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ix

Thomas’ Calculus: Early Transcendentals, Thirteenth Edition, provides a modern intro-
duction to calculus that focuses on conceptual understanding in developing the essential 
elements of a traditional course. This material supports a three-semester or four-quarter 
calculus sequence typically taken by students in mathematics, engineering, and the natural 
sciences. Precise explanations, thoughtfully chosen examples, superior figures, and time-
tested exercise sets are the foundation of this text. We continue to improve this text in 
keeping with shifts in both the preparation and the ambitions of today’s students, and the 
applications of calculus to a changing world.

Many of today’s students have been exposed to the terminology and computational 
methods of calculus in high school. Despite this familiarity, their acquired algebra and 
trigonometry skills sometimes limit their ability to master calculus at the college level. In 
this text, we seek to balance students’ prior experience in calculus with the algebraic skill 
development they may still need, without slowing their progress through calculus itself. We 
have taken care to provide enough review material (in the text and appendices), detailed 
solutions, and variety of examples and exercises, to support a complete understanding of 
calculus for students at varying levels. We present the material in a way to encourage stu-
dent thinking, going beyond memorizing formulas and routine procedures, and we show 
students how to generalize key concepts once they are introduced. References are made 
throughout which tie a new concept to a related one that was studied earlier, or to a gen-
eralization they will see later on. After studying calculus from Thomas, students will have 
developed problem solving and reasoning abilities that will serve them well in many im-
portant aspects of their lives. Mastering this beautiful and creative subject, with its many 
practical applications across so many fields of endeavor, is its own reward. But the real gift 
of studying calculus is acquiring the ability to think logically and factually, and learning 
how to generalize conceptually. We intend this book to encourage and support those goals.

New to this Edition

In this new edition we further blend conceptual thinking with the overall logic and struc-
ture of single and multivariable calculus. We continue to improve clarity and precision, 
taking into account helpful suggestions from readers and users of our previous texts. While 
keeping a careful eye on length, we have created additional examples throughout the text. 
Numerous new exercises have been added at all levels of difficulty, but the focus in this 
revision has been on the mid-level exercises. A number of figures have been reworked and 
new ones added to improve visualization. We have written a new section on probability, 
which provides an important application of integration to the life sciences.

We have maintained the basic structure of the Table of Contents, and retained im-
provements from the twelfth edition. In keeping with this process, we have added more 
improvements throughout, which we detail here:

Preface
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• Functions In discussing the use of software for graphing purposes, we added a brief 
subsection on least squares curve fitting, which allows students to take advantage of 
this widely used and available application. Prerequisite material continues to be re-
viewed in Appendices 1–3.

• Continuity We clarified the continuity definitions by confining the term “endpoints” to 
intervals instead of more general domains, and we moved the subsection on continuous 
extension of a function to the end of the continuity section.

• Derivatives We included a brief geometric insight justifying l’Hôpital’s Rule. We also 
enhanced and clarified the meaning of differentiability for functions of several vari-
ables, and added a result on the Chain Rule for functions defined along a path.

• Integrals We wrote a new section reviewing basic integration formulas and the Sub-
stitution Rule, using them in combination with algebraic and trigonometric identities, 
before presenting other techniques of integration.

• Probability We created a new section applying improper integrals to some commonly 
used probability distributions, including the exponential and normal distributions. 
Many examples and exercises apply to the life sciences.

• Series We now present the idea of absolute convergence before giving the Ratio and 
Root Tests, and then state these tests in their stronger form. Conditional convergence is 
introduced later on with the Alternating Series Test.

• Multivariable and Vector Calculus We give more geometric insight into the idea of 
multiple integrals, and we enhance the meaning of the Jacobian in using substitutions 
to evaluate them. The idea of surface integrals of vector fields now parallels the notion 
for line integrals of vector fields. We have improved our discussion of the divergence 
and curl of a vector field.

• Exercises and Examples Strong exercise sets are traditional with Thomas’ Calculus, 
and we continue to strengthen them with each new edition. Here, we have updated, 
changed, and added many new exercises and examples, with particular attention to in-
cluding more applications to the life science areas and to contemporary problems. For 
instance, we updated an exercise on the growth of the U.S. GNP and added new exer-
cises addressing drug concentrations and dosages, estimating the spill rate of a ruptured 
oil pipeline, and predicting rising costs for college tuition.

Continuing Features

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think 
starting with a more intuitive, less formal, approach helps students understand a new or dif-
ficult concept so they can then appreciate its full mathematical precision and outcomes. We 
pay attention to defining ideas carefully and to proving theorems appropriate for calculus 
students, while mentioning deeper or subtler issues they would study in a more advanced 
course. Our organization and distinctions between informal and formal discussions give the 
instructor a degree of flexibility in the amount and depth of coverage of the various top-
ics. For example, while we do not prove the Intermediate Value Theorem or the Extreme 
Value Theorem for continuous functions on a # x # b, we do state these theorems precisely,  
illustrate their meanings in numerous examples, and use them to prove other important re-
sults. Furthermore, for those instructors who desire greater depth of coverage, in Appendix 
6 we discuss the reliance of the validity of these theorems on the completeness of the real 
numbers.
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WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of 
each chapter contains a list of questions for students to review and summarize what they 
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after 
each section, each chapter culminates with review questions, practice exercises covering 
the entire chapter, and a series of Additional and Advanced Exercises serving to include 
more challenging or synthesizing problems. Most chapters also include descriptions of 
several Technology Application Projects that can be worked by individual students or 
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the 
Internet at www.pearsonhighered.com/thomas and in MyMathLab.

WRITING AND APPLICATIONS As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand 
examples and is then reinforced by its application to real-world problems of immediate 
interest to students. A hallmark of this book has been the application of calculus to science 
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY In a course using the text, technology can be incorporated according to 
the taste of the instructor. Each section contains exercises requiring the use of technology; 
these are marked with a T if suitable for calculator or computer use, or they are labeled 
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

Additional Resources

INSTRUCTOR’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-88408-6 | 978-0-321-88408-4 
Multivariable Calculus (Chapters 10–16), ISBN 0-321-87901-5 | 978-0-321-87901-1  
The Instructor’s Solutions Manual contains complete worked-out solutions to all of the 
exercises in Thomas’ Calculus: Early Transcendentals.

STUDENT’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-88410-8 | 978-0-321-88410-7 
Multivariable Calculus (Chapters 10–16), ISBN 0-321-87897-3 | 978-0-321-87897-7 
The Student’s Solutions Manual is designed for the student and contains carefully 
worked-out solutions to all the odd-numbered exercises in Thomas’ Calculus: Early 
Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR  
EARLY TRANSCENDENTALS CALCULUS, Fourth Edition
ISBN 0-321-67103-1 | 978-0-321-67103-5
Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and 
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem 
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in 
the order in which students will need them as they study calculus.
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Technology Resource Manuals
Maple Manual by Marie Vanisko, Carroll College
Mathematica Manual by Marie Vanisko, Carroll College
TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University 
These manuals cover Maple 17, Mathematica 8, and the TI-83 Plus/TI-84 Plus and TI-89, 
respectively. Each manual provides detailed guidance for integrating a specific software 
package or graphing calculator throughout the course, including syntax and commands. 
These manuals are available to qualified instructors through the Thomas’ Calculus: Early 
Transcendentals Web site, www.pearsonhighered.com/thomas, and MyMathLab.

WEB SITE www.pearsonhighered.com/thomas
The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the ex-
panded historical biographies and essays referenced in the text. The Technology Resource 
Manuals and the Technology Application Projects, which can be used as projects by in-
dividual students or groups of students, are also available.

MyMathLab® Online Course (access code required)
MyMathLab from Pearson is the world’s leading online resource in mathematics, integrat-
ing interactive homework, assessment, and media in a flexible, easy-to-use format.

MyMathLab delivers proven results in helping individual students succeed.

• MyMathLab has a consistently positive impact on the quality of learning in higher  
education math instruction. MyMathLab can be successfully implemented in any  
environment—lab-based, hybrid, fully online, traditional—and demonstrates the quan-
tifiable difference that integrated usage makes in regard to student retention, subse-
quent success, and overall achievement.

• MyMathLab’s comprehensive online gradebook automatically tracks your students’ re-
sults on tests, quizzes, homework, and in the study plan. You can use the gradebook to 
quickly intervene if your students have trouble, or to provide positive feedback on a job 
well done. The data within MyMathLab are easily exported to a variety of spreadsheet 
programs, such as Microsoft Excel. You can determine which points of data you want 
to export, and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure 
learning for each student.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite 
skills in algebra and trigonometry. Each student can receive remediation for just those 
skills he or she needs help with.

• Exercises: The homework and practice exercises in MyMathLab are correlated to the 
exercises in the textbook, and they regenerate algorithmically to give students unlim-
ited opportunity for practice and mastery. The software offers immediate, helpful feed-
back when students enter incorrect answers.

• Multimedia Learning Aids: Exercises include guided solutions, sample problems, 
animations, Java™ applets, videos, and eText access for extra help at point-of-use.

• Expert Tutoring: Although many students describe the whole of MyMathLab as “like 
having your own personal tutor,” students using MyMathLab do have access to live 
tutoring from Pearson, from qualified math and statistics instructors.
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And, MyMathLab comes from an experienced partner with educational expertise and an 
eye on the future.

• Knowing that you are using a Pearson product means knowing that you are using qual-
ity content. It means that our eTexts are accurate and our assessment tools work. It also 
means we are committed to making MyMathLab as accessible as possible.

• Whether you are just getting started with MyMathLab, or have a question along the 
way, we’re here to help you learn about our technologies and how to incorporate them 
into your course.

To learn more about how MyMathLab combines proven learning applications with power-
ful assessment, visit www.mymathlab.com or contact your Pearson representative.

Video Lectures with Optional Captioning
The Video Lectures with Optional Captioning feature an engaging team of mathemat-
ics instructors who present comprehensive coverage of topics in the text. The lecturers’ 
presentations include examples and exercises from the text and support an approach that 
emphasizes visualization and problem solving. Available only through MyMathLab and 
MathXL.

MathXL® Online Course (access code required)
MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is 
MathXL plus a learning management system.)

With MathXL, instructors can:

• Create, edit, and assign online homework and tests using algorithmically generated ex-
ercises correlated at the objective level to the textbook.

• Create and assign their own online exercises and import TestGen tests for added flexibility.

• Maintain records of all student work tracked in MathXL’s online gradebook.

With MathXL, students can:

• Take chapter tests in MathXL and receive personalized study plans and/or personalized 
homework assignments based on their test results.

• Use the study plan and/or the homework to link directly to tutorial exercises for the 
objectives they need to study.

• Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at 
www.mathxl.com, or contact your Pearson representative.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and ad-
minister tests using a computerized bank of questions developed to cover all the objec-
tives of the text. TestGen is algorithmically based, allowing instructors to create multiple 
but equivalent versions of the same question or test with the click of a button. Instructors 
can also modify test bank questions or add new questions. The software and test bank are 
available for download from Pearson Education’s online catalog.

PowerPoint® Lecture Slides
These classroom presentation slides are geared specifically to the sequence and philosophy 
of the Thomas’ Calculus series. Key graphics from the book are included to help bring the 
concepts alive in the classroom.These files are available to qualified instructors through 
the Pearson Instructor Resource Center, www.pearsonhighered/irc, and MyMathLab.
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1

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review 
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we 
discuss misrepresentations that can occur when using calculators and computers to obtain 
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The 
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses 
are reviewed in the Appendices.

Functions

1

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling 
point drops as you ascend). The interest paid on a cash investment depends on the length of 
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we might call x. We say that “y is a function of x” and write this 
symbolically as

y = ƒ(x) (“y equals ƒ of x”).

In this notation, the symbol ƒ represents the function, the letter x is the independent variable
representing the input value of ƒ, and y is the dependent variable or output value of ƒ at x.

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique
(single) element ƒ(x)∊Y  to each element x∊D.

The set D of all possible input values is called the domain of the function. The set of 
all output values of ƒ(x) as x varies throughout D is called the range of the function. The 
range may not include every element in the set Y. The domain and range of a function can 
be any sets of objects, but often in calculus they are sets of real numbers interpreted as 
points of a coordinate line. (In Chapters 13–16, we will encounter functions for which the 
elements of the sets are points in the coordinate plane or in space.)



2 Chapter 1: Functions

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation A = pr2 is a rule that calculates the 
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this 
formula). When we define a function y = ƒ(x) with a formula and the domain is not stated 
explicitly or restricted by context, the domain is assumed to be the largest set of real 
x-values for which the formula gives real y-values, which is called the natural domain. If 
we want to restrict the domain in some way, we must say so. The domain of y = x2 is the 
entire set of real numbers. To restrict the domain of the function to, say, positive values of 
x, we would write “y = x2, x 7 0.”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of y = x2 is [0, q). The range of y = x2, x Ú 2, is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), 
the range is 5x2 � x Ú 26  or 5y � y Ú 46  or 34, q).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider are intervals or combinations of intervals. The intervals may be open, closed, or half 
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever we 
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an 
example of a function as a machine. For instance, the 2x key on a calculator gives an output 
value (the square root) whenever you enter a nonnegative number x and press the 2x key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates 
an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the 
arrows indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that 
a function can have the same value at two different input elements in the domain (as occurs 
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1  Let’s verify the natural domains and associated ranges of some simple 
functions. The domains in each case are the values of x for which the formula makes sense.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.1 A diagram showing a 
function as a kind of machine.

x

a f (a) f (x)

D = domain set Y = set containing
the range

FIGURE 1.2 A function from a set D
to a set Y assigns a unique element of Y
to each element in D.

Function Domain (x) Range ( y)

y = x2 (-q, q) 30, q)

y = 1>x (-q, 0) ∪ (0, q) (-q, 0) ∪ (0, q)

y = 2x 30, q) 30, q)

y = 24 - x (-q, 44 30, q)

y = 21 - x2 3-1, 14 30, 14

Solution The formula y = x2 gives a real y-value for any real number x, so the domain 
is (-q, q). The range of y = x2 is 30, q) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = 12y22
for y Ú 0.

The formula y = 1>x gives a real y-value for every x except x = 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1>x, the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 
y = 1>(1>y). That is, for y ≠ 0 the number x = 1>y is the input assigned to the output 
value y.

The formula y = 2x gives a real y-value only if x Ú 0. The range of y = 2x is 30, q) because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In y = 24 - x , the quantity 4 - x cannot be negative. That is, 4 - x Ú 0, or 
x … 4. The formula gives real y-values for all x … 4. The range of 24 - x is 30, q),
the set of all nonnegative numbers.
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The formula y = 21 - x2 gives a real y-value for every x in the closed interval from 
-1 to 1. Outside this domain, 1 - x2 is negative and its square root is not a real number. 
The values of 1 - x2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of 21 - x2 is 30, 14 .
Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for ƒ. In set notation, the graph is

5(x, ƒ(x)) � x∊D6 .

The graph of the function ƒ(x) = x + 2 is the set of points with coordinates (x, y) for 
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the 
graph, then y = ƒ(x) is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of ƒ(x) (Figure 1.4).

x

y

−2 0

2

y = x + 2

FIGURE 1.3 The graph of ƒ(x) = x + 2
is the set of points (x, y) for which y has the 
value x + 2.

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4 If (x, y) lies on the graph of 
ƒ, then the value y = ƒ(x) is the height of 
the graph above the point x (or below x if 
ƒ(x) is negative).

0 1 2−1−2

1

2

3

4
(−2, 4)

(−1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a b

FIGURE 1.5 Graph of the function 
in Example 2.

EXAMPLE 2  Graph the function y = x2 over the interval 3-2, 24 .
Solution Make a table of xy-pairs that satisfy the equation y = x2. Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5).

How do we know that the graph of y = x2 doesn’t look like one of these curves?

x y = x2

-2 4

-1 1

0 0

1 1

3
2

9
4

2 4

y = x2?

x

y

y = x2?

x

y
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To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area 
function) and visually by a graph (Example 2). Another way to represent a function is 
numerically, through a table of values. Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a 
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function 
over time. If we first make a scatterplot and then connect approximately the data points 
(t, p) from the table, we obtain the graph shown in the figure.

−0.6
−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

t (sec)

p (pressure)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points 
gives a graph of the pressure function represented by the 
accompanying tabled data (Example 3).

Time Pressure Time Pressure

0.00091 -0.080 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525 -0.164

0.00271 -0.141 0.00543 -0.320

0.00289 -0.309 0.00562 -0.354

0.00307 -0.348 0.00579 -0.248

0.00325 -0.248 0.00598 -0.035
0.00344 -0.041    

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can 
have only one value ƒ(x) for each x in its domain, so no vertical line can intersect the 
graph of a function more than once. If a is in the domain of the function ƒ, then the vertical 
line x = a will intersect the graph of ƒ at the single point (a, ƒ(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of 
x, such as the upper semicircle defined by the function ƒ(x) = 21 - x2 and the lower 
semicircle defined by the function g(x) = -21 - x2 (Figures 1.7b and 1.7c).
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Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

0 x 0 = e x, x Ú 0

-x, x 6 0,
    

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if x Ú 0, and equals -x if x 6 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4  The function

ƒ(x) = c -x, x 6 0

x2, 0 … x … 1

1, x 7 1

First formula

Second formula

Third formula

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of ƒ are given by y = -x when x 6 0, y = x2 when 
0 … x … 1, and y = 1 when x 7 1. The function, however, is just one function whose 
domain is the entire set of real numbers (Figure 1.9).

EXAMPLE 5  The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted :x; . Figure 1.10 shows the graph. Observe that

:2.4; = 2, :1.9; = 1, :0; = 0, :-1.2; = -2,
:2; = 2, :0.2; = 0, :-0.3; = -1, :-2; = -2.

EXAMPLE 6  The function whose value at any number x is the smallest integer 
greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted <x= . Figure 1.11 shows the graph. For positive values of x, this function 
might represent, for example, the cost of parking x hours in a parking lot that charges $1 
for each hour or part of an hour.

−1 10
x

y

(a) x2 + y2 = 1

−1 10
x

y

−1 1

0
x

y

(b) y = "1 − x2 (c) y = −"1 − x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The 
upper semicircle is the graph of a function ƒ(x) = 21 - x2. (c) The lower semicircle is the graph 
of a function g(x) = -21 - x2.

−2 −1 0 1 2

1

2

x

y

y = −x

y = x2

y = 1

y = f (x)

FIGURE 1.9 To graph the 
function y = ƒ(x) shown here, 
we apply different formulas to 
different parts of its domain 
(Example 4).

x

y = 0 x 0

y = x
y = −x

y

−3 −2 −1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value 
function has domain (-q, q) and 
range 30, q).

1

−2

2

3

−2 −1 1 2 3

y = x

y = :x;

x

y

FIGURE 1.10 The graph of the 
greatest integer function y = :x;
lies on or below the line y = x, so 
it provides an integer floor for x
(Example 5).
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Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

x

y

1−1−2 2 3

−2

−1

1

2

3
y = x

y = <x=

FIGURE 1.11 The graph 
of the least integer function 
y = <x=  lies on or above the line 
y = x, so it provides an integer 
ceiling for x (Example 6).

(a)

(b)

0
x

y

y = x2

(x, y)(−x, y)

0
x

y

y = x3

(x, y)

(−x, −y)

FIGURE 1.12 (a) The graph of y = x2

(an even function) is symmetric about the 
y-axis. (b) The graph of y = x3 (an odd 
function) is symmetric about the origin.

DEFINITIONS Let ƒ be a function defined on an interval I and let x1 and x2 be 
any two points in I.

1. If ƒ(x2) 7 ƒ(x1) whenever x1 6 x2, then ƒ is said to be increasing on I.

2. If ƒ(x2) 6 ƒ(x1) whenever x1 6 x2, then ƒ is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x2 in I with x1 6 x2. Because we use the 
inequality 6 to compare the function values, instead of … , it is sometimes said that ƒ is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or 
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on (-q, 04  and increas-
ing on 30, 14 . The function is neither increasing nor decreasing on the interval 31, q)
because of the strict inequalities used to compare the function values in the definitions.

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function y = ƒ(x) is an

even function of x if ƒ(-x) = ƒ(x),

odd function of x if ƒ(-x) = -ƒ(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
y = x2 or y = x4, it is an even function of x because (-x)2 = x2 and (-x)4 = x4. If y is an 
odd power of x, as in y = x or y = x3, it is an odd function of x because (-x)1 = -x and 
(-x)3 = -x3.

The graph of an even function is symmetric about the y-axis. Since ƒ(-x) = ƒ(x), a 
point (x, y) lies on the graph if and only if the point (-x, y) lies on the graph (Figure 1.12a). 
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since ƒ(-x) = -ƒ(x), a 
point (x, y) lies on the graph if and only if the point (-x, -y) lies on the graph (Figure 1.12b). 
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the 
graph unchanged. Notice that the definitions imply that both x and -x must be in the domain of ƒ.

EXAMPLE 8  Here are several functions illustrating the definition.

ƒ(x) = x2 Even function: (-x)2 = x2 for all x; symmetry about y-axis.

ƒ(x) = x2 + 1   Even function: (-x)2 + 1 = x2 + 1 for all x; symmetry about 
y-axis (Figure 1.13a).

ƒ(x) = x Odd function: (-x) = -x for all x; symmetry about the origin.

ƒ(x) = x + 1   Not odd: ƒ(-x) = -x + 1, but -ƒ(x) = -x - 1. The two are not 
equal.
Not even: (-x) + 1 ≠ x + 1 for all x ≠ 0 (Figure 1.13b).
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Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form ƒ(x) = mx + b, for constants m and b, is called 
a linear function. Figure 1.14a shows an array of lines ƒ(x) = mx where b = 0, so these 
lines pass through the origin. The function ƒ(x) = x where m = 1 and b = 0 is called the 
identity function. Constant functions result when the slope m = 0 (Figure 1.14b). 
A linear function with positive slope whose graph passes through the origin is called a 
proportionality relationship.

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0−1

1

y = x + 1

y = x

FIGURE 1.13 (a) When we add the constant term 1 to the function 
y = x2, the resulting function y = x2 + 1 is still even and its graph is 
still symmetric about the y-axis. (b) When we add the constant term 1 to 
the function y = x, the resulting function y = x + 1 is no longer odd, 
since the symmetry about the origin is lost. The function y = x + 1 is 
also not even (Example 8).

x

y

0 1 2

1

2 y = 3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

0 x

y
m = −3 m = 2

m = 1m = −1

y = −3x

y = −x

y = 2x

y = x

y = x
1
2

m =
1
2

(a)

If the variable y is proportional to the reciprocal 1>x, then sometimes it is said that y is 
inversely proportional to x (because 1>x is the multiplicative inverse of x).

Power Functions A function ƒ(x) = xa, where a is a constant, is called a power function.
There are several important cases to consider.

DEFINITION Two variables y and x are proportional (to one another) if one 
is always a constant multiple of the other; that is, if y = kx for some nonzero 
constant k.
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(a) a = n, a positive integer.

The graphs of ƒ(x) = xn, for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves 
tend to flatten toward the x-axis on the interval (-1, 1), and to rise more steeply for 0 x 0 7 1. Each curve passes through the point (1, 1) and through the origin. The graphs of 
functions with even powers are symmetric about the y-axis; those with odd powers are 
symmetric about the origin. The even-powered functions are decreasing on the interval 
(-q, 04  and increasing on 30, q); the odd-powered functions are increasing over the 
entire real line (-q, q).

−1 0 1

−1

1

x

y y = x2

−1 10

−1

1

x

y y = x

−1 10

−1

1

x

y y = x3

−1 0 1

−1

1

x

y y = x4

−1 0 1

−1

1

x

y y = x5

FIGURE 1.15 Graphs of ƒ(x) = xn, n = 1, 2, 3, 4, 5, defined for -q 6 x 6 q.

x

y

x

y

0

1

1

0

1

1

y = 1
x y = 1

x2

Domain: x ≠ 0
Range: y ≠ 0

Domain: x ≠ 0
Range: y > 0

(a) (b)

FIGURE 1.16 Graphs of the power functions ƒ(x) = xa for part (a) a = -1
and for part (b) a = -2.

(b) a = -1 or a = -2.

The graphs of the functions ƒ(x) = x-1 = 1>x and g(x) = x-2 = 1>x2 are shown in 
Figure 1.16. Both functions are defined for all x ≠ 0 (you can never divide by zero). The 
graph of y = 1>x is the hyperbola xy = 1, which approaches the coordinate axes far from 
the origin. The graph of y = 1>x2 also approaches the coordinate axes. The graph of the 
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals (-q, 0) and 
(0, q). The graph of the function g is symmetric about the y-axis; g is increasing on 
(-q, 0) and decreasing on (0, q).

(c) a = 1
2

, 1
3,

3
2

, and 2
3.

The functions ƒ(x) = x1>2 = 2x and g(x) = x1>3 = 23 x are the square root and cube
root functions, respectively. The domain of the square root function is 30, q), but the 
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along 
with the graphs of y = x3>2 and y = x2>3. (Recall that x3>2 = (x1>2)3 and x2>3 = (x1>3)2.)

Polynomials A function p is a polynomial if

p(x) = anxn + an-1xn-1 + g+ a1x + a0

where n is a nonnegative integer and the numbers a0, a1, a2, c, an are real constants 
(called the coefficients of the polynomial). All polynomials have domain (-q, q). If the 
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y

x
0

1

1

y = x3�2

Domain:
Range:

0 ≤ x < ∞
0 ≤ y < ∞

y

x

Domain:
Range:

−∞ < x < ∞
0 ≤ y < ∞

0

1

1

y = x2�3

x

y

0 1

1

Domain:
Range:

0 ≤ x < ∞
0 ≤ y < ∞

y = !x

x

y

Domain:
Range:

−∞ < x < ∞
−∞ < y < ∞

1

1

0

3
y = !x

FIGURE 1.17 Graphs of the power functions ƒ(x) = xa for a = 1
2

,
1
3

,
3
2

, and 
2
3

.

leading coefficient an ≠ 0 and n 7 0, then n is called the degree of the polynomial. Lin-
ear functions with m ≠ 0 are polynomials of degree 1. Polynomials of degree 2, usually 
written as p(x) = ax2 + bx + c, are called quadratic functions. Likewise, cubic functions
are polynomials p(x) = ax3 + bx2 + cx + d  of degree 3. Figure 1.18 shows the graphs 
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

x

y

0

y = −     − 2x +x3

3
x2

2
1
3

(a)

y

x
−1 1 2

2

−2

−4

−6

−8

−10

−12

y = 8x4 − 14x3 − 9x2 + 11x − 1

(b)

−1 0 1 2

−16

16

x

y
y = (x − 2)4(x + 1)3(x − 1)

(c)

−2−4 2 4

−4

−2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

(a) (b) (c)

2 4−4 −2

−2

2

4

−4

x

y

y = 2x2 − 3
7x + 4

0
−2

−4

−6

−8

2−2−4 4 6

2

4

6

8

x

y

y = 11x + 2
2x3 − 1

−5 0

1

2

−1

5 10

−2

x

y

Line y = 5
3

y = 5x2 + 8x − 3
3x2 + 2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called 
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.

Rational Functions A rational function is a quotient or ratio ƒ(x) = p(x)>q(x), where 
p and q are polynomials. The domain of a rational function is the set of all real x for which 
q(x) ≠ 0. The graphs of several rational functions are shown in Figure 1.19.
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Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3. 
The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions Functions of the form ƒ(x) = ax, where the base a 7 0 is a 
positive constant and a ≠ 1, are called exponential functions. All exponential functions 
have domain (-q, q) and range (0, q), so an exponential function never assumes the 
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential 
functions are shown in Figure 1.22.

Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the 
class of algebraic functions. All rational functions are algebraic, but also included are 
more complicated functions (such as those satisfying an equation like y3 - 9xy + x3 = 0,
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

(a)

4−1

−3

−2

−1

1

2

3

4

x

y y = x1�3(x − 4)

(b)

0

y

x

y = (x2 − 1)2�33
4

(c)

11−1 0

−1

1

x

y

5
7

y = x(1 − x)2�5

FIGURE 1.20 Graphs of three algebraic functions.
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−1
p 2p

3p

(a) f (x) = sin x

0

y

x

1

−1
p

2

3
2 2

(b) f (x) = cos x

0

p

2
− p

−p

5p

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)
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−0.5−1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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Logarithmic Functions These are the functions ƒ(x) = loga x, where the base a ≠ 1
is a positive constant. They are the inverse functions of the exponential functions, and 
we discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four loga-
rithmic functions with various bases. In each case the domain is (0, q) and the range 
is (-q, q).

−1 10

1

x

y

FIGURE 1.24 Graph of a catenary or 
hanging cable. (The Latin word catena
means “chain.”)

1

−1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.23 Graphs of four logarithmic 
functions.

Transcendental Functions These are functions that are not algebraic. They include the 
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many 
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one 
support to another and hanging freely under its own weight (Figure 1.24). The function 
defining the graph is discussed in Section 7.3.

Functions
In Exercises 1–6, find the domain and range of each function.

1. ƒ(x) = 1 + x2 2. ƒ(x) = 1 - 2x

3. F(x) = 25x + 10 4. g(x) = 2x2 - 3x

5. ƒ(t) = 4
3 - t

6. G(t) = 2
t2 - 16

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a.

x

y

0

b.

x

y

0

8. a.

x

y

0

b.

x

y

0

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a 

function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of 
the square’s diagonal. Then express the area as a function of the 
diagonal length.

11. Express the edge length of a cube as a function of the cube’s 
diagonal length d. Then express the surface area and volume of 
the cube as a function of the diagonal length.

Exercises 1.1
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31. a.

x

y

3

1
(−1, 1) (1, 1)

b.

x

y

1

2

(−2, −1) (3, −1)(1, −1)

32. a.

x

y

0

1

TT
2

(T, 1)

  b.

t

y

0

A

T

−A

T
2

3T
2

2T

The Greatest and Least Integer Functions
33. For what values of x is

a. :x; = 0? b. <x= = 0?

34. What real numbers x satisfy the equation :x; = <x=?
35. Does <-x= = -:x;  for all real x? Give reasons for your answer.

36. Graph the function

ƒ(x) = e :x;, x Ú 0
<x= , x 6 0.

  Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do 
the graphs have? Specify the intervals over which the function is 
increasing and the intervals where it is decreasing.

37. y = -x3 38. y = - 1
x2

39. y = - 1
x 40. y = 10 x 0

41. y = 2 0 x 0 42. y = 2-x

43. y = x3>8 44. y = -42x

45. y = -x3>2 46. y = (-x)2>3

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither. 
Give reasons for your answer.

47. ƒ(x) = 3 48. ƒ(x) = x-5

49. ƒ(x) = x2 + 1 50. ƒ(x) = x2 + x

51. g(x) = x3 + x 52. g(x) = x4 + 3x2 - 1

53. g(x) = 1
x2 - 1

54. g(x) = x
x2 - 1

55. h(t) = 1
t - 1

56. h(t) = � t3 �

57. h(t) = 2t + 1 58. h(t) = 2 � t � + 1

Theory and Examples
59. The variable s is proportional to t, and s = 25 when t = 75.

Determine t when s = 60.

12. A point P in the first quadrant lies on the graph of the function 
ƒ(x) = 2x. Express the coordinates of P as functions of the 
slope of the line joining P to the origin.

13. Consider the point (x, y) lying on the graph of the line 
2x + 4y = 5. Let L be the distance from the point (x, y) to the 
origin (0, 0). Write L as a function of x.

14. Consider the point (x, y) lying on the graph of y = 2x - 3. Let 
L be the distance between the points (x, y) and (4, 0). Write L as a 
function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15–20.

15. ƒ(x) = 5 - 2x 16. ƒ(x) = 1 - 2x - x2

17. g(x) = 2 0 x 0 18. g(x) = 2-x

19. F(t) = t> 0 t 0 20. G(t) = 1> 0 t 0
21. Find the domain of y = x + 3

4 - 2x2 - 9
.

22. Find the range of y = 2 + x2

x2 + 4
.

23. Graph the following equations and explain why they are not 
graphs of functions of x.

a. 0 y 0 = x b. y2 = x2

24. Graph the following equations and explain why they are not 
graphs of functions of x.

a. 0 x 0 + 0 y 0 = 1 b. 0 x + y 0 = 1

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

25. ƒ(x) = e x, 0 … x … 1

2 - x, 1 6 x … 2

26. g(x) = e1 - x, 0 … x … 1

2 - x, 1 6 x … 2

27. F(x) = e4 - x2, x … 1

x2 + 2x, x 7 1

28. G(x) = e1>x, x 6 0

x, 0 … x

Find a formula for each function graphed in Exercises 29–32.

29. a.

x

y

0

1

2

(1, 1)

b.

t

y

0

2

41 2 3

30. a.

x

y

52

2
(2, 1)

  b.

−1
x

y

3

21

2

1

−2

−3

−1
(2, −1)
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60. Kinetic energy The kinetic energy K of a mass is proportional 
to the square of its velocity y. If K = 12,960 joules when 
y = 18 m>sec, what is K when y = 10 m>sec?

61. The variables r and s are inversely proportional, and r = 6 when 
s = 4. Determine s when r = 10.

62. Boyle’s Law Boyle’s Law says that the volume V of a gas at 
constant temperature increases whenever the pressure P decreases, 
so that V and P are inversely proportional. If P = 14.7 lb>in2

when V = 1000 in3, then what is V when P = 23.4 lb>in2?

63. A box with an open top is to be constructed from a rectangular 
piece of cardboard with dimensions 14 in. by 22 in. by cutting out 
equal squares of side x at each corner and then folding up the 
sides as in the figure. Express the volume V of the box as a func-
tion of x.

x

x

x

x

x

x

x

x

22

14

64. The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start 
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

x

y

−1 0 1x
A

B

P(x, ?)

In Exercises 65 and 66, match each equation with its graph. Do not 
use a graphing device, and give reasons for your answer.

65. a. y = x4 b. y = x7 c. y = x10

x

y

f

g

h

0

66. a. y = 5x b. y = 5x c. y = x5

x

y

f

h

g

0

67.  a.  Graph the functions ƒ(x) = x>2 and g(x) = 1 + (4>x) to-
gether to identify the values of x for which

x
2

7 1 + 4
x .

b. Confirm your findings in part (a) algebraically.

68.  a.  Graph the functions ƒ(x) = 3>(x - 1) and g(x) = 2>(x + 1)
together to identify the values of x for which

3
x - 1

6 2
x + 1

.

b. Confirm your findings in part (a) algebraically.

69. For a curve to be symmetric about the x-axis, the point (x, y) must 
lie on the curve if and only if the point (x, -y) lies on the curve. 
Explain why a curve that is symmetric about the x-axis is not the 
graph of a function, unless the function is y = 0.

70. Three hundred books sell for $40 each, resulting in a revenue of 
(300)($40) = $12,000. For each $5 increase in the price, 25 
fewer books are sold. Write the revenue R as a function of the 
number x of $5 increases.

71. A pen in the shape of an isosceles right triangle with legs of 
length x ft and hypotenuse of length h ft is to be built. If fencing 
costs $5/ft for the legs and $10/ft for the hypotenuse, write the 
total cost C of construction as a function of h.

72. Industrial costs A power plant sits next to a river where the 
river is 800 ft wide. To lay a new cable from the plant to a loca-
tion in the city 2 mi downstream on the opposite side costs $180 
per foot across the river and $100 per foot along the land.

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the 
opposite side that is x ft from the point P directly opposite the 
plant. Write a function C(x) that gives the cost of laying the 
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive 
location for point Q is less than 2000 ft or greater than 2000 ft 
from point P.

T

T
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1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 
the denominator is zero) to produce new functions. If ƒ and g are functions, then for every 
x that belongs to the domains of both ƒ and g (that is, for x∊D(ƒ) ¨ D(g)), we define 
functions ƒ + g, ƒ - g, and ƒg by the formulas

(ƒ + g)(x) = ƒ(x) + g(x)

(ƒ - g)(x) = ƒ(x) - g(x)

(ƒg)(x) = ƒ(x)g(x).

Notice that the +  sign on the left-hand side of the first equation represents the operation of 
addition of functions, whereas the +  on the right-hand side of the equation means addition 
of the real numbers ƒ(x) and g(x).

At any point of D(ƒ) ¨ D(g) at which g(x) ≠ 0, we can also define the function ƒ>g
by the formula

aƒgb (x) =
ƒ(x)
g(x)

(where g(x) ≠ 0).

Functions can also be multiplied by constants: If c is a real number, then the function 
cƒ is defined for all x in the domain of ƒ by

(cƒ)(x) = cƒ(x).

EXAMPLE 1  The functions defined by the formulas

ƒ(x) = 2x and g(x) = 21 - x

have domains D(ƒ) = 30, q) and D(g) = (-q, 14 . The points common to these 
domains are the points

30, q) ¨ (-q, 14 = 30, 14 .
The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write ƒ # g for the product function ƒg.

Function Formula Domain

ƒ + g (ƒ + g)(x) = 2x + 21 - x 30, 14 = D(ƒ) ¨ D(g)

ƒ - g (ƒ - g)(x) = 2x - 21 - x 30, 14
g - ƒ (g - ƒ)(x) = 21 - x - 2x 30, 14
ƒ # g (ƒ # g)(x) = ƒ(x)g(x) = 2x(1 - x) 30, 14
ƒ>g ƒ

g (x) =
ƒ(x)
g(x)

= A
x

1 - x
30, 1) (x = 1 excluded)

g>ƒ g
ƒ (x) =

g(x)
ƒ(x)

= A
1 - x

x (0, 14 (x = 0 excluded)

The graph of the function ƒ + g is obtained from the graphs of ƒ and g by adding the 
corresponding y-coordinates ƒ(x) and g(x) at each point x∊D(ƒ) ¨ D(g), as in Figure 1.25. 
The graphs of ƒ + g and ƒ # g from Example 1 are shown in Figure 1.26.
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y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25 Graphical addition of two 
functions.

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) =
"

1 − x f (x) =
"

x
y = f + g

y = f • g

FIGURE 1.26 The domain of the function ƒ + g
is the intersection of the domains of ƒ and g, the 
interval 30, 14  on the x-axis where these domains 
overlap. This interval is also the domain of the 
function ƒ # g (Example 1).

Composite Functions

Composition is another method for combining functions.

The definition implies that ƒ ∘ g can be formed when the range of g lies in the domain 
of ƒ. To find (ƒ ∘ g)(x), first find g(x) and second find ƒ(g(x)). Figure 1.27 pictures ƒ ∘ g as 
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

x g f f (g(x))g(x)

FIGURE 1.27 A composite function ƒ ∘ g uses 
the output g(x) of the first function g as the input 
for the second function ƒ.

x

f (g(x))

g(x)

g
f

f ∘ g

FIGURE 1.28 Arrow diagram for ƒ ∘ g. If x lies in the 
domain of g and g(x) lies in the domain of ƒ, then the 
functions ƒ and g can be composed to form (ƒ ∘ g)(x).

To evaluate the composite function g ∘ ƒ (when defined), we find ƒ(x) first and then 
g(ƒ(x)). The domain of g ∘ ƒ is the set of numbers x in the domain of ƒ such that ƒ(x) lies 
in the domain of g.

The functions ƒ ∘ g and g ∘ ƒ are usually quite different.

DEFINITION If ƒ and g are functions, the composite function ƒ ∘ g (“ƒ com-
posed with g”) is defined by

(ƒ ∘ g)(x) = ƒ(g(x)).

The domain of ƒ ∘ g consists of the numbers x in the domain of g for which g(x)
lies in the domain of ƒ.
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EXAMPLE 2  If ƒ(x) = 2x and g(x) = x + 1, find

(a) (ƒ ∘ g)(x) (b) (g ∘ ƒ)(x) (c) (ƒ ∘ ƒ)(x) (d) (g ∘ g)(x).

Solution
  Composite Domain

(a) (ƒ ∘ g)(x) = ƒ(g(x)) = 2g(x) = 2x + 1 3-1, q)

(b) (g ∘ ƒ)(x) = g(ƒ(x)) = ƒ(x) + 1 = 2x + 1 30, q)

(c) (ƒ ∘ ƒ)(x) = ƒ(ƒ(x)) = 2ƒ(x) = 21x = x1>4 30, q)

(d) (g ∘ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2 (-q, q)

To see why the domain of ƒ ∘ g is 3-1, q), notice that g(x) = x + 1 is defined for all real 
x but belongs to the domain of ƒ only if x + 1 Ú 0, that is to say, when x Ú -1.

Notice that if ƒ(x) = x2 and g(x) = 2x, then (ƒ ∘ g)(x) = 12x22 = x. However, the 

domain of ƒ ∘ g is 30, q), not (-q, q), since 2x requires x Ú 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 
each output of the existing function, or to its input variable. The graph of the new function 
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y = ƒ(x) + k Shifts the graph of ƒ up k units if k 7 0
Shifts it down 0 k 0 units if k 6 0

Horizontal Shifts

y = ƒ(x + h) Shifts the graph of ƒ left h units if h 7 0
Shifts it right 0 h 0 units if h 6 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x2 to get y = x2 + 1 shifts the 
graph up 1 unit (Figure 1.29).

(b) Adding -2 to the right-hand side of the formula y = x2 to get y = x2 - 2 shifts the 
graph down 2 units (Figure 1.29).

(c) Adding 3 to x in y = x2 to get y = (x + 3)2 shifts the graph 3 units to the left, while 
adding -2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding -2 to x in y = 0 x 0 , and then adding -1 to the result, gives y = 0 x - 2 0 - 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = ƒ(x) is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function ƒ, or the independent variable 
x, by an appropriate constant c. Reflections across the coordinate axes are special cases 
where c = -1.

x

y

2

1

2

2 units

1 unit

−2

−2

−1
0

y = x2 − 2

y = x2

y = x2 + 1

y = x2 + 2

FIGURE 1.29 To shift the graph 
of ƒ(x) = x2 up (or down), we add 
positive (or negative) constants 
to the formula for ƒ (Examples 3a 
and b).



1.2  Combining Functions; Shifting and Scaling Graphs 17

x

y

0−3 2

1

1

y = (x − 2)2y = x2y = (x + 3)2

Add a positive
constant to x.

Add a negative
constant to x.

FIGURE 1.30 To shift the graph of y = x2 to 
the left, we add a positive constant to x (Example 
3c). To shift the graph to the right, we add a nega-
tive constant to x.

−4 −2 2 4 6
−1

1

4

x

y

y = 0 x − 2 0  − 1 

FIGURE 1.31 The graph of y = 0 x 0
shifted 2 units to the right and 1 unit 
down (Example 3d).

EXAMPLE 4  Here we scale and reflect the graph of y = 2x.

(a) Vertical: Multiplying the right-hand side of y = 2x by 3 to get y = 32x stretches 
the graph vertically by a factor of 3, whereas multiplying by 1>3 compresses the 
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of y = 23x is a horizontal compression of the graph of 
y = 2x by a factor of 3, and y = 2x>3 is a horizontal stretching by a factor of 3 
(Figure 1.33). Note that y = 23x = 232x so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal 
stretching may correspond to a vertical compression by a different scaling factor.

(c) Reflection: The graph of y = -2x is a reflection of y = 2x across the x-axis, and 
y = 2-x is a reflection across the y-axis (Figure 1.34).

−1 10 2 3 4

1

2

3

4

5

x

y

y =
"

x

y =  
"

x

y = 3
"

x

3
1

stretch

compress

FIGURE 1.32 Vertically stretching 
and compressing the graph y = 1x by a 
factor of 3 (Example 4a).

−1 0 1 2 3 4

1

2

3

4

x

y

y =
"

3x

y =
"

x�3

y =
"

x
compress

stretch

FIGURE 1.33 Horizontally stretching and 
compressing the graph y = 1x by a factor of 
3 (Example 4b).

−3 −2 −1 1 2 3

−1

1

x

y

y =
"

x

y = −
"

x

y =
"

−x

FIGURE 1.34 Reflections of the graph 
y = 1x across the coordinate axes 
(Example 4c).

Vertical and Horizontal Scaling and Reflecting Formulas

For c + 1, the graph is scaled:

y = cƒ(x) Stretches the graph of ƒ vertically by a factor of c.

y = 1
c ƒ(x) Compresses the graph of ƒ vertically by a factor of c.

y = ƒ(cx) Compresses the graph of ƒ horizontally by a factor of c.

y = ƒ(x>c) Stretches the graph of ƒ horizontally by a factor of c.

For c = −1, the graph is reflected:

y = -ƒ(x) Reflects the graph of ƒ across the x-axis.

y = ƒ(-x) Reflects the graph of ƒ across the y-axis.
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EXAMPLE 5  Given the function ƒ(x) = x4 - 4x3 + 10 (Figure 1.35a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the 
y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the 
x-axis (Figure 1.35c).

−1 0 1 2 3 4

−20

−10

10

20

x

y

f (x) = x4 − 4x3 + 10

(a)

−2 −1 0 1

−20

−10

10

20

x

y

(b)

y = 16x4 + 32x3 + 10

−1 0 1 2 3 4

−10

10

x

y

y = − x4 + 2x3 − 51
2

(c)

FIGURE 1.35 (a) The original graph of f. (b) The horizontal compression of y = ƒ(x) in part (a) by a factor of 2, followed by 
a reflection across the y-axis. (c) The vertical compression of y = ƒ(x) in part (a) by a factor of 2, followed by a reflection across 
the x-axis (Example 5).

Solution
(a) We multiply x by 2 to get the horizontal compression, and by -1 to give reflection 

across the y-axis. The formula is obtained by substituting -2x for x in the right-hand 
side of the equation for ƒ:

y = ƒ(-2x) = (-2x)4 - 4(-2x)3 + 10

= 16x4 + 32x3 + 10.

(b) The formula is

y = - 1
2

ƒ(x) = - 1
2

x4 + 2x3 - 5.

Algebraic Combinations
In Exercises 1 and 2, find the domains and ranges of ƒ, g, ƒ + g, and 
ƒ # g.

1. ƒ(x) = x, g(x) = 2x - 1

2. ƒ(x) = 2x + 1, g(x) = 2x - 1

In Exercises 3 and 4, find the domains and ranges of ƒ, g, ƒ>g, and 
g>ƒ.

3. ƒ(x) = 2, g(x) = x2 + 1

4. ƒ(x) = 1, g(x) = 1 + 2x

Composites of Functions
5. If ƒ(x) = x + 5 and g(x) = x2 - 3, find the following.

a. ƒ(g(0)) b. g(ƒ(0))

c. ƒ(g(x)) d. g(ƒ(x))

e. ƒ(ƒ(-5)) f. g(g(2))

g. ƒ(ƒ(x)) h. g(g(x))

6. If ƒ(x) = x - 1 and g(x) = 1>(x + 1), find the following.

a. ƒ(g(1>2)) b. g(ƒ(1>2))

c. ƒ(g(x)) d. g(ƒ(x))

e. ƒ(ƒ(2)) f. g(g(2))

g. ƒ(ƒ(x)) h. g(g(x))

In Exercises 7–10, write a formula for ƒ ∘ g ∘ h.

7. ƒ(x) = x + 1, g(x) = 3x, h(x) = 4 - x

8. ƒ(x) = 3x + 4, g(x) = 2x - 1, h(x) = x2

9. ƒ(x) = 2x + 1, g(x) = 1
x + 4

, h(x) = 1
x

10. ƒ(x) = x + 2
3 - x

, g(x) = x2

x2 + 1
, h(x) = 22 - x

Exercises 1.2
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19. Let ƒ(x) = x
x - 2

. Find a function y = g(x) so that 

(ƒ ∘ g)(x) = x.

20. Let ƒ(x) = 2x3 - 4. Find a function y = g(x) so that 
(ƒ ∘ g)(x) = x + 2.

Shifting Graphs
21. The accompanying figure shows the graph of y = -x2 shifted to 

two new positions. Write equations for the new graphs.

x

y

−7 0 4

Position (a) Position (b)y = −x2

22. The accompanying figure shows the graph of y = x2 shifted to 
two new positions. Write equations for the new graphs.

x

y
Position (a)

Position (b)

y = x2

−5

0

3

23. Match the equations listed in parts (a)–(d) to the graphs in the 
accompanying figure.

a. y = (x - 1)2 - 4 b. y = (x - 2)2 + 2

c. y = (x + 2)2 + 2 d. y = (x + 3)2 - 2

x

y

Position 2 Position 1

Position 4

Position 3

−4 −3 −2 −1 0 1 2 3

(−2, 2) (2, 2)

(−3, −2)

(1, −4)

1

2

3

Let ƒ(x) = x - 3, g(x) = 2x, h(x) = x3, and j(x) = 2x. Express 
each of the functions in Exercises 11 and 12 as a composite involving 
one or more of ƒ, g, h, and j.

11. a. y = 2x - 3 b. y = 22x

c. y = x1>4 d. y = 4x

e. y = 2(x - 3)3 f. y = (2x - 6)3

12. a. y = 2x - 3 b. y = x3>2
c. y = x9 d. y = x - 6

e. y = 22x - 3 f. y = 2x3 - 3

13. Copy and complete the following table.

g(x) ƒ(x) (ƒ ∘ g) (x)

a. x - 7 2x ?

b. x + 2 3x ?

c. ? 2x - 5 2x2 - 5

d.
x

x - 1
x

x - 1
?

e. ? 1 + 1
x x

f. 1
x ? x

14. Copy and complete the following table.

g(x) ƒ(x) (ƒ ∘ g) (x)

a. 1
x - 1

0 x 0 ?

b. ?
x - 1

x
x

x + 1
c. ? 2x 0 x 0
d. 2x ? 0 x 0

15. Evaluate each expression using the given table of values:

a. ƒ(g(-1)) b. g(ƒ(0)) c. ƒ(ƒ(-1))

d. g(g(2)) e. g(ƒ(-2)) f. ƒ(g(1))

16. Evaluate each expression using the functions

ƒ(x) = 2 - x, g(x) = b-x, -2 … x 6 0

x - 1, 0 … x … 2.

a. ƒ(g(0)) b. g(ƒ(3)) c. g(g(-1))

d. ƒ(ƒ(2)) e. g(ƒ(0)) f. ƒ(g(1>2))

In Exercises 17 and 18, (a) write formulas for ƒ ∘ g and g ∘ ƒ and find 
the (b) domain and (c) range of each.

17. ƒ(x) = 2x + 1, g(x) = 1
x

18. ƒ(x) = x2, g(x) = 1 - 2x

x -2 -1 0 1 2

ƒ(x) 1 0 -2 1 2

g(x) 2 1 0 -1 0
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24. The accompanying figure shows the graph of y = -x2 shifted to 
four new positions. Write an equation for each new graph.

x

y

(−2, 3)

(−4, −1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

Exercises 25–34 tell how many units and in what directions the graphs 
of the given equations are to be shifted. Give an equation for the 
shifted graph. Then sketch the original and shifted graphs together, 
labeling each graph with its equation.

25. x2 + y2 = 49 Down 3, left 2

26. x2 + y2 = 25 Up 3, left 4

27. y = x3 Left 1, down 1

28. y = x2>3 Right 1, down 1

29. y = 2x Left 0.81

30. y = -2x Right 3

31. y = 2x - 7 Up 7

32. y = 1
2

(x + 1) + 5 Down 5, right 1

33. y = 1>x Up 1, right 1

34. y = 1>x2 Left 2, down 1

Graph the functions in Exercises 35–54.

35. y = 2x + 4 36. y = 29 - x

37. y = � x - 2 � 38. y = � 1 - x � - 1

39. y = 1 + 2x - 1 40. y = 1 - 2x

41. y = (x + 1)2>3 42. y = (x - 8)2>3
43. y = 1 - x2>3 44. y + 4 = x2>3
45. y = 23 x - 1 - 1 46. y = (x + 2)3>2 + 1

47. y = 1
x - 2

48. y = 1
x - 2

49. y = 1
x + 2 50. y = 1

x + 2

51. y = 1
(x - 1)2 52. y = 1

x2 - 1

53. y = 1
x2 + 1 54. y = 1

(x + 1)2

55. The accompanying figure shows the graph of a function ƒ(x) with 
domain 30, 24  and range 30, 14 . Find the domains and ranges of 
the following functions, and sketch their graphs.

x

y

0 2

1 y = f (x)

a. ƒ(x) + 2 b. ƒ(x) - 1

c. 2ƒ(x) d. -ƒ(x)

e. ƒ(x + 2) f. ƒ(x - 1)

g. ƒ(-x) h. -ƒ(x + 1) + 1

56. The accompanying figure shows the graph of a function g(t) with 
domain 3-4, 04  and range 3-3, 04 . Find the domains and 
ranges of the following functions, and sketch their graphs.

t

y

−3

−2 0−4

y = g(t)

a. g(- t) b. -g(t)

c. g(t) + 3 d. 1 - g(t)

e. g(- t + 2) f. g(t - 2)

g. g(1 - t) h. -g(t - 4)

Vertical and Horizontal Scaling
Exercises 57–66 tell by what factor and direction the graphs of the 
given functions are to be stretched or compressed. Give an equation 
for the stretched or compressed graph.

57. y = x2 - 1, stretched vertically by a factor of 3

58. y = x2 - 1, compressed horizontally by a factor of 2

59. y = 1 + 1
x2 , compressed vertically by a factor of 2

60. y = 1 + 1
x2 , stretched horizontally by a factor of 3

61. y = 2x + 1, compressed horizontally by a factor of 4

62. y = 2x + 1, stretched vertically by a factor of 3

63. y = 24 - x2, stretched horizontally by a factor of 2

64. y = 24 - x2, compressed vertically by a factor of 3

65. y = 1 - x3, compressed horizontally by a factor of 3

66. y = 1 - x3, stretched horizontally by a factor of 2
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Combining Functions
77. Assume that ƒ is an even function, g is an odd function, and both 

ƒ and g are defined on the entire real line (-q, q). Which of the 
following (where defined) are even? odd?

a. ƒg b. ƒ>g c. g>ƒ
d. ƒ2 = ƒƒ e. g2 = gg f. ƒ ∘ g

g. g ∘ ƒ h. ƒ ∘ ƒ i. g ∘ g

78. Can a function be both even and odd? Give reasons for your 
answer.

79. (Continuation of Example 1.) Graph the functions ƒ(x) = 2x

and g(x) = 21 - x together with their (a) sum, (b) product, 

(c) two differences, (d) two quotients.

80. Let ƒ(x) = x - 7 and g(x) = x2. Graph ƒ and g together with 
ƒ ∘ g and g ∘ ƒ.

T

T

Graphing
In Exercises 67–74, graph each function, not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.14–1.17 and applying an appropriate transformation.

67. y = -22x + 1 68. y = A1 - x
2

69. y = (x - 1)3 + 2 70. y = (1 - x)3 + 2

71. y = 1
2x

- 1 72. y = 2
x2 + 1

73. y = -23 x 74. y = (-2x)2>3
75. Graph the function y = 0 x2 - 1 0 .
76. Graph the function y = 2 0 x 0 .

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 
A′CB′ within a circle of radius r is defined as the number of “radius units” contained in 
the arc s subtended by that central angle. If we denote this central angle by u when mea-
sured in radians, this means that u = s>r (Figure 1.36), or

s = ru (u in radians). (1)

If the circle is a unit circle having radius r = 1, then from Figure 1.36 and Equation (1), 
we see that the central angle u measured in radians is just the length of the arc that the 
angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or 
2p radians, we have

p radians = 180° (2)

and

1 radian = 180
p (≈57.3) degrees or 1 degree = p

180
(≈0.017) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic 
angles.

TABLE 1.1 Angles measured in degrees and radians

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

U (radians) −P −3P
4

−P
2

−P
4 0 P

6
P
4

P
3

P
2

2P
3

3P
4

5P
6 P

3P
2 2P

B′

B
s

A′
C A

r

1

Circle of radius r

U nit circle

u

FIGURE 1.36 The radian measure 
of the central angle A′CB′ is the num-
ber u = s>r. For a unit circle of radius 
r = 1, u is the length of arc AB that 
central angle ACB cuts from the unit 
circle.
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x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.37 Angles in standard position in the xy-plane.

x

y

4
9p

x

y

3p

x

y

4
−

3p
x

y

2
−

5p

FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 2p.

Angles describing counterclockwise rotations can go arbitrarily far beyond 2p radi-
ans or 360°. Similarly, angles describing clockwise rotations can have negative measures 
of all sizes (Figure 1.38).

Angle Convention: Use Radians From now on, in this book it is assumed that all angles 
are measured in radians unless degrees or some other unit is stated explicitly. When we talk 
about the angle p>3, we mean p>3 radians (which is 60°), not p>3 degrees. We use radians 
because it simplifies many of the operations in calculus, and some results we will obtain 
involving the trigonometric functions are not true when angles are measured in degrees.

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in 
terms of the sides of a right triangle (Figure 1.39). We extend this definition to obtuse and 
negative angles by first placing the angle in standard position in a circle of radius r. We 
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.40).

sine: sin u =
y
r cosecant: csc u = r

y

cosine: cos u = x
r secant: sec u = r

x

tangent: tan u =
y
x cotangent: cot u = x

y

These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,

tan u = sin u
cos u cot u = 1

tan u

sec u = 1
cos u csc u = 1

sin u

hypotenuse

adjacent

opposite

u

sin =u
opp
hyp

=u
adj
hyp

cos

tan =u
opp
adj

csc =u
hyp
opp

=u
hyp
adj

sec

cot =u
adj
opp

FIGURE 1.39 Trigonometric
ratios of an acute angle.

An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

x

y

P(x, y)
r

rO

u

y

x

FIGURE 1.40 The trigonometric 
functions of a general angle u are 
defined in terms of x, y, and r.
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As you can see, tan u and sec u are not defined if x = cos u = 0. This means they are not 
defined if u is {p>2, {3p>2, c. Similarly, cot u and csc u are not defined for values 
of u for which y = 0, namely u = 0, {p, {2p, c.

The exact values of these trigonometric ratios for some angles can be read from the 
triangles in Figure 1.41. For instance,

sin
p
4

= 1

22
sin
p
6

= 1
2

sin
p
3 = 23

2

cos
p
4

= 1

22
cos
p
6

= 23
2

cos
p
3 = 1

2

tan
p
4

= 1 tan
p
6

= 1

23
tan
p
3 = 23

The CAST rule (Figure 1.42) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

sin
2p
3 = 23

2
, cos

2p
3 = - 1

2
, tan

2p
3 = -23.

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

FIGURE 1.42 The CAST rule, 
remembered by the statement 
“Calculus Activates Student Thinking,” 
tells which trigonometric functions 
are positive in each quadrant.

x

y

"

3
2

2p
3

1
2

1

2p
3

2p
3

, ,
acos b bsin = 1

2
a−

2

P

"

3

FIGURE 1.43 The triangle for 
calculating the sine and cosine of 2p>3
radians. The side lengths come from the 
geometry of right triangles.

Using a similar method we determined the values of sin u, cos u, and tan u shown in Table 1.2.

1

1

p
2

p
4

p
4

"

2

FIGURE 1.41 Radian angles and side 
lengths of two common triangles.

1

p
3

p
2

p
6

2
"

3

TABLE 1.2 Values of sin u, cos u, and tan u for selected values of u

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

U (radians) −P −3P
4

−P
2

−P
4 0 P

6
P
4

P
3

P
2

2P
3

3P
4

5P
6 P

3P
2 2P

sin U 0
-22

2
-1

-22
2

0 1
2

22
2

23
2

1
23
2

22
2

1
2

0 -1 0

cos U -1
-22

2
0

22
2

1
23
2

22
2

1
2

0 - 1
2

-22
2

-23
2

-1 0 1

tan U 0 1   -1 0
23
3 1 23   -23 -1

-23
3 0   0
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Periodicity and Graphs of the Trigonometric Functions

When an angle of measure u and an angle of measure u + 2p are in standard position, 
their terminal rays coincide. The two angles therefore have the same trigonometric func-
tion values: sin (u + 2p) = sin u, tan (u + 2p) = tan u, and so on. Similarly, 
cos (u - 2p) = cos u, sin (u - 2p) = sin u, and so on. We describe this repeating behav-
ior by saying that the six basic trigonometric functions are periodic.

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y = cos x

Domain: −∞ < x < ∞
Range: −1 ≤ y ≤ 1
Period: 2p

0−p p 2p−p
2

p
2

3p
2

0−p p 2p
−
p
2

p
2

3p
2

y = sin x

y = tan x

Domain: −∞ < x < ∞
Range: −1 ≤ y ≤ 1
Period: 2p

3p
2

−
−p

−
p
2

0 p
2
p 3p

2

p
2

3p
2

Domain: x ≠±    , ±       , . . . 

Range: −∞ < y < ∞
Period: p

y = sec x y = csc x y = cot x

3p
2

− −p
−
p
2

0

1

p
2
p 3p

2
0

1

−p p 2p
−
p
2

p
2

3p
2

0

1

−p p 2p
−
p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range: y ≤ −1 or y ≥ 1
Period: 2p

Domain: x ≠ 0, ±p, ±2p, . . .
Range: −∞ < y < ∞
Period: p

Domain: x ≠±    , ±       , . . . 

Range: y ≤ −1 or y ≥ 1
Period: 2p

p
2

3p
2

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading 
for each trigonometric function indicates its periodicity.

y

x

u

1

P(cos u, sin u) x2 + y2 = 1

0 cos u 0

0 sin u 0

O

FIGURE 1.45 The reference 
triangle for a general angle u.

DEFINITION A function ƒ(x) is periodic if there is a positive number p such that 
ƒ(x + p) = ƒ(x) for every value of x. The smallest such value of p is the period of ƒ.

Periods of Trigonometric Functions
Period P: tan (x + p) = tan x

cot (x + p) = cot x

Period 2P: sin (x + 2p) = sin x
cos (x + 2p) = cos x
sec (x + 2p) = sec x
csc (x + 2p) = csc x When we graph trigonometric functions in the coordinate plane, we usually denote the 

independent variable by x instead of u. Figure 1.44 shows that the tangent and cotangent 
functions have period p = p, and the other four functions have period 2p. Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other 
four functions are odd (although this does not prove those results).

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s 
distance r from the origin and the angle u that ray OP makes with the positive x-axis (Fig-
ure 1.40). Since x>r = cos u and y>r = sin u, we have

x = r cos u, y = r sin u.

When r = 1 we can apply the Pythagorean theorem to the reference right triangle in 
Figure 1.45 and obtain the equation

Even

cos (-x) = cos x

sec (-x) = sec x

Odd

sin (-x) = -sin x

tan (-x) = - tan x

csc (-x) = -csc x

cot (-x) = -cot x

cos2 u + sin2 u = 1. (3)
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This equation, true for all values of u, is the most frequently used identity in trigonometry. 
Dividing this identity in turn by cos2 u and sin2 u gives

Addition Formulas

cos (A + B) = cos Acos B - sin A sin B

sin (A + B) = sin Acos B + cos A sin B
(4)

c2 = a2 + b2 - 2ab cos u. (8)

Half-Angle Formulas

cos2 u = 1 + cos 2u
2

(6)

sin2 u = 1 - cos 2u
2

(7)

Double-Angle Formulas

cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u
(5)

1 + tan2 u = sec2 u

1 + cot2 u = csc2 u

The following formulas hold for all angles A and B (Exercise 58).

There are similar formulas for cos (A - B) and sin (A - B) (Exercises 35 and 36). 
All the trigonometric identities needed in this book derive from Equations (3) and (4). For 
example, substituting u for both A and B in the addition formulas gives

Additional formulas come from combining the equations

cos2 u + sin2 u = 1, cos2 u - sin2 u = cos 2u.

We add the two equations to get 2 cos2 u = 1 + cos 2u and subtract the second from the 
first to get 2 sin2u = 1 - cos 2u. This results in the following identities, which are useful 
in integral calculus.

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if u is the angle opposite c, then

This equation is called the law of cosines.
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- 0 u 0 … sin u … 0 u 0 and - 0 u 0 … 1 - cos u … 0 u 0 .

We can see why the law holds if we introduce coordinate axes with the origin at C and 
the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of A
are (b, 0); the coordinates of B are (a cos u, a sin u). The square of the distance between A
and B is therefore

c2 = (a cos u - b)2 + (a sin u)2

= a2 (cos2 u + sin2 u) + b2 - 2ab cos u
               (++)++*
                          1

= a2 + b2 - 2ab cos u.

The law of cosines generalizes the Pythagorean theorem. If u = p>2, then cos u = 0
and c2 = a2 + b2.

Two Special Inequalities

For any angle u measured in radians, the sine and cosine functions satisfy

y

x
C

a
c

b

B(a cos u, a sin u)

A(b, 0)

u

FIGURE 1.46 The square of the distance 
between A and B gives the law of cosines.

y = aƒ(b(x + c)) + d

Vertical stretch or compression; 
reflection about y = d  if negative 

Vertical shift

Horizontal shiftHorizontal stretch or compression; 
reflection about x = -c if negative

To establish these inequalities, we picture u as a nonzero angle in standard position 
(Figure 1.47). The circle in the figure is a unit circle, so 0 u 0 equals the length of the circular 
arc AP. The length of line segment AP is therefore less than 0 u 0 .

Triangle APQ is a right triangle with sides of length

QP = 0 sin u 0 , AQ = 1 - cos u.

From the Pythagorean theorem and the fact that AP 6 0 u 0 , we get

sin2 u + (1 - cos u)2 = (AP)2 … u2. (9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than 
their sum and hence is less than or equal to u2:

sin2u … u2 and (1 - cos u)2 … u2.

By taking square roots, this is equivalent to saying that

0 sin u 0 … 0 u 0 and 0 1 - cos u 0 … 0 u 0 ,
so

- 0 u 0 … sin u … 0 u 0 and - 0 u 0 … 1 - cos u … 0 u 0 .
These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed 
in this section.

u

1

P

A(1, 0)

cos u 1 − cos u

sin
u

O Q

u

x

y

FIGURE 1.47 From the 
geometry of this figure, drawn 
for u 7 0, we get the inequality 
sin2 u + (1 - cos u)2 … u2.
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The transformation rules applied to the sine function give the general sine function
or sinusoid formula

ƒ(x) = A sin a2pB (x - C )b + D,

where 0A 0  is the amplitude, 0B 0  is the period, C is the horizontal shift, and D is the vertical
shift. A graphical interpretation of the various terms is given below.

D

y

x

Vertical
shift (D)

Horizontal
shift (C)

D − A

D + A

Amplitude (A)

This distance is
the period (B).

This axis is the
line y = D.

a b

y = A sin + D(x − C)2p
B

0

Radians and Degrees
1. On a circle of radius 10 m, how long is an arc that subtends a cen-

tral angle of (a) 4p>5 radians? (b) 110°?

2. A central angle in a circle of radius 8 is subtended by an arc of 
length 10p. Find the angle’s radian and degree measures.

3. You want to make an 80° angle by marking an arc on the perime-
ter of a 12-in.-diameter disk and drawing lines from the ends of 
the arc to the disk’s center. To the nearest tenth of an inch, how 
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level 
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions
5. Copy and complete the following table of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the 
other two if x lies in the specified interval.

7. sin x = 3
5

, x∊ cp
2

, p d 8. tan x = 2, x∊ c 0,
p

2
d

9. cos x = 1
3

, x∊ c- p
2

, 0 d 10. cos x = - 5
13

, x∊ cp
2

, p d
11. tan x = 1

2
, x∊ cp ,

3p
2
d 12. sin x = - 1

2
, x∊ cp,

3p
2
d

Graphing Trigonometric Functions
Graph the functions in Exercises 13–22. What is the period of each 
function?

13. sin 2x 14. sin (x>2)

15. cos px 16. cos
px
2

17. -sin
px
3

18. -cos 2px

19. cos ax - p
2
b 20. sin ax + p

6
b

Exercises 1.3

U −P −2P ,3 0 P ,2 3P ,4

sin u
cos u
tan u
cot u
sec u
csc u

U -3P ,2 −P ,3 −P ,6 P ,4 5P ,6

sin u
cos u
tan u
cot u
sec u
csc u

6. Copy and complete the following table of function values. If the 
function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.
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Solving Trigonometric Equations
For Exercises 51–54, solve for the angle u, where 0 … u … 2p.

51. sin2 u = 3
4

52. sin2 u = cos2 u

53. sin 2u - cos u = 0 54. cos 2u + cos u = 0

Theory and Examples
55. The tangent sum formula The standard formula for the tan-

gent of the sum of two angles is

tan(A + B) = tan A + tan B
1 - tan A tan B

.

  Derive the formula.

56. (Continuation of Exercise 55.) Derive a formula for tan (A - B).

57. Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for cos (A - B).

x

y

A
B

0 1

1

1

58. a.  Apply the formula for cos (A - B) to the identity sin u =

cos ap
2

- ub  to obtain the addition formula for sin (A + B).

b. Derive the formula for cos (A + B) by substituting -B for B
in the formula for cos (A - B) from Exercise 35.

59. A triangle has sides a = 2 and b = 3 and angle C = 60°. Find 
the length of side c.

60. A triangle has sides a = 2 and b = 3 and angle C = 40°. Find 
the length of side c.

61. The law of sines The law of sines says that if a, b, and c are the 
sides opposite the angles A, B, and C in a triangle, then

sin A
a = sin B

b
= sin C

c .

   Use the accompanying figures and the identity sin(p - u) =
sin u, if required, to derive the law.

A

B Ca

hc b

A

B Ca

hc
b

62. A triangle has sides a = 2 and b = 3 and angle C = 60° (as in 
Exercise 59). Find the sine of angle B using the law of sines.

21. sin ax - p
4
b + 1 22. cos ax + 2p

3
b - 2

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23. s = cot 2t 24. s = - tan pt

25. s = sec apt
2
b 26. s = csc a t

2
b

27.  a.  Graph y = cos x and y = sec x together for -3p>2 … x
… 3p>2. Comment on the behavior of sec x in relation to the 
signs and values of cos x.

b. Graph y = sin x and y = csc x together for -p … x … 2p.
Comment on the behavior of csc x in relation to the signs and 
values of sin x.

28. Graph y = tan x and y = cot x together for -7 … x … 7. Com-
ment on the behavior of cot x in relation to the signs and values of 
tan x.

29. Graph y = sin x and y = :sin x;  together. What are the domain 
and range of :sin x;?

30. Graph y = sin x and y = <sin x=  together. What are the domain 
and range of <sin x=?

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31–36.

31. cos ax - p
2
b = sin x 32. cos ax + p

2
b = -sin x

33. sin ax + p
2
b = cos x 34. sin ax - p

2
b = -cos x

35. cos (A - B) = cos A cos B + sin A sin B (Exercise 57 provides a 
different derivation.)

36. sin (A - B) = sin A cos B - cos A sin B

37. What happens if you take B = A in the trigonometric identity 
cos (A - B) = cos A cos B + sin A sin B? Does the result agree 
with something you already know?

38. What happens if you take B = 2p in the addition formulas? Do 
the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and cos x.

39. cos (p + x) 40. sin (2p - x)

41. sin a3p
2

- xb 42. cos a3p
2

+ xb
43. Evaluate sin

7p
12

 as sin ap
4

+ p
3
b .

44. Evaluate cos
11p
12

 as cos ap
4

+ 2p
3
b .

45. Evaluate cos
p

12
. 46. Evaluate sin

5p
12

.

Using the Half-Angle Formulas
Find the function values in Exercises 47–50.

47. cos2 p

8
48. cos2 5p

12

49. sin2 p

12
50. sin2 3p

8

T

T
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63. A triangle has side c = 2 and angles A = p>4 and B = p>3.
Find the length a of the side opposite A.

64. The approximation sin x ? x It is often useful to know that, 
when x is measured in radians, sin x ≈ x for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds. 
The approximation error is less than 1 in 5000 if 0 x 0 6 0.1.

a. With your grapher in radian mode, graph y = sin x and 
y = x together in a viewing window about the origin. What 
do you see happening as x nears the origin?

b. With your grapher in degree mode, graph y = sin x and 
y = x together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

General Sine Curves
For

ƒ(x) = A sin a2p
B

(x - C)b + D,

identify A, B, C, and D for the sine functions in Exercises 65–68 and 
sketch their graphs.

65. y = 2 sin (x + p) - 1 66. y = 1
2

sin (px - p) + 1
2

67. y = - 2
p sin ap

2
tb + 1

p 68. y = L
2p

sin
2pt
L

, L 7 0

COMPUTER EXPLORATIONS
In Exercises 69–72, you will explore graphically the general sine 
function

ƒ(x) = A sina2p
B

(x - C)b + D

as you change the values of the constants A, B, C, and D. Use a CAS 
or computer grapher to perform the steps in the exercises.

T

69. The period B Set the constants A = 3, C = D = 0.

a. Plot ƒ(x) for the values B = 1, 3, 2p, 5p over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it 
with B = -3 and B = -2p.

70. The horizontal shift C Set the constants A = 3, B = 6, D = 0.

a. Plot ƒ(x) for the values C = 0, 1, and 2 over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as C increases through positive values.

b. What happens to the graph for negative values of C?

c. What smallest positive value should be assigned to C so the 
graph exhibits no horizontal shift? Confirm your answer with 
a plot.

71. The vertical shift D Set the constants A = 3, B = 6, C = 0.

a. Plot ƒ(x) for the values D = 0, 1, and 3 over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?

72. The amplitude A Set the constants B = 6, C = D = 0.

a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your 
answer by plotting ƒ(x) for the values A = 1, 5, and 9.

b. What happens to the graph for negative values of A?

1.4 Graphing with Software

Today a number of hardware devices, including computers, calculators, and smartphones, 
have graphing applications based on software that enables us to graph very complicated 
functions with high precision. Many of these functions could not otherwise be easily 
graphed. However, some care must be taken when using such graphing software, and in 
this section we address some of the issues that may be involved. In Chapter 4 we will see 
how calculus helps us determine that we are accurately viewing all the important features 
of a function’s graph.

Graphing Windows

When using software for graphing, a portion of the graph is displayed in a display or viewing 
window. Depending on the software, the default window may give an incomplete or mislead-
ing picture of the graph. We use the term square window when the units or scales used on both 
axes are the same. This term does not mean that the display window itself is square (usually it 
is rectangular), but instead it means that the x-unit is the same length as the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of 
scaling in order to capture essential features of the graph. This difference in scaling can 
cause visual distortions that may lead to erroneous interpretations of the function’s behavior. 
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Some graphing software allows us to set the viewing window by specifying one or both of 
the intervals, a … x … b and c … y … d, and it may allow for equalizing the scales used 
for the axes as well. The software selects equally spaced x-values in 3a, b4  and then plots 
the points (x, ƒ(x)). A point is plotted if and only if x lies in the domain of the function and 
ƒ(x) lies within the interval 3c, d4 . A short line segment is then drawn between each plotted 
point and its next neighboring point. We now give illustrative examples of some common 
problems that may occur with this procedure.

EXAMPLE 1  Graph the function ƒ(x) = x3 - 7x2 + 28 in each of the following 
display or viewing windows:

(a) 3-10, 104  by 3-10, 104 (b) 3-4, 44  by 3-50, 104 (c) 3-4, 104  by 3-60, 604
Solution
(a) We select a = -10, b = 10, c = -10, and d = 10 to specify the interval of x-values 

and the range of y-values for the window. The resulting graph is shown in Figure 1.48a. 
It appears that the window is cutting off the bottom part of the graph and that the 
interval of x-values is too large. Let’s try the next window.

10

−10

10−10

10

−50

4−4

(a) (b) (c)

60

−60

10−4

FIGURE 1.48 The graph of ƒ(x) = x3 - 7x2 + 28 in different viewing windows. Selecting a window that gives a clear 
picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically 
display the graph in (c).

(b) We see some new features of the graph (Figure 1.48b), but the top is missing and we 
need to view more to the right of x = 4 as well. The next window should help.

(c) Figure 1.48c shows the graph in this new viewing window. Observe that we get a 
more complete picture of the graph in this window, and it is a reasonable graph of a 
third-degree polynomial.

EXAMPLE 2  When a graph is displayed, the x-unit may differ from the y-unit, as in 
the graphs shown in Figures 1.48b and 1.48c. The result is distortion in the picture, which 
may be misleading. The display window can be made square by compressing or stretching 
the units on one axis to match the scale on the other, giving the true graph. Many software 
systems have built-in options to make the window “square.” If yours does not, you may 
have to bring to your viewing some foreknowledge of the true picture.

Figure 1.49a shows the graphs of the perpendicular lines y = x and y = -x + 322,

together with the semicircle y = 29 - x2, in a nonsquare 3-4, 44  by 3-6, 84  display 
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be elliptical in shape.

Figure 1.49b shows the graphs of the same functions in a square window in which the 
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for 
Figure 1.49a has been compressed in Figure 1.49b to make the window square. Figure 1.49c 
gives an enlarged view of Figure 1.49b with a square 3-3, 34  by 30, 44  window.
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If the denominator of a rational function is zero at some x-value within the viewing 
window, graphing software may produce a steep near-vertical line segment from the top to 
the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-
ing software plots the points of the graph and connects them, many of the maximum and 
minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3  Graph the function ƒ(x) = sin 100x.

Solution Figure 1.50a shows the graph of ƒ in the viewing window 3-12, 124  by 3-1, 14 . We see that the graph looks very strange because the sine curve should oscillate 
periodically between -1 and 1. This behavior is not exhibited in Figure 1.50a. We might 
experiment with a smaller viewing window, say 3-6, 64  by 3-1, 14 , but the graph is not 
better (Figure 1.50b). The difficulty is that the period of the trigonometric function 
y = sin 100x is very small (2p>100 ≈ 0.063). If we choose the much smaller viewing 
window 3-0.1, 0.14  by 3-1, 14  we get the graph shown in Figure 1.50c. This graph 
reveals the expected oscillations of a sine curve.

(a)

8

−6

4−4

(b)

4

−4

6−6

(c)

4

0

3−3

FIGURE 1.49 Graphs of the perpendicular lines y = x and y = -x + 322 and of the semicircle 
y = 29 - x2 appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2). 
Some software may not provide options for the views in (b) or (c).

(a)

1

−1

12−12

(b)

1

−1

6−6

(c)

1

−1

0.1−0.1

FIGURE 1.50 Graphs of the function y = sin 100x in three viewing windows. Because the period is 2p>100 ≈ 0.063,
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

EXAMPLE 4 Graph the function y = cos x + 1
200

sin 200x.

Solution In the viewing window 3-6, 64  by 3-1, 14  the graph appears much like the 
cosine function with some very small sharp wiggles on it (Figure 1.51a). We get a better 
look when we significantly reduce the window to 3-0.2, 0.24  by 30.97, 1.014 , obtaining 
the graph in Figure 1.51b. We now see the small but rapid oscillations of the second term, 
(1>200) sin 200x, added to the comparatively larger values of the cosine curve.
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Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for ƒ(x) when x 6 0. Usu-
ally that happens because of the algorithm the software is using to calculate the function 
values. Sometimes we can obtain the complete graph by defining the formula for the func-
tion in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function y = x1>3.

Solution Some graphing software displays the graph shown in Figure 1.52a. When we 
compare it with the graph of y = x1>3 = 23 x in Figure 1.17, we see that the left branch for 
x 6 0 is missing. The reason the graphs differ is that the software algorithm calculates 
x1>3 as e(1>3)lnx. Since the logarithmic function is not defined for negative values of x, the 
software can produce only the right branch, where x 7 0. (Logarithmic and exponential 
functions are introduced in the next two sections.)

(a)

1

−1

6−6

(b)

1.01

0.97
0.2−0.2

FIGURE 1.51 In (b) we see a close-up view of the function 

y = cos x + 1
200

sin 200x graphed in (a). The term cos x clearly dominates 

the second term, 
1

200
sin 200x, which produces the rapid oscillations along the 

cosine curve. Both views are needed for a clear idea of the graph (Example 4).

(a)

2

−2

3−3

(b)

2

−2

3−3

FIGURE 1.52 The graph of y = x1>3 is missing the left branch in (a). In (b) we 

graph the function ƒ(x) = x0 x 0 # 0 x 0 1>3, obtaining both branches. (See Example 5.)

To obtain the full picture showing both branches, we can graph the function

ƒ(x) = x0 x 0 # 0 x 0 1>3.
This function equals x1>3 except at x = 0 (where ƒ is undefined, although 01>3 = 0). A 
graph of ƒ is displayed in Figure 1.52b.

Capturing the Trend of Collected Data

We have pointed out that applied scientists and analysts often collect data to study a par-
ticular issue or phenomenon of interest. If there is no known principle or physical law 
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relating the independent and dependent variables, the data can be plotted in a scatterplot to 
help find a curve that captures the overall trend of the data points. This process is called 
regression analysis, and the curve is called a regression curve.

Many graphing utilities have software that finds the regression curve for a particular 
type of curve (such as a straight line, a quadratic or other polynomial, or a power curve) and 
then superimposes the graph of the found curve over the scatterplot. This procedure results 
in a useful graphical visualization, and often the formula produced for the regression curve 
can be used to make reasonable estimates or to help explain the issue of interest.

One common method, known as least squares, finds the desired regression curve by 
minimizing the sum of the squares of the vertical distances between the data points and the 
curve. The least squares method is an optimization problem. (In Section 14.7 exercises, we 
discuss how the regression curve is calculated when fitting a straight line to the data.) Here 
we present a few examples illustrating the technique by using available software to find 
the curve. Keep in mind that different software packages may have different ways of enter-
ing the data points, and different output features as well.

EXAMPLE 6  Table 1.3 shows the annual cost of tuition and fees for a full-time stu-
dent attending the University of California for the years 1990–2011. The data in the list 
cite the beginning of the academic year when the corresponding cost was in effect. Use the 
table to find a regression line capturing the trend of the data points, and use the line to 
estimate the cost for academic year 2018–19.

Solution We use regression software that allows for fitting a straight line, and we enter 
the data from the table to obtain the formula

y = 506.25x - 1.0066 # 106,

where x represents the year and y the cost that took effect that year. Figure 1.53 displays 
the scatterplot of the data together with the graph of this regression line. From the equation 
of the line, we find that for x = 2018,

y = 506.25(2018) - 1.0066 # 106 = 15,013

is the estimated cost (rounded to the nearest dollar) for the academic year 2018–19. The 
last two data points rise above the trend line in the figure, so this estimate may turn out to 
be low.

19901985
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FIGURE 1.53 Scatterplot and regression 
line for the University of California tuition 
and fees from Table 1.3 (Example 6).

TABLE 1.3 Tuition and fees at 

the University of California

Year, x Cost, y

1990 1,820

1995 4,166

2000 3,964

2005 6,802

2010 11,287

2011 13,218

EXAMPLE 7  The Centers for Disease Control and Prevention recorded the deaths 
from tuberculosis in the United States for 1970–2006. We list the data in Table 1.4 for 
5-year intervals. Find linear and quadratic regression curves capturing the trend of the data 
points. Which curve might be the better predictor?
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Solution Using regression software that allows us to fit a straight line as well as a qua-
dratic curve, we enter the data to obtain the formulas

y = 2.2279 # 105 - 111.04x, line fit

and

y = 1451
350

x2 -
3,483,953

210
x +

464,757,147
28

, quadratic fit

where x represents the year and y represents the number of deaths that occurred. A scat-
terplot of the data, together with the two trend curves, is displayed in Figure 1.54. In look-
ing at the figure, it would appear that the quadratic curve most closely captures the trend 
of the data, except for the years 1990 and 1995, and would make the better predictor. How-
ever, the quadratic seems to have a minimum value near the year 2000, rising upward 
thereafter, so it would probably not be a useful tool for making good estimates in the years 
beyond 2010. This example illustrates the danger of using a regression curve to predict 
values beyond the range of the data used to construct the curve.

TABLE 1.4 U.S. deaths from 

tuberculosis

Year, x Deaths, y

1970 5,217

1975 3,333

1980 1,978

1985 1,752

1990 1,810

1995 1,336

2000 776

2005 648
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FIGURE 1.54 Scatterplot with the 
regression line and quadratic curves for 
tuberculosis deaths in the United States, 
based on Table 1.4 (Example 7).

Choosing a Viewing Window
In Exercises 1–4, use graphing software to determine which of the 
given viewing windows displays the most appropriate graph of the 
specified function.

1. ƒ(x) = x4 - 7x2 + 6x

a. 3-1, 14  by 3-1, 14 b. 3-2, 24  by 3-5, 54
c. 3-10, 104  by 3-10, 104 d. 3-5, 54  by 3-25, 154

2. ƒ(x) = x3 - 4x2 - 4x + 16

a. 3-1, 14  by 3-5, 54 b. 3-3, 34  by 3-10, 104
c. 3-5, 54  by 3-10, 204 d. 3-20, 204  by 3-100, 1004

3. ƒ(x) = 5 + 12x - x3

a. 3-1, 14  by 3-1, 14 b. 3-5, 54  by 3-10, 104
c. 3-4, 44  by 3-20, 204 d. 3-4, 54  by 3-15, 254

4. ƒ(x) = 25 + 4x - x2

a. 3-2, 24  by 3-2, 24 b. 3-2, 64  by 3-1, 44
c. 3-3, 74  by 30, 104 d. 3-10, 104  by 3-10, 104

Finding a Viewing Window
In Exercises 5–30, find an appropriate graphing software viewing win-
dow for the given function and use it to display its graph. The window 

T

T

should give a picture of the overall behavior of the function. There is 
more than one choice, but incorrect choices can miss important 
aspects of the function.

5. ƒ(x) = x4 - 4x3 + 15 6. ƒ(x) = x3

3
- x2

2
- 2x + 1

7. ƒ(x) = x5 - 5x4 + 10 8. ƒ(x) = 4x3 - x4

9. ƒ(x) = x29 - x2 10. ƒ(x) = x2(6 - x3)

11. y = 2x - 3x2>3 12. y = x1>3(x2 - 8)

13. y = 5x2>5 - 2x 14. y = x2>3(5 - x)

15. y = 0 x2 - 1 0 16. y = 0 x2 - x 0
17. y = x + 3

x + 2
18. y = 1 - 1

x + 3

19. ƒ(x) = x2 + 2
x2 + 1

20. ƒ(x) = x2 - 1
x2 + 1

21. ƒ(x) = x - 1
x2 - x - 6

22. ƒ(x) = 8
x2 - 9

23. ƒ(x) = 6x2 - 15x + 6
4x2 - 10x

24. ƒ(x) = x2 - 3
x - 2

25. y = sin 250x 26. y = 3 cos 60x

Exercises 1.4
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39. Median home price The median price of single-family homes 
in the United States increased quite consistently during the years 
1976–2000. Then a housing “bubble” occurred for the years 
2001–2010, in which prices first rose dramatically for 6 years and 
then dropped in a steep “crash” over the next 4 years, causing 
considerable turmoil in the U.S. economy. The table shows some 
of the data as reported by the National Association of Realtors.

a. Make a scatterplot of the data.

b. Find and plot the regression line for the years 1976–2002, 
and superimpose the line on the scatterplot in part (a).

c. How would you interpret the meaning of a data point in the 
housing “bubble”?

40. Average energy prices The table shows the average residential 
and transportation prices for energy consumption in the United 
States for the years 2000–2008, as reported by the U.S. Depart-
ment of Energy. The prices are given as dollars paid for one mil-
lion BTU (British thermal units) of consumption.

a. Make a scatterplot of the data sets.

b. Find and plot a regression line for each set of data points, and 
superimpose the lines on their scatterplots.

c. What do you estimate as the average energy price for resi-
dential and transportation use for a million BTU in year 
2017?

d. In looking at the trend lines, what do you conclude about the 
rising costs of energy across the two sectors of usage?

41. Global annual mean surface air temperature A NASA God-
dard Institute for Space Studies report gives the annual global 
mean land-ocean temperature index for the years 1880 to the 
present. The index number is the difference between the mean 
temperature over the base years 1951–1980 and the actual tem-
perature for the year recorded. For the recorded year, a positive 
index is the number of degrees Celsius above the base; a negative 
index is the number below the base. The table lists the index for 
the years 1940–2010 in 5-year intervals, reported in the NASA 
data set.

27. y = cos a x
50
b 28. y = 1

10
sin a x

10
b

29. y = x + 1
10

sin 30x 30. y = x2 + 1
50

cos 100x

Use graphing software to graph the functions specified in Exercises 31–36. 
Select a viewing window that reveals the key features of the function.

31. Graph the lower half of the circle defined by the equation 
x2 + 2x = 4 + 4y - y2.

32. Graph the upper branch of the hyperbola y2 - 16x2 = 1.

33. Graph four periods of the function ƒ(x) = - tan 2x.

34. Graph two periods of the function ƒ(x) = 3 cot
x
2

+ 1.

35. Graph the function ƒ(x) = sin 2x + cos 3x.

36. Graph the function ƒ(x) = sin3 x.

Regression Lines or Quadratic Curve Fits
Use a graphing utility to find the regression curves specified in Exer-
cises 37–42.

37. Weight of males The table shows the average weight for men 
of medium frame based on height as reported by the Metropolitan 
Life Insurance Company (1983).

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on 
the scatterplot.

c. Does the regression line reasonably capture the trend of the 
data? What weight would you predict for a male of height 6′7″?

38. Federal minimum wage The federal minimum hourly wage 
rates have increased over the years. The table shows the rates at 
the year in which they first took effect, as reported by the U.S. 
Department of Labor.

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on 
the scatterplot.

c. What do you estimate as the minimum wage for the year 2018?

T

Height (in.) Weight (lb) Height (in.) Weight (lb)

62 136 70 157
63 138 71 160
64 141 72 163.5
65 141.5 73 167
66 145 74 171
67 148 75 174.5
68 151 76 179
69 154

Year Wage ($) Year Wage ($)

1978 2.65 1996 4.75
1979 2.90 1997 5.15
1980 3.10 2007 5.85
1981 3.35 2008 6.55
1990 3.80 2009 7.25
1991 4.25

Year Price ($) Year Price ($)

1976 37400 2000 122600
1980 56250 2002 150000
1984 66500 2004 187500
1988 87500 2006 247500
1992 95800 2008 183300
1996 104200 2010 162500

Year Residential ($) Transportation ($)

2000 15 10
2001 16 10
2002 15 9
2003 16 11
2004 18 13
2005 19 16
2006 21 19
2007 21 20
2008 23 25
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a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on 
the scatterplot.

c. Find and plot a quadratic curve that captures the trend of the 
data, and superimpose the curve on the scatterplot.

42. Growth of yeast cells The table shows the amount of yeast 
cells (measured as biomass) growing over a 7-hour period in a 
nutrient, as recorded by R. Pearl (1927) during a well-known bio-
logical experiment.

a. Make a scatterplot of the data.

b. Find and plot a regression quadratic, and superimpose the 
quadratic curve on the scatterplot.

c. What do you estimate as the biomass of yeast in the nutrient 
after 11 hours?

d. Do you think the quadratic curve would provide a good estimate 
of the biomass after 18 hours? Give reasons for your answer.

Hour 0 1 2 3 4 5 6 7

Biomass 9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3

Year Index (°C) Year Index (°C)

1940 0.04 1980 0.20
1945 0.06 1985 0.05
1950 -0.16 1990 0.36
1955 -0.11 1995 0.39
1960 -0.01 2000 0.35
1965 -0.12 2005 0.62
1970 0.03 2010 0.63
1975 -0.04

1.5 Exponential Functions

Exponential functions are among the most important in mathematics and occur in a wide 
variety of applications, including interest rates, radioactive decay, population growth, the 
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure, tem-
perature change of a heated object placed in a cooler environment, and the dating of fossils. 
In this section we introduce these functions informally, using an intuitive approach. We give 
a rigorous development of them in Chapter 7, based on important calculus ideas and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes 
2P. If it doubles again, it becomes 2(2P) = 22P, and a third doubling gives 2(22P) = 23P.
Continuing to double in this fashion leads us to consider the function ƒ(x) = 2x. We call 
this an exponential function because the variable x appears in the exponent of 2x. Func-
tions such as g(x) = 10 x and h(x) = (1>2)x are other examples of exponential functions. 
In general, if a ≠ 1 is a positive constant, the function

ƒ(x) = ax, a > 0

is the exponential function with base a.

EXAMPLE 1  In 2014, $100 is invested in a savings account, where it grows by 
accruing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn, 
give a formula for a function describing the amount A in the account after x years have 
elapsed.

Solution If P = 100, at the end of the first year the amount in the account is the original 
amount plus the interest accrued, or

P + a 5.5
100
bP = (1 + 0.055)P = (1.055)P.

At the end of the second year the account earns interest again and grows to

(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2. P = 100

Don’t confuse the exponential 2x with 
the power function x2. In the exponen-
tial, the variable x is in the exponent, 
whereas the variable x is the base in the 
power function.
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Continuing this process, after x years the value of the account is

A = 100 # (1.055)x.

This is a multiple of the exponential function with base 1.055. Table 1.5 shows the 
amounts accrued over the first four years. Notice that the amount in the account each year 
is always 1.055 times its value in the previous year.

TABLE 1.5 Savings account growth

Year Amount (dollars) Increase (dollars)

2014 100  

2015 100(1.055) = 105.50 5.50

2016 100(1.055)2 = 111.30 5.80

2017 100(1.055)3 = 117.42 6.12

2018 100(1.055)4 = 123.88 6.46

In general, the amount after x years is given by P(1 + r)x, where r is the interest rate 
(expressed as a decimal).

For integer and rational exponents, the value of an exponential function ƒ(x) = ax is 
obtained arithmetically as follows. If x = n is a positive integer, the number an is given by 
multiplying a by itself n times:

an = a # a # g # a.(++)++*
         n factors

If x = 0, then a0 = 1, and if x = -n for some positive integer n, then

a-n = 1
an = a1ab

n

.

If x = 1>n for some positive integer n, then

a1>n = 2n a,

which is the positive number that when multiplied by itself n times gives a. If x = p>q is 
any rational number, then

ap>q = 2q ap = 12q a2p.
If x is irrational, the meaning of ax is not so clear, but its value can be defined by con-

sidering values for rational numbers that get closer and closer to x. This informal approach 
is based on the graph of the exponential function, as we are about to describe. In Chapter 7 
we define the meaning in a rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show 
them again in Figure 1.55. These graphs indicate the values of the exponential functions 
for all real inputs x. The value at an irrational number x is chosen so that the graph of ax

has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they do 
convey the informal idea. We mean that the value of ax, when x is irrational, is chosen so 
that the function ƒ(x) = ax is continuous, a notion that will be carefully explored in the 
next chapter. This choice ensures the graph retains its increasing behavior when a 7 1, or 
decreasing behavior when 0 6 a 6 1 (see Figure 1.55).

Arithmetically, the graphical idea can be described in the following way, using the 
exponential function ƒ(x) = 2x as an illustration. Any particular irrational number, say 
x = 23, has a decimal expansion

23 = 1.732050808 c.

(a) y = 2x, y = 3x, y = 10x
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FIGURE 1.55 Graphs of exponential 
functions.



38 Chapter 1: Functions

We then consider the list of numbers, given as follows in the order of taking more and 
more digits in the decimal expansion,

21, 21.7, 21.73, 21.732, 21.7320, 21.73205, c. (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to 23 given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these 
decimal approximations get closer and closer to 23, it seems reasonable that the list of 
numbers in (1) gets closer and closer to some fixed number, which we specify to be 223.

Table 1.6 illustrates how taking better approximations to 23 gives better approxima-
tions to the number 223 ≈ 3.321997086. It is the completeness property of the real num-
bers (discussed briefly in Appendix 7) which guarantees that this procedure gives a single 
number we define to be 223 (although it is beyond the scope of this text to give a proof). In 
a similar way, we can identify the number 2x (or ax, a 7 0) for any irrational x. By identi-
fying the number ax for both rational and irrational x, we eliminate any “holes” or “gaps” in 
the graph of ax. In practice you can use a calculator to find the number ax for irrational x by 
taking successive decimal approximations to x and creating a table similar to Table 1.6.

Exponential functions obey the familiar rules of exponents listed below. It is easy to 
check these rules using algebra when the exponents are integers or rational numbers. We 
prove them for all real exponents in Chapters 4 and 7.

TABLE 1.6 Values of 223 for 

rational r closer and closer to23

r 2r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

Rules for Exponents
If a 7 0 and b 7 0, the following rules hold true for all real numbers x and y.

1. ax # ay = ax+ y 2. ax

ay = ax- y

3. (ax)y = (ay)x = axy 4. ax # bx = (ab)x

5. ax

bx = aa
b
b x

EXAMPLE 2  We illustrate using the rules for exponents to simplify numerical expressions.

1. 31.1 # 30.7 = 31.1+0.7 = 31.8 Rule 1

2.
121023
210

= 121023-1 = 121022 = 10 Rule 2

3. 1522222 = 522 # 22 = 52 = 25 Rule 3

4. 7p # 8p = (56)p Rule 4

5. a49b
1>2

= 41>2
91>2 = 2

3 Rule 5

The Natural Exponential Function ex

The most important exponential function used for modeling natural, physical, and economic 
phenomena is the natural exponential function, whose base is the special number e.
The number e is irrational, and its value is 2.718281828 to nine decimal places. (In Sec-
tion 3.8 we will see a way to calculate the value of e.) It might seem strange that we would 
use this number for a base rather than a simple number like 2 or 10. The advantage in 
using e as a base is that it simplifies many of the calculations in calculus.

If you look at Figure 1.55a you can see that the graphs of the exponential functions 
y = ax get steeper as the base a gets larger. This idea of steepness is conveyed by the slope 
of the tangent line to the graph at a point. Tangent lines to graphs of functions are defined 
precisely in the next chapter, but intuitively the tangent line to the graph at a point is a line 
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that just touches the graph at the point, like a tangent to a circle. Figure 1.56 shows the 
slope of the graph of y = ax as it crosses the y-axis for several values of a. Notice that the 
slope is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if 
a 6 e, and larger than 1 if a 7 e. This is the property that makes the number e so useful 
in calculus: The graph of y = ex has slope 1 when it crosses the y-axis.

Exponential Growth and Decay

The exponential functions y = ekx, where k is a nonzero constant, are frequently used for 
modeling exponential growth or decay. The function y = y0 ekx is a model for exponential
growth if k 7 0 and a model for exponential decay if k 6 0. Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by y = P # ert, where P is the initial monetary investment, r is the 
interest rate as a decimal, and t is time in units consistent with r. An example of exponen-
tial decay is the model y = A # e-1.2*10-4t, which represents how the radioactive isotope 
carbon-14 decays over time. Here A is the original amount of carbon-14 and t is the time in 
years. Carbon-14 decay is used to date the remains of dead organisms such as shells, 
seeds, and wooden artifacts. Figure 1.57 shows graphs of exponential growth and expo-
nential decay.
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FIGURE 1.56 Among the exponential functions, the graph of y = ex has the property that the 
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller 
for a base less than e, such as 2x, and larger for a base greater than e, such as 3x.

FIGURE 1.57 Graphs of (a) exponential growth, k = 1.5 7 0, and (b) exponential decay, 
k = -1.2 6 0.
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EXAMPLE 3  Investment companies often use the model y = Pert in calculating the 
growth of an investment. Use this model to track the growth of $100 invested in 2014 at an 
annual interest rate of 5.5%.

Solution Let t = 0 represent 2014, t = 1 represent 2015, and so on. Then the exponen-
tial growth model is y(t) = Pert, where P = 100 (the initial investment), r = 0.055 (the 
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annual interest rate expressed as a decimal), and t is time in years. To predict the amount in 
the account in 2018, after four years have elapsed, we take t = 4 and calculate

y(4) = 100e0.055(4)

= 100e0.22

= 124.61. Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually 
from Example 1.

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their 
mass as radiation, with the remainder of the atom re-forming to make an atom of some 
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually 
decays into lead. If y0 is the number of radioactive nuclei present at time zero, the number 
still present at any later time t will be

y = y0 e-rt, r 7 0.

The number r is called the decay rate of the radioactive substance. (We will see how this 
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined 
experimentally to be about r = 1.2 * 10-4 when t is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount y0 of carbon-14 nuclei, after 866 years we are left 
with the amount

y(866) = y0 e(-1.2*10-4) (866)

≈ (0.901)y0. Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, 
so about 10% of the original nuclei have decayed. In Example 7 in the next section, you 
will see how to find the number of years required for half of the radioactive nuclei present 
in a sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions y = ekx for different values of the 
constant k instead of the general exponential functions y = ax. In the next section, we show 
that the exponential function ax is equal to ekx for an appropriate value of k. So the formula 
y = ekx covers the entire range of possibilities, and we will see that it is easier to use.

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate 
coordinate plane and label each curve with its equation.

1. y = 2x, y = 4x, y = 3-x, y = (1>5)x

2. y = 3x, y = 8x, y = 2-x, y = (1>4)x

3. y = 2-t and y = -2t 4. y = 3-t and y = -3t

5. y = ex and y = 1>ex 6. y = -ex and y = -e-x

In each of Exercises 7–10, sketch the shifted exponential curves.

7. y = 2x - 1 and y = 2-x - 1

8. y = 3x + 2 and y = 3-x + 2

9. y = 1 - ex and y = 1 - e-x

10. y = -1 - ex and y = -1 - e-x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises 
11–20.

11. 162 # 16-1.75 12. 91>3 # 91>6

13. 44.2

43.7 14.
35>3
32>3

15. 1251>824 16. 11322222>2
17. 223 # 723 18. 12321>2 # 121221>2
19. a 2

22
b4

20. a26
3
b2

Exercises 1.5
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31. Radioactive decay The half-life of phosphorus-32 is about 
14 days. There are 6.6 grams present initially.

a. Express the amount of phosphorus-32 remaining as a func-
tion of time t.

b. When will there be 1 gram remaining?

32. If Jean invests $2300 in a retirement account with a 6% interest rate 
compounded annually, how long will it take until Jean’s account 
has a balance of $4150?

33. Doubling your money Determine how much time is required 
for an investment to double in value if interest is earned at the rate 
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with 
1 bacterium and doubles in number every half hour. How many 
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000 
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases 
to less than 1?

Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises 
21–24.

21. ƒ(x) = 1
2 + ex 22. g(t) = cos (e-t)

23. g(t) = 21 + 3-t 24. ƒ(x) = 3
1 - e2x

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 2x = 5 26. ex = 4

27. 3x - 0.5 = 0 28. 3 - 2-x = 0

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.

29. Population growth The population of Knoxville is 500,000 
and is increasing at the rate of 3.75% each year. Approximately 
when will the population reach 1 million?

30. Population growth The population of Silver Run in the year 
1890 was 6250. Assume the population increased at a rate of 
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we 
present the natural logarithmic function y = ln x as the inverse of the exponential function 
y = ex, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some 
functions assign the same range value to more than one element in the domain. The func-
tion ƒ(x) = x2 assigns the same value, 1, to both of the numbers -1 and +1; the sines of 
p>3 and 2p>3 are both 23>2. Other functions assume each value in their range no more 
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These 
functions take on any one value in their range exactly once.

DEFINITION A function ƒ(x) is one-to-one on a domain D if ƒ(x1) ≠ ƒ(x2)
whenever x1 ≠ x2 in D.

EXAMPLE 1  Some functions are one-to-one on their entire natural domain. Other 
functions are not one-to-one on their entire domain, but by restricting the function to a 
smaller domain we can create a function that is one-to-one. The original and restricted 
functions are not the same functions, because they have different domains. However, the 
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two functions have the same values on the smaller domain, so the original function is an 
extension of the restricted function from its smaller domain to the larger domain.

(a) ƒ(x) = 2x is one-to-one on any domain of nonnegative numbers because 2x1 ≠
2x2 whenever x1 ≠ x2.

(b) g(x) = sin x is not one-to-one on the interval 30, p4  because sin (p>6) = sin (5p>6).
In fact, for each element x1 in the subinterval 30, p>2) there is a corresponding ele-
ment x2 in the subinterval (p>2, p] satisfying sin x1 = sin x2, so distinct elements in 
the domain are assigned to the same value in the range. The sine function is one-to-
one on 30, p>24 , however, because it is an increasing function on 30, p>24  giving 
distinct outputs for distinct inputs.

The graph of a one-to-one function y = ƒ(x) can intersect a given horizontal line at 
most once. If the function intersects the line more than once, it assumes the same y-value 
for at least two different x-values and is therefore not one-to-one (Figure 1.58).

0 0

(a) One-to-one: Graph meets each
horizontal line at most once.

x

y y

y = x3 y =
"

x

x

FIGURE 1.58 (a) y = x3 and y = 1x
are one-to-one on their domains (-q, q)
and 30, q). (b) y = x2 and y = sin x are 
not one-to-one on their domains (-q, q).
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The Horizontal Line Test for One-to-One Functions

A function y = ƒ(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the 
function can be inverted to send an output back to the input from which it came.

DEFINITION Suppose that ƒ is a one-to-one function on a domain D with range 
R. The inverse function ƒ -1 is defined by

ƒ -1(b) = a if ƒ(a) = b.

The domain of ƒ -1 is R and the range of ƒ -1 is D.

The symbol ƒ -1 for the inverse of ƒ is read “ƒ inverse.” The “-1” in ƒ -1 is not an 
exponent; ƒ -1(x) does not mean 1>ƒ(x). Notice that the domains and ranges of ƒ and ƒ -1

are interchanged.

EXAMPLE 2  Suppose a one-to-one function y = ƒ(x) is given by a table of values

Caution Do not confuse the inverse 
function ƒ -1 with the reciprocal 
function 1>ƒ.

x 1 2 3 4 5 6 7 8

ƒ(x) 3 4.5 7 10.5 15 20.5 27 34.5

A table for the values of x = ƒ -1(y) can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for ƒ:

y 3 4.5 7 10.5 15 20.5 27 34.5

ƒ −1( y) 1 2 3 4 5 6 7 8

If we apply ƒ to send an input x to the output ƒ(x) and follow by applying ƒ -1 to ƒ(x),
we get right back to x, just where we started. Similarly, if we take some number y in the 
range of ƒ, apply ƒ -1 to it, and then apply ƒ to the resulting value ƒ -1(y), we get back the 
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value y with which we began. Composing a function and its inverse has the same effect as 
doing nothing.

(ƒ -1 ∘ ƒ) (x) = x, for all x in the domain of ƒ

(ƒ ∘ ƒ -1)(y) = y, for all y in the domain of ƒ -1 (or range of ƒ)

Only a one-to-one function can have an inverse. The reason is that if ƒ(x1) = y and 
ƒ(x2) = y for two distinct inputs x1 and x2, then there is no way to assign a value to ƒ -1(y)
that satisfies both ƒ -1(ƒ(x1)) = x1 and ƒ -1(ƒ(x2)) = x2.

A function that is increasing on an interval satisfies the inequality ƒ(x2) 7 ƒ(x1) when 
x2 7 x1, so it is one-to-one and has an inverse. Decreasing functions also have an inverse. 
Functions that are neither increasing nor decreasing may still be one-to-one and have an 
inverse, as with the function ƒ(x) = 1>x for x ≠ 0 and ƒ(0) = 0, defined on (-q, q)
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function from 
its graph, we start at a point x on the x-axis, go vertically to the graph, and then move horizon-
tally to the y-axis to read the value of y. The inverse function can be read from the graph by 
reversing this process. Start with a point y on the y-axis, go horizontally to the graph of 
y = ƒ(x), and then move vertically to the x-axis to read the value of x = ƒ -1(y) (Figure 1.59).
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(d) Then we interchange the letters x and y.
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FIGURE 1.59 The graph of y = ƒ -1(x) is obtained by reflecting the graph of y = ƒ(x)
about the line y = x.
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We want to set up the graph of ƒ -1 so that its input values lie along the x-axis, as is 
usually done for functions, rather than on the y-axis. To achieve this we interchange the x-
and y-axes by reflecting across the 45° line y = x. After this reflection we have a new 
graph that represents ƒ -1. The value of ƒ -1(x) can now be read from the graph in the usual 
way, by starting with a point x on the x-axis, going vertically to the graph, and then horizon-
tally to the y-axis to get the value of ƒ -1(x). Figure 1.59 indicates the relationship between 
the graphs of ƒ and ƒ -1. The graphs are interchanged by reflection through the line y = x.

The process of passing from ƒ to ƒ -1 can be summarized as a two-step procedure.

1. Solve the equation y = ƒ(x) for x. This gives a formula x = ƒ -1(y) where x is 
expressed as a function of y.

2. Interchange x and y, obtaining a formula y = ƒ -1(x) where ƒ -1 is expressed in the 
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3  Find the inverse of y = 1
2

x + 1, expressed as a function of x.

Solution

1. Solve for x in terms of y: y = 1
2

x + 1
The graph is a straight line satisfying the 
horizontal line test (Fig. 1.60).

2y = x + 2

x = 2y - 2.

2. Interchange x and y: y = 2x - 2.

The inverse of the function ƒ(x) = (1>2)x + 1 is the function ƒ -1(x) = 2x - 2. (See 
Figure 1.60.) To check, we verify that both composites give the identity function:

ƒ -1(ƒ(x)) = 2a1
2

x + 1b - 2 = x + 2 - 2 = x

ƒ(ƒ -1(x)) = 1
2

(2x - 2) + 1 = x - 1 + 1 = x.

EXAMPLE 4  Find the inverse of the function y = x2, x Ú 0, expressed as a function 
of x.

Solution For x Ú 0, the graph satisfies the horizontal line test, so the function is one-to-
one and has an inverse. To find the inverse, we first solve for x in terms of y:

y = x2

2y = 2x2 = 0 x 0 = x 0 x 0 = x because x Ú 0

We then interchange x and y, obtaining

y = 2x .

The inverse of the function y = x2, x Ú 0, is the function y = 1x (Figure 1.61).
Notice that the function y = x2, x Ú 0, with domain restricted to the nonnegative real 

numbers, is one-to-one (Figure 1.61) and has an inverse. On the other hand, the function y = x2,
with no domain restrictions, is not one-to-one (Figure 1.58b) and therefore has no inverse.

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function ƒ(x) = ax is one-
to-one. It therefore has an inverse. Its inverse is called the logarithm function with base a.
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FIGURE 1.61 The functions y = 1x
and y = x2, x Ú 0, are inverses of one 
another (Example 4).
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FIGURE 1.60 Graphing
ƒ(x) = (1>2)x + 1 and ƒ -1(x) = 2x - 2
together shows the graphs’ symmetry with 
respect to the line y = x (Example 3).

DEFINITION The logarithm function with base a, y = loga x, is the inverse of 
the base a exponential function y = ax (a 7 0, a ≠ 1).
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The domain of loga x is (0, q), the range of ax. The range of loga x is (-q, q), the 
domain of ax.

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions with a 7 1.
Figure 1.62a shows the graph of y = log2 x. The graph of y = ax, a 7 1, increases rap-
idly for x 7 0, so its inverse, y = loga x, increases slowly for x 7 1.

Because we have no technique yet for solving the equation y = ax for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of y = loga x by reflecting the graph of the exponential 
y = ax across the line y = x. Figure 1.62 shows the graphs for a = 2 and a = e.

Logarithms with base 2 are commonly used in computer science. Logarithms with 
base e and base 10 are so important in applications that many calculators have special keys 
for them. They also have their own special notation and names:

loge x is written as ln x.

log10 x is written as log x.

The function y = ln x is called the natural logarithm function, and y = log x is 
often called the common logarithm function. For the natural logarithm,

ln x = y 3 ey = x.

ln e = 1

In particular, if we set x = e, we obtain

because e1 = e.

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in 
arithmetic calculation before the modern electronic computer. What made them so useful 
is that the properties of logarithms reduce multiplication of positive numbers to addition of 
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we 
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case 
when r is an irrational number cannot be dealt with properly until Chapter 4. We also 
establish the validity of the rules for logarithmic functions with any base a in Chapter 7.

*To learn more about the historical figures mentioned in the text and the development of many major 
elements and topics of calculus, visit www.aw.com/thomas.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any num-
bers b 7 0 and x 7 0, the natural logarithm satisfies the following rules:

1. Product Rule: ln bx = ln b + ln x

2. Quotient Rule: ln
b
x = ln b - ln x

3. Reciprocal Rule: ln 1
x = - ln x Rule 2 with b = 1

4. Power Rule: ln xr = r ln x

HISTORICAL BIOGRAPHY*

John Napier 
(1550–1617)

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

(a)

x

y

1

10 2 e 4

2

e

4

−1−2

5

6

7

8

(1, e)

y = ln x

y = ex

(b)

FIGURE 1.62 (a) The graph of 2x and 
its inverse, log2 x. (b) The graph of ex

and its inverse, ln x.
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EXAMPLE 5  Here we use the properties in Theorem 1 to simplify three expressions.

(a) ln 4 + ln sin x = ln (4 sin x) Product Rule

(b) ln
x + 1
2x - 3

= ln (x + 1) - ln (2x - 3) Quotient Rule

(c) ln 1
8 = - ln 8 Reciprocal Rule

= - ln 23 = -3 ln 2 Power Rule

Because ax and loga x are inverses, composing them in either order gives the identity function.

Inverse Properties for ax and loga x

1. Base a: aloga x = x, loga ax = x, a 7 0, a ≠ 1, x 7 0

2. Base e: elnx = x, ln ex = x, x 7 0

Substituting ax for x in the equation x = elnx enables us to rewrite ax as a power of e:

ax = eln (ax) Substitute ax for x in x = eln x.

= ex lna Power Rule for logs

= e(lna)x. Exponent rearranged

Thus, the exponential function ax is the same as ekx for k = ln a.

Every exponential function is a power of the natural exponential function.

ax = ex lna

That is, ax is the same as ex raised to the power ln a: ax = ekx for k = ln a.

For example,

2x = e(ln2)x = ex ln2, and 5-3x = e(ln5) (-3x) = e-3x ln5.

Returning once more to the properties of ax and loga x, we have

ln x = ln (aloga x) Inverse Property for ax and loga x

= (loga x) (ln a). Power Rule for logarithms, with r = loga x

Rewriting this equation as loga x = (ln x)>(ln a) shows that every logarithmic function is a 
constant multiple of the natural logarithm ln x. This allows us to extend the algebraic 
properties for ln x to loga x. For instance, loga bx = loga b + loga x.

Change of Base Formula

Every logarithmic function is a constant multiple of the natural logarithm.

loga x = ln x
ln a

(a 7 0, a ≠ 1)

Applications

In Section 1.5 we looked at examples of exponential growth and decay problems. Here we 
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6  If $1000 is invested in an account that earns 5.25% interest compounded 
annually, how long will it take the account to reach $2500?
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Solution From Example 1, Section 1.5, with P = 1000 and r = 0.0525, the amount in 
the account at any time t in years is 1000(1.0525)t, so to find the time t when the account 
reaches $2500 we need to solve the equation

1000(1.0525)t = 2500.

Thus we have

(1.0525)t = 2.5 Divide by 1000.

ln (1.0525)t = ln 2.5 Take logarithms of both sides.

t ln 1.0525 = ln 2.5 Power Rule

t = ln 2.5
ln 1.0525

≈ 17.9 Values obtained by calculator

The amount in the account will reach $2500 in 18 years, when the annual interest payment 
is deposited for that year.

EXAMPLE 7  The half-life of a radioactive element is the time required for half of the 
radioactive nuclei present in a sample to decay. It is a notable fact that the half-life is a 
constant that does not depend on the number of radioactive nuclei initially present in the 
sample, but only on the radioactive substance.

To see why, let y0 be the number of radioactive nuclei initially present in the sample. 
Then the number y present at any later time t will be y = y0e-kt. We seek the value of t at 
which the number of radioactive nuclei present equals half the original number:

y0e-kt = 1
2

y0

e-kt = 1
2

-kt = ln 1
2

= - ln 2 Reciprocal Rule for logarithms

t = ln 2
k

. (1)

This value of t is the half-life of the element. It depends only on the value of k; the number 
y0 does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in 
days rather than years. The number of radioactive atoms remaining after t days in a sample 
that starts with y0 radioactive atoms is

y = y0e-5*10-3 t.

The element’s half-life is

Half@life = ln 2
k

Eq. (1)

= ln 2
5 * 10-3 The k from polonium’s decay equation

≈ 139 days.

This means that after 139 days, 1>2 of y0 radioactive atoms remain; after another 
139 days (or 278 days altogether) half of those remain, or 1>4 of y0 radioactive atoms 
remain, and so on (see Figure 1.63).

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Section 1.3. 
These functions are not one-to-one (their values repeat periodically). However, we can 
restrict their domains to intervals on which they are one-to-one. The sine function

y = y0e–5×10–3t

y0

y0

y0

t (days)

Amount
present

Half-life
0 139 278

2
1

4
1

FIGURE 1.63 Amount of polo-
nium-210 present at time t, where y0

represents the number of radioactive 
atoms initially present (Example 7).
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Domain:
Range:

x

y

1−1

x = sin y

p
2

p
2

−

y = sin–1x
−1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 1.64 The graph of y = sin-1 x.

increases from -1 at x = -p>2 to +1 at x = p>2. By restricting its domain to the inter-
val 3-p>2, p>2] we make it one-to-one, so that it has an inverse sin-1 x (Figure 1.64). 
Similar domain restrictions can be applied to all six trigonometric functions.
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y = sin x
Domain: 3-p>2, p>24
Range: 3-1, 14

y = cos x
Domain: 30, p4
Range: 3-1, 14

y = tan x
Domain: (-p>2, p>2)
Range: (-q, q)

y = csc x
Domain: 3-p>2, 0) ∪ (0, p>24
Range: (-q, -14 ∪ 31, q)

y = cot x
Domain: (0, p)
Range: (-q, q)

y = sec x
Domain: 30, p>2) ∪ (p>2, p4
Range: (-q, -14 ∪ 31, q)

Domain restrictions that make the trigonometric functions one-to-one

Since these restricted functions are now one-to-one, they have inverses, which we 
denote by

y = sin-1 x or y = arcsin x

y = cos-1 x or y = arccos x

y = tan-1 x or y = arctan x

y = cot-1 x or y = arccot x

y = sec-1 x or y = arcsec x

y = csc-1 x or y = arccsc x

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

Caution The -1 in the expressions for the inverse means “inverse.” It does not mean 
reciprocal. For example, the reciprocal of sin x is (sin x)-1 = 1>sin x = csc x.

The graphs of the six inverse trigonometric functions are obtained by reflecting the 
graphs of the restricted trigonometric functions through the line y = x. Figure 1.65b 
shows the graph of y = sin-1 x and Figure 1.66 shows the graphs of all six functions. We 
now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in 
radians) that belong to restricted domains of the sine and cosine functions.
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0 1−1
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(b)

p
2
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2

p
2

−

p
2
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y = sin x, p
2

p
2

− ≤ x ≤

Domain:
Range:

[−p�2, p�2]
[−1, 1] 

x = sin y

y = sin–1x
Domain:
Range:

[−1, 1] 
[−p�2, p�2]

FIGURE 1.65 The graphs of 
(a) y = sin x, -p>2 … x … p>2, and 
(b) its inverse, y = sin-1 x. The graph 
of sin-1 x, obtained by reflection across 
the line y = x, is a portion of the curve 
x = sin y.
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The graph of y = sin-1 x (Figure 1.65b) is symmetric about the origin (it lies along the 
graph of x = sin y). The arcsine is therefore an odd function:

sin-1(-x) = -sin-1 x. (2)

The graph of y = cos-1 x (Figure 1.67b) has no such symmetry.

EXAMPLE 8 Evaluate (a) sin-1 a23
2
b and (b) cos-1 a- 1

2
b .

Solution
(a) We see that

sin-1 a23
2
b = p3

  because sin (p>3) = 23>2 and p>3 belongs to the range 3-p>2, p>24  of the arc-
sine function. See Figure 1.68a.

(b) We have

cos-1 a- 1
2
b = 2p

3

  because cos (2p>3) = -1>2 and 2p>3 belongs to the range 30, p4  of the arccosine 
function. See Figure 1.68b.
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FIGURE 1.66 Graphs of the six basic inverse trigonometric functions.

DEFINITION

y = sin−1 x is the number in 3-p>2, p>24 for which sin y = x.

y = cos−1 x is the number in 30, p4 for which cos y = x.
The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the 
arc length equation s = ru becomes 
s = u, so central angles and the arcs 
they subtend have the same measure. 
If x = sin y, then, in addition to being 
the angle whose sine is x, y is also the 
length of arc on the unit circle that 
subtends an angle whose sine is x. So 
we call y “the arc whose sine is x.”

Arc whose sine is x

Arc whose
cosine is x

x2 + y2 = 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1
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Using the same procedure illustrated in Example 8, we can create the following table of 
common values for the arcsine and arccosine functions.

x sin-1 x cos-1 x

23>2 p>3 p>6
22>2 p>4 p>4

1>2 p>6 p>3
-1>2 -p>6 2p>3

-22>2 -p>4 3p>4
-23>2 -p>3 5p>6

FIGURE 1.68 Values of the arcsine and arccosine functions 
(Example 8).
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FIGURE 1.67 The graphs of (a) y = cos x,
0 … x … p, and (b) its inverse, y = cos-1 x.
The graph of cos-1 x, obtained by reflection 
across the line y = x, is a portion of the curve 
x = cos y.

EXAMPLE 9  During a 240 mi airplane flight from Chicago to St. Louis, after flying 
180 mi the navigator determines that the plane is 12 mi off course, as shown in Figure 
1.69. Find the angle a for a course parallel to the original correct course, the angle b, and 
the drift correction angle c = a + b.

Solution From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 mi, had the plane been flying along the original 
correct course (see Figure 1.69). Knowing the flight distance from Chicago to St. Louis, we 
next calculate the remaining leg of the original course to be 61 mi. Applying the Pythagorean 
theorem again then gives an approximate distance of 62 mi from the position of the plane to 
St. Louis. Finally, from Figure 1.69, we see that 180 sin a = 12 and 62 sin b = 12, so

a = sin-1 12
180

≈ 0.067 radian ≈ 3.8°

b = sin-1 12
62

≈ 0.195 radian ≈ 11.2°

c = a + b ≈ 15°.

Identities Involving Arcsine and Arccosine

As we can see from Figure 1.70, the arccosine of x satisfies the identity

cos-1 x + cos-1(-x) = p, (3)

or

cos-1 (-x) = p - cos-1 x. (4)

Also, we can see from the triangle in Figure 1.71 that for x 7 0,

sin-1 x + cos-1 x = p>2. (5)

Chicago

Plane position
St. Louis

62
61 12

180

179

a

b

c

FIGURE 1.69 Diagram for drift correc-
tion (Example 9), with distances surrounded
to the nearest mile (drawing not to scale).

FIGURE 1.70 cos-1 x and cos-1(-x) are 
supplementary angles (so their sum is p).

x

y

0−x x−1 1

cos–1x

cos–1(−x)
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Equation (5) holds for the other values of x in 3-1, 1] as well, but we cannot conclude this 
from the triangle in Figure 1.71. It is, however, a consequence of Equations (2) and (4) 
(Exercise 76).

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in Sec-
tion 3.9. There we develop additional properties of the inverse trigonometric functions in a 
calculus setting using the identities discussed here.

1
x

cos–1x

sin–1x

FIGURE 1.71 sin-1 x and cos-1 x are 
complementary angles (so their sum is p>2).

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and 
which are not?

1.

x

y

0

y = −3x3

2.

x

y

0−1 1

y = x4 − x2

3. y

x

y = 2 0 x 0

4. y

y = int x

5.

x

y

0

y = 1
x

6.

x

y

y = x1�3

In Exercises 7–10, determine from its graph if the function is one-to-
one.

7. ƒ(x) = e3 - x, x 6 0

3, x Ú 0

8. ƒ(x) = e2x + 6, x … -3

x + 4, x 7 -3

9. ƒ(x) = d 1 - x
2

, x … 0

x
x + 2

, x 7 0

10. ƒ(x) = e2 - x2, x … 1

x2, x 7 1

Graphing Inverse Functions
Each of Exercises 11–16 shows the graph of a function y = ƒ(x).
Copy the graph and draw in the line y = x. Then use symmetry with 
respect to the line y = x to add the graph of ƒ -1 to your sketch. (It is 
not necessary to find a formula for ƒ -1.) Identify the domain and 
range of ƒ -1.

11. 12.

x

y

10

1

y = f (x) = , x ≥ 01
x2 + 1

x

y

10

1
y = f (x) = 1 − , x > 01

x

13. 14.

x

y

0 p
2

p
2−

1

−1

p
2

p
2

−

y = f (x) = sin x,

≤ x ≤

  

p
2

p
2−

y = f (x) = tan x,

< x <

x

y

0 p
2

p
2

−

15. 16.

x

y

0

6

3

f (x) = 6 − 2x,
0 ≤ x ≤ 3

  

x

y

0

1

−1 3

−2

x + 1, −1 ≤ x ≤ 0

−2 + x, 0 < x < 3
f (x) = 2

3

17.  a.  Graph the function ƒ(x) = 21 - x2, 0 … x … 1. What sym-
metry does the graph have?

b. Show that ƒ is its own inverse. (Remember that 2x2 = x if 
x Ú 0.)

18.  a.  Graph the function ƒ(x) = 1>x. What symmetry does the 
graph have?

b. Show that ƒ is its own inverse.

Exercises 1.6
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Formulas for Inverse Functions
Each of Exercises 19–24 gives a formula for a function y = ƒ(x) and 
shows the graphs of ƒ and ƒ -1. Find a formula for ƒ -1 in each case.

19. ƒ(x) = x2 + 1, x Ú 0 20. ƒ(x) = x2, x … 0

x

y

1

10

y = f (x)

y = f –1(x) x

y

1

10

y = f –1(x)

y = f (x)

21. ƒ(x) = x3 - 1 22. ƒ(x) = x2 - 2x + 1, x Ú 1

x

y

1

1−1

−1

y = f (x)

y = f –1(x)

  

x

y

1

10

y = f (x)

y = f –1(x)

23. ƒ(x) = (x + 1)2, x Ú -1 24. ƒ(x) = x2>3, x Ú 0

x

y

0

1

−1

1−1

y = f (x)

y = f –1(x)

  

x

y

0

1

1

y = f –1(x)

y = f (x)

Each of Exercises 25–36 gives a formula for a function y = ƒ(x). In 
each case, find ƒ -1(x) and identify the domain and range of ƒ -1. As a 
check, show that ƒ(ƒ -1(x)) = ƒ -1(ƒ(x)) = x.

