jog - 5L 16, jo = 2+

U = e =
19. g = W 20. () = %

2. fio) = % 22. hw) = %

Limits as x— 00 or x— —

The process by which we determine limits of rational functions applies
equally well to ratios containing noninteger or negative powers of x:
Divide numerator and denominator by the highest power of x in the
denominator and proceed from there. Find the limits in Exercises 23-36.

2Hx—1\"
8xr — 3

2 _
23, lim /2 =3 24, lim <

x—00 V 2x2 + x x—>—00
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1-xY
25. lim 26.
x——oo\ x2 + Tx
—1
27, lim 2V 28.
x—00 3.X -7
3o
29. lim M 30.

26583 — X134+ 7

31. lim ———~ 32.

x=00 x8/5 4 3y + \V/x

Chapter 2: Limits and Continuity

. x2 — 5x
lim [ ———
x—=oo | x? + x — 2

lim M
=002 — \V/x

x4 x

2_x73

lim

xXx—>00 X

xkr_noo 2x + x23 — 4

oV + 1 . Vi + 1
33. lim ———— 34. lim ———
x—>00 x+1 Xx—>—00 X+1
. x—3 . 4 — 3x°
35. lim ———— 36. lim ———
¥=00\/4x? + 25 x>0 \/x6 4+ 9
Infinite Limits
Find the limits in Exercises 37-48.
.1 .5
. i 3 . lin
3. leHZI’X -2 40. xll>n31+x -3
. 2x . 3x
e Dm s 2 v 1o
3. lim —— M. tim ———
=71 (x —17) =0 x*(x + 1)
45. a. xlin& W b. xll)n& 3x1/3
. . 2
46. a. xll)rg+ s b. Xll)rf)lfxl/s
. 4 . 1
47. lgr(l) 20 48. ig% 20
Find the limits in Exercises 49-52.
49. lim tanx 50. lim secx
x—>(m/2)” x—(—m/2)"
51. lim (1 + csc6) 52. lim (2 — cot 6)
0—0" 0—0

Find the limits in Exercises 53-58.

53. lim 5 as
-
a. x—2" b.
c. x— 2% d.
54. lim—~—as
x-—1
a. x— 1" b.
c. x——17 d.

2
55. lim <x3 - %) as

a. x—0" b.
c. x—=V2 d.
oxr—1

56. hm2x T4
a. x— 2" b.
c. x— 1" d.

x—2"

x— =27

x— 1"

x— —1"

x—0

x— —1

x—>—2"

x—0

Vx—5x+3

X =3x+2
————as

57. lim 7o
a. x—0"
c. x—>2°

2 _
58, lim*— X 2
x° — 4x
a. x—2"

c. x—>0

b. x—2"
d. x—2

e. What, if anything, can be said about the limit as x — 0?

b.
d.

x— 2"

x— 17"

e. What, if anything, can be said about the limit as x — 0?

Find the limits in Exercises 59-62.

59. lim<2 - %) as

a. t—0"

60. 1im<t3% + 7) as
a. t—0"
. 1 2
6l1. hm<ﬁ + 7(x — 1)2/3) as
a. x—0"
c. x—1"
. 1 1
62. hm(xl/3 = 1)4/3) as
a. x—0"

c. x—1"

Graphing Simple Rational Functions

b.
d.

t— 0"

t— 0"

x—0

x— 1"

x—0

x—> 1

Graph the rational functions in Exercises 63-68. Include the graphs
and equations of the asymptotes and dominant terms.

1

63. y=ﬁ 64.
o

65. y =5 66.

67. y=ii§ 68.

Inventing Graphs and Functions

YT F 1
3
YT Y=3
. 2x
y_x+l

In Exercises 69-72, sketch the graph of a function y = f(x) that satis-
fies the given conditions. No formulas are required—just label the
coordinate axes and sketch an appropriate graph. (The answers are not
unique, so your graphs may not be exactly like those in the answer

section.)

69. f(0) = 0, f(1) = 2, f(=1) = =2, lim f(x) = ~1, and

linolO fx) =1

70. £(0) = 0, lim_f(x) =0, lim f(x) =2, and

xli)n(}, fx) = =2

71. f(0) =0, 11111OO fx) =0, lin]17 fx) = lirzlﬁf(x) = 09,
lim f(x) = 00, and lim f(x) = —o0

72 f2) = 1. f=1) = 0, lim () = 0, lim f(x) = oo,
lim f(x) = —c0,and lim _f(x) = 1



In Exercises 73-76, find a function that satisfies the given conditions
and sketch its graph. (The answers here are not unique. Any function
that satisfies the conditions is acceptable. Feel free to use formulas
defined in pieces if that will help.)

73. 1irPOO fx) =0, linzl? f(x) = o0, and lirr21+ fx) = o0
74. liToo gx) =0, 1irr%17 g(x) = —o0, and 1in3l+ glx) =

75. lim h(x) = —1, lim h(x) = 1, lim h(x) = —1, and
X—>00 x—0"

x——00
lim A(x) =1
x—0"

76. lim k(x) = 1, lim k(x) = 00, and lim_k(x) = —00
x—* x—1" x—1*

77. Suppose that f(x) and g(x) are polynomials in x and that
lim, o (f(x)/g(x)) = 2. Can you conclude anything about
lim,—, o (f(x)/g(x))? Give reasons for your answer.

78. Suppose that f(x) and g(x) are polynomials in x. Can the graph of
f(x)/g(x) have an asymptote if g(x) is never zero? Give reasons
for your answer.

79. How many horizontal asymptotes can the graph of a given ratio-
nal function have? Give reasons for your answer.

Finding Limits of Differences When x— + o0
Find the limits in Exercises 80-86.

80. lingo(\/x-i- - Vx+4)
8. lim (VA2 +25 - Va2 —1)
82. lim (Vx2+ 3+ x)

83. lirll (2x + Vax2 + 3x — 2)

84. lim (V9x? — x — 3x)
85. lim (Va2 + 3x — Va2 — 2x)
86. lirgo(\/xz-i-x— Va2 = x)

Using the Formal Definitions
Use the formal definitions of limits as x — %00 to establish the limits
in Exercises 87 and 88.

87. If f has the constant value f(x) = k, then 1irgO fx) = k.
88. If f has the constant value f(x) = k, then Alir{l fx) = k.

Use formal definitions to prove the limit statements in Exercises 89-92.

89, lim 1 = 0o 90. lim 1 = oo
x—0 Xx x—0 |X|
N N
91, lim — 2. = —00 92. lim —— = oo
=3 (x — 3) —=5(x +5)

93. Here is the definition of infinite right-hand limit.

We say that f(x) approaches infinity as x approaches ¢ from the
right, and write

lim f(x) = oo,

x—c*
if, for every positive real number B, there exists a correspond-
ing number & > 0 such that for all x

c<x<c+§é = f(x) > B.

2.6 Limits Involving Infinity; Asymptotes of Graphs 117

Modify the definition to cover the following cases.

a. lirr_li fx) = ©

b. hIIL flx) = —o0
c. lim f(x) = —00

Use the formal definitions from Exercise 93 to prove the limit state-
ments in Exercises 94-98.

.1
. ~ =00
94 thg X
95. lim - = —00

96. lim —— =

97. lim S 0

98. lim

Oblique Asymptotes

Graph the rational functions in Exercises 99—104. Include the graphs
and equations of the asymptotes.

2

9ay=xf1
may:fff
wLy:f:f
102. y = %;i}%
103, y =21
wmyzﬁgl

Additional Graphing Exercises

Graph the curves in Exercises 105-108. Explain the relationship

between the curve’s formula and what you see.

105. y = —=
4 — x?
-1
= vi—e
107.)7::x%3+—;%5

. ™
108. y = sin( 5
Yo (x2 + 1)

Graph the functions in Exercises 109 and 110. Then answer the follow-

ing questions.
a. How does the graph behave as x — 0*?
b. How does the graph behave as x — £ 00?
c¢. How does the graph behave near x = 1 and x = —1?

Give reasons for your answers.

2/3
109. y = %(x - %)
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Chapter m Questions to Guide Your Review

1.

10.

What is the average rate of change of the function g(¢) over the
interval from ¢ = a to t = b? How is it related to a secant line?

. What limit must be calculated to find the rate of change of a func-

tion g(7) at t = 1,?

. Give an informal or intuitive definition of the limit

lim f(x) = L.

Why is the definition “informal”? Give examples.

. Does the existence and value of the limit of a function f(x) as x

approaches ¢ ever depend on what happens at x = ¢? Explain
and give examples.

. What function behaviors might occur for which the limit may fail

to exist? Give examples.

. What theorems are available for calculating limits? Give exam-

ples of how the theorems are used.

. How are one-sided limits related to limits? How can this relation-

ship sometimes be used to calculate a limit or prove it does not
exist? Give examples.

. What is the value of lim,—_, ((sin 8)/6)? Does it matter whether 6

is measured in degrees or radians? Explain.

. What exactly does lim,_,. f(x) = L mean? Give an example in

which you finda § > 0 for a given f, L, ¢, and € > 0 in the pre-
cise definition of limit.

Give precise definitions of the following statements.
a. lim_,, f(x) =5 b. lim, - f(x) = 5

c. lim,,, f(x) = o0 d. lim,_,, f(x) = —©

Chapterm Practice Exercises

Limits and Continuity

1.

2.

Graph the function

1, x=-1
—X, -1 <x<0

flx) = 1, x=0
—X, 0<x<1

1, x = 1.

Then discuss, in detail, limits, one-sided limits, continuity, and
one-sided continuity of f at x = —1,0, and 1. Are any of the
discontinuities removable? Explain.

Repeat the instructions of Exercise 1 for

0, x=-1
1 0< ¥ <1
16 = 0, x=1
1, x> 1.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

How can looking at the graph of a function help you tell where
the function is continuous?

What does it mean for a function to be right-continuous at a
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

What does it mean for a function to be continuous on an interval?
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected
intervals within the domain.

What are the basic types of discontinuity? Give an example of
each. What is a removable discontinuity? Give an example.

What does it mean for a function to have the Intermediate Value
Property? What conditions guarantee that a function has this
property over an interval? What are the consequences for graph-
ing and solving the equation f(x) = 0?

Under what circumstances can you extend a function f(x) to be
continuous at a point x = ¢? Give an example.

What exactly do lim,—,« f(x) = L and lim,_, « f(x) = L mean?
Give examples.

What are lim,_, + k (k a constant) and lim,_, + (1/x)? How do
you extend these results to other functions? Give examples.

How do you find the limit of a rational function as x — +00?
Give examples.

What are horizontal and vertical asymptotes? Give examples.

. Suppose that f(¢) and f(¢) are defined for all ¢ and that lim,—,,
f() = =7 and lim,, g(#) = 0. Find the limit as ¢t — 7, of the
following functions.

a. 3f(t) b. (f(1))?
(0
¢ f(0-g@) d -7
e. cos(g(1) f. |f(f)|
g f( + g h. 1/f(n

. Suppose the functions f(x) and g(x) are defined for all x and that
lim,— f(x) = 1/2 and lim,_, g(x) = \/2. Find the limits as
x — 0 of the following functions.

a. —gx) b. g(x) - f(x)

¢ f(x) + gx) d. 1/f(x)
e x+ f() p T



In Exercises 5 and 6, find the value that lim,_, g(x) must have if the

given limit statements hold.

4 —
5. liir})(%m) =1

6.

) -

7. On what intervals are the following functions continuous?

a. f(x)=x'73

c. h(x) = x5

b.
d.

g) =2
k(x) = x71/6

8. On what intervals are the following functions continuous?

a. f(x) = tanx

COS X
X — T

c. hx) =

Finding Limits

b.
d.

g(x) = cscx

k) = 2

In Exercises 9-28, find the limit or explain why it does not exist.

X2 —4x + 4
X3+ 5x% — 14x

a. asx—0

9. lim

2
. X+ x

10. lim———————

O+ 2t +

a. asx—0

1. fim LV
—1 1 —x
(x4 h)? = x?
13. Ilm——F—
=0 h
11
15 tim2tx 2
x—0
L oxBr -
17. lim~—F————
=1Vx — 1
19. 1 tan (2x)

im
x—0 tan (77x)

21. lim sin (5 + sin x)

X/ 2
23, lim - 5%
—03sinx — x

25. lim In(t — 3)
—3"

27, lim Ve 10

12.

14.

16.

18.

20.

24.

26.

28.

as x—2

as x— —1

x2_a2
4

lim
—ax* — a
C(x+ h)?r =X
lim—————

x—0 h

Q+x° -8

lim X

x—0

. X —16
lim

=64 \V/x — 8

lim cscx

Pand i

lim cos? (x — tan x)
X

. cos2x — 1
lim———————
x—0  sinx
lim 2 In (2 ~ Vi)
-

. 2!/

lim
=0 el/z + 1

In Exercises 29-32, find the limit of g(x) as x approaches the indi-

cated value.
29. li1101+(4g(x))1/3 =2

2
31 lim Xt Lo
=1 gx)

Roots

33. Let f(x) = x> —x — 1.

30.

32.

. 1 -
xgn\lﬁ x + g(x) =2
2

lim 2> —% —

2 Vg(x)

a. Use the Intermediate Value Theorem to show that f has a

zero between —1 and 2.

b. Solve the equation f(x) = 0 graphically with an error of

magnitude at most 1078,
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c. It can be shown that the exact value of the solution in part (b) is

(LYY (1YY"

T

2 18

Evaluate this exact answer and compare it with the value you
found in part (b).

34. Let f(6) = 63 — 260 + 2.

a. Use the Intermediate Value Theorem to show that f has a
zero between —2 and 0.

b. Solve the equation f(6) = 0 graphically with an error of
magnitude at most 107,

c¢. It can be shown that the exact value of the solution in part (b) is

(8- (E- )"

Evaluate this exact answer and compare it with the value you
found in part (b).

Continuous Extension

35. Can f(x) = x(x> — 1)/|x* — 1| be extended to be continuous at
x =1 or —1? Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

36. Explain why the function f(x) = sin(l1/x) has no continuous
extension to x = 0.

In Exercises 37-40, graph the function to see whether it appears to have

a continuous extension to the given point a. If it does, use Trace and
Zoom to find a good candidate for the extended function’s value at a. If
the function does not appear to have a continuous extension, can it be
extended to be continuous from the right or left? If so, what do you
think the extended function’s value should be?

x — 1

37. fix) = , a=1
x — Vax

38, 50) = 00 a=wp

39. h(t)y = (1 + |¢))V, a=0

40. k(x) = a=0

1 = 2l

Limits at Infinity
Find the limits in Exercises 41-54.

2x + 3 . 2x*+ 3
A lim S 57 2. Im g
2 _
43. lim S0+ 8 M. lim
x—>—00 3x x—ooxs — Tx + 1
2 _ 4 3
45. lim ¥ 46. lim %
x—>—00 X + 1 x—>00 12)(3 + 128
47, lim sin x (If you have a grapher, try graphing the function
oo | x] for—5 = x = 5.)
01 (If you have a grapher, try graphing
48. glim % f(x) = x(cos (1/x) — 1) near the origin to

“see” the limit at infinity.)

. x4 sinx + 2V . 2/3 4 1
49, lim Z oML T2V 50. lim > ——*
x—>00 x + sinx x—00 x2/3 4 cos?x

51. lim e'/* cos% 52. lim ln(l + %)
X—00 1—>00
53. lim tan'x 54. lim ¥ sin”! 1

x——00 —>—00
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Horizontal and Vertical Asymptotes 56. Use limits to determine the equations for all horizontal asymptotes.

55. Use llmltSZtO determine the equations for allzvertlcal asymptotes. oy o | = 2 b e = Vrx + 4
+ —x— = . N
a.y:x 4 b. f(x):xz x—2 X+ 1 Vx + 4
x—3 x> =2x+1
¥ +x—6 X+ 4 X +9
=2 12 = c. glx)=—5" d. y=
“ YT -3 86 x YTV 4+ 1

Chapterm Additional and Advanced Exercises

1. Assigning a value to 0° The rules of exponents tell us that

a® = 1 if a is any number different from zero. They also tell us

that 0" = 0 if n is any positive number.

If we tried to extend these rules to include the case 0°, we
would get conflicting results. The first rule would say 0° = 1,
whereas the second would say 0° = 0.

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define 0° to have any value we wanted as long as
we could persuade others to agree.

What value would you like 0° to have? Here is an example
that might help you to decide. (See Exercise 2 below for another
example.)

a. Calculate x* for x = 0.1, 0.01, 0.001, and so on as far as
your calculator can go. Record the values you get. What
pattern do you see?

b. Graph the function y = x* for 0 < x = 1. Even though the
function is not defined for x = 0, the graph will approach
the y-axis from the right. Toward what y-value does it seem
to be headed? Zoom in to further support your idea.

2. A reason you might want 0° to be something other than 0 or 1

As the number x increases through positive values, the numbers
1/x and 1/(In x) both approach zero. What happens to the number

1\ Vo
fx) = <§)

as x increases? Here are two ways to find out.

a. Evaluate f for x = 10, 100, 1000, and so on as far as your
calculator can reasonably go. What pattern do you see?

b. Graph f in a variety of graphing windows, including win-
dows that contain the origin. What do you see? Trace the
y-values along the graph. What do you find?

. Lorentz contraction In relativity theory, the length of an
object, say a rocket, appears to an observer to depend on the
speed at which the object is traveling with respect to the observer.
If the observer measures the rocket’s length as L at rest, then at
speed v the length will appear to be

This equation is the Lorentz contraction formula. Here, c is the
speed of light in a vacuum, about 3 X 10% m/sec. What happens
to L as v increases? Find lim,,—,.- L. Why was the left-hand limit
needed?

4. Controlling the flow from a draining tank Torricelli’s law

says that if you drain a tank like the one in the figure shown, the
rate y at which water runs out is a constant times the square root
of the water’s depth x. The constant depends on the size and
shape of the exit valve.

Exit rate y ft3/min l

Suppose that y = \/);/ 2 for a certain tank. You are trying to
maintain a fairly constant exit rate by adding water to the tank
with a hose from time to time. How deep must you keep the water
if you want to maintain the exit rate

a. within 0.2 ft*/min of the rate y, = 1 ft}/min?

b. within 0.1 ft*/min of the rate y, = 1 ft’/min?

. Thermal expansion in precise equipment As you may know,

most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the shop where the equipment is made must be held
at the same temperature as the laboratory where the equipment is
to be used. A typical aluminum bar that is 10 cm wide at 70°F
will be

y =10 + (t — 70) X 107*

centimeters wide at a nearby temperature 7. Suppose that you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to
f, = 70°F must you maintain the temperature to ensure that this
tolerance is not exceeded?

. Stripes on a measuring cup The interior of a typical 1-L mea-

suring cup is a right circular cylinder of radius 6 cm (see accom-
panying figure). The volume of water we put in the cup is there-
fore a function of the level 4 to which the cup is filled, the
formula being

V = w6%h = 36mh.

How closely must we measure /4 to measure out 1 L of water
(1000 cm?) with an error of no more than 1% (10 cm?)?



Stripes

about
1 mm
wide
(@)
r=6cm
1
//" -'“-\.\
T w Liquid volume
n| EEE——— 1V = 367h
] 3

(b)

A 1-L measuring cup (a), modeled as a right circular cylinder (b)
of radius » = 6 cm

Precise Definition of Limit
In Exercises 7-10, use the formal definition of limit to prove that the
function is continuous at c.

7. fry=x>*—17, c=1 8 gx)=1/2x), c=1/4
9. h(x) = V2x =3, ¢=2 10. Fx) = V9 —x, ¢=5
11. Uniqueness of limits Show that a function cannot have two dif-

ferent limits at the same point. That is, if lim,,. f(x) = L, and
lim,,. f(x) = L,, then L, = L,.

12. Prove the limit Constant Multiple Rule:

1im kf(x) = klim f(x) for any constant k.

13. One-sided limits If lim, .y f(x) = A and lim,— f(x) = B,

find
a. lim ¢ f(x® — x) b. lim, ¢ f(x* — x)
e lim, gy f(x* — x% d. lim,y f(x*> — x%

14. Limits and continuity Which of the following statements are
true, and which are false? If true, say why; if false, give a counter-
example (that is, an example confirming the falsehood).

a. If lim,_,. f(x) exists but lim,_,. g(x) does not exist, then
lim,, (f(x) + g(x)) does not exist.

b. If neither lim,_,. f(x) nor lim,_,. g(x) exists, then
lim,—,,. (f(x) + g(x)) does not exist.

c. If f is continuous at x, then so is | f|.

d. If | f| is continuous at c, then so is f.
In Exercises 15 and 16, use the formal definition of limit to prove that
the function has a continuous extension to the given value of x.

x> -1 B XX —2x—-3
x+1° 7 I 16 g = 2x — 6

15. f(x) = , x=3

17.

18.

19.

20.

21.

22,

23.
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A function continuous at only one point Let

x, if xis rational
f) = e
0, if x is irrational.

a. Show that f is continuous at x = 0.

b. Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show
that f is not continuous at any nonzero value of x.

The Dirichlet ruler function If x is a rational number, then x
can be written in a unique way as a quotient of integers m/n
where n > 0 and m and n have no common factors greater than
1. (We say that such a fraction is in lowest terms. For example,
6/4 written in lowest terms is 3/2.) Let f(x) be defined for all x
in the interval [0, 1] by

1/n, ifx = m/nis arational number in lowest terms
f) = e
0, if x is irrational.

For instance, f(0) = f(1) = 1, f(1/2) = 1/2, f(1/3) = f2/3) =
1/3, f(1/4) = f(3/4) = 1/4, and so on.

a. Show that f is discontinuous at every rational numberin [0, 1].

b. Show that f is continuous at every irrational number in [0, 1 ].
(Hint: If € is a given positive number, show that there are only
finitely many rational numbers rin [0, 1] such that f(r) = €.)

c. Sketch the graph of f. Why do you think f is called the
“ruler function”?

Antipodal points Is there any reason to believe that there is
always a pair of antipodal (diametrically opposite) points on
Earth’s equator where the temperatures are the same? Explain.

If lim, ., (f(x) + g(x)) = 3 and lim,. (f(x) — g(x)) = —1, find
lim,.. f(x)g(x).
Roots of a quadratic equation that is almost linear The equa-

tion ax? + 2x — 1 = 0, where a is a constant, has two roots if
a > —1and a # 0, one positive and one negative:

-1+ Vl+a
a

1 +a

ra@) = L orw= Y LEe

a. What happens to r.(a) as a —>0? As a —>—1%?
b. What happens to r_(a) as a — 0? As a——17?

c. Support your conclusions by graphing r.(a) and r_(a) as
functions of a. Describe what you see.

d. For added support, graph f(x) = ax?> + 2x — 1 simultane-
ously for a = 1, 0.5, 0.2, 0.1, and 0.05.

Root of an equation Show that the equation x + 2cosx = 0
has at least one solution.

Bounded functions A real-valued function f is bounded from
above on a set D if there exists a number N such that f(x) = N
for all x in D. We call N, when it exists, an upper bound for f on
D and say that f is bounded from above by N. In a similar man-
ner, we say that f is bounded from below on D if there exists a
number M such that f(x) = M for all x in D. We call M, when it
exists, a lower bound for f on D and say that f is bounded from
below by M. We say that f is bounded on D if it is bounded from
both above and below.

a. Show that f is bounded on D if and only if there exists a
number B such that | f(x)| = B for all x in D.
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b. Suppose that f is bounded from above by N. Show that if ~osin(x? — x — 2) .. sin @ —x—-2)
lim, ., f(x) = L, then L < N. ¢ fm—— 1 ~Ime_,
c. Suppose that f is bounded from below by M. Show that if W —x—2) ot - 2)
lim,_,. f(x) = L, then L = M. Iim ————=1'lm —————=-3
24. Max {a,b) and min {a, b} —-1 x+1 x——1 x + 1
. Max {a and min {a
’ . sin(l—\/;c) sin(l—\/;c)l_\/;
a. Show that the expression d. lim = lim =
x—1 x—1 x—1 1 — \/;C x — 1
max {a,b} :a+b+ la — bl
’ 2 2 (= V) VE) - x !
I+1lim =hm—=f§
equals a if a = b and equals b if b = a. In other words, b (x = 1)(1 + \/;C) =lhx — 1)(1 + \/;)
max {a, b} gives the larger of the two numbers @ and b. . o )
. o . . Find the limits in Exercises 25-30.
b. Find a similar expression for min {a, b}, the smaller of a .
db . sin(1 — cos x) . sinx
and b. 25. lim——F—— 26. lim
x—0 x=0"5in\/x
. - . sin@
Generalized Limits Involving . sin(sinx) _ sin(x? + x)
27. lim ———— 28. lim—————
The formula limy_,(sinf)/6 = 1 can be generalized. If lim,_,,. =0 =0
f(x) = 0 and f(x) is never zero in an open interval containing the ~ sin(x? — 4) ) sin(\/;c — 3)
point x = ¢, except possibly c itself, then 29. )]CL”; X —2 30. iﬂ‘}; X—9
sin f(x)
AT N Oblique Asymptotes
Here are several examples Find all possible oblique asymptotes in Exercises 31-34.
inx2 2632 + 2x — 3 .1
L osinxt 3l. y=""~—""> 32, y=x+ xsiny
a. lg% 2 1 Vx + 1 x
in x2 in x2 2 33.y=Va2+ 1 4. y= Vit +2
b. lin(l)smx _ lin(l)smx liII(l)xY —1-0=0 y X y X X
x> x> X x>

Chapterm Technology Application Projects

Mathematica/Maple Modules:

Take It to the Limit

Part I

Part II (Zero Raised to the Power Zero: What Does It Mean?)

Part III (One-Sided Limits)

Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)

See how sensitive limits can be with various powers of x.

Going to Infinity

Part I (Exploring Function Behavior as x — % or x — —00)

This module provides four examples to explore the behavior of a function as x — 00 or x — —00.

Part II (Rates of Growth)

Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you
may find surprising.



OVERVIEW In the beginning of Chapter 2, we discussed how to determine the slope of a
curve at a point and how to measure the rate at which a function changes. Now that we have
studied limits, we can define these ideas precisely and see that both are interpretations of
the derivative of a function at a point. We then extend this concept from a single point to the
derivative function, and we develop rules for finding this derivative function easily, without
having to calculate any limits directly. These rules are used to find derivatives of most of the
common functions reviewed in Chapter 1, as well as various combinations of them.

The derivative is one of the key ideas in calculus, and is used to study a wide range of
problems in mathematics, science, economics, and medicine. These problems include
finding points where a continuous function is zero, calculating the velocity and accelera-
tion of a moving object, determining how the rate of flow of a liquid into a container
changes the level of the liquid within it, describing the path followed by a light ray going
from a point in air to a point in water, finding the number of items a manufacturing com-
pany should produce in order to maximize its profits, studying the spread of an infectious
disease within a given population, or calculating the amount of blood the heart pumps in a
minute based on how well the lungs are functioning.

3. 1 Tangents and the Derivative at a Point

Oxg + h, f(xo+ h)

FIGURE 3.1 The slope of the tangent
fGo + 1) — fx)

line at P is lim
h—0

In this section we define the slope and tangent to a curve at a point, and the derivative of a
function at a point. The derivative gives a way to find both the slope of a graph and the
instantaneous rate of change of a function.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve y = f(x) at a point P(x,, f(x,)), we use the procedure
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point
O(xy + h, f(xo + h)). We then investigate the limit of the slope as 7 — 0 (Figure 3.1). If
the limit exists, we call it the slope of the curve at P and define the tangent at P to be the
line through P having this slope.

DEFINITIONS The slope of the curve y = f(x) at the point P(x,, f(xy)) is the
number

. [l + h) — flx)
lim

m = li
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

123
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/

slope is —1
atx = —1

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

slope is -1
4

slope is ——

FIGURE 3.3 The two tangent lines to
y = 1/x having slope —1/4 (Example 1).

The notation f'(x,) is read “f prime of x,.”

In Section 2.1, Example 3, we applied these definitions to find the slope of the parab-
ola f(x) = x? at the point P(2, 4) and the tangent line to the parabola at P. Let’s look at
another example.

EXAMPLE 1
(a) Find the slope of the curve y = 1/x at any point x = a # 0. What is the slope at the
point x = —17?

(b) Where does the slope equal —1/4?
(c) What happens to the tangent to the curve at the point (a, 1/a) as a changes?

Solution
(a) Here f(x) = 1/x. The slope at (a, 1 /a) is

1 1
. f(a+h)—f(a)_1. a+h a—l' la—(a+h
m h I S ~ 50k aa + h
:lim_ih:hm_il:_l
h—0 ha(a + h) — r—>oala + h) a*

Notice how we had to keep writing “lim;,_,,” before each fraction until the stage
at which we could evaluate the limit by substituting 4 = 0. The number a may be
positive or negative, but not 0. When a = —1, the slope is —1/(—1)> = —1
(Figure 3.2).

(b) The slope of y = 1/x at the point where x = a is —1/a* It will be —1/4 provided
that

1

2

Q
=

This equation is equivalent to a’> = 4, so a = 2 or a = —2. The curve has slope
—1/4 at the two points (2, 1/2) and (=2, —1/2) (Figure 3.3).

(c) The slope —1/a? is always negative if a # 0. As a— 0, the slope approaches —00
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as
a— 0". As a moves away from the origin in either direction, the slope approaches 0
and the tangent levels off becoming more and more horizontal. [ |

Rates of Change: Derivative at a Point

The expression

Fxo + h) — f(xo)

n h#0

is called the difference quotient of f at x, with increment A. If the difference quotient
has a limit as & approaches zero, that limit is given a special name and notation.

DEFINITION The derivative of a function f at a point x,, denoted f'(xy), is
fxo + h) — fxo)

f (Xo) = }llll;l}) h

provided this limit exists.
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If we interpret the difference quotient as the slope of a secant line, then the derivative
gives the slope of the curve y = f(x) at the point P(x,, f(x,)). Exercise 33 shows that the
derivative of the linear function f(x) = mx + b at any point x, is simply the slope of the
line, so

f(x) = m,

which is consistent with our definition of slope.

If we interpret the difference quotient as an average rate of change (Section 2.1), the
derivative gives the function’s instantaneous rate of change with respect to x at the point
x = x,. We study this interpretation in Section 3.4.

EXAMPLE 2 In Examples 1 and 2 in Section 2.1, we studied the speed of a rock fall-
ing freely from rest near the surface of the earth. We knew that the rock fell y = 16> feet
during the first 7 sec, and we used a sequence of average rates over increasingly short inter-
vals to estimate the rock’s speed at the instant + = 1. What was the rock’s exact speed at
this time?

Solution We let f(f) = 16¢2. The average speed of the rock over the interval between
t=1andt =1 + h seconds, for 1~ > 0, was found to be

FO+ By — f(1) 161 + h? = 16(1* _ 16(h* + 2h)

i W 7 = 16(h + 2).
The rock’s speed at the instant # = 1 is then
'@y = }%1_1;(1) 16(h + 2) = 16(0 + 2) = 32 ft/sec.
Our original estimate of 32 ft/sec in Section 2.1 was right. |

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point. All of these ideas refer to the same
limit.

The following are all interpretations for the limit of the difference quotient,

li fxo + h) — fxp)
im .
h—0 h

The slope of the graph of y = f(x) at x = x,
The slope of the tangent to the curve y = f(x) at x = X,

The rate of change of f(x) with respect to x at x = x,

B Db E

The derivative f'(x,) at a point

In the next sections, we allow the point x,, to vary across the domain of the function f.
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Exercises m

Slopes and Tangent Lines

In Exercises 1-4, use the grid and a straight edge to make a rough
estimate of the slope of the curve (in y-units per x-unit) at the points
P, and P,.

1. 2.
y y
pz
b d 2
/5 HIEEEEEEVERNEE
\ mEEE Y A
/ \ /
1 \ { X
/ Y \
\ A \
P \ [t \
0 * s
3 4.
y y
—~ \\‘\ / 3 \
/ l_\-—' i)
t /’ P, 2 P, / \¥r
/ ! \
/ / \
X X
/ 0 P 0

In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5.y=4-x% (-1,3) 6. y=C-1D*+1 (1,1

7.y =2Vx, (1,2 8. y:)%, L1
_ 3 _ 1 1
9. y =13, (=2,-8) 0.y =, (-2
X

In Exercises 11-18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

1. fx)=x>+1, (2,5 12. f(x) = x —2x% (1,-1)

(3,3) 14. g(x) =x§ 2,2)

2

B g = "7,
15. h(t) = 5, (2,8)
17. f&) = Vx, 4,2)

16. h(n) = + 31, (1,4)

18. f(x) = Vax+ 1, (83)

In Exercises 19-22, find the slope of the curve at the point indicated.
19. y =5x —3x% x=1 20 y=x*—2x+7, x=-2

1 _ _x—1 _
x =3 22.y—x7+1,x—0

21.y=x_1,

Interpreting Derivative Values

23. Growth of yeast cells In a controlled laboratory experiment,
yeast cells are grown in an automated cell culture system that
counts the number P of cells present at hourly intervals. The num-
ber after ¢ hours is shown in the accompanying figure.

250
200
150
100

50

< t
0 1 2 3 45617

a. Explain what is meant by the derivative P'(5). What are its
units?

b. Which is larger, P'(2) or P'(3)? Give a reason for your
answer.

¢. The quadratic curve capturing the trend of the data points
(see Section 1.4) is given by P(f) = 6.10¢> — 9.28¢ + 16.43.
Find the instantaneous rate of growth when ¢ = 5 hours.

24. Effectiveness of a drug On a scale from 0 to 1, the effective-
ness E of a pain-killing drug ¢ hours after entering the blood-
stream is displayed in the accompanying figure.

E

1.0
0.8
0.6
0.4
0.2

a. At what times does the effectiveness appear to be increasing?
What is true about the derivative at those times?

b. At what time would you estimate that the drug reaches its
maximum effectiveness? What is true about the derivative at
that time? What is true about the derivative as time increases
in the 1 hour before your estimated time?

At what points do the graphs of the functions in Exercises 25 and 26
have horizontal tangents?

25, f(x) = x> + 4x — 1 26. g(x) = x> — 3x

27. Find equations of all lines having slope —1 that are tangent to the
curve y = 1/(x — 1).

28. Find an equation of the straight line having slope 1/4 that is tan-
gent to the curve y = V.

Rates of Change

29. Object dropped from a tower An object is dropped from the
top of a 100-m-high tower. Its height above ground after ¢ sec is
100 — 4.97> m. How fast is it falling 2 sec after it is dropped?



30. Speed of a rocket At ¢ sec after liftoff, the height of a rocket is
312 ft. How fast is the rocket climbing 10 sec after liftoff?

31. Circle’s changing area What is the rate of change of the area
of a circle (A = 7r?) with respect to the radius when the radius
is r = 3?

32. Ball’s changing volume What is the rate of change of the vol-
ume of a ball (V = (4/3)7r) with respect to the radius when
the radius is r = 2?

33. Show that the line y = mx + b is its own tangent line at any
point (xg, mxy + b).

34. Find the slope of the tangent to the curve y = 1/ Vx at the point
where x = 4.

Testing for Tangents
35. Does the graph of

x%sin(1/x), x#0
f(”:{o, (1/x) 0
have a tangent at the origin? Give reasons for your answer.
36. Does the graph of
_ Jxsin(1/x), x#0
gt = {0, x=0

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that a continuous curve y = f(x) has a vertical tangent at the
point where x = Xx; if the limit of the difference quotient is 00 or —00.
For example, y = x'/3 has a vertical tangent at x = 0 (see accompa-
nying figure):

. JO+ R —fO) . KB -0

lim = lim

h—0 h =0 h

= limL = 00
h—0 p2/3

VERTICAL TANGENT AT ORIGIN

However, y = x*? has no vertical tangent at x = 0 (see next figure):

g0 + h) —g0) WP -0
m-————— = lim
h—0 h h—0 h
= lim L
h—0 J1/3
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does not exist, because the limit is 00 from the right and —o0 from the
left.

0f
NO VERTICAL TANGENT AT ORIGIN

37. Does the graph of

-1, x<O0
fx) = 0, x=0
1, x>0

have a vertical tangent at the origin? Give reasons for your answer.
38. Does the graph of
Ulx) = {O, x<0
I, x=0

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

Graph the curves in Exercises 39-48.

a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations. But
before you do, read the introduction to Exercises 37 and 38.

39. y =2 40. y = x*°

41. y = x5 42, y = x5

43. y = 4x*¥5 — 2x 44. y = X583 — 5¢3

45. y =P —x = D' 46. y = 1B+ (x — D3
_\/|7, x=0

47.y_{\/;, c>o  By=Vi-o

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 49-52:

a. Plot y = f(x) over the interval (xy — 1/2) = x = (x; + 3).
b. Holding x, fixed, the difference quotient

o) = floo + h}z — f(xo)

at x, becomes a function of the step size /. Enter this function
into your CAS workspace.

c¢. Find the limit of g as & — 0.

d. Define the secant lines y = f(xy) + g+ (x — xy) for h = 3, 2,
and 1. Graph them together with f and the tangent line over

the interval in part (a).

49. f(x) =x*+2x, x,=0 50. f(x):x-i-%, Xy =1

51. f(x) = x + sin(2x), xy = 7/2
52. f(x) = cosx + 4sin(2x), xy =
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32 The Derivative as a Function

HISTORICAL ESSAY
The Derivative

y=f®

Secant slope is

f@) — f&)

=X

f@ —fx)

h=2mx—
\ \

X z=x+h

Derivative of fat x is

S+ h) — [

fx) = Ligo 7
— i @ /@
Z—X

fand

FIGURE 3.4 Two forms for the differ-
ence quotient.

Derivative of the Reciprocal Function

da(1y__1
de \ X ¥

x#0

In the last section we defined the derivative of y = f(x) at the point x = X, to be the limit

fxo + h) — fxp)

f (.X()) = ;ILI_)I% h

We now investigate the derivative as a function derived from f by considering the limit at
each point x in the domain of f.

DEFINITION The derivative of the function f(x) with respect to the variable x is
the function f" whose value at x is

oo = mf(x * 0 = fo)

provided the limit exists.

We use the notation f(x) in the definition to emphasize the independent variable x
with respect to which the derivative function f'(x) is being defined. The domain of f’ is
the set of points in the domain of f for which the limit exists, which means that the domain
may be the same as or smaller than the domain of f. If f’ exists at a particular x, we say
that f is differentiable (has a derivative) at x. If f' exists at every point in the domain of
f, we call f differentiable.

If we write z = x + h, then h = z — x and & approaches 0 if and only if z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This
formula is sometimes more convenient to use when finding a derivative function, and
focuses on the point z that approaches x.

Alternative Formula for the Derivative

o li—rgf(z; —

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function y = f(x), we use the notation

d
d7f (%)

as another way to denote the derivative f'(x). Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function y = 1/x when x = a. For x representing any point in
the domain, we get the formula

da(1y__1

de \ X 2

Here are two more examples in which we allow x to be any point in the domain of f.



3.2 The Derivative as a Function 129

X

EXAMPLE 1 g

Differentiate f(x) =

Solution We use the definition of derivative, which requires us to calculate f(x + h)
and then subtract f(x) to obtain the numerator in the difference quotient. We have

Derivative of the Square Root
Function

d\[ 1
—Vx = , x>0
dx 2Vx
y
_ 1
y—:‘x-‘rl
\
\
“2  y=Vki
—+H
1 1 1 1 1
0 4

FIGURE 3.5 Thecurve y = Vx and
its tangent at (4, 2). The tangent’s slope
is found by evaluating the derivative at
x = 4 (Example 2).

fo = and for = 0

1 T+ n—-1%
+h) —
f'x) = }llm% w Definition
x+h  x
Cxth—1 x-1
= lim
h—0 h
- lim I(X+h)(x_1)_x(X+h_]) Q_L‘:L/L17<,'/)
hﬁoh x+h—=—Dx—-1 b d bd
— lim 1. —h Simplif
S0h (x+ h— D(x — 1) PP
= lim —1 —1 Cancel h # 0. |

—o(x +h— 1) — 1) x — D¥

EXAMPLE 2
(a) Find the derivative of f(x) = Vx for x > 0.

(b) Find the tangent line to the curve y = Vixatx = 4.

Solution
(a) We use the alternative formula to calculate f':
. f@ — f
"(x) = lim
fi0) = im=—="—
i Y2 W
—x <X
. Vi - Vx
= lim
z—UC(\f — \/)?)(\/2 + \/i)
_ 1 1
= lim

SVEE VR VA
(b) The slope of the curve at x = 4 is

_ 1
flé4 = 1
mf 4
The tangent is the line through the point (4, 2) with slope 1/4 (Figure 3.5):

_ .
y=24 0= 4)

y=%x+1. |

Notations

There are many ways to denote the derivative of a function y = f(x), where the indepen-
dent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

d d
e =y = 2= 2y~ by = Dfw.
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y
Slope 0
A N stope—1 1~ (x)/
10 % ope
B Slope -4
c 2 E
5 D (=8
Slope 0/
=~ 4 x-units
0 5 10 15
(a)
Slope
4
3 y=r '(xy
2+ £
1-
A D'/
M 3 10 15
— 1 _\@\gw
B/
—2[- Vertical coordinate — 1

(b)

FIGURE 3.6 We made the graph of

y = f'(x) in (b) by plotting slopes from
the graph of y = f(x) in (a). The vertical
coordinate of B’ is the slope at B and so
on. The slope at E is approximately

8/4 = 2. In (b) we see that the rate of
change of f is negative for x between A’
and D’; the rate of change is positive for
x to the right of D'.

Slope =
i L© W) = 1)
h—0~ h

Slope =

lim L@+ M =~ fl@)

FIGURE 3.7 Derivatives at endpoints
of a closed interval are one-sided limits.

The symbols d/dx and D indicate the operation of differentiation. We read dy/dx as
“the derivative of y with respect to x,” and df /dx and (d/dx) f(x) as “the derivative of f
with respect to x.” The “prime” notations y’ and f’ come from notations that Newton
used for derivatives. The d/dx notations are similar to those used by Leibniz. The sym-
bol dy/dx should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number x = a, we use the notation

oy W _dff _a
f ((,l) - dx — - dx —a - dxf(x) —
For instance, in Example 2
d 1 1 1
"4) = — = — = —— ==
f ( ) dx\/;c x=4 2\/'; x=4 2\/1 4

Graphing the Derivative

We can often make a reasonable plot of the derivative of y = f(x) by estimating the slopes
on the graph of f. That is, we plot the points (x, f'(x)) in the xy-plane and connect them
with a smooth curve, which represents y = f'(x).

EXAMPLE 3 Graph the derivative of the function y = f(x) in Figure 3.6a.

Solution We sketch the tangents to the graph of f at frequent intervals and use their
slopes to estimate the values of f'(x) at these points. We plot the corresponding (x, f'(x))
pairs and connect them with a smooth curve as sketched in Figure 3.6b. |

What can we learn from the graph of y = f'(x)? At a glance we can see

1. where the rate of change of f is positive, negative, or zero;
2. the rough size of the growth rate at any x and its size in relation to the size of f(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it has a
derivative at each point of the interval. It is differentiable on a closed interval [a, b ] if it
is differentiable on the interior (a, b) and if the limits

. fla+ h) — fa)
m

hh 0, h Right-hand derivative at a
b+ h)y— f(b
hlin(}w Left-hand derivative at b

exist at the endpoints (Figure 3.7).

Right-hand and left-hand derivatives may be defined at any point of a function’s domain.
Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it has
left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function y = |x| is differentiable on (=00, 0) and (0, 00)
but has no derivative at x = 0.

Solution From Section 3.1, the derivative of y = mx + b is the slope m. Thus, to the
right of the origin,

d(ix(|x‘) = %(x) = %(1 ‘x) = 1. %_(m.\‘ +b)=m, |x| =x



y' not defined at x = 0:
right-hand derivative
# left-hand derivative

FIGURE 3.8 The function y = |x]
is not differentiable at the origin where
the graph has a “corner” (Example 4).
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To the left,
d _d, ._d, . _ L
dx(|x|) - dx( )C) - dx( 1 X) = 1 ,\‘ = —x

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ
there:

o -lol
h—0* h =0+ h

|
=g

Right-hand derivative of |x| at zero =

= lim h |h| = h whenh > 0

o _ oo+ nf o[ _ Al
Left-hand derivative of |x| at zero = lim —————— = lim ——

h—0" h =0 h

_ ... —h

= lim — |n| = —hwhenh < 0
=0 h

= lim—1 = —1. |
h—0"

EXAMPLE 5 In Example 2 we found that for x > 0,
d 1

&V T A
We apply the definition to examine if the derivative exists at x = O:
MO+ R=NO_
h =0 Vh '
Since the (right-hand) limit is not finite, there is no derivative at x = 0. Since the slopes of
the secant lines joining the origin to the points (h, \/E) onagraphof y = Vix approach
o0, the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9.) |

lim
h—0*

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x if the slopes of the secant lines through P(x,, f(xy))
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the
secants fail to take up a limiting position or become vertical as Q approaches P, the deriva-
tive does not exist. Thus differentiability is a “smoothness” condition on the graph of f. A
function can fail to have a derivative at a point for many reasons, including the existence
of points where the graph has

~

1. a corner, where the one-sided 2. a cusp, where the slope of PQ approaches
derivatives differ. 00 from one side and —0O from the other.



132 Chapter 3: Derivatives

-

3. avertical tangent, 4. a discontinuity (two examples shown).
where the slope of PQ
approaches 00 from both
sides or approaches —co
from both sides (here, —00).

Another case in which the derivative may fail to exist occurs when the function’s slope is
oscillating rapidly near P, as with f(x) = sin (1/x) near the origin, where it is discontinu-
ous (see Figure 2.31).

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity If f has a derivative at
x = c, then f is continuous at x = c.

Proof Given that f'(c) exists, we must show that lim,_,. f(x) = f(c), or equivalently,
that limy_o f(c + h) = f(c). If h # 0, then

fle +h) = flo) + (flc + h) — f(o)
PR Ch (Y
Now take limits as # — 0. By Theorem 1 of Section 2.2,
fle+h) — flo) i

fim S+ 10 = fim 0 + fim S g
= f(e) + f'(¢)+0
= f(c) + 0
= f(o). [ ]

Similar arguments with one-sided limits show that if f has a derivative from one side
(right or left) at x = ¢, then f is continuous from that side at x = c.

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump
discontinuity), then it cannot be differentiable there. The greatest integer function y = | x |
fails to be differentiable at every integer x = n (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at a
point where it is continuous, as we saw with the absolute value function in Example 4.



Exercises m

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in
Exercises 1-6. Then find the values of the derivatives as specified.

1 fx) =4 —x% f'(=3),f©0),f 1)
2. F) = (x — 12 + 1; F'(=1), F'(0), F'(2)

3. g0 = }2; g'—1).g'2).¢'(V3)

1 -1z
2z
5. p® = V30; p'(1),p'(3),p'(2/3)

6. r(s) = V2s+ 1; r'0),r(1),r(1/2)

4. k(z) = KD, K (), K (V2)

In Exercises 7—12, find the indicated derivatives.

dy dr
— i = 253 = = ¢3 — 242
7. ! if y=2x 8. ds if r=s 25+ 3
ds . _ dv . _ .1
9. o if 5= T 10. I if v=t 7
dp . dz 1
=y = 32 i =
1. dq it p=aq 12. dw if 2 Vaw? — 1

Slopes and Tangent Lines
In Exercises 13-16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

9

1B, fo) =x+ %, x=-3 14. k(x) =

+ x’ x=2
3

+

X
1 —x

15. s=8r — ¢, t=-1 16. y = x=-2

In Exercises 17-18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

17. y = f(x) = (x,y) = (6,4)

8
Vx—2’
8. w=g@=1+V4—z @w=0@32)

In Exercises 19-22, find the values of the derivatives.

T y it oy=1-1L
19. di|, if s=1-—23 20. &l s if y=1-7%
dr . _ 2 dw . _
21. a8, if r= 7@ 22. 7dz|1:4 if w=z+4+Vz

Using the Alternative Formula for Derivatives
Use the formula

f@ — f®

£ = lim™7 =

to find the derivative of the functions in Exercises 23-26.

23. f(x):x_}_2 24. f(x) = x> —3x+ 4
25. g(x) :xf ; 26. gx) = 1 + Vx
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Graphs
Match the functions graphed in Exercises 27-30 with the derivatives
graphed in the accompanying figures (a)—(d).

’ ’

y A y
— x
0
0 X
(a) (b)
y' y'
/" VA x

(@) ()
27. 28.
y y
\|/yf1(X) y = f2(x)
0 * 0 *

30.

\ y —f4(xy

29.
y
N AN
\/ 0 \/ ) NZI AN
31. a. The graph in the accompanying figure is made of line seg-

ments joined end to end. At which points of the interval
[—4, 6] is f' not defined? Give reasons for your answer.

y
(0,2) (6,2)
/ X o /
[ T N B I X
(—4,0) 0 1 6

(1, —-2) 4, -2)

b. Graph the derivative of f.
The graph should show a step function.
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32. Recovering a function from its derivative

a. Use the following information to graph the function f over
the closed interval [—2,5].

i) The graph of f is made of closed line segments joined
end to end.

ii) The graph starts at the point (—2, 3).

iii) The derivative of f is the step function in the figure
shown here.

b. Repeat part (a), assuming that the graph starts at (—2, 0)
instead of (=2, 3).

33. Growth in the economy The graph in the accompanying figure

34.

shows the average annual percentage change y = f(#) in the U.S.
gross national product (GNP) for the years 2005-2011. Graph
dy/dt (where defined).

7%

6
5
4
3
2
1
0

2005 2006 2007 2008 2009 2010 2011

Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriv-
ative of the fruit fly population. The graph of the population
is reproduced here.

p

350
300
250
200
150
100

50

Number of flies

0 10 20 30 40 50
Time (days)

b. During what days does the population seem to be increasing
fastest? Slowest?

35. Temperature The given graph shows the temperature 7 in °F

36. Weight loss

at Davis, CA, on April 18, 2008, between 6 A.M. and 6 p.M.
T

80

70

60

50

Temperature (°F)

40

0 3 6 9 12
6 AM. 9AM. 12NOON 3 PM. 6 PM.

Time (hr)

a. Estimate the rate of temperature change at the times

i) 7 A.m. ii) 9 A.M. iii) 2 p.m. iv) 4 p.M.

b. At what time does the temperature increase most rapidly?
Decrease most rapidly? What is the rate for each of those times?

c. Use the graphical technique of Example 3 to graph the deriv-

ative of temperature 7 versus time 7.

Jared Fogle, also known as the “Subway Sandwich
Guy,” weighed 425 1b in 1997 before losing more than 240 1b in
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chart
showing his possible dramatic weight loss is given in the accom-
panying figure.

w

500
425

300
200

Weight (Ib)

100

0 1 2345678 9101112

Time (months)

a. Estimate Jared’s rate of weight loss when
i)r=1 ii) t =4 iii) + = 11

b. When does Jared lose weight most rapidly and what is this
rate of weight loss?

c. Use the graphical technique of Example 3 to graph the deriv-
ative of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that
the functions in Exercises 37-40 are not differentiable at the point P.

37. 38.

y y

Y=/

y=x? y=/x y=
y=2 o
P(1,2)
y=x
1 -
| | x
P(0, 0) ! of 1 2
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39. 40. Theory and Examples
N In Exercises 49-52,

y = f(x) a. Find the derivative f'(x) of the given function y = f(x).

P(1, 1) | b. Graph y = f(x) and y = f'(x) side by side using separate
y=x5 sets of coordinate axes, and answer the following questions.

! X c. For what values of x, if any, is f' positive? Zero? Negative?

y=x d. Over what intervals of x-values, if any, does the function
x y = f(x) increase as x increases? Decrease as x increases?
How is this related to what you found in part (¢)? (We will
say more about this relationship in Section 4.3.)

In Exercises 41 and 42, determine if the piecewise-defined function is

__2 -
differentiable at the origin. 49. y =—x 50. y = —1/x

-1, x=0 51. y = x*/3 52. y = x*/4
41. f(x) = P47 x<0 53. Tangent to a parabola Does the parabola y = 23> — 13x + 5

have a tangent whose slope is —1? If so, find an equation for the

2/3
Pox=0 line and the point of tangency. If not, why not?

X
4. gx) = { s
/3 <
x5 x<0 54. Tangent to y = Vx Does any tangent to the curve y = Vx
cross the x-axis at x = —17? If so, find an equation for the line and

Differentiability and Continuity on an Interval the point of tangency. If not, why not?

Each figure in Exercises 43—48 shows the graph of a function over a

closed interval D. At what domain points does the function appear to be 55. Derivative of —f Does knowing that a function f(x) is differ-

entiable at x = x tell you anything about the differentiability of

. 110 : .
a. differentiable? the function — f at x = x? Give reasons for your answer.

. . 109
b. continuous but not differentiable? 56. Derivative of multiples Does knowing that a function g(7) is

c. neither continuous nor differentiable? differentiable at + = 7 tell you anything about the differentiabil-

. ity of the function 3g at t = 7? Give reasons for your answer.
Give reasons for your answers.

43. 44. 57. Limit of a quotient Suppose that functions g(f) and h(t) are
y = f) y y defined for all values of ¢ and g(0) = h(0) = 0. Can
D —3=x=2 y=f) lim,—( (g(#))/(h(?)) exist? If it does exist, must it equal zero?
PN ol Di—2=x=3 Give reasons for your answers.
s L 58. a. Let f(x) be a function satisfying |f(x)| = x*for—1 = x < 1.
/\ Show that f is differentiable at x = 0 and find f'(0).
4 [ A T
-2 -1 0 1/2 3 b. Show that
xsiny, x#0
—2r fx) =
0, x=0
46.
y is differentiable at x = 0 and find f'(0).
y=fx) 59. Graph y = 1/(2\/);) in a window that has 0 = x < 2. Then, on
D —2=x=3 the same screen, graph
30
CVat+th— Vi
L y = n
[ ]
1 for h = 1,0.5,0.1. Then try & = —1,—0.5, —0.1. Explain what
I [ N S is going on.
2o b2 s 60. Graph y = 3x? in a window that has -2 = x = 2,0 = y = 3.

Then, on the same screen, graph

47.
y x + h)? — x°
y =/ = h
D: —1=x=2
for h = 2,1,0.2. Then try h = —2,—1,—0.2. Explain what is
1 going on.
61. Derivative of y = |x| Graph the derivative of f(x) = |x|.
L L L5y Then graph y = (|x| — 0)/(x — 0) = |x|/x. What can you
-1 0 1 2
conclude?
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Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function
F) = Sovo (2/3)"cos (9"mrx) is
g(x) = cos(mx) + (2/3)! cos(9mx) + (2/3)*cos(9*mx)
+ (2/3)3cos(Pmx) + -+ + (2/3)7cos (97mx).
Graph this sum. Zoom in several times. How wiggly and bumpy

is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 63-68.

a. Plot y = f(x) to see that function’s global behavior.

b. Define the difference quotient ¢ at a general point x, with
general step size h.

c. Take the limit as # — 0. What formula does this give?

d. Substitute the value x = x; and plot the function y = f(x)
together with its tangent line at that point.

3 . 3 Differentiation Rules

63.
64.

65.

66.

67.
68.

e. Substitute various values for x larger and smaller than x, into
the formula obtained in part (c). Do the numbers make sense
with your picture?

f. Graph the formula obtained in part (c). What does it mean
when its values are negative? Zero? Positive? Does this make
sense with your plot from part (a)? Give reasons for your
answer.

fy=x*+x>—x x =1

f) = 2P+ x5, x =1

4x

f(x):xz-i-l’ X =2
¥ —

IO =3ep w7

f(x) =sin2x, xy = /2

fx) = x’cosx, x, = /4

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

(x, ¢) (x+ h,c)
*

Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

af _ d

a— a(c) - 0.

0

FIGURE 3.9 The rule (d/dx)(c) = 0

?

|

|

|

|

|

|

|
+

I

I

I

I

I

I

I
X x+h

Proof

is another way to say that the values of

constant functions never change and that
the slope of a horizontal line is zero at

every point.

f'0) = lim

We apply the definition of the derivative to f(x) = c¢, the function whose outputs
have the constant value ¢ (Figure 3.9). At every value of x, we find that

fe+h = fo) _

.. Cc—C _ . _
i ST T im0 =0 "

From Section 3.1, we know that

il

__1 dey__
)— oo dxx) x 2

From Example 2 of the last section we also know that

(Vi) = 1=

doapy_ 1 —ip
N or dx(x ) 712

These two examples illustrate a general rule for differentiating a power x". We first prove
the rule when 7 is a positive integer.
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Applying the Power Rule
Subtract 1 from the exponent and multiply

the result by the original exponent.
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Derivative of a Positive Integer Power

If n is a positive integer, then

d .
=" = nx" 1.

dx

Proof of the Positive Integer Power Rule The formula

7" — X" = (Z _ x)(zn—l + Zn—2x + ...+ an—Z + x”_])

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

f@) — f& 78— X"
VN _
f(x)_lf}c 7— X gf}cz—x
=limE '+ "+ - + 2+ XD n terms
X
= nx" 1. [ |

The Power Rule is actually valid for all real numbers n. We have seen examples for a
negative integer and fractional power, but n could be an irrational number as well. To
apply the Power Rule, we subtract 1 from the original exponent n and multiply the result
by n. Here we state the general version of the rule, but postpone its proof until Section 3.8.

Power Rule (General Version)
If n is any real number, then

d
_ ~1
X" = nx""",

dx

for all x where the powers x” and x"~! are defined.

EXAMPLE 1 Differentiate the following powers of x.
@y P @ @5 @ @ Ve
x
Solution
d (3 _ 231 _ 42
(a) e (x3) = 3x 3x
d oy _2 op-1 2 13
(b) i (x?3) ¥ 3%
d _
(c) a(x\/i> = \V2xV2-!
d (1 d , _ 4 _ 4
(d) d)c(x4> :a(x 4) =—4x4 1 =—4x5 :_;
d o apy_ 4 a1 4
@ S () =-3 L
® - (Vaim) = - (x ) = (1 + 2>x1+< Pl =2@2+ mVa o

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.
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y=3x

Slope =3(2x)

0

FIGURE 3.10 The graphs of y = x?
and y = 3x?. Tripling the y-coordinate
triples the slope (Example 2).

Denoting Functions by u and v
The functions we are working with when

we need a differentiation formula are

likely to be denoted by letters like f and g.

We do not want to use these same letters

when stating general differentiation rules,
so instead we use letters like « and v that

are not likely to be already in use.

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

_ .du
dx (cu) c d’

In particular, if n is any real number, then

i ny — n—1
dx(cx) cnx" .

Proof
icu = lim cu(x + h) — cu(x) Derivative definition
dx h—0 h with f(x) = cu(x)
. ulx + h) — u(x)
= C}lllr%f Constant Multiple Limit Property
—
u
Z,x u is differentiable. |
EXAMPLE 2

(a) The derivative formula
d N .
e (3x%) = 3:2x = 6x

says that if we rescale the graph of y = x> by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function
The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with ¢ = —1 gives

. _d . __;.4d. 5 d“

Ly =1y =14 = N
The next rule says that the derivative of the sum of two differentiable functions is the

sum of their derivatives.

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u# + v is differentiable
at every point where u# and v are both differentiable. At such points,
dv

(u+v)—f+a

For example, if y = x* + 12x, then y is the sum of u(x) = x* and v(x) = 12x. We

then have
dy d
— ( 4)

d — 43
I = g () (120 = 4+ 12
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©,2)
1+
(-1,D 1,

I I
—1 0 1

FIGURE 3.11 The curve in Example 4
and its horizontal tangents.
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Proof We apply the definition of the derivative to f(x) = u(x) + v(x):
[u(x + h) + vix + h)] — [ux) + vE)]
m

% [u(x) + v(x)]

h—0 h

o lu(x +h) —ukx) vix+h) — v
= lim +

h—0 h h
L ulx + h) — ux) v+ h) v du | dv
= h = h "ot ™

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:

da - _d _ _du . dv_du _dv
dx(u v)_dx[u+( l)v]_dx+( 1)dx_dx dx’
The Sum Rule also extends to finite sums of more than two functions. If u;, u,, . . ., u,
are differentiable at x, then sois u; + u, + -+ + u,, and
A+t tu) = it + dity +oF dity
ax i t W) =g T ax dx’

For instance, to see that the rule holds for three functions we compute

A bty = g+ w) +uy = L+ + P e dn
gy T ) = g e T ) ) = g M TR T e T d T dx T dx

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3 Find the derivative of the polynomial y = x* + %xz —5x + 1.
d
Solution % = %)@ + % (gxz) — %(Sx) + %(1) Sum and Difference Rules

=3x2+%'2x—5+0=3x2+§x—5 m

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4  Does the curve y = x* — 2x> + 2 have any horizontal tangents? If so,
where?

Solution The horizontal tangents, if any, occur where the slope dy/dx is zero. We have

& _d, ., 2 — 43
a—a(x — 2x° + 2) = 4x° — 4x.
. dy
Now solve the equation I 0 for x:
403 —4x =0
4x(x> — 1) =0
x=20,1,—-1.

The curve y = x* — 2x?> + 2 has horizontal tangents at x = 0, 1, and —1. The corre-
sponding points on the curve are (0, 2), (1, 1), and (—1, 1). See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is
an important and useful procedure. |
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Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of
the derivative to f(x) = a*, we get

d . ax+h —a
a (a*) = lim h Derivative definition
h—0
Xoh _ X
— lim% G = gt gh
h—0
a -1
= lima"*- Factoring out a*
h g
h—0
a' — 1
= a*- lim 7 a* is constant as 1 — 0.
h—0
h
oat— 1
= <11m i )-a". (D
h—0

—_—
a fixed number L

Thus we see that the derivative of a* is a constant multiple L of a*. The constant L is a
limit unlike any we have encountered before. Note, however, that it equals the derivative
of f(x) = a*at x = 0:

ho_ 0 h_q

.a . a
lim = lim = L.
h—0 =0 h

f1) =

The limit L is therefore the slope of the graph of f(x) = a* where it crosses the y-axis. In
Chapter 7, where we carefully develop the logarithmic and exponential functions, we
prove that the limit L exists and has the value In a. For now we investigate values of L by
graphing the function y = (a" — 1)/h and studying its behavior as h approaches 0.

Figure 3.12 shows the graphs of y = (" — 1)/h for four different values of a. The
limit L is approximately 0.69 if a = 2, about 0.92 if @ = 2.5, and about 1.1 if a = 3. It
appears that the value of L is 1 at some number a chosen between 2.5 and 3. That number
0 is given by a = e = 2.718281828. With this choice of base we obtain the natural expo-
nential function f(x) = ¢* as in Section 1.5, and see that it satisfies the property

FIGURE 3.12 The position of the curve

ho_
y = (d" — 1)/h, a > 0, varies continu- 1 = ;}l_r,% % =1 2)
ously with a. The limit L of y as h — 0
changes with different values of a. The because it is the exponential function whose graph has slope 1 when it crosses the y-axis.
number for which L = 1 as h — 0 is the That the limit is 1 implies an important relationship between the natural exponential func-
number e between a = 2 and a = 3. tion ¢* and its derivative:

h _
%(ex) =hlin%<e . 1>'e" Eq. (1) with a — ¢

=1-" = ¢ Eq. (2)

Therefore the natural exponential function is its own derivative.

Derivative of the Natural Exponential Function

d o —
L =¢

EXAMPLE 5 Find an equation for a line that is tangent to the graph of y = ¢* and
goes through the origin.

Solution  Since the line passes through the origin, its equation is of the form y = mux,
where m is the slope. If it is tangent to the graph at the point (a, e?), the slope is
m = (¢* — 0)/(a — 0). The slope of the natural exponential at x = a is ¢“. Because these



y
6 y=e"
41
2| (@, e)
._—-11/ } X
- a

FIGURE 3.13 The line through the ori-
gin is tangent to the graph of y = ¢* when
a = 1 (Example 5).

Equation (3) is equivalent to saying that

(fe) = f'e + fg'.

This form of the Product Rule is useful
and applies to dot products and cross
products of vector-valued functions,
studied in Chapter 13.
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slopes are the same, we then have that ¢* = ¢“/a. It follows that ¢ = 1 and m = e, so the
equation of the tangent line is y = ex. See Figure 3.13. |

We might ask if there are functions other than the natural exponential function that
are their own derivatives. The answer is that the only functions that satisfy the property
that f'(x) = f(x) are functions that are constant multiples of the natural exponential func-
tion, f(x) = c-e*, ¢ any constant. We prove this fact in Section 7.2. Note from the Con-
stant Multiple Rule that indeed

gy = oy = (o
dx(c e =c¢ dx(e") c-é.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

d. - d o _ ~ Aoy d 1.1 =
dx (x-x) = i (x9) = 2x, while dx (x) dx x)=1-1 1.

The derivative of a product of two functions is the sum of two products, as we now explain.

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

d, . _ dv, du
a(uv)—udx-f-vdx.

The derivative of the product uv is u times the derivative of v plus v times the deriva-
tive of u. In prime notation, (uv)’ = uv’ + vu'. In function notation,

%[f @g] = fg' () + g)f (x). 3)

EXAMPLE 6  Find the derivative of (a) y = +(x® + ¢*), (b) y = €.

Solution
(a) We apply the Product Rule with u = 1/x and v = x* + %

d _ dv du
dd_x|:)l€'(x2 + ex):| = %(2}6 + gx) —+ (xz + ex)<_ 1> E(le) =u I + vdx"‘md

2

X
i<1>:,L
e e dx \* x2
:2+Y_1_; *
=1+(x—1)%.
X
i 2x —i . = .i .i — . — 2x
(b) dx(e )—dx(ex e) = ¢e* dx(e’f)+ex dx(e*) 2¢° -t = e [

EXAMPLE 7 Find the derivative of y = (x> + 1)(x* + 3).

Solution
(a) From the Product Rule with u = x> + 1 and v = x> + 3, we find

d )
a[( 2 + 1)()63 + 3)] = ()C2 + 1)(3x2) + (x3 + 3)(2x) i{((uu) = “i%+ u%

= 3x* + 3x2 + 2x* + 6x
= 5x* + 3x2 + 6.
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Picturing the Product Rule
Suppose u(x) and v(x) are positive and

increase when x increases, and 2 > 0.

v(x + h)
Av u(x + h) Av
v(x)
u(x)v(x) v(x) Auj
0

Au \
u(x) u(x + h)

Then the change in the product uv is
the difference in areas of the larger and
smaller “squares,” which is the sum of
the upper and right-hand reddish-shaded
rectangles. That is,

A(wv) = ulx + hv(x + h) — u(x)v(x)
= u(x + h)Av + v(x)Au.

Division by & gives

A(uv)
h

= u(x + h)% + v(x)%.

The limit as 7 — 0™ gives the Product
Rule.

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

y=x+1D)E+3)=x"+P*+32+3

d
D 5 4 32 4 6
dx
This is in agreement with our first calculation. |

Proof of the Derivative Product Rule

d _ulx + hu(x + h) — u(x)v(x)
ax W) = lim n

To change this fraction into an equivalent one that contains difference quotients for the
derivatives of 1 and v, we subtract and add u(x + h)v(x) in the numerator:

u(x + hvx + h) — ulx + hHv(x) + ulx + Hvx) — ux)v(x)

d _
ax W) = i h

v(x + h) — v(x) u(x + h) — u(x)
D

. . vlx + h) — )
= limu(x + h)- lim ——————
h—0 h—0 h

i -
%1_1)1}) u(x + h)

u(x + h) — ux)

+ v(x) - }11_1)1}) h

As h approaches zero, u(x + h) approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dv/dx at x and du/dx at x. Therefore,

d dv+ du

a(uv) sugoTuo [ |

The derivative of the quotient of two functions is given by the Quotient Rule.

Derivative Quotient Rule
If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is dif-
ferentiable at x, and

du _ dv
Wax

dlu Vidx
de \U :T

In function notation,

d {f(x)] _sWf' @) — f@g'®)

dx | g(x) 2% (x)
2 _
EXAMPLE 8  Find the derivative of (a) y = ; B i (b) y = e,
Solution

(a) We apply the Quotient Rule withu = > — land v = 2 + 1:
pply

dy _ @+ D2t — @ —1):32 d/(u v(du/dt) — u(dv/dr)
e el B
24 + 2t — 3¢* + 372
@+ 17
_ 4+ 37 + 2t
B+ )2

v v2
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d, . _dfl\_ée-0—1-¢_—-1_ _.
®) 2 )_dx<ex>_ @2 e ¢ -

Proof of the Derivative Quotient Rule

u(x + h)  ux)
d<u> vt h v
= lim ——

dx \V h—0 h

v(xX)u(x + h) — u(x)v(x + h)
s ho(x + h(x)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and v, we subtract and add v(x)u(x) in the numerator. We then get

d(u) _ . vu(x + h) — vulx) + vulx) — ux)vix + h)
ax\v) ~ 5 ho(x + h()
u(x + h) — u(x) v(x + h) — v(x)
— u(x)
h h
= lim

h—0 v(x + h)v(x)

v(x)

Taking the limits in the numerator and denominator now gives the Quotient Rule. Exercise
74 outlines another proof. |

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9 Find the derivative of

_ (x — D(x% — 2%)

X4

Solution Using the Quotient Rule here will result in a complicated expression with
many terms. Instead, use some algebra to simplify the expression. First expand the numer-
ator and divide by x*:

=D -2 B -3+
y= = =x! -

x* x*

3x72 4+ 2473,

Then use the Sum and Power Rules:
dy
& 2 29,3 Ay, 4
e X 3(=2)x° + 2(—3)x

1 6 6
——;'F;—F. [ |

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f’ is
also differentiable, then we can differentiate ' to get a new function of x denoted by f”.
So " = (f")’". The function f” is called the second derivative of f because it is the deriv-
ative of the first derivative. It is written in several ways:
” dzy d dy dy ' ” 2 2
f(x)—@—a Ac) = ax =Y = DH® = Df.

The symbol D? means the operation of differentiation is performed twice.

If y = x5 then y' = 6x° and we have

_Y

" d o5 a4
y —dx—dx(6x) 30x*.

Thus D?(x®) = 30x*.
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How to Read the Symbols for
Derivatives

y “y prime”

y “y double prime”
—  “dsquared y dx squared”

y “y triple prime”
y™  *“y super n”

D"  “Dtothen”

Exercises m

Derivative Calculations

In Exercises 1-12, find the first and second derivatives.

“d to the n of y by dx to the n”

If y” is differentiable, its derivative, y” = dy”/dx = d®y/dx?, is the third derivative
of y with respect to x. The names continue as you imagine, with
d 1) =

m— 4 dy _
Y dxy dx"

D"y

denoting the nth derivative of y with respect to x for any positive integer n.

We can interpret the second derivative as the rate of change of the slope of the tangent
to the graph of y = f(x) at each point. You will see in the next chapter that the second
derivative reveals whether the graph bends upward or downward from the tangent line as
we move off the point of tangency. In the next section, we interpret both the second and
third derivatives in terms of motion along a straight line.

EXAMPLE 10 The first four derivatives of y = x> — 3x% + 2 are

First derivative: y = 3x* — 6x

Second derivative: y" = 6x — 6

Third derivative: Y =06

Fourth derivative: ~ y® = 0.
All polynomial functions have derivatives of all orders. In this example, the fifth and later
derivatives are all zero. |

1+ x—4Vx (1 )
25, p = — Y% 26. r=2—=+ V0o
* Vo

Ly=—x*+3 y=x*+x+38 I 1 28 D+ 2)
3.5 =503 cw =37 — 78+ 212 TR D@+ ) Y T - D -2
4x3 XX _ 2 4 3¢
5.y =" —x+ 2 Ly =St = 27 + € ===
y 3 y 3 2 29. y 2" + e 30. y 2¢" — x
7w =372 — % =21 4 iz 3Ly = xef 2. w=re’
! 33y =x+ ™ 4. y=x3+ 72
9. y =6x* — 10x — 5x72 y=4—-2x—x7° ) -
= 2432 2 = - 4
o 5 12 4 1 35. 5 =20/ + 3e 36. w T o
11. r = — — r=-——-—=4 = z z
32 2s 6 6 o
37. y= Va2 — x* 38. y = Va0 + 213
In Exercises 13-16, find y’ (a) by applying the Product Rule and B !
(b) by multiplying the factors to produce a sum of simpler terms to 39, r = % 40. r = 9(& + 6‘7’/2)
differentiate.
13. y=3-x)3 —x+1) 14 y = 2x + 3)(5x> — 4x) Find the derivatives of all orders of the functions in Exercises 41-44.
15 :(xz-i-l)x-ﬁ-S-i-l 16. y = (1 + x2)(x3* — x73) 41 y=i4—§x2—x 42, y= X
4 x) oy : 2 2 : 120
Find the derivatives of the functions in Exercises 17—40. 4B.y=G0-DE+E+3) 4. y= @+ 32— x)x
17. y = 2x + 5 4 — 3x Find the first and second derivatives of the functions in Exercises
) 3x -2 3x + x 45-52.
24 21 45 ¥ +7 P+ 51
. - . S A Ly = 46. s = ———
19. g(x) T 105 20. f(») i _2 X 2
2 v=1-n(1+2)" 2. w=Qx—-7'x+5) g, @ -DEFOFD o PN - xt D)
. 3 . 1
2. gy = Vi Sx + 1 0 n
' Vs + 1 2Vx 49.w:(l+3z>(3—z) 50. p = 9 *3
3z g— 1+ @+ 1)



51. w = 37%% 52. w=¢€(z — DI+ 1)
53. Suppose u and v are functions of x that are differentiable at

x = 0 and that

w©0) =5, u'0)=-3 v0) =-1, v'(0) = 2.

Find the values of the following derivatives at x = 0.

d d(u d (v d
a. dx(uv) b. dx(v) C. dx(”) d. dr (Tv — 2u)

54. Suppose u and v are differentiable functions of x and that

u(l)y =2, uw'(l)=0, vl)=5 v')=-1L

Find the values of the following derivatives at x = 1.

d d(u d(v d
a. a(uv) b. a(a) C. a(ﬁ) d. 5(71.} - 2u)

Slopes and Tangents
55. a. Normal to a curve Find an equation for the line perpendicular
to the tangent to the curve y = x* — 4x + 1 at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.

56. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve y = x* — 3x — 2. Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

57. Find the tangents to Newton's serpentine (graphed here) at the
origin and the point (1, 2).

y

(L2

(=
—_
[y
w
g .

58. Find the tangent to the Witch of Agnesi (graphed here) at the point
2, 1).

59. Quadratic tangent to identity function The curve y =
ax’> + bx + c passes through the point (1, 2) and is tangent to the
line y = x at the origin. Find a, b, and c.

60. Quadratics having a common tangent The curves y=
x>+ ax + b and y = cx — x*> have a common tangent line at
the point (1, 0). Find a, b, and c.
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61. Find all points (x, y) on the graph of f(x) = 3x*> — 4x with tan-
gent lines parallel to the line y = 8x + 5.

62. Find all points (x, y) on the graph of g(x) = %x3 - %xz + 1 with
tangent lines parallel to the line 8x — 2y = 1.

63. Find all points (x, y) on the graph of y = x/(x — 2) with tangent
lines perpendicular to the line y = 2x + 3.

64. Find all points (x, y) on the graph of f(x) = x* with tangent lines
passing through the point (3, 8).

[l =2

10~

65. a. Find an equation for the line that is tangent to the curve
y = x* — x at the point (—1, 0).

b. Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

¢. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

66. a. Find an equation for the line that is tangent to the curve
y = x> — 6x% + 5x at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

¢. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples

For Exercises 67 and 68 evaluate each limit by first converting each to
a derivative at a particular x-value.

X0 — 1 X0 -1

68, Jim =

67. lim

x—>1 X —

69. Find the value of a that makes the following function differentia-
ble for all x-values.

o) {ax, ifx <0
) =
§ X2 =3y ifx=0

70. Find the values of a and b that make the following function dif-
ferentiable for all x-values.
ax + b, x>-—1
o = {bx2 ~3, x=-1
71. The general polynomial of degree n has the form
P(x) = ax" + a, XN+ o 4 apx + aix + ag

where a, # 0. Find P'(x).
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72.

73.

74.

75.
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The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of

the form
C M
_wplt_M
R—M<2 3),

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a
change in temperature, R is measured in degrees, and so on.

Find dR/dM. This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see
how to find the amount of medicine to which the body is most
sensitive.

Suppose that the function v in the Derivative Product Rule has a
constant value c. What does the Derivative Product Rule then say?
‘What does this say about the Derivative Constant Multiple Rule?

The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
v(x) is differentiable and different from zero,

dfly__ldv

dx \V vrdx’
Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product
Rule together imply the Derivative Quotient Rule.

Generalizing the Product Rule The Derivative Product Rule
gives the formula

for the derivative of the product uv of two differentiable func-
tions of x.

a. What is the analogous formula for the derivative of the prod-
uct uvw of three differentiable functions of x?

b. What is the formula for the derivative of the product u;u,usu,
of four differentiable functions of x?

¢. What is the formula for the derivative of a product u u,us - - - u,
of a finite number n of differentiable functions of x?

34 The Derivative as a Rate of Change

76.

77.

78.

Power Rule for negative integers Use the Derivative Quotient
Rule to prove the Power Rule for negative integers, that is,

i —my — —m—1
dx(x ) = —mx

where m is a positive integer.

Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature 7, the pressure P is related to the volume V by a
formula of the form

nRT  an®
V — nb V2’

in which a, b, n, and R are constants. Find dP/dV . (See accompa-
nying figure.)

P =

The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is
A(q)=l%+cm+h7q,

where ¢ is the quantity you order when things run low (shoes,
TVs, brooms, or whatever the item might be); k is the cost of
placing an order (the same, no matter how often you order); ¢ is
the cost of one item (a constant); m is the number of items sold
each week (a constant); and / is the weekly holding cost per item
(a constant that takes into account things such as space, utilities,
insurance, and security). Find dA /dq and d*A /dq*.

In Section 2.1 we introduced average and instantaneous rates of change. In this section we
study further applications in which derivatives model the rates at which things change. It is
natural to think of a quantity changing with respect to time, but other variables can be
treated in the same way. For example, an economist may want to study how the cost of
producing steel varies with the number of tons produced, or an engineer may want to
know how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient (f(x + h) — f(x))/h as the average rate of change
in f over the interval from x to x + h, we can interpret its limit as 7 — 0 as the rate at
which f is changing at the point x.



and at time 7 + Ar
As > }

s+ As = f(t + Ar)

Position at time ¢ ...
I

I<

s = f(n)

FIGURE 3.14 The positions of a body
moving along a coordinate line at time ¢
and shortly later at time ¢ + At. Here the
coordinate line is horizontal.
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DEFINITION The instantaneous rate of change of f with respect to x at x; is
the derivative

fxo + h) — fxo)

f (XO) = }llll)l%) h 5

provided the limit exists.

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time.
The word is, however, frequently omitted. When we say rate of change, we mean instanta-
neous rate of change.

EXAMPLE 1 The area A of a circle is related to its diameter by the equation
— Ty
A 1 D-.

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

dA _ 7 o _ 7D
D~ 4P ="

When D = 10 m, the area is changing with respect to the diameter at the rate of
(/2)10 = 57 m?/m =~ 15.71 m?/m. [ |

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as
a function of time ¢:

s = f(1).
The displacement of the object over the time interval from ¢ to t + At (Figure 3.14) is
As = f(t + An) — f(0),
and the average velocity of the object over that time interval is

f& + Ay — f(®
A At :

_ displacement Ay
~ travel time

vav

To find the body’s velocity at the exact instant 7, we take the limit of the average
velocity over the interval from ¢ to t + Ar as At shrinks to zero. This limit is the deriva-
tive of f with respect to 7.

DEFINITION Velocity (instantaneous velocity) is the derivative of position with
respect to time. If a body’s position at time 7is s = f(), then the body’s velocity
at time 7 is

() = % = Jim (A0 2SO

At—0 At
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(a) s increasing:
positive slope so
moving upward

(b) s decreasing:
negative slope so
moving downward

FIGURE 3.15 For motion s = f(7)
along a straight line (the vertical
axis), v = ds/dt is (a) positive when
s increases and (b) negative when s
decreases.

HISTORICAL BIOGRAPHY
Bernard Bolzano

(1781-1848)

Besides telling how fast an object is moving along the horizontal line in Figure 3.14, its
velocity tells the direction of motion. When the object is moving forward (s increasing), the
velocity is positive; when the object is moving backward (s decreasing), the velocity is
negative. If the coordinate line is vertical, the object moves upward for positive velocity and
downward for negative velocity. The blue curves in Figure 3.15 represent position along the
line over time; they do not portray the path of motion, which lies along the vertical s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show —30 on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

DEFINITION Speed is the absolute value of velocity.

ds

Speed = |v(®)| = a

EXAMPLE 2 Figure 3.16 shows the graph of the velocity v = f'(f) of a particle moving
along a horizontal line (as opposed to showing a position function s = f(¢) such as in Figure
3.15). In the graph of the velocity function, it’s not the slope of the curve that tells us if the par-
ticle is moving forward or backward along the line (which is not shown in the figure), but rather
the sign of the velocity. Looking at Figure 3.16, we see that the particle moves forward for the
first 3 sec (when the velocity is positive), moves backward for the next 2 sec (the velocity is
negative), stands motionless for a full second, and then moves forward again. The particle is
speeding up when its positive velocity increases during the first second, moves at a steady
speed during the next second, and then slows down as the velocity decreases to zero during the
third second. It stops for an instant at # = 3 sec (when the velocity is zero) and reverses direc-
tion as the velocity starts to become negative. The particle is now moving backward and gain-
ing in speed until = 4 sec, at which time it achieves its greatest speed during its backward
motion. Continuing its backward motion at time ¢ = 4, the particle starts to slow down again
until it finally stops at time t = 5 (when the velocity is once again zero). The particle now
remains motionless for one full second, and then moves forward again at = 6 sec, speeding
up during the final second of the forward motion indicated in the velocity graph. |

The rate at which a body’s velocity changes is the body’s acceleration. The acceleration
measures how quickly the body picks up or loses speed. In Chapter 13 we will study motion in
the plane and in space, where acceleration of an object may also lead to a change in direction.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

DEFINITIONS  Acceleration is the derivative of velocity with respect to time.
If a body’s position at time 7 is s = f(), then the body’s acceleration at time ¢ is

_dv _d’
a(t) = T
Jerk is the derivative of acceleration with respect to time:
o = da _ds
](t) - dt - dt3'

Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s
experiments with free fall (see Section 2.1) lead to the equation

s = %gtz,
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FIGURE 3.16 The velocity graph of a particle moving along a horizontal line,
discussed in Example 2.

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation
holds in a vacuum, where there is no air resistance, and closely models the fall of dense,
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the
effects of air resistance are significant.

The value of g in the equation s = (1/2)g*> depends on the units used to measure ¢
and s. With ¢ in seconds (the usual unit), the value of g determined by measurement at sea
level is approximately 32 ft/sec? (feet per second squared) in English units, and
g = 9.8 m/sec? (meters per second squared) in metric units. (These gravitational con-
stants depend on the distance from Earth’s center of mass, and are slightly lower on top of
Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft/sec?) is zero:

._ d
J=4® =0
t (seconds) s (meters) . I . .
=0 @ 0 An object does not exhibit jerkiness during free fall.
r=1 1 5
- 10 EXAMPLE 3 Figure 3.17 shows the free fall of a heavy ball bearing released from
L 15 rest at time ¢ = 0 sec.
t=2 ) 120 (a) How many meters does the ball fall in the first 3 sec?
~ 25 (b) What is its velocity, speed, and acceleration when ¢t = 3?
30
Solution
33 (a) The metric free-fall equation is s = 4.972. During the first 3 sec, the ball falls
40
.. s(3) = 4.9(3)* = 44.1 m.
=3 [ |45
(b) At any time ¢, velocity is the derivative of position:

FIGURE 3.17 A ball bearing

' _ i 2y —
falling from rest (Example 3). v() = 5'0) = dt(4'9t ) =981
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400 s = 160r — 161
160 =
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_ds _ _
—160 v= o 160 — 32¢

FIGURE 3.18 (a) The rock in Example 4.
(b) The graphs of s and v as functions of
time; s is largest when v = ds/dt = 0.
The graph of s is not the path of the rock:
It is a plot of height versus time. The slope
of the plot is the rock’s velocity, graphed

(b)

here as a straight line.

At t = 3, the velocity is
v(3) = 29.4 m/sec
in the downward (increasing s) direction. The speed at t = 3 is
speed = |v(3)| = 29.4 m/sec.
The acceleration at any time # is
a(®) = v'() = s"(t) = 9.8 m/sec?.

At t = 3, the acceleration is 9.8 m/secz. [ |

EXAMPLE 4 A dynamite blast blows a heavy rock straight up with a launch velocity
of 160 ft/sec (about 109 mph) (Figure 3.18a). It reaches a height of s = 160t — 16¢> ft
after 7 sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(¢) What is the acceleration of the rock at any time ¢ during its flight (after the blast)?
(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so the
velocity is positive on the way up and negative on the way down. The instant the rock is
at its highest point is the one instant during the flight when the velocity is 0. To find the
maximum height, all we need to do is to find when v = 0 and evaluate s at this time.

At any time ¢ during the rock’s motion, its velocity is

_ds _d — 162 = 160 —
v = dt_dt(160t 16¢%) = 160 — 321 ft/sec.

The velocity is zero when

160 — 32t =0 or t = Ssec.

The rock’s height at + = 5sec is
Smax = S(5) = 160(5) — 16(5)> = 800 — 400 = 400 ft.

See Figure 3.18b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of ¢ for which

s(f) = 160t — 161> = 256.

To solve this equation, we write

1612 — 160t + 256 = 0
16(2 — 10t + 16) = 0
t—2)t—8 =0

t = 2sec,t = 8sec.

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

v(2) = 160 — 32(2) = 160 — 64 = 96 ft/sec.
v(8) = 160 — 32(8) = 160 — 256 = —96 ft/sec.
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FIGURE 3.19 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
htonsis c(x + h) — c(x).
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FIGURE 3.20 The marginal cost dc/dx
is approximately the extra cost Ac of
producing Ax = 1 more unit.
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At both instants, the rock’s speed is 96 ft/sec. Since v(2) > 0, the rock is moving
upward (s is increasing) at t = 2sec; it is moving downward (s is decreasing) at
t = 8 because v(8) < 0.

(c) Atany time during its flight following the explosion, the rock’s acceleration is a constant

_dv

CT

= %(160 — 321) = —32 ft/sec?.
The acceleration is always downward and is the effect of gravity on the rock. As the
rock rises, it slows down; as it falls, it speeds up.

(d) The rock hits the ground at the positive time ¢ for which s = 0. The equation
160t — 161> = 0 factors to give 16#(10 — 1) = 0, so it has solutions ¢ = 0 and
t = 10. At r = 0, the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later. |

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is dc/dx.

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce x + & tons per week, and the cost difference, divided by #, is the
average cost of producing each additional ton:

c(x + h) — c(x) _ average cost of each of the additional
h ~ h tons of steel produced.

The limit of this ratio as 7 — 0 is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.19):

de . cx+h) — cx)
- = llm—

= = marginal cost of production.
dx  p—0 h & p

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one additional unit:

Ac _cx+ 1) — cx)
Ax 1 ’
which is approximated by the value of dc/dx at x. This approximation is acceptable if the
slope of the graph of ¢ does not change quickly near x. Then the difference quotient will be
close to its limit dc/dx, which is the rise in the tangent line if Ax = 1 (Figure 3.20). The
approximation works best for large values of x.
Economists often represent a total cost function by a cubic polynomial

cx) =ax® + Bx?+ yx + 6

where & represents fixed costs, such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs, such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to
capture the cost behavior on a realistic quantity interval.

EXAMPLE 5 Suppose that it costs

c(x) = x* — 6x% + 15x
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p
dy/dp
2

j—; =2-2p
0 1 r

(b)

FIGURE 3.21 (a) The graph of

y = 2p — p?, describing the proportion of
smooth-skinned peas in the next genera-
tion. (b) The graph of dy/dp

(Example 7).

dollars to produce x radiators when 8 to 30 radiators are produced and that
r(x) = x3 — 3x2 + 12x

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about
c'(10):

¢'(x) = %(ﬁ — 6x2 + 15x) = 32> — 12x + 15

¢'(10) = 3(100) — 12(10) + 15 = 195.

The additional cost will be about $195. The marginal revenue is
r(x) = %()ﬁ — 3x% + 12x) = 3x* — 6x + 12.

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your reve-
nue to increase by about

r'(10) = 3(100) — 6(10) + 12 = $252

if you increase sales to 11 radiators a day. |

EXAMPLE 6 To get some feel for the language of marginal rates, consider marginal
tax rates. If your marginal income tax rate is 28% and your income increases by $1000,
you can expect to pay an extra $280 in taxes. This does not mean that you pay 28% of your
entire income in taxes. It just means that at your current income level /, the rate of increase
of taxes T with respect to income is d7/dl = 0.28. You will pay $0.28 in taxes out of
every extra dollar you earn. Of course, if you earn a lot more, you may land in a higher tax
bracket and your marginal rate will increase. |

Sensitivity to Change

When a small change in x produces a large change in the value of a function f(x), we say
that the function is relatively sensitive to changes in x. The derivative f'(x) is a measure of
this sensitivity.

EXAMPLE 7 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822-1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and (1 — p) is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

y=2p(l —p)+p=2p-p.
The graph of y versus p in Figure 3.21a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the
derivative graph in Figure 3.21b, which shows that dy/dp is close to 2 when p is near 0
and close to 0 when p is near 1.
The implication for genetics is that introducing a few more smooth skin genes into a
population where the frequency of wrinkled skin peas is large will have a more dramatic

effect on later generations than will a similar increase when the population has a large pro-
portion of smooth skin peas. |



Exercises m

Motion Along a Coordinate Line
Exercises 1-6 give the positions s = f(7) of a body moving on a coor-
dinate line, with s in meters and ¢ in seconds.

2w DR

a. Find the body’s displacement and average velocity for the
given time interval.

b. Find the body’s speed and acceleration at the endpoints of the
interval.

¢. When, if ever, during the interval does the body change direction?
2—=3t+2 0=tr=2

=6t—#1, 0=t=6

s=—r+3%>-3, 0=1r=3

=)
Il

“
|

s=(t"4) - £+ 0=t=3
522725—% l=t=5
-2

S= 115 4=r=0

Particle motion At time ¢, the position of a body moving along
the s-axis is s = > — 61> + 9t m.

a. Find the body’s acceleration each time the velocity is zero.
b. Find the body’s speed each time the acceleration is zero.
c¢. Find the total distance traveled by the body from # = O to r = 2.

Particle motion At time r = 0, the velocity of a body moving
along the horizontal s-axis is v = > — 4t + 3.

a. Find the body’s acceleration each time the velocity is zero.
b. When is the body moving forward? Backward?

¢. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications

9.

10.

11.

Free fall on Mars and Jupiter The equations for free fall at
the surfaces of Mars and Jupiter (s in meters, ¢ in seconds) are
s = 1.86¢> on Mars and s = 11.44¢> on Jupiter. How long does it
take a rock falling from rest to reach a velocity of 27.8 m/sec
(about 100 km /h) on each planet?

Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m/sec (about
86 km /h) reaches a height of s = 24t — 0.8t m in 7 sec.

a. Find the rock’s velocity and acceleration at time 7. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?
¢. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?
e. How long is the rock aloft?

Finding g on a small airless planet Explorers on a small airless
planet used a spring gun to launch a ball bearing vertically upward
from the surface at a launch velocity of 15 m/sec. Because the accel-
eration of gravity at the planet’s surface was g, m/sec?, the explorers
expected the ball bearing to reach a height of s = 15¢ — (1/2)g,#* m
t sec later. The ball bearing reached its maximum height 20 sec after
being launched. What was the value of g?

12.

13.

14.
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Speeding bullet A 45-caliber bullet shot straight up from the
surface of the moon would reach a height of s = 832 — 2.6 ft
after 7 sec. On Earth, in the absence of air, its height would be
s = 832t — 16¢ ft after ¢ sec. How long will the bullet be aloft in
each case? How high will the bullet go?

Free fall from the Tower of Pisa Had Galileo dropped a can-

nonball from the Tower of Pisa, 179 ft above the ground, the

ball’s height above the ground ¢ sec into the fall would have been

s =179 — 1612

a. What would have been the ball’s velocity, speed, and acceler-
ation at time #?

b. About how long would it have taken the ball to hit the ground?

¢. What would have been the ball’s velocity at the moment of
impact?

Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down
increasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was
vertical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity ¢ sec into motion was a constant multiple of #. That is, the
velocity was given by a formula of the form v = kt. The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle 6, the ball’s velocity 7 sec into
the roll was

v = 9.8(sinf)r m/sec.

Free-fall
position

(@ (b)

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs

15.

The accompanying figure shows the velocity v = ds/dt = f(1)
(m/sec) of a body moving along a coordinate line.

v (m/sec)

v = [

L1/
0346/810
-3

a. When does the body reverse direction?

t (sec)

b. When (approximately) is the body moving at a constant speed?
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¢. Graph the body’s speed for 0 = ¢ = 10.

d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the

17.

accompanying figure. Part (b) shows the position of P as a func-
tion of time 7.

—(‘)—4— —:; —>—> 5 (cm)
(a)
s (cm)
,L s=f0
| |
0 1 2
_2_
_4_

(b)

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then
begins to fall. A small explosive charge pops out a parachute
shortly after the rocket starts down. The parachute slows the
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

200

BEEE DS

/ N

100 /
50 N

Velocity (ft/sec)

/

=50 \\/

e (R R S S ST
Time after launch (sec)

¢. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?
When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

18. The accompanying figure shows the velocity v = f() of a particle

19.

moving on a horizontal coordinate line.

1 (sec)

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?
¢. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?
Two falling balls The multiflash photograph in the accompa-
nying figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation s = 4907 (the free-
fall equation for s in centimeters and ¢ in seconds) to answer the

following questions. (Source: PSSC Physics, 2nd ed., Reprinted
by permission of Education Development Center, Inc.)

; ¥
5 ' e
|! . o
H® e
i ® o
[® -
- ® o
1
. a
® = ;
¥ =
® «

®

a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

¢. About how fast was the light flashing (flashes per second)?



20.

21.

22,

A traveling truck The accompanying graph shows the position
s of a truck traveling on a highway. The truck starts at + = 0 and
returns 15 h later at + = 15.

a. Use the technique described in Section 3.2, Example 3, to
graph the truck’s velocity v = ds/dt for 0 = t < 15. Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration dv/dr.

b. Suppose that s = 15> — 3. Graph ds/dt and d?s/dt* and
compare your graphs with those in part (a).

oI
w1/ \\
o/ \

L1 [ L1
0 5 10 15
Elapsed time, 7 (hr)

Position, s (km)

The graphs in the accompanying figure show the position s,
velocity v = ds/dt, and acceleration a = ds/dt* of a body
moving along a coordinate line as functions of time . Which
graph is which? Give reasons for your answers.

y

® @
©

The graphs in the accompanying figure show the position s, the
velocity v = ds/dt, and the acceleration a = d?s/dt* of a body
moving along a coordinate line as functions of time ¢. Which
graph is which? Give reasons for your answers.

y

®
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Economics

23.

24.

Marginal cost Suppose that the dollar cost of producing x
washing machines is c¢(x) = 2000 + 100x — 0.1x%

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are
produced.

¢. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by cal-
culating the latter cost directly.

Marginal revenue Suppose that the revenue from selling x
washing machines is

r(x) = 20,000(1 - )1?)

dollars.
a. Find the marginal revenue when 100 machines are produced.

b. Use the function r'(x) to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of #'(x) as x — 00. How would you interpret
this number?

Additional Applications

25.

26.

28.

. Draining a tank

Bacterium population When a bactericide was added to a
nutrient broth in which bacteria were growing, the bacterium
population continued to grow for a while, but then stopped grow-
ing and began to decline. The size of the population at time ¢
(hours) was b = 10° + 10* — 10%. Find the growth rates at

a. t = 0hours.
b. t =

[V

5 hours.
10 hours.

Body surface area A typical male’s body surface area S in
square meters is often modeled by the formula § = 6% \Vwh,
where £ is the height in cm, and w the weight in kg, of the person.
Find the rate of change of body surface area with respect to
weight for males of constant height # = 180 cm (roughly 5'9").
Does S increase more rapidly with respect to weight at lower or
higher body weights? Explain.

It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank #
hours after the valve is opened is given by the formula

\2
y:6<l—ﬁ) m.

a. Find the rate dy/dr (m/h) at which the tank is draining at
time 7.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of dy/dr at these times?

c. Graph y and dy/dr together and discuss the behavior of y in
relation to the signs and values of dy/dr.

Draining a tank The number of gallons of water in a tank ¢
minutes after the tank has started to drainis Q(f) = 20030 — £)%.
How fast is the water running out at the end of 10 min? What is the
average rate at which the water flows out during the first 10 min?
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29.

30.

31.

32.

Vehicular stopping distance Based on data from the U.S.
Bureau of Public Roads, a model for the total stopping distance of
a moving car in terms of its speed is

s = 1.1v + 0.05402,

where s is measured in ft and v in mph. The linear term 1.1v
models the distance the car travels during the time the driver per-
ceives a need to stop until the brakes are applied, and the qua-
dratic term 0.054v> models the additional braking distance once
they are applied. Find ds/dv at v = 35 and v = 70 mph, and
interpret the meaning of the derivative.

Inflating a balloon The volume V = (4/3)mr? of a spherical
balloon changes with the radius.

a. At what rate (ft’/ft) does the volume change with respect to
the radius when r = 2 ft?

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

Airplane takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by D = (10/9)¢2, where D is
measured in meters from the starting point and # is measured in sec-
onds from the time the brakes are released. The aircraft will become
airborne when its speed reaches 200 km /h. How long will it take to
become airborne, and what distance will it travel in that time?

Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single

vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a Hawaiian record). What was the lava’s exit
velocity in feet per second? In miles per hour? (Hint: If v, is the
exit velocity of a particle of lava, its height ¢ sec later will be
s = vyt — 16¢2 ft. Begin by finding the time at which ds/dt = 0.
Neglect air resistance.)

Analyzing Motion Using Graphs

Exercises 33-36 give the position function s = f(#) of an object mov-
ing along the s-axis as a function of time ¢. Graph f together with the
velocity function v(r) = ds/dt = f'(¢) and the acceleration function
a(t) = d°s/dt*> = f"(r). Comment on the object’s behavior in relation
to the signs and values of v and a. Include in your commentary such
topics as the following:

a. When is the object momentarily at rest?
When does it move to the left (down) or to the right (up)?
When does it change direction?

When does it speed up and slow down?

e a0 T

When is it moving fastest (highest speed)? Slowest?
f. When is it farthest from the axis origin?

33. 5 =200t — 162, 0 =<t = 12.5 (a heavy object fired straight
up from Earth’s surface at 200 ft /sec)

4. s=rr—-3t+2, 0=tr=5
35.s=r—6:2+7t, 0=tr=4
36. s=4—Tt+6:2—1, 0=t=4

35 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms,
tides, weather). The derivatives of sines and cosines play a key role in describing periodic

changes. This section

shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of f(x) = sin x, for x measured in radians, we combine the limits
in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function:

If f(x) = sin x, then

sin(x + h) = sinxcos & + cos x sin A.

fx + h) — f(x) . sin(x + h) — sinx
m = lim

f’(x) = }lll—>0 2 h1—>0 A Derivative definition
_ (sin x cos h + cos xsin k) — sinx
h—0 h
_ sinx(cosh — 1) + cosxsinh
>0 h
. . cosh — 1 . sin &
= lim|sinx-——— ) + lim|{ cosx*
h—0 h h—0 h
. . cosh—1 . _sinh .
= smx-}llm})T + cosx-}llm}) N sinx+0 + cosx-1 = cosx.

N Example 5a and
limit O limit 1 Theorem 7, Section 2.4
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The derivative of the sine function is the cosine function:

d ., . _
dx (sin x) = cos x.

EXAMPLE 1

and quotients.

dy d
— 2 _ in g & _ 5 a
(@ y=x sin x: i 2x dx(sm X)
= 2x — cosx
d
(b) y = e'sinx: £= exdi;c(sinx) + %(e") sin x
= e*cosx + €'sinx
= ¢"(cosx + sinx)
°i(sin ) —sinx-1
(c) = Sinx' dl:x dx * N
Y x dx _xz

_ XCosXx — sinx

52

Derivative of the Cosine Function
With the help of the angle sum formula for the cosine function,
cos(x + h) = cosxcosh — sinx sin h,

we can compute the limit of the difference quotient:

d _ g cos(x + h) — cos x
dx (cosx) = hl_I)I(l) A
. (cosxcosh — sinxsin h) — cos x
= lim
h—0 h
. cosx(cosh — 1) — sinxsinh
= lim
h—0 h
s cosh — 1 L sin &
= limcos x*———— — limsinx-
h—0 h h—0 h
_ . cosh — 1 . . sinh
= cosx-lim————— — sinx- lim——
h—0 h =0 h

=cosx-0 —sinx-1

= —sin x.

We find derivatives of the sine function involving differences, products,

Difference Rule

Product Rule

Quotient Rule

Derivative definition

Cosine angle sum
identity

Example 5a and
Theorem 7, Section 2.4

d .
dx (cos x) = —sin x.

The derivative of the cosine function is the negative of the sine function:

Figure 3.22 shows a way to visualize this result in the same way we did for graphing

derivatives in Section 3.2, Figure 3.6.
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=5

Lo Rest
position

5 Position at
t=0

N

FIGURE 3.23 A weight hanging from
a vertical spring and then displaced oscil-
lates above and below its rest position
(Example 3).

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(a) y =5+ cosx:

d
ﬁ = %(Se") + %(COS X) Sum Rule
= 5¢° — sinx
(b) y = sinxcos x:
d
ﬁ = sin x%(cos x) + cos x%(sin X) Product Rule

= sinx(—sin x) + cos x(cos x)
= cos’x — sin®x
COoS X

© Y= T inx’

. d d .
dy B (1 — smx)a(cosx) - cosx%(l — sin x)

- = Quotient Rule

dx (1 — sin x)?
(1 — sinx)(—sinx) — cos x(0 — cos x)
- (1 — sin x)?
1 —sinx o ﬂ
= m sin“x + cos“x = 1
1
T 1 —sinx "

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the
end of a spring is an example of simple harmonic motion. The motion is periodic and
repeats indefinitely, so we represent it using trigonometric functions. The next example
describes a case in which there are no opposing forces such as friction to slow the motion.

EXAMPLE 3 A weight hanging from a spring (Figure 3.23) is stretched down 5 units
beyond its rest position and released at time t = 0 to bob up and down. Its position at any
later time ¢ is

s = S5cost.

What are its velocity and acceleration at time #?

Solution We have

Position: s = 5cost
. _ds _ d e
Velocity: v= T a (5cost) = —5sint
~ _dv_d oo
Acceleration: a = g dt( 5sint) = —5cos t.

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between s = —5 and s = 5 on the
s-axis. The amplitude of the motion is 5. The period of the motion is 27, the period of
the cosine function.

2. The velocity v = —5sin ¢ attains its greatest magnitude, 5, when cos r = 0, as the
graphs show in Figure 3.24. Hence, the speed of the weight, |v| = 5|sin 7, is greatest




5,V
5 v=—§nt s=5cost
0 T ™ 3T 27 S

2 2 2

_5_

FIGURE 3.24 The graphs of the position
and velocity of the weight in Example 3.

3.5 Derivatives of Trigonometric Functions 159

when cos ¢ = 0, that is, when s = O (the rest position). The speed of the weight is
zero when sin ¢ = 0. This occurs when s = 5cost = £35, at the endpoints of the
interval of motion.

3. The weight is acted on by the spring and by gravity. When the weight is below the rest
position, the combined forces pull it up, and when it is above the rest position, they pull it
down. The weight’s acceleration is always proportional to the negative of its displacement.
This property of springs is called Hooke’s Law, and is studied further in Section 6.5.

4. The acceleration, a = —5cos t, is zero only at the rest position, where cos t = 0 and
the force of gravity and the force from the spring balance each other. When the weight
is anywhere else, the two forces are unequal and acceleration is nonzero. The accel-
eration is greatest in magnitude at the points farthest from the rest position, where
cost = t1. [

EXAMPLE 4  The jerk associated with the simple harmonic motion in Example 3 is

;_ da

_d - s
J_dt_dt( 5cost) = 5sint.

It has its greatest magnitude when sin7 = %1, not at the extremes of the displacement
but at the rest position, where the acceleration changes direction and sign. |

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

1
and cscx = ——

tan x = sSin X cot x = COS X b
COoS x° sin x

cos x° sinx’ X =

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

The derivatives of the other trigonometric functions:

da — o2 da = aee?
dx(tan X) = sec”x dx(COt X) csce X

%(sec X) = sec x tan x %(csc X) = —cscxcotx

To show a typical calculation, we find the derivative of the tangent function. The other
derivations are left to Exercise 60.

EXAMPLE 5  Find d(tan x)/dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

dx

sin x

d d
a (tan x) = a (COS X

2 Quotient Rule

d , . . d
) cos x——(sin x) — sin x ix (cos x)
cos~x

COS X COS x — sin x(—sin x)

cos?x
cos?x + sin?x
cos2x
1

= —— = sec’x. [
cos?x




160

Exercises m

Derivatives
In Exercises 1-138, find dy/dx.

1. y=—10x + 3 cosx
3. y=x>cosx

5.y=cscxf4\/?c+%

7. f(x) = sinxtanx

9. y = xe*secx

___cotx
1. y= 1 + cotx
4 1
3.y = Gosx T tanx

15. y = (sec x + tanx)(sec x — tan x)

2

16. y

17. f(x) = x*sin x cos x

X

In Exercises 19-22, find ds/dr.

19. s =tanr — ¢

1 + csct

21. s =
1 —csct

cosx — 2xsinx — 2 cos x

Chapter 3: Derivatives

EXAMPLE 6  Find y"if y = sec x.

Solution Finding the second derivative involves a combination of trigonometric
derivatives.

y = secx

y = secxtanx Derivative rule for secant function

_d
Y= (sec x tan x)

d d
= sec )CE (tan x) + tan x$ (sec x) Derivative Product Rule

= sec x(sec?x) + tan x(sec xtan x)  Derivative rules

= sec? x + sec x tan? x [

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 We can use direct substitution in computing limits provided there is no
division by zero, which is algebraically undefined.

V2 + secx V2 + secO

M cos(m — tanx)  cos(m — tan0)  cos(m — 0)

V2+1 V3

T =-V3 o

In Exercises 23-26, find dr/d6.
23. r=4 — 6%sin6 24,
25. r = secBcscf 26.

r = 0sinf + cos 6

2.y:%+55inx r= (1 + sec6)sin 6

4 y= Vasecx + 3 In Exercises 27-32, find dp/dq.

27. p=5+ 28. p = (1 + csc g)cos
6. y = x’cotx — % p cot g P q)cos q
! 2. = sing + cos ¢q 30. p = tan g
8. g(x)=c.ozx - P cos g 'p_1+tanq
sin® x .
qsin g 3g + tang
10. y = (sinx + cos x)secx 31 p:qu 2 p="tscq
cos x N
=T e 33. Find y" if
2. y=13 sin x Y
a. y = cscx. b. y = secx.
cos x X
. y="% COoS X 34. Find y® = g*y/dx* if
a. y = —2sinx. b. y = 9cos x.

Tangent Lines

In Exercises 35-38, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35. y=sinx, —37/2 =x =27

2. s = sin ¢ x=-m0,3m7/2
1 — cost

18. g(x) = (2 — x) tan’x

20. s = — sect + 5S¢



36. y=tanx, —7/2<x<m/2
x=-m/3,0,7/3

37. y=secx, —w/2<x<m/2
x=-7/3, 7/4

38. y=1+cosx, —37/2<x=2m
x=—m/3,37/2

Do the graphs of the functions in Exercises 39—-42 have any horizontal
tangents in the interval 0 = x = 27? If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

39. y=x + sinx

40. y = 2x + sinx

41. y = x — cotx

42. y =x + 2cosx

43. Find all points on the curve y = tanx, —7/2 < x < 7/2, where

the tangent line is parallel to the line y = 2x. Sketch the curve
and tangent(s) together, labeling each with its equation.

44. Find all points on the curve y = cotx, 0 < x < 77, where the
tangent line is parallel to the line y = —x. Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.
45, 46.

y y

y =4+ cotx — 2cscx

I I I
1 2 3

(=)
ENER

y=1 +\/§cscx+cotx

Trigonometric Limits
Find the limits in Exercises 47-54.

.. (1 1
47. 11_1}12 sin (; — E)
48. lifn/ V1 + cos (7 csc x)
sin@ — % _
- 50. fim 2001

49. 1
o T o—mfa O — 7

o—m/6 0 — ¢

51. limsec{e‘ + wtan( ™ ) - l}
x—0 4 sec x

. . +
52. limsin _mrlanx
x—0 tanx — 2 secx

53. limtan(l - Lnt)

—0 t

54. lim cos( .779 )
6—0 sin 6
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Theory and Examples
The equations in Exercises 55 and 56 give the position s = f(f) of a
body moving on a coordinate line (s in meters,  in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time r = 7 /4 sec.

55. s =2 — 2sint

57. Is there a value of ¢ that will make

56. s = sint + cost

sin® 3x

foy =4 *

c, x=0

, x#0

continuous at x = 0? Give reasons for your answer.
58. Is there a value of b that will make

o) {x+b,x<0
x) =
§ cosx, x=0

continuous at x = 0? Differentiable at x = 0? Give reasons for
your answers.

59. By computing the first few derivatives and looking for a pattern,

find d°%°/dx** (cos x).
60. Derive the formula for the derivative with respect to x of
C. cotx.

a. secXx. b. csc x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion (x = 0). It is then set in motion resulting in a displacement of

x = 10 cos t,

where x is measured in centimeters and ¢ is measured in seconds.
See the accompanying figure.

-—10
Equilibrium
- — -0  position
atx =0
10

X

a. Find the spring’s displacement when ¢ = 0, t = /3, and

t=37/4.
b. Find the spring’s velocity when r = 0, ¢ = 7 /3, and
t = 3m/4.

62. Assume that a particle’s position on the x-axis is given by
x = 3cost+ 4sint,

where x is measured in feet and 7 is measured in seconds.

a. Find the particle’s position when r = 0, = 7 /2, and
t = .

b. Find the particle’s velocity when t = 0,1 =
t = .

/2, and
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63.

64.

65.
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Graph y = cos x for —7m = x = 2. On the same screen, graph

sin(x + h) — sinx
h

for h =1,0.5,0.3, and 0.1. Then, in a new window, try
h = —1,—0.5, and —0.3. What happens as h — 0*? As h — 07?
‘What phenomenon is being illustrated here?

Graph y = —sin x for —7 = x = 27. On the same screen, graph

_ cos(x + h) — cosx
B h

for h = 1,0.5,0.3, and 0.1. Then, in a new window, try
h = —1,—0.5, and —0.3. What happens as h — 0*? As h — 07?
What phenomenon is being illustrated here?

Centered difference quotients The centered difference quotient

faethm = fx—h
2h

is used to approximate f'(x) in numerical work because (1) its
limit as 7 — 0 equals f'(x) when f'(x) exists, and (2) it usually
gives a better approximation of f'(x) for a given value of / than
the difference quotient

fa+h) — f®
h .

See the accompanying figure.

y

Slope = f'(x)

_Jat+h—fx)

Slope n

L fet ) = fw =)
P 2h

a. To see how rapidly the centered difference quotient for
f(x) = sin x converges to f'(x) = cos x, graph y = cos x
together with

_sin(x + h) — sin(x — h)
2h

over the interval [—ar, 27 | for A = 1, 0.5, and 0.3. Com-
pare the results with those obtained in Exercise 63 for the
same values of /.

b. To see how rapidly the centered difference quotient for
f(x) = cos x converges to f'(x) = —sinx, graph y = —sin x
together with
_cos(x + 1) — cos(x — h)
B 2h

over the interval [—r, 27 ] for A = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 64 for the same
values of A.

66.

67.

68.

69.

70.

A caution about centered difference quotients
of Exercise 65.) The quotient

fx+h) — fx—h)
2h

(Continuation

may have a limit as #— 0 when f has no derivative at x. As a
case in point, take f(x) = |x| and calculate

. [0+ A ~ 10— Al
Iim—————.

h—0 2h

As you will see, the limit exists even though f(x) = |x| has no
derivative at x = 0. Moral: Before using a centered difference
quotient, be sure the derivative exists.

Slopes on the graph of the tangent function Graph y = tanx
and its derivative together on (— /2, 7 /2). Does the graph of the
tangent function appear to have a smallest slope? A largest slope?
Is the slope ever negative? Give reasons for your answers.

Slopes on the graph of the cotangent function Graphy = cotx
and its derivative together for 0 < x < 7. Does the graph of the
cotangent function appear to have a smallest slope? A largest
slope? Is the slope ever positive? Give reasons for your answers.
Exploring (sin kx) /x Graph y = (sinx)/x, y = (sin 2x)/x, and
y = (sin 4x)/x together over the interval —2 = x = 2. Where
does each graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of
y = (sin5x)/x and y = (sin(—3x))/x to do as x—0? Why?
What about the graph of y = (sin kx)/x for other values of k?
Give reasons for your answers.

Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in
degrees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

sin h

fy =3

and estimate lim,—. f(h). Compare your estimate with
7 /180. Is there any reason to believe the limit should be
/1807

b. With your grapher still in degree mode, estimate

lim <°8 h—1
h—0 h ’

c¢. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try
it. What are the second and third degree-mode derivatives of
sin x and cos x?
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: ii
C:yturns B:uturns A: x turns

FIGURE 3.25 When gear A makes
X turns, gear B makes u turns and gear
C makes y turns. By comparing cir-
cumferences or counting teeth, we see
that y = u/2 (C turns one-half turn
for each B turn) and u = 3x (B turns

three times for A’s one), so y = 3x/2.

Thus, dy/dx = 3/2 = (1/2)(3) =
(dy/du)(du/dx).

How do we differentiate F(x) = sin (x> — 4)? This function is the composite f ° g of two
functions y = f(u) = sinu and u = g(x) = x> — 4 that we know how to differentiate.
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of f and g. We develop the rule in this section.

Derivative of a Composite Function

The function y = 3= %(3x) is the composite of the functions y = lu and u = 3x.

2" 2
We have
b3 b1 i
de 2’ du 2’ dx ’
. 3 1 .
S1nce§—§-3, we see in this case that
dy _dy du
dx du dx’

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If y = f(u) changes half as fast as u and u = g(x) changes three
times as fast as x, then we expect y to change 3/2 times as fast as x. This effect is much
like that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1 The function
y=(3x*+1)?

is the composite of y = f(u) = u?> and u = g(x) = 3x> + 1. Calculating derivatives, we
see that

d
ﬁ . ;% = 2u-6x
=203x2+ 1)-6x Substitute for u
= 36x° + 12x.
Calculating the derivative from the expanded formula (3x*> + 1)> = 9x* + 6x> + 1 gives
the same result:

dy _d g4y eo
A dx(9x +6x2+ 1)
= 36x + 12x. [ |

The derivative of the composite function f(g(x)) at x is the derivative of f at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.26).

Composite fo g

Rate of change at
xis f(g(x) - g'(x).

f

8

Rate of change

txis g'(x). t g(x) is f(g(x)). vy
‘ atxis g'(x ‘= 200 at g(x) is f(gx y = f(u) = f(gx))

FIGURE 3.26 Rates of change multiply: The derivative of f o g at x is the
derivative of f at g(x) times the derivative of g at x.

Rate of change
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THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (f ° g) (x) = f(g(x)) is
differentiable at x, and

(feg) ) = f'(g)- g (x).
In Leibniz’s notation, if y = f(u) and u = g(x), then
dy _dy du

dx ~ du dx’

where dy/du is evaluated at u = g(x).

A Proof of One Case of the Chain Rule:
Let Au be the change in u when x changes by Ax, so that
Au = glx + Ax) — g(x).
Then the corresponding change in y is
Ay = f(u + Au) — f(u).
If Au # 0, we can write the fraction Ay/Ax as the product

Ay _ Ay Au .
Ax  Au Ax
and take the limit as Ax — 0:
dy Ay
dx — aSoAx
~ g AV Au
A—0Au Ax
Ty V]
A—0Au Axv—0Ax
. Ay . Au (Note that Au—>0 as Ax—0
= A;EOE ’ AI;EOE since g is continuous.)
_ @ du
du dx’

The problem with this argument is that if the function g(x) oscillates rapidly near x, then
Au can be zero even when Ax # 0, so the cancelation of Au in Equation (1) would be
invalid. A complete proof requires a different approach that avoids this problem, and we
give one such proof in Section 3.11. |

EXAMPLE 2 An object moves along the x-axis so that its position at any time ¢ = 0
is given by x(f) = cos(#> + 1). Find the velocity of the object as a function of 7.

Solution We know that the velocity is dx/dt. In this instance, x is a composite function:
x = cos(u) and u = 1> + 1. We have

dx _ sin(u) (1)
> = = X cos(u
du

du 5

— =2t u=1t +1

dt



Ways to Write the Chain Rule
(feg' = f'(g)-g'(x)

dy _dy du
dx  du dx
d

= ) g

4 fwy = P
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By the Chain Rule,
dx _ dx du
dt du dt
= —sin(u) - 2t Z’T); evaluated at u
= —sin(> + 1)+ 2¢
= —2sin(2 + 1). [

“Qutside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about
the Chain Rule using functional notation. If y = f(g(x)), then

dy _ . :

- ) g

In words, differentiate the “outside” function f and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate sin (x> + ¢*) with respect to x.

Solution  We apply the Chain Rule directly and find

isin(x2 + ¢) = cos(x2 + ¢*) - (2x + &).

dx .
inside inside derivative of
left alone the inside [ |

EXAMPLE 4 Differentiate y = e~

Solution Here the inside function is u = g(x) = cos x and the outside function is the
exponential function f(x) = e*. Applying the Chain Rule, we get

dy — d COS X o COS X d — COS X 1 f— COS X o7

a—a(e ) =¢ a(cosx)—e (—sin x) = —e®*sin x. [ |

Generalizing Example 4, we see that the Chain Rule gives the formula

d . _
e = é

dx

du
o

u

For example,

% (e") = k- % (kx) = ke*, for any constant k

and

d

Jo(e) = e”z'%(xz) = 2xe".

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.
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HISTORICAL BIOGRAPHY EXAMPLE 5 Find the derivative of g(f) = tan(5 — sin 2¢).
Johann Bernoulli Solution Notice here that the tangent is a function of 5 — sin 2¢, whereas the sine is a

(1667-1748) function of 2, which is itself a function of 7. Therefore, by the Chain Rule,

g'( = %(tan(S — sin 21))

Derivative of tan u with

= sec?(5 — sin 2¢) -%(5 — sin 2¢) w=5— sin2s

Derivative of 5 — sin u

= sec?(5 — sin 2f)+ (O — cos 2t-jt(2t)) with u = 21

= sec?(5 — sin 2f)* (—cos 2f) + 2
= —2(cos 2f)sec?(5 — sin 2f). [

The Chain Rule with Powers of a Function

If f is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing y = f(u) into the Chain Rule formula

dy _dy du
dx du dx

leads to the formula
d o oo du
S = .

If n is any real number and f is a power function, f(z) = u", the Power Rule tells us
that f'(«) = nu"~'. If u is a differentiable function of x, then we can use the Chain Rule to
extend this to the Power Chain Rule:

d ny — n*ldu d 1
dx (u"y = nu dx’ E(”) = nu

EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power
of an expression.

Power Chain Rul ith
@ (50 =2 =705 — s — o)
= 7(5x% — x*)°(5-3x% — 4x%)
= 7(5x3 — x*)°(15x% — 4x%)

df 1\ _d.
() dx(3x—2)_dx(3x 2

5 d Power Chain Rule with
=—-13x — 2) 5(3)‘7—2) u=3x—2,n=-—1
=—13x — 2)%(3)

-3
(3x — 2)

In part (b) we could also find the derivative with the Derivative Quotient Rule.

d .5 _ .4 d . Power Chain Rule with u = sinx, n = 5,
(© E (SlIl x) = Ssin"x- asm X because sin” x means (sinx)",n # —1.

= 5sin*xcosx
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@ d%(em) = em-%(\/ﬁ)

St (3x + 1)_1/2 Power Chain Rule with u = 3x + 1,n = 1/2

3
— e 3x+1 [

2V3x + 1

EXAMPLE 7  In Section 3.2, we saw that the absolute value function y = |x| is not
differentiable at x = 0. However, the function is differentiable at all other real numbers,

as we now show. Since |x| = V/x2, we can derive the following formula:
Derivative of the i( ‘ x‘) =4
Absolute Value Function dx
1 d ( 2) Power Chain Rule with
= oo u=xn=1/2,x #0
Gl =2 e 20 2V d ’
L hx=0 = Lo Va2 = i
-1, x<0 2‘x‘
= x#0 m
|x

EXAMPLE 8 Show that the slope of every line tangent to the curve y = 1/(1 — 2x)*
is positive.

Solution We find the derivative:

dy _
-3
dx ~ dx (1 )
_ 4. d : :
=—=3(1 — 2x) 'a(l — 2x) Power Chain Rule with u = (1 — 2x),n = —3
= =31 — 2x)*-(-2)
-6
(1 = 2%
At any point (x, y) on the curve, the coordinate x is not 1/2 and the slope of the tangent
line is
6
dx (1 —2x)*
which is the quotient of two positive numbers. |

EXAMPLE 9 The formulas for the derivatives of both sin x and cos x were obtained
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us
new insight into the difference between the two. Since 180° = 7 radians, x° = 7x/180
radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

ism( %) = ism X)) = T _os T —o~Cos (x°)
dx * dx 180 180 180 ~ 180 s

See Figure 3.27. Similarly, the derivative of cos (x°) is —(7/180) sin (x°).
The factor 77 /180 would compound with repeated differentiation, showing an advan-
tage for the use of radian measure in computations. |
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y = sin(x°) = sin

I
y =sinx

mX

180

AR
T

FIGURE 3.27 The function sin (x°) oscillates only 7 /180 times as often as sin x

oscillates. Its maximum slope is 7 /180 at x = 0 (Example 9).

Exercises m

Derivative Calculations
In Exercises 1-8, given y = f(u) and u = g(x), find dy/dx =
f(g(x))g" (x).

Ly=6u—9 wu=(0/2x* 2.y=2 u=8c—1

3. y=sinu, u=3x+1 4, y=cosu, u=¢e"
5.y=\/1;, u = sinx 6. y =sinu, u=x — cosx
7.y =tanu, u= wx> 8. y = —secu, u:}?+7x

In Exercises 9-22, write the function in the form y = f(u) and
u = g(x). Then find dy/dx as a function of x.

9. y=2x + 1) 10. y = (4 — 3x)°

4 Vx -10

_ _X — (X _
11. y = (1 7) 12. y ( ) 1)

x? 1\ 5
13. y = gt x 14, y = V3x* —4x + 6
1

15. y = sec(tan x) 16. y = COt(’iT - ;C)
17. y = tan’x 18. y = 5cos*x
19. y = ¢ 20. y = ¥
21. y =7 22, y = o4Vats)
Find the derivatives of the functions in Exercises 23-50.
23. p=V3—1t 24.(1:\/32;'—}’2

44 _ (3w 3t
25. s = 37_rs1n3t + 571_cosSt 26. s = sm< > ) + cos( 2 >
27. r = (csch + coth)! 28. r = 6(sec § — tan §)*?
29. y = x’sin*x + xcos?x  30. y = %sin_Sx - %cos3x

1 -1
_72]2>
1(2 4
(5_2X)73+§ }4‘1

33, y = (4x + )*x + 1)
35 y=xe* + e
37. y= (x2 = 2x + 2)e5"/2

3. y = %m —2)0 + (4

32. y

34. y = 2x — 57 1(x% — 5x)°
36. y = (1 + 2x)e >
38. y = (9% — 6x + 2)e"

39. h(x) = xtan<2\/)?) +7

41. f(x) = V7 + xsecx

in o 2
w10 = (145)

45. r = sin(6%)cos (26)

47. q = sin( ! )
Vit + 1
49. y = cos(e?)
In Exercises 51-70, find dy/ds.
51. y = sin’(7t — 2)
53. y=(1 + cos2t)™*
55. y = (ttan )'°
57. y = ecosz(m—l)

@0 (505)
YT \A o w
61. y = sin(cos(2t — 5))
AN

- af L

63. y (1 + tan (12))

65. y = V1 + cos(r?)

67. y = tan®(sin®¢)

69. y = 3t(2* — 5)*

Second Derivatives
Find y” in Exercises 71-78.

N3
71. y = (1 + ;)
1
73. y = §cot(3x -1

75. y = x(2x + 1)*
77. y = e + 5x

42,

4.

46.

48.
50.
52.

54. vy
56. y

. k(x)

= x%sec (%)

@ = 1 + sin 37\
g 3 -2t

58. y =

60.

62.

64.

66.
68. y

70.

72.

74.

76.

78. y =

= sec\/étan (%)

sin ¢
wen

= 03 cos 50

sec mrt

(1 + cot(t/2))?
3/ sin 1)*3
(esint/2)3

(29
cor(s30(5))

é( 1+ cosz(7t))3

4sin(V1 + Vi)

cos* (sec?3t)

\/3t+ V2+VI1—t

— (1 _ \/);)—1

9 tan ()37()

2 —1)

sin (x2e¥)



Finding Derivative Values

In Exercises 79-84, find the value of (f © g)" at the given value of x.
79. fw)=w + 1, u=gx)=Vx, x=1

1 1
80. fw) =1 -, u:g(x)zl_x,x:—l
81. f(u) = cot%‘, u=gkx) =5Vx, x=1
82. fw) =u+——, u=gx)=mx, x=1/4

cos” u

_ _2u _ _ 2 _
83 fu)=——"—, u=gx)=10x"+x+1, x=0
w* + 1

84.

85s.

86.

87.

88.

89.
90.

s = ("N wme = L1 x =

" u+ 1) 478X x2 > X

Assume that f'(3) = —1,¢'(2) = 5,g12) = 3, and y = f(g(x)).
What is y" at x = 2?

If r = sin(f(9), f(0) = 7/3, and f'(0) = 4, then what is dr/dt
att = 0?

Suppose that functions f and g and their derivatives with respect
to x have the following values at x = 2 and x = 3.

x g(x) (%) g'(x)
2 8 2 1/3 -3
3 3 —4 27 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2f(x), x=2 b. f(x) + gix), x=3
c fx)-gx), x=3 d f(x)/gkx), x=2
e f(glx), x=2 f. VIx), x=2

g 1/8%x), x=3 h. V2 (x) + &(x), x=2

Suppose that the functions f and g and their derivatives with
respect to x have the following values at x = 0 and x = 1.

x f(x) g(x) f'(x) g'(x)
0 1 1 5 1/3
1 3 -4 -1/3 -8/3

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 5f(x) — gx), x=1 b. f(0gx), x=0

C. g(j)(ix—i)-l’ x=1 d. f(gx), x=0

e. g(fx), x=0 f. '+ f))? ox=1
g fx+gl), x=0

Find ds/dt when 6 = 37 /2 if s = cosf and df/dt = 5.
Find dy/dt when x = 1if y = x> + 7x — 5 and dx/dt = 1/3.
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Theory and Examples

What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule
says you should. Try it with the functions in Exercises 91 and 92.

91.

92.

93.
9.
95.

96.

97.

98.

Find dy/dx if y = x by using the Chain Rule with y as a comps-
ite of

a. y=u/5) +7 and u=5x— 35
b. y=1+{/u) and u=1/(x—1).

Find dy/dx if y = x*? by using the Chain Rule with y as a com-
posite of

a. y=u and u= Vx

b. y=Vu and u= x>

Find the tangentto y = ((x — 1)/(x + 1)) at x = 0.

Find the tangentto y = Val—x+Tatx=2.

a. Find the tangent to the curve y = 2 tan(wx/4) atx = 1.

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval
—2 < x < 27 Give reasons for your answer.

Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and
y = —sin(x/2) at the origin. Is there anything special about
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves
y = sinmx and y = —sin(x/m) at the origin
(m a constant # 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves y = sin mx and y = —sin(x/m) can ever have? Give
reasons for your answer.

d. The function y = sin x completes one period on the interval
[0, 277 ], the function y = sin 2x completes two periods, the
function y = sin(x/2) completes half a period, and so on. Is
there any relation between the number of periods y = sin mx
completes on [0, 277 ] and the slope of the curve y = sin mx
at the origin? Give reasons for your answer.

Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time ¢ sec is

s = Acos(2mbt),

with A and b positive. The value of A is the amplitude of the
motion, and b is the frequency (number of times the piston moves
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk?
(Once you find out, you will know why some machinery breaks
when you run it too fast.)

Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

N 0
y737sm{365(x 101)}4—25

and is graphed in the accompanying figure.
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a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

y
60 P
;_;40
2 I S LN
§ 20 . X /
QE?‘ OF—-r {—--— I S O O\ ————7Z:—+x
&= N

e

)

20
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Particle motion The position of a particle moving along a
coordinate line is s = V1 + 4¢, with s in meters and ¢ in sec-
onds. Find the particle’s velocity and acceleration at = 6 sec.

Constant acceleration Suppose that the velocity of a falling
body is v = kVsm/sec (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s
acceleration is constant.

Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to Vs when it is
s km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to s.

Particle acceleration A particle moves along the x-axis with
velocity dx/dt = f(x). Show that the particle’s acceleration is
fOf' ().

Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T = 277\/;,

where g is the constant acceleration of gravity at the pendulum’s
location. If we measure g in centimeters per second squared, we
measure L in centimeters and 7 in seconds. If the pendulum is
made of metal, its length will vary with temperature, either
increasing or decreasing at a rate that is roughly proportional to
L. In symbols, with u being temperature and k the proportional-
ity constant,

dL _
du kL.
Assuming this to be the case, show that the rate at which the
period changes with respect to temperature is k7/2.

Chain Rule Suppose that f(x) = x*> and g(x) = |x|. Then the
composites

(fee)) = [x|> = and (g°Hx) = [¥*] =

are both differentiable at x = 0 even though g itself is not dif-
ferentiable at x = 0. Does this contradict the Chain Rule?
Explain.

105.

106.

The derivative of sin 2x  Graph the function y = 2cos2x for
—2 = x = 3.5. Then, on the same screen, graph
sin 2(x + h) — sin 2x
h

for h = 1.0, 0.5, and 0.2. Experiment with other values of 4,
including negative values. What do you see happening as
h — 0?7 Explain this behavior.

The derivative of cos(x?) Graph y = —2x sin(x?) for —2 =
x = 3. Then, on the same screen, graph

cos((x + h)?) — cos(x?)
h

for h = 1.0,0.7, and 0.3. Experiment with other values of A.
What do you see happening as # — 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d/dx)x" = nx"~!
holds for the functions x" in Exercises 107 and 108.

107.

XM=V Va 108. x4 = Vavx

COMPUTER EXPLORATIONS
Trigonometric Polynomials

109.

110.

As the accompanying figure shows, the trigonometric “polyno-
mial”

s = f(r) = 0.78540 — 0.63662 cos 2t — 0.07074 cos 6¢
— 0.02546 cos 10r — 0.01299 cos 14t

gives a good approximation of the sawtooth function s = g()
on the interval [—, 7 ]. How well does the derivative of f
approximate the derivative of g at the points where dg/dr is
defined? To find out, carry out the following steps.

a. Graph dg/dr (where defined) over [—m, 7 ].
b. Find df /d.

c. Graph df /dt. Where does the approximation of dg/dt by
df /dt seem to be best? Least good? Approximations by trig-
onometric polynomials are important in the theories of heat
and oscillation, but we must not expect too much of them, as
we see in the next exercise.

s

s = g
7 s=f0
_—

-

(Continuation of Exercise 109.) In Exercise 109, the trigonomet-
ric polynomial f(#) that approximated the sawtooth function g(#)
on [—m, 7] had a derivative that approximated the derivative
of the sawtooth function. It is possible, however, for a trigono-
metric polynomial to approximate a function in a reasonable
way without its derivative approximating the function’s deriva-
tive at all well. As a case in point, the trigonometric “polynomial”

s = h(t) = 1.2732 sin 2t + 0.4244 sin 61 + 0.25465 sin 10¢
+ 0.18189 sin 14t + 0.14147 sin 18¢
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graphed in the accompanying figure approximates the step func- a. Graph dk/dt (where defined) over [—m, 7 ].
tion s = k(f) shown there. Yet the derivative of / is nothing like b. Find dh/dt

the derivative of k.

]

‘*“““\/

c. Graph dh/dt to see how badly the graph fits the graph of

5= k1) dk/dt. Comment on what you see.

s = h(t)

>t

T T 0 T ™
2 2
-1

3. 7 Implicit Differentiation

sk y =)
(x0, 1)

x3+y3*9xy:O

(xo» y3)‘ y = f3(0)

FIGURE 3.28 The curve

x> + y* — 9xy = 0 is not the graph of any
one function of x. The curve can, however, be
divided into separate arcs that are the graphs
of functions of x. This particular curve, called
a folium, dates to Descartes in 1638.

Most of the functions we have dealt with so far have been described by an equation of the
form y = f(x) that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. Another situation occurs when we encoun-
ter equations like

B+y—9xy=0, yY—-x=0, or x>+3y>?—25=0.

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an
explicit function (or even several functions) of x. When we cannot put an equation
F(x,y) = 0 in the form y = f(x) to differentiate it in the usual way, we may still be able
to find dy/dx by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of
x to calculate dy/dx in the usual way. Then we differentiate the equations implicitly, and find
the derivative to compare the two methods. Following the examples, we summarize the steps
involved in the new method. In the examples and exercises, it is always assumed that the
given equation determines y implicitly as a differentiable function of x so that dy/dx exists.

EXAMPLE 1 Find dy/dx if y* = x.

Solution The equation y?> = x defines two differentiable functions of x that we can actu-
ally find, namely y; = Vx and Y = -Vx (Figure 3.29). We know how to calculate the
derivative of each of these for x > O:

dy, 1 dy,

- = and ==

dx  2Vx dx 2Vx
But suppose that we knew only that the equation y> = x defined y as one or more differen-
tiable functions of x for x > 0 without knowing exactly what these functions were. Could
we still find dy/dx?

The answer is yes. To find dy/dx, we simply differentiate both sides of the equation

y> = x with respect to x, treating y = f(x) as a differentiable function of x:

y2 =X The Chain Rule gives L;—I\‘('\J) =

dy = d .1 o dy
Zya =1 2 ]2 = 2f@f () = 2y

dy 1
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FIGURE 3.29 The equation y> — x = 0,
or y* = x as it is usually written, defines two FIGURE 3.30 The circle combines the

differentiable functions of x on the interval graphs of two functions. The graph of y,

is the lower semicircle and passes through
derivatives of these functions without solving (3, —4).

x > 0. Example 1 shows how to find the

the equation y> = x for y.

This one formula gives the derivatives we calculated for both explicit solutions y; = Vix
and y, = —Vx:
dy, 1 1 dy, 1 1 1

S d 2= = - o
d 2y 2va dr T g(—vE) 2V

EXAMPLE 2  Find the slope of the circle x> + y?> = 25 at the point (3, —4).

Solution The circle is not the graph of a single function of x. Rather, it is the combined
graphs of two differentiable functions, y, = V25 — x? and y, = —V25 — x? (Figure
3.30). The point (3, —4) lies on the graph of y,, so we can find the slope by calculating the

derivative directly, using the Power Chain Rule:

i(*(ZS — x2)! 2) _

| _ -2 | __ -6 _3 o
dx |, 2V25 — 223 2NV255 -9 4 —%(25 — )22y

We can solve this problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

L)+ 00 = 09

2x + 2 v _ 0
X ydx = See Example 1.
vy _ x
dx y
. X __3 _3
The slope at (3, —4) is -y o =i 1
Notice that unlike the slope formula for dy,/dx, which applies only to points below
the x-axis, the formula dy/dx = —x/y applies everywhere the circle has a slope; that is, at
all circle points (x, y) where y # 0. Notice also that the derivative involves both variables
x and y, not just the independent variable x. |

To calculate the derivatives of other implicitly defined functions, we proceed as in
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.



y? = x% + sin xy

=

—4

FIGURE 3.31 The graph of the equation

in Example 3.
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Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a dif-
ferentiable function of x.

2. Collect the terms with dy/dx on one side of the equation and solve for dy/dx.

EXAMPLE 3 Find dy/dx if y?> = x> + sinxy (Figure 3.31).

Solution We differentiate the equation implicitly.

y? = x* + sinxy

d 2\ _ d 2 d /. Differentiate both sides with
a(y ) - a(x ) + a(smxy) respectto x . . .
dy . d ... treating y as a function of
2}’% = 2x + (cos X)’)a (xy) x and using the Chain Rule.

0 s + Y
ydx = X (cos xy)| y xdx Treat xy as a product.

d d
Zy% — (cos xy)(xa;) = 2x + (cos xy)y Collect terms with dy /dx.

d
2y — xcosxy)% = 2x + ycosxy

dy  2x + ycosxy

o m Solve for dy/dx.

Notice that the formula for dy/dx applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x. |

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find d?y/dx?* if 2x* — 3y* = 8.

Solution To start, we differentiate both sides of the equation with respect to x in order to
find y' = dy/dx.

d (e gy = d
(2 =3 = T8

6x2 — 6yy' =0 Treat y as a function of x.

2
X
y = v wheny # 0 Solve for y'.

We now apply the Quotient Rule to find y”.
" d (xz) _ 2xy — _x2yf 3 2% 2 ,

X
= = =5 — 5y
dx\ Y y2 y y2
Finally, we substitute y’ = x?/y to express y” in terms of x and y.
. 2x X2 <x2> 2x  x*
V=5 -—-5S\5 =5 == wheny # 0 [ |
YT R\y) T Y T
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Tangent

Light ray

Curve of lens

) surface
Normal line

Point of entry

FIGURE 3.32 The profile of a lens,
showing the bending (refraction) of a
ray of light as it passes through the lens
surface.

X +y3i—0xy=0

NS

0 2

FIGURE 3.33 Example 5 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important
angles are the angles the light makes with the line perpendicular to the surface of the
lens at the point of entry (angles A and B in Figure 3.32). This line is called the normal
to the surface at the point of entry. In a profile view of a lens like the one in
Figure 3.32, the normal is the line perpendicular (also said to be orthogonal) to the
tangent of the profile curve at the point of entry.

EXAMPLE 5 Show that the point (2, 4) lies on the curve x> + y* — 9xy = 0. Then
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 23 + 43 — 9(2)(4) = 8 + 64 — 72 = 0.

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for dy/dx:

B+y -9y =0

4oy + () = Loy = g

dy dy  dx
2 22 il ) =
3x* + 3y i 9(xdx+ydx 0

Differentiate both sides
with respect to x.

Treat xy as a product and y

d
(3y2 — 9x)£ +32 -9y =0

as a function of x.

d
3(y2 — 3x)(% = 9y — 3x?

dy 3y —x*

dx  y? — 3x

Solve for dy/dx.

We then evaluate the derivative at (x, y) = (2, 4):

3y —x?
2.4) )’2 — 3x

34 -2

dy _3® -2 8
2, 4) 4% —3(2) 105

dx

The tangent at (2, 4) is the line through (2, 4) with slope 4/5:

y=4+i(x—2)
5

_4 12

y—5x+ 5

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope —5/4:

43 _
y=4-376-2
y=—§x+§ |



Exercises

Differentiating Implicitly
Use implicit differentiation to find dy/dx in Exercises 1-16.

L x>y +x°=6 2. X3+ 3P = 18xy
3.2xy+y2=x+y 4.x3*xy+y3=l

5. X%(x — y)? =x2 — y? 6. Bxy + 7)*> = 6y

_ 2x —
2 _ X 1 3 _ y

7y x+ 1 8. x x + 3y

9. x =secy 10. xy = cot(xy)

11. x + tan(xy) = 0 12. x* + siny = x%?
13. ysin(%) =1—xy 14. xcos(2x + 3y) = ysinx
15. ¢* = sin (x + 3y) 16. ¢ = 2x + 2y
Find dr/d6 in Exercises 17-20.
17. 0'2 + /2 =1 18. r —2Vo = %02/3 + §03/4
19. sin(r0) = % 20. cosr + cotf = ¢

Second Derivatives

In Exercises 21-26, use implicit differentiation to find dy/dx and then
d?y/dx>.

21, X + 2 =1 22. X3+ 323 =1

23. 2 = ¢ + 2x 24. Y2 —2x=1-2y

25. 2Vy=x—y 26. xy + y> =

27. If 3 + y* = 16, find the value of d?y/dx? at the point (2, 2).
28. If xy + y? = 1, find the value of d?y/dx? at the point (0, —1).

In Exercises 29 and 30, find the slope of the curve at the given points.
29. 2+ x> =y*—2x at (—2,1)and (—2,—1)
30 2+ =(@x—y?> at (1,0)and (1,—1)

Slopes, Tangents, and Normals

In Exercises 31-40, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

3. X +xy -y =1, (2,3)

32. X +y> =25 (3,—4)

33. X =9, (-1,3)

4. y2-2x—4y—-1=0, (2,1

35. x>+ 3xy + 2y + 17y — 6 =0, (—1,0)
36. 22 — V3xy + 2)2 =5, (\/5,2)

37. 2xy + wsiny = 2w, (1,7/2)

38. xsin2y = ycos2x, (mw/4,/2)

39. y = 2sin(mx — y), (1,0)

40. x*cos’y — siny =0, (0, )
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41. Parallel tangents Find the two points where the curve
x> + xy + y*> = 7 crosses the x-axis, and show that the tangents
to the curve at these points are parallel. What is the common
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve
xy + 2x — y = 0 that are parallel to the line 2x + y = 0.

43. The eight curve Find the slopes of the curve y* = y*> — x? at
the two points shown here.

y
1 <\/§\/§>
4’2
634)
472
X
0
y4=y2_x2
-1

44. The cissoid of Diocles (from about 200 B.c.) Find equations
for the tangent and normal to the cissoid of Diocles y*(2 — x) = x3
at (1, 1).

Y2—x)=x°

VT~

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of
the devil’s curve y* — 4y = x* — 9x> at the four indicated

points.
(=3,2) 2 é)

(=3,-2)

_2 ’
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes x* + y* — 9xy = 0
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c¢. Find the coordinates of the point A in Figure 3.28 where the
folium has a vertical tangent.

Theory and Examples

47. Intersecting normal The line that is normal to the curve
x>+ 2xy — 3y?> = 0 at (1, 1) intersects the curve at what other
point?

48. Power rule for rational exponents Let p and ¢ be integers
with ¢ > 0. If y = xP/4, differentiate the equivalent equation
y? = x” implicitly and show that, for y # 0,

ixp/q = gx(”/‘”’l.

dx
49. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola x = y> shown in the
accompanying diagram, then a must be greater than 1/2. One of
the normals is the x-axis. For what value of a are the other two
normals perpendicular?

y

0 (a, 0)

50. Is there anything special about the tangents to the curves y> = x>

and 2x?> + 3y?> = 5 at the points (1, £ 1)? Give reasons for your
answer.

<

2x2+ 3y =5

0
(1, -1)

51. Verify that the following pairs of curves meet orthogonally.
a. x> +y2 =4, x*=3?

b.le—yz, x:%y2

52. The graph of y> = x3 is called a semicubical parabola and is
shown in the accompanying figure. Determine the constant b so
that the line y = —%x + b meets this graph orthogonally.

In Exercises 53 and 54, find both dy/dx (treating y as a differentiable

function of x) and dx/dy (treating x as a differentiable function of y).
How do dy/dx and dx/dy seem to be related? Explain the relationship
geometrically in terms of the graphs.

53. xp’ + 2%y =6

54. x* + y? = sin?y

55. Derivative of arcsine Assume that y = sin™ x is a differentia-
ble function of x. By differentiating the equation x = siny
implicitly, show that dy/dx = 1/V1 — x2.

56. Use the formula in Exercise 55 to find dy/dx if

b. y = sin™! ()17)
COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 57-64.

a. y = (sin”! x)?

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive dy/dx and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

57. ¥ —xy+y =17, P2, 1)
58. X +yx +w?+yt =4, P, 1

=2+x
1 —x

60. y? + cosxy = x%, P(1,0)

y T
61. x + tan(g) =12, P(I,Z>

62. xy’ + tan(x + y) = 1, P(%, 0)

59. y2 +y

P(0,1)

63. 2° + (x)'P=x2+2, P, 1)
64. x\V1+ 2y +y=x> P(,0)
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FIGURE 3.34 Graphing a line and its
inverse together shows the graphs’ sym-
metry with respect to the line y = x. The
slopes are reciprocals of each other.

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that
function. We defined there the natural logarithm function f~'(x) = In x as the inverse of the
natural exponential function f(x) = ¢*. This is one of the most important function-inverse
pairs in mathematics and science. We learned how to differentiate the exponential function
in Section 3.3. Here we learn a rule for differentiating the inverse of a differentiable func-
tion and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function f(x) = (1/2)x + 1 as Fflx)y =2x — 2 in
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we
calculate their derivatives, we see that

d _d(l _1
dxf(x)—dx(zx—F 1)-2

%f‘l(x) = %m -2 =2

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line y = x always inverts the line’s slope. If the original line has slope m # 0, the
reflected line has slope 1 /m.

b =fla)

1 Sy 1
(fHw) =
Fa / FATa )

FIGURE 3.35 The graphs of inverse functions have recipro-
cal slopes at corresponding points.

The slopes are reciprocal: (f ) =

The reciprocal relationship between the slopes of f and f~! holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of
y = f(x) at the point (a, f(a)) is f'(a) and f'(a) # 0, then the slope of y = f~'(x) at the
point (f(a), a) is the reciprocal 1/f'(a) (Figure 3.35). If we set b = f(a), then

1 _ 1
fl@ (' w)y
If y = f(x) has a horizontal tangent line at (a, f(a)), then the inverse function f~! has a
vertical tangent line at (f(a), a), and this infinite slope implies that f~! is not differentia-

ble at f(a). Theorem 3 gives the conditions under which f~! is differentiable in its domain
(which is the same as the range of f).

FH'® =
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y=x2,x>0

41~ Slope 4¢(2,4)

I
I
I
I
I
I
I
I
| I
| |
| l
0 1 2 3 4

FIGURE 3.36 The derivative of
F'(x) = VXx at the point (4, 2) is the
reciprocal of the derivative of f(x) = x?
at (2, 4) (Example 1).

THEOREM 3—The Derivative Rule for Inverses If f has an interval I as do-
main and f'(x) exists and is never zero on I, then f! is differentiable at every
point in its domain (the range of f). The value of (f ')’ at a point b in the domain
of f7!is the reciprocal of the value of f' at the point a = f~(b):

) — 1 |
DG = Sy (1)
or
afitl 1
dx x=b di '
x| =)

Theorem 3 makes two assertions. The first of these has to do with the conditions
under which f! is differentiable; the second assertion is a formula for the derivative of
f7! when it exists. While we omit the proof of the first assertion, the second one is proved
in the following way:

f(f_l (X)) =X Inverse function relationship
% f(fil(x)) =1 Differentiating both sides
(f d 1) = :
f (f (x)) af () =1 Chain Rule

dx f_l(x) = m Solving for the derivative

EXAMPLE 1 The function f(x) = x% x > 0 and its inverse f '(x) = Vx have
derivatives f'(x) = 2x and (f 1)’ (x) = 1/(2\/);)

Let’s verify that Theorem 3 gives the same formula for the derivative of f~'(x):

Yy = L
0= )
S f'(x) = 2x with x replaced
Ay
_ 1
~2(Vx)

Theorem 3 gives a derivative that agrees with the known derivative of the square root
function.

Let’s examine Theorem 3 at a specific point. We pick x = 2 (the number a) and
f(2) = 4 (the value b). Theorem 3 says that the derivative of f at 2, which is f'(2) = 4,
and the derivative of f ! at £(2), which is (f~')’(4), are reciprocals. It states that

1 1 1 1

FUT@) @ 2, #
See Figure 3.36. |

(F)'@ =

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to
find specific values of df ! /dx without knowing a formula for .
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FIGURE 3.37 The derivative of
f(x) = x> — 2 at x = 2 tells us the
derivative of ! at x = 6 (Example 2).
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EXAMPLE 2 Let f(x) = x* — 2,x > 0. Find the value of df ! /dx at x = 6 = f(2)
without finding a formula for f~'(x).

Solution We apply Theorem 3 to obtain the value of the derivative of 7! at x = 6:

d
9 = 3x? =12
dx x=2 x=2
ar -1 -1 Eq. (D)
dx o df 12
dx x=2
See Figure 3.37. |

Derivative of the Natural Logarithm Function

Since we know the exponential function f(x) = e* is differentiable everywhere, we can
apply Theorem 3 to find the derivative of its inverse f '(x) = Iln x:

- 1
(f 1)’()6) = T Theorem 3
F(F(x)
= 1 44 = ol
- ef—](x) flw) = e
_ 1
=7 x>0
eﬂX
_1 _— -
= x- Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative
of y = In x using implicit differentiation, as follows:

y=Inx x>0
e =x Inverse function relationship
d d
e () = dr (x) Differentiate implicitly.
dy
e a =1 Chain Rule
dy 1

No matter which derivation we use, the derivative of y = In x with respect to x is
d 1
a(lnx) =3 X > 0.

The Chain Rule extends this formula to positive functions u(x):

—Inu = du

1
dx u gy’ u=0. )
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Derivative of In |x |

iln|x\:}?,x#0

dx

d .1
dxlnbx—x, bx >0

y=Inx

FIGURE 3.38 The tangent line intersects
the curve at some point (a, In a), where the
slope of the curve is 1/a (Example 4).

EXAMPLE 3 We use Equation (2) to find derivatives.
d D S §
(a) 1n2 dx 2x) = o 2)=5% x>0
(b) Equation (2) with u = x*> + 3gives
a2 L d b, 2x
dxln(x + 3) 2413 dx(x + 3) 213 2x 243
(¢) Equation (2) with u = ]x‘ gives an important derivative:
iln‘x| lnu-dl u=|x|,x #0
dx d dx o
B d iy =X
B ax D =
= LL Substitute for u.
x| [x]
X
2
_1
=z

So 1/x is the derivative of In x on the domain x > 0, and the derivative of In(—x) on
the domain x < 0. |

Notice from Example 3a that the function y = In2x has the same derivative as the
function y = Inx. This is true of y = Inbx for any constant b, provided that bx > 0:
d

—Inbx = — *(bx)

_1
dx b dx bx(b)_x' 3)

EXAMPLE 4 A line with slope m passes through the origin and is tangent to the graph
of y = In x. What is the value of m?

Solution  Suppose the point of tangency occurs at the unknown point x = a > 0. Then
we know that the point (a, In @) lies on the graph and that the tangent line at that point has
slope m = 1/a (Figure 3.38). Since the tangent line passes through the origin, its slope is

_Ina—0_1Ina

a—0 a -

Setting these two formulas for m equal to each other, we have

Ina _ 1
a a
Ina =1
elna_el
a=-e
m—%. [ |

The Derivatives of a" and log, u

We start with the equation a* = " @) = ¢*"¢ g > (, which was seen in Section 1.6:
iax — d exlna
dx dx
d 1 1
= p¥lna, % a i udu
e ix (x1n a) e e

=a*Ina.
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That is, if a > 0, then a* is differentiable and

%ax = a‘lna. 4

This equation shows why e* is the preferred exponential function in calculus. If @ = e,
then Ina = 1 and the derivative of a* simplifies to

d . _ _
e e* = e'lne = €.
With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function a*.

If @ > 0 and u is a differentiable function of x, then a” is a differentiable func-
tion of x and

U — u dl
LA Ta Ina d 5)

EXAMPLE 5 Here are some derivatives of general exponential functions.
(a) %3)6 = 3*In3 Eq. (5) witha = 3,u = x
) L3 = 35n3) L (—x) = —3~1n3 Eq. (5) witha = 3.1 = —

dx dx X q. (S) witha =3, u = —x
(c) 4 3sinx = 3sinx(]p 3) 4 (sin x) = 3*"*(In 3)cos x u = sin x [ |

I I oo u = sin

In Section 3.3 we looked at the derivative f'(0) for the exponential functions f(x) =
a* at various values of the base a. The number f'(0) is the limit, lim,_ (" — 1)/h, and
gives the slope of the graph of a* when it crosses the y-axis at the point (0, 1). We now see
from Equation (4) that the value of this slope is

ho_
lim ¢ L e ha )
In particular, when a = e we obtain
h _
fim &L = e = 1.
h—0

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are
correct, they do assume the existence of these limits. In Chapter 7 we will give another
development of the theory of logarithmic and exponential functions which fully justifies
that both limits do in fact exist and have the values derived above.

To find the derivative of log, u for an arbitrary base (a > 0, a # 1), we start with the
change-of-base formula for logarithms (reviewed in Section 1.6) and express log, u in
terms of natural logarithms,

In x

log, x = nx
Ea Ina’
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Taking derivatives, we have

In x In a is a constant.

If u is a differentiable function of x and u > 0, the Chain Rule gives a more general
formula.

Fora > 0and a # 1,

1 du
ulnadx’

d _
dx log, u = )

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients,
and powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in
the next example.

EXAMPLE 6  Find dy/dx if

_ P+ D+ 3

T =1 R x> 1.

Solution We take the natural logarithm of both sides and simplify the result with the
algebraic properties of logarithms from Theorem 1 in Section 1.6:

(2 + DHx + 3)12
n
x—1
=In((x®+ Dx + 3)"2) —In(x — 1) Rule 2
=InG2+ 1) +Inx+3)2—In(x—1) Rule 1

Iny =1

=G+ 1) + %ln(x +3) —In(x —1).  Rule4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

1dy _ 1
Ydx  x2+1

11
x+3 x-—1

'2x+%-

Next we solve for dy/dx:

dy _ 2 1 1
N2 sr1 " 2x+6 x—1)
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Finally, we substitute for y:

dy (@ + Dx + 3)‘/2< 2 1 1 )

dx x—1 2+ 1 2x+6 x-—1

Irrational Exponents and the Power Rule (General Version)

The definition of the general exponential function enables us to raise any positive number
to any real power n, rational or irrational. That is, we can define the power function y = x"
for any exponent 7.

DEFINITION For any x > 0 and for any real number n,

¥ = enlnx‘

Because the logarithm and exponential functions are inverses of each other, the defini-
tion gives

Inx" = nlnx, for all real numbers n.

That is, the rule for taking the natural logarithm of any power holds for all real exponents
n, not just for rational exponents.

The definition of the power function also enables us to establish the derivative Power
Rule for any real power n, as stated in Section 3.3.

General Power Rule for Derivatives

For x > 0 and any real number n,

- X" = nxn*l

dx

If x = 0, then the formula holds whenever the derivative, x", and x" ! all exist.

Proof Differentiating x" with respect to x gives
d d

axn = a e"lnx Definition of x", x > 0

d
= ¢""¥. = (nlnx Chain Rule for e*
dx

= x"- X Definition and derivative of In x

— nxn*l. XU,X*I — Xu*l
In short, whenever x > 0,
d n n—1
—x" = nx"" L
dx
For x < 0,if y = x", y', and x"~ ! all exist, then

In|y| = In|x|" = nln|x|.
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y=(+ x)]/"

FIGURE 3.39 The number e is the limit
of the function graphed here as x — 0.

Using implicit differentiation (which assumes the existence of the derivative y’) and
Example 3(c), we have

!

Y _n
y X
Solving for the derivative,
Y x" _
y=n3=ny%=n" I y =x"

It can be shown directly from the definition of the derivative that the derivative equals
0 when x = 0 and n = 1 (see Exercise 99). This completes the proof of the general ver-
sion of the Power Rule for all values of x. |

EXAMPLE 7 Differentiate f(x) = x%, x > 0.

Solution We note that f(x) = x* = ¢*"*, so differentiation gives

70 = ey

— ex“‘x%(x lnx) “T/\c”. u=xlnx
_ Inx 1

= ¢ Inx + X3

:xx(lnx—{—l)‘ x>0

We can also find the derivative of y = x* using logarithmic differentiation, assuming y’
exists. |

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion y = a* has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

e =1 :
}llm 7 =Ine = 1. Slope equals In e from Eq. (6).
—0

We now prove that e can be calculated as a certain limit.

THEOREM 4—The Number e as a Limit The number e can be calculated as the
limit

e = lirr(l)(l + x)lA,

Proof If f(x) = In x, then f'(x) = 1/x, so f'(1) = 1. But, by the definition of derivative,

von e A = f o f 4 x) — f()
R e B
. In(+x)—Inl =
_X%f_}l—%iln(l_l—x) Inl =0
In is continuous,
= liII(l) In(1 + x)l/x = ln[lirr(l](l + x)l/x]. Theorem 10 in
x> x>

Chapter 2.
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Because f'(1) = 1, we have
ln[lirr(l)(l + x)l/x} =1.
Therefore, exponentiating both sides we get

111%(1 + ) = e,

See Figure 3.39 on the previous page. |

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is e =~ 2.718281828459045 to 15 decimal places.

Exercises m

Derivatives of Inverse Functions 13. y = In(£?) 14. y = In(£2) + V1
In Exercises 1-4: 3 .
a. Find f1(0). 15. y =In% 16. y = In (sin x)
b. Graph f and f~! together. 17. y=In(0 + 1) — ¢ 18. y = (cos 0) In (20 + 2)
¢. Evaluate df /dx at x = a and df ' /dx at x = f(a) to show that 19. y = Inx’ 20. y = (Inx)*
at these points df ! /dx = 1/(df /dx). 21. y = t(Int)? 22. y=1tln Vi
1. =2x+3 =—1 2. ={1/5x+ 7 =—1 4 4
f@=2%+3 a f@=0a/5x+7 a 2.y ="lx-L 24. y = (I 0
3.f0)=5—4x, a=1/2 4 f@x) =24 x=0, a=5 4 16
5. a. Show that f(x) = x* and g(x) = /x are inverses of one another. 25. y = lnT’ 26. y = !
b. Graph f and g over an x-interval large enough to show the Vint
graphs intersecting at (1, 1) and (=1, —1). Be sure the picture 27y = In x 28 y = xlnx
' ine y = R I YT+
shows the required symmetry about the line y = x. nx nx
c. Find the slopes of the tangents to the graphs of f and g at 29. y =In(Inx) 30. y = In(In (Inx))
(1, 1) and (—1, —1) (four tangents in all). 31. y = 6(sin (In ) + cos (In 6))
d. What lines are tangent to the curves at the origin? 32. y = In(sec § + tan 6)
6. a. Show that i(x) = x*/4 and k(x) = (4x)'/? are inverses of one 1 1.1+
3B.y=In——— 34. y=-In
another. Vr +1 21 —x
b. Graph & and k over an x-interval large enough to show the 1 +Int
graphs intersecting at (2, 2) and (—2, —2). Be sure the picture 5.y = l—Int 36. y = VIn Vi
shows the required symmetry about the line y = x. \/sin 6 cos 6
sin 6 cos 6
c¢. Find the slopes of the tangents to the graphs at 4 and k at 37. y = In(sec (In 0)) 38. y=In (m)

(2,2) and (=2, —2).
d. What lines are tangent to the curves at the origin? o+ 1y (x+ 1y
39. y=In| — 40. y = Iny[-——;
7. Let f(x) = x> — 3x*> — 1,x = 2. Find the value of df~!/dx at V1 —x x+2)

the point x = —1 = f(3). Logarithmic Differentiation

8. Let f(x) = x> — 4x — 5,x > 2. Find the value of df'/dx at In Exercises 41-54, use logarithmic differentiation to find the deriva-
the point x = 0 = f(5). tive of y with respect to the given independent variable.

9. Suppose that the differentiable function y = f(x) has an inverse 41. y = Vx(x + 1) 42. y= Vx> + Dx — 1)
and that the graph of f passes through the point (2, 4) and has a ; 1
slope of 1/3 there. Find the value of df ~!/dx at x = 4. 4. y= Vit 1 4.y = W+ 1)

10. Suppose that the differentiable function y = g.(x.) has_ an inverse 45. y = (sin §)° /0 + 3 46. y = (tan 6)\ /20 + 1

and that the graph of g passes through the origin with slope 2. 1
Find the slope of the graph of g™! at the origin. 47. y =1t + 1)t + 2) 48.

YT+ D+ 2)
Derivatives of Logarithms 6+5 6 sin 6

In Exercise.:s 11-40, find the derivative of y with respect to x, ¢, or 6, 49. y = 0 cos 6 50. y = sec 0

as appropriate.

11. y =In3x + x 12.)7:113 51.y:xvx2+1 52, y = (x + D
X (x + )23 Vx + 1)°
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_afx(x —2) s/ x(x + Dx = 2)
"NV 2+ TN @+ Dex + 3)
Finding Derivatives

In Exercises 55-62, find the derivative of y with respect to x, ¢, or 6,
as appropriate.

55. y = In(cos’ 0) 56. y = In (30¢7%)
57. y = In(3te’™) 58. y = In (2¢ 'sin 1)
g Vo
59. y=In|{—¢ ) 60. y =1 (7)
yon (1 + e YT Ve
61. y = elcosttinn 62. y=e"(Ins> + 1)
In Exercises 63-66, find dy/dx.
63. Iny = ¢'sinx 64. Inxy = &
65. ¥ =y* 66. tany = ¢ + Inx

In Exercises 67—88, find the derivative of y with respect to the given
independent variable.

67. y =2" 68. y =37
69. y =5V 70. y = 269
71. y = x™ 72. y=1t"¢
73. y = log,56 74. y = logz(1 + 01n 3)
75. y = logyx + logyx? 76. y = log,se* — logsVx
77. y = log,r-logyr 78. y = logzr+logyr
In3 Ins
79. y = log_;((%) ) 80. y = logs (3x7jf 2)
81. y = 6sin (log,0) 82. y = log; <W>
e’2
x%e?
83. y = logse* 84. y = log, (72\&4-71)
85. y = 3loz! 86. y = 3logg(log,?)
87. y = log, (81"?) 88. y = rlog; (etin0nd)

Logarithmic Differentiation with Exponentials
In Exercises 89-96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. y =@+ 1) 90. y = x&*D
91. y = (Vi) 92, y =Vt

93. y = (sinx)* 94, y = xSinx
95, y = ynx 96. y = (Inx)n*

Theory and Applications
97. If we write g(x) for £ !(x), Equation (1) can be written as

U@ = fe o gY@ @ = 1.
If we then write x for a, we get

g f'(x) =1

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that f and g are differentiable functions that are
inverses of one another, so that (g ° f)(x) = x. Differentiate both

sides of this equation with respect to x, using the Chain Rule to
express (g f)'(x) as a product of derivatives of g and f.
What do you find? (This is not a proof of Theorem 3 because
we assume here the theorem’s conclusion that g = f' is
differentiable.)

98. Show that lim,ﬁm(l + %) = ¢ for any x > 0.

99. If f(x) = x",n = 1, show from the definition of the derivative
that f'(0) = 0.

100. Using mathematical induction, show that for n > 1

a (n — D!

— (—1\yn—1
dx"lnx (GEY) o

COMPUTER EXPLORATIONS

In Exercises 101-108, you will explore some functions and their
inverses together with their derivatives and tangent line approxima-
tions at specified points. Perform the following steps using your CAS:

a. Plot the function y = f(x) together with its derivative over the
given interval. Explain why you know that f is one-to-one over
the interval.

b. Solve the equation y = f(x) for x as a function of y, and name the
resulting inverse function g.

c. Find the equation for the tangent line to f at the specified point
(X0, f(xp))-

d. Find the equation for the tangent line to g at the point (f(xy), X,)
located symmetrically across the 45° line y = x (which is the
graph of the identity function). Use Theorem 3 to find the slope of
this tangent line.

e. Plot the functions f and g, the identity, the two tangent lines, and
the line segment joining the points (xg, f(x)) and (f(xg), Xo)-
Discuss the symmetries you see across the main diagonal.

101. y = V3x — 2, gsxsﬁl, X =3

3
3x + 2
102.y:m, —2=x=2, x0=1/2
103 y= 5 “l=x=1 x=1/2
x>+ 1
P
104.y=x2+1, “1=x=1, x=1/2
105. y=x>—3x>—1, 2=x=35, x0=%
_ 3 _3
106. y =2 —x — x°, —2=x=2, Xo =35

107. y=¢', -3 =x=5 x=1

=x =

108. y = sinx, —

&
[
—_

w
7

SIE]

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions y = f(x) and x = f'(y) defined implicitly by the given equa-
tions over the interval.

109. y'7 — 1 =(x+27 —-5=x=35, x=-3/2

110. cosy =x'%, 0=x=1, x,=1/2
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39 Inverse Trigonometric Functions

Domain: —o0 < x <

Range: 7% <y<g
y
,,,,,,, I
2 y:tan’lx
I I I I X
-2 -1 1 2
_T
,,,,,,, 20

(a)

FIGURE 3.40 Graphs of the arctangent, arccotangent, arcsecant, and arccosecant functions.

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused
there on the arcsine and arccosine functions. Here we complete the study of how all six
inverse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of tan x, cot x, sec x, and csc x

The graphs of these four basic inverse trigonometric functions are shown again in Figure 3.40.
We obtain these graphs by reflecting the graphs of the restricted trigonometric functions
(as discussed in Section 1.6) through the line y = x. Let’s take a closer look at the arctan-
gent, arccotangent, arcsecant, and arccosecant functions.

Domain: x= —lorx=1

Range: 7%Sy5g,y¢0

Domain: x= —lorx=1

Range: OSySTr,y:#g

Domain: —o° < x < ®
Range: 0<y<m

|
|
|
|
|
|
I3
|
=
I
(e}
=4
>
SER
T
3
=~
I
w
a
o
N
SE]
|
=
I
o
gl
N2

(b)

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.

DEFINITIONS

tan~lx is the number in (—7 /2, 7 /2) for which tan y = x.

<
I

cot~'x is the number in (0, ) for which coty = x.
= sec”lx is the number in [ 0, 7/2) U (7/2, 7 ] for which secy = x.
csc™!x is the number in [—7/2, 0) U (0, 7/2 ] for which cscy = x.

- < <
|

We use open or half-open intervals to avoid values for which the tangent, cotangent,
secant, and cosecant functions are undefined. (See Figure 3.40.)

The graph of y = tan™!x is symmetric about the origin because it is a branch of the
graph x = tany that is symmetric about the origin (Figure 3.40a). Algebraically this
means that

tan ! (—x) = —tan lx;
the arctangent is an odd function. The graph of y = cot 'x has no such symmetry

(Figure 3.40b). Notice from Figure 3.40a that the graph of the arctangent function has two
horizontal asymptotes: one at y = 7 /2 and the other at y = — /2.
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37

FIGURE 3.41 There are several logical
choices for the left-hand branch of

y = sec” ' x. With choice A,

sec”'x = cos™!(1/x), a useful identity

employed by many calculators.

y
\
\
N\ -
- y = sin"x
20 Domain: —1=x=1
Range: —7/2 =y =m/2
I I X
-1 1
T
L 2
\
\
N\
\

FIGURE 3.42 The graph of y = sin”'x
has vertical tangents at x = —1 and
x =1

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 3.40c and 3.40d.
Caution There is no general agreement about how to define sec™ x for negative values of
x. We chose angles in the second quadrant between 7 /2 and 7. This choice makes
sec 'x = cos !(1/x). It also makes sec™!x an increasing function on each interval of its
domain. Some tables choose sec”'x to lie in [—m, —7/2) for x < 0 and some texts
choose it to lie in [, 37/2) (Figure 3.41). These choices simplify the formula for the
derivative (our formula needs absolute value signs) but fail to satisfy the computational
equation sec'x = cos™!(1/x). From this, we can derive the identity

sec”'x = cos™! ()lc) = %— sin”! (i) (1)

by applying Equation (5) in Section 1.6.

EXAMPLE 1

The accompanying figures show two values of tan™ x.

" tan"% = tun’”? = % " tan’l(—\/§> = —g
g
) X6 -7
\ ! X ! I X
Qﬂ ! 2/ Y3
tan%= % tan<f%> =3
x tan !x
V3 7 /3
1 /4
\V3/3 /6
-\V/3/3 —/6
-1 -7 /4
-\V3 -7 /3
The angles come from the first and fourth quadrants because the range of tan™'x is
(—m/2, 7/2). [

The Derivative of y = sin~lu

We know that the function x = sin y is differentiable in the interval —7 /2 <y < 7 /2
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore
assures us that the inverse function y = sin™'x is differentiable throughout the interval
—1 < x < 1. We cannot expect it to be differentiable at x = 1 or x = —1 because the
tangents to the graph are vertical at these points (see Figure 3.42).
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We find the derivative of y = sin"'x by applying Theorem 3 with f(x) = sin x and
F N x) = sinx:
1

-1y = — eorem 3

(F)' 7 10) Th 3

= % f'(u) = cos
cos (sin"'x) o o

1

A
= cosu = V1 — sin“u
V1 — sin?(sin"'x)
1 o
Sy sin (sin” ' x) = x
1 —x2

If u is a differentiable function of x with |u| < 1, we apply the Chain Rule to get the
general formula

S S
V1 — ?

d ooy = du
g in ) = I lu| < 1.

EXAMPLE 2 Using the Chain Rule, we calculate the derivative

d . yo__ 1 d ,__ 2x
Y e R v -

The Derivative of y = tan~1u

We find the derivative of y = tan"!x by applying Theorem 3 with f(x) = tanx and
fY(x) = tan"'x. Theorem 3 can be applied because the derivative of tan x is positive for
/2 <x<m/2

_ 1
(f l)r(x) = i Theorem 3

(%)

-1 o) = soc?

~ sec?(tan”'x) = e

_ 1 , ,

- m sec’u = 1 + tan"u

= 1 tan (tan"! x)

- . a d X) — X
1 + x?

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

_ 1 du
1,) —
(tan~'u) Tr e

The Derivative of y = sec™lu

Since the derivative of sec x is positive for 0 < x < 77/2 and 7/2 < x < 7, Theorem 3
says that the inverse function y = sec™!x is differentiable. Instead of applying the formula
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FIGURE 3.43 The slope of the curve

y = sec” ! x is positive for both x < —1

and x > 1.

in Theorem 3 directly, we find the derivative of y = sec™'x,

ferentiation and the Chain Rule as follows:

x| > 1, using implicit dif-

1

y = sec x
secy = x Inverse function relationship
d d
—-(sec =X Differentiate both sides.
dx (sec y) dx e
tany 2 = |
secytany—- = Chain Rule
ytany .o
d Since |x| > 1,y lies in
ay — ; (0, 7/2) U (/2, ) and
dx secytany secytany # 0.

To express the result in terms of x, we use the relationships

secy=x and tany= fVsec?y—1=2Vx2—-1

to get
y _ 1
de TV -1

Can we do anything about the * sign? A glance at Figure 3.43 shows that the slope of the

graph y = sec™' x is always positive. Thus,
L x>
d ., xVxr—1
——sec 'x =
i L if x < —1
-— ifx < -1
Va2 -1

With the absolute value symbol, we can write a single expression that eliminates the “ £
ambiguity:

1 1

d _
“sec lx = —+——.
dx x| V2 — 1

If u is a differentiable function of x with |u| > 1, we have the formula

i(sec_lu) S
lu| V2 — 1

d
dx ﬁ, lu| > 1.

EXAMPLE 3 Using the Chain Rule and derivative of the arcsecant function, we find

d . —1(s.4) — 1 d (a4
—sec” ' (5x%) = —(5x%)
dx |5x4 V/(5x4)2 — 1 dx
1
=————(20x%) 5x¢>1>0
56258 — | i
4

V25— 1
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Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way,
thanks to the following identities.

Inverse Function—-Inverse Cofunction Identities

cos'x = /2 — sin"'x

cotlx = /2 — tan"!x

csc'x = /2 — sec”'x

We saw the first of these identities in Equation (5) of Section 1.6. The others are
derived in a similar way. It follows easily that the derivatives of the inverse cofunctions are
the negatives of the derivatives of the corresponding inverse functions. For example, the
derivative of cos ' x is calculated as follows:

%(cos‘lx) = C;i(g - sin‘1x> Identity

= —%(Sin’lx)

1 .
- 72 . Derivative of arcsine
1 —x

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

TABLE 3.1 Derivatives of the inverse trigonometric functions
L d(sin'u) 1 du u <1

: dx N _pdc "

) dlcos™u) 1 du <1

: dx V1 — 2ax’ “

3 d(tan™"u) _ 1 du

) dx 1+ u?dx

4 d(cot™"u) _ 1 du

) dx 1 + u?dx

5 d(sec™'u) _ 1 du | > 1

: dx lu| Vi — 1 dx’

p dlesc™'u) 1 du PES
: dx lu| Vi — 1 dx’
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Exercises m

Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to

find the angles in Exercises 1-8.