25. ƒ(x) = x5 26. ƒ(x) = x4, x Ú 0

27. ƒ(x) = x3 + 1 28. ƒ(x) = (1>2)x - 7>2
29. ƒ(x) = 1>x2, x 7 0 30. ƒ(x) = 1>x3, x ≠ 0

31. ƒ(x) = x + 3
x - 2

32. ƒ(x) = 2x

2x - 3

33. ƒ(x) = x2 - 2x, x … 1 34. ƒ(x) = (2x3 + 1)1>5
  (Hint: Complete the square.)

35. ƒ(x) = x + b
x - 2

, b 7 -2 and constant

36. ƒ(x) = x2 - 2bx, b 7 0 and constant, x … b

Inverses of Lines
37.  a.  Find the inverse of the function ƒ(x) = mx, where m is a con-

stant different from zero.

b. What can you conclude about the inverse of a function 
y = ƒ(x) whose graph is a line through the origin with a non-
zero slope m?

38. Show that the graph of the inverse of ƒ(x) = mx + b, where m
and b are constants and m ≠ 0, is a line with slope 1>m and 
y-intercept -b>m.

39.  a.  Find the inverse of ƒ(x) = x + 1. Graph ƒ and its inverse 
together. Add the line y = x to your sketch, drawing it with 
dashes or dots for contrast.

b. Find the inverse of ƒ(x) = x + b (b constant). How is the 
graph of ƒ -1 related to the graph of ƒ?

c. What can you conclude about the inverses of functions whose 
graphs are lines parallel to the line y = x?

40.  a.  Find the inverse of ƒ(x) = -x + 1. Graph the line 
y = -x + 1 together with the line y = x. At what angle do 
the lines intersect?

b. Find the inverse of ƒ(x) = -x + b (b constant). What angle 
does the line y = -x + b make with the line y = x?

c. What can you conclude about the inverses of functions whose 
graphs are lines perpendicular to the line y = x?

Logarithms and Exponentials
41. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4>9)

c. ln (1>2) d. ln23 9

e. ln 322 f. ln213.5

42. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1>125) b. ln 9.8

c. ln 727 d. ln 1225

e. ln 0.056 f. (ln 35 + ln (1>7))>(ln 25)

Use the properties of logarithms to write the expressions in Exercises 
43 and 44 as a single term.

43. a. ln sin u - ln asin u
5
b b. ln (3x2 - 9x) + ln a 1

3x
b

c. 1
2

ln (4t4) - ln b

44. a. ln sec u + ln cos u b. ln (8x + 4) - 2 ln c

c. 3 ln23 t2 - 1 - ln (t + 1)

Find simpler expressions for the quantities in Exercises 45–48.

45. a. eln 7.2 b. e-ln x2
c. eln x- ln y

46. a. eln (x2+y2) b. e-ln 0.3 c. elnpx- ln 2

47. a. 2 ln2e b. ln (ln ee) c. ln (e-x2-y2
)

48. a. ln (esec u) b. ln (e(ex)) c. ln (e2 ln x)

In Exercises 49–54, solve for y in terms of t or x, as appropriate.

49. ln y = 2t + 4 50. ln y = - t + 5

51. ln (y - b) = 5t 52. ln (c - 2y) = t

53. ln (y - 1) - ln 2 = x + ln x

54. ln (y2 - 1) - ln (y + 1) = ln (sin x)
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In Exercises 55 and 56, solve for k.

55. a. e2k = 4 b. 100e10k = 200 c. ek>1000 = a

56. a. e5k = 1
4

b. 80ek = 1 c. e(ln 0.8)k = 0.8

In Exercises 57–60, solve for t.

57. a. e-0.3t = 27 b. ekt = 1
2

c. e(ln 0.2)t = 0.4

58. a. e-0.01t = 1000 b. ekt = 1
10

c. e(ln 2)t = 1
2

59. e2t = x2 60. e(x2)e(2x+1) = et

Simplify the expressions in Exercises 61–64.

61. a. 5log5 7 b. 8log822 c. 1.3log1.3 75

  d. log4 16 e. log323 f. log4 a14b
62. a. 2log2 3 b. 10log10 (1>2) c. plogp7

  d. log11 121 e. log121 11 f. log3 a19b
63. a. 2log4 x b. 9log3 x c. log2(e(ln 2)(sin x))

64. a. 25log5 (3x2) b. loge(ex) c. log4(2ex sin x)

Express the ratios in Exercises 65 and 66 as ratios of natural loga-
rithms and simplify.

65. a.
log2 x

log3 x
b.

log2 x

log8 x
c.

logx a

logx2 a

66. a.
log9 x

log3 x
b.

log210 x

log22 x
c.

loga b

logb a

Arcsine and Arccosine
In Exercises 67–70, find the exact value of each expression.

67. a. sin-1 a-1
2
b b. sin-1 a 1

22
b c. sin-1 a-23

2
b

68. a. cos-1 a1
2
b b. cos-1 a -1

22
b c. cos-1 a23

2
b

69. a. arccos (-1) b. arccos (0)

70. a. arcsin (-1) b. arcsin a- 1

22
b

Theory and Examples
71. If ƒ(x) is one-to-one, can anything be said about g(x) = -ƒ(x)? Is 

it also one-to-one? Give reasons for your answer.

72. If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said 
about h(x) = 1>ƒ(x)? Is it also one-to-one? Give reasons for your 
answer.

73. Suppose that the range of g lies in the domain of ƒ so that the 
composite ƒ ∘ g is defined. If ƒ and g are one-to-one, can any-
thing be said about ƒ ∘ g? Give reasons for your answer.

74. If a composite ƒ ∘ g is one-to-one, must g be one-to-one? Give 
reasons for your answer.

75. Find a formula for the inverse function ƒ -1 and verify that 
(ƒ ∘ ƒ -1)(x) = (ƒ -1 ∘ ƒ)(x) = x.

a. ƒ(x) = 100
1 + 2-x b. ƒ(x) = 50

1 + 1.1-x

76. The identity sin-1 x + cos-1 x = P>2 Figure 1.71 establishes 
the identity for 0 6 x 6 1. To establish it for the rest of 3-1, 1],
verify by direct calculation that it holds for x = 1, 0, and -1.
Then, for values of x in (-1, 0), let x = -a, a 7 0, and apply 
Eqs. (3) and (5) to the sum sin-1 (-a) + cos-1 (-a).

77. Start with the graph of y = ln x. Find an equation of the graph 
that results from

a. shifting down 3 units.

b. shifting right 1 unit.

c. shifting left 1, up 3 units.

d. shifting down 4, right 2 units.

e. reflecting about the y-axis.

f. reflecting about the line y = x.

78. Start with the graph of y = ln x. Find an equation of the graph 
that results from

a. vertical stretching by a factor of 2.

b. horizontal stretching by a factor of 3.

c. vertical compression by a factor of 4.

d. horizontal compression by a factor of 2.

79. The equation x2 = 2x has three solutions: x = 2, x = 4, and one 
other. Estimate the third solution as accurately as you can by 
graphing.

80. Could xln 2 possibly be the same as 2ln x for x 7 0? Graph the 
two functions and explain what you see.

81. Radioactive decay The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

a. Express the amount of substance remaining as a function of 
time t.

b. When will there be 1 gram remaining?

82. Doubling your money Determine how much time is required 
for a $500 investment to double in value if interest is earned at the 
rate of 4.75% compounded annually.

83. Population growth The population of Glenbrook is 375,000 
and is increasing at the rate of 2.25% per year. Predict when the 
population will be 1 million.

84. Radon-222 The decay equation for radon-222 gas is known to 
be y = y0e-0.18t, with t in days. About how long will it take the 
radon in a sealed sample of air to fall to 90% of its original value?

T

T
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Chapter 1 Questions to Guide Your Review

1. What is a function? What is its domain? Its range? What is an 
arrow diagram for a function? Give examples.

2. What is the graph of a real-valued function of a real variable? 
What is the vertical line test?

3. What is a piecewise-defined function? Give examples.

4. What are the important types of functions frequently encountered 
in calculus? Give an example of each type.

5. What is meant by an increasing function? A decreasing function? 
Give an example of each.

6. What is an even function? An odd function? What symmetry 
properties do the graphs of such functions have? What advantage 
can we take of this? Give an example of a function that is neither 
even nor odd.

7. If ƒ and g are real-valued functions, how are the domains of 
ƒ + g, ƒ - g, ƒg, and ƒ>g related to the domains of ƒ and g?
Give examples.

8. When is it possible to compose one function with another? Give 
examples of composites and their values at various points. Does 
the order in which functions are composed ever matter?

9. How do you change the equation y = ƒ(x) to shift its graph verti-
cally up or down by � k � units? Horizontally to the left or right? 
Give examples.

10. How do you change the equation y = ƒ(x) to compress or stretch 
the graph by a factor c 7 1? Reflect the graph across a coordi-
nate axis? Give examples.

11. What is radian measure? How do you convert from radians to 
degrees? Degrees to radians?

12. Graph the six basic trigonometric functions. What symmetries do 
the graphs have?

13. What is a periodic function? Give examples. What are the periods 
of the six basic trigonometric functions?

14. Starting with the identity sin2 u + cos2 u = 1 and the formulas 
for cos (A + B) and sin (A + B), show how a variety of other 
trigonometric identities may be derived.

15. How does the formula for the general sine function ƒ(x) =
A sin ((2p>B)(x - C)) + D  relate to the shifting, stretching, 
compressing, and reflection of its graph? Give examples. 
Graph the general sine curve and identify the constants A, B,
C, and D.

16. Name three issues that arise when functions are graphed using a 
calculator or computer with graphing software. Give examples.

17. What is an exponential function? Give examples. What laws of 
exponents does it obey? How does it differ from a simple power 
function like ƒ(x) = xn? What kind of real-world phenomena are 
modeled by exponential functions?

18. What is the number e, and how is it defined? What are the domain 
and range of ƒ(x) = ex? What does its graph look like? How do 
the values of ex relate to x2, x3, and so on?

19. What functions have inverses? How do you know if two func-
tions ƒ and g are inverses of one another? Give examples of func-
tions that are (are not) inverses of one another.

20. How are the domains, ranges, and graphs of functions and their 
inverses related? Give an example.

21. What procedure can you sometimes use to express the inverse of 
a function of x as a function of x?

22. What is a logarithmic function? What properties does it satisfy? 
What is the natural logarithm function? What are the domain and 
range of y = ln x? What does its graph look like?

23. How is the graph of loga x related to the graph of ln x? What truth 
is in the statement that there is really only one exponential func-
tion and one logarithmic function?

24. How are the inverse trigonometric functions defined? How can 
you sometimes use right triangles to find values of these func-
tions? Give examples.

Chapter 1 Practice Exercises

Functions and Graphs
1. Express the area and circumference of a circle as functions of the 

circle’s radius. Then express the area as a function of the 
circumference.

2. Express the radius of a sphere as a function of the sphere’s sur-
face area. Then express the surface area as a function of the 
volume.

3. A point P in the first quadrant lies on the parabola y = x2.
Express the coordinates of P as functions of the angle of inclina-
tion of the line joining P to the origin.

4. A hot-air balloon rising straight up from a level field is tracked by 
a range finder located 500 ft from the point of liftoff. Express the 
balloon’s height as a function of the angle the line from the range 
finder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

5. y = x1>5 6. y = x2>5
7. y = x2 - 2x - 1 8. y = e-x2



Chapter 1  Practice Exercises 55

In Exercises 9–16, determine whether the function is even, odd, or 
neither.

9. y = x2 + 1 10. y = x5 - x3 - x

11. y = 1 - cos x 12. y = sec x tan x

13. y = x4 + 1
x3 - 2x

14. y = x - sin x

15. y = x + cos x 16. y = x cos x

17. Suppose that ƒ and g are both odd functions defined on the entire 
real line. Which of the following (where defined) are even? odd?

a. ƒg b. ƒ3 c. ƒ(sin x) d. g(sec x) e. 0 g 0
18. If ƒ(a - x) = ƒ(a + x), show that g(x) = ƒ(x + a) is an even 

function.

In Exercises 19–28, find the (a) domain and (b) range.

19. y = � x � - 2 20. y = -2 + 21 - x

21. y = 216 - x2 22. y = 32-x + 1

23. y = 2e-x - 3 24. y = tan (2x - p)

25. y = 2 sin (3x + p) - 1 26. y = x2>5
27. y = ln (x - 3) + 1 28. y = -1 + 23 2 - x

29. State whether each function is increasing, decreasing, or neither.

a. Volume of a sphere as a function of its radius

b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric 
pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

30. Find the largest interval on which the given function is increasing.

a. ƒ(x) = 0 x - 2 0 + 1 b. ƒ(x) = (x + 1)4

c. g(x) = (3x - 1)1>3 d. R(x) = 22x - 1

Piecewise-Defined Functions
In Exercises 31 and 32, find the (a) domain and (b) range.

31. y = e2-x, -4 … x … 0

2x, 0 6 x … 4

32. y = c -x - 2, -2 … x … -1

x, -1 6 x … 1

-x + 2, 1 6 x … 2

In Exercises 33 and 34, write a piecewise formula for the function.

33.

x

1

10 2

y 34.

x

5
(2, 5)

0 4

y

Composition of Functions
In Exercises 35 and 36, find

a. (ƒ ∘ g) (-1). b. (g ∘ ƒ) (2).

c. (ƒ ∘ ƒ) (x). d. (g ∘ g) (x).

35. ƒ(x) = 1
x, g(x) = 1

2x + 2

36. ƒ(x) = 2 - x, g(x) = 23 x + 1

In Exercises 37 and 38, (a) write formulas for ƒ ∘ g and g ∘ ƒ and find 
the (b) domain and (c) range of each.

37. ƒ(x) = 2 - x2, g(x) = 2x + 2

38. ƒ(x) = 2x, g(x) = 21 - x

For Exercises 39 and 40, sketch the graphs of ƒ and ƒ ∘ ƒ.

39. ƒ(x) = c -x - 2, -4 … x … -1

-1, -1 6 x … 1

x - 2, 1 6 x … 2

40. ƒ(x) = b x + 1, -2 … x 6 0

x - 1, 0 … x … 2

Composition with absolute values In Exercises 41–48, graph ƒ1

and ƒ2 together. Then describe how applying the absolute value func-
tion in ƒ2 affects the graph of ƒ1.

ƒ1(x) ƒ2(x)

41. x 0 x 0
42. x2 0 x 0 2
43. x3 0 x3 0
44. x2 + x 0 x2 + x 0
45. 4 - x2 0 4 - x2 0
46. 1

x
10 x 0

47. 2x 2 0 x 0
48. sin x sin 0 x 0
Shifting and Scaling Graphs
49. Suppose the graph of g is given. Write equations for the graphs 

that are obtained from the graph of g by shifting, scaling, or 
reflecting, as indicated.

a. Up
1
2

 unit, right 3

b. Down 2 units, left 
2
3

c. Reflect about the y-axis

d. Reflect about the x-axis

e. Stretch vertically by a factor of 5

f. Compress horizontally by a factor of 5

50. Describe how each graph is obtained from the graph of y = ƒ(x).

a. y = ƒ(x - 5) b. y = ƒ(4x)

c. y = ƒ(-3x) d. y = ƒ(2x + 1)

e. y = ƒax
3
b - 4 f. y = -3ƒ(x) + 1

4
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In Exercises 51–54, graph each function, not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.15–1.17, and applying an appropriate transformation.

51. y = -A1 + x
2

52. y = 1 - x
3

53. y = 1
2x2 + 1 54. y = (-5x)1>3

Trigonometry
In Exercises 55–58, sketch the graph of the given function. What is 
the period of the function?

55. y = cos 2x 56. y = sin
x
2

57. y = sin px 58. y = cos
px
2

59. Sketch the graph y = 2 cos ax - p
3
b .

60. Sketch the graph y = 1 + sin ax + p
4
b .

In Exercises 61–64, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are a, b, and c, respectively.

61. a. Find a and b if c = 2, B = p>3.

b. Find a and c if b = 2, B = p>3.

62. a. Express a in terms of A and c.

b. Express a in terms of A and b.

63. a. Express a in terms of B and b.

b. Express c in terms of A and a.

64. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

65. Height of a pole Two wires stretch from the top T of a vertical 
pole to points B and C on the ground, where C is 10 m closer to 
the base of the pole than is B. If wire BT makes an angle of 35° 
with the horizontal and wire CT makes an angle of 50° with the 
horizontal, how high is the pole?

66. Height of a weather balloon Observers at positions A and B
2 km apart simultaneously measure the angle of elevation of a 
weather balloon to be 40° and 70°, respectively. If the balloon is 
directly above a point on the line segment between A and B, find 
the height of the balloon.

67. a. Graph the function ƒ(x) = sin x + cos(x>2).

b. What appears to be the period of this function?

c. Confirm your finding in part (b) algebraically.

68. a. Graph ƒ(x) = sin (1>x).

b. What are the domain and range of ƒ?

c. Is ƒ periodic? Give reasons for your answer.

T

T

Transcendental Functions
In Exercises 69–72, find the domain of each function.

69. a. ƒ(x) = 1 + e-sin x b. g(x) = ex + ln 2x

70. a. ƒ(x) = e1>x2
b. g(x) = ln 0 4 - x2 0

71. a. h(x) = sin-1ax
3
b b. ƒ(x) = cos-1 (2x - 1)

72. a. h(x) = ln (cos-1 x) b. ƒ(x) = 2p - sin-1x

73. If ƒ(x) = ln x and g(x) = 4 - x2, find the functions 
ƒ ∘ g, g ∘ ƒ, ƒ ∘ ƒ, g ∘ g, and their domains.

74. Determine whether ƒ is even, odd, or neither.

a. ƒ(x) = e-x2
b. ƒ(x) = 1 + sin-1(-x)

c. ƒ(x) = 0 ex 0 d. ƒ(x) = eln �x� +1

75. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) 
together for 0 6 x … 10. What is going on? Explain.

76. Graph y = ln (x2 + c) for c = -4, -2, 0, 3, and 5. How does the 
graph change when c changes?

77. Graph y = ln � sin x �  in the window 0 … x … 22, -2 … y … 0.
Explain what you see. How could you change the formula to turn 
the arches upside down?

78. Graph the three functions y = xa, y = ax, and y = loga x to-
gether on the same screen for a = 2, 10, and 20. For large values 
of x, which of these functions has the largest values and which 
has the smallest values?

Theory and Examples
In Exercises 79 and 80, find the domain and range of each composite 
function. Then graph the composites on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers and 
comment on any differences you see.

79. a. y = sin-1(sin x) b. y = sin (sin-1 x)

80. a. y = cos-1(cos x) b. y = cos (cos-1 x)

81. Use a graph to decide whether ƒ is one-to-one.

a. ƒ(x) = x3 - x
2

b. ƒ(x) = x3 + x
2

82. Use a graph to find to 3 decimal places the values of x for which 
ex 7 10,000,000.

83. a.  Show that ƒ(x) = x3 and g(x) = 23 x are inverses of one 
another.

b. Graph ƒ and g over an x-interval large enough to show the 
graphs intersecting at (1, 1) and (-1, -1). Be sure the picture 
shows the required symmetry in the line y = x.

84. a.  Show that h(x) = x3>4 and k(x) = (4x)1>3 are inverses of one 
another.

b. Graph h and k over an x-interval large enough to show the 
graphs intersecting at (2, 2) and (-2, -2). Be sure the picture 
shows the required symmetry in the line y = x.

T

T

T

T

T

T

T
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Chapter 1 Additional and Advanced Exercises

Functions and Graphs
1. Are there two functions ƒ and g such that ƒ ∘ g = g ∘ ƒ? Give 

reasons for your answer.

2. Are there two functions ƒ and g with the following property? The 
graphs of ƒ and g are not straight lines but the graph of ƒ ∘ g is a 
straight line. Give reasons for your answer.

3. If ƒ(x) is odd, can anything be said of g(x) = ƒ(x) - 2? What if ƒ
is even instead? Give reasons for your answer.

4. If g(x) is an odd function defined for all values of x, can anything 
be said about g(0)? Give reasons for your answer.

5. Graph the equation 0 x 0 + 0 y 0 = 1 + x.

6. Graph the equation y + � y � = x + � x � .

Derivations and Proofs
7. Prove the following identities.

a.
1 - cos x

sin x
= sin x

1 + cos x
b.

1 - cos x
1 + cos x

= tan2 x
2

8. Explain the following “proof without words” of the law of cosines. 
(Source: Kung, Sidney H., “Proof Without Words:  The Law of 
Cosines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990,  p. 342.)

a a

a

c b

a − c
2a cos u − b

u

9. Show that the area of triangle ABC is given by 
(1>2)ab sin C = (1>2)bc sin A = (1>2)ca sin B.

BA

C

ab

c

10. Show that the area of triangle ABC is given by 
2s(s - a)(s - b)(s - c) where s = (a + b + c)>2 is the 
semiperimeter of the triangle.

11. Show that if ƒ is both even and odd, then ƒ(x) = 0 for every x in 
the domain of ƒ.

12. a.  Even-odd decompositions Let ƒ be a function whose 
domain is symmetric about the origin, that is, -x belongs to 
the domain whenever x does. Show that ƒ is the sum of an 
even function and an odd function:

ƒ(x) = E(x) + O(x),

where E is an even function and O is an odd function. (Hint:
Let E(x) = (ƒ(x) + ƒ(-x))>2. Show that E(-x) = E(x), so 
that E is even. Then show that O(x) = ƒ(x) - E(x) is odd.)

b. Uniqueness Show that there is only one way to write ƒ as 
the sum of an even and an odd function. (Hint: One way is 
given in part (a). If also ƒ(x) = E1(x) + O1(x) where E1 is 
even and O1 is odd, show that E - E1 = O1 - O. Then use 
Exercise 11 to show that E = E1 and O = O1.)

Effects of Parameters on Graphs
13. What happens to the graph of y = ax2 + bx + c as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, a ≠ 0)?

c. c changes (a and b fixed, a ≠ 0)?

14. What happens to the graph of y = a(x + b)3 + c as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, a ≠ 0)?

c. c changes (a and b fixed, a ≠ 0)?

Geometry
15. An object’s center of mass moves at a constant velocity y along a 

straight line past the origin. The accompanying figure shows the 
coordinate system and the line of motion. The dots show posi-
tions that are 1 sec apart. Why are the areas A1, A2, c, A5 in the 
figure all equal? As in Kepler’s equal area law (see Section 13.6), 
the line that joins the object’s center of mass to the origin sweeps 
out equal areas in equal times.
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16.  a.  Find the slope of the line from the origin to the midpoint P of 
side AB in the triangle in the accompanying figure (a, b 7 0).

x

y

P

B(0, b)

A(a, 0)O

b. When is OP perpendicular to AB?

T
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17. Consider the quarter-circle of radius 1 and right triangles ABE
and ACD given in the accompanying figure. Use standard area 
formulas to conclude that

1
2

sin u cos u 6 u
2

6 1
2

sin u
cos u

.

x

y

B

E

C(0, 1)

A (1, 0)
D

1

u

18. Let ƒ(x) = ax + b and g(x) = cx + d. What condition must be 
satisfied by the constants a, b, c, d in order that (ƒ ∘ g)(x) =
(g ∘ ƒ)(x) for every value of x?

Theory and Examples
19. Domain and range Suppose that a ≠ 0, b ≠ 1, and b 7 0.

Determine the domain and range of the function.

a. y = a(bc-x) + d b. y = a logb(x - c) + d

20. Inverse functions Let

ƒ(x) = ax + b
cx + d

, c ≠ 0, ad - bc ≠ 0.

a. Give a convincing argument that ƒ is one-to-one.

b. Find a formula for the inverse of ƒ.

21. Depreciation Smith Hauling purchased an 18-wheel truck for 
$100,000. The truck depreciates at the constant rate of $10,000 
per year for 10 years.

a. Write an expression that gives the value y after x years.

b. When is the value of the truck $55,000?

22. Drug absorption A drug is administered intravenously for 
pain. The function

ƒ(t) = 90 - 52 ln (1 + t), 0 … t … 4

  gives the number of units of the drug remaining in the body after t
hours.

a. What was the initial number of units of the drug administered?

b. How much is present after 2 hours?

c. Draw the graph of ƒ.

23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will 
it take this single payment to grow to $5000?

24. The rule of 70 If you use the approximation ln 2 ≈ 0.70 (in 
place of 0.69314c), you can derive a rule of thumb that says, 
“To estimate how many years it will take an amount of money to 
double when invested at r percent compounded continuously, 
divide r into 70.” For instance, an amount of money invested at 
5% will double in about 70>5 = 14 years. If you want it to dou-
ble in 10 years instead, you have to invest it at 70>10 = 7%.
Show how the rule of 70 is derived. (A similar “rule of 72” uses 
72 instead of 70, because 72 has more integer factors.)

25. For what x 7 0 does x(xx) = (xx)x? Give reasons for your answer.

26. a. If (ln x)>x = (ln 2)>2, must x = 2?

b. If (ln x)>x = -2 ln 2, must x = 1>2?

  Give reasons for your answers.

27. The quotient (log4 x)>(log2 x) has a constant value. What value? 
Give reasons for your answer.

28. logx (2) vs. log2 (x) How does ƒ(x) = logx (2) compare with 
g(x) = log2 (x)? Here is one way to find out.

a. Use the equation loga b = (ln b)>(ln a) to express ƒ(x) and 
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in 
relation to the signs and values of g.

T

T

Chapter 1 Technology Application Projects

An Overview of Mathematica
An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

Mathematica/Maple Module:

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.
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Overview Mathematicians of the seventeenth century were keenly interested in the 
study of motion for objects on or near the earth and the motion of planets and stars. This 
study involved both the speed of the object and its direction of motion at any instant, and 
they knew the direction at a given instant was along a line tangent to the path of motion. 
The concept of a limit is fundamental to finding the velocity of a moving object and the 
tangent to a curve. In this chapter we develop the limit, first intuitively and then formally. 
We use limits to describe the way a function varies. Some functions vary continuously; 
small changes in x produce only small changes in ƒ(x). Other functions can have values 
that jump, vary erratically, or tend to increase or decrease without bound. The notion of 
limit gives a precise way to distinguish between these behaviors.

2.1 rates of Change and Tangents to Curves

Calculus is a tool that helps us understand how a change in one quantity is related to a 
change in another. How does the speed of a falling object change as a function of time? 
How does the level of water in a barrel change as a function of the amount of liquid poured 
into it? We see change occurring in nearly everything we observe in the world and universe, 
and powerful modern instruments help us see more and more. In this section we introduce 
the ideas of average and instantaneous rates of change, and show that they are closely 
related to the slope of a curve at a point P on the curve. We give precise developments of 
these important concepts in the next chapter, but for now we use an informal approach so 
you will see how they lead naturally to the main idea of this chapter, the limit. The idea of 
a limit plays a foundational role throughout calculus.

Average and instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not 
moving) near the surface of the earth and allowed to fall freely will fall a distance proportional 
to the square of the time it has been falling. This type of motion is called free fall. It assumes 
negligible air resistance to slow the object down, and that gravity is the only force acting on 
the falling object. If y denotes the distance fallen in feet after t seconds, then Galileo’s law is

y = 16t2,

where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the 
constant is 4.9.)

A moving object’s average speed during an interval of time is found by dividing the 
distance covered by the time elapsed. The unit of measure is length per unit time: kilome-
ters per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.

Limits and Continuity

2

HISTORICAL BIOGRAPHY*

Galileo Galilei
(1564–1642)

*To learn more about the historical figures mentioned in the text and the development of many major 
elements and topics of calculus, visit www.aw.com/thomas.
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ExamplE 1  A rock breaks loose from the top of a tall cliff. What is its average speed

(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in 
distance, ∆y, divided by the length of the time interval, ∆t. (Increments like ∆y and ∆t 
are reviewed in Appendix 3, and pronounced “delta y” and “delta t.”) Measuring distance 
in feet and time in seconds, we have the following calculations:

 (a) For the first 2 sec:   
∆y
∆t

=
16(2)2 - 16(0)2

2 - 0
= 32 

ft
sec

 (b) From sec 1 to sec 2:  
∆y
∆t

=
16(2)2 - 16(1)2

2 - 1
= 48 

ft
sec 

We want a way to determine the speed of a falling object at a single instant t0, instead of 
using its average speed over an interval of time. To do this, we examine what happens 
when we calculate the average speed over shorter and shorter time intervals starting at t0. 
The next example illustrates this process. Our discussion is informal here, but it will be 
made precise in Chapter 3.

ExamplE 2  Find the speed of the falling rock in Example 1 at t = 1 and t = 2 sec.

Solution We can calculate the average speed of the rock over a time interval 3 t0, t0 + h4 , 
having length ∆t = h, as

 
∆y
∆t

=
16(t0 + h)2 - 16t0 

2

h
. (1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment t0 
by simply substituting h = 0, because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at t0 = 1 and t0 = 2. 
When we do so, by taking smaller and smaller values of h, we see a pattern (Table 2.1).

TAble 2.1 Average speeds over short time intervals 3 t0, t0 + h4

Average speed: 
∆y
∆t

=
16(t0 + h)2 - 16t0 

2

h

Length of  Average speed over Average speed over 
time interval  interval of length h interval of length h 
h starting at t0 = 1 starting at t0 = 2

1 48 80

0.1 33.6 65.6

0.01 32.16 64.16

0.001 32.016 64.016

0.0001 32.0016 64.0016

The average speed on intervals starting at t0 = 1 seems to approach a limiting value 
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed 
of 32 ft > sec at t0 = 1 sec. Let’s confirm this algebraically.
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If we set t0 = 1 and then expand the numerator in Equation (1) and simplify, we find 
that

 
∆y
∆t

=
16(1 + h)2 - 16(1)2

h
=

16(1 + 2h + h2) - 16
h

 = 32h + 16h2

h
= 32 + 16h.

For values of h different from 0, the expressions on the right and left are equivalent and the 
average speed is 32 + 16h ft>sec. We can now see why the average speed has the limiting 
value 32 + 16(0) = 32 ft>sec as h approaches 0.

Similarly, setting t0 = 2 in Equation (1), the procedure yields

∆y
∆t

= 64 + 16h

for values of h different from 0. As h gets closer and closer to 0, the average speed has the 
limiting value 64 ft > sec when t0 = 2 sec, as suggested by Table 2.1. 

The average speed of a falling object is an example of a more general idea which we 
discuss next.

Average rates of Change and Secant Lines

Given any function y = ƒ(x), we calculate the average rate of change of y with respect to 
x over the interval [x1, x2] by dividing the change in the value of y, ∆y = ƒ(x2) - ƒ(x1), 
by the length ∆x = x2 - x1 = h of the interval over which the change occurs. (We use 
the symbol h for ∆x to simplify the notation here and later on.)

DeFiNiTiON The average rate of change of y = ƒ(x) with respect to x over the 
interval [x1, x2] is

∆y
∆x

=
ƒ(x2) - ƒ(x1)

x2 - x1
=

ƒ(x1 + h) - ƒ(x1)
h

,  h ≠ 0.

Geometrically, the rate of change of ƒ over [x1, x2] is the slope of the line through the 
points P(x1, ƒ(x1)) and Q(x2, ƒ(x2)) (Figure 2.1). In geometry, a line joining two points of a 
curve is a secant to the curve. Thus, the average rate of change of ƒ from x1 to x2 is identi-
cal with the slope of secant PQ. Let’s consider what happens as the point Q approaches the 
point P along the curve, so the length h of the interval over which the change occurs 
approaches zero. We will see that this procedure leads to defining the slope of a curve at a 
point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it 
rises or falls—its rate of change as a linear function. But what is meant by the slope of a 
curve at a point P on the curve? If there is a tangent line to the curve at P—a line that just 
touches the curve like the tangent to a circle—it would be reasonable to identify the slope 
of the tangent as the slope of the curve at P. So we need a precise meaning for the tangent 
at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L 
passes through P perpendicular to the radius at P (Figure 2.2). Such a line just touches the 
circle. But what does it mean to say that a line L is tangent to some other curve C at a point P?

P

L

O

Figure 2.2 L is tangent to the  
circle at P if it passes through P  
perpendicular to radius OP.

Figure 2.1 A secant to the graph 
y = ƒ(x). Its slope is ∆y>∆x, the  
average rate of change of ƒ over the  
interval [x1, x2].

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

Δx = h

Δy

x2x1

y = f (x)
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To define tangency for general curves, we need an approach that takes into account 
the behavior of the secants through P and nearby points Q as Q moves toward P along the 
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limiting value of the secant slope as Q approaches P along the curve. 
(We clarify the limit idea in the next section.)

3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the 
curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2. 
The next example illustrates the geometric idea for the tangent to a curve.

Figure 2.3 The tangent to the curve at P is the line through P whose slope is the limit of 
the secant slopes as Q S P from either side.

P

Q
Secants

P

Tangent

Tangent

Q

Secants

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601–1665)

ExamplE 3  Find the slope of the parabola y = x2 at the point P(2, 4). Write an 
equation for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and Q(2 + h, (2 + h)2) nearby. 
We then write an expression for the slope of the secant PQ and investigate what happens to 
the slope as Q approaches P along the curve:

 Secant slope =
∆y
∆x

=
(2 + h)2 - 22

h
= h2 + 4h + 4 - 4

h

 = h2 + 4h
h

= h + 4.

If h 7 0, then Q lies above and to the right of P, as in Figure 2.4. If h 6 0, then Q lies to the 
left of P (not shown). In either case, as Q approaches P along the curve, h approaches zero 
and the secant slope h + 4 approaches 4. We take 4 to be the parabola’s slope at P.

x

y

0 2

NOT TO SCALE

Tangent slope = 4

Δy = (2 + h)2 − 4

y = x2

Q(2 + h, (2 + h)2)

Δx = h

2 + h

P(2, 4)

Secant slope is = h + 4.(2 + h)2 − 4
h

Figure 2.4 Finding the slope of the parabola y = x2 at the point P(2, 4) as 
the limit of secant slopes (Example 3).
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The tangent to the parabola at P is the line through P with slope 4:

 y = 4 + 4(x - 2)  Point-slope equation 

  y = 4x - 4.  

instantaneous rates of Change and Tangent lines

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 are 
called instantaneous rates of change. Instantaneous rates and slopes of tangent lines are 
closely connected, as we see in the following examples.

ExamplE 4  Figure 2.5 shows how a population p of fruit flies (Drosophila) grew 
in a 50-day experiment. The number of flies was counted at regular intervals, the counted 
values plotted with respect to time t, and the points joined by a smooth curve (colored blue 
in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of 
flies increased by 340 - 150 = 190 in 45 - 23 = 22 days. The average rate of change 
of the population from day 23 to day 45 was

Average rate of change: 
∆p
∆t

= 340 - 150
45 - 23

= 190
22

≈ 8.6 flies>day.

t

p

100 20 30 40 50
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100
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200
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P(23, 150)

Q(45, 340)

Δt = 22

Δp = 190

Δt
Δp

≈ 8.6 �ies�day
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Figure 2.5 Growth of a fruit fly population in a controlled 
experiment. The average rate of change over 22 days is the slope 
∆p>∆t of the secant line (Example 4).

This average is the slope of the secant through the points P and Q on the graph in  
Figure 2.5.  

The average rate of change from day 23 to day 45 calculated in Example 4 does not 
tell us how fast the population was changing on day 23 itself. For that we need to examine 
time intervals closer to the day in question.

ExamplE 5  How fast was the number of flies in the population of Example 4 grow-
ing on day 23?

Solution To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by 
calculating the slopes of secants from P to Q, for a sequence of points Q approaching P 
along the curve (Figure 2.6).



64 Chapter 2: Limits and Continuity

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the t-coordinate 
of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher as t 
continued on toward 23. Geometrically, the secants rotate counterclockwise about P and 
seem to approach the red tangent line in the figure. Since the line appears to pass through 
the points (14, 0) and (35, 350), it has slope

350 - 0
35 - 14

= 16.7 flies>day (approximately).

On day 23 the population was increasing at a rate of about 16.7 flies >day. 

The instantaneous rates in Example 2 were found to be the values of the average 
speeds, or average rates of change, as the time interval of length h approached 0. That is, 
the instantaneous rate is the value the average rate approaches as the length h of the inter-
val over which the change occurs approaches zero. The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of the 
tangent line as the independent variable approaches a fixed value. In Example 2, the inde-
pendent variable t approached the values t = 1 and t = 2. In Example 3, the independent 
variable x approached the value x = 2. So we see that instantaneous rates and slopes of 
tangent lines are closely connected. We investigate this connection thoroughly in the next 
chapter, but to do so we need the concept of a limit.
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P(23, 150)

B(35, 350)

Q(45, 340)

 Slope of PQ = �p ,�t  
Q (flies , day)

(45, 340) 
340 - 150
45 - 23

≈ 8.6

(40, 330) 
330 - 150
40 - 23

≈ 10.6

(35, 310) 
310 - 150
35 - 23

≈ 13.3

(30, 265) 
265 - 150
30 - 23

≈ 16.4

Figure 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

Average rates of Change
In Exercises 1–6, find the average rate of change of the function over 
the given interval or intervals.

 1. ƒ(x) = x3 + 1

  a. 32, 34  b. 3-1, 14
 2. g(x) = x2 -  2x

  a. 31, 34  b. 3-2, 44
 3. h(t) = cot t

  a. 3p>4, 3p>44  b. 3p>6, p>24
 4. g(t) = 2 + cos t

  a. 30, p4  b. 3-p, p4

 5. R(u) = 24u + 1; 30, 24
 6. P(u) = u3 - 4u2 + 5u; 31, 24
Slope of a Curve at a Point
In Exercises 7–14, use the method in Example 3 to find (a) the slope 
of the curve at the given point P, and (b) an equation of the tangent 
line at P.

 7. y = x2 - 5, P(2, -1)

 8. y = 7 - x2, P(2, 3)

 9. y = x2 - 2x - 3, P(2, -3)

 10. y = x2 - 4x, P(1, -3)

 11. y = x3, P(2, 8)

exercises 2.1
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  b.  What is the average rate of increase of the profits between 
2012 and 2014?

  c.  Use your graph to estimate the rate at which the profits were 
changing in 2012.

 18. Make a table of values for the function F(x) = (x + 2)>(x - 2) 
at the points x = 1.2, x = 11>10, x = 101>100, x = 1001>1000, 
 x = 10001>10000, and x = 1.

  a.  Find the average rate of change of F(x) over the intervals 
31, x4  for each x ≠ 1 in your table.

  b.  Extending the table if necessary, try to determine the rate of 
change of F(x) at x = 1.

 19. Let g(x) = 2x for x Ú 0.

  a.  Find the average rate of change of g(x) with respect to x over 
the intervals 31, 24 , 31, 1.54  and 31, 1 + h4 .

  b.  Make a table of values of the average rate of change of g with 
respect to x over the interval 31, 1 + h4  for some values of h 
approaching zero, say h = 0.1, 0.01, 0.001, 0.0001, 0.00001, 
and 0.000001.

  c.  What does your table indicate is the rate of change of g(x) 
with respect to x at x = 1?

  d.  Calculate the limit as h approaches zero of the average rate of 
change of g(x) with respect to x over the interval 31, 1 + h4 .

 20. Let ƒ(t) = 1>t for t ≠ 0.

  a.  Find the average rate of change of ƒ with respect to t over the 
intervals (i) from t = 2 to t = 3, and (ii) from t = 2 to t = T.

  b.  Make a table of values of the average rate of change of ƒ with 
respect to t over the interval 32, T4 , for some values of T 
approaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001, 
and 2.000001.

c. What does your table indicate is the rate of change of ƒ with 
respect to t at t = 2?

d. Calculate the limit as T approaches 2 of the average rate of 
change of ƒ with respect to t over the interval from 2 to T. You 
will have to do some algebra before you can substitute T = 2.

 21. The accompanying graph shows the total distance s traveled by a 
bicyclist after t hours.
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a. Estimate the bicyclist’s average speed over the time intervals 
30, 14 , 31, 2.54 , and 32.5, 3.54 .

b. Estimate the bicyclist’s instantaneous speed at the times t = 1
2, 

t = 2, and t = 3.

c. Estimate the bicyclist’s maximum speed and the specific time 
at which it occurs.

T

T

T

 12. y = 2 - x3, P(1, 1)

 13. y = x3 - 12x, P(1, -11)

 14. y = x3 - 3x2 + 4, P(2, 0)

instantaneous rates of Change
 15. Speed of a car The accompanying figure shows the time-to-

distance graph for a sports car accelerating from a standstill.
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  a.  Estimate the slopes of secants PQ1, PQ2, PQ3, and PQ4, 
arranging them in order in a table like the one in Figure 2.6. 
What are the appropriate units for these slopes?

  b. Then estimate the car’s speed at time t = 20 sec.

 16. The accompanying figure shows the plot of distance fallen versus 
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

  a.  Estimate the slopes of the secants PQ1, PQ2, PQ3, and PQ4, 
arranging them in a table like the one in Figure 2.6.

  b. About how fast was the object going when it hit the surface?

t

y

0

20

Elapsed time (sec)

D
is

ta
nc

e 
fa

lle
n 

(m
)

5 10

P

40

60

80

Q1

Q2

Q3

Q4

 17. The profits of a small company for each of the first five years of 
its operation are given in the following table:

Year Profit in $1000s

2010   6
2011  27
2012  62
2013 111
2014 174

  a.  Plot points representing the profit as a function of year, and 
join them by as smooth a curve as you can.

T
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 a. Estimate the average rate of gasoline consumption over the 
time intervals 30, 34 , 30, 54 , and 37, 104 .

 b. Estimate the instantaneous rate of gasoline consumption at 
the times t = 1, t = 4, and t = 8.

 c. Estimate the maximum rate of gasoline consumption and the 
specific time at which it occurs.

 22. The accompanying graph shows the total amount of gasoline A in 
the gas tank of an automobile after being driven for t days.
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2.2 limit of a Function and limit laws

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a 
function or the tangent to a curve. Here we begin with an informal definition of limit and 
show how we can calculate the values of limits. A precise definition is presented in the 
next section.

limits of Function values

Frequently when studying a function y = ƒ(x), we find ourselves interested in the func-
tion’s behavior near a particular point c, but not at c. This might be the case, for instance, 
if c is an irrational number, like p or 22, whose values can only be approximated by 
“close” rational numbers at which we actually evaluate the function instead. Another situ-
ation occurs when trying to evaluate a function at c leads to division by zero, which is 
undefined. We encountered this last circumstance when seeking the instantaneous rate of 
change in y by considering the quotient function ∆y>h for h closer and closer to zero. 
Here’s a specific example in which we explore numerically how a function behaves near a 
particular point at which we cannot directly evaluate the function.

ExamplE 1  How does the function

ƒ(x) = x2 - 1
x - 1

behave near x = 1?

Solution The given formula defines ƒ for all real numbers x except x = 1 (we cannot 
divide by zero). For any x ≠ 1, we can simplify the formula by factoring the numerator 
and canceling common factors:

ƒ(x) =
(x - 1)(x + 1)

x - 1
= x + 1  for  x ≠ 1.

The graph of ƒ is the line y = x + 1 with the point (1, 2) removed. This removed point is 
shown as a “hole” in Figure 2.7. Even though ƒ(1) is not defined, it is clear that we can make 
the value of ƒ(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2). 

HISTORICAL ESSAY

Limits
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y = f (x) = x2 − 1

x − 1

y = x + 1

−1

−1

Figure 2.7 The graph of ƒ is  
identical with the line y = x + 1  
except at x = 1, where ƒ is not  
defined (Example 1).



 2.2  Limit of a Function and Limit Laws 67

Generalizing the idea illustrated in Example 1, suppose ƒ(x) is defined on an open 
interval about c, except possibly at c itself. If ƒ(x) is arbitrarily close to the number L (as 
close to L as we like) for all x sufficiently close to c, we say that ƒ approaches the limit L 
as x approaches c, and write

lim
xSc

 ƒ(x) = L,

which is read “the limit of ƒ(x) as x approaches c is L.” For instance, in Example 1 we 
would say that ƒ(x) approaches the limit 2 as x approaches 1, and write

lim
xS1

 ƒ(x) = 2,  or  lim
xS1

 
x2 - 1
x - 1

= 2.

Essentially, the definition says that the values of ƒ(x) are close to the number L whenever x 
is close to c (on either side of c).

Our definition here is “informal” because phrases like arbitrarily close and sufficiently close 
are imprecise; their meaning depends on the context. (To a machinist manufacturing a piston, 
close may mean within a few thousandths of an inch. To an astronomer studying distant galaxies, 
close may mean within a few thousand light-years.) Nevertheless, the definition is clear enough to 
enable us to recognize and evaluate limits of many specific functions. We will need the precise 
definition given in Section 2.3, however, when we set out to prove theorems about limits or study 
complicated functions. Here are several more examples exploring the idea of limits.

ExamplE 2  The limit value of a function does not depend on how the function  
is defined at the point being approached. Consider the three functions in Figure 2.8. The 
function ƒ has limit 2 as x S 1 even though ƒ is not defined at x = 1. The function g has  
limit 2 as x S 1 even though 2 ≠ g(1). The function h is the only one of the three 
functions in Figure 2.8 whose limit as x S 1 equals its value at x = 1. For h, we have 
limxS1 h(x) = h(1). This equality of limit and function value is of special importance, and 
we return to it in Section 2.5. 

TAble 2.2 As x gets closer to 
1, ƒ(x ) gets closer to 2.

x ƒ(x) = x2−1
x−1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

Figure 2.8 The limits of ƒ(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) 
has the same function value as its limit at x = 1 (Example 2).
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(a)  f (x) = (b)  g(x) =x2 − 1

x − 1

   x ≠ 1

   x = 1

(c)  h(x) = x + 1

ExamplE 3
(a) If ƒ is the identity function ƒ(x) = x, then for any value of c (Figure 2.9a),

lim
xSc

 ƒ(x) = lim
xSc

 x = c.

(b) If ƒ is the constant function ƒ(x) = k (function with the constant value k), then for 
any value of c (Figure 2.9b),

lim
xSc

 ƒ(x) = lim
xSc

 k = k.
Figure 2.9 The functions in  
Example 3 have limits at all points c.

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y = x

c

c

c

y = k



68 Chapter 2: Limits and Continuity

For instances of each of these rules we have

lim
xS3

 x = 3  and  lim
xS-7

 (4) = lim
xS2

 (4) = 4.

We prove these rules in Example 3 in Section 2.3. 

A function may not have a limit at a particular point. Some ways that limits can fail to 
exist are illustrated in Figure 2.10 and described in the next example.

Figure 2.10 None of these functions has a limit as x approaches 0 (Example 4).

x

y

0
x

y

0

1

x

y

0

1

–1

y =
0,   x < 0

1,   x ≥ 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y =
1
x ,  x ≠ 0

0, x = 0

y =
0,         x ≤ 0

1
xsin   ,  x > 0

ExamplE 4  Discuss the behavior of the following functions, explaining why they 
have no limit as x S 0.

(a) U(x) = e0,    x 6 0

1,    x Ú 0

(b) g(x) = •
1
x ,    x ≠ 0

0,    x = 0

(c) ƒ(x) = c 0, x … 0

sin 1x , x 7 0

Solution 
 (a) It jumps: The unit step function U(x) has no limit as x S 0 because its values jump 

at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive 
values of x arbitrarily close to zero, U(x) = 1. There is no single value L approached 
by U(x) as x S 0 (Figure 2.10a).

 (b) It grows too “large” to have a limit: g(x) has no limit as x S 0 because the values of 
g grow arbitrarily large in absolute value as x S 0 and do not stay close to any fixed 
real number (Figure 2.10b). We say the function is not bounded.

 (c) It oscillates too much to have a limit: ƒ(x) has no limit as x S 0 because the func-
tion’s values oscillate between +1 and -1 in every open interval containing 0. The 
values do not stay close to any one number as x S 0 (Figure 2.10c). 
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The limit laws

To calculate limits of functions that are arithmetic combinations of functions having 
known limits, we can use several fundamental rules.

THEOREm 1—limit laws If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L  and  lim
xSc

 g(x) = M, then

1. Sum Rule:  lim
xSc

(ƒ(x) + g(x)) = L + M

2. Difference Rule: lim
xSc

(ƒ(x) - g(x)) = L - M

3. Constant Multiple Rule: lim
xSc

(k # ƒ(x)) = k # L

4. Product Rule:  lim
xSc

(ƒ(x) # g(x)) = L # M

5. Quotient Rule:  lim
xSc

  
ƒ(x)
g(x)

= L
M , M ≠ 0

6. Power Rule:  lim
xSc
3ƒ(x)4 n = L 

n, n a positive integer

7. Root Rule: lim
xSc
2n ƒ(x) = 2n L = L 

1>n, n a positive integer

 (If n is even, we assume that lim
xSc

ƒ(x) = L 7 0.)

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the 
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product 
is the product of the limits; the limit of a quotient is the quotient of the limits (provided 
that the limit of the denominator is not 0); the limit of a positive integer power (or root) of 
a function is the integer power (or root) of the limit (provided that the root of the limit is a 
real number).

It is reasonable that the properties in Theorem 1 are true (although these intuitive 
arguments do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L 
and g(x) is close to M, from our informal definition of a limit. It is then reasonable that 
ƒ(x) + g(x) is close to L + M; ƒ(x) - g(x) is close to L - M; kƒ(x) is close to kL; 
ƒ(x)g(x) is close to LM; and ƒ(x)>g(x) is close to L>M  if M is not zero. We prove the Sum 
Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are proved in Appen-
dix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced 
texts. The Sum, Difference, and Product Rules can be extended to any number of func-
tions, not just two.

ExamplE 5  Use the observations limxSc k = k and limxSc x = c (Example 3) and 
the fundamental rules of limits to find the following limits.

(a) lim
xSc

(x3 + 4x2 - 3)

(b) lim
xSc

 
x4 + x2 - 1

x2 + 5

(c) lim
xS-2

24x2 - 3
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Solution
 (a) lim

xSc
(x3 + 4x2 - 3) = lim

xSc
 x3 + lim

xSc
 4x2 - lim

xSc
 3 Sum and Difference Rules

          = c3 + 4c2 - 3 Power and Multiple Rules

 (b) lim
xSc

 
x4 + x2 - 1

x2 + 5
=

lim
xSc

(x4 + x2 - 1)

lim
xSc

(x2 + 5)
 Quotient Rule

          =
lim
xSc

 x4 + lim
xSc

 x2 - lim
xSc

 1

lim
xSc

 x2 + lim
xSc

 5
 Sum and Difference Rules

          = c4 + c2 - 1
c2 + 5

 Power or Product Rule

 (c) lim
xS  -2

24x2 - 3 = 2 lim
xS  -2

(4x2 - 3) Root Rule with n = 2

         = 2 lim
xS-2

 4x2 - lim
xS-2

 3 Difference Rule

         = 24(-2)2 - 3 Product and Multiple Rules

         = 216 - 3

         = 213 

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions. 
To evaluate the limit of a polynomial function as x approaches c, merely substitute c for x 
in the formula for the function. To evaluate the limit of a rational function as x approaches 
a point c at which the denominator is not zero, substitute c for x in the formula for the 
function. (See Examples 5a and 5b.) We state these results formally as theorems.

THeOreM 2—limits of Polynomials
If P(x) = an xn + an - 1 xn - 1 + g + a0, then

lim
xSc

 P(x) = P(c) = an cn + an - 1 cn - 1 + g + a0.

THeOreM 3—limits of rational Functions
If P(x) and Q(x) are polynomials and Q(c) ≠ 0, then

lim
xSc

  
P(x)
Q(x)

=
P(c)
Q(c)

.

ExamplE 6  The following calculation illustrates Theorems 2 and 3:

 lim
xS

 -1
 
x3 + 4x2 - 3

x2 + 5
=

(-1)3 + 4(-1)2 - 3

(-1)2 + 5
= 0

6
= 0 

eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit 
point c. If the denominator is zero, canceling common factors in the numerator and 
denominator may reduce the fraction to one whose denominator is no longer zero at c. If 
this happens, we can find the limit by substitution in the simplified fraction.

Identifying Common Factors
It can be shown that if Q(x) is a poly-
nomial and Q(c) = 0, then (x - c) is 
a factor of Q(x). Thus, if the numerator 
and denominator of a rational function 
of x are both zero at x = c, they have 
(x - c) as a common factor.
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ExamplE 7  Evaluate

lim
xS1

 
x2 + x - 2

x2 - x
.

Solution We cannot substitute x = 1 because it makes the denominator zero. We test 
the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x - 1) in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the 
same values as the original for x ≠ 1:

x2 + x - 2
x2 - x

=
(x - 1)(x + 2)

x(x - 1)
= x + 2

x ,  if x ≠ 1.

Using the simpler fraction, we find the limit of these values as x S 1 by Theorem 3:

lim
xS1

 
x2 + x - 2

x2 - x
= lim

xS1
 
x + 2

x = 1 + 2
1

= 3.

See Figure 2.11. 

using Calculators and Computers to estimate limits

When we cannot use the Quotient Rule in Theorem 1 because the limit of the denominator 
is zero, we can try using a calculator or computer to guess the limit numerically as x gets 
closer and closer to c. We used this approach in Example 1, but calculators and computers 
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there. Usually the problem is associated with round-
ing errors, as we now illustrate.

ExamplE 8  Estimate the value of lim
xS0

 
2x2 + 100 - 10

x2 .

Solution Table 2.3 lists values of the function obtained on a calculator for several points 
approaching x = 0. As x approaches 0 through the points {1, {0.5, {0.10, and {0.01, 
the function seems to approach the number 0.05.

As we take even smaller values of x, {0.0005, {0.0001, {0.00001, and {0.000001, 
the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next 
example.  

Figure 2.11 The graph of 
ƒ(x) = (x2 + x - 2) > (x2 - x)  in 
part (a) is the same as the graph of 
g(x) = (x + 2)>x in part (b) except 
at x = 1, where ƒ is undefined. The 
functions have the same limit as x S 1 
(Example 7).

x

y

1−2 0

(1, 3)

(b)

3

x

y

10−2

(1, 3)

(a)

3

y = x2 + x − 2
x2 − x

y = x + 2
x

TAble 2.3 Computed values of ƒ(x) = 2x 2 + 100 - 10
x 2

 near x = 0

x ƒ(x)  

{1     0.049876

{0.5     0.049969

{0.1     0.049999

{0.01     0.050000

t  approaches 0.05?

{0.0005 0.050000

{0.0001 0.000000

{0.00001 0.000000

{0.000001 0.000000

t  approaches 0? 



Using a computer or calculator may give ambiguous results, as in the last example. 
The calculator could not keep track of enough digits to avoid rounding errors in computing 
the values of ƒ(x) when x is very small. We cannot substitute x = 0 in the problem, and the 
numerator and denominator have no obvious common factors (as they did in Example 7). 
Sometimes, however, we can create a common factor algebraically.

EXAMPLE 9 Evaluate

lim
xS0

2x2 + 100 - 10
x2 .

Solution This is the limit we considered in Example 8. We can create a common factor 
by multiplying both numerator and denominator by the conjugate radical expression 

2x2 + 100 + 10 (obtained by changing the sign after the square root). The preliminary 
algebra rationalizes the numerator:

2x2 + 100 - 10
x2 = 2x

2 + 100 - 10
x2

# 2x2 + 100 + 10

2x2 + 100 + 10

= x2 + 100 - 100

x2(2x2 + 100 + 10)

= x2

x2(2x2 + 100 + 10)
Common factor x2

= 1

2x2 + 100 + 10
. Cancel x2 for x ≠ 0.

Therefore,

lim
xS0

2x2 + 100 - 10
x2 = lim

xS0

1

2x2 + 100 + 10

= 1

202 + 100 + 10
     

Denominator not 0 at 
x = 0; substitute.

= 1
20

= 0.05.

This calculation provides the correct answer, in contrast to the ambiguous computer 
results in Example 8.

We cannot always algebraically resolve the problem of finding the limit of a quotient 
where the denominator becomes zero. In some cases the limit might then be found with 
the aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4), 
or through methods of calculus (illustrated in Section 4.5). The next theorems give helpful 
tools by using function comparisons.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich 
Theorem because it refers to a function ƒ whose values are sandwiched between the val-
ues of two other functions g and h that have the same limit L at a point c. Being trapped 
between the values of two functions that approach L, the values of ƒ must also approach L
(Figure 2.12). You will find a proof in Appendix 4.

FIGURE 2.12 The graph of ƒ is sand-
wiched between the graphs of g and h.

x

y

0

L

c

h

f

g
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The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

ExamplE 10  Given that

1 - x2

4
… u(x) … 1 + x2

2
  for all x ≠ 0,

find limxS0 u(x), no matter how complicated u is.

Solution Since

lim
xS0

(1 - (x2>4) ) = 1  and  lim
xS0

(1 + (x2>2) ) = 1,

the Sandwich Theorem implies that limxS0 u(x) = 1 (Figure 2.13). 

ExamplE 11  The Sandwich Theorem helps us establish several important limit rules:

(a) lim
uS0

 sin u = 0 (b) lim
uS0

  cos u = 1

(c) For any function ƒ, lim
xSc

 0 ƒ(x) 0 = 0 implies lim
xSc

 ƒ(x) = 0.

Solution
 (a) In Section 1.3 we established that - 0 u 0 … sin u … 0 u 0  for all u (see Figure 2.14a). 

Since limuS0 (- 0 u 0 ) = limuS0 0 u 0 = 0, we have

lim
uS0

 sin u = 0.

 (b) From Section 1.3, 0 … 1 - cos u … 0 u 0  for all u (see Figure 2.14b), and we have 
limuS0 (1 - cos u) = 0 or

lim
uS0

 cos u = 1.

 (c) Since - 0 ƒ(x) 0 … ƒ(x) … 0 ƒ(x) 0  and - 0 ƒ(x) 0  and 0 ƒ(x) 0  have limit 0 as x S c, it  
follows that limxSc ƒ(x) = 0.  

Another important property of limits is given by the next theorem. A proof is given in 
the next section.

THEOREm 4—The Sandwich Theorem Suppose that g(x) … ƒ(x) … h(x) for 
all x in some open interval containing c, except possibly at x = c itself. Suppose 
also that

lim
xSc

 g(x) = lim
xSc

 h(x) = L.

Then limxSc ƒ(x) = L.

Figure 2.13 Any function u(x) 
whose graph lies in the region between 
y = 1 + (x2>2) and y = 1 - (x2>4)  
has limit 1 as x S 0 (Example 10).

x

y

0 1−1

2

1

y = 1 + x2

2

y = 1 − x2

4

y = u(x)

Figure 2.14 The Sandwich Theorem 
confirms the limits in Example 11.

y = 0 u 0

y = −0 u 0

y = sin u  

u

1

−1

−p p

y

(a)

y = 0 u 0

y = 1 − cos u

u

y

(b)

2

2

1

1−1−2 0

Caution The assertion resulting from replacing the less than or equal to (… ) inequality by 
the strict less than (6 ) inequality in Theorem 5 is false. Figure 2.14a shows that for u ≠ 0, 
- 0 u 0 6 sin u 6 0 u 0 . So limuS0 sin u = 0 = limuS0 0 u 0 , not limuS0 sin u 6 limuS0 0 u 0 .

THeOreM 5 If ƒ(x) … g(x) for all x in some open interval containing c, except 
possibly at x = c itself, and the limits of ƒ and g both exist as x approaches c, 
then

lim
xSc

 ƒ(x) … lim
xSc

 g(x).
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limits from graphs
 1. For the function g(x) graphed here, find the following limits or 

explain why they do not exist.

  a. lim
xS1

 g(x) b. lim
xS2

 g(x) c. lim
xS3

 g(x) d. lim
xS2.5

 g(x)

 

3
x

y

2

1

1

y = g(x)

 2. For the function ƒ(t) graphed here, find the following limits or 
explain why they do not exist.

  a. lim
tS  -2

 ƒ(t) b. lim
tS  -1

 ƒ(t) c. lim
tS0

 ƒ(t) d. lim
tS  -0.5

 ƒ(t)

 

t

s

1

10

s = f (t)

−1

−1−2

 3. Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

a. lim
xS0

 ƒ(x) exists.

b. lim
xS0

 ƒ(x) = 0

c. lim
xS0

 ƒ(x) = 1

d. lim
xS1

 ƒ(x) = 1

e. lim
xS1

 ƒ(x) = 0

f. lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

g. lim
xS1

 ƒ(x) does not exist.

 

x

y

21−1

1

−1

y = f (x)

 4. Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

a. lim
xS2

 ƒ(x) does not exist.

b. lim
xS2

 ƒ(x) = 2

c. lim
xS1

 ƒ(x) does not exist.

  d. lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

  e. lim
xSc

 ƒ(x) exists at every point c in (1, 3).

 

x

y

321−1

1

−1

−2

y = f (x)

existence of limits
In Exercises 5 and 6, explain why the limits do not exist.

 5. lim
xS0

  
x
0 x 0  6. lim

xS1
  

1
x - 1

 7. Suppose that a function ƒ(x) is defined for all real values of x 
except x = c. Can anything be said about the existence of 
limxSc ƒ(x)? Give reasons for your answer.

 8. Suppose that a function ƒ(x) is defined for all x in 3-1, 1]. Can 
anything be said about the existence of limxS0 ƒ(x)? Give reasons 
for your answer.

 9. If limxS1 ƒ(x) = 5, must ƒ be defined at x = 1? If it is, must 
ƒ(1) = 5? Can we conclude anything about the values of ƒ at 
x = 1? Explain.

 10. If ƒ(1) = 5, must limxS1 ƒ(x) exist? If it does, then must 
limxS1 ƒ(x) = 5? Can we conclude anything about limxS1 ƒ(x)? 
Explain.

Calculating limits
Find the limits in Exercises 11–22.

 11. lim
xS  -3

 (x2 - 13)  12. lim
xS2

(-x2 + 5x - 2)

 13. lim
tS6

 8(t - 5)(t - 7) 14. lim
xS  -2

(x3 - 2x2 + 4x + 8)

 15. lim
xS2

 
2x + 5
11 - x3 16. lim

sS2>3
 (8 - 3s)(2s - 1)

 17. lim
xS-1>2

 4x(3x + 4)2 18. lim
yS2

  
y + 2

y2 + 5y + 6

 19. lim
yS  -3

 (5 - y)4>3 20. lim
zS4

 2z2 - 10

 21. lim
hS0

 
323h + 1 + 1

 22. lim
hS0

 
25h + 4 - 2

h

Limits of quotients Find the limits in Exercises 23–42.

 23. lim
xS5

 
x - 5

x2 - 25
 24. lim

xS  -3
 

x + 3
x2 + 4x + 3

 25. lim
xS  -5

 
x2 + 3x - 10

x + 5
 26. lim

xS2
  
x2 - 7x + 10

x - 2

 27. lim
tS1

 
t2 + t - 2

t2 - 1
 28. lim

tS  -1
  
t2 + 3t + 2
t2 - t - 2

 29. lim
xS  -2

  
-2x - 4
x3 + 2x2 30. lim

yS0
  

5y3 + 8y2

3y4 - 16y2

exercises 2.2
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 31. lim
xS1

  
x-1 - 1
x - 1

 32. lim
xS0

  
1

x - 1 + 1
x + 1

x

 33. lim
uS1

  
u4 - 1
u3 - 1

 34. lim
yS2

  
y3 - 8
y4 - 16

 35. lim
xS9

 
2x - 3
x - 9

 36. lim
xS4

 
4x - x2

2 - 2x

 37. lim
xS1

 
x - 12x + 3 - 2

 38. lim
xS  -1

 
2x2 + 8 - 3

x + 1

 39. lim
xS2

 
2x2 + 12 - 4

x - 2
 40. lim

xS  -2
 

x + 22x2 + 5 - 3

 41. lim
xS  -3

 
2 - 2x2 - 5

x + 3
 42. lim

xS4
  

4 - x

5 - 2x2 + 9

Limits with trigonometric functions Find the limits in Exercises 
43–50.

 43. lim
xS0

 (2 sin x - 1) 44. lim
xSp>4

 sin2 x

 45. lim
xS0

 sec x 46. lim
xSp>3

 tan x

 47. lim
xS0

 
1 + x + sin x

3 cos x
 48. lim

xS0
 (x2 - 1)(2 - cos x)

 49. lim
xS  -p

 2x + 4 cos (x + p) 50. lim
xS0

 27 + sec2 x

using limit rules
 51. Suppose limxS0 ƒ(x) = 1 and limxS0 g(x) = -5. Name the  

rules in Theorem 1 that are used to accomplish steps (a), (b), and 
(c) of the following calculation.

lim
xS0

  
2ƒ(x) - g(x)

(ƒ(x) + 7)2>3 =
lim
xS0

 (2ƒ(x) - g(x))

lim
xS0

 (ƒ(x) + 7)2>3  (a)

=
lim
xS0

 2ƒ(x) - lim
xS0

 g(x)

a lim
xS0

 (ƒ(x) + 7)b
2>3  (b)

=
2 lim

xS0
 ƒ(x) - lim

xS0
 g(x)

a lim
xS0

 ƒ(x) + lim
xS0

 7b
2>3 (c)

=
(2)(1) - (-5)

(1 + 7)2>3 = 7
4

 52. Let limxS1 h(x) = 5, limxS1 p(x) = 1, and limxS1 r(x) = 2. 
Name the rules in Theorem 1 that are used to accomplish steps 
(a), (b), and (c) of the following calculation.

lim
xS1 

 
25h(x)

p(x)(4 - r(x))
=

lim
xS1
25h(x)

lim
xS1

 (p(x)(4 - r(x)))
 (a)

=
4lim

xS1
 5h(x)

a lim
xS1

 p(x)b a lim
xS1

 (4 - r(x))b
 (b)

=
45lim

xS1
 h(x)

a lim
xS1

 p(x)b a lim
xS1

 4 - lim
xS1

 r(x)b
 (c)

=
2(5)(5)

(1)(4 - 2)
= 5

2

 53. Suppose limxSc ƒ(x) = 5 and limxSc g(x) = -2. Find
a. lim

xSc
 ƒ(x)g(x) b. lim

xSc
 2ƒ(x)g(x)

c. lim
xSc

 (ƒ(x) + 3g(x)) d. lim
xSc

  
ƒ(x)

ƒ(x) - g(x)

 54. Suppose limxS4 ƒ(x) = 0 and limxS4 g(x) = -3. Find

a. lim
xS4

 (g(x) + 3) b. lim
xS4

 xƒ(x)

c. lim
xS4

 (g(x))2 d. lim
xS4

  
g(x)

ƒ(x) - 1

 55. Suppose limxSb ƒ(x) = 7 and limxSb g(x) = -3. Find

a. lim
xSb

 (ƒ(x) + g(x)) b. lim
xSb

 ƒ(x) # g(x)

c. lim
xSb

 4g(x) d. lim
xSb

 ƒ(x)>g(x)

 56. Suppose that limxS  -2  p(x) = 4, limxS  -2  r(x) = 0, and 
limxS  -2 s(x) = -3. Find

a. lim
xS  -2

 (p(x) + r(x) + s(x))

b. lim
xS  -2

  p(x) # r(x) # s(x)

c. lim
xS  -2

(-4p(x) + 5r(x))>s(x)

limits of Average rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

lim
hS0

 
ƒ(x + h) - ƒ(x)

h

occur frequently in calculus. In Exercises 57–62, evaluate this limit 
for the given value of x and function ƒ.

 57. ƒ(x) = x2, x = 1

 58. ƒ(x) = x2, x = -2

 59. ƒ(x) = 3x - 4, x = 2

 60. ƒ(x) = 1>x, x = -2

 61. ƒ(x) = 2x, x = 7

 62. ƒ(x) = 23x + 1, x = 0

using the Sandwich Theorem

 63. If 25 - 2x2 … ƒ(x) … 25 - x2 for -1 … x … 1, find  
limxS0 ƒ(x).

 64. If 2 - x2 … g(x) … 2 cos x for all x, find limxS0 g(x).

 65. a.  It can be shown that the inequalities

1 - x2

6
6 x sin x

2 - 2 cos x
6 1

     hold for all values of x close to zero. What, if anything, does 
this tell you about

lim
xS0

  
x sin x

2 - 2 cos x
 ?

    Give reasons for your answer.

  b.  Graph y = 1 - (x2>6), y = (x sin x)>(2 - 2 cos x), and 
y = 1 together for -2 … x … 2. Comment on the behavior 
of the graphs as x S 0.

T
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 66. a. Suppose that the inequalities

1
2

- x2

24
6 1 - cos x

x2 6 1
2

     hold for values of x close to zero. (They do, as you will see in 
Section 9.9.) What, if anything, does this tell you about

lim
xS0

 
1 - cos x

x2  ?

    Give reasons for your answer.

  b.  Graph the equations y = (1>2) - (x2>24),
y = (1 - cos x)>x2, and y = 1>2 together for -2 … x … 2. 
Comment on the behavior of the graphs as x S 0.

estimating limits
You will find a graphing calculator useful for Exercises 67–76.

 67. Let ƒ(x) = (x2 - 9)>(x + 3).

a.  Make a table of the values of ƒ at the points x = -3.1, 
-3.01, -3.001, and so on as far as your calculator can go. 
Then estimate limxS  -3 ƒ(x). What estimate do you arrive at 
if you evaluate ƒ at x = -2.9, -2.99, -2.999,c instead?

b.  Support your conclusions in part (a) by graphing ƒ near 
c = -3 and using Zoom and Trace to estimate y-values on 
the graph as x S  -3.

c.  Find limxS  -3 ƒ(x) algebraically, as in Example 7.

 68. Let g(x) = (x2 - 2) >(x - 22).

a.  Make a table of the values of g at the points x = 1.4, 1.41, 
1.414, and so on through successive decimal approximations 
of 22. Estimate limxS22  g(x).

b.  Support your conclusion in part (a) by graphing g near 
c = 22 and using Zoom and Trace to estimate y-values on 
the graph as x S 22.

c.  Find limxS22  g(x) algebraically.

 69. Let G(x) = (x + 6)> (x2 + 4x - 12).

a.  Make a table of the values of G at x = -5.9, -5.99, -5.999, 
and so on. Then estimate limxS  -6 G(x). What estimate do 
you arrive at if you evaluate G at x = -6.1, -6.01, 
-6.001, cinstead?

b.  Support your conclusions in part (a) by graphing G and using 
Zoom and Trace to estimate y-values on the graph as 
x S  -6.

c.  Find limxS  -6 G(x) algebraically.

 70. Let h(x) = (x2 - 2x - 3) > (x2 - 4x + 3).

a.  Make a table of the values of h at x = 2.9, 2.99, 2.999, and 
so on. Then estimate limxS3 h(x). What estimate do you 
arrive at if you evaluate h at x = 3.1, 3.01, 3.001,c  
instead?

b.  Support your conclusions in part (a) by graphing h near 
c = 3 and using Zoom and Trace to estimate y-values on the 
graph as x S 3.

c.  Find limxS3 h(x) algebraically.

 71. Let ƒ(x) = (x2 - 1) > ( 0 x 0 - 1).

a.  Make tables of the values of ƒ at values of x that approach 
c = -1 from above and below. Then estimate limxS  -1 ƒ(x).

T

T

b. Support your conclusion in part (a) by graphing ƒ near 
c = -1 and using Zoom and Trace to estimate y-values on 
the graph as x S  -1.

c. Find limxS  -1 ƒ(x) algebraically.

 72. Let F(x) = (x2 + 3x + 2) > (2 - 0 x 0 ).

a. Make tables of values of F at values of x that approach 
c = -2 from above and below. Then estimate limxS  -2 F(x).

b. Support your conclusion in part (a) by graphing F near 
c = -2 and using Zoom and Trace to estimate y-values on 
the graph as x S  -2.

c. Find limxS  -2 F(x) algebraically.

 73. Let g(u) = (sin u)>u.

a. Make a table of the values of g at values of u that approach 
u0 = 0 from above and below. Then estimate limuS0 g(u).

b. Support your conclusion in part (a) by graphing g near 
u0 = 0.

 74. Let G(t) = (1 - cos t)>t2.

a. Make tables of values of G at values of t that approach t0 = 0 
from above and below. Then estimate limtS0 G(t).

b. Support your conclusion in part (a) by graphing G near 
t0 = 0.

 75. Let ƒ(x) = x1>(1 - x).

a. Make tables of values of ƒ at values of x that approach c = 1 
from above and below. Does ƒ appear to have a limit as 
x S 1? If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near c = 1.

 76. Let ƒ(x) = (3x - 1)>x.

a. Make tables of values of ƒ at values of x that approach c = 0 
from above and below. Does ƒ appear to have a limit as 
x S 0? If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near c = 0.

Theory and examples
 77. If x4 … ƒ(x) … x2 for x in 3-1, 14  and x2 … ƒ(x) … x4 for 

x 6 -1 and x 7 1, at what points c do you automatically know 
limxSc ƒ(x)? What can you say about the value of the limit at 
these points?

 78. Suppose that g(x) … ƒ(x) … h(x) for all x ≠ 2 and suppose that

lim
xS2

 g(x) = lim
xS2

 h(x) = -5.

  Can we conclude anything about the values of ƒ, g, and h at 
x = 2? Could ƒ(2) = 0? Could limxS2 ƒ(x) = 0? Give reasons 
for your answers.

 79. If lim
xS4

 
ƒ(x) - 5

x - 2
= 1, find lim

xS4
 ƒ(x).

 80. If lim
xS  -2

 
ƒ(x)

x2 = 1, find

  a. lim
xS  -2

 ƒ(x) b. lim
xS  -2

 
ƒ(x)

x

 81. a. If lim
xS2

 
ƒ(x) - 5

x - 2
= 3, find lim

xS2
 ƒ(x).

  b. If lim
xS2

 
ƒ(x) - 5

x - 2
= 4, find lim

xS2
 ƒ(x).
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 82. If lim
xS0

 
ƒ(x)

x2 = 1, find

a. lim
xS0

 ƒ(x)

b. lim
xS0

 
ƒ(x)

x

 83. a.  Graph g(x) = x sin (1>x) to estimate limxS0 g(x), zooming in 
on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

 84. a.  Graph h(x) = x2 cos (1>x3) to estimate limxS0 h(x), zooming 
in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

COMPuTer eXPlOrATiONS

graphical estimates of limits
In Exercises 85–90, use a CAS to perform the following steps:

  a. Plot the function near the point c being approached.

  b. From your plot guess the value of the limit.

T

T

 85. lim
xS2

  
x4 - 16
x - 2

 86. lim
xS  -1

  
x3 - x2 - 5x - 3

(x + 1)2

 87. lim
xS0

  
23 1 + x - 1

x

 88. lim
xS3

  
x2 - 92x2 + 7 - 4

 89. lim
xS0

  
1 - cos x

x sin x

 90. lim
xS0

  
2x2

3 - 3 cos x

 2.3 The Precise Definition of a limit

We now turn our attention to the precise definition of a limit. We replace vague phrases 
like “gets arbitrarily close to” in the informal definition with specific conditions that can 
be applied to any particular example. With a precise definition, we can avoid misunder-
standings, prove the limit properties given in the preceding section, and establish many 
important limits.

To show that the limit of ƒ(x) as x S c equals the number L, we need to show that the 
gap between ƒ(x) and L can be made “as small as we choose” if x is kept “close enough” 
to c. Let us see what this would require if we specified the size of the gap between ƒ(x) 
and L.

ExamplE 1  Consider the function y = 2x - 1 near x = 4. Intuitively it appears 
that y is close to 7 when x is close to 4, so limxS4 (2x - 1) = 7. However, how close to 
x = 4 does x have to be so that y = 2x - 1 differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is 0 y - 7 0 6 2? To find the answer we 
first express 0 y - 7 0  in terms of x:

0 y - 7 0 = 0 (2x - 1) - 7 0 = 0 2x - 8 0 .
The question then becomes: what values of x satisfy the inequality 0 2x - 8 0 6 2? To find 
out, we solve the inequality:

0 2x - 8 0 6 2

-2 6 2x - 8 6 2

6 6 2x 6 10

3 6 x 6 5 Solve for x.

-1 6 x - 4 6 1. Solve for x - 4.

Keeping x within 1 unit of x = 4 will keep y within 2 units of y = 7 (Figure 2.15). 

Figure 2.15 Keeping x within 1 unit 
of x = 4 will keep y within 2 units of 
y = 7 (Example 1).

x

y

0

5

3 54

7

9
To satisfy
this

Restrict
to this

Lower bound:
y = 5

Upper bound:
y = 9

y = 2x − 1
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In the previous example we determined how close x must be to a particular value c to 
ensure that the outputs ƒ(x) of some function lie within a prescribed interval about a limit 
value L. To show that the limit of ƒ(x) as x S c actually equals L, we must be able to show 
that the gap between ƒ(x) and L can be made less than any prescribed error, no matter how 
small, by holding x close enough to c.

Definition of limit

Suppose we are watching the values of a function ƒ(x) as x approaches c (without taking 
on the value of c itself). Certainly we want to be able to say that ƒ(x) stays within one-
tenth of a unit from L as soon as x stays within some distance d of c (Figure 2.16). But that 
in itself is not enough, because as x continues on its course toward c, what is to prevent 
ƒ(x) from jittering about within the interval from L - (1>10) to L + (1>10) without 
tending toward L?

We can be told that the error can be no more than 1>100 or 1>1000 or 1>100,000. 
Each time, we find a new d@interval about c so that keeping x within that interval satisfies 
the new error tolerance. And each time the possibility exists that ƒ(x) jitters away from L 
at some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel 
between a skeptic and a scholar. The skeptic presents P@challenges to prove that the limit 
does not exist or, more precisely, that there is room for doubt. The scholar answers every 
challenge with a d@interval around c that keeps the function values within P of L.

How do we stop this seemingly endless series of challenges and responses? We can  
do so by proving that for every error tolerance P that the challenger can produce, we can 
present a matching distance d that keeps x “close enough” to c to keep ƒ(x) within that  
P@tolerance of L (Figure 2.17). This leads us to the precise definition of a limit.

Figure 2.16 How should we define 
d 7 0 so that keeping x within the interval 
(c - d, c + d) will keep ƒ(x) within the 

interval aL - 1
10

, L + 1
10
b?

0

L

x
dd

x

y

c − d c c + d

f (x)

for all x ≠ c
in here

f (x) lies
in here

L + 1
10

L −
1
10

x

y

0

L

x
dd

f (x) lies
in here

for all x ≠ c
in here

L − P

L + P

f (x)

c − d c c + d

Figure 2.17 The relation of d and P 
in the definition of limit.

DeFiNiTiON Let ƒ(x) be defined on an open interval about c, except possibly at c 
itself. We say that the limit of ƒ(x)  as x approaches c is the number L, and write

lim
xSc

 ƒ(x) = L,

if, for every number P 7 0, there exists a corresponding number d 7 0 such 
that for all x,

0 6 0 x - c 0 6 d  1   0 ƒ(x) - L 0 6 P.

One way to think about the definition is to suppose we are machining a generator 
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must 
be satisfied with a diameter ƒ(x) somewhere between L - P and L + P. The d is the mea-
sure of how accurate our control setting for x must be to guarantee this degree of accuracy 
in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we may 
have to adjust d. That is, the value of d, how tight our control setting must be, depends on 
the value of P, the error tolerance.

examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it 
enables us to verify that a conjectured limit value is correct. The following examples show 
how the definition can be used to verify limit statements for specific functions. However, 
the real purpose of the definition is not to do calculations like this, but rather to prove gen-
eral theorems so that the calculation of specific limits can be simplified, such as the theo-
rems stated in the previous section.
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ExamplE 2  Show that

lim
xS1

 (5x - 3) = 2.

Solution Set c = 1, ƒ(x) = 5x - 3, and L = 2 in the definition of limit. For any given 
P 7 0, we have to find a suitable d 7 0 so that if x ≠ 1 and x is within distance d of 
c = 1, that is, whenever

0 6 0 x - 1 0 6 d,

it is true that ƒ(x) is within distance P of L = 2, so

0 ƒ(x) - 2 0 6 P.

y

x

L

L + 1
10

L −
1
10

0

y = f (x)

c

The challenge:

     Make 0  f (x) − L 0  < P = 1
10

y

x

L

L + 1
10

L −
1
10

0

y = f (x)

c
c − d1/10 c + d1/10

Response:

      0  x − c 0  < d1/10 (a number)

y

x

L

L + 1
100

L −
1

100

0

y = f (x)

c

New challenge:

     Make 0 f (x) − L 0  < P = 1
100

y

x

L

L + 1
100

L −
1

100

0

y = f (x)

c
c − d1/100 c + d1/100

Response:

      0 x − c 0  < d1/100

y

x

L

L + 1
1000

L −
1

1000

0

y = f (x)

c

New challenge:

   P = 1
1000

y

x

L

L + 1
1000

L + P

L − P

L −
1

1000

0

y = f (x)

c

Response:

      0  x − c 0  < d1/1000

y

x

L
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100,000
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1

100,000

0

y = f (x)

c
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1

100,000
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y

x
0
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c
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y

L
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c
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We find d by working backward from the P@inequality:

 0 (5x - 3) - 2 0 = 0 5x - 5 0 6 P
 5 0 x - 1 0 6 P
 0 x - 1 0 6 P>5.

Thus, we can take d = P>5 (Figure 2.18). If 0 6 0 x - 1 0 6 d = P>5, then

0 (5x - 3) - 2 0 = 0 5x - 5 0 = 5 0 x - 1 0 6 5(P>5) = P,

which proves that limxS1(5x - 3) = 2.
The value of d = P>5 is not the only value that will make 0 6 0 x - 1 0 6 d imply 

0 5x - 5 0 6 P. Any smaller positive d will do as well. The definition does not ask for a 
“best” positive d, just one that will work. 

ExamplE 3  Prove the following results presented graphically in Section 2.2.

(a) lim
xSc

 x = c

 (b) lim
xSc

 k = k (k constant)

Solution 
 (a) Let P 7 0 be given. We must find d 7 0 such that for all x

0 6 0 x - c 0 6 d  implies  0 x - c 0 6 P.

  The implication will hold if d equals P or any smaller positive number (Figure 2.19). 
This proves that limxSc x = c.

 (b) Let P 7 0 be given. We must find d 7 0 such that for all x

0 6 0 x - c 0 6 d  implies  0 k - k 0 6 P.

  Since k - k = 0, we can use any positive number for d and the implication will hold 
(Figure 2.20). This proves that limxSc k = k. 

Finding Deltas Algebraically for given epsilons

In Examples 2 and 3, the interval of values about c for which 0 ƒ(x) - L 0  was less than P 
was symmetric about c and we could take d to be half the length of that interval. When 
such symmetry is absent, as it usually is, we can take d to be the distance from c to the 
interval’s nearer endpoint.

ExamplE 4  For the limit limxS52x - 1 = 2, find a d 7 0 that works for P = 1. 
That is, find a d 7 0 such that for all x

0 6 0 x - 5 0 6 d  1  02x - 1 - 2 0 6 1.

Solution We organize the search into two steps.

 1. Solve the inequality 02x - 1 - 2 0 6 1 to find an interval containing x = 5 on 
which the inequality holds for all x ≠ 5.

02x - 1 - 2 0 6 1

-1 6 2x - 1 - 2 6 1

1 6 2x - 1 6 3

1 6 x - 1 6 9

2 6 x 6 10

Figure 2.18 If ƒ(x) = 5x - 3, then 
0 6 0 x - 1 0 6 P>5 guarantees that 
0 ƒ(x) - 2 0 6 P (Example 2).

x

y

0

2

1

2 − P

2 + P

y = 5x − 3

1 −
5
P 1 +

5
P

−3

NOT TO SCALE

c − P

c − d

c + d

c + P

c

0 c − d c + dc
x

y

y = x

Figure 2.19 For the function 
ƒ(x) = x, we find that 0 6 0 x - c 0 6 d 
will guarantee 0 ƒ(x) - c 0 6 P whenever 
d … P (Example 3a).

k − P

k + P
k

0 c − d c + dc
x

y

y = k

Figure 2.20 For the function 
ƒ(x) = k, we find that 0 ƒ(x) - k 0 6 P  
for any positive d (Example 3b).
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  The inequality holds for all x in the open interval (2, 10), so it holds for all x ≠ 5 in 
this interval as well.

 2. Find a value of d 7 0 to place the centered interval 5 - d 6 x 6 5 + d (centered 
at x = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of  
(2, 10) is 3 (Figure 2.21). If we take d = 3 or any smaller positive number, then the 
inequality 0 6 0 x - 5 0 6 d will automatically place x between 2 and 10 to make 

  02x - 1 - 2 0 6 1 (Figure 2.22):

 0 6 0 x - 5 0 6 3  1  02x - 1 - 2 0 6 1. 

Figure 2.21 An open interval of ra-
dius 3 about x = 5 will lie inside the open 
interval (2, 10).

x
102 8

3

5

3
( )

x

y

0 1 2 5 8 10

1

2

3

3 3

y = "x − 1

NOT TO SCALE

Figure 2.22 The function and inter-
vals in Example 4.

How to Find Algebraically a D for a Given ƒ, L, c, and E + 0

The process of finding a d 7 0 such that for all x

0 6 0 x - c 0 6 d  1  0 ƒ(x) - L 0 6 P

can be accomplished in two steps.

1.  Solve the inequality 0 ƒ(x) - L 0 6 P to find an open interval (a, b) contain-
ing c on which the inequality holds for all x ≠ c.

2.  Find a value of d 7 0 that places the open interval (c - d, c + d) centered 
at c inside the interval (a, b). The inequality 0 ƒ(x) - L 0 6 P will hold for all 
x ≠ c in this d@interval.

ExamplE 5  Prove that limxS2 ƒ(x) = 4 if

ƒ(x) = e x2, x ≠ 2

1, x = 2.

Solution Our task is to show that given P 7 0 there exists a d 7 0 such that for all x

0 6 0 x - 2 0 6 d  1  0 ƒ(x) - 4 0 6 P.

 1. Solve the inequality 0 ƒ(x) - 4 0 6 P to find an open interval containing x = 2 on 
which the inequality holds for all x ≠ 2.

  For x ≠ c = 2, we have ƒ(x) = x2, and the inequality to solve is 0 x2 - 4 0 6 P:

0 x2 - 4 0 6 P
-P 6 x2 - 4 6 P

4 - P 6 x2 6 4 + P24 - P 6 0 x 0 6 24 + P  Assumes P 6 4; see below.24 - P 6 x 6 24 + P.   
An open interval about x = 2 
that solves the inequality

  The inequality 0 ƒ(x) - 4 0 6 P holds for all x ≠ 2 in the open interval (24 - P, 24 + P )  (Figure 2.23).

 2. Find a value of d 7 0 that places the centered interval (2 - d, 2 + d) inside the 
  interval (24 - P, 24 + P ).

  Take d to be the distance from x = 2 to the nearer endpoint of (24 - P, 24 + P ). 

In other words, take d = min 52 - 24 - P, 24 + P - 26 , the minimum (the 

0

4

4 − P

4 + P

(2, 1)

(2, 4)

2
x

y

"4 − P "4 + P

y = x2

Figure 2.23 An interval containing 
x = 2 so that the function in Example 5 
satisfies 0 ƒ(x) - 4 0 6 P.



82 Chapter 2: Limits and Continuity

smaller) of the two numbers 2 - 24 - P and 24 + P - 2. If d has this or any 
smaller positive value, the inequality 0 6 0 x - 2 0 6 d will automatically place x 
between 24 - P and 24 + P to make 0 ƒ(x) - 4 0 6 P. For all x,

0 6 0 x - 2 0 6 d  1  0 ƒ(x) - 4 0 6 P.

  This completes the proof for P 6 4.
    If P Ú 4, then we take d to be the distance from x = 2 to the nearer endpoint of 
  the interval (0, 24 + P ) . In other words, take d = min 52, 24 + P - 26 . (See 

Figure 2.23.) 

using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as 
those in the preceding examples. Rather, we appeal to general theorems about limits, in 
particular the theorems of Section 2.2. The definition is used to prove these theorems 
(Appendix 5). As an example, we prove part 1 of Theorem 1, the Sum Rule.

ExamplE 6  Given that limxSc ƒ(x) = L and limxSc g(x) = M, prove that

lim
xSc

 (ƒ(x) + g(x)) = L + M.

Solution Let P 7 0 be given. We want to find a positive number d such that for all x

0 6 0 x - c 0 6 d  1  0 ƒ(x) + g(x) - (L + M) 0 6 P.

Regrouping terms, we get

0 ƒ(x) + g(x) - (L + M) 0 = 0 (ƒ(x) - L) + (g(x) - M) 0   Triangle Inequality: 
0 a + b 0 … 0 a 0 + 0 b 0… 0 ƒ(x) - L 0 + 0 g(x) - M 0 .

Since limxSc ƒ(x) = L, there exists a number d1 7 0 such that for all x

0 6 0 x - c 0 6 d1  1  0 ƒ(x) - L 0 6 P>2.

Similarly, since limxSc g(x) = M, there exists a number d2 7 0 such that for all x

0 6 0 x - c 0 6 d2  1  0 g(x) - M 0 6 P>2.

Let d = min 5d1, d26 , the smaller of d1 and d2. If 0 6 0 x - c 0 6 d then 0 x - c 0 6 d1, 
so 0 ƒ(x) - L 0 6 P>2, and 0 x - c 0 6 d2, so 0 g(x) - M 0 6 P>2. Therefore

0 ƒ(x) + g(x) - (L + M) 0 6 P
2

+ P
2

= P.

This shows that limxSc (ƒ(x) + g(x)) = L + M. 

Next we prove Theorem 5 of Section 2.2.

ExamplE 7  Given that limxSc ƒ(x) = L and limxSc g(x) = M, and that ƒ(x) … g(x) 
for all x in an open interval containing c (except possibly c itself), prove that L … M.

Solution We use the method of proof by contradiction. Suppose, on the contrary, that 
L 7 M. Then by the limit of a difference property in Theorem 1,

lim
xSc

 (g(x) - ƒ(x)) = M - L.
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Therefore, for any P 7 0, there exists d 7 0 such that

0 (g(x) - ƒ(x)) - (M - L) 0 6 P  whenever 0 6 0 x - c 0 6 d.

Since L - M 7 0 by hypothesis, we take P = L - M  in particular and we have a num-
ber d 7 0 such that

0 (g(x) - ƒ(x)) - (M - L) 0 6 L - M  whenever 0 6 0 x - c 0 6 d.

Since a … 0 a 0  for any number a, we have

(g(x) - ƒ(x)) - (M - L) 6 L - M  whenever 0 6 0 x - c 0 6 d

which simplifies to

g(x) 6 ƒ(x)  whenever 0 6 0 x - c 0 6 d.

But this contradicts ƒ(x) … g(x). Thus the inequality L 7 M  must be false. Therefore 
L … M.  

Centering intervals About a Point
In Exercises 1–6, sketch the interval (a, b) on the x-axis with the  
point c inside. Then find a value of d 7 0 such that for all 
x, 0 6 0 x - c 0 6 d 1  a 6 x 6 b.

 1. a = 1, b = 7, c = 5

 2. a = 1, b = 7, c = 2

 3. a = -7>2, b = -1>2, c = -3

 4. a = -7>2, b = -1>2, c = -3>2
 5. a = 4>9, b = 4>7, c = 1>2
 6. a = 2.7591, b = 3.2391, c = 3

Finding Deltas graphically
In Exercises 7–14, use the graphs to find a d 7 0 such that for all x 

0 6 0 x - c 0 6 d 1  0 ƒ(x) - L 0 6 P.

 7.    8. 

x

y

0

6.2
6

5.8

5
5.14.9

y = 2x − 4

f (x) = 2x − 4

NOT TO SCALE

c = 5
L = 6
P = 0.2

  

x

y

0

7.65
7.5
7.35

NOT TO SCALE

−3
−3.1 −2.9

f (x) = −   x + 33
2

y = −   x + 33
2

P = 0.15
L = 7.5
c = −3

 9.    10. 

x

y

0

1

1

f (x) = "x

y = "x
1
4

P = 5
4

3
4

9
16

25
16

L = 1
c = 1

  
f (x) = 2"x + 1

y = 2"x + 1

x

y

4.2
4

3.8

2

−1 0 2.61 3 3.41

NOT TO SCALE

P = 0.2
L = 4
c = 3

 11.    12. 

L = 4

x

y

0

5

4

3

2

NOT TO SCALE

y = x2

f (x) = x2

c = 2

P = 1

"3 "5

  

3.25

3

2.75

y

x

y = 4 − x2

−1

L = 3

f (x) = 4 − x2

c = −1

P = 0.25

"5
2

− "3
2

−
0

NOT TO SCALE

exercises 2.3
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 13.    14. 

2.5

2

1.5

y

x
−1

L = 2

f (x) =

c = −1

P = 0.5

16
9

−
16
25

−
0

"−x
2

y =
"−x

2

 

0

y

x

c =

L = 2
P = 0.01

y = 1
x

f (x) = 1
x
1
22.01

2

1.99

1
21

2.01
1

1.99
NOT TO SCALE

Finding Deltas Algebraically
Each of Exercises 15–30 gives a function ƒ(x) and numbers L, c, and 
P 7 0. In each case, find an open interval about c on which the inequal-
ity 0 ƒ(x) - L 0 6 P holds. Then give a value for d 7 0 such that for 
all x satisfying 0 6 0 x - c 0 6 d the inequality 0 ƒ(x) - L 0 6 P 
holds.

 15. ƒ(x) = x + 1,  L = 5,  c = 4,  P = 0.01

 16. ƒ(x) = 2x - 2,  L = -6,  c = -2,  P = 0.02

 17. ƒ(x) = 2x + 1,  L = 1,  c = 0,  P = 0.1

 18. ƒ(x) = 2x,  L = 1>2,  c = 1>4,  P = 0.1

 19. ƒ(x) = 219 - x,  L = 3,  c = 10,  P = 1

 20. ƒ(x) = 2x - 7,  L = 4,  c = 23,  P = 1

 21. ƒ(x) = 1>x,  L = 1>4,  c = 4,  P = 0.05

 22. ƒ(x) = x2,  L = 3,  c = 23,  P = 0.1

 23. ƒ(x) = x2,  L = 4,  c = -2,  P = 0.5

 24. ƒ(x) = 1>x,  L = -1,  c = -1,  P = 0.1

 25. ƒ(x) = x2 - 5,  L = 11,  c = 4,  P = 1

 26. ƒ(x) = 120>x,  L = 5,  c = 24,  P = 1

 27. ƒ(x) = mx, m 7 0, L = 2m, c = 2, P = 0.03

 28. ƒ(x) = mx,  m 7 0,  L = 3m,  c = 3, P = c 7 0

 29. ƒ(x) = mx + b,  m 7 0,  L = (m>2) + b,
c = 1>2,  P = c 7 0

 30. ƒ(x) = mx + b,  m 7 0,  L = m + b,  c = 1,
P = 0.05

using the Formal Definition
Each of Exercises 31–36 gives a function ƒ(x), a point c, and a posi-
tive number P. Find L = lim

xSc
 ƒ(x). Then find a number d 7 0 such 

that for all x

0 6 0 x - c 0 6 d  1  0 ƒ(x) - L 0 6 P.

 31. ƒ(x) = 3 - 2x,  c = 3,  P = 0.02

 32. ƒ(x) = -3x - 2,  c = -1,  P = 0.03

 33. ƒ(x) = x2 - 4
x - 2

,  c = 2,  P = 0.05

 34. ƒ(x) = x2 + 6x + 5
x + 5

,  c = -5,  P = 0.05

 35. ƒ(x) = 21 - 5x,  c = -3,  P = 0.5

 36. ƒ(x) = 4>x,  c = 2,  P = 0.4

Prove the limit statements in Exercises 37–50.
 37. lim

xS4
 (9 - x) = 5 38. lim

xS3
 (3x - 7) = 2

 39. lim
xS9
2x - 5 = 2 40. lim

xS0
24 - x = 2

 41. lim
xS1

 ƒ(x) = 1 if ƒ(x) = e x2, x ≠ 1

2, x = 1

 42. lim
xS  -2

 ƒ(x) = 4 if ƒ(x) = e x2, x ≠ -2

1, x = -2

 43. lim
xS1

 
1
x = 1 44. lim

xS23
  
1
x2 = 1

3

 45. lim
xS  -3

 
x2 - 9
x + 3

= -6 46. lim
xS1

  
x2 - 1
x - 1

= 2

 47. lim
xS1

 ƒ(x) = 2 if ƒ(x) = e4 - 2x, x 6 1

6x - 4, x Ú 1

 48. lim
xS0

 ƒ(x) = 0 if ƒ(x) = e2x, x 6 0

x>2, x Ú 0

 49. lim
xS0

 x sin 
1
x = 0

 

x

y

y = x sin 1
x

1
p−

1
p

1
2p

−
1

2p
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 50. lim
xS0

 x2 sin 
1
x = 0

 

x

y

1

−1

0 1−1

y = x2

y = −x2

y = x2 sin 1
x

2
p

2
p−

Theory and Examples
 51. Define what it means to say that lim

xS0
 g(x) = k.

 52. Prove that lim
xSc

 ƒ(x) = L if and only if lim
hS0

 ƒ(h + c) = L.

 53. A wrong statement about limits Show by example that the 
following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c  
if ƒ(x) gets closer to L as x approaches c.

  Explain why the function in your example does not have the 
given value of L as a limit as x S c.

 54. Another wrong statement about limits Show by example that 
the following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c if, given any 
P 7 0, there exists a value of x for which 0 ƒ(x) - L 0 6 P.

  Explain why the function in your example does not have the 
given value of L as a limit as x S c.

 55. Grinding engine cylinders Before contracting to grind engine 
cylinders to a cross-sectional area of 9 in2, you need to know how 
much deviation from the ideal cylinder diameter of c = 3.385 in. 
you can allow and still have the area come within 0.01 in2 of the 
required 9 in2. To find out, you let A = p(x>2)2 and look for the 
interval in which you must hold x to make 0A - 9 0 … 0.01. 
What interval do you find?

 56. Manufacturing electrical resistors Ohm’s law for electrical 
circuits like the one shown in the accompanying figure states that 
V = RI. In this equation, V is a constant voltage, I is the current 
in amperes, and R is the resistance in ohms. Your firm has been 
asked to supply the resistors for a circuit in which V will be 120 
volts and I is to be 5 { 0.1 amp. In what interval does R have to 
lie for I to be within 0.1 amp of the value I0 = 5?

 

V RI
−

+

T

When Is a Number L Not the Limit of ƒ(x)  as xu c?
Showing L is not a limit We can prove that limxSc 

 ƒ(x) ≠ L by 
providing an P 7 0 such that no possible d 7 0 satisfies the condition

for all x, 0 6 0 x - c 0 6 d  1  0 ƒ(x) - L 0 6 P.

We accomplish this for our candidate P by showing that for each 
d 7 0 there exists a value of x such that

0 6 0 x - c 0 6 d  and  0 ƒ(x) - L 0 Ú P.

y

x
0 c c + dc − d

L

L − P

L + P

y = f (x)

a value of x for which

0 < 0  x − c 0  < d and 0  f (x) − L 0  ≥ P

 f (x)

 

 57. Let ƒ(x) = e x, x 6 1

x + 1, x 7 1.

 

x

y

y = x + 1

y = x

y = f (x)

1

1

2

a. Let P = 1>2. Show that no possible d 7 0 satisfies the fol-
lowing condition:

  For all x, 0 6 0 x - 1 0 6 d 1 0 ƒ(x) - 2 0 6 1>2.

  That is, for each d 7 0 show that there is a value of x such 
that

0 6 0 x - 1 0 6 d  and  0 ƒ(x) - 2 0 Ú 1>2.

  This will show that limxS1 ƒ(x) ≠ 2.

b. Show that limxS1 ƒ(x) ≠ 1.

c. Show that limxS1 ƒ(x) ≠ 1.5.
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 58. Let h(x) = c x2, x 6 2

3, x = 2

2, x 7 2.

x

y

0 2

1

2

3

4 y = h(x)

y = x2

y = 2

 

  Show that

a. lim
xS2

 h(x) ≠ 4

b. lim
xS2

 h(x) ≠ 3

c. lim
xS2

 h(x) ≠ 2

 59. For the function graphed here, explain why

a. lim
xS3

 ƒ(x) ≠ 4

b. lim
xS3

 ƒ(x) ≠ 4.8

c. lim
xS3

 ƒ(x) ≠ 3

x

y

0 3

3

4

4.8

y = f (x)

 

 60. a.  For the function graphed here, show that limxS  -1 g(x) ≠ 2.

b. Does limxS  -1 g(x) appear to exist? If so, what is the value of 
the limit? If not, why not?

y

x

y = g(x)

−1 0

1

2

COMPuTer eXPlOrATiONS
In Exercises 61–66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

  a. Plot the function y = ƒ(x) near the point c being approached.

  b.  Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

  c.  Using the value P = 0.2, graph the banding lines y1 = L - P 
and y2 = L + P together with the function ƒ near c.

  d. From your graph in part (c), estimate a d 7 0 such that for all x

0 6 0 x - c 0 6 d  1  0 ƒ(x) - L 0 6 P.

     Test your estimate by plotting ƒ, y1, and y2 over the interval 
0 6 0 x - c 0 6 d. For your viewing window use c - 2d …  
x … c + 2d and L - 2P … y … L + 2P. If any function val-
ues lie outside the interval 3L - P, L + P], your choice of d 
was too large. Try again with a smaller estimate.

  e. Repeat parts (c) and (d) successively for P = 0.1, 0.05, and 0.001.

 61. ƒ(x) = x4 - 81
x - 3

, c = 3 62. ƒ(x) = 5x3 + 9x2

2x5 + 3x2 , c = 0

 63. ƒ(x) = sin 2x
3x

, c = 0 64. ƒ(x) =
x(1 - cos x)

x - sin x
, c = 0

 65. ƒ(x) = 23 x - 1
x - 1

, c = 1

 66. ƒ(x) =
3x2 - (7x + 1)2x + 5

x - 1
, c = 1

2.4 One-Sided limits

In this section we extend the limit concept to one-sided limits, which are limits as x 
approaches the number c from the left-hand side (where x 6 c) or the right-hand side 
(x 7 c) only.

Approaching a limit from One Side

To have a limit L as x approaches c, a function ƒ must be defined on both sides of c and its 
values ƒ(x) must approach L as x approaches c from either side. That is, ƒ must be defined 
in some open interval about c, but not necessarily at c. Because of this, ordinary limits are 
called two-sided.
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If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a 
limit if the approach is only from one side. If the approach is from the right, the limit is a 
right-hand limit. From the left, it is a left-hand limit.

The function ƒ(x) = x> 0 x 0  (Figure 2.24) has limit 1 as x approaches 0 from the right, 
and limit -1 as x approaches 0 from the left. Since these one-sided limit values are not the 
same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not 
have a (two-sided) limit at 0.

Intuitively, if ƒ(x) is defined on an interval (c, b), where c 6 b, and approaches arbi-
trarily close to L as x approaches c from within that interval, then ƒ has right-hand limit 
L at c. We write

lim
xSc+

 ƒ(x) = L.

The symbol “x S c+ ” means that we consider only values of x greater than c.
Similarly, if ƒ(x) is defined on an interval (a, c), where a 6 c and approaches arbi-

trarily close to M as x approaches c from within that interval, then ƒ has left-hand limit M 
at c. We write

lim
xSc-

 ƒ(x) = M.

The symbol “x S c- ” means that we consider only x-values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the 

function ƒ(x) = x> 0 x 0  in Figure 2.24 we have

lim
xS0+

 ƒ(x) = 1  and  lim
xS0-

 ƒ(x) = -1.

Figure 2.24 Different right-hand and 
left-hand limits at the origin.

x

y

1

0

−1

y = x
0 x 0

Figure 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x  
approaches c.

x

y

0
x

y

c cx x

L f (x)

0

M
f (x)

lim    f (x) = L
x:c+

lim    f (x) = M(b)(a)
x:c

_

Figure 2.26 The function 
ƒ(x) = 24 - x2 has right-hand limit 0 
at x = -2 and left-hand limit 0 at x = 2 
(Example 1).

x

y

0 2−2

y = "4 − x2

ExamplE 1  The domain of ƒ(x) = 24 - x2 is 3-2, 24 ; its graph is the semicircle 
in Figure 2.26. We have

lim
xS  -2+

24 - x2 = 0  and  lim
xS2-

24 - x2 = 0.

The function does not have a left-hand limit at x = -2 or a right-hand limit at x = 2. It 
does not have a two-sided limit at either -2 or 2 because each point does not belong to an 
open interval over which ƒ is defined. 

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-hand 
limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems 
for limits of polynomials and rational functions hold with one-sided limits, as do the Sandwich 
Theorem and Theorem 5. One-sided limits are related to limits in the following way.

THeOreM 6 A function ƒ(x) has a limit as x approaches c if and only if it has 
left-hand and right-hand limits there and these one-sided limits are equal:

lim
xSc

 ƒ(x) = L  3  lim
xSc-

 ƒ(x) = L  and  lim
xSc+

 ƒ(x) = L.



88 Chapter 2: Limits and Continuity

ExamplE 2  For the function graphed in Figure 2.27,

At x = 0: limxS0+ ƒ(x) = 1,

limxS0- ƒ(x) and limxS0 ƒ(x) do not exist. The function is not de-

fined to the left of x = 0.

At x = 1: limxS1- ƒ(x) = 0 even though ƒ(1) = 1,

limxS1+ ƒ(x) = 1,

limxS1 ƒ(x) does not exist. The right- and left-hand limits are not 

equal.

At x = 2: limxS2- ƒ(x) = 1,

limxS2+ ƒ(x) = 1,

limxS2 ƒ(x) = 1 even though ƒ(2) = 2.

At x = 3: limxS3- ƒ(x) = limxS3+ ƒ(x) = limxS3 ƒ(x) = ƒ(3) = 2.

At x = 4: limxS4- ƒ(x) = 1 even though ƒ(4) ≠ 1,

limxS4+ ƒ(x) and limxS4 ƒ(x) do not exist. The function is not  

defined to the right of x = 4.

At every other point c in 30, 44,  ƒ(x) has limit ƒ(c). 

DeFiNiTiONS We say that ƒ(x) has right-hand limit L at c, and write

lim
xSc+

 ƒ(x) = L  (see Figure 2.28)

if for every number P 7 0 there exists a corresponding number d 7 0 such that 
for all x

c 6 x 6 c + d  1  0 ƒ(x) - L 0 6 P.

We say that ƒ has left-hand limit L at c, and write

lim
xSc-

 ƒ(x) = L  (see Figure 2.29)

if for every number P 7 0 there exists a corresponding number d 7 0 such that 
for all x

c - d 6 x 6 c  1  0 ƒ(x) - L 0 6 P.

ExamplE 3  Prove that

lim
xS0+

2x = 0.

Solution Let P 7 0 be given. Here c = 0 and L = 0, so we want to find a d 7 0 such 
that for all x

0 6 x 6 d  1  02x - 0 0 6 P,

or

0 6 x 6 d  1  2x 6 P.

Precise Definitions of One-Sided limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided  
limits.

x

y

321

2

1

40

y = f (x)

Figure 2.27 Graph of the function 
in Example 2.

y

x
0

L

x
d

f (x) lies
in here

for all x ≠ c
in here

L − P

L + P
f (x)

c c + d

Figure 2.28 Intervals associated with 
the definition of right-hand limit.

y

x
0

L

x
d

f (x) lies
in here

for all x ≠ c
in here

L − P

L + P
f (x)

cc − d

Figure 2.29 Intervals associated with 
the definition of left-hand limit.
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Squaring both sides of this last inequality gives

x 6 P2  if  0 6 x 6 d.

If we choose d = P2 we have

0 6 x 6 d = P2  1  2x 6 P,

or

0 6 x 6 P2  1  02x - 0 0 6 P.

According to the definition, this shows that limxS0+2x = 0 (Figure 2.30). 

The functions examined so far have had some kind of limit at each point of interest. In 
general, that need not be the case.

ExamplE 4  Show that y = sin (1>x) has no limit as x approaches zero from either 
side (Figure 2.31).

x

y

P

f (x)

xL = 0 d = P2

 f (x) = "x

Figure 2.30 lim
xS0+

1x = 0 in Example 3.

x

y

0

−1

1

y = sin 1
x

Figure 2.31 The function y = sin (1>x) has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). The 
graph here omits values very near the y-axis.

y

1

NOT TO SCALE

2pp−p−2p−3p 3p

y = (radians)sin u
u

u

Figure 2.32 The graph of ƒ(u) = (sin u)>u suggests that the right- 
and left-hand limits as u approaches 0 are both 1.

Solution As x approaches zero, its reciprocal, 1>x, grows without bound and the values 
of sin (1>x) cycle repeatedly from -1 to 1. There is no single number L that the function’s 
values stay increasingly close to as x approaches zero. This is true even if we restrict x to 
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x = 0. 

Limits involving (sin U) ,U
A central fact about (sin u)>u is that in radian measure its limit as u S 0 is 1. We can see 
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see 
the importance of this limit in Section 3.5, where instantaneous rates of change of the 
trigonometric functions are studied.



Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we 
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of u less than 
p>2 (Figure 2.33). Notice that

Area ∆OAP 6 area sector OAP 6 area ∆OAT.

We can express these areas in terms of u as follows:

Area ∆OAP = 1
2

base * height = 1
2

(1)(sin u) = 1
2

sin u

Area sector OAP = 1
2

r2u = 1
2

(1)2u = u
2

(2)

Area ∆OAT = 1
2

base * height = 1
2

(1)(tan u) = 1
2

tan u.

Thus,

1
2

sin u 6 1
2
u 6 1

2
tan u.

This last inequality goes the same way if we divide all three terms by the number 
(1>2) sinu, which is positive, since 0 6 u 6 p>2:

1 6 u
sin u

6 1
cos u .

Taking reciprocals reverses the inequalities:

1 7 sin u
u

7 cos u.

Since limuS0+ cosu = 1 (Example 11b, Section 2.2), the Sandwich Theorem gives

lim
uS0+

sin u
u

= 1.

To consider the left-hand limit, we recall that sin u and u are both odd functions (Sec-
tion 1.1). Therefore, ƒ(u) = (sin u)>u is an even function, with a graph symmetric about 
the y-axis (see Figure 2.32). This symmetry implies that the left-hand limit at 0 exists and 
has the same value as the right-hand limit:

lim
uS0-

sin u
u

= 1 = lim
uS0+

sin u
u

,

so limuS0 (sin u)>u = 1 by Theorem 6.

THEOREM 7—Limit of the Ratio sin U ,U as Uu 0

lim
uS0

sin u
u

= 1 (u in radians) (1)

x

y

O

1

1

Q

tan u

P

sin u

cos u

1

T

A(1, 0)

u

FIGURE 2.33 The figure for the proof of 
Theorem 7. By definition, TA>OA = tan u,
but OA = 1, so TA = tan u.

Equation (2) is where radian measure 
comes in: The area of sector OAP is u>2
only if u is measured in radians.

EXAMPLE 5 Show that (a) lim
hS0

cos h - 1
h

= 0 and (b) lim
xS0

sin 2x
5x

= 2
5

.
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Solution
 (a) Using the half-angle formula cos h = 1 - 2 sin2 (h>2), we calculate

 lim
hS0

 
cos h - 1

h
= lim

hS0
-

2 sin2 (h>2)
h

 = - lim
uS0

  
sin u
u

 sin u Let u = h>2.

 = -(1)(0) = 0. 
Eq. (1) and Example 11a 
in Section 2.2

 (b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator, 
not a 5x. We produce it by multiplying numerator and denominator by 2>5:

 lim
xS0

 
sin 2x

5x
= lim

xS0
 
(2>5) #  sin 2x

(2>5) # 5x

  = 2
5

 lim
xS0

  
sin 2x

2x
     

Now, Eq. (1) applies 
with u = 2x.

  = 2
5

 (1) = 2
5

 

ExamplE 6  Find lim
tS0

 
tan t sec 2t

3t
.

Solution From the definition of tan t and sec 2t, we have

lim
tS0

 
tan t sec 2t

3t
= lim

tS0
 13

# 1
t
# sin t
cos t

# 1
cos 2t

 = 1
3 lim

tS0
 
sin t

t
# 1
cos t

# 1
cos 2t

= 1
3 (1)(1)(1) = 1

3.  
Eq. (1) and Example 11b 
in Section 2.2  

Finding limits graphically
 1. Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

x

y

21−1

1

0

y = f (x)

 

a. lim
xS  -1+

 ƒ(x) = 1 b. lim
xS0-

 ƒ(x) = 0

c. lim
xS0-

 ƒ(x) = 1 d. lim
xS0-

 ƒ(x) = lim
xS0+

 ƒ(x)

e. lim
xS0

 ƒ(x) exists. f. lim
xS0

 ƒ(x) = 0

g. lim
xS0

 ƒ(x) = 1 h. lim
xS1

 ƒ(x) = 1

i. lim
xS1

 ƒ(x) = 0 j. lim
xS2-

 ƒ(x) = 2

k. lim
xS  -1-

 ƒ(x) does not exist. l. lim
xS2+

 ƒ(x) = 0

 2. Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

x

y

0

1

2

1−1 2 3

y = f (x)

 

a. lim
xS  -1+

 ƒ(x) = 1 b. lim
xS2

 ƒ(x) does not exist.

c. lim
xS2

 ƒ(x) = 2 d. lim
xS1-

 ƒ(x) = 2

e. lim
xS1+

 ƒ(x) = 1 f. lim
xS1

 ƒ(x) does not exist.

g. lim
xS0+

 ƒ(x) = lim
xS0-

 ƒ(x)

h. lim
xSc

 ƒ(x) exists at every c in the open interval (-1, 1).

i. lim
xSc

 ƒ(x) exists at every c in the open interval (1, 3).

j. lim
xS  -1-

 ƒ(x) = 0 k. lim
xS3+

 ƒ(x) does not exist.

exercises 2.4
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 3. Let ƒ(x) = c 3 - x, x 6 2

x
2

+ 1, x 7 2.

x

y

3

20 4

y = 3 − x

y =    + 1x
2

a. Find limxS2+ ƒ(x) and limxS2- ƒ(x).

b. Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c. Find limxS4- ƒ(x) and limxS4+ ƒ(x).

d. Does limxS4 ƒ(x) exist? If so, what is it? If not, why not?

 4. Let ƒ(x) = d 3 - x, x 6 2

2, x = 2

x
2

, x 7 2.

x

y

y = 3 − x

0

3

2−2

y =
2
x

 

a. Find limxS2+ ƒ(x), limxS2- ƒ(x), and ƒ(2).

b. Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c. Find limxS  -1- ƒ(x) and limxS  -1+ ƒ(x).

d. Does limxS  -1 ƒ(x) exist? If so, what is it? If not, why not?

 5. Let ƒ(x) = c 0, x … 0

sin 
1
x , x 7 0.

x

y

0

−1

1

1
xsin    ,

y =
0, x ≤ 0

x > 0

 

a. Does limxS0+ ƒ(x) exist? If so, what is it? If not, why not?

b. Does limxS0- ƒ(x) exist? If so, what is it? If not, why not?

c. Does limxS0 ƒ(x) exist? If so, what is it? If not, why not?

 6. Let g(x) = 2x sin(1>x).

x
0

−1

1

y

y = "x

y = −"x

11
p

1
2p

2
p

y = "x sin 1
x

 

a. Does limxS0+ g(x) exist? If so, what is it? If not, why not?

b. Does limxS0- g(x) exist? If so, what is it? If not, why not?

c. Does limxS0 g(x) exist? If so, what is it? If not, why not?

 7. a. Graph ƒ(x) = e x3, x ≠ 1

0, x = 1.
b. Find limxS1- ƒ(x) and limxS1+ ƒ(x).

c. Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

 8. a. Graph ƒ(x) = e1 - x2, x ≠ 1

2, x = 1.

b. Find limxS1+ ƒ(x) and limxS1- ƒ(x).

c. Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of ƒ?

b. At what points c, if any, does limxSc ƒ(x) exist?

c. At what points does only the left-hand limit exist?

d. At what points does only the right-hand limit exist?

 9. ƒ(x) = c 21 - x2,  0 … x 6 1

1,  1 … x 6 2

2,  x = 2

 10. ƒ(x) = c x,  -1 … x 6 0, or 0 6 x … 1

1,  x = 0

0,  x 6 -1 or x 7 1

Finding One-Sided limits Algebraically
Find the limits in Exercises 11–18.

 11. lim
xS  -0.5-Ax + 2

x + 1
 12. lim

xS1+Ax - 1
x + 2

 13. lim
xS  -2+

a x
x + 1

b a2x + 5
x2 + x

b

 14. lim
xS1-
a 1

x + 1
b ax + 6

x b a3 - x
7
b

 15. lim
hS0+

 
2h2 + 4h + 5 - 25

h
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 16. lim
hS0-

 
26 - 25h2 + 11h + 6

h

 17. a. lim
xS  -2+

(x + 3) 
0 x + 2 0
x + 2

 b. lim
xS  -2-

(x + 3) 
0 x + 2 0
x + 2

 18. a. lim
xS1+

 
22x (x - 1)

0 x - 1 0  b. lim
xS1-

 
22x (x - 1)

0 x - 1 0
Use the graph of the greatest integer function y = :x;, Figure 1.10 in 
Section 1.1, to help you find the limits in Exercises 19 and 20.

 19. a. lim
uS3+

 
:u;
u

 b. lim
uS3-

 
:u;
u

 20. a. lim
tS4+

(t - :t;) b. lim
tS4-

(t - :t;)

using lim
Uu0

 
sin U
U

= 1

Find the limits in Exercises 21–42.

 21. lim
uS0

 
sin 22u22u

 22. lim
tS0

 
sin kt

t  (k constant)

 23. lim
yS0

 
sin 3y

4y
 24. lim

hS0-
 

h
sin 3h

 25. lim
xS0

 
tan 2x

x  26. lim
tS0

  
2t

tan t

 27. lim
xS0

 
x csc 2x
cos 5x

 28. lim
xS0

 6x2(cot x)(csc 2x)

 29. lim
xS0

 
x + x cos x
sin x cos x

 30. lim
xS0

 
x2 - x + sin x

2x

 31. lim
uS0

 
1 - cos u

sin 2u
 32. lim

xS0
 
x - x cos x

sin2 3x

 33. lim
tS0

 
sin (1 - cos t)

1 - cos t
 34. lim

hS0
 
sin (sin h)

sin h

 35. lim
uS0

  
sin u
sin 2u

 36. lim
xS0

  
sin 5x
sin 4x

 37. lim
uS0

 u cos u 38. lim
uS0

 sin u cot 2u

 39. lim
xS0

  
tan 3x
sin 8x

 40. lim
yS0

 
sin 3y cot 5y

y cot 4y

 41. lim
uS0

  
tan u

u2 cot 3u
 42. lim

uS0
  

u cot 4u
sin2 u cot2 2u

Theory and examples
 43. Once you know limxSa+ ƒ(x) and limxSa- ƒ(x) at an interior point 

of the domain of ƒ, do you then know limxSa ƒ(x)? Give reasons 
for your answer.

 44. If you know that limxSc ƒ(x) exists, can you find its value by cal-
culating limxSc+ ƒ(x)? Give reasons for your answer.

 45. Suppose that ƒ is an odd function of x. Does knowing that 
limxS0+ ƒ(x) = 3 tell you anything about limxS0- ƒ(x)? Give rea-
sons for your answer.

 46. Suppose that ƒ is an even function of x. Does knowing that 
limxS2- ƒ(x) = 7 tell you anything about either limxS  -2- ƒ(x) or 
limxS  -2+ ƒ(x)? Give reasons for your answer.

Formal Definitions of One-Sided limits
 47. Given P 7 0, find an interval I = (5, 5 + d), d 7 0, such that if 

x lies in I, then 2x - 5 6 P. What limit is being verified and 
what is its value?

 48. Given P 7 0, find an interval I = (4 - d, 4), d 7 0, such that if 
x lies in I, then 24 - x 6 P. What limit is being verified and 
what is its value?

Use the definitions of right-hand and left-hand limits to prove the 
limit statements in Exercises 49 and 50.

 49. lim
xS0-

 
x
0 x 0 = -1 50. lim

xS2+
 

x - 2
0 x - 2 0 = 1

 51. Greatest integer function Find (a) limxS400+ :x;  and (b) 
limxS400- :x;; then use limit definitions to verify your findings. 
(c) Based on your conclusions in parts (a) and (b), can you say 
anything about limxS400 :x;? Give reasons for your answer.

 52. One-sided limits Let ƒ(x) = e x2 sin (1>x), x 6 02x, x 7 0.

  Find (a) limxS0+ ƒ(x) and (b) limxS0- ƒ(x); then use limit defini-
tions to verify your findings. (c) Based on your conclusions in 
parts (a) and (b), can you say anything about limxS0 ƒ(x)? Give 
reasons for your answer.

2.5 Continuity

When we plot function values generated in a laboratory or collected in the field, we often 
connect the plotted points with an unbroken curve to show what the function’s values are 
likely to have been at the points we did not measure (Figure 2.34). In doing so, we are 
assuming that we are working with a continuous function, so its outputs vary regularly and  
consistently with the inputs, and do not jump abruptly from one value to another without 
taking on the values in between. Intuitively, any function y = ƒ(x) whose graph can be 
sketched over its domain in one unbroken motion is an example of a continuous function. 
Such functions play an important role in the study of calculus and its applications.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.35, whose 
limits we investigated in Example 2 in the last section.
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Q2
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Q4

Figure 2.34 Connecting plotted points 
by an unbroken curve from experimental 
data Q1, Q2, Q3,c for a falling object.
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ExamplE 1  At which numbers does the function ƒ in Figure 2.35 appear to be not 
continuous? Explain why. What occurs at other numbers in the domain?

Solution First we observe that the domain of the function is the closed interval 30, 44,  
so we will be considering the numbers x within that interval. From the figure, we notice 
right away that there are breaks in the graph at the numbers x = 1, x = 2, and x = 4. The 
breaks appear as jumps, which we identify later as “jump discontinuities.” These are num-
bers for which the function is not continuous, and we discuss each in turn.

Numbers at which the graph of ƒ has breaks:

At x = 1, the function fails to have a limit. It does have both a left-hand limit, 
limxS1- ƒ(x) = 0, as well as a right-hand limit, limxS1+ ƒ(x) = 1, but the limit values are 
different, resulting in a jump in the graph. The function is not continuous at x = 1.

At x = 2, the function does have a limit, limxS2 ƒ(x) = 1, but the value of the func-
tion is ƒ(2) = 2. The limit and function values are not the same, so there is a break in the 
graph and ƒ is not continuous at x = 2.

At x = 4, the function does have a left-hand limit at this right endpoint, limxS4- ƒ(x) = 1, 
but again the value of the function ƒ(4) = 1

2 differs from the value of the limit. We see 
again a break in the graph of the function at this endpoint and the function is not continu-
ous from the left.

Numbers at which the graph of ƒ has no breaks:

At x = 0, the function has a right-hand limit at this left endpoint, limxS0+ ƒ(x) = 1, 
and the value of the function is the same, ƒ(0) = 1. So no break occurs in the graph of the 
function at this endpoint, and the function is continuous from the right at x = 0.

At x = 3, the function has a limit, limxS3 ƒ(x) = 2. Moreover, the limit is the same 
value as the function there, ƒ(3) = 2. No break occurs in the graph and the function is 
continuous at x = 3.

At all other numbers x = c in the domain, which we have not considered, the func-
tion has a limit equal to the value of the function at the point, so limxSc ƒ(x) = ƒ(c). For 
example, limxS5>2 ƒ(x) = ƒ15

22 = 3
2. No breaks appear in the graph of the function at any 

of these remaining numbers and the function is continuous at each of them. 

The following definitions capture the continuity ideas we observed in Example 1.

x
a c b

y = f (x)

Continuity
from the left

Two-sided
continuity

Continuity
from the right

Figure 2.36 Continuity at points a, b, 
and c.

x

y

321

2

1

40

y = f (x)

Figure 2.35 The function is not 
continuous at x = 1, x = 2, and x = 4 
(Example 1).

DeFiNiTiONS Let c be a real number on the x-axis.

The function ƒ is continuous at c if

lim
xSc 

ƒ(x) = ƒ(c).

The function ƒ is right-continuous at c (or continuous from the right) if

lim
xSc+ 

ƒ(x) = ƒ(c).

The function ƒ is left-continuous at c (or continuous from the left) if

lim
xSc- 

ƒ(x) = ƒ(c).

From Theorem 6, it follows immediately that a function ƒ is continuous at an interior 
point c of its domain if and only if it is both right-continuous and left-continuous at c (Fig-
ure 2.36). We say that a function is continuous over a closed interval 3a, b4  if it is right-
continuous at a, left-continuous at b, and continuous at all interior points of the interval.  



 2.5  Continuity 95

This definition applies to the infinite closed intervals 3a, q) and (-q, b4  as well, but only 
one endpoint is involved. If a function is not continuous at an interior point c of its domain, 
we say that ƒ is discontinuous at c, and that c is a point of discontinuity of ƒ. Note that a 
function ƒ can be continuous, right-continuous, or left-continuous only at a point c for 
which ƒ(c) is defined.

Continuity Test

A function ƒ(x) is continuous at a point x = c if and only if it meets the follow-
ing three conditions.

1. ƒ(c) exists (c lies in the domain of ƒ).

2. limxSc ƒ(x) exists (ƒ has a limit as x S c).

3. limxSc ƒ(x) = ƒ(c) (the limit equals the function value).

x

y

0

1
y = U(x)

Figure 2.38 A function 
that has a jump discontinuity 
at the origin (Example 3).

For one-sided continuity and continuity at an endpoint of an interval, the limits in 
parts 2 and 3 of the test should be replaced by the appropriate one-sided limits.

ExamplE 2  The function ƒ(x) = 24 - x2 is continuous over its domain 3-2, 24  
(Figure 2.37). It is right-continuous at x = -2, and left-continuous at x = 2. 

ExamplE 3  The unit step function U(x), graphed in Figure 2.38, is right-continuous 
at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at 
x = 0. 

We summarize continuity at an interior point in the form of a test.