1. a. tan'1

. tan'(—1)

b. tan"(—\/’g)

b. tan'\V3

c. tan"( 1

il . -1 -V3
3. a. sin <2 b. sin 3 c. sin >
- -l inl ﬁ
4. a. sin <2> b. sin <\6> c. sin (2
(1 —1 ;1 —1 ﬁ
5. a. cos (2) b. cos (\/5 C. COs )
—2
6. a. csc”' V2 b. csc! (*) c. csc 12
V3
7. a. sec’l(—\@) b. sec"(%) c. sec '(—2)
_ _ -1
8. a. cot’'(—-1) b. cot! (V3 c. cot '(*)
(V3) V3
Evaluations

Find the values in Exercises 9—12.

o ()
(e ()

10. sec (cos’%)
12. cot(sin’1 (7?))

Limits
Find the limits in Exercises 13-20. (If in doubt, look at the function’s
graph.)
13. lim sin'x 14. lim cos'x
x—1 x——1"

15. lim tan”'x
X—00

17. lim sec 'x
X—00

19. lim csc™!

x—00

X

Finding Derivatives

16. lim tan'x
x——00

1

18. lim sec'«x

x——00

20. lim csc”

Ty

x——00

In Exercises 21-42, find the derivative of y with respect to the appro-

priate variable.

21. y = cos ' (x?) 22. y = cos (1 /x)
23. y = sin'"V21 24. y =sin”'(1 — 1)
25. y =sec!(2s + 1) 26. y = sec'5s
27. y=csc'(x®>+ 1), x>0
28. y = csc’l)zfc

= -1 — qin~ 12
29. y = sec ; 0<i<l1 30. y = sin 2
31 y = cot 'Vt 32. y=cot'Vr—1
33. y = In(tan"'x) 34. y = tan '(Inx)
35. y = csc7l(e) 36. y = cos (e

37. y=sV1 — 2 + cosl's 38 y= Vs —1—secls
39. y = tan Va2 — 1 +csclx, x> 1

40. y = cot"}? —tan 'x 4. y=xsinlx + VI — 2
42. y=In(x*+4) — xtan™' ()zi)

Theory and Examples

43. You are sitting in a classroom next to the wall looking at the
blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that
your viewing angle is

X X
a = cot”' = — cot’ !>
15 3

if you are x ft from the front wall.

Blackboard

44. Find the angle a.

65°

21
50 B

45. Here is an informal proof that tan™'1 + tan™'2 + tan™'3 = 7.
Explain what is going on.




1

46. Two derivations of the identity sec™!(—x) = 7 — sec™'x

a. (Geometric) Here is a pictorial proof that sec™ (—x) =
a — sec”'x. See if you can tell what is going on.

b. (Algebraic) Derive the identity sec™'(—x) = 7 — sec”'x by
combining the following two equations from the text:

cos '(—x) = 7 — cos'x Eq. (4), Section 1.6

sec”'x = cos™!(1/x) Eq. (1)

Which of the expressions in Exercises 47-50 are defined, and which
are not? Give reasons for your answers.

47. a. tan"'2 b. cos'2
48. a. csc1(1/2) b. csc!' 2
49. a. sec’'0 b. sin'\V2
50. a. cot™'(—1/2) b. cos !'(—5)

51. Use the identity

1 1

m -
u =5 —SeC u

csc
2

to derive the formula for the derivative of csc™' « in Table 3.1
from the formula for the derivative of sec™! u.

52. Derive the formula

dy 1
dx 1+ X2

for the derivative of y = tan™'x by differentiating both sides of
the equivalent equation tany = x.

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

4 ey = R E— |x| > 1.
dx |x| Vx? — 1
54. Use the identity
cot'u = g — tan"'u

to derive the formula for the derivative of cot™'u in Table 3.1

from the formula for the derivative of tan™' u.
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55. What is special about the functions

x— 1
x+ 1

f(x) = sin! x=0, and g(x) = 2tan ! Va?

Explain.
56. What is special about the functions

f(x) = sin™! \/ﬁ and g(x) = tan”! )17?
Explain.
57. Find the values of
a. sec '1.5 b. csc(—1.5) c. cot™'2
58. Find the values of
a. sec '(—3) b. csc 1.7 c. cot'(=2)

In Exercises 59-61, find the domain and range of each composite

function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-

ment on any differences you see.
59. a. y = tan '(tan x) b. y = tan (tan"'x)
60. a. y

61. a. y = cos '(cosx)

sin! (sin x) b. y = sin (sin"'x)

b. y = cos (cos 'x)

Use your graphing utility for Exercises 62—66.

1

62. Graph y = sec (sec™! x) = sec (cos !(1/x)). Explain what you

see.

63. Newton’s serpentine Graph Newton’s serpentine, y =4x/(x* + 1).
Then graph y = 2sin (2tan"'x) in the same graphing window.
What do you see? Explain.

64. Graph the rational function y = (2 — x?)/x% Then graph y =
cos (2sec”'x) in the same graphing window. What do you see?
Explain.

65. Graph f(x) = sin"'x together with its first two derivatives. Com-
ment on the behavior of f and the shape of its graph in relation to
the signs and values of f’ and f”.

66. Graph f(x) = tan'x together with its first two derivatives. Com-
ment on the behavior of f and the shape of its graph in relation to
the signs and values of f’ and f".

In this section we look at problems that ask for the rate at which some variable changes
when it is known how the rate of some other related variable (or perhaps several variables)
changes. The problem of finding a rate of change from other known rates of change is
called a related rates problem.
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b _,
a 10 ft
wheny = 6 ft

FIGURE 3.44 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1).

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

_4_5
V= 3T
Using the Chain Rule, we differentiate both sides with respect to 7 to find an equation

relating the rates of change of V and r,

dv _ dvdr _
dt dr dt

2dr
4ar di
So if we know the radius r of the balloon and the rate dV/dt at which the volume is
increasing at a given instant of time, then we can solve this last equation for dr/dt to find
how fast the radius is increasing at that instant. Note that it is easier to directly measure the
rate of increase of the volume (the rate at which air is being pumped into the balloon) than
it is to measure the increase in the radius. The related rates equation allows us to calculate
dr/dt from dV/dt.

Very often the key to relating the variables in a related rates problem is drawing a picture

that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Water runs into a conical tank at the rate of 9 ft®/min. The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

Solution Figure 3.44 shows a partially filled conical tank. The variables in the problem are

V = volume (ft’) of the water in the tank at time # (min)
x = radius (ft) of the surface of the water at time ¢

y = depth (ft) of the water in the tank at time 7.

We assume that V, x, and y are differentiable functions of 7. The constants are the dimen-
sions of the tank. We are asked for dy/dt when

y=6ft and %/ = 9 ft3/min.
The water forms a cone with volume
V= l77'x2y.

3

This equation involves x as well as V and y. Because no information is given about x and
dx/dt at the time in question, we need to eliminate x. The similar triangles in Figure 3.44
give us a way to express x in terms of y:

x_ 5
Yy 10

Therefore, we find

_1 YV s
V‘3”<2>y_12y

to give the derivative

fLV:l. 2dl:E2dl
a 1277V a4 ar



Balloon@

P4

% = 0.14 rad/min
when § = 7/4 dy _ 5
dr
when 0 = /4
Range
finder 150 m

FIGURE 3.45 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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Finally, use y = 6 and dV/dt = 9 to solve for dy/dr.

dy
_ T2
9 4(6) dt

dy 1
o 0.32
At the moment in question, the water level is rising at about 0.32 ft/min. |

Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use ¢ for time. Assume
that all variables are differentiable functions of .

2. Write down the numerical information (in terms of the symbols you have chosen).
3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two
or more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2 A hot air balloon rising straight up from a level field is tracked by a
range finder 150 m from the liftoff point. At the moment the range finder’s elevation angle
is 7 /4, the angle is increasing at the rate of 0.14 rad /min. How fast is the balloon rising at
that moment?

Solution We answer the question in the six strategy steps.

1. Draw a picture and name the variables and constants (Figure 3.45). The variables in
the picture are
0 = the angle in radians the range finder makes with the ground.
y = the height in meters of the balloon above the ground.

We let f represent time in minutes and assume that 6 and y are differentiable functions of 7.
The one constant in the picture is the distance from the range finder to the liftoff point

(150 m). There is no need to give it a special symbol.

2.  Write down the additional numerical information.

% = 0.14 rad /min when 6=

3. Write down what we are to find. We want dy/dt when 6 = /4.

4. Write an equation that relates the variables y and 6.

INE

y _
150 = tan 0 or y = 150tan 0
5. Differentiate with respect to t using the Chain Rule. The result tells how dy/dt (which
we want) is related to df/dr (which we know).

dy
dt

6. Evaluate with 0 = 7 /4 and d0/dt = 0.14 to find dy/dt.

= 150 (sec%)%

dy ~ -
o= 10(V2)004) =42 el =0

At the moment in question, the balloon is rising at the rate of 42 m/min. |
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Situation when
x=0.8,y=0.6

ds

ot =20

dx _,

d

FIGURE 3.46 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance s
between them (Example 3).

FIGURE 3.47 The particle P
travels clockwise along the circle
(Example 4).

EXAMPLE 3 A police cruiser, approaching a right-angled intersection from the north,
is chasing a speeding car that has turned the corner and is now moving straight east. When
the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.46).
We let ¢ represent time and set

Xx = position of car at time ¢

y = position of cruiser at time ¢

s = distance between car and cruiser at time ?.

We assume that x, y, and s are differentiable functions of z.
We want to find dx/dt when

x = 0.8 mi = 0.6 mi dl=—60mh QZZOmh
’ ’ Y ) ’ dt ph. dt ph.

Note that dy/dt is negative because y is decreasing.
We differentiate the distance equation between the car and the cruiser,

2 =x2+ 2
(we could also use s = Vx? + y?), and obtain

ds dx 2dl

2s E = ZXE + 2y dr
ds _1( de dy
a s\Yar TV ar
1 (i b
V2 + 2\ dt Vi)
Finally, we use x = 0.8,y = 0.6, dy/dt = —60, ds/dt = 20, and solve for dx/dt.
1 dx
20 = (0.8 + (0.6)(—60))
V(0.8 + (0.6)>\  dt

dt 0.8

dx _ 20V(0.87 + (0.6)° + (0.6)(60) _ o

At the moment in question, the car’s speed is 70 mph. |

EXAMPLE 4 A particle P moves clockwise at a constant rate along a circle of radius
10 m centered at the origin. The particle’s initial position is (0, 10) on the y-axis, and its
final destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tan-
gent line at P intersects the x-axis at a point Q (which moves over time). If it takes the
particle 30 sec to travel from start to finish, how fast is the point Q moving along the x-axis
when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the
origin (see Figure 3.47). We let ¢ represent time and let 6 denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in
30 sec, it is traveling along the circle at a constant rate of 7 /2 radians in 1/2 min, or
7r rad/min. In other words, df/dt = —ar, with ¢ being measured in minutes. The negative
sign appears because 6 is decreasing over time.



FIGURE 3.48 Jet airliner A
traveling at constant altitude
toward radar station R
(Example 5).
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Setting x(7) to be the distance at time ¢ from the point Q to the origin, we want to find
dx/dt when
x=20m  and % = —qr rad/min.
To relate the variables x and 6, we see from Figure 3.47 that xcos 6 = 10, or
x = 10 sec 6. Differentiation of this last equation gives
dx db

— = 10secftan 0

dt ar = —107 sec 0 tan 6.

Note that dx/dr is negative because x is decreasing (Q is moving toward the origin).
When x = 20,cos @ = 1/2 and sec§ = 2. Also, tan§ = Visec?6 — 1 = V3. It
follows that

% = (-10m@2)(V3) = —20V3m.
At the moment in question, the point Q is moving toward the origin at the speed of
20V/37 =~ 109 m/min. |

EXAMPLE 5 A jet airliner is flying at a constant altitude of 12,000 ft above sea level
as it approaches a Pacific island. The aircraft comes within the direct line of sight of a
radar station located on the island, and the radar indicates the initial angle between sea
level and its line of sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft
approaching the island when first detected by the radar instrument if it is turning upward
(counterclockwise) at the rate of 2/3 deg/sec in order to keep the aircraft within its direct
line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using
the positive x-axis as the horizontal distance at sea level from R to A, and the positive
y-axis as the vertical altitude above sea level. We let ¢ represent time and observe that
y = 12,000 is a constant. The general situation and line-of-sight angle 6 are depicted in
Figure 3.48. We want to find dx/dt when 6 = 77 /6 rad and df/dt = 2/3 deg/sec.

From Figure 3.48, we see that

12,000
Sl

tan 0 or x = 12,000 cot 6.

Using miles instead of feet for our distance units, the last equation translates to

12,000
X = 5390 cot 0.
Differentiation with respect to ¢ gives
de _ 1200 0 0pd0
dt 528 dt

When 0 = 7/6,sin>6 = 1/4, so csc? 6 = 4. Converting df/dt = 2/3 deg/sec to radi-
ans per hour, we find

%? = %(175;0)(3600) rad/hr. 1 hr = 3600 sec, | deg = /180 rad

Substitution into the equation for dx/dt then gives

dx _ (1200 2\( @ - _

7 ( 503 )(4)(3>(180>(3600) 380.
The negative sign appears because the distance x is decreasing, so the aircraft is approach-
ing the island at a speed of approximately 380 mi/hr when first detected by the radar. M
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(d)

FIGURE 3.49 A worker at M
walks to the right, pulling the
weight W upward as the rope
moves through the pulley P
(Example 6).

Exercises m

EXAMPLE 6 Figure 3.49a shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker
is walking rapidly away from the vertical line PW at the rate of 4 ft/sec. How fast is the
weight being raised when the worker’s hand is 21 ft away from PW?

Solution We let OM be the horizontal line of length x ft from a point O directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let & be the height
of the weight W above O, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know dh/dr when x = 21 given that dx/dr = 4. Note that the
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time 7 we have the following relationships (see Figure 3.49b):

20— h+z=45
20% + x% = 72

Total length of rope is 45 ft.
Angle at O is a right angle.

If we solve for z = 25 + h in the first equation, and substitute into the second equation,
we have

202 + x> = (25 + h)’. (1)
Differentiating both sides with respect to ¢ gives

dx _ dh
2x p7i 225 + h) dr

and solving this last equation for dh/dt we find

dh  x dx

dt ~— 25+ hdt

@)

Since we know dx/dt, it remains only to find 25 + & at the instant when x = 21. From
Equation (1),

20% + 212 = (25 + h)?

so that
(25 + h)*> = 841, or 25 + h = 29.
Equation (2) now gives
dh _ 21 , _ 84 _
d = 29 4 = 29 2.9 ft/sec
as the rate at which the weight is being raised when x = 21 ft. |

1.

Area Suppose that the radius r and area A = 772 of a circle are
differentiable functions of #. Write an equation that relates dA /dt
to dr/dt.

. Surface area Suppose that the radius r and surface area S = 477>

of a sphere are differentiable functions of 7. Write an equation that
relates dS/dt to dr/dt.

. Assume that y = 5x and dx/dr = 2. Find dy/dt.

4. Assume that 2x + 3y = 12 and dy/dt = —2. Find dx/dt.

. If y = x? and dx/dt = 3, then what is dy/dt when x = —1?

6. If x = y> — y and dy/dt = 5, then what is dx/dt when y = 2?

10.

. If X2+ y* =125 and dx/dt = =2, then what is dy/dt when

x=3andy = —4?

. If x?y* = 4/27 and dy/dt = 1/2, then what is dx/dt when

x =27

LIf L=\ +y2dx/dt = —1, and dy/dt =3, find dL/drt

when x = Sand y = 12.
If r+ s>+ v3=12,dr/dt = 4, and ds/dt = =3, find dv/dt
when r = 3 and s = 1.



11.

12.

13.

14.

15.

16.

17.

18.

If the original 24 m edge length x of a cube decreases at the rate
of 5 m/min, when x = 3 m at what rate does the cube’s

a. surface area change?
b. volume change?

A cube’s surface area increases at the rate of 72 in”/sec. At what rate
is the cube’s volume changing when the edge length is x = 3 in?

Volume The radius r and height /& of a right circular cylinder
are related to the cylinder’s volume V by the formula V = 77%h.

a. How is dV/dt related to dh/dt if r is constant?
b. How is dV/dt related to dr/dt if h is constant?

c. How is dV/dr related to dr/dt and dh/dr if neither r nor h is
constant?

Volume The radius r and height & of a right circular cone are
related to the cone’s volume V by the equation V = (1/3)mr?h.

a. How is dV/dt related to dh/dt if r is constant?
b. How is dV/dt related to dr/dt if h is constant?

c. How is dV/dr related to dr/dt and dh/dt if neither r nor h is
constant?

Changing voltage The voltage V (volts), current / (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation V = IR. Suppose that V is
increasing at the rate of 1 volt/sec while I is decreasing at the
rate of 1/3 amp/sec. Let ¢ denote time in seconds.

LV_

R

What is the value of dV/dt?
What is the value of dI/dt?
What equation relates dR/dt to dV/dt and dlI/dt?

Find the rate at which R is changing when V = 12 volts and
I = 2 amps. Is R increasing, or decreasing?

g e g P

Electrical power The power P (watts) of an electric circuit is

related to the circuit’s resistance R (ohms) and current / (amperes)

by the equation P = RI?.

a. How are dP/drt, dR/dt, and dlI/dr related if none of P, R, and
I are constant?

b. How is dR/dt related to dI/dt if P is constant?

Distance Let x and y be differentiable functions of ¢ and let

s = Vx?> 4+ y? be the distance between the points (x,0) and

(0, ) in the xy-plane.

a. How is ds/dt related to dx/dt if y is constant?

b. How is ds/dt related to dx/dt and dy/dr if neither x nor y is
constant?

c. How is dx/dt related to dy/dt if s is constant?

Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is s =

VX2 + y2 + 22

19.

20.

21.

22,

23.

24.
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a. Assuming that x, y, and z are differentiable functions of 7,
how is ds/drt related to dx/dt, dy/dt, and dz/dt?

b. How is ds/dt related to dy/dt and dz/dt if x is constant?
c. How are dx/dt, dy/dt, and dz/dt related if s is constant?

Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure 0 is

I
A= 2absm 0.

a. How is dA/dr related to d6/dt if a and b are constant?
b. How is dA/dt related to df/dt and da/dt if only b is constant?

c. How is dA/dt related to df/dt, da/dt, and db/dt if none of
a, b, and 0 are constant?

Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm /min. At what rate
is the plate’s area increasing when the radius is 50 cm?

Changing dimensions in a rectangle The length / of a rectan-
gle is decreasing at the rate of 2 cm/sec while the width w is
increasing at the rate of 2cm/sec. When [ = 12cm and
w = 5 cm, find the rates of change of (a) the area, (b) the perim-
eter, and (c) the lengths of the diagonals of the rectangle. Which
of these quantities are decreasing, and which are increasing?

Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

dy dz
i —2 m/sec, i 1 m/sec.
Find the rates at which the box’s (a) volume, (b) surface area, and
(c) diagonal length s = Vx? + y?> + 7> are changing at the
instant when x = 4,y = 3, and z = 2.

A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of 5 ft/sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle 6 between the ladder and the ground
changing then?

y
y()
13-ft ladder
I 0
>—> X
0 x(1)

Commercial air traffic Two commercial airplanes are flying
at an altitude of 40,000 ft along straight-line courses that intersect
at right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots. At
what rate is the distance between the planes changing when A is 5
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25.

26.

27.

28.

29.

30.

31.

32.

nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft/sec. How
fast must she let out the string when the kite is 500 ft away from her?

Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

A growing sand pile Sand falls from a conveyor belt at the rate
of 10 m?/min onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

A draining conical reservoir Water is flowing at the rate of
50 m*/min from a shallow concrete conical reservoir (vertex
down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

A draining hemispherical reservoir Water is flowing at the

rate of 6 m*/min from a reservoir shaped like a hemispherical bowl

of radius 13 m, shown here in profile. Answer the following ques-

tions, given that the volume of water in a hemispherical bowl of

radius Ris V = (7/3)y*(3R — y) when the water is y meters deep.

Center of sphere

<
13
Water level ]

a. At what rate is the water level changing when the water is
8 m deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

The radius of an inflating balloon A spherical balloon is
inflated with helium at the rate of 1007 ft®/min. How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft/sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle 6 changing at this instant (see the
figure)?

Ring at edge

33. A balloon and a bicycle A balloon is rising vertically above a

level, straight road at a constant rate of 1 ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft/sec passes under it. How fast is the distance s(7)
between the bicycle and balloon increasing 3 sec later?

y

y(@®

s(1)

[ >
0 x(1)

34. Making coffee Coffee is draining from a conical filter into a

cylindrical coffeepot at the rate of 10 in/min.

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

How fast
is this
level falling?

How fast
is this
level rising?
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36.

37.

38.

Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Wiirzberg, Germany,
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L/min. At rest it is
likely to be a bit under 6 L/min. If you are a trained marathon
runner running a marathon, your cardiac output can be as high as

30 L/min.
Your cardiac output can be calculated with the formula
_¢
Y=b

where Q is the number of milliliters of CO, you exhale in a minute
and D is the difference between the CO, concentration (ml/L) in
the blood pumped to the lungs and the CO, concentration in the
blood returning from the lungs. With Q = 233 ml/min and
D =97 — 56 = 4l ml/L,

233 ml/min

Y= ml/L =~ 5.68 L/min,

fairly close to the 6 L/min that most people have at basal (rest-
ing) conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan
College of Medicine, East Tennessee State University.)

Suppose that when Q = 233 and D = 41, we also know
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?

Moving along a parabola A particle moves along the parabola
y = x? in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m/sec. How fast is
the angle of inclination 6 of the line joining the particle to the
origin changing when x = 3 m?

Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time ¢ with dx/dr =
—1 m/sec and dy/dt = —5 m/sec. How fast is the particle’s dis-
tance from the origin changing as it passes through the point
(5,12)?

Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at
180 mi/h (264 ft/sec), as shown in the accompanying figure.
How fast will your camera angle 6 be changing when the car is
right in front of you? A half second later?

*
Camera 7
P

39.

40.

41.

42.

43.
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A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft
away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground 1/2sec later?
(Assume the ball falls a distance s = 1672 ft in #sec.)

__ Light
> < Ball at time t = 0

1/2 sec later

50-ft
pole

Shadow
0 30 x(1)

A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle 6 the
sun makes with the ground is increasing at the rate of 0.27°/min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

A melting ice layer A spherical iron ball 8§ in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of 10in®/min, how fast is the thickness of the ice
decreasing when it is 2 in. thick? How fast is the outer surface
area of ice decreasing?

Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi/h. The pilot sees an
oncoming car and with radar determines that at the instant the
line-of-sight distance from plane to car is 5 mi, the line-of-sight
distance is decreasing at the rate of 160 mi/h. Find the car’s
speed along the highway.

Baseball players A baseball diamond is a square 90 ft on a

side. A player runs from first base to second at a rate of 16 ft/sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles 6, and 6, (see the figure) changing
at that time?
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c. The player slides into second base at the rate of 15 ft/sec. At
what rates are angles 6; and 6, changing as the player
touches base?

Second base

<

90’
0, N Player
Third ) 30" . First
base <> base
Home

3.11
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44.

45.

46.

Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when
OA = 5 and OB = 3 nautical miles?

Clock’s moving hands At what rate is the angle between a
clock’s minute and hour hands changing at 4 o’clock in the after-
noon?

Oil spill An explosion at an oil rig located in gulf waters causes
an elliptical oil slick to spread on the surface from the rig. The slick
is a constant 9 in. thick. After several days, when the major axis of
the slick is 2 mi long and the minor axis is 3/4 mi wide, it is deter-
mined that its length is increasing at the rate of 30 ft/hr, and its
width is increasing at the rate of 10 ft/hr. At what rate (in cubic feet
per hour) is oil flowing from the site of the rig at that time?

Sometimes we can approximate complicated functions with simpler ones that give the
accuracy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.
We introduce new variables dx and dy, called differentials, and define them in a way that
makes Leibniz’s notation for the derivative dy/dx a true ratio. We use dy to estimate error in
measurement, which then provides for a precise proof of the Chain Rule (Section 3.6).

Linearization

As you can see in Figure 3.50, the tangent to the curve y = x? lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line

—1 L

3 0

0

y = x? and its tangent y = 2x — 1 at (1, 1).

1.2

0

Tangent and curve very close near (1, 1).

1.003

0.8

)12 0.997 ! ) )1.003

0.8

Tangent and curve very close throughout
entire x-interval shown.

0.997

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

FIGURE 3.50 The more we magnify the graph of a function near a point where the func-
tion is differentiable, the flatter the graph becomes and the more it resembles its tangent.
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Slope = f'(a)

(a, f(a)

0 a

FIGURE 3.51 The tangent to the
curve y = f(x) at x = ais the line

L(x) = f(a) + f'(@)(x — a).
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give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between f(x) and its tangent line near the x-coordinate of the point of tan-
gency. The phenomenon is true not just for parabolas; every differentiable curve behaves
locally like its tangent line.

In general, the tangent to y = f(x) at a point x = a, where f is differentiable
(Figure 3.51), passes through the point (a, f(a)), so its point-slope equation is

y = fla) + fl@x — a).
Thus, this tangent line is the graph of the linear function
L(x) = f(a) + f'(a)(x — a).

For as long as this line remains close to the graph of f as we move off the point of tan-
gency, L(x) gives a good approximation to f(x).

DEFINITIONS If f is differentiable at x = a, then the approximating function
Lx) = f(a) + fl(a)x — a)
is the linearization of f at a. The approximation
f) = L)

of f by L is the standard linear approximation of f at a. The point x = a is the
center of the approximation.

EXAMPLE 1 Find the linearization of f(x) = V1 + xatx = 0 (Figure 3.52).

y=1+ 5
11 - ~
= VTTx
1.0 /
I ! ! ! x 0.9 1
-0 ! 2 3 4 Z0.1 0 0.1 02
FIGURE 3.52 The graphof y = V1 + x and its linear- FIGURE 3.53 Magnified view of the
izations at x = 0 and x = 3. Figure 3.53 shows a magni- window in Figure 3.52.
fied view of the small window about 1 on the y-axis.
Solution  Since
Fo) =201+ xR,
we have f(0) = 1 and f'(0) = 1/2, giving the linearization
Lx) = f(a) + f'la)x —a) =1+ %(x -0=1+ %
See Figure 3.53. [ |

The following table shows how accurate the approximation V1 + x = 1 + (x/2)
from Example 1 is for some values of x near 0. As we move away from zero, we lose
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accuracy. For example, for x = 2, the linearization gives 2 as the approximation for V3,
which is not even accurate to one decimal place.

Approximation True value | True value — approximation |
V12 =1+ % = 1.10 1.095445 0.004555 < 1072
V105 = 1 + % = 1.025 1.024695 0.000305 < 1073
V1.005 = 1 + % = 1.00250 1.002497 0.000003 < 1073

Do not be misled by the preceding calculations into thinking that whatever we do with
a linearization is better done with a calculator. In practice, we would never use a lineariza-
tion to find a particular square root. The utility of a linearization is its ability to replace a
complicated formula by a simpler one over an entire interval of values. If we have to work
with V1 + x for x close to 0 and can tolerate the small amount of error involved, we can
work with 1 + (x/2) instead. Of course, we then need to know how much error there is.
We further examine the estimation of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.52
suggests, the approximation V1 + x = 1 + (x/2) will probably be too crude to be use-
ful near x = 3. There, we need the linearization at x = 3.

EXAMPLE 2 Find the linearization of f(x) = V1 + x at x = 3.

Solution We evaluate the equation defining L(x) at a = 3. With

- ey = 1 S L
=2 FO=30+07 =g
we have
_ L N 1
L(x)—2+4(x 3)—4+4. [ |
At x = 3.2, the linearization in Example 2 gives
VIt x= VI+32 =3+ 32 = 1250 + 0,800 = 2050,

which differs from the true value V4.2 = 2.04939 by less than one one-thousandth. The
linearization in Example 1 gives

y \/1+x=\/1+3.2%1+%=1+1.6=2.6,

a result that is off by more than 25%.
EXAMPLE 3 Find the linearization of f(x) = cos x at x = /2 (Figure 3.54).

0 s - * Solution  Since f(7r/2) = cos(w/2) = 0, f'(x) = —sinx, and f'(77/2) = —sin(7w/2) =
2 yTcosx —1, we find the linearization at a = /2 to be
y=-—x+ 7%

L(x) = f(a) + fl(a)(x — a)

FIGURE 3.54 The graph of f(x) = cos x 0+ (—1)<x . )

and its linearization at x = /2. Near 2

x=m/2,cosx = —x + (7/2) _ T

(Example 3). Xt 2" "
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An important linear approximation for roots and powers is

(1 +xF =1+ kx (x near 0; any number k)

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

lenL%x k=1/2
ﬁ =(1-x'=14+CFDFEx)=1+x k = —1; replace x by —x.
VI+5=(010+54H3 =1+ %(Sx“) =1+ %x“ k = 1/3; replace x by 5x*.
1 k=-1/2;

replace x by —x?.

= - =1+ (—é)(—x% — 1+ 30

1 —x

Differentials

We sometimes use the Leibniz notation dy/dx to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that when their ratio exists, it is equal to the derivative.

DEFINITION Let y = f(x) be a differentiable function. The differential dx is an
independent variable. The differential dy is

dy = f'(x) dx.

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function f, then these values determine the numerical value of dy. Often the
variable dx is chosen to be Ax, the change in x.

EXAMPLE 4
(a) Finddyify = x> + 37x.
(b) Find the value of dy when x = 1 and dx = 0.2.
Solution
(@) dy = 5x* + 37) dx
(b) Substituting x = 1 and dx = 0.2 in the expression for dy, we have
dy = (5-1* + 37)0.2 = 8.4. [ |

The geometric meaning of differentials is shown in Figure 3.55. Let x = a and set
dx = Ax. The corresponding change in y = f(x) is

Ay = f(a + dx) — f(a).
The corresponding change in the tangent line L is
AL = L(a + dx) — L(a)
= f(a) + f'(@)[(a + dx) — a] —&

L(a + dx) L(a)
= {'(a)dx.
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X y =)

(a + dx, f(a + dx))

| Ay = fla + dv) — f(a)

AL = f'(a)dx
(a, f(a))
| dx = Ax |
} } When dx is a small change in x,
Tangent } } the c.orres.pon.dmg change in
. the linearization is precisely dy.
line } }
! ! X
0 a a+ dx

FIGURE 3.55 Geometrically, the differential dy is the change
AL in the linearization of f when x = a changes by an amount
dx = Ax.

That is, the change in the linearization of f is precisely the value of the differential dy
when x = a and dx = Ax. Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount dx = Ax.

If dx # 0, then the quotient of the differential dy by the differential dx is equal to the
derivative f'(x) because

_ fwdx dy

dy + dx e =f(x)=£.

We sometimes write
df = f'(x) dx

in place of dy = f'(x) dx, calling df the differential of f. For instance, if f(x) = 3x> — 6,
then

df = d(3x* — 6) = 6x dx.
Every differentiation formula like

d(u+v):dl+dl or d(sinu):COS du
dx dr ' dx dx Uadx

has a corresponding differential form like

dlu + v) = du + dv or d(sin u) = cos u du.

EXAMPLE 5 We can use the Chain Rule and other differentiation rules to find differ-
entials of functions.

(a) d(tan 2x) = sec?(2x) d(2x) = 2sec? 2x dx

o) d< X )Z(x"‘1)dx_Xd(X+1):xdx+dx—xdx: dx
X+ 1 (x + 1) (x + 1) (x + 1)

Estimating with Differentials

Suppose we know the value of a differentiable function f(x) at a point a and want to esti-
mate how much this value will change if we move to a nearby point a + dx. If dx = Axis
small, then we can see from Figure 3.55 that Ay is approximately equal to the differential
dy. Since

fla + dx) = f(a) + Ay, Ax = dx



dr=0.1

2

AA = dA = 2madr

FIGURE 3.56 When dris
small compared with a, the
differential dA gives the estimate
A(a + dr) = ma*> + dA
(Example 6).
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the differential approximation gives
fla + dx) = f(a) + dy

when dx = Ax. Thus the approximation Ay =~ dy can be used to estimate f(a + dx)
when f(a) is known, dx is small, and dy = f'(a)dx.

EXAMPLE 6 The radius r of a circle increases from ¢ = 10 m to 10.1 m (Figure 3.56).
Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged
circle and compare your estimate to the true area found by direct calculation.

Solution Since A = 772, the estimated increase is
dA = A'(a) dr = 2ma dr = 2mw(10)(0.1) = 27 m>.
Thus, since A(r + Ar) = A(r) + dA, we have

AC10 + 0.1) = A(10) + 27
= 7(10)> + 27 = 102

The area of a circle of radius 10.1 m is approximately 1027 m?.
The true area is

A(10.1) = 7(10.1)?
102.017 m2.

The error in our estimate is 0.017 m?, which is the difference AA — dA. [ |

EXAMPLE 7 Use differentials to estimate

(a) 7.97'/3
(b) sin(7/6 + 0.01).

Solution
(a) The differential associated with the cube root function y = x'/3 is

_ 1
dy = ﬁdx.

We set a = 8, the closest number near 7.97 where we can easily compute f(a) and
f'(a). To arrange that a + dx = 7.97, we choose dx = —0.03. Approximating with
the differential gives

f(1.97) = f(a + dx) = f(a) + dy

1
3(8)2/3

=83 + (—0.03)

- 1 _
=2+ 12( 0.03) = 1.9975

This gives an approximation to the true value of 7.97'/3, which is 1.997497 to 6 decimals.
(b) The differential associated with y = sin x is

dy = cos x dx.
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sin(a + dx) = sina + (cos a)dx

To estimate sin (77/6 + 0.01), we set a = 77 /6 and dx = 0.01. Then
f(mr/6 + 0.01) = f(a + dx) = f(a) + dy

— anT w
= sin + <cos 6>(O'01)

- % + ?(0.01) ~ 05087

For comparison, the true value of sin (77/6 + 0.01) to 6 decimals is 0.508635. [ |

The method in part (b) of Example 7 is used by some calculator and computer algo-
rithms to give values of trigonometric functions. The algorithms store a large table of sine
and cosine values between 0 and 77 /4. Values between these stored values are computed
using differentials as in Example 7b. Values outside of [0, 77 /4 ] are computed from val-
ues in this interval using trigonometric identities.

Error in Differential Approximation

Let f(x) be differentiable at x = a and suppose that dx = Ax is an increment of x. We
have two ways to describe the change in f as x changes from a to a + Ax:

The true change: Af = f(a + Ax) — f(a)
The differential estimate: df = f'(a) Ax.

How well does df approximate Af?
We measure the approximation error by subtracting df from Af:

Approximation error = Af — df

= Af — f'(a)Ax
= fla + Ax) — f(a) — f'(@Ax
Af
B <f(a +A) - f@ (a)) A
Ax
Call this part €.
= e-Ax.

As Ax — 0, the difference quotient

fla + Ax) — f(a)
Ax

approaches f'(a) (remember the definition of f'(a)), so the quantity in parentheses
becomes a very small number (which is why we called it €). In fact, e >0 as Ax— 0.
When Ax is small, the approximation error € Ax is smaller still.

Af = f'(a)Ax + € Ax
—_— — —

true  estimated error
change  change

Although we do not know the exact size of the error, it is the product € « Ax of two small
quantities that both approach zero as Ax — 0. For many common functions, whenever Ax
is small, the error is still smaller.
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Changein y = f(x) near x = a

If y = f(x) is differentiable at x = a and x changes from a to a + Ax, the
change Ay in f is given by

Ay = f'(a) Ax + € Ax (D)

in which € = 0 as Ax— 0.

In Example 6 we found that

AA = 7(10.1)* — w(10)> = (102.01 — 100)7 = 27 + 0.0l7) m?
—
dA error

so the approximation error is AA — dA = €Ar = 0.0l7m and € = 0.0l7/Ar =
0.017 /0.1 = 0.17 m.

Proof of the Chain Rule

Equation (1) enables us to prove the Chain Rule correctly. Our goal is to show that if f(u)
is a differentiable function of u and u = g(x) is a differentiable function of x, then the
composite y = f(g(x)) is a differentiable function of x. Since a function is differentiable if
and only if it has a derivative at each point in its domain, we must show that whenever g is
differentiable at x, and f is differentiable at g(x), then the composite is differentiable at
Xo and the derivative of the composite satisfies the equation

dy
e = f'(g(xp) * &' (xp).

dx X=x

Let Ax be an increment in x and let Au and Ay be the corresponding increments in u
and y. Applying Equation (1) we have

Au = g'(xp))Ax + €, Ax = (g'(xy) + €))Ax,
where €; — 0 as Ax — 0. Similarly,
Ay = f'(up)Au + € Au = (f'(uy) + €)Au,

where €, — 0 as Au— 0. Notice also that Au — 0 as Ax — 0. Combining the equations
for Au and Ay gives

Ay = (f'(up) + €)(g'(xp) + €)Ax,

SO
Ay ! ! ! !
Ar Flupg'(xp) + €28'(xp) + f'(up)e; + €€,

Since €, and €, go to zero as Ax goes to zero, the last three terms on the right vanish in
the limit, leaving

dy _ . Ay _ ! ’ — ! ’
di|iey, — A Ay~ 08X = f1(800) * &'(Xo). u
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Sensitivity to Change

The equation df = f'(x) dx tells how sensitive the output of f is to a change in input at dif-
ferent values of x. The larger the value of f’ at x, the greater the effect of a given change dx.
As we move from a to a nearby point a + dx, we can describe the change in f in three ways:

True Estimated
Absolute change Af = f(a + dx) — f(a) df = f'(a)dx
Relative change % %
Percentage change % X 100 % X 100

EXAMPLE 8  You want to calculate the depth of a well from the equation s = 167> by
timing how long it takes a heavy stone you drop to splash into the water below. How sensi-
tive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation
ds = 32t dt
depends on how big ¢ is. If t = 2 sec, the change caused by dr = 0.1 is about
ds = 32(2)(0.1) = 6.4 ft.
Three seconds later at ¢+ = 5 sec, the change caused by the same dr is
ds = 32(5)(0.1) = 16 ft.

For a fixed error in the time measurement, the error in using ds to estimate the depth is
larger when it takes a longer time before the stone splashes into the water. That is, the esti-
mate is more sensitive to the effect of the error for larger values of z. |

EXAMPLE 9 Newton’s second law,

_d _dv _
F = dt(mv) =m - = ma,

is stated with the assumption that mass is constant, but we know this is not strictly true

because the mass of an object increases with velocity. In Einstein’s corrected formula,
mass has the value

my
1 — v/

where the “rest mass” m represents the mass of an object that is not moving and c is the
speed of light, which is about 300,000 km/sec. Use the approximation

~1+5x 2)
to estimate the increase Am in mass resulting from the added velocity v.

Solution When v is very small compared with ¢, v?/c? is close to zero and it is safe to
use the approximation

1 ~ 1(v? ] . N
1—71;2/& ~1+3 (c2> Eq. (2) with x = 2
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to obtain
m= i = {1+ 5(5)] - e ()
or
m = my + %mov2 (12) 3)
c
Equation (3) expresses the increase in mass that results from the added velocity v. |

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,
(1/2)myv? is the kinetic energy (KE) of the object, and if we rewrite Equation (3) in the
form

(m — my)c? = %movz,
we see that
(m — my)c® = ~myv* = lmov2 - %mo(O)2 = A(KE),
or

(Am)c* =~ A(KE).

So the change in kinetic energy A(KE) in going from velocity 0 to velocity v is approxi-
mately equal to (Am)c?, the change in mass times the square of the speed of light. Using
¢ = 3 X 103 m/sec, we see that a small change in mass can create a large change in
energy.

12. f(x) =

x =
pan—y a=13

In Exercises 1-5, find the linearization L(x) of f(x) at x = a.

L. fx)=x>—2x+3, a=2

13. f(x) = e¢*, a=-0.1
4. f(x) =sin'x, a=7/12

2. f) = Vx2+9, a=—4
1 15. Show that the linearization of f(x) = (1 + x)* at x = 0 is
. fw=x+5 a=1 Lix) = 1 + kx.
4. f(x) = \3/);, a=—8 16. Use the linear approximation (1 + X)F = 1+ kx to find an
5. f(x) = tanx, a=m approximation for the function f(x) for values of x near zero.
6. Common linear approximations at x = 0 Find the lineariza- a. fx) =1 — x5 b. f(x) = 2
tions of the following functions at x = 0. L=
a. sinx b. cos x c. tanx d. e e. In(l +x) e f&x) = 1 d f(r) = V2 + 22
- - - - - 1 + x
Linearization for Approximation 2
In Exercises 7-14, find a linearization at a suitably chosen integer near e. f(x) = (4 + 3x)!/3 f. f(x) = 3 (1 —3 i )
X

a at which the given function and its derivative are easy to evaluate.

7. fx) = x>+ 2x, a=0.1
8 fx)=x"1, a=09

9. fx) = 2> +3x — 3, a=-09

10. fx)=1+x, a=8.1
11. f(x) = Vx, a =85

17. Faster than a calculator Use the approximation (1 + x)* =
1 + kx to estimate the following.

a. (1.0002)% b. V1.009

18. Find the linearization of f(x) = Vx + 1 + sinxatx = 0. How
is it related to the individual linearizations of Vx + 1 and sin x
at x = 07
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Derivatives in Differential Form
In Exercises 19-38, find dy.

19. y =3 — 3Vx 20. y = xV1 — &2
2Vx
21. y = 22, y=—=Y+
YT+ R YT 30 + Vi
23.2y3/2+xy*x=0 24.xy2*4x3/2*y=0
25. y = sin (5Vx) 26. y = cos (x?)
27. y = 4tan (x*/3) 28. y=sec(x®> — 1)
29. y=3csc(1—2\/);) 30. y=2cot(%)
31. y = eV 32, y = xe*
+ 1
33. y=In(l + x?) 34. y=1In ("7)
! Y Vx—1
35. y = tan"!(¢") 36. y = cot”! (ﬁ) + cos! 2x

37. y =sec’ (e 38, y = gtn Vol
Approximation Error
In Exercises 39—44, each function f(x) changes value when x changes
from x, to xy + dx. Find
a. the change Af = f(xo + dx) — f(xp);
b. the value of the estimate df = f'(xy) dx; and

c. the approximation error |Af — df|.

y
! 1
LT Af = flxg + dx) — f(xg)
(x0, f(x0)) dfff'(xo) dx
I dx I
Tangent i i )
0 X0 Xo + dx
3. f(x) =x*+2x, xp=1, dx=0.1
40. f(x) =2x>+4x — 3, xo=—1, dx=0.1
41. fx)=x*—x, xo=1, dc=0.1
2. fx)=x* x=1, dx=0.1
43. fx) =x", x =05 dx=0.1

44, fx)=x*—2x+3, xx=2, de=0.1

Differential Estimates of Change
In Exercises 45-50, write a differential formula that estimates the
given change in volume or surface area.

45. The change in the volume V = (4/3)mrr3 of a sphere when the
radius changes from ry to 1y + dr

46. The change in the volume V = x* of a cube when the edge
lengths change from x, to x, + dx

47. The change in the surface area S = 6x> of a cube when the edge
lengths change from x, to xy + dx

48. The change in the lateral surface area S = 77\ r? 4+ h? of a right
circular cone when the radius changes from r, to , + dr and the
height does not change

49.

50.

The change in the volume V = 7r’h of a right circular cylinder
when the radius changes from ry to 7y + dr and the height does
not change

The change in the lateral surface area S = 27rrh of a right circu-
lar cylinder when the height changes from A to hy + dh and the
radius does not change

Applications

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

The radius of a circle is increased from 2.00 to 2.02 m.
a. Estimate the resulting change in area.
b. Express the estimate as a percentage of the circle’s original area.

The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s
diameter increase? The tree’s cross-sectional area?

Estimating volume Estimate the volume of material in a cylin-
drical shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

PN .
N 0.5 in.
6 in.$ -

e 30 in. 1

Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

The radius 7 of a circle is measured with an error of at most 2%.
What is the maximum corresponding percentage error in comput-
ing the circle’s

a. circumference? b. area?

The edge x of a cube is measured with an error of at most 0.5%.
What is the maximum corresponding percentage error in comput-
ing the cube’s

a. surface area? b. volume?

Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is V = #h?. The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of /1, expressed as a percentage of h.

Tolerance

a. About how accurately must the interior diameter of a
10-m-high cylindrical storage tank be measured to calculate
the tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

The diameter of a sphere is measured as 100 = 1cm and the
volume is calculated from this measurement. Estimate the per-
centage error in the volume calculation.

Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

Véu?

W =PV + 2




where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,
o (“delta”) is the weight density of the blood, v is the average
velocity of the exiting blood, and g is the acceleration of gravity.

When P, V, §, and v remain constant, W becomes a function
of g, and the equation takes the simplified form

W=a-+ iz, (a, b constant).

As a member of NASA’s medical team, you want to know how
sensitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg
on the moon, where g = 5.2 ft/ sec?, with the effect the same
change dg would have on Earth, where g = 32 ft/sec?. Use the
simplified equation above to find the ratio of dW,,,., t0 dWgyp,-

62. Drug concentration The concentration C in milligrams per
milliliter (mg/ml) of a certain drug in a person’s bloodstream ¢
hrs after a pill is swallowed is modeled by the approximation

@ £0.061
1+7

cH=1+

Estimate the change in concentration when ¢ changes from 20 to
30 min.

63. Unclogging arteries The formula V = kr*, discovered by the
physiologist Jean Poiseuille (1797-1869), allows us to predict how
much the radius of a partially clogged artery has to be expanded in
order to restore normal blood flow. The formula says that the vol-
ume V of blood flowing through the artery in a unit of time at a
fixed pressure is a constant k times the radius of the artery to the
fourth power. How will a 10% increase in r affect V?

64. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period 7 depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in
g. By keeping track of AT, we can estimate the variation in g
from the equation T = 27 (L/g)"/* that relates T, g, and L.

a. With L held constant and g as the independent variable, cal-
culate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where g = 980 cm/sec? to a new location. This increases the
period by dT = 0.001 sec. Find dg and estimate the value of
g at the new location.

65. Quadratic approximations
a. Let Q(x) = by + by(x — a) + b,(x — a)? be a quadratic
approximation to f(x) at x = a with the properties:
i) Q) = f(a)
ii) Q'(a) = f'(a)
iii) 0"(a) = f"(a).
Determine the coefficients b, b, and b,.

b. Find the quadratic approximation to f(x) = 1/(1 — x) at
x=0.
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c. Graph f(x) = 1/(1 — x) and its quadratic approximation at
x = 0. Then zoom in on the two graphs at the point (0, 1).
Comment on what you see.

d. Find the quadratic approximation to g(x) = 1/x at x = 1.
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to A(x) = V1 + x at
x = 0. Graph & and its quadratic approximation together.
Comment on what you see.

f. What are the linearizations of f, g, and 4 at the respective
points in parts (b), (d), and (e)?

66. The linearization is the best linear approximation Suppose
that y = f(x) is differentiable at x = a and that g(x) =
m(x — a) + c is a linear function in which m and ¢ are constants.
If the error E(x) = f(x) — g(x) were small enough near x = q,
we might think of using g as a linear approximation of f instead
of the linearization L(x) = f(a) + f'(a)(x — a). Show that if we
impose on g the conditions

1. E(a)=0 The approximation error is zero at x = a.
2 i E(x) 0 The error is negligible when compared
. lim = = /i P
g X T a with x — a.

then g(x) = f(a) + f'(a)(x — a). Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at
x = a and negligible in comparison with x — a.

The linearization, L(x): Some other linear
y=fla) + f(@)x —a)  approximation, g(x):

\ y=mkx—a)+c

(a fl@)

67. The linearization of 2*

a. Find the linearization of f(x) = 2* at x = 0. Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
—3=x=3and-1=x=1

68. The linearization of logzx

a. Find the linearization of f(x) = logzx at x = 3. Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
O=x=8and2 =x =4

COMPUTER EXPLORATIONS

In Exercises 69-74, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified
interval /. Perform the following steps:

a. Plot the function f over /.
b. Find the linearization L of the function at the point a.

c. Plot f and L together on a single graph.
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d. Plot the absolute error | f(x) — L(x)| over I and find its max-
imum value.
e. From your graph in part (d), estimate as large a 6 > 0 as you
can, satisfying
|x —al <& = lf(x) — Lix)| < e
for e = 0.5, 0.1, and 0.01. Then check graphically to see if
your §-estimate holds true.

fx) =x3+x* -2, [-1,2], a=1

70.

71
72
73

74

_x—1 _3 _1
&= { 4’1}’ 472
cf@) =3P —-2), [-2,3], a=2
. f) = Vx —sinx, [0,27], a=2
Cf = x2% [0,2], a=1
. fx) = Vasin'x, [0,1], a:%

Chapter m Questions to Guide Your Review

1.

What is the derivative of a function f? How is its domain related
to the domain of f? Give examples.

. What role does the derivative play in defining slopes, tangents,

and rates of change?

. How can you sometimes graph the derivative of a function when

all you have is a table of the function’s values?

. What does it mean for a function to be differentiable on an open

interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

10.

11.

12.

13.

14.

15.

16.
17.

. Describe geometrically when a function typically does not have a

derivative at a point.

. How is a function’s differentiability at a point related to its conti-

nuity there, if at all?

. What rules do you know for calculating derivatives? Give some

examples.

. Explain how the three formulas

i ny — n—1 i . — dl
a. dx (") = nx b. dx (cu) Cix

d - N du, N du, N N du,
e LYttty = LT

dx( ! 2 2 dx dx dx

enable us to differentiate any polynomial.
What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?
What is a second derivative? A third derivative? How many
derivatives do the functions you know have? Give examples.
What is the derivative of the exponential function ¢*? How does
the domain of the derivative compare with the domain of the
function?
What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.
How do derivatives arise in the study of motion? What can you
learn about an object’s motion along a line by examining the
derivatives of the object’s position function? Give examples.
How can derivatives arise in economics?
Give examples of still other applications of derivatives.
What do the limits lim,— ((sin /) /) and lim;,_o((cos h — 1)/h)
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18

19.

20.

21.

22,

23.

24,

25.
26.
27.

28.

29.

30.
31.

32.

33.

. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

At what points are the six basic trigonometric functions continu-
ous? How do you know?

What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

If u is a differentiable function of x, how do you find (d/dx)(u") if
n is an integer? If 7 is a real number? Give examples.

What is implicit differentiation? When do you need it? Give
examples.

What is the derivative of the natural logarithm function In x? How
does the domain of the derivative compare with the domain of the
function?

What is the derivative of the exponential function a*, @ > 0 and
a # 1?7 What is the geometric significance of the limit of
(@" — 1)/h as h— 0? What is the limit when a is the number e?

What is the derivative of log,x? Are there any restrictions on a?
What is logarithmic differentiation? Give an example.

How can you write any real power of x as a power of e? Are there
any restrictions on x? How does this lead to the Power Rule for
differentiating arbitrary real powers?

What is one way of expressing the special number e as a limit?
What is an approximate numerical value of e correct to 7 decimal
places?

What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

How do related rates problems arise? Give examples.

Outline a strategy for solving related rates problems. Illustrate
with an example.

What is the linearization L (x) of a function f(x) at a point x = a?
What is required of f at a for the linearization to exist? How are
linearizations used? Give examples.

If x moves from a to a nearby value a + dx, how do you estimate
the corresponding change in the value of a differentiable function
f(x)? How do you estimate the relative change? The percentage
change? Give an example.



Chapterm Practice Exercises

Derivatives of Functions
Find the derivatives of the functions in Exercises 1-64.

1. y=x>— 01252+ 025x 2. y=3—0.7x + 0.3x7
— 3 _ 32 2 -7 _
3.y=x 3(x* + 7) 4. y o+ V7 .
5.y =(x+ DX+ 2 6. y=02x— 54— x"
2\ 2
7. 9= (0> + sech + 1) 8.y:(—1—CSC9—0—)
2 4
Vi 1
9. 5= 10. s =
s 1 + Vit $ Vi— 1
11. y = 2tan’x — sec’x 12. v = 1 2
Y "7 SinZx sinx
13. 5 = cos*(1 — 21 14. s = cot® (%)
15. s = (sect + tan )’ 16. s = csc>(1 — t + 31%)
17. r = \V20sin6 18. r = 20V cos 6
19. r = sin V20 20. r=sin(0+ \/0+1)
2Ly = %xz csc% 22. y = 2Vxsin Vix
23. y = x'2sec(2x) 24. y = Vxesce(x + 1)
25. y = Scotx? 26. y = x’cot 5x
27. y = x*sin®(2x%) 28. y = xZsin?(x°)
4t \7? -1
29. s =\~ 30, s=———
* (t + 1) ST 515 — 1)
2 2
31.y=(\/;) 32.y=(%)
1+x 2V + 1
2
3.y =[S M.y = 4Va+ Vi
X
_ sin 6 2 (1 +sind 2
3. r_(COSH—l) 36. r—(] —cosG>
37. y=Q2x + DV2x + 1 38. y =20(3x — 44 (3x — 4)715
3
9. y=——""- 40. v = (3 + cos® 3x)"1/3
J (5x% + sin 2x)3/2 y= I %)
41. y = 107 42. y = V2V
:l 4,\',L4x — 1 2,2/x
43. vy 1€ 16¢ 44. y = x%e
45. y = In (sin?6) 46. y = In (sec’)
47. y = log, (x*/2) 48. y = logs(3x — 7)
49. y = 8~ 50. y = 9
51. y = 5x%6 52. y= \V2x V2
53. y = (x + 2)**? 54. y = 2(Inx)¥?
55. y=sin'"VI -, 0<u<l

. 1
56. y = sm_l(f L v>1
Vo
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1

57. y = Incos " x
58. y=zcos'z — V1 -7
59. y=ttan" 't — llnt

2

60. y = (1 + £*)cot™'2¢

6l. y=zseclz — V2 -1, z>1
62. y =2Vx — lsec 'V

63. y =cscl(sec), 0<6<m/2

64. y = (1 + x2)etan'x

Implicit Differentiation
In Exercises 65-78, find dy/dx by implicit differentiation.

65. xy +2x + 3y =1 66. x>+ xy +y>? —5x=2
67. x3 + dxy — 3y*? = 2 68. 5x¥5 + 10y°5 = 15
69. Vxy =1 70. x*y? =1
2 _ X »_ 1L+ x
71. y e 72. y —
73. &Y =1 74. y2 =2\
75. In(x/y) = 1 76. xsin'y =1 + x?
77. yet'x =2 78. X = V2
In Exercises 79 and 80, find dp/dq.
79. p’+ 4pg — 3q° = 80. ¢ = (5p° + 2p) 2

In Exercises 81 and 82, find dr/ds.
81. rcos2s + sin’>s = 7 82. 2rs —r—s+s>=-3
83. Find d?y/dx* by implicit differentiation:

a ¥ +y' =1
84. a. By differentiating x*> — y?> = 1 implicitly, show that

dy/dx = x/y.
b. Then show that d?y/dx> = —1/y>.
Numerical Values of Derivatives

85. Suppose that functions f(x) and g(x) and their first derivatives
have the following values at x = 0 and x = 1.

x fx) glx) f'x) g'(x)

0 1 1 -3 1/2
1 3 5 1/2 —4

Find the first derivatives of the following combinations at the
given value of x.

a. 6f(x) —gx), x=1
fx)

“ g+ 1

e g(fx), x=0

g fx+gl), x=0

b. f(0g*x), x=0
x =1 d. f(gx), x=0

f. (x + f@))2 x=1
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86. Suppose that the function f(x) and its first derivative have the fol-
lowing valuesat x = 0 and x = 1.

x Fx) fx)

0 9 -2
1 -3 1/5

Find the first derivatives of the following combinations at the
given value of x.

a. Vxf(x), x=1 b. Vf(x), x=0
e f(Vx), x=1 d. f(1 —5tanx), x=0
. 21(% x=0 £. 10 sin (%) ), x=1

87. Find the value of dy/dt att = 0if y = 3sin2x and x = > + .

88. Find the value of ds/du at u =2 if s =+ 5t and t=
w* + 2u)'3,

89. Find the value of dw/ds at s =0 if w =sin(e"”) and
r = 3sin (s + 7/6).

90. Find the value of dr/dt at t=0 if r= 6>+ 7)'"° and
0%t +0=1.

91. If y3 + y = 2 cos x, find the value of d?y/dx? at the point (0, 1).

92. If x!3 + y!3 = 4, find d?y/dx? at the point (8, 8).

Applying the Derivative Definition

In Exercises 93 and 94, find the derivative using the definition.

93. fn) = 2:1 1

94, g(x) =22 + 1
95. a. Graph the function

f()—{ X2 —1=x<0
* —x? 0=x=1

b. Is f continuous at x = 0?
c. Is f differentiable at x = 0?
Give reasons for your answers.
96. a. Graph the function
X, -1 =x<0
fw = {tanx, 0=x=m/4
b. Is f continuous at x = 0?
c. Is f differentiable at x = 0?
Give reasons for your answers.
97. a. Graph the function
X, 0=x
fo = {

2—x, 1<x=2

I\

b. Is f continuous at x = 1?
c. Is f differentiable at x = 1?

Give reasons for your answers.

98. For what value or values of the constant m, if any, is
00 {sian, x=0
¥) =
mx, x>0
a. continuous at x = 0?
b. differentiable at x = 0?

Give reasons for your answers.

Slopes, Tangents, and Normals
99. Tangents with specified slope Are there any points on the
curve y = (x/2) + 1/(2x — 4) where the slope is —3/2? If so,
find them.
100. Tangents with specified slope Are there any points on the
curve y = x — e * where the slope is 2? If so, find them.

101. Horizontal tangents Find the points on the curve y =
2x3 — 3x* — 12x + 20 where the tangent is parallel to the
X-axis.

102. Tangent intercepts Find the x- and y-intercepts of the line
that is tangent to the curve y = x> at the point (—2, —8).

103. Tangents perpendicular or parallel to lines Find the points
on the curve y = 2x3 — 3x> — 12x + 20 where the tangent is
a. perpendicular to the line y = 1 — (x/24).
b. parallel to the line y = V2 - 12x

104. Intersecting tangents Show that the tangents to the curve
y = (wsinx)/x at x = 7 and x = —7 intersect at right angles.

105. Normals parallel to a line Find the points on the curve
y = tanx, —7/2 < x < a7/2, where the normal is parallel to
the line y = —x/2. Sketch the curve and normals together,
labeling each with its equation.

106. Tangent and normal lines Find equations for the tangent and
normal to the curve y = 1 + cos x at the point (7 /2, 1). Sketch
the curve, tangent, and normal together, labeling each with its
equation.

107. Tangent parabola The parabola y = x*> + C is to be tangent
to the line y = x. Find C.

108. Slope of tangent Show that the tangent to the curve y = x* at
any point (a, a®) meets the curve again at a point where the slope
is four times the slope at (a, a*).

109. Tangent curve For what value of ¢ is the curve y = ¢/(x + 1)
tangent to the line through the points (0, 3) and (5, —2)?

110. Normal to a circle Show that the normal line at any point of

the circle x> + y?> = a? passes through the origin.

In Exercises 111-116, find equations for the lines that are tangent and
normal to the curve at the given point.

111 x>+ 2y> =9, (1,2)

112. &5+ y> =2, (0,1)

113. xy + 2x = 5y =2, (3,2)

114. o — x> =2x + 4, (6,2)

115. x + Vay = 6, (4,1)

116. x32 + 2932 =17, (1,4)

117. Find the slope of the curve x*y* + y?> = x + y at the points
(1,1) and (1, —1).



118. The graph shown suggests that the curve y = sin (x — sin x)
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

y = sin (x — sin x)

=2 —ar 0 T 21

Analyzing Graphs

Each of the figures in Exercises 119 and 120 shows two graphs, the
graph of a function y = f(x) together with the graph of its derivative
f'(x). Which graph is which? How do you know?

119. 120.

®

121. Use the following information to graph the function y = f(x)
for—1 =x=6.

i) The graph of f is made of line segments joined end to end.
ii) The graph starts at the point (—1, 2).

iii) The derivative of f, where defined, agrees with the step
function shown here.

-1
-1

o—<lr72

122. Repeat Exercise 121, supposing that the graph starts at (—1, 0)
instead of (—1, 2).

Exercises 123 and 124 are about the accompanying graphs. The
graphs in part (a) show the numbers of rabbits and foxes in a small
arctic population. They are plotted as functions of time for 200 days.
The number of rabbits increases at first, as the rabbits reproduce. But
the foxes prey on rabbits and, as the number of foxes increases, the
rabbit population levels off and then drops. Part (b) shows the graph
of the derivative of the rabbit population, made by plotting slopes.
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123. a. What is the value of the derivative of the rabbit population
when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population when its derivative
is largest? Smallest (negative value)?

124. In what units should the slopes of the rabbit and fox population
curves be measured?

Number
of rabbits
2000
Initial no. rabbits = 1000
\ Initial no. foxes = 40
(20, 1700)
1000
Number
of foxes
0 50 100 150 200
Time (days)
(a)
+100
50

=N
% \v/

—100

0 50 100 150 200
Time (days)
Derivative of the rabbit population

(b)

Source: NCPMF “Differentiation” by W.U. Walton et al., Project
CALC. Reprinted by permission of Educational Development
Center, Inc.

Trigonometric Limits
Find the limits in Exercises 125-132.

125. lim —S0X 126. lim X —_an7x
x—0 2)62 — X x—0 2x
_ in
127. lim 307 128, fim SN 6)
—0 tan 2r —0 [7]
2
129. 4tan- 6 2-i- tanf + 1
60— (m/2)" tan-0 + 5
— 2
130. 1 1 2cot* 6

im
0—0* 5cot?f — T cotf — 8

X sin x 1 —cosé

131. lim 132. lim
0—0 62

x—02 — 2cosx

Show how to extend the functions in Exercises 133 and 134 to be con-
tinuous at the origin.

tan (tan x)
tan x

. B 134 _ tan (tan x)
33. g() = 3O = Gnsinn
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Logarithmic Differentiation
In Exercises 135-140, use logarithmic differentiation to find the
derivative of y with respect to the appropriate variable.

22 + 1) \/m
135. y = ———— 136. v = lo/22 T =
YT Veos 2x Y= N2 -4
G+ D= DY
137'y*<(z—2)(z+3))’ t=>2
2u2t
138, y = — 4=
RV
139. y = (sin 0)\/‘; 140. y = (In x)/(nv

Related Rates

141.

142.

143.

144.

145.

146.

Right circular cylinder The total surface area S of a right cir-
cular cylinder is related to the base radius r and height % by the
equation § = 27r? + 2mrrh.

a. How is dS/dt related to dr/dt if h is constant?
b. How is dS/dt related to dh/dr if r is constant?

c. How is dS/dt related to dr/dt and dh/dt if neither r nor h is
constant?
d. How is dr/dt related to dh/dt if S is constant?

Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height & by the equa-
tion S = wr\Vr? + 12

a. How is dS/drt related to dr/dt if h is constant?

b. How is dS/dt related to dh/dt if r is constant?

c. How is dS/dt related to dr/dt and dh/dt if neither r nor h is
constant?

Circle’s changing area The radius of a circle is changing at
the rate of —2 /7 m/sec. At what rate is the circle’s area chang-
ing when r = 10 m?

Cube’s changing edges The volume of a cube is increasing at
the rate of 1200 cm?/min at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

Resistors connected in parallel If two resistors of R, and R,
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If R, is decreasing at the rate of 1 ohm /sec and R, is increasing
at the rate of 0.5 ohm/sec, at what rate is R changing when
R, = 75 ohms and R, = 50 ohms?

Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation Z = VR?> + X2 If R is increasing at
3 ohms /sec and X is decreasing at 2 ohms / sec, at what rate is Z
changing when R = 10 ohms and X = 20 ohms?

147.

148.

149.

150.

151.

Speed of moving particle The coordinates of a particle moving
in the metric xy-plane are differentiable functions of time ¢ with
dx/dr = 10 m/sec and dy/dt = 5 m/sec. How fast is the particle
moving away from the origin as it passes through the point (3, —4)?
Motion of a particle A particle moves along the curve y = x%/?2
in the first quadrant in such a way that its distance from the origin
increases at the rate of 11 units per second. Find dx/dr when x = 3.
Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 5 ft3/min.

a. What is the relation between the variables / and r in the figure?

b. How fast is the water level dropping when & = 6 ft?

Exit rate: 5 ft/min

Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft/sec
(a touch over 4 mph), use the equation s = r6 to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, df/dr = —0.6 rad/sec.

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad/sec?

1 km



152.

Points moving on coordinate axes Points A and B move
along the x- and y-axes, respectively, in such a way that the dis-
tance r (meters) along the perpendicular from the origin to the
line AB remains constant. How fast is OA changing, and is it
increasing, or decreasing, when OB = 2r and B is moving
toward O at the rate of 0.3r m/sec?

Linearization

153.

154.

155.
156.

Find the linearizations of
a. tanxatx = —7m/4 b. secxatx = —m /4.

Graph the curves and linearizations together.

We can obtain a useful linear approximation of the function
f(x) = 1/(1 + tan x) atx = 0 by combining the approximations
1
l+x~1 X and tanx =~ x
to get
1
1+ tanx I

Show that this result is the standard linear approximation of
1/(1 + tanx) at x = 0.

Find the linearization of f(x) = V1 + x + sinx — 0.5atx = 0.

Find the linearization of f(x) = 2/(1 —x) + V1 + x — 3.1
atx = 0.

Differential Estimates of Change

157.

Surface area of a cone Write a formula that estimates the
change that occurs in the lateral surface area of a right circular
cone when the height changes from 5 to iy + dh and the radius
does not change.

V= %ﬂ'rzh

S=mar\Vi2+ h?

(Lateral surface area)

158.

159.

160.
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Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with an
error of no more than 2%?

b. Suppose that the edge is measured with the accuracy required
in part (a). About how accurately can the cube’s volume be
calculated from the edge measurement? To find out, estimate
the percentage error in the volume calculation that might
result from using the edge measurement.

Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is used to calculate the radius. The radius is
then used to calculate the surface area and volume of the sphere.
Estimate the percentage errors in the calculated values of

a. the radius.
b. the surface area.
c. the volume.

Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and
measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value a = 15 and estimate the possible error in the result.

Chapterm Additional and Advanced Exercises

1.

An equation like sin?f + cos’6 = 1 is called an identity
because it holds for all values of 6. An equation like sin # = 0.5
is not an identity because it holds only for selected values of 6,
not all. If you differentiate both sides of a trigonometric identity
in 6 with respect to 6, the resulting new equation will also be an
identity.

Differentiate the following to show that the resulting equa-
tions hold for all 6.

2.

a. sin 20 = 2sin fcos 6

b. cos 26 = cos’f — sin’0

If the identity sin (x + a) = sinx cos a + cos x sin a is differen-
tiated with respect to x, is the resulting equation also an identity?
Does this principle apply to the equation x> — 2x — 8 = 0?
Explain.
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. a. Find values for the constants a, b, and ¢ that will make
f(x) = cosx and g(x) =a + bx + cx?
satisfy the conditions

f(0) = g(0), £'(0) = g'(0), and f"(0) = g"(0).
b. Find values for b and ¢ that will make

f(x) =sin(x + a) and g(x) = bsinx + ccosx

satisfy the conditions

f(0) = g(0) and f'(0) = g'(0).

c. For the determined values of a, b, and ¢, what happens for
the third and fourth derivatives of f and g in each of parts (a)
and (b)?

. Solutions to differential equations

a. Show that y = sinx,y = cosx, and y = a cos x + b sinx
(a and b constants) all satisfy the equation

y' +y=0.

b. How would you modify the functions in part (a) to satisfy the
equation

y' + 4y = 0?
Generalize this result.

. An osculating circle Find the values of 4, k, and a that make
the circle (x — h)> + (y — k)> = a®> tangent to the parabola
y = x>+ 1 at the point (1, 2) and that also make the second
derivatives d?y/dx* have the same value on both curves there.
Circles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged (p
dollars) by the law p = [3 — (x/40)]2. Write an expression for
the total revenue r(x) per trip received by the bus company. What
number of people per trip will make the marginal revenue dr/dx
equal to zero? What is the corresponding fare? (This fare is the
one that maximizes the revenue.)

7. Industrial production

a. Economists often use the expression “rate of growth” in rela-
tive rather than absolute terms. For example, let u = () be
the number of people in the labor force at time 7 in a given
industry. (We treat this function as though it were differentia-
ble even though it is an integer-valued step function.)

Let v = g(¢) be the average production per person in
the labor force at time 7. The total production is then y = uv.
If the labor force is growing at the rate of 4% per year
(du/dt = 0.04u) and the production per worker is growing at
the rate of 5% per year (dv/dt = 0.05v), find the rate of
growth of the total production, y.

b. Suppose that the labor force in part (a) is decreasing at the
rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

10.

11.

12.

13.

. Designing a gondola The designer of a 30-ft-diameter spheri-

cal hot air balloon wants to suspend the gondola 8 ft below the
bottom of the balloon with cables tangent to the surface of the
balloon, as shown. Two of the cables are shown running from the
top edges of the gondola to their points of tangency, (—12,—9)
and (12, —9). How wide should the gondola be?

y
x? +y? =225
> X
0
15 ft
(=12, -9) 12, -9)
Suspension
cables L
Gondola
—| | Width
NOT TO SCALE

. Pisa by parachute On August 5, 1988, Mike McCarthy of

London jumped from the top of the Tower of Pisa. He then
opened his parachute in what he said was a world record low-
level parachute jump of 179 ft. Make a rough sketch to show the
shape of the graph of his speed during the jump. (Source: Boston
Globe, Aug. 6, 1988.)

Motion of a particle The position at time 7 = 0 of a particle
moving along a coordinate line is

s = 10cos(t + m/4).

a. What is the particle’s starting position (t = 0)?

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In ¢ sec after
firing, the paper clip is s = 64t — 16¢> ft above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of s = 64t — 2.67> ft in 7 sec. About how long
will it take the paper clip to reach its maximum height, and
how high will it go?

Velocities of two particles At time 7 sec, the positions of two

particles on a coordinate line are s; = 33 — 121> + 18t + 5m

and s, = —3 + 97> — 12t+m. When do the particles have the
same velocities?

Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity v and position x satisfy the equation

1 1
S = u?) = Jk(? = ),



14.

15.

16.

17.

18.

19.

20.

21.

22,

where k, vy, and x, are constants. Show that whenever v # 0,
dv
m—- = —kx.
dt
Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of ¢, x = At> + Bt + C, then the average
velocity over any time interval [, 1, ] is equal to the instan-
taneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

Find all values of the constants m and b for which the function

_ Jsinx, x <
Y mx+b, x=m
is
a. continuous at x = 7.
b. differentiable at x = .
Does the function
1 — cosx
T , x#0
f) =
0, x=0

have a derivative at x = 0? Explain.
a. For what values of a and b will
ax, x<?2
f(x):{axz—bx+3, x=2
be differentiable for all values of x?
b. Discuss the geometry of the resulting graph of f.
a. For what values of a and b will

) {ax+b,
) =
& ax® + x + 2b,

x=-1
x> -1
be differentiable for all values of x?
b. Discuss the geometry of the resulting graph of g.
Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.
Even differentiable functions Is there anything special about

the derivative of an even differentiable function of x? Give rea-
sons for your answer.

Suppose that the functions f and g are defined throughout an
open interval containing the point x, that f is differentiable at x;,
that f(xo) = 0, and that g is continuous at x,. Show that the prod-
uct fg is differentiable at x,. This process shows, for example,
that although |x| is not differentiable at x = 0, the product x ||
is differentiable at x = 0.

(Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at x = 0.

b. x2/3sinx e Vx(l — cosx)
x%sin (1/x), x#0

0, x=0

a. |x|sinx

d. h(x) = {

23.

24.

25.

26.

217.
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Is the derivative of

-
hex) = {x sin (1/x), x#0
0, x=20

continuous at x = 0? How about the derivative of k(x) = xh(x)?
Give reasons for your answers.

Suppose that a function f satisfies the following conditions for all
real values of x and y:

i) flx+y = f)-fO.

i) f(x) = 1 + xg(x), where lim,_,,g(x) = 1.

Show that the derivative f'(x) exists at every value of x and that

') = f).

The generalized product rule Use mathematical induction to

prove that if y = wuju,- - - u, is a finite product of differentiable

functions, then y is differentiable on their common domain and
dy du du, du,
a: Euz...un + ula...un_i_... +u1u2"'un—la-

Leibniz’s rule for higher-order derivatives of products Leibniz’s

rule for higher-order derivatives of products of differentiable

functions says that

d*(w) Py du dv dv
a. e —Ev+2d—a+ F
d*uwv) Py d*u dv du d*v d*v
b. e _ﬁv+3ﬁa+3aﬁ+”ﬁ'
e ) _dw o dludy
todx" dx" dx" 1 d.
n = 1=k + 1) @ dby
" il e ek
d"v
+ + de"'

The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by mathe-
matical induction, using

m m _ m! m!
(k) * (k + 1) “Hm—B!  kt Dim—k— D

The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula
T? = 47%L/g, where T is measured in seconds, g = 32.2 ft/sec?,
and L, the length of the pendulum, is measured in feet. Find
approximately

a. the length of a clock pendulum whose period is 7 = 1 sec.

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).
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28. The melting ice cube Assume that an ice cube retains its cubi-

cal shape as it melts. If we call its edge length s, its volume is
V = s* and its surface area is 6s>. We assume that V and s are
differentiable functions of time 7. We assume also that the cube’s
volume decreases at a rate that is proportional to its surface area.
(This latter assumption seems reasonable enough when we think
that the melting takes place at the surface: Changing the amount

of surface changes the amount of ice exposed to melt.) In mathe-

The minus sign indicates that the volume is decreasing. We
assume that the proportionality factor k is constant. (It probably
depends on many things, such as the relative humidity of the sur-
rounding air, the air temperature, and the incidence or absence of
sunlight, to name only a few.) Assume a particular set of condi-
tions in which the cube lost 1/4 of its volume during the first
hour, and that the volume is V;, when r = 0. How long will it take
the ice cube to melt?

matical terms,

A
5 = k6. k>0

Chapterm Technology Application Projects

Mathematica/Maple Modules:

Convergence of Secant Slopes to the Derivative Function

You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small.
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the
derivative function.

Derivatives, Slopes, Tangent Lines, and Making Movies

Parts I-II1. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the
function and selected tangents on the same graph.

Part IV (Plotting Many Tangents)

Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Motion Along a Straight Line: Position — Velocity — Acceleration
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text
can be animated.



Applications of
Derivatives

OVERVIEW One of the most important applications of the derivative is its use as a tool for
finding the optimal (best) solutions to problems. Optimization problems abound in math-
ematics, physical science and engineering, business and economics, and biology and
medicine. For example, what are the height and diameter of the cylinder of largest volume
that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-
lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-
duction costs and sales revenue, how many items should a manufacturer produce to maxi-
mize profit? How much does the trachea (windpipe) contract to expel air at the maximum
speed during a cough? What is the branching angle at which blood vessels minimize the
energy loss due to friction as blood flows through the branches?

In this chapter we use derivatives to find extreme values of functions, to determine
and analyze the shapes of graphs, and to solve equations numerically. We also introduce
the idea of recovering a function from its derivative. The key to many of these applications
is the Mean Value Theorem, which paves the way to integral calculus.

4. 1 Extreme Values of Functions

y =sinx
y =cosx

o1

_1_

FIGURE 4.1 Absolute extrema

for the sine and cosine functions on
[—/2, 7 /2]. These values can depend
on the domain of a function.

This section shows how to locate and identify extreme (maximum or minimum) values of
a function from its derivative. Once we can do this, we can solve a variety of optimization
problems (see Section 4.6). The domains of the functions we consider are intervals or
unions of separate intervals.

DEFINITIONS Let f be a function with domain D. Then f has an absolute
maximum value on D at a point c if

fx) = f(o) for all x in D
and an absolute minimum value on D at ¢ if

fx) = f(e) for all x in D.

Maximum and minimum values are called extreme values of the function f. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval [—/2, /2] the function f(x) = cos x takes on
an absolute maximum value of 1 (once) and an absolute minimum value of O (twice). On
the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of —1 (Figure 4.1).

Functions with the same defining rule or formula can have different extrema (maximum
or minimum values), depending on the domain. We see this in the following example.
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EXAMPLE 1 The absolute extrema of the following functions on their domains can
be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the
domains vary. Notice that a function might not have a maximum or minimum if the
domain is unbounded or fails to contain an endpoint.

Function rule Domain D Absolute extrema on D

(a) y =x? (—00, 00) No absolute maximum

Absolute minimum of Q at x = 0

(b) y=x2 [0,2] Absolute maximum of 4 at x = 2
Absolute minimum of 0 at x = 0
() y = x? 0,2] Absolute maximum of 4 at x = 2
No absolute minimum
d) y=x? 0,2) No absolute extrema
|
y=x> 'y y=x2y y=x* .y y=x2
D = (—%, %) D =10, 2] D = (0,2] D =(0,2)
2 2 2 " 7 2
(a) abs min only (b) abs max and min (c) abs max only (d) no max or min
FIGURE 4.2 Graphs for Example 1.
HISTORICAL BIOGRAPHY Some of the functions in Example 1 did not have a maximum or a minimum value.
Daniel B I The following theorem asserts that a function which is continuous over (or on) a finite
aniel bernoulll

closed interval [a, b] has an absolute maximum and an absolute minimum value on the

(1700-1789) ‘ X
interval. We look for these extreme values when we graph a function.

THEOREM 1—The Extreme Value Theorem If f is continuous on a closed
interval [a, b ], then f attains both an absolute maximum value M and an abso-
lute minimum value m in [a, b ]. That is, there are numbers x; and x, in [a, b ]
with f(x;) = m, f(x,) = M, and m = f(x) = M for every other xin [a, b].

The proof of the Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a, b ].
As we observed for the function y = cosux, it is possible that an absolute minimum (or
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem



No largest value
AN

y=x
0=x<1

P
AN P

Smallest value

S

FIGURE 4.4 Even a single point of dis-
continuity can keep a function from having
either a maximum or minimum value on a
closed interval. The function

_ {xv
Y=o,

is continuous at every point of [0, 1]

0=x<1
x=1

except x = 1, yet its graph over [0, 1 ]
does not have a highest point.
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l y =0

M

I

1 Lm
| b a b
I Maximum and minimum
at endpoints

X

(xy, m)
Maximum and minimum
at interior points

Minimum at interior point,
maximum at endpoint

Maximum at interior point,
minimum at endpoint

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].

need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. The exponential function y = e* over (—00, 00)
shows that neither extreme value need exist on an infinite interval. Figure 4.4 shows that
the continuity requirement cannot be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its
domain [a, b]. The function’s absolute minimum occurs at a even though at e the func-
tion’s value is smaller than at any other point nearby. The curve rises to the left and falls to
the right around ¢, making f(c) a maximum locally. The function attains its absolute
maximum at d. We now define what we mean by local extrema.

DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(c) for all x € D lying in some open interval containing c.

A function f has a local minimum value at a point ¢ within its domain D if
f(x) = f(c) for all x € D lying in some open interval containing c.

If the domain of f is the closed interval [ a, b ], then f has a local maximum at the endpoint
x = a, if f(x) = f(a) for all x in some half-open interval [a, a + 8), 8 > 0. Likewise, f
has a local maximum at an interior point x = c if f(x) = f(c) for all x in some open inter-
val (¢ — 8, ¢ + d),6 > 0, and a local maximum at the endpoint x = b if f(x) = f(b) for
all x in some half-open interval (b — 8, b], 8 > 0. The inequalities are reversed for local
minimum values. In Figure 4.5, the function f has local maxima at ¢ and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can
have infinitely many local extrema, even over a finite interval. One example is the function
f(x) = sin (1/x) on the interval (0, 1 ]. (We graphed this function in Figure 2.40.)
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Local maximum value

1
Secant slopes = 0
(never positive)

[

Secant slopes = 0
(never negative)

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ \
\ \ \
\ \ \
| : |
X c X
FIGURE 4.6 A curve with a local
maximum value. The slope at ¢, simultane-

ously the limit of nonpositive numbers and
nonnegative numbers, is zero.
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Absolute maximum
No greater value of fanywhere.

Local maximum Also a local maximum.

No greater value of

Local minimum
No smaller value

[
! | of f nearby.
Absolute minimum } }
No smaller value of ! Local minimum !
f anywhere. Also a | [ I No smaller value of |
local minimum. } } }fnearby. } }
! ! ! ! ! X
a c e d b

FIGURE 4.5 How to identify types of maxima and minima for a function with domain
a=x=b.

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If
f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f’ is defined at ¢, then

f'(c) = 0.

Proof To prove that f'(c) is zero at a local extremum, we show first that f'(c¢) cannot
be positive and second that f'(c) cannot be negative. The only number that is neither posi-
tive nor negative is zero, so that is what f'(c) must be.

To begin, suppose that f has a local maximum value at x = ¢ (Figure 4.6) so that
f(x) — f(c) = 0 for all values of x near enough to c. Since c is an interior point of f’s
domain, f'(c) is defined by the two-sided limit

f&) — flo)

X —C

lim

x—c

This means that the right-hand and left-hand limits both exist at x = ¢ and equal f'(c).
When we examine these limits separately, we find that

X) — C
f’(C) = lim+% =0. Because (x — ¢) > 0 and f(x) = f(c) (1)
Similarly,
f,(C) = hm,w = 0. Because (x — ¢) < 0 and f(x) = f(c) 2)

Together, Equations (1) and (2) imply f'(c) = 0.

This proves the theorem for local maximum values. To prove it for local minimum
values, we simply use f(x) = f(c), which reverses the inequalities in Equations (1)
and (2). [ |



(b)

FIGURE 4.7 Critical points without
extreme values. (a) y’ = 3x%isOat x = 0,
but y = x3 has no extremum there.

(b) y' = (1/3)x727 is undefined at x = 0,
but y = x'/ has no extremum there.
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Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. If we recall that
all the domains we consider are intervals or unions of separate intervals, the only places
where a function f can possibly have an extreme value (local or global) are

1. interior points where f' = 0, At x = ¢ and x = ¢ in Fig. 4.5
2. interior points where f' is undefined, At x = d in Fig. 4.5
3. endpoints of the domain of f. Atx = aand x = b in Fig. 4.5

The following definition helps us to summarize these results.

DEFINITION An interior point of the domain of a function f where f’ is zero
or undefined is a critical point of f.

Thus the only domain points where a function can assume extreme values are critical
points and endpoints. However, be careful not to misinterpret what is being said here. A
function may have a critical point at x = ¢ without having a local extreme value there. For
instance, both of the functions y = x> and y = x!'73 have critical points at the origin, but
neither function has a local extreme value at the origin. Instead, each function has a point
of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.
Most problems that ask for extreme values call for finding the absolute extrema of a
continuous function on a closed and finite interval. Theorem 1 assures us that such values
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often
we can simply list these points and calculate the corresponding function values to find
what the largest and smallest values are, and where they are located. Of course, if the
interval is not closed or not finite (such as a < x < b or a < x < 00), we have seen that
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

How to Find the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Evaluate f at all critical points and endpoints.

2. Take the largest and smallest of these values.

EXAMPLE 2 Find the absolute maximum and minimum values of f(x) = x°

[—2,1].

on

Solution The function is differentiable over its entire domain, so the only critical point
is where f'(x) = 2x = 0, namely x = 0. We need to check the function’s values at x = 0
and at the endpoints x = —2 and x = 1:

Critical point value: fO)=0

Endpoint values: f=2)=4
f(H = 1.
The function has an absolute maximum value of 4 at x = —2 and an absolute minimum
value of 0 at x = 0. |

EXAMPLE 3 Find the absolute maximum and minimum values of f(x) =
10x(2 — In x) on the interval [ 1, e?].
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30
25
20
15
10

5k

0

FIGURE 4.8 The extreme values of
f(x) = 10x(2 — Inx) on [ 1, €*] occur at
x = e and x = ¢? (Example 3).

y
y=x2/3, —2=x=3

Absolute maximum,;

Local also a local maximum

maximum 2 [~
1 -
! !

-2 -1 O\; 2 3

Absolute minimum;
also a local minimum

FIGURE 4.9 The extreme values of
f(x) = x*3on [-2,3] occurat x = 0
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Solution Figure 4.8 suggests that f has its absolute maximum value near x = 3 and its
absolute minimum value of 0 at x = e2. Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and
smallest of the resulting values.

The first derivative is

f'(x) =102 — Inx) — 10x(}c> = 10(1 — Inx).
The only critical point in the domain [ 1, €?] is the point x = e, where In x = 1. The val-
ues of f at this one critical point and at the endpoints are
fle) = 10e
f(1) =102 —1In1) = 20
f(e®) = 10e*2 — 21Ine) = 0.

Critical point value:

Endpoint values:

We can see from this list that the function’s absolute maximum value is 10e = 27.2; it
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at
the right endpoint x = €. [ |

EXAMPLE 4
interval [—2,3].

Find the absolute maximum and minimum values of f(x) = x%/3 on the

Solution We evaluate the function at the critical points and endpoints and take the larg-
est and smallest of the resulting values.
The first derivative

__2

3Vx
has no zeros but is undefined at the interior point x = 0. The values of f at this one critical
point and at the endpoints are

f) = 2x01

Critical point value: fO)=0
f(=2) = (~2)%3 = V4

f3) = 33 = V.

Endpoint values:

We can see from this list that the function’s absolute maximum value is V9 ~ 2.08, and
it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs at

and x = 3 (Example 4). the interior point x = 0 where the graph has a cusp (Figure 4.9). |
Exercises m
Finding Extrema from Graphs 3.y 4.
In Exercises 1-6, determine from the graph whether the function has Ay =@
any absolute extreme values on [a,b]. Then explain how your Y *
answer is consistent with .Theorem 1
1. 2.y
y = h(x) y=/x
| | | X | | | X
0 a c b 0 a c b
| | | | | |
0 a g ¢ b * 0 a c b *




S. 6.
Y8 . V=g
I I I X I I I X
0 a c b 0 a c b

In Exercises 7-10, find the absolute extreme values and where they
occur.

In Exercises 11-14, match the table with a graph.
11. 12

x f'(x) "X f'(x)
a 0 a 0
b 0 b 0
c 5 c -5
13. . £'(x) 14. x £'(x)
a does not exist a does not exist
b 0 b does not exist
c -2 c —-1.7
\/{\\ ,
[ |
| I [
1 1 Il 1 1 1
a b ¢ a b ¢ \
(a) (b)

\
[y —
S
o —
S
> -

(c) (@)
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In Exercises 15-20, sketch the graph of each function and determine
whether the function has any absolute extreme values on its domain.
Explain how your answer is consistent with Theorem 1.