ExamplE 4  The function y = :x;  introduced in Section 1.1 is graphed in Figure 2.39. 
It is discontinuous at every integer because the left-hand and right-hand limits are not 
equal as x S n:

lim
xSn-

  :x; = n - 1  and  lim
xSn+

  :x; = n.

Since :n; = n, the greatest integer function is right-continuous at every integer n (but not 
left-continuous).

The greatest integer function is continuous at every real number other than the inte-
gers. For example,

lim
xS1.5

  :x; = 1 = :1.5;.
In general, if n - 1 6 c 6 n, n an integer, then

 lim
xSc

  :x; = n - 1 = :c;. 

Figure 2.40 displays several common types of discontinuities. The function in Figure 
2.40a is continuous at x = 0. The function in Figure 2.40b would be continuous if it had 
ƒ(0) = 1. The function in Figure 2.40c would be continuous if ƒ(0) were 1 instead of 2. 
The discontinuity in Figure 2.40c is removable. The function has a limit as x S 0, and we 
can remove the discontinuity by setting ƒ(0) equal to this limit.

The discontinuities in Figure 2.40d through f are more serious: limxS0 ƒ(x) does not 
exist, and there is no way to improve the situation by changing ƒ at 0. The step function in 
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function ƒ(x) = 1>x2 in Figure 2.40e has an infinite discontinuity. The function 
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as 
x S 0.

x

y

0−2 2

2
y = "4 − x2

Figure 2.37 A function that 
is continuous over its domain 
(Example 2).

x

y

3

3

21−1

2

−2

1

4

4

y = :x;

Figure 2.39 The greatest integer 
function is continuous at every noninte-
ger point. It is right-continuous, but not 
left-continuous, at every integer point 
(Example 4).
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Continuous Functions

Generally, we want to describe the continuity behavior of a function throughout its entire 
domain, not only at a single point. We know how to do that if the domain is a closed interval. 
In the same way, we define a continuous function as one that is continuous at every point in 
its domain. This is a property of the function. A function always has a specified domain, so if 
we change the domain, we change the function, and this may change its continuity property 
as well. If a function is discontinuous at one or more points of its domain, we say it is a  
discontinuous function.

y

(a) (b) (c)

(e)

(d)

y

x
0

1

y y

0

0

−1

x xx

x

y

000

y

x

111

2

(f)

1

−1

y = f (x) y = f (x) y = f (x)

y = f (x)

y = f (x) = 1
x2

y = sin 1
x

Figure 2.40 The function in (a) is continuous at x = 0; the functions in (b) through (f ) are not.

ExamplE 5  
(a) The function y = 1>x (Figure 2.41) is a continuous function because it is continuous 

at every point of its domain. It has a point of discontinuity at x = 0, however, because 
it is not defined there; that is, it is discontinuous on any interval containing x = 0.

(b) The identity function ƒ(x) = x and constant functions are continuous everywhere by 
Example 3, Section 2.3. 

Algebraic combinations of continuous functions are continuous wherever they are defined.

THEOREm 8—properties of Continuous Functions If the functions ƒ and g are 
continuous at x = c, then the following algebraic combinations are continuous 
at x = c.

1. Sums: ƒ + g

2. Differences: ƒ - g

3. Constant multiples: k # ƒ, for any number k

4. Products: ƒ # g

5. Quotients: ƒ>g, provided g(c) ≠ 0

6. Powers: ƒn, n a positive integer

7. Roots:  2n ƒ,  provided it is defined on an open interval 
containing c, where n is a positive integer

0
x

y

y = 1
x

Figure 2.41 The function y = 1>x 
is continuous over its natural domain. It 
has a point of discontinuity at the origin, 
so it is discontinuous on any interval 
containing x = 0 (Example 5).
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Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section 2.2. 
For instance, to prove the sum property we have

 lim
xSc

 (ƒ + g)(x) = lim
xSc

(ƒ(x) + g(x))

 = lim
xSc

 ƒ(x) + lim
xSc

 g(x) Sum Rule, Theorem 1 

 = ƒ(c) + g(c) Continuity of ƒ, g at c

 = (ƒ + g)(c).

This shows that ƒ + g is continuous.

ExamplE 6  
(a) Every polynomial P(x) = an xn + an - 1xn - 1 + g + a0 is continuous because 

lim
xSc

 P(x) = P(c) by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)>Q(x) is continuous 
wherever it is defined (Q(c) ≠ 0) by Theorem 3, Section 2.2. 

ExamplE 7  The function ƒ(x) = 0 x 0  is continuous. If x 7 0, we have ƒ(x) = x, 
a polynomial. If x 6 0, we have ƒ(x) = -x, another polynomial. Finally, at the origin, 
limxS0 0 x 0 = 0 = 0 0 0 . 

The functions y = sin x and y = cos x are continuous at x = 0 by Example 11 of 
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 70). It fol-
lows from Theorem 8 that all six trigonometric functions are then continuous wherever 
they are defined. For example, y = tan x is continuous on g∪ (-p>2, p>2) ∪
(p>2, 3p>2) ∪ g.

inverse Functions and Continuity

The inverse function of any function continuous on an interval is continuous over its 
domain. This result is suggested by the observation that the graph of ƒ -1, being the reflec-
tion of the graph of ƒ across the line y = x, cannot have any breaks in it when the graph of 
ƒ has no breaks. A rigorous proof that ƒ -1 is continuous whenever ƒ is continuous on an 
interval is given in more advanced texts. It follows that the inverse trigonometric functions 
are all continuous over their domains.

We defined the exponential function y = ax in Section 1.5 informally by its graph. 
Recall that the graph was obtained from the graph of y = ax for x a rational number by 
“filling in the holes” at the irrational points x, so the function y = ax was defined to be 
continuous over the entire real line. The inverse function y = loga x is also continuous. In 
particular, the natural exponential function y = ex and the natural logarithm function 
y = ln x are both continuous over their domains.

Composites

All composites of continuous functions are continuous. The idea is that if ƒ(x) is continuous 
at x = c and g(x) is continuous at x = ƒ(c), then g ∘ ƒ is continuous at x = c (Figure 2.42). 
In this case, the limit as x S c is g(ƒ(c)).

c

f g

 g ˚ f

Continuous at c

Continuous
at f (c)

Continuous
at c

f (c)  g( f (c))

Figure 2.42 Composites of continuous functions are continuous.



Intuitively, Theorem 9 is reasonable because if x is close to c, then ƒ(x) is close to 
ƒ(c), and since g is continuous at ƒ(c), it follows that g(ƒ(x)) is close to g(ƒ(c)).

The continuity of composites holds for any finite number of functions. The only 
requirement is that each function be continuous where it is applied. For an outline of a 
proof of Theorem 9, see Exercise 6 in Appendix 4.

EXAMPLE 8  Show that the following functions are continuous on their natural 
domains.

(a) y = 2x2 - 2x - 5 (b) y = x2>3
1 + x4

(c) y = ` x - 2
x2 - 2

` (d) y = ` x sin x
x2 + 2

`
Solution
(a) The square root function is continuous on 30, q) because it is a root of the continu-

ous identity function ƒ(x) = x (Part 7, Theorem 8). The given function is then the 
composite of the polynomial ƒ(x) = x2 - 2x - 5 with the square root function 
g(t) = 2t , and is continuous on its natural domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an 
everywhere-positive polynomial. Therefore, the quotient is continuous.

(c) The quotient (x - 2)>(x2 - 2) is continuous for all x ≠ {22, and the function 
is the composition of this quotient with the continuous absolute value function 
(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 70), the numerator term 
x sin x is the product of continuous functions, and the denominator term x2 + 2 is an 
everywhere-positive polynomial. The given function is the composite of a quotient of 
continuous functions with the continuous absolute value function (Figure 2.43).

Theorem 9 is actually a consequence of a more general result, which we now state 
and prove.

THEOREM 9—Composite of Continuous Functions If ƒ is continuous at c and 
g is continuous at ƒ(c), then the composite g ∘ ƒ is continuous at c.

x

y

0

0.1

0.2

0.3

0.4

2p−p−2p p

FIGURE 2.43 The graph suggests that 
y = 0 (x sin x)>(x2 + 2) 0  is continuous 
(Example 8d).

Proof Let P 7 0 be given. Since g is continuous at b, there exists a number d1 7 0
such that

0 g(y) - g(b) 0 6 P whenever 0 6 0 y - b 0 6 d1.

Since limxScƒ(x) = b, there exists a d 7 0 such that

0 ƒ(x) - b 0 6 d1 whenever 0 6 0 x - c 0 6 d.
If we let y = ƒ(x), we then have that

0 y - b 0 6 d1 whenever 0 6 0 x - c 0 6 d,
which implies from the first statement that 0 g(y) - g(b) 0 = 0 g(ƒ(x)) - g(b) 0 6 P whenever 
0 6 0 x - c 0 6 d. From the definition of limit, this proves that limxSc g(ƒ(x)) = g(b).

THEOREM 10—Limits of Continuous Functions If g is continuous at the point b
and limxSc ƒ(x) = b, then

limxSc g(ƒ(x)) = g(b) = g(limxSc ƒ(x)).

98 Chapter 2: Limits and Continuity
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ExamplE 9  As an application of Theorem 10, we have the following calculations.

(a) lim
xSp/2

 cos a2x + sin a3p
2

+ xb b = cos a lim
xSp/2

 2x + lim
xSp/2

 sin a3p
2

+ xb b
= cos (p + sin 2p) = cos p = -1.

(b)  lim
xS1

 sin-1 a 1 - x
1 - x2b = sin-1 a lim

xS1
 
1 - x
1 - x2b  Arcsine is continuous.

 = sin-1 a lim
xS1

 1
1 + x

b  Cancel common factor (1 - x).

 = sin-1 1
2

= p
6

 

(c)  lim
xS0

 2x + 1 etan x = lim
xS0

 2x + 1 # exp a lim
xS0

 tan xb  Exponential is continuous.

 = 1 # e0 = 1 

intermediate value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A 
function is said to have the Intermediate Value Property if whenever it takes on two 
values, it also takes on all the values in between.

We sometimes denote eu by exp u  
when u is a complicated mathematical 
expression.

THEOREm 11—The Intermediate Value Theorem for Continuous Functions If ƒ is 
a continuous function on a closed interval 3a, b4,  and if y0 is any value between 
ƒ(a) and ƒ(b), then y0 = ƒ(c) for some c in 3a, b4.

x

y

0 a c b

y = f (x)

f (b)

f (a)

y0

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any 
horizontal line y = y0 crossing the y-axis between the numbers ƒ(a) and ƒ(b) will cross 
the curve y = ƒ(x) at least once over the interval 3a, b4 .

The proof of the Intermediate Value Theorem depends on the completeness property 
of the real number system (Appendix 7) and can be found in more advanced texts.

The continuity of ƒ on the interval is essential to Theorem 11. If ƒ is discontinuous at 
even one point of the interval, the theorem’s conclusion may fail, as it does for the func-
tion graphed in Figure 2.44 (choose y0 as any number between 2 and 3).

A Consequence for graphing: Connectedness Theorem 11 implies that the graph of a 
function continuous on an interval cannot have any breaks over the interval. It will be 
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest 
integer function (Figure 2.39), or separate branches like the graph of 1>x (Figure 2.41).

x

y

0

2

1

1 2 3 4

3

Figure 2.44 The function 

ƒ(x) = e2x - 2, 1 … x 6 2

3, 2 … x … 4
does not take on all values between 
ƒ(1) = 0 and ƒ(4) = 3; it misses all the 
values between 2 and 3.
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A Consequence for root Finding We call a solution of the equation ƒ(x) = 0 a root of 
the equation or zero of the function ƒ. The Intermediate Value Theorem tells us that if ƒ is 
continuous, then any interval on which ƒ changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point 
where the function’s value is zero.

ExamplE 10  Show that there is a root of the equation x3 - x - 1 = 0 between 1 and 2.

Solution Let ƒ(x) = x3 - x - 1. Since ƒ(1) = 1 - 1 - 1 = -1 6 0 and ƒ(2) =  
23 - 2 - 1 = 5 7 0, we see that y0 = 0 is a value between ƒ(1) and ƒ(2). Since ƒ is 
continuous, the Intermediate Value Theorem says there is a zero of ƒ between 1 and 2. 
Figure 2.45 shows the result of zooming in to locate the root near x = 1.32. 

(a)

5

−2

2−1

(b)

1

−1

1.61

(c)

0.02

−0.02

1.3301.320

(d)

0.003

−0.003

1.32481.3240

Figure 2.45 Zooming in on a zero of the function ƒ(x) = x3 - x - 1. The zero is near 
x = 1.3247 (Example 10).

ExamplE 11  Use the Intermediate Value Theorem to prove that the equation22x + 5 = 4 - x2

has a solution (Figure 2.46).

Solution We rewrite the equation as22x + 5 + x2 = 4,

and set ƒ(x) = 22x + 5 + x2. Now g(x) = 22x + 5 is continuous on the interval 
3-5>2, q) since it is the composite of the square root function with the nonnegative linear 
function y = 2x + 5. Then ƒ is the sum of the function g and the quadratic function y = x2, 

and the quadratic function is continuous for all values of x. It follows that ƒ(x) = 22x + 5
+  x2 is continuous on the interval 3-5>2, q). By trial and error, we find the function values 
ƒ(0) = 25 ≈ 2.24 and ƒ(2) = 29 + 4 = 7, and note that ƒ is also continuous on the 
finite closed interval 30, 24 ⊂ 3-5>2, q). Since the value y0 = 4 is between the numbers 
2.24 and 7, by the Intermediate Value Theorem there is a number c∊[0, 24  such that 
ƒ(c) = 4. That is, the number c solves the original equation. 

1

0 2

4

3

2

x

y

y = 4 − x2

y = "2x + 5

c

Figure 2.46 The curves 
y = 22x + 5 and y = 4 - x2 
have the same value at x = c where 22x + 5 = 4 - x2 (Example 11).
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Continuous extension to a Point

Sometimes the formula that describes a function ƒ does not make sense at a point x = c. 
It might nevertheless be possible to extend the domain of ƒ, to include x = c, creating a 
new function that is continuous at x = c. For example, the function y = ƒ(x) = (sin x)>x 
is continuous at every point except x = 0, since the origin is not in its domain. Since 
y = (sin x)>x has a finite limit as x S 0 (Theorem 7), we can extend the function’s 
domain to include the point x = 0 in such a way that the extended function is continuous 
at x = 0. We define the new function

F(x) = •
sin x

x , x ≠ 0

1, x = 0.

The function F(x) is continuous at x = 0 because

lim
xS0

 
sin x

x = F(0),

so it meets the requirements for continuity (Figure 2.47).

(0, 1)

(a)

p
2

p
2

−

−

0

f (x)

x

y

,p
2 p

2 ,p
2 p

2

(0, 1)

(b)

p
2

p
2

− 0

F(x)

x

y

a        b a      b ,p
2 p

2a      b− ,p
2 p

2a        b

Figure 2.47 The graph (a) of ƒ(x) = (sin x)>x for -p>2 … x … p>2 does not include 
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discon-
tinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = ƒ(x) 
everywhere else. Note that F(0) = limxS0 ƒ(x).

y

x

x

y

0

1

2

−1 1 2 3 4

0

1

2

−1 1 2 3 4

(a)

(b)

y =
x2 + x − 6

x2 − 4

5
4

y =
x + 3
x + 2

Figure 2.48 (a) The graph 
of ƒ(x) and (b) the graph of 
its continuous extension F(x) 
(Example 12).

More generally, a function (such as a rational function) may have a limit at a point 
where it is not defined. If ƒ(c) is not defined, but limxSc ƒ(x) = L exists, we can define a 
new function F(x) by the rule

F(x) = eƒ(x), if x is in the domain of ƒ

L, if x = c.

The function F is continuous at x = c. It is called the continuous extension of ƒ to 
x = c. For rational functions ƒ, continuous extensions are often found by canceling com-
mon factors in the numerator and denominator.

ExamplE 12  Show that

ƒ(x) = x2 + x - 6
x2 - 4

, x ≠ 2

has a continuous extension to x = 2, and find that extension.

Solution Although ƒ(2) is not defined, if x ≠ 2 we have

ƒ(x) = x2 + x - 6
x2 - 4

=
(x - 2)(x + 3)
(x - 2)(x + 2)

= x + 3
x + 2

.

The new function

F(x) = x + 3
x + 2
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is equal to ƒ(x) for x ≠ 2, but is continuous at x = 2, having there the value of 5>4. Thus 
F is the continuous extension of ƒ to x = 2, and

lim
xS2

 
x2 + x - 6

x2 - 4
= lim

xS2
 ƒ(x) = 5

4
.

The graph of ƒ is shown in Figure 2.48. The continuous extension F has the same graph 
except with no hole at (2, 5>4). Effectively, F is the function ƒ with its point of disconti-
nuity at x = 2 removed. 

Continuity from graphs
In Exercises 1–4, say whether the function graphed is continuous on 
3-1, 34 . If not, where does it fail to be continuous and why?

 1.    2. 

x

y

0 1−1 3

1

2

2

y = f (x)

  

x

y

0 1−1 3

1

2

2

y = g(x)

 3.  4. 

x

y

0 1 3

2

−1 2

1

y = h(x)

  

x

y

0 1−1 3

1

2

2

y = k(x)

Exercises 5–10 refer to the function

ƒ(x) = e   x2 - 1,  -1 … x 6 0

  2x,   0 6 x 6 1

  1,   x = 1

-2x + 4,   1 6 x 6 2

  0,   2 6 x 6 3

graphed in the accompanying figure.

2

x

y

0 3

(1, 2)

21−1

(1, 1)

 

y = f (x)

y = −2x + 4

y = x2 − 1 −1

y = 2x

 

The graph for Exercises 5–10.

 5.  a. Does ƒ(-1) exist?

  b. Does limxS  -1+ ƒ(x) exist?

  c. Does limxS  -1+ ƒ(x) = ƒ(-1)?

  d. Is ƒ continuous at x = -1?

 6. a. Does ƒ(1) exist?

  b. Does limxS1 ƒ(x) exist?

  c. Does limxS1 ƒ(x) = ƒ(1)?

  d. Is ƒ continuous at x = 1?

 7.  a. Is ƒ defined at x = 2? (Look at the definition of ƒ.)

  b. Is ƒ continuous at x = 2?

 8. At what values of x is ƒ continuous?

 9. What value should be assigned to ƒ(2) to make the extended 
function continuous at x = 2?

 10. To what new value should ƒ(1) be changed to remove the discon-
tinuity?

Applying the Continuity Test
At which points do the functions in Exercises 11 and 12 fail to be con-
tinuous? At which points, if any, are the discontinuities removable? 
Not removable? Give reasons for your answers.

 11. Exercise 1, Section 2.4 12. Exercise 2, Section 2.4

At what points are the functions in Exercises 13–30 continuous?

 13. y = 1
x - 2

- 3x 14. y = 1
(x + 2)2 + 4

 15. y = x + 1
x2 - 4x + 3

 16. y = x + 3
x2 - 3x - 10

 17. y = 0 x - 1 0 + sin x 18. y = 1
0 x 0 + 1

- x2

2

 19. y = cos x
x  20. y = x + 2

cos x

 21. y = csc 2x 22. y = tan 
px
2

 23. y = x tan x
x2 + 1

 24. y = 2x4 + 1
1 + sin2 x

 25. y = 22x + 3 26. y = 24 3x - 1

 27. y = (2x - 1)1>3 28. y = (2 - x)1>5

exercises 2.5
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 29. g(x) = c x2 - x - 6
x - 3

, x ≠ 3

5, x = 3

 30. ƒ(x) = d x3 - 8
x2 - 4

, x ≠ 2, x ≠ -2

3, x = 2

4, x = -2

limits involving Trigonometric Functions
Find the limits in Exercises 31–38. Are the functions continuous at the 
point being approached?

 31. lim
xSp

 sin (x - sin x) 32. lim
tS0

 sinap
2

 cos (tan t)b

 33. lim
yS1

 sec (y sec2 y - tan2 y - 1)

 34. lim
xS0

 tanap
4

 cos (sin x1>3)b

 35. lim
tS0

 cos a p219 - 3 sec 2t
b  36. lim

xSp/6
 2csc2 x + 513 tan x

 37. lim
xS0+

 sin ap
2

 e2xb  38. lim
xS1

 cos-1 1ln 2x2
Continuous extensions
 39. Define g(3) in a way that extends g(x) = (x2 - 9)>(x - 3) to be 

continuous at x = 3.

 40. Define h(2) in a way that extends h(t) = (t2 + 3t - 10)>(t - 2) 
to be continuous at t = 2.

 41. Define ƒ(1) in a way that extends ƒ(s) = (s3 - 1)>(s2 - 1) to be 
continuous at s = 1.

 42. Define g(4) in a way that extends

g(x) = (x2 - 16)> (x2 - 3x - 4)

  to be continuous at x = 4.

 43. For what value of a is

ƒ(x) = e x2 - 1, x 6 3

2ax, x Ú 3

  continuous at every x?

 44. For what value of b is

g(x) = e x, x 6 -2

bx2, x Ú -2

  continuous at every x?

 45. For what values of a is

ƒ(x) = ba2x - 2a, x Ú 2

12, x 6 2

  continuous at every x?

 46. For what value of b is

g(x) = c x - b
b + 1

, x 6 0

x2 + b, x 7 0

  continuous at every x?

 47. For what values of a and b is

ƒ(x) = c -2, x … -1

ax - b, -1 6 x 6 1

3, x Ú 1

  continuous at every x?

 48. For what values of a and b is

g(x) = c ax + 2b, x … 0

x2 + 3a - b, 0 6 x … 2

3x - 5, x 7 2

  continuous at every x?

In Exercises 49–52, graph the function ƒ to see whether it appears to 
have a continuous extension to the origin. If it does, use Trace and Zoom 
to find a good candidate for the extended function’s value at x = 0. If 
the function does not appear to have a continuous extension, can it be 
extended to be continuous at the origin from the right or from the left? If 
so, what do you think the extended function’s value(s) should be?

 49. ƒ(x) = 10 x - 1
x  50. ƒ(x) = 10 0   x  0 - 1

x

 51. ƒ(x) = sin x
0 x 0  52. ƒ(x) = (1 + 2x)1>x

Theory and examples
 53. A continuous function y = ƒ(x) is known to be negative at 

x = 0 and positive at x = 1. Why does the equation ƒ(x) = 0 
have at least one solution between x = 0 and x = 1? Illustrate 
with a sketch.

 54. Explain why the equation cos x = x has at least one solution.

 55. Roots of a cubic Show that the equation x3 - 15x + 1 = 0 
has three solutions in the interval 3-4, 4].

 56. A function value Show that the function F(x) = (x - a)2 #
(x - b)2 + x takes on the value (a + b)>2 for some value of x.

 57. Solving an equation If ƒ(x) = x3 - 8x + 10, show that there 
are values c for which ƒ(c) equals (a) p; (b) -23; (c) 5,000,000.

 58. Explain why the following five statements ask for the same infor-
mation.

a. Find the roots of ƒ(x) = x3 - 3x - 1.

b. Find the x-coordinates of the points where the curve y = x3 
crosses the line y = 3x + 1.

c. Find all the values of x for which x3 - 3x = 1.

d. Find the x-coordinates of the points where the cubic curve 
y = x3 - 3x crosses the line y = 1.

e. Solve the equation x3 - 3x - 1 = 0.

 59. Removable discontinuity Give an example of a function ƒ(x)  
that is continuous for all values of x except x = 2, where it has  
a removable discontinuity. Explain how you know that ƒ is dis-
continuous at x = 2, and how you know the discontinuity is 
removable.

 60. Nonremovable discontinuity Give an example of a function 
g(x) that is continuous for all values of x except x = -1, where it 
has a nonremovable discontinuity. Explain how you know that g 
is discontinuous there and why the discontinuity is not removable.

T
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 61. A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers 
contains both rational and irrational numbers to show that the 
function

ƒ(x) = e1, if x is rational

0, if x is irrational

  is discontinuous at every point.

b. Is ƒ right-continuous or left-continuous at any point?

 62. If functions ƒ(x) and g(x) are continuous for 0 … x … 1, could 
ƒ(x)>g(x) possibly be discontinuous at a point of 30, 14? Give 
reasons for your answer.

 63. If the product function h(x) = ƒ(x) # g(x) is continuous at x = 0, 
must ƒ(x) and g(x) be continuous at x = 0? Give reasons for 
your answer.

 64. Discontinuous composite of continuous functions Give an 
example of functions ƒ and g, both continuous at x = 0, for 
which the composite ƒ ∘ g is discontinuous at x = 0. Does this 
contradict Theorem 9? Give reasons for your answer.

 65. Never-zero continuous functions Is it true that a continuous 
function that is never zero on an interval never changes sign on 
that interval? Give reasons for your answer.

 66. Stretching a rubber band Is it true that if you stretch a rubber 
band by moving one end to the right and the other to the left, 
some point of the band will end up in its original position? Give 
reasons for your answer.

 67. A fixed point theorem Suppose that a function ƒ is continuous 
on the closed interval 30, 14  and that 0 … ƒ(x) … 1 for every x 
in 30, 14 . Show that there must exist a number c in 30, 14  such 
that ƒ(c) = c (c is called a fixed point of ƒ).

 68. The sign-preserving property of continuous functions Let ƒ 
be defined on an interval (a, b) and suppose that ƒ(c) ≠ 0 at 
some c where ƒ is continuous. Show that there is an interval 
(c - d, c + d) about c where ƒ has the same sign as ƒ(c).

 69. Prove that ƒ is continuous at c if and only if

lim
hS0

 ƒ(c + h) = ƒ(c).

 70. Use Exercise 69 together with the identities

sin (h + c) = sin h cos c + cos h sin c,

cos (h + c) = cos h cos c - sin h sin c

  to prove that both ƒ(x) = sin x and g(x) = cos x are continuous 
at every point x = c.

Solving equations graphically
Use the Intermediate Value Theorem in Exercises 71–78 to prove that 
each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

 71. x3 - 3x - 1 = 0

 72. 2x3 - 2x2 - 2x + 1 = 0

 73. x(x - 1)2 = 1 (one root)

 74. xx = 2

 75. 2x + 21 + x = 4

 76. x3 - 15x + 1 = 0 (three roots)

 77. cos x = x (one root). Make sure you are using radian mode.

 78. 2 sin x = x (three roots).  Make sure you are using radian 
mode.

T

2.6 limits involving infinity; Asymptotes of graphs

In this section we investigate the behavior of a function when the magnitude of the inde-
pendent variable x becomes increasingly large, or x S {q. We further extend the con-
cept of limit to infinite limits, which are not limits as before, but rather a new use of the 
term limit. Infinite limits provide useful symbols and language for describing the behavior 
of functions whose values become arbitrarily large in magnitude. We use these limit ideas 
to analyze the graphs of functions having horizontal or vertical asymptotes.

Finite limits as xu tH
The symbol for infinity (q) does not represent a real number. We use q to describe the 
behavior of a function when the values in its domain or range outgrow all finite bounds. 
For example, the function ƒ(x) = 1>x is defined for all x ≠ 0 (Figure 2.49). When x is 
positive and becomes increasingly large, 1>x becomes increasingly small. When x is 
negative and its magnitude becomes increasingly large, 1>x again becomes small. We 
summarize these observations by saying that ƒ(x) = 1>x has limit 0 as x S q or 
x S  -q, or that 0 is a limit of ƒ(x) = 1>x at infinity and negative infinity. Here are pre-
cise definitions.

y

0

1

−1
1−1 2 3 4

2

3

4

x

1
xy =

Figure 2.49 The graph of y = 1>x 
approaches 0 as x S q or x S  -q.
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Intuitively, limxSq ƒ(x) = L if, as x moves increasingly far from the origin in the positive 
direction, ƒ(x) gets arbitrarily close to L. Similarly, limxS  -q ƒ(x) = L if, as x moves 
increasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as x S {q is similar to the one for 
finite limits in Section 2.2. There we first found the limits of the constant and identity 
functions y = k and y = x. We then extended these results to other functions by applying 
Theorem 1 on limits of algebraic combinations. Here we do the same thing, except that the 
starting functions are y = k and y = 1>x instead of y = k and y = x.

The basic facts to be verified by applying the formal definition are

lim
xS{q

 k = k   and   lim
xS{q

  1x = 0. (1)

We prove the second result in Example 1, and leave the first to Exercises 87 and 88.

ExamplE 1  Show that

(a) lim
xSq

  1x = 0 (b) lim
xS  -q

  1x = 0.

Solution
 (a) Let P 7 0 be given. We must find a number M such that for all x

x 7 M  1  ` 1x - 0 ` = ` 1x ` 6 P.

  The implication will hold if M = 1>P or any larger positive number (Figure 2.50). 
This proves limxSq (1>x) = 0.

 (b) Let P 7 0 be given. We must find a number N such that for all x

x 6 N  1  ` 1x - 0 ` = ` 1x ` 6 P.

  The implication will hold if N = -1>P or any number less than -1>P (Figure 2.50). 
This proves limxS- q (1>x) = 0. 

Limits at infinity have properties similar to those of finite limits.

DEFINITIONS
1. We say that ƒ(x) has the limit L as x approaches infinity and write

lim
xS

 
q

 ƒ(x) = L

  if, for every number P 7 0, there exists a corresponding number M such that 
for all x

x 7 M  1  0 ƒ(x) - L 0 6 P.

2. We say that ƒ(x) has the limit L as x approaches minus infinity and write

lim
xS  -  

q
 ƒ(x) = L

  if, for every number P 7 0, there exists a corresponding number N such that 
for all x

x 6 N  1  0 ƒ(x) - L 0 6 P.

x

y
No matter what
positive number P is,
the graph enters
this band at x =
and stays.

1
P

y = P

M = 1
P

N = −1
P

y = –P
0

No matter what
positive number P is,
the graph enters
this band at x = −
and stays.

1
P

P

–P

y = 1
x

Figure 2.50 The geometry behind the 
argument in Example 1.

THeOreM 12 All the Limit Laws in Theorem 1 are true when we replace 
limxSc by limxS  q or limxS  - q. That is, the variable x may approach a finite 
number c or {q.
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ExamplE 2  The properties in Theorem 12 are used to calculate limits in the same 
way as when x approaches a finite number c.

(a) lim
xS  q
a5 + 1

xb = lim
xS  q

 5 + lim
xS  q

  1x  Sum Rule

= 5 + 0 = 5 Known limits 

(b) lim
xS  - q

 
p23

x2 = lim
xS  - q

 p23 # 1
x
# 1
x

= lim
xS  - q

 p23 # lim
xS  - q

  1x
# lim

xS  - q
  1x  Product Rule

= p23 # 0 # 0 = 0 Known limits 

limits at infinity of rational Functions

To determine the limit of a rational function as x S {q, we first divide the numerator 
and denominator by the highest power of x in the denominator. The result then depends on 
the degrees of the polynomials involved.

ExamplE 3  These examples illustrate what happens when the degree of the numera-
tor is less than or equal to the degree of the denominator.

(a) lim
xS  q

  
5x2 + 8x - 3

3x2 + 2
= lim

xS  q
 
5 + (8>x) - (3>x2)

3 + (2>x2)
  

Divide numerator and 
denominator by x2.

= 5 + 0 - 0
3 + 0

= 5
3  See Fig. 2.51.

(b) lim
xS  - q

  
11x + 2
2x3 - 1

= lim
xS  - q

 
(11>x2) + (2>x3)

2 - (1>x3)
 

Divide numerator and 
denominator by x3.

  = 0 + 0
2 - 0

= 0 See Fig. 2.52. 

Cases for which the degree of the numerator is greater than the degree of the denomi-
nator are illustrated in Examples 10 and 14.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a 
point on the graph moves increasingly far from the origin, we say that the graph approaches 
the line asymptotically and that the line is an asymptote of the graph.

Looking at ƒ(x) = 1>x (see Figure 2.49), we observe that the x-axis is an asymptote 
of the curve on the right because

lim
xS  q

  1x = 0

and on the left because

lim
xS  - q

  1x = 0.

We say that the x-axis is a horizontal asymptote of the graph of ƒ(x) = 1>x.

DeFiNiTiON A line y = b is a horizontal asymptote of the graph of a func-
tion y = ƒ(x) if either

lim
xS  q

 ƒ(x) = b  or  lim
xS  - q

 ƒ(x) = b.

x

y

0

−2

−4

−6

−8

2−2−4 4 6

2

4

6

8
y =

11x + 2

2x3 − 1

Figure 2.52 The graph of the  
function in Example 3b. The graph  
approaches the x-axis as 0 x 0  increases.
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y

0

−1

−2

1

2

5−5 10

y = 5x2 + 8x − 3
3x2 + 2

NOT TO SCALE

Line y = 5
3

Figure 2.51 The graph of the func-
tion in Example 3a. The graph approaches 
the line y = 5>3 as 0 x 0  increases.
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The graph of the function

ƒ(x) = 5x2 + 8x - 3
3x2 + 2

sketched in Figure 2.51 (Example 3a) has the line y = 5>3 as a horizontal asymptote on 
both the right and the left because

lim
xS  q

 ƒ(x) = 5
3  and  lim

xS  - q
 ƒ(x) = 5

3.

ExamplE 4  Find the horizontal asymptotes of the graph of

ƒ(x) = x3 - 2
0 x 0 3 + 1

.

Solution We calculate the limits as x S {q.

For x Ú 0: lim
xS  q

x3 - 2
0 x 0 3 + 1

= lim
xS  q

 
x3 - 2
x3 + 1

= lim
xS  q

 
1 - (2>x3)

1 + (1>x3)
= 1.

For x 6 0: lim
xS  - q

x3 - 2
0 x 0 3 + 1

= lim
xS  - q

 
x3 - 2

(-x)3 + 1
= lim

xS  - q
 

1 - (2>x3)
-1 + (1>x3)

= -1.

The horizontal asymptotes are y = -1 and y = 1. The graph is displayed in Figure 
2.53. Notice that the graph crosses the horizontal asymptote y = -1 for a positive value 
of x. 

ExamplE 5  The x-axis (the line y = 0) is a horizontal asymptote of the graph of 
y = ex because

lim
xS  - q

 ex = 0.

To see this, we use the definition of a limit as x approaches -q. So let P 7 0 be given, 
but arbitrary. We must find a constant N such that for all x,

x 6 N 1 0 ex - 0 0 6 P.

Now 0 ex - 0 0 = ex, so the condition that needs to be satisfied whenever x 6 N  is

ex 6 P.

Let x = N  be the number where ex =  P. Since ex is an increasing function, if x 6 N , 
then ex 6  P. We find N by taking the natural logarithm of both sides of the equation 
eN = P, so N = ln P (see Figure 2.54). With this value of N the condition is satisfied, and 
we conclude that limxS  - q ex = 0. 

ExamplE 6  Find (a) lim
xS  q

 sin (1>x) and (b) lim
xS{q

 x sin (1>x).

Solution
 (a) We introduce the new variable t = 1>x. From Example 1, we know that t S 0+ as 

x S q (see Figure 2.49). Therefore,

lim
xS  q

 sin 1x = lim
tS0+

 sin t = 0.

Figure 2.53 The graph of the 
function in Example 4 has two  
horizontal asymptotes.

0

−2

2

x

y

y = −1

f(x) = x3 − 2
0 x 0 3 + 1

y = 1

1

x

y

y = ex

N = ln P

P

Figure 2.54 The graph of y = ex 
approaches the x-axis as x S  -q  
(Example 5).
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 (b) We calculate the limits as x S q and x S  -q:

lim
xS  q

 x sin 1x = lim
tS0+

 
sin t

t = 1  and  lim
xS  - q

 x sin 1x = lim
tS0-

 
sin t

t = 1.

  The graph is shown in Figure 2.55, and we see that the line y = 1 is a horizontal 
asymptote. 

Likewise, we can investigate the behavior of y = ƒ(1>x) as x S 0 by investigating 
y = ƒ(t) as t S {q, where t = 1>x.

ExamplE 7  Find lim
xS0-

e1>x.

Solution We let t = 1>x. From Figure 2.49, we can see that t S  -q as x S 0-. (We 
make this idea more precise further on.) Therefore,

lim
xS0-

e1>x = lim
tS  - q

et = 0  Example 5

(Figure 2.56). 

The Sandwich Theorem also holds for limits as x S {q. You must be sure, though, 
that the function whose limit you are trying to find stays between the bounding functions 
at very large values of x in magnitude consistent with whether x S q or x S  -q.

ExamplE 8  Using the Sandwich Theorem, find the horizontal asymptote of the curve

y = 2 + sin x
x .

Solution We are interested in the behavior as x S {q. Since

0 … ` sin x
x ` … ` 1x `

and limxS{q 0 1>x 0 = 0, we have limxS{q (sin x)>x = 0 by the Sandwich Theorem. 
Hence,

lim
xS{q

a2 + sin x
x b = 2 + 0 = 2,

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many 

times.  

ExamplE 9  Find lim
xS  q

 1x - 2x2 + 162.
Solution Both of the terms x and 2x2 + 16 approach infinity as x S q, so what hap-
pens to the difference in the limit is unclear (we cannot subtract q from q because the 
symbol does not represent a real number). In this situation we can multiply the numerator 
and the denominator by the conjugate radical expression to obtain an equivalent algebraic 
result:

lim
xS  q

 1x - 2x2 + 162 = lim
xS  q

 1x - 2x2 + 162 
x + 2x2 + 16

x + 2x2 + 16

 = lim
xS  q

 
x2 - (x2 + 16)

x + 2x2 + 16
= lim

xS  q
 

-16

x + 2x2 + 16
.

1

−1 1
x

y

y = x sin 1
x

Figure 2.55 The line y = 1 is a 
horizontal asymptote of the function 
graphed here (Example 6b).

x

y

1

0

2

2pp−p−2p−3p 3p

y = 2 + sin x
x

Figure 2.57 A curve may cross one of 
its asymptotes infinitely often (Example 8).

y = e1�x

−1−2−3 0

0.2
0.4
0.6
0.8

1

y

x

Figure 2.56 The graph of y = e1>x 
for x 6 0 shows limxS0- e1>x = 0  
(Example 7).
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As x S q, the denominator in this last expression becomes arbitrarily large, so we see that 
the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws:

 lim
xS  q

 
-16

x + 2x2 + 16
= lim

xS  q
 

-  
16
x

1 + Ax2

x2 + 16
x2

= 0

1 + 21 + 0
= 0. 

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 
denominator, the graph has an oblique or slant line asymptote. We find an equation for 
the asymptote by dividing numerator by denominator to express ƒ as a linear function plus 
a remainder that goes to zero as x S {q.

ExamplE 10  Find the oblique asymptote of the graph of

ƒ(x) = x2 - 3
2x - 4

in Figure 2.58.

Solution We are interested in the behavior as x S {q. We divide (2x - 4) into 
(x2 - 3):

x
2

+ 1   

2x - 4)x2 - 3   

x2 - 2x  

2x - 3

2x - 4

1

This tells us that

ƒ(x) = x2 - 3
2x - 4

= ¢ x
2

+ 1≤ + ¢ 1
2x - 4

≤  .
        ()* (1)1*

 linear g(x) remainder

As x S {q, the remainder, whose magnitude gives the vertical distance between the 
graphs of ƒ and g, goes to zero, making the slanted line

g(x) = x
2

+ 1

an asymptote of the graph of ƒ (Figure 2.58). The line y = g(x) is an asymptote both to the 
right and to the left. The next subsection will confirm that the function ƒ(x) grows arbitrarily 
large in absolute value as x S 2 (where the denominator is zero), as shown in the graph. 

Notice in Example 10 that if the degree of the numerator in a rational function is greater 
than the degree of the denominator, then the limit as 0 x 0  becomes large is +q or -q, 
depending on the signs assumed by the numerator and denominator.

infinite limits

Let us look again at the function ƒ(x) = 1>x. As x S 0+, the values of ƒ grow without 
bound, eventually reaching and surpassing every positive real number. That is, given any 
positive real number B, however large, the values of ƒ become larger still (Figure 2.59).

You can get as high
as you want by
taking x close enough
to 0.  No  matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low −B is,  the
graph goes lower.

x

x

B

−B

y = 1
x

0

Figure 2.59 One-sided infinite limits: 

lim
xS0+

 
1
x = q  and  lim

xS0-
 
1
x = -q.
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asymptote

The vertical distance
between curve and
line goes to zero as x : ∞

y =    + 1x
2

y = = + 1 +x2 − 3
2x − 4

1
2x − 4

x
2

Figure 2.58 The graph of the function 
in Example 10 has an oblique asymptote.



Thus, ƒ has no limit as x S 0+. It is nevertheless convenient to describe the behavior of ƒ
by saying that ƒ(x) approaches q as x S 0+. We write

lim
xS0+

ƒ(x) = lim
xS0+

1
x = q.

In writing this equation, we are not saying that the limit exists. Nor are we saying that there 
is a real number q, for there is no such number. Rather, we are saying that limxS0+ (1>x)
does not exist because 1>x becomes arbitrarily large and positive as x S 0+.

As x S 0 -, the values of ƒ(x) = 1>x become arbitrarily large and negative. Given 
any negative real number -B, the values of ƒ eventually lie below -B. (See Figure 2.59.)
We write

lim
xS0-

ƒ(x) = lim
xS0-

1
x = -q.

Again, we are not saying that the limit exists and equals the number -q. There is no real 
number -q. We are describing the behavior of a function whose limit as x S 0- does not 
exist because its values become arbitrarily large and negative.

EXAMPLE 11 Find lim
xS1+

1
x - 1

and lim
xS1-

1
x - 1

.

Geometric Solution The graph of y = 1>(x - 1) is the graph of y = 1>x shifted 1 
unit to the right (Figure 2.60). Therefore, y = 1>(x - 1) behaves near 1 exactly the way 
y = 1>x behaves near 0:

lim
xS1+

1
x - 1

= q and lim
xS1-

1
x - 1

= -q.

Analytic Solution Think about the number x - 1 and its reciprocal. As x S 1+, we 
have (x - 1) S 0+ and 1>(x - 1) S q. As x S 1-, we have (x - 1) S 0- and 
1>(x - 1) S -q.

EXAMPLE 12 Discuss the behavior of

ƒ(x) = 1
x2 as x S 0.

Solution As x approaches zero from either side, the values of 1>x2 are positive and 
become arbitrarily large (Figure 2.61). This means that

lim
xS0

ƒ(x) = lim
xS0

1
x2 = q.

The function y = 1>x shows no consistent behavior as x S 0. We have 1>x S q if 
x S 0+, but 1>x S -q if x S 0-. All we can say about limxS0 (1>x) is that it does not 
exist. The function y = 1>x2 is different. Its values approach infinity as x approaches zero 
from either side, so we can say that limxS0 (1>x2) = q.

EXAMPLE 13 These examples illustrate that rational functions can behave in various 
ways near zeros of the denominator.

(a) lim
xS2

(x - 2)2

x2 - 4
= lim

xS2

(x - 2)2

(x - 2)(x + 2)
= lim

xS2

x - 2
x + 2

= 0

(b) lim
xS2

x - 2
x2 - 4

= lim
xS2

x - 2
(x - 2)(x + 2)

= lim
xS2

1
x + 2

= 1
4

x

y

1

0 1 2 3−1

y =
x − 1

1

FIGURE 2.60 Near x = 1, the func-
tion y = 1>(x - 1) behaves the way the 
function y = 1>x behaves near x = 0. Its 
graph is the graph of y = 1>x shifted 
1 unit to the right (Example 11).

FIGURE 2.61 The graph of ƒ(x) in 
Example 12 approaches infinity as x S 0.
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No matter how
high B is, the graph
goes higher.
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f (x) = 1
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(c) lim
xS2+

  
x - 3
x2 - 4

= lim
xS2+

  
x - 3

(x - 2)(x + 2)
= -q 

The values are negative 
for x 7 2, x near 2.

(d) lim
xS2-

  
x - 3
x2 - 4

= lim
xS2-

  
x - 3

(x - 2)(x + 2)
= q 

The values are positive 
for x 6 2, x near 2.

(e) lim
xS2

  
x - 3
x2 - 4

= lim
xS2

  
x - 3

(x - 2)(x + 2)
  does not exist. See parts (c) and (d).

 (f ) lim
xS2

  
2 - x

(x - 2)3 = lim
xS2

  
-(x - 2)

(x - 2)3 = lim
xS2

  -1
(x - 2)2 = -q

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled 
because the numerator is zero there also. Thus a finite limit exists. This is not true in part 
(f ), where cancellation still leaves a zero factor in the denominator. 

ExamplE 14  Find lim
xS  - q

  
2x5 - 6x4 + 1
3x2 + x - 7

.

Solution We are asked to find the limit of a rational function as x S -q, so we divide 
the numerator and denominator by x2, the highest power of x in the denominator:

lim
xS  - q

  
2x5 - 6x4 + 1
3x2 + x - 7

= lim
xS  - q

  
2x3 - 6x2 + x-2

3 + x-1 - 7x-2

= lim
xS  - q

  
2x2 (x - 3) + x-2

3 + x-1 - 7x-2

= -q,  x-n S 0, x - 3 S -q

because the numerator tends to -q while the denominator approaches 3 as x S -q. 

Precise Definitions of infinite limits

Instead of requiring ƒ(x) to lie arbitrarily close to a finite number L for all x sufficiently 
close to c, the definitions of infinite limits require ƒ(x) to lie arbitrarily far from zero. 
Except for this change, the language is very similar to what we have seen before. Figures 2.62 
and 2.63 accompany these definitions.

y

x
0

B

y = f (x)

c − d c + d
c

Figure 2.62 For c - d 6 x 6 c + d, 
the graph of ƒ(x) lies above the line y = B.

x

y

0

−B

y = f (x)

c − d c + d
c

Figure 2.63 For c - d 6 x 6 c + d, 
the graph of ƒ(x) lies below the line 
y = -B.

DEFINITIONS
1. We say that ƒ(x)  approaches infinity as x approaches c, and write

lim
xSc

 ƒ(x) = q,

  if for every positive real number B there exists a corresponding d 7 0 such 
that for all x

0 6 0 x - c 0 6 d  1  ƒ(x) 7 B.

2. We say that ƒ(x)  approaches minus infinity as x approaches c, and write

lim
xSc

 ƒ(x) = -q,

  if for every negative real number -B there exists a corresponding d 7 0 
such that for all x

0 6 0 x - c 0 6 d  1  ƒ(x) 6 -B.

The precise definitions of one-sided infinite limits at c are similar and are stated in the 
exercises.
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ExamplE 15  Prove that lim
xS0

  1
x2 = q.

Solution Given B 7 0, we want to find d 7 0 such that

0 6 � x - 0 � 6 d implies 1
x2 7 B.

Now,

1
x2 7 B  if and only if  x2 6 1

B

or, equivalently,

0 x 0 6 12B
.

Thus, choosing d = 1>2B (or any smaller positive number), we see that

0 x 0 6 d implies 1
x2 7 1

d2 Ú B.

Therefore, by definition,

 lim
xS0

  1
x2 = q. 

vertical Asymptotes

Notice that the distance between a point on the graph of ƒ(x) = 1>x and the y-axis 
approaches zero as the point moves vertically along the graph and away from the origin 
(Figure 2.64). The function ƒ(x) = 1>x is unbounded as x approaches 0 because

lim
xS0+

 1x = q  and  lim
xS0-

 1x = -q.

We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of ƒ(x) = 1>x. 
Observe that the denominator is zero at x = 0 and the function is undefined there.x

0

1

1

y

Horizontal
asymptote,
y = 0

Horizontal
asymptote

Vertical asymptote

Vertical asymptote,
x = 0

y = 1
x

Figure 2.64 The coordinate axes are 
asymptotes of both branches of the hyper-
bola y = 1>x.

DeFiNiTiON A line x = a is a vertical asymptote of the graph of a function 
y = ƒ(x) if either

lim
xSa+

 ƒ(x) = {q  or  lim
xSa-

 ƒ(x) = {q.

ExamplE 16  Find the horizontal and vertical asymptotes of the curve

y = x + 3
x + 2

.

Solution We are interested in the behavior as x S {q and the behavior as x S -2, 
where the denominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial 
with a remainder, by dividing (x + 2) into (x + 3):

1   

x + 2)x + 3

x + 2

1
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This result enables us to rewrite y as:

y = 1 + 1
x + 2

 .

As x S {q, the curve approaches the horizontal asymptote y = 1; as x S -2, the curve 
approaches the vertical asymptote x = -2. We see that the curve in question is the graph 
of ƒ(x) = 1>x shifted 1 unit up and 2 units left (Figure 2.65). The asymptotes, instead of 
being the coordinate axes, are now the lines y = 1 and x = -2. 

x

y

0
−1

−2

−3

−4

1−1−2−3−4−5

1

2 3

2

3

4

5

6

y = x + 3
x + 2

= 1 + 1
x + 2

Vertical
asymptote,
x = −2

Horizontal
asymptote,
y = 1

Figure 2.65 The lines y = 1 and 
x = -2 are asymptotes of the curve in 
Example 16.
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0 1−1

1

Vertical
asymptote, x = 2
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asymptote, y = 02

3
4
5
6
7
8

3 42−2−3−4

Vertical
asymptote,

x = −2

y = − 8
x2 − 4

Figure 2.66 Graph of the function  
in Example 17. Notice that the curve  
approaches the x-axis from only one side. 
Asymptotes do not have to be two-sided.

ExamplE 17  Find the horizontal and vertical asymptotes of the graph of

ƒ(x) = -  
8

x2 - 4
 .

Solution We are interested in the behavior as x S {q and as x S {2, where the 
denominator is zero. Notice that ƒ is an even function of x, so its graph is symmetric with 
respect to the y-axis.

 (a) The behavior as x S {q. Since limxSq ƒ(x) = 0, the line y = 0 is a horizontal 
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well 
(Figure 2.66). Notice that the curve approaches the x-axis from only the negative side 
(or from below). Also, ƒ(0) = 2.

 (b) The behavior as x S {2. Since

lim
xS2+

 ƒ(x) = -q  and  lim
xS2-

 ƒ(x) = q,

  the line x = 2 is a vertical asymptote both from the right and from the left. By sym-
metry, the line x = -2 is also a vertical asymptote.

  There are no other asymptotes because ƒ has a finite limit at all other points. 

ExamplE 18  The graph of the natural logarithm function has the y-axis (the line 
x = 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which 
is the reflection of the graph of the natural exponential function across the line y = x) and 
the fact that the x-axis is a horizontal asymptote of y = ex (Example 5). Thus,

lim
xS0+

 ln x = -q.

The same result is true for y = loga x whenever a 7 1. 

ExamplE 19  The curves

y = sec x = 1
cos x  and  y = tan x = sin x

cos x

both have vertical asymptotes at odd-integer multiples of p>2, where cos x = 0 (Figure 2.68).

Dominant Terms

In Example 10 we saw that by long division we could rewrite the function

ƒ(x) = x2 - 3
2x - 4

−1 1 2 3 4
−1

1

2

3

4

x

y
y = ex

y = ln x

Figure 2.67 The line x = 0 is a 
vertical asymptote of the natural logarithm 
function (Example 18).
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as a linear function plus a remainder term:

ƒ(x) = ax
2

+ 1b + a 1
2x - 4

b .

This tells us immediately that

ƒ(x) ≈ x
2

+ 1   For 0 x 0  large, 
1

2x - 4
 is near 0.

ƒ(x) ≈ 1
2x - 4

  For x near 2, this term is very large in absolute value.

If we want to know how ƒ behaves, this is the way to find out. It behaves like 
y = (x>2) + 1 when |x| is large and the contribution of 1>(2x - 4) to the total value of ƒ 
is insignificant. It behaves like 1>(2x - 4) when x is so close to 2 that 1>(2x - 4) makes 
the dominant contribution.

We say that (x>2) + 1 dominates when x is numerically large, and we say that 
1>(2x - 4) dominates when x is near 2. Dominant terms like these help us predict a 
function’s behavior.

ExamplE 20  Let ƒ(x) = 3x4 - 2x3 + 3x2 - 5x + 6 and g(x) = 3x4. Show that 
although ƒ and g are quite different for numerically small values of x, they are virtually 
identical for 0 x 0  very large, in the sense that their ratios approach 1 as x S q or x S  -q.

Solution The graphs of ƒ and g behave quite differently near the origin (Figure 2.69a), 
but appear as virtually identical on a larger scale (Figure 2.69b).

We can test that the term 3x4 in ƒ, represented graphically by g, dominates the poly-
nomial ƒ for numerically large values of x by examining the ratio of the two functions as 
x S {q. We find that

lim
xS{q

  
ƒ(x)
g(x)

= lim
xS{q

 
3x4 - 2x3 + 3x2 - 5x + 6

3x4

 = lim
xS{q

a1 - 2
3x

+ 1
x2 - 5

3x3 + 2
x4b

 = 1, 

which means that ƒ and g appear nearly identical when 0 x 0  is large. 

Summary

In this chapter we presented several important calculus ideas that are made meaningful and 
precise by the concept of the limit. These include the three ideas of the exact rate of change of 
a function, the slope of the graph of a function at a point, and the continuity of a function. The 
primary methods used for calculating limits of many functions are captured in the algebraic 
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Figure 2.68 The graphs of sec x and tan x have infinitely many vertical asymptotes  
(Example 19). 
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Figure 2.69 The graphs of ƒ and 
g are (a) distinct for 0 x 0  small, and  
(b) nearly identical for 0 x 0  large  
(Example 20).
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Limit Laws of Theorem 1 and in the Sandwich Theorem, all of which are proved from the pre-
cise definition of the limit. We saw that these computational rules also apply to one-sided limits 
and to limits at infinity. Moreover, we can sometimes apply these rules when calculating limits 
of simple transcendental functions, as illustrated by our examples or in cases like the following:

 lim
xS0

  
ex - 1
e2x - 1

= lim
xS0

  
ex - 1

(ex - 1)(ex + 1)
= lim

xS0
  1
ex + 1

= 1
1 + 1

= 1
2

 .

However, calculating more complicated limits involving transcendental functions such as

lim
xS0

  
x

e2x - 1
,  lim

xS0
  
ln x
x , and lim

xS0
 a1 + 1

xb
x

requires more than simple algebraic techniques. The derivative is exactly the tool we need 
to calculate limits such as these (see Section 4.5), and this notion is the main subject of our 
next chapter.

Finding limits
 1. For the function ƒ whose graph is given, determine the following 

limits.

  a. lim
xS2

 ƒ(x) b. lim
xS  -3 +

 ƒ(x) c. lim
xS  -3 -

 ƒ(x)

  d. lim
xS  -3

 ƒ(x) e. lim
xS0 +

 ƒ(x) f. lim
xS0 -

 ƒ(x)

  g. lim
xS0

 ƒ(x) h. lim
xSq

 ƒ(x) i. lim
xS  -q

 ƒ(x)

y

x

−2

−1

1

2

3

−3

2 3 4 5 61−1−2−3−4−5−6

f

 

 2. For the function ƒ whose graph is given, determine the following 
limits.

  a. lim
xS4

 ƒ(x) b. lim
xS2 +

 ƒ(x) c. lim
xS2 -

 ƒ(x)

  d. lim
xS2

 ƒ(x) e. lim
xS  -3 +

 ƒ(x) f. lim
xS  -3 -

 ƒ(x)

  g. lim
xS  -3

 ƒ(x) h. lim
xS0 +

 ƒ(x) i. lim
xS0 -

 ƒ(x)

  j. lim
xS0

 ƒ(x) k. lim
xSq

 ƒ(x) l. lim
xS  -q

 ƒ(x)

y

x

−2

−3

2 3 4 5 61−1−2−3−4−5−6

f
3

2

1

−1

 

In Exercises 3–8, find the limit of each function (a) as x S q and  
(b) as x S  -q. (You may wish to visualize your answer with a 
graphing calculator or computer.)

 3. ƒ(x) = 2
x - 3 4. ƒ(x) = p - 2

x2

 5. g(x) = 1
2 + (1>x)

 6. g(x) = 1
8 - (5>x2)

 7. h(x) =
-5 + (7>x)

3 - (1>x2)
 8. h(x) =

3 - (2>x)

4 + (22>x2)

Find the limits in Exercises 9–12.

 9. lim
xSq

 
sin 2x

x  10. lim
uS  -q

 
cos u

3u

 11. lim
tS  -q

 
2 - t + sin t

t + cos t  12. lim
rSq

  
r + sin r

2r + 7 - 5 sin r

limits of rational Functions
In Exercises 13–22, find the limit of each rational function (a) as 
x S q and (b) as x S  -q.

 13. ƒ(x) = 2x + 3
5x + 7

 14. ƒ(x) = 2x3 + 7
x3 - x2 + x + 7

 15. ƒ(x) = x + 1
x2 + 3

 16. ƒ(x) = 3x + 7
x2 - 2

 17. h(x) = 7x3

x3 - 3x2 + 6x
 18. h(x) = 9x4 + x

2x4 + 5x2 - x + 6

 19. g(x) = 10x5 + x4 + 31
x6  20. g(x) = x3 + 7x2 - 2

x2 - x + 1

 21. f(x) = 3x7 + 5x2 - 1
6x3 - 7x + 3

 22. h(x) = 5x8 - 2x3 + 9
3 + x - 4x5

limits as xuH or xu −H
The process by which we determine limits of rational functions applies 
equally well to ratios containing noninteger or negative powers of x: 
Divide numerator and denominator by the highest power of x in the 
denominator and proceed from there. Find the limits in Exercises 23–36.

 23. lim
xSq

 A8x2 - 3
2x2 + x

 24. lim
xS  -q

 ¢x2 + x - 1
8x2 - 3

≤1>3

exercises 2.6
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 25. lim
xS  - q

 ¢ 1 - x3

x2 + 7x
≤5

 26. lim
xS   q

 A x2 - 5x
x3 + x - 2

 27. lim
xS  q

  
22x + x-1

3x - 7
 28. lim

xS  q  
2 + 2x

2 - 2x

 29. lim
xS  - q

  
23 x - 25 x23 x + 25 x

 30. lim
xS  q

  
x-1 + x-4

x-2 - x-3

 31. lim
xS  q  

2x5>3 - x1>3 + 7

x8>5 + 3x + 2x
 32. lim

xS  - q  
23 x - 5x + 3
2x + x2>3 - 4

 33. lim
xS  q

 
2x2 + 1

x + 1
 34. lim

xS  - q
 
2x2 + 1

x + 1

 35. lim
xS  q

 
x - 324x2 + 25

 36. lim
xS  - q

 
4 - 3x32x6 + 9

infinite limits
Find the limits in Exercises 37–48.

 37. lim
xS0+

 
1
3x

 38. lim
xS0-

 
5
2x

 39. lim
xS2-

 
3

x - 2
 40. lim

xS3+
 

1
x - 3

 41. lim
xS  -8+

 
2x

x + 8
 42. lim

xS  -5-
 

3x
2x + 10

 43. lim
xS7

  
4

(x - 7)2 44. lim
xS0

  
-1

x2(x + 1)

 45. a. lim
xS0+

 
2

3x1>3 b. lim
xS0-

 
2

3x1>3

 46. a. lim
xS0+

 
2

x1>5 b. lim
xS0-

 
2

x1>5

 47. lim
xS0

  
4

x2>5 48. lim
xS0

  
1

x2>3

Find the limits in Exercises 49–52.

 49. lim
xS(p>2)-

 tan x 50. lim
xS(-p>2)+

 sec x

 51. lim
uS0-  

(1 + csc u) 52. lim
uS0

 (2 - cot u)

Find the limits in Exercises 53–58.

 53. lim 
1

x2 - 4
 as

  a. x S 2+ b. x S 2-

  c. x S  -2+ d. x S  -2-

 54. lim 
x

x2 - 1
 as

  a. x S 1+ b. x S 1-

  c. x S  -1+ d. x S  -1-

 55. lim ax
2

2
- 1

xb  as

  a. x S 0+ b. x S 0-

  c. x S 23 2 d. x S  -1

 56. lim 
x2 - 1
2x + 4

 as

  a. x S -2+ b. x S -2-

  c. x S 1+ d. x S 0-

 57. lim 
x2 - 3x + 2

x3 - 2x2  as

  a. x S 0+ b. x S 2+

  c. x S 2- d. x S 2

  e. What, if anything, can be said about the limit as x S 0?

 58. lim 
x2 - 3x + 2

x3 - 4x
  as

  a. x S 2+ b. x S -2+

  c. x S 0- d. x S 1+

  e. What, if anything, can be said about the limit as x S 0?

Find the limits in Exercises 59–62.

 59. lima2 - 3
t1>3b  as

  a. t S 0+ b. t S 0-

 60. lima 1
t3>5 + 7b  as

  a. t S 0+ b. t S 0-

 61. lima 1
x2>3 + 2

(x - 1)2>3b  as

  a. x S 0+ b. x S 0-

  c. x S 1+ d. x S 1-

 62. lima 1
x1>3 - 1

(x - 1)4>3b  as

  a. x S 0+ b. x S 0-

  c. x S 1+ d. x S 1-

graphing Simple rational Functions
Graph the rational functions in Exercises 63–68. Include the graphs 
and equations of the asymptotes and dominant terms.

 63. y = 1
x - 1

 64. y = 1
x + 1

 65. y = 1
2x + 4

 66. y = -3
x - 3

 67. y = x + 3
x + 2

 68. y = 2x
x + 1

inventing graphs and Functions
In Exercises 69–72, sketch the graph of a function y = ƒ(x) that satis-
fies the given conditions. No formulas are required—just label the 
coordinate axes and sketch an appropriate graph. (The answers are not 
unique, so your graphs may not be exactly like those in the answer 
section.)

 69. ƒ(0) = 0, ƒ(1) = 2, ƒ(-1) = -2, lim
xS  -q

 ƒ(x) = -1, and 

  lim
xSq

 ƒ(x) = 1

 70. ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = 2,  and

  lim
xS0-

 ƒ(x) = -2

 71. ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS1-

 ƒ(x) = lim
xS  -1+

 ƒ(x) = q,  

  lim
xS1 +

 ƒ(x) = -q, and lim
xS  -1-

 ƒ(x) = -q

 72. ƒ(2) = 1, ƒ(-1) = 0, lim
xSq

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = q,

   lim
xS0-

 ƒ(x) = -q, and lim
xS  -q

 ƒ(x) = 1
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In Exercises 73–76, find a function that satisfies the given conditions 
and sketch its graph. (The answers here are not unique. Any function 
that satisfies the conditions is acceptable. Feel free to use formulas 
defined in pieces if that will help.)

 73. lim
xS{q

 ƒ(x) = 0, lim
xS2-

 ƒ(x) = q, and lim
xS2+

 ƒ(x) = q

 74. lim
xS{q

 g(x) = 0, lim
xS3-

 g(x) = -q, and lim
xS3+

 g(x) = q

 75. lim
xS  - q

 h(x) = -1, lim
xS  q

 h(x) = 1, lim
xS0-

 h(x) = -1, and

   lim
xS0+

 h(x) = 1

 76. lim
xS{q

 k(x) = 1, lim
xS1-

 k(x) = q, and lim
xS1+

 k(x) = -q

 77. Suppose that ƒ(x) and g(x) are polynomials in x and that 
limxS  q (ƒ(x)>g(x)) = 2. Can you conclude anything about 
limxS  - q (ƒ(x)>g(x))? Give reasons for your answer.

 78. Suppose that ƒ(x) and g(x) are polynomials in x. Can the graph of 
ƒ(x)>g(x) have an asymptote if g(x) is never zero? Give reasons 
for your answer.

 79. How many horizontal asymptotes can the graph of a given ratio-
nal function have? Give reasons for your answer.

Finding limits of Differences when xu tH
Find the limits in Exercises 80–86.

 80. lim
xS  q

 (2x + 9 - 2x + 4 )

 81. lim
xS  q

 (2x2 + 25 - 2x2 - 1 )

 82. lim
xS  - q

 (2x2 + 3 + x )

 83. lim
xS  - q

 (2x + 24x2 + 3x - 2 )

 84. lim
xS  q

 (29x2 - x - 3x)

 85. lim
xS  q

 (2x2 + 3x - 2x2 - 2x )

 86. lim
xS  q 

(2x2 + x - 2x2 - x )

using the Formal Definitions
Use the formal definitions of limits as x S {q to establish the limits 
in Exercises 87 and 88.

 87. If ƒ has the constant value ƒ(x) = k, then lim
xSq

 ƒ(x) = k.

 88. If ƒ has the constant value ƒ(x) = k, then lim
xS  -q

 ƒ(x) = k.

Use formal definitions to prove the limit statements in Exercises 89–92.

 89. lim
xS0

  
-1
x2 = -q 90. lim

xS0
  

1
0 x 0 = q

 91. lim
xS3  

-2
(x - 3)2 = -q 92. lim

xS  -5  

1
(x + 5)2 = q

 93. Here is the definition of infinite right-hand limit.

We say that ƒ(x) approaches infinity as x approaches c from the 
right, and write

lim
xSc+

 ƒ(x) = q,

if, for every positive real number B, there exists a correspond-
ing number d 7 0 such that for all x

c 6 x 6 c + d  1  ƒ(x) 7 B.

Modify the definition to cover the following cases.

  a. lim
xSc-

 ƒ(x) = q

  b. lim
xSc+

 ƒ(x) = -q

  c. lim
xSc-

 ƒ(x) = -q

Use the formal definitions from Exercise 93 to prove the limit state-
ments in Exercises 94–98.

 94. lim
xS0+

 
1
x = q

 95. lim
xS0-

 
1
x = -q

 96. lim
xS2-

 
1

x - 2
= -q

 97. lim
xS2+

 
1

x - 2
= q

 98. lim
xS1-

 
1

1 - x2 = q

Oblique Asymptotes
Graph the rational functions in Exercises 99–104. Include the graphs 
and equations of the asymptotes.

  99. y = x2

x - 1

 100. y = x2 + 1
x - 1

101. y = x2 - 4
x - 1

 102. y = x2 - 1
2x + 4

103. y = x2 - 1
x

 104. y = x3 + 1
x2

Additional graphing exercises
Graph the curves in Exercises 105–108. Explain the relationship 
between the curve’s formula and what you see.

105. y = x24 - x2

 106. y = -124 - x2

107. y = x2>3 + 1
x1>3

 108. y = sin a p

x2 + 1
b

Graph the functions in Exercises 109 and 110. Then answer the follow-
ing questions.

  a. How does the graph behave as x S 0+?

  b. How does the graph behave as x S {q?

  c. How does the graph behave near x = 1 and x = -1?

Give reasons for your answers.

 109. y = 3
2

 ax - 1
xb

2>3
 110. y = 3

2
 a x

x - 1
b

2>3

T

T
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Chapter 2 Questions to guide Your review

 1. What is the average rate of change of the function g(t) over the 
interval from t = a to t = b? How is it related to a secant line?

 2. What limit must be calculated to find the rate of change of a func-
tion g(t) at t = t0?

 3. Give an informal or intuitive definition of the limit

lim
xSc

 ƒ(x) = L.

  Why is the definition “informal”? Give examples.

 4. Does the existence and value of the limit of a function ƒ(x) as x 
approaches c ever depend on what happens at x = c? Explain 
and give examples.

 5. What function behaviors might occur for which the limit may fail 
to exist? Give examples.

 6. What theorems are available for calculating limits? Give exam-
ples of how the theorems are used.

 7. How are one-sided limits related to limits? How can this relation-
ship sometimes be used to calculate a limit or prove it does not 
exist? Give examples.

 8. What is the value of limuS0 ((sin u)>u)? Does it matter whether u 
is measured in degrees or radians? Explain.

 9. What exactly does limxSc ƒ(x) = L mean? Give an example in 
which you find a d 7 0 for a given ƒ, L, c, and P 7 0 in the pre-
cise definition of limit.

 10. Give precise definitions of the following statements.

  a. limxS2- ƒ(x) = 5 b. limxS2+ ƒ(x) = 5

  c. limxS2 ƒ(x) = q d. limxS2 ƒ(x) = -q

 11. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

 12. How can looking at the graph of a function help you tell where 
the function is continuous?

 13. What does it mean for a function to be right-continuous at a 
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

 14. What does it mean for a function to be continuous on an interval? 
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected 
intervals within the domain.

 15. What are the basic types of discontinuity? Give an example of 
each. What is a removable discontinuity? Give an example.

 16. What does it mean for a function to have the Intermediate Value 
Property? What conditions guarantee that a function has this 
property over an interval? What are the consequences for graph-
ing and solving the equation ƒ(x) = 0?

17. Under what circumstances can you extend a function ƒ(x) to be 
continuous at a point x = c? Give an example.

 18. What exactly do limxSq ƒ(x) = L and limxS  -q ƒ(x) = L mean? 
Give examples.

 19. What are limxS{q k (k a constant) and limxS{q (1>x)? How do 
you extend these results to other functions? Give examples.

 20. How do you find the limit of a rational function as x S {q? 
Give examples.

 21. What are horizontal and vertical asymptotes? Give examples.

Chapter 2 Practice exercises

limits and Continuity
 1. Graph the function

ƒ(x) = e   1, x … -1

 -x, -1 6 x 6 0

  1, x = 0

 -x, 0 6 x 6 1

  1, x Ú 1.

  Then discuss, in detail, limits, one-sided limits, continuity, and 
one-sided continuity of ƒ at x = -1, 0, and 1. Are any of the 
discontinuities removable? Explain.

 2. Repeat the instructions of Exercise 1 for

ƒ(x) = d   0, x … -1

1>x, 0 6 0 x 0 6 1

  0, x = 1

  1, x 7 1.

 3. Suppose that ƒ(t) and ƒ(t) are defined for all t and that limtSt0
 

ƒ(t) = -7 and limtSt0
 g(t) = 0. Find the limit as t S t0 of the 

following functions.

  a. 3ƒ(t) b. (ƒ(t))2

  c. ƒ(t) # g(t) d. 
ƒ(t)

g(t) - 7

  e. cos (g(t)) f. 0 ƒ(t) 0
  g. ƒ(t) + g(t) h. 1>ƒ(t)

 4. Suppose the functions ƒ(x) and g(x) are defined for all x and that 
limxS0 ƒ(x) = 1>2 and limxS0 g(x) = 22. Find the limits as 
x S 0 of the following functions.

  a. -g(x) b. g(x) # ƒ(x)

  c. ƒ(x) + g(x) d. 1>ƒ(x)

  e. x + ƒ(x) f. 
ƒ(x) #  cos x

x - 1



In Exercises 5 and 6, find the value that limxS0 g(x) must have if the 
given limit statements hold.

 5. lim
xS0
a4 - g(x)

x b = 1 6. lim
xS  -4

ax lim
xS0

 g(x)b = 2

 7. On what intervals are the following functions continuous?

  a. ƒ(x) = x1>3 b. g(x) = x3>4

  c. h(x) = x-2>3 d. k(x) = x-1>6

 8. On what intervals are the following functions continuous?

  a. ƒ(x) = tan x b. g(x) = csc x

  c. h(x) = cos x
x - p d. k(x) = sin x

x

Finding limits
In Exercises 9–28, find the limit or explain why it does not exist.

 9. lim 
x2 - 4x + 4

x3 + 5x2 - 14x

  a. as x S 0 b. as x S 2

 10. lim 
x2 + x

x5 + 2x4 + x3

  a. as x S 0 b. as x S  -1

 11. lim
xS1

 
1 - 2x

1 - x
 12. lim

xSa
  
x2 - a2

x4 - a4

 13. lim
hS0

 
(x + h)2 - x2

h
 14. lim

xS0
 
(x + h)2 - x2

h

 15. lim
xS0

 

1
2 + x

- 1
2

x  16. lim
xS0

 
(2 + x)3 - 8

x

 17. lim
xS1

 
x1>3 - 12x - 1

 18. lim
xS64

 
x2>3 - 162x - 8

 19. lim
xS0

 
tan (2x)
tan (px)

 20. lim
xSp-

 csc x

 21. lim
xSp

 sin ax
2

+ sin xb  22. lim
xSp

 cos2 (x - tan x)

 23. lim
xS0

  
8x

3 sin x - x
 24. lim

xS0
 
cos 2x - 1

sin x

 25. lim
tS3+

 ln (t - 3) 26. lim
tS1

 t2 ln (2 - 2t )

 27. lim
uS0+

2uecos (p>u) 28. lim
zS0+

 
2e1>z

e1>z + 1

In Exercises 29–32, find the limit of g(x) as x approaches the indi-
cated value.

 29. lim
xS0+  (4g(x))1>3 = 2 30. lim

xS25
   

1
x + g(x)

= 2

 31. lim
xS1

  
3x2 + 1

g(x)
= q 32. lim

xS  -2
  
5 - x22g(x)

= 0

roots
33. Let ƒ(x) = x3 - x - 1.

a. Use the Intermediate Value Theorem to show that ƒ has a 
zero between -1 and 2.

b. Solve the equation ƒ(x) = 0 graphically with an error of 
magnitude at most 10-8.

T

c. It can be shown that the exact value of the solution in part (b) is

a1
2

+ 269
18

 b
1>3

+ a1
2

- 269
18

 b
1>3

.

  Evaluate this exact answer and compare it with the value you 
found in part (b).

 34. Let ƒ(u) = u3 - 2u + 2.

a. Use the Intermediate Value Theorem to show that ƒ has a 
zero between -2 and 0.

b. Solve the equation ƒ(u) = 0 graphically with an error of 
magnitude at most 10-4.

c. It can be shown that the exact value of the solution in part (b) is

aA19
27

- 1b
1>3

- aA19
27

+ 1b
1>3

.

  Evaluate this exact answer and compare it with the value you 
found in part (b).

Continuous extension
 35. Can ƒ(x) = x(x2 - 1)> 0 x2 - 1 0  be extended to be continuous at 

x = 1 or -1? Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

 36. Explain why the function ƒ(x) = sin (1>x) has no continuous 
extension to x = 0.

In Exercises 37–40, graph the function to see whether it appears to have 
a continuous extension to the given point a. If it does, use Trace and 
Zoom to find a good candidate for the extended function’s value at a. If 
the function does not appear to have a continuous extension, can it be 
extended to be continuous from the right or left? If so, what do you 
think the extended function’s value should be?

 37. ƒ(x) = x - 1

x - 24 x
 , a = 1

 38. g(u) = 5 cos u
4u - 2p

 , a = p>2
 39. h(t) = (1 + 0 t 0 )1>t, a = 0

 40. k(x) = x

1 - 2 0 x 0 , a = 0

limits at infinity
Find the limits in Exercises 41–54.

 41. lim
xS  q

  
2x + 3
5x + 7

 42. lim
xS  - q

  
2x2 + 3
5x2 + 7

 43. lim
xS  - q

 
x2 - 4x + 8

3x3  44. lim
xS  q

  
1

x2 - 7x + 1

 45. lim
xS  - q

 
x2 - 7x
x + 1

 46. lim
xS  q

  
x4 + x3

12x3 + 128

 47. lim
xS  q

  
sin x
:x;  

(If you have a grapher, try graphing the function

for -5 … x … 5.)

 48. lim
uS  q

 
cos u - 1

u
  

(If you have a grapher, try graphing 
ƒ(x) = x (cos (1>x) - 1) near the origin to 
“see” the limit at infinity.)

 49. lim
xS  q

 
x + sin x + 22x

x + sin x
 50. lim

xS  q
  

x2>3 + x-1

x2>3 + cos2 x

 51. lim
xS  q

 e1>x cos  
1
x  52. lim

tS  q
 ln a1 + 1

t b

 53. lim
xS  - q

 tan-1 x 54. lim
tS  - q

 e3t sin-1 
1
t

T

T
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Horizontal and vertical Asymptotes
 55. Use limits to determine the equations for all vertical asymptotes.

  a. y = x2 + 4
x - 3

 b. ƒ(x) = x2 - x - 2
x2 - 2x + 1

  c. y = x2 + x - 6
x2 + 2x - 8

 56. Use limits to determine the equations for all horizontal asymptotes.

  a. y = 1 - x2

x2 + 1
 b. ƒ(x) = 2x + 42x + 4

  c. g(x) = 2x2 + 4
x   d. y = B x2 + 9

9x2 + 1

Chapter 2 Additional and Advanced exercises

 1. Assigning a value to 00 The rules of exponents tell us that 
a0 = 1 if a is any number different from zero. They also tell us 
that 0n = 0 if n is any positive number.

    If we tried to extend these rules to include the case 00, we 
would get conflicting results. The first rule would say 00 = 1, 
whereas the second would say 00 = 0.

    We are not dealing with a question of right or wrong here. 
Neither rule applies as it stands, so there is no contradiction. We 
could, in fact, define 00 to have any value we wanted as long as 
we could persuade others to agree.

    What value would you like 00 to have? Here is an example 
that might help you to decide. (See Exercise 2 below for another 
example.)

a.  Calculate xx for x = 0.1, 0.01, 0.001, and so on as far as 
your calculator can go. Record the values you get. What  
pattern do you see?

b.  Graph the function y = xx for 0 6 x … 1. Even though the 
function is not defined for x … 0, the graph will approach 
the y-axis from the right. Toward what y-value does it seem 
to be headed? Zoom in to further support your idea.

 2. A reason you might want 00 to be something other than 0 or 1 
As the number x increases through positive values, the numbers 
1>x and 1 > (ln x) both approach zero. What happens to the number

ƒ(x) = a1xb
1>(ln x)

  as x increases? Here are two ways to find out.

a.  Evaluate ƒ for x = 10, 100, 1000, and so on as far as your 
calculator can reasonably go. What pattern do you see?

b.  Graph ƒ in a variety of graphing windows, including win-
dows that contain the origin. What do you see? Trace the 
y-values along the graph. What do you find?

 3. Lorentz contraction In relativity theory, the length of an 
object, say a rocket, appears to an observer to depend on the 
speed at which the object is traveling with respect to the observer. 
If the observer measures the rocket’s length as L0 at rest, then at 
speed y the length will appear to be

L = L0 B1 - y2

c2.

  This equation is the Lorentz contraction formula. Here, c is the 
speed of light in a vacuum, about 3 * 108 m>sec. What happens 
to L as y increases? Find limySc- L. Why was the left-hand limit 
needed?

T

T

 4. Controlling the flow from a draining tank Torricelli’s law 
says that if you drain a tank like the one in the figure shown, the 
rate y at which water runs out is a constant times the square root 
of the water’s depth x. The constant depends on the size and 
shape of the exit valve.

x
Exit rate y ft3�min

 

    Suppose that y = 2x>2 for a certain tank. You are trying to 
maintain a fairly constant exit rate by adding water to the tank 
with a hose from time to time. How deep must you keep the water 
if you want to maintain the exit rate

a.  within 0.2 ft3>min of the rate y0 = 1 ft3>min?

b.  within 0.1 ft3>min of the rate y0 = 1 ft3>min?

 5. Thermal expansion in precise equipment As you may know, 
most metals expand when heated and contract when cooled. The 
dimensions of a piece of laboratory equipment are sometimes so 
critical that the shop where the equipment is made must be held 
at the same temperature as the laboratory where the equipment is 
to be used. A typical aluminum bar that is 10 cm wide at 70°F 
will be

y = 10 + (t - 70) * 10-4

  centimeters wide at a nearby temperature t. Suppose that you are 
using a bar like this in a gravity wave detector, where its width 
must stay within 0.0005 cm of the ideal 10 cm. How close to 
t0 = 70°F must you maintain the temperature to ensure that this 
tolerance is not exceeded?

 6. Stripes on a measuring cup The interior of a typical 1-L mea-
suring cup is a right circular cylinder of radius 6 cm (see accom-
panying figure). The volume of water we put in the cup is there-
fore a function of the level h to which the cup is filled, the 
formula being

V = p62h = 36ph.

  How closely must we measure h to measure out 1 L of water 
(1000 cm3) with an error of no more than 1% (10 cm3)?



Stripes
about
1 mm
wide

r = 6 cm

Liquid volume
V = 36ph

(a)

(b)

h

 

  A 1-L measuring cup (a), modeled as a right circular cylinder (b) 
of radius r = 6 cm

Precise Definition of limit
In Exercises 7–10, use the formal definition of limit to prove that the 
function is continuous at c.

 7. ƒ(x) = x2 - 7, c = 1 8. g(x) = 1>(2x), c = 1>4
 9. h(x) = 22x - 3, c = 2 10. F(x) = 29 - x, c = 5

 11. Uniqueness of limits Show that a function cannot have two dif-
ferent limits at the same point. That is, if limxSc ƒ(x) = L1 and 
limxSc ƒ(x) = L2, then L1 = L2.

 12. Prove the limit Constant Multiple Rule:

lim
xSc

 kƒ(x) = k lim
xSc

 ƒ(x)  for any constant k.

 13. One-sided limits If limxS0+ ƒ(x) = A and limxS0- ƒ(x) = B, 
find

  a. limxS0+ ƒ(x3 - x) b. limxS0- ƒ(x3 - x)

  c. limxS0+ ƒ(x2 - x4) d. limxS0- ƒ(x2 - x4)

 14. Limits and continuity Which of the following statements are 
true, and which are false? If true, say why; if false, give a counter-
example (that is, an example confirming the falsehood).

 a.  If limxSc ƒ(x) exists but limxSc g(x) does not exist, then 
limxSc(ƒ(x) + g(x)) does not exist.

 b.  If neither limxSc ƒ(x) nor limxSc g(x) exists, then 
limxSc (ƒ(x) + g(x)) does not exist.

 c. If ƒ is continuous at x, then so is 0 ƒ 0 .
 d. If 0 ƒ 0  is continuous at c, then so is ƒ.

In Exercises 15 and 16, use the formal definition of limit to prove that 
the function has a continuous extension to the given value of x.

 15. ƒ(x) = x2 - 1
x + 1

, x = -1 16. g(x) = x2 - 2x - 3
2x - 6

, x = 3

 17. A function continuous at only one point Let

ƒ(x) = e x, if x is rational

0, if x is irrational.

a. Show that ƒ is continuous at x = 0.

b.  Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show 
that ƒ is not continuous at any nonzero value of x.

 18. The Dirichlet ruler function If x is a rational number, then x 
can be written in a unique way as a quotient of integers m>n 
where n 7 0 and m and n have no common factors greater than 
1. (We say that such a fraction is in lowest terms. For example, 
6>4 written in lowest terms is 3>2.) Let ƒ(x) be defined for all x 
in the interval 30, 14  by

ƒ(x) = e1>n, if x = m>n is a rational number in lowest terms

0, if x is irrational.

  For instance, ƒ(0) = ƒ(1) = 1, ƒ(1>2) = 1>2, ƒ(1>3) =  ƒ(2>3) =   
1>3, ƒ(1>4) = ƒ(3>4) = 1>4, and so on.

a. Show that ƒ is discontinuous at every rational number in 30, 14 .
b.  Show that ƒ is continuous at every irrational number in 30, 14 . 

(Hint: If P is a given positive number, show that there are only 
finitely many rational numbers r in 30, 14  such that ƒ(r) Ú P.)

 c. Sketch the graph of ƒ. Why do you think ƒ is called the 
“ruler function”?

 19. Antipodal points Is there any reason to believe that there is 
always a pair of antipodal (diametrically opposite) points on 
Earth’s equator where the temperatures are the same? Explain.

 20. If limxSc (ƒ(x) + g(x)) = 3 and limxSc (ƒ(x) - g(x)) = -1, find 

  limxSc ƒ(x)g(x).

 21. Roots of a quadratic equation that is almost linear The equa-
tion ax2 + 2x - 1 = 0, where a is a constant, has two roots if 
a 7 -1 and a ≠ 0, one positive and one negative:

r+(a) = -1 + 21 + a
a ,  r-(a) = -1 - 21 + a

a ,

 a. What happens to r+(a) as a S 0? As a S -1+?

 b. What happens to r-(a) as a S 0? As a S -1+?

 c.  Support your conclusions by graphing r+(a) and r-(a) as 
functions of a. Describe what you see.

 d.  For added support, graph ƒ(x) = ax2 + 2x - 1 simultane-
ously for a = 1, 0.5, 0.2, 0.1, and 0.05.

 22. Root of an equation Show that the equation x + 2 cos x = 0 
has at least one solution.

 23. Bounded functions A real-valued function ƒ is bounded from 
above on a set D if there exists a number N such that ƒ(x) … N  
for all x in D. We call N, when it exists, an upper bound for ƒ on 
D and say that ƒ is bounded from above by N. In a similar man-
ner, we say that ƒ is bounded from below on D if there exists a 
number M such that ƒ(x) Ú M  for all x in D. We call M, when it 
exists, a lower bound for ƒ on D and say that ƒ is bounded from 
below by M. We say that ƒ is bounded on D if it is bounded from 
both above and below.

 a.  Show that ƒ is bounded on D if and only if there exists a 
number B such that 0 ƒ(x) 0 … B for all x in D.

 Chapter 2  Additional and Advanced Exercises 121
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 b. Suppose that ƒ is bounded from above by N. Show that if 
limxSc ƒ(x) = L, then L … N.

 c. Suppose that ƒ is bounded from below by M. Show that if 
limxSc ƒ(x) = L, then L Ú M.

 24. Max 5a, b6  and min 5a, b6
 a. Show that the expression

max 5a, b6 = a + b
2

+
0 a - b 0

2

  equals a if a Ú b and equals b if b Ú a. In other words, 
max 5a, b6  gives the larger of the two numbers a and b.

 b.  Find a similar expression for min 5a, b6,  the smaller of a  
and b.

generalized limits involving 
sin U

U

The formula limuS0 (sin u)>u = 1 can be generalized. If limxSc 
ƒ(x) = 0 and ƒ(x) is never zero in an open interval containing the 
point x = c, except possibly c itself, then

lim
xSc

 
sin ƒ(x)

ƒ(x)
= 1.

Here are several examples.

 a. lim
xS0

 
sin x2

x2 = 1

 b. lim
xS0

 
sin x2

x = lim
xS0

 
sin x2

x2  lim
xS0

 
x2

x = 1 # 0 = 0

 c. lim
xS  -1

 
sin (x2 - x - 2)

x + 1
= lim

xS  -1
 
sin (x2 - x - 2)

(x2 - x - 2)
#

  lim
xS  -1

 
(x2 - x - 2)

x + 1
= 1 # lim

xS  -1
 
(x + 1)(x - 2)

x + 1
= -3

 d. lim
xS1

 
sin 11 - 2x2

x - 1
= lim

xS1
 
sin 11 - 2x2

1 - 2x
 
1 - 2x

x - 1
=

  1 # lim
xS1

 
11 - 2x 211 + 2x 2

(x - 1)11 + 2x2 = lim
xS1

 
1 - x

(x - 1)11 + 2x 2 = -  
1
2

Find the limits in Exercises 25–30.

 25. lim
xS0

 
sin (1 - cos x)

x  26. lim
xS0+

 
sin x

sin2x

 27. lim
xS0

 
sin (sin x)

x  28. lim
xS0

 
sin (x2 + x)

x

 29. lim
xS2

 
sin (x2 - 4)

x - 2
 30. lim

xS9
 
sin 12x - 32

x - 9

Oblique Asymptotes
Find all possible oblique asymptotes in Exercises 31–34.

 31. y = 2x3>2 + 2x - 32x + 1
 32. y = x + x sin 

1
x

 33. y = 2x2 + 1 34. y = 2x2 + 2x

Chapter 2 Technology Application Projects

Mathematica/Maple Modules:

Take It to the Limit
Part I
Part II (Zero Raised to the Power Zero: What Does It Mean?)
Part III (One-Sided Limits)
Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)
See how sensitive limits can be with various powers of x.

Going to Infinity
Part I (Exploring Function Behavior as xuH or xu −H)
This module provides four examples to explore the behavior of a function as x S q or x S -q.
Part II (Rates of Growth)
Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you 
may find surprising.
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OVERVIEW In the beginning of Chapter 2, we discussed how to determine the slope of a 
curve at a point and how to measure the rate at which a function changes. Now that we have 
studied limits, we can define these ideas precisely and see that both are interpretations of 
the derivative of a function at a point. We then extend this concept from a single point to the 
derivative function, and we develop rules for finding this derivative function easily, without 
having to calculate any limits directly. These rules are used to find derivatives of most of the 
common functions reviewed in Chapter 1, as well as various combinations of them.

The derivative is one of the key ideas in calculus, and is used to study a wide range of 
problems in mathematics, science, economics, and medicine. These problems include 
finding points where a continuous function is zero, calculating the velocity and accelera-
tion of a moving object, determining how the rate of flow of a liquid into a container 
changes the level of the liquid within it, describing the path followed by a light ray going 
from a point in air to a point in water, finding the number of items a manufacturing com-
pany should produce in order to maximize its profits, studying the spread of an infectious 
disease within a given population, or calculating the amount of blood the heart pumps in a 
minute based on how well the lungs are functioning.

Derivatives

3

3.1 Tangents and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative of a 
function at a point. The derivative gives a way to find both the slope of a graph and the 
instantaneous rate of change of a function.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve y = ƒ(x) at a point P(x0, ƒ(x0)), we use the procedure 
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point 
Q(x0 + h, ƒ(x0 + h)). We then investigate the limit of the slope as h S 0 (Figure 3.1). If 
the limit exists, we call it the slope of the curve at P and define the tangent at P to be the 
line through P having this slope.

DEFINITIONS The slope of the curve y = ƒ(x) at the point P(x0, ƒ(x0)) is the 
number

m = lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

0

h

y

x

y = f (x)

Q(x0 + h, f (x0 + h))

f (x0 + h) − f (x0)

P(x0, f(x0))

x0 + hx0

FIGURE 3.1 The slope of the tangent 

line at P is lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

.



124 Chapter 3: Derivatives

In Section 2.1, Example 3, we applied these definitions to find the slope of the parab-
ola ƒ(x) = x2 at the point P(2, 4) and the tangent line to the parabola at P. Let’s look at 
another example.

EXAMPLE 1
(a) Find the slope of the curve y = 1>x at any point x = a ≠ 0. What is the slope at the 

point x = -1?

(b) Where does the slope equal -1>4?

(c) What happens to the tangent to the curve at the point (a, 1>a) as a changes?

Solution
(a) Here ƒ(x) = 1>x. The slope at (a, 1>a) is

lim
hS0

ƒ(a + h) - ƒ(a)
h

= lim
hS0

1
a + h

- 1
a

h
= lim

hS0

1
h

a - (a + h)
a(a + h)

= lim
hS0

-h
ha(a + h)

= lim
hS0

-1
a(a + h)

= - 1
a2 .

  Notice how we had to keep writing “limhS0” before each fraction until the stage 
at which we could evaluate the limit by substituting h = 0. The number a may be 
positive or negative, but not 0. When a = -1, the slope is -1>(-1)2 = -1
(Figure 3.2).

(b) The slope of y = 1>x at the point where x = a is -1>a2. It will be -1>4 provided 
that

- 1
a2 = - 1

4
.

  This equation is equivalent to a2 = 4, so a = 2 or a = -2. The curve has slope 
-1>4 at the two points (2, 1>2) and (-2, -1>2) (Figure 3.3).

(c) The slope -1>a2 is always negative if a ≠ 0. As a S 0+, the slope approaches -q
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as 
a S 0-. As a moves away from the origin in either direction, the slope approaches 0
and the tangent levels off becoming more and more horizontal.

Rates of Change: Derivative at a Point

The expression

ƒ(x0 + h) - ƒ(x0)
h

, h ≠ 0

is called the difference quotient of ƒ at x0 with increment h. If the difference quotient 
has a limit as h approaches zero, that limit is given a special name and notation.

a b

x

y

2,

y = 1
x

1
2

−2, −
1
2

slope is −1
4

slope is −1
4

a b

FIGURE 3.3 The two tangent lines to 
y = 1>x having slope -1>4 (Example 1).

x

y

y = 1
x

slope is − 1
a2

slope is −1
at x = −1

a0

FIGURE 3.2 The tangent slopes, steep 
near the origin, become more gradual as 
the point of tangency moves away 
(Example 1).

DEFINITION The derivative of a function ƒ at a point x0, denoted ƒ′(x0), is

ƒ′(x0) = lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

provided this limit exists.

The notation ƒ′(x0) is read “ƒ prime of x0.”
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If we interpret the difference quotient as the slope of a secant line, then the derivative 
gives the slope of the curve y = ƒ(x) at the point P(x0, ƒ(x0)). Exercise 33 shows that the 
derivative of the linear function ƒ(x) = mx + b at any point x0 is simply the slope of the 
line, so

ƒ′(x0) = m,

which is consistent with our definition of slope.
If we interpret the difference quotient as an average rate of change (Section 2.1), the 

derivative gives the function’s instantaneous rate of change with respect to x at the point 
x = x0. We study this interpretation in Section 3.4.

EXAMPLE 2  In Examples 1 and 2 in Section 2.1, we studied the speed of a rock fall-
ing freely from rest near the surface of the earth. We knew that the rock fell y = 16t2 feet 
during the first t sec, and we used a sequence of average rates over increasingly short inter-
vals to estimate the rock’s speed at the instant t = 1. What was the rock’s exact speed at 
this time?

Solution We let ƒ(t) = 16t2. The average speed of the rock over the interval between 
t = 1 and t = 1 + h seconds, for h 7 0, was found to be

ƒ(1 + h) - ƒ(1)
h

=
16(1 + h)2 - 16(1)2

h
=

16(h2 + 2h)
h

= 16(h + 2).

The rock’s speed at the instant t = 1 is then

ƒ′(1) = lim
hS0

16(h + 2) = 16(0 + 2) = 32 ft>sec.

Our original estimate of 32 ft>sec in Section 2.1 was right.

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a 
function, and the derivative of a function at a point. All of these ideas refer to the same 
limit.

The following are all interpretations for the limit of the difference quotient,

lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

.

1. The slope of the graph of y = ƒ(x) at x = x0

2. The slope of the tangent to the curve y = ƒ(x) at x = x0

3. The rate of change of ƒ(x) with respect to x at x = x0

4. The derivative ƒ′(x0) at a point

In the next sections, we allow the point x0 to vary across the domain of the function ƒ.
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Slopes and Tangent Lines
In Exercises 1–4, use the grid and a straight edge to make a rough 
estimate of the slope of the curve (in y-units per x-unit) at the points 
P1 and P2.

1. 2.

x

y

1

2

10

P1

P2

x

y

0 1 2

2

1

−1

−2

P1

P2

−1−2

3. 4.

x

y

1 2

2

1

0

P1
P2

       

y

0 1−1

1

2

3

x

4

−2 2

P1 P2

In Exercises 5–10, find an equation for the tangent to the curve at the 
given point. Then sketch the curve and tangent together.

5. y = 4 - x2, (-1, 3) 6. y = (x - 1)2 + 1, (1, 1)

7. y = 22x, (1, 2) 8. y = 1
x2 , (-1, 1)

9. y = x3, (-2, -8) 10. y = 1
x3 , a-2, - 1

8
b

In Exercises 11–18, find the slope of the function’s graph at the given 
point. Then find an equation for the line tangent to the graph there.

11. ƒ(x) = x2 + 1, (2, 5) 12. ƒ(x) = x - 2x2, (1, -1)

13. g(x) = x
x - 2

, (3, 3) 14. g(x) = 8
x2 , (2, 2)

15. h(t) = t3, (2, 8) 16. h(t) = t3 + 3t, (1, 4)

17. ƒ(x) = 2x, (4, 2) 18. ƒ(x) = 2x + 1, (8, 3)

In Exercises 19–22, find the slope of the curve at the point indicated.

19. y = 5x - 3x2, x = 1 20. y = x3 - 2x + 7, x = -2

21. y = 1
x - 1

, x = 3 22. y = x - 1
x + 1

, x = 0

Interpreting Derivative Values
23. Growth of yeast cells In a controlled laboratory experiment, 

yeast cells are grown in an automated cell culture system that 
counts the number P of cells present at hourly intervals. The num-
ber after t hours is shown in the accompanying figure.

t

p

0

100

1 2 3 4 5 6 7

200

50

150

250

a. Explain what is meant by the derivative P′(5). What are its 
units?

b. Which is larger, P′(2) or P′(3)? Give a reason for your 
answer.

c. The quadratic curve capturing the trend of the data points 
(see Section 1.4) is given by P(t) = 6.10t2 - 9.28t + 16.43.
Find the instantaneous rate of growth when t = 5 hours.

24. Effectiveness of a drug On a scale from 0 to 1, the effective-
ness E of a pain-killing drug t hours after entering the blood-
stream is displayed in the accompanying figure.

t

E

0

0.4

1 2 3 4 5

0.8

0.2

0.6

1.0

a. At what times does the effectiveness appear to be increasing? 
What is true about the derivative at those times?

b. At what time would you estimate that the drug reaches its 
maximum effectiveness? What is true about the derivative at 
that time? What is true about the derivative as time increases 
in the 1 hour before your estimated time?

At what points do the graphs of the functions in Exercises 25 and 26 
have horizontal tangents?

25. ƒ(x) = x2 + 4x - 1 26. g(x) = x3 - 3x

27. Find equations of all lines having slope -1 that are tangent to the 
curve y = 1>(x - 1).

28. Find an equation of the straight line having slope 1>4 that is tan-
gent to the curve y = 2x.

Rates of Change
29. Object dropped from a tower An object is dropped from the 

top of a 100-m-high tower. Its height above ground after t sec is 
100 - 4.9t2 m. How fast is it falling 2 sec after it is dropped?

Exercises 3.1
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30. Speed of a rocket At t sec after liftoff, the height of a rocket is 
3t2 ft. How fast is the rocket climbing 10 sec after liftoff?

31. Circle’s changing area What is the rate of change of the area 
of a circle (A = pr2)  with respect to the radius when the radius 
is r = 3?

32. Ball’s changing volume What is the rate of change of the vol-
ume of a ball (V = (4>3)pr3)  with respect to the radius when 
the radius is r = 2?

33. Show that the line y = mx + b is its own tangent line at any 
point (x0, mx0 + b).

34. Find the slope of the tangent to the curve y = 1>2x at the point 
where x = 4.

Testing for Tangents
35. Does the graph of

ƒ(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

  have a tangent at the origin? Give reasons for your answer.

36. Does the graph of

g(x) = e x sin (1>x), x ≠ 0

0, x = 0

  have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that a continuous curve y = ƒ(x) has a vertical tangent at the 
point where x = x0 if the limit of the difference quotient is q or -q.
For example, y = x1>3 has a vertical tangent at x = 0 (see accompa-
nying figure):

lim
hS0

ƒ(0 + h) - ƒ(0)
h

= lim
hS0

h1>3 - 0
h

= lim
hS0

1
h2>3 = q.

x

y

0

VERTICAL TANGENT AT ORIGIN

y = f (x) = x1�3

However, y = x2>3 has no vertical tangent at x = 0 (see next figure):

lim
hS0

g(0 + h) - g(0)
h

= lim
hS0

h2>3 - 0
h

= lim
hS0

1
h1>3

does not exist, because the limit is q from the right and -q from the 
left.

x

y

0
NO VERTICAL TANGENT AT ORIGIN

y = g(x) = x2�3

37. Does the graph of

ƒ(x) = c -1, x 6 0

0, x = 0

1, x 7 0

  have a vertical tangent at the origin? Give reasons for your answer.

38. Does the graph of

U(x) = e0, x 6 0

1, x Ú 0

  have a vertical tangent at the point (0, 1)? Give reasons for your 
answer.

Graph the curves in Exercises 39–48.

a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations. But 
before you do, read the introduction to Exercises 37 and 38.

39. y = x2>5 40. y = x4>5
41. y = x1>5 42. y = x3>5
43. y = 4x2>5 - 2x 44. y = x5>3 - 5x2>3
45. y = x2>3 - (x - 1)1>3 46. y = x1>3 + (x - 1)1>3

47. y = e-2 0 x 0 , x … 0

2x, x 7 0
48. y = 2 0 4 - x 0

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 49–52:

a. Plot y = ƒ(x) over the interval (x0 - 1>2) … x … (x0 + 3).

b. Holding x0 fixed, the difference quotient

q(h) =
ƒ(x0 + h) - ƒ(x0)

h

     at x0 becomes a function of the step size h. Enter this function 
into your CAS workspace.

c. Find the limit of q as h S 0.

d. Define the secant lines y = ƒ(x0) + q # (x - x0) for h = 3, 2,
and 1. Graph them together with ƒ and the tangent line over 
the interval in part (a).

49. ƒ(x) = x3 + 2x, x0 = 0 50. ƒ(x) = x + 5
x , x0 = 1

51. ƒ(x) = x + sin (2x), x0 = p>2
52. ƒ(x) = cos x + 4 sin (2x), x0 = p

T
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3.2 The Derivative as a Function

In the last section we defined the derivative of y = ƒ(x) at the point x = x0 to be the limit

ƒ′(x0) = lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

.

We now investigate the derivative as a function derived from ƒ by considering the limit at 
each point x in the domain of ƒ.

DEFINITION The derivative of the function ƒ(x) with respect to the variable x is 
the function ƒ′ whose value at x is

ƒ′(x) = lim
hS0

ƒ(x + h) - ƒ(x)
h

,

provided the limit exists.

We use the notation ƒ(x) in the definition to emphasize the independent variable x
with respect to which the derivative function ƒ′(x) is being defined. The domain of ƒ′ is 
the set of points in the domain of ƒ for which the limit exists, which means that the domain 
may be the same as or smaller than the domain of ƒ. If ƒ′ exists at a particular x, we say 
that ƒ is differentiable (has a derivative) at x. If ƒ′ exists at every point in the domain of 
ƒ, we call ƒ differentiable.

If we write z = x + h, then h = z - x and h approaches 0 if and only if z approaches 
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This 
formula is sometimes more convenient to use when finding a derivative function, and 
focuses on the point z that approaches x.x z = x + h

h = z − x

P(x, f (x))

Q(z, f (z))

f (z) − f (x)

y = f (x)

Secant slope is
f (z) − f (x)

z − x

Derivative of f at x is

f '(x) = lim
h:0

= lim
z:x

f (x + h) − f (x)
h

f (z) − f (x)
z − x

FIGURE 3.4 Two forms for the differ-
ence quotient.

Alternative Formula for the Derivative

ƒ′(x) = lim
zSx

ƒ(z) - ƒ(x)
z - x

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea 
that differentiation is an operation performed on a function y = ƒ(x), we use the notation

d
dx

ƒ(x)

as another way to denote the derivative ƒ′(x). Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function y = 1>x when x = a. For x representing any point in 
the domain, we get the formula

d
dx
a1xb = - 1

x2 .

Here are two more examples in which we allow x to be any point in the domain of ƒ.

Derivative of the Reciprocal Function

d
dx
a1xb = - 1

x2 , x ≠ 0

HISTORICAL ESSAY

The Derivative
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EXAMPLE 1 Differentiate ƒ(x) = x
x - 1

.

Solution We use the definition of derivative, which requires us to calculate ƒ(x + h)
and then subtract ƒ(x) to obtain the numerator in the difference quotient. We have

ƒ(x) = x
x - 1

and ƒ(x + h) =
(x + h)

(x + h) - 1
, so

ƒ′(x) = lim
hS0

ƒ(x + h) - ƒ(x)
h

Definition

= lim
hS0

x + h
x + h - 1

- x
x - 1

h

= lim
hS0

1
h
# (x + h) (x - 1) - x(x + h - 1)

(x + h - 1) (x - 1)
a
b

- c
d

= ad - cb
bd

= lim
hS0

1
h
# -h
(x + h - 1) (x - 1)

Simplify.

= lim
hS0

-1
(x + h - 1) (x - 1)

= -1
(x - 1)2 . Cancel h ≠ 0.

EXAMPLE 2
(a) Find the derivative of ƒ(x) = 2x for x 7 0.

(b) Find the tangent line to the curve y = 2x at x = 4.

Solution
(a) We use the alternative formula to calculate ƒ′:

ƒ′(x) = lim
zSx

ƒ(z) - ƒ(x)
z - x

= lim
zSx

1z - 1x
z - x

= lim
zSx

1z - 1x11z - 1x211z + 1x2
= lim

zSx

1
1z + 1x

= 1
21x

.

(b) The slope of the curve at x = 4 is

ƒ′(4) = 1

224
= 1

4
.

  The tangent is the line through the point (4, 2) with slope 1>4 (Figure 3.5):

y = 2 + 1
4

(x - 4)

y = 1
4

x + 1.

Notations

There are many ways to denote the derivative of a function y = ƒ(x), where the indepen-
dent variable is x and the dependent variable is y. Some common alternative notations for 
the derivative are

ƒ′(x) = y′ =
dy
dx

=
dƒ
dx

= d
dx

ƒ(x) = D(ƒ)(x) = Dxƒ(x).

Derivative of the Square Root 
Function

d
dx
2x = 1

22x
, x 7 0

x

y

0 4

(4, 2)

1

y =
"

x

y = x + 11
4

FIGURE 3.5 The curve y = 2x and 
its tangent at (4, 2). The tangent’s slope 
is found by evaluating the derivative at 
x = 4 (Example 2).
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The symbols d>dx and D indicate the operation of differentiation. We read dy>dx as 
“the derivative of y with respect to x,” and dƒ>dx and (d>dx) ƒ(x) as “the derivative of ƒ 
with respect to x.” The “prime” notations y′ and ƒ′ come from notations that Newton 
used for derivatives. The d>dx notations are similar to those used by Leibniz. The sym-
bol dy>dx should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number x = a, we use the notation

ƒ′(a) =
dy
dx
`
x=a

=
df
dx
`
x=a

= d
dx

ƒ(x) `
x=a

.

For instance, in Example 2

ƒ′(4) = d
dx
2x `

x=4
= 1

21x
`
x=4

= 1

224
= 1

4
.

Graphing the Derivative

We can often make a reasonable plot of the derivative of y = ƒ(x) by estimating the slopes 
on the graph of ƒ. That is, we plot the points (x, ƒ′(x)) in the xy-plane and connect them 
with a smooth curve, which represents y = ƒ′(x).

EXAMPLE 3  Graph the derivative of the function y = ƒ(x) in Figure 3.6a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their 
slopes to estimate the values of ƒ′(x) at these points. We plot the corresponding (x, ƒ′(x))
pairs and connect them with a smooth curve as sketched in Figure 3.6b.

What can we learn from the graph of y = ƒ′(x)? At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function y = ƒ(x) is differentiable on an open interval (finite or infinite) if it has a 
derivative at each point of the interval. It is differentiable on a closed interval 3a, b4  if it 
is differentiable on the interior (a, b) and if the limits

lim
hS0+

ƒ(a + h) - ƒ(a)
h

Right-hand derivative at a

lim
hS0-

ƒ(b + h) - ƒ(b)
h

Left-hand derivative at b

exist at the endpoints (Figure 3.7).
Right-hand and left-hand derivatives may be defined at any point of a function’s domain. 

Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it has 
left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4  Show that the function y = � x �  is differentiable on (-q, 0) and (0, q)
but has no derivative at x = 0.

Solution From Section 3.1, the derivative of y = mx + b is the slope m. Thus, to the 
right of the origin,

d
dx

( 0 x 0 ) = d
dx

(x) = d
dx

(1 # x) = 1. d
dx

(mx + b) = m, 0 x 0 = x

0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

−1

−2

(b)

Slope −1

4
3Slope −

y = f (x)

≈ 8

≈ 4 x-units

A'

y = f '(x)

B′
C′

D′

E′

Vertical coordinate −1

y

x

x

Slope

FIGURE 3.6 We made the graph of 
y = ƒ′(x) in (b) by plotting slopes from 
the graph of y = ƒ(x) in (a). The vertical 
coordinate of B′ is the slope at B and so 
on. The slope at E is approximately 
8>4 = 2. In (b) we see that the rate of 
change of ƒ is negative for x between A′
and D′; the rate of change is positive for 
x to the right of D′.

a ba + h
h > 0

b + h
h < 0

lim
h:0+

f (a + h) − f (a)
h

Slope =

y = f (x)

lim
h:0−

f (b + h) − f (b)
h

Slope =

x

FIGURE 3.7 Derivatives at endpoints 
of a closed interval are one-sided limits.



3.2  The Derivative as a Function 131

To the left,

d
dx

( � x � ) = d
dx

(-x) = d
dx

(-1 # x) = -1 0 x 0 = -x

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ 
there:

Right@hand derivative of 0 x 0 at zero = lim
hS0+

0 0 + h 0 - 0 0 0
h

= lim
hS0+

0 h 0
h

= lim
hS0+

h
h

0 h 0 = h when h 7 0

= lim
hS0+

1 = 1

Left@hand derivative of 0 x 0 at zero = lim
hS0-

0 0 + h 0 - 0 0 0
h

= lim
hS0-

0 h 0
h

= lim
hS0-

-h
h

0 h 0 = -h when h 6 0

= lim
hS0-

-1 = -1.

EXAMPLE 5  In Example 2 we found that for x 7 0,

d
dx
1x = 1

21x
.

We apply the definition to examine if the derivative exists at x = 0:

lim
hS0+

20 + h - 20
h

= lim
hS0+

1
1h

= q.

Since the (right-hand) limit is not finite, there is no derivative at x = 0. Since the slopes of 
the secant lines joining the origin to the points 1h, 2h2 on a graph of y = 2x approach 
q, the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9.)

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x0 if the slopes of the secant lines through P(x0, ƒ(x0))
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the 
secants fail to take up a limiting position or become vertical as Q approaches P, the deriva-
tive does not exist. Thus differentiability is a “smoothness” condition on the graph of ƒ. A 
function can fail to have a derivative at a point for many reasons, including the existence 
of points where the graph has

P

Q− Q+

P

Q−

Q+

1.  a corner, where the one-sided 
derivatives differ.

x

y

0
y′ not defined at x = 0:
right-hand derivative
≠ left-hand derivative

y′ = −1 y′ = 1

y = 0 x 0

FIGURE 3.8 The function y = 0 x 0
is not differentiable at the origin where 
the graph has a “corner” (Example 4).

2.  a cusp, where the slope of PQ approaches 
q from one side and -q from the other.
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P

Q−

Q+

P

Q−

Q+

P

Q−

Q+

3.  a vertical tangent,
where the slope of PQ
approaches q from both 
sides or approaches -q
from both sides (here, -q).

4. a discontinuity (two examples shown).

Another case in which the derivative may fail to exist occurs when the function’s slope is 
oscillating rapidly near P, as with ƒ(x) = sin (1>x) near the origin, where it is discontinu-
ous (see Figure 2.31).

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity If ƒ has a derivative at 
x = c, then ƒ is continuous at x = c.

Proof Given that ƒ′(c) exists, we must show that limxSc ƒ(x) = ƒ(c), or equivalently, 
that limhS0 ƒ(c + h) = ƒ(c). If h ≠ 0, then

ƒ(c + h) = ƒ(c) + (ƒ(c + h) - ƒ(c))

= ƒ(c) +
ƒ(c + h) - ƒ(c)

h
# h.

Now take limits as h S 0. By Theorem 1 of Section 2.2,

lim
hS0

ƒ(c + h) = lim
hS0

ƒ(c) + lim
hS0

ƒ(c + h) - ƒ(c)
h

# lim
hS0

h

= ƒ(c) + ƒ′(c) # 0
= ƒ(c) + 0

= ƒ(c).

Similar arguments with one-sided limits show that if ƒ has a derivative from one side 
(right or left) at x = c, then ƒ is continuous from that side at x = c.

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump 
discontinuity), then it cannot be differentiable there. The greatest integer function y = :x;
fails to be differentiable at every integer x = n (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at a 
point where it is continuous, as we saw with the absolute value function in Example 4.
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Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in 
Exercises 1–6. Then find the values of the derivatives as specified.

1. ƒ(x) = 4 - x2; ƒ′(-3), ƒ′(0), ƒ′(1)

2. F(x) = (x - 1)2 + 1; F′(-1), F′(0), F′(2)

3. g(t) = 1
t2 ; g′(-1), g′(2), g′1232

4. k(z) = 1 - z
2z

; k′(-1), k′(1), k′1222
5. p(u) = 23u ; p′(1), p′(3), p′(2>3)

6. r (s) = 22s + 1 ; r′(0), r′(1), r′(1>2)

In Exercises 7–12, find the indicated derivatives.

7.
dy
dx

if y = 2x3 8.
dr
ds

if r = s3 - 2s2 + 3

9.
ds
dt

if s = t
2t + 1

10.
dy
dt

if y = t - 1
t

11.
dp
dq

if p = q3>2 12.
dz
dw

if z = 1

2w2 - 1

Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of 
the tangent line at the given value of the independent variable.

13. ƒ(x) = x + 9
x , x = -3 14. k(x) = 1

2 + x
, x = 2

15. s = t3 - t2, t = -1 16. y = x + 3
1 - x

, x = -2

In Exercises 17–18, differentiate the functions. Then find an equation 
of the tangent line at the indicated point on the graph of the function.

17. y = ƒ(x) = 8

2x - 2
, (x, y) = (6, 4)

18. w = g(z) = 1 + 24 - z, (z, w) = (3, 2)

In Exercises 19–22, find the values of the derivatives.

19.
ds
dt
`
t=-1

if s = 1 - 3t2 20.
dy
dx
`
x=23

if y = 1 - 1
x

21.
dr
du
`
u=0

if r = 2

24 - u
22.

dw
dz
0 z=4 if w = z + 1z

Using the Alternative Formula for Derivatives
Use the formula

ƒ′(x) = lim
zSx

ƒ(z) - ƒ(x)
z - x

to find the derivative of the functions in Exercises 23–26.

23. ƒ(x) = 1
x + 2

24. ƒ(x) = x2 - 3x + 4

25. g(x) = x
x - 1

26. g(x) = 1 + 1x

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives 
graphed in the accompanying figures (a)–(d).

y′

0
x

(d)

y′

0
x

(c)

y′

0
x

(a)

y′

0
x

(b)

27. 28.

x

y

0

y = f1(x)

x

y

0

y = f2(x)

29. 30.
y

0
x

y = f3(x)

y

0
x

y = f4(x)

31. a.  The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval 
3-4, 64  is ƒ′ not defined? Give reasons for your answer.

x

y

0 1 6

(0, 2) (6, 2)

(−4, 0)

y = f (x)

(4, −2)(1, −2)

b. Graph the derivative of ƒ.
  The graph should show a step function.

Exercises 3.2
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32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over 
the closed interval 3-2, 54 .

    i)  The graph of ƒ is made of closed line segments joined 
end to end.

   ii)  The graph starts at the point (-2, 3).

iii)  The derivative of ƒ is the step function in the figure 
shown here.

x
0 1−2 3 5

1

y′

y′ = f ′(x)

−2

b. Repeat part (a), assuming that the graph starts at (-2, 0)
instead of (-2, 3).

33. Growth in the economy The graph in the accompanying figure 
shows the average annual percentage change y = ƒ(t) in the U.S. 
gross national product (GNP) for the years 2005–2011. Graph 
dy>dt (where defined).

2005 2006 2007 2008 2009 2010 2011

1
0

2
3
4
5
6

7%

34. Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first, 
when there are relatively few members, then more rapidly as the 
number of reproducing individuals increases and resources are 
still abundant, then slowly again as the population reaches the 
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriv-
ative of the fruit fly population. The graph of the population 
is reproduced here.

100
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b. During what days does the population seem to be increasing 
fastest? Slowest?

35. Temperature The given graph shows the temperature T in °F 
at Davis, CA, on April 18, 2008, between 6 a.m. and 6 p.m.

30

40

50

60

70

80

6 9 12
9 A.M.6 A.M. 12 NOON 3 P.M. 6 P.M.
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m
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(°
F

)

T

t

a. Estimate the rate of temperature change at the times

i) 7 a.m. ii) 9 a.m. iii) 2 p.m. iv) 4 p.m.

b. At what time does the temperature increase most rapidly? 
Decrease most rapidly? What is the rate for each of those times?

c. Use the graphical technique of Example 3 to graph the deriv-
ative of temperature T versus time t.

36. Weight loss Jared Fogle, also known as the “Subway Sandwich 
Guy,” weighed 425 lb in 1997 before losing more than 240 lb in 
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chart 
showing his possible dramatic weight loss is given in the accom-
panying figure.

3 4 5 7 8 10 111 20

100

200

300

425

500

6 9 12

Time (months)

W
ei

gh
t (

lb
)

W

t

a. Estimate Jared’s rate of weight loss when

i) t = 1 ii) t = 4 iii) t = 11

b. When does Jared lose weight most rapidly and what is this 
rate of weight loss?

c. Use the graphical technique of Example 3 to graph the deriv-
ative of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that 
the functions in Exercises 37–40 are not differentiable at the point P.

37. 38.

x

y

y = f (x)y = x2

y = x

P(0, 0)
x

y

y = f (x)

y = 2x

y = 2

1

2

0 1 2

P(1, 2)
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39.   40.
y

y = f (x)

y = 2x − 1

x

P(1, 1)

0

1

1

y =
"

x

y

y = 1
x

y = f (x)

x

P(1, 1)

y = x
1

1

In Exercises 41 and 42, determine if the piecewise-defined function is 
differentiable at the origin.

41. ƒ(x) = e2x - 1, x Ú 0

x2 + 2x + 7, x 6 0

42. g(x) = e x2>3, x Ú 0

x1>3, x 6 0

Differentiability and Continuity on an Interval
Each figure in Exercises 43–48 shows the graph of a function over a 
closed interval D. At what domain points does the function appear to be

a. differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

Give reasons for your answers.

43. 44.
y = f (x)
D: −3 ≤ x ≤ 2

x

y

−3 −2 −1 1 20

1

−1

−2

2

y = f (x)
D: −2 ≤ x ≤ 3

x

y

−1 0 1 2 3−2

1

−1

−2

2

45. 46.

x

y

y = f (x)
D: −3 ≤ x ≤ 3

−1 0
−1

1

−2

1 2 3−2−3

x

y

y = f (x)
D: −2 ≤ x ≤ 3

−2 −1 1 2 30

1

2

3

47. 48.

x

y
y = f (x)
D: −1 ≤ x ≤ 2

−1 0 1 2

1

y = f (x)
D: −3 ≤ x ≤ 3

x

y

−3 −2 −1 0

2

4

1 2 3

Theory and Examples
In Exercises 49–52,

a. Find the derivative ƒ′(x) of the given function y = ƒ(x).

b. Graph y = ƒ(x) and y = ƒ′(x) side by side using separate 
sets of coordinate axes, and answer the following questions.

c. For what values of x, if any, is ƒ′ positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function 
y = ƒ(x) increase as x increases? Decrease as x increases? 
How is this related to what you found in part (c)? (We will 
say more about this relationship in Section 4.3.)

49. y = -x2 50. y = -1>x
51. y = x3>3 52. y = x4>4
53. Tangent to a parabola Does the parabola y = 2x2 - 13x + 5

have a tangent whose slope is -1? If so, find an equation for the 
line and the point of tangency. If not, why not?

54. Tangent to y = 2x Does any tangent to the curve y = 2x
cross the x-axis at x = -1? If so, find an equation for the line and 
the point of tangency. If not, why not?

55. Derivative of −ƒ Does knowing that a function ƒ(x) is differ-
entiable at x = x0 tell you anything about the differentiability of 
the function -ƒ at x = x0? Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g(t) is 
differentiable at t = 7 tell you anything about the differentiabil-
ity of the function 3g at t = 7? Give reasons for your answer.

57. Limit of a quotient Suppose that functions g(t) and h(t) are 
defined for all values of t and g(0) = h(0) = 0. Can 
limtS0 (g(t))>(h(t)) exist? If it does exist, must it equal zero? 
Give reasons for your answers.

58. a.  Let ƒ(x) be a function satisfying 0 ƒ(x) 0 … x2 for -1 … x … 1.
Show that ƒ is differentiable at x = 0 and find ƒ′(0).

b. Show that

ƒ(x) = c x2 sin
1
x , x ≠ 0

0, x = 0

  is differentiable at x = 0 and find ƒ′(0).

59. Graph y = 1>122x2 in a window that has 0 … x … 2. Then, on 
the same screen, graph

y = 2x + h - 2x
h

  for h = 1, 0.5, 0.1. Then try h = -1, -0.5, -0.1. Explain what 
is going on.

60. Graph y = 3x2 in a window that has -2 … x … 2, 0 … y … 3.
Then, on the same screen, graph

y =
(x + h)3 - x3

h

  for h = 2, 1, 0.2. Then try h = -2, -1, -0.2. Explain what is 
going on.

61. Derivative of y = ∣ x ∣ Graph the derivative of ƒ(x) = 0 x 0 .
Then graph y = ( 0 x 0 - 0) >(x - 0) = 0 x 0 >x. What can you 
conclude?

T

T
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62. Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function  
ƒ(x) = g

q
n=0 (2>3)n cos (9npx) is

g(x) = cos (px) + (2>3)1 cos (9px) + (2>3)2 cos (92px)

+ (2>3)3 cos (93px) + g + (2>3)7 cos (97px).

  Graph this sum. Zoom in several times. How wiggly and bumpy 
is this graph? Specify a viewing window in which the displayed 
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 63–68.

a. Plot y = ƒ(x) to see that function’s global behavior.

b. Define the difference quotient q at a general point x, with 
general step size h.

c. Take the limit as h S 0. What formula does this give?

d. Substitute the value x = x0 and plot the function y = ƒ(x)
together with its tangent line at that point.

T e. Substitute various values for x larger and smaller than x0 into 
the formula obtained in part (c). Do the numbers make sense 
with your picture?

f. Graph the formula obtained in part (c). What does it mean 
when its values are negative? Zero? Positive? Does this make 
sense with your plot from part (a)? Give reasons for your 
answer.

63. ƒ(x) = x3 + x2 - x, x0 = 1

64. ƒ(x) = x1>3 + x2>3, x0 = 1

65. ƒ(x) = 4x
x2 + 1

, x0 = 2

66. ƒ(x) = x - 1
3x2 + 1

, x0 = -1

67. ƒ(x) = sin 2x, x0 = p>2
68. ƒ(x) = x2 cos x, x0 = p>4

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions, 
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If ƒ has the constant value ƒ(x) = c, then

dƒ
dx

= d
dx

(c) = 0.

Proof  We apply the definition of the derivative to ƒ(x) = c, the function whose outputs 
have the constant value c (Figure 3.9). At every value of x, we find that

ƒ′(x) = lim
hS0

ƒ(x + h) - ƒ(x)
h

= lim
hS0

c - c
h

= lim
hS0

0 = 0.

From Section 3.1, we know that

d
dx
a1xb = - 1

x2 , or
d
dx

(x-1) = -x-2.

From Example 2 of the last section we also know that

d
dx
12x2 = 1

22x
, or

d
dx

(x1>2) = 1
2

x-1>2.

These two examples illustrate a general rule for differentiating a power xn. We first prove 
the rule when n is a positive integer.

x

y

0 x

c

h

y = c
(x + h, c)(x, c)

x + h

FIGURE 3.9 The rule (d>dx)(c) = 0
is another way to say that the values of 
constant functions never change and that 
the slope of a horizontal line is zero at 
every point.
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Proof of the Positive Integer Power Rule  The formula

zn - xn = (z - x)(zn-1 + zn-2 x + g + zxn-2 + xn-1)

can be verified by multiplying out the right-hand side. Then from the alternative formula 
for the definition of the derivative,

ƒ′(x) = lim
zSx

ƒ(z) - ƒ(x)
z - x = lim

zSx

zn - xn

z - x

= lim
zSx

(zn-1 + zn-2x + g + zxn-2 + xn-1) n terms

= nxn-1.

The Power Rule is actually valid for all real numbers n. We have seen examples for a 
negative integer and fractional power, but n could be an irrational number as well. To 
apply the Power Rule, we subtract 1 from the original exponent n and multiply the result 
by n. Here we state the general version of the rule, but postpone its proof until Section 3.8.

Derivative of a Positive Integer Power
If n is a positive integer, then

d
dx

xn = nxn-1.

Applying the Power Rule
Subtract 1 from the exponent and multiply 
the result by the original exponent.

EXAMPLE 1  Differentiate the following powers of x.

(a) x3 (b) x2/3 (c) x22 (d) 1
x4 (e) x-4>3 (f) 2x2+p

Solution

(a) d
dx

(x3) = 3x3-1 = 3x2

(b) d
dx

(x2>3) = 2
3x(2>3)-1 = 2

3x-1>3

(c) d
dx
1x222 = 22x22-1

(d) d
dx
a 1

x4b = d
dx

(x-4) = -4x-4-1 = -4x-5 = - 4
x5

(e) d
dx

(x-4>3) = - 4
3x-(4>3)-1 = - 4

3x-7>3

(f) d
dx
12x2+p2 = d

dx
1x1+ (p>2)2 = a1 + p

2
b x1+ (p>2)-1 = 1

2
(2 + p)2xp

The next rule says that when a differentiable function is multiplied by a constant, its 
derivative is multiplied by the same constant.

Power Rule (General Version)

If n is any real number, then

d
dx

xn = nxn-1,

for all x where the powers xn and xn-1 are defined.

HISTORICAL BIOGRAPHY

Richard Courant 
(1888–1972)
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Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

(cu) = c
du
dx

.

In particular, if n is any real number, then

d
dx

(cxn) = cnxn-1.

Proof

d
dx

cu = lim
hS0

cu(x + h) - cu(x)
h

Derivative definition 
with ƒ(x) = cu(x)

= clim
hS0

u(x + h) - u(x)
h

Constant Multiple Limit Property

= c
du
dx

u is differentiable.

EXAMPLE 2
(a) The derivative formula

d
dx

(3x2) = 3 # 2x = 6x

  says that if we rescale the graph of y = x2 by multiplying each y-coordinate by 3, 
then we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function

  The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with c = -1 gives

d
dx

(-u) = d
dx

(-1 # u) = -1 # d
dx

(u) = - du
dx

.

The next rule says that the derivative of the sum of two differentiable functions is the 
sum of their derivatives.

x

y

0 1

1
(1, 1)

2

2

3 (1, 3) Slope

Slope
Slope = 2x

= 2(1) = 2

y = x2

y = 3x2

Slope = 3(2x)
= 6x
= 6(1) = 6

FIGURE 3.10 The graphs of y = x2

and y = 3x2. Tripling the y-coordinate
triples the slope (Example 2).

Denoting Functions by u and Y
The functions we are working with when 
we need a differentiation formula are 
likely to be denoted by letters like ƒ and g.
We do not want to use these same letters 
when stating general differentiation rules, 
so instead we use letters like u and y that 
are not likely to be already in use.

Derivative Sum Rule
If u and y are differentiable functions of x, then their sum u + y is differentiable 
at every point where u and y are both differentiable. At such points,

d
dx

(u + y) = du
dx

+ dy
dx

.

For example, if y = x4 + 12x, then y is the sum of u(x) = x4 and y(x) = 12x. We 
then have

dy
dx

= d
dx

(x4) + d
dx

(12x) = 4x3 + 12.
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Proof  We apply the definition of the derivative to ƒ(x) = u(x) + y(x):

d
dx
3u(x) + y(x)4 = lim

hS0

3u(x + h) + y(x + h)4 - 3u(x) + y(x)4
h

= lim
hS0
c u(x + h) - u(x)

h
+
y(x + h) - y(x)

h
d

= lim
hS0

u(x + h) - u(x)
h

+ lim
hS0

y(x + h) - y(x)
h

= du
dx

+ dy
dx

.

x

y

0 1−1

(1, 1)(−1, 1)
1

(0, 2)

y = x4 − 2x2 + 2

FIGURE 3.11 The curve in Example 4 
and its horizontal tangents.

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of 
their derivatives:

d
dx

(u - y) = d
dx
3u + (-1)y4 = du

dx
+ (-1)

dy
dx

= du
dx

- dy
dx

.

The Sum Rule also extends to finite sums of more than two functions. If u1, u2, c, un

are differentiable at x, then so is u1 + u2 + g + un , and

d
dx

(u1 + u2 + g+ un) =
du1

dx
+

du2

dx
+ g+

dun

dx
.

For instance, to see that the rule holds for three functions we compute

d
dx

(u1 + u2 + u3) = d
dx

((u1 + u2) + u3) = d
dx

(u1 + u2) +
du3

dx
=

du1

dx
+

du2

dx
+

du3

dx
.

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3  Find the derivative of the polynomial y = x3 + 4
3 x2 - 5x + 1.

Solution
dy
dx

= d
dx

x3 + d
dx
a43 x2b - d

dx
(5x) + d

dx
(1) Sum and Difference Rules

= 3x2 + 4
3
# 2x - 5 + 0 = 3x2 + 8

3 x - 5

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4  Does the curve y = x4 - 2x2 + 2 have any horizontal tangents? If so, 
where?

Solution The horizontal tangents, if any, occur where the slope dy>dx is zero. We have

dy
dx

= d
dx

(x4 - 2x2 + 2) = 4x3 - 4x.

Now solve the equation 
dy
dx

= 0 for x:

4x3 - 4x = 0

4x(x2 - 1) = 0

x = 0, 1, -1.

The curve y = x4 - 2x2 + 2 has horizontal tangents at x = 0, 1, and -1. The corre-
sponding points on the curve are (0, 2), (1, 1), and (-1, 1). See Figure 3.11. We will see in 
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is 
an important and useful procedure.
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Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of 
the derivative to ƒ(x) = ax, we get

d
dx

(ax) = lim
hS0

ax+h - ax

h
Derivative definition

= lim
hS0

ax # ah - ax

h
ax+h = ax # ah

= lim
hS0

ax # ah - 1
h

Factoring out ax

= ax # lim
hS0

ah - 1
h

ax is constant as h S 0.

= a lim
hS0

ah - 1
h
b # ax. (1)

                   (1+)1+*
a fixed number L

Thus we see that the derivative of ax is a constant multiple L of ax. The constant L is a 
limit unlike any we have encountered before. Note, however, that it equals the derivative 
of ƒ(x) = ax at x = 0:

ƒ′(0) = lim
hS0

ah - a0

h
= lim

hS0

ah - 1
h

= L.

The limit L is therefore the slope of the graph of ƒ(x) = ax where it crosses the y-axis. In 
Chapter 7, where we carefully develop the logarithmic and exponential functions, we 
prove that the limit L exists and has the value ln a. For now we investigate values of L by 
graphing the function y = (ah - 1)>h and studying its behavior as h approaches 0.

Figure 3.12 shows the graphs of y = (ah - 1)>h for four different values of a. The 
limit L is approximately 0.69 if a = 2, about 0.92 if a = 2.5, and about 1.1 if a = 3. It 
appears that the value of L is 1 at some number a chosen between 2.5 and 3. That number 
is given by a = e ≈ 2.718281828. With this choice of base we obtain the natural expo-
nential function ƒ(x) = ex as in Section 1.5, and see that it satisfies the property

ƒ′(0) = lim
hS0

eh - 1
h

= 1 (2)

because it is the exponential function whose graph has slope 1 when it crosses the y-axis.
That the limit is 1 implies an important relationship between the natural exponential func-
tion ex and its derivative:

d
dx

(ex) = lim
hS0

¢eh - 1
h

≤ # ex Eq. (1) with a = e

= 1 # ex = ex. Eq. (2)

Therefore the natural exponential function is its own derivative.

h

y
a = 3 a = 2.5

a = 2

a = e

1.1

0

L = 1.0

0.92

0.69 y = , a > 0ah − 1
h

FIGURE 3.12 The position of the curve 
y = (ah - 1)>h, a 7 0, varies continu-
ously with a. The limit L of y as h S 0
changes with different values of a. The 
number for which L = 1 as h S 0 is the 
number e between a = 2 and a = 3.

Derivative of the Natural Exponential Function

d
dx

(ex) = ex

EXAMPLE 5  Find an equation for a line that is tangent to the graph of y = ex and 
goes through the origin.

Solution Since the line passes through the origin, its equation is of the form y = mx,
where m is the slope. If it is tangent to the graph at the point (a, ea), the slope is 
m = (ea - 0)>(a - 0). The slope of the natural exponential at x = a is ea. Because these 
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slopes are the same, we then have that ea = ea>a. It follows that a = 1 and m = e, so the 
equation of the tangent line is y = ex. See Figure 3.13.

We might ask if there are functions other than the natural exponential function that 
are their own derivatives. The answer is that the only functions that satisfy the property 
that ƒ′(x) = ƒ(x) are functions that are constant multiples of the natural exponential func-
tion, ƒ(x) = c # ex, c any constant. We prove this fact in Section 7.2. Note from the Con-
stant Multiple Rule that indeed

d
dx

(c # ex) = c # d
dx

(ex) = c # ex.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

d
dx

(x # x) = d
dx

(x2) = 2x, while
d
dx

(x) # d
dx

(x) = 1 # 1 = 1.

The derivative of a product of two functions is the sum of two products, as we now explain.

−1 a

2

4

6

x

y

(a, ea)

y = e x

FIGURE 3.13 The line through the ori-
gin is tangent to the graph of y = ex when 
a = 1 (Example 5).

The derivative of the product uy is u times the derivative of y plus y times the deriva-
tive of u. In prime notation, (uy)′ = uy′ + yu′. In function notation,

d
dx
3ƒ(x)g(x)4 = ƒ(x)g′(x) + g(x)ƒ′(x). (3)

EXAMPLE 6  Find the derivative of (a) y = 1
x 1x2 + ex 2, (b) y = e2x.

Solution
(a) We apply the Product Rule with u = 1>x and y = x2 + ex:

d
dx
c 1x (x2 + ex) d = 1

x (2x + ex) + (x2 + ex) a- 1
x2b

d
dx

(uy) = u
dy
dx

+ y du
dx

, and

d
dx
a1xb = - 1

x2

= 2 + ex

x - 1 - ex

x2

= 1 + (x - 1)
ex

x2.

(b) d
dx

(e2x) = d
dx

(ex # ex) = ex # d
dx

(ex) + ex # d
dx

(ex) = 2ex # ex = 2e2x

EXAMPLE 7  Find the derivative of y = (x2 + 1)(x3 + 3).

Solution
(a) From the Product Rule with u = x2 + 1 and y = x3 + 3, we find

d
dx
3 (x2 + 1) (x3 + 3) 4 = (x2 + 1) (3x2) + (x3 + 3) (2x) d

dx
(uy) = u

dy
dx

+ y du
dx

= 3x4 + 3x2 + 2x4 + 6x

= 5x4 + 3x2 + 6x.

Derivative Product Rule
If u and y are differentiable at x, then so is their product uy, and

d
dx

(uy) = u
dy
dx

+ ydu
dx

.

Equation (3) is equivalent to saying that

(ƒg)′ = ƒ′g + ƒg′.

This form of the Product Rule is useful 
and applies to dot products and cross
products of vector-valued functions, 
studied in Chapter 13.
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(b) This particular product can be differentiated as well (perhaps better) by multiplying 
out the original expression for y and differentiating the resulting polynomial:

y = (x2 + 1) (x3 + 3) = x5 + x3 + 3x2 + 3

dy
dx

= 5x4 + 3x2 + 6x.

This is in agreement with our first calculation.

Proof of the Derivative Product Rule

d
dx

 (uy) = lim
hS0

u(x + h)y(x + h) - u(x)y(x)
h

To change this fraction into an equivalent one that contains difference quotients for the 
derivatives of u and y, we subtract and add u(x + h)y(x) in the numerator:

d
dx

 (uy) = lim
hS0

u(x + h)y(x + h) - u(x + h)y(x) + u(x + h)y(x) - u(x)y(x)
h

= lim
hS0
c u(x + h)

y(x + h) - y(x)
h

+ y(x)
u(x + h) - u(x)

h
d

= lim
hS0

u(x + h) # lim
hS0

y(x + h) - y(x)
h

+ y(x) # lim
hS0

u(x + h) - u(x)
h

.

As h approaches zero, u(x + h) approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dy>dx at x and du>dx at x. Therefore,

d
dx

 (uy) = u
dy
dx

+ ydu
dx

.

The derivative of the quotient of two functions is given by the Quotient Rule.

Picturing the Product Rule
Suppose u(x) and y(x) are positive and 
increase when x increases, and h 7 0.

0

y(x + h)

y(x)

Δy

u(x)y(x)

u(x + h) Δy

y(x) Δu

u(x + h)u(x)
Δu

Then the change in the product uy is 
the difference in areas of the larger and 
smaller “squares,” which is the sum of 
the upper and right-hand reddish-shaded 
rectangles. That is,

∆(uy) = u(x + h)y(x + h) - u(x)y(x)
= u(x + h)∆y + y(x)∆u.

Division by h gives

∆(uy)
h

= u(x + h)
∆y
h

+ y(x)
∆u
h

.

The limit as h S 0 + gives the Product 
Rule.

Derivative Quotient Rule
If u and y are differentiable at x and if y(x) ≠ 0, then the quotient u>y is dif-
ferentiable at x, and

d
dx
au
yb =

y
du
dx

- u
dy
dx

y2
.

In function notation,

d
dx
c ƒ(x)
g(x)
d =

g(x)ƒ′(x) - ƒ(x)g′(x)

g2(x)
.

EXAMPLE 8  Find the derivative of (a) y = t2 - 1
t3 + 1

, (b) y = e-x.

Solution
(a) We apply the Quotient Rule with u = t2 - 1 and y = t3 + 1:

dy
dt

=
(t3 + 1) # 2t - (t2 - 1) # 3t2

(t3 + 1)2
d
dt
au
yb =

y(du>dt) - u(dy>dt)

y2

= 2t4 + 2t - 3t4 + 3t2

(t3 + 1)2

= - t4 + 3t2 + 2t
(t3 + 1)2 .
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(b) d
dx

(e- x) = d
dx
a 1

exb = ex # 0 - 1 # ex

(ex)2 = -1
ex = -e- x

Proof of the Derivative Quotient Rule

d
dx
au
yb = lim

hS0

u(x + h)
y(x + h)

-
u(x)
y(x)

h

= lim
hS0

y(x)u(x + h) - u(x)y(x + h)
hy(x + h)y(x)

To change the last fraction into an equivalent one that contains the difference quotients for 
the derivatives of u and y, we subtract and add y(x)u(x) in the numerator. We then get

d
dx
au
yb = lim

hS0

y(x)u(x + h) - y(x)u(x) + y(x)u(x) - u(x)y(x + h)
hy(x + h)y(x)

= lim
hS0

y(x)
u(x + h) - u(x)

h
- u(x)

y(x + h) - y(x)
h

y(x + h)y(x)
.

Taking the limits in the numerator and denominator now gives the Quotient Rule. Exercise 
74 outlines another proof.

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9  Find the derivative of

y =
(x - 1)(x2 - 2x)

x4 .

Solution Using the Quotient Rule here will result in a complicated expression with 
many terms. Instead, use some algebra to simplify the expression. First expand the numer-
ator and divide by x4:

y =
(x - 1)(x2 - 2x)

x4 = x3 - 3x2 + 2x
x4 = x-1 - 3x-2 + 2x-3 .

Then use the Sum and Power Rules:

dy
dx

= -x-2 - 3(-2)x-3 + 2(-3)x-4

= - 1
x2 + 6

x3 - 6
x4 .

Second- and Higher-Order Derivatives

If y = ƒ(x) is a differentiable function, then its derivative ƒ′(x) is also a function. If ƒ′ is 
also differentiable, then we can differentiate ƒ′ to get a new function of x denoted by ƒ″.
So ƒ″ = (ƒ′)′. The function ƒ″ is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. It is written in several ways:

ƒ″(x) =
d2y

dx2 = d
dx
ady

dx
b =

dy′
dx

= y″ = D2(ƒ)(x) = Dx
2 ƒ(x).

The symbol D2 means the operation of differentiation is performed twice.
If y = x6, then y′ = 6x5 and we have

y″ =
dy′
dx

= d
dx

(6x5) = 30x4.

Thus D2(x6) = 30x4.
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If y″ is differentiable, its derivative, y‴ = dy″>dx = d3y>dx3, is the third derivative
of y with respect to x. The names continue as you imagine, with

y(n) = d
dx

y(n-1) =
dny
dxn = Dny

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent 

to the graph of y = ƒ(x) at each point. You will see in the next chapter that the second 
derivative reveals whether the graph bends upward or downward from the tangent line as 
we move off the point of tangency. In the next section, we interpret both the second and 
third derivatives in terms of motion along a straight line.

EXAMPLE 10  The first four derivatives of y = x3 - 3x2 + 2 are

First derivative: y′ = 3x2 - 6x

Second derivative: y″ = 6x - 6

Third derivative: y‴ = 6

Fourth derivative: y(4) = 0.

All polynomial functions have derivatives of all orders. In this example, the fifth and later 
derivatives are all zero.

How to Read the Symbols for 
Derivatives
y′ “y prime”

y″ “y double prime”

d2y

dx2 “d squared y dx squared”

y‴ “y triple prime”

y(n) “y super n”

dny
dxn “d to the n of y by dx to the n”

Dn “D to the n”

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. y = -x2 + 3 2. y = x2 + x + 8

3. s = 5t3 - 3t5 4. w = 3z7 - 7z3 + 21z2

5. y = 4x3

3
- x + 2ex 6. y = x3

3
+ x2

2
+ e-x

7. w = 3z-2 - 1
z 8. s = -2t-1 + 4

t2

9. y = 6x2 - 10x - 5x-2 10. y = 4 - 2x - x-3

11. r = 1
3s2 - 5

2s
12. r = 12

u
- 4
u3 + 1

u4

In Exercises 13–16, find y′ (a) by applying the Product Rule and 
(b) by multiplying the factors to produce a sum of simpler terms to 
differentiate.

13. y = (3 - x2) (x3 - x + 1) 14. y = (2x + 3) (5x2 - 4x)

15. y = (x2 + 1) ax + 5 + 1
xb 16. y = (1 + x2) (x3>4 - x-3)

Find the derivatives of the functions in Exercises 17–40.

17. y = 2x + 5
3x - 2

18. z = 4 - 3x
3x2 + x

19. g(x) = x2 - 4
x + 0.5

20. ƒ(t) = t2 - 1
t2 + t - 2

21. y = (1 - t) (1 + t2)-1 22. w = (2x - 7)-1(x + 5)

23. ƒ(s) = 1s - 1
1s + 1

24. u = 5x + 1
21x

25. y = 1 + x - 42x
x 26. r = 2a 1

2u + 2ub

27. y = 1
(x2 - 1) (x2 + x + 1)

28. y =
(x + 1) (x + 2)
(x - 1) (x - 2)

29. y = 2e-x + e3x 30. y = x2 + 3ex

2ex - x

31. y = x3ex 32. w = re-r

33. y = x9>4 + e-2x 34. y = x-3>5 + p3>2

35. s = 2t3>2 + 3e2 36. w = 1
z1.4 + p

2z

37. y = 27 x2 - xe 38. y = 23 x9.6 + 2e1.3

39. r = es

s 40. r = eua 1
u2 + u-p>2b

Find the derivatives of all orders of the functions in Exercises 41–44.

41. y = x4

2
- 3

2
x2 - x 42. y = x5

120

43. y = (x - 1) (x + 2)(x + 3) 44. y = (4x2 + 3)(2 - x) x

Find the first and second derivatives of the functions in Exercises 
45–52.

45. y = x3 + 7
x 46. s = t2 + 5t - 1

t2

47. r =
(u - 1)(u2 + u + 1)

u3 48. u =
(x2 + x)(x2 - x + 1)

x4

49. w = a1 + 3z
3z
b(3 - z) 50. p =

q2 + 3

(q - 1)3 + (q + 1)3

Exercises 3.3
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51. w = 3z2e2z 52. w = ez(z - 1)(z2 + 1)

53. Suppose u and y are functions of x that are differentiable at 
x = 0 and that

u(0) = 5, u′(0) = -3, y(0) = -1, y′(0) = 2.

  Find the values of the following derivatives at x = 0.

a.
d
dx

(uy) b.
d
dx
au
yb c.

d
dx
ayub d.

d
dx

(7y - 2u)

54. Suppose u and y are differentiable functions of x and that

u(1) = 2, u′(1) = 0, y(1) = 5, y′(1) = -1.

  Find the values of the following derivatives at x = 1.

a.
d
dx

(uy) b.
d
dx
au
yb c.

d
dx
ayub d.

d
dx

(7y - 2u)

Slopes and Tangents
55. a.  Normal to a curve Find an equation for the line perpendicular 

to the tangent to the curve y = x3 - 4x + 1 at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At 
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.

56. a.  Horizontal tangents Find equations for the horizontal tan-
gents to the curve y = x3 - 3x - 2. Also find equations for 
the lines that are perpendicular to these tangents at the points 
of tangency.

b. Smallest slope What is the smallest slope on the curve? At 
what point on the curve does the curve have this slope? Find 
an equation for the line that is perpendicular to the curve’s 
tangent at this point.

57. Find the tangents to Newton’s serpentine (graphed here) at the 
origin and the point (1, 2).

x

y

0

1

1 2

2
(1, 2)

3 4

y = 4x
x2 + 1

58. Find the tangent to the Witch of Agnesi (graphed here) at the point 
(2, 1).

x

y

0

1

1 2

2
(2, 1)

3

y = 8
x2 + 4

59. Quadratic tangent to identity function The curve y =
ax2 + bx + c passes through the point (1, 2) and is tangent to the 
line y = x at the origin. Find a, b, and c.

60. Quadratics having a common tangent The curves y =
x2 + ax + b and y = cx - x2 have a common tangent line at 
the point (1, 0). Find a, b, and c.

61. Find all points (x, y) on the graph of ƒ(x) = 3x2 - 4x with tan-
gent lines parallel to the line y = 8x + 5.

62. Find all points (x, y) on the graph of g(x) = 1
3 x3 - 3

2 x2 + 1 with 
tangent lines parallel to the line 8x - 2y = 1.

63. Find all points (x, y) on the graph of y = x>(x - 2) with tangent 
lines perpendicular to the line y = 2x + 3.

64. Find all points (x, y) on the graph of ƒ(x) = x2 with tangent lines 
passing through the point (3, 8).

y

x

(3, 8)

−2

2

2 4

6

10
f (x) = x2

(x, y)

65. a.  Find an equation for the line that is tangent to the curve 
y = x3 - x at the point (-1, 0).

b.  Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

c.  Confirm your estimates of the coordinates of the second 
intersection point by solving the equations for the curve and 
tangent simultaneously (Solver key).

66. a.  Find an equation for the line that is tangent to the curve 
y = x3 - 6x2 + 5x at the origin.

b.  Graph the curve and tangent together. The tangent intersects 
the curve at another point. Use Zoom and Trace to estimate 
the point’s coordinates.

c.  Confirm your estimates of the coordinates of the second 
intersection point by solving the equations for the curve and 
tangent simultaneously (Solver key).

Theory and Examples
For Exercises 67 and 68 evaluate each limit by first converting each to 
a derivative at a particular x-value.

67. lim
xS1

x50 - 1
x - 1

68. lim
xS-1

x2>9 - 1
x + 1

69. Find the value of a that makes the following function differentia-
ble for all x-values.

g(x) = eax, if x 6 0

x2 - 3x, if x Ú 0

70. Find the values of a and b that make the following function dif-
ferentiable for all x-values.

ƒ(x) = eax + b, x 7 -1

bx2 - 3, x … -1

71. The general polynomial of degree n has the form

P(x) = anxn + an-1xn-1 + g + a2x2 + a1x + a0

  where an ≠ 0. Find P′(x).

T

T

T

T
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72. The body’s reaction to medicine The reaction of the body to a 
dose of medicine can sometimes be represented by an equation of 
the form

R = M2 aC
2

- M
3
b ,

  where C is a positive constant and M is the amount of medicine 
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a 
change in temperature, R is measured in degrees, and so on.

    Find dR>dM . This derivative, as a function of M, is called the 
sensitivity of the body to the medicine. In Section 4.5, we will see 
how to find the amount of medicine to which the body is most 
sensitive.

73. Suppose that the function y in the Derivative Product Rule has a 
constant value c. What does the Derivative Product Rule then say? 
What does this say about the Derivative Constant Multiple Rule?

74. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function 
y(x) is differentiable and different from zero,

d
dx
a1
yb = - 1

y2

dy
dx

.

  Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product 
Rule together imply the Derivative Quotient Rule.

75. Generalizing the Product Rule The Derivative Product Rule 
gives the formula

d
dx

(uy) = u
dy
dx

+ ydu
dx

  for the derivative of the product uy of two differentiable func-
tions of x.

a. What is the analogous formula for the derivative of the prod-
uct uyw of three differentiable functions of x?

b. What is the formula for the derivative of the product u1u2u3u4

of four differentiable functions of x?

c. What is the formula for the derivative of a product u1u2u3gun

of a finite number n of differentiable functions of x?

76. Power Rule for negative integers Use the Derivative Quotient 
Rule to prove the Power Rule for negative integers, that is,

d
dx

(x-m) = -mx-m-1

  where m is a positive integer.

77. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a 
formula of the form

P = nRT
V - nb

- an2

V2 ,

  in which a, b, n, and R are constants. Find dP>dV . (See accompa-
nying figure.)

78. The best quantity to order One of the formulas for inventory 
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

A(q) = km
q + cm +

hq
2

,

  where q is the quantity you order when things run low (shoes, 
TVs, brooms, or whatever the item might be); k is the cost of 
placing an order (the same, no matter how often you order); c is 
the cost of one item (a constant); m is the number of items sold 
each week (a constant); and h is the weekly holding cost per item 
(a constant that takes into account things such as space, utilities, 
insurance, and security). Find dA>dq and d2A>dq2.

3.4 The Derivative as a Rate of Change

In Section 2.1 we introduced average and instantaneous rates of change. In this section we 
study further applications in which derivatives model the rates at which things change. It is 
natural to think of a quantity changing with respect to time, but other variables can be 
treated in the same way. For example, an economist may want to study how the cost of 
producing steel varies with the number of tons produced, or an engineer may want to 
know how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient (ƒ(x + h) - ƒ(x))>h as the average rate of change 
in ƒ over the interval from x to x + h, we can interpret its limit as h S 0 as the rate at 
which ƒ is changing at the point x.
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DEFINITION The instantaneous rate of change of ƒ with respect to x at x0 is 
the derivative

ƒ′(x0) = lim
hS0

ƒ(x0 + h) - ƒ(x0)
h

,

provided the limit exists.

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time. 
The word is, however, frequently omitted. When we say rate of change, we mean instanta-
neous rate of change.

EXAMPLE 1  The area A of a circle is related to its diameter by the equation

A = p
4

D2.

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

dA
dD

= p
4
# 2D = pD

2
.

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m.

Motion Along a Line: Displacement, Velocity, Speed,  
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ(t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.14) is

∆s = ƒ(t + ∆t) - ƒ(t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time

= ∆s
∆t

=
ƒ(t + ∆t) - ƒ(t)

∆t
.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s = f (t) s + Δs = f (t + Δt)

FIGURE 3.14 The positions of a body 
moving along a coordinate line at time t
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position with 
respect to time. If a body’s position at time t is s = ƒ(t), then the body’s velocity 
at time t is

y(t) = ds
dt

= lim
∆tS0

ƒ(t + ∆t) - ƒ(t)
∆t

.
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Besides telling how fast an object is moving along the horizontal line in Figure 3.14, its 
velocity tells the direction of motion. When the object is moving forward (s increasing), the 
velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity and 
downward for negative velocity. The blue curves in Figure 3.15 represent position along the 
line over time; they do not portray the path of motion, which lies along the vertical s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.

t

s

0
s increasing:
positive slope so
moving upward

s = f (t)

ds
dt

> 0

t

s

0
s decreasing:
negative slope so
moving downward

s = f (t)

ds
dt

< 0

(a)

(b)

FIGURE 3.15 For motion s = ƒ(t)
along a straight line (the vertical 
axis), y = ds>dt is (a) positive when 
s increases and (b) negative when s
decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = �y(t) � = ` ds
dt
`

EXAMPLE 2  Figure 3.16 shows the graph of the velocity y = ƒ′(t) of a particle moving 
along a horizontal line (as opposed to showing a position function s = ƒ(t) such as in Figure 
3.15). In the graph of the velocity function, it’s not the slope of the curve that tells us if the par-
ticle is moving forward or backward along the line (which is not shown in the figure), but rather 
the sign of the velocity. Looking at Figure 3.16, we see that the particle moves forward for the 
first 3 sec (when the velocity is positive), moves backward for the next 2 sec (the velocity is 
negative), stands motionless for a full second, and then moves forward again. The particle is 
speeding up when its positive velocity increases during the first second, moves at a steady 
speed during the next second, and then slows down as the velocity decreases to zero during the 
third second. It stops for an instant at t = 3 sec (when the velocity is zero) and reverses direc-
tion as the velocity starts to become negative. The particle is now moving backward and gain-
ing in speed until t = 4 sec, at which time it achieves its greatest speed during its backward 
motion. Continuing its backward motion at time t = 4, the particle starts to slow down again 
until it finally stops at time t = 5 (when the velocity is once again zero). The particle now 
remains motionless for one full second, and then moves forward again at t = 6 sec, speeding 
up during the final second of the forward motion indicated in the velocity graph.

The rate at which a body’s velocity changes is the body’s acceleration. The acceleration 
measures how quickly the body picks up or loses speed. In Chapter 13 we will study motion in 
the plane and in space, where acceleration of an object may also lead to a change in direction.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky, 
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

DEFINITIONS Acceleration is the derivative of velocity with respect to time. 
If a body’s position at time t is s = ƒ(t), then the body’s acceleration at time t is

a(t) = dy
dt

= d2s
dt2 .

Jerk is the derivative of acceleration with respect to time:

j(t) = da
dt

= d3s
dt3 .

Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s 
experiments with free fall (see Section 2.1) lead to the equation

s = 1
2

gt2,

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)
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where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t
and s. With t in seconds (the usual unit), the value of g determined by measurement at sea 
level is approximately 32 ft>sec2 (feet per second squared) in English units, and 
g = 9.8 m>sec2 (meters per second squared) in metric units. (These gravitational con-
stants depend on the distance from Earth’s center of mass, and are slightly lower on top of 
Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt

(g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.17 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?

Solution
(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt

(4.9t2) = 9.8t.

0 1 2 3 4 5 6 7

MOVES FORWARD

(y > 0)

MOVES BACKWARD

(y < 0)

FORWARD
AGAIN

(y > 0)

Speeds
up

Speeds
up

Speeds
up

Slows
down

Slows
down

Steady

(y = const)

Velocity y = f ′(t)

Stands
still
(y = 0)

t (sec)

Greatest
speed

y

FIGURE 3.16 The velocity graph of a particle moving along a horizontal line, 
discussed in Example 2.

0

5

10

15

20

25

30

35

40

45t = 3

s (meters)t (seconds)

t = 0

t = 1

t = 2

FIGURE 3.17 A ball bearing 
falling from rest (Example 3).
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  At t = 3, the velocity is

y(3) = 29.4 m>sec

  in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

  The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

  At t = 3, the acceleration is 9.8 m>sec2.

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.18a). It reaches a height of s = 160t - 16t2 ft
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution
(a) In the coordinate system we have chosen, s measures height from the ground up, so the 

velocity is positive on the way up and negative on the way down. The instant the rock is 
at its highest point is the one instant during the flight when the velocity is 0. To find the 
maximum height, all we need to do is to find when y = 0 and evaluate s at this time.

  At any time t during the rock’s motion, its velocity is

y = ds
dt

= d
dt

(160t - 16t2) = 160 - 32t ft>sec.

  The velocity is zero when

160 - 32t = 0 or t = 5 sec.

  The rock’s height at t = 5 sec is

smax = s(5) = 160(5) - 16(5)2 = 800 - 400 = 400 ft.

  See Figure 3.18b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first 
find the two values of t for which

s(t) = 160t - 16t2 = 256.

  To solve this equation, we write

16t2 - 160t + 256 = 0

16(t2 - 10t + 16) = 0

(t - 2)(t - 8) = 0

t = 2 sec, t = 8 sec.

  The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the 
explosion. The rock’s velocities at these times are

y(2) = 160 - 32(2) = 160 - 64 = 96 ft>sec.

y(8) = 160 - 32(8) = 160 - 256 = -96 ft>sec.

s

H
ei

gh
t (

ft
)

(a)

smax

s = 0

256 t = ?

y = 0

t
0

400

5 10

(b)

160

−160

s, y

s = 160t − 16t2

y = = 160 − 32tds
dt

FIGURE 3.18 (a) The rock in Example 4. 
(b) The graphs of s and y as functions of 
time; s is largest when y = ds>dt = 0.
The graph of s is not the path of the rock: 
It is a plot of height versus time. The slope 
of the plot is the rock’s velocity, graphed 
here as a straight line.
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  At both instants, the rock’s speed is 96 ft > sec. Since y(2) 7 0, the rock is moving 
upward (s is increasing) at t = 2 sec; it is moving downward (s is decreasing) at 
t = 8 because y(8) 6 0.

(c) At any time during its flight following the explosion, the rock’s acceleration is a constant

a = dy
dt

= d
dt

(160 - 32t) = -32 ft>sec2.

  The acceleration is always downward and is the effect of gravity on the rock. As the 
rock rises, it slows down; as it falls, it speeds up.

(d) The rock hits the ground at the positive time t for which s = 0. The equation 
160t - 16t2 = 0 factors to give 16t(10 - t) = 0, so it has solutions t = 0 and 
t = 10. At t = 0, the blast occurred and the rock was thrown upward. It returned to 
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions 
describing motion. Economists, too, have a specialized vocabulary for rates of change and 
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with 
respect to level of production, so it is dc>dx.

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week. 
It costs more to produce x + h tons per week, and the cost difference, divided by h, is the 
average cost of producing each additional ton:

c(x + h) - c(x)
h

=
average cost of each of the additional 
h tons of steel produced.

The limit of this ratio as h S 0 is the marginal cost of producing more steel per week 
when the current weekly production is x tons (Figure 3.19):

dc
dx

= lim
hS0

c(x + h) - c(x)
h

= marginal cost of production.

Sometimes the marginal cost of production is loosely defined to be the extra cost of 
producing one additional unit:

∆c
∆x

=
c(x + 1) - c(x)

1
,

which is approximated by the value of dc>dx at x. This approximation is acceptable if the 
slope of the graph of c does not change quickly near x. Then the difference quotient will be 
close to its limit dc>dx, which is the rise in the tangent line if ∆x = 1 (Figure 3.20). The 
approximation works best for large values of x.

Economists often represent a total cost function by a cubic polynomial

c(x) = ax3 + bx2 + gx + d

where d represents fixed costs, such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs, such as the costs of raw materials, 
taxes, and labor. Fixed costs are independent of the number of units produced, whereas 
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to 
capture the cost behavior on a realistic quantity interval.

EXAMPLE 5  Suppose that it costs

c(x) = x3 - 6x2 + 15x

x
0

Production (tons/week)
x

Cost y (dollars)

y = c (x)
Slope =

marginal cost

x + h

FIGURE 3.19 Weekly steel production: 
c(x) is the cost of producing x tons per 
week. The cost of producing an additional 
h tons is c(x + h) - c(x).

x

y

0 x

dc
dx

x + 1

Δx = 1

Δc

y = c(x)

FIGURE 3.20 The marginal cost dc>dx
is approximately the extra cost ∆c of 
producing ∆x = 1 more unit.
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dollars to produce x radiators when 8 to 30 radiators are produced and that

r(x) = x3 - 3x2 + 12x

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators 
a day. About how much extra will it cost to produce one more radiator a day, and what is 
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about 
c′(10):

c′(x) = d
dx
1x3 - 6x2 + 15x2 = 3x2 - 12x + 15

c′(10) = 3(100) - 12(10) + 15 = 195.

The additional cost will be about $195. The marginal revenue is

r′(x) = d
dx

(x3 - 3x2 + 12x) = 3x2 - 6x + 12.

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your reve-
nue to increase by about

r′(10) = 3(100) - 6(10) + 12 = +252

if you increase sales to 11 radiators a day.

EXAMPLE 6  To get some feel for the language of marginal rates, consider marginal 
tax rates. If your marginal income tax rate is 28% and your income increases by $1000, 
you can expect to pay an extra $280 in taxes. This does not mean that you pay 28% of your 
entire income in taxes. It just means that at your current income level I, the rate of increase 
of taxes T with respect to income is dT>dI = 0.28. You will pay $0.28 in taxes out of 
every extra dollar you earn. Of course, if you earn a lot more, you may land in a higher tax 
bracket and your marginal rate will increase.

Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say 
that the function is relatively sensitive to changes in x. The derivative ƒ′(x) is a measure of 
this sensitivity.

EXAMPLE 7 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and 
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the 
gene for smooth skin in peas (dominant) and (1 - p) is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

y = 2p(1 - p) + p2 = 2p - p2.

The graph of y versus p in Figure 3.21a suggests that the value of y is more sensitive to a 
change in p when p is small than when p is large. Indeed, this fact is borne out by the 
derivative graph in Figure 3.21b, which shows that dy>dp is close to 2 when p is near 0 
and close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a 
population where the frequency of wrinkled skin peas is large will have a more dramatic 
effect on later generations than will a similar increase when the population has a large pro-
portion of smooth skin peas.

dy�dp

p
0 1

2

(b)

= 2 − 2p
dy
dp

p

y

0 1

1

(a)

y = 2p − p2

FIGURE 3.21 (a) The graph of 
y = 2p - p2, describing the proportion of 
smooth-skinned peas in the next genera-
tion. (b) The graph of dy>dp
(Example 7).
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Motion Along a Coordinate Line
Exercises 1–6 give the positions s = ƒ(t) of a body moving on a coor-
dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the 
given time interval.

b. Find the body’s speed and acceleration at the endpoints of the 
interval.

c. When, if ever, during the interval does the body change direction?

1. s = t2 - 3t + 2, 0 … t … 2

2. s = 6t - t2, 0 … t … 6

3. s = - t3 + 3t2 - 3t, 0 … t … 3

4. s = (t4>4) - t3 + t2, 0 … t … 3

5. s = 25
t2 - 5

t , 1 … t … 5

6. s = 25
t + 5

, -4 … t … 0

7. Particle motion At time t, the position of a body moving along 
the s-axis is s = t3 - 6t2 + 9t m.

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from t = 0 to t = 2.

8. Particle motion At time t Ú 0, the velocity of a body moving 
along the horizontal s-axis is y = t2 - 4t + 3.

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications
9. Free fall on Mars and Jupiter The equations for free fall at 

the surfaces of Mars and Jupiter (s in meters, t in seconds) are 
s = 1.86t2 on Mars and s = 11.44t2 on Jupiter. How long does it 
take a rock falling from rest to reach a velocity of 27.8 m > sec
(about 100 km >h) on each planet?

10. Lunar projectile motion A rock thrown vertically upward 
from the surface of the moon at a velocity of 24 m > sec (about 
86 km >h) reaches a height of s = 24t - 0.8t2 m in t sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum 
height?

e. How long is the rock aloft?

11. Finding g on a small airless planet Explorers on a small airless 
planet used a spring gun to launch a ball bearing vertically upward 
from the surface at a launch velocity of 15 m>sec. Because the accel-
eration of gravity at the planet’s surface was gs m>sec2, the explorers 
expected the ball bearing to reach a height of s = 15t - (1>2)gst2 m
t sec later. The ball bearing reached its maximum height 20 sec after 
being launched. What was the value of gs?

12. Speeding bullet A 45-caliber bullet shot straight up from the 
surface of the moon would reach a height of s = 832t - 2.6t2 ft 
after t sec. On Earth, in the absence of air, its height would be 
s = 832t - 16t2 ft after t sec. How long will the bullet be aloft in 
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the 
ball’s height above the ground t sec into the fall would have been 
s = 179 - 16t2.

a. What would have been the ball’s velocity, speed, and acceler-
ation at time t?

b. About how long would it have taken the ball to hit the ground?

c. What would have been the ball’s velocity at the moment of 
impact?

14. Galileo’s free-fall formula Galileo developed a formula for a 
body’s velocity during free fall by rolling balls from rest down 
increasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was 
vertical and the ball fell freely; see part (a) of the accompanying 
figure. He found that, for any given angle of the plank, the ball’s 
velocity t sec into motion was a constant multiple of t. That is, the 
velocity was given by a formula of the form y = kt. The value of 
the constant k depended on the inclination of the plank.

    In modern notation—part (b) of the figure—with distance in 
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle u, the ball’s velocity t sec into 
the roll was

y = 9.8(sinu)t m>sec.

(a)

?

(b)

Free-fall
position

u

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration 
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs
15. The accompanying figure shows the velocity y = ds>dt = ƒ(t)

(m > sec) of a body moving along a coordinate line.

0

−3

2 4

3

6 8 10

y (m/sec)

y = f (t)

t (sec)

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

Exercises 3.4
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c. Graph the body’s speed for 0 … t … 10.

d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the 
accompanying figure. Part (b) shows the position of P as a func-
tion of time t.

0

−2

−4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s = f (t)

t (sec)

(6, −4)

a. When is P moving to the left? Moving to the right? Standing 
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward. 
After burnout, the rocket coasts upward for a while and then 
begins to fall. A small explosive charge pops out a parachute 
shortly after the rocket starts down. The parachute slows the 
rocket to keep it from breaking when it lands.

   The figure here shows velocity data from the flight of the 
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?
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c. When did the rocket reach its highest point? What was its 
velocity then?

d. When did the parachute pop out? How fast was the rocket 
falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then 
(to the nearest integer)?

18. The accompanying figure shows the velocity y = ƒ(t) of a particle 
moving on a horizontal coordinate line.

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y = f(t)

a. When does the particle move forward? Move backward? 
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompa-
nying figure shows two balls falling from rest. The vertical rulers 
are marked in centimeters. Use the equation s = 490t2 (the free-
fall equation for s in centimeters and t in seconds) to answer the 
following questions. (Source: PSSC Physics, 2nd ed., Reprinted 
by permission of Education Development Center, Inc.)

a. How long did it take the balls to fall the first 160 cm? What 
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?
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20. A traveling truck The accompanying graph shows the position 
s of a truck traveling on a highway. The truck starts at t = 0 and 
returns 15 h later at t = 15.

a. Use the technique described in Section 3.2, Example 3, to 
graph the truck’s velocity y = ds>dt for 0 … t … 15. Then 
repeat the process, with the velocity curve, to graph the 
truck’s acceleration dy>dt.

b. Suppose that s = 15t2 - t3. Graph ds>dt and d2s>dt2 and 
compare your graphs with those in part (a).
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21. The graphs in the accompanying figure show the position s,
velocity y = ds>dt, and acceleration a = d2s>dt2 of a body 
moving along a coordinate line as functions of time t. Which 
graph is which? Give reasons for your answers.

t

y

0

A B

C

22. The graphs in the accompanying figure show the position s, the 
velocity y = ds>dt, and the acceleration a = d2s>dt2 of a body 
moving along a coordinate line as functions of time t. Which 
graph is which? Give reasons for your answers.

t

y

0

A

B

C

Economics
23. Marginal cost Suppose that the dollar cost of producing x

washing machines is c(x) = 2000 + 100x - 0.1x2.

a. Find the average cost per machine of producing the first 100 
washing machines.

b. Find the marginal cost when 100 washing machines are 
produced.

c. Show that the marginal cost when 100 washing machines are 
produced is approximately the cost of producing one more 
washing machine after the first 100 have been made, by cal-
culating the latter cost directly.

24. Marginal revenue Suppose that the revenue from selling x
washing machines is

r(x) = 20,000a1 - 1
xb

  dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function r′(x) to estimate the increase in revenue that 
will result from increasing production from 100 machines a 
week to 101 machines a week.

c. Find the limit of r′(x) as x S q. How would you interpret 
this number?

Additional Applications
25. Bacterium population When a bactericide was added to a 

nutrient broth in which bacteria were growing, the bacterium 
population continued to grow for a while, but then stopped grow-
ing and began to decline. The size of the population at time t
(hours) was b = 106 + 104t - 103t2. Find the growth rates at

a. t = 0 hours.

b. t = 5 hours.

c. t = 10 hours.

26. Body surface area A typical male’s body surface area S in 
square meters is often modeled by the formula S = 1

60 2wh ,
where h is the height in cm, and w the weight in kg, of the person. 
Find the rate of change of body surface area with respect to 
weight for males of constant height h = 180 cm (roughly 5′9″).
Does S increase more rapidly with respect to weight at lower or 
higher body weights? Explain.

27. Draining a tank It takes 12 hours to drain a storage tank by 
opening the valve at the bottom. The depth y of fluid in the tank t
hours after the valve is opened is given by the formula

y = 6a1 - t
12
b2

m.

a. Find the rate dy>dt (m >h) at which the tank is draining at 
time t.

b. When is the fluid level in the tank falling fastest? Slowest? 
What are the values of dy>dt at these times?

c. Graph y and dy>dt together and discuss the behavior of y in 
relation to the signs and values of dy>dt.

28. Draining a tank The number of gallons of water in a tank t
minutes after the tank has started to drain is Q(t) = 200(30 - t)2.
How fast is the water running out at the end of 10 min? What is the 
average rate at which the water flows out during the first 10 min?

T
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29. Vehicular stopping distance Based on data from the U.S. 
Bureau of Public Roads, a model for the total stopping distance of 
a moving car in terms of its speed is

s = 1.1y + 0.054y2,

  where s is measured in ft and y in mph. The linear term 1.1y
models the distance the car travels during the time the driver per-
ceives a need to stop until the brakes are applied, and the qua-
dratic term 0.054y2 models the additional braking distance once 
they are applied. Find ds>dy at y = 35 and y = 70 mph, and 
interpret the meaning of the derivative.

30. Inflating a balloon The volume V = (4>3)pr3 of a spherical 
balloon changes with the radius.

a. At what rate (ft3>ft) does the volume change with respect to 
the radius when r = 2 ft?

b. By approximately how much does the volume increase when 
the radius changes from 2 to 2.2 ft?

31. Airplane takeoff Suppose that the distance an aircraft travels 
along a runway before takeoff is given by D = (10>9)t2, where D is 
measured in meters from the starting point and t is measured in sec-
onds from the time the brakes are released. The aircraft will become 
airborne when its speed reaches 200 km>h. How long will it take to 
become airborne, and what distance will it travel in that time?

32. Volcanic lava fountains Although the November 1959 Kilauea 
Iki eruption on the island of Hawaii began with a line of fountains 
along the wall of the crater, activity was later confined to a single 

vent in the crater’s floor, which at one point shot lava 1900 ft 
straight into the air (a Hawaiian record). What was the lava’s exit 
velocity in feet per second? In miles per hour? (Hint: If y0 is the 
exit velocity of a particle of lava, its height t sec later will be 
s = y0t - 16t2 ft. Begin by finding the time at which ds>dt = 0.
Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 33–36 give the position function s = ƒ(t) of an object mov-
ing along the s-axis as a function of time t. Graph ƒ together with the 
velocity function y(t) = ds>dt = ƒ′(t) and the acceleration function 
a(t) = d2s>dt2 = ƒ″(t). Comment on the object’s behavior in relation 
to the signs and values of y and a. Include in your commentary such 
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

33. s = 200t - 16t2, 0 … t … 12.5 (a heavy object fired straight 
up from Earth’s surface at 200 ft > sec)

34. s = t2 - 3t + 2, 0 … t … 5

35. s = t3 - 6t2 + 7t, 0 … t … 4

36. s = 4 - 7t + 6t2 - t3, 0 … t … 4

T

3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms, 
tides, weather). The derivatives of sines and cosines play a key role in describing periodic 
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of ƒ(x) = sin x, for x measured in radians, we combine the limits 
in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function:

sin (x + h) = sin x cos h + cos x sin h.

If ƒ(x) = sin x, then

ƒ′(x) = lim
hS0

ƒ(x + h) - ƒ(x)
h

= lim
hS0

sin (x + h) - sin x
h

Derivative definition

= lim
hS0

(sin x cos h + cos x sin h) - sin x
h

= lim
hS0

sin x (cos h - 1) + cos x sin h
h

= lim
hS0
asin x # cos h - 1

h
b + lim

hS0
acos x # sin h

h
b

= sin x # lim
hS0

cos h - 1
h

+ cos x # lim
hS0

sin h
h

= sin x # 0 + cos x # 1 = cos x.
                         (++)++*           (11)11* Example 5a and 

limit 0 limit 1 Theorem 7, Section 2.4
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EXAMPLE 1  We find derivatives of the sine function involving differences, products, 
and quotients.

(a) y = x2 - sin x:
dy
dx

= 2x - d
dx

(sin x) Difference Rule

   = 2x - cos x

(b) y = exsin x:
dy
dx

= ex d
dx

(sin x) + d
dx

(ex) sin x Product Rule

= ex cos x + ex sin x

= ex (cos x + sin x)

(c) y = sin x
x :

dy
dx

=
x # d

dx
(sin x) - sin x # 1

x2 Quotient Rule

   = x cos x - sin x
x2

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

cos (x + h) = cos x cos h - sin x sin h,

we can compute the limit of the difference quotient:

d
dx

(cos x) = lim
hS0

cos (x + h) - cos x
h

Derivative definition

= lim
hS0

(cos x cos h - sin x sin h) - cos x
h

Cosine angle sum
identity

= lim
hS0

cos x (cos h - 1) - sin x sin h
h

= lim
hS0

cos x # cos h - 1
h

- lim
hS0

sin x # sin h
h

= cos x # lim
hS0

cos h - 1
h

- sin x # lim
hS0

sin h
h

= cos x # 0 - sin x # 1 Example 5a and
Theorem 7, Section 2.4

= -sin x.

The derivative of the sine function is the cosine function:

d
dx

(sin x) = cos x.

The derivative of the cosine function is the negative of the sine function:

d
dx

(cos x) = -sin x.

Figure 3.22 shows a way to visualize this result in the same way we did for graphing 
derivatives in Section 3.2, Figure 3.6.
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FIGURE 3.22 The curve y′ = -sin x
as the graph of the slopes of the tangents to 
the curve y = cos x.
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EXAMPLE 2  We find derivatives of the cosine function in combinations with other 
functions.

(a) y = 5ex + cos x:

dy
dx

= d
dx

(5ex) + d
dx

(cos x) Sum Rule

= 5ex - sin x

(b) y = sin x cos x:

dy
dx

= sin x
d
dx

(cos x) + cos x
d
dx

(sin x) Product Rule

= sin x (-sin x) + cos x (cos x)

= cos2 x - sin2 x

(c) y = cos x
1 - sin x

:

dy
dx

=
(1 - sin x)

d
dx

(cos x) - cos x
d
dx

(1 - sin x)

(1 - sin x)2 Quotient Rule

=
(1 - sin x)(-sin x) - cos x(0 - cos x)

(1 - sin x)2

= 1 - sin x
(1 - sin x)2 sin2 x + cos2 x = 1

= 1
1 - sin x

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the 
end of a spring is an example of simple harmonic motion. The motion is periodic and 
repeats indefinitely, so we represent it using trigonometric functions. The next example 
describes a case in which there are no opposing forces such as friction to slow the motion.

EXAMPLE 3  A weight hanging from a spring (Figure 3.23) is stretched down 5 units 
beyond its rest position and released at time t = 0 to bob up and down. Its position at any 
later time t is

s = 5 cos t.

What are its velocity and acceleration at time t?

Solution We have

Position: s = 5 cos t

Velocity: y = ds
dt

= d
dt

(5 cos t) = -5 sin t

Acceleration: a = dy
dt

= d
dt

(-5 sin t) = -5 cos t.

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between s = -5 and s = 5 on the 
s-axis. The amplitude of the motion is 5. The period of the motion is 2p, the period of 
the cosine function.

2. The velocity y = -5 sin t attains its greatest magnitude, 5, when cos t = 0, as the 
graphs show in Figure 3.24. Hence, the speed of the weight, 0 y 0 = 5 0 sin t 0 , is greatest 

s

0

−5

5

Rest
position

Position at
t = 0

FIGURE 3.23 A weight hanging from 
a vertical spring and then displaced oscil-
lates above and below its rest position 
(Example 3).
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when cos t = 0, that is, when s = 0 (the rest position). The speed of the weight is 
zero when sin t = 0. This occurs when s = 5 cos t = {5, at the endpoints of the 
interval of motion.

3. The weight is acted on by the spring and by gravity. When the weight is below the rest 
position, the combined forces pull it up, and when it is above the rest position, they pull it 
down. The weight’s acceleration is always proportional to the negative of its displacement. 
This property of springs is called Hooke’s Law, and is studied further in Section 6.5.

4. The acceleration, a = -5 cos t, is zero only at the rest position, where cos t = 0 and 
the force of gravity and the force from the spring balance each other. When the weight 
is anywhere else, the two forces are unequal and acceleration is nonzero. The accel-
eration is greatest in magnitude at the points farthest from the rest position, where 
cos t = {1.

EXAMPLE 4  The jerk associated with the simple harmonic motion in Example 3 is

j = da
dt

= d
dt

(-5 cos t) = 5 sin t.

It has its greatest magnitude when sin t = {1, not at the extremes of the displacement 
but at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x = sin x
cos x , cot x = cos x

sin x
, sec x = 1

cos x , and csc x = 1
sin x

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative 
signs in the derivative formulas for the cofunctions.

t
0

s, y

y = −5 sin t s = 5 cos t

p p
2

3p 2p
2

5p
2

5

−5

FIGURE 3.24 The graphs of the position 
and velocity of the weight in Example 3.

The derivatives of the other trigonometric functions:

d
dx

(tan x) = sec2 x
d
dx

(cot x) = -csc2 x

d
dx

(sec x) = sec x tan x
d
dx

(csc x) = -csc x cot x

To show a typical calculation, we find the derivative of the tangent function. The other 
derivations are left to Exercise 60.

EXAMPLE 5 Find d(tan x)>dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

d
dx

(tan x) = d
dx
a sin x

cos xb =
cos x

d
dx

(sin x) - sin x
d
dx

(cos x)

cos2 x
Quotient Rule

=
cos x cos x - sin x (-sin x)

cos2 x

= cos2 x + sin2 x
cos2 x

= 1
cos2 x

= sec2 x.
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EXAMPLE 6 Find y″ if y = sec x.

Solution Finding the second derivative involves a combination of trigonometric 
derivatives.

y = sec x

y′ = sec x tan x Derivative rule for secant function

y″ = d
dx

(sec x tan x)

= sec x
d
dx

(tan x) + tan x
d
dx

(sec x) Derivative Product Rule

= sec x (sec2 x) + tan x (sec x tan x) Derivative rules

= sec3 x + sec x tan2 x

The differentiability of the trigonometric functions throughout their domains gives 
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2). 
So we can calculate limits of algebraic combinations and composites of trigonometric 
functions by direct substitution.

EXAMPLE 7  We can use direct substitution in computing limits provided there is no 
division by zero, which is algebraically undefined.

lim
xS0

22 + sec x
cos (p - tan x)

= 22 + sec 0
cos (p - tan 0)

= 22 + 1
cos (p - 0)

= 23
-1

= -23

Derivatives
In Exercises 1–18, find dy>dx.

1. y = -10x + 3 cos x 2. y = 3
x + 5 sin x

3. y = x2 cos x 4. y = 2x sec x + 3

5. y = csc x - 41x + 7
ex 6. y = x2 cot x - 1

x2

7. ƒ(x) = sin x tan x 8. g(x) = cos x
sin2 x

9. y = xe-x sec x 10. y = (sin x + cos x) sec x

11. y = cot x
1 + cot x

12. y = cos x
1 + sin x

13. y = 4
cos x + 1

tan x 14. y = cos x
x + x

cos x

15. y = (sec x + tan x) (sec x - tan x)

16. y = x2 cos x - 2x sin x - 2 cos x

17. ƒ(x) = x3 sin x cos x 18. g(x) = (2 - x) tan2 x

In Exercises 19–22, find ds>dt.

19. s = tan t - e-t 20. s = t2 - sec t + 5et

21. s = 1 + csc t
1 - csc t

22. s = sin t
1 - cos t

In Exercises 23–26, find dr>du.
23. r = 4 - u2 sin u 24. r = u sin u + cos u

25. r = sec u csc u 26. r = (1 + sec u) sin u

In Exercises 27–32, find dp>dq.

27. p = 5 + 1
cot q 28. p = (1 + csc q) cos q

29. p =
sin q + cos q

cos q 30. p =
tan q

1 + tan q

31. p =
q sin q

q2 - 1
32. p =

3q + tan q
q sec q

33. Find y″ if

a. y = csc x. b. y = sec x.

34. Find y(4) = d4 y>dx4 if

a. y = -2 sin x. b. y = 9 cos x.

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together 
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35. y = sin x, -3p>2 … x … 2p

x = -p, 0, 3p>2

Exercises 3.5
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36. y = tan x, -p>2 6 x 6 p>2
x = -p>3, 0, p>3

37. y = sec x, -p>2 6 x 6 p>2
x = -p>3, p>4

38. y = 1 + cos x, -3p>2 … x … 2p

x = -p>3, 3p>2
Do the graphs of the functions in Exercises 39–42 have any horizontal 
tangents in the interval 0 … x … 2p? If so, where? If not, why not? 
Visualize your findings by graphing the functions with a grapher.

39. y = x + sin x

40. y = 2x + sin x

41. y = x - cot x

42. y = x + 2 cos x

43. Find all points on the curve y = tan x, -p>2 6 x 6 p>2, where 
the tangent line is parallel to the line y = 2x. Sketch the curve 
and tangent(s) together, labeling each with its equation.

44. Find all points on the curve y = cot x, 0 6 x 6 p, where the 
tangent line is parallel to the line y = -x. Sketch the curve and 
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the 
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

x

y

0

1

1 2

2

Q

y = 4 + cot x − 2csc x

p
2

P , 2

p
2

a b

x

y

0 1 2

4

3

Q

p
4

P , 4

p
4

y = 1 +
"

2 csc x + cot x

a b

Trigonometric Limits
Find the limits in Exercises 47–54.

47. lim
xS2

sin a1x - 1
2
b

48. lim
xS -p>621 + cos (p csc x)

49. lim
uSp>6

sin u - 1
2

u - p
6

50. lim
uSp>4

tan u - 1
u - p

4

51. lim
xS0

sec c ex + p tan a p

4 sec x
b - 1 d

52. lim
xS0

sin a p + tan x
tan x - 2 sec x

b
53. lim

tS0
tan a1 - sin t

t b 54. lim
uS0

cos a pu
sin u
b

T

Theory and Examples
The equations in Exercises 55 and 56 give the position s = ƒ(t) of a 
body moving on a coordinate line (s in meters, t in seconds). Find the 
body’s velocity, speed, acceleration, and jerk at time t = p>4 sec.

55. s = 2 - 2 sin t 56. s = sin t + cos t

57. Is there a value of c that will make

ƒ(x) =
sin2 3x

x2 , x ≠ 0

c, x = 0

  continuous at x = 0? Give reasons for your answer.

58. Is there a value of b that will make

g(x) = e x + b, x 6 0

cos x, x Ú 0

  continuous at x = 0? Differentiable at x = 0? Give reasons for 
your answers.

59. By computing the first few derivatives and looking for a pattern, 
find d 999>dx999 (cos x).

60. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion (x = 0). It is then set in motion resulting in a displacement of

x = 10 cos t,

  where x is measured in centimeters and t is measured in seconds. 
See the accompanying figure.

x

0

−10

10

Equilibrium
position
at x = 0

a. Find the spring’s displacement when t = 0, t = p>3, and 
t = 3p>4.

b. Find the spring’s velocity when t = 0, t = p>3, and 
t = 3p>4.

62. Assume that a particle’s position on the x-axis is given by

x = 3 cos t + 4 sin t,

  where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when t = 0, t = p>2, and 
t = p.

b. Find the particle’s velocity when t = 0, t = p>2, and 
t = p.
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63. Graph y = cos x for -p … x … 2p. On the same screen, graph

y =
sin (x + h) - sin x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 
h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-?
What phenomenon is being illustrated here?

64. Graph y = -sin x for -p … x … 2p. On the same screen, graph

y =
cos (x + h) - cos x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 
h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-?
What phenomenon is being illustrated here?

65. Centered difference quotients The centered difference quotient

ƒ(x + h) - ƒ(x - h)
2h

  is used to approximate ƒ′(x) in numerical work because (1) its 
limit as h S 0 equals ƒ′(x) when ƒ′(x) exists, and (2) it usually 
gives a better approximation of ƒ′(x) for a given value of h than 
the difference quotient

ƒ(x + h) - ƒ(x)
h

.

  See the accompanying figure.

x

y

0 x

A

hh

C B

x − h x + h

y = f (x)

Slope = f ′(x)

Slope =

Slope =

h
f (x + h) − f (x)

f (x + h) − f (x − h)
2h

a. To see how rapidly the centered difference quotient for 
ƒ(x) = sin x converges to ƒ′(x) = cos x, graph y = cos x
together with

y =
sin (x + h) - sin (x - h)

2h

  over the interval 3-p, 2p4  for h = 1, 0.5, and 0.3. Com-
pare the results with those obtained in Exercise 63 for the 
same values of h.

b. To see how rapidly the centered difference quotient for 
ƒ(x) = cos x converges to ƒ′(x) = -sin x, graph y = -sin x
together with

y =
cos (x + h) - cos (x - h)

2h

  over the interval 3-p, 2p4 for h = 1, 0.5, and 0.3. Compare 
the results with those obtained in Exercise 64 for the same 
values of h.

T

T

T

66. A caution about centered difference quotients (Continuation
of Exercise 65.) The quotient

ƒ(x + h) - ƒ(x - h)
2h

  may have a limit as h S 0 when ƒ has no derivative at x. As a 
case in point, take ƒ(x) = 0 x 0  and calculate

lim
hS0

0 0 + h 0 - 0 0 - h 0
2h

.

  As you will see, the limit exists even though ƒ(x) = 0 x 0  has no 
derivative at x = 0. Moral: Before using a centered difference 
quotient, be sure the derivative exists.

67. Slopes on the graph of the tangent function Graph y = tan x
and its derivative together on (-p>2, p>2). Does the graph of the 
tangent function appear to have a smallest slope? A largest slope? 
Is the slope ever negative? Give reasons for your answers.

68. Slopes on the graph of the cotangent function Graph y = cot x
and its derivative together for 0 6 x 6 p. Does the graph of the 
cotangent function appear to have a smallest slope? A largest 
slope? Is the slope ever positive? Give reasons for your answers.

69. Exploring (sin kx) ,x Graph y = (sin x)>x, y = (sin 2x)>x, and 
y = (sin 4x)>x together over the interval -2 … x … 2. Where 
does each graph appear to cross the y-axis? Do the graphs really 
intersect the axis? What would you expect the graphs of 
y = (sin 5x)>x and y = (sin (-3x))>x to do as x S 0? Why? 
What about the graph of y = (sin kx)>x for other values of k?
Give reasons for your answers.

70. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in 
degrees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

ƒ(h) = sin h
h

  and estimate limhS0 ƒ(h). Compare your estimate with 
p>180. Is there any reason to believe the limit should be 
p>180?

b. With your grapher still in degree mode, estimate

lim
hS0

cos h - 1
h

.

c. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain 
for the derivative?

d. Work through the derivation of the formula for the derivative 
of cos x using degree-mode limits. What formula do you 
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become 
apparent as you start taking derivatives of higher order. Try 
it. What are the second and third degree-mode derivatives of 
sin x and cos x?

T

T

T

T
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3.6 The Chain Rule

How do we differentiate F(x) = sin (x2 - 4)? This function is the composite ƒ ∘ g of two 
functions y = ƒ(u) = sin u and u = g(x) = x2 - 4 that we know how to differentiate. 
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function y = 3
2

x = 1
2

(3x) is the composite of the functions y = 1
2

u and u = 3x.

We have

dy
dx

= 3
2

,
dy
du

= 1
2

, and
du
dx

= 3.

Since
3
2

= 1
2
# 3, we see in this case that

dy
dx

=
dy
du

# du
dx

.

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If y = ƒ(u) changes half as fast as u and u = g(x) changes three 
times as fast as x, then we expect y to change 3>2 times as fast as x. This effect is much 
like that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1  The function

y = (3x2 + 1)2

is the composite of y = ƒ(u) = u2 and u = g(x) = 3x2 + 1. Calculating derivatives, we 
see that

dy
du

# du
dx

= 2u # 6x

= 2(3x2 + 1) # 6x Substitute for u

= 36x3 + 12x.

Calculating the derivative from the expanded formula (3x2 + 1)2 = 9x4 + 6x2 + 1 gives 
the same result:

dy
dx

= d
dx

(9x4 + 6x2 + 1)

= 36x3 + 12x.

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.26). 

32

1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes 
x turns, gear B makes u turns and gear 
C makes y turns. By comparing cir-
cumferences or counting teeth, we see 
that y = u>2 (C turns one-half turn 
for each B turn) and u = 3x (B turns 
three times for A’s one), so y = 3x>2.
Thus, dy>dx = 3>2 = (1>2)(3) =
(dy>du)(du>dx).

x

g f

Composite f ˚ g

Rate of change at
x is f ′(g(x)) · g′(x).

Rate of change
at x is g′(x).

Rate of change
at g(x) is f ′(g(x)).

u = g(x) y = f (u) = f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of ƒ ∘ g at x is the 
derivative of ƒ at g(x) times the derivative of g at x.



A Proof of One Case of the Chain Rule:

Let ∆u be the change in u when x changes by ∆x, so that

∆u = g(x + ∆x) - g(x).

Then the corresponding change in y is

∆y = ƒ(u + ∆u) - ƒ(u).

If ∆u ≠ 0, we can write the fraction ∆y>∆x as the product

∆y
∆x =

∆y
∆u

# ∆u
∆x (1)

and take the limit as ∆xS 0:

dy
dx

= lim
∆xS0

∆y
∆x

= lim
∆xS0

∆y
∆u

# ∆u
∆x

= lim
∆xS0

∆y
∆u

# lim
∆xS0

∆u
∆x

= lim
∆uS0

∆y
∆u

# lim
∆xS0

∆u
∆x

(Note that ∆uS 0 as ∆xS 0
since g is continuous.)

=
dy
du

# du
dx

.

The problem with this argument is that if the function g(x) oscillates rapidly near x, then 
∆u can be zero even when ∆x ≠ 0, so the cancelation of ∆u in Equation (1) would be 
invalid. A complete proof requires a different approach that avoids this problem, and we 
give one such proof in Section 3.11.

EXAMPLE 2  An object moves along the x-axis so that its position at any time t Ú 0
is given by x(t) = cos (t2 + 1). Find the velocity of the object as a function of t.

Solution We know that the velocity is dx>dt. In this instance, x is a composite function: 
x = cos(u) and u = t2 + 1. We have

dx
du

= -sin(u) x = cos(u)

du
dt

= 2t. u = t2 + 1

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (ƒ ∘ g) (x) = ƒ(g(x)) is 
differentiable at x, and

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x).
In Leibniz’s notation, if y = ƒ(u) and u = g(x), then

dy
dx

=
dy
du

# du
dx

,

where dy>du is evaluated at u = g(x).

164 Chapter 3: Derivatives
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By the Chain Rule,

dx
dt

= dx
du

# du
dt

= -sin (u) # 2t dx
du

evaluated at u

= -sin (t2 + 1) # 2t

= -2t sin (t2 + 1).

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about 
the Chain Rule using functional notation. If y = ƒ(g(x)), then

dy
dx

= ƒ′(g(x)) # g′(x).

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate sin (x2 + ex)  with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

sin (x2 + ex) = cos (x2 + ex) # (2x + ex).
(1)1* (1)1* (1)1*

inside inside derivative of
left alone the inside

EXAMPLE 4 Differentiate y = ecosx.

Solution Here the inside function is u = g(x) = cos x and the outside function is the 
exponential function ƒ(x) = ex. Applying the Chain Rule, we get

dy
dx

= d
dx

(ecos x) = ecos x d
dx

(cos x) = ecos x(-sin x) = -ecos x sin x.

Generalizing Example 4, we see that the Chain Rule gives the formula

d
dx

eu = eu du
dx

.

For example,

d
dx

(ekx) = ekx # d
dx

(kx) = kekx, for any constant k

and

d
dx
1ex22 = ex2 # d

dx
(x2) = 2xex2

.

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

Ways to Write the Chain Rule

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x)

dy
dx

=
dy
du

# du
dx

dy
dx

= ƒ′(g(x)) # g′(x)

d
dx

ƒ(u) = ƒ′(u)
du
dx
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EXAMPLE 5  Find the derivative of g(t) = tan (5 - sin 2t).

Solution Notice here that the tangent is a function of 5 - sin 2t, whereas the sine is a 
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

g′(t) = d
dt

(tan (5 - sin 2t))

= sec2(5 - sin 2t) # d
dt

(5 - sin 2t)
Derivative of tan u with 
u = 5 - sin 2t

= sec2(5 - sin 2t) # a0 - cos 2t # d
dt

(2t)b Derivative of 5 - sin u
with u = 2t

= sec2(5 - sin 2t) # (-cos 2t) # 2
= -2(cos 2t) sec2(5 - sin 2t).

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing y = ƒ(u) into the Chain Rule formula

dy
dx

=
dy
du

# du
dx

leads to the formula

d
dx

ƒ(u) = ƒ′(u)
du
dx

.

If n is any real number and ƒ is a power function, ƒ(u) = un, the Power Rule tells us 
that ƒ′(u) = nun-1. If u is a differentiable function of x, then we can use the Chain Rule to 
extend this to the Power Chain Rule:

d
dx

(un) = nun-1 du
dx

. d
du

(un) = nun-1

EXAMPLE 6  The Power Chain Rule simplifies computing the derivative of a power 
of an expression.

(a) d
dx

(5x3 - x4)7 = 7(5x3 - x4)6 d
dx

(5x3 - x4)
Power Chain Rule with 
u = 5x3 - x4, n = 7

= 7(5x3 - x4)6(5 # 3x2 - 4x3)
= 7(5x3 - x4)6(15x2 - 4x3)

(b) d
dx
a 1

3x - 2
b = d

dx
(3x - 2)-1

= -1(3x - 2)-2 d
dx

(3x - 2)
Power Chain Rule with 
u = 3x - 2, n = -1

= -1(3x - 2)-2(3)

= - 3
(3x - 2)2

  In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c) d
dx

(sin5 x) = 5 sin4 x # d
dx

sin x
Power Chain Rule with u = sin x, n = 5,
because sinn x means (sin x)n, n ≠ -1.

= 5 sin4 x cos x

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)
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(d) d
dx
1e23x+12 = e23x+1 # d

dx
123x + 12

= e23x+1 # 1
2

(3x + 1)-1>2 # 3 Power Chain Rule with u = 3x + 1, n = 1>2

= 3

223x + 1
e23x+1

EXAMPLE 7  In Section 3.2, we saw that the absolute value function y = 0 x 0  is not 
differentiable at x = 0. However, the function is differentiable at all other real numbers, 
as we now show. Since 0 x 0 = 2x2, we can derive the following formula:

d
dx

( 0 x 0 ) = d
dx
2x2

= 1

22x2
# d
dx

(x2)
Power Chain Rule with 
u = x2, n = 1>2, x ≠ 0

= 1
2 0 x 0 # 2x 2x2 = 0 x 0

= x0 x 0 , x ≠ 0.

EXAMPLE 8  Show that the slope of every line tangent to the curve y = 1>(1 - 2x)3

is positive.

Solution We find the derivative:

dy
dx

= d
dx

(1 - 2x)-3

= -3(1 - 2x)-4 # d
dx

(1 - 2x) Power Chain Rule with u = (1 - 2x), n = -3

= -3(1 - 2x)-4 # (-2)

= 6
(1 - 2x)4 .

At any point (x, y) on the curve, the coordinate x is not 1>2 and the slope of the tangent 
line is

dy
dx

= 6
(1 - 2x)4 ,

which is the quotient of two positive numbers.

EXAMPLE 9  The formulas for the derivatives of both sin x and cos x were obtained 
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us 
new insight into the difference between the two. Since 180° = p radians, x° = px>180
radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

d
dx

sin (x°) = d
dx

sin a px
180
b = p

180
cos a px

180
b = p

180
cos (x°).

See Figure 3.27. Similarly, the derivative of cos (x°) is -(p>180) sin (x°).
The factor p>180 would compound with repeated differentiation, showing an advan-

tage for the use of radian measure in computations.

Derivative of the 
Absolute Value Function

d
dx

( 0 x 0 ) = x0 x 0 , x ≠ 0

= e 1, x 7 0

-1, x 6 0
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x

y

1

180
y = sin x

y = sin(x°) = sin px
180

FIGURE 3.27 The function sin (x°) oscillates only p>180 times as often as sin x
oscillates. Its maximum slope is p>180 at x = 0 (Example 9).

Derivative Calculations
In Exercises 1–8, given y = ƒ(u) and u = g(x), find dy>dx =
ƒ′(g(x))g′(x).

1. y = 6u - 9, u = (1>2)x4 2. y = 2u3, u = 8x - 1

3. y = sin u, u = 3x + 1 4. y = cos u, u = e-x

5. y = 2u , u = sin x 6. y = sin u, u = x - cos x

7. y = tan u, u = px2 8. y = -sec u, u = 1
x + 7x

In Exercises 9–22, write the function in the form y = ƒ(u) and 
u = g(x). Then find dy>dx as a function of x.

9. y = (2x + 1)5 10. y = (4 - 3x)9

11. y = a1 - x
7
b-7

12. y = a2x
2

- 1b-10

13. y = ax2

8
+ x - 1

xb
4

14. y = 23x2 - 4x + 6

15. y = sec (tan x) 16. y = cot ap - 1
xb

17. y = tan3 x 18. y = 5 cos-4 x

19. y = e-5x 20. y = e2x>3
21. y = e5-7x 22. y = e142x+x22
Find the derivatives of the functions in Exercises 23–50.

23. p = 23 - t 24. q = 23 2r - r2

25. s = 4
3p

sin 3t + 4
5p

cos 5t 26. s = sin a3pt
2
b + cos a3pt

2
b

27. r = (csc u + cot u)-1 28. r = 6 (sec u - tan u)3>2

29. y = x2 sin4 x + x cos-2 x 30. y = 1
x sin-5 x - x

3
cos3 x

31. y = 1
18

(3x - 2)6 + a4 - 1
2x2b

-1

32. y = (5 - 2x)-3 + 1
8
a2x + 1b4

33. y = (4x + 3)4(x + 1)-3 34. y = (2x - 5)-1(x2 - 5x)6

35. y = xe-x + ex3
36. y = (1 + 2x)e-2x

37. y = (x2 - 2x + 2)e5x>2 38. y = (9x2 - 6x + 2)ex3

39. h(x) = x tan121x2 + 7 40. k(x) = x2 sec a1xb
41. ƒ(x) = 27 + x sec x 42. g(x) = tan 3x

(x + 7)4

43. ƒ(u) = a sin u
1 + cos u

b2

44. g(t) = a1 + sin 3t
3 - 2t

b-1

45. r = sin (u2) cos (2u) 46. r = sec2u tan a1
u
b

47. q = sin a t

2t + 1
b 48. q = cotasin t

t b
49. y = cos1e-u22 50. y = u3e-2ucos 5u

In Exercises 51–70, find dy>dt.

51. y = sin2 (pt - 2) 52. y = sec2pt

53. y = (1 + cos 2t)-4 54. y = (1 + cot (t>2))-2

55. y = (t tan t)10 56. y = (t-3>4 sin t)4>3
57. y = ecos2 (pt-1) 58. y = (esin (t>2))3

59. y = a t2

t3 - 4t
b3

60. y = a3t - 4
5t + 2

b-5

61. y = sin (cos (2t - 5)) 62. y = cos a5 sin a t
3
b b

63. y = a1 + tan4 a t
12
b b3

64. y = 1
6
11 + cos2 (7t)23

65. y = 21 + cos (t2) 66. y = 4 sin121 + 1t2
67. y = tan2 (sin3 t) 68. y = cos4 (sec2 3t)

69. y = 3t (2t2 - 5)4 70. y = 43t + 32 + 21 - t

Second Derivatives
Find y″ in Exercises 71–78.

71. y = a1 + 1
xb

3

72. y = 11 - 1x2-1

73. y = 1
9

cot (3x - 1) 74. y = 9 tan ax
3
b

75. y = x (2x + 1)4 76. y = x2 (x3 - 1)5

77. y = ex2 + 5x 78. y = sin (x2ex)

Exercises 3.6
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Finding Derivative Values
In Exercises 79–84, find the value of (ƒ ∘ g)′ at the given value of x.

79. ƒ(u) = u5 + 1, u = g(x) = 1x, x = 1

80. ƒ(u) = 1 - 1
u , u = g(x) = 1

1 - x
, x = -1

81. ƒ(u) = cot
pu
10

, u = g(x) = 51x, x = 1

82. ƒ(u) = u + 1
cos2 u

, u = g(x) = px, x = 1>4
83. ƒ(u) = 2u

u2 + 1
, u = g(x) = 10x2 + x + 1, x = 0

84. ƒ(u) = au - 1
u + 1

b2

, u = g(x) = 1
x2 - 1, x = -1

85. Assume that ƒ′(3) = -1, g′(2) = 5, g(2) = 3, and y = ƒ(g(x)).
What is y′ at x = 2?

86. If r = sin (ƒ(t)), ƒ(0) = p>3, and ƒ′(0) = 4, then what is dr>dt
at t = 0?

87. Suppose that functions ƒ and g and their derivatives with respect 
to x have the following values at x = 2 and x = 3.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2ƒ(x), x = 2 b. ƒ(x) + g(x), x = 3

c. ƒ(x) # g(x), x = 3 d. ƒ(x)>g(x), x = 2

e. ƒ(g(x)), x = 2 f. 2ƒ(x), x = 2

g. 1>g2(x), x = 3 h. 2ƒ2(x) + g2(x), x = 2

88. Suppose that the functions ƒ and g and their derivatives with 
respect to x have the following values at x = 0 and x = 1.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 5ƒ(x) - g(x), x = 1 b. ƒ(x)g3(x), x = 0

c.
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x11 + ƒ(x))-2, x = 1

g. ƒ(x + g(x)), x = 0

89. Find ds>dt when u = 3p>2 if s = cosu and du>dt = 5.

90. Find dy>dt when x = 1 if y = x2 + 7x - 5 and dx>dt = 1>3.

Theory and Examples
What happens if you can write a function as a composite in different 
ways? Do you get the same derivative each time? The Chain Rule 
says you should. Try it with the functions in Exercises 91 and 92.

91. Find dy>dx if y = x by using the Chain Rule with y as a comps-
ite of

a. y = (u>5) + 7 and u = 5x - 35

b. y = 1 + (1>u) and u = 1>(x - 1).

92. Find dy>dx if y = x3>2 by using the Chain Rule with y as a com-
posite of

a. y = u3 and u = 1x

b. y = 1u and u = x3.

93. Find the tangent to y = ((x - 1)>(x + 1))2 at x = 0.

94. Find the tangent to y = 2x2 - x + 7 at x = 2.

95. a.  Find the tangent to the curve y = 2 tan (px>4) at x = 1.

b. Slopes on a tangent curve What is the smallest value the 
slope of the curve can ever have on the interval 
-2 6 x 6 2? Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and 
y = -sin (x>2) at the origin. Is there anything special about 
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves 
y = sin mx and y = -sin (x>m) at the origin 
(m a constant ≠ 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the 
curves y = sin mx and y = -sin (x>m) can ever have? Give 
reasons for your answer.

d. The function y = sin x completes one period on the interval 
30, 2p4 , the function y = sin 2x completes two periods, the 
function y = sin (x>2) completes half a period, and so on. Is 
there any relation between the number of periods y = sin mx
completes on 30, 2p4  and the slope of the curve y = sin mx
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving 
straight up and down and that its position at time t sec is

s = A cos (2pbt),

  with A and b positive. The value of A is the amplitude of the 
motion, and b is the frequency (number of times the piston moves 
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk? 
(Once you find out, you will know why some machinery breaks 
when you run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in 
Fairbanks, Alaska, during a typical 365-day year. The equation 
that approximates the temperature on day x is

y = 37 sin c 2p
365

(x - 101) d + 25

  and is graphed in the accompanying figure.

x ƒ(x) g(x) ƒ′(x) g′(x)

2 8 2 1>3 -3
3 3 -4 2p 5

x ƒ(x) g(x) ƒ′(x) g′(x)

0 1 1 5 1>3
1 3 -4 -1>3 -8>3
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a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?
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99. Particle motion The position of a particle moving along a 
coordinate line is s = 21 + 4t, with s in meters and t in sec-
onds. Find the particle’s velocity and acceleration at t = 6 sec.

100. Constant acceleration Suppose that the velocity of a falling 
body is y = k1s m>sec (k a constant) at the instant the body 
has fallen s m from its starting point. Show that the body’s 
acceleration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering 
Earth’s atmosphere is inversely proportional to 2s when it is 
s km from Earth’s center. Show that the meteorite’s acceleration 
is inversely proportional to s2.

102. Particle acceleration A particle moves along the x-axis with 
velocity dx>dt = ƒ(x). Show that the particle’s acceleration is 
ƒ(x)ƒ′(x).

103. Temperature and the period of a pendulum For oscillations 
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T = 2pA
L
g ,

where g is the constant acceleration of gravity at the pendulum’s 
location. If we measure g in centimeters per second squared, we 
measure L in centimeters and T in seconds. If the pendulum is 
made of metal, its length will vary with temperature, either 
increasing or decreasing at a rate that is roughly proportional to 
L. In symbols, with u being temperature and k the proportional-
ity constant,

dL
du

= kL.

Assuming this to be the case, show that the rate at which the 
period changes with respect to temperature is kT>2.

104. Chain Rule Suppose that ƒ(x) = x2 and g(x) = � x � . Then the 
composites

(ƒ ∘ g)(x) = � x �2 = x2 and (g ∘ ƒ)(x) = � x2 � = x2

  are both differentiable at x = 0 even though g itself is not dif-
ferentiable at x = 0. Does this contradict the Chain Rule? 
Explain.

105. The derivative of sin 2x Graph the function y = 2 cos 2x for 
-2 … x … 3.5. Then, on the same screen, graph

y =
sin 2(x + h) - sin 2x

h

  for h = 1.0, 0.5, and 0.2. Experiment with other values of h,
including negative values. What do you see happening as 
h S 0? Explain this behavior.

106. The derivative of cos (x2) Graph y = -2x sin (x2) for -2 …
x … 3. Then, on the same screen, graph

y =
cos ((x + h)2) - cos (x2)

h

  for h = 1.0, 0.7, and 0.3. Experiment with other values of h.
What do you see happening as h S 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d>dx)xn = nxn-1

holds for the functions xn in Exercises 107 and 108.

107. x1>4 = 21x 108. x3>4 = 2x1x

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polyno-

mial”

s = ƒ(t) = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

-  0.02546cos 10t - 0.01299cos 14t

  gives a good approximation of the sawtooth function s = g(t)
on the interval 3-p, p4 . How well does the derivative of ƒ 
approximate the derivative of g at the points where dg>dt is 
defined? To find out, carry out the following steps.

a. Graph dg>dt (where defined) over 3-p, p4 .
  b. Find dƒ>dt.

c. Graph dƒ>dt. Where does the approximation of dg>dt by 
dƒ>dt seem to be best? Least good? Approximations by trig-
onometric polynomials are important in the theories of heat 
and oscillation, but we must not expect too much of them, as 
we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f (t)

110. (Continuation of Exercise 109.) In Exercise 109, the trigonomet-
ric polynomial ƒ(t) that approximated the sawtooth function g(t)
on 3-p, p4  had a derivative that approximated the derivative 
of the sawtooth function. It is possible, however, for a trigono-
metric polynomial to approximate a function in a reasonable 
way without its derivative approximating the function’s deriva-
tive at all well. As a case in point, the trigonometric “polynomial”

s = h(t) = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

+ 0.18189 sin 14t + 0.14147 sin 18t

T
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  graphed in the accompanying figure approximates the step func-
tion s = k(t) shown there. Yet the derivative of h is nothing like 
the derivative of k.

1

t

s

0 p
2

p−p p
2

−

−1

s = k(t)

s = h(t)

  a. Graph dk>dt (where defined) over 3-p, p4 .
  b. Find dh>dt.

  c. Graph dh>dt to see how badly the graph fits the graph of 
dk>dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 
form y = ƒ(x) that expresses y explicitly in terms of the variable x. We have learned rules 
for differentiating functions defined in this way. Another situation occurs when we encoun-
ter equations like

x3 + y3 - 9xy = 0, y2 - x = 0, or x2 + y2 - 25 = 0.

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the 
variables x and y. In some cases we may be able to solve such an equation for y as an 
explicit function (or even several functions) of x. When we cannot put an equation 
F(x, y) = 0 in the form y = ƒ(x) to differentiate it in the usual way, we may still be able 
to find dy>dx by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of 
x to calculate dy>dx in the usual way. Then we differentiate the equations implicitly, and find 
the derivative to compare the two methods. Following the examples, we summarize the steps 
involved in the new method. In the examples and exercises, it is always assumed that the 
given equation determines y implicitly as a differentiable function of x so that dy>dx exists.

EXAMPLE 1 Find dy>dx if y2 = x.

Solution The equation y2 = x defines two differentiable functions of x that we can actu-
ally find, namely y1 = 2x and y2 = -2x (Figure 3.29). We know how to calculate the 
derivative of each of these for x 7 0:

dy1

dx
= 1

21x
and

dy2

dx
= - 1

21x
.

But suppose that we knew only that the equation y2 = x defined y as one or more differen-
tiable functions of x for x 7 0 without knowing exactly what these functions were. Could 
we still find dy>dx?

The answer is yes. To find dy>dx, we simply differentiate both sides of the equation 
y2 = x with respect to x, treating y = ƒ(x) as a differentiable function of x:

y2 = x The Chain Rule gives 
d
dx

(y2) =

d
dx
3ƒ(x)42 = 2ƒ(x)ƒ′(x) = 2y

dy

dx
.2y

dy
dx

= 1

dy
dx

= 1
2y

.

x

y

0 5

5

A

x3 + y3 − 9xy = 0

y = f1(x)
(x0, y1)

y = f2(x)

y = f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve 
x3 + y3 - 9xy = 0 is not the graph of any 
one function of x. The curve can, however, be 
divided into separate arcs that are the graphs 
of functions of x. This particular curve, called 
a folium, dates to Descartes in 1638.
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This one formula gives the derivatives we calculated for both explicit solutions y1 = 2x
and y2 = -2x:

dy1

dx
= 1

2y1
= 1

21x
and

dy2

dx
= 1

2y2
= 1

21-1x2 = - 1
21x

.

EXAMPLE 2  Find the slope of the circle x2 + y2 = 25 at the point (3, -4).

Solution The circle is not the graph of a single function of x. Rather, it is the combined 
graphs of two differentiable functions, y1 = 225 - x2 and y2 = -225 - x2 (Figure 
3.30). The point (3, -4) lies on the graph of y2, so we can find the slope by calculating the 
derivative directly, using the Power Chain Rule:

dy2

dx
`
x=3

= - -2x

2225 - x2
`
x=3

= - -6

2225 - 9
= 3

4
.

d
dx
1- (25 - x2)1>22 =

- 1
2

(25 - x2)-1>2(-2x)

We can solve this problem more easily by differentiating the given equation of the 
circle implicitly with respect to x:

d
dx

(x2) + d
dx

(y2) = d
dx

(25)

 2x + 2y
dy
dx

= 0 See Example 1.

dy
dx

= - x
y .

The slope at (3, -4) is - x
y `

(3, -4)
= - 3

-4
= 3

4
.

Notice that unlike the slope formula for dy2>dx, which applies only to points below 
the x-axis, the formula dy>dx = -x>y applies everywhere the circle has a slope; that is, at 
all circle points (x, y) where y ≠ 0. Notice also that the derivative involves both variables 
x and y, not just the independent variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual 
rules to differentiate both sides of the defining equation.

x

y

0

y2 = x

Slope = =
2y1

1
2
"

x

1

Slope = = −
2y2

1
2
"

x

1

y1 =
"

x

y2 = −
"

x

P(x,
"

x )

Q(x, −
"

x )

FIGURE 3.29 The equation y2 - x = 0,
or y2 = x as it is usually written, defines two 
differentiable functions of x on the interval 
x 7 0. Example 1 shows how to find the 
derivatives of these functions without solving 
the equation y2 = x for y.

0 5−5
x

y

Slope = − =y
x

4
3

(3, −4)

y1 = "25 − x2

y2 = −"25 − x2

FIGURE 3.30 The circle combines the 
graphs of two functions. The graph of y2

is the lower semicircle and passes through 
(3, -4).
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EXAMPLE 3 Find dy>dx if y2 = x2 + sin xy (Figure 3.31).

Solution We differentiate the equation implicitly.

y2 = x2 + sin xy

d
dx
1y22 = d

dx
1x22 + d

dx
1sin xy2 Differentiate both sides with 

respect to x c

2y
dy
dx

= 2x + (cos xy)
d
dx

(xy)
ctreating y as a function of 
x and using the Chain Rule. 

2y
dy
dx

= 2x + (cos xy)ay + x
dy
dx
b Treat xy as a product.

2y
dy
dx

- (cos xy)ax dy
dx
b = 2x + (cos xy)y Collect terms with dy>dx.

(2y - x cos xy)
dy
dx

= 2x + y cos xy

dy
dx

=
2x + y cos xy
2y - x cos xy

Solve for dy>dx.

Notice that the formula for dy>dx applies everywhere that the implicitly defined curve has 
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find d2y>dx2 if 2x3 - 3y2 = 8.

Solution To start, we differentiate both sides of the equation with respect to x in order to 
find y′ = dy>dx.

d
dx

(2x3 - 3y2) = d
dx

(8)

6x2 - 6yy′ = 0 Treat y as a function of x.

y′ = x2

y , when y ≠ 0 Solve for y′.

We now apply the Quotient Rule to find y″.

y″ = d
dx
ax2

y b =
2xy - x2y′

y2 = 2x
y - x2

y2
# y′

Finally, we substitute y′ = x2>y to express y″ in terms of x and y.

y″ = 2x
y - x2

y2 ax
2

y b = 2x
y - x4

y3 , when y ≠ 0

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a dif-

ferentiable function of x.

2. Collect the terms with dy>dx on one side of the equation and solve for dy>dx.

y2 = x2 + sin xy

y

x

4

2

0 2 4−2−4

−2

−4

FIGURE 3.31 The graph of the equation 
in Example 3.
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Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important 
angles are the angles the light makes with the line perpendicular to the surface of the 
lens at the point of entry (angles A and B in Figure 3.32). This line is called the normal
to the surface at the point of entry. In a profile view of a lens like the one in 
Figure 3.32, the normal is the line perpendicular (also said to be orthogonal) to the 
tangent of the profile curve at the point of entry.

EXAMPLE 5  Show that the point (2, 4) lies on the curve x3 + y3 - 9xy = 0. Then 
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation 
given for the curve: 23 + 43 - 9(2) (4) = 8 + 64 - 72 = 0.

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a 
formula for dy>dx:

x3 + y3 - 9xy = 0

d
dx

 (x3) + d
dx

(y3) - d
dx

 (9xy) = d
dx

 (0)

 3x2 + 3y2
dy
dx

- 9ax dy
dx

+ y
dx
dx
b = 0

Differentiate both sides 
with respect to x.

(3y2 - 9x)
dy
dx

+ 3x2 - 9y = 0
Treat xy as a product and y
as a function of x.

 3(y2 - 3x)
dy
dx

= 9y - 3x2

dy
dx

=
3y - x2

y2 - 3x
. Solve for dy>dx.

We then evaluate the derivative at (x, y) = (2, 4):

dy
dx
`
(2, 4)

=
3y - x2

y2 - 3x
`
(2, 4)

=
3(4) - 22

42 - 3(2)
= 8

10
= 4

5
.

The tangent at (2, 4) is the line through (2, 4) with slope 4>5:

y = 4 + 4
5

 (x - 2)

y = 4
5

x + 12
5

.

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line 
through (2, 4) with slope -5>4:

y = 4 - 5
4

 (x - 2)

y = - 5
4

x + 13
2

.

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.32 The profile of a lens, 
showing the bending (refraction) of a 
ray of light as it passes through the lens 
surface.

x

y

0 2

4
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t

N
orm

alx3 + y3 − 9xy = 0

FIGURE 3.33 Example 5 shows how to 
find equations for the tangent and normal 
to the folium of Descartes at (2, 4).



3.7  Implicit Differentiation 175

Differentiating Implicitly
Use implicit differentiation to find dy>dx in Exercises 1–16.

1. x2y + xy2 = 6 2. x3 + y3 = 18xy

3. 2xy + y2 = x + y 4. x3 - xy + y3 = 1

5. x2(x - y)2 = x2 - y2 6. (3xy + 7)2 = 6y

7. y2 = x - 1
x + 1

8. x3 =
2x - y
x + 3y

9. x = sec y 10. xy = cot (xy)

11. x + tan (xy) = 0 12. x4 + sin y = x3y2

13. y sin a1yb = 1 - xy 14. x cos (2x + 3y) = y sin x

15. e2x = sin (x + 3y) 16. ex2y = 2x + 2y

Find dr>du in Exercises 17–20.

17. u1>2 + r1>2 = 1 18. r - 22u = 3
2
u2>3 + 4

3
u3>4

19. sin (ru) = 1
2

20. cos r + cot u = eru

Second Derivatives
In Exercises 21–26, use implicit differentiation to find dy>dx and then 
d2y>dx2.

21. x2 + y2 = 1 22. x2>3 + y2>3 = 1

23. y2 = ex2 + 2x 24. y2 - 2x = 1 - 2y

25. 21y = x - y 26. xy + y2 = 1

27. If x3 + y3 = 16, find the value of d2y>dx2 at the point (2, 2).

28. If xy + y2 = 1, find the value of d2y>dx2 at the point (0, -1).

In Exercises 29 and 30, find the slope of the curve at the given points.

29. y2 + x2 = y4 - 2x at (-2, 1) and (-2, -1)

30. (x2 + y2)2 = (x - y)2 at (1, 0) and (1, -1)

Slopes, Tangents, and Normals
In Exercises 31–40, verify that the given point is on the curve and find 
the lines that are (a) tangent and (b) normal to the curve at the given 
point.

31. x2 + xy - y2 = 1, (2, 3)

32. x2 + y2 = 25, (3, -4)

33. x2y2 = 9, (-1, 3)

34. y2 - 2x - 4y - 1 = 0, (-2, 1)

35. 6x2 + 3xy + 2y2 + 17y - 6 = 0, (-1, 0)

36. x2 - 23xy + 2y2 = 5, 123, 22
37. 2xy + p sin y = 2p, (1, p>2)

38. x sin 2y = y cos 2x, (p>4, p>2)

39. y = 2 sin (px - y), (1, 0)

40. x2 cos2 y - sin y = 0, (0, p)

41. Parallel tangents Find the two points where the curve 
x2 + xy + y2 = 7 crosses the x-axis, and show that the tangents 
to the curve at these points are parallel. What is the common 
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve 
xy + 2x - y = 0 that are parallel to the line 2x + y = 0.

43. The eight curve Find the slopes of the curve y4 = y2 - x2 at 
the two points shown here.

x

y

0

1

−1

y4 = y2 − x2

"

3
4

"

3
2

,

"

3
4

1
2

,
a b

a b

44. The cissoid of Diocles (from about 200 b.c.) Find equations 
for the tangent and normal to the cissoid of Diocles y2(2 - x) = x3

at (1, 1).

x

y

1

1

(1, 1)

0

y2(2 − x) = x3

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of 
the devil’s curve y4 - 4y2 = x4 - 9x2 at the four indicated 
points.

x

y

3−3

2

−2

(3, 2)

(3, −2)

(−3, 2)

(−3, −2)

y4 − 4y2 = x4 − 9x2

Exercises 3.7
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes x3 + y3 - 9xy = 0
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a 
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28 where the 
folium has a vertical tangent.

Theory and Examples
47. Intersecting normal The line that is normal to the curve 

x2 + 2xy - 3y2 = 0 at (1, 1) intersects the curve at what other 
point?

48. Power rule for rational exponents Let p and q be integers 
with q 7 0. If y = x p>q, differentiate the equivalent equation 
yq = xp implicitly and show that, for y ≠ 0,

d
dx

x p>q =
p
q x(p>q)-1.

49. Normals to a parabola Show that if it is possible to draw three 
normals from the point (a, 0) to the parabola x = y2 shown in the 
accompanying diagram, then a must be greater than 1>2. One of 
the normals is the x-axis. For what value of a are the other two 
normals perpendicular?

x

y

0 (a, 0)

x = y2

50. Is there anything special about the tangents to the curves y2 = x3

and 2x2 + 3y2 = 5 at the points (1, {1)? Give reasons for your 
answer.

x

y

0

(1, 1)

y2 = x3

2x2 + 3y2 = 5

(1, −1)

51. Verify that the following pairs of curves meet orthogonally.

a. x2 + y2 = 4, x2 = 3y2

b. x = 1 - y2, x = 1
3

y2

52. The graph of y2 = x3 is called a semicubical parabola and is 
shown in the accompanying figure. Determine the constant b so 
that the line y = -1

3 x + b meets this graph orthogonally.

x

y

0

y2 = x3

y = − x + b
1
3

In Exercises 53 and 54, find both dy>dx (treating y as a differentiable 
function of x) and dx>dy (treating x as a differentiable function of y).
How do dy>dx and dx>dy seem to be related? Explain the relationship 
geometrically in terms of the graphs.

53. xy3 + x2y = 6

54. x3 + y2 = sin2 y

55. Derivative of arcsine Assume that y = sin-1 x is a differentia-
ble function of x. By differentiating the equation x = sin y
implicitly, show that dy>dx = 1>21 - x2 .

56. Use the formula in Exercise 55 to find dy>dx if

a. y = (sin-1 x)2 b. y = sin-1 a1xb .

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 57–64.

a. Plot the equation with the implicit plotter of a CAS. Check to 
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive dy>dx and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and 
tangent line together on a single graph.

57. x3 - xy + y3 = 7, P (2, 1)

58. x5 + y3x + yx2 + y4 = 4, P (1, 1)

59. y2 + y = 2 + x
1 - x

, P (0, 1)

60. y3 + cos xy = x2, P (1, 0)

61. x + tan ayxb = 2, P a1,
p

4
b

62. xy3 + tan (x + y) = 1, P ap
4

, 0b
63. 2y2 + (xy)1>3 = x2 + 2, P (1, 1)

64. x21 + 2y + y = x2, P (1, 0)

T



3.8  Derivatives of Inverse Functions and Logarithms 177

3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that 
function. We defined there the natural logarithm function ƒ-1(x) = ln x as the inverse of the 
natural exponential function ƒ(x) = ex. This is one of the most important function-inverse 
pairs in mathematics and science. We learned how to differentiate the exponential function 
in Section 3.3. Here we learn a rule for differentiating the inverse of a differentiable func-
tion and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function ƒ(x) = (1>2)x + 1 as ƒ-1(x) = 2x - 2 in 
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we 
calculate their derivatives, we see that

d
dx

ƒ(x) = d
dx
a1

2
x + 1b = 1

2

d
dx

ƒ-1(x) = d
dx

(2x - 2) = 2.

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of 
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the 
line y = x always inverts the line’s slope. If the original line has slope m ≠ 0, the 
reflected line has slope 1 >m.

x

y

−2

1

−2

1

y = 2x − 2
y = x

y = x + 11
2

FIGURE 3.34 Graphing a line and its 
inverse together shows the graphs’ sym-
metry with respect to the line y = x. The 
slopes are reciprocals of each other.

x

y

0 a
x

y

0

b = f (a) (a, b)

y = f (x)

(b, a)

y = f –1(x)

b

a = f –1(b)

The slopes are reciprocal: ( f –1)′(b) = or ( f –1)′(b) =1
f ′(a)

1
f ′( f –1(b))

FIGURE 3.35 The graphs of inverse functions have recipro-
cal slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and ƒ -1 holds for other functions 
as well, but we must be careful to compare slopes at corresponding points. If the slope of 
y = ƒ(x) at the point (a, ƒ(a)) is ƒ′(a) and ƒ′(a) ≠ 0, then the slope of y = ƒ -1(x) at the 
point (ƒ(a), a) is the reciprocal 1>ƒ′(a) (Figure 3.35). If we set b = ƒ(a), then

(ƒ -1)′(b) = 1
ƒ′(a)

= 1
ƒ′(ƒ -1(b))

.

If y = ƒ(x) has a horizontal tangent line at (a, ƒ(a)), then the inverse function ƒ -1 has a 
vertical tangent line at (ƒ(a), a), and this infinite slope implies that ƒ -1 is not differentia-
ble at ƒ(a). Theorem 3 gives the conditions under which ƒ -1 is differentiable in its domain 
(which is the same as the range of ƒ).
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Theorem 3 makes two assertions. The first of these has to do with the conditions 
under which ƒ-1 is differentiable; the second assertion is a formula for the derivative of 
ƒ-1 when it exists. While we omit the proof of the first assertion, the second one is proved 
in the following way:

 ƒ(ƒ-1(x) ) = x Inverse function relationship

d
dx

 ƒ(ƒ-1(x) ) = 1 Differentiating both sides

 ƒ′(ƒ-1(x) ) # d
dx

 ƒ-1(x) = 1 Chain Rule

d
dx

 ƒ-1(x) = 1
ƒ′(ƒ-1(x) )

. Solving for the derivative

EXAMPLE 1  The function ƒ(x) = x2, x 7 0 and its inverse ƒ -1(x) = 2x have 
derivatives ƒ′(x) = 2x and (ƒ -1)′(x) = 1>122x2.

Let’s verify that Theorem 3 gives the same formula for the derivative of ƒ -1(x):

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

= 1
2(ƒ -1(x) )

ƒ′(x) = 2x with x replaced 
by ƒ -1(x)

= 1
2(1x)

.

Theorem 3 gives a derivative that agrees with the known derivative of the square root 
function.

Let’s examine Theorem 3 at a specific point. We pick x = 2 (the number a) and 
ƒ(2) = 4 (the value b). Theorem 3 says that the derivative of ƒ at 2, which is ƒ′(2) = 4,
and the derivative of ƒ -1 at ƒ(2), which is (ƒ -1)′(4), are reciprocals. It states that

(ƒ -1)′(4) = 1
ƒ′(ƒ -1(4) )

= 1
ƒ′(2)

= 1
2x
`
x=2

= 1
4

.

See Figure 3.36.

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives 
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to 
find specific values of dƒ -1>dx without knowing a formula for ƒ -1.

THEOREM 3—The Derivative Rule for Inverses If ƒ has an interval I as do-
main and ƒ′(x) exists and is never zero on I, then ƒ -1 is differentiable at every 
point in its domain (the range of ƒ). The value of (ƒ -1)′ at a point b in the domain 
of ƒ -1 is the reciprocal of the value of ƒ′ at the point a = ƒ -1(b):

(ƒ -1)′(b) = 1
ƒ′(ƒ-1(b) )

(1)

or

dƒ -1

dx
2
x=b

= 1
dƒ
dx

2 .
x=ƒ -1(b)

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y = x2, x > 0

y =
"

x

FIGURE 3.36 The derivative of 
ƒ-1(x) = 1x at the point (4, 2) is the 
reciprocal of the derivative of ƒ(x) = x2

at (2, 4) (Example 1).
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EXAMPLE 2 Let ƒ(x) = x3 - 2, x 7 0. Find the value of dƒ -1>dx at x = 6 = ƒ(2)
without finding a formula for ƒ -1(x).

Solution We apply Theorem 3 to obtain the value of the derivative of ƒ -1 at x = 6:

dƒ
dx

2
x=2

= 3x2 `
x=2

= 12

dƒ -1

dx
2
x=ƒ(2)

= 1
dƒ
dx

2
x=2

= 1
12

. Eq. (1)

See Figure 3.37.

Derivative of the Natural Logarithm Function

Since we know the exponential function ƒ(x) = ex is differentiable everywhere, we can 
apply Theorem 3 to find the derivative of its inverse ƒ -1(x) = ln x:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

Theorem 3

= 1
eƒ -1(x)

ƒ′(u) = eu

= 1
eln x x 7 0

= 1
x . Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative 
of y = ln x using implicit differentiation, as follows:

y = ln x x 7 0

ey = x Inverse function relationship

d
dx

(ey) = d
dx

(x) Differentiate implicitly.

ey
dy
dx

= 1 Chain Rule

dy
dx

= 1
ey = 1

x . ey = x

No matter which derivation we use, the derivative of y = ln x with respect to x is

d
dx

(ln x) = 1
x , x 7 0.

The Chain Rule extends this formula to positive functions u(x):

x

y

0

−2

−2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y = x3 − 2
Slope 3x2 = 3(2)2 = 12

1
12

FIGURE 3.37 The derivative of 
ƒ(x) = x3 - 2 at x = 2 tells us the 
derivative of ƒ -1 at x = 6 (Example 2).

d
dx

ln u = 1
u

du
dx

, u 7 0. (2)
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EXAMPLE 3  We use Equation (2) to find derivatives.

(a) d
dx

ln 2x = 1
2x

d
dx

(2x) = 1
2x

(2) = 1
x , x 7 0

(b) Equation (2) with u = x2 + 3gives

d
dx

ln (x2 + 3) = 1
x2 + 3

# d
dx

(x2 + 3) = 1
x2 + 3

# 2x = 2x
x2 + 3

.

(c) Equation (2) with u = 0 x 0  gives an important derivative: 

d
dx

ln 0 x 0 = d
du

ln u # du
dx

u = 0 x 0 , x ≠ 0

= 1
u
# x0 x 0 d

dx
( 0 x 0 ) = x

0 x 0
= 10 x 0 # x0 x 0 Substitute for u.

= x
x2

= 1
x .

So 1>x is the derivative of ln x on the domain x 7 0, and the derivative of ln (-x) on 
the domain x 6 0.

Notice from Example 3a that the function y = ln 2x has the same derivative as the 
function y = ln x. This is true of y = ln bx for any constant b, provided that bx 7 0:

d
dx

ln bx = 1
bx
# d
dx

(bx) = 1
bx

(b) = 1
x . (3)

EXAMPLE 4  A line with slope m passes through the origin and is tangent to the graph 
of y = ln x. What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point x = a 7 0. Then 
we know that the point (a, ln a) lies on the graph and that the tangent line at that point has 
slope m = 1>a (Figure 3.38). Since the tangent line passes through the origin, its slope is

m = ln a - 0
a - 0

= ln a
a .

Setting these two formulas for m equal to each other, we have

ln a
a = 1

a

ln a = 1

eln a = e1

a = e

m = 1
e .

The Derivatives of au and loga u

We start with the equation ax = eln (ax) = ex lna , a 7 0, which was seen in Section 1.6:

d
dx

ax = d
dx

ex lna

= ex ln a # d
dx

(x ln a) d
dx

eu = eu du
dx

= ax ln a.

Derivative of ln ∣ x ∣

d
dx

ln 0 x 0 = 1
x , x ≠ 0

d
dx

ln bx = 1
x , bx 7 0

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y = ln x

Slope = a
1

FIGURE 3.38 The tangent line intersects 
the curve at some point (a, ln a), where the 
slope of the curve is 1>a (Example 4).
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That is, if a 7 0, then ax is differentiable and

d
dx

ax = ax ln a. (4)

This equation shows why ex is the preferred exponential function in calculus. If a = e,
then ln a = 1 and the derivative of ax simplifies to

d
dx

ex = ex ln e = ex.

With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function au.

EXAMPLE 5 Here are some derivatives of general exponential functions.

(a) d
dx

3x = 3x ln 3 Eq. (5) with a = 3, u = x

(b) d
dx

3-x = 3-x(ln 3)
d
dx

(-x) = -3-x ln 3 Eq. (5) with a = 3, u = -x

(c) d
dx

3sin x = 3sin x(ln 3)
d
dx

(sin x) = 3sin x(ln 3) cos x c, u = sin x

In Section 3.3 we looked at the derivative ƒ′(0) for the exponential functions ƒ(x) =
ax at various values of the base a. The number ƒ′(0) is the limit, limhS0 (ah - 1)>h, and 
gives the slope of the graph of ax when it crosses the y-axis at the point (0, 1). We now see 
from Equation (4) that the value of this slope is

lim
hS0

ah - 1
h

= ln a. (6)

In particular, when a = e we obtain

lim
hS0

eh - 1
h

= ln e = 1.

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are 
correct, they do assume the existence of these limits. In Chapter 7 we will give another 
development of the theory of logarithmic and exponential functions which fully justifies 
that both limits do in fact exist and have the values derived above.

To find the derivative of loga u for an arbitrary base (a 7 0, a ≠ 1), we start with the 
change-of-base formula for logarithms (reviewed in Section 1.6) and express loga u in 
terms of natural logarithms,

loga x = ln x
ln a

.

If a 7 0 and u is a differentiable function of x, then au is a differentiable func-
tion of x and

d
dx

au = au ln a
du
dx

. (5)
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Taking derivatives, we have

d
dx

loga x = d
dx
a ln x

ln a
b

= 1
ln a

# d
dx

ln x ln a is a constant.

= 1
ln a

# 1
x

= 1
x ln a

.

If u is a differentiable function of x and u 7 0, the Chain Rule gives a more general 
formula.

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, 
and powers can often be found more quickly if we take the natural logarithm of both sides 
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in 
the next example.

EXAMPLE 6 Find dy>dx if

y =
(x2 + 1)(x + 3)1>2

x - 1
, x 7 1.

Solution We take the natural logarithm of both sides and simplify the result with the 
algebraic properties of logarithms from Theorem 1 in Section 1.6:

ln y = ln
(x2 + 1)(x + 3)1>2

x - 1

= ln ((x2 + 1)(x + 3)1>2) - ln (x - 1) Rule 2

= ln (x2 + 1) + ln (x + 3)1>2 - ln (x - 1) Rule 1

= ln (x2 + 1) + 1
2

ln (x + 3) - ln (x - 1). Rule 4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

1
y

dy
dx

= 1
x2 + 1

# 2x + 1
2
# 1

x + 3 - 1
x - 1

.

Next we solve for dy>dx:

dy
dx

= ya 2x
x2 + 1

+ 1
2x + 6

- 1
x - 1

b .

For a 7 0 and a ≠ 1,

d
dx

loga u = 1
u ln a

du
dx

. (7)
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Finally, we substitute for y:

dy
dx

=
(x2 + 1)(x + 3)1>2

x - 1
a 2x

x2 + 1
+ 1

2x + 6
- 1

x - 1
b .

Irrational Exponents and the Power Rule (General Version)

The definition of the general exponential function enables us to raise any positive number 
to any real power n, rational or irrational. That is, we can define the power function y = xn

for any exponent n.

Because the logarithm and exponential functions are inverses of each other, the defini-
tion gives

ln xn = n ln x, for all real numbers n.

That is, the rule for taking the natural logarithm of any power holds for all real exponents 
n, not just for rational exponents.

The definition of the power function also enables us to establish the derivative Power 
Rule for any real power n, as stated in Section 3.3.

DEFINITION For any x 7 0 and for any real number n,

xn = en ln x.

Proof Differentiating xn with respect to x gives

d
dx

xn = d
dx

en ln x Definition of xn, x 7 0

= en ln x # d
dx

(n ln x) Chain Rule for eu

= xn # n
x Definition and derivative of ln x

= nxn-1. xn # x-1 = xn-1

In short, whenever x 7 0,

d
dx

xn = nxn-1.

For x 6 0, if y = xn, y′, and xn-1 all exist, then

ln 0 y 0 = ln 0 x 0 n = n ln 0 x 0 .

General Power Rule for Derivatives

For x 7 0 and any real number n,

d
dx

xn = nxn-1.

If x … 0, then the formula holds whenever the derivative, xn, and xn-1 all exist.
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Using implicit differentiation (which assumes the existence of the derivative y′) and 
Example 3(c), we have

y′
y = n

x .

Solving for the derivative,

y′ = n
y
x = n

xn

x = nxn-1. y = xn

It can be shown directly from the definition of the derivative that the derivative equals 
0 when x = 0 and n Ú 1 (see Exercise 99). This completes the proof of the general ver-
sion of the Power Rule for all values of x.

EXAMPLE 7 Differentiate ƒ(x) = xx, x 7 0.

Solution We note that ƒ(x) = xx = ex ln x, so differentiation gives

ƒ′(x) = d
dx

(ex ln x)

= ex ln x d
dx

(x ln x) d
dx eu, u = x ln x

= ex ln xaln x + x # 1xb
= xx (ln x + 1). x 7 0

We can also find the derivative of y = xx using logarithmic differentiation, assuming y′
exists.

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion y = ax has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

lim
hS0

eh - 1
h

= ln e = 1. Slope equals ln e from Eq. (6).

We now prove that e can be calculated as a certain limit.

THEOREM 4—The Number e as a Limit The number e can be calculated as the 
limit

e = lim
xS0

(1 + x)1>x.

Proof If ƒ(x) = ln x, then ƒ′(x) = 1>x, so ƒ′(1) = 1. But, by the definition of derivative,

ƒ′(1) = lim
hS0

ƒ(1 + h) - ƒ(1)
h

= lim
xS0

ƒ(1 + x) - ƒ(1)
x

= lim
xS0

ln (1 + x) - ln 1
x = lim

xS0

1
x ln (1 + x) ln 1 = 0

= lim
xS0

ln (1 + x)1>x = ln c lim
xS0

(1 + x)1>x d . ln is continuous, 
Theorem 10 in 
Chapter 2.

1

0

2

3

x

y

y = (1 + x)1�x

e

FIGURE 3.39 The number e is the limit 
of the function graphed here as x S 0.
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Because ƒ′(1) = 1, we have

ln c lim
xS0

(1 + x)1>x d = 1.

Therefore, exponentiating both sides we get

lim
xS0

(1 + x)1>x = e.

See Figure 3.39 on the previous page.

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is e ≈ 2.718281828459045 to 15 decimal places.

Derivatives of Inverse Functions
In Exercises 1–4:

a. Find ƒ -1(x).

b. Graph ƒ and ƒ -1 together.

c.  Evaluate dƒ>dx at x = a and dƒ -1>dx at x = ƒ(a) to show that 
at these points dƒ -1>dx = 1>(dƒ>dx).

1. ƒ(x) = 2x + 3, a = -1 2. ƒ(x) = (1>5)x + 7, a = -1

3. ƒ(x) = 5 - 4x, a = 1>2 4. ƒ(x) = 2x2, x Ú 0, a = 5

5. a. Show that ƒ(x) = x3 and g(x) = 13 x are inverses of one another.

b. Graph ƒ and g over an x-interval large enough to show the 
graphs intersecting at (1, 1) and (-1, -1). Be sure the picture 
shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs of ƒ and g at 
(1, 1) and (-1, -1) (four tangents in all).

d. What lines are tangent to the curves at the origin?

6. a. Show that h(x) = x3>4 and k(x) = (4x)1>3 are inverses of one 
another.

b. Graph h and k over an x-interval large enough to show the 
graphs intersecting at (2, 2) and (-2, -2). Be sure the picture 
shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs at h and k at 
(2, 2) and (-2, -2).

d. What lines are tangent to the curves at the origin?

7. Let ƒ(x) = x3 - 3x2 - 1, x Ú 2. Find the value of dƒ -1>dx at 
the point x = -1 = ƒ(3).

8. Let ƒ(x) = x2 - 4x - 5, x 7 2. Find the value of dƒ -1>dx at 
the point x = 0 = ƒ(5).

9. Suppose that the differentiable function y = ƒ(x) has an inverse 
and that the graph of ƒ passes through the point (2, 4) and has a 
slope of 1>3 there. Find the value of dƒ -1>dx at x = 4.

10. Suppose that the differentiable function y = g(x) has an inverse 
and that the graph of g passes through the origin with slope 2. 
Find the slope of the graph of g-1 at the origin.

Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or u,
as appropriate.

11. y = ln 3x + x 12. y = 1
ln 3x

13. y = ln (t2) 14. y = ln (t3>2) + 2t

15. y = ln
3
x 16. y = ln (sin x)

17. y = ln (u + 1) - eu 18. y = (cos u) ln (2u + 2)

19. y = ln x3 20. y = (ln x)3

21. y = t (ln t)2 22. y = t ln 2t

23. y = x4

4
ln x - x4

16
24. y = (x2 ln x)4

25. y = ln t
t 26. y = t

2ln t

27. y = ln x
1 + ln x

28. y = x ln x
1 + ln x

29. y = ln (ln x) 30. y = ln (ln (ln x))

31. y = u(sin (ln u) + cos (ln u))

32. y = ln (sec u + tan u)

33. y = ln
1

x2x + 1
34. y = 1

2
ln

1 + x
1 - x

35. y = 1 + ln t
1 - ln t

36. y = 2ln 1t

37. y = ln (sec (ln u)) 38. y = ln a2sin u cos u
1 + 2 ln u

b

39. y = ln a(x2 + 1)5

21 - x
b 40. y = ln C

(x + 1)5

(x + 2)20

Logarithmic Differentiation
In Exercises 41–54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. y = 2x(x + 1) 42. y = 2(x2 + 1)(x - 1)2

43. y = A
t

t + 1
44. y = A

1
t(t + 1)

45. y = (sin u)2u + 3 46. y = (tan u)22u + 1

47. y = t(t + 1)(t + 2) 48. y = 1
t(t + 1)(t + 2)

49. y = u + 5
u cos u

50. y = u sin u

2sec u

51. y = x2x2 + 1
(x + 1)2>3 52. y = C

(x + 1)10

(2x + 1)5

Exercises 3.8
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53. y = B
3 x(x - 2)

x2 + 1
54. y = B

3 x(x + 1)(x - 2)

(x2 + 1)(2x + 3)

Finding Derivatives
In Exercises 55–62, find the derivative of y with respect to x, t, or u,
as appropriate.

55. y = ln (cos2 u) 56. y = ln (3ue-u)

57. y = ln (3te-t) 58. y = ln (2e-t sin t)

59. y = ln a eu

1 + eu
b 60. y = ln a 2u

1 + 2u b
61. y = e(cos t + ln t) 62. y = esin t(ln t2 + 1)

In Exercises 63–66, find dy>dx.

63. ln y = ey sin x 64. ln xy = ex+y

65. xy = yx 66. tan y = ex + ln x

In Exercises 67–88, find the derivative of y with respect to the given 
independent variable.

67. y = 2x 68. y = 3-x

69. y = 52s 70. y = 2(s2)

71. y = xp 72. y = t1-e

73. y = log2 5u 74. y = log3(1 + u ln 3)

75. y = log4 x + log4 x2 76. y = log25 ex - log51x

77. y = log2 r # log4 r 78. y = log3 r # log9 r

79. y = log3 a ax + 1
x - 1

b ln 3b 80. y = log5B a
7x

3x + 2
b ln 5

81. y = u sin (log7u) 82. y = log7 asin ucos u
eu2u

b
83. y = log5 ex 84. y = log2 a x2e2

22x + 1
b

85. y = 3log2 t 86. y = 3 log8 (log2 t)

87. y = log2 (8tln 2) 88. y = t log31e(sin t)(ln 3)2
Logarithmic Differentiation with Exponentials
In Exercises 89–96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. y = (x + 1)x 90. y = x(x+1)

91. y = (1t)t 92. y = t2t

93. y = (sin x)x 94. y = xsin x

95. y = xln x 96. y = (ln x)ln x

Theory and Applications
97. If we write g(x) for ƒ-1(x), Equation (1) can be written as

g′(ƒ(a)) = 1
ƒ′(a)

, or g′(ƒ(a)) # ƒ′(a) = 1.

  If we then write x for a, we get

g′(ƒ(x)) # ƒ′(x) = 1.

  The latter equation may remind you of the Chain Rule, and indeed 
there is a connection.

    Assume that ƒ and g are differentiable functions that are 
inverses of one another, so that (g ∘ ƒ)(x) = x. Differentiate both

  sides of this equation with respect to x, using the Chain Rule to 
express (g ∘ ƒ)′(x) as a product of derivatives of g and ƒ. 
What do you find? (This is not a proof of Theorem 3 because 
we assume here the theorem’s conclusion that g = ƒ -1 is 
differentiable.)

98. Show that limnSq a1 + x
nb

n

= ex for any x 7 0.

99. If ƒ(x) = xn, n Ú 1, show from the definition of the derivative 
that ƒ′(0) = 0.

100. Using mathematical induction, show that for n 7 1

dn

dxn ln x = (-1)n-1
(n - 1)!

xn .

COMPUTER EXPLORATIONS
In Exercises 101–108, you will explore some functions and their 
inverses together with their derivatives and tangent line approxima-
tions at specified points. Perform the following steps using your CAS:

a. Plot the function y = ƒ(x) together with its derivative over the 
given interval. Explain why you know that ƒ is one-to-one over 
the interval.

b. Solve the equation y = ƒ(x) for x as a function of y, and name the 
resulting inverse function g.

c.  Find the equation for the tangent line to ƒ at the specified point 
(x0, ƒ(x0)).

d. Find the equation for the tangent line to g at the point (ƒ(x0), x0)
located symmetrically across the 45° line y = x (which is the 
graph of the identity function). Use Theorem 3 to find the slope of 
this tangent line.

e.  Plot the functions ƒ and g, the identity, the two tangent lines, and 
the line segment joining the points (x0, ƒ(x0)) and (ƒ(x0), x0).
Discuss the symmetries you see across the main diagonal.

101. y = 23x - 2,
2
3

… x … 4, x0 = 3

102. y = 3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
103. y = 4x

x2 + 1
, -1 … x … 1, x0 = 1>2

104. y = x3

x2 + 1
, -1 … x … 1, x0 = 1>2

105. y = x3 - 3x2 - 1, 2 … x … 5, x0 = 27
10

106. y = 2 - x - x3, -2 … x … 2, x0 = 3
2

107. y = ex, -3 … x … 5, x0 = 1

108. y = sin x, - p
2

… x … p
2

, x0 = 1

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions y = ƒ(x) and x = ƒ -1(y) defined implicitly by the given equa-
tions over the interval.

109. y1>3 - 1 = (x + 2)3, -5 … x … 5, x0 = -3>2
110. cos y = x1>5, 0 … x … 1, x0 = 1>2
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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused 
there on the arcsine and arccosine functions. Here we complete the study of how all six 
inverse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of tan x, cot x, sec x, and csc x

The graphs of these four basic inverse trigonometric functions are shown again in Figure 3.40. 
We obtain these graphs by reflecting the graphs of the restricted trigonometric functions 
(as discussed in Section 1.6) through the line y = x. Let’s take a closer look at the arctan-
gent, arccotangent, arcsecant, and arccosecant functions.

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle 
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.

x

y

(a)

Domain: −∞ < x < ∞
Range: < y <p

2
−

p
2

1−1−2 2

p
2

p
2

−

y = tan–1x

x

y

(c)

Domain:
Range:

x ≤ −1 or x ≥ 1
0 ≤ y ≤ p, y ≠

1−1−2 2

y = sec–1x

p

p
2

p
2

x

y

Domain:
Range:

x ≤ −1 or x ≥ 1
≤ y ≤ , y ≠ 0p

2
−

p
2

(d)

1−1−2 2

p
2

p
2

−

y = csc–1x

x

y

0 < y < p

(b)

p

p
2

1−1−2 2

y = cot–1x

Domain: −∞ < x < ∞
Range:

FIGURE 3.40 Graphs of the arctangent, arccotangent, arcsecant, and arccosecant functions.

DEFINITIONS

y = tan−1 x is the number in (-p>2, p>2) for which tan y = x.

y = cot−1 x is the number in (0, p) for which coty = x.

y = sec−1 x is the number in 30, p/2) ∪ (p/2, p4 for which sec y = x.

y = csc−1 x is the number in 3-p/2, 0) ∪ (0, p/24 for which csc y = x.

We use open or half-open intervals to avoid values for which the tangent, cotangent, 
secant, and cosecant functions are undefined. (See Figure 3.40.)

The graph of y = tan-1 x is symmetric about the origin because it is a branch of the 
graph x = tan y that is symmetric about the origin (Figure 3.40a). Algebraically this 
means that

tan-1 (-x) = - tan-1 x;

the arctangent is an odd function. The graph of y = cot-1 x has no such symmetry 
(Figure 3.40b). Notice from Figure 3.40a that the graph of the arctangent function has two 
horizontal asymptotes: one at y = p>2 and the other at y = -p>2.
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The inverses of the restricted forms of sec x and csc x are chosen to be the functions 
graphed in Figures 3.40c and 3.40d.

Caution There is no general agreement about how to define sec-1 x for negative values of 
x. We chose angles in the second quadrant between p>2 and p. This choice makes 
sec-1 x = cos-1 (1>x). It also makes sec-1 x an increasing function on each interval of its 
domain. Some tables choose sec-1 x to lie in 3-p, -p>2) for x 6 0 and some texts 
choose it to lie in 3p, 3p>2) (Figure 3.41). These choices simplify the formula for the 
derivative (our formula needs absolute value signs) but fail to satisfy the computational 
equation sec-1 x = cos-1 (1>x). From this, we can derive the identity

sec-1 x = cos-1 a1xb = p
2
- sin-1 a1xb (1)

by applying Equation (5) in Section 1.6.

3p
2

y = sec–1x

−1 10

p
2

3p
2

p
2−

−

x

y

p

−p

Domain: 0 x 0 ≥ 1
Range: 0 ≤ y ≤ p, y ≠ p

2

B

A

C

FIGURE 3.41 There are several logical 
choices for the left-hand branch of 
y = sec-1 x. With choice A,
sec-1 x = cos-1 (1>x), a useful identity 
employed by many calculators.

y

1−1
x

y = sin–1x
Domain:
Range:

−p2

p
2 −1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 3.42 The graph of y = sin-1 x
has vertical tangents at x = -1 and 
x = 1.

The angles come from the first and fourth quadrants because the range of tan-1 x is 
(-p>2, p>2).

The Derivative of y = sin−1u

We know that the function x = sin y is differentiable in the interval -p>2 6 y 6 p>2
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore 
assures us that the inverse function y = sin-1 x is differentiable throughout the interval 
-1 6 x 6 1. We cannot expect it to be differentiable at x = 1 or x = -1 because the 
tangents to the graph are vertical at these points (see Figure 3.42).

EXAMPLE 1  The accompanying figures show two values of tan-1 x.

a b

x

y

0
x

y

0
1

2

3
"

3tan–1 1

"

3
p
6

tan–1 −
"

3 p
3

2
1

"

3

p
6

tan =p
6

1

"

3
tan = −

"

3p
3−

p
3−

= tan–1 = = −

−
"

3

a b

x tan-1 x

23 p>3
1 p>4

23>3 p>6
-23>3 -p>6

-1 -p>4
-23 -p>3
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We find the derivative of y = sin-1 x by applying Theorem 3 with ƒ(x) = sin x and 
ƒ -1(x) = sin-1 x:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x))

Theorem 3

= 1
cos (sin-1 x)

ƒ′(u) = cos u

= 1

21 - sin2 (sin-1 x)
cos u = 21 - sin2 u

= 1

21 - x2
. sin (sin-1 x) = x

If u is a differentiable function of x with 0 u 0 6 1, we apply the Chain Rule to get the 
general formula

EXAMPLE 2  Using the Chain Rule, we calculate the derivative

d
dx

(sin-1 x2) = 1

21 - (x2)2
# d

dx
(x2) = 2x

21 - x4
.

The Derivative of y = tan−1u

We find the derivative of y = tan-1 x by applying Theorem 3 with ƒ(x) = tan x and 
ƒ -1(x) = tan-1 x. Theorem 3 can be applied because the derivative of tan x is positive for 
-p>2 6 x 6 p>2:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

Theorem 3

= 1
sec2 (tan-1 x)

ƒ′(u) = sec2 u

= 1
1 + tan2 (tan-1 x)

sec2 u = 1 + tan2 u

= 1
1 + x2 . tan (tan-1 x) = x

The derivative is defined for all real numbers. If u is a differentiable function of x, we get 
the Chain Rule form:

d
dx

(sin-1 u) = 1

21 - u2

du
dx

, 0 u 0 6 1.

d
dx

(tan-1 u) = 1
1 + u2

du
dx

.

The Derivative of y = sec−1u

Since the derivative of sec x is positive for 0 6 x 6 p>2 and p>2 6 x 6 p, Theorem 3 
says that the inverse function y = sec-1 x is differentiable. Instead of applying the formula 
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in Theorem 3 directly, we find the derivative of y = sec-1 x, 0 x 0 7 1, using implicit dif-
ferentiation and the Chain Rule as follows:

y = sec-1 x

sec y = x Inverse function relationship

d
dx

(sec y) = d
dx

x Differentiate both sides.

sec y tan y
dy
dx

= 1 Chain Rule 

dy
dx

= 1
sec y tan y .