15, f() = |x[, -1 <x<2
6
16. y = , —l<x<l1
Y x2+2 *
—X 0=x<1
17. = ’
SO = 1 1=x=2
1
X -1=x<0
18. h(x) =
Vx, 0=x=4

19. y =3sinx, 0<x<2mw
x+1, -1=x<0

20. f00 = COS X, 0<x= %

Absolute Extrema on Finite Closed Intervals

In Exercises 21-40, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and
include their coordinates.

21. f(x)Z%x—S, —2=x=3

22, f)=—x—4, 4=x=1
23, f)=x*—-1, —-1=x=2
4. f)=4—-x, 2=x=1

25. Fx) = ——, 05 =x=2

—_ %
Ll

—2=x=-1

26. Fx) = — 5.
27. h(x) = Vx, -1 =x=38

28. h(x) = —3x*3, —-1=x=1
29. gx) = V4 —x%, —2=x

30, gr) =—V5—x*, —V5=x=0
31. f(6) = sin 6, —gsos%
32. f(6) = tan 0, —%ses%
33. g(x) = cscx, gﬁxﬁz?w
34. g(x) = secux, _%SXS%
3B =2-t, -1=1r=3
36. fO=1t—5|, 4=1r=7

37. gx) =xet, -1 =x=1
38. i(x) =In(x+ 1), 0=x=3

39. f(x):%+lnx, 05=x=4
40. g(x) = evr, 2=x=1
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In Exercises 41-44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41. f(x) =x*3, —-1=x=38

2. fo)=x"3, —-1=x=38

43. g0) =035, -32=60=1

44. hO) = 30%3, -27=0<38

Finding Critical Points

In Exercises 45-52, determine all critical points for each function.
45. y=x*—6x + 7 46. f(x) = 6x* — x°

47. f(x) = x(4 — x)? 48. g(x) = (x — 1*(x — 3)?

2 x2
49. y=x>+ 3% 50. f0) =
51. y = x> — 32Vx 52, g(x) = V2x — &2

Finding Extreme Values
In Exercises 53-68, find the extreme values (absolute and local) of the
function over its natural domain, and where they occur.

53. y=2x> -8 + 9 54. y=x—2x+ 4

5. y=x*+ x> -8+ 5 56. y = x*(x — 5)°

57. y = Va2 — 1 58. y = x — 4Vx
1

59. y = —/— 60. y = V3 +2x — x?
X x + 1

61. y = 62. y=—"—"—

J x>+ 1 Y X242 +2

63. y=¢"te* 64, y=¢" —e*

65. y = xInx 66. y = x’Inx

67. y = cos ' (x?) 68. y = sin"!(¢)

Local Extrema and Critical Points
In Exercises 69-76, find the critical points, domain endpoints, and
extreme values (absolute and local) for each function.

69. y = x¥3(x + 2) 70. y = x¥3(x2 — 4)

71. y = xV4 — x? 72. y = x*V3 — x
4 —2x x=1 3 —x x<0
73. y = 74. y =
Y {x-i—l, x>1 J {3+2x—x2, x=0

-2 —=2x+4, x=1
75. y =
—x2 4+ 6x—4, x> 1
1, 1 .15
76. y - 4x 2x+4, x=1
X — 6x% + 8x, x> 1

In Exercises 77 and 78, give reasons for your answers.
77. Let f(x) = (x — 2)*3.
a. Does f'(2) exist?
b. Show that the only local extreme value of f occurs at x = 2.

c. Does the result in part (b) contradict the Extreme Value
Theorem?

d. Repeat parts (a) and (b) for f(x) = (x — a)*?, replacing 2
by a.

78. Let f(x) = |x® — 9xl.
a. Does f'(0) exist?
¢. Does f'(—3) exist?

b. Does f'(3) exist?

d. Determine all extrema of f.

Theory and Examples

79. A minimum with no derivative The function f(x) = \x| has
an absolute minimum value at x = 0 even though f is not differ-
entiable at x = 0. Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function f(x) has a local maximum
value at x = ¢, can anything be said about the value of f at
x = —c? Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum
value at x = ¢, can anything be said about the value of g at
x = —c? Give reasons for your answer.

82. No critical points or endpoints exist We know how to find the
extreme values of a continuous function f(x) by investigating its
values at critical points and endpoints. But what if there are no criti-
cal points or endpoints? What happens then? Do such functions
really exist? Give reasons for your answers.

83. The function

V(x) = x(10 — 2x)(16 — 2x), 0<x<5,

models the volume of a box.
a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume
of the box.

84. Cubic functions Consider the cubic function
f(x) = ax® + bx* + cx + d.
a. Show that f can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.
b. How many local extreme values can f have?

85. Maximum height of a vertically moving body The height of a
body moving vertically is given by

s:—%gt2+v0t+s0, g>0,

with s in meters and ¢ in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time ¢ (in
seconds) the current i (in amperes) in an alternating current cir-
cuitis i = 2 cost + 2 sinz. What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87-90. Then find the extreme values

of the function on the interval and say where they occur.
87. fx)=|x—2| +[x+3], 5=x=5

88. gy =|x—1| —|x—5], 2=x=7
89.h(x):|x+2\—|x—3 —00 < x < 00

90. k(x) =[x+ 1| + |x — 3

s

—00 < x < OO0

)

COMPUTER EXPLORATIONS

In Exercises 91-98, you will use a CAS to help find the absolute
extrema of the given function over the specified closed interval. Per-
form the following steps.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where f' = 0. (In some exercises, you
may have to use the numerical equation solver to approximate a
solution.) You may want to plot f’ as well.

c. Find the interior points where f’ does not exist.
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d. Evaluate the function at all points found in parts (b) and (c) and at 94, f(x) =2+ 2x — 3x¥3, [—1,10/3]
the endpoints of the interval. 95. f(x) = Vx + cosx, [0,27]
e. Find the function’s absolute extreme values on the interval and 34 ] 1
identify where they occur. 96. f(x) = x% — sinx + 7, [0,27]
91. f(x) = x* — 8x% + 4x + 2, [—20/25,64/25] 97. f(x) = mx’e 2, [0,5]
92, f(x) = —x* + 43 —4x + 1, [-3/4,3] 98. f(x) =1In(2x + xsinx), [1,15]

93. f(x) = x*A3 —x), [—2,2]

42 The Mean Value Theorem

f'©=0

(b)

FIGURE 4.10 Rolle’s Theorem says
that a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).

HISTORICAL BIOGRAPHY
Michel Rolle

(1652-1719)

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in
this chapter by applying the Mean Value Theorem. First we introduce a special case,
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

THEOREM 3—Rolle’s Theorem Suppose that y = f(x) is continuous over
the closed interval [a, b] and differentiable at every point of its interior (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) at which f'(c) = 0.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a, b] by Theorem 1. These can occur only

1. atinterior points where f' is zero,
2. atinterior points where f’ does not exist,

3. atendpoints of the function’s domain, in this case a and b.

By hypothesis, f has a derivative at every interior point. That rules out possibility (2),
leaving us with interior points where f' = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point ¢ between a and b, then
f'(¢) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then
because f(a) = f(b) it must be the case that f is a constant function with f(x) = f(a) = f(b)
for every x e [a, b]. Therefore f'(x) = 0 and the point ¢ can be taken anywhere in the
interior (a, b). |

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show
when there is only one real solution of an equation f(x) = 0, as we illustrate in the next
example.

EXAMPLE 1 Show that the equation
X+3x+1=0

has exactly one real solution.
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FIGURE 4.12 The only real zero of the
polynomial y = x + 3x + 1 is the one
shown here where the curve crosses the
x-axis between —1 and 0 (Example 1).

Tangent parallel to secant
/

y
Slope /'(c) 5
I
| Slope 1O 1@ f(b) ~f@
I |
‘ | |
L L L X
0 \ a c b
y=fx

FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one

tangent parallel to the secant joining A and B.

HISTORICAL BIOGRAPHY
Joseph-Louis Lagrange

(1736-1813)

y y y
y =/ y =/ y =/
I I X ! L X I I I X
a b | a xy b a xy b
(a) Discontinuous at an (b) Discontinuous at an (c) Continuous on [a, b] but not
endpoint of [a, b] interior point of [a, b] differentiable at an interior
point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

Solution We define the continuous function
fx) = x> +3x + 1.

Since f(—1) = —3 and f(0) = 1, the Intermediate Value Theorem tells us that the graph
of f crosses the x-axis somewhere in the open interval (—1, 0). (See Figure 4.12.) Now, if
there were even two points x = a and x = b where f(x) was zero, Rolle’s Theorem
would guarantee the existence of a point x = ¢ in between them where f’ was zero. How-
ever, the derivative

fl(x) =3x*+ 3

is never zero (because it is always positive). Therefore, f has no more than one zero. M

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there
is a point where the tangent line is parallel to the secant joining A and B.

THEOREM 4—The Mean Value Theorem Suppose y = f(x) is continuous
over a closed interval [a, b] and differentiable on the interval’s interior (a, b).
Then there is at least one point ¢ in (a, b) at which

fb) — fl@
b —a f' (o). (D

Proof We picture the graph of f and draw a line through the points A(a, f(a)) and
B(b, f(b)). (See Figure 4.14.) The secant line is the graph of the function

g(x) = fla) + M(x ~ a) )

(point-slope equation). The vertical difference between the graphs of f and g at x is

h(x) = f(x) — g(x)

= f(x) — f(a) — M(—a» 3)

Figure 4.15 shows the graphs of f, g, and & together.
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FIGURE 4.16 The function f(x) =

V1 — x? satisfies the hypotheses (and
conclusion) of the Mean Value Theorem
on [—1, 1] even though f is not differen-
tiable at —1 and 1.

y
B2, 4
AL 2.4
3_
y=x*
2_
I (1, D
| | x
A(0, 0) 1 2

FIGURE 4.17 As we find in Example 2,
¢ = 1 is where the tangent is parallel to
the secant line.

400 |-
8,352
g 320 ( )
8
g 240 -
a 160~ At this point,
80 the car’s speed
| was 30 mph.
1 1 1 1 1 1 1 t
0 5
Time (sec)

FIGURE 4.18 Distance versus elapsed
time for the car in Example 3.
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B(b, f(b))
y =) /

Ala, f(a))

\
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| |
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FIGURE 4.14 The graph of f and the
secant AB over the interval [a, b].

FIGURE 4.15 The secant AB is the
graph of the function g(x). The function
h(x) = f(x) — g(x) gives the vertical dis-
tance between the graphs of f and g at x.

The function A satisfies the hypotheses of Rolle’s Theorem on [ a, b ]. It is continuous
on [a,b] and differentiable on (a, b) because both f and g are. Also, h(a) = h(b) = 0
because the graphs of f and g both pass through A and B. Therefore h'(c) = 0 at some
point ¢ € (a, b). This is the point we want for Equation (1) in the theorem.

To verify Equation (1), we differentiate both sides of Equation (3) with respect to x
and then set x = c¢:

h'(x) = f'(x) — W Derivative of Eq. (3) . . .
h'(c) = f'(c) — w . .withx = ¢
0=f"()— w h'(c) =0
friey = 1@, Rearanged
which is what we set out to prove. N

The hypotheses of the Mean Value Theorem do not require f to be differentiable at
either a or b. One-sided continuity at @ and b is enough (Figure 4.16).

EXAMPLE 2 The function f(x) = x> (Figure 4.17) is continuous for 0 < x =< 2 and
differentiable for 0 < x < 2. Since f(0) = 0 and f(2) = 4, the Mean Value Theorem
says that at some point ¢ in the interval, the derivative f'(x) = 2x must have the value
(4 — 0)/(2 — 0) = 2. In this case we can identify ¢ by solving the equation 2¢ = 2 to
get ¢ = 1. However, it is not always easy to find ¢ algebraically, even though we know it
always exists. |

A Physical Interpretation

We can think of the number (f(b) — f(a))/(b — a) as the average change in f over
[a,b] and f'(c) as an instantaneous change. Then the Mean Value Theorem says that at
some interior point the instantaneous change must equal the average change over the
entire interval.

EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its average
velocity for the 8-sec interval is 352 /8 = 44 ft/sec. The Mean Value Theorem says that at
some point during the acceleration the speedometer must read exactly 30 mph (44 ft/sec)
(Figure 4.18). |
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y=x2+C J c=2
c=1

c=0

Cc=-1

5 CcC=-2

FIGURE 4.19 From a geometric point
of view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative
2x are the parabolas y = x> + C, shown
here for selected values of C.

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over
an interval. The first corollary of the Mean Value Theorem provides the answer that only
constant functions have zero derivatives.

COROLLARY 1 If f'(x) = 0 at each point x of an open interval (a, b), then
f(x) = C forall x € (a, b), where C is a constant.

Proof We want to show that f has a constant value on the interval (a, b). We do so by
showing that if x; and x, are any two points in (a, b) with x; < x,, then f(x;) = f(xy).
Now f satisfies the hypotheses of the Mean Value Theorem on [ xy, x, |: It is differentiable
at every point of [x;, x, ] and hence continuous at every point as well. Therefore,

) — f(x)

Y= = f©

at some point ¢ between x; and x,. Since f' = 0 throughout (a, b), this equation implies
successively that

w = 0’ f('XZ) - f(-xl) = 03 and f(.xl) = f()CZ). |

At the beginning of this section, we also asked about the relationship between two
functions that have identical derivatives over an interval. The next corollary tells us that
their values on the interval have a constant difference.

COROLLARY 2 If f'(x) = g'(x) at each point x in an open interval (a, b), then
there exists a constant C such that f(x) = g(x) + C for all x € (a, b). That is,
f — g is a constant function on (a, b).

Proof At each point x € (a, b) the derivative of the difference function h = f — g is
h'(x) = f'(x) —g'(x) = 0.

Thus, h(x) = C on (a, b) by Corollary 1. That is, f(x) — g(x) = C on (a, b), so f(x) =
g + C. [

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is,
they remain true if the interval is (a, 00), (—09, b), or (—00, 00).

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It
tells us, for instance, that since the derivative of f(x) = x? on (—00, 00) is 2x, any other
function with derivative 2x on (—00, 00) must have the formula x> + C for some value of
C (Figure 4.19).

EXAMPLE 4 Find the function f(x) whose derivative is sin x and whose graph passes
through the point (0, 2).

Solution  Since the derivative of g(x) = —cos x is g’(x) = sinx, we see that f and
g have the same derivative. Corollary 2 then says that f(x) = —cosx + C for some
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constant C. Since the graph of f passes through the point (0, 2), the value of C is deter-
mined from the condition that f(0) = 2:

f(0) = —cos(0) + C = 2, SO C =3.

The function is f(x) = —cos x + 3. |

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving
along a vertical line. Assume the object or body is falling freely from rest with accelera-
tion 9.8 m/sec?. We assume the position s(¢) of the body is measured positive downward
from the rest position (so the vertical coordinate line points downward, in the direction of
the motion, with the rest position at 0).

We know that the velocity v(#) is some function whose derivative is 9.8. We also
know that the derivative of g(r) = 9.8¢ is 9.8. By Corollary 2,

v(t) =98t + C
for some constant C. Since the body falls from rest, v(0) = 0. Thus
9.8(0) + C =0, and c=0.

The velocity function must be v(f) = 9.87. What about the position function s(#)?
We know that s(¢) is some function whose derivative is 9.8f. We also know that the
derivative of f(f) = 4.9¢% is 9.8¢. By Corollary 2,

s(t) =492 + C
for some constant C. Since s(0) = 0,
490> + C =0, and Cc=0.

The position function is s(f) = 4.9¢> until the body hits the ground.

The ability to find functions from their rates of change is one of the very powerful
tools of calculus. As we will see, it lies at the heart of the mathematical developments in
Chapter 5.

Proofs of the Laws of Logarithms

The algebraic properties of logarithms were stated in Section 1.6. We can prove those
properties by applying Corollary 2 of the Mean Value Theorem to each of them. The steps
in the proofs are similar to those used in solving problems involving logarithms.

Proof that In bx = In b + In x The argument starts by observing that In bx and In x
have the same derivative:

4 _b _1_4d
dxln (bx) = X dy In x.

According to Corollary 2 of the Mean Value Theorem, then, the functions must differ by a
constant, which means that

Inbx =Inx + C

for some C.
Since this last equation holds for all positive values of x, it must hold for x = 1.
Hence,
In(b-1)=Inl1 + C
Inb=0+C Inl=0
C=1Inb.
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By substituting, we conclude
Inbx =Inb + Inx. |

Proof that In x" = rinx We use the same-derivative argument again. For all posi-
tive values of x,

d 1d
aln X' = ¥ dx x") Chain Rule
— l r—1 ot -
x,rx Derivative Power Rule
1 _d
=7~ =—(rinx).
X = g T

Since In x" and 7 In x have the same derivative,
Inx"=rlnx + C

for some constant C. Taking x to be 1 identifies C as zero, and we’re done. [ |

You are asked to prove the Quotient Rule for logarithms,

b
ln<x> =Inb — Inx,

in Exercise 75. The Reciprocal Rule, In (1/x) = —In x, is a special case of the Quotient
Rule, obtained by taking » = 1 and noting that In 1 = 0.

Laws of Exponents

The laws of exponents for the natural exponential ¢* are consequences of the algebraic
properties of In x. They follow from the inverse relationship between these functions.

Laws of Exponents for ¢*
For all numbers x, x;, and x,, the natural exponential ¢* obeys the following
laws:
1. eheen = entn 2 =1
3. @ = 1™ X2 4. (exl)xz = 12 = (exz)xl

exz

Proof of Law 1 Let
y = en and Y, = e™. 4)

Then

Take logs of both

= In n = In
H »n and x 2 sides of Egs. (4).

xtx,=Iny +Iny

=Ilny»n Product Rule for logarithms
et = ey Exponentiate.
=y elm/ =u
= e"en, |

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercises 77 and 78).



Exercises m

Checking the Mean Value Theorem
Find the value or values of c¢ that satisty the equation

f@) = flap
Th—a (o)

in the conclusion of the Mean Value Theorem for the functions and
intervals in Exercises 1-8.

L fx)=x>+2x—1, [0,1]

2. f(x) = x¥3, [0,1]

3. fx) =x + %, [1,2}

2

fo=Vx—-1, [1,3]
fx) =sin 'y, [—1,1]
f =In@x—1), [2,4]
f) =x* = x% [-1,2]

X3, 2=x=0
s = {0 52023

A A

Which of the functions in Exercises 9-14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.
9. f(x) = x¥3, [—1,8]
10. f(x) = x*5, [0,1]
1. f(x) = V(1 —x), [0,1]
sin x
12. f) =9 *
0, x=0

, —mT=x<0

I T e -3 -3, —1<x=0

2x — 3, 0=x=2

14. f(x):{6x—x2—7, 2<x=3

15. The function

) {x, 0=x<1
x) =
0, x=1

is zero at x = 0 and x = 1 and differentiable on (0, 1), but its
derivative on (0, 1) is never zero. How can this be? Doesn’t
Rolle’s Theorem say the derivative has to be zero somewhere in
(0, 1)? Give reasons for your answer.

16. For what values of a, m, and b does the function

3, x=0
fx) = ¢ —x>+3x + a, 0<x<l1
mx + b, l=x=2

satisfy the hypotheses of the Mean Value Theorem on the interval
[0,2]?
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Roots (Zeros)
17. a. Plot the zeros of each polynomial on a line together with the
zeros of its first derivative.

i) y=x2—4
ii) y=x2+8x+15
iii) y=x>-32+4=0x+ D —2)7?
iv) y=x3—33x% 4+ 216x = x(x — 9)(x — 24)
b. Use Rolle’s Theorem to prove that between every two zeros
of X" + a,_x"" '+ -+ 4+ a;x + a, there lies a zero of

"+ (n - Da,o x4+ -+ oan

18. Suppose that f” is continuous on [a, b] and that f has three
zeros in the interval. Show that f” has at least one zero in (a, b).
Generalize this result.

19. Show that if f” > 0 throughout an interval [a, b], then f' has at
mostone zeroin [ a, b ]. Whatif f” < 0 throughout [ a, b ] instead?

20. Show that a cubic polynomial can have at most three real zeros.
Show that the functions in Exercises 21-28 have exactly one zero in
the given interval.

21, fx) =x*+3x+ 1, [-2,—-1]

22, f(x) = x* + % + 7, (—00,0)
X
23. g = Vi+ \V1+1t—4, (0,0
24, g(f) = %_t +V1+t-31, 1.1

25. r(0) = 6 + sin® <g> — 8, (—00,00)

26. 7(6) = 20 — cos> 6 + V2, (00, 00)

27. r(0) = sec O — é +5, (0,7/2)

28. r(0) = tan@ — cot® — 6, (0,7/2)

Finding Functions from Derivatives
29. Suppose that f(—1) = 3 and that f'(x) = 0 for all x. Must
f(x) = 3 for all x? Give reasons for your answer.

30. Suppose that f(0) = 5 and that f'(x) = 2 for all x. Must f(x) =
2x + 5 for all x? Give reasons for your answer.

31. Suppose that f'(x) = 2x for all x. Find f(2) if
a. f(0)=0 b. f(1) =0 c. f(=2)=3.

32. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 33-38, find all possible functions with the given
derivative.
3

33.a. y =x b. y = x* c. vy =x
34. a. y) = 2x b. vy =2x -1 ey =32+2x—1
1 1 1
35.a. y =—— b.y =1-- ey =5+—
y 2 y 2 y 2
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36

37

38

In
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1 . 1

, 1 ,
.a.yzz\/;c b-y—ﬁ C.y:4—$
.a. y =sin2¢ b. y' = cos% c. ¥y =sin2fr + cos%
.a. y =sectf b,y =\V6o ey = V0 — sec?6
Exercises 39—42, find the function with the given derivative whose

graph passes through the point P.

39

40

41

42.

. f'0) =2x — 1, P(0,0)

. g'(x) = lz + 2x, P(—1,1)
X

. ') = e, P<O, %)

r'(f) = secttant — 1, P(0,0)

Finding Position from Velocity or Acceleration
Exercises 43-46 give the velocity v = ds/dt and initial position of an
object moving along a coordinate line. Find the object’s position at

time .
43. v =98+ 5, s(0) =10
44. v = 32t — 2, 5(0.5) =4
45. v = sinwt, s(0) =0

2 2t
46. v = £ cos 1, s(m?) =1

Exercises 47-50 give the acceleration a = d%s/dr?, initial velocity,
and initial position of an object moving on a coordinate line. Find the
object’s position at time .

47. a = ¢, v(0) =20, s(0) =5
48. a = 9.8, v(0) =-3, s0)=0
49. a = —4sin2t, v(0) =2, s(0)=-3
9 3t
50. a = gcos o v0) =0, s0)=-1
Applications
51. Temperature change It took 14 sec for a mercury thermometer

52.

53.

54.

55.

56.

to rise from —19°C to 100°C when it was taken from a freezer
and placed in boiling water. Show that somewhere along the way
the mercury was rising at the rate of 8.5°C/sec.

A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea or nautical miles per hour).

A marathoner ran the 26.2-mi New York City Marathon in 2.2 hours.
Show that at least twice the marathoner was running at exactly 11
mph, assuming the initial and final speeds are zero.

Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

Free fall on the moon On our moon, the acceleration of gravity
is 1.6 m/sec?. If a rock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec later?

Theory and Examples

57.

58.

T]59.

60.

61.

62.

63.
64.
65.
66.

67.

68.
69.

70.

The geometric mean of @ and b The geometric mean of
two positive numbers a and b is the number Vab. Show that
the value of ¢ in the conclusion of the Mean Value Theorem
for f(x) =1/x on an interval of positive numbers
[a,b]isc = Vab.

The arithmetic mean of @ and b The arithmetic mean of two
numbers a and b is the number (a + b)/2. Show that the value of
¢ in the conclusion of the Mean Value Theorem for f(x) = x* on
any interval [a,b] isc = (a + b)/2.

Graph the function
f(x) = sinxsin (x + 2) — sin® (x + 1).

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

Rolle’s Theorem

a. Construct a polynomial f(x) that has zeros at x = —2,—1, 0,

1, and 2.

b. Graph f and its derivative f' together. How is what you see
related to Rolle’s Theorem?

¢. Do g(x) = sinx and its derivative g’ illustrate the same phe-
nomenon as f and f'?

Unique solution Assume that f is continuous on [a, b] and
differentiable on (a, b). Also assume that f(a) and f(b) have
opposite signs and that f’ # 0 between a and b. Show that
f(x) = 0 exactly once between a and b.

Parallel tangents Assume that f and g are differentiable on
[a, b] and that f(a) = g(a) and f(b) = g(b). Show that there is
at least one point between a and b where the tangents to the
graphs of f and g are parallel or the same line. [llustrate with a
sketch.

Suppose that f'(x) =1 for 1 =x =< 4. Show that f(4)—
f(l) = 3.

Suppose that 0 < f’(x) < 1/2 for all x-values. Show that f(—1) <
fa) <2+ f=D.

Show that |cos x — 1| = |x| for all x-values. (Hint: Consider
f(®) = coston [0,x].)

Show that for any numbers @ and b, the sine inequality |sinb —
sina| = |b — a is true.

If the graphs of two differentiable functions f(x) and g(x) start at
the same point in the plane and the functions have the same rate
of change at every point, do the graphs have to be identical? Give
reasons for your answer.

If |f(w) — f(¥)] = |w — x| for all values w and x and f is a dif-
ferentiable function, show that —1 < f'(x) = 1 for all x-values.
Assume that f is differentiable on @ = x = b and that f(b) < f(a).
Show that f' is negative at some point between a and b.

Let f be a function defined on an interval [a, b]. What condi-
tions could you place on f to guarantee that

f®) — fa)
0 117

min ' = b —a

ax f',

where min ' and max f' refer to the minimum and maximum
values of f" on [a, b]? Give reasons for your answers.



71.
72.

73.

74.

Use the inequalities in Exercise 70 to estimate f(0.1)if f'(x) =
1/(1 + x*cosx) for 0 = x = 0.1 and f(0) = 1.

Use the inequalities in Exercise 70 to estimate f(0.1)if f'(x) =
1/(1 — x* for 0 = x = 0.1 and f(0) = 2.

Let f be differentiable at every value of x and suppose that
f(1) = 1, that f’ < 0 on (—09, 1), and that f* > 0 on (1, 00).

a. Show that f(x) = 1 for all x.

b. Must f'(1) = 0? Explain.

Let f(x) = px*> + gx + r be a quadratic function defined on a

closed interval [ a, b ]. Show that there is exactly one point ¢ in (a, b)
at which f satisfies the conclusion of the Mean Value Theorem.

4.3 Monotonic Functions and the First Derivative Test

75.

76.

77.

78.
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Use the same-derivative argument, as was done to prove the
Product and Power Rules for logarithms, to prove the Quotient
Rule property.

Use the same-derivative argument to prove the identities

_ _ T B N T
a. tan‘x-i—cot‘xzz b. sec'x+csc'x:5

Starting with the equation e“e™ = ¢""%, derived in the text,
show that ¢ = 1/¢* for any real number x. Then show that
e"1/e” = 17 for any numbers x; and x,.

Show that (e")" = ¢ = (¢™)" for any numbers x; and x,.

43 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval. This
section gives a test to determine where it increases and where it decreases. We also show how
to test the critical points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive
derivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be mono-

tonic on the interval.

(a, b).

COROLLARY 3  Suppose that f is continuous on [a, b ] and differentiable on

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b |.
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].

Proof

Let x; and x, be any two points in [a, b ] with x; < x,. The Mean Value Theo-

rem applied to f on [ x|, x, ] says that

foa) = flx) = O — x1)

for some ¢ between x; and x,. The sign of the right-hand side of this equation is the same
as the sign of f'(c) because x, — x; is positive. Therefore, f(x,) > f(x;) if f is positive
on (a, b) and f(x,) < f(x)) if f' is negative on (a, b). |

Corollary 3 tells us that f(x) = Vx is increasing on the interval [0,5] for any
b > 0 because f'(x) = 1/ Vi is positive on (0, b). The derivative does not exist at x = 0,
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so
fx) = Vi is increasing on [ 0, 00).

To find the intervals where a function f is increasing or decreasing, we first find all of
the critical points of f. If a < b are two critical points for f, and if the derivative f’ is
continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem
applied to f’, the derivative must be everywhere positive on (a, b), or everywhere negative
there. One way we can determine the sign of f’ on (a, b) is simply by evaluating the
derivative at a single point ¢ in (a, b). If f'(¢) > 0, then f'(x) > 0 for all x in (a, b) so f
is increasing on [a, b] by Corollary 3; if f'(¢) < 0, then f is decreasing on [a, b ]. The
next example illustrates how we use this procedure.
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Y y=P@ 12 — 5 EXAMPLE 1 Find the critical points of f(x) = x* — 12x — 5 and identify the open
ok intervals on which f is increasing and on which f is decreasing.
(=2, 1D " : Solution The function f is everywhere continuous and differentiable. The first derivative
L fl) =3x>— 12 =3(x> — 4)
_:‘ X =3(x +2)(x — 2)
is zero at x = —2 and x = 2. These critical points subdivide the domain of f to create non-

overlapping open intervals (—00, —2), (—2, 2), and (2, ©0) on which f’ is either positive or
negative. We determine the sign of f’ by evaluating f' at a convenient point in each subin-
terval. The behavior of f is determined by then applying Corollary 3 to each subinterval.

(2, -21 The results are summarized in the following table, and the graph of f is given in Figure 4.20.
FIGURE 4.20 The function f(x) =
x* — 12x — 5 is monotonic on three Interval o0 <x <2 2<x<2 2<x<
separate intervals (Example 1). f’ evaluated f'=3) =15 ') =-12 f'(3) =15
Sign of f’ + - +
increasing decreasing increasing
Behavior of f e , , , —T—>x

-3 -2 -1 0 1 2 3

[ |
We used “strict” less-than inequalities to identify the intervals in the summary table
for Example 1, since open intervals were specified. Corollary 3 says that we could use =
inequalities as well. That is, the function f in the example is increasing on —00 < x = —2,
decreasing on —2 = x = 2, and increasing on 2 = x < 00. We do not talk about whether
a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema
HISTORICAL BIOGRAPHY
Edmund Halley In Figure 4.21, at the points where f has a minimum value, f’ < 0 immediately to the left
(1656-1742) and ' > 0 immediately to the right. (If the point is an endpoint, there is only one side to

consider.) Thus, the function is decreasing on the left of the minimum value and it is
increasing on its right. Similarly, at the points where f has a maximum value, f* > 0
immediately to the left and f' < 0 immediately to the right. Thus, the function is increas-
ing on the left of the maximum value and decreasing on its right. In summary, at a local
extreme point, the sign of f'(x) changes.

Absolute max
f'" undefined
Local max

No extremum

f=0

Local min

Absolute min

\
\
\
\ I
\ \
\ \
\ \
\ \
1 1
a ¢ c 3 cy cs b
FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The

first derivative changes sign at a critical point where a local extremum occurs.

These observations lead to a test for the presence and nature of local extreme values
of differentiable functions.
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FIGURE 4.22 The function f(x) =
x'3(x — 4) decreases when x < 1 and
increases when x > 1 (Example 2).
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First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differ-
entiable at every point in some interval containing ¢ except possibly at c itself.
Moving across this interval from left to right,

1. if f’ changes from negative to positive at ¢, then f has a local minimum at c;

2. if f' changes from positive to negative at c, then f has a local maximum at c;

3. if f' does not change sign at ¢ (that is, f’ is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.

The test for local extrema at endpoints is similar, but there is only one side to consider in
determining whether f is increasing or decreasing, based on the sign of f”.

Proof of the First Derivative Test Part (1). Since the sign of f' changes from nega-
tive to positive at ¢, there are numbers a and b such that a < ¢ < b, f' < 0 on (a, ¢), and
f" > 0on (c, b). If x e (a, c), then f(c) < f(x) because f' < 0 implies that f is decreas-
ingon [a,c].If xe(c, b), then f(c) < f(x) because f' > 0 implies that f is increasing
on [¢,b]. Therefore, f(x) = f(c) for every x € (a, b). By definition, f has a local mini-
mum at c.

Parts (2) and (3) are proved similarly. [ |

EXAMPLE 2 Find the critical points of
f) = x'Bx — 4) = x¥3 — 4x'/5,

Identify the open intervals on which f is increasing and decreasing. Find the function’s
local and absolute extreme values.

Solution The function f is continuous at all x since it is the product of two continuous
functions, x/3 and (x — 4). The first derivative

PN Py SN U N S V2 S V2
() dx(x 4x'/°) 3X 3X

4

— §X_2/3(X _ 1) — M

3x%3

is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the

critical points x = 0 and x = 1 are the only places where f might have an extreme value.
The critical points partition the x-axis into open intervals on which f’ is either posi-

tive or negative. The sign pattern of f’ reveals the behavior of f between and at the critical

points, as summarized in the following table.

Interval x<0 0<x<1 x> 1
Sign of f’ - - +
. decreasing decreasing increasing
Behavior of f | . ® , > X
-1 0 1 2

Corollary 3 to the Mean Value Theorem implies that f decreases on (—09, 0),
decreases on (0, 1), and increases on (1, 00). The First Derivative Test for Local Extrema
tells us that f does not have an extreme value at x = 0 (f" does not change sign) and that
f has a local minimum at x = 1 (f’ changes from negative to positive).

The value of the local minimum is f(1) = 1'/3(1 — 4) = —3. This is also an absolute
minimum since f is decreasing on (—9, 1) and increasing on (1, 00). Figure 4.22 shows
this value in relation to the function’s graph.

Note that lim,—, f'(x) = —09, so the graph of f has a vertical tangent at the origin.

|
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Xy= = e

—t—tT
-5 -4 -3 =2

FIGURE 4.23 The graph of
f(x) = (x* — 3)e* (Example 3).

Exercises m

Analyzing Functions from Derivatives

Answer the following questions about the functions whose derivatives

are given in Exercises 1-14:

a. What are the critical points of f?

b. On what open intervals is f increasing or decreasing?

Chapter 4: Applications of Derivatives

EXAMPLE 3

Find the critical points of
f(x) = (x> — 3)e".
Identify the open intervals on which f is increasing and decreasing. Find the function’s

local and absolute extreme values.

Solution The function f is continuous and differentiable for all real numbers, so the
critical points occur only at the zeros of f'.
Using the Derivative Product Rule, we find the derivative

F = =3 s Lo g0

=@ —=3) e+ (2x) e
= (2 + 2x — 3)e".
Since e* is never zero, the first derivative is zero if and only if
X¥+2x—-3=0
(x +3)x—1) =0.

The zeros x = —3 and x = 1 partition the x-axis into open intervals as follows.
Interval x<-3 3 <x<1 1 <x
Sign of f’ + - +
increasing decreasing increasing
Behavior of f —e , , , L , —> X

-4 -3 -2 -1 0 1 2 3

We can see from the table that there is a local maximum (about 0.299) at x = —3 and
a local minimum (about —5.437) at x = 1. The local minimum value is also an abso-
lute minimum because f(x) > 0 for |x| > /3. There is no absolute maximum. The
function increases on (—00,—3) and (1,00) and decreases on (—3, 1). Figure 4.23
shows the graph. |

11 f'(x) = xBx + 2) 12. f'(x) = x12(x — 3)
13. f'(x) = (sinx — 1)(2cosx + 1),0 = x =27
14. f'(x) = (sinx + cos x)(sinx — cosx),0 = x = 27

Identifying Extrema
In Exercises 15-44:

c. At what points, if any, does f assume local maximum and mini-

mum values?

a. Find the open intervals on which the function is increasing and
decreasing.

1. ffx) =x(x — 1) 2. f'(x) = (x — D(x + 2)

N — e V2 Y — e V2 5 b. Identify the function’s local and absolute extreme values, if
3. f ’(X) 3 =1 (_)i +2) 4 f0=G=Dw+2) any, saying where they occur.
5. £ =G = her 15. y 16. y
6. f'(x) = (x—Dx + DHx +35)

, X2x—1 2
TfW ="y A # 2 \ 20 L 1 y:f(y
5 o TR N AN AN .
- G+ DHix—3)° , -3-2-1 [ 23 737‘(7_14/ 123
9.f’(x):1—)%, X0 10.f’(x):3—%, X #0 E 2

X
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19. g() =—1>—3t+3 20.
21. h(x) = —x3 + 242 22.
23. f(0) = 36% — 46° 24.
25. f(r) = 33 + 16r 26.
27. f(x) = x* — 8>+ 16 28.
29. H(t) = %t“ —1° 30.
31. fx) =x—6Vx—1 32.
33, g(x) = xV8 — x? 34.
x> -3
35. f(x)=x_2, x#2 36.
37. f(x) = x"A(x + 8) 38.
39, h(x) = x13(2 — 4) 40.
41. f(x) =¥ + e 42.

43. f(x) = xIlnx 4.

In Exercises 45-56:

a. Identify the function’s local extreme values in the given

3-2+1 123

gty =-3+9+5
h(x) = 2x° — 18x
() = 60 — 63

hr) =+ 7>

glx) = x* — 43 + 4x?

K@t =158 - F

g) =4Vx—x2+3

glx) = V5 — x
& =327
g) = P +5)

k(x) = x*P(x* — 4)
f@) = e

fx) = x*Inx

domain, and say where they occur.

Which of the extreme values, if any, are absolute?

b.
c¢. Support your findings with a graphing calculator or computer

grapher.
45. f(x) =2x —x%, -0 <x=2
46. f(x) = (x + 1?2, —-o00o<x=0
47. glx) = x* — 4x + 4,

l=x<o

48. gxr)=—x*—6x—9, —4=x<

49. f() =12t — 1}, -3 =t<00
50. f() =1 — 32, —c0o<t=3

3
51. h(x)=%—2x2+4x, 0=x<o0

52 k() = x> +3x2+3x+ 1, —0c0<x=0
53. fx) = V25 —x?, —5=x=35
5. fr)= Vx> —2x—3, 3=x<x

55. g(x)=xz_2, 0=x<1
x=— 1
2
56. g(x)=47x2, 2 <x=1

In Exercises 57-64:

a. Find the local extrema of each function on the given interval,

and say where they occur.

b. Graph the function and its derivative together. Comment on the

behavior of f in relation to the signs and values of f’.

4.3 Monotonic Functions and the First Derivative Test

57.
58.
59.

60.

61.

62.
63.

64.
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f(x) =sin2x, 0=x=m
f(x) =sinx —cosx, 0=x=27
fx) = V3cosx + sinx, 0=x=27

_ _m w
f(x) = —2x + tan x, 2 <x<2

fx) =% —2sin2, 0=<x=2m

2 2’
f(x) = —2cosx —cos’x, —T=x=mT

f(x) = csc?x —2cotx, 0 <x <

f(x) = sec’x — 2tanx, % < x <g

Theory and Examples

Show that the functions in Exercises 65 and 66 have local extreme
values at the given values of 6, and say which kind of local extreme
the function has.

65.

66.
67.

68.

69.

70.

71.

72.

73.

74.

h(9)23COSg, 0=6=<2m atf =0andb =27
hO)=Ssind. 0=0=m a0=0amdo=r

Sketch the graph of a differentiable function y = f(x) through
the point (1, 1) if f'(1) = 0 and

a. f'(x) > O0forx < land f'(x) < Oforx > 1;

b. f'(x) < Oforx < land f'(x) > Oforx > 1;

c. f'(x) >O0forx # 1;

d. f'(x) <Oforx # 1.

Sketch the graph of a differentiable function y = f(x) that has

a. alocal minimum at (1, 1) and a local maximum at (3, 3);

b. alocal maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. local minima at (1, 1) and (3, 3).

Sketch the graph of a continuous function y = g(x) such that

a g2)=20<g <lforx<2gx—>1 asx—2,
-1 <g <O0forx>2and g'(x) > —1" as x —2%;

b. g2) =2,¢ <Oforx <2,g'(x) >—00asx—27,
g > Oforx > 2, and g’(x) = 00as x — 2.

Sketch the graph of a continuous function y = h(x) such that

a. h(0) =0,—2 = h(x) = 2forallx, h'(x) >0asx—0,
and h'(x) —oo0asx — 0";

b. h(0) = 0,—2 = h(x) = Oforall x, A’ (x) >00asx— 0,
and h'(x) > —00as x — 0.

Discuss the extreme-value behavior of the function f(x) =

xsin (1/x), x # 0. How many critical points does this function

have? Where are they located on the x-axis? Does f have an abso-

lute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)

Find the open intervals on which the function f(x) = ax? +
bx + ¢, a # 0, is increasing and decreasing. Describe the
reasoning behind your answer.

Determine the values of constants a and b so that f(x) =
ax® + bx has an absolute maximum at the point (1, 2).
Determine the values of constants a, b, ¢, and d so that
f(x) = ax® + bx*> + cx + d has a local maximum at the point
(0, 0) and a local minimum at the point (1, —1).
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75. Locate and identify the absolute extreme values of 79. Find the absolute maximum value of f(x) = x?In(1/x) and say

a. In(cosx)on [—m/4,7/3],
b. cos(Inx)on [1/2,2].

where it is assumed.
80. a. Provethate* = 1 + xif x = 0.

76. a. Prove that f(x) = x — Inx is increasing for x > 1. b. Use the result in part (a) to show that

b. Using part (a), show that Inx < x if x > 1. =14+ lxz

2

77. Find the absolute maximum and minimum values of f(x) =

e —2xon [0,1].

78. Where does the periodic function f(x) = 2¢5"®/? take on its
extreme values and what are these values?

y

y=2e

81. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x; and x, in /, x, # x, implies
f) # fx).

Use the results of Exercise 81 to show that the functions in Exercises

82-86 have inverses over their domains. Find a formula for df ~!/dx

using Theorem 3, Section 3.8.

82. f(x) = (1/3)x + (5/6) 83. f(x) = 27x°

84. f(x) =1 — 8&° 85. f(x) = (1 — x)°

sin (x/2)

86. f(x) = x°/3

44 Concavity and Curve Sketching

X

FIGURE 4.24 The graph of f(x) = x*°
is concave down on (—o9, 0) and concave
up on (0, 00) (Example 1a).

We have seen how the first derivative tells us where a function is increasing, where it is
decreasing, and whether a local maximum or local minimum occurs at a critical point. In
this section we see that the second derivative gives us information about how the graph of
a differentiable function bends or turns. With this knowledge about the first and second
derivatives, coupled with our previous understanding of symmetry and asymptotic behav-
ior studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. By
organizing all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visually the key features of functions. Identifying and knowing the
locations of these features is of major importance in mathematics and its applications to
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portions

defined on the intervals (—00, 0) and (0, ©0) turn in different ways. As we approach the
origin from the left along the curve, the curve turns to our right and falls below its tan-
gents. The slopes of the tangents are decreasing on the interval (—o0, 0). As we move
away from the origin along the curve to the right, the curve turns to our left and rises above
its tangents. The slopes of the tangents are increasing on the interval (0, ©0). This turning
or bending behavior defines the concavity of the curve.

DEFINITION The graph of a differentiable function y = f(x) is

(a) concave up on an open interval / if f’ is increasing on 7,

(b) concave down on an open interval [ if f' is decreasing on 1.

If y = f(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theorem
to the first derivative function. We conclude that f’ increases if f” > 0 on /, and decreases
if 7 < 0.
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FIGURE 4.25 The graph of f(x) = x?
is concave up on every interval
(Example 1b).

y
y =3+ sinx
4_
3 (.3)
2+ l
I
1F I
I
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y" = —sinx

FIGURE 4.26 Using the sign of y” to
determine the concavity of y (Example 2).
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The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval /.

1. If f” > 0 on [, the graph of f over I is concave up.
2. If f” < 0 on [, the graph of f over I is concave down.

If y = f(x) is twice-differentiable, we will use the notations f” and y” interchangeably
when denoting the second derivative.

EXAMPLE 1

(a) The curve y = x3 (Figure 4.24) is concave down on (—00, 0) where y” = 6x < 0 and
concave up on (0, ) where y" = 6x > 0.

(b) The curve y = x? (Figure 4.25) is concave up on (—09, 0) because its second deriva-
tive y” = 2 is always positive. |

EXAMPLE 2

Determine the concavity of y = 3 + sinxon [0, 27 ].

Solution  The first derivative of y = 3 + sinx is y' = cos x, and the second derivative
is y" = —sin x. The graph of y = 3 + sin x is concave down on (0, 77), where y” = —sin x
is negative. It is concave up on (, 27r), where y” = —sin x is positive (Figure 4.26). W

Points of Inflection

The curve y = 3 + sinx in Example 2 changes concavity at the point (7, 3). Since the
first derivative y’ = cos x exists for all x, we see that the curve has a tangent line of slope
—1 at the point (77, 3). This point is called a point of inflection of the curve. Notice from
Figure 4.26 that the graph crosses its tangent line at this point and that the second deriva-
tive y” = —sinx has value O when x = 7. In general, we have the following definition.

DEFINITION A point (¢, f(c)) where the graph of a function has a tangent line
and where the concavity changes is a point of inflection.

We observed that the second derivative of f(x) = 3 + sin x is equal to zero at the
inflection point (7, 3). Generally, if the second derivative exists at a point of inflection
(c, f(¢)), then f"(c) = 0. This follows immediately from the Intermediate Value Theorem
whenever f” is continuous over an interval containing x = ¢ because the second deriva-
tive changes sign moving across this interval. Even if the continuity assumption is dropped,
it is still true that f"(c) = 0, provided the second derivative exists (although a more
advanced argument is required in this noncontinuous case). Since a tangent line must exist
at the point of inflection, either the first derivative f'(c) exists (is finite) or the graph has a
vertical tangent at the point. At a vertical tangent neither the first nor second derivative
exists. In summary, we conclude the following result.

At a point of inflection (¢, f(c)), either f"(c) = 0 or f"(c) fails to exist.

The next example illustrates a function having a point of inflection where the first
derivative exists, but the second derivative fails to exist.
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Point of
[ inflection
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FIGURE 4.27 The graph of f(x) = x°/3

has a horizontal tangent at the origin where

the concavity changes, although f” does
not exist at x = 0 (Example 3).

I I x
-1 0 1

FIGURE 4.28 The graph of y = x*
has no inflection point at the origin, even
though y” = 0 there (Example 4).

Point of
inflection

3= x1/3

FIGURE 4.29 A point of inflection
where y’ and y” fail to exist (Example 5).
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EXAMPLE 3 The graph of f(x) = x°/3 has a horizontal tangent at the origin because
f'(x) = (5/3)x*3 = 0 when x = 0. However, the second derivative

meoy — A (5 25\ _ 10 53
f(x)_dx<3x )_9"

fails to exist at x = 0. Nevertheless, f"(x) < 0 for x < 0 and f"(x) > 0 for x > 0, so
the second derivative changes sign at x = 0 and there is a point of inflection at the origin.
The graph is shown in Figure 4.27. |

Here is an example showing that an inflection point need not occur even though both
derivatives exist and f” = 0.

EXAMPLE 4  The curve y = x* has no inflection point at x = 0 (Figure 4.28). Even
though the second derivative y” = 12x? is zero there, it does not change sign. |

As our final illustration, we show a situation in which a point of inflection occurs at a
vertical tangent to the curve where neither the first nor the second derivative exists.

EXAMPLE 5 The graph of y = x'/3 has a point of inflection at the origin because the
second derivative is positive for x < 0 and negative for x > 0:

p_ @y d (1 o) 2 s
y—dxz(x )_dx 3 ="

However, both y' = x2/3/3 and y” fail to exist at x = 0, and there is a vertical tangent
there. See Figure 4.29. |

Caution Example 4 in Section 4.1 (Figure 4.9) shows that the function f(x) = x*3 does
not have a second derivative at x = 0 and does not have a point of inflection there (there is
no change in concavity at x = ). Combined with the behavior of the function in Example
5 above, we see that when the second derivative does not exist at x = ¢, an inflection
point may or may not occur there. So we need to be careful about interpreting functional
behavior whenever first or second derivatives fail to exist at a point. At such points the
graph can have vertical tangents, corners, cusps, or various discontinuities.

To study the motion of an object moving along a line as a function of time, we often
are interested in knowing when the object’s acceleration, given by the second derivative, is
positive or negative. The points of inflection on the graph of the object’s position function
reveal where the acceleration changes sign.

EXAMPLE 6 A particle is moving along a horizontal coordinate line (positive to the

right) with position function
s() = 263 — 1412 + 22t — 5, t=0.

Find the velocity and acceleration, and describe the motion of the particle.

Solution  The velocity is
v(t) = s'(f) = 61> — 28t + 22 = 2(t — 1)(3t — 11),
and the acceleration is
a(t)y = v'(t) = s"(t) = 12t — 28 = 43t — 7).

When the function s(7) is increasing, the particle is moving to the right; when s(¢) is
decreasing, the particle is moving to the left.
Notice that the first derivative (v = s") is zero at the critical points = 1 and ¢ = 11/3.
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= local max

fr=0.">0
= local min
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Interval 0<r<1 1<r<11/3 11/3 <1t
Signof v = s’ + — +
Behavior of s increasing decreasing increasing
Particle motion right left right

The particle is moving to the right in the time intervals [0, 1) and (11/3, 0), and moving
to the left in (1, 11/3). It is momentarily stationary (atrest) at # = 1 and ¢ = 11/3.
The acceleration a(f) = s"(r) = 4(3t — 7) is zero when = 7/3.

Interval 0<t<17/3 7/3 <t
Signof a = 5" - +
Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and
begins moving to the left at # = 1 under the influence of the leftward acceleration over the
time interval [0, 7/3). The acceleration then changes direction at # = 7/3 but the particle
continues moving leftward, while slowing down under the rightward acceleration. At
t = 11/3 the particle reverses direction again: moving to the right in the same direction as
the acceleration, so it is speeding up. |

Second Derivative Test for Local Extrema

Instead of looking for sign changes in f’ at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

THEOREM 5—Second Derivative Test for Local Extrema Suppose f” is
continuous on an open interval that contains x = c.

1. If f'(¢) = 0 and f"(c) < 0, then f has a local maximum at x = c.

2. If f'(¢) = 0 and f"(c) > O, then f has a local minimum at x = c.

3. If f'(¢) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

Proof Part (1). If f"(¢) < 0, then f"(x) < 0 on some open interval / containing the
point ¢, since f” is continuous. Therefore, f’ is decreasing on /. Since f'(c) = 0, the sign
of f' changes from positive to negative at ¢ so f has a local maximum at ¢ by the First
Derivative Test.

The proof of Part (2) is similar.

For Part (3), consider the three functions y = x* y = —x*, and y = x>. For each
function, the first and second derivatives are zero at x = 0. Yet the function y = x* has a
local minimum there, y = —x* has a local maximum, and y = x? is increasing in any
open interval containing x = 0 (having neither a maximum nor a minimum there). Thus
the test fails. |

This test requires us to know f” only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if f” = 0 orif f” does not exist at x = c¢. When this happens, use the First Deriva-
tive Test for local extreme values.
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Together ' and f” tell us the shape of the function’s graph—that is, where the critical
points are located and what happens at a critical point, where the function is increasing and
where it is decreasing, and how the curve is turning or bending as defined by its concavity.
We use this information to sketch a graph of the function that captures its key features.

EXAMPLE 7 Sketch a graph of the function
fx) =x* —4x3 + 10
using the following steps.
(a) Identify where the extrema of f occur.
(b) Find the intervals on which f is increasing and the intervals on which f is decreasing.
(¢) Find where the graph of f is concave up and where it is concave down.
(d) Sketch the general shape of the graph for f.

(e) Plot some specific points, such as local maximum and minimum points, points of
inflection, and intercepts. Then sketch the curve.

Solution The function f is continuous since f'(x) = 4x> — 12x? exists. The domain of
f is (—00, 00), and the domain of f’ is also (—00, 00). Thus, the critical points of f occur
only at the zeros of f’. Since

Fl(x) = 4x3 — 122 = 4x%(x — 3),

the first derivative is zero at x = 0 and x = 3. We use these critical points to define inter-
vals where f is increasing or decreasing.

Interval x<0 0<x<3 3<x
Sign of f’ - — +
Behavior of f decreasing decreasing increasing

(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremum at x = 0 and a local minimum at x = 3.

(b) Using the table above, we see that f is decreasing on (—00,0] and [0,3], and
increasing on [ 3, 00).

(©) f"(x) = 12x*> — 24x = 12x(x — 2) is zero at x = 0 and x = 2. We use these points
to define intervals where f is concave up or concave down.

Interval x<0 0<x<?2 2 <x
Sign of f” + - +
Behavior of f concave up concave down concave up

We see that f is concave up on the intervals (—00, 0) and (2, ©0), and concave down
on (0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

x <0 I<x<2 2<x<3 I<x

decreasing decreasing decreasing increasing
concave up concave down concave up concave up




4.4 Concavity and Curve Sketching 249

y The general shape of the curve is shown in the accompanying figure.
— 4 _ 3
20k y=x'—4"+10 decr i decr i decr i incr General shape
| | |
15+ conc : conc : conc : conc
(0, 10) up : down : up : up
Inflection | T T T
point sk \ 0 \ 2 \ 3 -/
| | |
1 | | | | X . : . : :
1 o 1 4 infl infl local
—sk point point min
Inflection
—10 | point (e) Plot the curve’s intercepts (if possible) and the points where y’ and y” are zero. Indicate
sk any local extreme values and inflection points. Use the general shape as a guide to sketch
3217 the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of f. |
—20r Local . . . .
minimum The steps in Example 7 give a procedure for graphing the key features of a function.
Asymptotes were defined and discussed in Section 2.6. We can find them for rational functions,
FIGURE 4.30 ' The graph of f(x) = and the methods in the next section give tools to help find them for more general functions.

x* — 4x* + 10 (Example 7).
Procedure for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.
2. Find the derivatives y’ and y".

3. Find the critical points of f, if any, and identify the function’s behavior at
each one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes that may exist.

7. Plot key points, such as the intercepts and the points found in Steps 3-5, and
sketch the curve together with any asymptotes that exist.

(x + 1)?

EXAMPLE 8 Sketch the graph of f(x) = [T

Solution
1. The domain of f is (—00, 0) and there are no symmetries about either axis or the ori-
gin (Section 1.1).

2. Find {' and f".

(x + 1)2 x-intercept at x = —1,
fx) = ——5 y-intercept (y = 1) at
1+ x? x=0
) (1 +x)2x+ 1) — (x+ 1)?-2x
[l = 55
(1 + x9)
2(1 — x?) o
= m Critical points: x = —1,x = 1
, o (At x%)?+2(—2x) — 2(1 — xH)[2(1 + x?)-2x]
F'w = (1 +
B 4x(x*> — 3) i
= 7(] n x2)3 After some algebra

3. Behavior at critical points. The critical points occur only at x = =+ 1 where f'(x) = 0
(Step 2) since f' exists everywhere over the domainof f. At x = —1, f"(=1) = 1 > 0,
yielding a relative minimum by the Second Derivative Test. Atx = 1, f'(1) = —1 < 0,
yielding a relative maximum by the Second Derivative test.
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Point of inflection

where x = \/§
(1,2)

y=1

Horizontal
asymptote

—1
Point of inflection
where x = —\/§

FIGURE 4.31 The graph of y =

(Example 8).

L X
1

(x + 1)?
1+ x?

4. Increasing and decreasing. We see that on the interval (—0o,—1) the derivative

f'(x) < 0, and the curve is decreasing. On the interval (—1, 1), f'(x) > 0 and the
curve is increasing; it is decreasing on (1, c0) where f'(x) < 0 again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is

always positive. The second derivative f” is zero when x = — V3,0, and V/3. The sec-
ond derivative changes sign at each of these points: negative on (—OO, —\f3)
positive on (—\/§ O), negative on (0, \f3), and positive again on (\/g OO). Thus
each point is a point of inflection. The curve is concave down on the interval
(—OO, - \/g) concave up on (—\/§ 0), concave down on (0, \/g), and concave up
again on ( 3, OO).

6. Asymptotes. Expanding the numerator of f(x) and then dividing both numerator and

denominator by x? gives

Lt D 24241
7 = 1+x2 1+ %2
_1+(2/x)+(1/x2)

B (1/xd) + 1

Expanding numerator

Dividing by x>

We see that f(x) — 17 as x — 00 and that f(x) — 1~ as x— —0c0. Thus, the line
y = 1 is a horizontal asymptote.

Since f decreases on (—00, —1) and then increases on (—1, 1), we know that
f(=1) = 0 is a local minimum. Although f decreases on (1, 00), it never crosses the
horizontal asymptote y = 1 on that interval (it approaches the asymptote from above).
So the graph never becomes negative, and f(—1) = 0 is an absolute minimum as
well. Likewise, f(1) = 2 is an absolute maximum because the graph never crosses
the asymptote y = 1 on the interval (—00, —1), approaching it from below. Therefore,
there are no vertical asymptotes (the range of fis 0 = y = 2).

. The graph of f is sketched in Figure 4.31. Notice how the graph is concave down as it

approaches the horizontal asymptote y = 1 as x ——00, and concave up in its
approachtoy = 1 as x —> Q. |

X+ 4

EXAMPLE 9
2x

Sketch the graph of f(x) =

Solution
1. The domain of f is all nonzero real numbers. There are no intercepts because neither x

nor f(x) can be zero. Since f(—x) = —f(x), we note that f is an odd function, so the
graph of f is symmetric about the origin.

. We calculate the derivatives of the function, but first rewrite it in order to simplify our

computations:
f(x) = 244 =X + 2 Functi implified for diffe tiati
= =+ unction simplified for differentiation
2x 27X !
f/(x):l_;:xz; Combine fractions to solve easily f'(x) = 0
2T 72 ‘ombine fractions to solve easily f'(x) = 0.
weoy 4 . . L
"x) = = Exists throughout the entire domain of f
x3

. The critical points occur at x = +2 where f'(x) = 0. Since f"(=2) < 0 and

f"(2) > 0, we see from the Second Derivative Test that a relative maximum occurs
at x = —2 with f(—=2) = —2, and a relative minimum occurs at x = 2 with

f2) =2
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y=3
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FIGURE 4.32 The graph of y =

(Example 9).
y
5 y= e2/x
4 —
3 —
Inflection 5|
point . y=1
T
\.&\ | |
-2 -1 0 1 2 3

FIGURE 4.33 The graph of y = **
has a point of inflection at (—1, ¢72).
The line y = 1 is a horizontal asymptote

and x = 0 is a vertical asymptote

(Example 10).
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4. On the interval (—00, —2) the derivative f' is positive because x> — 4 > 0 so the
graph is increasing; on the interval (—2, 0) the derivative is negative and the graph is
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on
(2,00).

5. There are no points of inflection because f"(x) < 0 whenever x < 0, f"(x) > 0
whenever x > 0, and f” exists everywhere and is never zero throughout the domain
of f. The graph is concave down on the interval (—00, 0) and concave up on the
interval (0, 00).

6. From the rewritten formula for f(x), we see that

. x 2\ _ . x 2\ _
xli)l})l+<2+x>—+oo and xl_l)l’{)l(z"‘x)_ 0,

so the y-axis is a vertical asymptote. Also, as x — 00 or as x — —09, the graph of f(x)
approaches the line y = x/2. Thus y = x/2 is an oblique asymptote.

7. The graph of f is sketched in Figure 4.32. |

EXAMPLE 10  Sketch the graph of f(x) = e**.

Solution The domain of f is (=00, 0){U(0, ©0) and there are no symmetries about either
axis or the origin. The derivatives of f are

, 2 2 2/x
£ = ez/X(—xz) ==

X

and

X222 (—2/x%) — 2e¥(2x)  4e**(1 + x)
') = — 2 = yR—
X X
Both derivatives exist everywhere over the domain of f. Moreover, since e** and x> are
both positive for all x # 0, we see that f* < 0 everywhere over the domain and the graph
is everywhere decreasing. Examining the second derivative, we see that f"(x) = 0 at
x = —1. Since ¢** > 0 and x* > 0, we have f” <0 for x < —1 and f” > 0 for
x > —1,x # 0. Therefore, the point (—1, ¢ ?) is a point of inflection. The curve is con-
cave down on the interval (—00, —1) and concave up over (—1, 0) U (0, c0).

From Example 7, Section 2.6, we see that lim,_, f(x) = 0. As x — 0%, we see that
2/x—00, so lim,y f(x) =00 and the y-axis is a vertical asymptote. Also, as
x—>—000rx—09,2/x—0 and so lim,, o f(x) = lim, oo f(x) = €® = 1. Therefore,
y = 1 is a horizontal asymptote. There are no absolute extrema, since f never takes on the
value 0 and has no absolute maximum. The graph of f is sketched in Figure 4.33. |

Graphical Behavior of Functions from Derivatives

As we saw in Examples 7-10, we can learn much about a twice-differentiable function
y = f(x) by examining its first derivative. We can find where the function’s graph
rises and falls and where any local extrema are located. We can differentiate y’ to
learn how the graph bends as it passes over the intervals of rise and fall. We can determine
the shape of the function’s graph. Information we cannot get from the derivative is
how to place the graph in the xy-plane. But, as we discovered in Section 4.2, the only
additional information we need to position the graph is the value of f at one point.
Information about the asymptotes is found using limits (Section 2.6). The following
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figure summarizes how the first derivative and second derivative affect the shape of a

graph.
y=f® y=rf® y=f®

Differentiable = y' > 0= rises from y' < 0= falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy

or -

+

y" > 0= concave up " < 0= concave down y” changes sign at an
throughout; no waves; graph throughout, no waves; inflection point
may rise or fall graph may rise or fall

oo \~ *

VAN

y' changes sign = graph y' =0 and y" <0 y' =0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum

Exercises m

Analyzmg Fu.nctlor?s from Graphs . N 5. y = x + sin2x, _2_77 — = 2_77 6. = tanx—dx, T <x < s
Identify the inflection points and local maxima and minima of the

functions graphed in Exercises 1-8. Identify the intervals on which

the functions are concave up and concave down.

1. X3 X2 1 2. x4 2
=2 A _ + 2 =X _
y=3 > 2x 3 Y= 2x°+ 4
y y
/\ Ty =sinfx], 27 =x =27 8'y=2cosx—\/§x, _77st3777
O | /\% |
N
* X -7 0 3w *
VRV B
3. y= %(XZ —1y2/3 4. y= %x1/3(x2 ~7 NOT TO SCALE
y y . .
Graphing Functions
In Exercises 9-58, identify the coordinates of any local and absolute
extreme points and inflection points. Graph the function.
0 X 0 X 9. y=x*—4x + 3 10. y =6 — 2x — x?

1. y=x"—3x+3 12. y = x(6 — 2x)?



13. y = -2 + 6x2 — 3 4. y=1—9x — 6x> — &°
15. y=(x—2° + 1

16. y=1—(x+ 1)

17. y = x* — 247 = X2(x* — 2)

18. y=—x*+6x? — 4 =x%(6 —x%) — 4

19. y =4 —x* = x4 — »

20. y =x* + 23 = Fx + 2)

21, y = x° — 5x* = x%(x — 5)

22, y:x<%—5)4

23. y=x +sinx, 0=x =27
24, y=x —sinx, 0 =x =27

25.y:\/§x—2cosx, 0=x=27

26.y:%x—tanx, _777<x<%

27. y =sinxcosx, 0 =x=m
28. y=cosx+\@sinx, 0=x=27w

29, y =x'/5 30. y = x*°
1 = 2
3.y = —— 3, y= YI=X
Vxr+1 2x + 1
33 y=2x — 3?3 34. y =525 —
_ on(S _ - 23,
35. y=x ;X 36. y = x°(x — 5)
37. y = xV8 — x? 38. y = (2 — x%)¥2
39. y= V16 — x? 40.y=x2+)%
2 _
41-y=);723 2 y=V3+1
8x 5
43. y = 4. y =
YTt a YT s
45. y = [x* — 1] 46. y = [x* — 2x|
-x, x<0
47. y = = ’
Vi ={t L
48. y = V|x — 4
49, y = xe'* 50. y=§
51. y=In(3 — x?) 52. y = x(Inx)?
53. y=¢€"— 2¢* — 3x 54, y = xe™*
Inx
55. y = In(cos x) 56. y = —=
Vax
_ 1 e
Sy =11 Boy=1ra

Sketching the General Shape, Knowing y’

Each of Exercises 59-80 gives the first derivative of a continuous
function y = f(x). Find y” and then use Steps 2—4 of the graphing
procedure on page 249 to sketch the general shape of the graph of f.

59. y =2+x—x* 60. Yy =x>—x—6
61. y' = x(x — 3)? 62. y = x*(2 — x)
63. y = x(x* — 12) 64. y = (x — D’2x + 3)

4.4 Concavity and Curve Sketching 253

65. y/ = (8x — 5x)(4 — x)>  66. y'

(&% = 20)(x — 5)

“Tox<I

67. y' = sec’x,

2 2
r— _m s
68. y' = tanx, 2<x<2
69. y’=cotg, 0<6<2m 70. y’=csczg, 0<6<2m
- 20 _m ™
71. y' =tan" 6 — 1, 2<t‘)<2
72. y' =1 —cot?f, 0<0<m
73. y' =cost, 0=rt=2mw
74. y' =sint, 0=t =27
75. Y = (x + 1) 76. y' = (x — 2)7'/3
77. v = x2Px — 1) 78. vy = x5x + 1)
-2x, x=0
79, y'=2|x\:{ oot
2x, x>0
—x2, x=0
80. y' =
Y {xz, x>0

Sketching y from Graphs of y’ and y”

Each of Exercises 81-84 shows the graphs of the first and second
derivatives of a function y = f(x). Copy the picture and add to it a
sketch of the approximate graph of f, given that the graph passes
through the point P.

81. y 82. y
y=f'(

y=f"x) y=f"x)
83.
Py y=f@®
0 X
y=r &
84.
y=f'
O X
/ Y :f”(x\\x
Pe

Graphing Rational Functions
Graph the rational functions in Exercises 85-102 using all the steps in
the graphing procedure on page 249.

2% 4+ x — 1 X2 — 49

85. y=~—"5—"— 86. y=———"—

YT e Y i se— 14

X+ _x*—4
87. y = 2 88. y = 7

1 x?

89. y = 90. y =

YT e YT e
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X2 =2 X2 —4
91.y=—ﬁ 92. y:m
X x> —4
By =0 My =
XX —x+1 X —x+1
95. y = Pa— 96. y = P—
X =3x2+3x -1 X+x—2
97. y = 98 y=—"—""——
Y X+x—=2 Y x — x?
X x — 1
99. y = 100. y = ————
Y 2 =1 Y X —2)
101. y=x2i4 (Agnesi’s witch)
4x s .
102. y = 214 (Newton’s serpentine)

Theory and Examples

103. The accompanying figure shows a portion of the graph of a
twice-differentiable function y = f(x). At each of the five
labeled points, classify y’ and y” as positive, negative, or zero.

104. Sketch a smooth connected curve y = f(x) with

f(=2) =8, ') =f(=2)=0,
f0) = 4, f'(x) <0 for |x\ <2,
f2) =0, f'(x) <0 for x <0,

f'(x) >0 for |x] >2, f"(x) >0 for x> 0.

105. Sketch the graph of a twice-differentiable function y = f(x)
with the following properties. Label coordinates where possible.

x y Derivatives
x <2 y <0, y">0
2 1 y =0, >0
2<x<4 y >0, y">0
4 4 y >0, y=0
4<x<6 y >0, y"<0
6 7 y =0, <0
x>6 y <0, y"<0

106. Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (—=2,2), (=1, 1), (0,0), (1, 1), and
(2,2) and whose first two derivatives have the following sign
patterns.

Motion Along a Line The graphs in Exercises 107 and 108 show
the position s = f(¢) of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin?
Toward the origin? At approximately what times is the (b) velocity
equal to zero? (c¢) Acceleration equal to zero? (d) When is the accel-
eration positive? Negative?

107. s
g
g
8
< =
._%4 s =f(1)
2
I A ‘
0 5 10 15
Time (sec)
108. S
g
=]
[}
2
=
A

(=]

/ Time (sec)

109. Marginal cost The accompanying graph shows the hypotheti-
cal cost ¢ = f(x) of manufacturing x items. At approximately
what production level does the marginal cost change from
decreasing to increasing?

w
—

<O
o

c

Cost

P PR IO O N PO Y
20 40 60 80 100120

Thousands of units produced

110. The accompanying graph shows the monthly revenue of the Widget
Corporation for the past 12 years. During approximately what
time intervals was the marginal revenue increasing? Decreasing?

Y

y=r()

M R R
0 5 10

111. Suppose the derivative of the function y = f(x) is
Yy o= = D(x - 2).

At what points, if any, does the graph of f have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the
sign pattern for y'.)



112.

113.

114.

115.

116.

117.

118.

119.

Suppose the derivative of the function y = f(x) is
Y= = DX = 2)(x — 4.

At what points, if any, does the graph of f have a local mini-
mum, local maximum, or point of inflection?

For x > 0, sketch a curve y = f(x) that has f(1) = 0 and
f'(x) = 1/x. Can anything be said about the concavity of such a
curve? Give reasons for your answer.

Can anything be said about the graph of a function y = f(x) that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

If b, ¢, and d are constants, for what value of b will the curve
y = x> 4+ bx> + cx + d have a point of inflection at x = 1?
Give reasons for your answer.

Parabolas

a. Find the coordinates of the vertex of the parabola
y=ax*+ bx + c,a # 0.

b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

Quadratic curves What can you say about the inflection
points of a quadratic curve y = ax> + bx + c¢,a # 0? Give
reasons for your answer.

Cubic curves What can you say about the inflection points of
a cubic curve y = ax® + bx> + cx + d, a # 0? Give reasons
for your answer.

Suppose that the second derivative of the function y = f(x) is

Y= (x+ DHx — 2).

For what x-values does the graph of f have an inflection point?

255
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120. Suppose that the second derivative of the function y = f(x) is
yu — xz(x _ 2)3(x + 3)

For what x-values does the graph of f have an inflection point?

121. Find the values of constants a, b, and ¢ so that the graph of
y = ax® + bx> + cx has alocal maximum at x = 3, local mini-
mum at x = —1, and inflection point at (1, 11).

122. Find the values of constants a, b, and ¢ so that the graph of
y = (> + @)/(bx + ¢) has a local minimum at x = 3 and a
local maximum at (=1, —2).

COMPUTER EXPLORATIONS

In Exercises 123126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

123. y = x> — 5x* — 240 124, y = x3 — 1242
125. y = ‘Slx5 + 16x* — 25

x4

3
126.y=zfxf*4x2+12x+20

3

127. Graph f(x) = 2x* — 4x> + 1 and its first two derivatives
together. Comment on the behavior of f in relation to the signs
and values of f’ and f".

128. Graph f(x) = xcosx and its second derivative together for
0 = x = 27. Comment on the behavior of the graph of f in
relation to the signs and values of f”.

45 Indeterminate Forms and L'Hopital’s Rule

HISTORICAL BIOGRAPHY
Guillaume Francois Antoine de I'Hopital
(1661-1704)

Johann Bernoulli
(1667-1748)

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +00. The rule is known
today as I’Hopital’s Rule, after Guillaume de 1’Hopital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation.

Indeterminate Form 0/0

If we want to know how the function

Fl) = X — zinx
X

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x — 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function F(x) under discussion by applying I’Hopital’s Rule, as we
will see in Example 1d.
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Caution
To apply 1’Hopital’s Rule to f/g, divide

the derivative of f by the derivative of
g- Do not fall into the trap of taking the
derivative of f/g. The quotient to use is

f'/g', not (f/g)".

If the continuous functions f(x) and g(x) are both zero at x = a, then

cannot be found by substituting x = a. The substitution produces 0/0, a meaningless
expression, which we cannot evaluate. We use 0/0 as a notation for an expression known
as an indeterminate form. Other meaningless expressions often occur, such as 00/00,
00+(), 0o — 00, 0° and 1°°, which cannot be evaluated in a consistent way; these are
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancelation, rearrangement of terms, or other algebraic
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find lim,_,y(sin x) /x. But we have had success with the limit

f&) — f@)

fila) = lim =——=7—,

from which we calculate derivatives and which produces the indeterminant form 0/0
when we attempt to substitute x = a. L’Hopital’s Rule enables us to draw on our success
with derivatives to evaluate limits that otherwise lead to indeterminate forms.

THEOREM 6—L'Hopital’s Rule Suppose that f(a) = g(a) = 0, that f and
g are differentiable on an open interval I containing «, and that g’(x) # 0 on
Iif x # a. Then

lim 1) = lim F'e
x—a g(x) x—a g,(x)’

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 6 at the end of this section.
EXAMPLE 1 The following limits involve 0/0 indeterminate forms, so we apply
I’Hopital’s Rule. In some cases, it must be applied repeatedly.

3x —sinx _ 3 —cosx 3 —cosx

@ M= T [ R
1
. l+x—1_ .. 2V1l+x 1
() lim————— = lim——————— = =
x—0 X x—0 1 2
o VIi+x—1-—x/2 0
(c) lll’r(l) 5 0 apply I’'Hopital’s Rule.
x—> X

i (1/21 +x)7V2 = 1/2 0 - _
xl_l’)r(l) " Still o apply I’Hopital’s Rule again.

B VL B I U I
xLO ) ] ot 0’ 1mit 18 found.
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(d) lim x_iimx 9; apply I’'Hopital’s Rule.
x—0 X 0
= lim 1_& Still Q: apply I’Hopital’s Rule again.
x—0 3x?2 0
= lim Sthx Still Q: apply I’Hopital’s Rule again.
x—0 6x 0
= igl(l) CO6S X é Not % limit is found. |

Here is a summary of the procedure we followed in Example 1.

Using I’Hépital’s Rule
To find

)

x—a §(x)
by I’'Hbépital’s Rule, we continue to differentiate f and g, so long as we still get
the form 0/0 at x = a. But as soon as one or the other of these derivatives is
different from zero at x = a we stop differentiating. L'Hopital’s Rule does not
apply when either the numerator or denominator has a finite nonzero limit.

EXAMPLE 2 Be careful to apply I’'Hopital’s Rule correctly:

. 1 — cosx 0
hmi2 =
=0 x + x 0
. sin x 0
= lim Not ~
x—>01 + 2.x N 0

It is tempting to try to apply I’Hopital’s Rule again, which would result in

lim 98X _ 1
—0 2 2’

but this is not the correct limit. L’Hopital’s Rule can be applied only to limits that give
indeterminate forms, and lim,_,(sin x)/(1 + 2x) does not give an indeterminate form.
Instead, this limitis 0/1 = 0, and the correct answer for the original limit is 0. [ |

L’Hopital’s Rule applies to one-sided limits as well.

EXAMPLE 3  In this example the one-sided limits are different.

. Sin x 0
lim —~ =
@ =0t x2 0
. COS X L. .
= lim ) = OO Positive for x > 0
Recall that 00 and +00 mean the same x>0 2X
ing. . sinx
thing () lim == 0
x—0" X 0
. COS X . .
= lim = —00 Negative for x < 0 [ |
x—0 2x

Indeterminate Forms oo0/o0, 00-0, 0 — o0

Sometimes when we try to evaluate a limit as x — a by substituting x = a we get an inde-
terminant form like 00/00, 00+ 0, or 00 — 00, instead of 0/0. We first consider the form
00 /00,
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More advanced treatments of calculus prove that 1’Hopital’s Rule applies to the
indeterminate form 00/00, as well as to 0/0. If f(x) — 00 and g(x) = £ 00 as x —a,
then

fim 79 _ ji £
x—a §X)  x—a 8'(X)

provided the limit on the right exists. In the notation x — a, a may be either finite or infi-
nite. Moreover, x — a may be replaced by the one-sided limits x — a™ or x = a".

EXAMPLE 4  Find the limits of these 00/00 forms:

. sec x . .e
@ XEI},}/Q 1 + tanx (b) XILHgO 2Vx © len;o ¥
Solution

(a) The numerator and denominator are discontinuous at x = /2, so we investigate the
one-sided limits there. To apply I’Hdpital’s Rule, we can choose I to be any open
interval with x = 77 /2 as an endpoint.

sec x

(09]
1 P — from the left so we apply I’Hopital’s Rule.
x—(m/2 1 + tan x 0 e ’

. Sec x tan x . .
= lim — = Iim sinx =1
x—(m/2)”  Sec” x x—(/2)”

The right-hand limit is 1 also, with (—00)/(—00) as the indeterminate form. Therefore,
the two-sided limit is equal to 1.
Inx . 1/x I/x  Vx 1

(b) lim = lim = lim
=0 2\/x a0 1 /\/x x>

g
g‘_
=
<

=)

@© lim & = lim & = lim & = o0 n

x—00 X xX—00 2x X—00

Next we turn our attention to the indeterminate forms 00+ 0 and 00 — 00. Sometimes
these forms can be handled by using algebra to convert them to a 0/0 or 00 /00 form. Here
again we do not mean to suggest that 00+ (0 or 00 — o0 is a number. They are only nota-
tions for functional behaviors when considering limits. Here are examples of how we
might work with these indeterminate forms.

EXAMPLE 5 Find the limits of these 00+ 0 forms:

(a) }im (x sin )1c> (b) 1in(’)1+ VxIn x
Solution

1> = lim (1 sin h) = lim sinf _ 1 00-0;leth = 1/x.

a. lim | xsin
x—>oo< X =0\ =0t h

. . In x
b. lim \/); Inx = lim 00+ 0 converted to 00/00
x>0 x=0" 1 /\/x
1/x

= lim ——= I’Hopital’s Rule applied
=0t —1 /2x3/2

lim (—2Vx) = 0 |

x—0"
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EXAMPLE 6 Find the limit of this c0 — oo form:

im( L — L
r—o\sinx X/’

Solution If x — 0, then sin x — 0" and
1 1

- — ——>00 — 00.
sinx X

Similarly, if x — 07, then sin x — 0~ and

1 1
—— — ~— — 00 — (—00) = —00 + 00,
sinx X (709)
Neither form reveals what happens in the limit. To find out, we first combine the fractions:

1 1 _x—sinx

i X p . Common denominator is x sin x.
sin x X S1n x

Then we apply 1’Hopital’s Rule to the result:

. 1 1 . X — sinx 0
lim| — — )= lim ——— =
x—0\ SIn X x—0 XSInx 0
. I — cosx 0
= lim —mm"F— Still
x—0 SIn X + X COS x 0
sin x 0
= ==-=0. [ |

Iimz7—"——"— =
x—02cosx — xsinx 2

Indeterminate Powers

Limits that lead to the indeterminate forms 1°°, 0°, and o® can sometimes be handled by
first taking the logarithm of the function. We use 1’Hopital’s Rule to find the limit of the
logarithm expression and then exponentiate the result to find the original function limit.
This procedure is justified by the continuity of the exponential function and Theorem 10 in
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

If lim,—, In f(x) = L, then

lim f(x) = lim e™/® = ¢k,
x—a x—a

Here a may be either finite or infinite.

EXAMPLE 7  Apply I’'Hopital’s Rule to show that lim, - (1 + x)'/* = e.

Solution The limit leads to the indeterminate form 1°. We let f(x) = (1 + x)'/* and
find lim,_,¢+ In f(x). Since

In f(x) = In(1 + x)'* = }Cm(l + x),

I’Hopital’s Rule now applies to give

lim 1 B In(l +x
XLH()1+ nfe) = )c—>n(}+ X 0
1
_ oo 1 +x U .
= lim I’Hopital’s Rule applied
ot 1
1
=2=1
1

Therefore, lim (1 + x)V* = lim f(x) = lim /™ = ¢! = ¢, [ ]
x—0" x—0" x—0"
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y=f(ax—a
’

/
S @

FIGURE 4.34 The two functions in
I’Hopital’s Rule, graphed with their
linear approximations at x = a.

HISTORICAL BIOGRAPHY
Augustin-Louis Cauchy

(1789-1857)

When g(x) = x, Theorem 7 is the Mean
Value Theorem.

EXAMPLE 8  Find lim,_, x'/*.

Solution The limit leads to the indeterminate form oo, We let f(x) = x'/* and find
lim, . In f(x). Since

v Inx
In f(x) = Inx'/x = X

I’Hopital’s Rule gives

. . Inx o
lim 1 = lim —/~ =
Jizy In £2) = Jip =3 =
_1/x
= lim — I’Hopital’s Rule applied
00 1
0
=7=0
1
Therefore lim x'/* = lim f(x) = lim e"/® = ¢ = 1. [ ]
x—>00 X—>00 x—>00

Proof of L'Hopital’s Rule

Before we prove I’Hopital’s Rule, we consider a special case to provide some geometric
insight for its reasonableness. Consider the two functions f(x) and g(x) having continuous
derivatives and satisfying f(a) = g(a) = 0, g'(a) # 0. The graphs of f(x) and g(x),
together with their linearizations y = f'(a)(x — a) and y = g'(a)(x — a), are shown in
Figure 4.34. We know that near x = a, the linearizations provide good approximations to
the functions. In fact,

f) = fllox —a) + € —a) and g) = g'(@x — a) + &(x — a)
where €, — 0 and €, — 0 as x — a. So, as Figure 4.34 suggests,

S0 L P@e - @)+ et - a
v—a 8(X)  x—ag'(@)x — a) + éx — a)
_ e J@te  fla
= lim —; ==
—ag'(a) + & g(a)
A
x—a 8' ()’
as asserted by I’Hopital’s Rule. We now proceed to a proof of the rule based on the more
general assumptions stated in Theorem 6, which do not require that g'(a) # 0 and that
the two functions have continuous derivatives.
The proof of ’Hopital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove
Cauchy’s Theorem first and then show how it leads to I’Hopital’s Rule.

g'(a) #0

Continuous derivatives

THEOREM 7—Cauchy’s Mean Value Theorem Suppose functions f and g
are continuous on [a, b] and differentiable throughout (a, b) and also suppose
g'(x) # 0 throughout (a, b). Then there exists a number c in (a, b) at which

f'le) _ fb) — fla)
g’ gb) — gl

Proof We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show
that g(a) # g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

b_
g0 =50 8@



y
slope = AC)
g'(0)
N s
p (8(b), f(b))
lope = 1B /@
8(b) — gla)
>
A((g(a), f(@)
0 X

FIGURE 4.35 There is at least one point
P on the curve C for which the slope of the
tangent to the curve at P is the same as the

slope of the secant line joining the points

A(g(a), f(a)) and B(g(b), f(b)).
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for some ¢ between a and b, which cannot happen because g'(x) # 0 in (a, b).
We next apply the Mean Value Theorem to the function

b —
nm=ﬂm—ﬂm—§%f§%wm—g@]

This function is continuous and differentiable where f and g are, and F(b) = F(a) = O.
Therefore, there is a number ¢ between a and b for which F'(¢) = 0. When expressed in
terms of f and g, this equation becomes

b —
ma=f@—§%f§%mvn=o

so that

f'e) _ fb) = f(a)
g'c) gb) — gla)

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding
curve C in the plane joining the two points A = (g(a), f(a)) and B = (g(b), f(b)). In
Chapter 11 you will learn how the curve C can be formulated so that there is at least one
point P on the curve for which the tangent to the curve at P is parallel to the secant line
joining the points A and B. The slope of that tangent line turns out to be the quotient f'/g’
evaluated at the number c in the interval (a, b), which is the left-hand side of the equation
in Theorem 7. Because the slope of the secant line joining A and B is

fb) — f@
gb) — gla)’

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.35.
Notice from the figure that it is possible for more than one point on the curve C to have a
tangent line that is parallel to the secant line joining A and B.

Proof of I'Hépital’s Rule We first establish the limit equation for the case x — a™.
The method needs almost no change to apply to x — @, and the combination of these two
cases establishes the result.

Suppose that x lies to the right of a. Then g'(x) # 0, and we can apply Cauchy’s
Mean Value Theorem to the closed interval from a to x. This step produces a number ¢
between a and x such that

) _ fx) = fa)
g'c) g — gla)

But f(a) = g(a) = 0, so

F© _ )
g g

As x approaches a, ¢ approaches a because it always lies between a and x. Therefore,

lim LG lim o _ lim MG
x—at 8§(X)  c—at g'(c)  x—at g'(X)

which establishes I’Hopital’s Rule for the case where x approaches a from above. The case
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to
the closed interval [x,a], x < a. [ ]
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Exercises m

Finding Limits in Two Ways

Chapter 4: Applications of Derivatives

In Exercises 1-6, use I’HoOpital’s Rule to evaluate the limit. Then
evaluate the limit using a method studied in Chapter 2.

1. lim £ 2
—==2x° — 4
5x* — 3x

3. lim ——5——
x—00 7)62 + 1

1 — cosx

5. lim >

x—0 X

Applying I’'Hopital’s Rule

2.

. lim

i sin S5x
im—

x—0

X -1
=143 —x — 3
2% + 3x
x—oox? + x + 1

. lim

Use I"Hopital’s rule to find the limits in Exercises 7-50.

7. lim X2
x—=2x" — 4
3 _
9. lim w

—3 2 —t— 12
3 _

11. llrnu
x—00 7)(3 + 3
P
13. hmsmt

—0

2
15. lim %
—o0cosx — 1

20 —

17. 01_1371/2005 27 — 0)

1 —sin6

19. ellrp/zl + cos 20

2. lim—S—
0 n (sec x)

. t(1 — cosi)
23, lim————
—0 ¢ — sint

25.  lim (x — E) sec x
x—>(m/2)” 2

sinf __
27, lim> 1
6—0 0

29. lim—

In(x + 1)
31. lim——
x>0 log, x

 In@?* + 2x)
33. lim ——
x—0" In x

. V5y+25-5
35, lim—————

y—0 y
37. lim (In2x — In(x + 1))

(In x)?

im————
x—0*In (sin x)

. 1 1
4L xli)rrll* (x -1 1nx>

39.

8.

10.

Jim £ — 25
—-5x+5

3 +3
1m
=14 — 1+ 3

x — 8x?

12. lim

14.

16.

18.

20.

22,

24.

28. 1

30.

32. 1

34.

36.

38.

40.

im X X7
x—12x% + 5x
lim sin 5t

—0 2t

sinx — x

lim 3

x—0 X

lim 30 +
o—-m/3sin(0 + (7/3))
. x— 1
lim———————
x—1Inx — sin mx

In (csc x)

im ——————
—=n2(x — (m/2))?