Since 0 x 0 7 1, y lies in 
(0, p>2) ∪ (p>2, p) and 
sec y tan y ≠ 0.

To express the result in terms of x, we use the relationships

sec y = x and tan y = {2sec2 y - 1 = {2x2 - 1

to get

dy
dx

= {
1

x2x2 - 1
.

Can we do anything about the {  sign? A glance at Figure 3.43 shows that the slope of the 
graph y = sec-1 x is always positive. Thus,

d
dx

sec-1 x = d + 1

x2x2 - 1
if x 7 1

- 1

x2x2 - 1
if x 6 -1.

With the absolute value symbol, we can write a single expression that eliminates the “{”
ambiguity:

d
dx

sec-1 x = 1
0 x 02x2 - 1

.

If u is a differentiable function of x with 0 u 0 7 1, we have the formula

x

y

0

p

1−1

y = sec–1x

p
2

FIGURE 3.43 The slope of the curve 
y = sec-1 x is positive for both x 6 -1
and x 7 1.

d
dx

(sec-1 u) = 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1.

EXAMPLE 3  Using the Chain Rule and derivative of the arcsecant function, we find

d
dx

sec-1 (5x4) = 1
0 5x4 02(5x4)2 - 1

d
dx

(5x4)

= 1

5x4225x8 - 1
(20x3) 5x4 7 1 7 0

= 4

x225x8 - 1
.
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Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way, 
thanks to the following identities.

We saw the first of these identities in Equation (5) of Section 1.6. The others are 
derived in a similar way. It follows easily that the derivatives of the inverse cofunctions are 
the negatives of the derivatives of the corresponding inverse functions. For example, the 
derivative of cos-1 x is calculated as follows:

d
dx

(cos-1 x) = d
dx
ap

2
- sin-1 xb Identity

= - d
dx

(sin-1 x)

= - 1

21 - x2
. Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

Inverse Function–Inverse Cofunction Identities

cos-1 x = p>2 - sin-1 x

cot-1 x = p>2 - tan-1 x

csc-1 x = p>2 - sec-1 x

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.
d(sin-1 u)

dx
= 1

21 - u2

du
dx

, 0 u 0 6 1

2.
d(cos-1 u)

dx
= - 1

21 - u2

du
dx

, 0 u 0 6 1

3.
d(tan-1 u)

dx
= 1

1 + u2
du
dx

4.
d(cot-1 u)

dx
= - 1

1 + u2
du
dx

5.
d(sec-1 u)

dx
= 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1

6.
d(csc-1 u)

dx
= - 1

0 u 02u2 - 1

du
dx

, 0 u 0 7 1
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Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to 
find the angles in Exercises 1–8.

1. a. tan-1 1 b. tan-11-232 c. tan-1 a 1

23
b

2. a. tan-1(-1) b. tan-123 c. tan-1 a -1

23
b

3. a. sin-1 a-1
2
b b. sin-1 a 1

22
b c. sin-1 a-23

2
b

4. a. sin-1 a1
2
b b. sin-1 a -1

22
b c. sin-1 a23

2
b

5. a. cos-1 a1
2
b b. cos-1 a -1

22
b c. cos-1 a23

2
b

6. a. csc-122 b. csc-1 a -2

23
b c. csc-1 2

7. a. sec-11-222 b. sec-1 a 2

23
b c. sec-1(-2)

8. a. cot-1 (-1) b. cot-11232 c. cot-1 a -1

23
b

Evaluations
Find the values in Exercises 9–12.

9. sin acos-1 a22
2
b b 10. sec acos-1 1

2
b

11. tan asin-1 a- 1
2
b b 12. cot asin-1 a- 23

2
b b

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s 
graph.)

13. lim
xS1-

sin-1 x 14. lim
xS-1+

cos-1 x

15. lim
xSq

tan-1 x 16. lim
xS-q

tan-1 x

17. lim
xSq

sec-1 x 18. lim
xS-q

sec-1 x

19. lim
xSq

csc-1 x 20. lim
xS-q

csc-1 x

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. y = cos-1(x2) 22. y = cos-1(1>x)

23. y = sin-122 t 24. y = sin-1(1 - t)

25. y = sec-1(2s + 1) 26. y = sec-1 5s

27. y = csc-1 (x2 + 1), x 7 0

28. y = csc-1 x
2

29. y = sec-1 1
t , 0 6 t 6 1 30. y = sin-1 3

t2

31. y = cot-12t 32. y = cot-12t - 1

33. y = ln (tan-1 x) 34. y = tan-1(ln x)

35. y = csc-1 (et) 36. y = cos-1(e-t)

37. y = s21 - s2 + cos-1 s 38. y = 2s2 - 1 - sec-1 s

39. y = tan-12x2 - 1 + csc-1 x, x 7 1

40. y = cot-1 1
x - tan-1 x 41. y = x sin-1 x + 21 - x2

42. y = ln (x2 + 4) - x tan-1 ax
2
b

Theory and Examples
43. You are sitting in a classroom next to the wall looking at the 

blackboard at the front of the room. The blackboard is 12 ft long 
and starts 3 ft from the wall you are sitting next to. Show that 
your viewing angle is

a = cot-1 x
15

- cot-1 x
3

  if you are x ft from the front wall.

B
la

ck
bo

ar
d

12′

3′
Wall

You
a

x

44. Find the angle a.

65°

21

50
a

b

45. Here is an informal proof that tan-1 1 + tan-1 2 + tan-1 3 = p.
Explain what is going on.

Exercises 3.9
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46. Two derivations of the identity sec−1(−x) = P − sec−1 x

a. (Geometric) Here is a pictorial proof that sec-1(-x) =
p - sec-1 x. See if you can tell what is going on.

x

y

0

p

1 x−1−x

y = sec–1x

p
2

b. (Algebraic) Derive the identity sec-1(-x) = p - sec-1 x by 
combining the following two equations from the text:

cos-1(-x) = p - cos-1 x Eq. (4), Section 1.6

sec-1 x = cos-1(1>x) Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which 
are not? Give reasons for your answers.

47. a. tan-1 2 b. cos-1 2

48. a. csc-1 (1>2) b. csc-1 2

49. a. sec-1 0 b. sin-122

50. a. cot-1 (-1>2) b. cos-1(-5)

51. Use the identity

csc-1 u = p
2

- sec-1 u

  to derive the formula for the derivative of csc-1 u in Table 3.1 
from the formula for the derivative of sec-1 u.

52. Derive the formula

dy
dx

= 1
1 + x2

  for the derivative of y = tan-1 x by differentiating both sides of 
the equivalent equation tan y = x.

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

d
dx

sec-1 x = 1

0 x 02x2 - 1
, 0 x 0 7 1.

54. Use the identity

cot-1 u = p
2

- tan-1 u

  to derive the formula for the derivative of cot-1 u in Table 3.1 
from the formula for the derivative of tan-1 u.

55. What is special about the functions

ƒ(x) = sin-1 x - 1
x + 1

, x Ú 0, and g(x) = 2 tan-1 1x?

  Explain.

56. What is special about the functions

ƒ(x) = sin-1 1

2x2 + 1
and g(x) = tan-1 1

x?

  Explain.

57. Find the values of

a. sec-1 1.5 b. csc-1 (-1.5) c. cot-1 2

58. Find the values of

a. sec-1(-3) b. csc-1 1.7 c. cot-1 (-2)

In Exercises 59–61, find the domain and range of each composite 
function. Then graph the composites on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. y = tan-1(tan x) b. y = tan (tan-1 x)

60. a. y = sin-1(sin x) b. y = sin (sin-1 x)

61. a. y = cos-1(cos x) b. y = cos (cos-1 x)

Use your graphing utility for Exercises 62–66.

62. Graph y = sec (sec-1 x) = sec (cos-1(1>x)). Explain what you 
see.

63. Newton’s serpentine Graph Newton’s serpentine, y = 4x>(x2 + 1).
Then graph y = 2 sin (2 tan-1 x) in the same graphing window. 
What do you see? Explain.

64. Graph the rational function y = (2 - x2)>x2. Then graph y =
cos (2 sec-1 x) in the same graphing window. What do you see? 
Explain.

65. Graph ƒ(x) = sin-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

66. Graph ƒ(x) = tan-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

T

T

T

T

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes 
when it is known how the rate of some other related variable (or perhaps several variables) 
changes. The problem of finding a rate of change from other known rates of change is 
called a related rates problem.
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Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the 
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an 
instant of time, then

V = 4
3pr3.

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 
relating the rates of change of V and r,

dV
dt

= dV
dr

dr
dt

= 4pr2 dr
dt

.

So if we know the radius r of the balloon and the rate dV>dt at which the volume is 
increasing at a given instant of time, then we can solve this last equation for dr>dt to find 
how fast the radius is increasing at that instant. Note that it is easier to directly measure the 
rate of increase of the volume (the rate at which air is being pumped into the balloon) than 
it is to measure the increase in the radius. The related rates equation allows us to calculate 
dr>dt from dV>dt.

Very often the key to relating the variables in a related rates problem is drawing a picture 
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1  Water runs into a conical tank at the rate of 9 ft3>min. The tank stands 
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level 
rising when the water is 6 ft deep?

Solution Figure 3.44 shows a partially filled conical tank. The variables in the problem are

V = volume (ft3) of the water in the tank at time t (min)

x = radius (ft) of the surface of the water at time t

y = depth (ft) of the water in the tank at time t.

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for dy>dt when

y = 6 ft and
dV
dt

= 9 ft3>min.

The water forms a cone with volume

V = 1
3px2y.

This equation involves x as well as V and y. Because no information is given about x and 
dx>dt at the time in question, we need to eliminate x. The similar triangles in Figure 3.44 
give us a way to express x in terms of y:

x
y = 5

10
or x =

y
2

.

Therefore, we find

V = 1
3p a

y
2
b2

y = p
12

y3

to give the derivative

dV
dt

= p
12

# 3y2
dy
dt

= p
4

y2
dy
dt

.

10 ft

y

5 ft

x
dy
dt

= ?

when y = 6 ft

dV
dt

= 9 ft3�min

FIGURE 3.44 The geometry of the 
conical tank and the rate at which water 
fills the tank determine how fast the water 
level rises (Example 1).
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Finally, use y = 6 and dV>dt = 9 to solve for dy>dt.

9 = p
4

(6)2
dy
dt

dy
dt

= 1
p ≈ 0.32

At the moment in question, the water level is rising at about 0.32 ft>min.

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume 

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two 
or more equations to get a single equation that relates the variable whose rate 
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the 
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2  A hot air balloon rising straight up from a level field is tracked by a 
range finder 150 m from the liftoff point. At the moment the range finder’s elevation angle 
is p>4, the angle is increasing at the rate of 0.14 rad >min. How fast is the balloon rising at 
that moment?

Solution We answer the question in the six strategy steps.

1. Draw a picture and name the variables and constants (Figure 3.45). The variables in 
the picture are

u = the angle in radians the range finder makes with the ground.

y = the height in meters of the balloon above the ground.

We let t represent time in minutes and assume that u and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point 

(150 m). There is no need to give it a special symbol.

2. Write down the additional numerical information.

du
dt

= 0.14 rad>min when u = p
4

3. Write down what we are to find. We want dy>dt when u = p>4.

4. Write an equation that relates the variables y and u.
y

150
= tan u or y = 150 tan u

5. Differentiate with respect to t using the Chain Rule. The result tells how dy>dt (which 
we want) is related to du>dt (which we know).

dy
dt

= 150 (sec2u)
du
dt

6. Evaluate with u = p>4 and du>dt = 0.14 to find dy>dt.

dy
dt

= 150122 22(0.14) = 42 sec
p

4
= 22

At the moment in question, the balloon is rising at the rate of 42 m>min.

= ?
y

Range
finder

Balloon

150 m

u

= 0.14  rad�min
dt
du

when u = p�4
dt
dywhen u = p�4

FIGURE 3.45 The rate of change of the 
balloon’s height is related to the rate of 
change of the angle the range finder makes 
with the ground (Example 2).
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EXAMPLE 3  A police cruiser, approaching a right-angled intersection from the north, 
is chasing a speeding car that has turned the corner and is now moving straight east. When 
the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the 
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis 
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.46). 
We let t represent time and set

x = position of car at time t

y = position of cruiser at time t

s = distance between car and cruiser at time t.

We assume that x, y, and s are differentiable functions of t.
We want to find dx>dt when

x = 0.8 mi, y = 0.6 mi,
dy
dt

= -60 mph,
ds
dt

= 20 mph.

Note that dy>dt is negative because y is decreasing.
We differentiate the distance equation between the car and the cruiser,

s2 = x2 + y2

(we could also use s = 2x2 + y2), and obtain

2s
ds
dt

= 2x
dx
dt

+ 2y
dy
dt

ds
dt

= 1
s ax dx

dt
+ y

dy
dt
b

= 1

2x2 + y2
ax dx

dt
+ y

dy
dt
b .

Finally, we use x = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20, and solve for dx>dt.

20 = 1

2(0.8)2 + (0.6)2
a0.8

dx
dt

+ (0.6)(-60)b
dx
dt

=
202(0.8)2 + (0.6)2 + (0.6)(60)

0.8
= 70

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4  A particle P moves clockwise at a constant rate along a circle of radius 
10 m centered at the origin. The particle’s initial position is (0, 10) on the y-axis, and its 
final destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tan-
gent line at P intersects the x-axis at a point Q (which moves over time). If it takes the 
particle 30 sec to travel from start to finish, how fast is the point Q moving along the x-axis
when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the 
origin (see Figure 3.47). We let t represent time and let u denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in 
30 sec, it is traveling along the circle at a constant rate of p>2 radians in 1>2 min, or 
p rad>min. In other words, du>dt = -p, with t being measured in minutes. The negative 
sign appears because u is decreasing over time.

x

y

0 x

y

Situation when
x = 0.8, y = 0.6

= −60

= 20

= ?dx
dt

dy
dt

ds
dt

FIGURE 3.46 The speed of the car is 
related to the speed of the police cruiser 
and the rate of change of the distance s
between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.47 The particle P
travels clockwise along the circle 
(Example 4).
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Setting x(t) to be the distance at time t from the point Q to the origin, we want to find 
dx>dt when

x = 20 m and
du
dt

= -p rad>min.

To relate the variables x and u, we see from Figure 3.47 that x cos u = 10, or 
x = 10 sec u. Differentiation of this last equation gives

dx
dt

= 10 sec u tan u   
du
dt

= -10p sec u tan u.

Note that dx>dt is negative because x is decreasing (Q is moving toward the origin).
When x = 20, cos u = 1>2 and sec u = 2. Also, tan u = 2sec2u - 1 = 23. It 

follows that

dx
dt

= (-10p)(2)1232 = -2023p.

At the moment in question, the point Q is moving toward the origin at the speed of 
2023p ≈ 109 m>min.

EXAMPLE 5  A jet airliner is flying at a constant altitude of 12,000 ft above sea level 
as it approaches a Pacific island. The aircraft comes within the direct line of sight of a 
radar station located on the island, and the radar indicates the initial angle between sea 
level and its line of sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft 
approaching the island when first detected by the radar instrument if it is turning upward 
(counterclockwise) at the rate of 2>3 deg>sec in order to keep the aircraft within its direct 
line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using 
the positive x-axis as the horizontal distance at sea level from R to A, and the positive 
y-axis as the vertical altitude above sea level. We let t represent time and observe that 
y = 12,000 is a constant. The general situation and line-of-sight angle u are depicted in 
Figure 3.48. We want to find dx>dt when u = p>6 rad and du>dt = 2>3 deg>sec.

From Figure 3.48, we see that

12,000
x = tan u or x = 12,000 cot u.

Using miles instead of feet for our distance units, the last equation translates to

x =
12,000
5280

 cot u.

Differentiation with respect to t gives

dx
dt

= - 1200
528

 csc2u  
du
dt

.

When u = p>6, sin2 u = 1>4, so csc2 u = 4. Converting du>dt = 2>3 deg>sec to radi-
ans per hour, we find

du
dt

= 2
3 a p180

b (3600) rad>hr. 1 hr = 3600 sec, 1 deg = p>180 rad

Substitution into the equation for dx>dt then gives

dx
dt

= a- 1200
528
b (4)a23b a p180

b (3600) ≈ -380.

The negative sign appears because the distance x is decreasing, so the aircraft is approach-
ing the island at a speed of approximately 380 mi>hr when first detected by the radar.

R

12,000

A

u
x

FIGURE 3.48 Jet airliner A
traveling at constant altitude 
toward radar station R
(Example 5).
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EXAMPLE 6  Figure 3.49a shows a rope running through a pulley at P and bearing a 
weight W at one end. The other end is held 5 ft above the ground in the hand M of 
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker 
is walking rapidly away from the vertical line PW at the rate of 4 ft>sec. How fast is the 
weight being raised when the worker’s hand is 21 ft away from PW?

Solution We let OM be the horizontal line of length x ft from a point O directly below 
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let h be the height 
of the weight W above O, and let z denote the length of rope from the pulley P to the 
worker’s hand. We want to know dh>dt when x = 21 given that dx>dt = 4. Note that the 
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time t we have the following relationships (see Figure 3.49b):

 20 - h + z = 45 Total length of rope is 45 ft.

 202 + x2 = z2. Angle at O is a right angle.

If we solve for z = 25 + h in the first equation, and substitute into the second equation, 
we have

202 + x2 = (25 + h)2. (1)

Differentiating both sides with respect to t gives

2x  
dx
dt

= 2(25 + h)  
dh
dt

,

and solving this last equation for dh>dt we find

dh
dt

= x
25 + h

  
dx
dt

. (2)

Since we know dx>dt, it remains only to find 25 + h at the instant when x = 21. From 
Equation (1),

202 + 212 = (25 + h)2

so that

(25 + h)2 = 841, or 25 + h = 29.

Equation (2) now gives

dh
dt

= 21
29

# 4 = 84
29

≈ 2.9 ft>sec

as the rate at which the weight is being raised when x = 21 ft.

x

M

P

O

W

5 ft

(a)

= 4 ft�secdx
dt

x

z

h

M

P

O

W
20 ft

(b)

= ?dh
dt

FIGURE 3.49 A worker at M
walks to the right, pulling the 
weight W upward as the rope 
moves through the pulley P
(Example 6).

1. Area Suppose that the radius r and area A = pr2 of a circle are 
differentiable functions of t. Write an equation that relates dA>dt
to dr>dt.

2. Surface area Suppose that the radius r and surface area S = 4pr2

of a sphere are differentiable functions of t. Write an equation that 
relates dS>dt to dr>dt.

3. Assume that y = 5x and dx>dt = 2. Find dy>dt.

4. Assume that 2x + 3y = 12 and dy>dt = -2. Find dx>dt.

5. If y = x2 and dx>dt = 3, then what is dy>dt when x = -1?

6. If x = y3 - y and dy>dt = 5, then what is dx>dt when y = 2?

7. If x2 + y2 = 25 and dx>dt = -2, then what is dy>dt when 
x = 3 and y = -4?

8. If x2y3 = 4>27 and dy>dt = 1>2, then what is dx>dt when 
x = 2?

9. If L = 2x2 + y2, dx>dt = -1, and dy>dt = 3, find dL>dt
when x = 5 and y = 12.

10. If r + s2 + y3 = 12, dr>dt = 4, and ds>dt = -3, find dy>dt
when r = 3 and s = 1.

Exercises 3.10
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11. If the original 24 m edge length x of a cube decreases at the rate 
of 5 m>min, when x = 3 m at what rate does the cube’s

a. surface area change?

b. volume change?

12. A cube’s surface area increases at the rate of 72 in2>sec. At what rate 
is the cube’s volume changing when the edge length is x = 3 in?

13. Volume The radius r and height h of a right circular cylinder 
are related to the cylinder’s volume V by the formula V = pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

14. Volume The radius r and height h of a right circular cone are 
related to the cone’s volume V by the equation V = (1>3)pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

15. Changing voltage The voltage V (volts), current I (amperes), 
and resistance R (ohms) of an electric circuit like the one shown 
here are related by the equation V = IR. Suppose that V is 
increasing at the rate of 1 volt>sec while I is decreasing at the 
rate of 1>3 amp>sec. Let t denote time in seconds.

V

R

I

+ −

a. What is the value of dV>dt?

b. What is the value of dI>dt?

c. What equation relates dR>dt to dV>dt and dI>dt?

d. Find the rate at which R is changing when V = 12 volts and 
I = 2 amps. Is R increasing, or decreasing?

16. Electrical power The power P (watts) of an electric circuit is 
related to the circuit’s resistance R (ohms) and current I (amperes) 
by the equation P = RI2.

a. How are dP>dt, dR>dt, and dI>dt related if none of P, R, and 
I are constant?

b. How is dR>dt related to dI>dt if P is constant?

17. Distance Let x and y be differentiable functions of t and let 
s = 2x2 + y2 be the distance between the points (x, 0) and 
(0, y) in the xy-plane.

a. How is ds>dt related to dx>dt if y is constant?

b. How is ds>dt related to dx>dt and dy>dt if neither x nor y is 
constant?

c. How is dx>dt related to dy>dt if s is constant?

18. Diagonals If x, y, and z are lengths of the edges of a rectangular 
box, the common length of the box’s diagonals is s =
2x2 + y2 + z2.

a. Assuming that x, y, and z are differentiable functions of t,
how is ds>dt related to dx>dt, dy>dt, and dz>dt?

b. How is ds>dt related to dy>dt and dz>dt if x is constant?

c. How are dx>dt, dy>dt, and dz>dt related if s is constant?

19. Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure u is

A = 1
2

ab sin u.

a. How is dA>dt related to du>dt if a and b are constant?

b. How is dA>dt related to du>dt and da>dt if only b is constant?

c. How is dA>dt related to du>dt, da>dt, and db>dt if none of 
a, b, and u are constant?

20. Heating a plate When a circular plate of metal is heated in an 
oven, its radius increases at the rate of 0.01 cm >min. At what rate 
is the plate’s area increasing when the radius is 50 cm?

21. Changing dimensions in a rectangle The length l of a rectan-
gle is decreasing at the rate of 2 cm>sec while the width w is 
increasing at the rate of 2 cm>sec. When l = 12 cm and 
w = 5 cm, find the rates of change of (a) the area, (b) the perim-
eter, and (c) the lengths of the diagonals of the rectangle. Which 
of these quantities are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the 
edge lengths x, y, and z of a closed rectangular box are changing 
at the following rates:

dx
dt

= 1 m>sec,
dy
dt

= -2 m>sec,
dz
dt

= 1 m>sec.

  Find the rates at which the box’s (a) volume, (b) surface area, and 
(c) diagonal length s = 2x2 + y2 + z2 are changing at the 
instant when x = 4, y = 3, and z = 2.

23. A sliding ladder A 13-ft ladder is leaning against a house when 
its base starts to slide away (see accompanying figure). By the 
time the base is 12 ft from the house, the base is moving at the 
rate of 5 ft>sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder, 
wall, and ground changing then?

c. At what rate is the angle u between the ladder and the ground 
changing then?

x
0

y

13-ft ladder

y(t)

x(t)

u

24. Commercial air traffic Two commercial airplanes are flying 
at an altitude of 40,000 ft along straight-line courses that intersect 
at right angles. Plane A is approaching the intersection point at a 
speed of 442 knots (nautical miles per hour; a nautical mile is 
2000 yd). Plane B is approaching the intersection at 481 knots. At 
what rate is the distance between the planes changing when A is 5 
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nautical miles from the intersection point and B is 12 nautical 
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft>sec. How 
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are 
reboring a 6-in.-deep cylinder to fit a new piston. The machine 
they are using increases the cylinder’s radius one-thousandth of 
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate 
of 10 m3>min onto the top of a conical pile. The height of the pile 
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer 
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of 
50 m3>min from a shallow concrete conical reservoir (vertex 
down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling 
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then? 
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the 
rate of 6 m3>min from a reservoir shaped like a hemispherical bowl 
of radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of 
radius R is V = (p>3)y2(3R - y) when the water is y meters deep.

r

y

13

Center of sphere

Water level

a. At what rate is the water level changing when the water is 
8 m deep?

b. What is the radius r of the water’s surface when the water is 
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

30. A growing raindrop Suppose that a drop of mist is a perfect 
sphere and that, through condensation, the drop picks up moisture 
at a rate proportional to its surface area. Show that under these 
circumstances the drop’s radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is 
inflated with helium at the rate of 100p ft3>min. How fast is the 
balloon’s radius increasing at the instant the radius is 5 ft? How 
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a 
rope from the bow through a ring on the dock 6 ft above the bow. 
The rope is hauled in at the rate of 2 ft>sec.

a. How fast is the boat approaching the dock when 10 ft of rope 
are out?

b. At what rate is the angle u changing at this instant (see the 
figure)?

Ring at edge
of dock

6'

u

33. A balloon and a bicycle A balloon is rising vertically above a 
level, straight road at a constant rate of 1 ft>sec. Just when the 
balloon is 65 ft above the ground, a bicycle moving at a constant 
rate of 17 ft>sec passes under it. How fast is the distance s(t)
between the bicycle and balloon increasing 3 sec later?

y

x
0

y(t)

s(t)

x(t)

34. Making coffee Coffee is draining from a conical filter into a 
cylindrical coffeepot at the rate of 10 in3>min.

a. How fast is the level in the pot rising when the coffee in the 
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6″

6″

6″

How fast
is this
level rising?

How fast
is this
level falling?
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35. Cardiac output In the late 1860s, Adolf Fick, a professor of 
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how 
much blood your heart pumps in a minute. Your cardiac output as 
you read this sentence is probably about 7 L>min. At rest it is 
likely to be a bit under 6 L>min. If you are a trained marathon 
runner running a marathon, your cardiac output can be as high as 
30 L>min.

    Your cardiac output can be calculated with the formula

y =
Q
D

,

  where Q is the number of milliliters of CO2 you exhale in a minute 
and D is the difference between the CO2 concentration (ml>L) in 
the blood pumped to the lungs and the CO2 concentration in the 
blood returning from the lungs. With Q = 233 ml>min and 
D = 97 - 56 = 41 ml>L,

y =
233 ml>min

41 ml>L ≈ 5.68 L>min,

  fairly close to the 6 L>min that most people have at basal (rest-
ing) conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan 
College of Medicine, East Tennessee State University.)

    Suppose that when Q = 233 and D = 41, we also know 
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?

36. Moving along a parabola A particle moves along the parabola 
y = x2 in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m>sec. How fast is 
the angle of inclination u of the line joining the particle to the 
origin changing when x = 3 m?

37. Motion in the plane The coordinates of a particle in the metric 
xy-plane are differentiable functions of time t with dx>dt =
-1 m>sec and dy>dt = -5 m>sec. How fast is the particle’s dis-
tance from the origin changing as it passes through the point 
(5, 12)?

38. Videotaping a moving car You are videotaping a race from a 
stand 132 ft from the track, following a car that is moving at  
180 mi>h (264 ft>sec), as shown in the accompanying figure. 
How fast will your camera angle u be changing when the car is 
right in front of you? A half second later?

u

Car

Camera

132′

39. A moving shadow A light shines from the top of a pole 50 ft 
high. A ball is dropped from the same height from a point 30 ft 
away from the light. (See accompanying figure.) How fast is the 
shadow of the ball moving along the ground 1>2 sec later? 
(Assume the ball falls a distance s = 16t2 ft in t sec.)

x

Light

30

Shadow

0

50-ft
pole

Ball at time t = 0 

1/2 sec later

x(t)

40. A building’s shadow On a morning of a day when the sun will 
pass directly overhead, the shadow of an 80-ft building on level 
ground is 60 ft long. At the moment in question, the angle u the 
sun makes with the ground is increasing at the rate of 0.27°>min.
At what rate is the shadow decreasing? (Remember to use radians. 
Express your answer in inches per minute, to the nearest tenth.)

80′

u

41. A melting ice layer A spherical iron ball 8 in. in diameter is 
coated with a layer of ice of uniform thickness. If the ice melts at 
the rate of 10 in3>min, how fast is the thickness of the ice 
decreasing when it is 2 in. thick? How fast is the outer surface 
area of ice decreasing?

42. Highway patrol A highway patrol plane flies 3 mi above a 
level, straight road at a steady 120 mi>h. The pilot sees an 
oncoming car and with radar determines that at the instant the 
line-of-sight distance from plane to car is 5 mi, the line-of-sight 
distance is decreasing at the rate of 160 mi>h. Find the car’s 
speed along the highway.

43. Baseball players A baseball diamond is a square 90 ft on a 
side. A player runs from first base to second at a rate of 16 ft>sec.

a. At what rate is the player’s distance from third base changing 
when the player is 30 ft from first base?

b. At what rates are angles u1 and u2 (see the figure) changing 
at that time?
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c. The player slides into second base at the rate of 15 ft>sec. At 
what rates are angles u1 and u2 changing as the player 
touches base?

90′

Second base

Player

Home

30′ First
base

Third
base

u1

u2

44. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots 
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when 
OA = 5 and OB = 3 nautical miles?

45. Clock’s moving hands At what rate is the angle between a 
clock’s minute and hour hands changing at 4 o’clock in the after-
noon?

46. Oil spill An explosion at an oil rig located in gulf waters causes 
an elliptical oil slick to spread on the surface from the rig. The slick 
is a constant 9 in. thick. After several days, when the major axis of 
the slick is 2 mi long and the minor axis is 3/4 mi wide, it is deter-
mined that its length is increasing at the rate of 30 ft/hr, and its 
width is increasing at the rate of 10 ft/hr. At what rate (in cubic feet 
per hour) is oil flowing from the site of the rig at that time?

3.11 Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the 
accuracy we want for specific applications and are easier to work with. The approximating 
functions discussed in this section are called linearizations, and they are based on tangent 
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way that 
makes Leibniz’s notation for the derivative dy>dx a true ratio. We use dy to estimate error in 
measurement, which then provides for a precise proof of the Chain Rule (Section 3.6).

Linearization

As you can see in Figure 3.50, the tangent to the curve y = x2 lies close to the curve near 
the point of tangency. For a brief interval to either side, the y-values along the tangent line 

4

0
3−1

2

0
20

y = x2 and its tangent y = 2x − 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

FIGURE 3.50 The more we magnify the graph of a function near a point where the func-
tion is differentiable, the flatter the graph becomes and the more it resembles its tangent.
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give good approximations to the y-values on the curve. We observe this phenomenon by 
zooming in on the two graphs at the point of tangency or by looking at tables of values for 
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. The phenomenon is true not just for parabolas; every differentiable curve behaves 
locally like its tangent line.

In general, the tangent to y = ƒ(x) at a point x = a, where ƒ is differentiable 
(Figure 3.51), passes through the point (a, ƒ(a)), so its point-slope equation is

y = ƒ(a) + ƒ′(a)(x - a).

Thus, this tangent line is the graph of the linear function

L(x) = ƒ(a) + ƒ′(a)(x - a).

For as long as this line remains close to the graph of ƒ as we move off the point of tan-
gency, L(x) gives a good approximation to ƒ(x).

x

y

0−1

2

1

1 2 3 4

y =    +
y =    +

5
4

x
41 x

2

y =
"

1 + x

FIGURE 3.52 The graph of y = 21 + x and its linear-
izations at x = 0 and x = 3.  Figure 3.53 shows a magni-
fied view of the small window about 1 on the y-axis.

1.0

0−0.1 0.1 0.2

1.1

0.9

y = 1 +

y =
"

1 + x

2
x

FIGURE 3.53 Magnified view of the 
window in Figure 3.52.

x

y

0 a

Slope = f ′(a)

y = f (x)

y = L(x)(a, f (a))

FIGURE 3.51 The tangent to the 
curve y = ƒ(x) at x = a is the line
L(x) = ƒ(a) + ƒ′(a)(x - a).

DEFINITIONS If ƒ is differentiable at x = a, then the approximating function

L(x) = ƒ(a) + ƒ′(a)(x - a)

is the linearization of ƒ at a. The approximation

ƒ(x) ≈ L(x)

of ƒ by L is the standard linear approximation of ƒ at a. The point x = a is the 
center of the approximation.

EXAMPLE 1  Find the linearization of ƒ(x) = 21 + x at x = 0 (Figure 3.52).

Solution Since

ƒ′(x) = 1
2

(1 + x)-1>2,

we have ƒ(0) = 1 and ƒ′(0) = 1>2, giving the linearization

L(x) = ƒ(a) + ƒ′(a)(x - a) = 1 + 1
2

(x - 0) = 1 + x
2

.

See Figure 3.53.

The following table shows how accurate the approximation 21 + x ≈ 1 + (x>2)
from Example 1 is for some values of x near 0. As we move away from zero, we lose 
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accuracy. For example, for x = 2, the linearization gives 2 as the approximation for 23,
which is not even accurate to one decimal place.

Approximation True value � True value − approximation �

21.2 ≈ 1 + 0.2
2

= 1.10 1.095445 0.004555 6 10-2

21.05 ≈ 1 + 0.05
2

= 1.025 1.024695 0.000305 6 10-3

21.005 ≈ 1 + 0.005
2

= 1.00250 1.002497 0.000003 6 10-5

Do not be misled by the preceding calculations into thinking that whatever we do with 
a linearization is better done with a calculator. In practice, we would never use a lineariza-
tion to find a particular square root. The utility of a linearization is its ability to replace a 
complicated formula by a simpler one over an entire interval of values. If we have to work 
with 21 + x for x close to 0 and can tolerate the small amount of error involved, we can 
work with 1 + (x>2) instead. Of course, we then need to know how much error there is. 
We further examine the estimation of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.52 
suggests, the approximation 21 + x ≈ 1 + (x>2) will probably be too crude to be use-
ful near x = 3. There, we need the linearization at x = 3.

EXAMPLE 2  Find the linearization of ƒ(x) = 21 + x at x = 3.

Solution We evaluate the equation defining L(x) at a = 3. With

ƒ(3) = 2, ƒ′(3) = 1
2

(1 + x)-1>2 `
x=3

= 1
4

,

we have

L(x) = 2 + 1
4

(x - 3) = 5
4

+ x
4

.

At x = 3.2, the linearization in Example 2 gives

21 + x = 21 + 3.2 ≈ 5
4

+ 3.2
4

= 1.250 + 0.800 = 2.050,

which differs from the true value 24.2 ≈ 2.04939 by less than one one-thousandth. The 
linearization in Example 1 gives

21 + x = 21 + 3.2 ≈ 1 + 3.2
2

= 1 + 1.6 = 2.6,

a result that is off by more than 25%.

EXAMPLE 3  Find the linearization of ƒ(x) = cos x at x = p>2 (Figure 3.54).

Solution Since ƒ(p>2) = cos (p>2) = 0, ƒ′(x) = -sin x, and ƒ′(p>2) = -sin (p>2) =
-1, we find the linearization at a = p>2 to be

L(x) = ƒ(a) + ƒ′(a)(x - a)

= 0 + (-1)ax - p
2
b

= -x + p
2

.

x

y

0 p
2 y = cos x

y = −x + p
2

FIGURE 3.54 The graph of ƒ(x) = cos x
and its linearization at x = p>2. Near 
x = p>2, cos x ≈ -x + (p>2)
(Example 3).



3.11  Linearization and Differentials 205

An important linear approximation for roots and powers is

(1 + x)k ≈ 1 + kx (x near 0; any number k)

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has 
broad application. For example, when x is small,

21 + x ≈ 1 + 1
2

x k = 1>2
1

1 - x
= (1 - x)-1 ≈ 1 + (-1)(-x) = 1 + x k = -1; replace x by -x.

23 1 + 5x4 = (1 + 5x4)1>3 ≈ 1 + 1
3 (5x4) = 1 + 5

3 x4 k = 1>3; replace x by 5x4.

1

21 - x2
= (1 - x2)-1>2 ≈ 1 + a- 1

2
b (-x2) = 1 + 1

2
x2 k = -1>2;

replace x by -x2.

Differentials

We sometimes use the Leibniz notation dy>dx to represent the derivative of y with respect 
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that when their ratio exists, it is equal to the derivative.

Approximations Near x = 0

21 + x ≈ 1 + x
2

1
1 - x

≈ 1 + x

1

21 - x2
≈ 1 + x2

2

Unlike the independent variable dx, the variable dy is always a dependent variable. It 
depends on both x and dx. If dx is given a specific value and x is a particular number in the 
domain of the function ƒ, then these values determine the numerical value of dy. Often the 
variable dx is chosen to be ∆x, the change in x.

DEFINITION Let y = ƒ(x) be a differentiable function. The differential dx is an 
independent variable. The differential dy is

dy = ƒ′(x) dx.

EXAMPLE 4
(a) Find dy if y = x5 + 37x.

(b) Find the value of dy when x = 1 and dx = 0.2.

Solution
(a) dy = (5x4 + 37) dx

(b) Substituting x = 1 and dx = 0.2 in the expression for dy, we have

dy = (5 # 14 + 37) 0.2 = 8.4.

The geometric meaning of differentials is shown in Figure 3.55. Let x = a and set 
dx = ∆x. The corresponding change in y = ƒ(x) is

∆y = ƒ(a + dx) - ƒ(a).

The corresponding change in the tangent line L is

∆L = L(a + dx) - L(a)

= ƒ(a) + ƒ′(a)3 (a + dx) - a4 - ƒ(a)
(++++1+)+++++1* ()*

L (a + dx) L (a)

= ƒ′(a) dx.
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That is, the change in the linearization of ƒ is precisely the value of the differential dy
when x = a and dx = ∆x. Therefore, dy represents the amount the tangent line rises or 
falls when x changes by an amount dx = ∆x.

If dx ≠ 0, then the quotient of the differential dy by the differential dx is equal to the 
derivative ƒ′(x) because

dy , dx =
ƒ′(x) dx

dx
= ƒ′(x) =

dy
dx

.

We sometimes write

dƒ = ƒ′(x) dx

in place of dy = ƒ′(x) dx, calling dƒ the differential of ƒ. For instance, if ƒ(x) = 3x2 - 6,
then

dƒ = d(3x2 - 6) = 6x dx.

Every differentiation formula like

d (u + y)
dx

= du
dx

+ dy
dx

or
d (sin u)

dx
= cos u

du
dx

has a corresponding differential form like

d(u + y) = du + dy or d(sin u) = cos u du.

EXAMPLE 5  We can use the Chain Rule and other differentiation rules to find differ-
entials of functions.

(a) d (tan 2x) = sec2 (2x) d (2x) = 2 sec2 2x dx

(b) d a x
x + 1

b =
(x + 1) dx - x d (x + 1)

(x + 1)2 = x dx + dx - x dx
(x + 1)2 = dx

(x + 1)2

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to esti-
mate how much this value will change if we move to a nearby point a + dx. If dx = ∆x is 
small, then we can see from Figure 3.55 that ∆y is approximately equal to the differential 
dy. Since

ƒ(a + dx) = ƒ(a) + ∆y, ∆x = dx

x

y

0 a

y = f (x)

Δy = f (a + dx) − f (a)

ΔL = f ′(a)dx

dx = Δx

(a, f (a))

Tangent
line

a + dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

(a + dx, f (a + dx))

FIGURE 3.55 Geometrically, the differential dy is the change 
∆L in the linearization of ƒ when x = a changes by an amount 
dx = ∆x.



3.11  Linearization and Differentials 207

the differential approximation gives

ƒ(a + dx) ≈ ƒ(a) + dy

when dx = ∆x. Thus the approximation ∆y ≈ dy can be used to estimate ƒ(a + dx)
when ƒ(a) is known, dx is small, and dy = ƒ′(a) dx.

ΔA ≈ dA = 2pa dr

a=10

dr = 0.1

FIGURE 3.56 When dr is 
small compared with a, the 
differential dA gives the estimate 
A(a + dr) = pa2 + dA
(Example 6).

EXAMPLE 6  The radius r of a circle increases from a = 10 m to 10.1 m (Figure 3.56). 
Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged 
circle and compare your estimate to the true area found by direct calculation.

Solution Since A = pr2, the estimated increase is

dA = A′(a) dr = 2pa dr = 2p(10)(0.1) = 2p m2.

Thus, since A(r + ∆r) ≈ A(r) + dA, we have

A(10 + 0.1) ≈ A(10) + 2p

= p(10)2 + 2p = 102p.

The area of a circle of radius 10.1 m is approximately 102pm2.
The true area is

A(10.1) = p(10.1)2

= 102.01p m2.

The error in our estimate is 0.01pm2, which is the difference ∆A - dA.

EXAMPLE 7  Use differentials to estimate

(a) 7.971>3
(b) sin (p>6 + 0.01).

Solution
(a) The differential associated with the cube root function y = x1>3 is

dy = 1
3x2>3 dx.

  We set a = 8, the closest number near 7.97 where we can easily compute ƒ(a) and 
ƒ′(a). To arrange that a + dx = 7.97, we choose dx = -0.03. Approximating with 
the differential gives

ƒ(7.97) = ƒ(a + dx) ≈ ƒ(a) + dy

= 81>3 + 1
3(8)2>3 (-0.03)

= 2 + 1
12

(-0.03) = 1.9975

  This gives an approximation to the true value of 7.971>3, which is 1.997497 to 6 decimals.

(b) The differential associated with y = sin x is

dy = cos x dx.
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  To estimate sin (p>6 + 0.01), we set a = p>6 and dx = 0.01. Then

ƒ(p>6 + 0.01) = ƒ(a + dx) ≈ ƒ(a) + dy

= sin
p
6

+ acos
p
6
b (0.01)

= 1
2

+ 23
2

(0.01) ≈ 0.5087

  For comparison, the true value of sin (p>6 + 0.01) to 6 decimals is 0.508635.

The method in part (b) of Example 7 is used by some calculator and computer algo-
rithms to give values of trigonometric functions. The algorithms store a large table of sine 
and cosine values between 0 and p>4. Values between these stored values are computed 
using differentials as in Example 7b. Values outside of 30, p>44  are computed from val-
ues in this interval using trigonometric identities.

Error in Differential Approximation

Let ƒ(x) be differentiable at x = a and suppose that dx = ∆x is an increment of x. We 
have two ways to describe the change in ƒ as x changes from a to a + ∆x:

The true change: ∆ƒ = ƒ(a + ∆x) - ƒ(a)

The differential estimate: dƒ = ƒ′(a) ∆x.

How well does dƒ approximate ∆ƒ?
We measure the approximation error by subtracting dƒ from ∆ƒ:

Approximation error = ∆ƒ - dƒ

= ∆ƒ - ƒ′(a)∆x

= ƒ(a + ∆x) - ƒ(a) - ƒ′(a)∆x
          (+++)+++*

∆ƒ

= aƒ(a + ∆x) - ƒ(a)
∆x

- ƒ′(a)b # ∆x
           (++++1+)+++++1*

Call this part P.

= P # ∆x.

As ∆x S 0, the difference quotient

ƒ(a + ∆x) - ƒ(a)
∆x

approaches ƒ′(a) (remember the definition of ƒ′(a)), so the quantity in parentheses 
becomes a very small number (which is why we called it P). In fact, P S 0 as ∆x S 0.
When ∆x is small, the approximation error P ∆x is smaller still.

∆ƒ = ƒ′(a)∆x + P ∆x
()* (+)+* ()*

true estimated error
change change

Although we do not know the exact size of the error, it is the product P # ∆x of two small 
quantities that both approach zero as ∆x S 0. For many common functions, whenever ∆x
is small, the error is still smaller.

sin (a + dx) ≈ sin a + (cos a) dx
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In Example 6 we found that

∆A = p(10.1)2 - p(10)2 = (102.01 - 100)p = (2p + 0.01p) m26 ()*
dA        error

so the approximation error is ∆A - dA = P∆r = 0.01p and P = 0.01p>∆r =
0.01p>0.1 = 0.1p m.

Proof of the Chain Rule

Equation (1) enables us to prove the Chain Rule correctly. Our goal is to show that if ƒ(u)
is a differentiable function of u and u = g(x) is a differentiable function of x, then the 
composite y = ƒ(g(x)) is a differentiable function of x. Since a function is differentiable if 
and only if it has a derivative at each point in its domain, we must show that whenever g is 
differentiable at x0 and ƒ is differentiable at g(x0), then the composite is differentiable at 
x0 and the derivative of the composite satisfies the equation

dy
dx

2
x=x0

= ƒ′(g(x0)) # g′(x0).

Let ∆x be an increment in x and let ∆u and ∆y be the corresponding increments in u
and y. Applying Equation (1) we have

∆u = g′(x0)∆x + P1 ∆x = (g′(x0) + P1)∆x,

where P1 S 0 as ∆x S 0. Similarly,

∆y = ƒ′(u0)∆u + P2 ∆u = (ƒ′(u0) + P2)∆u,

where P2 S 0 as ∆u S 0. Notice also that ∆u S 0 as ∆x S 0. Combining the equations 
for ∆u and ∆y gives

∆y = (ƒ′(u0) + P2)(g′(x0) + P1)∆x,

so

∆y
∆x

= ƒ′(u0)g′(x0) + P2 g′(x0) + ƒ′(u0)P1 + P2P1.

Since P1 and P2 go to zero as ∆x goes to zero, the last three terms on the right vanish in 
the limit, leaving

dy
dx

2
x=x0

= lim
∆xS0

∆y
∆x

= ƒ′(u0)g′(x0) = ƒ′(g(x0)) # g′(x0).

Change in y = ƒ(x)  near x = a

If y = ƒ(x) is differentiable at x = a and x changes from a to a + ∆x, the 
change ∆y in ƒ is given by

∆y = ƒ′(a) ∆x + P ∆x (1)

in which P S 0 as ∆x S 0.
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Sensitivity to Change

The equation df = ƒ′(x) dx tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of ƒ′ at x, the greater the effect of a given change dx.
As we move from a to a nearby point a + dx, we can describe the change in ƒ in three ways:

  True Estimated

Absolute change ∆ƒ = ƒ(a + dx) - ƒ(a) dƒ = ƒ′(a) dx

Relative change
∆ƒ
ƒ(a)

dƒ
ƒ(a)

Percentage change
∆ƒ
ƒ(a)

* 100
dƒ

ƒ(a)
* 100

EXAMPLE 8  You want to calculate the depth of a well from the equation s = 16t2 by 
timing how long it takes a heavy stone you drop to splash into the water below. How sensi-
tive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

ds = 32t dt

depends on how big t is. If t = 2 sec, the change caused by dt = 0.1 is about

ds = 32(2)(0.1) = 6.4 ft.

Three seconds later at t = 5 sec, the change caused by the same dt is

ds = 32(5)(0.1) = 16 ft.

For a fixed error in the time measurement, the error in using ds to estimate the depth is 
larger when it takes a longer time before the stone splashes into the water. That is, the esti-
mate is more sensitive to the effect of the error for larger values of t.

EXAMPLE 9  Newton’s second law,

F = d
dt

(my) = m
dy
dt

= ma,

is stated with the assumption that mass is constant, but we know this is not strictly true 
because the mass of an object increases with velocity. In Einstein’s corrected formula, 
mass has the value

m =
m0

21 - y2>c2
,

where the “rest mass” m0 represents the mass of an object that is not moving and c is the 
speed of light, which is about 300,000 km>sec. Use the approximation

1

21 - x2
≈ 1 + 1

2
x2 (2)

to estimate the increase ∆m in mass resulting from the added velocity y.

Solution When y is very small compared with c, y2>c2 is close to zero and it is safe to 
use the approximation

1

21 - y2>c2
≈ 1 + 1

2
ay2

c2b Eq. (2) with x = yc
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to obtain

m =
m0

21 - y2>c2
≈ m0 c 1 + 1

2
ay2

c2b d = m0 + 1
2

m0y
2 a 1

c2b ,

or

m ≈ m0 + 1
2

m0y
2 a 1

c2b . (3)

Equation (3) expresses the increase in mass that results from the added velocity y.

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics, 
(1>2) m0y

2 is the kinetic energy (KE) of the object, and if we rewrite Equation (3) in the 
form

(m - m0) c2 ≈ 1
2

m0y
2,

we see that

(m - m0)c2 ≈ 1
2

m0y
2 = 1

2
m0y

2 - 1
2

m0 (0)2 = ∆(KE),

or

(∆m)c2 ≈ ∆(KE).

So the change in kinetic energy ∆(KE) in going from velocity 0 to velocity y is approxi-
mately equal to (∆m) c2, the change in mass times the square of the speed of light. Using 
c ≈ 3 * 108 m>sec, we see that a small change in mass can create a large change in 
energy.

Finding Linearizations
In Exercises 1–5, find the linearization L(x) of ƒ(x) at x = a.

1. ƒ(x) = x3 - 2x + 3, a = 2

2. ƒ(x) = 2x2 + 9, a = -4

3. ƒ(x) = x + 1
x , a = 1

4. ƒ(x) = 23 x, a = -8

5. ƒ(x) = tan x, a = p
6. Common linear approximations at x = 0 Find the lineariza-

tions of the following functions at x = 0.

a. sin x b. cos x c. tan x d. ex e. ln (1 + x)

Linearization for Approximation
In Exercises 7–14, find a linearization at a suitably chosen integer near 
a at which the given function and its derivative are easy to evaluate.

7. ƒ(x) = x2 + 2x, a = 0.1

8. ƒ(x) = x-1, a = 0.9

9. ƒ(x) = 2x2 + 3x - 3, a = -0.9

10. ƒ(x) = 1 + x, a = 8.1

11. ƒ(x) = 23 x, a = 8.5

12. ƒ(x) = x
x + 1

, a = 1.3

13. ƒ(x) = e-x, a = -0.1

14. ƒ(x) = sin-1 x, a = p>12

15. Show that the linearization of ƒ(x) = (1 + x)k at x = 0 is 
L(x) = 1 + kx.

16. Use the linear approximation (1 + x)k ≈ 1 + kx to find an 
approximation for the function ƒ(x) for values of x near zero.

a. ƒ(x) = (1 - x)6 b. ƒ(x) = 2
1 - x

c. ƒ(x) = 1

21 + x
d. ƒ(x) = 22 + x2

e. ƒ(x) = (4 + 3x)1>3 f. ƒ(x) = B
3 a1 - x

2 + x
b2

17. Faster than a calculator Use the approximation (1 + x)k ≈
1 + kx to estimate the following.

a. (1.0002)50 b. 23 1.009

18. Find the linearization of ƒ(x) = 2x + 1 + sin x at x = 0. How 
is it related to the individual linearizations of 2x + 1 and sin x
at x = 0?

Exercises 3.11
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Derivatives in Differential Form
In Exercises 19–38, find dy.

19. y = x3 - 32x 20. y = x21 - x2

21. y = 2x
1 + x2 22. y = 21x

3(1 + 1x)

23. 2y3>2 + xy - x = 0 24. xy2 - 4x3>2 - y = 0

25. y = sin (51x) 26. y = cos (x2)

27. y = 4 tan (x3>3) 28. y = sec (x2 - 1)

29. y = 3 csc11 - 22x2 30. y = 2 cot a 1
1x
b

31. y = e2x 32. y = xe-x

33. y = ln (1 + x2) 34. y = ln a x + 1

2x - 1
b

35. y = tan-1(ex2
) 36. y = cot-1 a 1

x2b + cos-1 2x

37. y = sec-1(e-x) 38. y = etan-12x2+1

Approximation Error
In Exercises 39–44, each function ƒ(x) changes value when x changes 
from x0 to x0 + dx. Find

a. the change ∆ƒ = ƒ(x0 + dx) - ƒ(x0);

b. the value of the estimate dƒ = ƒ′(x0) dx; and

c. the approximation error 0 ∆ƒ - dƒ 0 .

x

y

0

dx

x0 + dx

df = f ′(x0) dx

Δf = f (x0 + dx) − f (x0)

Tangent

(x0, f (x0))

y = f (x)

x0

39. ƒ(x) = x2 + 2x, x0 = 1, dx = 0.1

40. ƒ(x) = 2x2 + 4x - 3, x0 = -1, dx = 0.1

41. ƒ(x) = x3 - x, x0 = 1, dx = 0.1

42. ƒ(x) = x4, x0 = 1, dx = 0.1

43. ƒ(x) = x-1, x0 = 0.5, dx = 0.1

44. ƒ(x) = x3 - 2x + 3, x0 = 2, dx = 0.1

Differential Estimates of Change
In Exercises 45–50, write a differential formula that estimates the 
given change in volume or surface area.

45. The change in the volume V = (4>3)pr3 of a sphere when the 
radius changes from r0 to r0 + dr

46. The change in the volume V = x3 of a cube when the edge 
lengths change from x0 to x0 + dx

47. The change in the surface area S = 6x2 of a cube when the edge 
lengths change from x0 to x0 + dx

48. The change in the lateral surface area S = pr2r2 + h2 of a right 
circular cone when the radius changes from r0 to r0 + dr and the 
height does not change

49. The change in the volume V = pr2h of a right circular cylinder 
when the radius changes from r0 to r0 + dr and the height does 
not change

50. The change in the lateral surface area S = 2prh of a right circu-
lar cylinder when the height changes from h0 to h0 + dh and the 
radius does not change

Applications
51. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original area.

52. The diameter of a tree was 10 in. During the following year, the 
circumference increased 2 in. About how much did the tree’s 
diameter increase? The tree’s cross-sectional area?

53. Estimating volume Estimate the volume of material in a cylin-
drical shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

6 in.
0.5 in.

30 in.

54. Estimating height of a building A surveyor, standing 30 ft 
from the base of a building, measures the angle of elevation to the 
top of the building to be 75°. How accurately must the angle be 
measured for the percentage error in estimating the height of the 
building to be less than 4%?

55. The radius r of a circle is measured with an error of at most 2%. 
What is the maximum corresponding percentage error in comput-
ing the circle’s

a. circumference? b. area?

56. The edge x of a cube is measured with an error of at most 0.5%. 
What is the maximum corresponding percentage error in comput-
ing the cube’s

a. surface area? b. volume?

57. Tolerance The height and radius of a right circular cylinder are 
equal, so the cylinder’s volume is V = ph3. The volume is to be 
calculated with an error of no more than 1% of the true value. 
Find approximately the greatest error that can be tolerated in the 
measurement of h, expressed as a percentage of h.

58. Tolerance

a. About how accurately must the interior diameter of a 
10-m-high cylindrical storage tank be measured to calculate 
the tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be 
measured to calculate the amount of paint it will take to paint 
the side of the tank to within 5% of the true amount?

59. The diameter of a sphere is measured as 100 { 1 cm and the 
volume is calculated from this measurement. Estimate the per-
centage error in the volume calculation.

60. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

61. The effect of flight maneuvers on the heart The amount of 
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

W = PV + Vdy2

2g
,



  where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time, 
d (“delta”) is the weight density of the blood, y is the average 
velocity of the exiting blood, and g is the acceleration of gravity.

    When P, V, d, and y remain constant, W becomes a function 
of g, and the equation takes the simplified form

W = a + b
g (a, b constant).

  As a member of NASA’s medical team, you want to know how 
sensitive W is to apparent changes in g caused by flight maneuvers, 
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg
on the moon, where g = 5.2 ft>sec2, with the effect the same 
change dg would have on Earth, where g = 32 ft>sec2. Use the 
simplified equation above to find the ratio of dWmoon to dWEarth.

62. Drug concentration The concentration C in milligrams per 
milliliter (mg>ml) of a certain drug in a person’s bloodstream t
hrs after a pill is swallowed is modeled by the approximation

C (t) = 1 + 4t
1 + t3

- e-0.06t.

  Estimate the change in concentration when t changes from 20 to 
30 min.

63. Unclogging arteries The formula V = kr4, discovered by the 
physiologist Jean Poiseuille (1797–1869), allows us to predict how 
much the radius of a partially clogged artery has to be expanded in 
order to restore normal blood flow. The formula says that the vol-
ume V of blood flowing through the artery in a unit of time at a 
fixed pressure is a constant k times the radius of the artery to the 
fourth power. How will a 10% increase in r affect V?

64. Measuring acceleration of gravity When the length L of a 
clock pendulum is held constant by controlling its temperature, 
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from 
place to place on the earth’s surface, depending on the change in 
g. By keeping track of ∆T, we can estimate the variation in g
from the equation T = 2p(L>g)1>2 that relates T, g, and L.

a. With L held constant and g as the independent variable, cal-
culate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum 
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location 
where g = 980 cm>sec2 to a new location. This increases the 
period by dT = 0.001sec. Find dg and estimate the value of 
g at the new location.

65. Quadratic approximations

a. Let Q(x) = b0 + b1(x - a) + b2(x - a)2 be a quadratic 
approximation to ƒ(x) at x = a with the properties:

   i) Q(a) = ƒ(a)

   ii) Q′(a) = ƒ′(a)

   iii) Q″(a) = ƒ″(a).

  Determine the coefficients b0, b1, and b2.

b. Find the quadratic approximation to ƒ(x) = 1>(1 - x) at 
x = 0.

c.  Graph ƒ(x) = 1>(1 - x) and its quadratic approximation at 
x = 0. Then zoom in on the two graphs at the point (0, 1). 
Comment on what you see.

d. Find the quadratic approximation to g(x) = 1>x at x = 1.
Graph g and its quadratic approximation together. Comment 
on what you see.

e. Find the quadratic approximation to h(x) = 21 + x at 
x = 0. Graph h and its quadratic approximation together. 
Comment on what you see.

f. What are the linearizations of ƒ, g, and h at the respective 
points in parts (b), (d), and (e)?

66. The linearization is the best linear approximation Suppose
that y = ƒ(x) is differentiable at x = a and that g(x) =
m(x - a) + c is a linear function in which m and c are constants. 
If the error E(x) = ƒ(x) - g(x) were small enough near x = a,
we might think of using g as a linear approximation of ƒ instead 
of the linearization L(x) = ƒ(a) + ƒ′(a)(x - a). Show that if we 
impose on g the conditions

1. E(a) = 0 The approximation error is zero at x = a.

2. lim
xSa

E(x)
x - a = 0

The error is negligible when compared 
with x - a.

  then g(x) = ƒ(a) + ƒ′(a)(x - a). Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at 
x = a and negligible in comparison with x - a.

x
a

y = f (x)

(a, f (a))

The linearization, L(x):
y = f (a) + f ′(a)(x − a)

Some other linear
approximation, g(x):
y = m(x − a) + c

67. The linearization of 2x

a. Find the linearization of ƒ(x) = 2x at x = 0. Then round its 
coefficients to two decimal places.

b. Graph the linearization and function together for 
-3 … x … 3 and -1 … x … 1.

68. The linearization of log3x

a. Find the linearization of ƒ(x) = log3x at x = 3. Then round 
its coefficients to two decimal places.

b. Graph the linearization and function together in the window 
0 … x … 8 and 2 … x … 4.

COMPUTER EXPLORATIONS
In Exercises 69–74, use a CAS to estimate the magnitude of the error 
in using the linearization in place of the function over a specified 
interval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

T

T

T

T

T
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d. Plot the absolute error � ƒ(x) - L(x) � over I  and find its max-
imum value.

e. From your graph in part (d), estimate as large a d 7 0 as you 
can, satisfying

0 x - a 0 6 d 1 0 ƒ(x) - L(x) 0 6 P

for P = 0.5, 0.1, and 0.01. Then check graphically to see if 
your d@estimate holds true.

69. ƒ(x) = x3 + x2 - 2x, 3-1, 24 , a = 1

70. ƒ(x) = x - 1
4x2 + 1

, c- 3
4

, 1 d , a = 1
2

71. ƒ(x) = x2>3(x - 2), 3-2, 34 , a = 2

72. ƒ(x) = 2x - sin x, 30, 2p4 , a = 2

73. ƒ(x) = x2x, 30, 24 , a = 1

74. ƒ(x) = 2x sin-1 x, 30, 14 , a = 1
2

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related 
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents, 
and rates of change?

3. How can you sometimes graph the derivative of a function when 
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open 
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a 
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. What rules do you know for calculating derivatives? Give some 
examples.

9. Explain how the three formulas

a.
d
dx

(xn) = nxn-1 b.
d
dx

(cu) = c
du
dx

c.
d
dx

(u1 + u2 + g+ un) =
du1

dx
+

du2

dx
+ g+

dun

dx

  enable us to differentiate any polynomial.

10. What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?

11. What is a second derivative? A third derivative? How many 
derivatives do the functions you know have? Give examples.

12. What is the derivative of the exponential function ex? How does 
the domain of the derivative compare with the domain of the 
function?

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you 
learn about an object’s motion along a line by examining the 
derivatives of the object’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits limhS0 ((sin h)>h) and limhS0 ((cos h - 1)>h)
have to do with the derivatives of the sine and cosine functions? 
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you 
find the derivatives of tan x, cot x, sec x, and csc x? What are the 
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of 
two differentiable functions? How is such a derivative evaluated? 
Give examples.

21. If u is a differentiable function of x, how do you find (d>dx)(un) if 
n is an integer? If n is a real number? Give examples.

22. What is implicit differentiation? When do you need it? Give 
examples.

23. What is the derivative of the natural logarithm function ln x? How 
does the domain of the derivative compare with the domain of the 
function?

24. What is the derivative of the exponential function ax, a 7 0 and 
a ≠ 1? What is the geometric significance of the limit of 
(ah - 1)>h as h S 0? What is the limit when a is the number e?

25. What is the derivative of loga x? Are there any restrictions on a?

26. What is logarithmic differentiation? Give an example.

27. How can you write any real power of x as a power of e? Are there 
any restrictions on x? How does this lead to the Power Rule for 
differentiating arbitrary real powers?

28. What is one way of expressing the special number e as a limit? 
What is an approximate numerical value of e correct to 7 decimal 
places?

29. What are the derivatives of the inverse trigonometric functions? 
How do the domains of the derivatives compare with the domains 
of the functions?

30. How do related rates problems arise? Give examples.

31. Outline a strategy for solving related rates problems. Illustrate 
with an example.

32. What is the linearization L (x) of a function ƒ(x) at a point x = a?
What is required of ƒ at a for the linearization to exist? How are 
linearizations used? Give examples.

33. If x moves from a to a nearby value a + dx, how do you estimate 
the corresponding change in the value of a differentiable function 
ƒ(x)? How do you estimate the relative change? The percentage 
change? Give an example.



Chapter 3 Practice Exercises

Derivatives of Functions
Find the derivatives of the functions in Exercises 1–64.

1. y = x5 - 0.125x2 + 0.25x 2. y = 3 - 0.7x3 + 0.3x7

3. y = x3 - 3(x2 + p2) 4. y = x7 + 27x - 1
p + 1

5. y = (x + 1)2(x2 + 2x) 6. y = (2x - 5)(4 - x)-1

7. y = (u2 + sec u + 1)3 8. y = a-1 - cscu
2

- u
2

4
b2

9. s = 1t
1 + 1t

10. s = 1
1t - 1

11. y = 2 tan2 x - sec2 x 12. y = 1
sin2 x

- 2
sin x

13. s = cos4 (1 - 2t) 14. s = cot3 a2t b
15. s = (sec t + tan t)5 16. s = csc5(1 - t + 3t2)

17. r = 22u sin u 18. r = 2u2cos u

19. r = sin 22u 20. r = sin 1u + 2u + 12
21. y = 1

2
x2 csc

2
x 22. y = 22x sin 2x

23. y = x-1>2 sec (2x)2 24. y = 2x csc (x + 1)3

25. y = 5 cot x2 26. y = x2 cot 5x

27. y = x2 sin2 (2x2) 28. y = x-2 sin2 (x3)

29. s = a 4t
t + 1

b-2

30. s = -1
15(15t - 1)3

31. y = a 2x
1 + x

b2

32. y = a 22x

22x + 1
b2

33. y = B
x2 + x

x2 34. y = 4x2x + 1x

35. r = a sin u
cos u - 1

b2

36. r = a1 + sin u
1 - cos u

b2

37. y = (2x + 1)22x + 1 38. y = 20 (3x - 4)1>4 (3x - 4)-1>5

39. y = 3
(5x2 + sin 2x)3>2 40. y = (3 + cos3 3x)-1>3

41. y = 10e-x>5 42. y = 22e22x

43. y = 1
4

xe4x - 1
16

e4x 44. y = x2e-2>x

45. y = ln (sin2u) 46. y = ln (sec2u)

47. y = log2 (x2>2) 48. y = log5 (3x - 7)

49. y = 8-t 50. y = 92t

51. y = 5x3.6 52. y = 22x-22

53. y = (x + 2)x+2 54. y = 2 (ln x)x>2
55. y = sin-121 - u2, 0 6 u 6 1

56. y = sin-1 a 1

2yb , y 7 1

57. y = ln cos-1 x

58. y = z cos-1 z - 21 - z2

59. y = t tan-1 t - 1
2

ln t

60. y = (1 + t2) cot-1 2t

61. y = z sec-1 z - 2z2 - 1, z 7 1

62. y = 22x - 1 sec-11x

63. y = csc-1 (sec u), 0 6 u 6 p>2
64. y = (1 + x2) etan-1 x

Implicit Differentiation
In Exercises 65–78, find dy>dx by implicit differentiation.

65. xy + 2x + 3y = 1 66. x2 + xy + y2 - 5x = 2

67. x3 + 4xy - 3y4>3 = 2x 68. 5x4>5 + 10y6>5 = 15

69. 1xy = 1 70. x2y2 = 1

71. y2 = x
x + 1

72. y2 = A
1 + x
1 - x

73. ex+2y = 1 74. y2 = 2e-1>x
75. ln (x>y) = 1 76. x sin-1 y = 1 + x2

77. yetan-1 x = 2 78. xy = 22

In Exercises 79 and 80, find dp>dq.

79. p3 + 4pq - 3q2 = 2 80. q = (5p2 + 2p)-3>2

In Exercises 81 and 82, find dr>ds.

81. r cos 2s + sin2 s = p 82. 2rs - r - s + s2 = -3

83. Find d2y>dx2 by implicit differentiation:

a. x3 + y3 = 1 b. y2 = 1 - 2
x

84. a.  By differentiating x2 - y2 = 1 implicitly, show that 
dy>dx = x>y.

b. Then show that d2y>dx2 = -1>y3.

Numerical Values of Derivatives
85. Suppose that functions ƒ(x) and g(x) and their first derivatives 

have the following values at x = 0 and x = 1.

  Find the first derivatives of the following combinations at the 
given value of x.

a. 6ƒ(x) - g(x), x = 1 b. ƒ(x)g2(x), x = 0

c.
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x + ƒ(x))3>2, x = 1

g. ƒ(x + g(x)), x = 0

x ƒ(x) g(x) ƒ′(x) g′(x)

0 1 1 -3 1>2
1 3 5 1>2 -4
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86. Suppose that the function ƒ(x) and its first derivative have the fol-
lowing values at x = 0 and x = 1.

  Find the first derivatives of the following combinations at the 
given value of x.

a. 1x ƒ(x), x = 1 b. 2ƒ(x), x = 0

c. ƒ12x2, x = 1 d. ƒ(1 - 5 tan x), x = 0

e.
ƒ(x)

2 + cos x
, x = 0 f. 10 sin apx

2
b ƒ2(x), x = 1

87. Find the value of dy>dt at t = 0 if y = 3 sin 2x and x = t2 + p.

88. Find the value of ds>du at u = 2 if s = t2 + 5t and t =
(u2 + 2u)1>3.

89. Find the value of dw>ds at s = 0 if w = sin 1e1r2 and 
r = 3 sin (s + p>6).

90. Find the value of dr>dt at t = 0 if r = (u2 + 7)1>3 and 
u2t + u = 1.

91. If y3 + y = 2 cos x, find the value of d2y>dx2 at the point (0, 1).

92. If x1>3 + y1>3 = 4, find d2y>dx2 at the point (8, 8).

Applying the Derivative Definition
In Exercises 93 and 94, find the derivative using the definition.

93. ƒ(t) = 1
2t + 1

94. g(x) = 2x2 + 1

95. a. Graph the function

ƒ(x) = e x2, -1 … x 6 0

-x2, 0 … x … 1.

b. Is ƒ continuous at x = 0?

c. Is ƒ differentiable at x = 0?

Give reasons for your answers.

96. a. Graph the function

ƒ(x) = e x, -1 … x 6 0

tan x, 0 … x … p>4.

b. Is ƒ continuous at x = 0?

c. Is ƒ differentiable at x = 0?

Give reasons for your answers.

97. a. Graph the function

ƒ(x) = e x, 0 … x … 1

2 - x, 1 6 x … 2.

b. Is ƒ continuous at x = 1?

c. Is ƒ differentiable at x = 1?

Give reasons for your answers.

98. For what value or values of the constant m, if any, is

ƒ(x) = e sin 2x, x … 0

mx, x 7 0

  a. continuous at x = 0?

  b. differentiable at x = 0?

  Give reasons for your answers.

Slopes, Tangents, and Normals
99. Tangents with specified slope Are there any points on the 

curve y = (x>2) + 1>(2x - 4) where the slope is -3>2? If so, 
find them.

100. Tangents with specified slope Are there any points on the 
curve y = x - e-x where the slope is 2? If so, find them.

101. Horizontal tangents Find the points on the curve y =
2x3 - 3x2 - 12x + 20 where the tangent is parallel to the 
x-axis.

102. Tangent intercepts Find the x- and y-intercepts of the line 
that is tangent to the curve y = x3 at the point (-2, -8).

103. Tangents perpendicular or parallel to lines Find the points 
on the curve y = 2x3 - 3x2 - 12x + 20 where the tangent is

  a. perpendicular to the line y = 1 - (x>24).

  b. parallel to the line y = 22 - 12x.

104. Intersecting tangents Show that the tangents to the curve 
y = (p sin x)>x at x = p and x = -p intersect at right angles.

105. Normals parallel to a line Find the points on the curve 
y = tan x, -p>2 6 x 6 p>2, where the normal is parallel to 
the line y = -x>2. Sketch the curve and normals together, 
labeling each with its equation.

106. Tangent and normal lines Find equations for the tangent and 
normal to the curve y = 1 + cos x at the point (p>2, 1). Sketch 
the curve, tangent, and normal together, labeling each with its 
equation.

107. Tangent parabola The parabola y = x2 + C is to be tangent 
to the line y = x. Find C.

108. Slope of tangent Show that the tangent to the curve y = x3 at 
any point (a, a3) meets the curve again at a point where the slope 
is four times the slope at (a, a3).

109. Tangent curve For what value of c is the curve y = c>(x + 1)
tangent to the line through the points (0, 3) and (5, -2)?

110. Normal to a circle Show that the normal line at any point of 
the circle x2 + y2 = a2 passes through the origin.

In Exercises 111–116, find equations for the lines that are tangent and 
normal to the curve at the given point.

111. x2 + 2y2 = 9, (1, 2)

112. ex + y2 = 2, (0, 1)

113. xy + 2x - 5y = 2, (3, 2)

114. (y - x)2 = 2x + 4, (6, 2)

115. x + 1xy = 6, (4, 1)

116. x3>2 + 2y3>2 = 17, (1, 4)

117. Find the slope of the curve x3y3 + y2 = x + y at the points 
(1, 1) and (1, -1).

x ƒ(x) ƒ′(x)

0 9 -2
1 -3 1>5



118. The graph shown suggests that the curve y = sin (x - sin x)
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

x

y

0

−1

1
y = sin (x − sin x)

p 2p−2p −p

Analyzing Graphs
Each of the figures in Exercises 119 and 120 shows two graphs, the 
graph of a function y = ƒ(x) together with the graph of its derivative 
ƒ′(x). Which graph is which? How do you know?

119. 120.

x

y

0 1−1

1

−1

−2

2A

B

x

y

0 1

1

A

B

2

2

3

4

121. Use the following information to graph the function y = ƒ(x)
for -1 … x … 6.

   i) The graph of ƒ is made of line segments joined end to end.

   ii) The graph starts at the point (-1, 2).

   iii)  The derivative of ƒ, where defined, agrees with the step 
function shown here.

x

y

1−1 2

1

−1
3 4 5 6

−2

y = f ′(x)

122. Repeat Exercise 121, supposing that the graph starts at (-1, 0)
instead of (-1, 2).

Exercises 123 and 124 are about the accompanying graphs. The 
graphs in part (a) show the numbers of rabbits and foxes in a small 
arctic population. They are plotted as functions of time for 200 days. 
The number of rabbits increases at first, as the rabbits reproduce. But 
the foxes prey on rabbits and, as the number of foxes increases, the 
rabbit population levels off and then drops. Part (b) shows the graph 
of the derivative of the rabbit population, made by plotting slopes.

123.  a.  What is the value of the derivative of the rabbit population 
when the number of rabbits is largest? Smallest?

  b. What is the size of the rabbit population when its derivative 
is largest? Smallest (negative value)?

124. In what units should the slopes of the rabbit and fox population 
curves be measured?

(20, 1700)

0 50 100 150 200

1000

2000

(a)

(20, 40)

0 50 100 150 200

50

−50

−100

Derivative of the rabbit population

0

(b)

Number
of rabbits

Initial no. rabbits = 1000
Initial no. foxes = 40

Time (days)

Number
of foxes

+100

Time (days)

Source: NCPMF “Differentiation” by W.U. Walton et al., Project 
CALC. Reprinted by permission of Educational Development 
Center, Inc.

Trigonometric Limits
Find the limits in Exercises 125–132.

125. lim
xS0

sin x
2x2 - x

126. lim
xS0

3x - tan 7x
2x

127. lim
rS0

sin r
tan 2r

128. lim
uS0

sin (sin u)
u

129. lim
uS(p>2)-

4 tan2 u + tan u + 1
tan2 u + 5

130. lim
uS0+

1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

131. lim
xS0

x sin x
2 - 2 cos x

132. lim
uS0

1 - cos u
u2

Show how to extend the functions in Exercises 133 and 134 to be con-
tinuous at the origin.

133. g(x) =
tan (tan x)

tan x 134. ƒ(x) =
tan (tan x)
sin (sin x)
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Logarithmic Differentiation 
In Exercises 135–140, use logarithmic differentiation to find the 
derivative of y with respect to the appropriate variable.

135. y =
2(x2 + 1)

2cos 2x
136. y = 10A

3x + 4
2x - 4

137. y = a(t + 1)(t - 1)
(t - 2)(t + 3)

b5

, t 7 2

138. y = 2u2u

2u2 + 1

139. y = (sin u)2u 140. y = (ln x)1>(ln x)

Related Rates
141. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the 
equation S = 2pr2 + 2prh.

  a. How is dS>dt related to dr>dt if h is constant?

  b. How is dS>dt related to dh>dt if r is constant?

   c.  How is dS>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

  d. How is dr>dt related to dh>dt if S is constant?

142. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion S = pr2r2 + h2.

  a. How is dS>dt related to dr>dt if h is constant?

  b. How is dS>dt related to dh>dt if r is constant?

   c.  How is dS>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

143. Circle’s changing area The radius of a circle is changing at 
the rate of -2>p m>sec. At what rate is the circle’s area chang-
ing when r = 10 m?

144. Cube’s changing edges The volume of a cube is increasing at 
the rate of 1200 cm3>min at the instant its edges are 20 cm long. 
At what rate are the lengths of the edges changing at that instant?

145. Resistors connected in parallel If two resistors of R1 and R2

ohms are connected in parallel in an electric circuit to make an 
R-ohm resistor, the value of R can be found from the equation

1
R

= 1
R1

+ 1
R2

.

+
R

−
R2R1

  If R1 is decreasing at the rate of 1 ohm > sec and R2 is increasing 
at the rate of 0.5 ohm > sec, at what rate is R changing when 
R1 = 75 ohms and R2 = 50 ohms?

146. Impedance in a series circuit The impedance Z (ohms) in a 
series circuit is related to the resistance R (ohms) and reactance 
X (ohms) by the equation Z = 2R2 + X2. If R is increasing at 
3 ohms > sec and X is decreasing at 2 ohms > sec, at what rate is Z
changing when R = 10 ohms and X = 20 ohms?

147. Speed of moving particle The coordinates of a particle moving 
in the metric xy-plane are differentiable functions of time t with 
dx>dt = 10 m>sec and dy>dt = 5 m>sec. How fast is the particle 
moving away from the origin as it passes through the point (3, -4)?

148. Motion of a particle A particle moves along the curve y = x3>2
in the first quadrant in such a way that its distance from the origin 
increases at the rate of 11 units per second. Find dx>dt when x = 3.

149. Draining a tank Water drains from the conical tank shown in 
the accompanying figure at the rate of 5 ft3>min.

  a. What is the relation between the variables h and r in the figure?

  b. How fast is the water level dropping when h = 6 ft?

r

h

Exit rate: 5 ft3�min

10′

4′

150. Rotating spool As television cable is pulled from a large spool 
to be strung from the telephone poles along a street, it unwinds 
from the spool in layers of constant radius (see accompanying 
figure). If the truck pulling the cable moves at a steady 6 ft > sec
(a touch over 4 mph), use the equation s = ru to find how fast 
(radians per second) the spool is turning when the layer of radius 
1.2 ft is being unwound.

1.2′

151. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a 
constant rate, du>dt = -0.6 rad/sec.

  a. How fast is the light moving along the shore when it reaches 
point A?

  b. How many revolutions per minute is 0.6 rad>sec?

1 km
A

x

u



152. Points moving on coordinate axes Points A and B move 
along the x- and y-axes, respectively, in such a way that the dis-
tance r (meters) along the perpendicular from the origin to the 
line AB remains constant. How fast is OA changing, and is it 
increasing, or decreasing, when OB = 2r and B is moving 
toward O at the rate of 0.3r m > sec?

Linearization
153. Find the linearizations of

  a. tan x at x = -p>4 b. sec x at x = -p>4.

  Graph the curves and linearizations together.

154. We can obtain a useful linear approximation of the function 
ƒ(x) = 1>(1 + tan x) at x = 0 by combining the approximations

1
1 + x

≈ 1 - x and tan x ≈ x

  to get

1
1 + tan x

≈ 1 - x.

  Show that this result is the standard linear approximation of 
1>(1 + tan x) at x = 0.

155. Find the linearization of ƒ(x) = 21 + x + sin x - 0.5 at x = 0.

156. Find the linearization of ƒ(x) = 2>(1 - x) + 21 + x - 3.1
at x = 0.

Differential Estimates of Change
157. Surface area of a cone Write a formula that estimates the 

change that occurs in the lateral surface area of a right circular 
cone when the height changes from h0 to h0 + dh and the radius 
does not change.

(Lateral surface area)

h

r

1
3

V =    pr2h

S = pr"r2 + h2

158. Controlling error

  a. How accurately should you measure the edge of a cube to be 
reasonably sure of calculating the cube’s surface area with an 
error of no more than 2%?

  b. Suppose that the edge is measured with the accuracy required 
in part (a). About how accurately can the cube’s volume be 
calculated from the edge measurement? To find out, estimate 
the percentage error in the volume calculation that might 
result from using the edge measurement.

159. Compounding error The circumference of the equator of a 
sphere is measured as 10 cm with a possible error of 0.4 cm. 
This measurement is used to calculate the radius. The radius is 
then used to calculate the surface area and volume of the sphere. 
Estimate the percentage errors in the calculated values of

  a. the radius.

  b. the surface area.

  c. the volume.

160. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and 
measure the length a of its shadow, finding it to be 15 ft, give or 
take an inch. Calculate the height of the lamppost using the 
value a = 15 and estimate the possible error in the result.

h

20 ft
6 ft

a

Chapter 3 Additional and Advanced Exercises

1. An equation like sin2u + cos2u = 1 is called an identity
because it holds for all values of u. An equation like sin u = 0.5
is not an identity because it holds only for selected values of u,
not all. If you differentiate both sides of a trigonometric identity 
in u with respect to u, the resulting new equation will also be an 
identity.

    Differentiate the following to show that the resulting equa-
tions hold for all u.

a. sin 2u = 2 sin ucos u

b. cos 2u = cos2u - sin2u

2. If the identity sin (x + a) = sin x cos a + cos x sin a is differen-
tiated with respect to x, is the resulting equation also an identity? 
Does this principle apply to the equation x2 - 2x - 8 = 0?
Explain.
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3. a. Find values for the constants a, b, and c that will make

ƒ(x) = cos x and g(x) = a + bx + cx2

  satisfy the conditions

ƒ(0) = g(0), ƒ′(0) = g′(0), and ƒ″(0) = g″(0).

b. Find values for b and c that will make

ƒ(x) = sin (x + a) and g(x) = b sin x + c cos x

  satisfy the conditions

ƒ(0) = g(0) and ƒ′(0) = g′(0).

c. For the determined values of a, b, and c, what happens for 
the third and fourth derivatives of ƒ and g in each of parts (a) 
and (b)?

4. Solutions to differential equations

a. Show that y = sin x, y = cos x, and y = a cos x + b sin x
(a and b constants) all satisfy the equation 

y″ + y = 0.

b. How would you modify the functions in part (a) to satisfy the 
equation

y″ + 4y = 0?

  Generalize this result.

5. An osculating circle Find the values of h, k, and a that make 
the circle (x - h)2 + (y - k)2 = a2 tangent to the parabola 
y = x2 + 1 at the point (1, 2) and that also make the second 
derivatives d2y>dx2 have the same value on both curves there. 
Circles like this one that are tangent to a curve and have the same 
second derivative as the curve at the point of tangency are called 
osculating circles (from the Latin osculari, meaning “to kiss”). 
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of 
people per trip who use the bus is related to the fare charged (p
dollars) by the law p = 33 - (x>40)42. Write an expression for 
the total revenue r(x) per trip received by the bus company. What 
number of people per trip will make the marginal revenue dr>dx
equal to zero? What is the corresponding fare? (This fare is the 
one that maximizes the revenue.)

7. Industrial production

a. Economists often use the expression “rate of growth” in rela-
tive rather than absolute terms. For example, let u = ƒ(t) be 
the number of people in the labor force at time t in a given 
industry. (We treat this function as though it were differentia-
ble even though it is an integer-valued step function.)

    Let y = g(t) be the average production per person in 
the labor force at time t. The total production is then y = uy.
If the labor force is growing at the rate of 4% per year 
(du>dt = 0.04u) and the production per worker is growing at 
the rate of 5% per year (dy>dt = 0.05y), find the rate of 
growth of the total production, y.

b. Suppose that the labor force in part (a) is decreasing at the 
rate of 2% per year while the production per person is 
increasing at the rate of 3% per year. Is the total production 
increasing, or is it decreasing, and at what rate?

8. Designing a gondola The designer of a 30-ft-diameter spheri-
cal hot air balloon wants to suspend the gondola 8 ft below the 
bottom of the balloon with cables tangent to the surface of the 
balloon, as shown. Two of the cables are shown running from the 
top edges of the gondola to their points of tangency, (-12, -9)
and (12, -9). How wide should the gondola be?

x

y

(12, −9)(−12, −9)
15 ft

8 ft

Width

NOT TO SCALE

Suspension
cables

Gondola

x2 + y2 = 225

0

9. Pisa by parachute On August 5, 1988, Mike McCarthy of 
London jumped from the top of the Tower of Pisa. He then 
opened his parachute in what he said was a world record low-
level parachute jump of 179 ft. Make a rough sketch to show the 
shape of the graph of his speed during the jump. (Source: Boston 
Globe, Aug. 6, 1988.)

10. Motion of a particle The position at time t Ú 0 of a particle 
moving along a coordinate line is

s = 10 cos (t + p>4).

a. What is the particle’s starting position (t = 0)?

b. What are the points farthest to the left and right of the origin 
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in 
part (b).

d. When does the particle first reach the origin? What are its 
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper 
clip 64 ft straight up into the air with a rubber band. In t sec after 
firing, the paper clip is s = 64t - 16t2 ft above your hand.

a. How long does it take the paper clip to reach its maximum 
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip 
to a height of s = 64t - 2.6t2 ft in t sec. About how long 
will it take the paper clip to reach its maximum height, and 
how high will it go?

12. Velocities of two particles At time t sec, the positions of two 
particles on a coordinate line are s1 = 3t3 - 12t2 + 18t + 5 m
and s2 = - t3 + 9t2 - 12t m. When do the particles have the 
same velocities?

13. Velocity of a particle A particle of constant mass m moves 
along the x-axis. Its velocity y and position x satisfy the equation

1
2

m (y2 - y0
2) = 1

2
k (x0

2 - x2),



  where k, y0, and x0 are constants. Show that whenever y ≠ 0,

m
dy
dt

= -kx.

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a 
quadratic function of t, x = At2 + Bt + C, then the average 
velocity over any time interval 3 t1, t24  is equal to the instan-
taneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

y = e sin x, x 6 p
mx + b, x Ú p

  is

a. continuous at x = p.

b. differentiable at x = p.

16. Does the function

ƒ(x) =
1 - cos x

x , x ≠ 0

0, x = 0

  have a derivative at x = 0? Explain.

17. a. For what values of a and b will

ƒ(x) = eax, x 6 2

ax2 - bx + 3, x Ú 2

  be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

g(x) = eax + b, x … -1

ax3 + x + 2b, x 7 -1

  be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about 
the derivative of an odd differentiable function of x? Give reasons 
for your answer.

20. Even differentiable functions Is there anything special about 
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an 
open interval containing the point x0, that ƒ is differentiable at x0,
that ƒ(x0) = 0, and that g is continuous at x0. Show that the prod-
uct ƒg is differentiable at x0. This process shows, for example, 
that although 0 x 0  is not differentiable at x = 0, the product x 0 x 0
is differentiable at x = 0.

22. (Continuation of Exercise 21.) Use the result of Exercise 21 to 
show that the following functions are differentiable at x = 0.

a. 0 x 0 sin x b. x2>3 sin x c. 23 x (1 - cos x)

d. h(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

23. Is the derivative of

h(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

  continuous at x = 0? How about the derivative of k(x) = xh (x)?
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all 
real values of x and y:

 i) ƒ(x + y) = ƒ(x) # ƒ(y).

ii) ƒ(x) = 1 + xg(x), where limxS0 g(x) = 1.

  Show that the derivative ƒ′(x) exists at every value of x and that 
ƒ′(x) = ƒ(x).

25. The generalized product rule Use mathematical induction to 
prove that if y = u1u2gun is a finite product of differentiable 
functions, then y is differentiable on their common domain and

dy
dx

=
du1

dx
u2gun + u1

du2

dx g
un + g+ u1u2gun-1

dun

dx
.

26. Leibniz’s rule for higher-order derivatives of products Leibniz’s 
rule for higher-order derivatives of products of differentiable 
functions says that

a.
d2(uy)

dx2 = d2u
dx2 y + 2

du
dx

dy
dx

+ u
d2y

dx2.

b.
d3(uy)

dx3 = d3u
dx3 y + 3

d2u
dx2

dy
dx

+ 3
du
dx

d2y

dx2 + u
d3y

dx3.

c.
dn(uy)

dxn = dnu
dxn y + n

dn-1u
dxn-1

dy
dx

+ g

   +
n(n - 1)g(n - k + 1)

k!
dn-ku
dxn-k

dky

dxk

   + g + u
dny

dxn .

  The equations in parts (a) and (b) are special cases of the 
equation in part (c). Derive the equation in part (c) by mathe-
matical induction, using

am
k
b + a m

k + 1
b = m!

k!(m - k)!
+ m!

(k + 1)!(m - k - 1)!
.

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula 
T2 = 4p2L>g, where T is measured in seconds, g = 32.2 ft>sec2,
and L, the length of the pendulum, is measured in feet. Find 
approximately

a. the length of a clock pendulum whose period is T = 1 sec.

b. the change dT in T if the pendulum in part (a) is lengthened 
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the 
period’s changing by the amount dT found in part (b).
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28. The melting ice cube Assume that an ice cube retains its cubi-
cal shape as it melts. If we call its edge length s, its volume is 
V = s3 and its surface area is 6s2. We assume that V and s are 
differentiable functions of time t. We assume also that the cube’s 
volume decreases at a rate that is proportional to its surface area. 
(This latter assumption seems reasonable enough when we think 
that the melting takes place at the surface: Changing the amount 
of surface changes the amount of ice exposed to melt.) In mathe-
matical terms,

dV
dt

= -k(6s2), k 7 0.

  The minus sign indicates that the volume is decreasing. We 
assume that the proportionality factor k is constant. (It probably 
depends on many things, such as the relative humidity of the sur-
rounding air, the air temperature, and the incidence or absence of 
sunlight, to name only a few.) Assume a particular set of condi-
tions in which the cube lost 1 >4 of its volume during the first 
hour, and that the volume is V0 when t = 0. How long will it take 
the ice cube to melt?

Chapter 3 Technology Application Projects

Mathematica/Maple Modules:

Convergence of Secant Slopes to the Derivative Function
You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small. 
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the 
derivative function.

Derivatives, Slopes, Tangent Lines, and Making Movies
Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the 
function and selected tangents on the same graph.
Part IV (Plotting Many Tangents)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Motion Along a Straight Line: Position S Velocity S Acceleration
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text 
can be animated.
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Overview One of the most important applications of the derivative is its use as a tool for 
finding the optimal (best) solutions to problems. Optimization problems abound in math-
ematics, physical science and engineering, business and economics, and biology and 
medicine. For example, what are the height and diameter of the cylinder of largest volume 
that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-
lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-
duction costs and sales revenue, how many items should a manufacturer produce to maxi-
mize profit? How much does the trachea (windpipe) contract to expel air at the maximum 
speed during a cough? What is the branching angle at which blood vessels minimize the 
energy loss due to friction as blood flows through the branches?

In this chapter we use derivatives to find extreme values of functions, to determine 
and analyze the shapes of graphs, and to solve equations numerically. We also introduce 
the idea of recovering a function from its derivative. The key to many of these applications 
is the Mean Value Theorem, which paves the way to integral calculus.

4.1 extreme values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of 
a function from its derivative. Once we can do this, we can solve a variety of optimization 
problems (see Section 4.6). The domains of the functions we consider are intervals or 
unions of separate intervals.

Applications of 
Derivatives

4

DeFinitiOns Let ƒ be a function with domain D. Then ƒ has an absolute 
maximum value on D at a point c if

ƒ(x) … ƒ(c)  for all x in D

and an absolute minimum value on D at c if

ƒ(x) Ú ƒ(c)  for all x in D.

Maximum and minimum values are called extreme values of the function ƒ. Absolute 
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval 3-p>2, p>24  the function ƒ(x) = cos x takes on 
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On 
the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of -1 (Figure 4.1).

Functions with the same defining rule or formula can have different extrema (maximum 
or minimum values), depending on the domain. We see this in the following example.

Figure 4.1 Absolute extrema 
for the sine and cosine functions on 
3-p>2, p>24 . These values can depend 
on the domain of a function.

x

y

0

1
y = sin x

y = cos x

−1

p
2

−
p
2
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ExamplE 1  The absolute extrema of the following functions on their domains can 
be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the 
domains vary. Notice that a function might not have a maximum or minimum if the 
domain is unbounded or fails to contain an endpoint.

The proof of the Extreme Value Theorem requires a detailed knowledge of the real 
number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval 3a, b4 . 
As we observed for the function y = cos x, it is possible that an absolute minimum (or 
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the 
function be continuous, are key ingredients. Without them, the conclusion of the theorem 

Figure 4.2 Graphs for Example 1.

x
2

(b) abs max and min

 y = x2

D = [0, 2]

y

x
2

(c) abs max only

 y = x2

D = (0, 2]

y

x
2

(d) no max or min

 y = x2

D = (0, 2)

y

x
2

(a) abs min only

 y = x2

D = (−∞, ∞)

y

Function rule Domain D Absolute extrema on D

(a) y = x2 (-q, q) No absolute maximum

  Absolute minimum of 0 at x = 0

(b) y = x2 30, 24  Absolute maximum of 4 at x = 2

  Absolute minimum of 0 at x = 0

(c) y = x2 (0, 24  Absolute maximum of 4 at x = 2

  No absolute minimum

(d) y = x2 (0, 2) No absolute extrema

theorem 1—the extreme Value theorem If ƒ is continuous on a closed 
interval 3a, b4 , then ƒ attains both an absolute maximum value M and an abso-
lute minimum value m in 3a, b4 . That is, there are numbers x1 and x2 in 3a, b4  
with ƒ(x1) = m, ƒ(x2) = M, and m … ƒ(x) … M  for every other x in 3a, b4 .

Some of the functions in Example 1 did not have a maximum or a minimum value. 
The following theorem asserts that a function which is continuous over (or on) a finite 
closed interval 3a, b4  has an absolute maximum and an absolute minimum value on the 
interval. We look for these extreme values when we graph a function.

Historical BiograpHy

Daniel Bernoulli
(1700–1789)
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need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. The exponential function y = ex over (-q, q) 
shows that neither extreme value need exist on an infinite interval. Figure 4.4 shows that 
the continuity requirement cannot be omitted.

Local (relative) extreme values

Figure 4.5 shows a graph with five points where a function has extreme values on its 
domain 3a, b4 . The function’s absolute minimum occurs at a even though at e the func-
tion’s value is smaller than at any other point nearby. The curve rises to the left and falls to 
the right around c, making ƒ(c) a maximum locally. The function attains its absolute 
maximum at d. We now define what we mean by local extrema.

If the domain of ƒ is the closed interval 3a, b4 , then ƒ has a local maximum at the endpoint 
x = a, if ƒ(x) … ƒ(a) for all x in some half-open interval 3a, a + d), d 7 0. Likewise, ƒ 
has a local maximum at an interior point x = c if ƒ(x) … ƒ(c) for all x in some open inter-
val (c - d, c + d), d 7 0, and a local maximum at the endpoint x = b if ƒ(x) … ƒ(b) for 
all x in some half-open interval (b - d, b4 , d 7 0. The inequalities are reversed for local 
minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can 
have infinitely many local extrema, even over a finite interval. One example is the function 
ƒ(x) = sin (1>x) on the interval (0, 14 . (We graphed this function in Figure 2.40.)

DeFinitiOns A function ƒ has a local maximum value at a point c within its 
domain D if ƒ(x) … ƒ(c) for all x∊D lying in some open interval containing c.

A function ƒ has a local minimum value at a point c within its domain D if 
ƒ(x) Ú ƒ(c) for all x∊D lying in some open interval containing c.

Figure 4.4 Even a single point of dis-
continuity can keep a function from having 
either a maximum or minimum value on a 
closed interval. The function

y = e x, 0 … x 6 1

0, x = 1

is continuous at every point of 30, 14   
except x = 1, yet its graph over 30, 14  
does not have a highest point.

x

y

1
Smallest value

0

No largest value

1

y = x
0 ≤ x < 1

Figure 4.3 Some possibilities for a continuous function’s maximum and  
minimum on a closed interval 3a, b4 .
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x
a
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M

b

m
x

a
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M

b

m

(x2, M)

(x1, m)

x1

y = f (x)

y = f (x)

y = f (x)

y = f (x)
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An absolute maximum is also a local maximum. Being the largest value overall, it is 
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will 
automatically include the absolute maximum if there is one. Similarly, a list of all local 
minima will include the absolute minimum if there is one.

Finding extrema

The next theorem explains why we usually need to investigate only a few values to find a 
function’s extrema.

Figure 4.5 How to identify types of maxima and minima for a function with domain 
a … x … b.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y = f (x)

theOrem 2—the First Derivative theorem for Local extreme values If 
ƒ has a local maximum or minimum value at an interior point c of its domain, 
and if ƒ′ is defined at c, then

ƒ′(c) = 0.

Proof  To prove that ƒ′(c) is zero at a local extremum, we show first that ƒ′(c) cannot 
be positive and second that ƒ′(c) cannot be negative. The only number that is neither posi-
tive nor negative is zero, so that is what ƒ′(c) must be.

To begin, suppose that ƒ has a local maximum value at x = c (Figure 4.6) so that 
ƒ(x) - ƒ(c) … 0 for all values of x near enough to c. Since c is an interior point of ƒ’s 
domain, ƒ′(c) is defined by the two-sided limit

lim
xSc

 
ƒ(x) - ƒ(c)

x - c .

This means that the right-hand and left-hand limits both exist at x = c and equal ƒ′(c). 
When we examine these limits separately, we find that

 ƒ′(c) = lim
xSc+

 
ƒ(x) - ƒ(c)

x - c … 0.  Because (x - c) 7 0 and ƒ(x) … ƒ(c) (1)

Similarly,

 ƒ′(c) = lim
xSc-

 
ƒ(x) - ƒ(c)

x - c Ú 0.  Because (x - c) 6 0 and ƒ(x) … ƒ(c) (2)

Together, Equations (1) and (2) imply ƒ′(c) = 0.
This proves the theorem for local maximum values. To prove it for local minimum 

values, we simply use ƒ(x) Ú ƒ(c), which reverses the inequalities in Equations (1)  
and (2). 

Figure 4.6 A curve with a local 
maximum value. The slope at c, simultane-
ously the limit of nonpositive numbers and 
nonnegative numbers, is zero.

x
c x

Local maximum value

x

Secant slopes ≥ 0
(never negative)

Secant slopes ≤ 0
(never positive)

y = f (x)
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Theorem 2 says that a function’s first derivative is always zero at an interior point 
where the function has a local extreme value and the derivative is defined. If we recall that 
all the domains we consider are intervals or unions of separate intervals, the only places 
where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where ƒ′ = 0, At x = c and x = e in Fig. 4.5

2. interior points where ƒ′ is undefined, At x = d  in Fig. 4.5 

3. endpoints of the domain of ƒ. At x = a and x = b in Fig. 4.5

The following definition helps us to summarize these results.

ExamplE 2  Find the absolute maximum and minimum values of ƒ(x) = x2 on 
3-2, 14 .

solution The function is differentiable over its entire domain, so the only critical point 
is where ƒ′(x) = 2x = 0, namely x = 0. We need to check the function’s values at x = 0 
and at the endpoints x = -2 and x = 1:

Critical point value: ƒ(0) = 0

Endpoint values: ƒ(-2) = 4

 ƒ(1) = 1.

The function has an absolute maximum value of 4 at x = -2 and an absolute minimum 
value of 0 at x = 0. 

ExamplE 3  Find the absolute maximum and minimum values of ƒ(x) =
10x (2 - ln x) on the interval 31, e24 .

how to Find the Absolute extrema of a Continuous Function ƒ on a Finite 
Closed interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

DeFinitiOn An interior point of the domain of a function ƒ where ƒ′ is zero 
or undefined is a critical point of ƒ.

Thus the only domain points where a function can assume extreme values are critical 
points and endpoints. However, be careful not to misinterpret what is being said here. A 
function may have a critical point at x = c without having a local extreme value there. For 
instance, both of the functions y = x3 and y = x1>3 have critical points at the origin, but 
neither function has a local extreme value at the origin. Instead, each function has a point 
of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.

Most problems that ask for extreme values call for finding the absolute extrema of a 
continuous function on a closed and finite interval. Theorem 1 assures us that such values 
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often 
we can simply list these points and calculate the corresponding function values to find 
what the largest and smallest values are, and where they are located. Of course, if the 
interval is not closed or not finite (such as a 6 x 6 b or a 6 x 6 q), we have seen that 
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it 
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

−1

x

y

1−1

1

0

(a)

y = x3

−1

x

y

1−1

1

0

(b)

y = x1�3

Figure 4.7 Critical points without 
extreme values. (a) y′ = 3x2 is 0 at x = 0, 
but y = x3 has no extremum there.  
(b) y′ = (1>3)x-2>3 is undefined at x = 0, 
but y = x1>3 has no extremum there.
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solution Figure 4.8 suggests that ƒ has its absolute maximum value near x = 3 and its 
absolute minimum value of 0 at x = e2. Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and 
smallest of the resulting values.

The first derivative is

ƒ′(x) = 10(2 - ln x) - 10xa1xb = 10(1 - ln x).

The only critical point in the domain 31, e24  is the point x = e, where ln x = 1. The val-
ues of ƒ at this one critical point and at the endpoints are

Critical point value:   ƒ(e) = 10e

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

We can see from this list that the function’s absolute maximum value is 10e ≈ 27.2; it 
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at 
the right endpoint x = e2. 

ExamplE 4  Find the absolute maximum and minimum values of ƒ(x) = x2>3 on the 
interval 3-2, 34 .

solution We evaluate the function at the critical points and endpoints and take the larg-
est and smallest of the resulting values.

The first derivative

ƒ′(x) = 2
3 x-1>3 = 2

323 x

has no zeros but is undefined at the interior point x = 0. The values of ƒ at this one critical 
point and at the endpoints are

Critical point value:  ƒ(0) = 0

Endpoint values:  ƒ(-2) = (-2)2>3 = 23 4

  ƒ(3) = (3)2>3 = 23 9.

We can see from this list that the function’s absolute maximum value is 23 9 ≈ 2.08, and 
it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs at 
the interior point x = 0 where the graph has a cusp (Figure 4.9). 

Figure 4.8 The extreme values of 
ƒ(x) = 10x(2 - ln x) on 31, e24  occur at 
x = e and x = e2 (Example 3).

1 2 3 4 5 6 7 8

5

10

0

15

20

25

30

(1, 20)

(e, 10e)

(e2, 0)
x

y

x

y

10 2 3−1−2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y = x2�3,  −2 ≤ x ≤ 3

Figure 4.9 The extreme values of 
ƒ(x) = x2>3 on 3-2, 34  occur at x = 0 
and x = 3 (Example 4).

Finding extrema from graphs
In Exercises 1–6, determine from the graph whether the function has 
any absolute extreme values on 3a, b4 . Then explain how your 
answer is consistent with .Theorem 1

 1.   2. 

x

y

0 a c1 bc2

y = h(x)

x

y

0 a c b

y = f (x)

 3.   4. 

x

y

0 a bc

y = f (x)

x

y

0 a bc

y = h(x)

exercises 4.1
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In Exercises 15–20, sketch the graph of each function and determine 
whether the function has any absolute extreme values on its domain. 
Explain how your answer is consistent with Theorem 1.

15. ƒ(x) = 0 x 0 , -1 6 x 6 2

16. y = 6
x2 + 2

, -1 6 x 6 1

17. g(x) = e-x,    0 … x 6 1

x - 1, 1 … x … 2

18. h(x) = •
1
x ,   -1 … x 6 02x, 0 … x … 4

19. y = 3 sin x, 0 6 x 6 2p

20. ƒ(x) = •
x + 1, -1 … x 6 0

cos x,      0 6 x … p

2

Absolute extrema on Finite Closed intervals
In Exercises 21–40, find the absolute maximum and minimum values 
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and 
include their coordinates.

21. ƒ(x) = 2
3

 x - 5, -2 … x … 3

22. ƒ(x) = -x - 4, -4 … x … 1

23. ƒ(x) = x2 - 1, -1 … x … 2

24. ƒ(x) = 4 - x3, -2 … x … 1

25. F(x) = -  
1
x2 , 0.5 … x … 2

26. F(x) = -  
1
x , -2 … x … -1

27. h(x) = 23 x, -1 … x … 8

28. h(x) = -3x2>3, -1 … x … 1

29. g(x) = 24 - x2 , -2 … x … 1

30. g(x) = -25 - x2 , -25 … x … 0

31. ƒ(u) = sin u, -  
p

2
… u … 5p

6

32. ƒ(u) = tan u, -  
p

3
… u … p

4

33. g(x) = csc x, 
p

3
… x … 2p

3

34. g(x) = sec x, -  
p

3
… x … p

6
35. ƒ(t) = 2 - 0 t 0 , -1 … t … 3

36. ƒ(t) = 0 t - 5 0 , 4 … t … 7

37. g(x) = xe-x, -1 … x … 1

38. h(x) = ln (x + 1), 0 … x … 3

39. ƒ(x) = 1
x + ln x, 0.5 … x … 4

40. g(x) = e-x2
, -2 … x … 1

 5.   6. 

In Exercises 7–10, find the absolute extreme values and where they 
occur.

 7.   8. 

 9.   10. 

In Exercises 11–14, match the table with a graph.

11.   12. 

13.   14. 

x

y

0 a c b

y = g(x)

x

y

0 a c b

y = g(x)

1−1

1

−1

y

x

2

2

−2 0

y

x

0 2

5

x

y

2
(1, 2)

−3 2
−1

x

y

x ƒ′(x)

a 0
b 0
c 5

x ƒ′(x)

a   0
b   0
c -5

x ƒ′(x)

a does not exist
b   0
c -2

x ƒ′(x)

a does not exist
b does not exist
c -1.7

a b c a b c

a b c a b c

(a) (b)

(c) (d)
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theory and examples
79. A minimum with no derivative The function ƒ(x) = 0 x 0  has 

an absolute minimum value at x = 0 even though ƒ is not differ-
entiable at x = 0. Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function ƒ(x) has a local maximum 
value at x = c, can anything be said about the value of ƒ at 
x = -c? Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum 
value at x = c, can anything be said about the value of g at 
x = -c? Give reasons for your answer.

82. No critical points or endpoints exist We know how to find the 
extreme values of a continuous function ƒ(x) by investigating its 
values at critical points and endpoints. But what if there are no criti-
cal points or endpoints? What happens then? Do such functions 
really exist? Give reasons for your answers.

83. The function

V(x) = x(10 - 2x)(16 - 2x),  0 6 x 6 5,

  models the volume of a box.

 a. Find the extreme values of V.

 b. Interpret any values found in part (a) in terms of the volume 
of the box.

84. Cubic functions Consider the cubic function

ƒ(x) = ax3 + bx2 + cx + d.

 a. Show that ƒ can have 0, 1, or 2 critical points. Give examples 
and graphs to support your argument.

 b. How many local extreme values can ƒ have?

85. Maximum height of a vertically moving body The height of a 
body moving vertically is given by

s = -  
1
2

 gt2 + y0 t + s0,  g 7 0,

  with s in meters and t in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time t (in 
seconds) the current i (in amperes) in an alternating current cir-
cuit is i = 2 cos t + 2 sin t. What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values 
of the function on the interval and say where they occur.

87. ƒ(x) = 0 x - 2 0 + 0 x + 3 0 , -5 … x … 5

88. g(x) = 0 x - 1 0 - 0 x - 5 0 , -2 … x … 7

89. h(x) = 0 x + 2 0 - 0 x - 3 0 , -q 6 x 6 q
90. k(x) = 0 x + 1 0 + 0 x - 3 0 , -q 6 x 6 q

Computer explorations
In Exercises 91–98, you will use a CAS to help find the absolute 
extrema of the given function over the specified closed interval. Per-
form the following steps.

 a. Plot the function over the interval to see its general behavior there.

 b. Find the interior points where ƒ′ = 0. (In some exercises, you 
may have to use the numerical equation solver to approximate a 
solution.) You may want to plot ƒ′ as well.

 c. Find the interior points where ƒ′ does not exist.

t

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41. ƒ(x) = x4>3, -1 … x … 8

42. ƒ(x) = x5>3, -1 … x … 8

43. g(u) = u3>5, -32 … u … 1

44. h(u) = 3u2>3, -27 … u … 8

Finding Critical points
In Exercises 45–52, determine all critical points for each function.

45. y = x2 - 6x + 7 46. ƒ(x) = 6x2 - x3

47. ƒ(x) = x(4 - x)3 48. g(x) = (x - 1)2(x - 3)2

49. y = x2 + 2
x  50. ƒ(x) = x2

x - 2

51. y = x2 - 322x 52. g(x) = 22x - x2

Finding extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the 
function over its natural domain, and where they occur.

 53. y = 2x2 - 8x + 9 54. y = x3 - 2x + 4

 55. y = x3 + x2 - 8x + 5 56. y = x3(x - 5)2

 57. y = 2x2 - 1 58. y = x - 42x

 59. y = 123 1 - x2
 60. y = 23 + 2x - x2

 61. y = x
x2 + 1

 62. y = x + 1
x2 + 2x + 2

 63. y = ex + e-x 64. y = ex - e-x

 65. y = x ln x 66. y = x2 ln x

 67. y = cos-1 (x2) 68. y = sin-1(ex)

local extrema and Critical points
In Exercises 69–76, find the critical points, domain endpoints, and 
extreme values (absolute and local) for each function.

 69. y = x2>3(x + 2) 70. y = x2>3(x2 - 4)

 71. y = x24 - x2 72. y = x223 - x

 73. y = e4 - 2x,  x … 1

x + 1,   x 7 1
 74. y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0

 75. y = e-x2 - 2x + 4,  x … 1

-x2 + 6x - 4,  x 7 1

 76. y = c -  
1
4

 x2 - 1
2

 x + 15
4

,  x … 1

x3 - 6x2 + 8x,      x 7 1

In Exercises 77 and 78, give reasons for your answers.

77. Let ƒ(x) = (x - 2)2>3.

 a. Does ƒ′(2) exist?

b. Show that the only local extreme value of ƒ occurs at x = 2.

 c. Does the result in part (b) contradict the Extreme Value  
Theorem?

d. Repeat parts (a) and (b) for ƒ(x) = (x - a)2>3, replacing 2  
by a.

78. Let ƒ(x) = 0 x3 - 9x 0 .
 a. Does ƒ′(0) exist? b. Does ƒ′(3) exist?

 c. Does ƒ′(-3) exist? d. Determine all extrema of ƒ.
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4.2 the mean Value theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives 
over an interval, how are the functions related? We answer these and other questions in 
this chapter by applying the Mean Value Theorem. First we introduce a special case, 
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

rolle’s theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is 
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

94. ƒ(x) = 2 + 2x - 3x2>3, 3-1, 10>34
95. ƒ(x) = 2x + cos x, 30, 2p4
96. ƒ(x) = x3>4 - sin x + 1

2
, 30, 2p4

97. ƒ(x) = px2e- 3x>2,   30, 54
98. ƒ(x) = ln (2x + x sin x),   31, 154

 d. Evaluate the function at all points found in parts (b) and (c) and at 
the endpoints of the interval.

 e. Find the function’s absolute extreme values on the interval and 
identify where they occur.

91. ƒ(x) = x4 - 8x2 + 4x + 2, 3-20>25, 64>254
92. ƒ(x) = -x4 + 4x3 - 4x + 1, 3-3>4, 34
93. ƒ(x) = x2>3(3 - x), 3-2, 24

theorem 3—rolle’s theorem Suppose that y = ƒ(x) is continuous over 
the closed interval 3a, b4  and differentiable at every point of its interior (a, b). 
If ƒ(a) = ƒ(b), then there is at least one number c in (a, b) at which ƒ′(c) = 0.

Proof  Being continuous, ƒ assumes absolute maximum and minimum values on 
3a, b4  by Theorem 1. These can occur only

1. at interior points where ƒ′ is zero,

2. at interior points where ƒ′ does not exist,

3. at endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), 
leaving us with interior points where ƒ′ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 
ƒ′(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 
because ƒ(a) = ƒ(b) it must be the case that ƒ is a constant function with ƒ(x) = ƒ(a) = ƒ(b) 
for every x∊ 3a, b4 . Therefore ƒ′(x) = 0 and the point c can be taken anywhere in the 
interior (a, b). 

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 
when there is only one real solution of an equation ƒ(x) = 0, as we illustrate in the next 
example.

ExamplE 1  Show that the equation

x3 + 3x + 1 = 0

has exactly one real solution.

Historical BiograpHy

Michel Rolle
(1652–1719)

f ′(c3) = 0

f ′(c2) = 0
f ′(c1) = 0

f ′(c) = 0

y = f (x)

y = f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

Figure 4.10 Rolle’s Theorem says 
that a differentiable curve has at least one 
horizontal tangent between any two points 
where it crosses a horizontal line. It may 
have just one (a), or it may have more (b).
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proof  We picture the graph of ƒ and draw a line through the points A(a, ƒ(a)) and 
B(b, ƒ(b)). (See Figure 4.14.) The secant line is the graph of the function

 g(x) = ƒ(a) +
ƒ(b) - ƒ(a)

b - a
  (x - a) (2)

(point-slope equation). The vertical difference between the graphs of ƒ and g at x is

 h(x) = ƒ(x) - g(x)

  = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)

b - a
  (x - a). (3)

Figure 4.15 shows the graphs of ƒ, g, and h together.

solution We define the continuous function

ƒ(x) = x3 + 3x + 1.

Since ƒ(-1) = -3 and ƒ(0) = 1, the Intermediate Value Theorem tells us that the graph 
of ƒ crosses the x-axis somewhere in the open interval (-1, 0). (See Figure 4.12.) Now, if 
there were even two points x = a and x = b where ƒ(x) was zero, Rolle’s Theorem 
would guarantee the existence of a point x = c in between them where ƒ′ was zero. How-
ever, the derivative

ƒ′(x) = 3x2 + 3

is never zero (because it is always positive).  Therefore, ƒ has no more than one zero. 

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

the mean Value theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted 
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there 
is a point where the tangent line is parallel to the secant joining A and B.

Figure 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

a bx0a bx0a

(a) Discontinuous at an 
 endpoint of [a, b]

(b) Discontinuous at an 
 interior point of [a, b]

(c) Continuous on [a, b] but not
 differentiable at an interior
 point

b
x x x

y y y

y = f (x) y = f (x) y = f (x)

x

y

0 1

(1, 5)

1

(−1, −3)

−1

y = x3 + 3x + 1

Figure 4.12 The only real zero of the 
polynomial y = x3 + 3x + 1 is the one 
shown here where the curve crosses the 
x-axis between -1 and 0 (Example 1).
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Tangent parallel to secant

c b

Slope

B

A

y = f (x)

Slope f ′(c)

f (b) − f (a)
b − a

Figure 4.13 Geometrically, the Mean 
Value Theorem says that somewhere 
between a and b the curve has at least one 
tangent parallel to the secant joining A and B.

theorem 4—the mean Value theorem Suppose y = ƒ(x) is continuous 
over a closed interval 3a, b4  and differentiable on the interval’s interior (a, b). 
Then there is at least one point c in (a, b) at which

 
ƒ(b) - ƒ(a)

b - a
= ƒ′(c). (1)

Historical BiograpHy

Joseph-Louis Lagrange
(1736–1813)
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The function h satisfies the hypotheses of Rolle’s Theorem on 3a, b4 . It is continuous 
on 3a, b4  and differentiable on (a, b) because both ƒ and g are. Also, h(a) = h(b) = 0 
because the graphs of ƒ and g both pass through A and B. Therefore h′(c) = 0 at some 
point c∊(a, b). This is the point we want for Equation (1) in the theorem.

To verify Equation (1), we differentiate both sides of Equation (3) with respect to x 
and then set x = c:

  h′(x) = ƒ′(x) -
ƒ(b) - ƒ(a)

b - a
 Derivative of Eq. (3) . . .

  h′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
 . . . with x = c

  0 = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
 h′(c) = 0

  ƒ′(c) =
ƒ(b) - ƒ(a)

b - a
, Rearranged

which is what we set out to prove. 

The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at 
either a or b. One-sided continuity at a and b is enough (Figure 4.16).

ExamplE 2  The function ƒ(x) = x2 (Figure 4.17) is continuous for 0 … x … 2 and 
differentiable for 0 6 x 6 2. Since ƒ(0) = 0 and ƒ(2) = 4, the Mean Value Theorem 
says that at some point c in the interval, the derivative ƒ′(x) = 2x must have the value 
(4 - 0)>(2 - 0) = 2. In this case we can identify c by solving the equation 2c = 2 to 
get c = 1. However, it is not always easy to find c algebraically, even though we know it 
always exists. 

A Physical interpretation

We can think of the number (ƒ(b) - ƒ(a))>(b - a) as the average change in ƒ over 
3a, b4  and ƒ′(c) as an instantaneous change. Then the Mean Value Theorem says that at 
some interior point the instantaneous change must equal the average change over the 
entire interval.

ExamplE 3  If a car accelerating from zero takes 8 sec to go 352 ft, its average  
velocity for the 8-sec interval is 352>8 = 44 ft>sec. The Mean Value Theorem says that at 
some point during the acceleration the speedometer must read exactly 30 mph (44 ft>sec) 
(Figure 4.18). 
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2

B(2, 4)

y = x2

A(0, 0)

1

2

3

4

Figure 4.17 As we find in Example 2,  
c = 1 is where the tangent is parallel to 
the secant line.
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Figure 4.18 Distance versus elapsed 
time for the car in Example 3.

x

y

0 1−1

1
y = "1 − x2, −1 ≤ x ≤ 1

Figure 4.16 The function ƒ(x) =  21 - x2 satisfies the hypotheses (and 
conclusion) of the Mean Value Theorem 
on 3-1, 14  even though ƒ is not differen-
tiable at -1 and 1.

A(a, f (a))

B(b, f (b))
y = f (x)

x
ba

Figure 4.14 The graph of ƒ and the 
secant AB over the interval 3a, b4 .
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h(x) = f (x) − g(x)

y = f (x)

y = g(x)

h(x)

Figure 4.15 The secant AB is the 
graph of the function g(x). The function 
h(x) = ƒ(x) - g(x) gives the vertical dis-
tance between the graphs of ƒ and g at x.
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mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over 
an interval. The first corollary of the Mean Value Theorem provides the answer that only 
constant functions have zero derivatives.

COrOLLAry 1 If ƒ′(x) = 0 at each point x of an open interval (a, b), then 
ƒ(x) = C for all x∊(a, b), where C is a constant.

COrOLLAry 2 If ƒ′(x) = g′(x) at each point x in an open interval (a, b), then 
there exists a constant C such that ƒ(x) = g(x) + C for all x∊(a, b). That is, 
ƒ - g is a constant function on (a, b).

Proof  We want to show that ƒ has a constant value on the interval (a, b). We do so by 
showing that if x1 and x2 are any two points in (a, b) with x1 6 x2, then ƒ(x1) = ƒ(x2). 
Now ƒ satisfies the hypotheses of the Mean Value Theorem on 3x1, x24 : It is differentiable 
at every point of 3x1, x24  and hence continuous at every point as well. Therefore,

ƒ(x2) - ƒ(x1)
x2 - x1

= ƒ′(c)

at some point c between x1 and x2. Since ƒ′ = 0 throughout (a, b), this equation implies 
successively that

 
ƒ(x2) - ƒ(x1)

x2 - x1
= 0,  ƒ(x2) - ƒ(x1) = 0,  and  ƒ(x1) = ƒ(x2). 

At the beginning of this section, we also asked about the relationship between two 
functions that have identical derivatives over an interval. The next corollary tells us that 
their values on the interval have a constant difference.

Proof  At each point x∊(a, b) the derivative of the difference function h = ƒ - g is

h′(x) = ƒ′(x) - g′(x) = 0.

Thus, h(x) = C on (a, b) by Corollary 1. That is, ƒ(x) - g(x) = C on (a, b), so ƒ(x) =  
g(x) + C. 

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is, 
they remain true if the interval is (a, q), (-q, b), or (-q, q).

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It 
tells us, for instance, that since the derivative of ƒ(x) = x2 on (-q, q) is 2x, any other 
function with derivative 2x on (-q, q) must have the formula x2 + C for some value of 
C (Figure 4.19).

ExamplE 4  Find the function ƒ(x) whose derivative is sin x and whose graph passes 
through the point (0, 2).

solution Since the derivative of g(x) = -cos x is g′(x) = sin x, we see that ƒ and  
g have the same derivative. Corollary 2 then says that ƒ(x) = -cos x + C for some  

x

y

0

−1

−2

1

2

y = x2 + C C = 2

C = 1

C = 0

C = −1

C = −2

Figure 4.19 From a geometric point 
of view, Corollary 2 of the Mean Value 
Theorem says that the graphs of functions 
with identical derivatives on an interval 
can differ only by a vertical shift there. 
The graphs of the functions with derivative 
2x are the parabolas y = x2 + C, shown 
here for selected values of C.
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constant C. Since the graph of ƒ passes through the point (0, 2), the value of C is deter-
mined from the condition that ƒ(0) = 2:

ƒ(0) = -cos (0) + C = 2,  so  C = 3.

The function is ƒ(x) = -cos x + 3. 

Finding velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving 
along a vertical line. Assume the object or body is falling freely from rest with accelera-
tion 9.8 m>sec2. We assume the position s(t) of the body is measured positive downward 
from the rest position (so the vertical coordinate line points downward, in the direction of 
the motion, with the rest position at 0).

We know that the velocity y(t) is some function whose derivative is 9.8. We also 
know that the derivative of g(t) = 9.8t is 9.8. By Corollary 2,

y(t) = 9.8t + C

for some constant C. Since the body falls from rest, y(0) = 0. Thus

9.8(0) + C = 0,  and  C = 0.

The velocity function must be y(t) = 9.8t. What about the position function s(t)?
We know that s(t) is some function whose derivative is 9.8t. We also know that the 

derivative of ƒ(t) = 4.9t2 is 9.8t. By Corollary 2,

s(t) = 4.9t2 + C

for some constant C. Since s(0) = 0,

4.9(0)2 + C = 0,  and  C = 0.

The position function is s(t) = 4.9t2 until the body hits the ground.
The ability to find functions from their rates of change is one of the very powerful 

tools of calculus. As we will see, it lies at the heart of the mathematical developments in 
Chapter 5.

Proofs of the Laws of Logarithms

The algebraic properties of logarithms were stated in Section 1.6. We can prove those 
properties by applying Corollary 2 of the Mean Value Theorem to each of them. The steps 
in the proofs are similar to those used in solving problems involving logarithms.

Proof that ln bx = ln b + ln x   The argument starts by observing that ln bx and ln x  
have the same derivative:

d
dx

 ln (bx) = b
bx

 = 1
x = d

dx
 ln x.

According to Corollary 2 of the Mean Value Theorem, then, the functions must differ by a 
constant, which means that

ln bx = ln x + C

for some C.
Since this last equation holds for all positive values of x, it must hold for x = 1. 

Hence,

 ln (b # 1) = ln 1 + C

 ln b = 0 + C   ln 1 = 0

 C = ln b.
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By substituting, we conclude

 ln bx = ln b + ln x. 

Proof that ln x r = r ln x   We use the same-derivative argument again. For all posi-
tive values of x,

 
d
dx

 ln xr = 1
xr  

d
dx

  (xr)   Chain Rule

 = 1
xr rxr - 1   Derivative Power Rule

 = r # 1
x = d

dx
  (r ln x).

Since ln xr and r ln x have the same derivative,

ln xr = r ln x + C

for some constant C. Taking x to be 1 identifies C as zero, and we’re done. 

You are asked to prove the Quotient Rule for logarithms,

ln abxb = ln b - ln x,

in Exercise 75. The Reciprocal Rule, ln (1>x) = - ln x, is a special case of the Quotient 
Rule, obtained by taking b = 1 and noting that ln 1 = 0.

Laws of exponents

The laws of exponents for the natural exponential ex are consequences of the algebraic 
properties of ln x. They follow from the inverse relationship between these functions.

Laws of Exponents for ex

For all numbers x, x1, and x2, the natural exponential ex obeys the following 
laws:

1. ex1 # ex2 = ex1 + x2  2. e-x = 1
ex

3. ex1

ex2
= ex1 - x2  4. (ex1)x2 = ex1x2 = (ex2)x1

Proof of Law 1 Let

 y1 = ex1  and  y2 = ex2. (4)

Then

 x1 = ln y1 and x2 = ln y2  Take logs of both 
sides of Eqs. (4).

 x1 + x2 = ln y1 + ln y2

 = ln y1 y2   Product Rule for logarithms

 ex1 + x2 = eln y1 y2   Exponentiate.

 = y1 y2   eln u = u

 = ex1ex2.  

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercises 77 and 78).
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Checking the mean value theorem
Find the value or values of c that satisfy the equation

ƒ(b) - ƒ(a)
b - a

= ƒ′(c)

in the conclusion of the Mean Value Theorem for the functions and 
intervals in Exercises 1–8.

 1. ƒ(x) = x2 + 2x - 1, 30, 14
 2. ƒ(x) = x2>3, 30, 14

 3. ƒ(x) = x + 1
x ,  c 1

2
, 2 d

 4. ƒ(x) = 2x - 1,  31, 34
 5. ƒ(x) = sin-1 x, 3-1, 14
 6. ƒ(x) = ln (x - 1), 32, 44
 7. ƒ(x) = x3 - x2, 3-1, 24
 8. g(x) = e x3, -2 … x … 0

x2,      0 6 x … 2

Which of the functions in Exercises 9–14 satisfy the hypotheses of the 
Mean Value Theorem on the given interval, and which do not? Give 
reasons for your answers.

 9. ƒ(x) = x2>3, 3-1, 84
 10. ƒ(x) = x4>5, 30, 14
 11. ƒ(x) = 2x(1 - x), 30, 14

 12. ƒ(x) = •
sin x

x  ,  -p … x 6 0

0, x = 0

 13. ƒ(x) = e x2 - x, -2 … x … -1

2x2 - 3x - 3, -1 6 x … 0

 14. ƒ(x) = e2x - 3,           0 … x … 2

6x - x2 - 7, 2 6 x … 3

 15. The function

ƒ(x) = e x, 0 … x 6 1

0, x = 1

  is zero at x = 0 and x = 1 and differentiable on (0, 1), but its 
derivative on (0, 1) is never zero. How can this be? Doesn’t 
Rolle’s Theorem say the derivative has to be zero somewhere in 
(0, 1)? Give reasons for your answer.

16. For what values of a, m, and b does the function

ƒ(x) = c 3, x = 0

-x2 + 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

  satisfy the hypotheses of the Mean Value Theorem on the interval 
30, 24 ?

roots (Zeros)
17. a.  Plot the zeros of each polynomial on a line together with the 

zeros of its first derivative.

    i) y = x2 - 4

   ii) y = x2 + 8x + 15

  iii) y = x3 - 3x2 + 4 = (x + 1)(x - 2)2

  iv) y = x3 - 33x2 + 216x = x(x - 9)(x - 24)

 b. Use Rolle’s Theorem to prove that between every two zeros 
of xn + an - 1x

n - 1 + g + a1 x + a0 there lies a zero of

nxn - 1 + (n - 1)an - 1x
n - 2 + g + a1.

18. Suppose that ƒ″ is continuous on 3a, b4  and that ƒ has three 
zeros in the interval. Show that ƒ″ has at least one zero in (a, b). 
Generalize this result.

19. Show that if ƒ″ 7 0 throughout an interval 3a, b4 , then ƒ′ has at 
most one zero in 3a, b4 . What if ƒ″ 6 0 throughout 3a, b4  instead?

20. Show that a cubic polynomial can have at most three real zeros. 

Show that the functions in Exercises 21–28 have exactly one zero in 
the given interval.

21. ƒ(x) = x4 + 3x + 1, 3-2, -14

22. ƒ(x) = x3 + 4
x2 + 7, (-q, 0)

23. g(t) = 2t + 21 + t - 4, (0, q)

24. g(t) = 1
1 - t

+ 21 + t - 3.1, (-1, 1)

25. r(u) = u + sin2 au
3
b - 8, (-q, q)

26. r(u) = 2u - cos2 u + 22, (-q, q)

27. r(u) = sec u - 1
u3 + 5, (0, p>2)

28. r(u) = tan u - cot u - u, (0, p>2)

Finding Functions from Derivatives
29. Suppose that ƒ(-1) = 3 and that ƒ′(x) = 0 for all x. Must 

ƒ(x) = 3 for all x? Give reasons for your answer.

30. Suppose that ƒ(0) = 5 and that ƒ′(x) = 2 for all x. Must ƒ(x) =  
2x + 5 for all x? Give reasons for your answer.

31. Suppose that ƒ′(x) = 2x for all x. Find ƒ(2) if

 a. ƒ(0) = 0  b. ƒ(1) = 0  c. ƒ(-2) = 3.

32. What can be said about functions whose derivatives are constant? 
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given  
derivative.

33. a. y′ = x b. y′ = x2 c. y′ = x3

34.  a. y′ = 2x b. y′ = 2x - 1 c. y′ = 3x2 + 2x - 1

35.  a. y′ = -  
1
x2 b. y′ = 1 - 1

x2 c. y′ = 5 + 1
x2

exercises 4.2
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theory and examples
57. The geometric mean of a and b The geometric mean of  

two positive numbers a and b is the number 2ab. Show that  
the value of c in the conclusion of the Mean Value Theorem  
for ƒ(x) = 1>x on an interval of positive numbers 
3a, b4  is c = 2ab.

58. The arithmetic mean of a and b The arithmetic mean of two 
numbers a and b is the number (a + b)>2. Show that the value of 
c in the conclusion of the Mean Value Theorem for ƒ(x) = x2 on 
any interval 3a, b4  is c = (a + b)>2.

59.  Graph the function

ƒ(x) = sin x sin (x + 2) - sin2 (x + 1).

  What does the graph do? Why does the function behave this way? 
Give reasons for your answers.

60. Rolle’s Theorem

 a. Construct a polynomial ƒ(x) that has zeros at x = -2, -1, 0, 
1, and 2.

 b. Graph ƒ and its derivative ƒ′ together. How is what you see 
related to Rolle’s Theorem?

 c. Do g(x) = sin x and its derivative g′ illustrate the same phe-
nomenon as ƒ and ƒ′?

61. Unique solution Assume that ƒ is continuous on 3a, b4  and 
differentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have 
opposite signs and that ƒ′ ≠ 0 between a and b. Show that 
ƒ(x) = 0 exactly once between a and b.

62. Parallel tangents Assume that ƒ and g are differentiable on 
3a, b4  and that ƒ(a) = g(a) and ƒ(b) = g(b). Show that there is 
at least one point between a and b where the tangents to the 
graphs of ƒ and g are parallel or the same line. Illustrate with a 
sketch.

63. Suppose that ƒ′(x) … 1 for 1 … x … 4. Show that ƒ(4) -  
ƒ(1) … 3.

64. Suppose that 0 6 ƒ′(x) 6 1>2 for all x-values. Show that ƒ(-1) 6  
ƒ(1) 6 2 + ƒ(-1).

65. Show that 0 cos x - 1 0 … 0 x 0  for all x-values. (Hint: Consider 
ƒ(t) = cos t on 30, x4 .)

66. Show that for any numbers a and b, the sine inequality 0 sin b -  
sin a 0 … 0 b - a 0  is true.

67. If the graphs of two differentiable functions ƒ(x) and g(x) start at 
the same point in the plane and the functions have the same rate 
of change at every point, do the graphs have to be identical? Give 
reasons for your answer.

68. If 0 ƒ(w) - ƒ(x) 0 … 0w - x 0  for all values w and x and ƒ is a dif-
ferentiable function, show that -1 … ƒ′(x) … 1 for all x-values.

69. Assume that ƒ is differentiable on a … x … b and that ƒ(b) 6 ƒ(a). 
Show that ƒ′ is negative at some point between a and b.

70. Let ƒ be a function defined on an interval 3a, b4 . What condi-
tions could you place on ƒ to guarantee that

min ƒ′ …
ƒ(b) - ƒ(a)

b - a
… max ƒ′,

  where min ƒ′ and max ƒ′ refer to the minimum and maximum 
values of ƒ′ on 3a, b4 ? Give reasons for your answers.

t

36. a. y′ = 1

22x
 b. y′ = 12x

 c. y′ = 4x - 12x

37. a. y′ = sin 2t b. y′ = cos 
t
2

 c. y′ = sin 2t + cos 
t
2

38. a. y′ = sec2 u b. y′ = 2u c. y′ = 2u - sec2 u

In Exercises 39–42, find the function with the given derivative whose 
graph passes through the point P.

39. ƒ′(x) = 2x - 1, P(0, 0)

40. g′(x) = 1
x2 + 2x, P(-1, 1)

41. ƒ′(x) = e2x,  Pa0, 
3
2
b

42. r′(t) = sec t tan t - 1, P(0, 0)

Finding Position from velocity or Acceleration
Exercises 43–46 give the velocity y = ds>dt and initial position of an 
object moving along a coordinate line. Find the object’s position at 
time t.

43. y = 9.8t + 5, s(0) = 10

44. y = 32t - 2, s(0.5) = 4

45. y = sin pt, s(0) = 0

46. y = 2
p cos 

2t
p , s(p2) = 1

Exercises 47–50 give the acceleration a = d2s>dt2, initial velocity, 
and initial position of an object moving on a coordinate line. Find the 
object’s position at time t.

47. a = et, y(0) = 20, s(0) = 5

48. a = 9.8, y(0) = -3, s(0) = 0

49. a = -4 sin 2t, y(0) = 2, s(0) = -3

50. a = 9
p2 cos 

3t
p , y(0) = 0, s(0) = -1

Applications
 51. Temperature change It took 14 sec for a mercury thermometer 

to rise from -19°C to 100°C when it was taken from a freezer 
and placed in boiling water. Show that somewhere along the way 
the mercury was rising at the rate of 8.5°C>sec.

52. A trucker handed in a ticket at a toll booth showing that in 2 hours 
she had covered 159 mi on a toll road with speed limit 65 mph. 
The trucker was cited for speeding. Why?

53. Classical accounts tell us that a 170-oar trireme (ancient Greek or 
Roman warship) once covered 184 sea miles in 24 hours. Explain 
why at some point during this feat the trireme’s speed exceeded 
7.5 knots (sea or nautical miles per hour).

54. A marathoner ran the 26.2-mi New York City Marathon in 2.2 hours. 
Show that at least twice the marathoner was running at exactly 11 
mph, assuming the initial and final speeds are zero.

55. Show that at some instant during a 2-hour automobile trip the car’s 
speedometer reading will equal the average speed for the trip.

56. Free fall on the moon On our moon, the acceleration of gravity 
is 1.6 m>sec2. If a rock is dropped into a crevasse, how fast will it 
be going just before it hits bottom 30 sec later?
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71. Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 + x4 cos x) for 0 … x … 0.1 and ƒ(0) = 1.

72. Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 - x4) for 0 … x … 0.1 and ƒ(0) = 2.

73. Let ƒ be differentiable at every value of x and suppose that 
ƒ(1) = 1, that ƒ′ 6 0 on (-q, 1), and that ƒ′ 7 0 on (1, q).

 a. Show that ƒ(x) Ú 1 for all x.

 b. Must ƒ′(1) = 0? Explain.

74. Let ƒ(x) = px2 + qx + r be a quadratic function defined on a 
closed interval 3a, b4 . Show that there is exactly one point c in (a, b) 
at which ƒ satisfies the conclusion of the Mean Value Theorem.

t

t

75. Use the same-derivative argument, as was done to prove the 
Product and Power Rules for logarithms, to prove the Quotient 
Rule property.

76. Use the same-derivative argument to prove the identities

 a. tan-1 x + cot-1 x = p

2
  b. sec-1 x + csc-1 x = p

2

77. Starting with the equation ex1ex2 = ex1 + x2, derived in the text, 
show that e-x = 1>ex for any real number x. Then show that 
ex1>ex2 = ex1 - x2 for any numbers x1 and x2.

78. Show that (ex1)x2 = ex1 x2 = (ex2)x1 for any numbers x1 and x2.

4.3 monotonic Functions and the First Derivative test

In sketching the graph of a differentiable function, it is useful to know where it increases 
(rises from left to right) and where it decreases (falls from left to right) over an interval. This 
section gives a test to determine where it increases and where it decreases. We also show how 
to test the critical points of a function to identify whether local extreme values are present.

increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive 
derivatives are increasing functions and functions with negative derivatives are decreasing 
functions. A function that is increasing or decreasing on an interval is said to be mono-
tonic on the interval.

COrOLLAry 3 Suppose that ƒ is continuous on 3a, b4  and differentiable on 
(a, b).

If ƒ′(x) 7 0 at each point x∊(a, b), then ƒ is increasing on 3a, b4 .
If ƒ′(x) 6 0 at each point x∊(a, b), then ƒ is decreasing on 3a, b4 .

Proof  Let x1 and x2 be any two points in 3a, b4  with x1 6 x2. The Mean Value Theo-
rem applied to ƒ on 3x1, x24  says that

ƒ(x2) - ƒ(x1) = ƒ′(c)(x2 - x1)

for some c between x1 and x2. The sign of the right-hand side of this equation is the same 
as the sign of ƒ ′(c) because x2 - x1 is positive. Therefore, ƒ(x2) 7 ƒ(x1) if ƒ′ is positive 
on (a, b) and ƒ(x2) 6 ƒ(x1) if ƒ′ is negative on (a, b). 

Corollary 3 tells us that ƒ(x) = 2x is increasing on the interval 30, b4  for any 
b 7 0 because ƒ′(x) = 1>2x is positive on (0, b). The derivative does not exist at x = 0, 
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so 
ƒ(x) = 2x is increasing on 30, q).

To find the intervals where a function ƒ is increasing or decreasing, we first find all of 
the critical points of ƒ. If a 6 b are two critical points for ƒ, and if the derivative ƒ′ is 
continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem 
applied to ƒ′, the derivative must be everywhere positive on (a, b), or everywhere negative 
there. One way we can determine the sign of ƒ′ on (a, b) is simply by evaluating the 
derivative at a single point c in (a, b). If ƒ′(c) 7 0, then ƒ′(x) 7 0 for all x in (a, b) so ƒ 
is increasing on 3a, b4  by Corollary 3; if ƒ′(c) 6 0, then ƒ is decreasing on 3a, b4 . The 
next example illustrates how we use this procedure.



We used “strict” less-than inequalities to identify the intervals in the summary table 
for Example 1, since open intervals were specified. Corollary 3 says that we could use …
inequalities as well. That is, the function ƒ in the example is increasing on -q 6 x … -2,
decreasing on -2 … x … 2, and increasing on 2 … x 6 q. We do not talk about whether 
a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, ƒ′ 6 0 immediately to the left 
and ƒ′ 7 0 immediately to the right. (If the point is an endpoint, there is only one side to 
consider.) Thus, the function is decreasing on the left of the minimum value and it is 
increasing on its right. Similarly, at the points where ƒ has a maximum value, ƒ′ 7 0
immediately to the left and ƒ′ 6 0 immediately to the right. Thus, the function is increas-
ing on the left of the maximum value and decreasing on its right. In summary, at a local 
extreme point, the sign of ƒ′(x) changes.

EXAMPLE 1  Find the critical points of ƒ(x) = x3 - 12x - 5 and identify the open 
intervals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

ƒ′(x) = 3x2 - 12 = 3(x2 - 4)

= 3(x + 2)(x - 2)

is zero at x = -2 and x = 2. These critical points subdivide the domain of ƒ to create non-
overlapping open intervals (-q, -2), (-2, 2), and (2, q) on which ƒ′ is either positive or 
negative. We determine the sign of ƒ′ by evaluating ƒ′ at a convenient point in each subin-
terval. The behavior of ƒ is determined by then applying Corollary 3 to each subinterval. 
The results are summarized in the following table, and the graph of ƒ is given in Figure 4.20.

HISTORICAL BIOGRAPHY

Edmund Halley
(1656–1742)

These observations lead to a test for the presence and nature of local extreme values 
of differentiable functions.

x

(−2, 11)

(2, −21)

y

1 2 3 4−2−3−4 −1 0

−10

−20
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20

y = x3 − 12x − 5

FIGURE 4.20 The function ƒ(x) =
x3 - 12x - 5 is monotonic on three 
separate intervals (Example 1).

Interval  -q 6 x 6 -2 -2 6 x 6 2 2 6 x 6 q

ƒ′ evaluated ƒ′(-3) = 15 ƒ′(0) = -12 ƒ′(3) = 15

Sign of ƒ′ + - +

Behavior of ƒ x
−3 −2 −1 0 1 2 3

decreasing increasingincreasing

x

y= f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
f ′  undefined

Local min

Local max
f ′ = 0 No extremum

f ′ = 0

No extremum
f ′ = 0

Local min
f ′ = 0

f ′ < 0
f ′ > 0

f ′ > 0

f ′ > 0
f ′ < 0

f ′ < 0

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The 
first derivative changes sign at a critical point where a local extremum occurs.
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The test for local extrema at endpoints is similar, but there is only one side to consider in 
determining whether ƒ is increasing or decreasing, based on the sign of ƒ′.

Proof of the First Derivative test  Part (1). Since the sign of ƒ′ changes from nega-
tive to positive at c, there are numbers a and b such that a 6 c 6 b, ƒ′ 6 0 on (a, c), and 
ƒ′ 7 0 on (c, b). If x∊(a, c), then ƒ(c) 6 ƒ(x) because ƒ′ 6 0 implies that ƒ is decreas-
ing on 3a, c4 . If x∊(c, b), then ƒ(c) 6 ƒ(x) because ƒ′ 7 0 implies that ƒ is increasing 
on 3c, b4 . Therefore, ƒ(x) Ú ƒ(c) for every x∊(a, b). By definition, ƒ has a local mini-
mum at c.

Parts (2) and (3) are proved similarly. 

ExamplE 2  Find the critical points of

ƒ(x) = x1>3(x - 4) = x4>3 - 4x1>3.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

solution The function ƒ is continuous at all x since it is the product of two continuous 
functions, x1>3 and (x - 4). The first derivative

 ƒ′(x) = d
dx

  (x4>3 - 4x1>3) = 4
3 x1>3 - 4

3 x-2>3

 = 4
3 x-2>3(x - 1) =

4(x - 1)

3x2>3

is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the 
critical points x = 0 and x = 1 are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into open intervals on which ƒ′ is either posi-
tive or negative. The sign pattern of ƒ′ reveals the behavior of ƒ between and at the critical 
points, as summarized in the following table.

First Derivative Test for Local Extrema 

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is differ-
entiable at every point in some interval containing c except possibly at c itself. 
Moving across this interval from left to right,

1. if ƒ′ changes from negative to positive at c, then ƒ has a local minimum at c;

2. if ƒ′ changes from positive to negative at c, then ƒ has a local maximum at c;

3.  if ƒ′ does not change sign at c (that is, ƒ′ is positive on both sides of c or 
negative on both sides), then ƒ has no local extremum at c.

Corollary 3 to the Mean Value Theorem implies that ƒ decreases on (-q, 0), 
decreases on (0, 1), and increases on (1, q). The First Derivative Test for Local Extrema 
tells us that ƒ does not have an extreme value at x = 0 (ƒ′ does not change sign) and that 
ƒ has a local minimum at x = 1 (ƒ′ changes from negative to positive).

The value of the local minimum is ƒ(1) = 11>3(1 - 4) = -3. This is also an absolute 
minimum since ƒ is decreasing on (-q, 1) and increasing on (1, q). Figure 4.22 shows 
this value in relation to the function’s graph.

Note that lim
 

xS0 ƒ′(x) = -q, so the graph of ƒ has a vertical tangent at the origin. 
 

x

y
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1

−1

−2
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4
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−1

y = x1�3(x − 4)

(1, −3)

Figure 4.22 The function ƒ(x) =  
x1>3(x - 4) decreases when x 6 1 and 
increases when x 7 1 (Example 2).

Interval x 6 0 0 6 x 6 1 x 7 1

Sign of ƒ′ -  -  +

Behavior of ƒ x
−1 0 1 2

decreasing increasingdecreasing
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ExamplE 3  Find the critical points of

ƒ(x) = (x2 - 3)ex.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

solution The function ƒ is continuous and differentiable for all real numbers, so the 
critical points occur only at the zeros of ƒ′.

Using the Derivative Product Rule, we find the derivative

 ƒ′(x) = (x2 - 3) # d
dx

 ex + d
dx

  (x2 - 3) # ex

 = (x2 - 3) # ex + (2x) # ex

 = (x2 + 2x - 3)ex.

Since ex is never zero, the first derivative is zero if and only if

 x2 + 2x - 3 = 0

 (x + 3)(x - 1) = 0.

The zeros x = -3 and x = 1 partition the x-axis into open intervals as follows.

Interval x 6 -3 -3 6 x 6 1 1 6 x

Sign of ƒ′ +  -  +

Behavior of ƒ x
−3−4 −2 −1 0 1 2 3

decreasing increasingincreasing

We can see from the table that there is a local maximum (about 0.299) at x = -3 and 
a local minimum (about -5.437) at x = 1. The local minimum value is also an abso-
lute minimum because ƒ(x) 7 0 for 0 x 0 7 23. There is no absolute maximum. The 
function increases on (-q, -3) and (1, q) and decreases on (-3, 1). Figure 4.23 
shows the graph. 

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives 
are given in Exercises 1–14:

  a. What are the critical points of ƒ?

  b. On what open intervals is ƒ increasing or decreasing?

  c.  At what points, if any, does ƒ assume local maximum and mini-
mum values?

 1. ƒ′(x) = x(x - 1) 2. ƒ′(x) = (x - 1)(x + 2)

 3. ƒ′(x) = (x - 1)2(x + 2) 4. ƒ′(x) = (x - 1)2(x + 2)2

 5. ƒ′(x) = (x - 1)e-x

 6. ƒ′(x) = (x - 7)(x + 1)(x + 5)

 7. ƒ′(x) =
x2(x - 1)

x + 2
, x ≠ -2

 8. ƒ′(x) =
(x - 2)(x + 4)
(x + 1)(x - 3)

 , x ≠ -1, 3

 9. ƒ′(x) = 1 - 4
x2 , x ≠ 0 10. ƒ′(x) = 3 - 62x

 , x ≠ 0

 11. ƒ′(x) = x-1>3(x + 2) 12. ƒ′(x) = x-1>2(x - 3)

13. ƒ′(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

14. ƒ′(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

identifying extrema
In Exercises 15–44:

  a.  Find the open intervals on which the function is increasing and 
decreasing.

  b.  Identify the function’s local and absolute extreme values, if 
any, saying where they occur.

15.   16. 

y = f (x)

y

x
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−1

1

2

2 31−1−2−3

y = f (x)
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1
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2 31−1−2−3

exercises 4.3
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y y = (x2 − 3)ex

Figure 4.23 The graph of 
ƒ(x) = (x2 - 3)ex (Example 3).
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57. ƒ(x) = sin 2x, 0 … x … p

58. ƒ(x) = sin x - cos x, 0 … x … 2p

59. ƒ(x) = 23 cos x + sin x, 0 … x … 2p

60. ƒ(x) = -2x + tan x, 
-p

2
6 x 6 p

2

61. ƒ(x) = x
2

- 2 sin 
x
2

, 0 … x … 2p

62. ƒ(x) = -2 cos x - cos2 x, -p … x … p

63. ƒ(x) = csc2 x - 2 cot x, 0 6 x 6 p

64. ƒ(x) = sec2 x - 2 tan x, 
-p

2
6 x 6 p

2

theory and examples
Show that the functions in Exercises 65 and 66 have local extreme 
values at the given values of u, and say which kind of local extreme 
the function has.

65. h(u) = 3 cos 
u

2
, 0 … u … 2p, at u = 0 and u = 2p

66. h(u) = 5 sin 
u

2
, 0 … u … p, at u = 0 and u = p

67. Sketch the graph of a differentiable function y = ƒ(x) through 
the point (1, 1) if ƒ′(1) = 0 and

 a. ƒ′(x) 7 0 for x 6 1 and ƒ′(x) 6 0 for x 7 1;

 b. ƒ′(x) 6 0 for x 6 1 and ƒ′(x) 7 0 for x 7 1;

 c. ƒ′(x) 7 0 for x ≠ 1;

 d. ƒ′(x) 6 0 for x ≠ 1.

68. Sketch the graph of a differentiable function y = ƒ(x) that has

 a. a local minimum at (1, 1) and a local maximum at (3, 3);

 b. a local maximum at (1, 1) and a local minimum at (3, 3);

 c. local maxima at (1, 1) and (3, 3);

 d. local minima at (1, 1) and (3, 3).

69. Sketch the graph of a continuous function y = g(x) such that

 a. g(2) = 2, 0 6 g′ 6 1 for x 6 2, g′(x) S 1- as x S 2-, 
-1 6 g′ 6 0 for x 7 2, and g′(x) S -1+ as x S 2+;

 b. g(2) = 2, g′ 6 0 for x 6 2, g′(x) S -q as x S 2-, 
g′ 7 0 for x 7 2, and g′(x) S q as x S 2+.

70. Sketch the graph of a continuous function y = h(x) such that

 a. h(0) = 0, -2 … h(x) … 2 for all x, h′(x) S q as x S 0-, 
and h′(x) S q as x S 0+;

 b. h(0) = 0, -2 … h(x) … 0 for all x, h′(x) S q as x S 0-, 
and h′(x) S -q as x S 0+.

71. Discuss the extreme-value behavior of the function ƒ(x) =  
x sin (1>x), x ≠ 0. How many critical points does this function 
have? Where are they located on the x-axis? Does ƒ have an abso-
lute minimum? An absolute maximum? (See Exercise 49 in  
Section 2.3.)

72. Find the open intervals on which the function ƒ(x) = ax2 +  
bx + c, a ≠ 0, is increasing and decreasing. Describe the  
reasoning behind your answer.

73. Determine the values of constants a and b so that ƒ(x) =  
ax2 + bx has an absolute maximum at the point (1, 2).

74. Determine the values of constants a, b, c, and d so that 
ƒ(x) = ax3 + bx2 + cx + d has a local maximum at the point 
(0, 0) and a local minimum at the point (1, -1).

17.   18. 

19. g(t) = - t2 - 3t + 3 20. g(t) = -3t2 + 9t + 5

21. h(x) = -x3 + 2x2 22. h(x) = 2x3 - 18x

23. ƒ(u) = 3u2 - 4u3 24. ƒ(u) = 6u - u3

 25. ƒ(r) = 3r3 + 16r 26. h(r) = (r + 7)3

 27. ƒ(x) = x4 - 8x2 + 16 28. g(x) = x4 - 4x3 + 4x2

 29. H(t) = 3
2

 t4 - t6 30. K(t) = 15t3 - t5

 31. ƒ(x) = x - 62x - 1 32. g(x) = 42x - x2 + 3

 33. g(x) = x28 - x2 34. g(x) = x225 - x

 35. ƒ(x) = x2 - 3
x - 2

, x ≠ 2 36. ƒ(x) = x3

3x2 + 1
 37. ƒ(x) = x1>3(x + 8) 38. g(x) = x2>3(x + 5)

 39. h(x) = x1>3(x2 - 4) 40. k(x) = x2>3(x2 - 4)

 41. ƒ(x) = e2x + e-x 42. ƒ(x) = e2x

 43. ƒ(x) = x ln x 44. ƒ(x) = x2 ln x

In Exercises 45–56:

  a.  Identify the function’s local extreme values in the given 
domain, and say where they occur.

  b. Which of the extreme values, if any, are absolute?

  c.  Support your findings with a graphing calculator or computer 
grapher.

45. ƒ(x) = 2x - x2, -q 6 x … 2

46. ƒ(x) = (x + 1)2, -q 6 x … 0

47. g(x) = x2 - 4x + 4, 1 … x 6 q
48. g(x) = -x2 - 6x - 9, -4 … x 6 q
49. ƒ(t) = 12t - t3, -3 … t 6 q
50. ƒ(t) = t3 - 3t2, -q 6 t … 3

51. h(x) = x3

3
- 2x2 + 4x, 0 … x 6 q

52. k(x) = x3 + 3x2 + 3x + 1, -q 6 x … 0

53. ƒ(x) = 225 - x2, -5 … x … 5

54. ƒ(x) = 2x2 - 2x - 3, 3 … x 6 q

55. g(x) = x - 2
x2 - 1

, 0 … x 6 1

56. g(x) = x2

4 - x2 , -2 6 x … 1

In Exercises 57–64:

  a.  Find the local extrema of each function on the given interval, 
and say where they occur.

  b.  Graph the function and its derivative together. Comment on the 
behavior of ƒ in relation to the signs and values of ƒ′.
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75. Locate and identify the absolute extreme values of

 a. ln (cos x) on 3-p>4, p>34 ,
 b. cos (ln x) on 31>2, 24 .

76.  a.  Prove that ƒ(x) = x - ln x is increasing for x 7 1.

 b. Using part (a), show that ln x 6 x if x 7 1.

77. Find the absolute maximum and minimum values of ƒ(x) =  
ex - 2x on 30, 14 .

78. Where does the periodic function ƒ(x) = 2esin (x>2) take on its 
extreme values and what are these values?

x

y

0

y = 2esin (x�2)

79. Find the absolute maximum value of ƒ(x) = x2 ln (1>x) and say 
where it is assumed.

80. a. Prove that ex Ú 1 + x if x Ú 0.

 b. Use the result in part (a) to show that

ex Ú 1 + x + 1
2

 x2.

81. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x1 and x2 in I, x2 ≠ x1 implies 
ƒ(x2) ≠ ƒ(x1).

Use the results of Exercise 81 to show that the functions in Exercises 
82–86 have inverses over their domains. Find a formula for dƒ -1>dx 
using Theorem 3, Section 3.8.

82. ƒ(x) = (1>3)x + (5>6) 83. ƒ(x) = 27x3

84. ƒ(x) = 1 - 8x3 85. ƒ(x) = (1 - x)3

86. ƒ(x) = x5>3

DEfinition The graph of a differentiable function y = ƒ(x) is

(a)  concave up on an open interval I if ƒ′ is increasing on I;

(b) concave down on an open interval I if ƒ′ is decreasing on I.

If y = ƒ(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theorem 
to the first derivative function. We conclude that ƒ′ increases if ƒ″ 7 0 on I, and decreases 
if ƒ″ 6 0.

4.4 Concavity and Curve sketching

We have seen how the first derivative tells us where a function is increasing, where it is 
decreasing, and whether a local maximum or local minimum occurs at a critical point. In 
this section we see that the second derivative gives us information about how the graph of 
a differentiable function bends or turns. With this knowledge about the first and second 
derivatives, coupled with our previous understanding of symmetry and asymptotic behav-
ior studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. By 
organizing all of these ideas into a coherent procedure, we give a method for sketching 
graphs and revealing visually the key features of functions. Identifying and knowing the 
locations of these features is of major importance in mathematics and its applications to 
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portions 
defined on the intervals (-q, 0) and (0, q) turn in different ways. As we approach the 
origin from the left along the curve, the curve turns to our right and falls below its tan-
gents. The slopes of the tangents are decreasing on the interval (-q, 0). As we move 
away from the origin along the curve to the right, the curve turns to our left and rises above 
its tangents. The slopes of the tangents are increasing on the interval (0, q). This turning 
or bending behavior defines the concavity of the curve.
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Figure 4.24 The graph of ƒ(x) = x3 
is concave down on (-q, 0) and concave 
up on (0, q) (Example 1a).



If y = ƒ(x) is twice-differentiable, we will use the notations ƒ″ and y″ interchangeably 
when denoting the second derivative.

EXAMPLE 1
(a) The curve y = x3 (Figure 4.24) is concave down on (-q, 0) where y″ = 6x 6 0 and 

concave up on (0, q) where y″ = 6x 7 0.

(b) The curve y = x2 (Figure 4.25) is concave up on (-q, q) because its second deriva-
tive y″ = 2 is always positive.

EXAMPLE 2  Determine the concavity of y = 3 + sin x on 30, 2p4 .

Solution The first derivative of y = 3 + sin x is y′ = cos x, and the second derivative 
is y″ = -sin x. The graph of y = 3 + sin x is concave down on (0, p), where y″ = -sin x
is negative. It is concave up on (p, 2p), where y″ = -sin x is positive (Figure 4.26).

Points of Inflection

The curve y = 3 + sin x in Example 2 changes concavity at the point (p, 3). Since the 
first derivative y′ = cos x exists for all x, we see that the curve has a tangent line of slope 
-1 at the point (p, 3). This point is called a point of inflection of the curve. Notice from 
Figure 4.26 that the graph crosses its tangent line at this point and that the second deriva-
tive y″ = -sin x has value 0 when x = p. In general, we have the following definition.

DEFINITION A point (c, ƒ(c)) where the graph of a function has a tangent line 
and where the concavity changes is a point of inflection.

At a point of inflection (c, ƒ(c)), either ƒ″(c) = 0 or ƒ″(c) fails to exist.

The Second Derivative Test for Concavity

Let y = ƒ(x) be twice-differentiable on an interval I.

1. If ƒ″ 7 0 on I, the graph of ƒ over I is concave up.

2. If ƒ″ 6 0 on I, the graph of ƒ over I is concave down.

We observed that the second derivative of ƒ(x) = 3 + sin x is equal to zero at the 
inflection point (p, 3). Generally, if the second derivative exists at a point of inflection 
(c, ƒ(c)), then ƒ″(c) = 0. This follows immediately from the Intermediate Value Theorem 
whenever ƒ″ is continuous over an interval containing x = c because the second deriva-
tive changes sign moving across this interval. Even if the continuity assumption is dropped, 
it is still true that ƒ″(c) = 0, provided the second derivative exists (although a more 
advanced argument is required in this noncontinuous case). Since a tangent line must exist 
at the point of inflection, either the first derivative ƒ′(c) exists (is finite) or the graph has a 
vertical tangent at the point. At a vertical tangent neither the first nor second derivative 
exists. In summary, we conclude the following result.

The next example illustrates a function having a point of inflection where the first 
derivative exists, but the second derivative fails to exist.
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FIGURE 4.25 The graph of ƒ(x) = x2

is concave up on every interval 
(Example 1b).
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FIGURE 4.26 Using the sign of y″ to 
determine the concavity of y (Example 2).

4.4  Concavity and Curve Sketching 245



246 Chapter 4: Applications of Derivatives

ExamplE 3  The graph of ƒ(x) = x5>3 has a horizontal tangent at the origin because 
ƒ′(x) = (5>3)x2>3 = 0 when x = 0. However, the second derivative

ƒ″(x) = d
dx

  a53 x2>3b = 10
9  x-1>3

fails to exist at x = 0. Nevertheless, ƒ″(x) 6 0 for x 6 0 and ƒ″(x) 7 0 for x 7 0, so 
the second derivative changes sign at x = 0 and there is a point of inflection at the origin. 
The graph is shown in Figure 4.27. 

Here is an example showing that an inflection point need not occur even though both 
derivatives exist and ƒ″ = 0.

ExamplE 4  The curve y = x4 has no inflection point at x = 0 (Figure 4.28). Even 
though the second derivative y″ = 12x2 is zero there, it does not change sign. 

As our final illustration, we show a situation in which a point of inflection occurs at a 
vertical tangent to the curve where neither the first nor the second derivative exists.

ExamplE 5  The graph of y = x1>3 has a point of inflection at the origin because the 
second derivative is positive for x 6 0 and negative for x 7 0:

y″ = d2

dx2  1x1>32 = d
dx

  a13 x-2>3b = -  29 x-5>3.

However, both y′ = x-2>3>3 and y″ fail to exist at x = 0, and there is a vertical tangent 
there. See Figure 4.29. 

Caution Example 4 in Section 4.1 (Figure 4.9) shows that the function ƒ(x) = x2>3 does 
not have a second derivative at x = 0 and does not have a point of inflection there (there is 
no change in concavity at x = 0). Combined with the behavior of the function in Example 
5 above, we see that when the second derivative does not exist at x = c, an inflection 
point may or may not occur there. So we need to be careful about interpreting functional 
behavior whenever first or second derivatives fail to exist at a point. At such points the 
graph can have vertical tangents, corners, cusps, or various discontinuities.

To study the motion of an object moving along a line as a function of time, we often 
are interested in knowing when the object’s acceleration, given by the second derivative, is 
positive or negative. The points of inflection on the graph of the object’s position function 
reveal where the acceleration changes sign.

ExamplE 6  A particle is moving along a horizontal coordinate line (positive to the 
right) with position function

s(t) = 2t3 - 14t2 + 22t - 5,  t Ú 0.

Find the velocity and acceleration, and describe the motion of the particle.

solution The velocity is

y(t) = s′(t) = 6t2 - 28t + 22 = 2(t - 1)(3t - 11),

and the acceleration is

a(t) = y′(t) = s″(t) = 12t - 28 = 4(3t - 7).

When the function s(t) is increasing, the particle is moving to the right; when s(t) is 
decreasing, the particle is moving to the left.

Notice that the first derivative (y = s′) is zero at the critical points t = 1 and t = 11>3.
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1

0

y = x5�3

x

y

Point of
in�ection

−1

Figure 4.27 The graph of ƒ(x) = x5>3 
has a horizontal tangent at the origin where 
the concavity changes, although ƒ″ does 
not exist at x = 0 (Example 3).
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Figure 4.28 The graph of y = x4 
has no inflection point at the origin, even 
though y″ = 0 there (Example 4).
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Figure 4.29 A point of inflection 
where y′ and y″ fail to exist (Example 5).



 4.4  Concavity and Curve Sketching 247

The particle is moving to the right in the time intervals 30, 1) and (11>3, q), and moving 
to the left in (1, 11>3). It is momentarily stationary (at rest) at t = 1 and t = 11>3.

The acceleration a(t) = s″(t) = 4(3t - 7) is zero when t = 7>3.

theOrem 5—second Derivative test for Local extrema Suppose ƒ″ is 
continuous on an open interval that contains x = c.

1. If ƒ′(c) = 0 and ƒ″(c) 6 0, then ƒ has a local maximum at x = c.

2. If ƒ′(c) = 0 and ƒ″(c) 7 0, then ƒ has a local minimum at x = c.

3. If ƒ′(c) = 0 and ƒ″(c) = 0, then the test fails. The function ƒ may have a 
local maximum, a local minimum, or neither.

Interval 0 6 t 6 1 1 6 t 6 11>3 11>3 6 t

Sign of Y = s′ +  -  +
Behavior of s increasing decreasing increasing

Particle motion right left right

Interval 0 6 t 6 7>3 7>3 6 t

Sign of a = s″ -  +
Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and 
begins moving to the left at t = 1 under the influence of the leftward acceleration over the 
time interval 30, 7>3). The acceleration then changes direction at t = 7>3 but the particle 
continues moving leftward, while slowing down under the rightward acceleration. At 
t = 11>3 the particle reverses direction again: moving to the right in the same direction as 
the acceleration, so it is speeding up. 

second Derivative test for Local extrema

Instead of looking for sign changes in ƒ′ at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

Proof  Part (1). If ƒ″(c) 6 0, then ƒ″(x) 6 0 on some open interval I containing the 
point c, since ƒ″ is continuous. Therefore, ƒ′ is decreasing on I. Since ƒ′(c) = 0, the sign 
of ƒ′ changes from positive to negative at c so ƒ has a local maximum at c by the First 
Derivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions y = x4, y = -x4, and y = x3. For each 

function, the first and second derivatives are zero at x = 0. Yet the function y = x4 has a 
local minimum there, y = -x4 has a local maximum, and y = x3 is increasing in any 
open interval containing x = 0 (having neither a maximum nor a minimum there). Thus 
the test fails. 

This test requires us to know ƒ″ only at c itself and not in an interval about c. This 
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if ƒ″ = 0 or if ƒ″ does not exist at x = c. When this happens, use the First Deriva-
tive Test for local extreme values.

f ′ = 0, f ″ < 0
1 local max

f ′ = 0, f ″ > 0
1 local min
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 (a) Using the First Derivative Test for local extrema and the table above, we see that there 
is no extremum at x = 0 and a local minimum at x = 3.

 (b) Using the table above, we see that ƒ is decreasing on (-q, 04  and 30, 34 , and 
increasing on 33, q).

 (c) ƒ″(x) = 12x2 - 24x = 12x(x - 2) is zero at x = 0 and x = 2. We use these points 
to define intervals where ƒ is concave up or concave down.

Together ƒ′ and ƒ″ tell us the shape of the function’s graph—that is, where the critical 
points are located and what happens at a critical point, where the function is increasing and 
where it is decreasing, and how the curve is turning or bending as defined by its concavity. 
We use this information to sketch a graph of the function that captures its key features.

ExamplE 7  Sketch a graph of the function

ƒ(x) = x4 - 4x3 + 10

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

(e) Plot some specific points, such as local maximum and minimum points, points of 
inflection, and intercepts. Then sketch the curve.

solution The function ƒ is continuous since ƒ′(x) = 4x3 - 12x2 exists. The domain of 
ƒ is (-q, q), and the domain of ƒ′ is also (-q, q). Thus, the critical points of ƒ occur 
only at the zeros of ƒ′. Since

ƒ′(x) = 4x3 - 12x2 = 4x2(x - 3),

the first derivative is zero at x = 0 and x = 3. We use these critical points to define inter-
vals where ƒ is increasing or decreasing.

Interval x 6 0 0 6 x 6 3 3 6 x

Sign of ƒ′ -  -  +
Behavior of ƒ decreasing decreasing increasing

Interval x 6 0 0 6 x 6 2 2 6 x

Sign of ƒ″ +  -  +
Behavior of ƒ concave up concave down concave up

x * 0 0 * x * 2 2 * x * 3 3 * x

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

  We see that ƒ is concave up on the intervals (-q, 0) and (2, q), and concave down 
on (0, 2).

 (d) Summarizing the information in the last two tables, we obtain the following.



The general shape of the curve is shown in the accompanying figure.
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(e) Plot the curve’s intercepts (if possible) and the points where y′ and y″ are zero. Indicate 
any local extreme values and inflection points. Use the general shape as a guide to sketch 
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of ƒ.

The steps in Example 7 give a procedure for graphing the key features of a function. 
Asymptotes were defined and discussed in Section 2.6. We can find them for rational functions, 
and the methods in the next section give tools to help find them for more general functions.

Procedure for Graphing y = ƒ(x)
1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find the derivatives y′ and y″.
3. Find the critical points of ƒ, if any, and identify the function’s behavior at 

each one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the 
curve.

6. Identify any asymptotes that may exist.

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and 
sketch the curve together with any asymptotes that exist.

EXAMPLE 8  Sketch the graph of ƒ(x) =
(x + 1)2

1 + x2 .

Solution
1. The domain of ƒ is (-q, q) and there are no symmetries about either axis or the ori-

gin (Section 1.1).

2. Find ƒ′ and ƒ″.

ƒ(x) =
(x + 1)2

1 + x2

x@intercept at x = -1,
y@intercept (y = 1) at 
x = 0

ƒ′(x) =
(1 + x2) # 2(x + 1) - (x + 1)2 # 2x

(1 + x2)2

=
2(1 - x2)

(1 + x2)2 Critical points: x = -1, x = 1

ƒ″(x) =
(1 + x2)2 # 2( -2x) - 2(1 - x2)32(1 + x2) # 2x4

(1 + x2)4

=
4x(x2 - 3)

(1 + x2)3 After some algebra

3. Behavior at critical points. The critical points occur only at x = {1 where ƒ′(x) = 0
(Step 2) since ƒ′ exists everywhere over the domain of ƒ. At x = -1, ƒ″(-1) = 1 7 0,
yielding a relative minimum by the Second Derivative Test. At x = 1, f″(1) = -1 6 0,
yielding a relative maximum by the Second Derivative test.
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FIGURE 4.30 The graph of ƒ(x) =
x4 - 4x3 + 10 (Example 7).
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 4. Increasing and decreasing. We see that on the interval (-q, -1) the derivative 
ƒ′(x) 6 0, and the curve is decreasing. On the interval (-1, 1), ƒ′(x) 7 0 and the 
curve is increasing; it is decreasing on (1, q) where ƒ′(x) 6 0 again.

 5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 
always positive. The second derivative ƒ″ is zero when x = -23, 0, and 23. The sec-
ond derivative changes sign at each of these points: negative on 1-q, -232,  
positive on 1-23, 02, negative on 10, 232, and positive again on 123, q2. Thus 
each point is a point of inflection. The curve is concave down on the interval 
1-q, -232, concave up on 1-23, 02, concave down on 10, 232, and concave up 
again on 123, q2.

 6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and 
denominator by x2 gives

 ƒ(x) =
(x + 1)2

1 + x2 = x2 + 2x + 1
1 + x2   Expanding numerator

 =
1 + (2>x) + (1>x2)

(1>x2) + 1
.   Dividing by x2

  We see that ƒ(x) S 1+ as x S q and that ƒ(x) S 1- as x S -q. Thus, the line 
y = 1 is a horizontal asymptote.

Since ƒ decreases on (-q, -1) and then increases on (-1, 1), we know that 
ƒ(-1) = 0 is a local minimum. Although ƒ decreases on (1, q), it never crosses the 
horizontal asymptote y = 1 on that interval (it approaches the asymptote from above). 
So the graph never becomes negative, and ƒ(-1) = 0 is an absolute minimum as 
well. Likewise, ƒ(1) = 2 is an absolute maximum because the graph never crosses 
the asymptote y = 1 on the interval (-q, -1), approaching it from below. Therefore, 
there are no vertical asymptotes (the range of ƒ is 0 … y … 2).

 7. The graph of ƒ is sketched in Figure 4.31. Notice how the graph is concave down as it 
approaches the horizontal asymptote y = 1 as x S -q, and concave up in its 
approach to y = 1 as x S q. 

ExamplE 9  Sketch the graph of ƒ(x) = x2 + 4
2x

.

solution
 1. The domain of ƒ is all nonzero real numbers. There are no intercepts because neither x 

nor ƒ(x) can be zero. Since ƒ(-x) = -ƒ(x), we note that ƒ is an odd function, so the 
graph of ƒ is symmetric about the origin.

 2. We calculate the derivatives of the function, but first rewrite it in order to simplify our 
computations:

ƒ(x) = x2 + 4
2x

= x
2

+ 2
x   Function simplified for differentiation

ƒ′(x) = 1
2

- 2
x2 = x2 - 4

2x2   Combine fractions to solve easily ƒ′(x) = 0.

ƒ″(x) = 4
x3   Exists throughout the entire domain of ƒ

 3. The critical points occur at x = {2 where ƒ′(x) = 0. Since ƒ″(-2) 6 0 and 
ƒ″(2) 7 0, we see from the Second Derivative Test that a relative maximum occurs 
at x = -2 with ƒ(-2) = -2, and a relative minimum occurs at x = 2 with 
ƒ(2) = 2.

Figure 4.31 The graph of y =
(x + 1)2

1 + x2  

(Example 8).
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 4. On the interval (-q, -2) the derivative ƒ′ is positive because x2 - 4 7 0 so the 
graph is increasing; on the interval (-2, 0) the derivative is negative and the graph is 
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on 
(2, q).

 5. There are no points of inflection because ƒ″(x) 6 0 whenever x 6 0, ƒ″(x) 7 0 
whenever x 7 0, and ƒ″ exists everywhere and is never zero throughout the domain 
of ƒ. The graph is concave down on the interval (-q, 0) and concave up on the  
interval (0, q).

 6. From the rewritten formula for ƒ(x), we see that

lim
xS0 +

 ax
2

+ 2
xb = +q  and  lim

xS0 -
 ax

2
+ 2

xb = -q,

  so the y-axis is a vertical asymptote. Also, as x S q or as x S -q, the graph of ƒ(x) 
approaches the line y = x>2. Thus y = x>2 is an oblique asymptote.

 7. The graph of ƒ is sketched in Figure 4.32. 

ExamplE 10  Sketch the graph of ƒ(x) = e2>x.

solution The domain of ƒ is (-q, 0)h(0, q) and there are no symmetries about either 
axis or the origin. The derivatives of ƒ are

 ƒ′(x) = e2>x a-  2
x2b = -  

2e2>x

x2

and

 ƒ″(x) = -  
x2(2e2>x)(-2>x2) - 2e2>x(2x)

x4 =
4e2>x(1 + x)

x4 .

Both derivatives exist everywhere over the domain of ƒ. Moreover, since e2>x and x2 are 
both positive for all x ≠ 0, we see that ƒ′ 6 0 everywhere over the domain and the graph 
is everywhere decreasing. Examining the second derivative, we see that ƒ″(x) = 0 at 
x = -1. Since e2>x 7 0 and x4 7 0, we have ƒ″ 6 0 for x 6 -1 and ƒ″ 7 0 for 
x 7 -1, x ≠ 0. Therefore, the point (-1, e-2) is a point of inflection. The curve is con-
cave down on the interval (-q, -1) and concave up over (-1, 0) h  (0, q).

From Example 7, Section 2.6, we see that limxS0- ƒ(x) = 0. As x S 0+, we see that 
2>x S q, so limxS0+ ƒ(x) = q and the y-axis is a vertical asymptote. Also, as 
x S -q or x S q, 2>x S 0 and so limxS- q ƒ(x) = limxSq ƒ(x) = e0 = 1. Therefore, 
y = 1 is a horizontal asymptote. There are no absolute extrema, since ƒ never takes on the 
value 0 and has no absolute maximum. The graph of ƒ is sketched in Figure 4.33. 

graphical Behavior of Functions from Derivatives

As we saw in Examples 7–10, we can learn much about a twice-differentiable function 
y = ƒ(x) by examining its first derivative. We can find where the function’s graph 
rises and falls and where any local extrema are located. We can differentiate y′ to 
learn how the graph bends as it passes over the intervals of rise and fall. We can determine 
the shape of the function’s graph. Information we cannot get from the derivative is 
how to place the graph in the xy-plane. But, as we discovered in Section 4.2, the only 
additional information we need to position the graph is the value of ƒ at one point. 
Information about the asymptotes is found using limits (Section 2.6). The following 
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Figure 4.32 The graph of y = x2 + 4
2x

 
(Example 9).
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Figure 4.33 The graph of y = e2>x  
has a point of inflection at (-1, e-2).  
The line y = 1 is a horizontal asymptote  
and x = 0 is a vertical asymptote  
(Example 10).
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oror

or

y = f (x) y = f (x) y = f (x)

Differentiable 1
smooth, connected; graph
may rise and fall

y′ > 0 1 rises from
left to right;
may be wavy

y′ < 0 1 falls from
left to right;
may be wavy

y″ > 0 1 concave up
throughout; no waves; graph
may rise or fall

y″ < 0 1 concave down
throughout; no waves;
graph may rise or fall

y″ changes sign at an
in�ection point

y′ changes sign 1 graph
has local maximum or local
minimum

y′ = 0  and  y″ < 0
at a point; graph has
local maximum

y′ = 0  and  y″ > 0
at a point; graph has
local minimum

+ −
+−

+
−

figure summarizes how the first derivative and second derivative affect the shape of a 
graph.

Analyzing Functions from graphs
Identify the inflection points and local maxima and minima of the 
functions graphed in Exercises 1–8. Identify the intervals on which 
the functions are concave up and concave down.

 1.   2. 

 3.   4. 

0
x

y

y =      −      − 2x +x3

3
1
3

x2

2

0
x

y

y =      − 2x2 + 4x4

4

0
x

y

y =     (x2 − 1)2�33
4

0
x

y

y =      x1�3(x2 − 7)9
14

 5.   6. 

 7.   8. 

graphing Functions
In Exercises 9–58, identify the coordinates of any local and absolute 
extreme points and inflection points. Graph the function.

 9. y = x2 - 4x + 3 10. y = 6 - 2x - x2

11. y = x3 - 3x + 3 12. y = x(6 - 2x)2

0
x

y

−

y = x + sin 2x, −       ≤ x ≤2p
3

2p
3

2p
3

2p
3

x

y

y = tan x − 4x, −     < x <p
2

p
2

0

x

y

y = sin 0 x 0 , −2p ≤ x ≤ 2p

0

NOT TO SCALE

x

y

0−p 3p
2

y = 2 cos x − "2 x,  −p ≤ x ≤ 3p
2

exercises 4.4
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65. y′ = (8x - 5x2)(4 - x)2 66. y′ = (x2 - 2x)(x - 5)2

67. y′ = sec2 x, -  
p

2
6 x 6 p

2

68. y′ = tan x, -  
p

2
6 x 6 p

2

69. y′ = cot  
u

2
, 0 6 u 6 2p 70. y′ = csc2  

u

2
, 0 6 u 6 2p

71. y′ = tan2 u - 1, -  
p

2
6 u 6 p

2
72. y′ = 1 - cot2 u, 0 6 u 6 p

73. y′ = cos t, 0 … t … 2p

74. y′ = sin t, 0 … t … 2p

75. y′ = (x + 1)-2>3 76. y′ = (x - 2)-1>3

77. y′ = x-2>3(x - 1) 78. y′ = x-4>5(x + 1)

79. y′ = 2 0 x 0 = e-2x,  x … 0

2x,    x 7 0

80. y′ = e-x2,  x … 0

x2,    x 7 0

sketching y from graphs of y′ and y″
Each of Exercises 81–84 shows the graphs of the first and second 
derivatives of a function y = ƒ(x). Copy the picture and add to it a 
sketch of the approximate graph of ƒ, given that the graph passes 
through the point P.

81.   82. 

83. 

84. 

graphing rational Functions
Graph the rational functions in Exercises 85–102 using all the steps in 
the graphing procedure on page 249.

85. y = 2x2 + x - 1
x2 - 1

 86. y = x2 - 49
x2 + 5x - 14

87. y = x4 + 1
x2  88. y = x2 - 4

2x

89. y = 1
x2 - 1

 90. y = x2

x2 - 1

y = f ′(x)

y = f ″(x)

P

x

y

P

x

y

y = f ′(x)

y = f ″(x)

P

0
x

y

y = f ′(x)

y = f ″(x)

P

0
x

y

y = f ′(x)

y = f ″(x)

13. y = -2x3 + 6x2 - 3 14. y = 1 - 9x - 6x2 - x3

15. y = (x - 2)3 + 1

16. y = 1 - (x + 1)3

17. y = x4 - 2x2 = x2(x2 - 2)

18. y = -x4 + 6x2 - 4 = x2(6 - x2) - 4

19. y = 4x3 - x4 = x3(4 - x)

20. y = x4 + 2x3 = x3(x + 2)

21. y = x5 - 5x4 = x4(x - 5)

22. y = xax
2

- 5b
4

23. y = x + sin x, 0 … x … 2p

24. y = x - sin x, 0 … x … 2p

25. y = 23x - 2 cos x, 0 … x … 2p

26. y = 4
3

 x - tan x, 
-p

2
6 x 6 p

2

27. y = sin x cos x, 0 … x … p

28. y = cos x + 23 sin x, 0 … x … 2p

29. y = x1>5 30. y = x2>5

31. y = x2x2 + 1
 32. y = 21 - x2

2x + 1

33. y = 2x - 3x2>3 34. y = 5x2>5 - 2x

35. y = x2>3a5
2

- xb  36. y = x2>3(x - 5)

37. y = x28 - x2 38. y = (2 - x2)3>2

39. y = 216 - x2 40. y = x2 + 2
x

41. y = x2 - 3
x - 2

 42. y = 23 x3 + 1

43. y = 8x
x2 + 4

 44. y = 5
x4 + 5

45. y = 0 x2 - 1 0  46. y = 0 x2 - 2 x 0
47. y = 2 0 x 0 = e2-x,  x 6 02x,    x Ú 0

48. y = 2 0 x - 4 0
49. y = xe1>x 50. y = ex

x

51. y = ln (3 - x2) 52. y = x (ln x)2

53. y = ex - 2e-x - 3x 54. y = xe-x

55. y = ln (cos x) 56. y = ln x2x

57. y = 1
1 + e-x 58. y = ex

1 + ex

sketching the general shape, Knowing y ′
Each of Exercises 59–80 gives the first derivative of a continuous 
function y = ƒ(x). Find y″ and then use Steps 2–4 of the graphing 
procedure on page 249 to sketch the general shape of the graph of ƒ.

59. y′ = 2 + x - x2 60. y′ = x2 - x - 6

61. y′ = x(x - 3)2 62. y′ = x2(2 - x)

63. y′ = x(x2 - 12) 64. y′ = (x - 1)2(2x + 3)
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Motion Along a Line The graphs in Exercises 107 and 108 show 
the position s = ƒ(t) of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin? 
Toward the origin? At approximately what times is the (b) velocity 
equal to zero? (c) Acceleration equal to zero? (d) When is the accel-
eration positive? Negative?

 107. 

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

 108. 

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

 109. Marginal cost The accompanying graph shows the hypotheti-
cal cost c = ƒ(x) of manufacturing x items. At approximately 
what production level does the marginal cost change from 
decreasing to increasing?

C
os

t

c = f (x)

Thousands of units produced
20 40 60 80 100120

x

c

 110. The accompanying graph shows the monthly revenue of the Widget 
Corporation for the past 12 years. During approximately what 
time intervals was the marginal revenue increasing? Decreasing?

t

y

y = r(t)

50 10

 111. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2).

  At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the 
sign pattern for y′.)

 91. y = -  
x2 - 2
x2 - 1

 92. y = x2 - 4
x2 - 2

 93. y = x2

x + 1
 94. y = -  

x2 - 4
x + 1

 95. y = x2 - x + 1
x - 1

 96. y = -  
x2 - x + 1

x - 1

 97. y = x3 - 3x2 + 3x - 1
x2 + x - 2

 98. y = x3 + x - 2
x - x2

 99. y = x
x2 - 1

 100. y = x - 1
x2(x - 2)

 101. y = 8
x2 + 4

  (Agnesi>s witch)

102. y = 4x
x2 + 4

  (Newton>s serpentine)

theory and examples
 103. The accompanying figure shows a portion of the graph of a 

twice-differentiable function y = ƒ(x). At each of the five 
labeled points, classify y′ and y″ as positive, negative, or zero.

y = f (x)
S

TR

Q
P

x

y

0

 104. Sketch a smooth connected curve y = ƒ(x) with

 ƒ(-2) = 8,   ƒ′(2) = ƒ′(-2) = 0, 

 ƒ(0) = 4,   ƒ′(x) 6 0 for 0 x 0 6 2, 

 ƒ(2) = 0,   ƒ″(x) 6 0 for x 6 0, 

 ƒ′(x) 7 0 for 0 x 0 7 2,   ƒ″(x) 7 0 for x 7 0.

 105. Sketch the graph of a twice-differentiable function y = ƒ(x) 
with the following properties. Label coordinates where possible.

 x y Derivatives

 x 6 2   y′ 6 0, y″ 7 0
 2 1 y′ = 0, y″ 7 0
 2 6 x 6 4   y′ 7 0, y″ 7 0
 4 4 y′ 7 0, y″ = 0
 4 6 x 6 6   y′ 7 0, y″ 6 0
 6 7 y′ = 0, y″ 6 0
 x 7 6   y′ 6 0, y″ 6 0

 106. Sketch the graph of a twice-differentiable function y = ƒ(x) that 
passes through the points (-2, 2), (-1, 1), (0, 0), (1, 1), and 
(2, 2) and whose first two derivatives have the following sign 
patterns.

y′: +      -      +      -
-2       0         2

y″: -      +      -
-1       1 
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4.5 indeterminate Forms and L’hôpital’s rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +q. The rule is known 
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who 
wrote the first introductory differential calculus text, where the rule first appeared in 
print. Limits involving transcendental functions often require some use of the rule for 
their calculation.

indeterminate Form 0 ,0
If we want to know how the function

F(x) = x - sin x
x3

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x S 0. 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit 
of the denominator is 0. Moreover, in this case, both the numerator and denominator 
approach 0, and 0>0 is undefined. Such limits may or may not exist in general, but the 
limit does exist for the function F(x) under discussion by applying l’Hôpital’s Rule, as we 
will see in Example 1d.

 120. Suppose that the second derivative of the function y = ƒ(x) is

y″ = x2(x - 2)3(x + 3).

  For what x-values does the graph of ƒ have an inflection point?

 121. Find the values of constants a, b, and c so that the graph of 
y = ax3 + bx2 + cx has a local maximum at x = 3, local mini-
mum at x = -1, and inflection point at (1, 11).

 122. Find the values of constants a, b, and c so that the graph of 
y = (x2 + a)>(bx + c) has a local minimum at x = 3 and a 
local maximum at (-1, -2).

COmPuter exPLOrAtiOns
In Exercises 123–126, find the inflection points (if any) on the graph of 
the function and the coordinates of the points on the graph where the 
function has a local maximum or local minimum value. Then graph the 
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second 
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the 
graphs of the derivatives related to the graph of the function?

 123. y = x5 - 5x4 - 240 124. y = x3 - 12x2

 125. y = 4
5

 x5 + 16x2 - 25

 126. y = x4

4
- x3

3
- 4x2 + 12x + 20

 127. Graph ƒ(x) = 2x4 - 4x2 + 1 and its first two derivatives 
together. Comment on the behavior of ƒ in relation to the signs 
and values of ƒ′ and ƒ″.

 128. Graph ƒ(x) = x cos x and its second derivative together for 
0 … x … 2p. Comment on the behavior of the graph of ƒ in 
relation to the signs and values of ƒ″.

 112. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2)(x - 4).

  At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

 113. For x 7 0, sketch a curve y = ƒ(x) that has ƒ(1) = 0 and 
ƒ′(x) = 1>x. Can anything be said about the concavity of such a 
curve? Give reasons for your answer.

 114. Can anything be said about the graph of a function y = ƒ(x) that 
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

 115. If b, c, and d are constants, for what value of b will the curve 
y = x3 + bx2 + cx + d have a point of inflection at x = 1? 
Give reasons for your answer.

 116. Parabolas

 a. Find the coordinates of the vertex of the parabola 
y = ax2 + bx + c, a ≠ 0.

 b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

 117. Quadratic curves What can you say about the inflection 
points of a quadratic curve y = ax2 + bx + c, a ≠ 0? Give 
reasons for your answer.

 118. Cubic curves What can you say about the inflection points of 
a cubic curve y = ax3 + bx2 + cx + d, a ≠ 0? Give reasons 
for your answer.

 119. Suppose that the second derivative of the function y = ƒ(x) is

y″ = (x + 1)(x - 2).

  For what x-values does the graph of ƒ have an inflection point?

Historical BiograpHy

Guillaume François Antoine de l’Hôpital
(1661–1704)

Johann Bernoulli
(1667–1748)



256 Chapter 4: Applications of Derivatives

If the continuous functions ƒ(x) and g (x) are both zero at x = a, then

lim
xSa

  
ƒ(x)
g(x)

cannot be found by substituting x = a. The substitution produces 0>0, a meaningless 
expression, which we cannot evaluate. We use 0>0 as a notation for an expression known 
as an indeterminate form. Other meaningless expressions often occur, such as q>q, 
q # 0, q - q, 00, and 1q, which cannot be evaluated in a consistent way; these are 
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancelation, rearrangement of terms, or other algebraic 
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find limxS0 (sin x)>x. But we have had success with the limit

ƒ′(a) = lim
xSa

 
ƒ(x) - ƒ(a)

x - a  ,

from which we calculate derivatives and which produces the indeterminant form 0>0 
when we attempt to substitute x = a. L’Hôpital’s Rule enables us to draw on our success 
with derivatives to evaluate limits that otherwise lead to indeterminate forms.

theOrem 6—l’Hôpital’s Rule Suppose that ƒ(a) = g(a) = 0, that ƒ and 
g are differentiable on an open interval I containing a, and that g′(x) ≠ 0 on 
I if x ≠ a. Then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

,

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 6 at the end of this section.

ExamplE 1  The following limits involve 0>0 indeterminate forms, so we apply 
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a) lim
xS0

 
3x - sin x

x = lim
xS0

 
3 - cos x

1
= 3 - cos x

1
2
x = 0

= 2

(b) lim
xS0

 
21 + x - 1

x = lim
xS0

 

1

221 + x
1

= 1
2

(c) lim
xS0

 
21 + x - 1 - x>2

x2  0
0

 ; apply l’Hôpital’s Rule.

 = lim
xS0

 
(1>2)(1 + x)-1>2 - 1>2

2x
 Still 

0
0

 ; apply l’Hôpital’s Rule again.

 = lim
xS0

 
-(1>4)(1 + x)-3>2

2
= -  18 Not 

0
0

 ; limit is found.

Caution
To apply l’Hôpital’s Rule to ƒ>g, divide 
the derivative of ƒ by the derivative of 
g. Do not fall into the trap of taking the 
derivative of ƒ>g. The quotient to use is 
ƒ′>g′, not (ƒ>g)′.
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(d) lim
xS0

 
x - sin x

x3  0
0

 ; apply l’Hôpital’s Rule.

 = lim
xS0

 
1 - cos x

3x2  Still 
0
0

 ; apply l’Hôpital’s Rule again.

  = lim
xS0

 
sin x
6x

 Still 
0
0

 ; apply l’Hôpital’s Rule again.

  = lim
xS0

 
cos x

6
= 1

6
 Not 

0
0

 ; limit is found. 

 Here is a summary of the procedure we followed in Example 1.

Using L’Hôpital’s Rule 

To find

lim
xSa

   
ƒ(x)
g(x)

by l’Hôpital’s Rule, we continue to differentiate ƒ and g, so long as we still get 
the form 0>0 at x = a. But as soon as one or the other of these derivatives is 
different from zero at x = a we stop differentiating. L’Hôpital’s Rule does not 
apply when either the numerator or denominator has a finite nonzero limit.

ExamplE 2  Be careful to apply l’Hôpital’s Rule correctly:

lim
xS0

 
1 - cos x

x + x2     0
0

= lim
xS0

 
sin x

1 + 2x
  Not 

0
0

It is tempting to try to apply l’Hôpital’s Rule again, which would result in

lim
xS0

 
cos x

2
= 1

2
,

but this is not the correct limit. L’Hôpital’s Rule can be applied only to limits that give 
indeterminate forms, and limxS0 (sin x)>(1 + 2x) does not give an indeterminate form. 
Instead, this limit is 0>1 = 0, and the correct answer for the original limit is 0. 

L’Hôpital’s Rule applies to one-sided limits as well.

ExamplE 3  In this example the one-sided limits are different.

(a) lim
xS0+

 
sin x

x2  0
0

   = lim
xS0+

 
cos x

2x
= q Positive for x 7 0

(b) lim
xS0-

 
sin x

x2  0
0

   = lim
xS0-

 
cos x

2x
= -q Negative for x 6 0 

Indeterminate Forms H,H, H # 0, H − H
Sometimes when we try to evaluate a limit as x S a by substituting x = a we get an inde-
terminant form like q>q, q # 0, or q - q, instead of 0>0. We first consider the form 
q>q.

Recall that q and +q mean the same 
thing.
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More advanced treatments of calculus prove that l’Hôpital’s Rule applies to the  
indeterminate form q>q, as well as to 0>0. If ƒ(x) S {q and g(x) S {q as x S a, 
then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

provided the limit on the right exists. In the notation x S a, a may be either finite or infi-
nite. Moreover, x S a may be replaced by the one-sided limits x S a+ or x S a-.

ExamplE 4  Find the limits of these q>q forms:

(a) lim
xSp>2

  
sec x

1 + tan x
 (b) lim

xSq
  

ln x

22x
 (c) lim

xSq
  
ex

x2 .

solution
 (a) The numerator and denominator are discontinuous at x = p>2, so we investigate the 

one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open 
interval with x = p>2 as an endpoint.

lim
xS(p>2)-

 
sec x

1 + tan x
  

q
q from the left so we apply l’Hôpital’s Rule.

 = lim
xS(p>2)-

 
sec x tan x

sec2 x
= lim

xS(p>2)-
 sin x = 1

  The right-hand limit is 1 also, with (-q)>(-q) as the indeterminate form. Therefore, 
the two-sided limit is equal to 1.

 (b) lim
xSq

  
ln x

22x
= lim

xSq
  

1>x
1>2x

= lim
xSq

  12x
= 0  

1>x
1>2x

= 2x
x = 12x

 (c) lim
xSq

  
ex

x2 = lim
xSq

  
ex

2x
= lim

xSq
  
ex

2
= q 

Next we turn our attention to the indeterminate forms q # 0 and q - q. Sometimes 
these forms can be handled by using algebra to convert them to a 0>0 or q>q form. Here 
again we do not mean to suggest that q # 0 or q - q is a number. They are only nota-
tions for functional behaviors when considering limits. Here are examples of how we 
might work with these indeterminate forms.

ExamplE 5  Find the limits of these q # 0 forms:

(a) lim
xSq
ax sin 1xb  (b) lim

xS0+
 2x ln x

solution

 a. lim
xSq
ax sin 1xb = lim

hS0+
a1

h
 sin hb =  lim

hS0+
 
sin h

h
= 1 q # 0; let h = 1>x.

 b.  lim
xS0+

 2x ln x = lim
xS0+

 
ln x

1>2x
 q # 0 converted to q>q

   = lim
xS0+

 
1>x

-1>2x3>2  l’Hôpital’s Rule applied

   = lim
xS0+
1-22x2 = 0 
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ExamplE 6  Find the limit of this q - q form:

lim
xS0
a 1

sin x
- 1

xb .

solution If x S 0+, then sin x S 0+ and

1
sin x

- 1
x S q - q.

Similarly, if x S 0-, then sin x S 0- and

1
sin x

- 1
x S - q - (-q) = -q + q.

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

1
sin x

- 1
x = x - sin x

x sin x
.  Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

 lim
xS0
a 1

sin x
- 1

xb = lim
xS0

  
x - sin x

x sin x
  0

0

 = lim
xS0

  
1 - cos x

sin x + x cos x
  Still 

0
0

 = lim
xS0

  
sin x

2 cos x - x sin x
= 0

2
= 0. 

indeterminate Powers

Limits that lead to the indeterminate forms 1q, 00, and q0 can sometimes be handled by 
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the 
logarithm expression and then exponentiate the result to find the original function limit. 
This procedure is justified by the continuity of the exponential function and Theorem 10 in 
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

If limxSa ln ƒ(x) = L, then

lim
xSa

 ƒ(x) = lim
xSa

 eln ƒ(x) = eL.

Here a may be either finite or infinite.

ExamplE 7  Apply l’Hôpital’s Rule to show that limxS0+ (1 + x)1>x = e.

solution The limit leads to the indeterminate form 1q. We let ƒ(x) = (1 + x)1>x and 
find limxS0+ ln ƒ(x). Since

ln ƒ(x) = ln (1 + x)1>x = 1
x ln (1 + x),

l’Hôpital’s Rule now applies to give

 lim
xS0+

 ln ƒ(x) = lim
xS0+

 
ln (1 + x)

x   0
0

 = lim
xS0+

 

1
1 + x

1
  l’Hôpital’s Rule applied

 = 1
1

= 1.

Therefore, lim
xS0+

 (1 + x)1>x = lim
xS0+

 ƒ(x) = lim
xS0+

 eln ƒ(x) = e1 = e. 
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ExamplE 8  Find limxSq  x1>x.

Solution The limit leads to the indeterminate form q0. We let ƒ(x) = x1>x and find 
limxSq ln ƒ(x). Since

 ln ƒ(x) = ln x1>x = ln x
x  ,

l’Hôpital’s Rule gives

 lim
xSq

 ln ƒ(x) = lim
xSq

 
ln x

x   
q
q

 = lim
xSq

 
1>x
1

  l’Hôpital’s Rule applied

 = 0
1

= 0.

Therefore lim
xSq

 x1>x = lim
xSq

 ƒ(x) = lim
xSq

 eln ƒ(x) = e0 = 1. 

Proof of L’Hôpital’s Rule

Before we prove l’Hôpital’s Rule, we consider a special case to provide some geometric 
insight for its reasonableness. Consider the two functions ƒ(x) and g(x) having continuous 
derivatives and satisfying ƒ(a) = g(a) = 0, g′(a) ≠ 0. The graphs of ƒ(x) and g(x), 
together with their linearizations y = ƒ′(a)(x - a) and y = g′(a)(x - a), are shown in 
Figure 4.34. We know that near x = a, the linearizations provide good approximations to 
the functions. In fact,

ƒ(x) = ƒ′(a)(x - a) + P1(x - a) and g(x) = g′(a)(x - a) + P2(x - a)

where P1 S 0 and P2 S 0 as x S a. So, as Figure 4.34 suggests,

 lim
xSa

  
ƒ(x)
g(x)

= lim
xSa

  
ƒ′(a)(x - a) + P1(x - a)
g′(a)(x - a) + P2(x - a)

 = lim
xSa

  
ƒ′(a) + P1

g′(a) + P2
=

ƒ′(a)
g′(a)

 g′(a) ≠ 0

 = lim
xSa

  
ƒ′(x)
g′(x)

,  Continuous derivatives

as asserted by l’Hôpital’s Rule. We now proceed to a proof of the rule based on the more 
general assumptions stated in Theorem 6, which do not require that g′(a) ≠ 0 and that 
the two functions have continuous derivatives.

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove 
Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

THEOREM 7—Cauchy’s Mean Value Theorem Suppose functions ƒ and g 
are continuous on 3a, b4  and differentiable throughout (a, b) and also suppose 
g′(x) ≠ 0 throughout (a, b). Then there exists a number c in (a, b) at which

ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

.

Historical BiograpHy

Augustin-Louis Cauchy
(1789–1857)

0 a

y

y = f ′(a)(x − a)

y = g′(a)(x − a)

f (x)

g(x)
x

FiguRE 4.34 The two functions in 
l’Hôpital’s Rule, graphed with their  
linear approximations at x = a.

Proof  We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show 
that g(a) ≠ g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

g′(c) =
g(b) - g(a)

b - a
= 0

When g(x) = x, Theorem 7 is the Mean 
Value Theorem.
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for some c between a and b, which cannot happen because g′(x) ≠ 0 in (a, b).
We next apply the Mean Value Theorem to the function

F(x) = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g(x) - g(a)4 .

This function is continuous and differentiable where ƒ and g are, and F(b) = F(a) = 0. 
Therefore, there is a number c between a and b for which F′(c) = 0. When expressed in 
terms of ƒ and g, this equation becomes

F′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g′(c)4 = 0

so that

 
ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

. 

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding 
curve C in the plane joining the two points A = (g(a), ƒ(a)) and B = (g(b), ƒ(b)). In 
Chapter 11 you will learn how the curve C can be formulated so that there is at least one 
point P on the curve for which the tangent to the curve at P is parallel to the secant line 
joining the points A and B. The slope of that tangent line turns out to be the quotient ƒ′>g′ 
evaluated at the number c in the interval (a, b), which is the left-hand side of the equation 
in Theorem 7. Because the slope of the secant line joining A and B is

ƒ(b) - ƒ(a)
g(b) - g(a)

,

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line 
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.35. 
Notice from the figure that it is possible for more than one point on the curve C to have a 
tangent line that is parallel to the secant line joining A and B.

Proof of l’hôpital’s rule  We first establish the limit equation for the case x S a+. 
The method needs almost no change to apply to x S a-, and the combination of these two 
cases establishes the result.

Suppose that x lies to the right of a. Then g′(x) ≠ 0, and we can apply Cauchy’s 
Mean Value Theorem to the closed interval from a to x. This step produces a number c 
between a and x such that

ƒ′(c)
g′(c)

=
ƒ(x) - ƒ(a)
g(x) - g(a)

.

But ƒ(a) = g(a) = 0, so

ƒ′(c)
g′(c)

=
ƒ(x)
g(x)

.

As x approaches a, c approaches a because it always lies between a and x. Therefore,

lim
xSa+

  
ƒ(x)
g(x)

= lim
cSa+

  
ƒ′(c)
g′(c)

= lim
xSa+

  
ƒ′(x)
g′(x)

,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case 
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to 
the closed interval 3x, a4 , x 6 a. 

0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

slope =
f (b) − f (a)
g(b) − g(a)

x

slope =
f ′(c)
g′(c)

Figure 4.35 There is at least one point 
P on the curve C for which the slope of the 
tangent to the curve at P is the same as the 
slope of the secant line joining the points 
A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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Finding Limits in two ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then 
evaluate the limit using a method studied in Chapter 2.

 1. lim
xS-2

 
x + 2
x2 - 4

 2. lim
xS0

 
sin 5x

x

 3. lim
xSq

 
5x2 - 3x
7x2 + 1

 4. lim
xS1

 
x3 - 1

4x3 - x - 3

 5. lim
xS0

 
1 - cos x

x2  6. lim
xSq

 
2x2 + 3x

x3 + x + 1

Applying l’hôpital’s rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

 7. lim
xS2

 
x - 2
x2 - 4

 8. lim
xS - 5

 
x2 - 25
x + 5

 9. lim
tS-3 

t3 - 4t + 15
t2 - t - 12

 10. lim
tS-1

 
3t3 + 3

4t3 - t + 3

 11. lim
xSq

 
5x3 - 2x
7x3 + 3

 12. lim
xSq

 
x - 8x2

12x2 + 5x

 13. lim
tS0

 
sin t2

t  14. lim
tS0

 
sin 5t

2t

 15. lim
xS0

 
8x2

cos x - 1
 16. lim

xS0
 
sin x - x

x3

 17. lim
uSp>2

 
2u - p

cos (2p - u)
 18. lim

uS-p>3
 

3u + p

sin (u + (p>3))

 19. lim
uSp>2

 
1 - sin u

1 + cos 2u
 20. lim

xS1
 

x - 1
ln x - sin px

 21. lim
xS0

 
x2

ln (sec x)
 22. lim

xSp>2
 

ln (csc x)

(x - (p>2))2

 23. lim
tS0

 
t(1 - cos t)

t - sin t
 24. lim

tS0
 

t sin t
1 - cos t

 25. lim
xS(p>2)-

ax - p

2
b  sec x 26. lim

xS(p>2)-
 ap

2
- xb  tan x

 27. lim
uS0

 
3sin u - 1

u
 28. lim

uS0
 
(1>2)u - 1

u

 29. lim
xS0

 
x2x

2x - 1
 30. lim

xS0
 
3x - 1
2x - 1

 31. lim
xSq

 
ln (x + 1)

log2 x
 32. lim

xSq
 

log2 x
log3 (x + 3)

 33. lim
xS0+

 
ln (x2 + 2x)

ln x
 34. lim

xS0+
 
ln (ex - 1)

ln x

 35. lim
yS0

 
25y + 25 - 5

y  36. lim
yS0

 
2ay + a2 - a

y , a 7 0

 37. lim
xSq

 (ln 2x - ln (x + 1)) 38. lim
xS0+

 (ln x - ln sin x)

 39. lim
xS0+

 
(ln x)2

ln (sin x)
 40. lim

xS0+
 a3x + 1

x - 1
sin x
b

 41. lim
xS1+

 a 1
x - 1

- 1
ln x
b  42. lim

xS0+
 (csc x - cot x + cos x)

 43. lim
uS0

 
cos u - 1

eu - u - 1
 44. lim

hS0
 
eh - (1 + h)

h2

 45. lim
tSq

 
et + t2

et - t
 46. lim

xSq
 x2e-x

 47.  lim
xS0

 
x - sin x

x tan x  48.  lim
xS0

 
(ex - 1)2

x sin x

 49.  lim
uS0

 
u - sin u cos u

tan u - u
 50.  lim

xS0
 
sin 3x - 3x + x2

sin x sin 2x

indeterminate Powers and Products
Find the limits in Exercises 51–66.

 51. lim
xS1+

 x1>(1 - x) 52. lim
xS1+

 x1>(x - 1)

 53. lim
xSq

 (ln x)1>x 54. lim
xSe+

 (ln x)1>(x - e)

 55. lim
xS0+

 x-1>ln x 56. lim
xS  q

 x1>ln x

 57. lim
xSq

 (1 + 2x)1>(2 ln x) 58. lim
xS0

 (ex + x)1>x

 59. lim
xS0+  

xx 60. lim
xS0+

 a1 + 1
xb

x

 61. lim
xSq

 ax + 2
x - 1

b
x

 62.  lim
xSq

 ax
2 + 1

x + 2
b

1>x

 63.  lim
xS0+

 x2 ln x 64.  lim
xS0+

 x (ln x)2

 65.  lim
xS0+

 x tan ap
2

- xb  66.  lim
xS0+

 sin x # ln x

theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try 
it—you just keep on cycling. Find the limits some other way.

 67. lim
xSq

 
29x + 12x + 1

 68. lim
xS0+

 
2x2sin x

 69. lim
xS(p>2)-

  
sec x
tan x  70. lim

xS0+
  
cot x
csc x

 71.  lim
xSq

 
2x - 3x

3x + 4x 72.  lim
xS-q

 
2x + 4x

5x - 2x

 73.  lim
xSq

 
ex2

xex 74.  lim
xS0+

 
x

e-1>x

 75. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a. lim
xS3

  
x - 3
x2 - 3

= lim
xS3

  
1
2x

= 1
6

 b. lim
xS3

  
x - 3
x2 - 3

= 0
6

= 0

 76. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a.  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

   = lim
xS0

 
2

2 + sin x
= 2

2 + 0
= 1

 b.  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

= -2
0 - 1

= 2

exercises 4.5
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 a. Use l’Hôpital’s Rule to show that

lim
xSq

 a1 + 1
xb

x

= e.

 b. Graph

ƒ(x) = a1 + 1
x2b

x

 and g(x) = a1 + 1
xb

x

  together for x Ú 0. How does the behavior of ƒ compare with 
that of g? Estimate the value of limxSq ƒ(x).

 c. Confirm your estimate of limxSq ƒ(x) by calculating it with 
l’Hôpital’s Rule.

85. Show that

lim
kSq

 a1 + r
k
b

k

= er.

86. Given that x 7 0, find the maximum value, if any, of

 a. x1>x

 b. x1>x2

 c. x1>xn
 (n a positive integer)

 d. Show that limxSq x1>xn = 1 for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

 a. y = x tan a1xb     b. y = 3x + e2x

2x + e3x

88. Find ƒ′(0) for ƒ(x) = e e-1/x2
, x ≠ 0

0, x = 0.

89. The continuous extension of (sin x)x to 30, p 4
 a. Graph ƒ(x) = (sin x)x on the interval 0 … x … p. What 

value would you assign to ƒ to make it continuous at x = 0?

 b. Verify your conclusion in part (a) by finding limxS0+ ƒ(x) 
with l’Hôpital’s Rule.

 c. Returning to the graph, estimate the maximum value of ƒ on 
30, p4 . About where is max ƒ taken on?

 d. Sharpen your estimate in part (c) by graphing ƒ′ in the same 
window to see where its graph crosses the x-axis. To simplify 
your work, you might want to delete the exponential factor 
from the expression for ƒ′ and graph just the factor that has a 
zero.

90. The function (sin x)tan x (Continuation of Exercise 89.)

 a. Graph ƒ(x) = (sin x)tan x on the interval -7 … x … 7. How 
do you account for the gaps in the graph? How wide are the 
gaps?

 b. Now graph ƒ on the interval 0 … x … p. The function is not 
defined at x = p>2, but the graph has no break at this point. 
What is going on? What value does the graph appear to give 
for ƒ at x = p>2? (Hint: Use l’Hôpital’s Rule to find lim ƒ 
as x S (p>2)- and x S (p>2)+.)

 c. Continuing with the graphs in part (b), find max ƒ and min ƒ 
as accurately as you can and estimate the values of x at which 
they are taken on.

t

t

t

 77. Only one of these calculations is correct. Which one? Why are the 
others wrong? Give reasons for your answers.

 a. lim
xS0+

 x ln x = 0 # (-q) = 0

 b. lim
xS0+

 x ln x = 0 # (-q) = -q

 c. lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)
= -q

q = -1

 d.  lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)

   = lim
xS0+

 
(1>x)

(-1>x2)
= lim

xS0+
 (-x) = 0

 78. Find all values of c that satisfy the conclusion of Cauchy’s Mean 
Value Theorem for the given functions and interval.

 a. ƒ(x) = x,  g(x) = x2,  (a, b) = (-2, 0)

 b. ƒ(x) = x,  g(x) = x2,  (a, b) arbitrary

 c. ƒ(x) = x3>3 - 4x,  g(x) = x2,  (a, b) = (0, 3)

 79. Continuous extension Find a value of c that makes the function

ƒ(x) = c 9x - 3 sin 3x
5x3 , x ≠ 0

c, x = 0

  continuous at x = 0. Explain why your value of c works.

 80. For what values of a and b is 

 lim
xS0

 atan 2x
x3 + a

x2 + sin bx
x b = 0?

 81. H −  H Form

 a. Estimate the value of

lim
xSq 1x - 2x2 + x2

  by graphing ƒ(x) = x - 2x2 + x over a suitably large inter-
val of x-values.

 b. Now confirm your estimate by finding the limit with 
l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-
tion 1x + 2x2 + x2>1x + 2x2 + x2 and simplify the new 
numerator.

 82. Find lim
xSq

 12x2 + 1 - 2x2.
83. 0 ,0 Form Estimate the value of

lim
xS1

 
2x2 - (3x + 1)2x + 2

x - 1

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84. This exercise explores the difference between the limit

lim
xSq

 a1 + 1
x2b

x

and the limit

lim
xSq

 a1 + 1
xb

x

= e.

t

t



4.6 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area?
What are the dimensions for the least expensive cylindrical can of a given volume? How 
many items should be produced for the most profitable production run? Each of these 
questions asks for the best, or optimal, value of a given function. In this section we use 
derivatives to solve a variety of optimization problems in mathematics, physics, econom-
ics, and business.

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given? 

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as 
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown 
as a function of a single variable or in two equations in two unknowns. This 
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use 
what you know about the shape of the function’s graph. Use the first and 
second derivatives to identify and classify the function’s critical points.

EXAMPLE 1  An open-top box is to be made by cutting small congruent squares from 
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should 
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.36). In the figure, the corner squares are x in. 
on a side. The volume of the box is a function of this variable:

V(x) = x(12 - 2x)2 = 144x - 48x2 + 4x3. V = hlw

Since the sides of the sheet of tin are only 12 in. long, x … 6 and the domain of V is the 
interval 0 … x … 6.

A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and 
a maximum near x = 2. To learn more, we examine the first derivative of V with respect 
to x:

dV
dx

= 144 - 96x + 12x2 = 12(12 - 8x + x2) = 12(2 - x)(6 - x).

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s 
domain and makes the critical-point list. The values of V at this one critical point and two 
endpoints are

Critical point value: V(2) = 128

Endpoint values: V(0) = 0, V(6) = 0.

The maximum volume is 128 in3. The cutout squares should be 2 in. on a side.

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 − 2x

12 − 2x

FIGURE 4.36 An open box made by 
cutting the corners from a square sheet of 
tin. What size corners maximize the box’s 
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

Maximum

y = x(12 − 2x)2,
0 ≤ x ≤ 6

NOT TO SCALE

FIGURE 4.37 The volume of the box in 
Figure 4.36 graphed as a function of x.
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EXAMPLE 2  You have been asked to design a one-liter can shaped like a right circu-
lar cylinder (Figure 4.38). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the 
can in cubic centimeters is

pr2h = 1000. 1 liter = 1000 cm3

Surface area of can: A = 2pr2 + 2prh
()* ()*

circular cylindrical
ends wall

How can we interpret the phrase “least material”? For a first approximation we can ignore 
the thickness of the material and the waste in manufacturing. Then we ask for dimensions 
r and h that make the total surface area as small as possible while satisfying the constraint 
pr2h = 1000 cm3.

To express the surface area as a function of one variable, we solve for one of the vari-
ables in pr2h = 1000 and substitute that expression into the surface area formula. Solving 
for h is easier:

h = 1000
pr2 .

Thus,

A = 2pr2 + 2prh

= 2pr2 + 2pra1000
pr2 b

= 2pr2 + 2000
r .

Our goal is to find a value of r 7 0 that minimizes the value of A. Figure 4.39 suggests 
that such a value exists.

Notice from the graph that for small r (a tall, thin cylindrical container), the term 
2000>r dominates (see Section 2.6) and A is large. For large r (a short, wide cylindrical 
container), the term 2pr2 dominates and A again is large.

h

2r

FIGURE 4.38 This one-liter can uses 
the least material when h = 2r
(Example 2).

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A = 2pr2 +           , r > 0

500
p

Tall and thin

Short and wide

FIGURE 4.39 The graph of A = 2pr2 + 2000>r is concave up.
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Since A is differentiable on r 7 0, an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

 
dA
dr

= 4pr - 2000
r2

 0 = 4pr - 2000
r2   Set dA>dr = 0.

 4pr3 = 2000   Multiply by r2.

 r =  A3 500
p ≈ 5.42  Solve for r.

What happens at r = 23 500>p?
The second derivative

d2A
dr2 = 4p + 4000

r3

is positive throughout the domain of A. The graph is therefore everywhere concave up and 
the value of A at r = 23 500>p is an absolute minimum.

The corresponding value of h (after a little algebra) is

h = 1000
pr2 = 2 A3 500

p = 2r.

The one-liter can that uses the least material has height equal to twice the radius, here with 
r ≈ 5.42 cm and h ≈ 10.84 cm. 

Examples from Mathematics and Physics

ExamplE 3  A rectangle is to be inscribed in a semicircle of radius 2. What is the 
largest area the rectangle can have, and what are its dimensions?

Solution Let 1x, 24 - x22 be the coordinates of the corner of the rectangle obtained 
by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length, 
height, and area of the rectangle can then be expressed in terms of the position x of the 
lower right-hand corner:

Length: 2x,   Height: 24 - x2,  Area: 2x24 - x2.

Notice that the values of x are to be found in the interval 0 … x … 2, where the selected 
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

A(x) = 2x24 - x2

on the domain 30, 24 .
The derivative

dA
dx

= -2x224 - x2
+ 224 - x2

is not defined when x = 2 and is equal to zero when

 
-2x224 - x2

+ 224 - x2 = 0

 -2x2 + 2(4 - x2) = 0

 8 - 4x2 = 0

 x2 = 2

 x = {22.

x

y

0 2x−2 −x

2

x2 + y2 = 4

Qx, "4 − x2R

FIgurE 4.40 The rectangle inscribed 
in the semicircle in Example 3.
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Of the two zeros, x = 22 and x = -22, only x = 22 lies in the interior of A’s domain 
and makes the critical-point list. The values of A at the endpoints and at this one critical 
point are

 Critical point value: A1222 = 22224 - 2 = 4

Endpoint values:   A(0) = 0,  A(2) = 0.

The area has a maximum value of 4 when the rectangle is 24 - x2 = 22 units high and 
2x = 222 units long. 

ExamplE 4  The speed of light depends on the medium through which it travels, and 
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along 
a path for which the time of travel is a minimum. Describe the path that a ray of light will 
follow in going from a point A in a medium where the speed of light is c1 to a point B in a 
second medium where its speed is c2.

solution Since light traveling from A to B follows the quickest route, we look for a path 
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the 
line separating the two media is the x-axis (Figure 4.41).

In a uniform medium, where the speed of light remains constant, “shortest time” 
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A 
to B will consist of a line segment from A to a boundary point P, followed by another line 
segment from P to B. Distance traveled equals rate times time, so

Time = distance
rate .

From Figure 4.41, the time required for light to travel from A to P is

t1 = AP
c1

= 2a2 + x2

c1
.

From P to B, the time is

t2 = PB
c2

=
2b2 + (d - x)2

c2
.

The time from A to B is the sum of these:

t = t1 + t2 = 2a2 + x2

c1
+
2b2 + (d - x)2

c2
.

This equation expresses t as a differentiable function of x whose domain is 30, d4 . We 
want to find the absolute minimum value of t on this closed interval. We find the derivative

dt
dx

= x

c12a2 + x2
- d - x

c22b2 + (d - x)2

and observe that it is continuous. In terms of the angles  u1 and u2 in Figure 4.41,

dt
dx

=
sin u1

c1
-

sin u2
c2

.

The function t has a negative derivative at x = 0 and a positive derivative at x = d. Since 
dt>dx is continuous over the interval 30, d4 , by the Intermediate Value Theorem for con-
tinuous functions (Section 2.5), there is a point x0∊ 30, d4  where dt>dx = 0 (Figure 4.42). 

Historical BiograpHy

Willebrord Snell van Royen
(1580–1626)

Angle of
incidence

Medium 1

Angle of
refractionMedium 2
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0 x d
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a

A

u1

u1

u2

d − x

Figure 4.41 A light ray refracted  
(deflected from its path) as it passes from 
one medium to a denser medium  
(Example 4).
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− − − − − +++++++++

Figure 4.42 The sign pattern of dt>dx 
in Example 4.



There is only one such point because dt>dx is an increasing function of x (Exercise 62). At 
this unique point we then have

sin u1
c1

=
sin u2
c2

.

This equation is Snell’s Law or the Law of Refraction, and is an important principle in 
the theory of optics. It describes the path the ray of light follows.

Examples from Economics

Suppose that

r(x) = the revenue from selling x items

c(x) = the cost of producing the x items

p(x) = r(x) - c(x) = the profit from producing and selling x items.

Although x is usually an integer in many applications, we can learn about the behavior of 
these functions by defining them for all nonzero real numbers and by assuming they are 
differentiable functions. Economists use the terms marginal revenue, marginal cost, and 
marginal profit to name the derivatives r′(x), c′(x), and p′(x) of the revenue, cost, and 
profit functions. Let’s consider the relationship of the profit p to these derivatives.

If r(x) and c(x) are differentiable for x in some interval of production possibilities, 
and if p(x) = r(x) - c(x) has a maximum value there, it occurs at a critical point of p(x)
or at an endpoint of the interval. If it occurs at a critical point, then p′(x) = r′(x) -
c′(x) = 0 and we see that r′(x) = c′(x). In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals mar-
ginal cost (Figure 4.43).

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c′(x) = r ′(x)

Revenue r(x)

Maximum profit, c′(x) = r ′(x)

FIGURE 4.43 The graph of a typical cost function starts concave down and later turns concave 
up. It crosses the revenue curve at the break-even point B. To the left of B, the company operates 
at a loss. To the right, the company operates at a profit, with the maximum profit occurring where 
c′(x) = r′(x). Farther to the right, cost exceeds revenue (perhaps because of a combination of rising 
labor and material costs and market saturation) and production levels become unprofitable again.
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ExamplE 5  Suppose that r(x) = 9x and c(x) = x3 - 6x2 + 15x, where x repre-
sents millions of MP3 players produced. Is there a production level that maximizes profit? 
If so, what is it?

solution Notice that r′(x) = 9 and c′(x) = 3x2 - 12x + 15.

 3x2 - 12x + 15 = 9  Set c′(x) = r′(x).

 3x2 - 12x + 6 = 0

The two solutions of the quadratic equation are

 x1 = 12 - 272
6

= 2 - 22 ≈ 0.586  and

x2 = 12 + 272
6

= 2 + 22 ≈ 3.414.

The possible production levels for maximum profit are x ≈ 0.586 million MP3 players or 
x ≈ 3.414 million. The second derivative of p(x) = r(x) - c(x) is p″(x) = -c″(x) since 
r″(x) is everywhere zero. Thus, p″(x) = 6(2 - x), which is negative at x = 2 + 22 and 
positive at x = 2 - 22. By the Second Derivative Test, a maximum profit occurs at 
about x = 3.414 (where revenue exceeds costs) and maximum loss occurs at about 
x = 0.586. The graphs of r(x) and c(x) are shown in Figure 4.44. 

ExamplE 6  A cabinetmaker uses mahogany wood to produce 5 desks each day. 
Each delivery of one container of wood is $5000, whereas the storage of that material is 
$10 per day per unit stored, where a unit is the amount of material needed by her to pro-
duce 1 desk. How much material should be ordered each time, and how often should the 
material be delivered, to minimize her average daily cost in the production cycle between 
deliveries?

solution If she asks for a delivery every x days, then she must order 5x units to have 
enough material for that delivery cycle. The average amount in storage is approximately 
one-half of the delivery amount, or 5x>2. Thus, the cost of delivery and storage for each 
cycle is approximately

 Cost per cycle = delivery costs + storage costs

 Cost per cycle = 5000  +  a5x
2
b  #  x  #  10

 
()* ()* ()* ()*

 delivery  average number of storage cost 
 cost amount stored 

days stored per day

We compute the average daily cost c(x) by dividing the cost per cycle by the number of 
days x in the cycle (see Figure 4.45).

c(x) = 5000
x + 25x,  x 7 0.

As x S 0 and as x S q, the average daily cost becomes large. So we expect a minimum 
to exist, but where? Our goal is to determine the number of days x between deliveries that 
provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

 c′(x) = -  
500
x2 + 25 = 0

 x = {2200 ≈ {14.14.

x

y

0 2

Maximum
for pro�t

Local maximum for loss

c(x) = x3 − 6x2 + 15x

NOT TO SCALE

r(x) = 9x

2 − "2 2 + "2

Figure 4.44 The cost and revenue 
curves for Example 5.
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Figure 4.45 The average daily cost 
c(x) is the sum of a hyperbola and a linear 
function (Example 6).
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Of the two critical points, only 2200 lies in the domain of c(x). The critical point value of 
the average daily cost is

c122002 = 50002200
+ 252200 = 50022 ≈ $707.11.

We note that c(x) is defined over the open interval (0, q) with c″(x) = 10000>x3 7 0. 
Thus, an absolute minimum exists at x = 2200 ≈ 14.14 days.

The cabinetmaker should schedule a delivery of 5(14) = 70 units of the mahogany 
wood every 14 days. 

mathematical applications
Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the 
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

 1. Minimizing perimeter What is the smallest perimeter possible 
for a rectangle whose area is 16 in2, and what are its dimensions?

 2. Show that among all rectangles with an 8-m perimeter, the one 
with largest area is a square.

 3. The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

 a. Express the y-coordinate of P in terms of x. (Hint: Write an 
equation for the line AB.)

 b. Express the area of the rectangle in terms of x.

 c. What is the largest area the rectangle can have, and what are 
its dimensions?

x

y

0 1

B

A
x−1

P(x, ?)

 4. A rectangle has its base on the x-axis and its upper two vertices 
on the parabola y = 12 - x2. What is the largest area the rectan-
gle can have, and what are its dimensions?

 5. You are planning to make an open rectangular box from an 8-in.-by-
15-in. piece of cardboard by cutting congruent squares from the cor-
ners and folding up the sides. What are the dimensions of the box of 
largest volume you can make this way, and what is its volume?

 6. You are planning to close off a corner of the first quadrant with a 
line segment 20 units long running from (a, 0) to (0, b). Show 
that the area of the triangle enclosed by the segment is largest 
when a = b.

 7. The best fencing plan A rectangular plot of farmland will be 
bounded on one side by a river and on the other three sides by a  

single-strand electric fence. With 800 m of wire at your disposal, 
what is the largest area you can enclose, and what are its dimensions?

 8. The shortest fence A 216 m2 rectangular pea patch is to be 
enclosed by a fence and divided into two equal parts by another 
fence parallel to one of the sides. What dimensions for the outer 
rectangle will require the smallest total length of fence? How 
much fence will be needed?

 9. Designing a tank Your iron works has contracted to design and 
build a 500 ft3, square-based, open-top, rectangular steel holding 
tank for a paper company. The tank is to be made by welding thin 
stainless steel plates together along their edges. As the production 
engineer, your job is to find dimensions for the base and height 
that will make the tank weigh as little as possible.

 a. What dimensions do you tell the shop to use?

 b. Briefly describe how you took weight into account.

 10. Catching rainwater A 1125 ft3 open-top rectangular tank with 
a square base x ft on a side and y ft deep is to be built with its top 
flush with the ground to catch runoff water. The costs associated 
with the tank involve not only the material from which the tank is 
made but also an excavation charge proportional to the product xy.

 a. If the total cost is

c = 5(x2 + 4xy) + 10xy,

  what values of x and y will minimize it?

 b. Give a possible scenario for the cost function in part (a).

 11. Designing a poster You are designing a rectangular poster to 
contain 50 in2 of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will 
minimize the amount of paper used?

 12. Find the volume of the largest right circular cone that can be 
inscribed in a sphere of radius 3.

y

x

3

3

exercises 4.6
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24″

36″

x

24″

x

x x

x x

x x

18″

24″

36″

Base

The sheet is then unfolded.

 18. A rectangle is to be inscribed under the arch of the curve 
y = 4 cos (0.5x) from x = -p to x = p. What are the dimen-
sions of the rectangle with largest area, and what is the largest 
area?

 19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the 
maximum volume?

 20. a.  The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around) 
does not exceed 108 in. What dimensions will give a box with 
a square end the largest possible volume?

Square end

Girth = distance
around here

Length

 b. Graph the volume of a 108-in. box (length plus girth equals 
108 in.) as a function of its length and compare what you see 
with your answer in part (a).

21. (Continuation of Exercise 20.)

 a. Suppose that instead of having a box with square ends you 
have a box with square sides so that its dimensions are h by h 
by w and the girth is 2h + 2w. What dimensions will give the 
box its largest volume now?

t

 13. Two sides of a triangle have lengths a and b, and the angle 
between them is u. What value of u will maximize the triangle’s 
area? (Hint: A = (1>2)ab sin u.)

 14. Designing a can What are the dimensions of the lightest open-
top right circular cylindrical can that will hold a volume of 
1000 cm3? Compare the result here with the result in Example 2.

 15. Designing a can You are designing a 1000 cm3 right circular 
cylindrical can whose manufacture will take waste into account. 
There is no waste in cutting the aluminum for the side, but the top 
and bottom of radius r will be cut from squares that measure 2r 
units on a side. The total amount of aluminum used up by the can 
will therefore be

A = 8r2 + 2prh

  rather than the A = 2pr2 + 2prh in Example 2. In Example 2, 
the ratio of h to r for the most economical can was 2 to 1. What is 
the ratio now?

 16. Designing a box with a lid A piece of cardboard measures  
10 in. by 15 in. Two equal squares are removed from the corners 
of a 10-in. side as shown in the figure. Two equal rectangles are 
removed from the other corners so that the tabs can be folded to 
form a rectangular box with lid.

10″

xx

x

x x

x

15″

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

 a. Write a formula V(x) for the volume of the box.

 b. Find the domain of V for the problem situation and graph V 
over this domain.

 c. Use a graphical method to find the maximum volume and the 
value of x that gives it.

 d. Confirm your result in part (c) analytically.

 17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is 
folded in half to form a 24-in.-by-18-in. rectangle as shown in the 
accompanying figure. Then four congruent squares of side length 
x are cut from the corners of the folded rectangle. The sheet is 
unfolded, and the six tabs are folded up to form a box with sides 
and a lid.

 a. Write a formula V(x) for the volume of the box.

 b. Find the domain of V for the problem situation and graph V 
over this domain.

 c. Use a graphical method to find the maximum volume and the 
value of x that gives it.

 d. Confirm your result in part (c) analytically.

 e. Find a value of x that yields a volume of 1120 in3.

 f. Write a paragraph describing the issues that arise in part (b).

t

t
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Crease
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Q (originally at A)
"L2 − x2

26. Constructing cylinders Compare the answers to the following 
two construction problems.

 a. A rectangular sheet of perimeter 36 cm and dimensions x cm 
by y cm is to be rolled into a cylinder as shown in part (a) of 
the figure. What values of x and y give the largest volume?

 b. The same sheet is to be revolved about one of the sides of 
length y to sweep out the cylinder as shown in part (b) of the 
figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference = x
y

x

(b)

27. Constructing cones A right triangle whose hypotenuse is 23 m long is revolved about one of its legs to generate a right 
circular cone. Find the radius, height, and volume of the cone of 
greatest volume that can be made this way.

h

r

"3

28. Find the point on the line 
x
a +

y
b

= 1 that is closest to the origin.

29. Find a positive number for which the sum of it and its reciprocal 
is the smallest (least) possible.

30. Find a positive number for which the sum of its reciprocal and 
four times its square is the smallest possible.

31. A wire b m long is cut into two pieces. One piece is bent into an 
equilateral triangle and the other is bent into a circle. If the sum of 
the areas enclosed by each part is a minimum, what is the length 
of each part?

32. Answer Exercise 31 if one piece is bent into a 
square and the other into a circle.

33. Determine the dimensions of the rectangle of 
largest area that can be inscribed in the right tri-
angle shown in the accompanying figure. 

w

Girth

h

h

 b. Graph the volume as a function of h and compare what you 
see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle. 
The rectangle is of clear glass, whereas the semicircle is of tinted 
glass that transmits only half as much light per unit area as clear 
glass does. The total perimeter is fixed. Find the proportions of 
the window that will admit the most light. Neglect the thickness 
of the frame.

23. A silo (base not included) is to be constructed in the form of a 
cylinder surmounted by a hemisphere. The cost of construction 
per square unit of surface area is twice as great for the hemisphere 
as it is for the cylindrical sidewall. Determine the dimensions to 
be used if the volume is fixed and the cost of construction is to be 
kept to a minimum. Neglect the thickness of the silo and waste in 
construction.

24. The trough in the figure is to be made to the dimensions shown. 
Only the angle u can be varied. What value of u will maximize 
the trough’s volume?

uu

20′

1′

1′

1′

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is 
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the 
paper is smoothed flat. The problem is to make the length of the 
crease as small as possible. Call the length L. Try it with paper.

 a. Show that L2 = 2x3>(2x - 8.5).

 b. What value of x minimizes L2?

 c. What is the minimum value of L?

t
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3
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R =
y0

  2

g  sin 2a,

  where g is the downward acceleration due to gravity. Find the 
angle a for which the range R is the largest possible.

43. Strength of a beam The strength S of a rectangular wooden 
beam is proportional to its width times the square of its depth. 
(See the accompanying figure.)

 a. Find the dimensions of the strongest beam that can be cut 
from a 12-in.-diameter cylindrical log.

 b. Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k = 1. Reconcile what you see 
with your answer in part (a).

 c. On the same screen, graph S as a function of the beam’s depth 
d, again taking k = 1. Compare the graphs with one another 
and with your answer in part (a). What would be the effect of 
changing to some other value of k? Try it.

12″
d

w

44. Stiffness of a beam The stiffness S of a rectangular beam is 
proportional to its width times the cube of its depth.

 a. Find the dimensions of the stiffest beam that can be cut from 
a 12-in.-diameter cylindrical log.

 b. Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k = 1. Reconcile what you see 
with your answer in part (a).

 c. On the same screen, graph S as a function of the beam’s depth 
d, again taking k = 1. Compare the graphs with one another 
and with your answer in part (a). What would be the effect of 
changing to some other value of k? Try it.

45. Frictionless cart A small frictionless cart, attached to the wall 
by a spring, is pulled 10 cm from its rest position and released at 
time t = 0 to roll back and forth for 4 sec. Its position at time t is 
s = 10 cos pt.

 a. What is the cart’s maximum speed? When is the cart moving 
that fast? Where is it then? What is the magnitude of the 
acceleration then?

 b. Where is the cart when the magnitude of the acceleration is 
greatest? What is the cart’s speed then?

0 10
s

46. Two masses hanging side by side from springs have positions 
s1 = 2 sin t and s2 = sin 2t, respectively.

 a. At what times in the interval 0 6 t do the masses pass each 
other? (Hint: sin 2t = 2 sin t cos t.)

t

t

34. Determine the dimensions of the rect-
angle of largest area that can be 
inscribed in a semicircle of radius 3. 
(See accompanying figure.)

35. What value of a makes 
ƒ(x) = x2 + (a>x) have

 a. a local minimum at x = 2?

 b. a point of inflection at x = 1?

36. What values of a and b make ƒ(x) = x3 + ax2 + bx have

 a. a local maximum at x = -1 and a local minimum at x = 3?

 b. a local minimum at x = 4 and a point of inflection at x = 1?

physical applications
37. Vertical motion The height above ground of an object moving 

vertically is given by

s = -16t2 + 96t + 112,

  with s in feet and t in seconds. Find

 a. the object’s velocity when t = 0;

 b. its maximum height and when it occurs;

 c. its velocity when s = 0.

38. Quickest route Jane is 2 mi offshore in a boat and wishes to reach 
a coastal village 6 mi down a straight shoreline from the point near-
est the boat. She can row 2 mph and can walk 5 mph. Where should 
she land her boat to reach the village in the least amount of time?

39. Shortest beam The 8-ft wall shown here stands 27 ft from the 
building. Find the length of the shortest straight beam that will 
reach to the side of the building from the ground outside the wall.

Building

27′

Beam

8′ wall

40. Motion on a line The positions of two particles on the s-axis 
are s1 = sin t and s2 = sin (t + p>3), with s1 and s2 in meters 
and t in seconds.

 a. At what time(s) in the interval 0 … t … 2p do the particles 
meet?

 b. What is the farthest apart that the particles ever get?

 c. When in the interval 0 … t … 2p is the distance between the 
particles changing the fastest?

41. The intensity of illumination at any point from a light source is 
proportional to the square of the reciprocal of the distance 
between the point and the light source. Two lights, one having an 
intensity eight times that of the other, are 6 m apart. How far from 
the stronger light is the total illumination least?

42. Projectile motion The range R of a projectile fired from the ori-
gin over horizontal ground is the distance from the origin to the 
point of impact. If the projectile is fired with an initial velocity y0 
at an angle a with the horizontal, then in Chapter 13 we find that 

r = 3

w

h
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churches crumble away years ago called the change tin pest 
because it seemed to be contagious, and indeed it was, for the 
gray powder is a catalyst for its own formation.

    A catalyst for a chemical reaction is a substance that con-
trols the rate of reaction without undergoing any permanent 
change in itself. An autocatalytic reaction is one whose product 
is a catalyst for its own formation. Such a reaction may proceed 
slowly at first if the amount of catalyst present is small and 
slowly again at the end, when most of the original substance is 
used up. But in between, when both the substance and its catalyst 
product are abundant, the reaction proceeds at a faster pace.

    In some cases, it is reasonable to assume that the rate 
y = dx>dt of the reaction is proportional both to the amount of 
the original substance present and to the amount of product. That 
is, y may be considered to be a function of x alone, and

y = kx(a - x) = kax - kx2,

  where
   x = the amount of product
   a = the amount of substance at the beginning
   k = a positive constant.

  At what value of x does the rate y have a maximum? What is the 
maximum value of y?

50. Airplane landing path An airplane is flying at altitude H when it 
begins its descent to an airport runway that is at horizontal ground 
distance L from the airplane, as shown in the figure. Assume that the 
landing path of the airplane is the graph of a cubic polynomial func-
tion y = ax3 + bx2 + cx + d,  where y(-L) = H and y(0) = 0.

 a. What is dy>dx at x = 0?

 b. What is dy>dx at x = -L?

 c. Use the values for dy>dx at x = 0 and x = -L together with 
y(0) = 0 and y(-L) = H  to show that

y(x) = H c 2ax
L
b

3

+ 3ax
L
b

2

d .

Landing path y

x

H = Cruising altitude
Airport

L

Business and economics
 51. It costs you c dollars each to manufacture and distribute backpacks. 

If the backpacks sell at x dollars each, the number sold is given by

n = a
x - c + b(100 - x),

  where a and b are positive constants. What selling price will bring 
a maximum profit?

52. You operate a tour service that offers the following rates:

    $200 per person if 50 people (the minimum number to book the 
tour) go on the tour.

    For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

  It costs $6000 (a fixed cost) plus $32 per person to conduct the 
tour. How many people does it take to maximize your profit?

 b. When in the interval 0 … t … 2p is the vertical distance 
between the masses the greatest? What is this distance? (Hint: 
cos 2t = 2 cos2 t - 1.)

s

0

m2

s1

s2

m1

47. Distance between two ships At noon, ship A was 12 nautical 
miles due north of ship B. Ship A was sailing south at 12 knots 
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

 a. Start counting time with t = 0 at noon and express the dis-
tance s between the ships as a function of t.

 b. How rapidly was the distance between the ships changing at 
noon? One hour later?

 c. The visibility that day was 5 nautical miles. Did the ships 
ever sight each other?

 d. Graph s and ds>dt together as functions of t for -1 … t … 3, 
using different colors if possible. Compare the graphs and 
reconcile what you see with your answers in parts (b)  
and (c).

 e. The graph of ds>dt looks as if it might have a horizontal 
asymptote in the first quadrant. This in turn suggests that 
ds>dt approaches a limiting value as t S q. What is this 
value? What is its relation to the ships’ individual speeds?

48. Fermat’s principle in optics Light from a source A is reflected 
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle, 
the angle of incidence must equal the angle of reflection, both 
measured from the line normal to the reflecting surface. (This 
result can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
re�ection

A
u1

u2

49. Tin pest When metallic tin is kept below 13.2°C, it slowly 
becomes brittle and crumbles to a gray powder. Tin objects even-
tually crumble to this gray powder spontaneously if kept in a cold 
climate for years. The Europeans who saw tin organ pipes in their 

t
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   Under reasonable assumptions about the elasticity of 
the tracheal wall and about how the air near the wall is 
slowed by friction, the average flow velocity y can be mod-
eled by the equation

y = c(r0 - r)r2 cm>sec,  
r0

2
… r … r0 ,

  where r0 is the rest radius of the trachea in centimeters and c 
is a positive constant whose value depends in part on the 
length of the trachea.

   Show that y is greatest when r = (2>3)r0; that is, when 
the trachea is about 33% contracted. The remarkable fact is 
that X-ray photographs confirm that the trachea contracts 
about this much during a cough.

 b. Take r0 to be 0.5 and c to be 1 and graph y over the interval 
0 … r … 0.5. Compare what you see with the claim that y is 
at a maximum when r = (2>3)r0.

theory and examples
61. An inequality for positive integers Show that if a, b, c, and d 

are positive integers, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)
abcd

Ú 16.

62. The derivative dt>dx in Example 4

 a. Show that

ƒ(x) = x2a2 + x2

  is an increasing function of x.

 b. Show that

g(x) = d - x2b2 + (d - x)2

  is a decreasing function of x.

 c. Show that

dt
dx

= x

c12a2 + x2
- d - x

c22b2 + (d - x)2

  is an increasing function of x.

63. Let ƒ(x) and g(x) be the differentiable functions graphed here. 
Point c is the point where the vertical distance between the curves 
is the greatest. Is there anything special about the tangents to the 
two curves at c? Give reasons for your answer.

x
a c b

y = f (x)

y = g(x)

t

53. Wilson lot size formula One of the formulas for inventory 
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

A(q) = km
q + cm +

hq
2

,

  where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of 
placing an order (the same, no matter how often you order), c is 
the cost of one item (a constant), m is the number of items sold 
each week (a constant), and h is the weekly holding cost per item 
(a constant that takes into account things such as space, utilities, 
insurance, and security).

 a. Your job, as the inventory manager for your store, is to find 
the quantity that will minimize A(q). What is it? (The formula 
you get for the answer is called the Wilson lot size formula.)

 b. Shipping costs sometimes depend on order size. When they 
do, it is more realistic to replace k by k + bq, the sum of k 
and a constant multiple of q. What is the most economical 
quantity to order now?

54. Production level Prove that the production level (if any) at 
which average cost is smallest is a level at which the average cost 
equals marginal cost.

55. Show that if r(x) = 6x and c(x) = x3 - 6x2 + 15x are your rev-
enue and cost functions, then the best you can do is break even 
(have revenue equal cost).

56. Production level Suppose that c(x) = x3 - 20x2 + 20,000x is 
the cost of manufacturing x items. Find a production level that 
will minimize the average cost of making x items.

57. You are to construct an open rectangular box with a square base 
and a volume of 48 ft3. If material for the bottom costs $6>ft2 and 
material for the sides costs $4>ft2, what dimensions will result in 
the least expensive box? What is the minimum cost?

58. The 800-room Mega Motel chain is filled to capacity when the 
room charge is $50 per night. For each $10 increase in room 
charge, 40 fewer rooms are filled each night. What charge per 
room will result in the maximum revenue per night?

Biology
59. Sensitivity to medicine (Continuation of Exercise 72, Section 

3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative 
dR>dM , where

R = M2aC
2

- M
3
b

  and C is a constant.

60. How we cough

 a. When we cough, the trachea (windpipe) contracts to increase 
the velocity of the air going out. This raises the questions of 
how much it should contract to maximize the velocity and 
whether it really contracts that much when we cough.
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 b.  Graph the distance function D(x) and y = 2x together and 
reconcile what you see with your answer in part (a).

(x, "x)

0 3
2, 0

y

x

y = "x

a     b

68. a.  How close does the semicircle y = 216 - x2 come to the 
point 11, 232?

 b.  Graph the distance function and y = 216 - x2 together and 
reconcile what you see with your answer in part (a).

t

t

64. You have been asked to determine whether the function ƒ(x) =
3 + 4 cos x + cos 2x is ever negative.

 a. Explain why you need to consider values of x only in the 
interval 30, 2p4 .

 b. Is ƒ ever negative? Explain.

65. a.  The function y = cot x - 22 csc x has an absolute maxi-
mum value on the interval 0 6 x 6 p. Find it.

 b.  Graph the function and compare what you see with your 
answer in part (a).

66. a.  The function y = tan x + 3 cot x has an absolute minimum 
value on the interval 0 6 x 6 p>2. Find it.

 b.  Graph the function and compare what you see with your 
answer in part (a).

67. a.  How close does the curve y = 2x come to the point  
(3>2, 0)? (Hint: If you minimize the square of the distance, 
you can avoid square roots.)

t

t

4.7 newton’s method

In this section we study a numerical method, called Newton’s method or the Newton–
Raphson method, which is a technique to approximate the solution to an equation 
ƒ(x) = 0. Essentially it uses tangent lines of the graph of y = ƒ(x) near the points where ƒ 
is zero to estimate the solution. (A value of x where ƒ is zero is a root of the function ƒ and 
a solution of the equation ƒ(x) = 0.)

Procedure for newton’s method

The goal of Newton’s method for estimating a solution of an equation ƒ(x) = 0 is to pro-
duce a sequence of approximations that approach the solution. We pick the first number x0 
of the sequence. Then, under favorable circumstances, the method does the rest by moving 
step by step toward a point where the graph of ƒ crosses the x-axis (Figure 4.46). At each 
step the method approximates a zero of ƒ with a zero of one of its linearizations. Here is 
how it works.

The initial estimate, x0, may be found by graphing or just plain guessing. The method then 
uses the tangent to the curve y = ƒ(x) at (x0, ƒ(x0)) to approximate the curve, calling the 
point x1 where the tangent meets the x-axis (Figure 4.46). The number x1 is usually a better 
approximation to the solution than is x0. The point x2 where the tangent to the curve at 
(x1, ƒ(x1)) crosses the x-axis is the next approximation in the sequence. We continue on, 
using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-
ing way. Given the approximation xn, the point-slope equation for the tangent to the curve 
at (xn, ƒ(xn)) is

y = ƒ(xn) + ƒ′(xn)(x - xn).

We can find where it crosses the x-axis by setting y = 0 (Figure 4.47):

 0 = ƒ(xn) + ƒ′(xn)(x - xn)

 -  
ƒ(xn)
ƒ′(xn)

= x - xn

 x = xn -
ƒ(xn)
ƒ′(xn)

  If ƒ′(xn) ≠ 0

This value of x is the next approximation xn + 1. Here is a summary of Newton’s method.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird
APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y = f (x)

Figure 4.46 Newton’s method starts 
with an initial guess x0 and (under favor-
able circumstances) improves the guess 
one step at a time.
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Applying newton’s method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find 
solutions of equations.

In our first example, we find decimal approximations to 22 by estimating the posi-
tive root of the equation ƒ(x) = x2 - 2 = 0.

ExamplE 1  Find the positive root of the equation

ƒ(x) = x2 - 2 = 0.

solution With ƒ(x) = x2 - 2 and ƒ′(x) = 2x, Equation (1) becomes

 xn + 1 = xn -
xn 

2 - 2
2xn

 = xn -
xn

2
+ 1

xn

 =
xn

2
+ 1

xn
.

The equation

xn + 1 =
xn

2
+ 1

xn

enables us to go from each approximation to the next with just a few keystrokes. With the 
starting value x0 = 1, we get the results in the first column of the following table. (To five 
decimal places, 22 = 1.41421.)

x

y

0

Root sought

Tangent line
(graph of
linearization
of f at xn)

y = f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))
Slope: f ′(xn)
Tangent line equation:
 y − f (xn) = f ′(xn)(x − xn)

xn+1 = xn −
f (xn)
f '(xn)

Figure 4.47 The geometry of the suc-
cessive steps of Newton’s method. From 
xn we go up to the curve and follow the 
tangent line down to find xn + 1.

newton’s method
1. Guess a first approximation to a solution of the equation ƒ(x) = 0. A graph 

of y = ƒ(x) may help.

2. Use the first approximation to get a second, the second to get a third, and so 
on, using the formula

 xn + 1 = xn -
ƒ(xn)
ƒ′(xn)

,  if ƒ′(xn) ≠ 0. (1)

Newton’s method is the method used by most software applications to calculate roots 
because it converges so fast (more about this later). If the arithmetic in the table in Exam-
ple 1 had been carried to 13 decimal places instead of 5, then going one step further would 
have given 22 correctly to more than 10 decimal places.

  Error Number of  
  correct digits

x0 = 1 -0.41421 1

x1 = 1.5 0.08579 1

x2 = 1.41667 0.00246 3

x3 = 1.41422 0.00001 5
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ExamplE 2  Find the x-coordinate of the point where the curve y = x3 - x crosses 
the horizontal line y = 1.

solution The curve crosses the line when x3 - x = 1 or x3 - x - 1 = 0. When does 
ƒ(x) = x3 - x - 1 equal zero? Since ƒ(1) = -1 and ƒ(2) = 5, we know by the Interme-
diate Value Theorem there is a root in the interval (1, 2) (Figure 4.48).

We apply Newton’s method to ƒ with the starting value x0 = 1. The results are dis-
played in Table 4.1 and Figure 4.49.

At n = 5, we come to the result x6 = x5 = 1.3247 17957. When xn + 1 = xn, Equa-
tion (1) shows that ƒ(xn) = 0. We have found a solution of ƒ(x) = 0 to nine decimals. 

taBle 4.1 The result of applying Newton’s method to ƒ(x) = x 3 - x - 1  
with x0 = 1

n xn ƒ(xn)  ƒ′(xn)  xn+1 = xn −
ƒ(xn)
ƒ′(xn)

0 1 -1 2 1.5

1 1.5   0.875 5.75 1.3478 26087

2 1.3478 26087   0.1006 82173 4.4499 05482 1.3252 00399

3 1.3252 00399   0.0020 58362 4.2684 68292 1.3247 18174

4 1.3247 18174   0.0000 00924 4.2646 34722 1.3247 17957

5 1.3247 17957 -1.8672E@13 4.2646 32999 1.3247 17957

x

y

0

5

1

10

−1 2 3

15

20
y = x3 − x − 1

Figure 4.48 The graph of ƒ(x) =
x3 - x - 1 crosses the x-axis once; this is 
the root we want to find (Example 2).

In Figure 4.50 we have indicated that the process in Example 2 might have started at 
the point B0(3, 23) on the curve, with x0 = 3. Point B0 is quite far from the x-axis, but the 
tangent at B0 crosses the x-axis at about (2.12, 0), so x1 is still an improvement over x0. If 
we use Equation (1) repeatedly as before, with ƒ(x) = x3 - x - 1 and ƒ′(x) = 3x2 - 1, 
we obtain the nine-place solution x7 = x6 = 1.3247 17957 in seven steps.

Convergence of the approximations

In Chapter 10 we define precisely the idea of convergence for the approximations xn in 
Newton’s method. Intuitively, we mean that as the number n of approximations increases 
without bound, the values xn get arbitrarily close to the desired root r. (This notion is  
similar to the idea of the limit of a function g(t) as t approaches infinity, as defined in  
Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but 
this is not guaranteed. One way to test convergence is to begin by graphing the function to 
estimate a good starting value for x0. You can test that you are getting closer to a zero of 
the function by evaluating 0 ƒ(xn) 0 , and check that the approximations are converging by 
evaluating 0 xn - xn + 1 0 .

Newton’s method does not always converge. For instance, if

ƒ(x) = e -2r - x, x 6 r2x - r, x Ú r,

the graph will be like the one in Figure 4.51. If we begin with x0 = r - h, we get 
x1 = r + h, and successive approximations go back and forth between these two values. 
No amount of iteration brings us closer to the root than our first guess.

If Newton’s method does converge, it converges to a root. Be careful, however. There 
are situations in which the method appears to converge but no root is there. Fortunately, 
such situations are rare.

x

y

0

5

1

10

−1 2.12 3

15

20

25

Root sought

1.6

y = x3 − x − 1

B0(3, 23)

B1(2.12, 6.35)

x1x2 x0
−1�"3 1�"3

Figure 4.50 Any starting value x0 to 
the right of x = 1>23 will lead to the 
root in Example 2.

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y = x3 − x − 1

(1, −1)

Figure 4.49 The first three x-values in 
Table 4.1 (four decimal places).
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When Newton’s method converges to a root, it may not be the root you have in mind. 
Figure 4.52 shows two ways this can happen.

Figure 4.51 Newton’s method fails to 
converge. You go from x0 to x1 and back 
to x0, never getting any closer to r.

x

y

0
r

y = f (x)

x1x0

Figure 4.52 If you start too far away, Newton’s method may miss the root you want.

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y = f (x)

y = f (x)

root Finding
 1. Use Newton’s method to estimate the solutions of the equation 

x2 + x - 1 = 0. Start with x0 = -1 for the left-hand solution 
and with x0 = 1 for the solution on the right. Then, in each case, 
find x2.

 2. Use Newton’s method to estimate the one real solution of 
x3 + 3x + 1 = 0. Start with x0 = 0 and then find x2.

 3. Use Newton’s method to estimate the two zeros of the function 
ƒ(x) = x4 + x - 3. Start with x0 = -1 for the left-hand zero and 
with x0 = 1 for the zero on the right. Then, in each case, find x2.

 4. Use Newton’s method to estimate the two zeros of the function 
ƒ(x) = 2x - x2 + 1. Start with x0 = 0 for the left-hand zero and 
with x0 = 2 for the zero on the right. Then, in each case, find x2.

 5. Use Newton’s method to find the positive fourth root of 2 by 
solving the equation x4 - 2 = 0. Start with x0 = 1 and find x2.

 6. Use Newton’s method to find the negative fourth root of 2 by 
solving the equation x4 - 2 = 0. Start with x0 = -1 and find x2.

 7. Guessing a root Suppose that your first guess is lucky, in the 
sense that x0 is a root of ƒ(x) = 0. Assuming that ƒ′(x0) is 
defined and not 0, what happens to x1 and later approximations?

 8. Estimating pi You plan to estimate p>2 to five decimal places 
by using Newton’s method to solve the equation cos x = 0. Does 
it matter what your starting value is? Give reasons for your 
answer.

theory and examples
 9. Oscillation Show that if h 7 0, applying Newton’s method to

ƒ(x) = e2x, x Ú 02-x, x 6 0

  leads to x1 = -h if x0 = h and to x1 = h if x0 = -h. Draw a 
picture that shows what is going on.

 10. Approximations that get worse and worse Apply Newton’s 
method to ƒ(x) = x1>3 with x0 = 1 and calculate x1, x2, x3, and x4. 
Find a formula for 0 xn 0 . What happens to 0 xn 0  as n S q? Draw a 
picture that shows what is going on.

 11. Explain why the following four statements ask for the same  
information:

   i) Find the roots of ƒ(x) = x3 - 3x - 1.

  ii)  Find the x-coordinates of the intersections of the curve 
y = x3 with the line y = 3x + 1.

 iii)  Find the x-coordinates of the points where the curve 
y = x3 - 3x crosses the horizontal line y = 1.

 iv)  Find the values of x where the derivative of g(x) =
(1>4)x4 - (3>2)x2 - x + 5 equals zero.

 12. Locating a planet To calculate a planet’s space coordinates, 
we have to solve equations like x = 1 + 0.5 sin x. Graphing the 
function ƒ(x) = x - 1 - 0.5 sin x suggests that the function has 
a root near x = 1.5. Use one application of Newton’s method to 
improve this estimate. That is, start with x0 = 1.5 and find x1. 
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

 13. Intersecting curves The curve y = tan x crosses the line 
y = 2x between x = 0 and x = p>2. Use Newton’s method to 
find where.

 14. Real solutions of a quartic Use Newton’s method to find the 
two real solutions of the equation x4 - 2x3 - x2 - 2x + 2 = 0.

 15. a.  How many solutions does the equation sin 3x = 0.99 - x2 
have?

 b. Use Newton’s method to find them.

 16. Intersection of curves

 a. Does cos 3x ever equal x? Give reasons for your answer.

 b. Use Newton’s method to find where.

 17. Find the four real zeros of the function ƒ(x) = 2x4 - 4x2 + 1.

t

t

t

exercises 4.7
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the submarine travels on the parabolic path y = x2 and that the 
buoy is located at the point (2, -1>2).

 a. Show that the value of x that minimizes the distance between 
the submarine and the buoy is a solution of the equation 
x = 1>(x2 + 1).

 b. Solve the equation x = 1>(x2 + 1) with Newton’s method.

x

y

0

2, −

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

y = x2

a        b

 29. Curves that are nearly flat at the root Some curves are so flat 
that, in practice, Newton’s method stops too far from the root to 
give a useful estimate. Try Newton’s method on ƒ(x) = (x - 1)40 
with a starting value of x0 = 2 to see how close your machine 
comes to the root x = 1. See the accompanying graph.

x

y

0

(2, 1)

1

1

2

Nearly �at

Slope = 40Slope = −40

y = (x − 1)40

30. The accompanying figure shows a circle of radius r with a chord 
of length 2 and an arc s of length 3. Use Newton’s method to 
solve for r and u (radians) to four decimal places. Assume 
0 6 u 6 p.

u 2

r

r

s = 3

t

 18. Estimating pi Estimate p to as many decimal places as your 
calculator will display by using Newton’s method to solve the 
equation tan x = 0 with x0 = 3.