. tsin t
lim————
—0l — cost

. T
. lim ~ — X |tanx
x—(w/2) (2 )

(172 =1
6—0 0

) log, x
XLHgolog3 (x +3)
o In(e* = 1)

m—"

li
=0t  Inx

i Vay + a? —a
m——

1 ¥ a>0
y*)

lim (Inx — In sin x)

x—0

. <3x +1 | >
lim X i
x—0t sin x

. lim (cscx — cotx + cos x)
x—0"

43. 1im7§059 -1
—0e” — 0 — 1

t 2
45. lim &1

—o0 el — t

47. lim* 10X

x—0 Xxtanx

. 6 —sinfcosh
49. ™ ane — 0

Indeterminate Powers and Products

44.

46.

48.

50.

Find the limits in Exercises 51-66.

51 lim x!/0~0

x—1"

53, lim (Inx)'~

X

55. lim x '/~
x—0"

57. lim (1 + 2x)1/@h»

59. lim x*

x—0"

61. lim ()Lz>
x—00 \ X — 1

63. 1im+x2 In x

x—0
65. lim x tan (3 - x)
x—0" 2

Theory and Applications

L Hopital’s Rule does not help with the limits in Exercises 67-74. Try

52.

54.

56.

58.

60.

62.

64.

=1+ h
hmi2
h—0 h

lim x%e™
x—00

(e = 17
x—0 X Sinx

. sin3x — 3x + &%
lim - . . A~
x—0  sinxsin 2x

lim x!/@=D

x—1"
lim (In x)"/&=®
x—e"

lim x!/mx
X—>00

lim (&* + x)'/*
x—0

1\
li 1+ <
i (1+3)

(2 + 1\~
xli)rglo x+2

lim x (In x)?
x—0"

lim sinx-Inx

x—0"

it—you just keep on cycling. Find the limits some other way.

. Vox + 1
67. lim ———
X200 \/x + 1
sec x
69. xﬁgg}z)f tan x
.2 =3
Ml
e
. lim

75. Which one is correct, and which one is wrong? Give reasons for

your anSwers.

76. Which one is correct, and which one is wrong? Give reasons for

your anSwers.

68.

.ox—3 _0_
.lLH;xz—3_6_0

oxr—2x 2x — 2
a. lim - = limz——"—
x—0x2 — sinx  x—02X — COS X
= lim# -2 - 1
—02 +sinx 2 +0
2 _ _ _
b lim 22 = jim 22 2

x—0x2 — sin x

—02x —cosx 0 —1



71.

78.

79.

80.

81.

82.

83.

84.

Only one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.

a. limxlnx =0-(=0) =0

x—0
b. lim xlnx = 0+ (—00) = —00
x—0"
c. limxInx = lim Inx _—co_ -1
T -0 x—>0+(1/x) o
. _ In x
d. Jiprinx= I
(1/x)
/ = lim (—x) = 0

= lim ——"
o0 (—1/x2)

x—0"

Find all values of ¢ that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

a f)=x, g =x% (ab) = (=20
b. f(x) = x, gx) = x%, (a, b) arbitrary
c. f(x) = x3/3 — 4x, glx) = x2, (a, b) = (0, 3)

Continuous extension Find a value of ¢ that makes the function

9x — 3 sin 3x
5x3

c, x=0

., x # 0
f) =

continuous at x = 0. Explain why your value of ¢ works.

For what values of a and b is

(tan 2x 4@, sin bx) — 0

lim

0 3 2 X

X X
© — o Form

a. Estimate the value of

lim (x -Vt + x)

X—00

by graphing f(x) = x — Vx? + x over a suitably large inter-
val of x-values.

b. Now confirm your estimate by finding the limit with
I’Hopital’s Rule. As the first step, multiply f(x) by the frac-
tion (x + VX2 + x)/(x + VX2 + x) and simplify the new

numerator.
Find lim (VA2 + 1 — VX).
X—>00
0/0 Form Estimate the value of

252 — Bx + DVx + 2
m

Ii 1

x—1

by graphing. Then confirm your estimate with I’Hopital’s Rule.

This exercise explores the difference between the limit

. 1\
1 1+ =
1 X
xaoo(l + E) =e.

and the limit

lim

'T/|b.

85.

86.

87.

88.

89.

90.
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a. Use I’Hopital’s Rule to show that

1 X
ﬁm(l " ;) -

lim

Graph

) = (1 + é) and  g(x) = (1 + %)

together for x = 0. How does the behavior of f compare with
that of g? Estimate the value of lim, o f(x).

c¢. Confirm your estimate of lim,—. f(x) by calculating it with
I’Hopital’s Rule.

Show that
A\
. r\ _ o,
kli)nolo (1 + k) e
Given that x > 0, find the maximum value, if any, of

a. x'~

b. x'/®

c. x'/*" (n a positive integer)

d. Show that lim,_.., x'/*" = 1 for every positive integer n.

Use limits to find horizontal asymptotes for each function.

_ 1 _ 3x 4 X
a. y = xtan X = m
. , e’”‘z, x #0
Find f'(0) for f(x) =
0, x = 0.

The continuous extension of (sin x)* to [0, 7]

a. Graph f(x) = (sin x)* on the interval 0 = x = 7. What
value would you assign to f to make it continuous at x = 0?

b. Verify your conclusion in part (a) by finding lim,_q+ f(x)
with I’Hopital’s Rule.

¢. Returning to the graph, estimate the maximum value of f on
[0, 7 ]. About where is max f taken on?

d. Sharpen your estimate in part (c) by graphing f’ in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for f' and graph just the factor that has a
Zero.

The function (sin x)¥"* (Continuation of Exercise 89.)

a. Graph f(x) = (sin x)®"* on the interval =7 =< x = 7. How
do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph f on the interval 0 = x = 7. The function is not
defined at x = 7r/2, but the graph has no break at this point.
What is going on? What value does the graph appear to give
for f at x = 7 /2? (Hint: Use I’Hopital’s Rule to find lim f
as x— (7 /2)” and x = (7/2)")

c. Continuing with the graphs in part (b), find max f and min f
as accurately as you can and estimate the values of x at which
they are taken on.
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—_
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FIGURE 4.36 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?

Maximum

vy =x(12 - 202,
0=x=6

Volume

min

2
=
T~

L X
0 2 6
NOT TO SCALE

FIGURE 4.37 The volume of the box in
Figure 4.36 graphed as a function of x.

What are the dimensions of a rectangle with fixed perimeter having maximum area?
What are the dimensions for the least expensive cylindrical can of a given volume? How
many items should be produced for the most profitable production run? Each of these
questions asks for the best, or optimal, value of a given function. In this section we use
derivatives to solve a variety of optimization problems in mathematics, physics, econom-
ics, and business.

Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What is given?
What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and
second derivatives to identify and classify the function’s critical points.

EXAMPLE 1 An open-top box is to be made by cutting small congruent squares from
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.36). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

V(x) = x(12 — 2x)*> = 144x — 48x> + 4x°. V = hiw

Since the sides of the sheet of tin are only 12 in. long, x = 6 and the domain of V is the
interval 0 = x = 6.

A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and
a maximum near x = 2. To learn more, we examine the first derivative of V with respect
to x:

dv

I 144 — 96x + 12x* = 12(12 — 8x + x%) = 12(2 — x)(6 — x).

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s
domain and makes the critical-point list. The values of V at this one critical point and two
endpoints are

V(2) = 128
V(0) = 0,

Critical point value:

Endpoint values: V(6) = 0.

The maximum volume is 128 in®. The cutout squares should be 2 in. on a side.



FIGURE 4.38 This one-liter can uses
the least material when & = 2r
(Example 2).
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EXAMPLE 2 You have been asked to design a one-liter can shaped like a right circu-
lar cylinder (Figure 4.38). What dimensions will use the least material?

Solution  Volume of can: If r and h are measured in centimeters, then the volume of the
can in cubic centimeters is

r*h = 1000. 1 liter = 1000 cm?

Surface area of can: A = 2mr* + 2mrh

—
circular cylindrical
ends wall

How can we interpret the phrase “least material”? For a first approximation we can ignore
the thickness of the material and the waste in manufacturing. Then we ask for dimensions
r and / that make the total surface area as small as possible while satisfying the constraint
mr*h = 1000cm’.

To express the surface area as a function of one variable, we solve for one of the vari-
ables in 777*h = 1000 and substitute that expression into the surface area formula. Solving
for h is easier:

Thus,

A = 2mr? + 2mrh

=2mrt + 27Tr<1000>

’/'T}"2

=2mrt + @

Our goal is to find a value of » > 0 that minimizes the value of A. Figure 4.39 suggests
that such a value exists.

Tall and
thin can

Short and
wide can

Short and wide

FIGURE 4.39 The graph of A = 2777 + 2000/r is concave up.

Notice from the graph that for small r (a tall, thin cylindrical container), the term
2000/r dominates (see Section 2.6) and A is large. For large r (a short, wide cylindrical
container), the term 27+ dominates and A again is large.
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)

-2 —x 0 x 2

FIGURE 4.40 The rectangle inscribed
in the semicircle in Example 3.

Since A is differentiable on r > 0, an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

dA _, 2000
dr r2
0 =4nwr — 22(2)0 Set dA /dr = 0.
47r® = 2000 Multiply by 2.
r= 3% ~ 542  Solveforr.

What happens at r = V/500/77
The second derivative
d’A _ 4000

da +
dr? I

is positive throughout the domain of A. The graph is therefore everywhere concave up and
the value of A at r = V/500 /ar is an absolute minimum.
The corresponding value of & (after a little algebra) is

2 20 _ o,

_ 1000 _

a2

h

The one-liter can that uses the least material has height equal to twice the radius, here with
r = 542cmand h = 10.84 cm. |

Examples from Mathematics and Physics

EXAMPLE 3 A rectangle is to be inscribed in a semicircle of radius 2. What is the
largest area the rectangle can have, and what are its dimensions?

Solution Let (x, V4 — x2) be the coordinates of the corner of the rectangle obtained
by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length,
height, and area of the rectangle can then be expressed in terms of the position x of the
lower right-hand corner:

Length: 2x, Height: V4 — x?, Area: 2x\V4 — x2.

Notice that the values of x are to be found in the interval 0 = x = 2, where the selected
corner of the rectangle lies.
Our goal is to find the absolute maximum value of the function

Alx) = 2xV4 — x?

on the domain [0,2].
The derivative

@_i \/4 — 42
o ﬁ—x2+2 4 —x

is not defined when x = 2 and is equal to zero when

—742
2+ 2Va-2 =0

Vi
22+ 24 -xH =0

§ — 42 =0

=2

x= V2.
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FIGURE 4.41 A light ray refracted
(deflected from its path) as it passes from
one medium to a denser medium
(Example 4).
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FIGURE 4.42 The sign pattern of dr/dx
in Example 4.
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Of the two zeros, x = V2and x = — 2,only x = /2 lies in the interior of A’s domain
and makes the critical-point list. The values of A at the endpoints and at this one critical
point are

Critical point value: A(\/Z) =2V2V4 -2=4
Endpoint values: A(0) = 0, AR2) = 0.

The area has a maximum value of 4 when the rectangle is V4 — x? = \/2 units high and
2x = 2'\/2 units long. |

EXAMPLE 4  The speed of light depends on the medium through which it travels, and
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along
a path for which the time of travel is a minimum. Describe the path that a ray of light will
follow in going from a point A in a medium where the speed of light is ¢; to a point B in a
second medium where its speed is ¢,.

Solution  Since light traveling from A to B follows the quickest route, we look for a path
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the
line separating the two media is the x-axis (Figure 4.41).

In a uniform medium, where the speed of light remains constant, “shortest time”
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A
to B will consist of a line segment from A to a boundary point P, followed by another line
segment from P to B. Distance traveled equals rate times time, so

Time = distance
rate

From Figure 4.41, the time required for light to travel from A to P is

_ AP _ a’> + x?
tl—cl—icl .

From P to B, the time is

_Pg_m

b= =T o

The time from A to B is the sum of these:

2 2 Vb: 4+ (d — x)?
a+x+ ( X)'

Cy &)

t:t1+t2:

This equation expresses 7 as a differentiable function of x whose domain is [0, d]. We
want to find the absolute minimum value of ¢ on this closed interval. We find the derivative

dr X d— x

dx aVa® + 2 Vb + d— x)?

and observe that it is continuous. In terms of the angles 6; and 6, in Figure 4.41,

dr _sinf; sin6,

dx < [

The function ¢ has a negative derivative at x = 0 and a positive derivative at x = d. Since
dt/dx is continuous over the interval [0, d], by the Intermediate Value Theorem for con-
tinuous functions (Section 2.5), there is a point x, € [ 0, d | where dt/dx = 0 (Figure 4.42).
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There is only one such point because dr/dx is an increasing function of x (Exercise 62). At
this unique point we then have

sinf; sin 6,

Cy G

This equation is Snell’s Law or the Law of Refraction, and is an important principle in
the theory of optics. It describes the path the ray of light follows. |

Examples from Economics

Suppose that

r(x) = the revenue from selling x items
c(x) = the cost of producing the x items
p(x) = r(x) — c(x) = the profit from producing and selling x items.

Although x is usually an integer in many applications, we can learn about the behavior of
these functions by defining them for all nonzero real numbers and by assuming they are
differentiable functions. Economists use the terms marginal revenue, marginal cost, and
marginal profit to name the derivatives r'(x), ¢'(x), and p’(x) of the revenue, cost, and
profit functions. Let’s consider the relationship of the profit p to these derivatives.

If r(x) and c(x) are differentiable for x in some interval of production possibilities,
and if p(x) = r(x) — c(x) has a maximum value there, it occurs at a critical point of p(x)
or at an endpoint of the interval. If it occurs at a critical point, then p'(x) = r'(x) —
¢'(x) = 0 and we see that r'(x) = ¢’(x). In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals mar-

ginal cost (Figure 4.43).
y
Cost ¢(x)
£ Revenue r(x) /
3
2| Break-even point |
- } Maximum profit, ¢'(x) = r'(x)
[
[
[
|
‘ Local maximum for loss (minimum profit), ¢'(x) = r'(x)
\ ! x
0 Items produced

FIGURE 4.43 The graph of a typical cost function starts concave down and later turns concave
up. It crosses the revenue curve at the break-even point B. To the left of B, the company operates

at a loss. To the right, the company operates at a profit, with the maximum profit occurring where
¢’(x) = r'(x). Farther to the right, cost exceeds revenue (perhaps because of a combination of rising
labor and material costs and market saturation) and production levels become unprofitable again.



c(x) = x> — 632 + 15x

r(x) = 9x

} Maximum
} for profit

} Local maximum for loss
L L
02-V2 2 2+V2

NOT TO SCALE

FIGURE 4.44 The cost and revenue
curves for Example 5.

Cost

min x value
Cycle length
FIGURE 4.45 The average daily cost
c(x) is the sum of a hyperbola and a linear
function (Example 6).
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EXAMPLE 5 Suppose that r(x) = 9x and c(x) = x* — 6x? + 15x, where x repre-
sents millions of MP3 players produced. Is there a production level that maximizes profit?
If so, what is it?

Solution Notice that 7'(x) = 9 and ¢'(x) = 3x* — 12x + 15.

32— 12x+15=9 Set ¢’(x) = r'(x).
32— 12x+6=0

The two solutions of the quadratic equation are

xl:H—T VT2 _ 5 /2 ~ 058  and

12 + V72
6

X = =2+ V2 = 3414,

The possible production levels for maximum profit are x = 0.586 million MP3 players or
x = 3.414 million. The second derivative of p(x) = r(x) — c(x) is p"(x) = —c"(x) since
r"(x) is everywhere zero. Thus, p"(x) = 6(2 — x), which is negative at x = 2 + V2 and
positive at x = 2 — V2. By the Second Derivative Test, a maximum profit occurs at
about x = 3.414 (where revenue exceeds costs) and maximum loss occurs at about
x = 0.586. The graphs of r(x) and c(x) are shown in Figure 4.44. |

EXAMPLE 6 A cabinetmaker uses mahogany wood to produce 5 desks each day.
Each delivery of one container of wood is $5000, whereas the storage of that material is
$10 per day per unit stored, where a unit is the amount of material needed by her to pro-
duce 1 desk. How much material should be ordered each time, and how often should the
material be delivered, to minimize her average daily cost in the production cycle between
deliveries?

Solution If she asks for a delivery every x days, then she must order 5x units to have
enough material for that delivery cycle. The average amount in storage is approximately
one-half of the delivery amount, or 5x/2. Thus, the cost of delivery and storage for each
cycle is approximately

Cost per cycle = delivery costs + storage costs

Sx
Cost per cycle = 5000 + = . X . 10
N 2 N N
delivery — number of storage cost
average .
cost © days stored per day

amount stored

We compute the average daily cost c(x) by dividing the cost per cycle by the number of
days x in the cycle (see Figure 4.45).

c(x) = 75(;00 +

25x, x > 0.
As x — 0 and as x — o0, the average daily cost becomes large. So we expect a minimum
to exist, but where? Our goal is to determine the number of days x between deliveries that
provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

c'(x)=—@+25 =0
X

+V200 = t14.14.

X
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Of the two critical points, only V200 lies in the domain of ¢(x). The critical point value of
the average daily cost is

¢(v200) = 290 1 55/200 = 500v2 ~ $707.11.
V200

We note that c(x) is defined over the open interval (0, 00) with ¢"(x) = 10000/x> > 0.

Thus, an absolute minimum exists at x = V200 = 14.14 days.
The cabinetmaker should schedule a delivery of 5(14) = 70 units of the mahogany

wood every 14 days.

Exercises m

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single vari-

single-strand electric fence. With 800 m of wire at your disposal,
what is the largest area you can enclose, and what are its dimensions?

able, we urge you to graph it over the domain that is appropriate to the 8. The shortest fence A 216 m? rectangular pea patch is to be
problem you are solving. The graph will provide insight before you cal- enclosed by a fence and divided into two equal parts by another
culate and will furnish a visual context for understanding your answer. fence parallel to one of the sides. What dimensions for the outer
1. Minimizing perimeter What is the smallest perimeter possible rectangle will require the smallest total length of fence? How
for a rectangle whose area is 16 in?, and what are its dimensions? much fence will be needed?
2. Show that among all rectangles with an 8-m perimeter, the one 9. Designing a tank Your iron works has contracted to design and
with largest area is a square. build a 500 ft?, square-based, open-top, rectangular steel holding
3. The figure shows a rectangle inscribed in an isosceles right trian- tank for a paper company. The tank is to be made by welding thin
gle whose hypotenuse is 2 units long. stainless steel plates together along their edges. As the production
. . . . engineer, your job is to find dimensions for the base and height
a. Express the y-coordinate of P in terms of x. (Hint: Write an hat will make the tank weigh as little as possible
equation for the line AB.) tha £ P '
. a. What dimensions do you tell the shop to use?
b. Express the area of the rectangle in terms of x.
. b. Briefly describe how you took weight into account.
¢. What is the largest area the rectangle can have, and what are
its dimensions? 10. Catching rainwater A 1125 ft> open-top rectangular tank with
y a square base x ft on a side and y ft deep is to be built with its top
flush with the ground to catch runoff water. The costs associated
with the tank involve not only the material from which the tank is
B made but also an excavation charge proportional to the product xy.
a. If the total cost is
P(x.?) c = 5> + 4xy) + 10xy,
what values of x and y will minimize it?
A . b. Give a possible scenario for the cost function in part (a).
-1 0 X 1 11. Designing a poster You are designing a rectangular poster to
contain 50 in? of printing with a 4-in. margin at the top and bot-
4. A rectangle has its base on the x-axis and its upper two vertices tom and a 2-in. margin at each side. What overall dimensions will
on the parabola y = 12 — x?. What is the largest area the rectan- minimize the amount of paper used?
gle can have, and what are its dimensions? 12. Find the volume of the largest right circular cone that can be
5. You are planning to make an open rectangular box from an 8-in.-by- inscribed in a sphere of radius 3.
15-in. piece of cardboard by cutting congruent squares from the cor-
ners and folding up the sides. What are the dimensions of the box of
largest volume you can make this way, and what is its volume? ’
6. You are planning to close off a corner of the first quadrant with a
line segment 20 units long running from (a, 0) to (0, b). Show )
that the area of the triangle enclosed by the segment is largest 3
when a = b. Y
7. The best fencing plan A rectangular plot of farmland will be X

bounded on one side by a river and on the other three sides by a



13. Two sides of a triangle have lengths a and b, and the angle
between them is 6. What value of 6 will maximize the triangle’s
area? (Hint: A = (1/2)absin6.)

14. Designing a can What are the dimensions of the lightest open-
top right circular cylindrical can that will hold a volume of
1000 cm?? Compare the result here with the result in Example 2.

15. Designing a can You are designing a 1000 cm® right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the top
and bottom of radius r will be cut from squares that measure 2r
units on a side. The total amount of aluminum used up by the can
will therefore be

A = 82 + 2mrh

rather than the A = 27172 + 277k in Example 2. In Example 2,
the ratio of / to r for the most economical can was 2 to 1. What is
the ratio now?

16. Designing a box with a lid A piece of cardboard measures

10 in. by 15 in. Two equal squares are removed from the corners
of a 10-in. side as shown in the figure. Two equal rectangles are
removed from the other corners so that the tabs can be folded to
form a rectangular box with lid.

e e
o 1 1
=z y : k2
@ : o
e 10 | Base : : Lid
5 I [
S R
Y ¥
] PR
| 15" |

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is

folded in half to form a 24-in.-by-18-in. rectangle as shown in the
accompanying figure. Then four congruent squares of side length
x are cut from the corners of the folded rectangle. The sheet is
unfolded, and the six tabs are folded up to form a box with sides
and a lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.
e. Find a value of x that yields a volume of 1120 in®.

f. Write a paragraph describing the issues that arise in part (b).

4.6 Applied Optimization 271

24" 24"

| 36" [ 18" |

The sheet is then unfolded.

24" Base

| 36" |

18. A rectangle is to be inscribed under the arch of the curve
y = 4 cos(0.5x) from x = —7 to x = 7. What are the dimen-
sions of the rectangle with largest area, and what is the largest
area?

19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the
maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around)
does not exceed 108 in. What dimensions will give a box with
a square end the largest possible volume?

Girth = distance
7 around here

b. Graph the volume of a 108-in. box (length plus girth equals
108 in.) as a function of its length and compare what you see
with your answer in part (a).
21. (Continuation of Exercise 20.)
a. Suppose that instead of having a box with square ends you
have a box with square sides so that its dimensions are / by &

by w and the girth is 22 + 2w. What dimensions will give the
box its largest volume now?
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Girth

h

b. Graph the volume as a function of 4 and compare what you

22,

23.

24.

25.

see with your answer in part (a).

A window is in the form of a rectangle surmounted by a semicircle.
The rectangle is of clear glass, whereas the semicircle is of tinted
glass that transmits only half as much light per unit area as clear
glass does. The total perimeter is fixed. Find the proportions of
the window that will admit the most light. Neglect the thickness
of the frame.

o

7

AN

A silo (base not included) is to be constructed in the form of a
cylinder surmounted by a hemisphere. The cost of construction
per square unit of surface area is twice as great for the hemisphere
as it is for the cylindrical sidewall. Determine the dimensions to
be used if the volume is fixed and the cost of construction is to be
kept to a minimum. Neglect the thickness of the silo and waste in
construction.

The trough in the figure is to be made to the dimensions shown.
Only the angle 6 can be varied. What value of 6 will maximize
the trough’s volume?

%
1,\0 0
e

Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the
paper is smoothed flat. The problem is to make the length of the
crease as small as possible. Call the length L. Try it with paper.

a. Show that I? = 2x3/(2x — 8.5).
b. What value of x minimizes I??

¢. What is the minimum value of L?

26.

27.

28.
29.

30.

31.

32.

33.

R

L2 _ X2
Q (originally at A)

\
\
[
[
[
\
[
[
[
[
[
\
[
\
[
|

A

Constructing cylinders Compare the answers to the following
two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions x cm
by y cm is to be rolled into a cylinder as shown in part (a) of
the figure. What values of x and y give the largest volume?

b. The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of the
figure. What values of x and y give the largest volume?

X

Circumference = x

(a) (b)

Constructing cones A right triangle whose hypotenuse is
V3 m long is revolved about one of its legs to generate a right
circular cone. Find the radius, height, and volume of the cone of
greatest volume that can be made this way.

:

Find the point on the line Jaj + % = 1 that is closest to the origin.

Find a positive number for which the sum of it and its reciprocal
is the smallest (least) possible.

Find a positive number for which the sum of its reciprocal and
four times its square is the smallest possible.

A wire b m long is cut into two pieces. One piece is bent into an
equilateral triangle and the other is bent into a circle. If the sum of
the areas enclosed by each part is a minimum, what is the length
of each part?

Answer Exercise 31 if one piece is bent into a
square and the other into a circle.

w
Determine the dimensions of the rectangle of 5
largest area that can be inscribed in the right tri- h
angle shown in the accompanying figure. ]




34.

35.

36.

Determine the dimensions of the rect-

angle of largest area that can be
inscribed in a semicircle of radius 3. h
(See accompanying figure.)

What value of a makes

f(x) = x*> + (a/x) have

a. alocal minimum at x = 2?
b. a point of inflection at x = 1?
What values of @ and b make f(x) = x> + ax?> + bx have
a. alocal maximum at x = —1 and a local minimum at x = 3?
1?

b. alocal minimum at x = 4 and a point of inflection at x

Physical Applications

37.

38.

39.

40.

41.

42,

Vertical motion The height above ground of an object moving
vertically is given by

s =—162 + 96t + 112,

with s in feet and ¢ in seconds. Find

a. the object’s velocity when r = 0;

b. its maximum height and when it occurs;
c¢. its velocity when s = 0.

Quickest route Jane is 2 mi offshore in a boat and wishes to reach
a coastal village 6 mi down a straight shoreline from the point near-
est the boat. She can row 2 mph and can walk 5 mph. Where should
she land her boat to reach the village in the least amount of time?

Shortest beam The 8-ft wall shown here stands 27 ft from the
building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

Beam Building

8" wall

]

Motion on a line The positions of two particles on the s-axis
are s; = sintand s, = sin (f + 7/3), with s; and s, in meters
and ¢ in seconds.

a. At what time(s) in the interval 0 = ¢ = 27 do the particles
meet?

b. What is the farthest apart that the particles ever get?

¢. When in the interval 0 = ¢ = 27 is the distance between the
particles changing the fastest?

The intensity of illumination at any point from a light source is
proportional to the square of the reciprocal of the distance
between the point and the light source. Two lights, one having an
intensity eight times that of the other, are 6 m apart. How far from
the stronger light is the total illumination least?

Projectile motion The range R of a projectile fired from the ori-
gin over horizontal ground is the distance from the origin to the
point of impact. If the projectile is fired with an initial velocity v,
at an angle « with the horizontal, then in Chapter 13 we find that

43.

44.

45.

46.
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2

R="Ygn2
= g sin2a,

where g is the downward acceleration due to gravity. Find the
angle « for which the range R is the largest possible.

Strength of a beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.
(See the accompanying figure.)

a. Find the dimensions of the strongest beam that can be cut
from a 12-in.-diameter cylindrical log.

b. Graph § as a function of the beam’s width w, assuming the
proportionality constant to be k = 1. Reconcile what you see
with your answer in part (a).

¢. On the same screen, graph S as a function of the beam’s depth
d, again taking k = 1. Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

12"

w
~_ —

Stiffness of a beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

a. Find the dimensions of the stiffest beam that can be cut from
a 12-in.-diameter cylindrical log.

b. Graph § as a function of the beam’s width w, assuming the
proportionality constant to be k = 1. Reconcile what you see
with your answer in part (a).

¢. On the same screen, graph S as a function of the beam’s depth
d, again taking k = 1. Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

Frictionless cart A small frictionless cart, attached to the wall
by a spring, is pulled 10 cm from its rest position and released at
time ¢ = 0 to roll back and forth for 4 sec. Its position at time ¢ is
s = 10 cos mt.

a. What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the
acceleration then?

b. Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

WA

10
Two masses hanging side by side from springs have positions
s; = 2sintand s, = sin 2¢, respectively.

a. At what times in the interval 0 < ¢ do the masses pass each
other? (Hint: sin 2t = 2 sin f cos t.)
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b. When in the interval 0 = ¢t = 27 is the vertical distance
between the masses the greatest? What is this distance? (Hint:
cos2t = 2cos’t — 1.)

w“
e
L A
I
I
|

L3 A

()

N

Distance between two ships At noon, ship A was 12 nautical
miles due north of ship B. Ship A was sailing south at 12 knots
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

a. Start counting time with # = 0 at noon and express the dis-
tance s between the ships as a function of 7.

b. How rapidly was the distance between the ships changing at
noon? One hour later?

c. The visibility that day was 5 nautical miles. Did the ships
ever sight each other?

. Graph s and ds/dt together as functions of  for—1 = t < 3,
using different colors if possible. Compare the graphs and
reconcile what you see with your answers in parts (b)
and (c).

e. The graph of ds/dt looks as if it might have a horizontal

asymptote in the first quadrant. This in turn suggests that

ds/dt approaches a limiting value as r — 00. What is this
value? What is its relation to the ships’ individual speeds?

Fermat’s principle in optics Light from a source A is reflected
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle,
the angle of incidence must equal the angle of reflection, both
measured from the line normal to the reflecting surface. (This
result can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

Normal
Light
receiver
Light  Apojeof | Angle of B
source incidence | reflection
6, 10

Plane mirror

Tin pest When metallic tin is kept below 13.2°C, it slowly
becomes brittle and crumbles to a gray powder. Tin objects even-
tually crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw tin organ pipes in their

50.

churches crumble away years ago called the change tin pest
because it seemed to be contagious, and indeed it was, for the
gray powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that con-
trols the rate of reaction without undergoing any permanent
change in itself. An autocatalytic reaction is one whose product
is a catalyst for its own formation. Such a reaction may proceed
slowly at first if the amount of catalyst present is small and
slowly again at the end, when most of the original substance is
used up. But in between, when both the substance and its catalyst
product are abundant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate
v = dx/dt of the reaction is proportional both to the amount of
the original substance present and to the amount of product. That
is, v may be considered to be a function of x alone, and

v = kx(a — x) = kax — kx?%,

where

x = the amount of product

a = the amount of substance at the beginning
k = a positive constant.

At what value of x does the rate v have a maximum? What is the
maximum value of v?

Airplane landing path  An airplane is flying at altitude A when it
begins its descent to an airport runway that is at horizontal ground
distance L from the airplane, as shown in the figure. Assume that the
landing path of the airplane is the graph of a cubic polynomial func-
tion y = ax® + bx> + cx + d, where y(—L) = H and y(0) = 0.
a. Whatis dy/dx atx = 0?

b. What is dy/dx atx = —L?

c. Use the values for dy/dx atx = 0 and x = —L together with
y(0) = 0 and y(—L) = H to show that

o= o(2) (2]

Landing path y

H = Cruising altitude
Airport

k L

Business and Economics

51.

52.

It costs you c¢ dollars each to manufacture and distribute backpacks.
If the backpacks sell at x dollars each, the number sold is given by

4+ p(100 — x),

X —C

n=
where a and b are positive constants. What selling price will bring
a maximum profit?

You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book the
tour) go on the tour.

For each additional person, up to a maximum of 80 people
total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?



53. Wilson lot size formula One of the formulas for inventory
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

hq

A(q)=l%+cm+ 2

where ¢ is the quantity you order when things run low (shoes,
radios, brooms, or whatever the item might be), k is the cost of
placing an order (the same, no matter how often you order), c is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and / is the weekly holding cost per item
(a constant that takes into account things such as space, utilities,
insurance, and security).

a. Your job, as the inventory manager for your store, is to find
the quantity that will minimize A(g). What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace k by k + bg, the sum of k
and a constant multiple of g. What is the most economical
quantity to order now?

54. Production level Prove that the production level (if any) at
which average cost is smallest is a level at which the average cost
equals marginal cost.

55. Show that if 7(x) = 6x and c¢(x) = x> — 6x*> + 15x are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

56. Production level Suppose that c(x) = x* — 20x% + 20,000x is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items.

57. You are to construct an open rectangular box with a square base
and a volume of 48 ft*. If material for the bottom costs $6/ft> and
material for the sides costs $4/ ft2, what dimensions will result in
the least expensive box? What is the minimum cost?

58. The 800-room Mega Motel chain is filled to capacity when the
room charge is $50 per night. For each $10 increase in room
charge, 40 fewer rooms are filled each night. What charge per
room will result in the maximum revenue per night?

Biology

59. Sensitivity to medicine (Continuation of Exercise 72, Section
3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative

dR/dM, where
cC M
_anft M
R M(2 3)

and C is a constant.
60. How we cough

a. When we cough, the trachea (windpipe) contracts to increase
the velocity of the air going out. This raises the questions of
how much it should contract to maximize the velocity and
whether it really contracts that much when we cough.
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Under reasonable assumptions about the elasticity of
the tracheal wall and about how the air near the wall is
slowed by friction, the average flow velocity v can be mod-
eled by the equation

o

v = c(ry — r)r? cm/sec, 5 =Tr=r,
where 7, is the rest radius of the trachea in centimeters and ¢
is a positive constant whose value depends in part on the
length of the trachea.

Show that v is greatest when r = (2/3)r; that is, when
the trachea is about 33% contracted. The remarkable fact is
that X-ray photographs confirm that the trachea contracts
about this much during a cough.

b. Take 7, to be 0.5 and ¢ to be 1 and graph v over the interval

0 = r = 0.5. Compare what you see with the claim that v is
at a maximum when r = (2/3)r,.

Theory and Examples
61. An inequality for positive integers Show that if a, b, ¢, and d
are positive integers, then

(@ + D> + D+ D@+ 1)
=1
abed

6.

62. The derivative df/dx in Example 4

a. Show that
X
&) = —F——
a> + x*
is an increasing function of x.
b. Show that
d—x

800 = VD + (d — x)*

is a decreasing function of x.
¢. Show that

dr _ X _ d—x
A cNa®+ 32 VR + (d — x)?

is an increasing function of x.

63. Let f(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves
is the greatest. Is there anything special about the tangents to the
two curves at ¢? Give reasons for your answer.
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64. You have been asked to determine whether the function f(x) =

3

a.

65. a.

T/b.

66. a.

T|b.

67. a.

+ 4 cos x + cos 2x is ever negative.

Explain why you need to consider values of x only in the
interval [0, 27 ].

. Is f ever negative? Explain.

The function y = cotx — V2 csc x has an absolute maxi-
mum value on the interval 0 < x < 7. Find it.

Graph the function and compare what you see with your
answer in part ().

The function y = tanx + 3 cot x has an absolute minimum
value on the interval 0 < x < 7r/2. Find it.

Graph the function and compare what you see with your
answer in part (a).

How close does the curve y = Vx come to the point
(3/2,0)? (Hint: If you minimize the square of the distance,

b. Graph the distance function D(x) and y = 2 together and
reconcile what you see with your answer in part (a).

Y

x, Vx)
y=Vx

o«
=

T

68. a. How close does the semicircle y = V16 — x> come to the
point (1, \/g)‘7
b. Graph the distance function and y = V16 — x? together and

you can avoid square roots.)

4. 7 Newton’s Method

reconcile what you see with your answer in part (a).

(xp, f(x1))

(x2, f(xp))

Root \
sought
N\
-
0 s ) 1 X0
Fourth  Third Second First

APPROXIMATIONS

FIGURE 4.46 Newton’s method starts
with an initial guess x; and (under favor-

able circumstances) improves the guess
one step at a time.

In this section we study a numerical method, called Newton’s method or the Newton—
Raphson method, which is a technique to approximate the solution to an equation
f(x) = 0. Essentially it uses tangent lines of the graph of y = f(x) near the points where f
is zero to estimate the solution. (A value of x where f is zero is a root of the function f and
a solution of the equation f(x) = 0.)

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation f(x) = 0 is to pro-
duce a sequence of approximations that approach the solution. We pick the first number x
of the sequence. Then, under favorable circumstances, the method does the rest by moving
step by step toward a point where the graph of f crosses the x-axis (Figure 4.46). At each
step the method approximates a zero of f with a zero of one of its linearizations. Here is
how it works.

The initial estimate, x,, may be found by graphing or just plain guessing. The method then
uses the tangent to the curve y = f(x) at (xy, f(xy)) to approximate the curve, calling the
point x; where the tangent meets the x-axis (Figure 4.46). The number x, is usually a better
approximation to the solution than is x,. The point x, where the tangent to the curve at
(x1, f(x7)) crosses the x-axis is the next approximation in the sequence. We continue on,
using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-
ing way. Given the approximation x,, the point-slope equation for the tangent to the curve

at (x,, f(x,)) is
y = ) T f)x = x,).
We can find where it crosses the x-axis by setting y = 0 (Figure 4.47):
0= flx) + f')&x — x,)

Cfe)
Flogy
X =x, - ]{(()j:)) If £'(x,) # 0

This value of x is the next approximation x,, . Here is a summary of Newton’s method.



y=f)

Point: (x,, f(x,))
Slope: f(x,)
Tangent line equation:

y = fx) = )& = x,)

(% f(x,)) f Tangent line
I (graph of
} linearization
| offatx,)
[
Root sought }
[
£ x
0 /“ \ X,
_ S(x,)
Xp+1 = Xp = f'(x )
n

FIGURE 4.47 The geometry of the suc-
cessive steps of Newton’s method. From
X, we go up to the curve and follow the
tangent line down to find x,, ;.
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Newton’s Method

1. Guess a first approximation to a solution of the equation f(x) = 0. A graph
of y = f(x) may help.

2. Use the first approximation to get a second, the second to get a third, and so
on, using the formula

f@)
e

if f'(x,) # 0. (1)

Xn+1 = Xp

Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find
solutions of equations.

In our first example, we find decimal approximations to V2 by estimating the posi-
tive root of the equation f(x) = x> — 2 = 0.

EXAMPLE 1 Find the positive root of the equation
fx) =x*—2=0.

Solution  With f(x) = x> — 2 and f’(x) = 2x, Equation (1) becomes

x,2 — 2
Xnt1 = Xn = 2%
n
_ Xno 1
w2 Ty
Xno 1
=2+
2 X

The equation
X 1
Xp+1 = En + )Tn
enables us to go from each approximation to the next with just a few keystrokes. With the

starting value x, = 1, we get the results in the first column of the following table. (To five
decimal places, V2 = 1.41421.)

Error Number of
correct digits

X =1 —0.41421 1
X =15 0.08579 1
X, = 1.41667 0.00246 3
Xy = 1.41422 0.00001 5

Newton’s method is the method used by most software applications to calculate roots
because it converges so fast (more about this later). If the arithmetic in the table in Exam-
ple 1 had been carried to 13 decimal places instead of 5, then going one step further would
have given V2 correctly to more than 10 decimal places.
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FIGURE 4.48 The graph of f(x) =

3

x° — x — 1 crosses the x-axis once; this is

the root we want to find (Example 2).

Root sought

N

—
=
|
|
|
|

X
1

FIGURE 4.49 The first three x-values in
Table 4.1 (four decimal places).

y
25
B3, 23)
\
20 }
y=x>—x-1 }
[
15 }
[
[
[
10 - }
[
B,(2.12, 6.35) |
51 Root sought }
[
[
-1N3 | 1/V3 I x
[ L1 & B0 s x

71‘ 6 1.6 2.12 3

FIGURE 4.50 Any starting value x, to
the right of x = 1/V/3 will lead to the
root in Example 2.
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EXAMPLE 2  Find the x-coordinate of the point where the curve y = x*

the horizontal line y = 1.

— X Crosses

Solution The curve crosses the line when x> — x = 1 or x> — x — 1 = 0. When does
f(x) = x* — x — 1 equal zero? Since f(1) = —1 and f(2) = 5, we know by the Interme-
diate Value Theorem there is a root in the interval (1, 2) (Figure 4.48).

We apply Newton’s method to f with the starting value x, = 1. The results are dis-
played in Table 4.1 and Figure 4.49.

At n =5, we come to the result x; = x5 = 1.3247 17957. When x,,, = x,, Equa-
tion (1) shows that f(x,) = 0. We have found a solution of f(x) = 0 to nine decimals. M

TABLE 4.1 The result of applying Newton’s method to f(x) = x3 — x — 1
with xg = 1
' Fx,)

n Xn Xn Xn Xn =Xy T

f( ) f ( ) +1 f (xn)
0 1 -1 2 1.5
1 1.5 0.875 5.75 1.3478 26087
2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399
3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174
4 1.3247 18174 0.0000 00924  4.2646 34722 1.3247 17957
5 1.3247 17957  —1.8672E-13 4.2646 32999 1.3247 17957

In Figure 4.50 we have indicated that the process in Example 2 might have started at
the point By(3, 23) on the curve, with x, = 3. Point By, is quite far from the x-axis, but the
tangent at B, crosses the x-axis at about (2.12, 0), so x; is still an improvement over x,. If
we use Equation (1) repeatedly as before, with f(x) = x> — x — 1 and f'(x) = 3x*> — 1,
we obtain the nine-place solution x; = xg = 1.3247 17957 in seven steps.

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations x, in
Newton’s method. Intuitively, we mean that as the number n of approximations increases
without bound, the values x, get arbitrarily close to the desired root r. (This notion is
similar to the idea of the limit of a function g(f) as ¢ approaches infinity, as defined in
Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but
this is not guaranteed. One way to test convergence is to begin by graphing the function to
estimate a good starting value for x,. You can test that you are getting closer to a zero of
the function by evaluating |f(x,)|, and check that the approximations are converging by
evaluating \x,, = Xpe1|-

Newton’s method does not always converge. For instance, if

r—x, x<r

f&x) = {\_/xj

the graph will be like the one in Figure 4.51. If we begin with x, = r — h, we get
x; = r + h, and successive approximations go back and forth between these two values.
No amount of iteration brings us closer to the root than our first guess.

If Newton’s method does converge, it converges to a root. Be careful, however. There
are situations in which the method appears to converge but no root is there. Fortunately,
such situations are rare.

X =r,
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y When Newton’s method converges to a root, it may not be the root you have in mind.
Figure 4.52 shows two ways this can happen.

X

(=]

Starting

Root
found

FIGURE 4.51 Newton’s method fails to
converge. You go from x; to x; and back
to x, never getting any closer to r.

Y S—

Root
sought

Starting
point

Root found

FIGURE 4.52 If you start too far away, Newton’s method may miss the root you want.

Exercises

Root Finding 10. Approximations that get worse and worse Apply Newton’s
1. Use Newton’s method to estimate the solutions of the equation method to f(x) = x' with x = 1 and calculate x;, xy, x3, and x;.
x* + x — 1 = 0. Start with x, = —1 for the left-hand solution F}“d a formula for |x,|. WhaF happens to [x,| as n —00? Draw a
and with x, = 1 for the solution on the right. Then, in each case, picture that shows what is going on.
find x,. 11. Explain why the following four statements ask for the same

2. Use Newton’s method to estimate the one real solution of
x3 + 3x + 1 = 0. Start with x, = 0 and then find x,.

3. Use Newton’s method to estimate the two zeros of the function
f(x) = x* + x — 3. Start with x, = —1 for the left-hand zero and
with x, = 1 for the zero on the right. Then, in each case, find x,.

4. Use Newton’s method to estimate the two zeros of the function
f(x) = 2x — x*> + 1. Start with x, = O for the left-hand zero and
with x, = 2 for the zero on the right. Then, in each case, find x..

5. Use Newton’s method to find the positive fourth root of 2 by
solving the equation x* — 2 = 0. Start with x, = 1 and find x,.

6. Use Newton’s method to find the negative fourth root of 2 by
solving the equation x* — 2 = 0. Start with x, = —1 and find x,.

7. Guessing a root Suppose that your first guess is lucky, in the
sense that x, is a root of f(x) = 0. Assuming that f'(x;) is
defined and not 0, what happens to x; and later approximations?

8. Estimating pi You plan to estimate 7 /2 to five decimal places
by using Newton’s method to solve the equation cos x = 0. Does
it matter what your starting value is? Give reasons for your
answer.

Theory and Examples
9. Oscillation Show that if 2 > 0, applying Newton’s method to

12.

13.

14.
15.

information:
i) Find the roots of f(x) = x> — 3x — I.
ii) Find the x-coordinates of the intersections of the curve
y = x> with the line y = 3x + 1.
iii) Find the x-coordinates of the points where the curve
y = x> — 3x crosses the horizontal line y = 1.

iv) Find the values of x where the derivative of g(x) =
(1/4)x* — (3/2)x* — x + 5 equals zero.

Locating a planet To calculate a planet’s space coordinates,
we have to solve equations like x = 1 + 0.5 sin x. Graphing the
function f(x) = x — 1 — 0.5 sin x suggests that the function has
aroot near x = 1.5. Use one application of Newton’s method to
improve this estimate. That is, start with x, = 1.5 and find x;.
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

Intersecting curves The curve y = tanx crosses the line
y = 2x between x = 0 and x = 7 /2. Use Newton’s method to
find where.

Real solutions of a quartic Use Newton’s method to find the
two real solutions of the equation x* — 2x% — x> — 2x + 2 = 0.

a. How many solutions does the equation sin 3x = 0.99 — x>

have?

f) = {\/;, x=0 b. Use Newton’s method to find them.
V=x, x <0 16. Intersection of curves
leads to x; = —hifx, = h and to x; = hifxy = —h. Draw a a. Does cos 3x ever equal x? Give reasons for your answer.

picture that shows what is going on.

17.

b. Use Newton’s method to find where.

Find the four real zeros of the function f(x) = 2x* — 4x> + 1.
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18. Estimating pi Estimate 7 to as many decimal places as your the submarine travels on the parabolic path y = x> and that the
calculator will display by using Newton’s method to solve the buoy is located at the point (2, —1/2).
equation tanx = 0 with xo = 3. a. Show that the value of x that minimizes the distance between
19. Intersection of curves At what value(s) of x does cos x = 2x? the submarine and the buoy is a solution of the equation
20. Intersection of curves At what value(s) of x does cos x = —x? x=1/(*+ 1.
21. The graphs of y = x*(x + 1) and y = 1/x (x > 0) intersect at b. Solve the equation x = 1/(x*> 4+ 1) with Newton’s method.
one point x = r. Use Newton’s method to estimate the value of r
to four decimal places. "
y y=xXx+1) o oy=2
Submarine track
3 L in two dimensions
CPA
2+ <, 1) .
r N
1 0 ST
} y= X \\
\ o 1
f—— Ll L sy Sonobuoy <2, *§>
A1 0 1 2

22. The graphs of y = Vx and y = 3 — x? intersect at one point 29
x = r. Use Newton’s method to estimate the value of r to four
decimal places.

. Curves that are nearly flat at the root Some curves are so flat
that, in practice, Newton’s method stops too far from the root to
give a useful estimate. Try Newton’s method on f(x) = (x — 1)*

23. Intersection of curves At what value(s) of x does ™ = with a starting value of x, = 2 to see how close your machine

¥ —x+1? comes to the root x = 1. See the accompanying graph.
24. Intersection of curves At what value(s) of xdoes In (1 — x?) =

x— 12 X
25. Use the Intermediate Value Theorem from Section 2.5 to show

that f(x) = x> + 2x — 4 has a root between x = 1 and x = 2.

Then find the root to five decimal places.
26. Factoring a quartic Find the approximate values of r; through

74 in the factorization
8xt — 14x3 — 0 + 1lx — 1 = 8(x — (x — B)x — KX — r). y= (= 1)

Y y= 8t — 14 — 02 1 1l — 1 Slope = —40 Slope = 40
\ 2+ 1 1§ 721
/N X
-1 1
4 LNearly flat | .
X
o 0 1 2
_8 B . - . . .
ok 30. The accompanying figure shows a circle of radius r with a chord
12k of length 2 and an arc s of length 3. Use Newton’s method to

solve for r and 6 (radians) to four decimal places. Assume

27. Converging to different zeros Use Newton’s method to find 0<0<m.
the zeros of f(x) = 4x* — 4x? using the given starting values.

a. xy = —2 and x, = —0.8, lying in (—%,—\6/2)
b. xy = —0.5 and x, = 0.25, lying in (—V/21/7, V21/7)
c. xy = 0.8 and xy = 2, lying in (\6/2, OO) Q) 2
d. x, = —V21/7and x, = /217

28. The sonobuoy problem In submarine location problems, it is

often necessary to find a submarine’s closest point of approach
(CPA) to a sonobuoy (sound detector) in the water. Suppose that
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We have studied how to find the derivative of a function and how to use it to solve a wide
range of problems. However, many other problems require that we recover a function from
its known derivative (from its known rate of change). For instance, the laws of physics tell
us the acceleration of an object falling from an initial height, and we can use this to com-
pute its velocity and its height at any time. More generally, starting with a function f, we
want to find a function F' whose derivative is f. If such a function F exists, it is called an
antiderivative of f. We will see in the next chapter that antiderivatives are the link con-
necting the two major elements of calculus: derivatives and definite integrals.

Finding Antiderivatives

DEFINITION A function F is an antiderivative of f on an interval [ if
F'(x) = f(x) for all xin L.

The process of recovering a function F(x) from its derivative f(x) is called antidifferentia-
tion. We use capital letters such as F' to represent an antiderivative of a function f, G to
represent an antiderivative of g, and so forth.

EXAMPLE 1 Find an antiderivative for each of the following functions.
(@ f(x) =2x (b) g(x) = cosx (© h(x) = )17 + 2e*

Solution We need to think backward here: What function do we know has a derivative
equal to the given function?

(@) F(x) = x2 (b) G(x) = sinx (¢) H(x) = In|x| + &*

Each answer can be checked by differentiating. The derivative of F(x) = x? is 2x.
The derivative of G(x) = sinx is cosx, and the derivative of H(x) = In |x| + €** is
(1/x) + 2> [ |

The function F(x) = x? is not the only function whose derivative is 2x. The function
x% + 1 has the same derivative. So does x> + C for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two
antiderivatives of a function differ by a constant. So the functions x*> + C, where C is an
arbitrary constant, form all the antiderivatives of f(x) = 2x. More generally, we have
the following result.

THEOREM 8 1If F is an antiderivative of f on an interval I, then the most gen-
eral antiderivative of f on [ is

Fx) + C

where C is an arbitrary constant.

Thus the most general antiderivative of f on [ is a family of functions F(x) + C
whose graphs are vertical translations of one another. We can select a particular antideriva-
tive from this family by assigning a specific value to C. Here is an example showing how
such an assignment might be made.
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FIGURE 4.53 Thecurvesy = x> + C
fill the coordinate plane without overlap-

ping. In Example 2, we identify the curve

y = x> — 2 as the one that passes through

the given point (1, —1).
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EXAMPLE 2 Find an antiderivative of f(x) = 3x? that satisfies F(1) = —1.

Solution  Since the derivative of x* is 3x?, the general antiderivative
Fx)y=x>*+C

gives all the antiderivatives of f(x). The condition F(1) = —1 determines a specific value
for C. Substituting x = 1 into F(x) = x*> + C gives

Fy=(UP+C=1+C

Since F(1) = —1, solving 1 + C = —1 for C gives C = —2. So

Fx)=x>—-2

is the antiderivative satisfying F(1) = —1. Notice that this assignment for C selects the
particular curve from the family of curves y = x* + C that passes through the point
(1, —1) in the plane (Figure 4.53). |

By working backward from assorted differentiation rules, we can derive formulas and
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative
formula to obtain the function to its left. For example, the derivative of (tan kx)/k + C is
sec? kx, whatever the value of the constants C or k # 0, and this establishes Formula 4
for the most general antiderivative of sec? kx.

EXAMPLE 3  Find the general antiderivative of each of the following functions.
1 .
@ flx)=x° (b) glx) = —= (©) h(x) = sin 2x
§ Vix
@ i() = cos5 © jix) = e ® k() =21
TABLE 4.2 Antiderivative formulas, k a nonzero constant
Function General antiderivative Function General antiderivative
n 1 n+1 _ kx l kx
1. x PR +C, n#—1 8. ¢ i +C
2. sin kx —%coskx-f—C 9, )17 Inlx| +C, x#0
1 .
3. cos kx —sinkx + C 1 1 . _
k 10. ——— —sinVkx + C
) V1 — k%2 k
4. sec? kx panke + C u 1 L i ke 4 C
1 e gl
5. csc? kx % cotkx + C |
12, —— ec M kx + C o kx > 1
1 AV — 1
6. sec kx tan kx Eseckx-f—C
1 13. o~ < 1>akX+C,a>O,a?f1
7. csc kx cot kx —Ecsckx+ C klna
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Solution 1In each case, we can use one of the formulas listed in Table 4.2.

£ Formula 1
(a) F(x) = 6 + C withn = 5
(b) gx) = x50
x1/2 Formula 1
Gx) = 12 +C=2Vx+C withn = —1/2
—cos 2x Formula 2
(© Hx)=—F—+C with k = 2
sin (x/2) . Formula 3
@) I(x)=T+C=2sm§+C with & = 1/2
1 _ Formula 8
© Jox) = —3¢ ¥+ C with £ = —3
_ 1 X Formula 13
® K@) = <1n2>2 +C wiha=2k=1 W

Other derivative rules also lead to corresponding antiderivative rules. We can add and
subtract antiderivatives and multiply them by constants.

TABLE 4.3 Antiderivative linearity rules

Function General antiderivative
1. Constant Multiple Rule: kf(x) kF(x) + C, kaconstant
2. Negative Rule: —f(x) —Fx) + C
3.  Sum or Difference Rule: fx) £ gx) Fx) + Gx) + C

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and
verifying that the result agrees with the original function. Formula 2 is the special case
k = —1 in Formula 1.

EXAMPLE 4  Find the general antiderivative of

fx) = % + sin 2x.

Solution We have that f(x) = 3g(x) + h(x) for the functions g and & in Example 3.
Since G(x) = 2V/x is an antiderivative of g(x) from Example 3b, it follows from the Con-
stant Multiple Rule for antiderivatives that 3G(x) = 3 2Vx = 6\V/x is an antiderivative
of 3g(x) = 3/ \/x. Likewise, from Example 3¢ we know that H(x) = (—1/2) cos 2x is an
antiderivative of A(x) = sin 2x. From the Sum Rule for antiderivatives, we then get that

F(x) = 3G(x) + Hx) + C
=6Vx — %cost%— C

is the general antiderivative formula for f(x), where C is an arbitrary constant. [ |

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods
and techniques for finding them are a major part of calculus, and we take up that study in
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s()

0  ground

FIGURE 4.54 A package dropped from
a rising hot-air balloon (Example 5).

Chapter 8. Finding an antiderivative for a function f(x) is the same problem as finding a
function y(x) that satisfies the equation

B o

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the
equation. This function is found by taking the antiderivative of f(x). We can fix the arbi-
trary constant arising in the antidifferentiation process by specifying an initial condition

¥(Xo) = Yo-
This condition means the function y(x) has the value y, when x = x,. The combination of
a differential equation and an initial condition is called an initial value problem. Such
problems play important roles in all branches of science.

The most general antiderivative F(x) + C (such as x* + C in Example 2) of the
function f(x) gives the general solution y = F(x) + C of the differential equation
dy/dx = f(x). The general solution gives all the solutions of the equation (there are infi-
nitely many, one for each value of C). We solve the differential equation by finding its
general solution. We then solve the initial value problem by finding the particular solu-
tion that satisfies the initial condition y(x,) = y,. In Example 2, the function y = x* — 2
is the particular solution of the differential equation dy/dx = 3x? satisfying the initial
condition y(1) = —1.

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and
the derivative of its velocity function gives its acceleration. If we know an object’s accel-
eration, then by finding an antiderivative we can recover the velocity, and from an antide-
rivative of the velocity we can recover its position function. This procedure was used as an
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual
framework in terms of antiderivatives, we revisit the problem from the point of view of
differential equations.

EXAMPLE 5 A hot-air balloon ascending at the rate of 12 ft/sec is at a height 80 ft
above the ground when a package is dropped. How long does it take the package to reach
the ground?

Solution Let v(r) denote the velocity of the package at time #, and let s(¢) denote its
height above the ground. The acceleration of gravity near the surface of the earth is
32 ft/sec?. Assuming no other forces act on the dropped package, we have

d—vz
dt

Negative because gravity acts in the

—32.

direction of decreasing s

This leads to the following initial value problem (Figure 4.54):

. . . dv
Differential equation: a —32
Initial condition: v(0) = 12. Balloon initially rising

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1. Solve the differential equation: The general formula for an antiderivative of —32 is
v=-32t+ C.

Having found the general solution of the differential equation, we use the initial con-
dition to find the particular solution that solves our problem.
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2. Evaluate C:

12 = -32(0) + C Initial condition v(0) = 12
C =12
The solution of the initial value problem is
v =—-32r+ 12.

Since velocity is the derivative of height, and the height of the package is 80 ft at time
t = 0 when it is dropped, we now have a second initial value problem:

. . . ds
Differential equation: E = =32t + 12 Set v = ds/dt in the previous equation.
Initial condition: s(0) = 80.

We solve this initial value problem to find the height as a function of ¢.
1. Solve the differential equation: Finding the general antiderivative of —32¢ + 12 gives
s = —16* + 121 + C.

2. Evaluate C:
80 = —16(0)> + 12(0) + C Initial condition s(0) = 80
C = 80.
The package’s height above ground at time ¢ is
s = —1617 + 12t + 80.

Use the solution: To find how long it takes the package to reach the ground, we set s
equal to 0 and solve for #:
—16t> + 12t + 80 = 0
=42 + 3t + 20 = 0
-3 + V329

= -3 Quadratic formula

t = —1.89, t = 2.64.

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-
ative root has no physical meaning.) |

Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function f.

DEFINITION The collection of all antiderivatives of f is called the indefinite
integral of f with respect to x, and is denoted by

/ fx) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand function is always
followed by a differential to indicate the variable of integration. We will have more to say
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about why this is important in Chapter 5. Using this notation, we restate the solutions of

Example 1, as follows:
/ 2xdx = x* + C,

/cosxdx =sinx + C,

/()lc + Zezx) dx = ln’x‘ + ¥ + C.

This notation is related to the main application of antiderivatives, which will be explored
in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite sums,
an unexpected and wonderfully useful role that is described in a central result of Chapter 5,
called the Fundamental Theorem of Calculus.

EXAMPLE 6 Evaluate
/(x2 — 2x + 5)dx.

Solution If we recognize that (x*/3) — x> 4+ 5x is an antiderivative of x> — 2x + 5,
we can evaluate the integral as
antiderivative
—_——

3

/(x2—2x+5)dx=);—x2+5x+C.
&

arbitrary constant

If we do not recognize the antiderivative right away, we can generate it term-by-term
with the Sum, Difference, and Constant Multiple Rules:

/(xz—2x+5)dx=/x2dx—/2xdx+/5dx
=/x2dx—2/xdx+5/ldx

3 2
(x + Cl) - 2()‘2 - C2) +5(x + Cy)

x3

=§+C1—x2—2C2+5x+5C3.

This formula is more complicated than it needs to be. If we combine C;, —2C,, and 5C;
into a single arbitrary constant C = C; — 2C, + 5C;j, the formula simplifies to

3
% -x*+5x+C
and still gives all the possible antiderivatives there are. For this reason, we recommend that
you go right to the final form even if you elect to integrate term-by-term. Write

/(x2—2x+5)dx=/x2dx—/2xdx+/5dx
3

%—x2+5x+C.

Find the simplest antiderivative you can for each part and add the arbitrary constant of
integration at the end. |



Exercises m

Finding Antiderivatives
In Exercises 1-24, find an antiderivative for each function. Do as
many as you can mentally. Check your answers by differentiation.

1. a.
2. a.

3. a.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

2x
6x

,3x74

L2703

. —7T sin 77X

. T COS TTX

2

. sectx
. csc?x
. CSC X cOt X

. Sec x tan x

e3x

e 2x

.3

b.
b.
b. x

. —csc Sx cot Sx

. 4 sec 3x tan 3x

T2+ 1)

. X2+ 2

Finding Indefinite Integrals
In Exercises 25-70, find the most general antiderivative or indefinite
integral. You may need to try a solution and then adjust your guess.
Check your answers by differentiation.

C.

C.

C.

C.

C.

C.

X2 —2x+1
x’ —6x + 8
X4+ 2x+3

P+ x -1

.2 -

. sin 7mx — 3 sin 3x

X
. COS - + mcosx

2
) 3x

. —SeC” -

2

. 1 — 8csc?2x

X mX
—17T CSC —5~ cot ——

2 2

sec ™ tan T*
2 2

. e?
. e*x/S

()

25

27.

29

31.

33.

35

37

39

41.

43

45

47

49.

51.

53

55

56

57

59.

61.

63

. /(x+ 1) dx
/(312 +%)dt

. /(2)c3 — 5x + 7)dx

1, 1
——-x—-3)d
JG-r-3)a

/x’1/3dx

./(\/;+ V3) de
Sl 2
. /2x(1 — xdx

/t\/t+\/tdt

12

. /(—2 cos t) dt

. / 7 sin g de

. /(—3 csc? x) dx
csc 6 cot 6

/ 2 do

/ (€ + 5¢) dx

. / (e™ + 4%dx

26,

30,

32.

34.

36.

38.

40,

42

44

46

48.

50.

52

54

. /(4secxtanx — 2sec?x) dx

. /%(csczx — csc x cot x) dx

. /(sin 2x — csc?x) dx

1 + cos 4t
===

. / 3xV3 dx

1 5
/(x x2+1>dx

58

60.

64.

4.8 Antiderivatives

. /(5 — 6x) dx
Lian)a
: 2

. /(l—x2—3x5)dx
/(%—)%+2x)dx

/x*S/“dx
05 )
JG-7)e

. /x*3(x + 1) dx

./4+\/;dt

3

. /(—SSint)dt

./3cos50d0
sec? x

[(-557)a

/gseCOtanOdH

5

. /(Zex — 3¢ %) dx

. /(1.3)-* dx

287

. /(2 cos 2x — 3 sin 3x) dx

1 — cos 6¢
=

2 1
/( l—yz_yl/4 4

V21 gy
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84. Right, or wrong? Say which for each formula and give a brief
65. /(1 + tan® 0) df 66. /(2 + tan® 0) df reason for each answer.
3
(Hint: 1 + tan? 0 = sec? 0) a. / tan 0 sec? 0d6 = % +C
2 — o2
67. /cot xdx 68. /(1 cot? x) dx b, /tanBsec26d9 _ %tanze e

(Hint: 1 + cot> x = csc? x)
c. tan 6 sec2 0dh = 1 sec’ + C
csc O 2

69. / cos O (tan 6 + sec 6) do 70. /m -

. Right, or wrong? Say which for each formula and give a brief

. e reason for each answer.
Checking Antiderivative Formulas

, : ) . - (2x +1)
Verify the formulas in Exercises 71-82 by differentiation. 2x + 1)*dx + C
Tx — 2)*
71. /(7x 2)° dx (x )+c

B Gx + 5!
72, [Gr+ 5 tdx= g+ C

b. /3(2x + 1)?dx=Q2x+ 1)+ C

c. /6(2x + 1)?dx=Q2x+ 1)+ C

1
2 _ -1 _
73. / sec” (5x — D dx 5 tanGx — 1) + € 86. Right, or wrong? Say which for each formula and give a brief

reason for each answer.

-1 x—1
74. 2(% dx = =3 cot > +C
/CSC( 3 )x CO< 3 a./\/2x+1dx=\/x2+x+C
75 / ! dx = — ! +C
T e+ 12 x+1 b./\/2x+1dx=\/x2+x+c
76 / L =2 1c¢
) o+ 12 x+ 1 /\/2x+ dx—*<\/2x+1)3+C
77, / : dc=In|x+ 1] +C x#-1 87. Right, or wrong? Give a brief reason why.
+
15(x + 3)° 3
/ « 4)dx:(xt;) +c
78./xexdx=xexfe"+c =2 X
88. Right, or wrong? Give a brief reason why.
79, rdfxz = étanfl (g) +C /x cos (x?) 2— sin (x?) e — sin;xz) s
X
dx . (X
80. pr— = sin”! (E) +C Initial Value Problems
89. Which of the following graphs shows the solution of the initial
* ] -1
3. / tan2 X = Inx — %ln 1+ ) - tanx X,c value problem
X
d
dﬁ 2, y=4whenx = 1?
82. /(sin’1 x)?dx = x(sin”' x)? — 2x + 2V1 — ®sin'x + C
y y y
83. Right, or wrong? Say which for each formula and give a brief
reason for each answer.
2
a. /xsinxdx=%sinx+C 4 9(L4) 4 Aaa 4 0,4
3 ~ 3 3 ~
b. /xsinxdx=—xcosx+C 2r 2 2
1+ 1+ 1+
c. /xsinxdx=—xcosx+sinx+C 7'1 0 i X 7'1 0 i X 1 O_i_)x
(a) (b) ©

Give reasons for your answer.



90. Which of the following graphs shows the solution of the initial
value problem

o = 1 whenx = —1?
go = % ¥ = lwhenx=—1?

(a) (b) (©

Give reasons for your answer.

Solve the initial value problems in Exercises 91-112.

91 dl—2 7 2)=0
i A (O
92. % _ 19 0)=-1
S x, y(0) =
03. 2L a0 =1
Tdx 2 ’ -
94 ﬂ:9x2—4x+5 -1 =0
" dx oY
dy )
AP, Vi 1) = —
95. e 375, y(=1) 5
dy 1
96. — = , Y4 =0
dr ~ oy T
ds o
97. dt—l-i—cost, s(0) = 4
98 @=cost+sint s(m) =1
Cdt ’
dr _ . .
99'd70_ sinh, r(0) =0
dr -
100. de—cosw@, r0) =1
101.dl=lsecztant, v(0) =1
t 2
102. ¥ = 8 4 csc?r, o T) = -7
" odt ’ 2
dv 3
103. & = —F—~——, > 1,v2) =0
P -1
dv _ 8 2 _
104. dt—1+t2+sec t, v0) =1
d?y
105. =2-6x; y'(0)=4, y0) =1

e
d’y _ o _
106.5—0; y'(0)=2, y0)=0
d72r

=2 d -
107.° 5 =50 gl =L =1
d’s _ 3t ds| _ _
108. © 5 =50 g, =3 s@ =4
d?y

109. PR 6; y'(0)=-8 y(0) =0 y0)=5
X
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3

110. 2% — o, 070)= -2, 00)=—1 00 =2
ar 2

111. y = —sint + cos t;

Y'(0) =17, y'(0)=y(0)=-1, y0)=0
112. y® = —cosx + 8 sin 2x;
y"(0) =0, y'(0)=y(0) =1 y0)=3
113. Find the curve y = f(x) in the xy-plane that passes through the
point (9, 4) and whose slope at each point is 3V
114. a. Find a curve y = f(x) with the following properties:
d?y
i) o 6x
ii) Its graph passes through the point (0, 1) and has a hori-
zontal tangent there.

b. How many curves like this are there? How do you know?

Solution (Integral) Curves

Exercises 115-118 show solution curves of differential equations. In
each exercise, find an equation for the curve through the labeled point.
115. 116.

y L x—1

NG o

117.

£\

119. Finding displacement from an antiderivative of velocity

(]

|
S]

a. Suppose that the velocity of a body moving along the s-axis is

% =v =98— 3.
i) Find the body’s displacement over the time interval from
t=1tot = 3giventhats = 5 when ¢ = 0.
ii) Find the body’s displacement from r = 1 to t = 3 given
that s = —2 when t = 0.
iii) Now find the body’s displacement from r = 1 to r = 3
given that s = s, when t = 0.
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120.

121.

122.

123.

124.

125.
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b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time . Is it true that
once you know an antiderivative of the velocity function
ds/dt you can find the body’s displacement from ¢ = a to
t = b even if you do not know the body’s exact position at
either of those times? Give reasons for your answer.

Liftoff from Earth A rocket lifts off the surface of Earth with
a constant acceleration of 20 m/sec?. How fast will the rocket
be going 1 min later?

Stopping a car in time You are driving along a highway at a
steady 60 mph (88 ft/sec) when you see an accident ahead
and slam on the brakes. What constant deceleration is required
to stop your car in 242 ft? To find out, carry out the following
steps.

1. Solve the initial value problem

2

Differential equation: ? =—k

> (k constant)
t

ds
dr

88ands = Owhent = 0.

Measuring time and distance from
when the brakes are applied

2. Find the value of 7 that makes ds/dt = 0. (The answer will
involve k.)

3. Find the value of k that makes s = 242 for the value of 7 you
found in Step 2.

Initial conditions:

Stopping a motorcycle The State of Illinois Cycle Rider
Safety Program requires motorcycle riders to be able to brake
from 30 mph (44 ft/sec) to 0 in 45 ft. What constant decelera-
tion does it take to do that?

Motion along a coordinate line A particle moves on a coordi-
nate line with acceleration a = d2/dr* = 15Vt — (3/V41),
subject to the conditions that ds/dt = 4 and s = 0 when ¢ = 1.
Find

a. the velocity v = ds/drt in terms of ¢

b. the position s in terms of 7.

The hammer and the feather When Apollo 15 astronaut
David Scott dropped a hammer and a feather on the moon to
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the
ground. The television footage of the event shows the hammer
and the feather falling more slowly than on Earth, where, in a
vacuum, they would have taken only half a second to fall the 4
ft. How long did it take the hammer and feather to fall 4 ft on the
moon? To find out, solve the following initial value problem for
s as a function of ¢. Then find the value of ¢ that makes s equal to 0.

2

Differential equation: % = —5.2 ft/sec?

ds
dt

Initial conditions: Oands = 4 whent = 0
Motion with constant acceleration The standard equation for
the position s of a body moving with a constant acceleration a
along a coordinate line is

a

s = Etz + vt + 5, (1)

126.

127.

128.

where v, and s, are the body’s velocity and position at time
t = 0. Derive this equation by solving the initial value problem

2

Differential equation: % =a

ds
dt

Initial conditions: =vyyand s = sywhent = 0.

Free fall near the surface of a planet For free fall near the
surface of a planet where the acceleration due to gravity has a
constant magnitude of g length-units/sec?, Equation (1) in Exer-
cise 125 takes the form

s = *%gtz + vt + 5, 2)

where s is the body’s height above the surface. The equation has
a minus sign because the acceleration acts downward, in the
direction of decreasing s. The velocity v is positive if the object
is rising at time # = 0 and negative if the object is falling.
Instead of using the result of Exercise 125, you can derive
Equation (2) directly by solving an appropriate initial value
problem. What initial value problem? Solve it to be sure you
have the right one, explaining the solution steps as you go along.

Suppose that

fx) = %(1 - Vx) and g = %(x +2).

b. / g(x) dx

0 [1-swax

Find:

a. /f(x) dx

c. /[—f(X)] dx

e /[f(x) + g(x)] dx f. /[f(X) — g(x)] dx

Uniqueness of solutions If differentiable functions y = F(x)
and y = g(x) both solve the initial value problem

dy

e f), (o) = Yo,

on an interval 7, must F(x) = G(x) for every x in I? Give reasons
for your answer.

COMPUTER EXPLORATIONS
Use a CAS to solve the initial value problems in Exercises 129-132.
Plot the solution curves.

129.

130.

131.

132.

y = cos’x + sinx, y(m) =1

, 1

y=xtx y=-1

Y= 30 =2
V7

n 2 !
Y =5+ Va y1)=0, y(1)=0
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Chapter 4 Practice Exercises

Chapterm Questions to Guide Your Review

1.

10.

11.

12.

13.

What can be said about the extreme values of a function that is
continuous on a closed interval?

. What does it mean for a function to have a local extreme value on

its domain? An absolute extreme value? How are local and abso-
lute extreme values related, if at all? Give examples.

. How do you find the absolute extrema of a continuous function

on a closed interval? Give examples.

. What are the hypotheses and conclusion of Rolle’s Theorem? Are

the hypotheses really necessary? Explain.

. What are the hypotheses and conclusion of the Mean Value Theo-

rem? What physical interpretations might the theorem have?

. State the Mean Value Theorem’s three corollaries.

. How can you sometimes identify a function f(x) by knowing f’

and knowing the value of f at a point x = x,? Give an example.

. What is the First Derivative Test for Local Extreme Values? Give

examples of how it is applied.

. How do you test a twice-differentiable function to determine

where its graph is concave up or concave down? Give examples.
What is an inflection point? Give an example. What physical sig-
nificance do inflection points sometimes have?

What is the Second Derivative Test for Local Extreme Values?
Give examples of how it is applied.

What do the derivatives of a function tell you about the shape of
its graph?

List the steps you would take to graph a polynomial function.
Illustrate with an example.

Chapterm Practice Exercises

Extreme Values

1.

Does f(x) = x> + 2x + tan x have any local maximum or mini-
mum values? Give reasons for your answer.

Does g(x) = cscx + 2 cotx have any local maximum values?
Give reasons for your answer.

Does f(x) = (7 + x)(11 — 3x)"/?> have an absolute minimum
value? An absolute maximum? If so, find them or give reasons
why they fail to exist. List all critical points of f.

Find values of a and b such that the function

has a local extreme value of 1 at x = 3. Is this extreme value a
local maximum, or a local minimum? Give reasons for your
answer.

Does g(x) = ¢* — x have an absolute minimum value? An abso-

lute maximum? If so, find them or give reasons why they fail to
exist. List all critical points of g.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

6.

What is a cusp? Give examples.

List the steps you would take to graph a rational function. Illus-
trate with an example.

Outline a general strategy for solving max-min problems. Give
examples.

Describe 1I’'Hopital’s Rule. How do you know when to use the rule
and when to stop? Give an example.

How can you sometimes handle limits that lead to indeterminate
forms 00/00, 00+ 0, and 00 — 00? Give examples.

How can you sometimes handle limits that lead to indeterminate
forms 1%, 0°, and 00™? Give examples.

Describe Newton’s method for solving equations. Give an example.
What is the theory behind the method? What are some of the
things to watch out for when you use the method?

Can a function have more than one antiderivative? If so, how are
the antiderivatives related? Explain.

What is an indefinite integral? How do you evaluate one? What
general formulas do you know for finding indefinite integrals?

How can you sometimes solve a differential equation of the form
dy/dx = f(x)?

What is an initial value problem? How do you solve one? Give an
example.

If you know the acceleration of a body moving along a coordinate
line as a function of time, what more do you need to know to find
the body’s position function? Give an example.

Does f(x) = 2¢°/(1 + x?) have an absolute minimum value? An
absolute maximum? If so, find them or give reasons why they fail
to exist. List all critical points of f.

In Exercises 7 and 8, find the absolute maximum and absolute mini-
mum values of f over the interval.

7.
8.
9.

10.

fx)=x—2Inx, 1=x=3
f(x) = 4/x) + Inx%,
The greatest integer function f(x) = | x|, defined for all values
of x, assumes a local maximum value of 0 at each point of [0, 1).

Could any of these local maximum values also be local minimum
values of f? Give reasons for your answer.

l=x=4

a. Give an example of a differentiable function f whose first
derivative is zero at some point ¢ even though f has neither a
local maximum nor a local minimum at c.

b. How is this consistent with Theorem 2 in Section 4.1? Give
reasons for your answer.



292

11.

12.

13.

14.
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The function y = 1/x does not take on either a maximum or a
minimum on the interval 0 < x < 1 even though the function is
continuous on this interval. Does this contradict the Extreme
Value Theorem for continuous functions? Why?

What are the maximum and minimum values of the function
y = |x| on the interval —1 = x < 1? Notice that the interval is
not closed. Is this consistent with the Extreme Value Theorem for
continuous functions? Why?

A graph that is large enough to show a function’s global behavior
may fail to reveal important local features. The graph of f(x) =
(x3/8) — (x°/2) — x> + 5x3 is a case in point.

a. Graph f over the interval —2.5 = x = 2.5. Where does the
graph appear to have local extreme values or points of inflec-
tion?

b. Now factor f'(x) and show that f has a local maximum at
x=V/5 = 1.70998 and local minima at x = +\/3 =

+1.73205.

¢. Zoom in on the graph to find a viewing window that shows
the presence of the extreme values at x = V5 and x = V3.

The moral here is that without calculus the existence of two
of the three extreme values would probably have gone unnoticed.
On any normal graph of the function, the values would lie close
enough together to fall within the dimensions of a single pixel on
the screen.

(Source: Uses of Technology in the Mathematics Curricu-
lum, by Benny Evans and Jerry Johnson, Oklahoma State Univer-
sity, published in 1990 under a grant from the National Science
Foundation, USE-8950044.)

(Continuation of Exercise 13.)

a. Graph f(x) = (x%/8) — (2/5)x> — 5x — (5/x%) + 11 over
the interval =2 = x = 2. Where does the graph appear to
have local extreme values or points of inflection?

b. Show that f has a local maximum value at x = V/5 = 1.2585
and a local minimum value at x = V2 =~ 1.2599.

¢. Zoom in to find a viewing window that shows the presence of
the extreme values at x = V/5 and x = V2.

The Mean Value Theorem

15.

16.

17.

Tb.

18.

19.

a. Show that g(f) = sin? t — 3t decreases on every interval in its
domain.

b. How many solutions does the equation sin’s — 3¢t = 5 have?
Give reasons for your answer.

a. Show that y = tan 6 increases on every open interval in its
domain.

b. If the conclusion in part (a) is really correct, how do you
explain the fact that tan 77 = 0 is less than tan (7 /4) = 1?

a. Show that the equation x* + 2x> — 2 = 0 has exactly one
solutionon [0, 1].

Find the solution to as many decimal places as you can.

a. Show that f(x) = x/(x + 1) increases on every open interval
in its domain.

b. Show that f(x) = x* + 2x has no local maximum or mini-
mum values.

Water in a reservoir  As a result of a heavy rain, the volume of
water in a reservoir increased by 1400 acre-ft in 24 hours. Show

20.

21.

22.

that at some instant during that period the reservoir’s volume was
increasing at a rate in excess of 225,000 gal/min. (An acre-foot
is 43,560 ft3, the volume that would cover 1 acre to the depth of
1 ft. A cubic foot holds 7.48 gal.)

The formula F(x) = 3x + C gives a different function for each
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely F’(x) = 3. Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any
others? Give reasons for your answers.

Show that
daf x \_df__1
dx\x + 1 dx\ x+1

X 1
x+1 x+ 1

even though

Doesn’t this contradict Corollary 2 of the Mean Value Theorem?
Give reasons for your answer.

Calculate the first derivatives of f(x) = x*/(x> + 1) and g(x) =

—1/(x* 4+ 1). What can you conclude about the graphs of these
functions?

Analyzing Graphs
In Exercises 23 and 24, use the graph to answer the questions.

23.

24.

Identify any global extreme values of f and the values of x at
which they occur.

Estimate the open intervals on which the function y = f(x) is
a. increasing.
b. decreasing.

c. Use the given graph of f' to indicate where any local extreme
values of the function occur, and whether each extreme is a
relative maximum or minimum.

<

2.3)

Each of the graphs in Exercises 25 and 26 is the graph of the position
function s = f(¢) of an object moving on a coordinate line (¢ represents
time). At approximately what times (if any) is each object’s (a) velocity
equal to zero? (b) Acceleration equal to zero? During approximately
what time intervals does the object move (c¢) forward? (d) Backward?



Graphs and Graphing
Graph the curves in Exercises 27-42.

27.
29.
30.
31.
33.
35.
37.
39.

41.

y=x*— (x*/6)
y=-—x+6x2—-9x+3

28. y=x*—-3x>+3

y=(1/8)x* + 3x* — 9x — 27)

y=x3(8 — x) 32. y =x} (22> - 9)
y=x— 32 34. y=x"x — 4
y = x\V3 —x 36. y = xV4 — 22
y = (x — 3)%e* 38. y=xe
y=1In(x* — 4x + 3) 40. y = In(sin x)

y = sin”! (%) 42, y = tan™! (%)

Each of Exercises 43-48 gives the first derivative of a function
y = f(x). (a) At what points, if any, does the graph of f have a local
maximum, local minimum, or inflection point? (b) Sketch the general

shape of the graph.
43. y' =16 — x* 4. y =x>—x—6
45. y' = 6x(x + D(x — 2) 46. y' = x*(6 — 4x)

47.

y o= x*t— 2x? 48. y' = 4x? — x*

In Exercises 49-52, graph each function. Then use the function’s first
derivative to explain what you see.

49.
51.

y=x+@x- DA
y=x"+@x- D7

50. y = x¥3 + (x — 1?8
52 y=xP — (x = DS

Sketch the graphs of the rational functions in Exercises 53-60.

53.

y=$ 56.y=)672_;;+1
y:x324/;2 58, y:x“x;l
y=iz:§ 60'y:x2x_24

Using L'Hopital’s Rule
Use I’Hopital’s Rule to find the limits in Exercises 61-72.

2 _ a __
61. lim* X 4 62. lim* 1
x—1 X — 1 —1 Xb -1
. tanx . tan x
63. )}LILIT X 64. }E) x + sinx
L .
65. lim ~ <X 66. lim S7*

67.

=0 tan(x?) x—0 sin nx

lim sec 7x cos 3x
x— /2"

68. linol+ Vx sec x

69.

71.

72.
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. 1 1
70. 1135(; - *)

lim(\/x2 +x+1 -V —x)
x—00

i)
I .
S\ -1 2+

lim (cscx — cotx)
x—0

Find the limits in Exercises 73—-84.

.10 =1 30—
73. igr(l) X 74. ;gr(l) 0
. 2sinx -1 . zfsinx -1
s im 76 Im =
.5 —5cosx .4 — 4ef
L 78 lim e
o t—In(1 + 20 sin?(7x)
79. lim ————— 80. lim———F———
—0" 12 =4+ 3 — x
. e 1 S
81. tll)I(I)1+ <7 - ?) 82. ylig)he /y Iny
. b\ : 2, 7
83. )}Lrgo(l + x> 84. JLrgo<l + 5T x2>
Optimization
85. The sum of two nonnegative numbers is 36. Find the numbers if

86.

87.

88.

89.

90.

a. the difference of their square roots is to be as large as possible.
b. the sum of their square roots is to be as large as possible.
The sum of two nonnegative numbers is 20. Find the numbers

a. if the product of one number and the square root of the other
is to be as large as possible.

b. if one number plus the square root of the other is to be as
large as possible.

An isosceles triangle has its vertex at the origin and its base paral-
lel to the x-axis with the vertices above the axis on the curve
y = 27 — x°. Find the largest area the triangle can have.

A customer has asked you to design an open-top rectangular
stainless steel vat. It is to have a square base and a volume of
32 ft3, to be welded from quarter-inch plate, and to weigh no
more than necessary. What dimensions do you recommend?

Find the height and radius of the largest right circular cylinder
that can be put in a sphere of radius V3.

The figure here shows two right circular cones, one upside down
inside the other. The two bases are parallel, and the vertex of the
smaller cone lies at the center of the larger cone’s base. What
values of r and h will give the smaller cone the largest possible
volume?
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91.

92,

93.

94.
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Manufacturing tires Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where
O0=x=4and

_ 40 — 10x
5—x "

Your profit on a grade A tire is twice your profit on a grade B tire.
What is the most profitable number of each kind to make?

Particle motion The positions of two particles on the s-axis are
sy = costand s, = cos(t + 7/4).

a. What is the farthest apart the particles ever get?
b. When do the particles collide?

Open-top box An open-top rectangular box is constructed from
a 10-in.-by-16-in. piece of cardboard by cutting squares of equal
side length from the corners and folding up the sides. Find ana-
Iytically the dimensions of the box of largest volume and the
maximum volume. Support your answers graphically.

The ladder problem What is the approximate length (in feet)
of the longest ladder you can carry horizontally around the corner
of the corridor shown here? Round your answer down to the near-
est foot.

(8,6)

Newton’s Method
95. Let f(x) = 3x — x>. Show that the equation f(x) = —4 has a

solution in the interval [ 2, 3 ] and use Newton’s method to find it.

96. Let f(x) = x* — x>. Show that the equation f(x) = 75 has a solu-

tion in the interval [ 3, 4 ] and use Newton’s method to find it.

Finding Indefinite Integrals

Find the indefinite integrals (most general antiderivatives) in Exer-
cises 97-120. You may need to try a solution and then adjust your
guess. Check your answers by differentiation.

97.

2
/(x3+5x—7)dx 98./(8t3—%+t)dt

4 13
99. / (3% + zZ) dr 100. / (2 N7 t4) dt
dr 6dr
101. 102, [ —F—
[t /(r— Vay

103. /30\/02 + 1d6 104

/Ldﬂ
VTt e

105. /x3(1 + x4 ax 106. /(2 — x)¥5 dx

107. /secz%ds 108. /CSCz’iTS ds

109./ csc V26 cot V26 df 110. /sec%tan%d@
111. /sinzﬁdx
112. /Cosz)zfcdx
3

113. /(; — x>dx
115 le’ — e |dt

. 2
117. /0“”519

3
119. | ——F——dx
/2xVx2 -1

Initial Value Problems
Solve the initial value problems in Exercises 121-124.

d 2
21 2=l gy -
X

(Hinz: sin?6 = #)

114./<§+ 2 >dx
2 2+

116. /(5-‘ + 5%)ds

118. / 27 dr

db
120. /7
V16 — 62

dx —
dy 1\
122.&— (x-i—;), y1) =1
d*r 3
123. YL = 15vi+ = (1) =8, r(1)=0
v NS r(1)
d’r
124. ° % = —cos s 70 = F(0) =0, r(0)=—1

Applications and Examples
125. Can the integrations in (a) and (b) both be correct? Explain.

=sinlx + C

a/ dx
V1 — 22

—cos'x + C

b /L=_/_L=
) V1 —x? V1 - x?

126. Can the integrations in (a) and (b) both be correct? Explain.

=—coslx+C

a /L:_/_L
V1 — x2 V1 — x?
X = U

b / dx :/ —du
. m m dx du

/ —du
V1 — u?
=cos'u+C

=cos'(—x) + C u=—x

127. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex



on the curve y = ¢*. What dimensions give the rectangle its
largest area, and what is that area?

0

128. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve y = (In x)/x% What dimensions give the rectangle
its largest area, and what is that area?

X y:m
L~
0.1k

o 1l
In Exercises 129 and 130, find the absolute maximum and minimum

values of each function on the given interval.

_ _ 1 e
129. y = xIn2x — x, [26,2}

130. y = 10x(2 — Inx), (0, €*]

In Exercises 131 and 132, find the absolute maxima and minima of
the functions and say where they are assumed.

131. f(x) = &/V¥'+!
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132. g(x) = V3=

133. Graph the following functions and use what you see to locate

and estimate the extreme values, identify the coordinates of the
inflection points, and identify the intervals on which the graphs
are concave up and concave down. Then confirm your estimates
by working with the functions’ derivatives.

a. y=(Inx)/ Vi

b. y = e

c. y=0{0+xe™*

134. Graph f(x) = x In x. Does the function appear to have an abso-

lute minimum value? Confirm your answer with calculus.

135. Graph f(x) = (sin x)*"* over [0, 37 ]. Explain what you see.

136. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes
the ratio of the radius of the core to the thickness of the insula-
tion, it is known that the speed of the transmission signal is
given by the equation v = x? In(1/x). If the radius of the core is
1 cm, what insulation thickness A will allow the greatest trans-
mission speed?

Insulation

=N
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Functions and Derivatives
1. What can you say about a function whose maximum and mini-
mum values on an interval are equal? Give reasons for your
answer.

2. Is it true that a discontinuous function cannot have both an abso-
lute maximum and an absolute minimum value on a closed inter-
val? Give reasons for your answer.

3. Can you conclude anything about the extreme values of a contin-
uous function on an open interval? On a half-open interval? Give
reasons for your answer.

4. Local extrema Use the sign pattern for the derivative

% =6 — D — 2%(x — 3)%(x — 4)*

to identify the points where f has local maximum and minimum
values.
5. Local extrema

a. Suppose that the first derivative of y = f(x) is
vy =6(x + Dx — 2)%

At what points, if any, does the graph of f have a local maxi-
mum, local minimum, or point of inflection?

b. Suppose that the first derivative of y = f(x) is
vy = 6x(x + D(x — 2).
At what points, if any, does the graph of f have a local maxi-
mum, local minimum, or point of inflection?

6. If f'(x) = 2 for all x, what is the most the values of f can
increase on [0, 6] ? Give reasons for your answer.

7. Bounding a function Suppose that f is continuous on [a, b |
and that ¢ is an interior point of the interval. Show that if
f'(x) =0on [a,c) and f'(x) = 0 on (c, b], then f(x) is never
less than f(c) on [a, b].

8. An inequality
a. Show that —1/2 = x/(1 + x?) = 1/2 for every value of x.

b. Suppose that f is a function whose derivative is f'(x) =
x/(1 + x?). Use the result in part (a) to show that

) = f@| = 316 —

for any a and b.
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9. The derivative of f(x) = x? is zero at x = 0, but f is not a con-
stant function. Doesn’t this contradict the corollary of the Mean
Value Theorem that says that functions with zero derivatives are
constant? Give reasons for your answer.

10. Extrema and inflection points Let 7 = fg be the product of
two differentiable functions of x.

a. If f and g are positive, with local maxima at x = a, and if f’
and g’ change sign at a, does /& have a local maximum at a?

b. If the graphs of f and g have inflection points at x = a, does
the graph of / have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no,
give a counterexample.
11. Finding a function Use the following information to find the

values of a, b, and ¢ in the formula f(x) = (x + a)/
(bx* + cx + 2).

i) The values of a, b, and c are either O or 1.
ii) The graph of f passes through the point (—1, 0).
iii) The line y = 1 is an asymptote of the graph of f.
12. Horizontal tangent For what value or values of the constant k

will the curve y = x> + kx> + 3x — 4 have exactly one horizon-
tal tangent?

Optimization

13. Largest inscribed triangle Points A and B lie at the ends of a
diameter of a unit circle and point C lies on the circumference. Is
it true that the area of triangle ABC is largest when the triangle is
isosceles? How do you know?

14. Proving the second derivative test The Second Derivative
Test for Local Maxima and Minima (Section 4.4) says:

a. f has alocal maximum value at x = ¢ if f'(¢) = 0 and
e <0
b. f has alocal minimum value at x = c if f'(¢) = 0 and
f'(c) > 0.
To prove statement (a), let € = (1/2)| f”(c)\. Then use the fact
that

flle+h) —f© . fl+h
= lim

i) = Jim i L
to conclude that for some 6 > 0,
f'lc +h)
0<|hl <8§ = T<f"(c)+e<0.

Thus, f'(c + h) is positive for —6 < h < 0 and negative for
0 < h < §. Prove statement (b) in a similar way.

15. Hole in a water tank You want to bore a hole in the side of the
tank shown here at a height that will make the stream of water
coming out hit the ground as far from the tank as possible. If you
drill the hole near the top, where the pressure is low, the water
will exit slowly but spend a relatively long time in the air. If you
drill the hole near the bottom, the water will exit at a higher
velocity but have only a short time to fall. Where is the best place,
if any, for the hole? (Hint: How long will it take an exiting drop-
let of water to fall from height y to the ground?)

16.

17.

Tank kept full, y
top open

= Y
/Exit velocity = \/64(h — y)

r ~ Ground

v —
Range

Kicking a field goal An American football player wants to kick
a field goal with the ball being on a right hash mark. Assume that
the goal posts are b feet apart and that the hash mark line is a dis-
tance a > 0 feet from the right goal post. (See the accompanying
figure.) Find the distance / from the goal post line that gives the
kicker his largest angle 8. Assume that the football field is flat.

Goal posts

b a Goal post line

Football

A max-min problem with a variable answer Sometimes the
solution of a max-min problem depends on the proportions of the
shapes involved. As a case in point, suppose that a right circular
cylinder of radius r and height 4 is inscribed in a right circular
cone of radius R and height H, as shown here. Find the value of r
(in terms of R and H) that maximizes the total surface area of the
cylinder (including top and bottom). As you will see, the solution
depends on whether H = 2R or H > 2R.




18.

Minimizing a parameter Find the smallest value of the posi-
tive constant m that will make mx — 1 + (1/x) greater than or
equal to zero for all positive values of x.

Limits

19.

20.

Evaluate the following limits.

. 2sin 5x L.
a. lim—— b. limsin 5x cot 3x
x—0 3x x—0
c. limxcsc®V2x d. lim (secx — tanx)
x—0 x—7/2
. x —sinx sin x?
e. lim—— f. im-——
r—0X — tanx x—0 X SIn X
3
. secx — 1 .ox>— 8
g lim——— h.  lim =
x—0 X =2 xc— 4

L’Hopital’s Rule does not help with the following limits. Find
them some other way.

Vx+5 2

b. lim——

. X
a. lim
=%y + TV/x

=0y + 5

Theory and Examples

21.

22,

23.

24.

Suppose that it costs a company y = a + bx dollars to produce x
units per week. It can sell x units per week at a price of
P = ¢ — exdollars per unit. Each of a, b, ¢, and e represents a
positive constant. (a) What production level maximizes the
profit? (b) What is the corresponding price? (¢) What is the
weekly profit at this level of production? (d) At what price should
each item be sold to maximize profits if the government imposes
a tax of ¢ dollars per item sold? Comment on the difference
between this price and the price before the tax.

Estimating reciprocals without division You can estimate the

value of the reciprocal of a number a without ever dividing by a if

you apply Newton’s method to the function f(x) = (1/x) — a.

For example, if @ = 3, the function involved is f(x) = (1/x) — 3.

a. Graph y = (1/x) — 3. Where does the graph cross the
x-axis?

b. Show that the recursion formula in this case is
Xn+1 = -xn(2 - 3xn)’

so there is no need for division.

To find x = Va, we apply Newton’s method to f(x) = x? — a.
Here we assume that a is a positive real number and ¢ is a posi-
tive integer. Show that x; is a “weighted average” of x, and
a/xy?"!, and find the coefficients my, m, such that

_a
quil ’

What conclusion would you reach if x, and a/xy?"! were equal?
What would be the value of x; in that case?

my > 0,m; >0,

x1:m0x0+m1< mo + my = 1
1_ .

The family of straight lines y = ax + b (a, b arbitrary constants)
can be characterized by the relation y” = 0. Find a similar rela-
tion satisfied by the family of all circles

(x — h)?> + - h)? = r?,

where h and r are arbitrary constants. (Hint: Eliminate & and r
from the set of three equations including the given one and two
obtained by successive differentiation.)

25.

27.

28.

29.

30.

31.

32.

33.

Chapter 4 Additional and Advanced Exercises 297

Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316-1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as
a body that had fallen 10 ft. And besides, none of the instruments
in use at the time were accurate enough to prove otherwise.
Today we can see just how far off Albert of Saxony’s model was
by solving the initial value problem implicit in his model. Solve
the problem and compare your solution graphically with the
equation s = 1672 You will see that it describes a motion that
starts too slowly at first and then becomes too fast too soon to be
realistic.

. Group blood testing During World War II it was necessary to

administer blood tests to large numbers of recruits. There are two
standard ways to administer a blood test to N people. In method 1,
each person is tested separately. In method 2, the blood samples
of x people are pooled and tested as one large sample. If the test is
negative, this one test is enough for all x people. If the test is posi-
tive, then each of the x people is tested separately, requiring a
total of x + 1 tests. Using the second method and some probabil-
ity theory it can be shown that, on the average, the total number

of tests y will be
1
y=N1-g"+1)

With g = 0.99 and N = 1000, find the integer value of x that mini-
mizes y. Also find the integer value of x that maximizes y. (This
second result is not important to the real-life situation.) The group
testing method was used in World War II with a savings of 80% over
the individual testing method, but not with the given value of ¢.

Assume that the brakes of an automobile produce a constant
deceleration of k ft/ sec?. (a) Determine what k must be to bring
an automobile traveling 60 mi/hr (88 ft/sec) to rest in a distance
of 100 ft from the point where the brakes are applied. (b) With
the same k, how far would a car traveling 30 mi/hr go before
being brought to a stop?

Let f(x), g(x) be two continuously differentiable functions satis-
fying the relationships f'(x) = g(x) and f"(x) = —f(x). Let
h(x) = f2(x) + g*(x). If h(0) = 5, find A(10).

Can there be a curve satisfying the following conditions? d?y/dx>
is everywhere equal to zero and, when x =0,y =0 and
dy/dx = 1. Give a reason for your answer.

Find the equation for the curve in the xy-plane that passes through
the point (1, —1) if its slope at x is always 3x> + 2.

A particle moves along the x-axis. Its acceleration is @ = —>. At
t = 0, the particle is at the origin. In the course of its motion, it
reaches the point x = b, where b > 0, but no point beyond b.
Determine its velocity at ¢ = 0.

A particle moves with acceleration a = Vi - (1 / \/z) Assum-
ing that the velocity v = 4/3 and the position s = —4/15 when
t =0, find

a. the velocity v in terms of 7.

b. the position s in terms of .

Given f(x) = ax> + 2bx + ¢ with a > 0. By considering the
minimum, prove that f(x) = 0 for all real x if and only if
b* —ac = 0.
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34. Schwarz’s inequality

a. In Exercise 33, let

f@) = (ax + b)* + (apx + b)> + -+ + (a,x + b,)%

and deduce Schwarz’s inequality: A
(ayby + ayby + -+ + a,b,)’ e d
1
= (a?+a’+ - +a2)(b>+ b2+ +b7). a
b. Show that equality holds in Schwarz’s inequality only if there In our model, we assume that AC = a and BC = b are fixed.
exists a real number x that makes a;x equal —b; for every Thus we have the relations

value of i from 1 to n. 4 4 0 4 0— b
+ = i =
35. The best branching angles for blood vessels and pipes When ! 2608 @ @sm ’

a smaller pipe branches off from a larger one in a flow system, we so that
may want it to run off at an angle that is best from some energy-

saving point of view. We might require, for instance, that energy

loss due to friction be minimized along the section AOB shown in dy=a—dycos = a— bcoth.
the accompanying figure. In this diagram, B is a given point to be
reached by the smaller pipe, A is a point in the larger pipe
upstream from B, and O is the point where the branching occurs. a—bcot® bese
A law due to Poiseuille states that the loss of energy due to fric- L= k( R4 4 )

tion " nonturbulent ﬂ(?w is proportional to the length of the Path a. Show that the critical value of 6 for which dL/df equals zero
and inversely proportional to the fourth power of the radius. .

Thus, the loss along AO is (kd;)/R* and along OB is (kd,)/r*, s
where k is a constant, d; is the length of AO, d, is the length of Y
OB, R is the radius of the larger pipe, and r is the radius of the 0. = cos R

smaller pipe. The angle 6 is to be chosen to minimize the sum of b. If the ratio of the pipe radii is r/R = 5/6, estimate to the

these two losses: nearest degree the optimal branching angle given in part (a).

d, = bcsch,

We can express the total loss L as a function of 6:

d

d,
L= kﬁ'l‘k;.

Chapterm Technology Application Projects

Mathematica/Maple Modules:

Motion Along a Straight Line: Position — Velocity — Acceleration

You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and
acceleration. Figures in the text can be animated.

Newton’s Method: Estimate w to How Many Places?

Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired
accuracy. The numbers 7, e, and V2 are approximated.



Integrals

OVERVIEW A great achievement of classical geometry was obtaining formulas for the
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to
calculate the areas and volumes of very general shapes. This method, called integration, is
a way to calculate much more than areas and volumes. The definite integral is the key tool
in calculus for defining and calculating many important quantities, such as areas, volumes,
lengths of curved paths, probabilities, averages, energy consumption, the weights of vari-
ous objects, and the forces against a dam’s floodgates, just to mention a few. Many of
these applications are studied in subsequent chapters.

As with the derivative, the definite integral also arises as a limit, this time of increas-
ingly fine approximations to the quantity of interest. The idea behind the integral is that
we can effectively compute such quantities by breaking them into small pieces, and then
summing the contributions from each piece. We then consider what happens when more
and more, smaller and smaller pieces are taken in the summation process. As the number
of terms contributing to the sum approaches infinity and we take the limit of these sums in
a way described in Section 5.3, the result is a definite integral. By considering the rate of
change of the area under a graph, we prove that definite integrals are connected to anti-
derivatives, a connection that gives one of the most important relationships in calculus.

5. 1 Area and Estimating with Finite Sums

0.5

0

FIGURE 5.1 The area of the
region R cannot be found by a simple
formula.

The basis for formulating definite integrals is the construction of appropriate approxima-
tions by finite sums. In this section we consider three examples of this construction pro-
cess: finding the area under a graph, the distance traveled by a moving object, and the
average value of a function. Although we need to define precisely what we mean by the
area of a general region in the plane, or the average value of a function over a closed inter-
val, we do have intuitive ideas of what these notions mean. So in this section we begin our
approach to integration by approximating these quantities with finite sums. We also con-
sider what happens when we take more and more terms in the summation process. In sub-
sequent sections we look at taking the limit of these sums as the number of terms goes to
infinity, which then leads to precise definitions of the quantities being approximated here.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below
the graph of y = 1 — x2, and between the vertical lines x = 0 and x = 1 (Figure 5.1).
Unfortunately, there is no simple geometric formula for calculating the areas of general
shapes having curved boundaries like the region R. How, then, can we find the area of R?
While we do not yet have a method for determining the exact area of R, we can
approximate it in a simple way. Figure 5.2a shows two rectangles that together contain the

299



300

Chapter 5: Integrals

Y y
1(0,1) y=1-x 1(0,1) G%) y=1-x2
) ¢
0.5 05k G%)
& R
0 0.5 1 * ol 025 05 075 1 *

() (b)

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two rectangles
containing R. (b) Four rectangles give a better upper estimate. Both estimates overshoot
the true value for the area by the amount shaded in light red.

region R. Each rectangle has width 1/2 and they have heights 1 and 3 /4, moving from left
to right. The height of each rectangle is the maximum value of the function f in each sub-
interval. Because the function f is decreasing, the height is its value at the left endpoint of
the subinterval of [0, 1 ] forming the base of the rectangle. The total area of the two rect-
angles approximates the area A of the region R,

~p- i30T
A= 1.5+ 5=5=08s

This estimate is larger than the true area A since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of f(x) for a point x in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 1/4,
which taken together contain the region R. These four rectangles give the approximation

~ .1 151 .31, 7. 1_25
A=yt st 2 16473

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the area,
as in Figure 5.3a. Each rectangle has width 1/4 as before, but the rectangles are shorter and

= 0.78125,

| L
(1 15) y=1-2x2 1 864

|

|

|

|

|

|

|

|

3 7 !
0.5 (1’@) 0.5F :
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|

|

|

|
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() ’

(b)

FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that under-
shoots the true value by the amount shaded in light blue. (b) The midpoint rule uses rect-
angles whose height is the value of y = f(x) at the midpoints of their bases. The estimate
appears closer to the true value of the area because the light red overshoot areas roughly
balance the light blue undershoot areas.
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FIGURE 5.4 (a) A lower sum using

16 rectangles of equal width Ax = 1/16.

(b) An upper sum using 16 rectangles.
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lie entirely beneath the graph of f. The function f(x) = 1 — x? is decreasing on [0, 1],
so the height of each of these rectangles is given by the value of f at the right endpoint of the
subinterval forming its base. The fourth rectangle has zero height and therefore contributes
no area. Summing these rectangles with heights equal to the minimum value of f(x) for a
point x in each base subinterval gives a lower sum approximation to the area,

15

A -

~1.1 7
16 4

7.1 17
16 4

75 = 0.53125.

1 _
* TR

+ +0

3.1
4 4
This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:

0.53125 < A < 0.78125.

By considering both lower and upper sum approximations, we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates, since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 0.78125 — 0.53125 = 0.25.

Yet another estimate can be obtained by using rectangles whose heights are the values
of f at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is
between a lower sum and an upper sum, but it is not quite so clear whether it overestimates
or underestimates the true area. With four rectangles of width 1/4 as before, the midpoint
rule estimates the area of R to be

03 1,5 1
A~ stea s ™

172

+ = 67 - — = 0.671875.

AN W
/8
NI
O\ | —
25
=
A=

In each of our computed sums, the interval [ a, b | over which the function f is defined
was subdivided into n subintervals of equal width (also called length) Ax = (b — a)/n,
and f was evaluated at a point in each subinterval: ¢, in the first subinterval, ¢, in the sec-
ond subinterval, and so on. The finite sums then all take the form

fle) Ax + f(cp) Ax + f(c3) Ax + -+ + flc,) Ax.

By taking more and more rectangles, with each rectangle thinner than before, it appears that
these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area
because the rectangles taken together contain R. The midpoint rule for 16 rectangles gives
a total area approximation of 0.6669921875, but it is not immediately clear whether this
estimate is larger or smaller than the true area.

EXAMPLE 1 Table 5.1 shows the values of upper and lower sum approximations to
the area of R, using up to 1000 rectangles. In Section 5.2 we will see how to get an exact
value of the areas of regions such as R by taking a limit as the base width of each rectangle
goes to zero and the number of rectangles goes to infinity. With the techniques developed
there, we will be able to show that the area of R is exactly 2/3. |

Distance Traveled

Suppose we know the velocity function v(f) of a car moving down a highway, without
changing direction, and want to know how far it traveled between times ¢t = a and t = b.
The position function s(#) of the car has derivative v(?). If we can find an antiderivative F(¢)
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TABLE 5.1 Finite approximations for the area of R
Number of
subintervals Lower sum Midpoint sum Upper sum
2 0.375 0.6875 0.875
4 0.53125 0.671875 0.78125
16 0.634765625 0.6669921875 0.697265625
50 0.6566 0.6667 0.6766
100 0.66165 0.666675 0.67165
1000 0.6661665 0.66666675 0.6671665

of v(f) then we can find the car’s position function s(f) by setting s(f) = F(f) + C. The
distance traveled can then be found by calculating the change in position,
s(b) — s(a) = F(b) — F(a). If the velocity function is known only by the readings at
various times of a speedometer on the car, then we have no formula from which to
obtain an antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function v(f), we can approxi-
mate the distance traveled with finite sums in a way similar to our estimates for area dis-
cussed before. We subdivide the interval [a, b] into short time intervals on each of which
the velocity is considered to be fairly constant. Then we approximate the distance traveled
on each time subinterval with the usual distance formula

distance = velocity X time

and add the results across [a, b].
Suppose the subdivided interval looks like

|<—At—>|<—At—>|<—At—>|

1 ol o ! . L > (sec)
a 1 1y ts b

with the subintervals all of equal length Az. Pick a number ¢, in the first interval. If Az is

so small that the velocity barely changes over a short time interval of duration At¢, then the

distance traveled in the first time interval is about v(z;) At. If £, is a number in the second

interval, the distance traveled in the second time interval is about v(t,) At. The sum of the

distances traveled over all the time intervals is

= v(t) At + v(t) At + - -+ + v(t,) At,

where 7 is the total number of subintervals.

EXAMPLE 2 The velocity function of a projectile fired straight into the air is
f(©) = 160 — 9.8t m/sec. Use the summation technique just described to estimate how
far the projectile rises during the first 3 sec. How close do the sums come to the exact
value of 435.9 m? (You will learn how to compute the exact value easily in Section 5.4.)

Solution We explore the results for different numbers of intervals and different choices

of evaluation points. Notice that f(f) is decreasing, so choosing left endpoints gives an

upper sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, withf evaluated at left endpoints giving an upper sum:
ooty I3

0 1 2 3
|<- At »|
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With f evaluated at r = 0, 1, and 2, we have
D = f(t)) At + f(t,) At + f(t;) At
= [160 — 9.8(0)](1) + [160 — 9.8(1)](1) + [160 — 9.8(2)](1)
= 450.6.

(b) Three subintervals of length 1, with f evaluated at right endpoints giving a lower sum:

e
0 1 2 3 !
|<- At->|

With f evaluated at r = 1, 2, and 3, we have

D = f(t) At + f(t,) At + f(1) At
= [160 — 9.8(1) (1) + [160 — 9.8(2)](1) + [160 — 9.8(3)](1)
= 421.2.

(c) With six subintervals of length 1/2, we get

1ty ty 1y ts5 14 1ty ty 1y ts5 14
o 66 6 o > t
0 1 2 3 0 1 2 3

[ [~

At At

These estimates give an upper sum using left endpoints: D =~ 443.25; and a lower
sum using right endpoints: D = 428.55. These six-interval estimates are somewhat
closer than the three-interval estimates. The results improve as the subintervals get
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The
true value lies between these upper and lower sums. The magnitude of the error in the
closest entries is 0.23, a small percentage of the true value.

Error magnitude = |true value — calculated value|
= [435.9 — 435.67| = 0.23.

_ 023 _ o
Error percentage = 1359 0.05%.

It would be reasonable to conclude from the table’s last entries that the projectile rose

about 436 m during its first 3 sec of flight. [ |
TABLE 5.2 Travel-distance estimates
Number of Length of each Upper Lower
subintervals subinterval sum sum
3 1 450.6 421.2
6 1/2 443.25 428.55
12 1/4 439.58 432.23
24 1/8 437.74 434.06
48 1/16 436.82 434.98
96 1/32 436.36 435.44
192 1/64 436.13 435.67
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FIGURE 5.5 The rock in Example 3.
The height s = 256 ftis reached at t = 2
and r = 8 sec. The rock falls 144 ft from
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its maximum height when ¢ = 8.

TABLE 5.3 Velocity function
t v(?) t v(?)
0 160 4.5 16

0.5 144 5.0 0
1.0 128 5.5 -16
1.5 112 6.0 -32

2.0 96 6.5 —48

2.5 80 7.0 —64

3.0 64 7.5 —80

3.5 48 8.0 —-96

4.0 32

Displacement Versus Distance Traveled

If an object with position function s(f) moves along a coordinate line without changing
direction, we can calculate the total distance it travels from ¢ = a to t = b by summing
the distance traveled over small intervals, as in Example 2. If the object reverses direction
one or more times during the trip, then we need to use the object’s speed |v(#)|, which is
the absolute value of its velocity function, v(f), to find the total distance traveled. Using
the velocity itself, as in Example 2, gives instead an estimate to the object’s displacement,
s(b) — s(a), the difference between its initial and final positions.

To see why using the velocity function in the summation process gives an estimate to
the displacement, partition the time interval [ a, b ] into small enough equal subintervals At
so that the object’s velocity does not change very much from time #,_; to #,.. Then v(#) gives
a good approximation of the velocity throughout the interval. Accordingly, the change in the
object’s position coordinate, which is its displacement during the time interval, is about

() At.

The change is positive if v(,) is positive and negative if v(%,) is negative.
In either case, the distance traveled by the object during the subinterval is about

lu(z)| At.
The total distance traveled over the time interval is approximately the sum
lu)| At + |v@)|Ar + -+ + |u(t,)] At

We revisit these ideas in Section 5.4.

EXAMPLE 3 In Example 4 in Section 3.4, we analyzed the motion of a heavy rock
blown straight up by a dynamite blast. In that example, we found the velocity of the rock
at any time during its motion to be v(r) = 160 — 32t ft/sec. The rock was 256 ft above
the ground 2 sec after the explosion, continued upward to reach a maximum height of
400 ft at 5 sec after the explosion, and then fell back down to reach the height of 256 ft
again at r = 8 sec after the explosion. (See Figure 5.5.)

If we follow a procedure like that presented in Example 2, and use the velocity func-
tion v(7) in the summation process over the time interval [0, 8 ], we will obtain an esti-
mate to the rock’s 256 ft height above the ground at t = 8. The positive upward motion
(which yields a positive distance change of 144 ft from the height of 256 ft to the maxi-
mum height) is canceled by the negative downward motion (giving a negative change of
144 ft from the maximum height down to 256 ft again), so the displacement or height
above the ground is estimated from the velocity function.

On the other hand, if the absolute value |v(t)\ is used in the summation process, we
will obtain an estimate to the total distance the rock has traveled: the maximum height
reached of 400 ft plus the additional distance of 144 ft it has fallen back down from that
maximum when it again reaches the height of 256 ft at + = 8 sec. That is, using the abso-
lute value of the velocity function in the summation process over the time interval [0, 8 ],
we obtain an estimate to 544 ft, the total distance up and down that the rock has traveled in
8 sec. There is no cancelation of distance changes due to sign changes in the velocity func-
tion, so we estimate distance traveled rather than displacement when we use the absolute
value of the velocity function (that is, the speed of the rock).

As an illustration of our discussion, we subdivide the interval [ 0, 8 ] into sixteen sub-
intervals of length A7 = 1/2 and take the right endpoint of each subinterval in our calcu-
lations. Table 5.3 shows the values of the velocity function at these endpoints.

Using v(7) in the summation process, we estimate the displacement at t = §:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

+O—16—32—48—64—80—96)-%=192

Error magnitude = 256 — 192 = 64
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Using |v(#)| in the summation process, we estimate the total distance traveled over
the time interval [0, 8 ]:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16
+0+16+32+48+64+80+96)-%=528
Error magnitude = 544 — 528 = 16

If we take more and more subintervals of [0, 8] in our calculations, the estimates to

the heights 256 ft and 544 ft improve, approaching them as shown in Table 5.4. |
TABLE 5.4 Travel estimates for a rock blown straight up
during the time interval [0, 8]
Number of  Length of each Total
subintervals subinterval Displacement distance
16 1/2 192.0 528.0
32 1/4 224.0 536.0
64 1/8 240.0 540.0
128 1/16 248.0 542.0
256 1/32 252.0 543.0
512 1/64 254.0 543.5

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers xj, x,, . . . , X, is obtained by adding them
together and dividing by n. But what is the average value of a continuous function fon an
interval [ a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
each day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant
value ¢ on an interval [ a, b ] has average value c. When c is positive, its graph over [a, b |
gives a rectangle of height c. The average value of the function can then be interpreted geo-
metrically as the area of this rectangle divided by its width b — a (Figure 5.6a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water

(a) (b)

FIGURE 5.6 (a) The average value of f(x) = c on [a, b] is the area of
the rectangle divided by b — a. (b) The average value of g(x) on [a, b] is
the area beneath its graph divided by b — a.
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f(x) =sinx
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FIGURE 5.7 Approximating the
area under f(x) = sin x between

0 and 7 to compute the average
value of sin x over [0, 77 ], using
eight rectangles (Example 4).

TABLE 5.5 Average value of sin x
on0=x=mx

Number of Upper sum
subintervals estimate

8 0.75342
16 0.69707
32 0.65212
50 0.64657
100 0.64161
1000 0.63712

that is sloshing around in a tank between enclosing walls at x = a and x = b. As the
water moves, its height over each point changes, but its average height remains the same.
To get the average height of the water, we let it settle down until it is level and its height is
constant. The resulting height ¢ equals the area under the graph of g divided by b — a. We
are led to define the average value of a nonnegative function on an interval [a, b] to be
the area under its graph divided by b — a. For this definition to be valid, we need a precise
understanding of what is meant by the area under a graph. This will be obtained in Section
5.3, but for now we look at an example.

EXAMPLE 4 Estimate the average value of the function f(x) = sin x on the interval
[0, 7].

Solution Looking at the graph of sin x between 0 and 7 in Figure 5.7, we can see that its
average height is somewhere between 0 and 1. To find the average, we need to calculate
the area A under the graph and then divide this area by the length of the interval,
m— 0=

We do not have a simple way to determine the area, so we approximate it with finite
sums. To get an upper sum approximation, we add the areas of eight rectangles of equal
width 77 /8 that together contain the region beneath the graph of y = sinx and above the
x-axis on [0, 7 |. We choose the heights of the rectangles to be the largest value of sin x
on each subinterval. Over a particular subinterval, this largest value may occur at the left
endpoint, the right endpoint, or somewhere between them. We evaluate sin x at this point
to get the height of the rectangle for an upper sum. The sum of the rectangular areas then
estimates the total area (Figure 5.7):

. T . T . 3 . T . T . S . 3 AN
A~<sm8+sm4+sm8 +sm2+sm2+sm8 +sm4 +sm8) g

~ (384 .71+ .92+ 1+1+ .92+ .71 + 38) % = (6.02)-% ~ 2.364.

To estimate the average value of sin x on [0, 7] we divide the estimated area by the
length 77 of the interval and obtain the approximation 2.364 /7 =~ 0.753.

Since we used an upper sum to approximate the area, this estimate is greater than the
actual average value of sin x over [0, 7 ] . If we use more and more rectangles, with each
rectangle getting thinner and thinner, we get closer and closer to the true average value as
shown in Table 5.5. Using the techniques covered in Section 5.3, we will show that the
true average value is 2/ =~ 0.63662.

As before, we could just as well have used rectangles lying under the graph of
y = sinx and calculated a lower sum approximation, or we could have used the midpoint
rule. In Section 5.3 we will see that in each case, the approximations are close to the true
area if all the rectangles are sufficiently thin. |

Summary

The area under the graph of a positive function, the distance traveled by a moving object
that doesn’t change direction, and the average value of a nonnegative function over an
interval can all be approximated by finite sums constructed in a certain way. First we sub-
divide the interval into subintervals, treating some function f as if it were constant over
each particular subinterval. Then we multiply the width of each subinterval by the value of
f at some point within it, and add these products together. If the interval [a, b] is subdi-
vided into n subintervals of equal widths Ax = (b — a)/n, and if f(c;) is the value of fat
the chosen point ¢ in the kth subinterval, this process gives a finite sum of the form

flc) Ax + f(cy) Ax + f(c3) Ax + -+ -+ f(c,) Ax.



5.1 Area and Estimating with Finite Sums 307

The choices for the ¢; could maximize or minimize the value of f in the kth subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at
improved as we took more subintervals of thinner width.

Exercises m

Area
In Exercises 1-4, use finite approximations to estimate the area under
the graph of the function using

a. alower sum with two rectangles of equal width.
b. alower sum with four rectangles of equal width.
¢. an upper sum with two rectangles of equal width.
d. an upper sum with four rectangles of equal width.
f(x) = x> between x = 0 and x = 1.

f(x) = x> between x = 0 and x = 1.

f(x) = 1/x between x = 1 and x = 5.

f(x) = 4 — x> between x = —2 and x = 2.

2w Db RE

Using rectangles each of whose height is given by the value of
the function at the midpoint of the rectangle’s base (the midpoint
rule), estimate the area under the graphs of the following functions,
using first two and then four rectangles.

5. f(x) = x> between x = 0 and x = 1.
6. f(x) = x> between x = 0 and x = 1.
7. f(x) = 1/x between x = 1 and x = 5.
8

. f(x) =4 — x* between x = —2 and x = 2.

Distance
9. Distance traveled The accompanying table shows the velocity
of a model train engine moving along a track for 10 sec. Estimate
the distance traveled by the engine using 10 subintervals of length
1 with

a. left-endpoint values.

b. right-endpoint values.

Time Velocity Time Velocity
(sec) (in. / sec) (sec) (in. / sec)

0 0 6 11

1 12 7 6

2 22 8 2

3 10 9 6

4 5 10 0

5 13

10. Distance traveled upstream You are sitting on the bank of a
tidal river watching the incoming tide carry a bottle upstream. You
record the velocity of the flow every 5 minutes for an hour, with the
results shown in the accompanying table. About how far upstream
did the bottle travel during that hour? Find an estimate using
12 subintervals of length 5 with

a. left-endpoint values.

b. right-endpoint values.

Time Velocity Time Velocity
(min) (m/sec) (min) (m/sec)
0 1 35 1.2
5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4

11. Length of a road You and a companion are about to drive a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s velocity
at 10-sec intervals, with the results shown in the accompanying
table. Estimate the length of the road using

a. left-endpoint values.

b. right-endpoint values.

Velocity Velocity
Time (converted to ft / sec) Time (converted to ft / sec)
(sec) (30mi/h = 44ft/sec)| (sec) (30mi/h = 44 ft/sec)

0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

12. Distance from velocity data The accompanying table gives
data for the velocity of a vintage sports car accelerating from 0 to
142 mi /h in 36 sec (10 thousandths of an hour).

Time Velocity Time Velocity

(h) (mi /) (h) (mi /h)
0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108
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13.

14.

mi/hr
160~
140
120~
100~
80
60
40
201

Lo bbby hours
0 0.002 0.004 0.006 0.008 0.01

a. Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi /h.

b. Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

Free fall with air resistance An object is dropped straight down
from a helicopter. The object falls faster and faster but its accelera-
tion (rate of change of its velocity) decreases over time because of
air resistance. The acceleration is measured in ft/sec? and
recorded every second after the drop for 5 sec, as shown:

t| 0 1 2 3 4 5
a | 3200 1941 1177 704 433 263

a. Find an upper estimate for the speed when ¢ = 5.
b. Find a lower estimate for the speed when ¢ = 5.
c. Find an upper estimate for the distance fallen when ¢t = 3.

Distance traveled by a projectile An object is shot straight
upward from sea level with an initial velocity of 400 ft/sec.

a. Assuming that gravity is the only force acting on the object,
give an upper estimate for its velocity after 5 sec have elapsed.
Use g = 32 ft/sec? for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function

In Exercises 1518, use a finite sum to estimate the average value of f
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating f at the subinterval midpoints.

15.
16.
17.

fx) =x* on [0,2]
fx)=1/x on [1,9]
f(t) = (1/2) + sin?art on  [0,2]

4
18. () =1- (cos%t) on [0,4]

Examples of Estimations
19. Water pollution Oil is leaking out of a tanker damaged at sea. The

damage to the tanker is worsening as evidenced by the increased
leakage each hour, recorded in the following table.

Time (h) 0 1 2 3 4 ‘
Leakage (gal /h)| 50 | 70 | 97 | 136 190\

Time (h) 5 6 7 8
Leakage (gal/h) | 265 369 516 720

a. Give an upper and a lower estimate of the total quantity of oil
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after
8 hours.

c. The tanker continues to leak 720 gal /h after the first 8 hours.
If the tanker originally contained 25,000 gal of oil, approxi-
mately how many more hours will elapse in the worst case
before all the oil has spilled? In the best case?

20. Air pollution A power plant generates electricity by burning oil.

Pollutants produced as a result of the burning process are removed
by scrubbers in the smokestacks. Over time, the scrubbers
become less efficient and eventually they must be replaced when
the amount of pollution released exceeds government standards.
Measurements are taken at the end of each month determining the
rate at which pollutants are released into the atmosphere, recorded
as follows.

Month Jan Feb Mar Apr May Jun

Pollutant
release rate 0.20 0.25 0.27 034 045 0.52
(tons / day)

Month Jul. Aug Sep Oct Nov Dec

Pollutant
release rate 0.63 0.70  0.81 0.85 0.89 0.95
(tons / day)

a. Assuming a 30-day month and that new scrubbers allow only
0.05 ton/day to be released, give an upper estimate of the
total tonnage of pollutants released by the end of June. What is
a lower estimate?

b. In the best case, approximately when will a total of 125 tons
of pollutants have been released into the atmosphere?



21. Inscribe a regular n-sided polygon inside a circle of radius 1 and
compute the area of the polygon for the following values of n:

a. 4 (square) b. 8 (octagon) c. 16

d. Compare the areas in parts (a), (b), and (c) with the area of the
circle.

22. (Continuation of Exercise 21.)

a. Inscribe a regular n-sided polygon inside a circle of radius 1 and
compute the area of one of the n congruent triangles formed by
drawing radii to the vertices of the polygon.

b. Compute the limit of the area of the inscribed polygon as
n—0Q,

¢. Repeat the computations in parts (a) and (b) for a circle of
radius .
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COMPUTER EXPLORATIONS
In Exercises 23-26, use a CAS to perform the following steps.

a. Plot the functions over the given interval.

b. Subdivide the interval into n = 100, 200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint
of each subinterval.

c. Compute the average value of the function values generated in
part (b).

d. Solve the equation f(x) = (average value) for x using the aver-
age value calculated in part (c) for the n = 1000 partitioning.

23. f(x) =sinx on [0,7] 24. f(x) =sin’x on [0,7]

25. f(x) :xsin)lfc on {%,77} 26. f(x) :xsinz)lfc on {%,77}

52 Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we encountered sums with many terms (up to
1000 in Table 5.1, for instance). In this section we introduce a more convenient notation
for sums with a large number of terms. After describing the notation and stating several of
its properties, we look at what happens to a finite sum approximation as the number of

terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

20k2a1+(12+a3+

+a,—, + a,.

The Greek letter 3 (capital sigma, corresponding to our letter S), stands for “sum.” The
index of summation £ tells us where the sum begins (at the number below the % symbol)
and where it ends (at the number above 2.). Any letter can be used to denote the index, but
the letters 7, j, and k are customary.

The summation symbol
(Greek letter sigma)

Thus we can write

11
P+2+ 33+ 424+52+62+ 7+ 8+ 92+ 102+ 112 = D&%
k=1

and

The index k ends at k = n.

ay

~ ay, is a formula for the kth term.

e
n
k=1
N

The index k starts at k = 1.

100

fa) + f@2) + f3) + -+ + f(100) = z{f(i)-

The lower limit of summation does not have to be 1; it can be any integer.
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EXAMPLE 1

A sum in The sum written out, one The value
sigma notation term for each value of k of the sum
ik 1 +2+3+4+5 15

=1

Sk D)+ CDXR) + (C1G) —1+2-3=-2
=1

2

k 1 2 1. .2_7

Py T+172+1 273756

R $_, 3 16,25 _ 139
,;k -1 4—-1 5-1 3 4 12

EXAMPLE 2 Express the sum 1 + 3 + 5 4+ 7 + 9 in sigma notation.

Solution The formula generating the terms changes with the lower limit of summation,
but the terms generated remain the same. It is often simplest to start with k = QO or k = 1,
but we can start with any integer.

4
Starting with k = 0: 1+3+45+7+9=>D@k+1)
k=0

5
Starting with k = 1: 1+3+5+7+9=>@k—1
k=1

6
Starting with k = 2: 1+3+5+7+9=>0k—-3)
k=2

1
Starting withk = =3: 1 +3+5+7+9= > 2k+7) |
k=-3

When we have a sum such as
3
> (k + k%)
k=1
we can rearrange its terms,
3
SDhk+kH=01+1)+@2+2)+@3+3Y
k=1
=1 +2+3)+ (124 2%+ 3% Regroup terms.
3 3
= Dk+ Dk
k=1 =1
This illustrates a general rule for finite sums:
E(Gk + bk) = Eak + Ebk
k=1 k=1 =1

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 2).
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Algebra Rules for Finite Sums

1. Sum Rule: Sag+b) = Dap+ Dby
=1 =1 =1

2. Difference Rule: E(ak —b) = Eak - Ebk
=1 =1 =1

n n
3. Constant Multiple Rule: Ecak =c- Eak (Any number c)
k=1 =1

n

4. Constant Value Rule: 2 c=n-c (c is any constant value.)
k=1

EXAMPLE 3 We demonstrate the use of the algebra rules.

n n n
L2y — _ 2 Difference Rule and Constant
@ kzzl Gk =1 3/;k /;k Multiple Rule

n n n n
(b) 2(_ak) = E(_l) cap = —1- Eak = - Eak Constant Multiple Rule
k=1 k=1 k=1 k=1

3 3
Ek + 24 Sum Rule
k=1 k=1

1+2+3)+@3-4 Constant Value Rule
=6+ 12 =18

3
© D(k+4
k=1

Constant Value Rule
=1 |

(1/n is constant)

S|—=

@ Mg=n-
k=1

Over the years people have discovered a variety of formulas for the values of finite sums.
The most famous of these are the formula for the sum of the first n integers (Gauss is said
to have discovered it at age 8) and the formulas for the sums of the squares and cubes of
the first n integers.

EXAMPLE 4 Show that the sum of the first n integers is
4 nn + 1
p="0 b 5 )
=
Solution The formula tells us that the sum of the first 4 integers is
@) _

3 10.

Addition verifies this prediction:
1+2+3+4=10.

To prove the formula in general, we write out the terms in the sum twice, once forward and
once backward.

1+ 2 + 3 + - 4+ n

n + w-—-1) + w-2 + - + 1
If we add the two terms in the first column we get 1 + n = n + 1. Similarly, if we add
the two terms in the second column we get 2 + (n — 1) = n + 1. The two terms in any
column sum to n + 1. When we add the n columns together we get n terms, each equal to

n + 1, for a total of n(n + 1). Since this is twice the desired quantity, the sum of the first
n integers is (n)(n + 1)/2. [ |



312

Chapter 5: Integrals

Formulas for the sums of the squares and cubes of the first n integers are proved using
mathematical induction (see Appendix 2). We state them here.

. 1 nin + H2n + 1)
The first n squares: > k> = 3

. o nn + 1)\?
The first n cubes: Sk = (2>

Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 became more accurate as the
number of terms increased and the subinterval widths (lengths) narrowed. The next exam-
ple shows how to calculate a limiting value as the widths of the subintervals go to zero and
their number grows to infinity.

EXAMPLE 5 Find the limiting value of lower sum approximations to the area of the
region R below the graph of y = 1 — x? and above the interval [0, 1 ] on the x-axis using
equal-width rectangles whose widths approach zero and whose number approaches infin-
ity. (See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width
Ax = (1 — 0)/n, and then we see what happens as n—> 00. We start by subdividing
[0, 1] into n equal width subintervals

1 12 n—1n
SIE e

Each subinterval has width 1/n. The function 1 — x? is decreasing on [0, 1], and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval [(k — 1)/n, k/n] is f(k/n) =
1 — (k/n)? giving the sum

G+ LEIG) = DG -+ LE)G)

We write this in sigma notation and simplify,

MOORNOND

Difference Rule

Il
Si=
|
D=

=~
m‘ S}

k=1 k=11
1 1<
= e — — kz Constant Value and
n n3k:1 Constant Multiple Rules

Sum of the First n Squares

Numerator expanded
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FIGURE 5.8 A typical continuous
function y = f(x) over a closed interval

[a,b].
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We have obtained an expression for the lower sum that holds for any n. Taking the
limit of this expression as n — 00, we see that the lower sums converge as the number of
subintervals increases and the subinterval widths approach zero:

lim 1_2n3+3n2+n —1_2_2
n— 00 6n’ 6 3°

The lower sum approximations converge to 2 /3. A similar calculation shows that the upper
sum approximations also converge to 2/3. Any finite sum approximation > f(c,)(1/n)
also converges to the same value, 2/3. This is because it is possible to show that any finite
sum approximation is trapped between the lower and upper sum approximations. For this
reason we are led to define the area of the region R as this limiting value. In Section 5.3 we
study the limits of such finite approximations in a general setting. |

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies
the theory of the definite integral studied in the next section.

We begin with an arbitrary bounded function f defined on a closed interval [a, b ].
Like the function pictured in Figure 5.8, f may have negative as well as positive values. We
subdivide the interval [ a, b] into subintervals, not necessarily of equal widths (or lengths),
and form sums in the same way as for the finite approximations in Section 5.1. To do so, we
choose n — 1 points {x;, x5, X3, . . ., X,_; } between a and b satisfying

a<x <xp,< - <x,_; <b.
To make the notation consistent, we denote a by x, and b by x,,, so that
a=x<x << - <x_ <ux,=0b
The set
P = {Xp X1s X0 e o s X1, X

is called a partition of [a, b].
The partition P divides [ a, b] into n closed subintervals

[‘x()’xl]a I:xl’xZ:I, ceey I:xnfl’xl’l]‘

The first of these subintervals is [ xy, x; ], the second is [x;, x, ], and the kth subinterval
of Pis [x,_1, x; |, for k an integer between 1 and 7.

kth subinterval
| | | I | | X
| T T 1 T T |
Xo=a X X2 Xp—1 e Xn—1 x, =b

The width of the first subinterval [x, x; | is denoted Ax;, the width of the second
[x1, x,] is denoted Ax,, and the width of the kth subinterval is Ax, = x;, — x,_;. I[f all n
subintervals have equal width, then the common width Ax is equal to (b — a)/n.

|<— Axl—>|<— Ax2—>| |<— Axk—>| |<— Axn—>|

| | | | | | |

| T T 1 T T | X
Xp=a x| X, cee Xjo1 Xg cee X =

In each subinterval we select some point. The point chosen in the kth subinterval
[ x¢—1, % ] is called ¢;. Then on each subinterval we stand a vertical rectangle that stretches
from the x-axis to touch the curve at (¢, f(c;)). These rectangles can be above or below the
x-axis, depending on whether f(c;) is positive or negative, or on the x-axis if f(c;) = 0
(Figure 5.9).
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y
y=fx)
0| a b
(a)
y
y=fx)
0| a b
(b)

FIGURE 5.10 The curve of Figure 5.9
with rectangles from finer partitions of

[a, b]. Finer partitions create collections
of rectangles with thinner bases that ap-
proximate the region between the graph of
f and the x-axis with increasing accuracy.

y =
y/ /e (e fle)
’ 1
A\
(ces (e) AN

1

kth rectangle : :

i i

1 1

1 1

1 1

‘1 “2 o5 Cny x
0| xo :aT 2 ‘lr 2] Xl X Xy1 o Xy =D
i i
N
1
(c1> fley) |
4
e
(¢, flcn)

FIGURE 5.9 The rectangles approximate the region between the graph of the func-
tion y = f(x) and the x-axis. Figure 5.8 has been enlarged to enhance the partition of
[a, b] and selection of points ¢; that produce the rectangles.

On each subinterval we form the product f(c;) - Ax;. This product is positive, negative,
or zero, depending on the sign of f(c;). When f(c;) > 0, the product f(c;) - Ax; is the area
of a rectangle with height f(c;) and width Ax,. When f(c;) < 0, the product f(c;) - Ax; is
a negative number, the negative of the area of a rectangle of width Ax, that drops from the
x-axis to the negative number f(c;).

Finally we sum all these products to get

Sp = ];f(ck) Axg.

The sum Sp is called a Riemann sum for f on the interval [a, b]. There are many such
sums, depending on the partition P we choose, and the choices of the points ¢ in the sub-
intervals. For instance, we could choose n subintervals all having equal width
Ax = (b — a)/n to partition [a, b], and then choose the point ¢; to be the right-hand
endpoint of each subinterval when forming the Riemann sum (as we did in Example 5).
This choice leads to the Riemann sum formula

S, = Ef(a e “))-<b - ").
k=1
Similar formulas can be obtained if instead we choose ¢, to be the left-hand endpoint, or
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width Ax = (b — a)/n, we can
make them thinner by simply increasing their number n. When a partition has subintervals
of varying widths, we can ensure they are all thin by controlling the width of a widest (lon-
gest) subinterval. We define the norm of a partition P, written || P ||, to be the largest of all
the subinterval widths. If | P || is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6 The set P = {0,0.2,0.6,1,1.5,2} is a partition of [0, 2] . There are
five subintervals of P: [0,0.2], [0.2,0.6], [0.6,1], [1,1.5], and [1.5,2]:

Axy | Axs

|<—Ax1 I Ax, I Axy I
I

|
|
I ! ! !
0 0.2 0.6 1 1.5

o



The lengths of the subintervals are Ax; = 0.2, Ax, = 0.4, Ax; = 0.4, Ax, = 0.5, and
Axs = 0.5. The longest subinterval length is 0.5, so the norm of the partition is | P|| = 0.5.
In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval [ a, b ] defines rect-
angles that approximate the region between the graph of a continuous function f and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function f is continuous over the closed interval [a, b], then no
matter how we choose the partition P and the points ¢, in its subintervals to construct a
Riemann sum, a single limiting value is approached as the subinterval widths, controlled

5.2 Sigma Notation and Limits of Finite Sums

by the norm of the partition, approach zero.

Exercises m

Sigma Notation
Write the sums in Exercises 1-6 without sigma notation. Then evalu-

ate them.
6k Sk — 1
1. — 2. —
,;1 k+1 ,; k
4 5
3. 2 cos ki 4. E sin kar
k=1 k=1
3 p 4
5. > (=1 'sin - 6. > (—1)cos km
=1 k =1
7. Which of the following express 1 + 2 + 4 + 8 + 16 + 32 in
sigma notation?
6 5 4
a. > 2k! b. D2k c. > 2k
k=1 k=0 =1
8. Which of the following express 1 —2 + 4 — 8 + 16 — 32 in
sigma notation?
6 5 3
a. > (=2)f! b. D (1) 2¢ c. D (—Dkrigke2
=1 k=0 K==
9. Which formula is not equivalent to the other two?
4 (=Kt 2 (—1)k L (—1)k
E( ) b, ) S D
= k—1 Sk + 1 Skt 2
10. Which formula is not equivalent to the other two?

4 3 —1
a. > (k— 1)y b. D (k+ 17 c Xk
k=1 k=—1 k=—3

Express the sums in Exercises 11-16 in sigma notation. The form of
your answer will depend on your choice of the lower limit of summation.

11.

1+2+3+4+5+6 12.1+4+9+16

1 1 1 1

2+4+8+16 14. 2 +4+ 6+ 8+ 10
1 1 1 1 1 2 3 4 5

I=5%3 475 16 —5+5-5*t575

Values of Finite Sums

n

17. Suppose that Eak = —5 and Ebk = 6. Find the values of

k=1 k=1

a. i3ak
k=1

d. D(a — b
k=1

n

18. Suppose that E
=1
a. Egak
=1

¢ D+ 1)
k=1

Evaluate the sums in Exercises 19-32.
10

b. D k?
k=1

13
b. > k?
k=1

10
19. a. >k
k=1
20. a. >k
21. > (—2k)
k=1
6
23. X3 -k

5
25. Dk(3k + 5)
k=1

5. 43 5 \3
27. 2% + (;k)

7
29. a. >3

30.

|l\g'

31 a. >4
32. a. E(% +2n

&

b. izsobk
=1

d DB -1
k=1

22,
24,
26.

28.

|
M-
&%

e > (a + by
k=1

n
a; = 0 and Ebk = 1. Find the values of
=1

10

c DK

k=1
13

c DK

k=1

315
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Riemann Sums

Limits of Riemann Sums

In Exercises 33-36, graph each function f(x) over the given interval. For the functions in Exercises 39-46, find a formula for the Riemann
Partition the interval into four subintervals of equal length. Then add sum obtained by dividing the interval [a, b] into n equal subintervals
to your sketch the rectangles associated with the Riemann sum and using the right-hand endpoint for each ¢;. Then take a limit of these
S4_1f(c) Ax,, given that ¢, is the (a) left-hand endpoint, (b) right- sums as 7 — 00 to calculate the area under the curve over [a, b].
hand endpoint, (¢) midpoint of the kth subinterval. (Make a separate 39. f(x) = 1 — x2 over the interval [0, 1].

sketch for each set of rectangles.)
33 f) =x*—1, [0,2]

34. fx) = —x% [0,1]

35. f(x) =sinx, [—m, 7]

36. f(x) =sinx + 1, [—7, 7]

40. f(x) = 2x over the interval [0, 3].

41. f(x) = x*> 4+ 1 over the interval [0,3].
42. f(x) = 3x* over the interval [0,1].

43. f(x) = x + x* over the interval [0, 1].
44. f(x) = 3x + 2x? over the interval [0, 1].

37. Find the norm of the partition P = {0, 1.2, 1.5,2.3,2.6,3}. 45. f(x) = 2x* over the interval [0, 1].
38. Find the norm of the partition P = {—2,—1.6,—0.5,0,0.8,1}. 46. f(x) = x* — x> over the interval [—1,0].

5.3 The Definite Integral

In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed
interval [a, b] using n subintervals of equal width (or length), (b — a)/n. In this section
we consider the limit of more general Riemann sums as the norm of the partitions of
[ a, b]approaches zero. For general Riemann sums, the subintervals of the partitions need
not have equal widths. The limiting process then leads to the definition of the definite inte-
gral of a function over a closed interval [a, b].

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, as the
norm of the partitions of [ @, b ] approaches zero, the values of the corresponding Riemann
sums approach a limiting value J. What we mean by this limit is that a Riemann sum will
be close to the number J provided that the norm of its partition is sufficiently small (so that
all of its subintervals have thin enough widths). We introduce the symbol € as a small
positive number that specifies how close to J the Riemann sum must be, and the symbol &
as a second small positive number that specifies how small the norm of a partition must be
in order for convergence to happen. We now define this limit precisely.

DEFINITION Let f(x) be a function defined on a closed interval [a, b]. We say
that a number J is the definite integral of f over [a, b] and that J is the limit of
the Riemann sums X7_; f(c) Ax, if the following condition is satisfied:

Given any number € > 0 there is a corresponding number 6 > 0 such that
for every partition P = {xo, X1, ... ,x,} of [a, b] with||P|| < & and any choice
of ¢;in [x;_y, X ], we have

if(ck) Ax, — J‘ <e
=1

The definition involves a limiting process in which the norm of the partition goes to zero.
We have many choices for a partition P with norm going to zero, and many choices of

points ¢, for each partition. The definite integral exists when we always get the same limit

J, no matter what choices are made. When the limit exists we write it as the definite integral

n

J = lim Ef(ck) Ax.

IPl—0 =1
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The limit of any Riemann sum is always taken as the norm of the partitions approaches
zero and the number of subintervals goes to infinity.

Leibniz introduced a notation for the definite integral that captures its construction as
a limit of Riemann sums. He envisioned the finite sums >;—, f(c;) Ax; becoming an infi-
nite sum of function values f(x) multiplied by “infinitesimal” subinterval widths dx. The
sum symbol ¥ is replaced in the limit by the integral symbol f , whose origin is in the
letter “S.” The function values f(c;) are replaced by a continuous selection of function
values f(x). The subinterval widths Ax; become the differential dx. It is as if we are sum-
ming all products of the form f(x) - dx as x goes from a to b. While this notation captures
the process of constructing an integral, it is Riemann’s definition that gives a precise
meaning to the definite integral.

The symbol for the number J in the definition of the definite integral is

b
/ f)dx,

which is read as “the integral from a to b of f of x dee x”” or sometimes as “the integral from a
to b of f of x with respect to x.” The component parts in the integral symbol also have names:

The function is the integrand.
Upper limit of integration

/

b x is the variable of integration.

Integral sign
e f(x) dx /
a

When you find the value
Lower limit of integration of the integral, you have
Integral of f from a to b evaluated the integral.

When the condition in the definition is satlsﬁed we say that the Riemann sums of f on
[a, b] converge to the definite integral J = f f(x) dx and that f is integrable over [a, b].

In the cases where the subintervals all have equal width Ax = (b — a)/n, we can
form each Riemann sum as

E flcp) Axk E f(Ck)< >, Ax; = Ax = (b — a)/nforall k

where ¢, is chosen in the kth subinterval. When the limit of these Riemann sums as
n —> 00 exists and is equal to J, then J is the definite integral of fover [a, b ], so

b . _
J = / f(x)dx = lim Ef(ck)(b 7 a) | P|| = 0 means n — 0.

a n—00 =
If we pick the point ¢, at the right endpoint of the kth subinterval, so ¢, = a + kAx =
a + k(b — a)/n, then the formula for the definite integral becomes

b n —
/ fGodx = lim Ef(a 4 k(bn"))(b - ") )
a n—)OOk:l

Equation (1) gives one explicit formula that can be used to compute definite integrals.
Other choices of partitions and locations of points ¢, result in the same value for the defi-
nite integral when we take the limit as n — 00 provided that the norm of the partition
approaches zero.




318

Chapter 5: Integrals

The value of the definite integral of a function over any particular interval depends on
the function, not on the letter we choose to represent its independent variable. If we decide
to use 7 or u instead of x, we simply write the integral as

b b b
/ f@) dt or / f(u) du instead of / fx) dx.

No matter how we write the integral, it is still the same number that is defined as a limit of
Riemann sums. Since it does not matter what letter we use, the variable of integration is
called a dummy variable representing the real numbers in the closed interval [ a, b ].

Integrable and Nonintegrable Functions

Not every function defined over the closed interval [a, b] is integrable there, even if the
function is bounded. That is, the Riemann sums for some functions may not converge to
the same limiting value, or to any value at all. A full development of exactly which func-
tions defined over [ a, b ] are integrable requires advanced mathematical analysis, but for-
tunately most functions that commonly occur in applications are integrable. In particular,
every continuous function over | a, b] is integrable over this interval, and so is every func-
tion having no more than a finite number of jump discontinuities on [ a, b]. (See Figures
1.9 and 1.10. The latter functions are called piecewise-continuous functions, and they are
defined in Additional Exercises 11-18 at the end of this chapter.) The following theorem,
which is proved in more advanced courses, establishes these results.

THEOREM 1—Integrability of Continuous Functions If a function f is con-
tinuous over the interval [a, b], orif f hgs at most finitely many jump disconti-
nuities there, then the definite integral f . f(x)dx exists and f is integrable over
[a,b].

The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87.
Briefly, when f is continuous we can choose each ¢; so that f(c;) gives the maximum
value of f on the subinterval [x;_;, x;], resulting in an upper sum. Likewise, we can
choose ¢, to give the minimum value of f on [x;_;, x;] to obtain a lower sum. The upper
and lower sums can be shown to converge to the same limiting value as the norm of the
partition P tends to zero. Moreover, every Riemann sum is trapped between the values of
the upper and lower sums, so every Riemann sum converges to the same limit as well.
Therefore, the number J in the definition of the definite integral exists, and the continuous
function f is integrable over [a, b].

For integrability to fail, a function needs to be sufficiently discontinuous that the
region between its graph and the x-axis cannot be approximated well by increasingly thin
rectangles. Our first example shows a function that is not integrable over a closed interval.

EXAMPLE 1 The function

) = {1, if x is rational
. 0, ifxis irrational

has no Riemann integral over [0, 1 ]. Underlying this is the fact that between any two
numbers there is both a rational number and an irrational number. Thus the function jumps
up and down too erratically over [0, 1] to allow the region beneath its graph and above
the x-axis to be approximated by rectangles, no matter how thin they are. We show, in fact,
that upper sum approximations and lower sum approximations converge to different limit-
ing values.
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If we pick a partition P of [0, 1] and choose ¢; to be the point giving the maximum
value for f on [x;_;, x;] then the corresponding Riemann sum is

U= > fle) Ay = > (1) Ax = 1,
k=1 k=1

since each subinterval [x;_;, x;] contains a rational number where f(c;) = 1. Note that
the lengths of the intervals in the partition sum to 1, X;—; Ax, = 1. So each such Rie-
mann sum equals 1, and a limit of Riemann sums using these choices equals 1.

On the other hand, if we pick ¢; to be the point giving the minimum value for f on
[ x¢—1, X |, then the Riemann sum is

L= flc) Ax, = D (0) Ax, = 0,
k=1 k=1

since each subinterval [x;_;, x;] contains an irrational number ¢, where f(c;) = 0. The
limit of Riemann sums using these choices equals zero. Since the limit depends on the
choices of ¢, the function f is not integrable. [ |

Theorem 1 says nothing about how to calculate definite integrals. A method of calcu-
lation will be developed in Section 5.4, through a connection to knowing an antiderivative
of the integrand function f.

Properties of Definite Integrals

In defining f:f(x) dx as a limit of sums X;_; f(c,) Ax,, we moved from left to right
across the interval [a, b]. What would happen if we instead move right to left, starting
with x, = b and ending at x, = a? Each Ax, in the Riemann sum would change its sign,
with x; — x;_; now negative instead of positive. With the same choices of ¢; in each sub-
interval, the sign of any Riemann sum would change, as would the sign of the limit, the
integral f buf(x) dx. Since we have not previously given a meaning to integrating back-

ward, we are led to define
a b
/ fx) dx = —/ fx) dx.
b a

Although we have only defined the integral over an interval [a, b] when a < b, itis
convenient to have a definition for the integral over [a, b] when a = b, that is, for the
integral over an interval of zero width. Since a = b gives Ax = 0, whenever f(a) exists

we define
a
/ fx) dx = 0.

Theorem 2 states basic properties of integrals, given as rules that they satisfy, includ-
ing the two just discussed. These rules, listed in Table 5.6, become very useful in the pro-
cess of computing integrals. We will refer to them repeatedly to simplify our calculations.
Rules 2 through 7 have geometric interpretations, shown in Figure 5.11. The graphs in
these figures are of positive functions, but the rules apply to general integrable functions.

THEOREM 2 When f and g are integrable over the interval [a, b ], the defi-
nite integral satisfies the rules in Table 5.6.

While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.6 must be proved. The fol-
lowing is a proof of Rule 6. Similar proofs can be given to verify the other properties in
Table 5.6.



320 Chapter 5: Integrals

TABLE 5.6 Rules satisfied by definite integrals

a b
1. Order of Integration: / f&x)dx = — / f(x) dx A definition
b a
2. Zero Width Interval: / f)dx =0 A definition when
a f(a) exists
b b
3. Constant Multiple: / kf(x)dx = k[ f(x)dx Any constant k
b
4. Sum and Difference: / (f(x) * gx) dx = / f(x)dx * / g(x) dx
5. Additivity: / fx) dx + / fx)dx = / fx) dx
6. Max-Min Inequality:  If f has maximum value max f and minimum value min

fon [a,b],then

b
minf-(b—a)s/f(x)dxs max f+(b — a).

b b
7. Domination: f(x) = gx)on [a,b] = fx)dx = / g(x) dx
b
fx) = 0on [a, b] = / f(x)dx = 0 (Special case)
y y — 2100 y
oA V=1 + g
y =/

y =g

4 y=f
y =1

0 a * 0 a b Ola b *

(a) Zero Width Interval: (b) Constant Multiple: (k = 2) (c) Sum: (areas add)
a b b b b b
/f(x)dx=0 / kf(x) dx = / fx)dx / (f(0) +g(x))dx:/f(x)dx+/g(x)dx
y y
y max /- v = £
) /\/\ v=f®
min f |-
— [f(x) dx y=gx)
0 a b c 7 0l a b 0la b
(d) Additivity for Definite Integrals: (e) Max-Min Inequality: (f) Domination:

b c c
/ f(x)dx + / fx)dx = / f(x)dx
a b a

b f(x) = gx)on [a,b]
minf- (b — a) s/ F(x) dx

b b
Smaaxf-(bfa) = af(x)dxz/Qg(x)dx

FIGURE 5.11 Geometric interpretations of Rules 2-7 in Table 5.6.
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Proof of Rule 6 Rule 6 says that the integral of f over [a, b] is never smaller than
the minimum value of f times the length of the interval and never larger than the maxi-
mum value of f times the length of the interval. The reason is that for every partition of
[a, b] and for every choice of the points ¢,

minfe(b—a =minfr > Ay, Sy b a
=1 k=1

n
= E min f - Axk Constant Multiple Rule
k=1
n
= D flc) Axy min f = f(cy)
k=1
=

n
E max f . Axk flcp) = max f
k=1

n
max f+ 2 Axk Constant Multiple Rule
k=1

= max (b — a).

In short, all Riemann sums for f on [a, b] satisfy the inequality
min f+(b — a) = > f(¢) Ax, = max f+(b — a).
=

Hence their limit, the integral, does too. [ |

EXAMPLE 2 To illustrate some of the rules, we suppose that

1 4 1
/ f(x)dx =5, / f(x)dx = —2, and / h(x) dx = 7.
—1 1 -1

1 4
1. / F(x) dx = — / Ff) dx = —(=2) = 2 Rule 1
4 1
1

Then

1 1
2. / [2f(x) + 3h(x)] dx = 2/ f(x) dx + 3/ h(x) dx Rules 3 and 4
-1 -1 -1

2(5) + 3(7) = 31

4 1 4
3. / fx) dx = / fx) dx + / fyde =5+ (-2)=3 Rule 5 [ |
-1 -1 1

EXAMPLE 3 Show that the value of fol \/1 + cosx dx is less than or equal to V/2.

Solution The Max-Min Inequality for definite integrals (Rule 6) says that min f+ (b — a)
is a lower bound for the value of f abf(x) dx and that max f + (b — a) is an upper bound.

The maximum value of V1 + cosxon [0,1]is V1 + 1 = V2, so
1
/ \/1+cosxdx5\f2-(1—0)=\/§. [ |
0
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0 b

FIGURE 5.12 The region in
Example 4 is a triangle.

Area Under the Graph of a Nonnegative Function

We now return to the problem that started this chapter, that of defining what we mean by
the area of a region having a curved boundary. In Section 5.1 we approximated the area
under the graph of a nonnegative continuous function using several types of finite sums of
areas of rectangles capturing the region—upper sums, lower sums, and sums using the
midpoints of each subinterval—all being cases of Riemann sums constructed in special
ways. Theorem 1 guarantees that all of these Riemann sums converge to a single definite
integral as the norm of the partitions approaches zero and the number of subintervals goes
to infinity. As a result, we can now define the area under the graph of a nonnegative inte-
grable function to be the value of that definite integral.

DEFINITION If y = f(x) is nonnegative and integrable over a closed interval
[a, b], then the area under the curve y = f(x) over [a, b] is the integral of

f from a to b,
b
A= / fx) dx.

For the first time we have a rigorous definition for the area of a region whose bound-
ary is the graph of any continuous function. We now apply this to a simple example, the
area under a straight line, where we can verify that our new definition agrees with our
previous notion of area.

EXAMPLE 4 Compute f Ohx dx and find the area A under y = x over the interval
[0,b], b > 0.

Solution  The region of interest is a triangle (Figure 5.12). We compute the area in two ways.

(a) To compute the definite integral as the limit of Riemann sums, we calculate
limjpj—g Si—1f(ci) Ax; for partitions whose norms go to zero. Theorem 1 tells us that
it does not matter how we choose the partitions or the points ¢, as long as the norms ap-
proach zero. All choices give the exact same limit. So we consider the partition P that
subdivides the interval [ 0, b ] into n subintervals of equal width Ax = (b — 0)/n =
b/n, and we choose ¢, to be the right endpoint in each subinterval. The partition is

P={0b2b S nb}andckab.So

'nononc on n
n n
kb b :
Dfle) Ax = D50 fe) = ¢
k=1 k=1
_ Nk
- 2
k=1 N
b* <
= k Constant Multiple Rule
n =

Sum of First n Integers



=
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FIGURE 5.13 (a) The area of this
trapezoidal region is A = (b> — a?) /2.
(b) The definite integral in Equation

(2) gives the negative of the area of this
trapezoidal region. (c) The definite inte-
gral in Equation (2) gives the area of
the blue triangular region added to the
negative of the area of the tan
triangular region.
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Asn—o00and ||P|| — 0, this last expression on the right has the limit 5?/2. Therefore,

b
2
/xdx=172.
0

(b) Since the area equals the definite integral for a nonnegative function, we can quickly
derive the definite integral by using the formula for the area of a triangle having base
length b and height y = b. The areais A = (1/2) b+b = b*/2. Again we conclude

that fobxdx = b?/2. |

Example 4 can be generalized to integrate f(x) = x over any closed interval

[a,b],0 < a <b.
b 0 b
/xdx=/xdx+/xdx Rule 5
a a 0
a b
=—/xdx+/xdx Rule 1
0 0
2 b2

= -5 - Example 4

2 2

In conclusion, we have the following rule for integrating f(x) = x:

b
v 4

xdx =5 — =, a<b 2)

IR

This computation gives the area of the trapezoid in Figure 5.13a. Equation (2) remains
valid when a and b are negative, but the interpretation of the definite integral changes.
When a < b < 0, the definite integral value (b*> — a?)/2 is a negative number, the nega-
tive of the area of a trapezoid dropping down to the line y = x below the x-axis (Figure
5.13b). When a < 0 and b > 0, Equation (2) is still valid and the definite integral gives
the difference between two areas, the area under the graph and above [0, b] minus the
area below [a, 0] and over the graph (Figure 5.13c¢).

The following results can also be established using a Riemann sum calculation similar
to that in Example 4 (Exercises 63 and 65).

b
/ cdx = c¢(b — a), ¢ any constant 3)

b 3 3
/dele;—‘;, a<b “)

Average Value of a Continuous Function Revisited

In Section 5.1 we introduced informally the average value of a nonnegative continuous
function f over an interval [a, b ], leading us to define this average as the area under the
graph of y = f(x) divided by b — a. In integral notation we write this as

b
1
Average = b “/u f(x) dx.

We can use this formula to give a precise definition of the average value of any continuous
(or integrable) function, whether positive, negative, or both.
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FIGURE 5.14 A sample of values of a
function on an interval [a, b].

FIGURE 5.15 The average
value of f(x) = V4 — x?> on
[—2,2] is /2 (Example 5). The
area of the rectangle shown here is
4-(/2) = 2, which is also the
area of the semicircle.

Exercises m

Interpreting Limits of Sums as Integrals

Alternatively, we can use the following reasoning. We start with the idea from arith-
metic that the average of n numbers is their sum divided by n. A continuous function f on
[a, b] may have infinitely many values, but we can still sample them in an orderly way.
We divide [a, b] into n subintervals of equal width Ax = (b — a)/n and evaluate f at a
point ¢ in each (Figure 5.14). The average of the n sampled values is

+ + “ e + n
f(cl) .f(c2) - f(cn) _ %]; f(Ck)

n
b—a 1 Ax
2 f(Ck) Ax = S0y =

b_ak:1 b—a

1 n
fa Ef(ck) Ax. Constant Multiple Rule
k=1

The average is obtained by dividing a Riemann sum for f on [a, b ] by (b — a). As we
increase the size of the sample and let the norm of the partition approach zero, the average
approaches (1/(b — a)) f ab f(x) dx. Both points of view lead us to the following definition.

DEFINITION If f is integrable on [a, b ], then its average value on [a,b],
also called its mean, is

b
av(f) = bia/ f(x) dx.

EXAMPLE 5 Find the average value of f(x) = V4 — x?>on [—2,2].

Solution  We recognize f(x) = V4 — x? as a function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

Since we know the area inside a circle, we do not need to take the limit of Riemann
sums. The area between the semicircle and the x-axis from —2 to 2 can be computed using
the geometry formula

L, _ 1, 2
Area = 2 > 7(2) 21t

Because f is nonnegative, the area is also the value of the integral of f from —2 to 2,
2
/ V4 — x*dx = 2m.
-2
Therefore, the average value of f is
1 ? 1
=— | N4 - 2dx = -7
av(f) 7= (_2)/2 4 — x=dx 4(277-) >

Notice that the average value of f over [—2, 2] is the same as the height of a rectangle over
[—2, 2] whose area equals the area of the upper semicircle (see Figure 5.15). |

lim E(ck 3¢p) Ax, where P is a partition of [—7, 5]

Express the limits in Exercises 1-8 as definite integrals. Rl
n
Jim Eck Ax;, where P is a partition of [0, 2] 4 dim 3 1 Ax,, where P is a partition of [1,4]
H H HPH_)O &= Ck
n
2. Hll’hg Ech Ax,, where P is a partition of [—1,0] 5. \\Pﬁmo 2 T Ax;,, where P is a partition of [2, 3]
—0=14 T %



lim 2 V4 — ¢,2 Axy, where P is a partition of [0, 1]

" IP—o k=

7. lim E(sec ¢;) Ax,, where P is a partition of [— /4,0 ]

IPll—0 £

8.
[IPll—

Using the Definite Integral Rules

9. Suppose that f and g are integrable and that

2 5 5
/ fx) dx = —4, / f(x)dx = 6, / g(x)dx = 8.
1 1 1

Use the rules in Table 5.6 to find

2 1

a. / g(x) dx b. / g(x) dx
22 ) 5

c. / 3f(x) dx d. / f(x) dx
1 2

5
£/[Mm—gmhk
1

10. Suppose that f and / are integrable and that

9 9 9
/ f)dx = —1, / fx)ydx =5, / h(x) dx = 4.
1 7 7

5
&/Hmwwﬂ
1

Use the rules in Table 5.6 to find

9
a./—2f(x)dx
1

11. Suppose that flzf(x) dx = 5. Find

2 2
a. / f(u) du b. / V3f(z) dz
1 1
1 2
c / £t dt d. / [—f(x)] dx
2 1

lim E(tan ¢p) Ax,, where P is a partition of [0, 7 /4]

9
/ [f(0) + h(x) ] dx

9
c. / [2f(x) — 3h(x)] d /f(x)dx
7

;
e. /f(x)dx f. / [h(x) — f(x)] dx
1 9

12. Suppose that [, g(5) di = \/2. Find

-3 0
a./ g(t) dt b. /g(u) du
0 3
0
c./[—g(x)]dx d/
-3

13. Suppose that f is integrable and that f o f(x)dz = 3 and

[y £ dz = 7. Find

4 3
a. / f(z) dz b. / f(o dt
3 4

14. Suppose that & is integrable and that fjl h(r)dr = 0 and

[ h(r) dr = 6. Find

3 1
a. / h(r) dr b. —/ h(u) du
| 3

(r)
3 ok
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Using Known Areas to Find Integrals
In Exercises 15-22, graph the integrands and use known area formulas to

evaluate the integrals.

4
X
15. [2<§ + 3) dx

3
17./\/9—x2dx
3

1
19. / |x| ax
-2
1
21. /(2 — |x|) dx
-1

3/2
16. (—2x + 4) dx
1/2

0
18. / V16 — x* dx
-4

1

(1 — |x|)dx
-1

1
22. / (1+ V1 —x%)dx
-1

Use known area formulas to evaluate the integrals in Exercises 23-28.

b
23./5dx, bh>0
)

b
24./4xdx, b >0
0

b b
25./25ds, 0<a<b 26./3tdt, 0<a<b

27. f(x) = V4 — x?

on a. [—2,2],b. [0,2]

28. f(x) =3x+ V1 —x* ona. [-1,0],b. [—1,1]

Evaluating Definite Integrals

Use the results of Equations (2) and (4) to evaluate the integrals in

Exercises 29-40.

V2
29. / x dx

1

5V2
32. / rdr

V2

1/2
3s. / 2 dt

0

\V3a
38. / x dx

25 2
30. / x dx 31. / 0 do
0.5 T
V7 03
33. / x2dx 34. / s2 ds
0 0

/2
36. / 0% do
0

%
39. / X2 dx
0

2a
37. / x dx
3b
40. / x2dx
0

Use the rules in Table 5.6 and Equations (2)—(4) to evaluate the integrals

in Exercises 41-50.

1
41. / 7 dx
3
2
43. /(Zt— 3) dt
0
! Z
45.L(1 +E)d2
2
47. /3u2du
1

2
49. / (Bx®> +x — 5)dx
0

2
42. / Sx dx
0

V2
44. / (t—V2)ar

0
46. /(22 —3)dz
3

1
48. / 24u? du
12

0
50. / Bx* + x — 5)dx
1

Finding Area by Definite Integrals
In Exercises 51-54, use a definite integral to find the area of the region
between the given curve and the x-axis on the interval [0, b ].

51. y = 3x?
53. y = 2x

52. y = mx?

54.y=§+1
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Finding Average Value
In Exercises 55—62, graph the function and find its average value over
the given interval.

55. fo) =x2—1 on [0,V3]

2
56. f(x):—i on [0,3]

57. f(x) =-3x*—1 on [0,1]

58. f(x) =3x*—3 on [0,1]

59. fO =@ — 172 on [0,3]

60. f() =r>—1t on [—2,1]

6l. g) =[x =1 on a. [—1,1], b. [1,3],and ¢. [—1,3]
62. h(x) = —|x| on a. [-1,0], b. [0,1],and c. [—1,1]

Definite Integrals as Limits of Sums
Use the method of Example 4a or Equation (1) to evaluate the definite
integrals in Exercises 63-70.

b
63. / cdx

b
65./x2dx, a<b

2
64./ (2x + 1) dx
0

0
66. / (x — x?) dx
-1
2 1
67. / (3x2 —2x + 1) dx 68. / x> dx
-1 -1

b 1
69. / Xdx, a<b 70. / Bx — X% dx
a 0

Theory and Examples
71. What values of a and b maximize the value of

/u = ) de?

(Hint: Where is the integrand positive?)

72. What values of a and b minimize the value of

b
/ (x* = 2x%) dx?

73. Use the Max-Min Inequality to find upper and lower bounds for

the value of
1
[
o 1 +x

74. (Continuation of Exercise 73.) Use the Max-Min Inequality to
find upper and lower bounds for

0.5 | 1 !
/ ;dx and / Sdx.
o 1 +x 0sl + x

Add these to arrive at an improved estimate of

1
/ 12dx.
o 1 +x

75. Show that the value of f 01 sin (x?) dx cannot possibly be 2.

76. Show that the value of [, Vx + 8 dx lies between 22 =~ 2.8
and 3.

77. Integrals of nonnegative functions Use the Max-Min Inequality
to show that if f is integrable then

b
f =0 on [a,b] = /f(x)deO.

78. Integrals of nonpositive functions Show that if f is integrable
then

b
f =0 on [a,b] = /f(x)deO.

79. Use the inequality sin x = x, \ivhich holds for x = 0, to find an
upper bound for the value of f o Sinx dx.

80. The inequality sec x = 1 + (x?/2) holdslon (—=m/2,/2). Use
it to find a lower bound for the value of f o S€C x dx.

81. If av(f) really is a typical value of the integrable function f(x) on
[a,b], then the constant function av(f) should have the same
integral over [a, b] as f. Does it? That is, does

b b
/ av(f)dx:/f(x)dx?

Give reasons for your answer.

82. It would be nice if average values of integrable functions obeyed
the following rules on an interval [a, b].

a. av(f + g) = av(f) + av(g)
b. av(kf) = kav(f) (any number k)

c. av(f) =av(g) if f(x) =gkx) on [a,b].
Do these rules ever hold? Give reasons for your answers.

83. Upper and lower sums for increasing functions

a. Suppose the graph of a continuous function f(x) rises steadily
as x moves from left to right across an interval [a, b]. Let P
be a partition of [a, b] into n subintervals of equal length
Ax =(b — a)/n. Show by referring to the accompanying fig-
ure that the difference between the upper and lower sums for
f on this partition can be represented graphically as the area
of a rectangle R whose dimensions are [ f(b) — f(a)] by Ax.
(Hint: The difference U — L is the sum of areas of rectangles
whose diagonals 0,0, 010,, . . ., 0,-10, lie approximately
along the curve. There is no overlapping when these rectan-
gles are shifted horizontally onto R.)

b. Suppose that instead of being equal, the lengths Ax; of the
subintervals of the partition of [a, b] vary in size. Show that

U—L=|f®b) — f@| Ay

where Ax,, is the norm of P, and hence that limjp|_
(U —-°L)=0.
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85.

86.

fb) — fla)

—

Olxg=a x| x, X, =b

Upper and lower sums for decreasing functions (Continua-

tion of Exercise 83.)

a. Draw a figure like the one in Exercise 83 for a continuous
function f(x) whose values decrease steadily as x moves from
left to right across the interval [a, b ]. Let P be a partition of
[a, b] into subintervals of equal length. Find an expression
for U — L that is analogous to the one you found for U — L
in Exercise 83a.

b. Suppose that instead of being equal, the lengths Ax; of the
subintervals of P vary in size. Show that the inequality

U—-L= |f(b) - f(a)‘ Axmax

of Exercise 83b still holds and hence that limjp|—
U -—-1L)=0.
Use the formula
sinh + sin2h + sin 3k + - - - + sinmh
cos(h/2) — cos((m + (1/2))h)
- 2sin (1/2)

to find the area under the curve y = sinx from x =0 to

x = /2 in two steps:

a. Partition the interval [0, /2] into n subintervals of equal
length and calculate the corresponding upper sum U; then

b. Find the limit of U as n—>00 and Ax = (b — a)/n— 0.

Suppose that f is continuous and nonnegative over [a, b], as in
the accompanying figure. By inserting points

X1 X5 v oo s Xp— 15 X+ + o5 Xpp—1

as shown, divide [ @, b ] into n subintervals of lengths Ax; = x; — a,
Ax, = x, — xy,...,Ax, = b — x,_;, which need not be equal.

a. If m = min {f(x) for x in the kth subinterval }, explain the
connection between the lower sum

L=m Ax; + my Ax, + -+ + m, Ax,
and the shaded regions in the first part of the figure.

b. If M, = max { f(x) for x in the kth subinterval }, explain the
connection between the upper sum

U=M Ax; + M, Ax, + -+ + M, Ax,
and the shaded regions in the second part of the figure.

c. Explain the connection between U — L and the shaded
regions along the curve in the third part of the figure.

87.

88.
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X
0l a x x x5 Xp—1 Xp X, b
y
7: ™
]
X
0l a X Xt b
y
X
0l a X Xgt b
e e
€
v

I b—a I

We say f is uniformly continuous on [a, b] if given any € > 0,
there is a & > 0 such that if x,x, are in [a, b] and
|x; — x| <8, then |f(x;) — f(x,)| < €. It can be shown that a
continuous function on [a, b] is uniformly continuous. Use this
and the figure for Exercise 86 to show that if f is continuous and
€ > 0 is given, it is possible to make U — L = €+ (b — a) by
making the largest of the Ax;’s sufficiently small.

If you average 30 mi/h on a 150-mi trip and then return over the
same 150 mi at the rate of 50 mi/h, what is your average speed
for the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS

If your CAS can draw rectangles associated with Riemann sums, use
it to draw rectangles associated with Riemann sums that converge to
the integrals in Exercises 89-94. Use n = 4, 10, 20, and 50 subinter-
vals of equal length in each case.

89.

1
1
1= xdx =5
/()( X)x 2
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1
90./(x2-‘:-1)d>c:i 91./
o 3

d. Solve the equation f(x) = (average value) for x using the aver-

cosxdx =0 age value calculated in part (c) for the n = 1000 partitioning.

95. f(x) =sinx on [0,7]

/4 1 .
92. / sec?x dx = 1 93. / x| dx =1 96. f(x) = sin’x on [0, ]
0 —1

2
94. / )l?dx (The integral’s value is about 0.693.)
1

97. f()c):xsin)lfC on |:%,7Tj|

.51 T
98. f(x) = xsin’5 on |:Z,7T:|

In Exercises 95-102, use a CAS to perform the following steps:

a. Plot the functions over the given interval.
b. Partition the interval into n = 100, 200, and 1000 subinter-

99. f(x) =xe™ on [0,1]
100. f(x) =e™* on [0,1]

vals of equa.ll length, and evaluate the function at the midpoint 101, f(x) = lnTx on [2,5]
of each subinterval.
c. Compute the average value of the function values generated in 102. f(x) = % on {0, ﬂ
—x

part (b).
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HISTORICAL BIOGRAPHY
Sir Isaac Newton

(1642-1727)

~—

f(c), average
l height

X

FIGURE 5.16 The value f(c) in the
Mean Value Theorem is, in a sense,
the average (or mean) height of f on
[a,b]. When f = 0, the area of the
rectangle is the area under the graph of
f fromato b,

b
flob —a = / f)dx.

In this section we present the Fundamental Theorem of Calculus, which is the central theorem
of integral calculus. It connects integration and differentiation, enabling us to compute inte-
grals using an antiderivative of the integrand function rather than by taking limits of Riemann
sums as we did in Section 5.3. Leibniz and Newton exploited this relationship and started
mathematical developments that fueled the scientific revolution for the next 200 years.

Along the way, we present an integral version of the Mean Value Theorem, which is
another important theorem of integral calculus and is used to prove the Fundamental
Theorem. We also find that the net change of a function over an interval is the integral of
its rate of change, as suggested by Example 3 in Section 5.1.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a
closed interval [a,b] as the definite integral f abf(x) dx divided by the length or width
b — a of the interval. The Mean Value Theorem for Definite Integrals asserts that this
average value is always taken on at least once by the function f in the interval.

The graph in Figure 5.16 shows a positive continuous function y = f(x) defined over
the interval [ a, b]. Geometrically, the Mean Value Theorem says that there is a number ¢ in
[a, b] such that the rectangle with height equal to the average value f(c) of the function and
base width b — a has exactly the same area as the region beneath the graph of f from a to b.

THEOREM 3—The Mean Value Theorem for Definite Integrals If f is continu-
ous on [a, b], then at some point c in [a, b],

b
flo) = 52— / £ d.

Proof If we divide both sides of the Max-Min Inequality (Table 5.6, Rule 6) by (b — a),
we obtain

b
min f = bia/ ) dx = max f.
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FIGURE 5.17 A discontinuous function

need not assume its average value.

y area = F(x)
y =10

0l a X b

FIGURE 5.18 The function F(x)
defined by Equation (1) gives the area
under the graph of f from a to x when
f is nonnegative and x > a.

0l a x x+th b

FIGURE 5.19 In Equation (1),
F(x) is the area to the left of x. Also,
F(x + h) is the area to the left of

x + h. The difference quotient

[F(x + h) — F(x)]/h is then ap-
proximately equal to f(x), the height
of the rectangle shown here.
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Since f is continuous, the Intermediate Value Theorem for Continuous Functions (Section
2.5) says that f must assume every value between min f and max f. It must therefore
assume the value (1/(b — a))fa f(x) dx at some point cin [a, b]. [ ]

The continuity of f is important here. It is possible that a discontinuous function
never equals its average value (Figure 5.17).

EXAMPLE 1

Show that if f is continuous on [a, b ], a # b, and if

b
/ f@x) dx = 0,

then f(x) = 0 at least once in [a, b].

Solution The average value of f on [a, b] is

b
win =yt [ w00

By the Mean Value Theorem, f assumes this value at some point ¢ € [a, b]. u

Fundamental Theorem, Part 1

It can be very difficult to compute definite integrals by taking the limit of Riemann sums. We
now develop a powerful new method for evaluating definite integrals, based on using antideriva-
tives. This method combines the two strands of calculus. One strand involves the idea of taking
the limits of finite sums to obtain a definite integral, and the other strand contains derivatives and
antiderivatives. They come together in the Fundamental Theorem of Calculus. We begin by con-
sidering how to differentiate a certain type of function that is described as an integral.