 19. Intersection of curves At what value(s) of x does cos x = 2x?

 20. Intersection of curves At what value(s) of x does cos x = -x?

 21. The graphs of y = x2(x + 1) and y = 1>x (x 7 0) intersect at 
one point x = r. Use Newton’s method to estimate the value of r 
to four decimal places.

1

21−1 0

3

2

x

y

y = x
1

y = x2(x + 1)

rr, 1a    b

 22. The graphs of y = 2x and y = 3 - x2 intersect at one point 
x = r. Use Newton’s method to estimate the value of r to four 
decimal places.

 23. Intersection of curves At what value(s) of x does e-x2
 =

x2 - x + 1?

 24. Intersection of curves At what value(s) of x does ln (1 - x2) =  
x - 1?

 25. Use the Intermediate Value Theorem from Section 2.5 to show 
that ƒ(x) = x3 + 2x - 4 has a root between x = 1 and x = 2. 
Then find the root to five decimal places.

 26. Factoring a quartic Find the approximate values of r1 through 
r4 in the factorization

8x4 - 14x3 - 9x2 + 11x - 1 = 8(x - r1)(x - r2)(x - r3)(x - r4).

x

y

2

1−1 2

−4

−6

−2

−8

−10

−12

y = 8x4 − 14x3 − 9x2 + 11x − 1

 27. Converging to different zeros Use Newton’s method to find 
the zeros of ƒ(x) = 4x4 - 4x2 using the given starting values.

 a. x0 = -2 and x0 = -0.8, lying in 1-q, -22>22
 b. x0 = -0.5 and x0 = 0.25, lying in 1-221>7, 221>72
 c. x0 = 0.8 and x0 = 2, lying in 122>2, q2
 d. x0 = -221>7 and x0 = 221>7

 28. The sonobuoy problem In submarine location problems, it is 
often necessary to find a submarine’s closest point of approach 
(CPA) to a sonobuoy (sound detector) in the water. Suppose that 

t

t
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4.8 Antiderivatives

We have studied how to find the derivative of a function and how to use it to solve a wide 
range of problems. However, many other problems require that we recover a function from 
its known derivative (from its known rate of change). For instance, the laws of physics tell 
us the acceleration of an object falling from an initial height, and we can use this to com-
pute its velocity and its height at any time. More generally, starting with a function ƒ, we 
want to find a function F whose derivative is ƒ. If such a function F exists, it is called an 
antiderivative of ƒ. We will see in the next chapter that antiderivatives are the link con-
necting the two major elements of calculus: derivatives and definite integrals.

Finding Antiderivatives

theOrem 8 If F is an antiderivative of ƒ on an interval I, then the most gen-
eral antiderivative of ƒ on I is

F(x) + C

where C is an arbitrary constant.

DeFinitiOn A function F is an antiderivative of ƒ on an interval I if 
F′(x) = ƒ(x) for all x in I.

The process of recovering a function F(x) from its derivative ƒ(x) is called antidifferentia-
tion. We use capital letters such as F to represent an antiderivative of a function ƒ, G to 
represent an antiderivative of g, and so forth.

ExamplE 1  Find an antiderivative for each of the following functions.

(a) ƒ(x) = 2x   (b) g(x) = cos x   (c) h(x) = 1
x + 2e2x

solution We need to think backward here: What function do we know has a derivative 
equal to the given function?

(a) F(x) = x2   (b) G(x) = sin x   (c) H(x) = ln 0 x 0 + e2x

Each answer can be checked by differentiating. The derivative of F(x) = x2 is 2x.  
The derivative of G(x) = sin x is cos x, and the derivative of H(x) = ln 0 x 0 + e2x is 
(1>x) + 2e2x. 

The function F(x) = x2 is not the only function whose derivative is 2x. The function 
x2 + 1 has the same derivative. So does x2 + C for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two 
antiderivatives of a function differ by a constant. So the functions x2 + C, where C is an 
arbitrary constant, form all the antiderivatives of ƒ(x) = 2x. More generally, we have 
the following result.

Thus the most general antiderivative of ƒ on I is a family of functions F(x) + C 
whose graphs are vertical translations of one another. We can select a particular antideriva-
tive from this family by assigning a specific value to C. Here is an example showing how 
such an assignment might be made.



282 Chapter 4: Applications of Derivatives

ExamplE 2  Find an antiderivative of ƒ(x) = 3x2 that satisfies F(1) = -1.

solution Since the derivative of x3 is 3x2, the general antiderivative

F(x) = x3 + C

gives all the antiderivatives of ƒ(x). The condition F(1) = -1 determines a specific value 
for C. Substituting x = 1 into F(x) = x3 + C gives

F(1) = (1)3 + C = 1 + C.

Since F(1) = -1, solving 1 + C = -1 for C gives C = -2. So

F(x) = x3 - 2

is the antiderivative satisfying F(1) = -1. Notice that this assignment for C selects the 
particular curve from the family of curves y = x3 + C that passes through the point 
(1, -1) in the plane (Figure 4.53). 

By working backward from assorted differentiation rules, we can derive formulas and 
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative 
formula to obtain the function to its left. For example, the derivative of (tan kx)>k + C is 
sec2 kx, whatever the value of the constants C or k ≠ 0, and this establishes Formula 4 
for the most general antiderivative of sec2 kx.

ExamplE 3  Find the general antiderivative of each of the following functions.

 (a) ƒ(x) = x5 (b) g(x) = 12x
 (c) h(x) = sin 2x

 (d) i(x) = cos  
x
2

 (e) j(x) = e-3x (f) k(x) = 2x

Figure 4.53 The curves y = x3 + C 
fill the coordinate plane without overlap-
ping. In Example 2, we identify the curve 
y = x3 - 2 as the one that passes through 
the given point (1, -1).

2

1

0

−1

−2

x

y

y = x3 + C C = 1

C = 2

C = 0

C = −1

C = −2

(1, −1)

tABLe 4.2 Antiderivative formulas, k a nonzero constant

 Function General antiderivative Function General antiderivative

 1. xn 1
n + 1

 xn + 1 + C, n ≠ -1

 2. sin kx -1
k
 cos kx + C 

 3. cos kx 1
k
 sin kx + C

 4. sec2 kx 1
k
 tan kx + C

 5. csc2 kx -1
k
 cot kx + C

 6. sec kx tan kx 1
k
 sec kx + C

 7. csc kx cot kx -1
k
 csc kx + C

 8. ekx 1
k

 ekx + C

 9. 1
x  ln 0 x 0 + C, x ≠ 0

10. 121 - k2x2
 1

k
 sin-1 kx + C

11. 1
1 + k2x2 1

k
  tan-1 kx + C

12. 1

x2k2x2 - 1
 sec-1 kx + C, kx 7 1

13. akx a 1
k ln a

b  akx + C, a 7 0, a ≠ 1
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solution In each case, we can use one of the formulas listed in Table 4.2.

 (a) F(x) = x6

6
+ C 

Formula 1  
with n = 5

 (b) g(x) = x-1>2, so

  G(x) = x1>2

1>2 + C = 22x + C 
Formula 1  
with n = -1>2

 (c) H(x) = -cos 2x
2

+ C 
Formula 2  
with k = 2

 (d) I(x) =
sin (x>2)

1>2 + C = 2 sin  
x
2

+ C 
Formula 3  
with k = 1>2

 (e) J(x) = -1
3 e-3x + C 

Formula 8  
with k = -3

 (f) K(x) = a 1
ln 2
b  2x + C 

Formula 13  
with a = 2, k = 1  

Other derivative rules also lead to corresponding antiderivative rules. We can add and 
subtract antiderivatives and multiply them by constants.

tABLe 4.3 Antiderivative linearity rules

   Function General antiderivative

1. Constant Multiple Rule: kƒ(x) kF(x) + C, k a constant

2. Negative Rule: -ƒ(x) -F(x) + C

3. Sum or Difference Rule: ƒ(x) { g(x) F(x) { G(x) + C

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and 
verifying that the result agrees with the original function. Formula 2 is the special case 
k = -1 in Formula 1.

ExamplE 4  Find the general antiderivative of

ƒ(x) = 32x
+ sin 2x.

solution We have that ƒ(x) = 3g(x) + h(x) for the functions g and h in Example 3. 
Since G(x) = 22x is an antiderivative of g(x) from Example 3b, it follows from the Con-
stant Multiple Rule for antiderivatives that 3G(x) = 3 # 22x = 62x is an antiderivative 
of 3g(x) = 3>2x. Likewise, from Example 3c we know that H(x) = (-1>2) cos 2x is an 
antiderivative of h(x) = sin 2x. From the Sum Rule for antiderivatives, we then get that

 F(x) = 3G(x) + H(x) + C

 = 62x - 1
2

 cos 2x + C

is the general antiderivative formula for ƒ(x), where C is an arbitrary constant. 

initial value Problems and Differential equations

Antiderivatives play several important roles in mathematics and its applications. Methods 
and techniques for finding them are a major part of calculus, and we take up that study in 
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Chapter 8. Finding an antiderivative for a function ƒ(x) is the same problem as finding a 
function y(x) that satisfies the equation

dy
dx

= ƒ(x).

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the 
equation. This function is found by taking the antiderivative of ƒ(x). We can fix the arbi-
trary constant arising in the antidifferentiation process by specifying an initial condition

y(x0) = y0.

This condition means the function y(x) has the value y0 when x = x0. The combination of 
a differential equation and an initial condition is called an initial value problem. Such 
problems play important roles in all branches of science.

The most general antiderivative F(x) + C (such as x3 + C in Example 2) of the 
function ƒ(x) gives the general solution y = F(x) + C of the differential equation 
dy>dx = ƒ(x). The general solution gives all the solutions of the equation (there are infi-
nitely many, one for each value of C). We solve the differential equation by finding its 
general solution. We then solve the initial value problem by finding the particular solu-
tion that satisfies the initial condition y(x0) = y0. In Example 2, the function y = x3 - 2 
is the particular solution of the differential equation dy>dx = 3x2 satisfying the initial 
condition y(1) = -1.

Antiderivatives and motion

We have seen that the derivative of the position function of an object gives its velocity, and 
the derivative of its velocity function gives its acceleration. If we know an object’s accel-
eration, then by finding an antiderivative we can recover the velocity, and from an antide-
rivative of the velocity we can recover its position function. This procedure was used as an 
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual 
framework in terms of antiderivatives, we revisit the problem from the point of view of 
differential equations.

ExamplE 5  A hot-air balloon ascending at the rate of 12 ft>sec is at a height 80 ft 
above the ground when a package is dropped. How long does it take the package to reach 
the ground?

solution Let y(t) denote the velocity of the package at time t, and let s(t) denote its 
height above the ground. The acceleration of gravity near the surface of the earth is 
32 ft>sec2. Assuming no other forces act on the dropped package, we have

dy
dt

= -32.     
Negative because gravity acts in the 
direction of decreasing s

This leads to the following initial value problem (Figure 4.54):

  Differential equation:    
dy
dt

= -32

 Initial condition:  y(0) = 12.   Balloon initially rising

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1. Solve the differential equation: The general formula for an antiderivative of -32 is

y = -32t + C.

 Having found the general solution of the differential equation, we use the initial con-
dition to find the particular solution that solves our problem.

Figure 4.54 A package dropped from 
a rising hot-air balloon (Example 5).

s

0 ground

s(t)

y(0) = 12

dy
dt

 = −32
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2. Evaluate C:

 12 = -32(0) + C  Initial condition y(0) = 12

 C = 12.

 The solution of the initial value problem is

y = -32t + 12.

Since velocity is the derivative of height, and the height of the package is 80 ft at time 
t = 0 when it is dropped, we now have a second initial value problem: 

Differential equation:  
ds
dt

= -32t + 12  Set y = ds>dt  in the previous equation.

Initial condition:    s(0) = 80.

We solve this initial value problem to find the height as a function of t.

1. Solve the differential equation: Finding the general antiderivative of -32t + 12 gives

s = -16t2 + 12t + C.

2. Evaluate C:

 80 = -16(0)2 + 12(0) + C  Initial condition s(0) = 80

 C = 80.

 The package’s height above ground at time t is

s = -16t2 + 12t + 80.

Use the solution: To find how long it takes the package to reach the ground, we set s 
equal to 0 and solve for t:

 -16t2 + 12t + 80 = 0

 -4t2 + 3t + 20 = 0

 t = -3 { 2329
-8  Quadratic formula

 t ≈ -1.89,  t ≈ 2.64.

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-
ative root has no physical meaning.) 

indefinite integrals

A special symbol is used to denote the collection of all antiderivatives of a function ƒ.

DeFinitiOn The collection of all antiderivatives of ƒ is called the indefinite 
integral of ƒ with respect to x, and is denoted by

Lƒ(x) dx.

The symbol 1  is an integral sign. The function ƒ is the integrand of the inte-
gral, and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand function is always 
followed by a differential to indicate the variable of integration. We will have more to say 
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about why this is important in Chapter 5. Using this notation, we restate the solutions of 
Example 1, as follows:

L2x dx = x2 + C,

Lcos x dx = sin x + C,

L
 

a1x + 2e2xb  dx = ln 0 x 0 + e2x + C.

This notation is related to the main application of antiderivatives, which will be explored 
in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite sums, 
an unexpected and wonderfully useful role that is described in a central result of Chapter 5, 
called the Fundamental Theorem of Calculus.

ExamplE 6  Evaluate

L (x2 - 2x + 5) dx.

Solution If we recognize that (x3>3) - x2 + 5x is an antiderivative of x2 - 2x + 5, 
we can evaluate the integral as

    antiderivative$++%++&

L (x2 - 2x + 5) dx = x3

3 - x2 + 5x + C."
arbitrary constant

If we do not recognize the antiderivative right away, we can generate it term-by-term 
with the Sum, Difference, and Constant Multiple Rules:

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 = Lx2 dx - 2Lx dx + 5L1 dx

 = ax
3

3 + C1b - 2ax
2

2
+ C2b + 5(x + C3)

 = x3

3 + C1 - x2 - 2C2 + 5x + 5C3.

This formula is more complicated than it needs to be. If we combine C1, -2C2, and 5C3 
into a single arbitrary constant C = C1 - 2C2 + 5C3, the formula simplifies to

x3

3 - x2 + 5x + C

and still gives all the possible antiderivatives there are. For this reason, we recommend that 
you go right to the final form even if you elect to integrate term-by-term. Write

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 = x3

3 - x2 + 5x + C.

Find the simplest antiderivative you can for each part and add the arbitrary constant of 
integration at the end. 
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Finding Antiderivatives
In Exercises 1–24, find an antiderivative for each function. Do as 
many as you can mentally. Check your answers by differentiation.

 1.  a. 2x b. x2 c. x2 - 2x + 1

 2.  a. 6x b. x7 c. x7 - 6x + 8

 3.  a. -3x-4 b. x-4 c. x-4 + 2x + 3

 4.  a. 2x-3 b. 
x-3

2
+ x2 c. -x-3 + x - 1

 5.  a. 1
x2 b. 

5
x2 c. 2 - 5

x2

 6.  a. -  
2
x3 b. 1

2x3 c. x3 - 1
x3

 7.  a. 
3
2

 2x b. 1

22x
 c. 2x + 12x

 8.  a. 4
3
23 x b. 1

323 x
 c. 23 x + 123 x

 9.  a. 2
3

 x-1>3 b. 1
3

 x-2>3 c. -  
1
3

 x-4>3

 10.  a. 1
2

 x-1>2 b. -  
1
2

 x-3>2 c. -  
3
2

 x-5>2

 11.  a. 1
x  b. 

7
x  c. 1 - 5

x

 12.  a. 1
3x

 b. 2
5x

 c. 1 + 4
3x

- 1
x2

 13.  a. -p sin px b. 3 sin x c. sin px - 3 sin 3x

 14.  a. p cos px b. 
p

2
 cos  

px
2

 c. cos 
px
2

+ p cos x

 15.  a. sec2 x b. 2
3

 sec2  
x
3

 c. -sec2  
3x
2

16.  a. csc2 x b. -  
3
2

 csc2  
3x
2

 c. 1 - 8 csc2 2x

17.  a. csc x cot x b. -csc 5x cot 5x c. -p csc 
px
2

 cot 
px
2

18.  a. sec x tan x b. 4 sec 3x tan 3x c. sec 
px
2

 tan 
px
2

19.  a. e3x b. e-x c. ex>2

20.  a. e-2x b. e4x>3 c. e-x>5

21.  a. 3x b. 2-x c. a5
3
b

x

22.  a. x23 b. xp c. x22 - 1

23.  a. 221 - x2
 b. 1

2(x2 + 1)
 c. 1

1 + 4x2

24.  a. x - a1
2
b

x

 b. x2 + 2x c. px - x-1

Finding indefinite integrals
In Exercises 25–70, find the most general antiderivative or indefinite 
integral. You may need to try a solution and then adjust your guess. 
Check your answers by differentiation.

25. L (x + 1) dx 26. L (5 - 6x) dx

27. L a3t2 + t
2
b  dt 28. L a

t2

2
+ 4t3b  dt

29. L (2x3 - 5x + 7) dx 30. L (1 - x2 - 3x5) dx

31. L a
1
x2 - x2 - 1

3
b  dx 32. L a

1
5

- 2
x3 + 2xb  dx

33. Lx-1>3 dx 34. Lx-5>4 dx

35. L12x + 23 x2 dx 36. L a
2x
2

+ 22x
b  dx

37. L a8y - 2
y1>4b  dy 38. L a

1
7

- 1
y5>4b  dy

39. L2x(1 - x-3) dx 40. Lx-3(x + 1) dx

41. L  
t2t + 2t

t2  dt 42. L  
4 + 2t

t3  dt

43. L (-2 cos t) dt 44. L (-5 sin t) dt

45. L7 sin 
u

3
  du 46. L3 cos 5u du

47. L (-3 csc2 x) dx 48. L a-  
sec2 x

3
b  dx

49. L  
csc u cot u

2
 du 50. L  

2
5

 sec u tan u du

51. L (e3x + 5e-x) dx 52. L (2ex - 3e-2x) dx

53. L  (e-x + 4x) dx 54. L (1.3)x dx

55. L (4 sec x tan x - 2 sec2 x) dx

 56. L  
1
2

 (csc2 x - csc x cot x) dx

57. L (sin 2x - csc2 x) dx 58. L (2 cos 2x - 3 sin 3x) dx

59. L  
1 + cos 4t

2
 dt 60. L  

1 - cos 6t
2

 dt

61. L  a1x - 5
x2 + 1

b  dx 62. L  a 221 - y2
- 1

y1>4b  dy

63. L  3x23 dx 64. Lx22 - 1 dx

exercises 4.8
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84. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. L  tan u sec2 u du = sec3 u
3

+ C

 b. L  tan u sec2 u du = 1
2

 tan2 u + C

 c. L  tan u sec2 u du = 1
2

 sec2 u + C

85. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. L (2x + 1)2 dx =
(2x + 1)3

3
+ C

 b. L3(2x + 1)2 dx = (2x + 1)3 + C

 c. L6(2x + 1)2 dx = (2x + 1)3 + C

86. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. L22x + 1 dx = 2x2 + x + C

 b. L22x + 1 dx = 2x2 + x + C

 c. L22x + 1 dx = 1
3

 122x + 123 + C

87. Right, or wrong? Give a brief reason why.

L  
-15(x + 3)2

(x - 2)4  dx = ax + 3
x - 2

b
3

+ C

88. Right, or wrong? Give a brief reason why.

L  
x cos (x2) - sin (x2)

x2  dx =
sin (x2)

x + C

initial value Problems
89. Which of the following graphs shows the solution of the initial 

value problem

dy
dx

= 2x, y = 4 when x = 1?

x

y

0 1−1

(a)

(1, 4)

x

y

0 1−1

(b)

(1, 4)

x

y

0 1−1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

  Give reasons for your answer.

65. L (1 + tan2 u) du

  (Hint: 1 + tan2 u = sec2 u)

66. L (2 + tan2 u) du

67. Lcot2 x dx

  (Hint: 1 + cot2 x = csc2 x)

68. L (1 - cot2 x) dx

69. L  cos u (tan u + sec u) du 70. L  
csc u

csc u - sin u
 du

Checking Antiderivative Formulas
Verify the formulas in Exercises 71–82 by differentiation.

71. L (7x - 2)3 dx =
(7x - 2)4

28
+ C

72. L (3x + 5)-2 dx = -  
(3x + 5)-1

3
+ C

73. L sec2 (5x - 1) dx = 1
5

 tan (5x - 1) + C

74. Lcsc2 ax - 1
3
b  dx = -3 cot ax - 1

3
b + C

75. L  
1

(x + 1)2 dx = -  
1

x + 1
+ C

76. L  
1

(x + 1)2 dx = x
x + 1

+ C

 77. L  
1

x + 1
 dx = ln 0 x + 1 0 + C, x ≠ -1

 78. L  xex dx = xex - ex + C

 79. L  
dx

a2 + x2 = 1
a tan-1 ax

ab + C

80. L  
dx2a2 - x2

= sin-1 ax
ab + C

81. L  
tan-1 x

x2  dx = ln x - 1
2

 ln (1 + x2) - tan-1 x
x + C

82. L (sin-1 x)2 dx = x(sin-1 x)2 - 2x + 221 - x2 sin-1 x + C

83. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. Lx sin x dx = x2

2
 sin x + C

 b. Lx sin x dx = -x cos x + C

 c. Lx sin x dx = -x cos x + sin x + C
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 110. 
d3 u
dt3 = 0; u″(0) = -2, u′(0) = -  

1
2

, u(0) = 22

 111. y(4) = -sin t + cos t ;
y‴(0) = 7, y″(0) = y′(0) = -1, y(0) = 0

 112. y(4) = -cos x + 8 sin 2x ;
y‴(0) = 0, y″(0) = y′(0) = 1, y(0) = 3

 113. Find the curve y = ƒ(x) in the xy-plane that passes through the 
point (9, 4) and whose slope at each point is 32x.

 114. a.  Find a curve y = ƒ(x) with the following properties:

   i) 
d2y

dx2 = 6x

  ii)  Its graph passes through the point (0, 1) and has a hori-
zontal tangent there.

 b. How many curves like this are there? How do you know?

solution (integral) Curves
Exercises 115–118 show solution curves of differential equations. In 
each exercise, find an equation for the curve through the labeled point.

 115.  116. 

 117.  118. 

Applications
119. Finding displacement from an antiderivative of velocity

 a. Suppose that the velocity of a body moving along the s-axis is

ds
dt

= y = 9.8t - 3.

    i)  Find the body’s displacement over the time interval from 
t = 1 to t = 3 given that s = 5 when t = 0.

   ii)  Find the body’s displacement from t = 1 to t = 3 given 
that s = -2 when t = 0.

  iii)  Now find the body’s displacement from t = 1 to t = 3 
given that s = s0 when t = 0.

x
0

(1, 0.5)

1

1

2

−1

y = 1 −     x1�3dy
dx

4
3

x
1

1

y

2−1

2

−1

0

 

(−1, 1)

= x − 1
dy
dx

x
0 2

1

y
= sin x − cos xdy

dx

(−p, −1)

x
0

(1, 2)

1

2

y

2

−2

4

6

=           + psin pxdy
dx

1
2"x

3

 90. Which of the following graphs shows the solution of the initial 
value problem

dy
dx

= -x, y = 1 when x = -1?

x

y

0

(−1, 1)
(−1, 1) (−1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

  Give reasons for your answer.

Solve the initial value problems in Exercises 91–112.

 91. 
dy
dx

= 2x - 7, y(2) = 0

 92. 
dy
dx

= 10 - x, y(0) = -1

 93. 
dy
dx

= 1
x2 + x, x 7 0; y(2) = 1

 94. 
dy
dx

= 9x2 - 4x + 5, y(-1) = 0

 95. 
dy
dx

= 3x-2>3, y(-1) = -5

 96. 
dy
dx

= 1

22x
, y(4) = 0

 97. 
ds
dt

= 1 + cos t, s(0) = 4

 98. 
ds
dt

= cos t + sin t, s(p) = 1

 99. 
dr
du

= -p sin pu, r(0) = 0

 100. 
dr
du

= cos pu, r(0) = 1

 101. 
dy
dt

= 1
2

 sec t tan t, y(0) = 1

 102. 
dy
dt

= 8t + csc2 t, yap
2
b = -7

 103. 
dy
dt

= 3

t2t2 - 1
, t 7 1, y(2) = 0

 104. 
dy
dt

= 8
1 + t2 + sec2 t, y(0) = 1

 105. 
d2y

dx2 = 2 - 6x; y′(0) = 4, y(0) = 1

 106. 
d2y

dx2 = 0; y′(0) = 2, y(0) = 0

 107. 
d2r
dt2 = 2

t3 ; 
dr
dt

2
t= 1

= 1, r(1) = 1

 108. 
d2s
dt2 = 3t

8
 ; 

ds
dt

2
t= 4

= 3, s(4) = 4

 109. 
d3y

dx3 = 6; y″(0) = -8, y′(0) = 0, y(0) = 5
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  where y0 and s0 are the body’s velocity and position at time 
t = 0. Derive this equation by solving the initial value problem

Differential equation:  
d2s
dt2 = a

Initial conditions:   
ds
dt

= y0 and s = s0 when t = 0.

126. Free fall near the surface of a planet For free fall near the 
surface of a planet where the acceleration due to gravity has a 
constant magnitude of g length@units>sec2, Equation (1) in Exer-
cise 125 takes the form

 s = -  
1
2

 gt2 + y0 t + s0 , (2)

  where s is the body’s height above the surface. The equation has 
a minus sign because the acceleration acts downward, in the 
direction of decreasing s. The velocity y0 is positive if the object 
is rising at time t = 0 and negative if the object is falling.

Instead of using the result of Exercise 125, you can derive 
Equation (2) directly by solving an appropriate initial value 
problem. What initial value problem? Solve it to be sure you 
have the right one, explaining the solution steps as you go along.

127. Suppose that

ƒ(x) = d
dx

 11 - 2x2 and g(x) = d
dx

 (x + 2).

  Find:

 a. Lƒ(x) dx b. Lg(x) dx

 c. L [-ƒ(x)] dx d. L 3-g(x)4  dx

 e. L 3ƒ(x) + g(x)4  dx f. L 3ƒ(x) - g(x)4  dx

128. Uniqueness of solutions If differentiable functions y = F(x) 
and y = g(x) both solve the initial value problem

dy
dx

= ƒ(x),  y(x0) = y0,

  on an interval I, must F(x) = G(x) for every x in I? Give reasons 
for your answer.

COmPuter exPLOrAtiOns
Use a CAS to solve the initial value problems in Exercises 129–132. 
Plot the solution curves.

129. y′ = cos2 x + sin x, y(p) = 1

130. y′ = 1
x + x, y(1) = -1

131. y′ = 124 - x2
, y(0) = 2

132. y″ = 2
x + 2x, y(1) = 0, y′(1) = 0

 b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time t. Is it true that 
once you know an antiderivative of the velocity function 
ds>dt you can find the body’s displacement from t = a to 
t = b even if you do not know the body’s exact position at 
either of those times? Give reasons for your answer.

120. Liftoff from Earth A rocket lifts off the surface of Earth with 
a constant acceleration of 20 m>sec2. How fast will the rocket 
be going 1 min later?

121. Stopping a car in time You are driving along a highway at a 
steady 60 mph (88 ft>sec) when you see an accident ahead 
and slam on the brakes. What constant deceleration is required 
to stop your car in 242 ft? To find out, carry out the following 
steps.

 1. Solve the initial value problem

Differential equation: 
d2s
dt2 = -k  (k constant)

Initial conditions:   
ds
dt

= 88 and s = 0 when t = 0.

Measuring time and distance from  
when the brakes are applied

 2. Find the value of t that makes ds>dt = 0. (The answer will 
involve k.)

 3. Find the value of k that makes s = 242 for the value of t you 
found in Step 2.

122. Stopping a motorcycle The State of Illinois Cycle Rider 
Safety Program requires motorcycle riders to be able to brake 
from 30 mph (44 ft>sec) to 0 in 45 ft. What constant decelera-
tion does it take to do that?

123. Motion along a coordinate line A particle moves on a coordi-
nate line with acceleration a = d2s>dt2 = 152t - 13>2t2, 
subject to the conditions that ds>dt = 4 and s = 0 when t = 1. 
Find

 a. the velocity y = ds>dt in terms of t

 b. the position s in terms of t.

124. The hammer and the feather When Apollo 15 astronaut 
David Scott dropped a hammer and a feather on the moon to 
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the 
ground. The television footage of the event shows the hammer 
and the feather falling more slowly than on Earth, where, in a 
vacuum, they would have taken only half a second to fall the 4 
ft. How long did it take the hammer and feather to fall 4 ft on the 
moon? To find out, solve the following initial value problem for 
s as a function of t. Then find the value of t that makes s equal to 0.

Differential equation: 
d2s
dt2 = -5.2 ft>sec2

Initial conditions:   
ds
dt

= 0 and s = 4 when t = 0

125. Motion with constant acceleration The standard equation for 
the position s of a body moving with a constant acceleration a 
along a coordinate line is

 s = a
2

 t2 + y0 t + s0 , (1)

t
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Chapter 4 Questions to guide your review

Chapter 4 Practice exercises

 1. What can be said about the extreme values of a function that is 
continuous on a closed interval?

 2. What does it mean for a function to have a local extreme value on 
its domain? An absolute extreme value? How are local and abso-
lute extreme values related, if at all? Give examples.

 3. How do you find the absolute extrema of a continuous function 
on a closed interval? Give examples.

 4. What are the hypotheses and conclusion of Rolle’s Theorem? Are 
the hypotheses really necessary? Explain.

 5. What are the hypotheses and conclusion of the Mean Value Theo-
rem? What physical interpretations might the theorem have?

 6. State the Mean Value Theorem’s three corollaries.

 7. How can you sometimes identify a function ƒ(x) by knowing ƒ′ 
and knowing the value of ƒ at a point x = x0? Give an example.

 8. What is the First Derivative Test for Local Extreme Values? Give 
examples of how it is applied.

 9. How do you test a twice-differentiable function to determine 
where its graph is concave up or concave down? Give examples.

 10. What is an inflection point? Give an example. What physical sig-
nificance do inflection points sometimes have?

 11. What is the Second Derivative Test for Local Extreme Values? 
Give examples of how it is applied.

 12. What do the derivatives of a function tell you about the shape of 
its graph?

 13. List the steps you would take to graph a polynomial function. 
Illustrate with an example.

extreme values
 1. Does ƒ(x) = x3 + 2x + tan x have any local maximum or mini-

mum values? Give reasons for your answer.

 2. Does g(x) = csc x + 2 cot x have any local maximum values? 
Give reasons for your answer.

 3. Does ƒ(x) = (7 + x)(11 - 3x)1>3 have an absolute minimum 
value? An absolute maximum? If so, find them or give reasons 
why they fail to exist. List all critical points of ƒ.

 4. Find values of a and b such that the function

ƒ(x) = ax + b
x2 - 1

  has a local extreme value of 1 at x = 3. Is this extreme value a 
local maximum, or a local minimum? Give reasons for your 
answer.

 5. Does g(x) = ex - x have an absolute minimum value? An abso-
lute maximum? If so, find them or give reasons why they fail to 
exist. List all critical points of g.

 14. What is a cusp? Give examples.

 15. List the steps you would take to graph a rational function. Illus-
trate with an example.

 16. Outline a general strategy for solving max-min problems. Give 
examples.

 17. Describe l’Hôpital’s Rule. How do you know when to use the rule 
and when to stop? Give an example.

 18. How can you sometimes handle limits that lead to indeterminate 
forms q>q, q # 0, and q - q? Give examples.

 19. How can you sometimes handle limits that lead to indeterminate 
forms 1q, 00, and qq? Give examples.

 20. Describe Newton’s method for solving equations. Give an example. 
What is the theory behind the method? What are some of the 
things to watch out for when you use the method?

 21. Can a function have more than one antiderivative? If so, how are 
the antiderivatives related? Explain.

 22. What is an indefinite integral? How do you evaluate one? What 
general formulas do you know for finding indefinite integrals?

 23. How can you sometimes solve a differential equation of the form 
dy>dx = ƒ(x)?

 24. What is an initial value problem? How do you solve one? Give an 
example.

 25. If you know the acceleration of a body moving along a coordinate 
line as a function of time, what more do you need to know to find 
the body’s position function? Give an example.

 6. Does ƒ(x) = 2ex>(1 + x2) have an absolute minimum value? An 
absolute maximum? If so, find them or give reasons why they fail 
to exist. List all critical points of ƒ.

In Exercises 7 and 8, find the absolute maximum and absolute mini-
mum values of ƒ over the interval.

 7. ƒ(x) = x - 2 ln x, 1 … x … 3

 8. ƒ(x) = (4>x) + ln x2, 1 … x … 4

 9. The greatest integer function ƒ(x) = :x;, defined for all values 
of x, assumes a local maximum value of 0 at each point of 30, 1). 
Could any of these local maximum values also be local minimum 
values of ƒ? Give reasons for your answer.

 10. a.  Give an example of a differentiable function ƒ whose first 
derivative is zero at some point c even though ƒ has neither a 
local maximum nor a local minimum at c.

b. How is this consistent with Theorem 2 in Section 4.1? Give 
reasons for your answer.
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that at some instant during that period the reservoir’s volume was 
increasing at a rate in excess of 225,000 gal>min. (An acre-foot 
is 43,560 ft3, the volume that would cover 1 acre to the depth of  
1 ft. A cubic foot holds 7.48 gal.)

20. The formula F(x) = 3x + C gives a different function for each 
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely F′(x) = 3. Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any 
others? Give reasons for your answers.

21. Show that

d
dx

 a x
x + 1

b = d
dx

 a-  
1

x + 1
b

  even though

x
x + 1

≠ -  
1

x + 1
.

  Doesn’t this contradict Corollary 2 of the Mean Value Theorem? 
Give reasons for your answer.

22. Calculate the first derivatives of ƒ(x) = x2>(x2 + 1) and g(x) =
-1>(x2 + 1). What can you conclude about the graphs of these 
functions?

Analyzing graphs
In Exercises 23 and 24, use the graph to answer the questions.

23. Identify any global extreme values of ƒ and the values of x at 
which they occur.

y

x

(1, 1)
2,    1

2

0

y = f (x)

a    b

24. Estimate the open intervals on which the function y = ƒ(x) is

a. increasing.

b. decreasing.

c. Use the given graph of ƒ′ to indicate where any local extreme 
values of the function occur, and whether each extreme is a 
relative maximum or minimum.

y

x

(−3, 1)

(2, 3)

−1

−2

y = f ′(x)

Each of the graphs in Exercises 25 and 26 is the graph of the position 
function s = ƒ(t) of an object moving on a coordinate line (t represents 
time). At approximately what times (if any) is each object’s (a) velocity 
equal to zero? (b) Acceleration equal to zero? During approximately 
what time intervals does the object move (c) forward? (d) Backward?

 11. The function y = 1>x does not take on either a maximum or a 
minimum on the interval 0 6 x 6 1 even though the function is 
continuous on this interval. Does this contradict the Extreme 
Value Theorem for continuous functions? Why?

 12. What are the maximum and minimum values of the function 
y = 0 x 0  on the interval -1 … x 6 1? Notice that the interval is 
not closed. Is this consistent with the Extreme Value Theorem for 
continuous functions? Why?

 13. A graph that is large enough to show a function’s global behavior 
may fail to reveal important local features. The graph of ƒ(x) =
(x8>8) - (x6>2) - x5 + 5x3 is a case in point.

a. Graph ƒ over the interval -2.5 … x … 2.5. Where does the 
graph appear to have local extreme values or points of inflec-
tion?

b. Now factor ƒ′(x) and show that ƒ has a local maximum at 
x =23 5 ≈ 1.70998 and local minima at x = {23 ≈  
{1.73205.

c. Zoom in on the graph to find a viewing window that shows 
the presence of the extreme values at x = 23 5 and x = 23.

The moral here is that without calculus the existence of two 
of the three extreme values would probably have gone unnoticed. 
On any normal graph of the function, the values would lie close 
enough together to fall within the dimensions of a single pixel on 
the screen.

(Source: Uses of Technology in the Mathematics Curricu-
lum, by Benny Evans and Jerry Johnson, Oklahoma State Univer-
sity, published in 1990 under a grant from the National Science 
Foundation, USE-8950044.)

 14. (Continuation of Exercise 13.)

a. Graph ƒ(x) = (x8>8) - (2>5)x5 - 5x - (5>x2) + 11 over 
the interval -2 … x … 2. Where does the graph appear to 
have local extreme values or points of inflection?

b. Show that ƒ has a local maximum value at x = 27 5 ≈ 1.2585 
and a local minimum value at x = 23 2 ≈ 1.2599.

c. Zoom in to find a viewing window that shows the presence of 
the extreme values at x = 27 5 and x = 23 2.

the Mean value theorem
 15. a.  Show that g(t) = sin2 t - 3t decreases on every interval in its 

domain.

b. How many solutions does the equation sin2 t - 3t = 5 have? 
Give reasons for your answer.

 16. a.  Show that y = tan u increases on every open interval in its 
domain.

b. If the conclusion in part (a) is really correct, how do you 
explain the fact that tan p = 0 is less than tan (p>4) = 1?

17.  a.  Show that the equation x4 + 2x2 - 2 = 0 has exactly one 
solution on 30, 14 .

b. Find the solution to as many decimal places as you can.

18.  a.  Show that ƒ(x) = x>(x + 1) increases on every open interval 
in its domain.

b. Show that ƒ(x) = x3 + 2x has no local maximum or mini-
mum values.

19. Water in a reservoir As a result of a heavy rain, the volume of 
water in a reservoir increased by 1400 acre-ft in 24 hours. Show 

t

t

t
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 69. lim
xS0

 (csc x - cot x) 70. lim
xS0
a 1

x4 - 1
x2b

 71. lim
xSq
12x2 + x + 1 - 2x2 - x2

 72. lim
xSq
a x3

x2 - 1
- x3

x2 + 1
b

Find the limits in Exercises 73–84.

 73. lim
xS0

 
10x - 1

x  74. lim
uS0

 
3u - 1

u

 75. lim
xS0

 
2sin x - 1

ex - 1
 76. lim

xS0
 
2-sin x - 1

ex - 1

 77. lim
xS0

 
5 - 5 cos x
ex - x - 1

 78. lim
xS0

 
4 - 4ex

xex

 79. lim
tS0+

 
t - ln (1 + 2t)

t2  80. lim
xS4

 
sin2 (px)

ex - 4 + 3 - x

 81. lim
tS0+

 ae
t

t - 1
t b  82. lim

yS0+
 e-1>y ln y

 83. lim
xSq

 a1 + b
xb

kx

 84. lim
xSq

 a1 + 2
x + 7

x2b

Optimization
 85. The sum of two nonnegative numbers is 36. Find the numbers if

a. the difference of their square roots is to be as large as possible.

b. the sum of their square roots is to be as large as possible.

 86. The sum of two nonnegative numbers is 20. Find the numbers

a. if the product of one number and the square root of the other 
is to be as large as possible.

b. if one number plus the square root of the other is to be as 
large as possible.

87. An isosceles triangle has its vertex at the origin and its base paral-
lel to the x-axis with the vertices above the axis on the curve 
y = 27 - x2. Find the largest area the triangle can have.

 88. A customer has asked you to design an open-top rectangular 
stainless steel vat. It is to have a square base and a volume of 
32 ft3, to be welded from quarter-inch plate, and to weigh no 
more than necessary. What dimensions do you recommend?

 89. Find the height and radius of the largest right circular cylinder 
that can be put in a sphere of radius 23.

 90. The figure here shows two right circular cones, one upside down 
inside the other. The two bases are parallel, and the vertex of the 
smaller cone lies at the center of the larger cone’s base. What 
values of r and h will give the smaller cone the largest possible 
volume?

r

6′
h

12′

 25. 

t

s

0 3 6 9 12 14

s = f (t)
 

 26. 

t

s

0 2 4 6 8

s = f (t)

Graphs and Graphing
Graph the curves in Exercises 27– 42.

 27. y = x2 - (x3>6) 28. y = x3 - 3x2 + 3

 29. y = -x3 + 6x2 - 9x + 3

 30. y = (1>8)(x3 + 3x2 - 9x - 27)

 31. y = x3(8 - x) 32. y = x2(2x2 - 9)

 33. y = x - 3x2>3 34. y = x1>3(x - 4)

 35. y = x23 - x 36. y = x24 - x2

 37. y = (x - 3)2 ex 38. y = xe-x2

 39. y = ln (x2 - 4x + 3) 40. y = ln (sin x)

 41. y = sin-1 a1xb  42. y = tan-1 a1xb

Each of Exercises 43– 48 gives the first derivative of a function 
y = ƒ(x). (a) At what points, if any, does the graph of ƒ have a local 
maximum, local minimum, or inflection point? (b) Sketch the general 
shape of the graph.

 43. y′ = 16 - x2 44. y′ = x2 - x - 6

 45. y′ = 6x(x + 1)(x - 2) 46. y′ = x2(6 - 4x)

 47. y′ = x4 - 2x2 48. y′ = 4x2 - x4

In Exercises 49–52, graph each function. Then use the function’s first 
derivative to explain what you see.

 49. y = x2>3 + (x - 1)1>3 50. y = x2>3 + (x - 1)2>3

 51. y = x1>3 + (x - 1)1>3 52. y = x2>3 - (x - 1)1>3

Sketch the graphs of the rational functions in Exercises 53–60.

 53. y = x + 1
x - 3

 54. y = 2x
x + 5

 55. y = x2 + 1
x  56. y = x2 - x + 1

x

 57. y = x3 + 2
2x

 58. y = x4 - 1
x2

 59. y = x2 - 4
x2 - 3

 60. y = x2

x2 - 4

Using L’Hôpital’s Rule
Use l’Hôpital’s Rule to find the limits in Exercises 61–72.

 61. lim
xS1

 
x2 + 3x - 4

x - 1
 62. lim

xS1
  
xa - 1
xb - 1

 63. lim
xSp

 
tan x

x  64. lim
xS0

  
tan x

x + sin x

 65. lim
xS0

  
sin2 x
tan(x2)

 66. lim
xS0

  
sin mx
sin nx

 67. lim
xSp>2-

 sec 7x cos 3x 68. lim
xS0+

2x sec x



294 Chapter 4: Applications of Derivatives

 107. L sec2 
s

10
 ds 108. Lcsc2 ps ds

 109. L  csc 22u cot 22u du 110. L  sec 
u

3
 tan 

u

3
 du

 111. L sin2  
x
4

  dx aHint: sin2 u = 1 - cos 2u
2

b

 112. Lcos2  
x
2

  dx

 113. L  a3x - xb  dx 114. L  a 5
x2 + 2

x2 + 1
b  dx

 115. L  a1
2

 et - e-tb  dt 116. L  (5s + s5) ds

 117. L  u1 -p du 118. L  2p+ r dr

 119. L  
3

2x2x2 - 1
 dx 120. L  

du216 - u2

initial value Problems
Solve the initial value problems in Exercises 121–124.

 121. 
dy
dx

= x2 + 1
x2 , y(1) = -1

 122. 
dy
dx

= ax + 1
xb

2

, y(1) = 1

 123. 
d2r
dt2 = 152t + 32t

 ; r′(1) = 8, r (1) = 0

 124. 
d3r
dt3 = -cos t; r″(0) = r′(0) = 0, r (0) = -1

Applications and examples

 125. Can the integrations in (a) and (b) both be correct? Explain.

 a. L  
dx21 - x2

= sin-1 x + C

 b. L  
dx21 - x2

= -L-  
dx21 - x2

= -cos-1 x + C

126. Can the integrations in (a) and (b) both be correct? Explain.

 a. L  
dx21 - x2

= -L-  
dx21 - x2

= -cos-1 x + C

 b.  L  
dx21 - x2

= L  
-du21 - (-u)2

 
x = -u
dx = -du

   = L  
-du21 - u2

   = cos-1 u + C

   = cos-1 (-x) + C u = -x

127. The rectangle shown here has one side on the positive y-axis, 
one side on the positive x-axis, and its upper right-hand vertex 

 91. Manufacturing tires Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where 
0 … x … 4 and

y = 40 - 10x
5 - x

.

  Your profit on a grade A tire is twice your profit on a grade B tire. 
What is the most profitable number of each kind to make?

 92. Particle motion The positions of two particles on the s-axis are 
s1 = cos t and s2 = cos (t + p>4).

 a. What is the farthest apart the particles ever get?

 b. When do the particles collide?

 93. Open-top box An open-top rectangular box is constructed from 
a 10-in.-by-16-in. piece of cardboard by cutting squares of equal 
side length from the corners and folding up the sides. Find ana-
lytically the dimensions of the box of largest volume and the 
maximum volume. Support your answers graphically.

 94. The ladder problem What is the approximate length (in feet) 
of the longest ladder you can carry horizontally around the corner 
of the corridor shown here? Round your answer down to the near-
est foot.

x

y

0

6

8

(8, 6)

newton’s method
 95. Let ƒ(x) = 3x - x3. Show that the equation ƒ(x) = -4 has a 

solution in the interval 32, 34  and use Newton’s method to find it.

 96. Let ƒ(x) = x4 - x3. Show that the equation ƒ(x) = 75 has a solu-
tion in the interval 33, 44  and use Newton’s method to find it.

Finding indefinite integrals
Find the indefinite integrals (most general antiderivatives) in Exer-
cises 97–120. You may need to try a solution and then adjust your 
guess. Check your answers by differentiation.

 97. L (x3 + 5x - 7) dx 98. L a8t3 - t2

2
+ tb  dt

 99. L a32t + 4
t2b  dt 100. L a

1

22t
- 3

t4b  dt

 101. L  
dr

(r + 5)2 102. L  
6 dr

1r - 2223
 103. L3u2u2 + 1 du 104. L  

u27 + u2
 du

 105. Lx3(1 + x4)-1>4 dx 106. L (2 - x)3>5 dx

t
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132. g(x) = e23 - 2x - x2

133. Graph the following functions and use what you see to locate 
and estimate the extreme values, identify the coordinates of the 
inflection points, and identify the intervals on which the graphs 
are concave up and concave down. Then confirm your estimates 
by working with the functions’ derivatives.

 a. y = (ln x)>2x

 b. y = e-x2

 c. y = (1 + x)e-x

134.  Graph ƒ(x) = x ln x. Does the function appear to have an abso-
lute minimum value? Confirm your answer with calculus.

135.  Graph ƒ(x) = (sin x)sin x over 30, 3p4 . Explain what you see.

136. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes 
the ratio of the radius of the core to the thickness of the insula-
tion, it is known that the speed of the transmission signal is 
given by the equation y = x2 ln (1>x). If the radius of the core is 
1 cm, what insulation thickness h will allow the greatest trans-
mission speed?

Insulation

x = r
h

h
r

Core

t

t

t

on the curve y = e-x2
. What dimensions give the rectangle its 

largest area, and what is that area?

x

y

0

1 y = e−x2

 128. The rectangle shown here has one side on the positive y-axis, 
one side on the positive x-axis, and its upper right-hand vertex 
on the curve y = (ln x)>x2. What dimensions give the rectangle 
its largest area, and what is that area?

x

y

0

0.2 y = 

1

0.1
x2

ln x

In Exercises 129 and 130, find the absolute maximum and minimum 
values of each function on the given interval.

 129. y = x ln 2x - x, c 1
2e

, 
e
2
d

 130. y = 10x(2 - ln x), (0, e24
In Exercises 131 and 132, find the absolute maxima and minima of 
the functions and say where they are assumed.

131. ƒ(x) = ex>2x4 + 1

Chapter 4 Additional and Advanced exercises

Functions and Derivatives
 1. What can you say about a function whose maximum and mini-

mum values on an interval are equal? Give reasons for your 
answer.

 2. Is it true that a discontinuous function cannot have both an abso-
lute maximum and an absolute minimum value on a closed inter-
val? Give reasons for your answer.

 3. Can you conclude anything about the extreme values of a contin-
uous function on an open interval? On a half-open interval? Give 
reasons for your answer.

 4. Local extrema Use the sign pattern for the derivative

dƒ
dx

= 6(x - 1)(x - 2)2(x - 3)3(x - 4)4

  to identify the points where ƒ has local maximum and minimum 
values.

 5. Local extrema

a. Suppose that the first derivative of y = ƒ(x) is

y′ = 6(x + 1)(x - 2)2.

  At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

b. Suppose that the first derivative of y = ƒ(x) is

y′ = 6x(x + 1)(x - 2).

  At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

 6. If ƒ′(x) … 2 for all x, what is the most the values of ƒ can 
increase on 30, 64 ? Give reasons for your answer.

 7. Bounding a function Suppose that ƒ is continuous on 3a, b4  
and that c is an interior point of the interval. Show that if 
ƒ′(x) … 0 on 3a, c) and ƒ′(x) Ú 0 on (c, b4 , then ƒ(x) is never 
less than ƒ(c) on 3a, b4 .

 8. An inequality

a. Show that -1>2 … x>(1 + x2) … 1>2 for every value of x.

b. Suppose that ƒ is a function whose derivative is ƒ′(x) =  
x>(1 + x2). Use the result in part (a) to show that

0 ƒ(b) - ƒ(a) 0 … 1
2

 0 b - a 0
  for any a and b.
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x

y

Range

Ground

h

y

0

Tank kept full,
top open

Exit velocity = "64(h − y)

 16. Kicking a field goal An American football player wants to kick 
a field goal with the ball being on a right hash mark. Assume that 
the goal posts are b feet apart and that the hash mark line is a dis-
tance a 7 0 feet from the right goal post. (See the accompanying 
figure.) Find the distance h from the goal post line that gives the 
kicker his largest angle b. Assume that the football field is flat.

Goal post line

Football

h

b a

Goal posts

b u

 17. A max-min problem with a variable answer Sometimes the 
solution of a max-min problem depends on the proportions of the 
shapes involved. As a case in point, suppose that a right circular 
cylinder of radius r and height h is inscribed in a right circular 
cone of radius R and height H, as shown here. Find the value of r 
(in terms of R and H) that maximizes the total surface area of the 
cylinder (including top and bottom). As you will see, the solution 
depends on whether H … 2R or H 7 2R.

H

R

r

h

 9. The derivative of ƒ(x) = x2 is zero at x = 0, but ƒ is not a con-
stant function. Doesn’t this contradict the corollary of the Mean 
Value Theorem that says that functions with zero derivatives are 
constant? Give reasons for your answer.

 10. Extrema and inflection points Let h = ƒg be the product of 
two differentiable functions of x.

a. If ƒ and g are positive, with local maxima at x = a, and if ƒ′ 
and g′ change sign at a, does h have a local maximum at a?

b. If the graphs of ƒ and g have inflection points at x = a, does 
the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no, 
give a counterexample.

11. Finding a function  Use the following information to find the 
values of a, b, and c in the formula ƒ(x) = (x + a)>
(bx2 + cx + 2).

   i) The values of a, b, and c are either 0 or 1.

  ii) The graph of ƒ passes through the point (-1, 0).

 iii) The line y = 1 is an asymptote of the graph of ƒ.

 12. Horizontal tangent For what value or values of the constant k 
will the curve y = x3 + kx2 + 3x - 4 have exactly one horizon-
tal tangent?

Optimization
 13. Largest inscribed triangle Points A and B lie at the ends of a 

diameter of a unit circle and point C lies on the circumference. Is 
it true that the area of triangle ABC is largest when the triangle is 
isosceles? How do you know?

 14. Proving the second derivative test The Second Derivative 
Test for Local Maxima and Minima (Section 4.4) says:

a. ƒ has a local maximum value at x = c if ƒ′(c) = 0 and 
ƒ″(c) 6 0

b. ƒ has a local minimum value at x = c if ƒ′(c) = 0 and 
ƒ″(c) 7 0.

  To prove statement (a), let P = (1>2) 0 ƒ″(c) 0 . Then use the fact 
that

ƒ″(c) = lim
hS0

 
ƒ′(c + h) - ƒ′(c)

h
= lim

hS0
 
ƒ′(c + h)

h

  to conclude that for some d 7 0,

0 6 0 h 0 6 d  1  
ƒ′(c + h)

h
6 ƒ″(c) + P 6 0.

  Thus, ƒ′(c + h) is positive for -d 6 h 6 0 and negative for 
0 6 h 6 d. Prove statement (b) in a similar way.

 15. Hole in a water tank You want to bore a hole in the side of the 
tank shown here at a height that will make the stream of water 
coming out hit the ground as far from the tank as possible. If you 
drill the hole near the top, where the pressure is low, the water 
will exit slowly but spend a relatively long time in the air. If you 
drill the hole near the bottom, the water will exit at a higher 
velocity but have only a short time to fall. Where is the best place, 
if any, for the hole? (Hint: How long will it take an exiting drop-
let of water to fall from height y to the ground?)
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 25. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model 
of free fall that assumed that the velocity of a falling body was 
proportional to the distance fallen. It seemed reasonable to think 
that a body that had fallen 20 ft might be moving twice as fast as 
a body that had fallen 10 ft. And besides, none of the instruments 
in use at the time were accurate enough to prove otherwise. 
Today we can see just how far off Albert of Saxony’s model was 
by solving the initial value problem implicit in his model. Solve 
the problem and compare your solution graphically with the 
equation s = 16t2. You will see that it describes a motion that 
starts too slowly at first and then becomes too fast too soon to be 
realistic.

 26. Group blood testing During World War II it was necessary to 
administer blood tests to large numbers of recruits. There are two 
standard ways to administer a blood test to N people. In method 1, 
each person is tested separately. In method 2, the blood samples 
of x people are pooled and tested as one large sample. If the test is 
negative, this one test is enough for all x people. If the test is posi-
tive, then each of the x people is tested separately, requiring a 
total of x + 1 tests. Using the second method and some probabil-
ity theory it can be shown that, on the average, the total number 
of tests y will be

y = Na1 - qx + 1
xb .

  With q = 0.99 and N = 1000, find the integer value of x that mini-
mizes y. Also find the integer value of x that maximizes y. (This  
second result is not important to the real-life situation.) The group 
testing method was used in World War II with a savings of 80% over 
the individual testing method, but not with the given value of q.

 27. Assume that the brakes of an automobile produce a constant 
deceleration of k ft>sec2. (a) Determine what k must be to bring 
an automobile traveling 60 mi>hr (88 ft>sec) to rest in a distance 
of 100 ft from the point where the brakes are applied. (b) With 
the same k, how far would a car traveling 30 mi>hr go before 
being brought to a stop?

 28. Let ƒ(x), g(x) be two continuously differentiable functions satis-
fying the relationships ƒ′(x) = g(x) and ƒ″(x) = -ƒ(x). Let 
h(x) = ƒ2(x) + g2(x). If h(0) = 5, find h(10).

 29. Can there be a curve satisfying the following conditions? d2y>dx2 
is everywhere equal to zero and, when x = 0, y = 0 and 
dy>dx = 1. Give a reason for your answer.

 30. Find the equation for the curve in the xy-plane that passes through 
the point (1, -1) if its slope at x is always 3x2 + 2.

 31. A particle moves along the x-axis. Its acceleration is a = - t2. At 
t = 0, the particle is at the origin. In the course of its motion, it 
reaches the point x = b, where b 7 0, but no point beyond b. 
Determine its velocity at t = 0.

 32. A particle moves with acceleration a = 2t - 11>2t2. Assum-
ing that the velocity y = 4>3 and the position s = -4>15 when 
t = 0, find

a. the velocity y in terms of t.

b. the position s in terms of t.

 33. Given ƒ(x) = ax2 + 2bx + c with a 7 0. By considering the 
minimum, prove that ƒ(x) Ú 0 for all real x if and only if 
b2 - ac … 0.

t

 18. Minimizing a parameter Find the smallest value of the posi-
tive constant m that will make mx - 1 + (1>x) greater than or 
equal to zero for all positive values of x.

Limits
 19. Evaluate the following limits.

a. lim
xS0

 
2 sin 5x

3x
 b. lim

xS0
 sin 5x cot 3x

c. lim
xS0

 x csc2 22x d. lim
xSp>2

(sec x - tan x)

e. lim
xS0

  
x - sin x
x - tan x f. lim

xS0
  
sin x2

x sin x

g. lim
xS0

 
sec x - 1

x2  h. lim
xS2

  
x3 - 8
x2 - 4

 20. L’Hôpital’s Rule does not help with the following limits. Find 
them some other way.

a. lim
xSq

 
2x + 52x + 5

 b. lim
xSq

 
2x

x + 72x

theory and examples
 21. Suppose that it costs a company y = a + bx dollars to produce x 

units per week. It can sell x units per week at a price of 
P = c - ex dollars per unit. Each of a, b, c, and e represents a 
positive constant. (a) What production level maximizes the 
profit? (b) What is the corresponding price? (c) What is the 
weekly profit at this level of production? (d) At what price should 
each item be sold to maximize profits if the government imposes 
a tax of t dollars per item sold? Comment on the difference 
between this price and the price before the tax.

22. Estimating reciprocals without division You can estimate the 
value of the reciprocal of a number a without ever dividing by a if 
you apply Newton’s method to the function ƒ(x) = (1>x) - a. 
For example, if a = 3, the function involved is ƒ(x) = (1>x) - 3.

a. Graph y = (1>x) - 3. Where does the graph cross the 
x-axis?

b. Show that the recursion formula in this case is

xn + 1 = xn(2 - 3xn),

  so there is no need for division.

23. To find x = 2q a, we apply Newton’s method to ƒ(x) = xq - a. 
Here we assume that a is a positive real number and q is a posi-
tive integer. Show that x1 is a “weighted average” of x0 and 
a>x0

  q - 1, and find the coefficients m0, m1 such that

x1 = m0 x0 + m1a a
x0 

q - 1b , 
 m0 7 0, m1 7 0,

m0 + m1 = 1.

  What conclusion would you reach if x0 and a>x0 

q - 1 were equal? 
What would be the value of x1 in that case?

 24. The family of straight lines y = ax + b (a, b arbitrary constants) 
can be characterized by the relation y″ = 0. Find a similar rela-
tion satisfied by the family of all circles

(x - h)2 + (y - h)2 = r2,

  where h and r are arbitrary constants. (Hint: Eliminate h and r 
from the set of three equations including the given one and two 
obtained by successive differentiation.)
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a

C

B

O

A

d1

d2

d2 cos u

b = d2 sin u

u

  In our model, we assume that AC = a and BC = b are fixed. 
Thus we have the relations

d1 + d2 cos u = a d2 sin u = b,

  so that

d2 = b csc u,

d1 = a - d2 cos u = a - b cot u.

  We can express the total loss L as a function of u:

L = kaa - b cot u
R4 + b csc u

r4 b .

a. Show that the critical value of u for which dL>du equals zero 
is

uc = cos-1 
r4

R4 .

b. If the ratio of the pipe radii is r>R = 5>6, estimate to the 
nearest degree the optimal branching angle given in part (a).

 34. Schwarz’s inequality

a. In Exercise 33, let

ƒ(x) = (a1 x + b1)2 + (a2 x + b2)2 + g+ (an  x + bn)2,

  and deduce Schwarz’s inequality:
  (a1 b1 + a2 b2 + g+ an  bn)2

      … 1a1 

2 + a2 

2 + g+ an  

221b1 

2 + b2 

2 + g+ bn  

22.
b. Show that equality holds in Schwarz’s inequality only if there 

exists a real number x that makes ai  x equal -bi for every 
value of i from 1 to n.

 35. The best branching angles for blood vessels and pipes When 
a smaller pipe branches off from a larger one in a flow system, we 
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy 
loss due to friction be minimized along the section AOB shown in 
the accompanying figure. In this diagram, B is a given point to be 
reached by the smaller pipe, A is a point in the larger pipe 
upstream from B, and O is the point where the branching occurs. 
A law due to Poiseuille states that the loss of energy due to fric-
tion in nonturbulent flow is proportional to the length of the path 
and inversely proportional to the fourth power of the radius. 
Thus, the loss along AO is (kd1)>R4 and along OB is (kd2)>r4, 
where k is a constant, d1 is the length of AO, d2 is the length of 
OB, R is the radius of the larger pipe, and r is the radius of the 
smaller pipe. The angle u is to be chosen to minimize the sum of 
these two losses:

L = k 
d1

R4 + k 
d2

r4 .

Chapter 4 technology Application Projects

mathematica/maple modules:

Motion Along a Straight Line: Positionu Velocityu Acceleration
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and  
acceleration. Figures in the text can be animated.

Newton’s Method: Estimate P to How Many Places?
Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired  
accuracy. The numbers p, e, and 22 are approximated.
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OVERVIEW A great achievement of classical geometry was obtaining formulas for the 
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to 
calculate the areas and volumes of very general shapes. This method, called integration, is 
a way to calculate much more than areas and volumes. The definite integral is the key tool 
in calculus for defining and calculating many important quantities, such as areas, volumes, 
lengths of curved paths, probabilities, averages, energy consumption, the weights of vari-
ous objects, and the forces against a dam’s floodgates, just to mention a few. Many of 
these applications are studied in subsequent chapters.

As with the derivative, the definite integral also arises as a limit, this time of increas-
ingly fine approximations to the quantity of interest. The idea behind the integral is that 
we can effectively compute such quantities by breaking them into small pieces, and then 
summing the contributions from each piece. We then consider what happens when more 
and more, smaller and smaller pieces are taken in the summation process. As the number 
of terms contributing to the sum approaches infinity and we take the limit of these sums in 
a way described in Section 5.3, the result is a definite integral. By considering the rate of 
change of the area under a graph, we prove that definite integrals are connected to anti-
derivatives, a connection that gives one of the most important relationships in calculus.

5.1 Area and Estimating with Finite Sums

The basis for formulating definite integrals is the construction of appropriate approxima-
tions by finite sums. In this section we consider three examples of this construction pro-
cess: finding the area under a graph, the distance traveled by a moving object, and the 
average value of a function. Although we need to define precisely what we mean by the 
area of a general region in the plane, or the average value of a function over a closed inter-
val, we do have intuitive ideas of what these notions mean. So in this section we begin our 
approach to integration by approximating these quantities with finite sums. We also con-
sider what happens when we take more and more terms in the summation process. In sub-
sequent sections we look at taking the limit of these sums as the number of terms goes to 
infinity, which then leads to precise definitions of the quantities being approximated here.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below 
the graph of y = 1 - x2, and between the vertical lines x = 0 and x = 1 (Figure 5.1). 
Unfortunately, there is no simple geometric formula for calculating the areas of general 
shapes having curved boundaries like the region R. How, then, can we find the area of R?

While we do not yet have a method for determining the exact area of R, we can 
approximate it in a simple way. Figure 5.2a shows two rectangles that together contain the 

Integrals
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FIGURE 5.1 The area of the 
region R cannot be found by a simple 
formula.
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region R. Each rectangle has width 1>2 and they have heights 1 and 3>4, moving from left 
to right. The height of each rectangle is the maximum value of the function ƒ in each sub-
interval. Because the function ƒ is decreasing, the height is its value at the left endpoint of 
the subinterval of 30, 14  forming the base of the rectangle. The total area of the two rect-
angles approximates the area A of the region R,

A ≈ 1 # 1
2

+ 3
4
# 1

2
= 7

8 = 0.875.

This estimate is larger than the true area A since the two rectangles contain R. We say that 
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the 
maximum (uppermost) value of ƒ(x) for a point x in the base interval of the rectangle. In 
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 1>4,
which taken together contain the region R. These four rectangles give the approximation

A ≈ 1 # 1
4

+ 15
16

# 1
4

+ 3
4
# 1

4
+ 7

16
# 1

4
= 25

32
= 0.78125,

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the area, 

as in Figure 5.3a. Each rectangle has width 1>4 as before, but the rectangles are shorter and 

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two rectangles 
containing R. (b) Four rectangles give a better upper estimate. Both estimates overshoot 
the true value for the area by the amount shaded in light red.
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FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that under-
shoots the true value by the amount shaded in light blue. (b) The midpoint rule uses rect-
angles whose height is the value of y = ƒ(x) at the midpoints of their bases. The estimate 
appears closer to the true value of the area because the light red overshoot areas roughly 
balance the light blue undershoot areas.
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lie entirely beneath the graph of ƒ. The function ƒ(x) = 1 - x2 is decreasing on 30, 14 ,
so the height of each of these rectangles is given by the value of ƒ at the right endpoint of the 
subinterval forming its base. The fourth rectangle has zero height and therefore contributes 
no area. Summing these rectangles with heights equal to the minimum value of ƒ(x) for a 
point x in each base subinterval gives a lower sum approximation to the area,

A ≈ 15
16

# 1
4

+ 3
4
# 1

4
+ 7

16
# 1

4
+ 0 # 1

4
= 17

32
= 0.53125.

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:

0.53125 6 A 6 0.78125.

By considering both lower and upper sum approximations, we get not only estimates 
for the area, but also a bound on the size of the possible error in these estimates, since the 
true value of the area lies somewhere between them. Here the error cannot be greater than 
the difference 0.78125 - 0.53125 = 0.25.

Yet another estimate can be obtained by using rectangles whose heights are the values 
of ƒ at the midpoints of their bases (Figure 5.3b). This method of estimation is called the 
midpoint rule for approximating the area. The midpoint rule gives an estimate that is 
between a lower sum and an upper sum, but it is not quite so clear whether it overestimates 
or underestimates the true area. With four rectangles of width 1>4 as before, the midpoint 
rule estimates the area of R to be

A ≈ 63
64

# 1
4

+ 55
64

# 1
4

+ 39
64

# 1
4

+ 15
64

# 1
4

= 172
64

# 1
4

= 0.671875.

In each of our computed sums, the interval 3a, b4 over which the function ƒ is defined 
was subdivided into n subintervals of equal width (also called length) ∆x = (b - a)>n,
and ƒ was evaluated at a point in each subinterval: c1 in the first subinterval, c2 in the sec-
ond subinterval, and so on. The finite sums then all take the form

ƒ(c1) ∆x + ƒ(c2) ∆x + ƒ(c3) ∆x + g+ ƒ(cn) ∆x.

By taking more and more rectangles, with each rectangle thinner than before, it appears that 
these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of 
equal width. The sum of their areas is 0.634765625, which appears close to the true area, 
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width. 
The sum of their areas is 0.697265625, which is somewhat larger than the true area 
because the rectangles taken together contain R. The midpoint rule for 16 rectangles gives 
a total area approximation of 0.6669921875, but it is not immediately clear whether this 
estimate is larger or smaller than the true area.

EXAMPLE 1  Table 5.1 shows the values of upper and lower sum approximations to 
the area of R, using up to 1000 rectangles. In Section 5.2 we will see how to get an exact 
value of the areas of regions such as R by taking a limit as the base width of each rectangle 
goes to zero and the number of rectangles goes to infinity. With the techniques developed 
there, we will be able to show that the area of R is exactly 2>3.

Distance Traveled

Suppose we know the velocity function y(t) of a car moving down a highway, without 
changing direction, and want to know how far it traveled between times t = a and t = b.
The position function s(t) of the car has derivative y(t). If we can find an antiderivative F(t)

FIGURE 5.4 (a) A lower sum using 
16 rectangles of equal width ∆x = 1>16.
(b) An upper sum using 16 rectangles.
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of y(t) then we can find the car’s position function s(t) by setting s(t) = F(t) + C. The 
distance traveled can then be found by calculating the change in position, 
s(b) - s(a) = F(b) - F(a). If the velocity function is known only by the readings at 
various times of a speedometer on the car, then we have no formula from which to 
obtain an antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function y(t), we can approxi-
mate the distance traveled with finite sums in a way similar to our estimates for area dis-
cussed before. We subdivide the interval 3a, b4  into short time intervals on each of which 
the velocity is considered to be fairly constant. Then we approximate the distance traveled 
on each time subinterval with the usual distance formula

distance = velocity * time

and add the results across 3a, b4 .
Suppose the subdivided interval looks like

t (sec)
ba

Δt Δt Δt

t1 t2 t3

with the subintervals all of equal length ∆t. Pick a number t1 in the first interval. If ∆t is 
so small that the velocity barely changes over a short time interval of duration ∆t, then the 
distance traveled in the first time interval is about y(t1) ∆t. If t2 is a number in the second 
interval, the distance traveled in the second time interval is about y(t2) ∆t. The sum of the 
distances traveled over all the time intervals is

D ≈ y(t1) ∆t + y(t2) ∆t + g+ y(tn) ∆t,

where n is the total number of subintervals.

EXAMPLE 2  The velocity function of a projectile fired straight into the air is 
ƒ(t) = 160 - 9.8t m>sec. Use the summation technique just described to estimate how 
far the projectile rises during the first 3 sec. How close do the sums come to the exact 
value of 435.9 m? (You will learn how to compute the exact value easily in Section 5.4.)

Solution We explore the results for different numbers of intervals and different choices 
of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints gives an 
upper sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, withƒ evaluated at left endpoints giving an upper sum:

t
0 1 2 3

Δt

t1 t2 t3

TABLE 5.1 Finite approximations for the area of R

Number of 
subintervals Lower sum Midpoint sum Upper sum

2 0.375 0.6875 0.875

4 0.53125 0.671875 0.78125

16 0.634765625 0.6669921875 0.697265625

50 0.6566 0.6667 0.6766

100 0.66165 0.666675 0.67165

1000 0.6661665 0.66666675 0.6671665
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With ƒ evaluated at t = 0, 1, and 2, we have

D ≈ ƒ(t1) ∆t + ƒ(t2) ∆t + ƒ(t3) ∆t

= 3160 - 9.8(0)4 (1) + 3160 - 9.8(1)4 (1) + 3160 - 9.8(2)4 (1)

= 450.6.

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

t
0 1 2 3

Δt

t1 t2 t3

With ƒ evaluated at t = 1, 2, and 3, we have

D ≈ ƒ(t1) ∆t + ƒ(t2) ∆t + ƒ(t3) ∆t

= 3160 - 9.8(1)4 (1) + 3160 - 9.8(2)4 (1) + 3160 - 9.8(3)4 (1)

= 421.2.

(c) With six subintervals of length 1>2, we get

t
0 1 2 3

t
0 1 2 3

Δt Δt

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

These estimates give an upper sum using left endpoints: D ≈ 443.25; and a lower 
sum using right endpoints: D ≈ 428.55. These six-interval estimates are somewhat 
closer than the three-interval estimates. The results improve as the subintervals get 
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value 
435.9 from above, whereas the right-endpoint lower sums approach it from below. The 
true value lies between these upper and lower sums. The magnitude of the error in the 
closest entries is 0.23, a small percentage of the true value.

Error magnitude = 0 true value - calculated value 0
= 0 435.9 - 435.67 0 = 0.23.

Error percentage = 0.23
435.9

≈ 0.05,.

It would be reasonable to conclude from the table’s last entries that the projectile rose 
about 436 m during its first 3 sec of flight.

TABLE 5.2 Travel-distance estimates

Number of Length of each Upper Lower
subintervals subinterval sum sum

3 1 450.6 421.2

6 1>2 443.25 428.55

12 1>4 439.58 432.23

24 1>8 437.74 434.06

48 1>16 436.82 434.98

96 1>32 436.36 435.44

192 1>64 436.13 435.67
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Displacement Versus Distance Traveled

If an object with position function s(t) moves along a coordinate line without changing 
direction, we can calculate the total distance it travels from t = a to t = b by summing 
the distance traveled over small intervals, as in Example 2. If the object reverses direction 
one or more times during the trip, then we need to use the object’s speed 0 y(t) 0 , which is 
the absolute value of its velocity function, y(t), to find the total distance traveled. Using 
the velocity itself, as in Example 2, gives instead an estimate to the object’s displacement,
s(b) - s(a), the difference between its initial and final positions.

To see why using the velocity function in the summation process gives an estimate to 
the displacement, partition the time interval 3a, b4  into small enough equal subintervals ∆t
so that the object’s velocity does not change very much from time tk-1 to tk. Then y(tk) gives 
a good approximation of the velocity throughout the interval. Accordingly, the change in the 
object’s position coordinate, which is its displacement during the time interval, is about

y(tk) ∆t.

The change is positive if y(tk) is positive and negative if y(tk) is negative.
In either case, the distance traveled by the object during the subinterval is about

0 y(tk) 0 ∆t.

The total distance traveled over the time interval is approximately the sum

0 y(t1) 0 ∆t + 0 y(t2) 0 ∆t + g + 0 y(tn) 0 ∆t.

We revisit these ideas in Section 5.4.

EXAMPLE 3  In Example 4 in Section 3.4, we analyzed the motion of a heavy rock 
blown straight up by a dynamite blast. In that example, we found the velocity of the rock 
at any time during its motion to be y(t) = 160 - 32t ft>sec. The rock was 256 ft above 
the ground 2 sec after the explosion, continued upward to reach a maximum height of 
400 ft at 5 sec after the explosion, and then fell back down to reach the height of 256 ft 
again at t = 8 sec after the explosion. (See Figure 5.5.)

If we follow a procedure like that presented in Example 2, and use the velocity func-
tion y(t) in the summation process over the time interval 30, 84 , we will obtain an esti-
mate to the rock’s 256 ft height above the ground at t = 8. The positive upward motion 
(which yields a positive distance change of 144 ft from the height of 256 ft to the maxi-
mum height) is canceled by the negative downward motion (giving a negative change of 
144 ft from the maximum height down to 256 ft again), so the displacement or height 
above the ground is estimated from the velocity function.

On the other hand, if the absolute value 0 y(t) 0  is used in the summation process, we 
will obtain an estimate to the total distance the rock has traveled: the maximum height 
reached of 400 ft plus the additional distance of 144 ft it has fallen back down from that 
maximum when it again reaches the height of 256 ft at t = 8 sec. That is, using the abso-
lute value of the velocity function in the summation process over the time interval 30, 84 ,
we obtain an estimate to 544 ft, the total distance up and down that the rock has traveled in 
8 sec. There is no cancelation of distance changes due to sign changes in the velocity func-
tion, so we estimate distance traveled rather than displacement when we use the absolute 
value of the velocity function (that is, the speed of the rock).

As an illustration of our discussion, we subdivide the interval 30, 84  into sixteen sub-
intervals of length ∆t = 1>2 and take the right endpoint of each subinterval in our calcu-
lations. Table 5.3 shows the values of the velocity function at these endpoints.

Using y(t) in the summation process, we estimate the displacement at t = 8:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

+ 0 - 16 - 32 - 48 - 64 - 80 - 96) # 1
2

= 192

Error magnitude = 256 - 192 = 64

FIGURE 5.5 The rock in Example 3. 
The height s = 256 ft is reached at t = 2
and t = 8 sec. The rock falls 144 ft from 
its maximum height when t = 8.
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TABLE 5.3 Velocity function

t Y(t) t Y(t)

0 160 4.5 16

0.5 144 5.0 0

1.0 128 5.5 -16

1.5 112 6.0 -32

2.0 96 6.5 -48

2.5 80 7.0 -64

3.0 64 7.5 -80

3.5 48 8.0 -96

4.0 32    
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Using 0 y(t) 0  in the summation process, we estimate the total distance traveled over 
the time interval 30, 84 :

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

+ 0 + 16 + 32 + 48 + 64 + 80 + 96) # 1
2

= 528

Error magnitude = 544 - 528 = 16

If we take more and more subintervals of 30, 84  in our calculations, the estimates to 
the heights 256 ft and 544 ft improve, approaching them as shown in Table 5.4.

x

y

x

y

0 a b

c

0 a b

c
y = c

y = g(x)

(a) (b)

FIGURE 5.6 (a) The average value of ƒ(x) = c on 3a, b4  is the area of 
the rectangle divided by b - a. (b) The average value of g(x) on 3a, b4  is 
the area beneath its graph divided by b - a.

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers x1, x2,c, xn is obtained by adding them 
together and dividing by n. But what is the average value of a continuous functionƒon an 
interval 3a, b4? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down 
each day. What does it mean to say that the average temperature in the town over the 
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant 
value c on an interval 3a, b4  has average value c. When c is positive, its graph over 3a, b4
gives a rectangle of height c. The average value of the function can then be interpreted geo-
metrically as the area of this rectangle divided by its width b - a (Figure 5.6a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water 

TABLE 5.4 Travel estimates for a rock blown straight up 

during the time interval 30, 8 4
Number of Length of each  Total
subintervals subinterval Displacement distance

16 1>2 192.0 528.0

32 1>4 224.0 536.0

64 1>8 240.0 540.0

128 1>16 248.0 542.0

256 1>32 252.0 543.0

512 1>64 254.0 543.5
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that is sloshing around in a tank between enclosing walls at x = a and x = b. As the 
water moves, its height over each point changes, but its average height remains the same. 
To get the average height of the water, we let it settle down until it is level and its height is 
constant. The resulting height c equals the area under the graph of g divided by b - a. We 
are led to define the average value of a nonnegative function on an interval 3a, b4  to be 
the area under its graph divided by b - a. For this definition to be valid, we need a precise 
understanding of what is meant by the area under a graph. This will be obtained in Section 
5.3, but for now we look at an example.

EXAMPLE 4  Estimate the average value of the function ƒ(x) = sin x on the interval 30, p4 .
Solution Looking at the graph of sin x between 0 and p in Figure 5.7, we can see that its 
average height is somewhere between 0 and 1. To find the average, we need to calculate 
the area A under the graph and then divide this area by the length of the interval, 
p - 0 = p.

We do not have a simple way to determine the area, so we approximate it with finite 
sums. To get an upper sum approximation, we add the areas of eight rectangles of equal 
width p>8 that together contain the region beneath the graph of y = sin x and above the 
x-axis on 30, p4 . We choose the heights of the rectangles to be the largest value of sin x
on each subinterval. Over a particular subinterval, this largest value may occur at the left 
endpoint, the right endpoint, or somewhere between them. We evaluate sin x at this point 
to get the height of the rectangle for an upper sum. The sum of the rectangular areas then 
estimates the total area (Figure 5.7):

A ≈ asin
p
8 + sin

p
4

+ sin
3p
8 + sin

p
2

+ sin
p
2

+ sin
5p
8 + sin

3p
4

+ sin
7p
8 b # p8

≈ (.38 + .71 + .92 + 1 + 1 + .92 + .71 + .38) # p8 = (6.02) # p8 ≈ 2.364.

To estimate the average value of sin x on 30, p4  we divide the estimated area by the 
length p of the interval and obtain the approximation 2.364>p ≈ 0.753.

Since we used an upper sum to approximate the area, this estimate is greater than the 
actual average value of sin x over 30, p4 . If we use more and more rectangles, with each 
rectangle getting thinner and thinner, we get closer and closer to the true average value as 
shown in Table 5.5. Using the techniques covered in Section 5.3, we will show that the 
true average value is 2>p ≈ 0.63662.

As before, we could just as well have used rectangles lying under the graph of 
y = sin x and calculated a lower sum approximation, or we could have used the midpoint 
rule. In Section 5.3 we will see that in each case, the approximations are close to the true 
area if all the rectangles are sufficiently thin.

Summary

The area under the graph of a positive function, the distance traveled by a moving object 
that doesn’t change direction, and the average value of a nonnegative function over an 
interval can all be approximated by finite sums constructed in a certain way. First we sub-
divide the interval into subintervals, treating some function ƒ as if it were constant over 
each particular subinterval. Then we multiply the width of each subinterval by the value of 
ƒ at some point within it, and add these products together. If the interval 3a, b4  is subdi-
vided into n subintervals of equal widths ∆x = (b - a)>n, and if ƒ(ck) is the value ofƒat
the chosen point ck in the kth subinterval, this process gives a finite sum of the form

ƒ(c1) ∆x + ƒ(c2) ∆x + ƒ(c3) ∆x + g+ ƒ(cn) ∆x.

FIGURE 5.7 Approximating the 
area under ƒ(x) = sin x between 
0 and p to compute the average 
value of sin x over 30, p4 , using 
eight rectangles (Example 4).
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TABLE 5.5 Average value of sin x
on 0 … x … p

Number of Upper sum
subintervals estimate

8 0.75342

16 0.69707

32 0.65212

50 0.64657

100 0.64161

1000 0.63712
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Area
In Exercises 1–4, use finite approximations to estimate the area under 
the graph of the function using

  a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

  c. an upper sum with two rectangles of equal width.

  d. an upper sum with four rectangles of equal width.

1. ƒ(x) = x2 between x = 0 and x = 1.

2. ƒ(x) = x3 between x = 0 and x = 1.

3. ƒ(x) = 1>x between x = 1 and x = 5.

4. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Using rectangles each of whose height is given by the value of 
the function at the midpoint of the rectangle’s base (the midpoint 
rule), estimate the area under the graphs of the following functions, 
using first two and then four rectangles.

5. ƒ(x) = x2 between x = 0 and x = 1.

6. ƒ(x) = x3 between x = 0 and x = 1.

7. ƒ(x) = 1>x between x = 1 and x = 5.

8. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Distance
9. Distance traveled   The accompanying table shows the velocity 

of a model train engine moving along a track for 10 sec. Estimate 
the distance traveled by the engine using 10 subintervals of length 
1 with

  a. left-endpoint values.

  b. right-endpoint values.

11. Length of a road You and a companion are about to drive a 
twisty stretch of dirt road in a car whose speedometer works but 
whose odometer (mileage counter) is broken. To find out how 
long this particular stretch of road is, you record the car’s velocity 
at 10-sec intervals, with the results shown in the accompanying 
table. Estimate the length of the road using

  a. left-endpoint values.

  b. right-endpoint values.

Exercises 5.1
Time Velocity Time Velocity
(min)  (m , sec)  (min)  (m , sec)

  0 1 35 1.2
  5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4    

Time Velocity Time Velocity
(sec) (in. , sec)  (sec) (in. , sec)

0  0  6 11
1 12   7  6
2 22   8  2
3 10   9  6
4  5  10  0
5 13    

10. Distance traveled upstream You are sitting on the bank of a 
tidal river watching the incoming tide carry a bottle upstream. You 
record the velocity of the flow every 5 minutes for an hour, with the 
results shown in the accompanying table. About how far upstream 
did the bottle travel during that hour? Find an estimate using 
12 subintervals of length 5 with

  a. left-endpoint values.

  b. right-endpoint values.

The choices for the ck could maximize or minimize the value of ƒ in the kth subinterval, or 
give some value in between. The true value lies somewhere between the approximations 
given by upper sums and lower sums. The finite sum approximations we looked at 
improved as we took more subintervals of thinner width.

  Velocity Velocity
Time (converted to ft , sec) Time (converted to ft , sec)
(sec) (30 mi , h = 44 ft , sec)  (sec) (30 mi , h = 44 ft , sec)

  0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35    

12. Distance from velocity data The accompanying table gives 
data for the velocity of a vintage sports car accelerating from 0 to 
142 mi >h in 36 sec (10 thousandths of an hour).

Time Velocity Time Velocity
(h) (mi , h) (h) (mi , h)

0.0   0 0.006 116
0.001  40 0.007 125
0.002  62 0.008 132
0.003  82 0.009 137
0.004  96 0.010 142
0.005 108    
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  a. Use rectangles to estimate how far the car traveled during the 
36 sec it took to reach 142 mi >h.

  b. Roughly how many seconds did it take the car to reach the 
halfway point? About how fast was the car going then?

13. Free fall with air resistance An object is dropped straight down 
from a helicopter. The object falls faster and faster but its accelera-
tion (rate of change of its velocity) decreases over time because of 
air resistance. The acceleration is measured in ft>sec2 and 
recorded every second after the drop for 5 sec, as shown:

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

a. Find an upper estimate for the speed when t = 5.

b. Find a lower estimate for the speed when t = 5.

c. Find an upper estimate for the distance fallen when t = 3.

14. Distance traveled by a projectile    An object is shot straight 
upward from sea level with an initial velocity of 400 ft > sec.

  a. Assuming that gravity is the only force acting on the object, 
give an upper estimate for its velocity after 5 sec have elapsed. 
Use g = 32 ft>sec2 for the gravitational acceleration.

  b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function

In Exercises 15–18, use a finite sum to estimate the average value of ƒ
on the given interval by partitioning the interval into four subintervals 
of equal length and evaluating ƒ at the subinterval midpoints.

15. ƒ(x) = x3 on 30, 24
16. ƒ(x) = 1>x on 31, 94
17. ƒ(t) = (1>2) + sin2pt on 30, 24

1 2

0.5

0

1

1.5

t

y

y = + sin2pt1
2

18. ƒ(t) = 1 - acos
pt
4
b4

on 30, 44

t

y

0 2 4

1

1 3

cos
4

y = 1 − pt
4a b

Examples of Estimations
19. Water pollution  Oil is leaking out of a tanker damaged at sea. The 

damage to the tanker is worsening as evidenced by the increased 
leakage each hour, recorded in the following table.

Month Jan Feb Mar Apr May Jun

Pollutant
release rate 
(tons >day)

0.20 0.25 0.27 0.34 0.45 0.52

Month Jul Aug Sep Oct Nov Dec

Pollutant
release rate 
(tons >day)

0.63 0.70 0.81 0.85 0.89 0.95

  a. Assuming a 30-day month and that new scrubbers allow only 
0.05 ton >day to be released, give an upper estimate of the 
total tonnage of pollutants released by the end of June. What is 
a lower estimate?

  b. In the best case, approximately when will a total of 125 tons 
of pollutants have been released into the atmosphere?

Time (h) 0 1 2 3 4

Leakage (gal , h) 50 70 97 136 190

a. Give an upper and a lower estimate of the total quantity of oil 
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after 
8 hours.

c. The tanker continues to leak 720 gal >h after the first 8 hours. 
If the tanker originally contained 25,000 gal of oil, approxi-
mately how many more hours will elapse in the worst case 
before all the oil has spilled? In the best case?

Time (h) 5 6 7 8

Leakage (gal , h) 265 369 516 720

20. Air pollution  A power plant generates electricity by burning oil. 
Pollutants produced as a result of the burning process are removed 
by scrubbers in the smokestacks. Over time, the scrubbers 
become less efficient and eventually they must be replaced when 
the amount of pollution released exceeds government standards. 
Measurements are taken at the end of each month determining the 
rate at which pollutants are released into the atmosphere, recorded 
as follows.
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21. Inscribe a regular n-sided polygon inside a circle of radius 1 and 
compute the area of the polygon for the following values of n:

  a. 4 (square)  b. 8 (octagon)  c. 16

  d. Compare the areas in parts (a), (b), and (c) with the area of the 
circle.

22. (Continuation of Exercise 21.)

  a. Inscribe a regular n-sided polygon inside a circle of radius 1 and 
compute the area of one of the n congruent triangles formed by 
drawing radii to the vertices of the polygon.

  b. Compute the limit of the area of the inscribed polygon as 
n S q.

  c. Repeat the computations in parts (a) and (b) for a circle of 
radius r.

COMPUTER EXPLORATIONS
In Exercises 23–26, use a CAS to perform the following steps.

  a. Plot the functions over the given interval.

  b. Subdivide the interval into n = 100, 200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint 
of each subinterval.

  c. Compute the average value of the function values generated in 
part (b).

  d. Solve the equation ƒ(x) = (average value) for x using the aver-
age value calculated in part (c) for the n = 1000 partitioning.

23. ƒ(x) = sin x on 30, p4 24. ƒ(x) = sin2 x on 30, p4
25. ƒ(x) = x sin

1
x on cp

4
, p d 26. ƒ(x) = x sin2 1

x on cp
4

, p d

5.2 Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we encountered sums with many terms (up to 
1000 in Table 5.1, for instance). In this section we introduce a more convenient notation 
for sums with a large number of terms. After describing the notation and stating several of 
its properties, we look at what happens to a finite sum approximation as the number of 
terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

a

n

k=1
ak = a1 + a2 + a3 + g + an-1 + an .

The Greek letter Σ  (capital sigma, corresponding to our letter S), stands for “sum.” The 
index of summation k tells us where the sum begins (at the number below the Σ  symbol) 
and where it ends (at the number above Σ). Any letter can be used to denote the index, but 
the letters i, j, and k are customary.

k = 1

ak

n

The index k ends at k = n.

The index k starts at k = 1.

ak is a formula for the kth term.

The summation symbol
(Greek letter sigma)

Thus we can write

12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112 = a

11

k=1
k2,

and

ƒ(1) + ƒ(2) + ƒ(3) + g+ ƒ(100) = a

100

i=1
ƒ(i).

The lower limit of summation does not have to be 1; it can be any integer.
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EXAMPLE 1  

A sum in 
sigma notation

The sum written out, one 
term for each value of k

The value 
of the sum

a

5

k=1
k 1 + 2 + 3 + 4 + 5 15

a

3

k=1
(-1)k k (-1)1(1) + (-1)2(2) + (-1)3(3) -1 + 2 - 3 = -2

a

2

k=1

k
k + 1

1
1 + 1

+ 2
2 + 1

1
2

+ 2
3

= 7
6

a

5

k=4

k2

k - 1
42

4 - 1
+ 52

5 - 1
16
3

+ 25
4

= 139
12

EXAMPLE 2  Express the sum 1 + 3 + 5 + 7 + 9 in sigma notation.

Solution The formula generating the terms changes with the lower limit of summation, 
but the terms generated remain the same. It is often simplest to start with k = 0 or k = 1,
but we can start with any integer.

Starting with k = 0: 1 + 3 + 5 + 7 + 9 = a

4

k=0
(2k + 1)

Starting with k = 1: 1 + 3 + 5 + 7 + 9 = a

5

k=1
(2k - 1)

Starting with k = 2: 1 + 3 + 5 + 7 + 9 = a

6

k=2
(2k - 3)

Starting with k = -3: 1 + 3 + 5 + 7 + 9 = a

1

k=-3
(2k + 7)

When we have a sum such as

a

3

k=1
(k + k2)

we can rearrange its terms,

a

3

k=1
(k + k2) = (1 + 12) + (2 + 22) + (3 + 32)

= (1 + 2 + 3) + (12 + 22 + 32) Regroup terms.

= a

3

k=1
k + a

3

k=1
k2.

This illustrates a general rule for finite sums:

a

n

k=1
(ak + bk) = a

n

k=1
ak + a

n

k=1
bk .

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 2).
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EXAMPLE 3  We demonstrate the use of the algebra rules.

(a) a

n

k=1
(3k - k2) = 3a

n

k=1
k - a

n

k=1
k2         Difference Rule and Constant 

Multiple Rule

(b) a

n

k=1
(-ak) = a

n

k=1
(-1) # ak = -1 # a

n

k=1
ak = - a

n

k=1
ak Constant Multiple Rule

(c) a

3

k=1
(k + 4) = a

3

k=1
k + a

3

k=1
4 Sum Rule

= (1 + 2 + 3) + (3 # 4) Constant Value Rule

= 6 + 12 = 18

(d) a

n

k=1

1
n = n # 1n = 1               

Constant Value Rule 
(1>n is constant)

Over the years people have discovered a variety of formulas for the values of finite sums. 
The most famous of these are the formula for the sum of the first n integers (Gauss is said 
to have discovered it at age 8) and the formulas for the sums of the squares and cubes of 
the first n integers.

EXAMPLE 4  Show that the sum of the first n integers is

a

n

k=1
k =

n(n + 1)
2

.

Solution The formula tells us that the sum of the first 4 integers is

(4)(5)
2

= 10.

Addition verifies this prediction:

1 + 2 + 3 + 4 = 10.

To prove the formula in general, we write out the terms in the sum twice, once forward and 
once backward.

1 + 2 + 3 + g + n

n + (n - 1) + (n - 2) + g + 1

If we add the two terms in the first column we get 1 + n = n + 1. Similarly, if we add 
the two terms in the second column we get 2 + (n - 1) = n + 1. The two terms in any 
column sum to n + 1. When we add the n columns together we get n terms, each equal to 
n + 1, for a total of n(n + 1). Since this is twice the desired quantity, the sum of the first 
n integers is (n)(n + 1)>2.

Algebra Rules for Finite Sums

1. Sum Rule: a

n

k=1
(ak + bk) = a

n

k=1
ak + a

n

k=1
bk

2. Difference Rule: a

n

k=1
(ak - bk) = a

n

k=1
ak - a

n

k=1
bk

3. Constant Multiple Rule: a

n

k=1
cak = c # a

n

k=1
ak (Any number c)

4. Constant Value Rule: a

n

k=1
c = n # c (c is any constant value.)

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
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Formulas for the sums of the squares and cubes of the first n integers are proved using 
mathematical induction (see Appendix 2). We state them here.

The first n squares: a

n

k=1
k2 =

n(n + 1)(2n + 1)
6

The first n cubes: a

n

k=1
k3 = an(n + 1)

2
b2

Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 became more accurate as the 
number of terms increased and the subinterval widths (lengths) narrowed. The next exam-
ple shows how to calculate a limiting value as the widths of the subintervals go to zero and 
their number grows to infinity.

EXAMPLE 5  Find the limiting value of lower sum approximations to the area of the 
region R below the graph of y = 1 - x2 and above the interval 30, 14  on the x-axis using 
equal-width rectangles whose widths approach zero and whose number approaches infin-
ity. (See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width 
∆x = (1 - 0)>n, and then we see what happens as n S q. We start by subdividing 30, 14  into n equal width subintervals

c 0, 1
n d , c 1n , 2

n d , . . . , c n - 1
n , n

n d .
Each subinterval has width 1>n. The function 1 - x2 is decreasing on 30, 14 , and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval 3 (k - 1)>n, k>n4  is ƒ(k>n) =
1 - (k>n)2, giving the sum

c ƒa1nb d a1nb + c ƒa2nb d a1nb + g + c ƒak
nb d a1nb + g + c ƒannb d a1nb .

We write this in sigma notation and simplify,

a

n

k=1
ƒak

nb a1nb = a

n

k=1
a1 - ak

nb
2b a1nb

= a

n

k=1
a1n - k2

n3b

= a

n

k=1

1
n - a

n

k=1

k2

n3 Difference Rule

= n # 1n - 1
n3a

n

k=1
k2 Constant Value and

Constant Multiple Rules

= 1 - a 1
n3b (n)(n + 1)(2n + 1)

6
Sum of the First n Squares

= 1 - 2n3 + 3n2 + n
6n3 . Numerator expanded
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We have obtained an expression for the lower sum that holds for any n. Taking the 
limit of this expression as n S q, we see that the lower sums converge as the number of 
subintervals increases and the subinterval widths approach zero:

lim
nSq
a1 - 2n3 + 3n2 + n

6n3 b = 1 - 2
6

= 2
3.

The lower sum approximations converge to 2>3. A similar calculation shows that the upper 
sum approximations also converge to 2>3. Any finite sum approximation gn

k=1 ƒ(ck)(1>n) 
also converges to the same value, 2>3. This is because it is possible to show that any finite 
sum approximation is trapped between the lower and upper sum approximations. For this 
reason we are led to define the area of the region R as this limiting value. In Section 5.3 we 
study the limits of such finite approximations in a general setting.

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies 
the theory of the definite integral studied in the next section.

We begin with an arbitrary bounded function ƒ defined on a closed interval 3a, b4 .
Like the function pictured in Figure 5.8, ƒ may have negative as well as positive values. We 
subdivide the interval 3a, b4  into subintervals, not necessarily of equal widths (or lengths), 
and form sums in the same way as for the finite approximations in Section 5.1. To do so, we 
choose n - 1 points 5x1, x2, x3,c, xn-16  between a and b satisfying

a 6 x1 6 x2 6 g 6 xn-1 6 b.

To make the notation consistent, we denote a by x0 and b by xn , so that

a = x0 6 x1 6 x2 6 g 6 xn-1 6 xn = b.

The set

P = 5x0, x1, x2,c, xn-1, xn6
is called a partition of 3a, b4 .

The partition P divides 3a, b4  into n closed subintervals

3x0, x14 , 3x1, x24 ,c, 3xn-1, xn4 .
The first of these subintervals is 3x0, x14 , the second is 3x1, x24 , and the kth subinterval 
of P is 3xk-1, xk4 , for k an integer between 1 and n.

x
. . .. . .

kth subinterval

x0 = a xn = bx1 x2 xk−1 xn−1xk

The width of the first subinterval 3x0, x14  is denoted ∆x1, the width of the second 3x1, x24  is denoted ∆x2, and the width of the kth subinterval is ∆xk = xk - xk-1. If all n
subintervals have equal width, then the common width ∆x is equal to (b - a)>n.

x
x0 = a x1 x2 xk−1 xk xn−1 xn = b

ΔxnΔxkΔx1 Δx2

. . .. . .

In each subinterval we select some point. The point chosen in the kth subinterval 3xk-1, xk4  is called ck. Then on each subinterval we stand a vertical rectangle that stretches 
from the x-axis to touch the curve at (ck, ƒ(ck)). These rectangles can be above or below the 
x-axis, depending on whether ƒ(ck) is positive or negative, or on the x-axis if ƒ(ck) = 0
(Figure 5.9).

HISTORICAL BIOGRAPHY

Georg Friedrich Bernhard Riemann
(1826–1866)

y

x
0 ba

y = f (x)

FIGURE 5.8 A typical continuous 
function y = ƒ(x) over a closed interval 
3a, b4 .

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
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On each subinterval we form the product ƒ(ck) # ∆xk. This product is positive, negative, 
or zero, depending on the sign of ƒ(ck). When ƒ(ck) 7 0, the product ƒ(ck) # ∆xk is the area 
of a rectangle with height ƒ(ck) and width ∆xk . When ƒ(ck) 6 0, the product ƒ(ck) # ∆xk is 
a negative number, the negative of the area of a rectangle of width ∆xk that drops from the 
x-axis to the negative number ƒ(ck).

Finally we sum all these products to get

SP = a

n

k=1
ƒ(ck) ∆xk .

The sum SP is called a Riemann sum for ƒ on the interval 3a, b 4 . There are many such 
sums, depending on the partition P we choose, and the choices of the points ck in the sub-
intervals. For instance, we could choose n subintervals all having equal width 
∆x = (b - a)>n to partition 3a, b4 , and then choose the point ck to be the right-hand
endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 
This choice leads to the Riemann sum formula

Sn = a

n

k=1
ƒaa + k

(b - a)
n b # ab - a

n b .

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width ∆x = (b - a)>n, we can 
make them thinner by simply increasing their number n. When a partition has subintervals 
of varying widths, we can ensure they are all thin by controlling the width of a widest (lon-
gest) subinterval. We define the norm of a partition P, written }P } , to be the largest of all 
the subinterval widths. If }P } is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6  The set P = 50, 0.2, 0.6, 1, 1.5, 26  is a partition of 30, 24 . There are 
five subintervals of P: 30, 0.24 , 30.2, 0.64 , 30.6, 14 , 31, 1.54 , and 31.5, 24 :

x

Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

x

y

0

(c2, f (c2))

(c1, f (c1))

x0 = a x1 x2 xk−1 xk xn−1 xn = b

ck cn
c2c1

kth rectangle

(ck, f (ck))

y = f (x)
(cn, f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the func-
tion y = ƒ(x) and the x-axis. Figure 5.8 has been enlarged to enhance the partition of 
3a, b4  and selection of points ck that produce the rectangles.

(a)

(b)

x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

FIGURE 5.10 The curve of Figure 5.9 
with rectangles from finer partitions of 
3a, b4 . Finer partitions create collections 
of rectangles with thinner bases that ap-
proximate the region between the graph of 
ƒ and the x-axis with increasing accuracy.
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The lengths of the subintervals are   ∆x1 = 0.2, ∆x2 = 0.4, ∆x3 = 0.4, ∆x4 = 0.5, and 
∆x5 = 0.5. The longest subinterval length is 0.5, so the norm of the partition is }P } = 0.5.
In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval 3a, b4 defines rect-
angles that approximate the region between the graph of a continuous function ƒ and the 
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the 
next section that if the function ƒ is continuous over the closed interval 3a, b4 , then no 
matter how we choose the partition P and the points ck in its subintervals to construct a 
Riemann sum, a single limiting value is approached as the subinterval widths, controlled 
by the norm of the partition, approach zero.

Sigma Notation
Write the sums in Exercises 1–6 without sigma notation. Then evalu-
ate them.

1. a

2

k=1

6k
k + 1

2. a

3

k=1

k - 1
k

3. a

4

k=1
cos kp 4. a

5

k=1
sin kp

5. a

3

k=1
(-1)k+1 sin

p

k
6. a

4

k=1
(-1)k cos kp

7. Which of the following express 1 + 2 + 4 + 8 + 16 + 32 in 
sigma notation?

  a. a

6

k=1
2k-1 b. a

5

k=0
2k c. a

4

k=-1
2k+1

8. Which of the following express 1 - 2 + 4 - 8 + 16 - 32 in 
sigma notation?

  a. a

6

k=1
(-2)k-1 b. a

5

k=0
(-1)k 2k c. a

3

k=-2
(-1)k+1 2k+2

9. Which formula is not equivalent to the other two?

  a. a

4

k=2

(-1)k-1

k - 1
b. a

2

k=0

(-1)k

k + 1
c. a

1

k=-1

(-1)k

k + 2

10. Which formula is not equivalent to the other two?

a. a

4

k=1
(k - 1)2 b. a

3

k=-1
(k + 1)2 c. a

-1

k=-3
k2

Express the sums in Exercises 11–16 in sigma notation. The form of 
your answer will depend on your choice of the lower limit of summation.

11. 1 + 2 + 3 + 4 + 5 + 6 12. 1 + 4 + 9 + 16

13. 1
2

+ 1
4

+ 1
8

+ 1
16

14. 2 + 4 + 6 + 8 + 10

15. 1 - 1
2

+ 1
3

- 1
4

+ 1
5

16. - 1
5

+ 2
5

- 3
5

+ 4
5

- 5
5

Values of Finite Sums

17. Suppose that a
n

k=1
ak = -5 and a

n

k=1
bk = 6. Find the values of

  a. a

n

k=1
3ak b. a

n

k=1

bk

6
c. a

n

k=1
(ak + bk)

  d. a

n

k=1
(ak - bk) e. a

n

k=1
(bk - 2ak)

18. Suppose that a
n

k=1
ak = 0 and a

n

k=1
bk = 1. Find the values of

  a. a

n

k=1
8ak b. a

n

k=1
250bk

c. a

n

k=1
(ak + 1) d. a

n

k=1
(bk - 1)

Evaluate the sums in Exercises 19–32.

19.  a. a

10

k=1
k b. a

10

k=1
k2 c. a

10

k=1
k3

20.  a. a

13

k=1
k b. a

13

k=1
k2 c. a

13

k=1
k3

21. a

7

k=1
(-2k) 22. a

5

k=1

pk
15

23. a

6

k=1
(3 - k2) 24. a

6

k=1
(k2 - 5)

25. a

5

k=1
k(3k + 5) 26. a

7

k=1
k(2k + 1)

27. a

5

k=1

k3

225
+ aa

5

k=1
kb3

28. aa
7

k=1
kb2

- a

7

k=1

k3

4

29.  a. a

7

k=1
3 b. a

500

k=1
7 c. a

264

k=3
10

30.  a. a

36

k=9
k b. a

17

k=3
k2 c. a

71

k=18
k(k - 1)

31.  a. a

n

k=1
4 b. a

n

k=1
c c. a

n

k=1
(k - 1)

32.  a. a

n

k=1
a1n + 2nb b. a

n

k=1

c
n c. a

n

k=1

k
n2

Exercises 5.2



Riemann Sums
In Exercises 33–36, graph each function ƒ(x) over the given interval. 
Partition the interval into four subintervals of equal length. Then add 
to your sketch the rectangles associated with the Riemann sum 
Σ4

k=1ƒ(ck) ∆xk , given that ck is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate 
sketch for each set of rectangles.)

33. ƒ(x) = x2 - 1, 30, 24

34. ƒ(x) = -x2, 30, 14

35. ƒ(x) = sin x, 3-p, p4

36. ƒ(x) = sin x + 1, 3-p, p4

37. Find the norm of the partition P = 50, 1.2, 1.5, 2.3, 2.6, 36 .

38. Find the norm of the partition P = 5-2, -1.6, -0.5, 0, 0.8, 16 .

Limits of Riemann Sums
For the functions in Exercises 39–46, find a formula for the Riemann 
sum obtained by dividing the interval 3a, b4  into n equal subintervals 
and using the right-hand endpoint for each ck . Then take a limit of these 
sums as n S q to calculate the area under the curve over 3a, b4 .

39. ƒ(x) = 1 - x2 over the interval 30, 14 .

40. ƒ(x) = 2x over the interval 30, 34 .

41. ƒ(x) = x2 + 1 over the interval 30, 34 .

42. ƒ(x) = 3x2 over the interval 30, 14 .

43. ƒ(x) = x + x2 over the interval 30, 14 .

44. ƒ(x) = 3x + 2x2 over the interval 30, 14 .

45. ƒ(x) = 2x3 over the interval 30, 14 .

46. ƒ(x) = x2 - x3 over the interval 3-1, 04 .

5.3 The Definite Integral

In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed 
interval 3a, b4  using n subintervals of equal width (or length), (b - a)>n. In this section 
we consider the limit of more general Riemann sums as the norm of the partitions of 
3a, b4 approaches zero. For general Riemann sums, the subintervals of the partitions need 
not have equal widths. The limiting process then leads to the definition of the definite inte-
gral of a function over a closed interval 3a, b4 .

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, as the 
norm of the partitions of 3a, b4 approaches zero, the values of the corresponding Riemann 
sums approach a limiting value J. What we mean by this limit is that a Riemann sum will 
be close to the number J provided that the norm of its partition is sufficiently small (so that 
all of its subintervals have thin enough widths). We introduce the symbol P as a small 
positive number that specifies how close to J the Riemann sum must be, and the symbol d
as a second small positive number that specifies how small the norm of a partition must be 
in order for convergence to happen. We now define this limit precisely.

DEFINITION Let ƒ(x) be a function defined on a closed interval 3a, b4 . We say 
that a number J is the definite integral of ƒ over 3a, b 4  and that J is the limit of 
the Riemann sums gn

k=1 ƒ(ck) ∆xk if the following condition is satisfied:
Given any number P 7 0 there is a corresponding number d 7 0 such that 

for every partition P = 5x0, x1,c , xn6 of 3a, b4 with }P } 6 d and any choice 
of ck in 3xk-1, xk4 , we have

2 a
n

k=1
ƒ(ck) ∆xk - J 2 6 P.

The definition involves a limiting process in which the norm of the partition goes to zero.
We have many choices for a partition P with norm going to zero, and many choices of 

points ck for each partition. The definite integral exists when we always get the same limit 
J, no matter what choices are made. When the limit exists we write it as the definite integral

J = lim
0 0P 0 0S0

a
n

k=1
ƒ(ck) ∆xk .

316 Chapter 5: Integrals
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The limit of any Riemann sum is always taken as the norm of the partitions approaches 
zero and the number of subintervals goes to infinity.

Leibniz introduced a notation for the definite integral that captures its construction as 
a limit of Riemann sums. He envisioned the finite sums gn

k=1 ƒ(ck) ∆xk becoming an infi-
nite sum of function values ƒ(x) multiplied by “infinitesimal” subinterval widths dx. The 
sum symbol g  is replaced in the limit by the integral symbol 1 , whose origin is in the 
letter “S.” The function values ƒ(ck) are replaced by a continuous selection of function 
values ƒ(x). The subinterval widths ∆xk become the differential dx. It is as if we are sum-
ming all products of the form ƒ(x) # dx as x goes from a to b. While this notation captures 
the process of constructing an integral, it is Riemann’s definition that gives a precise 
meaning to the definite integral.

The symbol for the number J in the definition of the definite integral is

L

b

a
ƒ(x) dx,

which is read as “the integral from a to b of ƒ of x dee x” or sometimes as “the integral from a
to b of ƒ of x with respect to x.” The component parts in the integral symbol also have names:

L

The function is the integrand.

x is the variable of integration.

When you find the value
of the integral, you have
evaluated the integral.

Upper limit of integration

Integral sign

Lower limit of integration
Integral of f from a to b

a

b

f (x) dx

When the condition in the definition is satisfied, we say that the Riemann sums of ƒ on 3a, b4 converge to the definite integral J = 1
b

a ƒ(x) dx and that ƒ is integrable over 3a, b4 .
In the cases where the subintervals all have equal width ∆x = (b - a)>n, we can 

form each Riemann sum as

Sn = a

n

k=1
ƒ(ck)∆xk = a

n

k=1
ƒ(ck)ab - a

n b , ∆xk = ∆x = (b - a)>n for all k

where ck is chosen in the kth subinterval. When the limit of these Riemann sums as 
n S q exists and is equal to J, then J is the definite integral ofƒover 3a, b4 , so

J =
L

b

a
ƒ(x) dx = lim

nSq a

n

k=1
ƒ(ck)ab - a

n b }P } S 0 means n S q.

If we pick the point ck at the right endpoint of the kth subinterval, so ck = a + k∆x =
a + k(b - a)>n, then the formula for the definite integral becomes

L

b

a
ƒ(x) dx = lim

nSq a

n

k=1
ƒaa + k

(b - a)
n b ab - a

n b (1)

Equation (1) gives one explicit formula that can be used to compute definite integrals. 
Other choices of partitions and locations of points ck result in the same value for the defi-
nite integral when we take the limit as n S q provided that the norm of the partition 
approaches zero.
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The value of the definite integral of a function over any particular interval depends on 
the function, not on the letter we choose to represent its independent variable. If we decide 
to use t or u instead of x, we simply write the integral as

L

b

a
ƒ(t) dt or

L

b

a
ƒ(u) du instead of

L

b

a
ƒ(x) dx.

No matter how we write the integral, it is still the same number that is defined as a limit of 
Riemann sums. Since it does not matter what letter we use, the variable of integration is 
called a dummy variable representing the real numbers in the closed interval 3a, b4.
Integrable and Nonintegrable Functions

Not every function defined over the closed interval 3a, b4  is integrable there, even if the 
function is bounded. That is, the Riemann sums for some functions may not converge to 
the same limiting value, or to any value at all. A full development of exactly which func-
tions defined over 3a, b4 are integrable requires advanced mathematical analysis, but for-
tunately most functions that commonly occur in applications are integrable. In particular, 
every continuous function over 3a, b4  is integrable over this interval, and so is every func-
tion having no more than a finite number of jump discontinuities on 3a, b4 . (See Figures 
1.9 and 1.10. The latter functions are called piecewise-continuous functions, and they are 
defined in Additional Exercises 11–18 at the end of this chapter.) The following theorem, 
which is proved in more advanced courses, establishes these results.

THEOREM 1—Integrability of Continuous Functions If a function ƒ is con-
tinuous over the interval 3a, b4 , or if ƒ has at most finitely many jump disconti-
nuities there, then the definite integral 1

b
a ƒ(x) dx exists and ƒ is integrable over 3a, b4 .

The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87. 
Briefly, when ƒ is continuous we can choose each ck so that ƒ(ck) gives the maximum 
value of ƒ on the subinterval 3xk-1, xk4 , resulting in an upper sum. Likewise, we can 
choose ck to give the minimum value of ƒ on 3xk-1, xk4  to obtain a lower sum. The upper 
and lower sums can be shown to converge to the same limiting value as the norm of the 
partition P tends to zero. Moreover, every Riemann sum is trapped between the values of 
the upper and lower sums, so every Riemann sum converges to the same limit as well. 
Therefore, the number J in the definition of the definite integral exists, and the continuous 
function ƒ is integrable over 3a, b4 .

For integrability to fail, a function needs to be sufficiently discontinuous that the 
region between its graph and the x-axis cannot be approximated well by increasingly thin 
rectangles. Our first example shows a function that is not integrable over a closed interval.

EXAMPLE 1  The function

ƒ(x) = e1, if x is rational

0, if x is irrational

has no Riemann integral over 30, 14 . Underlying this is the fact that between any two 
numbers there is both a rational number and an irrational number. Thus the function jumps 
up and down too erratically over 30, 14  to allow the region beneath its graph and above 
the x-axis to be approximated by rectangles, no matter how thin they are. We show, in fact, 
that upper sum approximations and lower sum approximations converge to different limit-
ing values.



5.3  The Definite Integral 319

If we pick a partition P of 30, 14  and choose ck to be the point giving the maximum 
value for ƒ on 3xk-1, xk4  then the corresponding Riemann sum is

U = a

n

k=1
ƒ(ck) ∆xk = a

n

k=1
(1) ∆xk = 1,

since each subinterval 3xk-1, xk4  contains a rational number where ƒ(ck) = 1. Note that 
the lengths of the intervals in the partition sum to 1, gn

k=1 ∆xk = 1. So each such Rie-
mann sum equals 1, and a limit of Riemann sums using these choices equals 1.

On the other hand, if we pick ck to be the point giving the minimum value for ƒ on 3xk-1, xk4 , then the Riemann sum is

L = a

n

k=1
ƒ(ck) ∆xk = a

n

k=1
(0) ∆xk = 0,

since each subinterval 3xk-1, xk4  contains an irrational number ck where ƒ(ck) = 0. The 
limit of Riemann sums using these choices equals zero. Since the limit depends on the 
choices of ck , the function ƒ is not integrable.

Theorem 1 says nothing about how to calculate definite integrals. A method of calcu-
lation will be developed in Section 5.4, through a connection to knowing an antiderivative 
of the integrand function ƒ.

Properties of Definite Integrals

In defining 1
b

a ƒ(x) dx as a limit of sums gn
k=1 ƒ(ck) ∆xk , we moved from left to right 

across the interval 3a, b4 . What would happen if we instead move right to left, starting 
with x0 = b and ending at xn = a? Each ∆xk in the Riemann sum would change its sign, 
with xk - xk-1 now negative instead of positive. With the same choices of ck in each sub-
interval, the sign of any Riemann sum would change, as would the sign of the limit, the 
integral 1

a
b ƒ(x) dx. Since we have not previously given a meaning to integrating back-

ward, we are led to define

L

a

b
ƒ(x) dx = -

L

b

a
ƒ(x) dx.

Although we have only defined the integral over an interval 3a, b4  when a 6 b, it is 
convenient to have a definition for the integral over 3a, b4  when a = b, that is, for the 
integral over an interval of zero width. Since a = b gives ∆x = 0, whenever ƒ(a) exists 
we define

L

a

a
ƒ(x) dx = 0.

Theorem 2 states basic properties of integrals, given as rules that they satisfy, includ-
ing the two just discussed. These rules, listed in Table 5.6, become very useful in the pro-
cess of computing integrals. We will refer to them repeatedly to simplify our calculations. 
Rules 2 through 7 have geometric interpretations, shown in Figure 5.11. The graphs in 
these figures are of positive functions, but the rules apply to general integrable functions.

THEOREM 2 When ƒ and g are integrable over the interval 3a, b4 , the defi-
nite integral satisfies the rules in Table 5.6.

While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.6 must be proved. The fol-
lowing is a proof of Rule 6. Similar proofs can be given to verify the other properties in 
Table 5.6.
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TABLE 5.6 Rules satisfied by definite integrals

1. Order of Integration:
L

a

b
ƒ(x) dx = -

L

b

a
ƒ(x) dx A definition

2. Zero Width Interval:
L

a

a
ƒ(x) dx = 0 A definition when 

ƒ(a) exists

3. Constant Multiple:
L

b

a
kƒ(x) dx = k

L

b

a
ƒ(x) dx Any constant k

4. Sum and Difference:
L

b

a
(ƒ(x) { g(x)) dx =

L

b

a
ƒ(x) dx {

L

b

a
g(x) dx

5. Additivity:
L

b

a
ƒ(x) dx +

L

c

b
ƒ(x) dx =

L

c

a
ƒ(x) dx

6. Max-Min Inequality: If ƒ has maximum value max ƒ and minimum value min 
ƒ on 3a, b4 , then

min ƒ # (b - a) …
L

b

a
ƒ(x) dx … max ƒ # (b - a).

7. Domination: ƒ(x) Ú g(x) on 3a, b4 1
L

b

a
ƒ(x) dx Ú

L

b

a
g(x) dx

ƒ(x) Ú 0 on 3a, b4 1
L

b

a
ƒ(x) dx Ú 0 (Special case)

x

y

0 a

y = f (x)

(a) Zero Width Interval:

L

a

a
ƒ(x) dx = 0

x

y

0 a b

y = f (x)

y = 2 f (x)

(b) Constant Multiple: (k = 2)

L

b

a
kƒ(x) dx = k

L

b

a
ƒ(x) dx

x

y

0 a b

y = f (x)

y = f (x) + g(x)

y = g(x)

(c) Sum: (areas add)

L

b

a
(ƒ(x) + g(x)) dx =

L

b

a
ƒ(x) dx +

L

b

a
g(x) dx

x

y

0 a cb

y = f (x)

b

a

f (x) dx
f (x) dx

c

b
L

L

x

y

0 a b

y = f (x)

max f

min f

x

y

0 a b

y = f (x)

y = g(x)

(d) Additivity for Definite Integrals:

L

b

a
ƒ(x) dx +

L

c

b
ƒ(x) dx =

L

c

a
ƒ(x) dx

(e) Max-Min Inequality:

min ƒ # (b - a) …
L

b

a
ƒ(x) dx

… max ƒ # (b - a)

(f ) Domination:

ƒ(x) Ú g(x) on 3a, b4
1

L

b

a
ƒ(x) dx Ú

L

b

a
g(x) dx

FIGURE 5.11 Geometric interpretations of Rules 2–7 in Table 5.6.
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Proof of Rule 6  Rule 6 says that the integral of ƒ over 3a, b4  is never smaller than 
the minimum value of ƒ times the length of the interval and never larger than the maxi-
mum value of ƒ times the length of the interval. The reason is that for every partition of 3a, b4  and for every choice of the points ck ,

min ƒ # (b - a) = min ƒ # a
n

k=1
∆xk a

n

k=1
∆xk = b - a

= a

n

k=1
min ƒ # ∆xk Constant Multiple Rule

… a

n

k=1
ƒ(ck) ∆xk min ƒ … ƒ(ck)

… a

n

k=1
max ƒ # ∆xk ƒ(ck) … max ƒ

= max ƒ # a
n

k=1
∆xk Constant Multiple Rule

= max ƒ # (b - a).

In short, all Riemann sums for ƒ on 3a, b4  satisfy the inequality

min ƒ # (b - a) … a

n

k=1
ƒ(ck) ∆xk … max ƒ # (b - a).

Hence their limit, the integral, does too.

EXAMPLE 2  To illustrate some of the rules, we suppose that

L

1

-1
ƒ(x) dx = 5,

L

4

1
ƒ(x) dx = -2, and

L

1

-1
h(x) dx = 7.

Then

1.
L

1

4
ƒ(x) dx = -

L

4

1
ƒ(x) dx = -(-2) = 2 Rule 1

2.
L

1

-1
32ƒ(x) + 3h(x)4 dx = 2

L

1

-1
ƒ(x) dx + 3

L

1

-1
h(x) dx Rules 3 and 4

= 2(5) + 3(7) = 31

3.
L

4

-1
ƒ(x) dx =

L

1

-1
ƒ(x) dx +

L

4

1
ƒ(x) dx = 5 + (-2) = 3 Rule 5

EXAMPLE 3  Show that the value of 1
1

0 21 + cos x dx is less than or equal to 22.

Solution The Max-Min Inequality for definite integrals (Rule 6) says that min ƒ # (b - a)

is a lower bound for the value of 1
b

a ƒ(x) dx and that max ƒ # (b - a) is an upper bound.

The maximum value of 21 + cos x on 30, 14  is 21 + 1 = 22, so

L

1

0
21 + cos x dx … 22 # (1 - 0) = 22.
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Area Under the Graph of a Nonnegative Function

We now return to the problem that started this chapter, that of defining what we mean by 
the area of a region having a curved boundary. In Section 5.1 we approximated the area 
under the graph of a nonnegative continuous function using several types of finite sums of 
areas of rectangles capturing the region—upper sums, lower sums, and sums using the 
midpoints of each subinterval—all being cases of Riemann sums constructed in special 
ways. Theorem 1 guarantees that all of these Riemann sums converge to a single definite 
integral as the norm of the partitions approaches zero and the number of subintervals goes 
to infinity. As a result, we can now define the area under the graph of a nonnegative inte-
grable function to be the value of that definite integral.

DEFINITION If y = ƒ(x) is nonnegative and integrable over a closed interval 3a, b4 , then the area under the curve y = ƒ(x) over 3a, b 4  is the integral of 
ƒ from a to b,

A =
L

b

a
ƒ(x) dx.

For the first time we have a rigorous definition for the area of a region whose bound-
ary is the graph of any continuous function. We now apply this to a simple example, the 
area under a straight line, where we can verify that our new definition agrees with our 
previous notion of area.

x

y

0

b

b

b

y = x

FIGURE 5.12 The region in 
Example 4 is a triangle.

EXAMPLE 4  Compute 1
b

0 x dx and find the area A under y = x over the interval 30, b4 , b 7 0.

Solution The region of interest is a triangle (Figure 5.12). We compute the area in two ways.

(a) To compute the definite integral as the limit of Riemann sums, we calculate 
lim 0 0P 0 0S0 g

n
k=1ƒ(ck) ∆xk for partitions whose norms go to zero. Theorem 1 tells us that 

it does not matter how we choose the partitions or the points ck as long as the norms ap-
proach zero. All choices give the exact same limit. So we consider the partition P that 
subdivides the interval 30, b4 into n subintervals of equal width ∆x = (b - 0)> n =
b>n, and we choose ck to be the right endpoint in each subinterval. The partition is 

P = e0,
b
n ,

2b
n ,

3b
n ,g,

nb
n f  and ck = kb

n . So

a

n

k=1
ƒ(ck) ∆x = a

n

k=1

kb
n
# b
n ƒ(ck) = ck

= a

n

k=1

kb2

n2

= b2

n2 a

n

k=1
k Constant Multiple Rule

= b2

n2
# n(n + 1)

2
Sum of First n Integers

= b2

2
a1 + 1

nb .
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  As n S q and }P } S 0, this last expression on the right has the limit b2>2. Therefore,

L

b

0
x dx = b2

2
.

(b) Since the area equals the definite integral for a nonnegative function, we can quickly 
derive the definite integral by using the formula for the area of a triangle having base 
length b and height y = b. The area is A = (1>2) b # b = b2>2. Again we conclude 

that 1
b

0 x dx = b2>2.

Example 4 can be generalized to integrate ƒ(x) = x over any closed interval 3a, b4 , 0 6 a 6 b.

L

b

a
x dx =

L

0

a
x dx +

L

b

0
x dx Rule 5

= -
L

a

0
x dx +

L

b

0
x dx Rule 1

= - a2

2
+ b2

2
. Example 4

In conclusion, we have the following rule for integrating ƒ(x) = x:

This computation gives the area of the trapezoid in Figure 5.13a. Equation (2) remains 
valid when a and b are negative, but the interpretation of the definite integral changes. 
When a 6 b 6 0, the definite integral value (b2 - a2)>2 is a negative number, the nega-
tive of the area of a trapezoid dropping down to the line y = x below the x-axis (Figure 
5.13b). When a 6 0 and b 7 0, Equation (2) is still valid and the definite integral gives 
the difference between two areas, the area under the graph and above 30, b4  minus the 
area below 3a, 04  and over the graph (Figure 5.13c).

The following results can also be established using a Riemann sum calculation similar 
to that in Example 4 (Exercises 63 and 65).

L

b

a
x dx = b2

2
- a2

2
, a 6 b (2)

x

y

0

a

a

b

b

a

b

b − a

y = x

(a)

x

y

0

a b

y = x

(b)

x

y

0

a

b

y = x

(c)

FIGURE 5.13 (a) The area of this 
trapezoidal region is A = (b2 - a2) >2. 
(b) The definite integral in Equation 
(2) gives the negative of the area of this 
trapezoidal region. (c) The definite inte-
gral in Equation (2) gives the area of 
the blue triangular region added to the 
negative of the area of the tan
triangular region.

L

b

a
c dx = c(b - a), c any constant (3)

L

b

a
x2 dx = b3

3 - a3

3 , a 6 b (4)

Average Value of a Continuous Function Revisited

In Section 5.1 we introduced informally the average value of a nonnegative continuous 
function ƒ over an interval 3a, b4 , leading us to define this average as the area under the 
graph of y = ƒ(x) divided by b - a. In integral notation we write this as

Average = 1
b - aL

b

a
ƒ(x) dx.

We can use this formula to give a precise definition of the average value of any continuous 
(or integrable) function, whether positive, negative, or both.
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Alternatively, we can use the following reasoning. We start with the idea from arith-
metic that the average of n numbers is their sum divided by n. A continuous function ƒ on 3a, b4  may have infinitely many values, but we can still sample them in an orderly way. 
We divide 3a, b4  into n subintervals of equal width ∆x = (b - a)>n and evaluate ƒ at a 
point ck in each (Figure 5.14). The average of the n sampled values is

ƒ(c1) + ƒ(c2) + g + ƒ(cn)
n = 1

n a

n

k=1
ƒ(ck)

= ∆x
b - a a

n

k=1
ƒ(ck) ∆x = b - a

n , so
1
n = ∆x

b - a

= 1
b - a a

n

k=1
ƒ(ck) ∆x. Constant Multiple Rule

The average is obtained by dividing a Riemann sum for ƒ on 3a, b4  by (b - a). As we 
increase the size of the sample and let the norm of the partition approach zero, the average 
approaches (1>(b - a))1

b
a ƒ(x) dx. Both points of view lead us to the following definition.

x

y

0

(ck, f (ck))

y = f (x)

xn = b
ckx0 = a

x1

FIGURE 5.14 A sample of values of a 
function on an interval 3a, b4 .

−2 −1 1 2

1

2

x

y

f (x) = "4 − x2

y = p
2

FIGURE 5.15 The average 
value of ƒ(x) = 24 - x2 on 
3-2, 2] is p>2 (Example 5). The 
area of the rectangle shown here is 
4 # (p>2) = 2p, which is also the 
area of the semicircle.

DEFINITION If ƒ is integrable on 3a, b4 , then its average value on 3a, b 4 ,
also called its mean, is

av(ƒ) = 1
b - aL

b

a
ƒ(x) dx.