If f() is an integrable function over a finite interval /, then the integral from any fixed
number a € I to another number x € / defines a new function F whose value at x is

F(x) = / £(1) dt. (1)

For example, if f is nonnegative and x lies to the right of a, then F(x) is the area under the
graph from a to x (Figure 5.18). The variable x is the upper limit of integration of an integral,
but F is just like any other real-valued function of a real variable. For each value of the input
x, there is a well-defined numerical output, in this case the definite integral of f from a to x.

Equation (1) gives a way to define new functions (as we will see in Section 7.1), but
its importance now is the connection it makes between integrals and derivatives. If f is
any continuous function, then the Fundamental Theorem asserts that F' is a differentiable
function of x whose derivative is f itself. At every value of x, it asserts that

4 R = fo.

To gain some insight into why this result holds, we look at the geometry behind it.
If f = 0on [a,b], then the computation of F'(x) from the definition of the deriva-

tive means taking the limit as 2 — 0 of the difference quotient

F(x + h) — F(x)

-
For h > 0, the numerator is obtained by subtracting two areas, so it is the area under the
graph of f from xto x + & (Figure 5.19). If A is small, this area is approximately equal to the
area of the rectangle of height f(x) and width 4, which can be seen from Figure 5.19. That is,

F(x + h) — F(x) = hf(x).

Dividing both sides of this approximation by 4 and letting 4 — 0, it is reasonable to expect that
F(x + h) — F(x)
= .

This result is true even if the function f is not positive, and it forms the first part of the
Fundamental Theorem of Calculus.

Fo) =
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THEOREM 4—The Fundamental Theorem of Calculus, Part 1 If f is continu-
ouson [a,b],then F(x) = f ax f() dt is continuous on [ a, b ] and differentiable
on (a, b) and its derivative is f(x):

Foy=4 / foy di = f. @

Before proving Theorem 4, we look at several examples to gain a good understanding
of what it says. In each example, notice that the independent variable appears in a limit of
integration, possibly in a formula.

EXAMPLE 2 Use the Fundamental Theorem to find dy/dx if

X 5
(a) y=/ (* + 1)dt (b)y=/3tsintdt

4
1
() y=/ cost dt (d) y=/ dt
1 e

Solution We calculate the derivatives with respect to the independent variable x.

d X
(a) ﬁ = (Zc/ B+ Ddt=x>+1 Eq. (2) with f(r) = 3 + 1
dy 4 [, . al [ .
(b) A dx/x 3tsintdt = A\~ . 3tsin t dt Table 5.6, Rule 1
X
= —;/ 3tsin t dt
XS5
= —3xsinx Eq. (2) with f(f) = 3tsin¢

(¢) The upper limit of integration is not x but x?. This makes y a composite of the two
functions,

u
y = / costdt and  u = x%
1

We must therefore apply the Chain Rule when finding dy/dx.
dy _dy du

dx  du dx

_(a[" du
_(du/l costdt) dx

—cosu'dl
dx

= cos(x?) - 2x

2xcos x2

4 14357
d 1 _d(_ 1
@ dx/1+3x2 2 + e’dt - dx( [‘ 2 + etdt> fule |

=_i 1+3x2 1 p
dx/, 2+ ¢

_é i 2 Eq. (2) and the
2 + 143) dx (1 +3x) Chain Rule

_ 6x
2 4+ (1439
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Proof of Theorem 4 We prove the Fundamental Theorem, Part 1, by applying the
definition of the derivative directly to the function F(x), when x and x + A are in (a, D).
This means writing out the difference quotient

F(x + h) — F(x)

N A— 3)
and showing that its limit as 7 — 0 is the number f(x) for each x in (a, b). Doing so, we find

F(x + h) — F(x)
m——"" 7

F'(x) =
() Lim A
1 x+h X
= hmﬁ {/ f(ydt — f@ dt}
1 x+h
= %1_1)1%5 : f() dt. Table 5.6, Rule 5

According to the Mean Value Theorem for Definite Integrals, the value before taking
the limit in the last expression is one of the values taken on by f in the interval between x
and x + h. That is, for some number c in this interval,

1 x+h
h/ f@) dt = f(c). “)

As h— 0, x + h approaches x, forcing c to approach x also (because c is trapped between
xand x + h). Since f is continuous at x, f(c) approaches f(x):

lim f(c) = fx). ®)

In conclusion, we have
1 x+h
F'(x) = %E)I})h/x f@) dt
=1 Eq. (4
}lllgg) f() Eq. (4)

= f(x). Eq. (5)

If x = a or b, then the limit of Equation (3) is interpreted as a one-sided limit with 4 — 0*
or h — 07, respectively. Then Theorem 1 in Section 3.2 shows that F is continuous over
[a, b]. This concludes the proof. [ ]

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part describes
how to evaluate definite integrals without having to calculate limits of Riemann sums. Instead
we find and evaluate an antiderivative at the upper and lower limits of integration.

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2
If f is continuous over [a, b] and F is any antiderivative of f on [a, b ], then

b
/ f(x)dx = F(b) — F(a).

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of f exists, namely
X
G(x) = / f() dt.
a

Thus, if F is any antiderivative of f, then F(x) = G(x) + C for some constant C for
a < x < b (by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2).
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Since both F and G are continuous on [a, b ], we see that F(x) = G(x) + C also holds
when x = a and x = b by taking one-sided limits (as x — a* and x — b").
Evaluating F(b) — F(a), we have

F(b) — F(a)

[G(b) + C] — [G(a) + C]
= G(b) — G(a)

b a
=/f(t)dt—/f(t)dt
ab a
=/f(t)dt—0
ub
=/f(t)dt. [ |

The Evaluation Theorem is important because it says that to calculate the definite
integral of f over an interval [a, b] we need do only two things:

1. Find an antiderivative F of f, and
2. Calculate the number F(b) — F(a), which is equal to f ah fx) dx.

This process is much easier than using a Riemann sum computation. The power of the
theorem follows from the realization that the definite integral, which is defined by a com-
plicated process involving all of the values of the function f over [a, b], can be found by
knowing the values of any antiderivative F at only the two endpoints a and b. The usual
notation for the difference F(b) — F(a) is

b b
F(x):| or [F(x):| ,

depending on whether F has one or more terms.

EXAMPLE 3 We calculate several definite integrals using the Evaluation Theorem,
rather than by taking limits of Riemann sums.
™ T
(a) / cos x dx = sin x:| i sinx = cos x
0 0 dx
=sinm —sin0=0—-0=0
0 0
(b) / sec x tan x dx = sec x:| L{ sec x = sec x tan x
/4 — dx

4

4 4
3 4 _ 4 d ., 4\ _ 3., 4
(C) /1 (2\/); - xz> dx = |:)C3/2 + ‘x:|1 I(\ -+ T) = i.\‘l - F

= [(4)3/2 + j:| _ |:(1)3/2 + ‘1":|

8+ 1] —[5] =4

=secO—sec<—7T) =1-V2

1 1
dx 1 1
(d)/0x+1=ln|x+1|L iln‘erl‘:XJrl
=In2—-In1=1In2
1 1
(e) / 2dx =tan1x:| {*’_tllll].vi = ql
o X°+ 1 0 dx X+l

=tan"!'1 — tan"' 0 =
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Exercise 82 offers another proof of the Evaluation Theorem, bringing together the
ideas of Riemann sums, the Mean Value Theorem, and the definition of the definite integral.

The Integral of a Rate

We can interpret Part 2 of the Fundamental Theorem in another way. If F is any antideriva-
tive of f, then F' = f. The equation in the theorem can then be rewritten as

b
/ F'(x) dx = F(b) — F(a).

Now F'(x) represents the rate of change of the function F(x) with respect to x, so the last
equation asserts that the integral of F’ is just the net change in F as x changes from a to b.
Formally, we have the following result.

THEOREM 5—The Net Change Theorem The net change in a differentiable
function F(x) over an interval a = x = b is the integral of its rate of change:

b
F(b) — F(a) = / F'(x) dx. (©6)

EXAMPLE 4 Here are several interpretations of the Net Change Theorem.

(a) If c(x) is the cost of producing x units of a certain commodity, then ¢’(x) is the mar-
ginal cost (Section 3.4). From Theorem 5,

X

/ c'(x) dx = c(xy) — cx),

X1
which is the cost of increasing production from x; units to x, units.

(b) If an object with position function s(f) moves along a coordinate line, its velocity is
v(t) = s'(f). Theorem 5 says that

/ZU(I) dt = s(t) — s(ty),

so the integral of velocity is the displacement over the time interval f; = ¢t = £,. On
the other hand, the integral of the speed |v(#)| is the total distance traveled over the
time interval. This is consistent with our discussion in Section 5.1. |

If we rearrange Equation (6) as

b
F(b) = F(a) + / F'(x) dx,

we see that the Net Change Theorem also says that the final value of a function F(x) over
an interval [a, b] equals its initial value F(a) plus its net change over the interval. So if
v(?) represents the velocity function of an object moving along a coordinate line, this
means that the object’s final position s(,) over a time interval ; = ¢ = £, is its initial
position s(#;) plus its net change in position along the line (see Example 4b).

EXAMPLE 5 Consider again our analysis of a heavy rock blown straight up from the
ground by a dynamite blast (Example 3, Section 5.1). The velocity of the rock at any time
t during its motion was given as v(f) = 160 — 321 ft/sec.

(a) Find the displacement of the rock during the time period 0 = 7 = 8.

(b) Find the total distance traveled during this time period.
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2

-2 -1

FIGURE 5.20 These graphs
enclose the same amount of area
with the x-axis, but the definite
integrals of the two functions over
[—2, 2] differ in sign (Example 6).

Solution
(a) From Example 4b, the displacement is the integral

8 8
/v(t) dt = / (160 — 320 dr = [ 160 — 162 ];
0 0

= (160)(8) — (16)(64) = 256.

This means that the height of the rock is 256 ft above the ground 8 sec after the explo-
sion, which agrees with our conclusion in Example 3, Section 5.1.

(b) As we noted in Table 5.3, the velocity function v(f) is positive over the time interval
[0,5] and negative over the interval [5, 8]. Therefore, from Example 4b, the total
distance traveled is the integral

8 5 8
/\v(t)]dtz/ v(t)|dt+/ o
0 0 5

5 8
= / (160 — 321) dt — / (160 — 32¢) dt
0 5

= [160r — 162]5 — [ 160t — 162]}
= [(160)(5) — (16)(25)] — [(160)(8) — (16)(64) — ((160)(5) — (16)(25))]
= 400 — (—144) = 544.
Again, this calculation agrees with our conclusion in Example 3, Section 5.1. That is,
the total distance of 544 ft traveled by the rock during the time period 0 = r = 8 is

(i) the maximum height of 400 ft it reached over the time interval [0, 5] plus (ii) the
additional distance of 144 ft the rock fell over the time interval [5, 8]. |

The Relationship Between Integration and Differentiation

The conclusions of the Fundamental Theorem tell us several things. Equation (2) can be
rewritten as

d " -
dx/a f dt = f(x),

which says that if you first integrate the function f and then differentiate the result, you
get the function f back again. Likewise, replacing b by x and x by ¢ in Equation (6) gives

/ F'(t)dt = F(x) — F(a),

so that if you first differentiate the function F and then integrate the result, you get the
function F back (adjusted by an integration constant). In a sense, the processes of integra-
tion and differentiation are “inverses” of each other. The Fundamental Theorem also says
that every continuous function f has an antiderivative F. It shows the importance of find-
ing antiderivatives in order to evaluate definite integrals easily. Furthermore, it says that
the differential equation dy/dx = f(x) has a solution (namely, any of the functions
y = F(x) + C) for every continuous function f.

Total Area

Area is always a nonnegative quantity. The Riemann sum contains terms such as f(c;) Ax,
that give the area of a rectangle when f(c,) is positive. When f(c;) is negative, then the
product f(c,) Ax; is the negative of the rectangle’s area. When we add up such terms for a
negative function, we get the negative of the area between the curve and the x-axis. If we
then take the absolute value, we obtain the correct positive area.

EXAMPLE 6 Figure 5.20 shows the graph of f(x) = x> — 4 and its mirror image
g(x) = 4 — x? reflected across the x-axis. For each function, compute



FIGURE 5.21 The total area
between y = sin x and the x-axis for

0 = x = 27 is the sum of the absolute
values of two integrals (Example 7).
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(a) the definite integral over the interval [—2,2], and

(b) the area between the graph and the x-axis over [—2, 2 ].

Solution

2 3 5
_ X _ (8 _ o) _(_8 __32
(a) /zf(x)dx—[3 4x}2—<3 8) <3+8>— 3
and

2 372
_ _x|T 32
/zg(x) dx = {4x 3 ]2 3

(b) In both cases, the area between the curve and the x-axis over [—2, 2] is 32/3 square
units. Although the definite integral of f(x) is negative, the area is still positive. [ |

To compute the area of the region bounded by the graph of a function y = f(x) and
the x-axis when the function takes on both positive and negative values, we must be care-
ful to break up the interval [a, b] into subintervals on which the function doesn’t change
sign. Otherwise we might get cancelation between positive and negative signed areas,
leading to an incorrect total. The correct total area is obtained by adding the absolute value
of the definite integral over each subinterval where f(x) does not change sign. The term
“area” will be taken to mean this total area.

EXAMPLE 7 Figure 5.21 shows the graph of the function f(x) = sinx between
x = 0 and x = 27. Compute

(a) the definite integral of f(x) over [0, 27 ].
(b) the area between the graph of f(x) and the x-axis over [0, 27 |.

Solution

(a) The definite integral for f(x) = sin x is given by

2 2
/ sinxdx = —cosx| =—[cos2m —cos0] =—[1—-1] =0.

0 0
The definite integral is zero because the portions of the graph above and below the

x-axis make canceling contributions.
(b) The area between the graph of f(x) and the x-axis over [0, 27 ] is calculated by

breaking up the domain of sin x into two pieces: the interval [0, 7 | over which it is
nonnegative and the interval [ 7r, 277 | over which it is nonpositive.

/ sinxdx=—cosx] =—[cosm —cos0] =—[-1—-1] =2
0 0

2 27
/ sin x dx = —cosx} =—[cos2m —coswm] =—[1 —(=1)] =2
The second integral gives a negative value. The area between the graph and the axis is
obtained by adding the absolute values,

Area = |2] + |-2| = 4. [

Summary:

To find the area between the graph of y = f(x) and the x-axis over the interval [a, b ]:
1. Subdivide [a, b] at the zeros of f.

2. Integrate f over each subinterval.

3. Add the absolute values of the integrals.
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y EXAMPLE 8 Find the area of the region between the x-axis and the graph of
Area=% y=x3—x*—2x f)y=x>—x*—2x,-1 =x=2.
/ Solution  First find the zeros of f. Since
-1 0 ol |2 * f)y=x—x>—-2x=x(x>—x—-2) =xx + Dx — 2),
A = =2
o ‘ 3 the zeros are x = 0, —1, and 2 (Figure 5.22). The zeros subdivide [—1, 2] into two subin-

FIGURE 5.22 The region between the

tervals: [—1,0], on which f = 0, and [0, 2], on which f = 0. We integrate f over each
subinterval and add the absolute values of the calculated integrals.

0 4 3 0
3,2 _ XX 2 _o_ |11 _5
/_l(x X 2x) dx {4 3 x}l 0 {44—3 1] B

2
=3 — 52 — _axi 4 3 2
curve y = x b 2x and the x-axis (x3—x2—2x)dx=[x—x—x2:| =|:4—8—4:|—0=—8
(Example 8). 0 4 3 0 3 3
The total enclosed area is obtained by adding the absolute values of the calculated integrals.
5 8 37
== 4+ |=-2| =2
Total enclosed area = B 3 ‘ 2 |
Exercises m
Evaluating Integrals V2 2+ Vs (x1/3 +1)(2 — 22P)
Evaluate the integrals in Exercises 1-34. 23. Tds 24. NI dx
1
2 1
1./x(x*3)dx 2./(x2*2x+3)dx T
0 -1 25. / de 26. / (cos x + sec x)? dx
5 | o 2sin x 0
3. / %}H‘dx 4. / X299 dx 4 771
2GE+3) = 27. / |x| dx 28. / ~(cos x + |cos x|) dx
4 3 3 —4 0 2
5. /<3x2*%)dx 6. /(x3*2x+3)dx 2 2
: - 29. / e dx 30. / (; - e—X) dx
1 32 0 1
7. / (x? + Vx) dx 8. / X6/ dx 1 "
0 31 — 40 32 / d
/3 “Jo V1I-R2 o 1+ 4
9. / 2 sec? x dx 10. / (1 + cos x) dx 4 0
0 33. / X7 dx 34. [ 7 ldx
i sin u 2 -1
11. / csc 6 cot 0 do 12. / 4——du
/4 0 cos” u In Exercises 35-38, guess an antiderivative for the integrand function.
0 /3 Validate your guess by differentiation and then evaluate the given
13. / Mdt 14. / Gin? t dt definite integral. (Hint: Keep in mind the Chain Rule in guessing an
/2 2 -7/3 antiderivative. You will learn how to find such antiderivatives in the
_ /6 next section.)
15. / tan?x dx 16. / (sec x + tanx)? dx L lnx
0 0 3s. / xe* dx 36. /
/8 —7/4 0
17. / sin 2x dx 18. / (4 sec’t + tlz) dt cdx
0 —/3 37. / — 38. / sin® x cos x dx
- NG 2 V1 + x? 0
19. (r + 1)%dr 20. /\/(t + (2 +4)dr Derivatives of Integrals
1 -3

L Ty -2
21. / (”— - i) du 2. / Y-
) 5 3
V2 u -3 y

Find the derivatives in Exercises 39-44.
a. by evaluating the integral and differentiating the result.

b. by differentiating the integral directly.



Vx sin x
39. i/ cos t dt 40. i/ 312 dt
dx 0 dx .
I tan6
d d 2
41. di, Vu du 42. 40 sec’ydy
X3 Vi
d / _ d ( 3 >
43. — e 'dt 4. — X+ ———— ) dx
dx [, dt /, V1 - 2

Find dy/dx in Exercises 45-56.

45.y:/\/1+t2dt 46.y:/ldt,x>0
0 1

0 x2
47. y = / sin (1) dt 48. y = x/ sin (%) dt
3 2

Vx

X 12 X [2
49.y=/2 dz—/2 dt
L+ 4 s P+ 4
% 3
50. y = (/ @ + 1)‘°dz)
0

sin x

dt T
51. y = —, x| < 5
0 V1 — 72 | | 2
0 I
dt 1
52.y:/ 53.y:/ ——dt
tanx I+ [2 0 w

1 sin”'x

54, y=/ V1 dt 55. y=/ cos t dt
2% 0
X/

56. y = / sin”! ¢ dt
-1

Area
In Exercises 57-60, find the total area between the region and the x-axis.

57. y=—x>—2x, 3=x=2

58. y=3x>—-3, 2=x=2

59. y=x>—-32+2 0=x=<2

60. y=x—x —-1=x=38

Find the areas of the shaded regions in Exercises 61-64.

61. v

y=2
2
x=ma
y=1+cosx
X
0 T
62. y
y =sinx
1+
\ )
™ Smo N\
6 6
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y =secftan 6

| ) / 1
*g 0 g y=sec’t
y=1 -2
_é 0 1 !
\ak 4

Initial Value Problems

Each of the following functions solves one of the initial value prob-
lems in Exercises 65-68. Which function solves which problem? Give
brief reasons for your answers.

a.y=/%dl—3 b.y=/sectdt+4

1 0

c.y=/sectdt+4 d.y=/%dt73
-1 T

65 dl:l (m) = =3 66. y' =secx, y(—1)=4
. dx X’ Rl .y > Y
67. y' =secx, y0) =4 68. y = %, y(1) = -3

Express the solutions of the initial value problems in Exercises 69 and
70 in terms of integrals.

6. Y - 2) =3
e y(2) =

dy
70. =

I+ x% y(l)=-2

Theory and Examples

71. Archimedes’ area formula for parabolic arches Archimedes
(287-212 B.C.), inventor, military engineer, physicist, and the
greatest mathematician of classical times in the Western world,
discovered that the area under a parabolic arch is two-thirds the
base times the height. Sketch the parabolicarchy = h — (4h/b*)x?,
—b/2 = x = b/2, assuming that i and b are positive. Then use
calculus to find the area of the region enclosed between the arch
and the x-axis.

72. Show that if k is a positive constant, then the area between the
x-axis and one arch of the curve y = sin kx is 2 /k.

73. Cost from marginal cost The marginal cost of printing a poster
when x posters have been printed is
de _ 1
dx  2Vx

dollars. Find ¢(100) — ¢(1), the cost of printing posters 2—100.

74. Revenue from marginal revenue Suppose that a company’s
marginal revenue from the manufacture and sale of eggbeaters is

dr _ , >
=22/t D

where r is measured in thousands of dollars and x in thousands of
units. How much money should the company expect from a pro-
duction run of x = 3 thousand eggbeaters? To find out, integrate
the marginal revenue from x = 0 to x = 3.
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75. The temperature 7'(°F) of a room at time ¢ minutes is given by

T=8 —3V25—1t for 0=1t=25.

a. Find the room’s temperature when ¢ = 0,7 = 16, and t = 25.
b. Find the room’s average temperature for 0 = ¢ = 25.

76. The height H (ft) of a palm tree after growing for ¢ years is given by
H=Vir+1+5" for 0=1=<S8.

a. Find the tree’s height when t = 0,7 = 4, and r = 8.
b. Find the tree’s average height for 0 = t = 8.

77. Suppose that fﬁ f( dt = x> — 2x + 1. Find f(x).

78. Find f(4) if [, f(1) dt = x cos mx.

79. Find the linearization of

x+1 9
fx)y=2— /2 ﬁdt

atx = 1.
80. Find the linearization of

2

gx) =3 +/ sec (t — 1) dt
1

atx = —1.

81. Suppose that f has a positive derivative for all values of x and
that f(1) = 0. Which of the following statements must be true of
the function

g) = / f(@) dr?
0

Give reasons for your answers.

. g is a differentiable function of x.

. g is a continuous function of x.

. The graph of g has a horizontal tangent at x = 1.
. g has alocal maximum at x = 1.

. g has a local minimum at x = 1.

- e & 6 T o

. The graph of g has an inflection point at x = 1.
g. The graph of dg/dx crosses the x-axis at x = 1.

82. Another proof of the Evaluation Theorem
a. Leta = xy < x; < xp- - <x, = b be any partition of [a, b],
and let F' be any antiderivative of f. Show that

n

F(b) — F(a) = E [F(xi) - F(xi—l)]-

i=1

b. Apply the Mean Value Theorem to each term to show that
F(x;) — F(xi—)) = f(¢)(x; — x;—;) for some ¢; in the interval
(x;—1, x;). Then show that F(b) — F(a) is a Riemann sum for f
on [a,b].

¢. From part (b) and the definition of the definite integral, show
that

b
F(b) — Fla) = / £(x) dx.

83. Suppose that f is the differentiable function shown in the accom-
panying graph and that the position at time ¢ (sec) of a particle
moving along a coordinate axis is

s:/f(x)dx
0

meters. Use the graph to answer the following questions. Give
reasons for your answers.

y
y =)

| 3.3

1 (2,2) (5,2)

—_ N W A

(1, 1)

1 1 1 1 1 1 1 ] X
1 23 45 W

72_

a. What is the particle’s velocity at time ¢ = 5?

—O

b. Is the acceleration of the particle at time ¢+ = 5 positive, or
negative?
¢. What is the particle’s position at time ¢ = 3?

d. At what time during the first 9 sec does s have its largest
value?

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? Away from
the origin?
g. On which side of the origin does the particle lie at time t = 9?
X
. . 1 dt
84. Find lim —= —.
x>0 \/;C 1 \/l

COMPUTER EXPLORATIONS

In Exercises 85-88, let F(x) = f: f(#) dt for the specified function f
and interval [a,b]. Use a CAS to perform the following steps and
answer the questions posed.

a. Plot the functions f and F together over [a, b].

b. Solve the equation F’(x) = 0. What can you see to be true about
the graphs of f and F at points where F'(x) = 0? Is your obser-
vation borne out by Part 1 of the Fundamental Theorem coupled
with information provided by the first derivative? Explain your
answer.

c¢. Over what intervals (approximately) is the function F increasing
and decreasing? What is true about f over those intervals?

d. Calculate the derivative f’ and plot it together with F. What can
you see to be true about the graph of F at points where f'(x) = 0?
Is your observation borne out by Part 1 of the Fundamental Theo-
rem? Explain your answer.

85. f(x) = x* — 4x* + 3x, [0,4]

86. f(x) = 2x* — 17x3 + 46x — 43x + 12, {O,%}

87. f(x) = sin 2x cos%c,

88. f(x) = xcosmx, [0,27]

[0,27]



In Exercises 89-92, let F(x) =

fa”(") £(?) dt for the specified a, u, and

f. Use a CAS to perform the following steps and answer the questions
posed.

a.
b.

Find the domain of F.

Calculate F’'(x) and determine its zeros. For what points in its
domain is F increasing? Decreasing?

. Calculate F"(x) and determine its zero. Identify the local extrema

and the points of inflection of F.

. Using the information from parts (a)—(c), draw a rough hand-

sketch of y = F(x) over its domain. Then graph F(x) on your
CAS to support your sketch.
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89. a =1, ux =x fxy=V1-2
90. a =0, ukx) =x> f(x) = V1— 22
91. a =0, ux)=1—-—x, fx)=x*—2x—3
9. a=0, ux) =1-x% fx)y=x>—2x—-23

In Exercises 93 and 94, assume that f is continuous and u(x) is twice-
differentiable.
u(x)

93. Calculate —— f() dt and check your answer using a CAS.

dx/,

0 u(x)

94. Calculate % f(#) dt and check your answer using a CAS.
X

a

55 Indefinite Integrals and the Substitution Method

The Fundamental Theorem of Calculus says that a definite integral of a continuous func-
tion can be computed directly if we can find an antiderivative of the function. In Section
4.8 we defined the indefinite integral of the function f with respect to x as the set of all
antiderivatives of f, symbolized by f f(x) dx. Since any two antiderivatives of f differ by

a constant, the indefinite integral

notation means that for any antiderivative F of f,

/f(x) dx = F(x) + C,

where C is any arbitrary constant. The connection between antiderivatives and the definite
integral stated in the Fundamental Theorem now explains this notation:

/ f(x)dx = F(b) — Fla) = [Fx) + C]”

[froa]

When finding the indefinite integral of a function f, remember that it always includes an

arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite
integral f f(x) dx is a number. An indefinite integral f f(x) dx is a function plus an arbi-

trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-
ognizable as derivatives. In this section we begin to develop more general techniques for
finding antiderivatives of functions we can’t easily recognize as a derivative.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and » is any number different from —1, the Chain Rule

tells us that

i un+1 B du
dx\n + 1 W

From another point of view, this same equation says that #"*!/(n + 1) is one of the anti-
derivatives of the function «"(du/dx). Therefore,

du un+l
/ ddx—n+1+C. ()
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The integral in Equation (1) is equal to the simpler integral

un+1
/u du—n+1+C,

which suggests that the simpler expression du can be substituted for (du/dx) dx when
computing an integral. Leibniz, one of the founders of calculus, had the insight that indeed
this substitution could be done, leading to the substitution method for computing integrals.
As with differentials, when computing integrals we have

du

du = adx.

EXAMPLE 1 Find the integral / 3 + x)PBx + 1) dx.

Solution We set u = x> + x. Then

_du

du = ==dx = 3x* + 1) dx,
dx ( )
so that by substitution we have
/(x3 + x)5(3x2 + Ddx = /MS du Letu = x> + x,du = (3x> + 1) dx.
u6
= g + C Integrate with respect to u.
(e + 2° ,
= 6 + C Substitute x> + x for u. [ |

EXAMPLE 2 Find /\/2x + 1 dx.

Solution The integral does not fit the formula

/u" du,

with u = 2x + 1 and n = 1/2, because

du = @dx = 2dx
dx

is not precisely dx. The constant factor 2 is missing from the integral. However, we can
introduce this factor after the integral sign if we compensate for it by a factor of 1/2 in
front of the integral sign. So we write

/\/2x+1dx=;/\/2x+ 1-2dx
u

du

1
= 5 ul/z du Letu = 2x + 1,du = 2 dx.
1 u3/2
= E % Integrate with respect to u.
_ 3/2 N .
= §(2x + 1)+ C Substitute 2x + 1 for u. |

The substitutions in Examples 1 and 2 are instances of the following general rule.
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THEOREM 6—The Substitution Rule If u = g(x) is a differentiable func-
tion whose range is an interval /, and f is continuous on /, then

/ flg(x)g'(x) dx = / f(u) du.

Proof By the Chain Rule, F(g(x)) is an antiderivative of f(g(x)) < g’(x) whenever F is
an antiderivative of f:

%F(g(x)) = F'(g(x) g (x) Chain Rule
= f(g(x) - g’ ). F' =f

If we make the substitution u = g(x), then

/ Flg()g' () dx = / <L F(g) d

= F(gx) + C Theorem 8 in Chapter 4

=Fu + C u = gx)

= /F’(u) du Theorem 8 in Chapter 4

= /f(u)du- F'=f [

The use of the variable u in the Substitution Rule is traditional (sometimes it is referred
to as u-substitution), but any letter can be used, such as v, t, 8 and so forth. The rule pro-
vides a method for evaluating an integral of the form f f(g(x))g' (x) dx given that the condi-
tions of Theorem 6 are satisfied. The primary challenge is deciding what expression involv-
ing x you want to substitute for in the integrand. Our examples to follow give helpful ideas.

The Substitution Method to evaluate ff(g(x)) g'(x) dx
1. Substitute u = g(x) and du = (duldx) dx = g'(x) dx to obtain f f(u) du.
2. Integrate with respect to u.

3. Replace u by g(x).

EXAMPLE 3 Find/secz(Sx + 1)-5dx

Solution We substitute u = 5x + 1 and du = 5 dx. Then,

/SGCZ(S)C + 1):5dx = /SeC2 u du Letu = 5x + 1,du = 5dx.
— d 2
=tanu + C —tanu = sec’u
du
=tan(5x + 1) + C. Substitute 5x + 1 for u. |

EXAMPLE 4 Find/cos (76 + 3) db.
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Solution We let u = 76 + 3 so that du = 7 df. The constant factor 7 is missing from
the dO term in the integral. We can compensate for it by multiplying and dividing by 7,

using the same procedure as in Example 2. Then,

/cos(76 +3)do = ;/cos(70 +3)-7d6

_1
—7/cosudu

_ 1.
—7s1nu+C

= %Sin(70 +3) + C.

Place factor 1/7 in front of integral.

Letu =70 + 3,du = 7d6.

Integrate.

Substitute 760 + 3 for u.

There is another approach to this problem. With u = 760 + 3 and du = 7df as
before, we solve for df to obtain d@ = (1/7) du. Then the integral becomes

1
/cos (70 + 3)do = /cos u -7du Letu =70 + 3,du = 7d6, and dd = (1/7) du.
1.
= 7811‘1 u+C Integrate.

= %Sil‘l (76 + 3) + C. Substitute 760 + 3 for u.

We can verify this solution by differentiating and checking that we obtain the original

function cos (76 + 3).

EXAMPLE 5 Sometimes we observe that a power of x appears in the integrand that is
one less than the power of x appearing in the argument of a function we want to integrate.
This observation immediately suggests we try a substitution for the higher power of x.

This situation occurs in the following integration.

/xzexldx = / e x2dx

1
HISTORICAL BIOGRAPHY =3 e+ C
George David Birkhoff
1884-1944
ass1040) “lese

Let u = x3, du = 3x* dx,
(1/3) du = x> dx.

Integrate with respect to u.

Replace u by x°. [ |

It may happen that an extra factor of x appears in the integrand when we try a substi-
tution # = g(x). In that case, it may be possible to solve the equation u = g(x) for x in
terms of u. Replacing the extra factor of x with that expression may then allow for an inte-
gral we can evaluate. Here’s an example of this situation.
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EXAMPLE 6 Evaluate/x\/Zx + 1 dx.

Solution  Our previous integration in Example 2 suggests the substitution u = 2x + 1
with du = 2 dx. Then,

V2x + 1dx = %\/ﬁdu

However, in this case the integrand contains an extra factor of x multiplying the term
V2x + 1. To adjust for this, we solve the substitution equation u = 2x + 1 to obtain
x = (u — 1)/2, and find that

xV2x + ldx = %(u - 1)-%\/115114.

The integration now becomes

/x\/Zx + ldx = }l/(u -~ DVudu = }1/(” — Du'? du Substitute.

= 3'_/ (M3/2 - Ml/z) du Multiply terms.

_1(2 55 2 3p 4

=2 (5 u U + C Integrate.

_ 1 sp o 1 32

= E(Zx + 1)/= — 6(2}( + 1)/ + C. Replace uby 2x + 1. W
EXAMPLE 7 Sometimes we can use trigonometric identities to transform integrals
we do not know how to evaluate into ones we can evaluate using the Substitution Rule.
(a) /Sinzx dx = /1 — (2:08 zxdx sin?x = Lo coso 205 =

= ;/(1 — cos 2x)dx

1

sin 2x i C sin 2x

1 _x
“2* 72 2 =274 €

(b) / cos’x dx = / 1+ cos2x N 2 gy = >+ —S“fx + € cotym LTI

sin x —du .
= = ——Z u = cos x, du = —sin x dx
(c) / tan x du / cos xdx U

—In|u| + C = —In|cos x| + C

1

= In
|cos x\

+ C= ln\sec x| + C Reciprocal Rule |
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EXAMPLE 8 An integrand may require some algebraic manipulation before the sub-
stitution method can be applied. This example gives two integrals obtained by multiplying
the integrand by an algebraic form equal to 1, leading to an appropriate substitution.

(a) dx = al Multiply by (¢*/e%) 1
— = ultiply by (e*/e") = 1.
&+ e~ 2+ 1 ply by (e7/e
_ du Let u = e, > = e,
W+ 1 du = e*dx.
=tan'u + C Integrate with respect to u.

= tan i(e") + C Replace u by e*.

sec x + tanx sec x + tan x
(b) /secxdx = /(sec x)(1)dx = /secx- dy Seer Tty equal to 1.

sec x + tan x secx + tanx

2
sec” x + sec x tan x

sec x + tan x

_ @ u = tan x + sec x,
u du = (sec? + sec x tan x)dx
=In|ul + C =1In|secx + tanx| + C. u

The integrals of cot x and csc x are found in a way similar to those used for finding the
integrals of tan x and sec x in Examples 7c and 8b (see Exercises 71 and 72). We summa-
rize the results for these four basic trigonometric integrals here.

Integrals of the tangent, cotangent, secant, and cosecant functions

/tanxdx=lnsecx| +C /secxdx=ln\secx+tanx| +C

/cotxdx = Insinx| + C /cscxdx = —In|csc x + cotx| + C

Trying Different Substitutions

The success of the substitution method depends on finding a substitution that changes an
integral we cannot evaluate directly into one that we can. Finding the right substitution
gets easier with practice and experience. If the first substitution fails, try another substitu-
tion, possibly coupled with other algebraic or trigonometric simplifications to the inte-
grand. Several of these more complicated substitutions are studied in Chapter 8.

2zd
EXAMPLE 9 Evaluate | ————.
Va1
-+ 1
Solution We can use the substitution method of integration as an exploratory tool:
Substitute for the most troublesome part of the integrand and see how things work out.
For the integral here, we might try u = z> + 1 or we might even press our luck and take
u to be the entire cube root. Here is what happens in each case, and both substitutions
are successful.
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Method 1: Substitute u = 72 + 1.

/ 2zdz du Letu =2 + 1,

w3/zz +1 - ul/3 du = 2z dz.
= /u_1/3 du In the form '/)u” du
W23
=—+C Integrate.
2/3 :

_3
= qu + C

- %(22 + 12+ C  Replaceuby 2 + 1.

Method 2: Substitute u = V72 + 1 instead.

2zdz . 3udu Letu = V2 + 1,
«3/Z2 T 1 o u w =722+ 1,3utdu = 2z dz.

= 3/u du
l/l2

=3--+C Integrate.
2

3 s
= E(Z2 + 1)2/3 + C Replace u by (z> + 1)'/3. |

Exercises m

Evaluating Indefinite Integrals 1 952 dr
Evaluate the indefinite integrals in Exercises 1-16 by using the given : V] = 2

substitutions to reduce the integrals to standard form.
12. 120* + 42 + 12 + 29)dy, u=y* + 4> + 1
1. /2(2x + 4 dx, u /

u=1-7r>

2x + 4

13. / Vasin?(x¥? — 1) dx, u=x**—1
2. /7\/7x—1dx, u="7x—1

14. /%cosz(%> dx, u= —)1?
3. 2x(x> + 5y *dx, u=x>+5 X

43 15. /c502 26 cot 26 d6
4. ﬁdx, u=x*+1
x*+ 1)

a. Using u = cot 20 b. Using u = csc 26
5. / Gx + G2 + 40t dx, u =32 + 4x 16. / _dx
V5x + 8
a. Usingu = 5x + 8 b. Usingu = V5x + 8

dx, u=1+Vx

. /(1 + V)3

Vi Evaluate the integrals in Exercises 17-66.

/sin 3xdx, u=3x 8. /xsin xd) dx, u=2x? 17. /\/3 — 2sds

~

1
18. /7ds
V5s + 4
9./sec2ttan21dt, u=2t 19. /9\4/1—02d0 20. /3y\/7—3y2dy

2
t .t t 1 B
10. /(1 - cosf> singdt, u=1—cosy 21. /7& 22, /\/smxcos3xdx
2) 2 2 Va1l + Va)?
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23.

25.

27.

29.

3

<

3

w

35.

37.

39.

41.

43.

45.

47.

49.

51.

53.

54.

55.

57.

59.

ese| L=
: 2
in (2t + 1
1. / sn@+1)
cos?(2t + 1)

33.

/sec2 (Bx + 2)dx
s X X
/sm 3cos3dx
3 5
2o I
/ (18 1) dr
/x'/2 sin (x32 + 1) dx

Chapter 5: Integrals

24.

26.

28.

1 1 1
/02 sin — 9 cos Gdﬂ

= dx
V1 +x

1 1
/; 2 - L
3
/ X Hde

V' x
/xxfl)lodx

/(x + DAl — x) dx

/)c3\/)c2 + 1dx

_x
/ (* — 4y &
/(cos X) 8% dx

2

7T>C0t(v — T

o

32.
34.
36.

38.

44.
46.
48.
5

52.

1 2( ,Vx
sec2(eV¥ + 1) dx
/\/)7667\/’;

/)% e sec (1 + e tan (1 +

dx
xInx

dz
1+ ¢
/ 5 dr
9 + 4,2

56.

58.

60.

tan® x sec? x dx

—

/tan7 % sec? %dx

5\
4 _r
/r (7 10) dr

sec ztan z
——dz

SE€C Z

/fcos (Vi+3)ar

COs \/ a6
\V/05sin? \/

/ VA = xde

/(x + 5)(x — 5)Y3dx

/3x5\/)c3 + 1dx

X
0. /m dx

/ (sin 26) e dg

e/ dx

In \V?

/ dx
xVxt =1

/;de
Ve — 1

61 esin"x dx 2 ecos"x dx
) V1 — x? ) V1 — x?
63 (sin™'x)% dx o4 Vtan ! x dx
' 1= ' 1+ 2

66/ el
" Gin Ty VI =y

If you do not know what substitution to make, try reducing the inte-
gral step by step, using a trial substitution to simplify the integral a bit
and then another to simplify it some more. You will see what we
mean if you try the sequences of substitutions in Exercises 67 and 68.

65. /77
(tan”'y)(1 + y?)

18 tan®x sec? x
(2 + tan’x)?
a. u = tanx, followed by v = %, thenby w = 2 + v

67.

b. u = tan’x, followedby v = 2 + u

c. u=2+ tan’x
68. /\/1 + sin®(x — 1)sin(x — 1) cos (x — 1) dx

a. u = x — 1, followed by v = sinu, thenby w = 1 + v?
b. u
c. u=1+sin*(x — 1)

sin (x — 1), followed by v = 1 + 1?

Evaluate the integrals in Exercises 69 and 70.

2r — 1)cos V32r — 1> + 6

69. dr
V3Q2r — 12+ 6
0, [_snVe
V6 cos®* Vo

71. Find the integral of cot x using a substitution like that in Example 7c.
72. Find the integral of csc x by multiplying by an appropriate form
equal to 1, as in Example 8b.

Initial Value Problems
Solve the initial value problems in Exercises 73-78.

73. % 2 12032 - 19, s(1) = 3
di
d
74, d—y = 4x (2 + 8)13, y0) =0
75. B —gsin(1+ L), 50) =8
" dt 12 y

dr _ 2T _ -
76. d6—3cos <4 0), r0) =

2
77. 5 — _45in <2t - E)a s'(0) =100, s(0) =0

dr? 2
d*y
78. i 4sec?2xtan2x, y'(0) =4, y0) =-—
X

79. The velocity of a particle moving back and forth on a line is
v = ds/dt = 6sin 2t m/sec for all . If s = 0 when ¢ = 0, find
the value of s when ¢ = 7 /2 sec.

80. The acceleration of a particle moving back and forth on a line is
a = d*/d* = w* cos wt m/sec? for all £. If s =0 and v =
8 m/sec when ¢t = 0, find s when r = 1sec.
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5. 6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of
integration is changed by substitution.

THEOREM 7—Substitution in Definite Integrals If g’is continuous on the
interval [a, b] and f is continuous on the range of g(x) = u, then

g)

b
/ flg) g’ (x)dx = f(u) du.

g(a)

Proof Let F denote any antiderivative of f. Then,

1
b - Flg(x)
F(g(x))] = F'(g()g'(x)

= f(g(x)g'(x)

b
/ flg(x)) - g'(x) dx

xX=a

F(g(b)) — F(g(a))
u=g(b)

= F(u)]

u=g(a)

s Fund: tal
_ F(u) du. undamenta m

Theorem, Part 2
g(a)

To use the formula, make the same u-substitution u = g(x) and du = g'(x) dx you
would use to evaluate the corresponding indefinite integral. Then integrate the transformed
integral with respect to u from the value g(a) (the value of u at x = a) to the value g(b)
(the value of u at x = b).

1
EXAMPLE 1 Evaluate / 32V + 1dx.

1
Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

1 Letu = x> + 1, du = 3x%dx.
/ 3x2V3 + 1dx Whenx = —1,u = (—1)) + 1 = 0.
- Whenx = 1L,u= (1) +1=2.

2
= Vu du
0
_23n o
= §u Evaluate the new definite integral.
0
203 ] 2 _ 42
—§[2/—0/}—§[2\6]—T
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Method 2: Transform the integral as an indefinite integral, integrate, change back to x,
and use the original x-limits.

/3)62 V3 4+ 1dx = /\/;du Letu = x> + 1,du = 3x2dx.

2
= §u3/ 24+ C Integrate with respect to u.

= %(x3 + 132+ C Replace u by x* + 1.

! 1 . Lo )
N/ 3 L 1 _ ; 3 32 Use the integral just found, with
/ 3TVa' £ Ldx 3 o+ D :|—l limits of integration for x.

(@ + D2 = (1) + 2]

W\N

[23/2 _ 03/2] —

w\m
wn\)

[2va] - 12 o

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 We use the method of transforming the limits of integration.

/2 0 Let u = cotf, du = —csc? 6 db,
(a) / cot 0 csc?6 df / u - (—du) —du = csc? 6 do.
T 1

/4 When 0 = 7 /4, u = cot(w/4) = 1.
0
= —/ u du
1

When 0 = 7/2, u = cot(m/2) = 0.
_ ’ﬁ ’
2

0) (1)2} 1

2 2

/4 w/4 .
) / tan x dv = / sinx ;.

/4 /4
V22 Let u = cos x, du = —sin x dx.
= — du When x = —7/4,u = V2/2.
Van u When x = 7 /4, u = V/2/2.
V2/2
= —In ‘ ‘ =0 Integrate, zero width interval |
V22

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of
even and odd functions (Section 1.1) over a symmetric interval [—a, a | (Figure 5.23).



(a)

—a \/u x
(b)

FIGURE 5.23 (a) For f an even func-
tion, the integral from —a to a is twice the
integral from O to a. (b) For f an odd func-
tion, the integral from —a to a equals 0.

Upper curve

y =)

| X
T— b
Lower curve
y =8k
FIGURE 5.24 The region between
the curves y = f(x) and y = g(x)
and the lines x = @ and x = b.
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THEOREM 8 Let f be continuous on the symmetric interval [—a, a].

(a) If fiseven, then/ f)dx = 2/ f(x)dx.
—a 0

a

(b) If f is odd, then/ fx)dx = 0.

—a

Proof of Part (a)

a 0 a
/ f(x)dx = / f(x)dx + / f(x)dx Additivity Rule for
—a —a 0

Definite Integrals

—a a
—/ fx)dx + / fx)dx Order of Integration Rule
0 0

a a Letu = —x,du = —dx.
_/ f(_u)(_du) + / f(x) dx When x = 0,u = 0.
0 0

When x = —a,u = a.
/ fuwydu + / fx)dx
0 0

_ ¢ ¢ f is even, so
/0 fu)du + /0 fx)dx i) = f).
a
=2 / f(x)dx
0
The proof of part (b) is entirely similar and you are asked to give it in Exercise 114. |

The assertions of Theorem 8 remain true when f is an integrable function (rather than
having the stronger property of being continuous).

2

EXAMPLE 3 Evaluate/ (x* — 4x2 + 6) dx.

2

Solution Since f(x) = x* — 4x> + 6 satisfies f(—x) = f(x), it is even on the symmet-
ric interval [—2, 2], so

2 2
/ @x* — 4x% + 6)dx = 2/ * — 4x% + 6)dx
— 0

2

_ xj 4 ; ?
2[5 —3X -1—616}0
- 32 32 :232
—2(5 3 12> 15 [ |

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = f(x),
below by the curve y = g(x), and on the left and right by the lines x = a and x = b (Fig-
ure 5.24). The region might accidentally have a shape whose area we could find with
geometry, but if f and g are arbitrary continuous functions, we usually have to find the
area with an integral.
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y
y=f)
a:‘xo‘xl X1 |
= \ AR
IR
= Ty =W

FIGURE 5.25 We approximate
the region with rectangles perpen-
dicular to the x-axis.

(e fer))

Ckl

T
flew — 8ley)

*
I
I

52
|(_)| (¢ 8(cp))
Axy

FIGURE 5.26 The area AA; of the
kth rectangle is the product of its height,
f(cr) — g(cp), and its width, Ax;.

057 (x, gx)

0 1

FIGURE 5.27 The region in Example 4

with a typical approximating rectangle.

To see what the integral should be, we first approximate the region with n vertical
rectangles based on a partition P = {xo, x{, ..., x,} of [a, b] (Figure 5.25). The area of
the kth rectangle (Figure 5.26) is

AA; = height X width = [ f(cp) — g(cp) ] Axs.
We then approximate the area of the region by adding the areas of the n rectangles:

A= EAAk = 2 [f(Ck) - g(Ck)] Axk. Riemann sum
k=1 1

k=

As ||P|| — 0, the sums on the right approach the limit fab [f(x) — g(x)] dx because f
and g are continuous. We take the area of the region to be the value of this integral. That is,

n

b
A= im, S5 = g 8= [ [0 — g0 a.

IPl—0 ;=

DEFINITION If f and g are continuous with f(x) = g(x) throughout [a, b],
then the area of the region between the curves y = f(x) and y = g(x) from
a to b is the integral of (f — g) from a to b:

b
A=/ 500 — g0)] d.

When applying this definition it is helpful to graph the curves. The graph reveals which curve
is the upper curve f and which is the lower curve g. It also helps you find the limits of integra-
tion if they are not given. You may need to find where the curves intersect to determine the
limits of integration, and this may involve solving the equation f(x) = g(x) for values of x.
Then you can integrate the function f — g for the area between the intersections.

EXAMPLE 4 Find the area of the region bounded above by the curve y = 2¢ ™~ + x,
below by the curve y = ¢*/2, on the left by x = 0, and on the right by x = 1.

Solution Figure 5.27 displays the graphs of the curves and the region whose area we
want to find. The area between the curves over the interval 0 = x = 1 is given by

1 1
— —X _ l — | —9,x l 2 _ l
A= /0 {(Ze + Xx) Ze"}dx { 2¢ " + 7X ZQXL

N PN S U R _ 1
—<2e +2 23) <2+0 2>

=3 - ~ 0.9051. |

[NI\S]

_¢
2
EXAMPLE 5

the line y = —x.

Find the area of the region enclosed by the parabola y = 2 — x? and

Solution First we sketch the two curves (Figure 5.28). The limits of integration are found

by solving y = 2 — x? and y = —x simultaneously for x.
2 — x2 = —X Equate f(x) and g(x).
XX—x—2=0 Rewrite.
x+1Dx—2)=0 Factor.
x =1, x = 2. Solve.

The region runs from x = —1 to x = 2. The limits of integration are a = —1,b = 2.



~<

(x, f(x))
y=2-— x2
Ax

<—>|

=

|
1
(. g()
L y=—-x 2, -2)

FIGURE 5.28 The region in
Example 5 with a typical approxi-
mating rectangle.

4
Afea:/(\/;c—x-‘rZ)dx
2

y
2 y=x

21 Area = 0\/31 dx \ (x () 4,2)

x, f() B

BN y=x—2

A (x, g(x)
- L
ol /7 y=02 7

/
(x2 ()

FIGURE 5.29 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 6.
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The area between the curves is

b 2
A:/ [f(x)—g(x)]dx=/ (2= x) — (—x)]dx

1

2 2 B
= — x2 = A A
_1(2 +x — x9)dx {Zx + 5 3 ]1

(i d 8 (1 )0
~(4+3-9) - (2+1+1) -3 .

If the formula for a bounding curve changes at one or more points, we subdivide the
region into subregions that correspond to the formula changes and apply the formula for
the area between curves to each subregion.

EXAMPLE 6 Find the area of the region in the first quadrant that is bounded above
by y = Vx and below by the x-axis and the line y = x — 2.

Solution The sketch (Figure 5.29) shows that the region’s upper boundary is the graph of
fx) = \/x. The lower boundary changes from g(x) = 0for0 = x =2togx) =x — 2
for 2 = x = 4 (both formulas agree at x = 2). We subdivide the region at x = 2 into sub-
regions A and B, shown in Figure 5.29.

The limits of integration for region A are a = 0 and b = 2. The left-hand limit for
region B is a = 2. To find the right-hand limit, we solve the equations y = Vx and
y = x — 2 simultaneously for x:

\/J; =x—2 Equate f(x) and g(x).
x=(x—-2%=x>—4x+4 Square both sides.
X =5%x+4=0 Rewrite.
x—1Dx—4=0 Factor.
X = 1, x = 4. Solve.

Only the value x = 4 satisfies the equation Vx = x — 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limitis b = 4.

ForO0=x=2  f(x —gx)=Vx—0=Vx
For2=x=4  fx)—gx)=Vx—(x—2=Vx—x+2

We add the areas of subregions A and B to find the total area:

2 4
Totalarea=/\/J;dx+/(\/);—x+2)dx
0 2

arca of A area of B

_23/22 2 5p X !
—{3)6 +3x 2—|—2)c

0 2

= %(2)3/2 -0+ (5(4)3/2 -8+ 8) — (5(2)3/2 -2+ 4)

— 2y =10
=3® -2=7. =
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= f(y) — gl
]
0] y=0 2 4

FIGURE 5.30 Tt takes two integra-
tions to find the area of this region if
we integrate with respect to x. It takes
only one if we integrate with respect to
y (Example 7).

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectan-
gles are horizontal instead of vertical and the basic formula has y in place of x.
For regions like these:

S

U

X =2g0)

iA()
720

x = f(y)

x=g(y| €

use the formula

d
A= / [fO) — g()]dy.

In this equation f always denotes the right-hand curve and g the left-hand curve, so
f(») — g(y) is nonnegative.

EXAMPLE 7 Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.30). The region’s right-hand boundary is the line
x =y + 2,50 f(y) =y + 2. The left-hand boundary is the curve x = y?, so g(y) = y*.
The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and
x = y? simultaneously for y:

y+2=)> Equate f(y) = y + 2 and g(y) = y*
yY-y—2=0 Rewrite.
(y+Dly—2)=0 Factor.
y=-1, y=2 Solve.

The upper limit of integration is b = 2. (The value y = —1 gives a point of intersection
below the x-axis.)
The area of the region is

d 2
A=/ [f(y)—g(y)]dy=/ [y +2—y*]dy
c 0

2
=/[2+y—y2}dy
0

2 372
_ y_y
-|lw+ -5,
_ 4_8_10
=4ty 7373

This is the result of Example 6, found with less work. [ |
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y Although it was easier to find the area in Example 6 by integrating with respect to y
rather than x (just as we did in Example 7), there is an easier way yet. Looking at Figure
5.31, we see that the area we want is the area between the curve y = Vx and the x-axis
for 0 = x = 4, minus the area of an isosceles triangle of base and height equal to 2. So by

4.2)

()
T
=
Il
B
< ———>

= y=x-2 combining calculus with some geometry, we find
Area =2 4
I<—2—> 1 1
T R Area = [ Vxd )
0
FIGURE 5.31 The area of the blue ) 4
region is the area under the parabola = §x3/ 2} -2
y = V/x minus the area of the 0
triangle. 2 _ 10
=3 @®—-0—-2= 3
Exercisesm
Evaluating Definite Integrals 5. a 2 COSs z ’T ~ cosz
Use th.e Substitution Formula in Theorem 7 to evaluate the integrals in o V4 + 3sinz m
Exercises 1-46.
’ 0 14. a /0 (2 + tan L) secLdr b /”/2(2 + tan L) sec?L dr
a. /o Vy + 1dy b. [IVy+ldy - 2 2 2 : a2 2 2
: : 15 /1\/t5 + 26t +2)dt 16 /4dy
2. a./r\/lfrzdr b./r\/lfrzdr “Jo “ 2\/§(1+\/§)2
0 -1 /6 3m/2 0 0
w4 0 17. / cos 20 sin 20 d 18. / cot’ (g) sec? (g) do
3. a. / tan x sec’x dx b. / tan x sec’x dx 0 &
0 — /4 T /4
, 19. / 5(5 — 4cosH)!/*sintdr  20. / (1 — sin 2)%/% cos 2t dt
4. a. / 3 cos? x sin x dx b. / 3 cos’x sin x dx
’ o 21. / @Ay =y + 4° + 1722122 — 2y + 4) dy
1 1 0
5. a. / B3(1 + *)3 dr b. / 231+ *)3ar 1
0 -1 22 / O3 + 6y? — 12y + 9 V2(y2 + 4y — 4) dy
0
4l 0 oo
6. a. (2 + 1)1 dr b. / 12+ 1)'BRdr ™ -1z
/0 ( ) 5 ( ) 23, / V0 cos? (63/%) do 24, / 2 sin (1 + >dz
0 -1
1 1
Sr S5r /4 /2
Ta | Gy e L A 25. / (1 + em%sec20dd  26. / (1 + e csc20 do
-1 0 0 /4
1 4
10Vv / 10Vv T w3
8. a. — o dv b. — . 5dv sin ¢ 4 sin 0
o (1 + vy L (1 + ) 27 /0 7 cos ¥ o /o (R
V3
4x 4x 2 4
9. a. ————dx b. ——dx 21nx dx
A V2 F 1 /7\/51/){2_‘_1 29./l ~dx 30. /lenx
3 4 16
10. a. / ——dx b. / ——dx / dx /
N N 31. 32.
0 x*+9 1Vx*+9 5 x(lnx)2 5 2x\/7
1 9
/2
11. a. /O tV4 + 5tdt b. /l t VA4 + 5tdt 1. / tan? dx 1, / cot 1 dt
0
12. a.

/6 /3

_ . _ . /3 /12

A (1 — cos 3f)sin3tdt b. /7/6 (1 — cos 3¢) sin 3t dt 3s. / tan? 0 cos 0 do 36. / 6 tan 3x dx
0 0
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"2 5 cos 0 db
37. 208040
—zpp 1 + (sin6)

InV3
39, / e dx
0 1+ ¥

] 4 ds
0o V4 — §?

3 /2 sec?(sec”'x) dx
s VA1

41.

-V2/2 d
R
~1 yVay* — 1

38.

40.

/ " csctxdx
a6 1+ (cotx)?
e/t
/ 4dt
. 1+ In%p)

V/2/4

42 -
0 VO — 452
" / cos (sec”'x) dx
“lovs V-1
w [ 22
o V5y+1

Find the total areas of the shaded regions in Exercises 47-62.

Area
47. y
y=xV4-— x2
L X
=2 0 2
49. y

2_
73_

y = 3(sinx)\/1 + cosx

51. vy
1 y=1
y= cos? x
L X
0 T m
2
53. y
(=2,8) g 2,98
y = 2x?
y=x*-
| | | |
-2 41 2
NOT TO SCALE

48.

52.

Y

y = (1 — cosx) sinx

54. )

ol
59 y 60. Y oy=—x?+3x
35 | L\ je)
| | | |
y=x*—4 2H N1 2 °
Loy y=2x3—x2—5x
=3 o 1 ,
y=—x"—2x (-2, -10)
710
(-3.-3) 1. =3
61. y
(—2.4) y=4-x?
2

(3.-5)

Find the areas of the regions enclosed by the lines and curves in
Exercises 63-72.

63. y=x>—2 and y=2
65. y=x* and y = 8x

64. y=2x — x> and y=-3
66. y=x*>—2x and y=x
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67. y=x> and y=—x>+ 4x

68. y=7—-2x> and y=x>+4

69. y=x*—4x>+4 and y=x’

70. y=xVa® —x% a>0, and y=0

71. y = \/m and 5y = x + 6 (How many intersection points

are there?)
72. y=|x*—4| and y= (x?/2) + 4
Find the areas of the regions enclosed by the lines and curves in
Exercises 73-80.
73. x =2y, x=0, and
74. x = y?
75. > —4x =4 and 4x—y=16
76. x —y* =0 and x+ 2y* =3
77. x +y*=0 and x+ 3y? =2
78. x —y*=0 and x+y*=2

79. x=y"—1 and x = |y[]V1 —)?

and x = 2y

y=3
and x =y + 2

80. x =y —y?
Find the areas of the regions enclosed by the curves in Exercises 81-84.
81. 4> +y=4 and x*—y=1
8. x*—y=0 and 3x*—-y=4
83. x+4”>=4 and x +y*
84. x +y>=3 and 4x+y>=0

1, for x=0

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 85-92.

85. y=2sinx and y=sin2x, 0=x=m

86. y = 8cosx and y =sec’x, —w/3 =x=m/3
87. y=—cos(wmx/2) and y=1—x2

88. y =sin(wmx/2) and y=x

89. y = sec’x, y=tan’x, x =—m/4, and x = 7/4
90. x = tan’y and x = —tan’y, —w/4 =y = m/4
91. x =3sinyVecosy and x=0, 0=y=m/2
92. y =sec’(mx/3) and y=x3, -l =x=1

Area Between Curves
93. Find the area of the propeller-shaped region enclosed by the
curve x — y> = 0 and the line x — y = 0.

94. Find the area of the propeller-shaped region enclosed by the
curves x — y'/* = 0and x — y'/° = 0.

95. Find the area of the region in the first quadrant bounded by the
line y = x, the line x = 2, the curve y = 1/x?, and the x-axis.

96. Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves
y = sinx and y = cos x.

97. Find the area between the curves y = Inx and y = In 2x from
x=1tox =5.

98. Find the area between the curve y = tan x and the x-axis from
x=-m/4tox = 7/3.

99. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve y = e, below by the curve y = ¢,
and on the right by the line x = In 3.

100.

101.

102.

103.

104.

105.

106.

107.

108.

355

Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve y = €2 below by the curve
y = ¢, and on the right by the line x = 2 1n 2.

Find the area of the region between the curve y = 2x/(1 + x?)
and the interval —2 = x = 2 of the x-axis.

Find the area of the region between the curve y = 2!™* and the
interval —1 = x = 1 of the x-axis.

The region bounded below by the parabola y = x? and above by
the line y = 4 is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line y = c.

a. Sketch the region and draw a line y = c¢ across it that looks
about right. In terms of ¢, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

b. Find ¢ by integrating with respect to y. (This puts ¢ in the
limits of integration.)

c. Find c by integrating with respect to x. (This puts ¢ into the
integrand as well.)

Find the area of the region between the curve y = 3 — x? and
the line y = —1 by integrating with respect to a. x, b. y.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line y = x/4, above left by the
curve y = 1 + Vx, and above right by the curve y = 2/ Vx.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the curve x = 2Vy, above left by
the curve x = (y — 1), and above right by the line x = 3 — y.

The figure here shows triangle AOC inscribed in the region cut
from the parabola y = x> by the line y = @ Find the limit of
the ratio of the area of the triangle to the area of the parabolic
region as a approaches zero.

y
y =x?
\A C/ y=a’
(—a,a® (a,a®
L L x
—a o a

Suppose the area of the region between the graph of a positive
continuous function f and the x-axis from x = a to x = b is
4 square units. Find the area between the curves y = f(x) and
y = 2f(x) fromx = atox = b.
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109. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

1 1
a. /(x — (—x)) dx /2x dx
-1 -1
1
b. / (—=x — (x)) dx
-1

I
—
5
=

110. True, sometimes true, or never true? The area of the region
between the graphs of the continuous functions y = f(x) and
y = g(x) and the vertical lines x = a and x = b (a < b) is

b
/ L) — g@] d.

Give reasons for your answer.

Theory and Examples
111. Suppose that F(x) is an antiderivative of f(x) = (sinx)/x,

x > 0. Express
3
sin 2x
[

112. Show that if f is continuous, then

in terms of F.

1 1
fx)dx = / f(l — x)dx.
0 0

113. Suppose that

Find

ifa. fisodd, b. fiseven.
114. a. Show that if f is odd on [—a, a], then

/ fx)dx = 0.

b. Test the result in part (a) with f(x) = sinx and a = 7/2.
115. If f is a continuous function, find the value of the integral
¢ f)dx
o J + fla —x)

by making the substitution # = a — x and adding the resulting
integral to /.

I =

116. By using a substitution, prove that for all positive numbers x and y,

Xy y
R A
/x ?dl‘ = [ 7dl‘.

The Shift Property for Definite Integrals A basic property of defi-
nite integrals is their invariance under translation, as expressed by the

equation
b b—c
/ fx)dx = / flx + ¢)dx. (D)

The equation holds whenever f is integrable and defined for the neces-
sary values of x. For example in the accompanying figure, show that

-1 1
/ (x + 2)Pdx = / x> dx
-2 0

because the areas of the shaded regions are congruent.

y

y=(x+2)° y=x

|
2 -1 /0 1
117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph f(x) over [a, b] and
f(x + ¢)over [a — ¢, b — c¢] to convince yourself that Equation
(1) is reasonable.

a fx)=x% a=0 b=1 c=1
b. f(x) = sinx, c=m/)2
c. f\)=Vx—4, a=4, b=8, ¢c=5

a=0, b=,

COMPUTER EXPLORATIONS

In Exercises 119-122, you will find the area between curves in the
plane when you cannot find their points of intersection using simple
algebra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the
points of intersection.

c. Integrate \ fx) — g(x)\ over consecutive pairs of intersection
values.
d. Sum together the integrals found in part (c).
XX 1 -~
119. f(x) = 3 > 2x + 3 gy =x—-1

4
120. f(x) = % — 303+ 10, g(x) =8 — 12x
121. f(x) = x + sin (2x),
122. f(x) = x*cos x,

g = x°

g =x —x
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Chapter 5 Practice Exercises

Questions to Guide Your Review

. How can you sometimes estimate quantities like distance traveled, 9. What is the Fundamental Theorem of Calculus? Why is it so
area, and average value with finite sums? Why might you want to important? [llustrate each part of the theorem with an example.
do so? 10. What is the Net Change Theorem? What does it say about the

. What is sigma notation? What advantage does it offer? Give integral of velocity? The integral of marginal cost?
examples. 11. Discuss how the processes of integration and differentiation can

. What is a Riemann sum? Why might you want to consider such a be considered as “inverses” of each other.
sum? 12. How does the Fundamental Theorem provide a solution to

. What is the norm of a partition of a closed interval? the initial value problem dy/dx = f(x), y(x)) = yy, wWhen f is

. What is the definite integral of a function f over a closed interval continuous?

[a, b]? When can you be sure it exists? 13. How is integration by substitution related to the Chain Rule?

. What is the relation between definite integrals and area? Describe 14. How can you sometimes evaluate indefinite integrals by substitu-
some other interpretations of definite integrals. tion? Give examples.

. What is the average value of an integrable function over a closed 15. How does the method of substitution work for definite integrals?
interval? Must the function assume its average value? Explain. Give examples.

. Describe the rules for working with definite integrals (Table 5.6). 16. How do you define and calculate the area of the region between
Give examples. the graphs of two continuous functions? Give an example.

Chapter E Practice Exercises
Finite Sums and Estimates 5
1. The accompanying figure shows the graph of the velocity (ft/sec) // \\
of a model rocket for the first 8 sec after launch. The rocket accel- ™ 4 /
erated straight up for the first 2 sec and then coasted to reach its ié,
maximum height at r = 8 sec. g . / \
£s // \\
200 2 . \
N 7 \
< 150
g / \ 0 2 4 6 8 10
E: 100 \\ Time (sec)
Q
3. Suppose that Eak = —2 and Ebk = 25. Find the value of
=1 =1
0 2 4 6 8 10 g, 10
Time after launch (sec) a. “~ 4 b. 1; (b = 3a;)
10 10 /5
a. Assuming that the rocket was launched from ground level, c. p ](ak +h— 1) d. ;(E - bk)

about how high did it go? (This is the rocket in Section 3.3,

Exercise 17, but you do not need to do Exercise 17 to do the 2

20 0
4. Suppose that zak = 0and » b, = 7. Find the values of
1 1

exercise here.) = &
b. Sketch a graph of the rocket’s height above ground as a func- 20 20
tion of time for 0 = ¢ =< 8. a. > 3aq b. > (a + b)
k=1 k=1
2. a. The accompanying figure shows the velocity (m/sec) of a
body moving along the s-axis during the time interval from 20 /1 2b 20
t = 0 to r = 10 sec. About how far did the body travel dur- [ (E - 7) d. E(ak - 2)
k=1 k=1

ing those 10 sec?

b. Sketch a graph of s as a function of 7 for 0 = r = 10, assum-
ing s(0) = 0.
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Definite Integrals

In Exercises 5-8, express each limit as a definite integral. Then evalu-
ate the integral to find the value of the limit. In each case, P is a parti-
tion of the given interval and the numbers ¢, are chosen from the sub-
intervals of P.

5. HPHm 2(2ck — 1)"'/2 Ax,, where P is a partition of [ 1, 5]

=)

HPHm Eck(ck — '3 Ax,, where P is a partition of [1,3]

7. lim <cos( )) Ax;, where P is a partition of [—r, 0]
IPl—0 = 2

o

HPH 2(s1n cp)(cos ¢;) Axy, where P is a partition of [0, 7 /2]

°

If ffz 3f(x) dx = 12, ffz f(x) dx = 6, and f?2 g(x) dx = 2, find
the values of the following.
5
b. / £(x) dx
2

2
a. / f(x) dx
-2
5
d. /(—n'g(x)) dx
-2

-2
[ / g(x) dx
5
5
N / <M> &
-2 5

10. If [ f)dx =, [ 7g(x)dx =17, and [, g(x)dx = 2, find
the values of the following.
2
b. / g(x) dx
1

2
a. / g(x) dx
0
2
d. / V2 f(x) dx
0

0
[ / f(x) dx
2

2
e. / (8(x) = 3f(x)) dx
0

Area
In Exercises 11-14, find the total area of the region between the graph
of f and the x-axis.

1. fx) =x>—4x+3, 0=x=3
12. f)=1— (x*/4), —2=x=3
13. fx) =5 —5x*3, -1 =x=38

4 fx)=1—-Vx, 0=x=4

Find the areas of the regions enclosed by the curves and lines in Exer-
cises 15-26.

15. y=x, y=1/x% x=2
16. y=x, y=1/Vx, x=2
17. Vx+Vy=1 x=0, y=0

y

1

Vx+\Vy=1
X
0 1

18. B+ \Vy=1 x=0, y=0, for 0=x=1

y

1 3+ y=1,0=x=1

0 1

19. x =22, x=0, y=3 20. x=4—3> x=0

21, y? =4x, y=4x —2

22. P =4x+4, y=4x—16

23, y=sinx, y=x, 0=x=7/4

24. y = y=1 —-w/2=x=m7/)2

O=sx=m

—-7/3=x=m7/3

27. Find the area of the “triangular” region bounded on the left by
x 4+ y = 2, on the right by y = x%, and above by y = 2.

25. y = 2sinx, y = sin2x,

26. y = 8cosx, y = sec’x,

28. Find the area of the “triangular” region bounded on the left by
y = V/x, on the rightby y = 6 — x, and below by y = 1.

29. Find the extreme values of f(x) = x> — 3x? and find the area of
the region enclosed by the graph of f and the x-axis.

30. Find the area of the region cut from the first quadrant by the curve
X2 4 yl2 = g2,

31. Find the total area of the region enclosed by the curve x = y*? and
the lines x = yand y = —1.

32. Find the total area of the region between the curves y = sin x and
y =cosx for 0 = x = 37/2.

33. Area Find the area between the curve y = 2(Inx)/x and the
x-axis fromx = 1tox = e.

34. a. Show that the area between the curve y = 1/x and the x-axis
from x = 10 to x = 20 is the same as the area between the
curve and the x-axis from x = 1 to x = 2.

b. Show that the area between the curve y = 1/x and the x-axis
from ka to kb is the same as the area between the curve and the
x-axisfromx = atox = b (0 < a < b,k > 0).

Initial Value Problems

35. Show that y = x? + / %dt solves the initial value problem
1

yy =3, y1)=1

36. Show that y = fox(l + 2Vsec t) dt solves the initial value
problem

d2
Txi = Vsecxtanx; y'(0) =3, y0) =0.

Express the solutions of the initial value problems in Exercises 37
and 38 in terms of integrals.
dy _sinx

3. =2 v =-



d
38. d%c) = V2 —sin’x, y-1)=2

Solve the initial value problems in Exercises 39-42.

39, Y ; ©) = 0
'dx y
dy 1
40'dx_x2+1 1, y0) =1
41 AN B x>1; y) =7
" dx W -1 ’
dy 1 2
2 —= - 0) =2
i — ¥(0)

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 43-72.

43. /Z(COS x) Y2 sin x dx 44. /(tan x) /2 sectx dx

45. /(20 + 1+ 2cos (20 + 1)) db

46. /(\/ﬁ +2 8602(20 - 7T)) do
2 2 t+1)?—1
47. /(r - ?)( + ;) dt 48. /1740{[

49. /\ﬂsin (26372) dt 50. /(sec ftan 0) V1 + sec 0 dO
51. /ex sec? (e — 7) dx
52. /eycsc(ey + 1)cot (e + 1) dy

53. /(seczx) e dx 54, /(csczx) €0t dx

1 e
dx Vin x
55. /ﬁ’““ 56. dx
4
tan (I
57. / " 58. / annw) 4,
o 2= 25
1 —3
59. (n;c) dx 60. /%cscz(l + Inr) dr
61. / X3 dx 62. / 2tanx gec? x (fx
63. [ 3d 64, [ 6dr
V1 = 4(r — 1) V4 — (r + 1)
65. /L 66. /dix
2+ (x — 1)? 1+ Bx + 1)?
67. / dx
2x — DV(©2x — 12 — 4
68. / dx
x+ 3)V(x + 3?2 —-25
STV gy \/s1n x dx
69. e 70.
2Vx — X2 V1 -2
tan ' x)%d.
. / Y g,y [l
Vian~y (1 + y?) I+ x

Chapter 5 Practice Exercises

Evaluating Definite Integrals
Evaluate the integrals in Exercises 73—112.

73.

75.

77.

79.

81.

83.

85.

87.

89.

91.

93.

95.

97.

99.

101.

103.

105.

107.

109.

111.

1
/ (Bx? — 4x + 7) dx
-1

2
idv
| v

/i

1 l\/

/  36dx
(2x + 1)

/ V31 — X232 gy
1/8

/ sin?Sr dr

sec?6 db
0
37

cot2

sec x tan x dx

/0
f,

/ 5(sin x)*2 cos x dx
0

/2 .
3 sin x cos x

——————x
o V1 + 3sin’x
! X 1
/1 (g + ﬂ) dx
—1
/ o@D gy
-2

In5
/ e'Be” + 1) dr
0

/ )17(1 + 71nx)dx
1

8
log, 6
/ 24 a0
., 0

34 6 dx
-3/4V9 — 4x2

/2 3 dr
L4+ 32

1
Jos =
13 yV4 2 -1

/2/3 dy
Vo [y Voy? — 1

Average Values
113. Find the average value of f(x) = mx + b

114.

a. over [—1,1]
Find the average value of

a. y = V3x over 0,3
y [0,3]

74.

76.

78.

80.

82.

84.

86.

88.

90.

92.

94.

96.

98.

100.

102.

104.

106.

108.

110.

112.

b.

b.

1
/ (85 — 125 + 5) ds
0

27
/ X743 dx
1

/4(1 + Vu)'2

du
Vu

_dr
/0 (7 — 5r)?

12
/ (1 + 9xhy 2 dx
0

/4
/ cos (4t - 7) dt
0
3m/4
/ csc? x dx
/ 20 4o
0 3
3m/4
/ csc zcotzdz
/77/2
/ sec?x i
o (1 + Ttanx)*?
8
2 8
/1 (S)C xz) dx
0
/ &2 dw
—In2

In9
/ (e’ — 1)"/2 db
0

*n(w + 1))2d
v+ 1 v

15 sin* 3x cos 3x dx

1

“8In3log;0
/ 81n3logs6
| 0

1/5 6 dx
_is V4 — 2547

/ Y

i3+ e
8 24 dy

Jus v e
Vo5 dy

/2/\/5 ly| V5?2 =3

over [—k, k]

y = Vaxover [0,a]

359
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115.

116.

117.

118.

119.

120.

Chapter 5: Integrals

Let f be a function that is differentiable on [a, b ]. In Chapter 2
we defined the average rate of change of f over [a, b] to be

fb) — f(a)
b—a

and the instantaneous rate of change of f at x to be f'(x). In this
chapter we defined the average value of a function. For the new defi-
nition of average to be consistent with the old one, we should have

fb) — f(a)

b g~ average value of f on [a, b].

Is this the case? Give reasons for your answer.

Is it true that the average value of an integrable function over an
interval of length 2 is half the function’s integral over the inter-
val? Give reasons for your answer.

a. Verify that flnxdx =xlnx —x+ C.
b. Find the average value of In x over [ 1, e].
Find the average value of f(x) = 1/xon [1,2].

Compute the average value of the temperature function
Fo) = 37sin ( 2T (x — 101) ) + 25
X sin | 35 (¢

for a 365-day year. (See Exercise 98, Section 3.6.) This is one
way to estimate the annual mean air temperature in Fairbanks,
Alaska. The National Weather Service’s official figure, a numer-
ical average of the daily normal mean air temperatures for the
year, is 25.7°F, which is slightly higher than the average value
of f(x).

Specific heat of a gas Specific heat C, is the amount of heat
required to raise the temperature of one mole (gram molecule) of
a gas with constant volume by 1°C. The specific heat of oxygen
depends on its temperature 7 and satisfies the formula

C, = 827 + 107° (26T — 1.87T?).

Find the average value of C, for 20° = T = 675°C and the
temperature at which it is attained.

Differentiating Integrals
In Exercises 121-128, find dy/dx.

121.

123.

125.

127.

X 7x?

y:/ V2 + cos’tdt 122, y = V2 + cos’tdt
2 2
I 2

6 1
= ——dt 124. y = ———dt

Y /x3+z4 Y /Secxt2+1
0 eVx

y = / e dt 126. y = / In(> + 1) dt
In x? 1

sin~'x

dt /4
A 8.y = / o
0 V1 — 2¢ tan~lx

y =

Theory and Examples

129.

130.

131.

132.

133.

134.

Is it true that every function y = f(x) that is differentiable on
[a, b] is itself the derivative of some function on [a, b]? Give
reasons for your answer.

Suppose that f(x) is an antiderivative of f(x) = V1 + x*

Express f 01 V1 + x*dx in terms of F and give a reason for
your answer.

Find dy/dx if y = fxl V1 + 1?>dt. Explain the main steps in
your calculation.

Find dy/dx if y = fc?)sx(l/(l — %)) dr. Explain the main
steps in your calculation.

A new parking lot To meet the demand for parking, your
town has allocated the area shown here. As the town engineer,
you have been asked by the town council to find out if the lot
can be built for $10,000. The cost to clear the land will be $0.10
a square foot, and the lot will cost $2.00 a square foot to pave.
Can the job be done for $10,000? Use a lower sum estimate to
see. (Answers may vary slightly, depending on the estimate
used.)

Vertical spacing = 15 ft

64.4 ft

|

42 ft

Ignored

Skydivers A and B are in a helicopter hovering at 6400 ft. Sky-
diver A jumps and descends for 4 sec before opening her para-
chute. The helicopter then climbs to 7000 ft and hovers there.
Forty-five seconds after A leaves the aircraft, B jumps and
descends for 13 sec before opening his parachute. Both skydiv-
ers descend at 16 ft/sec with parachutes open. Assume that the
skydivers fall freely (no effective air resistance) before their
parachutes open.

a. At what altitude does A’s parachute open?
b. At what altitude does B’s parachute open?
¢. Which skydiver lands first?
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Theory and Examples

1 1
1. a. If/ 7f(x)dx =7, does | f(x)dx = 1?
0 0
1
b. If/ f(x)dx = 4 and f(x) = 0, does
0

1
/\/f(x)dx: V4 =27
0

Give reasons for your answers.

2 5 5
2. Suppose/ fx) dx = 4,/ f(x)dx = 3,/ g(x) dx = 2.
) 2 -2

Which, if any, of the following statements are true?

2
a. /f(x) dx = =3
5

¢. f(x) = g(x) ontheinterval =2 = x = 5

5
b. / (f() + g)) =9
-2

3. Initial value problem Show that
= 37/ f(@) sina(x — 1) dt
0

solves the initial value problem

d%y

d2

(Hint: sin (ax — at) = sin ax cos at — cos ax sin at.)

dy
+ a’y = f(), df—Oandy 0 when x = 0.

4. Proportionality Suppose that x and y are related by the equation

¥
Ny ——
0 1 + 472
Show that d?y/dx® is proportional to y and find the constant of
proportionality.
5. Find f(4) if

X2 f
a. / f(t) dt = x cos mx b. / 12 dt = x cos mx.
0 0

6. Find f(7/2) from the following information.
i) f is positive and continuous.
ii) The area under the curve y = f(x) fromx = O to x = ais
a—z +4 sin a +T COs a.
2 2 2

7. The area of the region in the xy-plane enclosed by the x-axis, the
curve y = f(x), f(x) = 0, and the lines x =1 and x = b is

equalto Vb2 + 1 — V2 forall b > 1. Find f(x).
8. Prove that

/ (/ f(@® dt) du = / fu)(x — u) du.
0o \Jo 0

(Hint: Express the integral on the right-hand side as the differ-
ence of two integrals. Then show that both sides of the equation
have the same derivative with respect to x.)
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Additional and Advanced Exercises

9. Finding a curve Find the equation for the curve in the xy-plane
that passes through the point (1, —1) if its slope at x is always
3x% + 2.

10. Shoveling dirt You sling a shovelful of dirt up from the bottom
of a hole with an initial velocity of 32 ft/sec. The dirt must rise
17 ft above the release point to clear the edge of the hole. Is that
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions

Although we are mainly interested in continuous functions, many
functions in applications are piecewise continuous. A function f(x) is
piecewise continuous on a closed interval I if f has only finitely
many discontinuities in /, the limits

lim f(x) and lim f(x)

x—c x—c*t

exist and are finite at every interior point of /, and the appropriate one-
sided limits exist and are finite at the endpoints of /. All piecewise
continuous functions are integrable. The points of discontinuity subdi-
vide / into open and half-open subintervals on which f is continuous,
and the limit criteria above guarantee that f has a continuous exten-
sion to the closure of each subinterval. To integrate a piecewise con-
tinuous function, we integrate the individual extensions and add the
results. The integral of

1 —x -1=x<0
flx) = ¢ %%, 0=x<2
-1, 2=x=3

(Figure 5.32) over [—1,3] is

/f(x)dx—/(l—x)dx-‘r/x dx+/( 1) dx
_ 2|° 2
-[e=sl B

_3.8_._19
=2ty =%
y
4
3H y=1
2_
10-
L L L L X
-1 0 1 2 3
y=-1
1k —o

FIGURE 5.32 Piecewise continuous
functions like this are integrated piece by
piece.
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The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that (d/dx) f : f(?) dt is expected to equal f(x)
only at values of x at which f is continuous. There is a similar restric-
tion on Leibniz’s Rule (see Exercises 31-38).

Graph the functions in Exercises 11-16 and integrate them over
their domains.

X3, 8 0
11. =
f) {_4, 0=x=3
12. ) {V_"’ =0
. X)) =
x2 — 4, 0=x=3
t =t 1
13. g =3~
80 {sinm, ==
V1 -— =z<1
14. h(z)={ “ ¢
(Tz— 613, 1=z=2
1, 2 =x<-1
15. f(x) =1 — 2%, -1=x<1
2, l=x=2
7, -1=r<0
16. h(r) = 1 — 2 0=r<l
1, l=r=2

17. Find the average value of the function graphed in the accompany-

ing figure.
y
1
X
0 1 2
18. Find the average value of the function graphed in the accompany-
ing figure.
y
l¢——o0 o——0
L b —b—>x
0 1 2 3
Limits

Find the limits in Exercises 19-22.

X
lim 20. lim %/ tan"'¢ dt
Xx—>00 0

b%l/\/
. 1 1 1
21. ,,lirgo(n+1+n+2+.“ +2n)

22. lim %(e'/” + e¥n +

n—o00

.+ e(n—l)/n + en/n)

Approximating Finite Sums with Integrals

In many applications of calculus, integrals are used to approximate
finite sums—the reverse of the usual procedure of using finite sums to
approximate integrals.

For example, let’s estimate the sum of the square roots of the
first n positive integers, V1+V2+ - + V. The integral

1 1
/\/;dx:%xm} _2
0 3 o 3

is the limit of the upper sums

VI + V2 + +Va
- /2 :
y
y=Vx
X
o 1 2 n—1 1
n n n

Therefore, when n is large, S, will be close to 2/3 and we will have
Rootsum = V1 + V2 + -+ + Vn=8,-n? = %,,3/2.

The following table shows how good the approximation can be.

n Root sum (2/3)n? Relative error
10 22.468 21.082 1.386/22.468 =~ 6%
50 239.04 235.70 1.4%
100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate

P+ 2P+ 4+
lim p
n—o0 n

by showing that the limit is

1
/ x5 dx
0

and evaluating the integral.
24. See Exercise 23. Evaluate

lim L(13+23+33 S+ ).

n—>00 }’l

25. Let f(x) be a continuous function. Express

i 3o (D) 4 g (2) - (2)]

as a definite integral.

26. Use the result of Exercise 25 to evaluate

a. lim *(2+4+6+ coe 4 2n),
n4>00n

b. lim 17(1'5+215+315+ S 4,
n—0 n

c. hml< +s1n2 +sm3f+---+sin$).
n—o0



‘What can be said about the following limits?

d. lim L(115 + 215 4315 4 ... 4 )
n—00 n17

e. lim %(115 + 215 4315 4 ... 4 )
n—o00 n

27. a. Show that the area A, of an n-sided regular polygon in a circle
of radius r is

nr? . 2w
= ——sin .

A, 2 n

b. Find the limit of A, as n —> 00, Is this answer consistent with
what you know about the area of a circle?

28. Let

2 2 ,12
Sn:L_‘_%_*_..._}_(ni}).
w

To calculate lim, . S,,, show that

1y | (2V n— 1)’
-l @) ()
and interpret S, as an approximating sum of the integral

1
/ x2dx.
0

(Hint: Partition [0, 1] into n intervals of equal length and write
out the approximating sum for inscribed rectangles.)

Defining Functions Using the Fundamental Theorem
29. A function defined by an integral The graph of a function f
consists of a semicircle and two line segments as shown. Let

g = [} foar.

3

AR,

-3 -1 1\/3

a. Find g(1). b. Find g(3). c. Find g(—1).

d. Find all values of x on the open interval (—3, 4) at which g has
a relative maximum.

e. Write an equation for the line tangent to the graph of gat x = —1.

f. Find the x-coordinate of each point of inflection of the graph
of g on the open interval (=3, 4).

g. Find the range of g.
30. A differential equation Show that both of the following condi-
tions are satisfied by y = sinx + f: cos 2tdt + 1:
i) y" = —sinx + 2sin 2x
ii) y =1and y’ = —2 when x = 7.

Leibniz’s Rule In applications, we sometimes encounter functions
defined by integrals that have variable upper limits of integration and
variable lower limits of integration at the same time. We can find the
derivative of such an integral by a formula called Leibniz’s Rule.
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Leibniz’s Rule
If f is continuous on [a, b] and if u(x) and v(x) are
differentiable functions of x whose values lie in
[a,b], then

v(x)

oo — e @
i, O = FO L~ f0) G

To prove the rule, let F be an antiderivative of f on [a, b]. Then

f(dr = Flu(x)) — F(u(x)).
u(x)

Differentiating both sides of this equation with respect to x gives the
equation we want:

d [ d
G| f@d= G IFe) — Fue))]

u(x)

= F’(v(x))% — F’(M(x))% Chain Rule

— Fo %~ fuand.

Use Leibniz’s Rule to find the derivatives of the functions in
Exercises 31-38.

3. f) = / %dt 32. f) = / %dt
1/x c —t

0S8 X

2Vy o
33. g(y) = / sin 2 dt 34. g(y) = / Tt
Vi Vy

y y

\3/;
36. y=/ Intdt
\/7

X

35y = / In V1 dr
x*/2

Inx e
37. y =/ sin e’ dt 38. y =/ Intdt
0 eV
Theory and Examples

39. Use Leibniz’s Rule to find the value of x that maximizes the value

of the integral
x+3
/ (5 — 1) dt.

40. For what x > 0 does x*) = (x*)*? Give reasons for your answer.

41. Find the areas between the curves y = 2(log,x)/x and y =
2(logyx)/x and the x-axis from x = 1 to x = e. What is the ratio
of the larger area to the smaller?

42. a. Find df/dx i
£(x) =/ 21t'”dz.
1
b. Find £(0).

¢. What can you conclude about the graph of f? Give reasons for
your answer.

43. Find f'(2) if f(x) = € and g(x) = / —
L1+
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44. Use the accompanying figure to show that

0

45. Napier’s inequality Here are two pictorial proofs that
1 _Inb—1Ina 1
Explain what is going on in each case.
a. y Ly

y=Inx

X

ol  a b

(Source: Roger B. Nelson, College Mathematics Journal, Vol. 24,
No. 2, March 1993, p. 165.)

46. Bound on an integral Let f [})e a continuously differentiable
function on [a, b ] satisfying fu fx)dx = 0.
a. If ¢ = (a + b)/2, show that
b c b
/ xf(x)dx = / x — ofx)dx + / x — o)f(x)dx.
b. Lett = |x — ¢| and € = (b — a)/2. Show that

b ¢
/ xf(x)dx = / 1f(c + ) — f(c — p)dt.
a 0

c. Apply the Mean Value Theorem from Section 4.2 to part (b)

to prove that
b
/ xf(x)dx

where M is the absolute maximum of f’ on [a, b].

_b-a’

12 M,

Chapterm Technology Application Projects

Mathematica/Maple Modules:

Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves

Visualize and approximate areas and volumes in Part I.

Riemann Sums, Definite Integrals, and the Fundamental Theorem of Calculus
Parts I, II, and IIT develop Riemann sums and definite integrals. Part IV continues the development of the Riemann sum and definite integral using

the Fundamental Theorem to solve problems previously investigated.

Rain Catchers, Elevators, and Rockets

Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will
compute the amount of water accumulating in basins of different shapes as the basin is filled and drained.

Motion Along a Straight Line, Part I1

You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among position, velocity, and accelera-

tion. Figures in the text can be animated using this software.

Bending of Beams

Study bent shapes of beams, determine their maximum deflections, concavity, and inflection points, and interpret the results in terms of a beam’s

compression and tension.



Applications of Definite
Integrals

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a
definite integral, which is the limit of any Riemann sum for the function. We proved that
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also
found that the area under a curve and the area between two curves could be defined and
computed as definite integrals.

In this chapter we extend the applications of definite integrals to defining and finding
volumes, lengths of plane curves, and areas of surfaces of revolution. We also use integrals
to solve physical problems involving the work done by a force, and to find the location of
an object’s center of mass. Each application comes from a process leading to an approxima-
tion by a Riemann sum, and then taking a limit to obtain an appropriate definite integral.
These applications are important to mathematics, science, and engineering. We also use
integrals to compute probabilities and their applications to the life sciences in Chapter 8.

6. 1 Volumes Using Cross-Sections

Cross-section S(x)
with area A(x)

b X

FIGURE 6.1 A cross-section S(x) of
the solid S formed by intersecting S with
a plane P, perpendicular to the x-axis
through the point x in the interval [a, b].

In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1). We
present three different methods for obtaining the cross-sections appropriate to finding the
volume of a particular solid: the method of slicing, the disk method, and the washer method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin
by extending the definition of a cylinder from classical geometry to cylindrical solids with
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area A and height A,
then the volume of the cylindrical solid is

Volume = area X height = A - h.

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid S at each point x in the
interval [a, b] is a region S(x) of area A(x), and A is a continuous function of x, we can

1 Ih = height
-
Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah

FIGURE 6.2 The volume of a cylindrical solid is always defined
to be its base area times its height.

365
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=3

1

!

L
a

1
\
\
\
|
b >x
FIGURE 6.3 A typical thin slab in the

solid S.

Approximating

. cylinder based
on S(x;) has height
Axp = x = Xy

Plane at x;_;

Plane at x;,

X
N){

The cylinder’s base
is the region S(x;)
with area A(x;)

NOT TO SCALE

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area A(x;) and height
Ax, = x5, — x5

define and calculate the volume of the solid S as the definite integral of A(x). We now
show how this integral is obtained by the method of slicing.

Slicing by Parallel Planes

We partition [a, b] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a=xy<x <--- <ux, = b. The planes P, , perpendicular to the x-axis at the partition
points, slice S into thin “slabs” (like thin slices of a loaf of bread). A typical slab is shown in
Figure 6.3. We approximate the slab between the plane at x;_; and the plane at x; by a cylindri-
cal solid with base area A(x;) and height Ax;, = x, — x,_; (Figure 6.4). The volume V, of this
cylindrical solid is A(xy) * Ax;, which is approximately the same volume as that of the slab:

Volume of the kth slab = V, = A(xy) Ax;.

The volume V of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

V= DV, = DAK) Ax.
k=1 k=1

This is a Riemann sum for the function A(x) on [a, b]. We expect the approximations
from these sums to improve as the norm of the partition of [a, b] goes to zero. Taking a
partition of [a, b] into n subintervals with |P| — 0 gives

n b
lim > A(x) Ax; = / A(x) dx.

n—0o0 k=1

So we define the limiting definite integral of the Riemann sum to be the volume of the solid S.

DEFINITION The volume of a solid of integrable cross-sectional area A(x) from
X = ato x = b is the integral of A from a to b,

b
V=/A(x) dx.

This definition applies whenever A(x) is integrable, and in particular when it is con-
tinuous. To apply the definition to calculate the volume of a solid using cross-sections
perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
x m on a side. Find the volume of the pyramid.

Solution
1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).



Typical cross-section

FIGURE 6.5 The cross-sections of the
pyramid in Example 1 are squares.

2V9 — &2

FIGURE 6.6 The wedge of Example 2,
sliced perpendicular to the x-axis. The
cross-sections are rectangles.

HISTORICAL BIOGRAPHY
Bonaventura Cavalieri

(1598-1647)
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2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is
A(x) = x%
3. The limits of integration. The squares lie on the planes from x = 0 to x = 3.

4. Integrate to find the volume:

3 3 313
V= / A(x) dx = / xX2dx = );] =9m’. [
0 0 0

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two
planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the
first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with x = 0 that
is cut from the circle x> + y*> = 9 by the 45° plane when it intersects the y-axis.
For any x in the interval [0, 3], the y-values in this semicircular base vary from
y=—V9 — x>toy = V9 — x2. When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semicircular base. The area of this cross-section is

A(x) = (height)(width) = (x)(2V9 — x?)
=2x\V9 — x2.

The rectangles run from x = 0 to x = 3, so we have

b 3
V=/A(x)dx /2x\/9—x2dx
a 0

2 3 Letu =9 — x?%,
=—-Z09 - x2)3/2:| du = —2x dx, integrate,
3 0 and substitute back.
2
=0+ 5(9)%?
3
= 18. [ |

EXAMPLE 3 Cavalieri’s principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This follows
immediately from the definition of volume, because the cross-sectional area function A(x)
and the interval [a, b] are the same for both solids.

bl ___— Same volume

S
T

Same cross-section
area at every level

FIGURE 6.7 Cavalieri’s principle: These solids have the
same volume, which can be illustrated with stacks of coins. |
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y=Vax

R() = \/x

(@

(b)

FIGURE 6.8 The region (a) and solid of
revolution (b) in Example 4.

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,
we need only observe that the cross-sectional area A(x) is the area of a disk of radius R(x),
the distance of the planar region’s boundary from the axis of revolution. The area is then

A(x) = m(radius)? = 7[R(x)]?

So the definition of volume in this case gives

Volume by Disks for Rotation About the x-axis

b b
VI/A(x)de/ﬂ'[R(x)]zdx.

This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4 The region between the curve y = Vx,0 = x < 4, and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.8). The volume is

b
% =/ [ R(x)]* dx

/47T[ \/)76} 2 dx Radius R(x) = '\/; for
0

rotation around x-axis.

4 274 4)2
77/ xdx=7'rx] ZWQZSW. [ |
0 2 2

0

EXAMPLE 5 The circle
X+ =a
is rotated about the x-axis to generate a sphere. Find its volume.

Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between —a and a is

R(x) = Va* — x?* for

— 2 — 2 2
A(x) =Tyt = W(a X ) rotation around x-axis.

Therefore, the volume is

a a 3 a
V=/A(x)dx=/7T(a2—x2)dx=77[a2x—x3] =

The axis of revolution in the next example is not the x-axis, but the rule for calculating
the volume is the same: Integrate 7r(radius)?> between appropriate limits.

Ta’. [ |

[OSTEEN
W

EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded
by y = Vx and the lines y = 1,x = 4 about the line y = 1.
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FIGURE 6.9 The sphere generated by rotating the
circle x> + y?> = a? about the x-axis. The radius is

R(x) =y = Va* — x* (Example 5).

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.10). The volume is

4
VZ/ [ R(x)]? dx
1

4
Radius R(x) = Vx — 1
[Alvi-1Ta e
1

for rotation around y = 1.

4
= 77/ [x - 2\/); + 1} dx Expand integrand.
1
2 4
= 7T|:x2 — 2'%)(3/2 + )C:|1 = ’%T Integrate.
y

@) (b)

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6. |

To find the volume of a solid generated by revolving a region between the y-axis and a
curve x = R(y),c = y = d, about the y-axis, we use the same method with x replaced by y.
In this case, the area of the circular cross-section is

A(y) = m[radius]? = 7[R(y)]?,

and the definition of volume gives
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Volume by Disks for Rotation About the y-axis

d d
V=/ A(y)dy=/ m[R(y)]? dy.

EXAMPLE 7 Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, | = y = 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

4
V:/ 7 [R(y)]* dy
1

4
2 2 d Radius R(y) = % for
" m y Y rotation around y-axis.

4 4
4 a3 2
T P dy = 477'{ y]l 417[4} 3. |

EXAMPLE 8 Find the volume of the solid generated by revolving the region between
the parabola x = y?> + 1 and the line x = 3 about the line x = 3.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and have
y-coordinates from y = -V2to y = V2. The volume is

V2
V:/ W[R(y)]zdy y= +\V2whenx =3
V3
V2 y12 Radius R(y) =3 — (* + 1)
= 77[2 -y ] dy for rotation around axis x = 3.
-2
(b) V2
— A2 4 P
FIGURE 6.11 The region (a) and part - 77/\/5 [4 =4 + '] dy Expand integrand.
of the solid of revolution (b) in Example 7. 51V
_ 45 Y
= qr| 4y — § + g Integrate.
-V2
_ 647 \/2
15 -
Yy RO)=3-0*+1 y
=2y @%
V2r 3,V2) V2r
Y 3 v

X
0 1\\3 5 0
=2+ 1
Vap T 3.-\V2) 3k

(a) (b)
FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. |
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(x, R(x))

Washer

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
f :A(x) dx leads to a slightly different formula.

(=2,5)

Rx)=—x+3

r(x) = 241

0]~
Interval of 1 @L‘ X
integration

(a)

Washer cross-section

Outer radius: R(x) = —x + 3
Inner radius: 7(x) = x% + 1

(b)

FIGURE 6.14 (a) The region in
Example 9 spanned by a line segment
perpendicular to the axis of revolution.
(b) When the region is revolved about
the x-axis, the line segment generates a
washer.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

Outer radius:  R(x)

Inner radius:  r(x)
The washer’s area is
Ax) = 7 [RX)]? — w[r®)]? = w([Rx)]* = [r(0)]?).

Consequently, the definition of volume in this case gives

Volume by Washers for Rotation About the x-axis

V=/:A(x)dx=/ab7r([R(x>]2— [r(x)]?) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9 The region bounded by the curve y = x> + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution  We use the four steps for calculating the volume of a solid as discussed early in
this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolu-
tion (Figure 6.14).
Outer radius:  R(x) = —x + 3

Inner radius:  r(x) = x% + 1
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y
b
R() =\y
2.4)
.4—
=3
= 2
R l———
g
I
"é" y=2xor
s =7
E T2
3
= y=x20r
x=\y
L | X
0 2

(a)

(b)

FIGURE 6.15 (a) The region being
rotated about the y-axis, the washer radii,
and limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).

3. Find the limits of integration by finding the x-coordinates of the intersection points of
the curve and line in Figure 6.14a.

¥+1l=-x+3

P+x—2=0
x+2)x—1)=0
x=-2, x=1 Limits of integration
4. Evaluate the volume integral.
b
V= / 77( [R()CH2 - [r(x)]z) dx Rotation around x-axis
a
! 2 2 5 Values from Steps 2
= m((—x + 3)" — (x= + 1)7) dx and 3
-2
1
= 77/ 8 — 6x — x> - x4) dx Simplify algebraically.
-2
3 501
= 7| 8x — 3x% — L = @ Integrate. [ |
3°5], 5

To find the volume of a solid formed by revolving a region about the y-axis, we use
the same procedure as in Example 9, but integrate with respect to y instead of x. In this
situation the line segment sweeping out a typical washer is perpendicular to the y-axis (the
axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10  The region bounded by the parabola y = x? and the line y = 2x in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution  First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = \/y, r(y) = y/2
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are
¢ = 0 and d = 4. We integrate to find the volume:

d
V= / r( [R(Y) ] 2 — [r() ] 2) dy Rotation around y-axis

2 Substitute for radii and
dy limits of integration.
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Exercises m

Volumes by Slicing
Find the volumes of the solids in Exercises 1-10.

8. The base of a solid is the region bounded by the graphs of

1. The solid lies between planes perpendicular to the x-axis at x = 0

and x = 4. The cross-sections perpendicular to the axis on the
interval 0 = x = 4 are squares whose diagonals run from the
parabola y = —Vx to the parabola y = V.

. The solid lies between planes perpendicular to the x-axis at
x =—1 and x = 1. The cross-sections perpendicular to the
x-axis are circular disks whose diameters run from the parabola
y = x? to the parabola y = 2 — x%.

y=2—"x x

. The solid lies between planes perpendicular to the x-axis at
x =—1 and x = 1. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = —V'1 — x? to the semicircle y = V1 — x2.
. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the
semicircle y = —V1 — x? to the semicircle y = V1 — x%
. The base of a solid is the region between the curve y = 2Vsinx

and the interval [0, 77 ] on the x-axis. The cross-sections perpen-
dicular to the x-axis are

a. equilateral triangles with bases running from the x-axis to the
curve as shown in the accompanying figure.

y = 2\/sin x

b. squares with bases running from the x-axis to the curve.

. The solid lies between planes perpendicular to the x-axis at
x =—m/3 and x = /3. The cross-sections perpendicular to
the x-axis are

a. circular disks with diameters running from the curve
y = tan x to the curve y = sec x.

b. squares whose bases run from the curve y = tan x to the
curve y = sec X.

. The base of a solid is the region bounded by the graphs of
y = 3x, y = 6, and x = 0. The cross-sections perpendicular to
the x-axis are

a. rectangles of height 10.

b. rectangles of perimeter 20.

10.

11.

12.

13.

y = Vx and y = x/2. The cross-sections perpendicular to the
Xx-axis are

a. isosceles triangles of height 6.

b. semicircles with diameters running across the base of the solid.

. The solid lies between planes perpendicular to the y-axisat y = 0

and y = 2. The cross-sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola
X = \6}12.

The base of the solid is the disk x*> + y* =< 1. The cross-sections
by planes perpendicular to the y-axis between y = —l and y = 1

are isosceles right triangles with one leg in the disk.

Find the volume of the given right tetrahedron. (Hint: Consider
slices perpendicular to one of the labeled edges.)

X

Find the volume of the given pyramid, which has a square base of
area 9 and height 5.

X

A twisted solid A square of side length s lies in a plane perpen-
dicular to a line L. One vertex of the square lies on L. As this square
moves a distance / along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of
once? Give reasons for your answer.
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14. Cavalieri’s principle A solid lies between planes perpendicular
to the x-axis at x = 0 and x = 12. The cross-sections by planes
perpendicular to the x-axis are circular disks whose diameters run
from the line y = x/2 to the line y = x as shown in the accom-
panying figure. Explain why the solid has the same volume as a
right circular cone with base radius 3 and height 12.

~
0

Volumes by the Disk Method
In Exercises 15-18, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

15. About the x-axis 16. About the y-axis
y y

x+2y=2 r=5

X L x
0 2 7 3

17. About the y-axis 18. About the x-axis
y y

y = sin x cos x

_.
o=

X = tan (gy)

ol

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 19-28 about the x-axis.

19. y=x3 y=0, x=2 20.y=x y=0, x=2

2. y=V9 —x% y=0 2. y=x—x% y=0

23. y=Vcosx, 0=x=m/2, y=0, x=0

24. y=secx, y=0, x=—-7/4, x=m/4

25. y=¢", y=0, x=0, x=1

26. The region between the curve y = Vot x and the x-axis from
x=m/6tox=m/2

27. The region between the curve y = 1/ (2\/;6) and the x-axis from
x=1/4tox =14

28.y=¢"4 y=0, x=1, x=3

In Exercises 29 and 30, find the volume of the solid generated by

revolving the region about the given line.

29. The region in the first quadrant bounded above by the line

y = V2, below by the curve y = sec x tan x, and on the left by
the y-axis, about the line y = V2

30. The region in the first quadrant bounded above by the line y = 2,
below by the curve y = 2sinx, 0 = x = 77/2, and on the left by
the y-axis, about the line y = 2

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 31-36 about the y-axis.

31. The region enclosed by x = V/5y%, x=0, y=—-1, y=1

32. The region enclosed by x = 32, x =10, y =2

33. The region enclosed by x = \V2sin2y, 0= y=7/2, x=0

34. The region enclosed by x = Vcos(my/4), —2 =y =0,
x=0

35. x=2/Vy+1, x=0, y=0, y=3

36. x=\V2y/(y>+ 1), x=0, y=1

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 37 and 38 about the indicated axes.

37. The x-axis 38. The y-axis

y
y o
vy =1/cos x 4
_ y=1 B x=tany
- x
_m 0 s x
2 2 0 1

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 39—44 about the x-axis.

39. y=x, y=1, x=0
2\/);, y=2, x=0

40. y =

41. y=x>+1, y=x+3

2. y=4—-x* y=2—x

43. y=secx, y=V2, —-w/d=x=m/4
44, y =secx, y=tanx, x=0, x=1

In Exercises 45—48, find the volume of the solid generated by revolv-
ing each region about the y-axis.

45. The region enclosed by the triangle with vertices (1, 0), (2, 1),
and (1, 1)

46. The region enclosed by the triangle with vertices (0, 1), (1, 0),
and (1, 1)

47. The region in the first quadrant bounded above by the parabola
y = x%, below by the x-axis, and on the right by the line x = 2

48. The region in the first quadrant bounded on the left by the circle
x2 + y? = 3, on the right by the line x = \/3, and above by the
liney = V3

In Exercises 49 and 50, find the volume of the solid generated by
revolving each region about the given axis.

49. The region in the first quadrant bounded above by the curve
y = x2, below by the x-axis, and on the right by the line x = 1,
about the line x = —1



50. The region in the second quadrant bounded above by the curve
y = —x3, below by the x-axis, and on the left by the line x = —1,
about the line x = —2

Volumes of Solids of Revolution
51. Find the volume of the solid generated by revolving the region
bounded by y = V/x and the lines y = 2 and x = 0 about

a. the x-axis. b. the y-axis.

c. the line y = 2. d. the line x = 4.

52. Find the volume of the solid generated by revolving the triangular
region bounded by the lines y = 2x,y = 0, and x = 1 about

a. theline x = 1. b. the line x = 2.

53. Find the volume of the solid generated by revolving the region
bounded by the parabola y = x? and the line y = 1 about

a. theline y = 1. b. theline y = 2.
c. theliney = —1.

54. By integration, find the volume of the solid generated by revolv-
ing the triangular region with vertices (0, 0), (b, 0), (0, k) about

a. the x-axis. b. the y-axis.

Theory and Applications

55. The volume of a torus The disk x> + y> < a? is revolved
about the line x = b (b > a) to generate a solid shaped like a
doughnut and called a forus. Find its volume. (Hint:
ffu Va* — y*dy = mwa®/2, since it is the area of a semicircle of
radius a.)

56. Volume of a bowl A bowl has a shape that can be generated by
revolving the graph of y = x>/2 between y = 0 and y = 5 about
the y-axis.

a. Find the volume of the bowl.

b. Related rates If we fill the bowl with water at a constant
rate of 3 cubic units per second, how fast will the water level
in the bowl be rising when the water is 4 units deep?

57. Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth 4.
Find the volume of water in the bowl.

b. Related rates Water runs into a sunken concrete hemi-
spherical bowl of radius 5 m at the rate of 0.2 m?/sec. How
fast is the water level in the bowl rising when the water is
4 m deep?

58. Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of
revolution by a light shining directly above it.

59. Volume of a hemisphere Derive the formula V = (2/3)mR?
for the volume of a hemisphere of radius R by comparing its
cross-sections with the cross-sections of a solid right circular cyl-
inder of radius R and height R from which a solid right circular
cone of base radius R and height R has been removed, as sug-
gested by the accompanying figure.

A\ /R2 _ hZ
A
i [ @
" h;?l"::.—b '“----:.‘\_..‘ :
¢ R
— \""—-—\_
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60. Designing a plumb bob Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you
decide to shape it like the solid of revolution shown here. Find the
plumb bob’s volume. If you specify a brass that weighs 8.5 g/cm?,
how much will the plumb bob weigh (to the nearest gram)?

y (cm) x
y

x (cm)

61. Designing a wok You are designing a wok frying pan that will
be shaped like a spherical bowl with handles. A bit of experimen-
tation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius of
16 cm. To be sure, you picture the wok as a solid of revolution, as
shown here, and calculate its volume with an integral. To the
nearest cubic centimeter, what volume do you really get?
(1L = 1000 cm?)

y (cm)

2+ =162 =256

LY

x (cm)

9 cm deep

—16

62. Max-min The arch y = sinx, 0 = x = 7, is revolved about
the line y = ¢,0 = ¢ = 1, to generate the solid in the accompa-
nying figure.

a. Find the value of ¢ that minimizes the volume of the solid.
What is the minimum volume?

b. What value of ¢ in [0, 1] maximizes the volume of the solid?
¢. Graph the solid’s volume as a function of c, first for
0 = ¢ = 1 and then on a larger domain. What happens to

the volume of the solid as ¢ moves away from [0, 1]? Does
this make sense physically? Give reasons for your answers.
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63. Consider the region R bounded by the graphs of y = f(x) > 0, 64. Consider the region R given in Exercise 63. If the volume of the
x=a>0,x=>b>a,and y = 0 (see accompanying figure). solid formed by revolving R around the x-axis is 67, and the vol-
If the volume of the solid formed by revolving R about the x-axis ume of the solid formed by revolving R around the line y = —2 is
is 447, and the volume of the solid formed by revolving R about 1077, find the area of R.

the line y = —1 is 8, find the area of R.

62 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral V = f ubA(x) dx,
where A(x) is an integrable cross-sectional area of the solid from x = a to x = b. The
area A(x) was obtained by slicing through the solid with a plane perpendicular to the
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-
trate in our first example. To overcome this difficulty, we use the same integral definition
for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is parallel
to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the cylin-
ders increase with each slice. In this way the solid is sliced up into thin cylindrical shells
of constant thickness that grow outward from their common axis, like circular tree rings.
Unrolling a cylindrical shell shows that its volume is approximately that of a rectangular
slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the same
integral definition for volume as before. The following example provides some insight
before we derive the general method.

EXAMPLE 1 The region enclosed by the x-axis and the parabola y = f(x) = 3x — x°
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find the vol-
ume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in
Figure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical
washer, requiring us to solve y = 3x — x? for x, which leads to complicated formulas.)
Instead of rotating a horizontal strip of thickness Ay, we rotate a vertical strip of thick-
ness Ax. This rotation produces a cylindrical shell of height y, above a point x; within
the base of the vertical strip and of thickness Ax. An example of a cylindrical shell is
shown as the orange-shaded region in Figure 6.17. We can think of the cylindrical shell
shown in the figure as approximating a slice of the solid obtained by cutting straight
down through it, parallel to the axis of revolution, all the way around close to the inside
hole. We then cut another cylindrical slice around the enlarged hole, then another, and so
on, obtaining n cylinders. The radii of the cylinders gradually increase, and the heights
of the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).



FIGURE 6.17 A cylindrical shell of
height y; obtained by rotating a vertical

strip of thickness Ax;, about the line
x = —1. The outer radius of the cylinder
occurs at x;, where the height of the
parabola is y, = 3x;, — x;2 (Example 1).
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-2 =1 0 1 2 3 |

Axis of Axis of

revolution | —2 - revolution

x=-1 x=—1
(@) (b)

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = —1.

Each slice is sitting over a subinterval of the x-axis of length (width) Ax. Its radius is
approximately (1 + x;), and its height is approximately 3x;, — x,2. If we unroll the cylin-
der at x; and flatten it out, it becomes (approximately) a rectangular slab with thickness
Ax;, (Figure 6.18). The outer circumference of the kth cylinder is 27 « radius = 2 (1 + x;),
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that

of a rectangular solid, the area of the rectangle times its thickness,
X

AV, = circumference X height X thickness
2a(1 + x)- (3% — x2) - Axg.

Summing together the volumes AV, of the individual cylindrical shells over the interval
[0,3] gives the Riemann sum

iAVk = zn:277'(xk + 1)(3xk - xkz)Axk.
=1 =1

Ax, Outer circumference = 27 - radius = 27 (1 + x;)
7 Radius = 1 + x;
/
| -
GBx,— x2)
l/
h=Gx,—x2) _£

- Ax;, = thickness

1=2m(1 + xp)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1).
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The volume of a cylindrical shell of
height & with inner radius r and outer
radius R is

= ’)(h)(R - .

7R*h — wr*h = 27T<
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Taking the limit as the thickness Ax, — 0 and n — o0 gives the volume integral

V= lim 2 2 + D(3x — x2) Ax
k=1

n—>0o0

3
= / 27(x + DGBx — x?) dx

0

3

= / 27 (3x% + 3x — x3 — xD) dx

0

3
= 277/ (2x* + 3x — x¥) dx
0

X 4 = —. [ |

2

o253, 1P _ 45w
277{3)6-!—2 X

0

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function y = f(x)
and the x-axis over the finite closed interval [a, b] lies to the right of the vertical line
x = L (Figure 6.19a). We assume a = L, so the vertical line may touch the region, but
not pass through it. We generate a solid S by rotating this region about the vertical
line L.

Let P be a partition of the interval [a, b ] by thepointsa = xy < x; < -+ < x, = b,
and let ¢; be the midpoint of the kth subinterval [x;_, x;]. We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, b]. A typical approximating
rectangle has height f(c;) and width Ax, = x; — x;,_;. If this rectangle is rotated about the
vertical line x = L, then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

AV, = 27 X average shell radius X shell height X thickness
=27m(c; — L) f(cp) * Axy.

R=x,—Landr=x,_, — L

Vertical axis

of revolution
Vertical axis ‘
of revolution @%

y =)

&>
y =1 ~
> <Ax, - g
} Rectangle
_ . X \‘ height = ficy)
a /o \ b AN
X—1 X Ax

(a) (b)

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
x = L, asolid is produced which can be sliced into cylindrical shells. A typical
shell is shown in (b).
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We approximate the volume of the solid S by summing the volumes of the shells swept out
by the n rectangles based on P:

v =Sy
k=1

The limit of this Riemann sum as each Ax;, — 0 and n — 00 gives the volume of the solid
as a definite integral:

n

b
V= 1lm > AV, = / 2 (shell radius)(shell height) dx
1 a

—>00
n k

b
= / 2m(x — L)f(x) dx.

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

Shell Formula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function y = f(x) = 0, L = a = x = b, about a ver-

tical line x = L is
b
shell shell
V= 2 . . dx
a radius / \ height

EXAMPLE 2 The region bounded by the curve y = Vx, the x-axis, and the line
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution  Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

y
y “4.2)
Shell radius
@5 ell radius \/x = Shell height
X
oL 2
X
A Interval of
0 integration
X
0

Interval of integration /

74
(a) (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax.



380 Chapter 6: Applications of Definite Integrals

The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0 and b = 4 (Figure 6.20). The volume is then

b
_ shell shell
V= A 271-(radius) <height> d
4
= / 27T(x)( \/);) dx
0

4 4
= 277/ X3 dx = 277'[§x5/2} = @ [
0 0

So far, we have used vertical axes of revolution. For horizontal axes, we replace the
x’s with y’s.

EXAMPLE 3 The region bounded by the curve y = Vx, the x-axis, and the line
x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the
shell method.

Solution This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw
a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-
ment’s length (shell height) and distance from the axis of revolution (shell radius). (We
drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are @ = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of the

solid is
b
_ shell shell
V= L 277(radius)(height) dy
2
= / 2m(y)(4 — y») dy
0
2
= 277/ (4y — y)dy
0
472
= 277[2y2 - };} = 8.
0
y
Shell height
/
y
4 — y2
Shell height
- - 4,2
ss [ S
22 Y Shell radius Y sen
5 ¥ T @L)x : - radius

(@ (b)

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width Ay. |
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Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of
revolution. Label the segment’s height or length (shell height) and distance
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 27 (shell radius) (shell height) with respect to the
thickness variable (x or y) to find the volume.

The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually
special cases of a general volume formula we will look at when studying double and triple
integrals in Chapter 15. That general formula also allows for computing volumes of solids
other than those swept out by regions of revolution.

Exercises m

Revolution About the Axes

In Exercises 1-6, use the shell method to find the volumes of the
solids generated by revolving the shaded region about the indicated
axis.

1. 2.
y

@l? y=1+xj2

0 2
3 4.
y y
V3 y=V2 V3 y=13
x =y
x:3%
1 A )
0 2 @_’x 0 3@_”

5. The y-axis 6. The y-axis
y y "
) 5 ¥ +9
y=V X2+ 1
1 x=V3
X
0 V3 0 3 *

Revolution About the y-Axis

Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
7-12 about the y-axis.

7.y=x, y=-x/2, x=2

8. y=2x, y=x/2, x=1

9. y=x% y=2—-x, x=0, forx=0

10. y=2*x2, y=x2, x=0

1. y=2x—1, y=Vx, x=0

12. y=3/(2Vx), y=0, x=1, x=4
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si <x=
13. Let f(x) — {(sm )/x, 0<x=m
1, x=0
a. Show that xf(x) = sinx, 0 = x = 7.

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

(tanx)?/x, 0 <x=m/4
0, x=0
a. Show that x g(x) = (tan x)%, 0 = x = 7 /4.

14. Let g(x) = {

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

Y tanzx’0< -
4 y=3 x -
T x =

INH

X
0

s
4

Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
15-22 about the x-axis.

15.x:\/y, x=-y, y=2

16. x=13>, x=—-y, y=2, y=0

17. x=2y —y*, x=0 18. x=2y —y* x=y
19. y= x|, y=1 20 y=x, y=2, y=2
21.y=\/);, y=0, y=x-2

2. y=Vx y=0 y=2-x

Revolution About Horizontal and Vertical Lines

In Exercises 23-26, use the shell method to find the volumes of the
solids generated by revolving the regions bounded by the given curves
about the given lines.

23. y=3x, y=0, x=2

a. The y-axis b. The line x = 4

c. The line x = —1 d. The x-axis

e. Theliney =7 f. Theline y = —2
24.y=x3,y=8,x=0

a. The y-axis b. The line x = 3

c. The line x = —2 d. The x-axis

e. Theliney = 8 f. Theliney = —1
25. y=x+2, y=x*

a. The line x = 2 b. The line x = —1

Il
A~

¢. The x-axis d. The line y

26. y=x* y=4— 3

a. Theline x = 1 b. The x-axis

In Exercises 27 and 28, use the shell method to find the volumes of
the solids generated by revolving the shaded regions about the indi-
cated axes.

27. a. The x-axis

c. Theliney = 8/5

b. Theline y = 1
d. Theline y = —2/5

y
4 x =122y
! x
0 1

28. a. The x-axis

c. Theliney =5

b. Theline y =
d. Theliney = —5/8

Choosing the Washer Method or Shell Method

For some regions, both the washer and shell methods work well for
the solid generated by revolving the region about the coordinate axes,
but this is not always the case. When a region is revolved about the
y-axis, for example, and washers are used, we must integrate with
respect to y. It may not be possible, however, to express the integrand
in terms of y. In such a case, the shell method allows us to integrate
with respect to x instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region

bounded by y = x and y = x? about each coordinate axis using
a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the tri-
angular region bounded by the lines 2y = x + 4,y = x, and
x = 0 about

a. the x-axis using the washer method.
b. the y-axis using the shell method.
c. the line x = 4 using the shell method.
d. the line y = 8 using the washer method.
In Exercises 31-36, find the volumes of the solids generated by

revolving the regions about the given axes. If you think it would be
better to use washers in any given instance, feel free to do so.



31.

32.

33.

34.

35.

36.

37.

38.

The triangle with vertices (1, 1), (1, 2), and (2, 2) about
a. the x-axis b.
c. the line x = 10/3
The region bounded by y = \/);, y = 2,x = 0 about

the y-axis

d. theliney =1
a. the x-axis b. the y-axis
c. theline x = 4 d. theliney = 2

The region in the first quadrant bounded by the curve x = y — y3
and the y-axis about

a. the x-axis b. theliney =1

The region in the first quadrant bounded by x = y — y* x = 1,
and y = 1 about
a. the x-axis b. the y-axis

d. theliney =1
The region bounded by y = Vx and y = x?/8 about

a. the x-axis b.

c. theline x = 1

the y-axis
The region bounded by y = 2x — x? and y = x about

a. the y-axis b. theline x = 1

The region in the first quadrant that is bounded above by the
curve y = 1/x'/4, on the left by the line x = 1/16, and below by
the line y = 1 is revolved about the x-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

The region in the first quadrant that is bounded above by the
curve y = 1/V/x, on the left by the line x = 1/4, and below by
the line y = 1 is revolved about the y-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

Theory and Examples

39.

40.

The region shown here is to be revolved about the x-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Explain.

The region shown here is to be revolved about the y-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Give reasons for your answers.

41.

42,

43.

44.

45.

46.

47.

48.
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A bead is formed from a sphere of radius 5 by drilling through a
diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.
b. Find the volume of the removed portion of the sphere.

A Bundt cake, well known for having a ringed shape, is formed
by revolving around the y-axis the region bounded by the graph
of y = sin (x> — 1) and the x-axis over the interval 1 < x =
V1 + . Find the volume of the cake.

Derive the formula for the volume of a right circular cone of
height / and radius r using an appropriate solid of revolution.

Derive the equation for the volume of a sphere of radius r using
the shell method.

Equivalence of the washer and shell methods for finding vol-
ume Let f be differentiable and increasing on the interval
a = x = b, with a > 0, and suppose that f has a differentiable
inverse, f!. Revolve about the y-axis the region bounded by the
graph of f and the lines x = a and y = f(b) to generate a solid.
Then the values of the integrals given by the washer and shell
methods for the volume have identical values:

fb) b
/ m(f7' ) — @) dy = / 2mx(f(b) — f(x)) dx.
fla) a

To prove this equality, define

o)
W) = / 7((f'0))* — @) dy
f

(a)

S@) = / 2ax(f(n) — f(x)) dx.

Then show that the functions W and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section
4.8, Exercise 128, this will guarantee W(r) = S(¢) for all ¢ in
[a,b]. In particular, W(b) = S(b). (Source: “Disks and Shells
Revisited” by Walter Carlip, in American Mathematical Monthly,
Feb. 1991, vol. 98, no. 2, pp. 154-156.)

The region between the curve y = sec™'x and the x-axis from
x = 1to x = 2 (shown here) is revolved about the y-axis to gen-
erate a solid. Find the volume of the solid.

™ S |
3 y=sec 'x

X
0] 1 2
Find the volume of the solid generated by revolving the region
enclosed by the graphs of y = e,y =0,x =0, and x = 1
about the y-axis.
Find the volume of the solid generated by revolving the region
enclosed by the graphs of y = ¢¥%,y = 1, and x = In 3 about
the x-axis.
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6 . 3 Arc Length

0 X

FIGURE 6.23 The arc P,_,P, of the
curve y = f(x) is approximated by the
straight-line segment shown here, which

has length L, = V/(Ax)? + (Ay)>

We know what is meant by the length of a straight-line segment, but without calculus, we
have no precise definition of the length of a general winding curve. If the curve is the
graph of a continuous function defined over an interval, then we can find the length of
the curve using a procedure similar to that we used for defining the area between the curve
and the x-axis. This procedure results in a division of the curve from point A to point B
into many pieces and joining successive points of division by straight-line segments. We
then sum the lengths of all these line segments and define the length of the curve to be the
limiting value of this sum as the number of segments goes to infinity.

Length of a Curve y = f(x)

Suppose the curve whose length we want to find is the graph of the function y = f(x) from
x = atox = b. In order to derive an integral formula for the length of the curve, we assume
that f has a continuous derivative at every point of [ a, b]. Such a function is called smooth,
and its graph is a smooth curve because it does not have any breaks, corners, or cusps.

FIGURE 6.22 The length of the polygonal path PyP,P, - - - P, approximates the
length of the curve y = f(x) from point A to point B.

We partition the interval [a, b] into n subintervals with a = xy < x; < x, <+ -+ <
x, = b. If y, = f(x;), then the corresponding point P,(x;, y;) lies on the curve. Next we
connect successive points P,_; and P, with straight-line segments that, taken together,
form a polygonal path whose length approximates the length of the curve (Figure 6.22). If
Ax; = x; — x_; and Ay, = y, — y_, then a representative line segment in the path has
length (see Figure 6.23)

L=V (A)Ck)2 + (AYk)Z,

so the length of the curve is approximated by the sum

n

kE L= Y, V(Ax)* + (Ay)> (1)
=1

k=1

We expect the approximation to improve as the partition of [ a, b] becomes finer. Now, by
the Mean Value Theorem, there is a point ¢;, with x;,_; < ¢; < x;, such that

Ay, = f'(cp) Axy.



A

FIGURE 6.24 The length of
the curve is slightly larger than the
length of the line segment joining
points A and B (Example 1).

0

FIGURE 6.25 The curve in
Example 2, where A = (1, 13/12)
and B = (4,67/12).
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With this substitution for Ay, the sums in Equation (1) take the form

Eu EVuW+wmmw—2v [f(c)]? Ax,. )

Because V1 + [f'(x)]? is continuous on [a, b], the limit of the Riemann sum on the
right-hand side of Equation (2) exists as the norm of the partition goes to zero, giving

lim ELk = lim E V1 + [f'(c)]* Ax, —/ V1 + [f'(x)]?dx

n—)OO —

We define the value of this limiting integral to be the length of the curve.

DEFINITION If f' is continuous on [a, b ], then the length (arc length) of the
curve y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the
value of the integral

b b 2
L=/ V1 o+ [f’(x)]za’xZ/ 1/14—(2) dx. 3)

EXAMPLE 1 Find the length of the curve (Figure 6.24)
43ﬁx3/2 _ 1’

y = 0=x=1.

Solution We use Equation (3) witha = 0,b = 1, and

= 4\T/2x3/2 | x=1,y =~ 089
dl 4\/ 3 X2 = 2\/§x1/2
dx
dy\?
(2 - pvauey - s

The length of the curve over x = 0 to x = 1 is

Eq. (3) with
/ 1+ dx—/\/1+8xdx @m0

Letu =1 + 8x,

integrate, and

+ 8x )2/2:| — ? = 2.17. replace u by

3 8(1 0 I + 8.

Notice that the length of the curve is slightly larger than the length of the straight-line segment
joining the points A = (0, —1) and B = ( 1, 4\/5/3 -1 ) on the curve (see Figure 6.24):

217 > V12 + (1.89)* = 2.14. Decimal approximations [ |

EXAMPLE 2  Find the length of the graph of

f) = —+l | =x=a.

Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

S}

f@= -5

X
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The length of the graph over [ 1,4 ] is

4 4
=/ 1T [f'(x)]2dx=/ <2+x]2>dx

1 1

O 1t _ (64 1 1 72
:[n‘x}l (12 4)_(12_1):12:6_ -

EXAMPLE 3 Find the length of the curve

y=%(e"+e‘x), 0=x=2

Solution We use Equation (3) witha = 0, b = 2, and
_1 -

dy 1 .
E_E(ex e )

@C) L2t e

d 2
1+ (d)y) }l(el)f+2+e*2)‘) - [é(ex-}—ex)} .

The length of the curve from x = O tox = 2 is

Eq. (3) with
1 + dx— f(e"+e*x)dx a=0,b=2

il ex — e—x:|
2{ 0

Dealing with Discontinuities in dy/dx

L

(2 — ¢2) = 3.63. [

N\'—‘

At a point on a curve where dy / dx fails to exist, dx /dy may exist. In this case, we may be
able to find the curve’s length by expressing x as a function of y and applying the follow-
ing analogue of Equation (3):

Formula for the Lengthof x = g(y),c =y =d

If g’ is continuous on [ ¢, d ], the length of the curve x = g(y) from A = (g(c), ¢)
to B = (g(d), d) is

d 2 d
L=/ mdy=/ 1+ [0 dy. “)




@,
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FIGURE 6.26 The graph of

y = (x/2)** fromx =0tox =2
is also the graph of x = 2y*/? from
y = 0toy = 1 (Example 4).
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EXAMPLE 4 Find the length of the curve y = (x/2)%? from x = 0 to x = 2.

dy _2(x\"(1) _1(2\"”
dx ~ 3\2 2/ 3\x

is not defined at x = 0, so we cannot find the curve’s length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

_(x\”
Y= \2

32 X Raise both sides
a to the power 3/2.

Solution The derivative

3/2. Solve for x.

x =12y

From this we see that the curve whose length we want is also the graph of x = 2y*/ from
y = 0toy = 1 (Figure 6.26).
The derivative

dx _ 12 — 212
dy 2(2) %

is continuous on . We may therefore use Equation (4) to find the curve’s length:

Eqg. (4) with
/ 1+ dx /\/1+9 ay O

Letu =1+ 9y,
12 du/9 = dy,
=9 g( + 9y)3/2:| integrate, and
0 substitute back.
2
=57 (10V10 = 1) = 2.27 o

The Differential Formula for Arc Length

If y = f(x) and if f' is continuous on [a, b ], then by the Fundamental Theorem of Cal-
culus we can define a new function

s(x) =/ VI + [f®)]dr. (&)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and mea-
sures the length along the curve y = f(x) from the initial point Py(a, f(a)) to the point
O(x, f(x)) for each xe [a,b]. The function s is called the arc length function for
y = f(x). From the Fundamental Theorem, the function s is differentiable on (a, b) and

ds _ o7 = dy\?
L= VIF @ = 1+ ().

Then the differential of arc length is

dy\?
ds L+ |5 ) de (6)
A useful way to remember Equation (6) is to write
ds = Vdx* + dy?, 7

which can be integrated between appropriate limits to give the total length of a curve. From
this point of view, all the arc length formulas are simply different expressions for the equation
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(a)

(b)

FIGURE 6.27 Diagrams for remembering
the equation ds = Vdx?> + dy>.

Exercises m

Finding Lengths of Curves

Find the lengths of the curves in Exercises 1-14. If you have a grapher,
you may want to graph these curves to see what they look like.

1L y=(1/3)x>+ 2> from x=0tox =3

Chapter 6: Applications of Definite Integrals

L= f ds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7).
Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of
Figure 6.27a. That is, ds = As.

EXAMPLE 5 Find the arc length function for the curve in Example 2, taking
A = (1, 13/12) as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

’ 2 )C2 1 2
1+ [f (x)] = Z + ; .
Therefore the arc length function is given by

s(x)=/\/1 n [f’(t)]zdtz/ (tz+1)dt
1 1

4 72
AR
12 1], 12

11

1
_}_{_]

To compute the arc length along the curve from A = (1, 13/12) to B = (4, 67/12), for
instance, we simply calculate

s(4) =

This is the same result we obtained in Example 2.

Finding Integrals for Lengths of Curves
In Exercises 15-22, do the following.

a. Set up an integral for the length of the curve.

b. Graph the curve to see what it looks like.

2. y=x"? from x=0tox =4 ¢. Use your grapher’s or computer’s integral evaluator to find
3. x=(%3) + 1/(@y) from y=1ltoy=23 the curve’s length numerically.
4. x = (y7?/3) = y'/> from y=1toy=29 15. y=2% —1=x=2
5. x=0%4) + 1/8? from y=1toy=2 16. y = tanx, —m/3 =x=0
6. x=(3/6) +1/2y) from y=2toy=3 17. x =siny, 0=y=m
7.y =(3/4x3 — 3/8x*3 +5, 1 =x=38 8. x=V1—-y, -1)2=y=1/2
8. y=0G/3)+ 2 +x+1/dx+4), 0=x=2 19. ¥ +2y =2x+ 1 from (=1,—1)to(7,3)
x2 20. y =sinx —xcosx, 0=x=
9y=lnx—§ from x=1ltox =2 N
2 21.y:/tantdt, 0=x=m/6
10 y=5 -1 fom x=1lwoxr=3 0
2 4 ¥
11 :xi_i_i l=x=3 22.x:/\/seczt—ldt, -T/3=y=m/4
VT3 T T 0
x° 1 1
12. y =7+ —, 3 =yx=1 Theory and Examples
5 , 12x 23. a. Find a curve with a positive derivative through the point (1, 1)
13. x = / Vel — 1dt —mjA=y=m/4 whose length integral (Equation 3) is
0

x L
14.y=/ V3t —1dt, —2=x=-1
-2

! 1
=/ 1+ - dx.
. 4x

b. How many such curves are there? Give reasons for your answer.



24.

25.

26.

27.

28.

29.

30.

31.

32.

a. Find a curve with a positive derivative through the point (0, 1)
whose length integral (Equation 4) is

2
L=/ 1llJr%dy.
1 y

b. How many such curves are there? Give reasons for your answer.

Find the length of the curve
y = / V cos 2t dt
0

from x = Otox = 7 /4.

The length of an astroid The graph of the equation x%3 +
y¥3 = 1 is one of a family of curves called astroids (not “aster-
0ids”) because of their starlike appearance (see the accompanying
figure). Find the length of this particular astroid by finding
the length of half the first-quadrant portion, y = (1 — x%°3)%/2,

V2/4 = x = 1, and multiplying by 8.

y
1
X2y =

Length of a line segment Use the arc length formula (Equation 3)
to find the length of the line segment y = 3 — 2x,0 = x = 2.
Check your answer by finding the length of the segment as the
hypotenuse of a right triangle.

Circumference of a circle Set up an integral to find the cir-
cumference of a circle of radius r centered at the origin. You will
learn how to evaluate the integral in Section 8.4.

If 9x* = y(y — 3)?, show that

+ 1)?
_O )dyz.

2
ds 4y

If 4x> — y*> = 64, show that

ds?* = % (5x2 — 16) dx2.
y
Is there a smooth (continuously differentiable) curve y = f(x)
whose length over the interval 0 = x = a is always V2a? Give

reasons for your ansSwer.

Using tangent fins to derive the length formula for curves
Assume that f is smooth on [ a, b | and partition the interval [a, b ]
in the usual way. In each subinterval [x;_;,x;], construct the
tangent fin at the point (x;_y, f(x;—1)), as shown in the accompa-
nying figure.

a. Show that the length of the kth tangent fin over the interval

L1, 0] equals V(Axg? + (f (o) A’
b. Show that

; b
lim ' (length of kth tangent fin) = / 1+ (f(x))? dx,
n—0 ;= a

6.3 Arc Length 389

which is the length L of the curve y = f(x) from a to b.

\
1 Tangent fin

I with slope

33. Approximate the arc length of one-quarter of the unit circle
(which is 77 /2) by computing the length of the polygonal approx-
imation with n = 4 segments (see accompanying figure).

y

L L L
o] 02505075 1

34. Distance between two points Assume that the two points (x;, y;)
and (x,, y,) lie on the graph of the straight line y = mx + b. Use
the arc length formula (Equation 3) to find the distance between
the two points.

35. Find the arc length function for the graph of f(x) = 2x%/2 using
(0, 0) as the starting point. What is the length of the curve from
(0,0)to (1,2)?

36. Find the arc length function for the curve in Exercise 8, using
(0, 1/4) as the starting point. What is the length of the curve from
(0, 1/4) to (1,59/24)?

COMPUTER EXPLORATIONS
In Exercises 3742, use a CAS to perform the following steps for the
given graph of the function over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See
Figure 6.22.)

b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare
your approximations for n = 2, 4, 8 with the actual length
given by the integral. How does the actual length compare
with the approximations as n increases? Explain your answer.

3. f0=V1-2 -1=x=1

38. f(x) =xP+ ¥ 0=x=2

39. f(x) =sin(mxd), 0=x=\2

40. f(x) = x’cosx, 0=x=nm
a1 1

L fo) =5 —y=x=

2, fo)=x*—x% —-1=x=1
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64 Areas of Surfaces of Revolution
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FIGURE 6.28 (a) A cylindrical surface
generated by rotating the horizontal line
segment AB of length Ax about the x-axis
has area 27ryAx. (b) The cut and rolled-
out cylindrical surface as a rectangle.
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When you jump rope, the rope sweeps out a surface in the space around you similar to
what is called a surface of revolution. The surface surrounds a volume of revolution, and
many applications require that we know the area of the surface rather than the volume it
encloses. In this section we define areas of surfaces of revolution. More general surfaces
are treated in Chapter 16.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an
interval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if
you revolve only the bounding curve itself, it does not sweep out any interior volume but
rather a surface that surrounds the solid and forms part of its boundary. Just as we were
interested in defining and finding the length of a curve in the last section, we are now
interested in defining and finding the area of a surface generated by revolving a curve
about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line
segments about the x-axis. If we rotate the horizontal line segment AB having length Ax
about the x-axis (Figure 6.28a), we generate a cylinder with surface area 27ryAx. This area
is the same as that of a rectangle with side lengths Ax and 27y (Figure 6.28b). The length
21y is the circumference of the circle of radius y generated by rotating the point (x, y) on
the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now
when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From
classical geometry, the surface area of this frustum is 27y*L, where y* = (y; + y,)/2 is
the average height of the slanted segment AB above the x-axis. This surface area is the
same as that of a rectangle with side lengths L and 27y* (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by
revolving more general curves about the x-axis. Suppose we want to find the area of the
surface swept out by revolving the graph of a nonnegative continuous function
y = f(x),a = x = b, about the x-axis. We partition the closed interval [ a, b] in the usual
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30
shows a typical arc PQ and the band it sweeps out as part of the graph of f.

2mry*

NOT TO SCALE

(a) (b)

FIGURE 6.29 (a) The frustum of a cone generated by rotating

the slanted line segment AB of length L about the x-axis has area

ntn
2

2ary* L. (b) The area of the rectangle for y* = , the average

height of AB above the x-axis.



FIGURE 6.30 The surface generated
by revolving the graph of a nonnegative
function y = f(x),a = x = b, about the
x-axis. The surface is a union of bands like
the one swept out by the arc PQ.

FIGURE 6.31 The line segment joining
P and Q sweeps out a frustum of a cone.

Segment length:
L=V(Ax)’+ Ay

T V= f@
Ay
= flg ) } }
; ; h = f(xk)
| |
Xk -1 Xy
[e——Ax;—]

FIGURE 6.32 Dimensions associated
with the arc and line segment PQ.
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As the arc PQ revolves about the x-axis, the line segment joining P and Q sweeps out
a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area of this
frustum approximates the surface area of the band swept out by the arc PQ. The surface
area of the frustum of the cone shown in Figure 6.31 is 27y*L, where y* is the average
height of the line segment joining P and Q, and L is its length (just as before). Since
f =0, from Figure 6.32 we see that the average height of the line segment is

y¥ = (f(x,_1) + f(x)/2, and the slant length is L = V/(Ax)? + (Ay,)?. Therefore,
Frustum surface area = 277 - w “V(Ax)? + (Ay)?
= 7(fOg—1) + fGx))V (Axk)2 + (AYk)z-

The area of the original surface, being the sum of the areas of the bands swept out by
arcs like arc PQ, is approximated by the frustum area sum

;w(f(xk_l) + fO))V(Ax)? + (Ayp (1

We expect the approximation to improve as the partition of [a, b] becomes finer. More-
over, if the function f is differentiable, then by the Mean Value Theorem, there is a point
(¢, f(cp) on the curve between P and Q where the tangent is parallel to the segment PQ
(Figure 6.33). At this point,

, _ Ay
f (Ck) - Axks

Ay = f'(c) Ax.
With this substitution for Ay, the sums in Equation (1) take the form

;w(ﬂw + OV (Ax)? + (f'(co) Ax)?

= D m(f—1) + FE) V1 + (£ (c)* Ax,. (2)
=1
These sums are not the Riemann sums of any function because the points x;_, x;, and ¢

are not the same. However, it can be proved that as the norm of the partition of [a, b ] goes
to zero, the sums in Equation (2) converge to the integral

b
/ 2rfx)V1 + (f (x))? dx.

We therefore define this integral to be the area of the surface swept out by the graph of f
from a to b.

DEFINITION  If the function f(x) = O is continuously differentiable on [a, b ],
the area of the surface generated by revolving the graph of y = f(x) about the
Xx-axis is

b 2 b
S =/ 2y [ 1 + (ig) dx =/ 2rfV1 + (F ()P de.  (3)

The square root in Equation (3) is the same one that appears in the formula for the arc
length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1 Find the area of the surface generated by revolving the curve y = 2Vx,
1 = x = 2, about the x-axis (Figure 6.34).
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(e fler))
Tangent parallel
to chord

FIGURE 6.33 If f is smooth, the Mean
Value Theorem guarantees the existence of
a point ¢;, where the tangent is parallel to
segment PQ.

y

y:2\/;6

FIGURE 6.34 1In Example | we calcu-
late the area of this surface.

FIGURE 6.35 Revolving line segment
AB about the y-axis generates a cone whose

lateral surface area we can now calculate in
two different ways (Example 2).
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We evaluate the formula

/ d
S = / 2wy di)c Eq. (

dy 1

dr /'
First, we perform some algebraic manipulation on the radical in the integrand to transform
it into an expression that is easier to integrate.

e (@) - ()
:\/H}C:\/x;l:

With these substitutions, we have
— 2
27T'2\/);x7+1dx = 477'/ Vx + 1dx
1

52/12 Vi

= 47+ *(x +1 )3/2}

Solution

with

a=1 b=2 y=2Vx

Vx + 1
Vix

7 (3v3 - 2V2). 5

1

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

Surface Area for Revolution About the y-Axis

If x = g(y) = 0 is continuously differentiable on [ ¢, d], the area of the surface
generated by revolving the graph of x = g(y) about the y-axis is

d ) d
S=/ ZWXW@ =/ 2mg(MV1 + (g’ () dy. 4)

EXAMPLE 2 The line segment x = 1 — y,0 = y = 1, is revolved about the y-axis to
generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base area).

Solution Here we have a calculation we can check with a formula from geometry:

base circumference

> X slant height = V2.

Lateral surface area =
To see how Equation (4) gives the same result, we take

_ _ dx
= =1, x=1-—y, dy ~

\J1 =V1+(1)2=V2

=1,



and calculate
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S—/27Tx 1+% :/27r(1—y)\fdy

277\/{ yz] 2 \6(1—2)
V2.

The results agree, as they should. |

Exercises m

Finding Integrals for Surface Area
In Exercises 1-8:

a. Set up an integral for the area of the surface generated by
revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like. If you can, graph
the surface too.

c. Use your utility’s integral evaluator to find the surface’s area
numerically.
.y=tanx, 0=ux=7/4; x-axis
.y=2x% 0=x=2; xaxis

Lxy =1, 1 =y=2; y-axis

X2+ y12 =3 from 4, 1)to (1,4); x-axis

1

2

3

4. x =siny, 0=y =m; y-axis

5

6.y+2\/§=x, 1 =y=2; y-axis

y
7. x:/tantdt, 0=<y=m/3; y-axis
0

*®

X
y=/ V2 —1dt, 1=x=\5 xaxis
1

Finding Surface Area

9. Find the lateral (side) surface area of the cone generated by
revolving the line segment y = x/2,0 = x = 4, about the
x-axis. Check your answer with the geometry formula

1 . .
Lateral surface area = 5 X base circumference X slant height.

10. Find the lateral surface area of the cone generated by revolving
the line segment y = x/2,0 < x = 4, about the y-axis. Check
your answer with the geometry formula

1 . .
Lateral surface area = 3 X base circumference X slant height.

11. Find the surface area of the cone frustum generated by revolving
the line segment y = (x/2) + (1/2),1 = x = 3, about the
x-axis. Check your result with the geometry formula

Frustum surface area = 7(r; + 1) X slant height.

12. Find the surface area of the cone frustum generated by revolving
the line segment y = (x/2) + (1/2),1 = x = 3, about the
y-axis. Check your result with the geometry formula

Frustum surface area = 7 (r; + r,) X slant height.

Find the areas of the surfaces generated by revolving the curves in
Exercises 13-23 about the indicated axes. If you have a grapher, you
may want to graph these curves to see what they look like.

13.
14.
15.
16.
17.
18.
19.

y=x3/9, 0=x=2; xaxis

y=Vx 3/4=x=15/4 x-axis
y=V2x—x% 05=x=15; xaxis
y = \/m, 1 =x=25; x-axis
x=3y/3, 0=y=1; y-axis
x=(1/3)y2 =2 1 =y=23; yaxis
x=2V4—y, 0=ys= 15/4; y-axis

20. x=V2y—1, 5/8=y=1; y-axis

:
( 1+ <1,1)}
'““N B . = -
s | (3)
8 0
\i\‘\)
2 I =>x
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22, y=(1/3)2 + 2% 0=x= V2 yaxis (Hint: Express
ds = Vdx* + dy* in terms of dx, and evaluate the integral
S = f 2mx ds with appropriate limits.)

23. x =044 + 1/@8y), 1 =y=2; xaxis (Hint: Express
ds = Vdx* + dy* in terms of dy, and evaluate the integral
S = f 21y ds with appropriate limits.)

24. Write an integral for the area of the surface generated by revolv-
ing the curve y = cosx, —7/2 = x = 7 /2, about the x-axis. In
Section 8.4 we will see how to evaluate such integrals.

25. Testing the new definition Show that the surface area of a
sphere of radius a is still 47a® by using Equation (3) to find the
area of the surface generated by revolving the curve

y = Va®> — x’, —a = x = a, about the x-axis.

26. Testing the new definition The lateral (side) surface area of a
cone of height /& and base radius r should be 7r\Vr?> + K, the
semiperimeter of the base times the slant height. Show that this is
still the case by finding the area of the surface generated by
revolving the line segment y = (r/h)x,0 = x = h, about the
X-axis.

27. Enameling woks Your company decided to put out a deluxe

version of a wok you designed. The plan is to coat it inside with
white enamel and outside with blue enamel. Each enamel will be
sprayed on 0.5 mm thick before baking. (See accompanying fig-
ure.) Your manufacturing department wants to know how much
enamel to have on hand for a production run of 5000 woks. What
do you tell them? (Neglect waste and unused material and give
your answer in liters. Remember that 1cm?® = 1 mL, so
L L = 1000 cm?.)

y (cm)

|4y =16 =256

x (cm)

]9 cm deep
~—

—16

28. Slicing bread Did you know that if you cut a spherical loaf of
bread into slices of equal width, each slice will have the same
amount of crust? To see why, suppose the semicircle
y = Vr? — x? shown here is revolved about the x-axis to gener-
ate a sphere. Let AB be an arc of the semicircle that lies above an
interval of length / on the x-axis. Show that the area swept out by
AB does not depend on the location of the interval. (It does

depend on the length of the interval.)

29. The shaded band shown here is cut from a sphere of radius R by
parallel planes / units apart. Show that the surface area of the
band is 27Rh.

s,
\\_}-' -

30. Here is a schematic drawing of the 90-ft dome used by the U.S.
National Weather Service to house radar in Bozeman, Montana.

a. How much outside surface is there to paint (not counting the
bottom)?

b. Express the answer to the nearest square foot.

Axis

451t Center
Radius

ke o-/ st

DSt
v

31. An alternative derivation of the surface area formula Assume
f is smooth on [a, b] and partition [a, b] in the usual way. In
the kth subinterval [x;_;,x;], construct the tangent line to the
curve at the midpoint m; = (x;—; + x;)/2, as in the accompany-
ing figure.

a. Show that

Axy Ax;
n = fm) — f,(mk)T and n = f(my) + f,(mk)7~

b. Show that the length L, of the tangent line segment in the kth
subinterval is L, = V(Ax)? + (f'(my) Ax)>
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c. Show that the lateral surface area of the frustum of the cone (Hint: Revolve the first-quadrant portion y = (1 — x/3)3/2,
swept out by the tangent line segment as it revolves about the 0 = x = 1, about the x-axis and double your result.)
x-axis is 2@ f(m) V1 + (f'(my)* Ax;.

y

d. Show that the area of the surface generated by revolving

y = f(x) about the x-axis over [a, b] is 1+
2, (lateral surface area b 2/3 423 = |
I : = [ 2mfWV1 + (f' (1) dx. JREa
nljgo ,; <of kth frustum ) /I /) ()
32. The surface of an astroid Find the area of the surface gener- -1 0 o

ated by revolving about the x-axis the portion of the astroid
x*3 + y*3 = 1 shown in the accompanying figure.

65 Work and Fluid Forces

Joules
The joule, abbreviated J, is named after

the English physicist James Prescott
Joule (1818-1889). The defining equa-
tion is

1 joule = (1 newton)(1 meter).

In symbols, 1J = I N-m.

In everyday life, work means an activity that requires muscular or mental effort. In sci-
ence, the term refers specifically to a force acting on an object and the object’s subsequent
displacement. This section shows how to calculate work. The applications run from com-
pressing railroad car springs and emptying subterranean tanks to forcing subatomic parti-
cles to collide and lifting satellites into orbit.

Work Done by a Constant Force

When an object moves a distance d along a straight line as a result of being acted on by a
force of constant magnitude F in the direction of motion, we define the work W done by
the force on the object with the formula

W = Fd (Constant-force formula for work). (N

From Equation (1) we see that the unit of work in any system is the unit of force mul-
tiplied by the unit of distance. In ST units (SI stands for Systéme International, or Interna-
tional System), the unit of force is a newton, the unit of distance is a meter, and the unit of
work is a newton-meter (N - m). This combination appears so often it has a special name,
the joule. In the British system, the unit of work is the foot-pound, a unit sometimes used
in applications.

EXAMPLE 1 Suppose you jack up the side of a 2000-Ib car 1.25 ft to change a tire.
The jack applies a constant vertical force of about 1000 Ib in lifting the side of the car (but
because of the mechanical advantage of the jack, the force you apply to the jack itself is
only about 30 1b). The total work performed by the jack on the car is 1000 X 1.25 = 1250
ft-1b. In SI units, the jack has applied a force of 4448 N through a distance of 0.381 m to
do 4448 X 0.381 = 1695 J of work. [

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are stretching or compressing
a spring, the formula W = Fd has to be replaced by an integral formula that takes the
variation in F into account.

Suppose that the force performing the work acts on an object moving along a straight
line, which we take to be the x-axis. We assume that the magnitude of the force is a continu-
ous function F of the object’s position x. We want to find the work done over the interval
from x = a to x = b. We partition [a, b] in the usual way and choose an arbitrary point ¢;
in each subinterval [x;_,, x; |. If the subinterval is short enough, the continuous function F
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FIGURE 6.36 The force F needed to
hold a spring under compression increases

linearly as the spring is compressed
(Example 2).
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will not vary much from x;_; to x;. The amount of work done across the interval will be
about F(cy) times the distance Ax;, the same as it would be if F were constant and we
could apply Equation (1). The total work done from a to b is therefore approximated by
the Riemann sum

Work =~ ' F(cp) Ax.
k=1

We expect the approximation to improve as the norm of the partition goes to zero, so we
define the work done by the force from a to b to be the integral of F from a to b:

n b
lim > F(c) Ax, = / F(x) dx.
ot .

—00
n =

DEFINITION The work done by a variable force F(x) in moving an object along
the x-axis fromx = atox = b is

b
W= / F(x) dx.

The units of the integral are joules if F is in newtons and x is in meters, and foot-pounds if
F is in pounds and x is in feet. So the work done by a force of F(x) = 1/x*> newtons in
moving an object along the x-axis from x = 1 mto x = 10 m is

0 1] 1
W:/ 2dx:—x:| :_7'{'1:0.9].
X 1

2

10

Hooke’s Law for Springs: F = kx

One calculation for work arises in finding the work required to stretch or compress a
spring. Hooke’s Law says that the force required to hold a stretched or compressed spring
x units from its natural (unstressed) length is proportional to x. In symbols,

F = kx. 3

The constant k, measured in force units per unit length, is a characteristic of the
spring, called the force constant (or spring constant) of the spring. Hooke’s Law, Equa-
tion (3), gives good results as long as the force doesn’t distort the metal in the spring. We
assume that the forces in this section are too small to do that.

EXAMPLE 2 Find the work required to compress a spring from its natural length of
1 ft to a length of 0.75 ft if the force constant is k = 16 1b/ft.

Solution  We picture the uncompressed spring laid out along the x-axis with its movable
end at the origin and its fixed end at x = 1 ft (Figure 6.36). This enables us to describe the
force required to compress the spring from 0 to x with the formula F = 16x. To compress
the spring from 0 to 0.25 ft, the force must increase from

F0)=16-0=01b to  F(0.25) = 16-0.25 = 41b.

The work done by F over this interval is

0.25 0.25 Eq4 (2) with
W= / 16x dx = Sxﬂ = 0.5 ft-1b. a=0,b=025, [
0 0 F(x) = 16x
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FIGURE 6.37 A 24-N weight stretches
this spring 0.8 m beyond its unstressed
length (Example 3).
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FIGURE 6.38 Lifting the bucket in
Example 4.
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EXAMPLE 3 A spring has a natural length of 1 m. A force of 24 N holds the spring
stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural length?

(¢) How far will a 45-N force stretch the spring?

Solution
(a) The force constant. We find the force constant from Equation (3). A force of 24 N
maintains the spring at a position where it is stretched 0.8 m from its natural length, so
24 = k(0.8) Eq. (3) with
k=124/08 =30N/m. [ =208
(b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging along
the x-axis with its free end at x = 0 (Figure 6.37). The force required to stretch the

spring x m beyond its natural length is the force required to hold the free end of the
spring x units from the origin. Hooke’s Law with £k = 30 says that this force is

F(x) = 30x.

The work done by F on the spring from x = Om to x = 2 m is

2 2
W = / 30x dx = 15x2} = 601.
0 0

(¢) How far will a 45-N force stretch the spring? We substitute F' = 45 in the equation
F = 30x to find
45 = 30x, or x=15m.

A 45-N force will keep the spring stretched 1.5 m beyond its natural length. [ |

Lifting Objects and Pumping Liquids from Containers

The work integral is useful to calculate the work done in lifting objects whose weights
vary with their elevation.

EXAMPLE 4 A 5-1b bucket is lifted from the ground into the air by pulling in 20 ft of
rope at a constant speed (Figure 6.38). The rope weighs 0.08 1b/ft. How much work was
spent lifting the bucket and rope?

Solution The bucket has constant weight, so the work done lifting it alone is weight X
distance = 520 = 100 ft-1b.

The weight of the rope varies with the bucket’s elevation, because less of it is freely
hanging. When the bucket is x ft off the ground, the remaining proportion of the rope still
being lifted weighs (0.08) - (20 — x) Ib. So the work in lifting the rope is

20 20

Work on rope = (0.08)(20 — x) dx = (1.6 — 0.08x)dx
0 0

= [1.6x — 0.04x2]3 = 32 — 16 = 16 ft-Ib.
The total work for the bucket and rope combined is

100 + 16 = 116 ft-1b. |

How much work does it take to pump all or part of the liquid from a container? Engi-
neers often need to know the answer in order to design or choose the right pump, or to com-
pute the cost, to transport water or some other liquid from one place to another. To find out
how much work is required to pump the liquid, we imagine lifting the liquid out one thin
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FIGURE 6.39 The olive oil and tank in
Example 5.
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FIGURE 6.40 To withstand the increas-
ing pressure, dams are built thicker as they
go down.

Weight-density
A fluid’s weight-density w is its weight

per unit volume. Typical values (Ib/ft%)
are listed below.

Gasoline 42
Mercury 849
Milk 64.5
Molasses 100
Olive oil 57
Seawater 64

Freshwater 62.4

horizontal slab at a time and applying the equation W = Fd to each slab. We then evaluate
the integral this leads to as the slabs become thinner and more numerous. The integral we get
each time depends on the weight of the liquid and the dimensions of the container, but the
way we find the integral is always the same. The next example shows what to do.

EXAMPLE 5 The conical tank in Figure 6.39 is filled to within 2 ft of the top with olive
oil weighing 57 1b/ft>. How much work does it take to pump the oil to the rim of the tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to the y-axis
at the points of a partition of the interval [0, 8].
The typical slab between the planes at y and y + Ay has a volume of about

2
AV = mr(radius)?(thickness) = W(éy) Ay = %yz Ay ft.

The force F(y) required to lift this slab is equal to its weight,

5T
4

The distance through which F(y) must act to lift this slab to the level of the rim of the
cone is about (10 — y) ft, so the work done lifting the slab is about

AW = 5?777(10 — )y Ay ft-Ib.

Weight = (weight per unit
volume) X volume

F(y) = 57T AV = y2 Ay Ib.

Assuming there are n slabs associated with the partition of [0, 8 ], and that y = y; denotes
the plane associated with the kth slab of thickness Ay,, we can approximate the work done
lifting all of the slabs with the Riemann sum

W= 227710 — yu Ay felb.
k=1

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-
tion goes to zero and the number of slabs tends to infinity:

n

8
. 57 57
W=hm§3j%w—nMAn=/ij—wﬁ@

n—)OOk 1 0

8
57
=f/aw—ﬂ@
0

_Wﬂw3fr

i R

3 o 30,561 ft-Ib. MW

0

Fluid Pressure and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure
against them increases with depth. The pressure at any point on a dam depends only on
how far below the surface the point is and not on how much the surface of the dam hap-
pens to be tilted at that point. The pressure, in pounds per square foot at a point & feet
below the surface, is always 62.44. The number 62.4 is the weight-density of freshwater in
pounds per cubic foot. The pressure & feet below the surface of any fluid is the fluid’s
weight-density times h.

The Pressure-Depth Equation

In a fluid that is standing still, the pressure p at depth % is the fluid’s weight-
density w times A:

p = wh. “4)




FIGURE 6.41 These containers are
filled with water to the same depth and
have the same base area. The total force is
therefore the same on the bottom of each
container. The containers’ shapes do not
matter here.

y

Surface of fluid

Submerged vertical T
[ I plate Strip

depth
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T ‘ 77777 ‘
| L(y)
Strip length at level y

FIGURE 6.42 The force exerted by a
fluid against one side of a thin, flat horizon-
tal strip is about AF = pressure X area =
w X (strip depth) X L(y) Ay.
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In a container of fluid with a flat horizontal base, the total force exerted by the fluid
against the base can be calculated by multiplying the area of the base by the pressure at the
base. We can do this because total force equals force per unit area (pressure) times area.
(See Figure 6.41.) If F, p, and A are the total force, pressure, and area, then

F = total force = force per unit area X area

pressure X area = pA

whA. p = wh from Eq. (4)

Fluid Force on a Constant-Depth Surface

F = pA = whA 5)

For example, the weight-density of freshwater is 62.4 1b/ft%, so the fluid force at the bot-
tom of a 10 ft X 20 ft rectangular swimming pool 3 ft deep is

F = whA = (62.41b/f*)(3 ft)(10 - 20 ft?)
= 37,440 Ib.

For a flat plate submerged horizontally, like the bottom of the swimming pool just
discussed, the downward force acting on its upper face due to liquid pressure is given by
Equation (5). If the plate is submerged vertically, however, then the pressure against it will
be different at different depths and Equation (5) no longer is usable in that form (because
h varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical
plate submerged in a fluid of weight-density w. To find it, we model the plate as a region
extending from y = a to y = b in the xy-plane (Figure 6.42). We partition [a, b] in the
usual way and imagine the region to be cut into thin horizontal strips by planes perpen-
dicular to the y-axis at the partition points. The typical strip from y to y + Ay is Ay units
wide by L(y) units long. We assume L(y) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough,
however, the pressure will remain close to its bottom-edge value of w X (strip depth). The
force exerted by the fluid against one side of the strip will be about

AF = (pressure along bottom edge) X (area)
= w - (strip depth) - L(y) Ay.

Assume there are 7 strips associated with the partition of @ = y = b and that y, is the bot-
tom edge of the kth strip having length L(y,) and width Ay,. The force against the entire
plate is approximated by summing the forces against each strip, giving the Riemann sum

F = > (w- (strip depth); * L(y)) Ay, (6)
=1

The sum in Equation (6) is a Riemann sum for a continuous function on [a, b ], and we
expect the approximations to improve as the norm of the partition goes to zero. The force
against the plate is the limit of these sums:

n b
lim E (w « (strip depth), * L(y) Ay, = / w = (strip depth) * L(y) dy.
n—>00 = a
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FIGURE 6.43 To find the force on one

side of the submerged plate in Example 6,

we can use a coordinate system like the

one here.

Exercises m

Springs

1. Spring constant It took 1800 J of work to stretch a spring from

The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in fluid of weight-density w runs from
y = atoy = b on the y-axis. Let L(y) be the length of the horizontal strip mea-
sured from left to right along the surface of the plate at level y. Then the force
exerted by the fluid against one side of the plate is

b
F = / w « (strip depth) * L(y) dy. @)

EXAMPLE 6 A flat isosceles right-triangular plate with base 6 ft and height 3 ft is
submerged vertically, base up, 2 ft below the surface of a swimming pool. Find the force
exerted by the water against one side of the plate.

Solution We establish a coordinate system to work in by placing the origin at the plate’s
bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 6.43).
The surface of the pool lies along the line y = 5 and the plate’s top edge along the line
y = 3. The plate’s right-hand edge lies along the line y = x, with the upper-right vertex at
(3, 3). The length of a thin strip at level y is

L(y) = 2x = 2y.

The depth of the strip beneath the surface is (5 — y). The force exerted by the water
against one side of the plate is therefore

b .
_ [ strip ) |
F = ﬂ w ( depth) L(y) dy

Eq. (7)
3
=/ 62.4(5 — y)2ydy
0
3
= 124.8/ By — y) dy
0
373
= 1248|292 — 2| = 1684.8 Ib. m
2 T3,

4. Stretching a spring If a force of 90 N stretches a spring 1 m
beyond its natural length, how much work does it take to stretch

its natural length of 2 m to a length of 5 m. Find the spring’s force
constant.

. Stretching a spring A spring has a natural length of 10 in. An

800-1b force stretches the spring to 14 in.

a. Find the force constant.

b. How much work is done in stretching the spring from 10 in.
to 12 in.?

c¢. How far beyond its natural length will a 1600-1b force stretch
the spring?

. Stretching a rubber band A force of 2 N will stretch a rubber

band 2 cm (0.02 m). Assuming that Hooke’s Law applies, how far

will a 4-N force stretch the rubber band? How much work does it
take to stretch the rubber band this far?

. Subway car springs

. Bathroom scale

the spring 5 m beyond its natural length?

It takes a force of 21,714 1b to compress a
coil spring assembly on a New York City Transit Authority subway
car from its free height of 8 in. to its fully compressed height of 5 in.

a. What is the assembly’s force constant?

b. How much work does it take to compress the assembly the
first half inch? the second half inch? Answer to the nearest
in.-1b.

A bathroom scale is compressed 1/16 in.

when a 150-1b person stands on it. Assuming that the scale

behaves like a spring that obeys Hooke’s Law, how much does
someone who compresses the scale 1/8 in. weigh? How much
work is done compressing the scale 1/8 in.?



Work Done by a Variable Force

7.

10.

11.

12.

Lifting a rope A mountain climber is about to haul up a 50-m
length of hanging rope. How much work will it take if the rope
weighs 0.624 N/m?

. Leaky sandbag A bag of sand originally weighing 144 Ib was

lifted at a constant rate. As it rose, sand also leaked out at a con-
stant rate. The sand was half gone by the time the bag had been
lifted to 18 ft. How much work was done lifting the sand this far?
(Neglect the weight of the bag and lifting equipment.)

. Lifting an elevator cable An electric elevator with a motor at

the top has a multistrand cable weighing 4.5 1b/ft. When the car is at
the first floor, 180 ft of cable are paid out, and effectively O ft are out
when the car is at the top floor. How much work does the motor do
just lifting the cable when it takes the car from the first floor to the top?

Force of attraction When a particle of mass m is at (x, 0), it is
attracted toward the origin with a force whose magnitude is k/x>.
If the particle starts from rest at x = b and is acted on by no other
forces, find the work done on it by the time it reaches x = q,
0<a<h.

Leaky bucket Assume the bucket in Example 4 is leaking. It
starts with 2 gal of water (16 1b) and leaks at a constant rate. It
finishes draining just as it reaches the top. How much work was
spent lifting the water alone? (Hint: Do not include the rope and
bucket, and find the proportion of water left at elevation x ft.)

(Continuation of Exercise 11.) The workers in Example 4 and
Exercise 11 changed to a larger bucket that held 5 gal (40 1b) of
water, but the new bucket had an even larger leak so that it, too,
was empty by the time it reached the top. Assuming that the water
leaked out at a steady rate, how much work was done lifting the
water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers

13.

14.

Pumping water The rectangular tank shown here, with its top
at ground level, is used to catch runoff water. Assume that the
water weighs 62.4 b /ft3.

a. How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?

b. If the water is pumped to ground level with a (5/11)-
horsepower (hp) motor (work output 250 ft-1b / sec), how long
will it take to empty the full tank (to the nearest minute)?

c. Show that the pump in part (b) will lower the water level
10 ft (halfway) during the first 25 min of pumping.

d. The weight of water What are the answers to parts (a) and
(b) in a location where water weighs 62.26 b /ft3? 62.59 1b/{t>?

12 ft
Ground 10 ﬁ
level B“\
¥
T R
T 'h; g Ay
>
P
Yy

Emptying a cistern The rectangular cistern (storage tank for
rainwater) shown has its top 10 ft below ground level. The cis-
tern, currently full, is to be emptied for inspection by pumping its
contents to ground level.

15.

16.

17.

18.

19.

20.

21.
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a. How much work will it take to empty the cistern?
b. How long will it take a 1,/2-hp pump, rated at 275 ft-1b /sec,
to pump the tank dry?

c¢. How long will it take the pump in part (b) to empty the tank
halfway? (It will be less than half the time required to empty
the tank completely.)

d. The weight of water What are the answers to parts (a)
through (c) in a location where water weighs 62.26 1b/ft>?
62.59 b /ft3?

Ground level

0 /
10
10 ft
20
12 ft

20 ft

Pumping oil How much work would it take to pump oil from
the tank in Example 5 to the level of the top of the tank if the tank
were completely full?

Pumping a half-full tank Suppose that, instead of being full,
the tank in Example 5 is only half full. How much work does it
take to pump the remaining oil to a level 4 ft above the top of
the tank?

Emptying a tank A vertical right-circular cylindrical tank
measures 30 ft high and 20 ft in diameter. It is full of kerosene
weighing 51.2 Ib/ft’. How much work does it take to pump the
kerosene to the level of the top of the tank?

a. Pumping milk Suppose that the conical container in Exam-
ple 5 contains milk (weighing 64.5 1b/ft®) instead of olive oil.
How much work will it take to pump the contents to the rim?

b. Pumping oil How much work will it take to pump the oil
in Example 5 to a level 3 ft above the cone’s rim?

The graph of y = x> on 0 = x = 2 is revolved about the y-axis
to form a tank that is then filled with salt water from the Dead Sea
(weighing approximately 73 Ib/ft*). How much work does it take
to pump all of the water to the top of the tank?

A right-circular cylindrical tank of height 10 ft and radius 5 ft is
lying horizontally and is full of diesel fuel weighing 53 Ib/ft>.
How much work is required to pump all of the fuel to a point 15 ft
above the top of the tank?

Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the axis
of integration along the vertical axis of the sphere. Use the figure
here to find how much work it takes to empty a full hemispherical
water reservoir of radius 5 m by pumping the water to a height of
4 m above the top of the reservoir. Water weighs 9800 N/m?.
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22,

You are in charge of the evacuation and repair of the storage tank
shown here. The tank is a hemisphere of radius 10 ft and is full of
benzene weighing 56 Ib/ft’. A firm you contacted says it can
empty the tank for 1/2¢ per foot-pound of work. Find the work
required to empty the tank by pumping the benzene to an outlet
2 ft above the top of the tank. If you have $5000 budgeted for the
job, can you afford to hire the firm?

y

T Outlet pipe
=

“‘\\;f 2 ft

K+ y 4 2 =100

P

Work and Kinetic Energy

23.

Kinetic energy If a variable force of magnitude F(x) moves an
object of mass m along the x-axis from x; to x,, the object’s
velocity v can be written as dx /dr (where 7 represents time). Use
Newton’s second law of motion F' = m(dv/dr) and the Chain Rule

dv _dvdx _ dv
di ~ dvdr ~ Vdx

to show that the net work done by the force in moving the object

from x; to x, is

X2
1 1
W= /x F(x) dx = Emvz2 - Emvlz,

where v; and v, are the object’s velocities at x; and x,. In phys-
ics, the expression (1/2)mv? is called the kinetic energy of an
object of mass m moving with velocity v. Therefore, the work
done by the force equals the change in the object’s kinetic energy,
and we can find the work by calculating this change.

In Exercises 24-28, use the result of Exercise 23.

24.

25.

26.

27.

28.

29.

Tennis A 2-oz tennis ball was served at 160 ft/sec (about
109 mph). How much work was done on the ball to make it go
this fast? (To find the ball’s mass from its weight, express the
weight in pounds and divide by 32 ft/sec? the acceleration of
gravity.)

Baseball How many foot-pounds of work does it take to throw
a baseball 90 mph? A baseball weighs 5 oz, or 0.3125 Ib.

Golf A 1.6-0z golf ball is driven off the tee at a speed of 280 ft/sec
(about 191 mph). How many foot-pounds of work are done on the
ball getting it into the air?

On June 11, 2004, in a tennis match between Andy Roddick and
Paradorn Srichaphan at the Stella Artois tournament in London,
England, Roddick hit a serve measured at 153 mi/h. How much
work was required by Andy to serve a 2-0z tennis ball at that speed?

Softball How much work has to be performed on a 6.5-0z soft-
ball to pitch it 132 ft /sec (90 mph)?

Drinking a milkshake The truncated conical container shown
here is full of strawberry milkshake that weighs 4/9 oz/in’. As
you can see, the container is 7 in. deep, 2.5 in. across at the base,
and 3.5 in. across at the top (a standard size at Brigham’s in
Boston). The straw sticks up an inch above the top. About how

much work does it take to suck up the milkshake through the
straw (neglecting friction)? Answer in inch-ounces.

Dimensions in inches

30. Water tower Your town has decided to drill a well to increase

its water supply. As the town engineer, you have determined that
a water tower will be necessary to provide the pressure needed for
distribution, and you have designed the system shown here. The
water is to be pumped from a 300-ft well through a vertical 4-in.
pipe into the base of a cylindrical tank 20 ft in diameter and 25 ft
high. The base of the tank will be 60 ft above ground. The pump
is a 3-hp pump, rated at 1650 ft - 1b/sec. To the nearest hour, how
long will it take to fill the tank the first time? (Include the time it
takes to fill the pipe.) Assume that water weighs 62.4 1b/ft>.

—10ff—
—

Ground 60 ft

4in.—>| [«—

Water surface

Submersible pump

NOT TO SCALE

31. Putting a satellite in orbit The strength of Earth’s gravita-

tional field varies with the distance r from Earth’s center, and the
magnitude of the gravitational force experienced by a satellite of
mass m during and after launch is

mMG

F(r) = 2

Here, M = 5.975 X 10**kg is Earth’s mass, G = 6.6720 X
107" N -m? kg2 is the universal gravitational constant, and r is
measured in meters. The work it takes to lift a 1000-kg satellite
from Earth’s surface to a circular orbit 35,780 km above Earth’s
center is therefore given by the integral

35,780,000
Work = / Md;’ joules.
6

,370,000 r

Evaluate the integral. The lower limit of integration is Earth’s
radius in meters at the launch site. (This calculation does not take
into account energy spent lifting the launch vehicle or energy
spent bringing the satellite to orbit velocity.)



32. Forcing electrons together Two electrons r meters apart repel
each other with a force of

_ 23X 107

F 2

newtons.

r

a. Suppose one electron is held fixed at the point (1, 0) on the
x-axis (units in meters). How much work does it take to move
a second electron along the x-axis from the point (—1, 0) to
the origin?

b. Suppose an electron is held fixed at each of the points (—1, 0)
and (1, 0). How much work does it take to move a third elec-
tron along the x-axis from (5, 0) to (3, 0)?

Finding Fluid Forces
33. Triangular plate Calculate the fluid force on one side of the
plate in Example 6 using the coordinate system shown here.

v (f)

7
/
7/
7

Surface of pool L//

T 0 e

Depth|y|

x (ft)

34. Triangular plate Calculate the fluid force on one side of the
plate in Example 6 using the coordinate system shown here.

y (ft)

Pool surface |aty = 2

1=
- é x (ft)

35. Rectangular plate In a pool filled with water to a depth of
10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectan-
gular plate if the plate rests vertically at the bottom of the pool
a. on its 4-ft edge. b. onits 3-ft edge.

36. Semicircular plate Calculate the fluid force on one side of a
semicircular plate of radius 5 ft that rests vertically on its diame-
ter at the bottom of a pool filled with water to a depth of 6 ft.

y

Surface of water |6
5

X

37. Triangular plate The isosceles triangular plate shown here is
submerged vertically 1 ft below the surface of a freshwater lake.

a. Find the fluid force against one face of the plate.
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b. What would be the fluid force on one side of the plate if the
water were seawater instead of freshwater?

Surface level

Ak————4ﬁ————%

1ft

38. Rotated triangular plate The plate in Exercise 37 is revolved
180° about line AB so that part of the plate sticks out of the lake,
as shown here. What force does the water exert on one face of the
plate now?

Surface

39. New England Aquarium The viewing portion of the rectangular
glass window in a typical fish tank at the New England Aquarium in
Boston is 63 in. wide and runs from 0.5 in. below the water’s surface
to 33.5 in. below the surface. Find the fluid force against this portion
of the window. The weight-density of seawater is 64 1b/ft>. (In case
you were wondering, the glass is 3/4 in. thick and the tank walls
extend 4 in. above the water to keep the fish from jumping out.)

40. Semicircular plate