EXAMPLE 5  Find the average value of ƒ(x) = 24 - x2 on 3-2, 24 .
Solution We recognize ƒ(x) = 24 - x2 as a function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

Since we know the area inside a circle, we do not need to take the limit of Riemann 
sums. The area between the semicircle and the x-axis from -2 to 2 can be computed using 
the geometry formula

Area = 1
2
# pr2 = 1

2
# p(2)2 = 2p.

Because ƒ is nonnegative, the area is also the value of the integral of ƒ from -2 to 2,

L

2

-2
24 - x2 dx = 2p.

Therefore, the average value of ƒ is

av(ƒ) = 1
2 - (-2)L

2

-2
24 - x2 dx = 1

4
(2p) = p

2
.

Notice that the average value of ƒ over 3-2, 24  is the same as the height of a rectangle over 3-2, 24  whose area equals the area of the upper semicircle (see Figure 5.15).

Interpreting Limits of Sums as Integrals
Express the limits in Exercises 1–8 as definite integrals.

1. lim
}P}S0 a

n

k=1
ck

2 ∆xk , where P is a partition of 30, 24
2. lim

}P}S0 a

n

k=1
2ck

3 ∆xk , where P is a partition of 3-1, 04

3. lim0 0P 0 0S0 a

n

k=1
(ck

2 - 3ck) ∆xk , where P is a partition of 3-7, 54
4. lim

}P}S0 a

n

k=1
a 1

ck
b ∆xk , where P is a partition of 31, 44

5. lim0 0P 0 0S0 a

n

k=1

1
1 - ck

∆xk , where P is a partition of 32, 34

Exercises 5.3



5.3  The Definite Integral 325

6. lim0 0P 0 0S0 a

n

k=1
24 - ck

2 ∆xk , where P is a partition of 30, 14
7. lim

}P}S0 a

n

k=1
(sec ck) ∆xk , where P is a partition of 3-p>4, 04

8. lim
}P}S0 a

n

k=1
(tan ck) ∆xk , where P is a partition of 30, p>44

Using the Definite Integral Rules
9. Suppose that ƒ and g are integrable and that

L

2

1
ƒ(x) dx = -4,

L

5

1
ƒ(x) dx = 6,

L

5

1
g(x) dx = 8.

  Use the rules in Table 5.6 to find

  a.
L

2

2
g(x) dx b.

L

1

5
g(x) dx

  c.
L

2

1
3ƒ(x) dx d.

L

5

2
ƒ(x) dx

  e.
L

5

1
3ƒ(x) - g(x)4 dx f.

L

5

1
34ƒ(x) - g(x)4 dx

10. Suppose that ƒ and h are integrable and that

L

9

1
ƒ(x) dx = -1,

L

9

7
ƒ(x) dx = 5,

L

9

7
h(x) dx = 4.

  Use the rules in Table 5.6 to find

  a.
L

9

1
-2ƒ(x) dx b.

L

9

7
3ƒ(x) + h(x)4 dx

  c.
L

9

7
32ƒ(x) - 3h(x)4 dx d.

L

1

9
ƒ(x) dx

  e.
L

7

1
ƒ(x) dx f.

L

7

9
3h(x) - ƒ(x)4 dx

11. Suppose that 1
2

1 ƒ(x) dx = 5. Find

  a.
L

2

1
ƒ(u) du b.

L

2

1
23ƒ(z) dz

  c.
L

1

2
ƒ(t) dt d.

L

2

1
3-ƒ(x)4 dx

12. Suppose that 1
0
-3 g(t) dt = 22. Find

  a.
L

-3

0
g(t) dt b.

L

0

-3
g(u) du

  c.
L

0

-3
3-g(x)4 dx d.

L

0

-3

g(r)

22
dr

13. Suppose that ƒ is integrable and that 1
3

0 ƒ(z) dz = 3 and 

1
4

0 ƒ(z) dz = 7. Find

  a.
L

4

3
ƒ(z) dz b.

L

3

4
ƒ(t) dt

14. Suppose that h is integrable and that 1
1
-1 h(r) dr = 0 and 

1
3
-1 h(r) dr = 6.  Find

  a.
L

3

1
h(r) dr b. -

L

1

3
h(u) du

Using Known Areas to Find Integrals
In Exercises 15–22, graph the integrands and use known area formulas to 
evaluate the integrals.

15.
L

4

-2
ax

2
+ 3b dx 16.

L

3>2

1>2
(-2x + 4) dx

17.
L

3

-3
29 - x2 dx 18.

L

0

-4
216 - x2 dx

19.
L

1

-2

0 x 0 dx 20.
L

1

-1
(1 - 0 x 0 ) dx

21.
L

1

-1
(2 - 0 x 0 ) dx 22.

L

1

-1
11 + 21 - x22 dx

Use known area formulas to evaluate the integrals in Exercises 23–28.

23.
L

b

0

x
2

dx, b 7 0 24.
L

b

0
4x dx, b 7 0

25.
L

b

a
2s ds, 0 6 a 6 b 26.

L

b

a
3t dt, 0 6 a 6 b

27. ƒ(x) = 24 - x2 on a. 3-2, 24 , b. 30, 24
28. ƒ(x) = 3x + 21 - x2 on a. 3-1, 04 , b. 3-1, 14
Evaluating Definite Integrals
Use the results of Equations (2) and (4) to evaluate the integrals in 
Exercises 29–40.

29.
L

22

1
x dx 30.

L

2.5

0.5
x dx 31.

L

2p

p

u du

32.
L

522

22
r dr 33.

L

23 7

0
x2 dx 34.

L

0.3

0
s2 ds

35.
L

1>2

0
t2 dt 36.

L

p>2

0
u2 du 37.

L

2a

a
x dx

38.
L

23a

a
x dx 39.

L

23 b

0
x2 dx 40.

L

3b

0
x2 dx

Use the rules in Table 5.6 and Equations (2)–(4) to evaluate the integrals 
in Exercises 41–50.

41.
L

1

3
7 dx 42.

L

2

0
5x dx

43.
L

2

0
(2t - 3) dt 44.

L

22

0
1t - 222 dt

45.
L

1

2
a1 + z

2
b dz 46.

L

0

3
(2z - 3) dz

47.
L

2

1
3u2 du 48.

L

1

1>2
24u2 du

49.
L

2

0
(3x2 + x - 5) dx 50.

L

0

1
(3x2 + x - 5) dx

Finding Area by Definite Integrals
In Exercises 51–54, use a definite integral to find the area of the region 
between the given curve and the x-axis on the interval 30, b4 .
51. y = 3x2 52. y = px2

53. y = 2x 54. y = x
2

+ 1
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Finding Average Value
In Exercises 55–62, graph the function and find its average value over 
the given interval.

55. ƒ(x) = x2 - 1 on 30, 234
56. ƒ(x) = - x2

2
on 30, 34

57. ƒ(x) = -3x2 - 1 on 30, 14
58. ƒ(x) = 3x2 - 3 on 30, 14
59. ƒ(t) = (t - 1)2 on 30, 34
60. ƒ(t) = t2 - t on 3-2, 14
61. g(x) = 0 x 0 - 1 on a. 3-1, 14 , b. 31, 34 , and c. 3-1, 34
62. h(x) = - 0 x 0 on a. 3-1, 04 , b. 30, 14 , and c. 3-1, 14

Definite Integrals as Limits of Sums
Use the method of Example 4a or Equation (1) to evaluate the definite 
integrals in Exercises 63–70.

63.
L

b

a
c dx 64.

L

2

0
(2x + 1) dx

65.
L

b

a
x2 dx, a 6 b 66.

L

0

-1
(x - x2) dx

67.
L

2

-1

(3x2 - 2x + 1) dx 68.
L

1

-1
x3 dx

69.
L

b

a
x3 dx, a 6 b 70.

L

1

0
(3x - x3) dx

Theory and Examples
71. What values of a and b maximize the value of

L

b

a

(x - x2) dx?

  (Hint: Where is the integrand positive?)

72. What values of a and b minimize the value of

L

b

a

(x4 - 2x2) dx?

73. Use the Max-Min Inequality to find upper and lower bounds for 
the value of

L

1

0

1
1 + x2 dx.

74. (Continuation of Exercise 73.) Use the Max-Min Inequality to 
find upper and lower bounds for

L

0.5

0

1
1 + x2 dx and

L

1

0.5

1
1 + x2 dx.

  Add these to arrive at an improved estimate of

L

1

0

1
1 + x2 dx.

75. Show that the value of 1
1

0 sin (x2) dx cannot possibly be 2.

76. Show that the value of 1
1

0 2x + 8 dx lies between 222 ≈ 2.8
and 3.

77. Integrals of nonnegative functions Use the Max-Min Inequality 
to show that if ƒ is integrable then

ƒ(x) Ú 0 on 3a, b4 1
L

b

a
ƒ(x) dx Ú 0.

78. Integrals of nonpositive functions Show that if ƒ is integrable 
then

ƒ(x) … 0 on 3a, b4 1
L

b

a
ƒ(x) dx … 0.

79. Use the inequality sin x … x, which holds for x Ú 0, to find an 
upper bound for the value of 1

1
0 sin x dx.

80. The inequality sec x Ú 1 + (x2>2) holds on (-p>2, p>2). Use 
it to find a lower bound for the value of 1

1
0 sec x dx.

81. If av(ƒ) really is a typical value of the integrable function ƒ(x) on 
3a, b4 , then the constant function av(ƒ) should have the same 
integral over 3a, b4  as ƒ. Does it? That is, does

L

b

a
av(ƒ) dx =

L

b

a
ƒ(x) dx?

  Give reasons for your answer.

82. It would be nice if average values of integrable functions obeyed 
the following rules on an interval 3a, b4 .

  a. av(ƒ + g) = av(ƒ) + av(g)

  b. av(kƒ) = k av(ƒ) (any number k)

  c. av(ƒ) … av(g) if ƒ(x) … g(x) on 3a, b4 .
  Do these rules ever hold? Give reasons for your answers.

83. Upper and lower sums for increasing functions

  a. Suppose the graph of a continuous function ƒ(x) rises steadily 
as x moves from left to right across an interval 3a, b4 . Let P
be a partition of 3a, b4  into n subintervals of equal length 
∆x = (b - a)>n. Show by referring to the accompanying fig-
ure that the difference between the upper and lower sums for 
ƒ on this partition can be represented graphically as the area 
of a rectangle R whose dimensions are 3ƒ(b) - ƒ(a)4  by ∆x.
(Hint: The difference U - L is the sum of areas of rectangles 
whose diagonals Q0Q1, Q1Q2,c, Qn-1Qn lie approximately 
along the curve. There is no overlapping when these rectan-
gles are shifted horizontally onto R.)

  b. Suppose that instead of being equal, the lengths ∆xk of the 
subintervals of the partition of 3a, b4  vary in size. Show that

U - L … 0 ƒ(b) - ƒ(a) 0 ∆xmax,

    where ∆xmax is the norm of P, and hence that lim}P}S0

(U - L) = 0.
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x

y

0 x0 = a xn = bx1

Q1

Q2

Q3

x2

y = f (x)

f (b) − f (a)

R

Δx

84. Upper and lower sums for decreasing functions (Continua-
tion of Exercise 83.)

  a. Draw a figure like the one in Exercise 83 for a continuous 
function ƒ(x) whose values decrease steadily as x moves from 
left to right across the interval 3a, b4 . Let P be a partition of 
3a, b4  into subintervals of equal length. Find an expression 
for U - L that is analogous to the one you found for U - L
in Exercise 83a.

  b. Suppose that instead of being equal, the lengths ∆xk of the 
subintervals of P vary in size. Show that the inequality

U - L … 0 ƒ(b) - ƒ(a) 0 ∆xmax

    of Exercise 83b still holds and hence that lim}P}S0

(U - L) = 0.

85. Use the formula

sin h + sin 2h + sin 3h + g+ sin mh

=
cos (h>2) - cos ((m + (1>2))h)

2 sin (h>2)

   to find the area under the curve y = sin x from x = 0 to 
x = p>2 in two steps:

  a. Partition the interval 30, p>24  into n subintervals of equal 
length and calculate the corresponding upper sum U; then

  b. Find the limit of U as n S q and ∆x = (b - a)>n S 0.

86. Suppose that ƒ is continuous and nonnegative over 3a, b4 , as in 
the accompanying figure. By inserting points

x1, x2,c, xk-1, xk,c, xn-1

  as shown, divide 3a, b4  into n subintervals of lengths ∆x1 = x1 - a,
∆x2 = x2 - x1,c, ∆xn = b - xn-1, which need not be equal.

  a. If mk = min 5ƒ(x) for x in the kth subinterval6 , explain the 
connection between the lower sum

L = m1 ∆x1 + m2 ∆x2 + g+ mn ∆xn

   and the shaded regions in the first part of the figure.

  b. If Mk = max 5ƒ(x) for x in the kth subinterval6 , explain the 
connection between the upper sum

U = M1 ∆x1 + M2 ∆x2 + g+ Mn ∆xn

   and the shaded regions in the second part of the figure.

  c. Explain the connection between U - L and the shaded 
regions along the curve in the third part of the figure.

x

y

0 a bx1 x2 x3 xk−1 xn−1xk

y = f (x)

x

y

0 a bxk+1xk

x

y

0 a bxk+1xk

b − a

P

87. We say ƒ is uniformly continuous on 3a, b4  if given any P 7 0,
there is a d 7 0 such that if x1, x2 are in 3a, b4  and 0 x1 - x2 0 6 d, then 0 ƒ(x1) - ƒ(x2) 0 6 P. It can be shown that a 
continuous function on 3a, b4  is uniformly continuous. Use this 
and the figure for Exercise 86 to show that if ƒ is continuous and 
P 7 0 is given, it is possible to make U - L … P # (b - a) by 
making the largest of the ∆xk>s sufficiently small.

88. If you average 30 mi >h on a 150-mi trip and then return over the 
same 150 mi at the rate of 50 mi >h, what is your average speed 
for the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS
If your CAS can draw rectangles associated with Riemann sums, use 
it to draw rectangles associated with Riemann sums that converge to 
the integrals in Exercises 89–94. Use n = 4, 10, 20, and 50 subinter-
vals of equal length in each case.

89.
L

1

0
(1 - x) dx = 1

2
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90.
L

1

0
(x2 + 1) dx = 4

3
91.

L

p

-p
cos x dx = 0

92.
L

p>4

0
sec2 x dx = 1 93.

L

1

-1

0 x 0 dx = 1

94.
L

2

1

1
x dx (The integral’s value is about 0.693.)

In Exercises 95–102, use a CAS to perform the following steps:

  a. Plot the functions over the given interval.

  b. Partition the interval into n = 100, 200, and 1000 subinter-
vals of equal length, and evaluate the function at the midpoint 
of each subinterval.

  c. Compute the average value of the function values generated in 
part (b).

  d. Solve the equation ƒ(x) = (average value) for x using the aver-
age value calculated in part (c) for the n = 1000 partitioning.

95. ƒ(x) = sin x on 30, p4
96. ƒ(x) = sin2 x on 30, p4
97. ƒ(x) = x sin

1
x on cp

4
, p d

98. ƒ(x) = x sin2 1
x on cp

4
, p d

99. ƒ(x) = xe-x on 30, 14
100. ƒ(x) = e-x2

on 30, 14
101. ƒ(x) = ln x

x on 32, 54
102. ƒ(x) = 1

21 - x2
on c 0,

1
2
d

5.4 The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central theorem 
of integral calculus. It connects integration and differentiation, enabling us to compute inte-
grals using an antiderivative of the integrand function rather than by taking limits of Riemann 
sums as we did in Section 5.3. Leibniz and Newton exploited this relationship and started 
mathematical developments that fueled the scientific revolution for the next 200 years.

Along the way, we present an integral version of the Mean Value Theorem, which is 
another important theorem of integral calculus and is used to prove the Fundamental 
Theorem. We also find that the net change of a function over an interval is the integral of 
its rate of change, as suggested by Example 3 in Section 5.1.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a 
closed interval 3a, b4  as the definite integral 1

b
a ƒ(x) dx divided by the length or width 

b - a of the interval. The Mean Value Theorem for Definite Integrals asserts that this 
average value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function y = ƒ(x) defined over 
the interval 3a, b4 . Geometrically, the Mean Value Theorem says that there is a number c in 3a, b4  such that the rectangle with height equal to the average value ƒ(c) of the function and 
base width b - a has exactly the same area as the region beneath the graph of ƒ from a to b.

FIGURE 5.16 The value ƒ(c) in the 
Mean Value Theorem is, in a sense, 
the average (or mean) height of ƒ on 
3a, b4. When ƒ Ú 0, the area of the 
rectangle is the area under the graph of 
ƒ from a to b,

ƒ(c)(b - a) =
L

b

a
ƒ(x) dx.

y

x
a b0 c

y = f (x)

f (c),

b − a

average
height

Proof  If we divide both sides of the Max-Min Inequality (Table 5.6, Rule 6) by (b - a),
we obtain

min ƒ … 1
b - aL

b

a
ƒ(x) dx … max ƒ.

HISTORICAL BIOGRAPHY

Sir Isaac Newton
(1642–1727)

THEOREM 3—The Mean Value Theorem for Definite Integrals If ƒ is continu-
ous on 3a, b4, then at some point c in 3a, b4,

ƒ(c) = 1
b - aL

b

a
ƒ(x) dx.



5.4  The Fundamental Theorem of Calculus 329

Since ƒ is continuous, the Intermediate Value Theorem for Continuous Functions (Section 
2.5) says that ƒ must assume every value between min ƒ and max ƒ. It must therefore 
assume the value (1>(b - a))1

b
a ƒ(x) dx at some point c in 3a, b4 .

The continuity of ƒ is important here. It is possible that a discontinuous function 
never equals its average value (Figure 5.17).

EXAMPLE 1  Show that if ƒ is continuous on 3a, b4 , a ≠ b, and if

L

b

a
ƒ(x) dx = 0,

then ƒ(x) = 0 at least once in 3a, b4 .
Solution The average value of ƒ on 3a, b4  is

av(ƒ) = 1
b - aL

b

a
ƒ(x) dx = 1

b - a
# 0 = 0.

By the Mean Value Theorem, ƒ assumes this value at some point c ∊ 3a, b4 .
Fundamental Theorem, Part 1

It can be very difficult to compute definite integrals by taking the limit of Riemann sums. We 
now develop a powerful new method for evaluating definite integrals, based on using antideriva-
tives. This method combines the two strands of calculus. One strand involves the idea of taking 
the limits of finite sums to obtain a definite integral, and the other strand contains derivatives and 
antiderivatives. They come together in the Fundamental Theorem of Calculus. We begin by con-
sidering how to differentiate a certain type of function that is described as an integral.

If ƒ(t) is an integrable function over a finite interval I, then the integral from any fixed 
number a ∊ I  to another number x ∊ I  defines a new function F whose value at x is

F(x) =
L

x

a
ƒ(t) dt. (1)

For example, if ƒ is nonnegative and x lies to the right of a, then F(x) is the area under the 
graph from a to x (Figure 5.18). The variable x is the upper limit of integration of an integral, 
but F is just like any other real-valued function of a real variable. For each value of the input 
x, there is a well-defined numerical output, in this case the definite integral of ƒ from a to x.

Equation (1) gives a way to define new functions (as we will see in Section 7.1), but 
its importance now is the connection it makes between integrals and derivatives. If ƒ is 
any continuous function, then the Fundamental Theorem asserts that F is a differentiable 
function of x whose derivative is ƒ itself. At every value of x, it asserts that

d
dx

F(x) = ƒ(x).

To gain some insight into why this result holds, we look at the geometry behind it.
If ƒ Ú 0 on 3a, b4 , then the computation of F′(x) from the definition of the deriva-

tive means taking the limit as h S 0 of the difference quotient
F(x + h) - F(x)

h
.

For h 7 0, the numerator is obtained by subtracting two areas, so it is the area under the 
graph of ƒ from x to x + h (Figure 5.19). If h is small, this area is approximately equal to the 
area of the rectangle of height ƒ(x) and width h, which can be seen from Figure 5.19. That is,

F(x + h) - F(x) ≈ hƒ(x).

Dividing both sides of this approximation by h and letting h S 0, it is reasonable to expect that

F′(x) = lim
hS0

F(x + h) - F(x)
h

= ƒ(x).

This result is true even if the function ƒ is not positive, and it forms the first part of the 
Fundamental Theorem of Calculus.

FIGURE 5.17 A discontinuous function 
need not assume its average value.

x

y

0

1

1 2

Average value 1�2
not assumed

y = f (x)

1
2

t

y

0 a x b

area = F(x)

y = f (t)

FIGURE 5.18 The function F(x)
defined by Equation (1) gives the area 
under the graph of ƒ from a to x when 
ƒ is nonnegative and x 7 a.

FIGURE 5.19 In Equation (1), 
F(x) is the area to the left of x. Also, 
F(x + h) is the area to the left of 
x + h. The difference quotient 
3F(x + h) - F(x)4 >h is then ap-
proximately equal to ƒ(x), the height 
of the rectangle shown here.

y = f (t)

t

y

0 a x x + h b

f (x)
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Before proving Theorem 4, we look at several examples to gain a good understanding 
of what it says. In each example, notice that the independent variable appears in a limit of 
integration, possibly in a formula.

EXAMPLE 2  Use the Fundamental Theorem to find dy>dx if

(a) y =
L

x

a
(t3 + 1) dt (b) y =

L

5

x
3t sin t dt

(c) y =
L

x2

1
cos t dt (d) y =

L

4

1+3x2

1
2 + et dt

Solution We calculate the derivatives with respect to the independent variable x.

(a)
dy
dx

= d
dxL

x

a
(t3 + 1) dt = x3 + 1 Eq. (2) with ƒ(t) = t3 + 1

(b)
dy
dx

= d
dxL

5

x
3t sin t dt = d

dx
a-

L

x

5
3t sin t dtb Table 5.6, Rule 1

= - d
dxL

x

5
3t sin t dt

= -3x sin x Eq. (2) with ƒ(t) = 3t sin t

(c) The upper limit of integration is not x but x2. This makes y a composite of the two 
functions,

y =
L

u

1
cos t dt and u = x2.

  We must therefore apply the Chain Rule when finding dy>dx.

dy
dx

=
dy
du

# du
dx

= a d
duL

u

1
cos t dtb # du

dx

= cos u # du
dx

= cos(x2) # 2x

= 2x cos x2

(d) d
dxL

4

1+3x2

1
2 + et dt = d

dx
a-

L

1+3x2

4

1
2 + et dtb Rule 1

= - d
dxL

1+3x2

4

1
2 + et dt

= - 1
2 + e(1+3x2)

d
dx

(1 + 3x2) Eq. (2) and the 
Chain Rule

= - 6x
2 + e(1+3x2)

THEOREM 4—The Fundamental Theorem of Calculus, Part 1 If ƒ is continu-
ous on 3a, b4 , then F(x) = 1

x
a ƒ(t) dt is continuous on 3a, b4  and differentiable 

on (a, b) and its derivative is ƒ(x):

F′(x) = d
dxL

x

a
ƒ(t) dt = ƒ(x). (2)
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Proof of Theorem 4 We prove the Fundamental Theorem, Part 1, by applying the 
definition of the derivative directly to the function F(x), when x and x + h are in (a, b).
This means writing out the difference quotient

F(x + h) - F(x)
h

(3)

and showing that its limit as h S 0 is the number ƒ(x) for each x in (a, b). Doing so, we find

F′(x) = lim
hS0

F(x + h) - F(x)
h

= lim
hS0

1
h
c
L

x+h

a
ƒ(t) dt -

L

x

a
ƒ(t) dt d

= lim
hS0

1
h L

x+h

x
ƒ(t) dt. Table 5.6, Rule 5

According to the Mean Value Theorem for Definite Integrals, the value before taking 
the limit in the last expression is one of the values taken on by ƒ in the interval between x
and x + h. That is, for some number c in this interval,

1
h L

x+h

x
ƒ(t) dt = ƒ(c). (4)

As h S 0, x + h approaches x, forcing c to approach x also (because c is trapped between 
x and x + h). Since ƒ is continuous at x, ƒ(c) approaches ƒ(x):

lim
hS0

ƒ(c) = ƒ(x). (5)

In conclusion, we have

F′(x) = lim
hS0

1
hL

x+h

x
ƒ(t) dt

= lim
hS0

ƒ(c) Eq. (4)

= ƒ(x). Eq. (5)

If x = a or b, then the limit of Equation (3) is interpreted as a one-sided limit with h S 0+

or h S 0-, respectively. Then Theorem 1 in Section 3.2 shows that F is continuous over 3a, b4 . This concludes the proof.

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part describes 
how to evaluate definite integrals without having to calculate limits of Riemann sums. Instead 
we find and evaluate an antiderivative at the upper and lower limits of integration.

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2
If ƒ is continuous over 3a, b4  and F is any antiderivative of ƒ on 3a, b4 , then

L

b

a
ƒ(x) dx = F(b) - F(a).

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of ƒ exists, namely

G(x) =
L

x

a
ƒ(t) dt.

Thus, if F is any antiderivative of ƒ, then F(x) = G(x) + C for some constant C for 
a 6 x 6 b (by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2). 
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Since both F and G are continuous on 3a, b4 , we see that F(x) = G(x) + C also holds 
when x = a and x = b by taking one-sided limits (as x S a+ and x S b-).

Evaluating F(b) - F(a), we have

F(b) - F(a) = 3G(b) + C4 - 3G(a) + C4
= G(b) - G(a)

=
L

b

a
ƒ(t) dt -

L

a

a
ƒ(t) dt

=
L

b

a
ƒ(t) dt - 0

=
L

b

a
ƒ(t) dt.

The Evaluation Theorem is important because it says that to calculate the definite 
integral of ƒ over an interval 3a, b4  we need do only two things:

1. Find an antiderivative F of ƒ, and

2. Calculate the number F(b) - F(a), which is equal to 1
b

a ƒ(x) dx.

This process is much easier than using a Riemann sum computation. The power of the 
theorem follows from the realization that the definite integral, which is defined by a com-
plicated process involving all of the values of the function ƒ over 3a, b4 , can be found by 
knowing the values of any antiderivative F at only the two endpoints a and b. The usual 
notation for the difference F(b) - F(a) is

F(x)R
a

b

or JF(x) R
a

b

,

depending on whether F has one or more terms.

EXAMPLE 3  We calculate several definite integrals using the Evaluation Theorem, 
rather than by taking limits of Riemann sums.

(a)
L

p

0
cos x dx = sin x d

0

p
d
dx

sin x = cos x

= sin p - sin 0 = 0 - 0 = 0

(b)
L

0

-p>4
sec x tan x dx = sec x d

-p>4
0

d
dx

sec x = sec x tan x

= sec 0 - sec a- p
4
b = 1 - 22

(c)
L

4

1
a3

2
1x - 4

x2b dx = c x3>2 + 4
x d

1

4
d
dx
ax3>2 + 4

xb = 3
2

x1>2 - 4
x2

= c (4)3>2 + 4
4
d - c (1)3>2 + 4

1
d

= 38 + 14 - 354 = 4

(d)
L

1

0

dx
x + 1

= ln 0 x + 1 0 d 1
0

d
dx

ln 0 x + 1 0 = 1
x + 1

= ln 2 - ln 1 = ln 2

(e)
L

1

0

dx
x2 + 1

= tan-1 x d
1

0

d
dx

tan-1 x = = 1
x2 + 1

= tan-1 1 - tan-1 0 = p
4

- 0 = p
4

.



5.4  The Fundamental Theorem of Calculus 333

Exercise 82 offers another proof of the Evaluation Theorem, bringing together the 
ideas of Riemann sums, the Mean Value Theorem, and the definition of the definite integral.

The Integral of a Rate

We can interpret Part 2 of the Fundamental Theorem in another way. If F is any antideriva-
tive of ƒ, then F′ = ƒ. The equation in the theorem can then be rewritten as

L

b

a
F′(x) dx = F(b) - F(a).

Now F′(x) represents the rate of change of the function F(x) with respect to x, so the last 
equation asserts that the integral of F′ is just the net change in F as x changes from a to b.
Formally, we have the following result.

THEOREM 5—The Net Change Theorem The net change in a differentiable 
function F(x) over an interval a … x … b is the integral of its rate of change:

F(b) - F(a) =
L

b

a
F′(x) dx. (6)

EXAMPLE 4  Here are several interpretations of the Net Change Theorem.

(a) If c(x) is the cost of producing x units of a certain commodity, then c′(x) is the mar-
ginal cost (Section 3.4). From Theorem 5,

L

x2

x1

c′(x) dx = c(x2) - c(x1),

  which is the cost of increasing production from x1 units to x2 units.
(b) If an object with position function s(t) moves along a coordinate line, its velocity is 
y(t) = s′(t). Theorem 5 says that

L

t2

t1

y(t) dt = s(t2) - s(t1),

  so the integral of velocity is the displacement over the time interval t1 … t … t2. On 
the other hand, the integral of the speed 0 y(t) 0  is the total distance traveled over the 
time interval. This is consistent with our discussion in Section 5.1.

If we rearrange Equation (6) as

F(b) = F(a) +
L

b

a
F′(x) dx,

we see that the Net Change Theorem also says that the final value of a function F(x) over 
an interval 3a, b4  equals its initial value F(a) plus its net change over the interval. So if 
y(t) represents the velocity function of an object moving along a coordinate line, this 
means that the object’s final position s(t2) over a time interval t1 … t … t2 is its initial 
position s(t1) plus its net change in position along the line (see Example 4b).

EXAMPLE 5  Consider again our analysis of a heavy rock blown straight up from the 
ground by a dynamite blast (Example 3, Section 5.1). The velocity of the rock at any time 
t during its motion was given as y(t) = 160 - 32t ft>sec.

(a) Find the displacement of the rock during the time period 0 … t … 8.

(b) Find the total distance traveled during this time period.
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Solution
(a) From Example 4b, the displacement is the integral

L

8

0
y(t) dt =

L

8

0
(160 - 32t) dt = 3160t - 16t248

0

= (160)(8) - (16)(64) = 256.

  This means that the height of the rock is 256 ft above the ground 8 sec after the explo-
sion, which agrees with our conclusion in Example 3, Section 5.1.

(b) As we noted in Table 5.3, the velocity function y(t) is positive over the time interval 30, 54  and negative over the interval 35, 84 . Therefore, from Example 4b, the total 
distance traveled is the integral

L

8

0

0 y(t) 0 dt =
L

5

0

0 y(t) 0 dt +
L

8

5

0 y(t) 0 dt

=
L

5

0
(160 - 32t) dt -

L

8

5
(160 - 32t) dt

= 3160t - 16t245
0 - 3160t - 16t248

5

= 3(160)(5) - (16)(25)4 - 3(160)(8) - (16)(64) - ((160)(5) - (16)(25))4
= 400 - (-144) = 544.

  Again, this calculation agrees with our conclusion in Example 3, Section 5.1. That is, 
the total distance of 544 ft traveled by the rock during the time period 0 … t … 8 is 
(i) the maximum height of 400 ft it reached over the time interval 30, 54  plus (ii) the 
additional distance of 144 ft the rock fell over the time interval 35, 84 .

The Relationship Between Integration and Differentiation

The conclusions of the Fundamental Theorem tell us several things. Equation (2) can be 
rewritten as

d
dxL

x

a
ƒ(t) dt = ƒ(x),

which says that if you first integrate the function ƒ and then differentiate the result, you 
get the function ƒ back again. Likewise, replacing b by x and x by t in Equation (6) gives

L

x

a
F′(t) dt = F(x) - F(a),

so that if you first differentiate the function F and then integrate the result, you get the 
function F back (adjusted by an integration constant). In a sense, the processes of integra-
tion and differentiation are “inverses” of each other. The Fundamental Theorem also says 
that every continuous function ƒ has an antiderivative F. It shows the importance of find-
ing antiderivatives in order to evaluate definite integrals easily. Furthermore, it says that 
the differential equation dy>dx = ƒ(x) has a solution (namely, any of the functions 
y = F(x) + C) for every continuous function ƒ.

Total Area

Area is always a nonnegative quantity. The Riemann sum contains terms such as ƒ(ck) ∆xk

that give the area of a rectangle when ƒ(ck) is positive. When ƒ(ck) is negative, then the 
product ƒ(ck) ∆xk is the negative of the rectangle’s area. When we add up such terms for a 
negative function, we get the negative of the area between the curve and the x-axis. If we 
then take the absolute value, we obtain the correct positive area.

EXAMPLE 6  Figure 5.20 shows the graph of ƒ(x) = x2 - 4 and its mirror image 
g(x) = 4 - x2 reflected across the x-axis. For each function, compute

FIGURE 5.20 These graphs 
enclose the same amount of area 
with the x-axis, but the definite 
integrals of the two functions over 
3-2, 24  differ in sign (Example 6).

x

y

0 1 2−1

4

3

2

1

−2

g(x) = 4 − x2

x

y

0 1 2−1

−1

−2

−3

−4

−2

f (x) = x2 − 4



(a) the definite integral over the interval 3-2, 24 , and

(b) the area between the graph and the x-axis over 3-2, 24 .
Solution

(a) L
2

-2
ƒ(x) dx = c x3

3 - 4x d 2
-2

= a83 - 8b - a-8
3 + 8b = - 32

3 ,

  and

L
2

-2
g(x) dx = c 4x - x3

3 d
2

-2
= 32

3 .

(b) In both cases, the area between the curve and the x-axis over 3-2, 24  is 32>3 square 
units. Although the definite integral of ƒ(x) is negative, the area is still positive.

To compute the area of the region bounded by the graph of a function y = ƒ(x) and 
the x-axis when the function takes on both positive and negative values, we must be care-
ful to break up the interval 3a, b4  into subintervals on which the function doesn’t change 
sign. Otherwise we might get cancelation between positive and negative signed areas, 
leading to an incorrect total. The correct total area is obtained by adding the absolute value 
of the definite integral over each subinterval where ƒ(x) does not change sign. The term 
“area” will be taken to mean this total area.

EXAMPLE 7  Figure 5.21 shows the graph of the function ƒ(x) = sin x between 
x = 0 and x = 2p. Compute

(a) the definite integral of ƒ(x) over 30, 2p4 .
(b) the area between the graph of ƒ(x) and the x-axis over 30, 2p4 .
Solution

(a) The definite integral for ƒ(x) = sin x is given by

L
2p

0
sin x dx = -cos x d

0

2p

= - 3cos 2p - cos 04 = - 31 - 14 = 0.

  The definite integral is zero because the portions of the graph above and below the 
x-axis make canceling contributions.

(b) The area between the graph of ƒ(x) and the x-axis over 30, 2p4  is calculated by 
breaking up the domain of sin x into two pieces: the interval 30, p4  over which it is 
nonnegative and the interval 3p, 2p4  over which it is nonpositive.

L
p

0
sin x dx = -cos x d

0

p

= - 3cos p - cos 04 = - 3-1 - 14 = 2

L
2p

p

sin x dx = -cos x d
p

2p

= - 3cos 2p - cos p4 = - 31 - (-1)4 = -2

The second integral gives a negative value. The area between the graph and the axis is 
obtained by adding the absolute values,

Area = 0 2 0 + 0-2 0 = 4.

FIGURE 5.21 The total area 
between y = sin x and the x-axis for 
0 … x … 2p is the sum of the absolute 
values of two integrals (Example 7).

−1

0

1

x

y

p 2p

y = sin x

Area = 2

Area =
0−2 0 = 2

Summary:
To find the area between the graph of y = ƒ(x) and the x-axis over the interval 3a, b4 :
1. Subdivide 3a, b4  at the zeros of ƒ.

2. Integrate ƒ over each subinterval.

3. Add the absolute values of the integrals.
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EXAMPLE 8  Find the area of the region between the x-axis and the graph of 
ƒ(x) = x3 - x2 - 2x, -1 … x … 2.

Solution First find the zeros of ƒ. Since

ƒ(x) = x3 - x2 - 2x = x(x2 - x - 2) = x(x + 1)(x - 2),

the zeros are x = 0, -1, and 2 (Figure 5.22). The zeros subdivide 3-1, 24  into two subin-
tervals: 3-1, 04 , on which ƒ Ú 0, and 30, 24 , on which ƒ … 0. We integrate ƒ over each 
subinterval and add the absolute values of the calculated integrals.

L

0

-1
(x3 - x2 - 2x) dx = c x4

4
- x3

3 - x2 d
-1

0

= 0 - c 1
4

+ 1
3 - 1 d = 5

12

L

2

0
(x3 - x2 - 2x) dx = c x4

4
- x3

3 - x2 d
0

2

= c 4 - 8
3 - 4 d - 0 = - 8

3

The total enclosed area is obtained by adding the absolute values of the calculated integrals.

Total enclosed area = 5
12

+ 2 - 8
3
2 = 37

12

x

y

0 2−1

y = x3 − x2 − 2x

Area = P P

=

8
3

–

8
3

Area = 5
12

FIGURE 5.22 The region between the 
curve y = x3 - x2 - 2x and the x-axis
(Example 8).

Evaluating Integrals
Evaluate the integrals in Exercises 1–34.

1.
L

2

0
x(x - 3) dx 2.

L

1

-1
(x2 - 2x + 3) dx

3.
L

2

-2

3
(x + 3)4 dx 4.

L

1

-1
x299 dx

5.
L

4

1
a3x2 - x3

4
b dx 6.

L

3

-2

(x3 - 2x + 3) dx

7.
L

1

0
1x2 + 1x2 dx 8.

L

32

1
x-6>5 dx

9.
L

p>3

0
2 sec2 x dx 10.

L

p

0
(1 + cos x) dx

11.
L

3p>4

p>4
 csc u cot u du 12.

L

p>3

0
 4 

sin u
cos2 u

du

13.
L

0

p>2
1 + cos 2t

2
dt 14.

L

p>3

-p>3
 sin2 t dt

15.
L

p>4

0
tan2 x dx 16.

L

p>6

0
(sec x + tan x)2 dx

17.
L

p>8

0
sin 2x dx 18.

L

-p>4

-p>3
a4 sec2 t + p

t2b dt

19.
L

-1

1
(r + 1)2 dr 20.

L

23

-23
(t + 1)(t2 + 4) dt

21.
L

1

22
au7

2
- 1

u5b du 22.
L

-1

-3

y5 - 2y

y3 dy

23.
L

22

1

s2 + 2s
s2 ds 24.

L

8

1

(x1>3 + 1)(2 - x2>3)
x1>3 dx

25.
L

p

p>2
sin 2x
2 sin x

dx 26.
L

p>3

0
(cos x + sec x)2 dx

27.
L

4

-4

0 x 0 dx 28.
L

p

0

1
2

(cos x + 0 cos x 0 ) dx

29.
L

ln 2

0
e3x dx 30.

L

2

1
a1x - e-xb dx

31.
L

1>2

0

4

21 - x2
dx 32.

L

1>13

0

dx
1 + 4x2

33.
L

4

2
xp-1 dx 34.

L

0

-1
px-1 dx

In Exercises 35–38, guess an antiderivative for the integrand function. 
Validate your guess by differentiation and then evaluate the given 
definite integral. (Hint: Keep in mind the Chain Rule in guessing an 
antiderivative. You will learn how to find such antiderivatives in the 
next section.)

35.
L

1

0
xex2

dx 36.
L

2

1

ln x
x dx

37.
L

5

2

xdx

21 + x2
38.

L

p>3

0
sin2 x cos x dx

Derivatives of Integrals
Find the derivatives in Exercises 39–44.

a. by evaluating the integral and differentiating the result.

b. by differentiating the integral directly.

Exercises 5.4



5.4  The Fundamental Theorem of Calculus 337

39.
d
dxL

1x

0
cos t dt 40.

d
dxL

sin x

1
3t2 dt

41.
d
dtL

t4

0
1u du 42.

d
duL

tanu

0
sec2 ydy

43.
d
dx L

x3

0
e- t dt 44.

d
dt L

2t

0
ax4 + 3

21 - x2
b dx

Find dy>dx in Exercises 45–56.

45. y =
L

x

0
21 + t2 dt 46. y =

L

x

1

1
t dt, x 7 0

47. y =
L

0

1x
sin (t2) dt 48. y = x

L

x2

2
sin (t3) dt

49. y =
L

x

-1

t2

t2 + 4
dt -

L

x

3

t2

t2 + 4
dt

50. y = a
L

x

0
(t3 + 1)10 dtb3

51. y =
L

sin x

0

dt

21 - t2
, 0 x 0 6 p

2

52. y =
L

0

tanx

dt
1 + t2 53. y =

L

ex2

0

1

2t
dt

54. y =
L

1

2x

23 t dt 55. y =
L

sin-1 x

0
cos t dt

56. y =
L

x1>p

-1
sin-1 t dt

Area
In Exercises 57–60, find the total area between the region and the x-axis.

57. y = -x2 - 2x, -3 … x … 2

58. y = 3x2 - 3, -2 … x … 2

59. y = x3 - 3x2 + 2x, 0 … x … 2

60. y = x1>3 - x, -1 … x … 8

Find the areas of the shaded regions in Exercises 61–64.

61.

x

y

0

2

p

y = 2

x = p

y = 1 + cos x

62. y

x

1

p
6

5p
6

y = sin x

63.

u

y

−
"

2

"

2

p
4

p
4

− 0

y = sec u tan u

64.

t

y

p
4

− 0 1

1

2

y = sec2 t

y = 1 − t2

Initial Value Problems
Each of the following functions solves one of the initial value prob-
lems in Exercises 65–68. Which function solves which problem? Give 
brief reasons for your answers.

a. y =
L

x

1

1
t dt - 3 b. y =

L

x

0
sec t dt + 4

c. y =
L

x

-1
sec t dt + 4 d. y =

L

x

p

1
t dt - 3

65.
dy
dx

= 1
x , y(p) = -3 66. y′ = sec x, y(-1) = 4

67. y′ = sec x, y(0) = 4 68. y′ = 1
x , y(1) = -3

Express the solutions of the initial value problems in Exercises 69 and 
70 in terms of integrals.

69.
dy
dx

= sec x, y(2) = 3

70.
dy
dx

= 21 + x2, y(1) = -2

Theory and Examples
71. Archimedes’ area formula for parabolic arches Archimedes

(287–212 b.c.), inventor, military engineer, physicist, and the 
greatest mathematician of classical times in the Western world, 
discovered that the area under a parabolic arch is two-thirds the 
base times the height. Sketch the parabolic arch y = h - (4h>b2)x2,
-b>2 … x … b>2, assuming that h and b are positive. Then use 
calculus to find the area of the region enclosed between the arch 
and the x-axis.

72. Show that if k is a positive constant, then the area between the 
x-axis and one arch of the curve y = sin kx is 2>k.

73. Cost from marginal cost The marginal cost of printing a poster 
when x posters have been printed is

dc
dx

= 1
21x

  dollars. Find c(100) - c(1), the cost of printing posters 2–100.

74. Revenue from marginal revenue Suppose that a company’s 
marginal revenue from the manufacture and sale of eggbeaters is

dr
dx

= 2 - 2>(x + 1)2,

  where r is measured in thousands of dollars and x in thousands of 
units. How much money should the company expect from a pro-
duction run of x = 3 thousand eggbeaters? To find out, integrate 
the marginal revenue from x = 0 to x = 3.
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75. The temperature T (°F) of a room at time t minutes is given by

T = 85 - 3225 - t for 0 … t … 25.

  a. Find the room’s temperature when t = 0, t = 16, and t = 25.

  b. Find the room’s average temperature for 0 … t … 25.

76. The height H (ft) of a palm tree after growing for t years is given by

H = 2t + 1 + 5t1>3 for 0 … t … 8.

  a. Find the tree’s height when t = 0, t = 4, and t = 8.

  b. Find the tree’s average height for 0 … t … 8.

77. Suppose that 1
x

1 ƒ(t) dt = x2 - 2x + 1. Find ƒ(x).

78. Find ƒ(4) if 1
x

0 ƒ(t) dt = x cos px.

79. Find the linearization of

ƒ(x) = 2 -
L

x+1

2

9
1 + t

dt

  at x = 1.

80. Find the linearization of

g(x) = 3 +
L

x2

1
sec (t - 1) dt

  at x = -1.

81. Suppose that ƒ has a positive derivative for all values of x and 
that ƒ(1) = 0. Which of the following statements must be true of 
the function

g(x) =
L

x

0
ƒ(t) dt?

  Give reasons for your answers.

  a. g is a differentiable function of x.

  b. g is a continuous function of x.

  c. The graph of g has a horizontal tangent at x = 1.

  d. g has a local maximum at x = 1.

  e. g has a local minimum at x = 1.

  f. The graph of g has an inflection point at x = 1.

  g. The graph of dg>dx crosses the x-axis at x = 1.

82. Another proof of the Evaluation Theorem
  a. Let a = x0 6 x1 6 x2g6 xn = b be any partition of 3a, b4,

and let F be any antiderivative of ƒ. Show that

F(b) - F(a) = a

n

i=1
3F(xi) - F(xi-1)4 .

  b. Apply the Mean Value Theorem to each term to show that 
F(xi) - F(xi-1) = ƒ(ci)(xi - xi-1) for some ci in the interval 
(xi-1, xi). Then show that F(b) - F(a) is a Riemann sum for ƒ
on 3a, b4 .

  c. From part (b) and the definition of the definite integral, show 
that

F(b) - F(a) =
L

b

a
ƒ(x) dx.

83. Suppose that ƒ is the differentiable function shown in the accom-
panying graph and that the position at time t (sec) of a particle 
moving along a coordinate axis is

s =
L

t

0
ƒ(x) dx

  meters. Use the graph to answer the following questions. Give 
reasons for your answers.

y

x
0 1 2 3 4 5 6 7 8 9

1

2

3

4

−1
−2

(1, 1)

(2, 2) (5, 2)

(3, 3)
y = f (x)

  a. What is the particle’s velocity at time t = 5?

  b. Is the acceleration of the particle at time t = 5 positive, or 
negative?

  c. What is the particle’s position at time t = 3?

  d. At what time during the first 9 sec does s have its largest 
value?

  e. Approximately when is the acceleration zero?

  f. When is the particle moving toward the origin? Away from 
the origin?

  g. On which side of the origin does the particle lie at time t = 9?

84. Find lim
xSq

1

2x L

x

1

dt

2t
.

COMPUTER EXPLORATIONS
In Exercises 85–88, let F(x) = 1

x
a ƒ(t) dt for the specified function ƒ

and interval 3a, b4 . Use a CAS to perform the following steps and 
answer the questions posed.

a. Plot the functions ƒ and F together over 3a, b4 .
b. Solve the equation F′(x) = 0. What can you see to be true about 

the graphs of ƒ and F at points where F′(x) = 0? Is your obser-
vation borne out by Part 1 of the Fundamental Theorem coupled 
with information provided by the first derivative? Explain your 
answer.

c. Over what intervals (approximately) is the function F increasing 
and decreasing? What is true about ƒ over those intervals?

d. Calculate the derivative ƒ′ and plot it together with F. What can 
you see to be true about the graph of F at points where ƒ′(x) = 0?
Is your observation borne out by Part 1 of the Fundamental Theo-
rem? Explain your answer.

85. ƒ(x) = x3 - 4x2 + 3x, 30, 44
86. ƒ(x) = 2x4 - 17x3 + 46x2 - 43x + 12, c 0,

9
2
d

87. ƒ(x) = sin 2x cos
x
3

, 30, 2p4
88. ƒ(x) = x cos px, 30, 2p4
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In Exercises 89–92, let F(x) = 1
u(x)

a ƒ(t) dt for the specified a, u, and 
ƒ. Use a CAS to perform the following steps and answer the questions 
posed.

a. Find the domain of F.

b. Calculate F′(x) and determine its zeros. For what points in its 
domain is F increasing? Decreasing?

c. Calculate F″(x) and determine its zero. Identify the local extrema 
and the points of inflection of F.

d. Using the information from parts (a)–(c), draw a rough hand-
sketch of y = F(x) over its domain. Then graph F(x) on your 
CAS to support your sketch.

89. a = 1, u(x) = x2, ƒ(x) = 21 - x2

90. a = 0, u(x) = x2, ƒ(x) = 21 - x2

91. a = 0, u(x) = 1 - x, ƒ(x) = x2 - 2x - 3

92. a = 0, u(x) = 1 - x2, ƒ(x) = x2 - 2x - 3

In Exercises 93 and 94, assume that ƒ is continuous and u(x) is twice-
differentiable.

93. Calculate
d
dxL

u(x)

a
ƒ(t) dt and check your answer using a CAS.

94. Calculate
d2

dx2
L

u(x)

a
ƒ(t) dt and check your answer using a CAS.

5.5 Indefinite Integrals and the Substitution Method

The Fundamental Theorem of Calculus says that a definite integral of a continuous func-
tion can be computed directly if we can find an antiderivative of the function. In Section 
4.8 we defined the indefinite integral of the function ƒ with respect to x as the set of all
antiderivatives of ƒ, symbolized by 1ƒ(x) dx. Since any two antiderivatives of ƒ differ by 
a constant, the indefinite integral 1 notation means that for any antiderivative F of ƒ,

L
ƒ(x) dx = F(x) + C,

where C is any arbitrary constant. The connection between antiderivatives and the definite 
integral stated in the Fundamental Theorem now explains this notation:

L

b

a
ƒ(x) dx = F(b) - F(a) = 3F(x) + C4 b

a = c
L

ƒ(x) dx d b
a
.

When finding the indefinite integral of a function ƒ, remember that it always includes an 
arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite 
integral 1

b
a ƒ(x) dx  is a number. An indefinite integral 1ƒ(x) dx is a function plus an arbi-

trary constant C.
So far, we have only been able to find antiderivatives of functions that are clearly rec-

ognizable as derivatives. In this section we begin to develop more general techniques for 
finding antiderivatives of functions we can’t easily recognize as a derivative.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and n is any number different from -1, the Chain Rule 
tells us that

d
dx
a un+1

n + 1
b = un  

du
dx

.

From another point of view, this same equation says that un+1>(n + 1) is one of the anti-
derivatives of the function un(du>dx). Therefore,

L
un du

dx
dx = un+1

n + 1
+ C. (1)
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The integral in Equation (1) is equal to the simpler integral

L
un du = un+1

n + 1
+ C,

which suggests that the simpler expression du can be substituted for (du>dx) dx when 
computing an integral. Leibniz, one of the founders of calculus, had the insight that indeed 
this substitution could be done, leading to the substitution method for computing integrals. 
As with differentials, when computing integrals we have

du = du
dx

dx.

EXAMPLE 1  Find the integral
L

(x3 + x)5(3x2 + 1) dx.

Solution We set u = x3 + x. Then

du = du
dx

dx = (3x2 + 1) dx,

so that by substitution we have

L
(x3 + x)5(3x2 + 1) dx =

L
u5 du Let u = x3 + x, du = (3x2 + 1) dx.

= u6

6
+ C Integrate with respect to u.

=
(x3 + x)6

6
+ C Substitute x3 + x for u.

EXAMPLE 2  Find
L
22x + 1 dx.

Solution The integral does not fit the formula

L
un du,

with u = 2x + 1 and n = 1>2, because

du = du
dx

dx = 2 dx

is not precisely dx. The constant factor 2 is missing from the integral. However, we can 
introduce this factor after the integral sign if we compensate for it by a factor of 1>2 in 
front of the integral sign. So we write

L
22x + 1 dx = 1

2L
22x + 1 # 2 dx(+)+* ()*

u du

= 1
2L

u1>2 du Let u = 2x + 1, du = 2 dx.

= 1
2

u3>2
3>2 + C Integrate with respect to u.

= 1
3 (2x + 1)3>2 + C Substitute 2x + 1 for u.

The substitutions in Examples 1 and 2 are instances of the following general rule.



Proof By the Chain Rule, F(g(x)) is an antiderivative of ƒ(g(x)) # g′(x) whenever F is 
an antiderivative of ƒ:

d
dx
F(g(x)) = F′(g(x)) # g′(x) Chain Rule

= ƒ(g(x)) # g′(x). F′ = ƒ

If we make the substitution u = g(x), then

Lƒ(g(x))g′(x) dx = L
d
dx
F(g(x)) dx

= F(g(x)) + C Theorem 8 in Chapter 4

= F(u) + C u = g(x)

= LF′(u)du Theorem 8 in Chapter 4

= Lƒ(u)du. F′ = ƒ

THEOREM 6—The Substitution Rule If u = g(x) is a differentiable func-
tion whose range is an interval I, and ƒ is continuous on I, then

Lƒ(g(x))g′(x) dx = Lƒ(u) du.

The Substitution Method to evaluate 1ƒ(g(x))g′(x) dx

1. Substitute u = g(x) and du = (du/dx) dx = g′(x) dx to obtain 1ƒ(u) du.

2. Integrate with respect to u.

3. Replace u by g(x).

EXAMPLE 3  FindL sec2 (5x + 1) # 5 dx

Solution We substitute u = 5x + 1 and du = 5 dx. Then,

L sec2 (5x + 1) # 5 dx = L sec2 u du Let u = 5x + 1, du = 5 dx.

= tan u + C d
du

tanu = sec2u

= tan (5x + 1) + C. Substitute 5x + 1 for u.

EXAMPLE 4  FindLcos (7u + 3) du.

The use of the variable u in the Substitution Rule is traditional (sometimes it is referred 
to as u-substitution), but any letter can be used, such as y, t, u and so forth. The rule pro-
vides a method for evaluating an integral of the form 1ƒ(g(x))g′(x) dx given that the condi-
tions of Theorem 6 are satisfied. The primary challenge is deciding what expression involv-
ing x you want to substitute for in the integrand. Our examples to follow give helpful ideas.
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Solution We let u = 7u + 3 so that du = 7 du. The constant factor 7 is missing from 
the du term in the integral. We can compensate for it by multiplying and dividing by 7, 
using the same procedure as in Example 2. Then,

L
cos (7u + 3) du = 1

7 L
cos (7u + 3) # 7 du Place factor 1>7 in front of integral. 

= 1
7 L

cos u du Let u = 7u + 3, du = 7 du.

= 1
7 sin u + C Integrate.

= 1
7 sin (7u + 3) + C. Substitute 7u + 3 for u.

There is another approach to this problem. With u = 7u + 3 and du = 7 du as 
before, we solve for du to obtain du = (1>7) du. Then the integral becomes

L
cos (7u + 3) du =

L
cos u # 17 du Let u = 7u + 3, du = 7 du, and du = (1>7) du.

= 1
7 sin u + C Integrate.

= 1
7 sin (7u + 3) + C. Substitute 7u + 3 for u.

We can verify this solution by differentiating and checking that we obtain the original 
function cos (7u + 3).

EXAMPLE 5  Sometimes we observe that a power of x appears in the integrand that is 
one less than the power of x appearing in the argument of a function we want to integrate. 
This observation immediately suggests we try a substitution for the higher power of x.
This situation occurs in the following integration.

L
x2ex3

dx =
L

ex3 # x2 dx

=
L

eu # 1
3 du

Let u = x3, du = 3x2 dx,

(1>3) du = x2 dx.

= 1
3L

eu du

= 1
3 eu + C Integrate with respect to u.

= 1
3 ex3 + C Replace u by x3.

It may happen that an extra factor of x appears in the integrand when we try a substi-
tution u = g(x). In that case, it may be possible to solve the equation u = g(x) for x in 
terms of u. Replacing the extra factor of x with that expression may then allow for an inte-
gral we can evaluate. Here’s an example of this situation.

HISTORICAL BIOGRAPHY

George David Birkhoff
(1884–1944)



5.5  Indefinite Integrals and the Substitution Method 343

EXAMPLE 6  Evaluate 
L

x22x + 1 dx.

Solution Our previous integration in Example 2 suggests the substitution u = 2x + 1
with du = 2 dx. Then,

22x + 1 dx = 1
2
2u du.

However, in this case the integrand contains an extra factor of x multiplying the term 
12x + 1. To adjust for this, we solve the substitution equation u = 2x + 1 to obtain 
x = (u - 1)>2, and find that

x22x + 1 dx = 1
2

(u - 1) # 1
2
2u du.

The integration now becomes

L
x22x + 1 dx = 1

4 L
(u - 1)2u du = 1

4 L
(u - 1)u1>2 du Substitute.

= 1
4 L

(u3>2 - u1>2) du Multiply terms.

= 1
4
a2

5
u5>2 - 2

3 u3>2b + C Integrate.

= 1
10

(2x + 1)5>2 - 1
6

(2x + 1)3>2 + C. Replace u by 2x + 1.

EXAMPLE 7  Sometimes we can use trigonometric identities to transform integrals 
we do not know how to evaluate into ones we can evaluate using the Substitution Rule.

(a)
L

sin2 x dx =
L

1 - cos 2x
2

dx sin2 x = 1 - cos 2x
2

= 1
2L

(1 - cos 2x) dx

= 1
2

x - 1
2

sin 2x
2

+ C = x
2

- sin 2x
4

+ C

(b)
L

cos2 x dx =
L

1 + cos 2x
2

dx = x
2

+ sin 2x
4

+ C cos2 x = 1 + cos 2x
2

(c)
L

tan x du =
L

sin x
cos x dx =

L

-du
u u = cos x, du = -sin x dx

   = - ln 0 u 0 + C = - ln 0 cos x 0 + C

   = ln 10 cos x 0 + C = ln 0 sec x 0 + C Reciprocal Rule
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EXAMPLE 8  An integrand may require some algebraic manipulation before the sub-
stitution method can be applied. This example gives two integrals obtained by multiplying 
the integrand by an algebraic form equal to 1, leading to an appropriate substitution.

(a)
L

dx
ex + e-x =

L

ex dx
e2x + 1

Multiply by (ex>ex) = 1.

=
L

du
u2 + 1

Let u = ex, u2 = e2x,
du = ex dx.

= tan-1u + C Integrate with respect to u.

= tan-1(ex) + C Replace u by ex.

(b)
L

sec x dx =
L

(sec x)(1) dx =
L

sec x # sec x + tan x
sec x + tan x dx sec x + tan x

sec x + tan x
  is equal to 1.

=
L

sec2 x + sec x tan x
sec x + tan x dx

=
L

du
u

u = tan x + sec x,
du = (sec2 + sec x tan x) dx

= ln 0 u 0 + C = ln 0 sec x + tan x 0 + C.

The integrals of cot x and csc x are found in a way similar to those used for finding the 
integrals of tan x and sec x in Examples 7c and 8b (see Exercises 71 and 72). We summa-
rize the results for these four basic trigonometric integrals here.

Integrals of the tangent, cotangent, secant, and cosecant functions

L
tan x dx = ln 0 sec x 0 + C

L
sec x dx = ln 0 sec x + tan x 0 + C

L
cot x dx = ln 0 sin x 0 + C

L
csc x dx = - ln 0 csc x + cot x 0 + C

Trying Different Substitutions

The success of the substitution method depends on finding a substitution that changes an 
integral we cannot evaluate directly into one that we can. Finding the right substitution 
gets easier with practice and experience. If the first substitution fails, try another substitu-
tion, possibly coupled with other algebraic or trigonometric simplifications to the inte-
grand. Several of these more complicated substitutions are studied in Chapter 8.

EXAMPLE 9  Evaluate 
L

2z dz

23 z2 + 1
.

Solution We can use the substitution method of integration as an exploratory tool: 
Substitute for the most troublesome part of the integrand and see how things work out. 
For the integral here, we might try u = z2 + 1 or we might even press our luck and take 
u to be the entire cube root. Here is what happens in each case, and both substitutions 
are successful.



Method 1: Substitute u = z2 + 1.

L
2zdz

2
3 z2 + 1

= L
du
u1>3

Let u = z2 + 1,
du = 2z dz.

= Lu-1>3 du In the form 1un du

= u2>3
2>3 + C Integrate.

= 3
2
u2>3 + C

= 3
2

(z2 + 1)2>3 + C Replace u by z2 + 1.

Method 2: Substitute u = 23 z2 + 1 instead.

L
2zdz

2
3 z2 + 1

= L
3u2du
u

Let u = 23 z2 + 1,
u3 = z2 + 1, 3u2 du = 2z dz.

= 3Lu du

= 3 # u2

2
+ C Integrate.

= 3
2

(z2 + 1)2>3 + C Replace u by (z2 + 1)1>3.

Evaluating Indefinite Integrals
Evaluate the indefinite integrals in Exercises 1–16 by using the given 
substitutions to reduce the integrals to standard form.

1. L 2(2x + 4)5 dx, u = 2x + 4

2. L 727x - 1 dx, u = 7x - 1

3. L 2x(x2 + 5)-4 dx, u = x2 + 5

4. L
4x3

(x4 + 1)2 dx, u = x4 + 1

5. L (3x + 2)(3x2 + 4x)4 dx, u = 3x2 + 4x

6. L
11 + 2x21>3

2x
dx, u = 1 + 2x

7. L sin 3x dx, u = 3x 8. Lx sin (2x2) dx, u = 2x2

9. L sec 2t tan 2t dt, u = 2t

10. L a1 - cos
t
2
b2

sin
t
2
dt, u = 1 - cos

t
2

11. L
9r2 dr

21 - r3
, u = 1 - r3

12. L12(y4 + 4y2 + 1)2(y3 + 2y) dy, u = y4 + 4y2 + 1

13. L1x sin2 (x3>2 - 1) dx, u = x3>2 - 1

14. L
1
x2 cos2 a1xb dx, u = - 1

x

15. Lcsc2 2u cot 2u du

  a. Using u = cot 2u b. Using u = csc 2u

16. L
dx

25x + 8
  a. Using u = 5x + 8 b. Using u = 25x + 8

Evaluate the integrals in Exercises 17–66.

17. L23 - 2s ds 18. L
1

25s + 4
ds

19. Lu2
4 1 - u2 du 20. L3y27 - 3y2 dy

21. L
1

2x11 + 2x22 dx 22. L2sin x cos3 x dx

Exercises 5.5
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23.
L

sec2 (3x + 2) dx 24.
L

tan2 x sec2 x dx

25.
L

sin5 x
3

cos
x
3

dx 26.
L

tan7 x
2

sec2 x
2

dx

27.
L

r2 a r3

18
- 1b5

dr 28.
L

r4 a7 - r5

10
b3

dr

29.
L

x1>2 sin (x3>2 + 1) dx

30.
L

csc ay - p
2
b cot ay - p

2
b dy

31.
L

sin (2t + 1)

cos2 (2t + 1)
dt 32.

L

sec z tan z

2sec z
dz

33.
L

1
t2 cos a1t - 1b dt 34.

L

1

2t
cos12t + 32 dt

35.
L

1
u2 sin

1
u

cos
1
u

du 36.
L

cos 2u
2u sin22udu

37.
L

x

21 + x
dx 38.

LA
x - 1

x5 dx

39.
L

1
x2 A2 - 1

x dx 40.
L

1
x3 A

x2 - 1
x2 dx

41.
L A

x3 - 3
x11 dx 42.

L A
x4

x3 - 1
dx

43.
L

x(x - 1)10 dx 44.
L

x24 - x dx

45.
L

(x + 1)2(1 - x)5 dx 46.
L

(x + 5)(x - 5)1>3 dx

47.
L

x32x2 + 1 dx 48.
L

3x52x3 + 1 dx

49.
L

x
(x2 - 4)3 dx 50.

L

x
(2x - 1)2>3 dx

51.
L

(cos x) esin x dx 52.
L

(sin 2u) esin2u du

53.
L

1

2xe-2x
sec2(e2x + 1) dx

54.
L

1
x2 e1>x sec (1 + e1>x) tan (1 + e1>x) dx

55.
L

dx
x ln x

56.
L

ln 2t
t dt

57.
L

dz
1 + ez 58.

L

dx

x2x4 - 1

59.
L

5
9 + 4r2 dr 60.

L

1

2e2u - 1
du

61.
L

esin-1 x dx

21 - x2
62.

L

ecos-1 x dx

21 - x2

63.
L

(sin-1 x)2 dx

21 - x2
64.

L

2tan-1 x dx
1 + x2

65.
L

dy

(tan-1 y)(1 + y2)
66.

L

dy

(sin-1 y)21 - y2

If you do not know what substitution to make, try reducing the inte-
gral step by step, using a trial substitution to simplify the integral a bit 
and then another to simplify it some more. You will see what we 
mean if you try the sequences of substitutions in Exercises 67 and 68.

67.
L

18 tan2 x sec2 x
(2 + tan3 x)2

dx

  a. u = tan x, followed by y = u3, then by w = 2 + y
  b. u = tan3 x, followed by y = 2 + u

  c. u = 2 + tan3 x

68.
L
21 + sin2 (x - 1) sin (x - 1) cos (x - 1) dx

  a. u = x - 1, followed by y = sin u, then by w = 1 + y2

  b. u = sin (x - 1), followed by y = 1 + u2

  c. u = 1 + sin2 (x - 1)

Evaluate the integrals in Exercises 69 and 70.

69.
L

(2r - 1) cos 23(2r - 1)2 + 6

23(2r - 1)2 + 6
dr

70.
L

sin 2u
2ucos31u du

71. Find the integral of cot x using a substitution like that in Example 7c.

72. Find the integral of csc x by multiplying by an appropriate form 
equal to 1, as in Example 8b.

Initial Value Problems
Solve the initial value problems in Exercises 73–78.

73.
ds
dt

= 12t (3t2 - 1)3, s(1) = 3

74.
dy
dx

= 4x (x2 + 8)-1>3, y(0) = 0

75.
ds
dt

= 8 sin2 at + p
12
b , s(0) = 8

76.
dr
du

= 3 cos2 ap
4

- ub , r(0) = p
8

77.
d2s
dt2 = -4 sin a2t - p

2
b , s′(0) = 100, s(0) = 0

78.
d2y

dx2 = 4 sec2 2x tan 2x, y′(0) = 4, y(0) = -1

79. The velocity of a particle moving back and forth on a line is 
y = ds>dt = 6 sin 2t m>sec for all t. If s = 0 when t = 0, find 
the value of s when t = p>2 sec.

80. The acceleration of a particle moving back and forth on a line is 
a = d2s>dt2 = p2 cos pt m>sec2 for all t. If s = 0 and y =
8 m/sec when t = 0, find s when t = 1 sec.



5.6  Definite Integral Substitutions and the Area Between Curves 347

5.6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to 
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly 
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of 
integration is changed by substitution.

THEOREM 7—Substitution in Definite Integrals If g′ is continuous on the 
interval 3a, b4  and ƒ is continuous on the range of g(x) = u, then

L

b

a
ƒ(g(x)) # g′(x) dx =

L

g(b)

g(a)
ƒ(u) du.

Proof Let F denote any antiderivative of ƒ. Then,

L

b

a
ƒ(g(x)) # g′(x) dx = F(g(x)) d

x=a

x=b
d
dx

F(g(x))

= F′(g(x))g′(x)
= ƒ(g(x))g′(x)

= F(g(b)) - F(g(a))

= F(u) d
u=g(a)

u=g(b)

=
L

g(b)

g(a)
ƒ(u) du. Fundamental

Theorem, Part 2

To use the formula, make the same u-substitution u = g(x) and du = g′(x) dx you 
would use to evaluate the corresponding indefinite integral. Then integrate the transformed 
integral with respect to u from the value g(a) (the value of u at x = a) to the value g(b)
(the value of u at x = b).

EXAMPLE 1  Evaluate 
L

1

-1
3x22x3 + 1 dx.

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

L

1

-1
3x22x3 + 1 dx

Let u = x3 + 1, du = 3x2 dx.
When x = -1, u = (-1)3 + 1 = 0.
When x = 1, u = (1)3 + 1 = 2.

=
L

2

0
2u du

= 2
3 u3>2 d

0

2

Evaluate the new definite integral.

= 2
3 323>2 - 03>24 = 2

3 32224 = 422
3
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Method 2: Transform the integral as an indefinite integral, integrate, change back to x,
and use the original x-limits.

L
3x22x3 + 1 dx =

L
2u du Let u = x3 + 1, du = 3x2 dx.

= 2
3 u3>2 + C Integrate with respect to u.

= 2
3 (x3 + 1)3>2 + C Replace u by x3 + 1.

L

1

-1
3x22x3 + 1 dx = 2

3 (x3 + 1)3>2 d
-1

1
Use the integral just found, with 
limits of integration for x.

= 2
3 3 ((1)3 + 1)3>2 - ((-1)3 + 1)3>24

= 2
3 323>2 - 03>24 = 2

3 32224 = 422
3

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming 
back to use the original limits of integration? In Example 1, the first method seems easier, 
but that is not always the case. Generally, it is best to know both methods and to use 
whichever one seems better at the time.

EXAMPLE 2  We use the method of transforming the limits of integration.

(a)
L

p>2

p>4
cot u csc2u du =

L

0

1
u # (-du)

Let u = cot u, du = -csc2 u du,
-du = csc2 u du.

When u = p>4, u = cot (p>4) = 1.
When u = p>2, u = cot (p>2) = 0.

= -
L

0

1
u du

= - c u2

2
d

1

0

= - c (0)2

2
-

(1)2

2
d = 1

2

(b)
L

p>4

-p>4
tan x dx =

L

p>4

-p>4
sin x
cos x dx

= -
L

22>2

22>2
du
u

Let u = cos x, du = -sin x dx.
When x = -p>4, u = 22>2.
When x = p>4, u = 22>2.

= - ln 0 u 0 d22>2
22>2

= 0 Integrate, zero width interval

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of 
even and odd functions (Section 1.1) over a symmetric interval 3-a, a4  (Figure 5.23).
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Proof of Part (a)

L

a

-a
ƒ(x) dx =

L

0

-a
ƒ(x) dx +

L

a

0
ƒ(x) dx Additivity Rule for 

Definite Integrals

= -
L

-a

0
ƒ(x) dx +

L

a

0
ƒ(x) dx Order of Integration Rule

= -
L

a

0
ƒ(-u)(-du) +

L

a

0
ƒ(x) dx

Let u = -x, du = -dx.
When x = 0, u = 0.
When x = -a, u = a.

=
L

a

0
ƒ(-u) du +

L

a

0
ƒ(x) dx

=
L

a

0
ƒ(u) du +

L

a

0
ƒ(x) dx ƒ is even, so

ƒ(-u) = ƒ(u).

= 2
L

a

0
ƒ(x) dx

The proof of part (b) is entirely similar and you are asked to give it in Exercise 114.

The assertions of Theorem 8 remain true when ƒ is an integrable function (rather than 
having the stronger property of being continuous).

EXAMPLE 3  Evaluate 
L

2

-2

(x4 - 4x2 + 6) dx.

Solution Since ƒ(x) = x4 - 4x2 + 6 satisfies ƒ(-x) = ƒ(x), it is even on the symmet-
ric interval 3-2, 24 , so

L

2

-2
(x4 - 4x2 + 6) dx = 2

L

2

0
(x4 - 4x2 + 6) dx

= 2 c x5

5
- 4

3 x3 + 6x d
0

2

= 2 a32
5

- 32
3 + 12b = 232

15
.

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = ƒ(x),
below by the curve y = g(x), and on the left and right by the lines x = a and x = b (Fig-
ure 5.24). The region might accidentally have a shape whose area we could find with 
geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the 
area with an integral.

THEOREM 8 Let ƒ be continuous on the symmetric interval 3-a, a4 .
(a) If ƒ is even, then 

L

a

-a
ƒ(x) dx = 2

L

a

0
ƒ(x) dx.

(b) If ƒ is odd, then 
L

a

-a
ƒ(x) dx = 0.

x

y

a

b

Lower curve
y = g(x)

Upper curve
y = f (x)

FIGURE 5.24 The region between 
the curves y = ƒ(x) and y = g(x)
and the lines x = a and x = b.

x

y

0
a−a

(b)

x

y

0 a−a

(a)

FIGURE 5.23 (a) For ƒ an even func-
tion, the integral from -a to a is twice the 
integral from 0 to a. (b) For ƒ an odd func-
tion, the integral from -a to a equals 0.
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To see what the integral should be, we first approximate the region with n vertical 
rectangles based on a partition P = 5x0, x1,c, xn6  of 3a, b4  (Figure 5.25). The area of 
the kth rectangle (Figure 5.26) is

∆Ak = height * width = 3ƒ(ck) - g(ck)4 ∆xk.

We then approximate the area of the region by adding the areas of the n rectangles:

A ≈ a

n

k=1
∆Ak = a

n

k=1
3ƒ(ck) - g(ck)4 ∆xk. Riemann sum

As }P } S 0, the sums on the right approach the limit 1
b

a 3ƒ(x) - g(x)4 dx because ƒ
and g are continuous. We take the area of the region to be the value of this integral. That is,

A = lim
}P}S0 a

n

k=1
3ƒ(ck) - g(ck)4 ∆xk =

L

b

a
3ƒ(x) - g(x)4 dx.

x

y

y = f (x)

y = g(x)

b = xn

xn−1a = x0
x1

x2

FIGURE 5.25 We approximate 
the region with rectangles perpen-
dicular to the x-axis.

x

y

a

b

(ck, f (ck))

f (ck) − g(ck)

ΔAk
ck

(ck, g(ck))
Δxk

FIGURE 5.26 The area ∆Ak of the 
kth rectangle is the product of its height, 
ƒ(ck) - g(ck), and its width, ∆xk.

DEFINITION If ƒ and g are continuous with ƒ(x) Ú g(x) throughout 3a, b4 ,
then the area of the region between the curves y = f (x) and y = g(x) from
a to b is the integral of (ƒ - g) from a to b:

A =
L

b

a
3ƒ(x) - g(x)4 dx.

When applying this definition it is helpful to graph the curves. The graph reveals which curve 
is the upper curve ƒ and which is the lower curve g. It also helps you find the limits of integra-
tion if they are not given. You may need to find where the curves intersect to determine the 
limits of integration, and this may involve solving the equation ƒ(x) = g(x) for values of x.
Then you can integrate the function ƒ - g for the area between the intersections.

EXAMPLE 4  Find the area of the region bounded above by the curve y = 2e-x + x,
below by the curve y = ex>2 , on the left by x = 0, and on the right by x = 1.

Solution Figure 5.27 displays the graphs of the curves and the region whose area we 
want to find. The area between the curves over the interval 0 … x … 1 is given by

A =
L

1

0
c (2e-x + x) - 1

2
ex d dx = c-2e-x + 1

2
x2 - 1

2
ex d 1

0

= a-2e-1 + 1
2

- 1
2

eb - a-2 + 0 - 1
2
b

= 3 - 2
e - e

2
≈ 0.9051.

EXAMPLE 5  Find the area of the region enclosed by the parabola y = 2 - x2 and 
the line y = -x.

Solution First we sketch the two curves (Figure 5.28). The limits of integration are found 
by solving y = 2 - x2 and y = -x simultaneously for x.

2 - x2 = -x Equate ƒ(x) and g(x).

x2 - x - 2 = 0 Rewrite.

(x + 1)(x - 2) = 0 Factor.

x = -1, x = 2. Solve.

The region runs from x = -1 to x = 2. The limits of integration are a = -1, b = 2.

x

y

0

0.5

2

1

(x, f (x))

(x, g(x))

y = 2e−x + x

y = ex
2
1

FIGURE 5.27 The region in Example 4 
with a typical approximating rectangle.
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The area between the curves is

A =
L

b

a
3ƒ(x) - g(x)4 dx =

L

2

-1
3 (2 - x2) - (-x)4 dx

=
L

2

-1
(2 + x - x2) dx = c 2x + x2

2
- x3

3 d -1

2

= a4 + 4
2

- 8
3b - a-2 + 1

2
+ 1

3b = 9
2

.

If the formula for a bounding curve changes at one or more points, we subdivide the 
region into subregions that correspond to the formula changes and apply the formula for 
the area between curves to each subregion.

EXAMPLE 6  Find the area of the region in the first quadrant that is bounded above 
by y = 2x and below by the x-axis and the line y = x - 2.

Solution The sketch (Figure 5.29) shows that the region’s upper boundary is the graph of 
ƒ(x) = 2x. The lower boundary changes from g(x) = 0 for 0 … x … 2 to g(x) = x - 2
for 2 … x … 4 (both formulas agree at x = 2). We subdivide the region at x = 2 into sub-
regions A and B, shown in Figure 5.29.

The limits of integration for region A are a = 0 and b = 2. The left-hand limit for 
region B is a = 2. To find the right-hand limit, we solve the equations y = 2x and 
y = x - 2 simultaneously for x:

2x = x - 2 Equate ƒ(x) and g(x).

x = (x - 2)2 = x2 - 4x + 4 Square both sides.

x2 - 5x + 4 = 0 Rewrite.

(x - 1)(x - 4) = 0 Factor.

x = 1, x = 4. Solve.

Only the value x = 4 satisfies the equation 2x = x - 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limit is b = 4.

For 0 … x … 2: ƒ(x) - g(x) = 2x - 0 = 2x

For 2 … x … 4: ƒ(x) - g(x) = 2x - (x - 2) = 2x - x + 2

We add the areas of subregions A and B to find the total area:

Total area =
L

2

0
2x dx +

L

4

2
12x - x + 22 dx

(++)++* (+++++)+++++*

area of A area of B

= c 23 x3>2 d
0

2

+ c 23 x3>2 - x2

2
+ 2x d

2

4

= 2
3 (2)3>2 - 0 + a23 (4)3>2 - 8 + 8b - a23 (2)3>2 - 2 + 4b

= 2
3 (8) - 2 = 10

3 .

x

y

0

1

2

42

y =
"

x

y = 0

y = x − 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area =

2

0
"

x dx

Area =

4

2
(
"

x − x + 2) dx
L

L

FIGURE 5.29 When the formula for a 
bounding curve changes, the area integral 
changes to become the sum of integrals to 
match, one integral for each of the shaded 
regions shown here for Example 6.

x

y

0−1 1 2

(−1, 1)

(x, f (x))

y = 2 − x2

(x, g(x))

Δx

y = −x (2, −2)

FIGURE 5.28 The region in 
Example 5 with a typical approxi-
mating rectangle.
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Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectan-
gles are horizontal instead of vertical and the basic formula has y in place of x.

For regions like these:

x = f (y)

Δ (y)

y y

x

x

x

y

x = g(y)

0

c

d

x = g(y)

x = f (y)

0

c

d

0

c

d

x = f (y)

x = g(y)

Δ (y)

Δ (y)

use the formula

A =
L

d

c
3ƒ(y) - g(y)4dy.

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so 
ƒ(y) - g(y) is nonnegative.

EXAMPLE 7  Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.30). The region’s right-hand boundary is the line 
x = y + 2, so ƒ(y) = y + 2. The left-hand boundary is the curve x = y2, so g(y) = y2.
The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and 
x = y2 simultaneously for y:

y + 2 = y2 Equate ƒ( y) = y + 2 and g(y) = y2.

y2 - y - 2 = 0 Rewrite.

( y + 1)( y - 2) = 0 Factor.

y = -1, y = 2 Solve.

The upper limit of integration is b = 2. (The value y = -1 gives a point of intersection 
below the x-axis.)

The area of the region is

A =
L

d

c
3ƒ(y) - g(y)4 dy =

L

2

0
3y + 2 - y24 dy

=
L

2

0
32 + y - y24 dy

= c 2y +
y2

2
-

y3

3 d 0
2

= 4 + 4
2

- 8
3 = 10

3 .

This is the result of Example 6, found with less work.

x

y

y = 0 2 40

1

2
(g(y), y)

( f (y), y)
f (y) − g(y)

(4, 2)

x = y + 2

x = y2

Δy

FIGURE 5.30 It takes two integra-
tions to find the area of this region if 
we integrate with respect to x. It takes 
only one if we integrate with respect to 
y (Example 7).
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Although it was easier to find the area in Example 6 by integrating with respect to y
rather than x (just as we did in Example 7), there is an easier way yet. Looking at Figure 
5.31, we see that the area we want is the area between the curve y = 2x and the x-axis
for 0 … x … 4, minus the area of an isosceles triangle of base and height equal to 2. So by 
combining calculus with some geometry, we find

Area =
L

4

0
2x dx - 1

2
 (2)(2)

= 2
3 x3>2 d 4

0
- 2

= 2
3  (8) - 0 - 2 = 10

3 .

x

y

y = 0 2

2

40

1

2

2

(4, 2)

y = x − 2
Area = 2

y =
"

x

FIGURE 5.31 The area of the blue 
region is the area under the parabola 
y = 2x minus the area of the
triangle.

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 7 to evaluate the integrals in 
Exercises 1–46.

1. a.
L

3

0
2y + 1 dy b.

L

0

-1
2y + 1 dy

2. a.
L

1

0
r21 - r2 dr b.

L

1

-1
r21 - r2 dr

3. a.
L

p>4

0
tan x sec2 x dx b.

L

0

-p>4
tan x sec2 x dx

4. a.
L

p

0
3 cos2 x sin x dx b.

L

3p

2p
3 cos2 x sin x dx

5. a.
L

1

0
t3(1 + t4)3 dt b.

L

1

-1
t3(1 + t4)3 dt

6. a.
L

27

0
t(t2 + 1)1>3 dt b.

L

0

-27
t(t2 + 1)1>3 dt

7. a.
L

1

-1

5r
(4 + r2)2

dr b.
L

1

0

5r
(4 + r2)2

dr

8. a.
L

1

0

102y
(1 + y3>2)2

dy b.
L

4

1

102y
(1 + y3>2)2

dy

9. a.
L

23

0

4x

2x2 + 1
dx b.

L

23

-23

4x

2x2 + 1
dx

10. a.
L

1

0

x3

2x4 + 9
dx b.

L

0

-1

x3

2x4 + 9
dx

11. a.
L

1

0
t 24 + 5t dt b.

L

9

1
t 24 + 5t dt

12. a.
L

p>6

0
(1 - cos 3t) sin 3t dt b.

L

p>3

p>6
(1 - cos 3t) sin 3t dt

13. a.
L

2p

0

cos z

24 + 3 sin z
dz b.

L

p

-p

cos z

24 + 3 sin z
dz

14. a.
L

0

-p>2
a2 + tan 

t
2
b  sec2 t

2
dt b.

L

p>2

-p>2
a2 + tan 

t
2
b  sec2 t

2
dt

15.
L

1

0
2t5 + 2t (5t4 + 2) dt 16.

L

4

1

dy

22y11 + 2y22
17.

L

p>6

0
cos-3 2u sin 2u du 18.

L

3p>2

p

cot5 au
6
b  sec2 au

6
b du

19.
L

p

0
5(5 - 4 cos t)1>4 sin t dt 20.

L

p>4

0
(1 - sin 2t)3>2 cos 2t dt

21.
L

1

0
(4y - y2 + 4y3 + 1)-2>3 (12y2 - 2y + 4) dy

22.
L

1

0
(y3 + 6y2 - 12y + 9)-1>2 (y2 + 4y - 4) dy

23.
L

23 p2

0
2u cos2 (u3>2) du 24.

L

-1>2

-1
t-2 sin2 a1 + 1

t b dt

25.
L

p>4

0
(1 + etan u) sec2u du 26.

L

p>2

p>4
(1 + ecot u) csc2u du

27.
L

p

0

sin t
2 - cos t

dt 28.
L

p>3

0

4 sin u
1 - 4 cos u

du

29.
L

2

1

2 ln x
x dx 30.

L

4

2

dx
x ln x

31.
L

4

2

dx
x (ln x)2 32.

L

16

2

dx

2x2ln x

33.
L

p>2

0
tan 

x
2

dx 34.
L

p>2

p>4
 cot t dt

35.
L

p>3

0
tan2 u cos u du 36.

L

p>12

0
6 tan 3x dx

Exercises 5.6
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37.
L

p>2

-p>2
2 cos u du

1 + (sin u)2 38.
L

p>4

p>6
csc2 x dx

1 + (cot x)2

39.
L

ln23

0

ex dx
1 + e2x 40.

L

ep>4

1

4 dt
t(1 + ln2 t)

41.
L

1

0

4 ds

24 - s2
42.

L

23 2>4

0

ds

29 - 4s2

43.
L

2

22

sec2(sec-1 x) dx

x2x2 - 1
44.

L

2

2>23

cos (sec-1 x) dx

x2x2 - 1

45.
L

-22>2

-1

dy

y24y2 - 1
46.

L

3

0

y dy

25y + 1

Area
Find the total areas of the shaded regions in Exercises 47–62.

47.

0 2−2
x

y

y = x"4 − x2

48.

x

y

0 p

y = (1 − cos x) sin x

49.
x

y

0−1

−1

−2

−3

−2−p

y = 3(sin x)
"

1 + cos x

50.

x

y

0−1−p

−1

1

p
2

−

y = (cos x)(sin(p+ psin x))p
2

51.

x

y

pp
2

y = cos2 x

0

1 y = 1

52.

t

y

y = sec2 t1
2

p
3

p
3

− 0

1

2

−4

y = −4sin2 t

53.

x

y

−2 −1 1 2−1

8
(−2, 8) (2, 8)

y = 2x2

y = x 4 − 2x2

NOT TO SCALE

54.

0 1

1

x

y

(1, 1)

x = y2

x = y3

55.

x

y

0

1

1

x = 12y2 − 12y3

x = 2y2 − 2y

56.

x

y

−1 0

−2

1

1

y = x2

y = −2x4

57.

x

y

0 1 2

1

y = x
y = 1

y = x2

4

58.

0 1 2

1

x

y

y = x2
x + y = 2

59.

x

y

5

−4

(−3, 5)

(1, −3)(−3, −3)

10−3

y = x2 − 4

y = −x2 − 2x

60.

x

y

−10

2

1−1−2 2

(−2, −10)

y = 2x3 − x2 − 5x

y = −x2 + 3x

(2, 2)

61. 62.

x

y

−1 1 2 3−2

2

−5

4

(3, −5)

(−2, 4) y = 4 − x2

y = −x + 2

a b

x

y

30

6

−2

y =
3
x

y = − x
3
x3

(3, 6)

(3, 1)

−2, −
3
2

Find the areas of the regions enclosed by the lines and curves in 
Exercises 63–72.

63. y = x2 - 2 and y = 2 64. y = 2x - x2 and y = -3

65. y = x4 and y = 8x 66. y = x2 - 2x and y = x
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67. y = x2 and y = -x2 + 4x

68. y = 7 - 2x2 and y = x2 + 4

69. y = x4 - 4x2 + 4 and y = x2

70. y = x2a2 - x2, a 7 0, and y = 0

71. y = 2 0 x 0 and 5y = x + 6 (How many intersection points 
are there?)

72. y = 0 x2 - 4 0 and y = (x2>2) + 4

Find the areas of the regions enclosed by the lines and curves in 
Exercises 73–80.

73. x = 2y2, x = 0, and y = 3

74. x = y2 and x = y + 2

75. y2 - 4x = 4 and 4x - y = 16

76. x - y2 = 0 and x + 2y2 = 3

77. x + y2 = 0 and x + 3y2 = 2

78. x - y2>3 = 0 and x + y4 = 2

79. x = y2 - 1 and x = 0 y 021 - y2

80. x = y3 - y2 and x = 2y

Find the areas of the regions enclosed by the curves in Exercises 81–84.

81. 4x2 + y = 4 and x4 - y = 1

82. x3 - y = 0 and 3x2 - y = 4

83. x + 4y2 = 4 and x + y4 = 1, for x Ú 0

84. x + y2 = 3 and 4x + y2 = 0

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 85–92.

85. y = 2 sin x and y = sin 2x, 0 … x … p
86. y = 8 cos x and y = sec2 x, -p>3 … x … p>3
87. y = cos (px>2) and y = 1 - x2

88. y = sin (px>2) and y = x

89. y = sec2 x, y = tan2 x, x = -p>4, and x = p>4
90. x = tan2 y and x = - tan2 y, -p>4 … y … p>4
91. x = 3 sin y2cos y and x = 0, 0 … y … p>2
92. y = sec2 (px>3) and y = x1>3, -1 … x … 1

Area Between Curves
93. Find the area of the propeller-shaped region enclosed by the 

curve x - y3 = 0 and the line x - y = 0.

94. Find the area of the propeller-shaped region enclosed by the 
curves x - y1>3 = 0 and x - y1>5 = 0.

95. Find the area of the region in the first quadrant bounded by the 
line y = x, the line x = 2, the curve y = 1>x2, and the x-axis.

96. Find the area of the “triangular” region in the first quadrant 
bounded on the left by the y-axis and on the right by the curves 
y = sin x and y = cos x.

97. Find the area between the curves y = ln x and y = ln 2x from 
x = 1 to x = 5.

98. Find the area between the curve y = tan x and the x-axis from 
x = -p>4 to x = p>3.

99. Find the area of the “triangular” region in the first quadrant that is 
bounded above by the curve y = e2x, below by the curve y = ex,
and on the right by the line x = ln 3.

100. Find the area of the “triangular” region in the first quadrant that 
is bounded above by the curve y = ex>2, below by the curve 
y = e-x>2, and on the right by the line x = 2 ln 2.

101. Find the area of the region between the curve y = 2x>(1 + x2)
and the interval -2 … x … 2 of the x-axis.

102. Find the area of the region between the curve y = 21-x and the 
interval -1 … x … 1 of the x-axis.

103. The region bounded below by the parabola y = x2 and above by 
the line y = 4 is to be partitioned into two subsections of equal 
area by cutting across it with the horizontal line y = c.

a. Sketch the region and draw a line y = c across it that looks 
about right. In terms of c, what are the coordinates of the 
points where the line and parabola intersect? Add them to 
your figure.

b. Find c by integrating with respect to y. (This puts c in the 
limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the 
integrand as well.)

104. Find the area of the region between the curve y = 3 - x2 and 
the line y = -1 by integrating with respect to a. x, b. y.

105. Find the area of the region in the first quadrant bounded on the 
left by the y-axis, below by the line y = x>4, above left by the 
curve y = 1 + 2x, and above right by the curve y = 2>2x.

106. Find the area of the region in the first quadrant bounded on the 
left by the y-axis, below by the curve x = 22y, above left by 
the curve x = (y - 1)2, and above right by the line x = 3 - y.

x

y

0

1

2

1 2

x = 2
"

y

x = 3 − y

x = (y − 1)2

107. The figure here shows triangle AOC inscribed in the region cut 
from the parabola y = x2 by the line y = a2. Find the limit of 
the ratio of the area of the triangle to the area of the parabolic 
region as a approaches zero.

x

y

CA

O−a a

y = x2

y = a2

(a, a2)(−a, a2)

108. Suppose the area of the region between the graph of a positive 
continuous function ƒ and the x-axis from x = a to x = b is 
4 square units. Find the area between the curves y = ƒ(x) and 
y = 2ƒ(x) from x = a to x = b.
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109. Which of the following integrals, if either, calculates the area of 
the shaded region shown here? Give reasons for your answer.

a.
L

1

-1
(x - (-x)) dx =

L

1

-1
2x dx

b.
L

1

-1
(-x - (x)) dx =

L

1

-1
-2x dx

x

y

−1

−1

1

1

y = −x y = x

110. True, sometimes true, or never true? The area of the region 
between the graphs of the continuous functions y = ƒ(x) and 
y = g(x) and the vertical lines x = a and x = b (a 6 b) is

L

b

a
3ƒ(x) - g(x)4 dx.

  Give reasons for your answer.

Theory and Examples
111. Suppose that F(x) is an antiderivative of ƒ(x) = (sin x)>x,

x 7 0. Express

L

3

1

sin 2x
x dx

  in terms of F.

112. Show that if ƒ is continuous, then

L

1

0
ƒ(x) dx =

L

1

0
ƒ(1 - x) dx.

113. Suppose that

L

1

0
ƒ(x) dx = 3.

Find

L

0

-1
ƒ(x) dx

if a. ƒ is odd, b. ƒ is even.

114. a. Show that if ƒ is odd on 3-a, a4 , then

L

a

-a
ƒ(x) dx = 0.

b. Test the result in part (a) with ƒ(x) = sin x and a = p>2.

115. If ƒ is a continuous function, find the value of the integral

I =
L

a

0

ƒ(x) dx
ƒ(x) + ƒ(a - x)

  by making the substitution u = a - x and adding the resulting 
integral to I.

116. By using a substitution, prove that for all positive numbers x and y,

L

xy

x

1
t dt =

L

y

1

1
t dt.

The Shift Property for Definite Integrals A basic property of defi-
nite integrals is their invariance under translation, as expressed by the 
equation

   
L

b

a
ƒ(x) dx =

L

b-c

a-c
ƒ(x + c) dx. (1)

The equation holds whenever ƒ is integrable and defined for the neces-
sary values of x. For example in the accompanying figure, show that

L

-1

-2
(x + 2)3 dx =

L

1

0
x3 dx

because the areas of the shaded regions are congruent.

x

y

0 1−1−2

y = (x + 2)3 y = x3

117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph ƒ(x) over 3a, b4  and 
ƒ(x + c) over 3a - c, b - c4  to convince yourself that Equation 
(1) is reasonable.

a. ƒ(x) = x2, a = 0, b = 1, c = 1

b. ƒ(x) = sin x, a = 0, b = p, c = p>2
c. ƒ(x) = 2x - 4, a = 4, b = 8, c = 5

COMPUTER EXPLORATIONS
In Exercises 119–122, you will find the area between curves in the 
plane when you cannot find their points of intersection using simple 
algebra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how 
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the 
points of intersection.

c. Integrate 0 ƒ(x) - g(x) 0  over consecutive pairs of intersection 
values.

d. Sum together the integrals found in part (c).

119. ƒ(x) = x3

3
- x2

2
- 2x + 1

3
, g(x) = x - 1

120. ƒ(x) = x4

2
- 3x3 + 10, g(x) = 8 - 12x

121. ƒ(x) = x + sin (2x), g(x) = x3

122. ƒ(x) = x2 cos x, g(x) = x3 - x



Chapter 5 Questions to Guide Your Review

1. How can you sometimes estimate quantities like distance traveled, 
area, and average value with finite sums? Why might you want to 
do so?

2. What is sigma notation? What advantage does it offer? Give 
examples.

3. What is a Riemann sum? Why might you want to consider such a 
sum?

4. What is the norm of a partition of a closed interval?
5. What is the definite integral of a function ƒ over a closed interval 
3a, b4 ? When can you be sure it exists?

6. What is the relation between definite integrals and area? Describe 
some other interpretations of definite integrals.

7. What is the average value of an integrable function over a closed 
interval? Must the function assume its average value? Explain.

8. Describe the rules for working with definite integrals (Table 5.6). 
Give examples.

9. What is the Fundamental Theorem of Calculus? Why is it so 
important? Illustrate each part of the theorem with an example.

10. What is the Net Change Theorem? What does it say about the 
integral of velocity? The integral of marginal cost?

11. Discuss how the processes of integration and differentiation can 
be considered as “inverses” of each other.

12. How does the Fundamental Theorem provide a solution to 
the initial value problem dy>dx = ƒ(x), y(x0) = y0 , when ƒ is 
continuous?

13. How is integration by substitution related to the Chain Rule?
14. How can you sometimes evaluate indefinite integrals by substitu-

tion? Give examples.
15. How does the method of substitution work for definite integrals? 

Give examples.
16. How do you define and calculate the area of the region between 

the graphs of two continuous functions? Give an example.

Chapter 5 Practice Exercises

Finite Sums and Estimates
1. The accompanying figure shows the graph of the velocity (ft > sec) 

of a model rocket for the first 8 sec after launch. The rocket accel-
erated straight up for the first 2 sec and then coasted to reach its 
maximum height at t = 8 sec.

2 4 6 80
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100

150

200

Time after launch (sec)

V
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 (
ft

/s
ec

)

a. Assuming that the rocket was launched from ground level, 
about how high did it go? (This is the rocket in Section 3.3, 
Exercise 17, but you do not need to do Exercise 17 to do the 
exercise here.)

b. Sketch a graph of the rocket’s height above ground as a func-
tion of time for 0 … t … 8.

2. a. The accompanying figure shows the velocity (m > sec) of a 
body moving along the s-axis during the time interval from 
t = 0 to t = 10 sec. About how far did the body travel dur-
ing those 10 sec?

b. Sketch a graph of s as a function of t for 0 … t … 10, assum-
ing s(0) = 0.
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3. Suppose that a
10

k=1
ak = -2 and a

10

k=1
bk = 25. Find the value of

  a. a

10

k=1

ak

4
b. a

10

k=1
(bk - 3ak)

  c. a

10

k=1
(ak + bk - 1) d. a

10

k=1
a5

2
- bkb

4. Suppose that a
20

k=1
ak = 0 and a

20

k=1
bk = 7. Find the values of

  a. a

20

k=1
3ak b. a

20

k=1
(ak + bk)

  c. a

20

k=1
a1

2
-

2bk

7
b d. a

20

k=1
(ak - 2)
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Definite Integrals
In Exercises 5–8, express each limit as a definite integral. Then evalu-
ate the integral to find the value of the limit. In each case, P is a parti-
tion of the given interval and the numbers ck are chosen from the sub-
intervals of P.

5. lim
}P}S0 a

n

k=1
(2ck - 1)-1>2 ∆xk , where P is a partition of 31, 54

6. lim
}P}S0 a

n

k=1
ck(ck

2 - 1)1>3 ∆xk , where P is a partition of 31, 34
7. lim

}P}S0 a

n

k=1
acosack

2
b b ∆xk , where P is a partition of 3-p, 04

8. lim
}P}S0 a

n

k=1
(sin ck)(cos ck) ∆xk , where P is a partition of 30, p>24

9. If 1
2
-2 3ƒ(x) dx = 12, 1

5
-2 ƒ(x) dx = 6, and 1

5
-2 g(x) dx = 2, find 

the values of the following.

  a.
L

2

-2
ƒ(x) dx b.

L

5

2
ƒ(x) dx

  c.
L

-2

5
g(x) dx d.

L

5

-2
(-pg(x)) dx

  e.
L

5

-2
aƒ(x) + g(x)

5
b dx

10. If 1
2

0 ƒ(x) dx = p, 1
2

0 7g(x) dx = 7, and 1
1

0 g(x) dx = 2, find 
the values of the following.

  a.
L

2

0
g(x) dx b.

L

2

1
g(x) dx

  c.
L

0

2
ƒ(x) dx d.

L

2

0
22 ƒ(x) dx

  e.
L

2

0
(g(x) - 3ƒ(x)) dx

Area
In Exercises 11–14, find the total area of the region between the graph 
of ƒ and the x-axis.

11. ƒ(x) = x2 - 4x + 3, 0 … x … 3

12. ƒ(x) = 1 - (x2>4), -2 … x … 3

13. ƒ(x) = 5 - 5x2>3, -1 … x … 8

14. ƒ(x) = 1 - 2x, 0 … x … 4

Find the areas of the regions enclosed by the curves and lines in Exer-
cises 15–26.

15. y = x, y = 1>x2, x = 2

16. y = x, y = 1>2x, x = 2

17. 2x + 2y = 1, x = 0, y = 0

x

y

1

0 1

"

x +
"

y = 1

18. x3 + 2y = 1, x = 0, y = 0, for 0 … x … 1

x

y

0 1

1
x3 +

"

y = 1,  0 ≤ x ≤ 1

19. x = 2y2, x = 0, y = 3 20. x = 4 - y2, x = 0

21. y2 = 4x, y = 4x - 2

22. y2 = 4x + 4, y = 4x - 16

23. y = sin x, y = x, 0 … x … p>4
24. y = 0 sin x 0 , y = 1, -p>2 … x … p>2
25. y = 2 sin x, y = sin 2x, 0 … x … p
26. y = 8 cos x, y = sec2 x, -p>3 … x … p>3
27. Find the area of the “triangular” region bounded on the left by 

x + y = 2, on the right by y = x2, and above by y = 2.

28. Find the area of the “triangular” region bounded on the left by 
y = 2x, on the right by y = 6 - x, and below by y = 1.

29. Find the extreme values of ƒ(x) = x3 - 3x2 and find the area of 
the region enclosed by the graph of ƒ and the x-axis.

30. Find the area of the region cut from the first quadrant by the curve 
x1>2 + y1>2 = a1>2.

31. Find the total area of the region enclosed by the curve x = y2>3 and 
the lines x = y and y = -1.

32. Find the total area of the region between the curves y = sin x and 
y = cos x for 0 … x … 3p>2.

33. Area Find the area between the curve y = 2(ln x)>x and the 
x-axis from x = 1 to x = e.

34. a. Show that the area between the curve y = 1>x and the x-axis
from x = 10 to x = 20 is the same as the area between the 
curve and the x-axis from x = 1 to x = 2.

  b. Show that the area between the curve y = 1>x and the x-axis
from ka to kb is the same as the area between the curve and the 
x-axis from x = a to x = b (0 6 a 6 b, k 7 0).

Initial Value Problems

35. Show that y = x2 +
L

x

1

1
t dt solves the initial value problem

d2 y

dx2 = 2 - 1
x2 ; y′(1) = 3, y(1) = 1.

36. Show that y = 1
x

0 11 + 22sec t2 dt solves the initial value 
problem

d2y

dx2 = 2sec x tan x; y′(0) = 3, y(0) = 0.

  Express the solutions of the initial value problems in Exercises 37 
and 38 in terms of integrals.

37.
dy
dx

= sin x
x , y(5) = -3



38.
dy
dx

= 22 - sin2 x , y(-1) = 2

Solve the initial value problems in Exercises 39–42.

39.
dy
dx

= 1

21 - x2
, y(0) = 0

40.
dy
dx

= 1
x2 + 1

- 1, y(0) = 1

41.
dy
dx

= 1

x2x2 - 1
, x 7 1; y(2) = p

42.
dy
dx

= 1
1 + x2 - 2

21 - x2
, y(0) = 2

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 43–72.

43.
L

2(cos x)-1>2 sin x dx 44.
L

(tan x)-3>2 sec2 x dx

45.
L

(2u + 1 + 2 cos (2u + 1)) du

46.
L
a 1

22u - p
+ 2 sec2 (2u - p)b du

47.
L
at - 2

t b at + 2
t b dt 48.

L

(t + 1)2 - 1

t4 dt

49.
L
2t sin (2t3>2) dt 50.

L
 (sec u tan u) 21 + sec u du

51.
L

ex sec2 (ex - 7) dx

52.
L

ey csc (ey + 1) cot (ey + 1) dy

53.
L

(sec2 x) etan x dx 54.
L

(csc2 x) ecot x dx

55.
L

1

-1

dx
3x - 4

56.
L

e

1

2ln x
x dx

57.
L

4

0

2t
t2 - 25

dt 58.
L

tan (ln y)
y dy

59.
L

(ln x)-3

x dx 60.
L

1
r csc2 (1 + ln r) dr

61.
L

x3x2
dx 62.

L
2tan x sec2 x dx

63.
L

3 dr

21 - 4(r - 1)2
64.

L

6 dr

24 - (r + 1)2

65.
L

dx
2 + (x - 1)2 66.

L

dx
1 + (3x + 1)2

67.
L

dx

(2x - 1)2(2x - 1)2 - 4

68.
L

dx

(x + 3)2(x + 3)2 - 25

69.
L

esin-12x dx

22x - x2
70.

L

2sin-1 x dx

21 - x2

71.
L

dy

2tan-1y (1 + y2)
72.

L

(tan-1 x)2 dx

1 + x2

Evaluating Definite Integrals
Evaluate the integrals in Exercises 73–112.

73.
L

1

-1
(3x2 - 4x + 7) dx 74.

L

1

0
(8s3 - 12s2 + 5) ds

75.
L

2

1

4
y2 dy 76.

L

27

1
x-4>3 dx

77.
L

4

1

dt

t2t
78.

L

4

1

11 + 2u21>2
2u

du

79.
L

1

0

36 dx
(2x + 1)3 80.

L

1

0

dr

23 (7 - 5r)2

81.
L

1

1>8
x-1>3(1 - x2>3)3>2 dx 82.

L

1>2

0
x3(1 + 9x4)-3>2 dx

83.
L

p

0
 sin2 5r dr 84.

L

p>4

0
 cos2 a4t - p

4
b dt

85.
L

p>3

0
 sec2u du 86.

L

3p>4

p>4
 csc2 x dx

87.
L

3p

p

 cot2 x
6

dx 88.
L

p

0
tan2 u

3
du

89.
L

0

-p>3
 sec x tan x dx 90.

L

3p>4

p>4
csc z cot z dz

91.
L

p>2

0
5(sin x)3>2 cos x dx 92.

L

p>2

-p>2
15 sin4 3x cos 3x dx

93.
L

p>2

0

3 sin x cos x

21 + 3 sin2 x
dx 94.

L

p>4

0

sec2 x
(1 + 7 tan x)2>3 dx

95.
L

4

1
ax

8
+ 1

2x
b dx 96.

L

8

1
a 2

3x
- 8

x2b dx

97.
L

-1

-2
e-(x+1) dx 98.

L

0

-ln 2
e2w dw

99.
L

ln5

0
er(3er + 1)-3>2 dr 100.

L

ln 9

0
eu(eu - 1)1>2 du

101.
L

e

1

1
x (1 + 7 ln x)-1>3 dx 102.

L

3

1

(ln (y + 1))2

y + 1
dy

103.
L

8

1

log4u

u
du 104.

L

e

1

8 ln 3 log3u

u
du

105.
L

3>4

-3>4
6 dx

29 - 4x2
106.

L

1>5

-1>5
6 dx

24 - 25x2

107.
L

2

-2

3 dt
4 + 3t2 108.

L

3

23

dt
3 + t2

109.
L

1

1>23

dy

y24y2 - 1
110.

L

8

422

24 dy

y2y2 - 16

111.
L

2>3

22>3
dy

0 y 029y2 - 1
112.

L

-26>25

-2>25

dy

0 y 025y2 - 3

Average Values
113. Find the average value of ƒ(x) = mx + b

a. over 3-1, 14 b. over 3-k, k4
114. Find the average value of

a. y = 23x over 30, 34 b. y = 2ax over 30, a4
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115. Let ƒ be a function that is differentiable on 3a, b4 . In Chapter 2 
we defined the average rate of change of ƒ over 3a, b4  to be

ƒ(b) - ƒ(a)
b - a

  and the instantaneous rate of change of ƒ at x to be ƒ′(x). In this 
chapter we defined the average value of a function. For the new defi-
nition of average to be consistent with the old one, we should have

ƒ(b) - ƒ(a)
b - a

= average value of ƒ′ on 3a, b4 .
  Is this the case? Give reasons for your answer.

116. Is it true that the average value of an integrable function over an 
interval of length 2 is half the function’s integral over the inter-
val? Give reasons for your answer.

117. a. Verify that 1 ln x dx = x ln x - x + C.

  b. Find the average value of ln x over 31, e4 .
118. Find the average value of ƒ(x) = 1>x on 31, 24 .
119. Compute the average value of the temperature function

ƒ(x) = 37 sin a 2p
365

(x - 101)b + 25

  for a 365-day year. (See Exercise 98, Section 3.6.) This is one 
way to estimate the annual mean air temperature in Fairbanks, 
Alaska. The National Weather Service’s official figure, a numer-
ical average of the daily normal mean air temperatures for the 
year, is 25.7°F, which is slightly higher than the average value 
of ƒ(x).

120. Specific heat of a gas Specific heat Cy is the amount of heat 
required to raise the temperature of one mole (gram molecule) of 
a gas with constant volume by 1°C. The specific heat of oxygen 
depends on its temperature T and satisfies the formula

Cy = 8.27 + 10-5 (26T - 1.87T2).

  Find the average value of Cy for 20° … T … 675°C and the 
temperature at which it is attained.

Differentiating Integrals
In Exercises 121–128, find dy>dx.

121. y =
L

x

2
22 + cos3 t dt 122. y =

L

7x2

2
22 + cos3 t dt

123. y =
L

1

x

6
3 + t4 dt 124. y =

L

2

sec x

1
t2 + 1

dt

125. y =
L

0

ln x2

ecos t dt 126. y =
L

e2x

1
ln (t2 + 1) dt

127. y =
L

sin-1 x

0

dt

21 - 2t2
128. y =

L

p>4

tan-1x
e2t dt

T

T

Theory and Examples
129. Is it true that every function y = ƒ(x) that is differentiable on 

3a, b4  is itself the derivative of some function on 3a, b4 ? Give 
reasons for your answer.

130. Suppose that ƒ(x) is an antiderivative of ƒ(x) = 21 + x4.

Express 1
1

0 21 + x4 dx in terms of F and give a reason for 
your answer.

131. Find dy>dx if y = 1
1

x 21 + t2 dt. Explain the main steps in 
your calculation.

132. Find dy>dx if y = 1
0

cos x (1> (1 - t2) ) dt. Explain the main 
steps in your calculation.

133. A new parking lot To meet the demand for parking, your 
town has allocated the area shown here. As the town engineer, 
you have been asked by the town council to find out if the lot 
can be built for $10,000. The cost to clear the land will be $0.10 
a square foot, and the lot will cost $2.00 a square foot to pave. 
Can the job be done for $10,000? Use a lower sum estimate to 
see. (Answers may vary slightly, depending on the estimate 
used.)

0 ft

36 ft

54 ft

51 ft

49.5 ft

54 ft

64.4 ft

67.5 ft

42 ft

Ignored

Vertical spacing = 15 ft

134. Skydivers A and B are in a helicopter hovering at 6400 ft. Sky-
diver A jumps and descends for 4 sec before opening her para-
chute. The helicopter then climbs to 7000 ft and hovers there. 
Forty-five seconds after A leaves the aircraft, B jumps and 
descends for 13 sec before opening his parachute. Both skydiv-
ers descend at 16 ft > sec with parachutes open. Assume that the 
skydivers fall freely (no effective air resistance) before their 
parachutes open.

a. At what altitude does A’s parachute open?

b. At what altitude does B’s parachute open?

   c. Which skydiver lands first?
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Theory and Examples

1. a. If
L

1

0
7ƒ(x) dx = 7, does

L

1

0
ƒ(x) dx = 1?

  b. If
L

1

0
ƒ(x) dx = 4 and ƒ(x) Ú 0, does

    
L

1

0
2ƒ(x) dx = 24 = 2?

   Give reasons for your answers.

2. Suppose
L

2

-2
ƒ(x) dx = 4,

L

5

2
ƒ(x) dx = 3,

L

5

-2
g(x) dx = 2.

Which, if any, of the following statements are true?

  a.
L

2

5
ƒ(x) dx = -3 b.

L

5

-2
(ƒ(x) + g(x)) = 9

  c. ƒ(x) … g(x) on the interval -2 … x … 5

3. Initial value problem Show that

y = 1
a
L

x

0
ƒ(t) sin a(x - t) dt

  solves the initial value problem

d2y

dx2 + a2y = ƒ(x),
dy
dx

= 0 and y = 0 when x = 0.

  (Hint: sin (ax - at) = sin ax cos at - cos ax sin at.)

4. Proportionality Suppose that x and y are related by the equation

x =
L

y

0

1

21 + 4t2
dt.

  Show that d2y/dx2 is proportional to y and find the constant of 
proportionality.

5. Find ƒ(4) if

  a.
L

x2

0
ƒ(t) dt = x cos px b.

L

ƒ(x)

0
t2 dt = x cos px.

6. Find ƒ(p/2) from the following information.

  i) ƒ is positive and continuous.

ii) The area under the curve y = ƒ(x) from x = 0 to x = a is

a2

2
+ a

2
sin a + p

2
cos a.

7. The area of the region in the xy-plane enclosed by the x-axis, the 
curve y = ƒ(x), ƒ(x) Ú 0, and the lines x = 1 and x = b is 
equal to 2b2 + 1 - 22 for all b 7 1. Find ƒ(x).

8. Prove that

L

x

0
a
L

u

0
ƒ(t) dtb du =

L

x

0
ƒ(u)(x - u) du.

  (Hint: Express the integral on the right-hand side as the differ-
ence of two integrals. Then show that both sides of the equation 
have the same derivative with respect to x.)

9. Finding a curve Find the equation for the curve in the xy-plane
that passes through the point (1, -1) if its slope at x is always 
3x2 + 2.

10. Shoveling dirt You sling a shovelful of dirt up from the bottom 
of a hole with an initial velocity of 32 ft > sec. The dirt must rise 
17 ft above the release point to clear the edge of the hole. Is that 
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions
Although we are mainly interested in continuous functions, many 
functions in applications are piecewise continuous. A function ƒ(x) is 
piecewise continuous on a closed interval I if ƒ has only finitely 
many discontinuities in I, the limits

lim
xSc-

ƒ(x) and lim
xSc +

ƒ(x)

exist and are finite at every interior point of I, and the appropriate one-
sided limits exist and are finite at the endpoints of I. All piecewise 
continuous functions are integrable. The points of discontinuity subdi-
vide I into open and half-open subintervals on which ƒ is continuous, 
and the limit criteria above guarantee that ƒ has a continuous exten-
sion to the closure of each subinterval. To integrate a piecewise con-
tinuous function, we integrate the individual extensions and add the 
results. The integral of

ƒ(x) = c 1 - x, -1 … x 6 0

x2, 0 … x 6 2

-1, 2 … x … 3

(Figure 5.32) over 3-1, 34  is

L

3

-1
ƒ(x) dx =

L

0

-1
(1 - x) dx +

L

2

0
x2 dx +

L

3

2
(-1) dx

= c x - x2

2
d
-1

0

+ c x3

3
d

0

2

+ c-x d
2

3

= 3
2

+ 8
3

- 1 = 19
6

.

FIGURE 5.32 Piecewise continuous 
functions like this are integrated piece by 
piece.

x

y

2

20 31−1

1

3

4

−1

y = x2

y = 1 − x

y = −1
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The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that (d>dx)1

x
a ƒ(t) dt is expected to equal ƒ(x)

only at values of x at which ƒ is continuous. There is a similar restric-
tion on Leibniz’s Rule (see Exercises 31–38).

Graph the functions in Exercises 11–16 and integrate them over 
their domains.

11. ƒ(x) = e x2>3, -8 … x 6 0

-4, 0 … x … 3

12. ƒ(x) = e2-x, -4 … x 6 0

x2 - 4, 0 … x … 3

13. g(t) = e t, 0 … t 6 1

sin pt, 1 … t … 2

14. h(z) = e21 - z, 0 … z 6 1

(7z - 6)-1>3, 1 … z … 2

15. ƒ(x) = c 1, -2 … x 6 -1

1 - x2, -1 … x 6 1

2, 1 … x … 2

16. h(r) = c r, -1 … r 6 0

1 - r2, 0 … r 6 1

1, 1 … r … 2

17. Find the average value of the function graphed in the accompany-
ing figure.

x

y

0 1 2

1

18. Find the average value of the function graphed in the accompany-
ing figure.

x

y

1

1 2 30

Limits
Find the limits in Exercises 19–22.

19. lim
bS1-

L

b

0

dx

21 - x2
20. lim

xSq
1
x
L

x

0
tan-1 t dt

21. lim
nSq
a 1

n + 1
+ 1

n + 2
+ g + 1

2n
b

22. lim
nSq

1
n1e1>n + e2>n + g + e(n-1)>n + en>n2

Approximating Finite Sums with Integrals

In many applications of calculus, integrals are used to approximate 
finite sums—the reverse of the usual procedure of using finite sums to 
approximate integrals.

For example, let’s estimate the sum of the square roots of the 
first n positive integers, 21 + 22 + g + 2n. The integral

L

1

0
2x dx = 2

3
x3>2 d

0

1

= 2
3

is the limit of the upper sums

Sn = A
1
n
# 1

n + A
2
n
# 1

n + g + A
n
n
# 1

n

= 21 + 22 + g + 2n

n3>2 .

x

y

0

y =
"

x

1 1
n

2
n

n − 1
n

Therefore, when n is large, Sn will be close to 2>3 and we will have

Root sum = 21 + 22 + g + 2n = Sn
# n3>2 ≈ 2

3
n3>2.

The following table shows how good the approximation can be.

n Root sum (2 ,3)n3,2 Relative error

10 22.468 21.082 1.386>22.468 ≈ 6,
50 239.04 235.70 1.4%

100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate

lim
nSq

15 + 25 + 35 + g + n5

n6

  by showing that the limit is

L

1

0
x5 dx

  and evaluating the integral.

24. See Exercise 23. Evaluate

lim
nSq

1
n4

(13 + 23 + 33 + g + n3).

25. Let ƒ(x) be a continuous function. Express

lim
nSq

1
n c ƒ a1nb + ƒ a2nb + g + ƒ annb d

  as a definite integral.

26. Use the result of Exercise 25 to evaluate

  a. lim
nSq

1
n2 (2 + 4 + 6 + g + 2n),

  b. lim
nSq

1
n16

(115 + 215 + 315 + g + n15),

  c. lim
nSq

1
n asin

p
n + sin

2p
n + sin

3p
n + g + sin

np
n b .



  What can be said about the following limits?

  d. lim
nSq

1
n17

(115 + 215 + 315 + g + n15)

   e. lim
nSq

1
n15

(115 + 215 + 315 + g + n15)

27. a. Show that the area An of an n-sided regular polygon in a circle 
of radius r is

An = nr2

2
sin

2p
n .

  b. Find the limit of An as n S q. Is this answer consistent with 
what you know about the area of a circle?

28. Let

Sn = 12

n3 + 22

n3 + g +
(n - 1)2

n3 .

  To calculate limnSq Sn , show that

Sn = 1
n c a1nb

2

+ a2nb
2

+ g + an - 1
n b2 d

  and interpret Sn as an approximating sum of the integral

L

1

0
x2 dx.

  (Hint: Partition 30, 14  into n intervals of equal length and write 
out the approximating sum for inscribed rectangles.)

Defining Functions Using the Fundamental Theorem
29. A function defined by an integral The graph of a function ƒ

consists of a semicircle and two line segments as shown. Let 
g(x) = 1

x
1 ƒ(t) dt.

y

1 3−3

y = f(x)

−1
−1

1

3

x

  a. Find g(1). b. Find g(3). c. Find g(-1).
  d. Find all values of x on the open interval (-3, 4) at which g has 

a relative maximum.
  e. Write an equation for the line tangent to the graph of g at x = -1.
  f. Find the x-coordinate of each point of inflection of the graph 

of g on the open interval (-3, 4).

  g. Find the range of g.

30. A differential equation Show that both of the following condi-
tions are satisfied by y = sin x + 1

p

x cos 2t dt + 1:

   i) y″ = -sin x + 2 sin 2x

  ii) y = 1 and y′ = -2 when x = p.

Leibniz’s Rule In applications, we sometimes encounter functions 
defined by integrals that have variable upper limits of integration and 
variable lower limits of integration at the same time. We can find the 
derivative of such an integral by a formula called Leibniz’s Rule.

Leibniz’s Rule
If ƒ is continuous on 3a, b4  and if u(x) and y(x) are 
differentiable functions of x whose values lie in 3a, b4 , then

d
dxL

y(x)

u(x)
ƒ(t) dt = ƒ(y(x))

dy
dx

- ƒ(u(x))
du
dx

.

To prove the rule, let F be an antiderivative of ƒ on 3a, b4 . Then

L

y(x)

u(x)
ƒ(t) dt = F(y(x)) - F(u(x)).

Differentiating both sides of this equation with respect to x gives the 
equation we want:

d
dxL

y(x)

u(x)
ƒ(t) dt = d

dx
3F(y(x)) - F(u(x))4

= F′(y(x))
dy
dx

- F′(u(x))
du
dx

Chain Rule

= ƒ(y(x))
dy
dx

- ƒ(u(x))
du
dx

.

Use Leibniz’s Rule to find the derivatives of the functions in 
Exercises 31–38.

31. ƒ(x) =
L

x

1>x
1
t dt 32. ƒ(x) =

L

sin x

cos x

1
1 - t2 dt

33. g(y) =
L

22y

2y
sin t2 dt 34. g(y) =

L

y2

2y

et

t dt

35. y =
L

x2

x2>2
ln2t dt 36. y =

L

23 x

2x
ln t dt

37. y =
L

lnx

0
sin et dt 38. y =

L

e2x

e42x

ln t dt

Theory and Examples
39. Use Leibniz’s Rule to find the value of x that maximizes the value 

of the integral

L

x+3

x
t(5 - t) dt.

40. For what x 7 0 does x(xx) = (xx)x? Give reasons for your answer.

41. Find the areas between the curves y = 2(log2 x)>x and y =
2(log4 x)>x and the x-axis from x = 1 to x = e. What is the ratio 
of the larger area to the smaller?

42. a. Find df >dx if

ƒ(x) =
L

ex

1

2 ln t
t dt.

  b. Find ƒ(0).

  c. What can you conclude about the graph of ƒ? Give reasons for 
your answer.

43. Find ƒ′(2) if ƒ(x) = eg(x) and g(x) =
L

x

2

t
1 + t4 dt.
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44. Use the accompanying figure to show that

L
p>2

0
sin x dx = p

2
- L

1

0
sin-1 x dx.

0 1

1

p
2

p
2

y = sin x

y = sin−1 x

x

y

45. Napier’s inequality Here are two pictorial proofs that

b 7 a 7 0 1 1
b

6 ln b - ln a
b - a

6 1
a .

  Explain what is going on in each case.

  a.

x

y

0 a b

L1

L2

L3

y = ln x

  b.

x

y

0 a b

y = 1
x

  (Source: Roger B. Nelson, College Mathematics Journal, Vol. 24, 
No. 2, March 1993, p. 165.)

46. Bound on an integral Let ƒ be a continuously differentiable 
function on 3a, b4  satisfying 1b

a ƒ(x) dx = 0.

  a. If c = (a + b)>2, show that

L
b

a
xƒ(x) dx = L

c

a
(x - c)ƒ(x) dx + L

b

c
(x - c)ƒ(x) dx.

  b. Let t = 0 x - c 0  and / = (b - a)>2. Show that

L
b

a
xƒ(x) dx = L

/

0
t(ƒ(c + t) - ƒ(c - t)) dt.

  c. Apply the Mean Value Theorem from Section 4.2 to part (b) 
to prove that

2L
b

a
xƒ(x) dx 2 …

(b - a)3

12
M ,

   where M is the absolute maximum of ƒ′ on 3a, b4 .

Chapter 5 Technology Application Projects

Mathematica/Maple Modules:

Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I.

Riemann Sums, Definite Integrals, and the Fundamental Theorem of Calculus
Parts I, II, and III develop Riemann sums and definite integrals. Part IV continues the development of the Riemann sum and definite integral using 
the Fundamental Theorem to solve problems previously investigated.

Rain Catchers, Elevators, and Rockets
Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will 
compute the amount of water accumulating in basins of different shapes as the basin is filled and drained.

Motion Along a Straight Line, Part II
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among position, velocity, and accelera-
tion. Figures in the text can be animated using this software.

Bending of Beams
Study bent shapes of beams, determine their maximum deflections, concavity, and inflection points, and interpret the results in terms of a beam’s 
compression and tension.
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OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a 
definite integral, which is the limit of any Riemann sum for the function. We proved that 
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also 
found that the area under a curve and the area between two curves could be defined and 
computed as definite integrals.

In this chapter we extend the applications of definite integrals to defining and finding 
volumes, lengths of plane curves, and areas of surfaces of revolution. We also use integrals 
to solve physical problems involving the work done by a force, and to find the location of 
an object’s center of mass. Each application comes from a process leading to an approxima-
tion by a Riemann sum, and then taking a limit to obtain an appropriate definite integral. 
These applications are important to mathematics, science, and engineering. We also use 
integrals to compute probabilities and their applications to the life sciences in Chapter 8.

Applications of Definite 
Integrals

6

6.1 Volumes Using Cross-Sections

In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1). We 
present three different methods for obtaining the cross-sections appropriate to finding the 
volume of a particular solid: the method of slicing, the disk method, and the washer method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin 
by extending the definition of a cylinder from classical geometry to cylindrical solids with 
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area A and height h,
then the volume of the cylindrical solid is

Volume = area * height = A # h.

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid S at each point x in the 
interval 3a, b4  is a region S(x) of area A(x), and A is a continuous function of x, we can 

Cross-section S(x)
with area A(x)

a

b

x

S

0

Px

x

y

FIGURE 6.1 A cross-section S(x) of 
the solid S formed by intersecting S with 
a plane Px perpendicular to the x-axis
through the point x in the interval 3a, b4 .

FIGURE 6.2 The volume of a cylindrical solid is always defined 
to be its base area times its height.

A = base area

Plane region whose
area we know

Cylindrical solid based on region
Volume = base area ×  height = Ah

h = height
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define and calculate the volume of the solid S as the definite integral of A(x). We now 
show how this integral is obtained by the method of slicing.

Slicing by Parallel Planes

We partition 3a, b4  into subintervals of width (length) ∆xk and slice the solid, as we 
would a loaf of bread, by planes perpendicular to the x-axis at the partition points 
a = x0 6 x1 6 g 6 xn = b. The planes Pxk

, perpendicular to the x-axis at the partition 
points, slice S into thin “slabs” (like thin slices of a loaf of bread). A typical slab is shown in 
Figure 6.3. We approximate the slab between the plane at xk-1 and the plane at xk by a cylindri-
cal solid with base area A(xk) and height ∆xk = xk - xk-1 (Figure 6.4). The volume Vk of this 
cylindrical solid is A(xk) # ∆xk , which is approximately the same volume as that of the slab:

Volume of the k th slab ≈ Vk = A(xk) ∆xk .

The volume V of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

V ≈ a

n

k=1
Vk = a

n

k=1
A(xk) ∆xk.

This is a Riemann sum for the function A(x) on 3a, b4 . We expect the approximations 
from these sums to improve as the norm of the partition of 3a, b4  goes to zero. Taking a 
partition of 3a, b4  into n subintervals with 7P 7 S 0 gives

lim
nSq a

n

k=1
A(xk) ∆xk =

L

b

a
A(x) dx.

So we define the limiting definite integral of the Riemann sum to be the volume of the solid S.

a
xk−1 xk

b

0

y

x

S

FIGURE 6.3 A typical thin slab in the 
solid S.

0

Approximating
cylinder based
on S(xk) has height
Δxk = xk − xk−1

Plane at xk−1

Plane at xk

xk

xk−1

The cylinder’s base
is the region S(xk)
with area A(xk)

NOT TO SCALE

y

x

FIGURE 6.4 The solid thin slab in 
Figure 6.3 is shown enlarged here. It is 
approximated by the cylindrical solid with 
base S(xk) having area A(xk) and height 
∆xk = xk - xk-1.

This definition applies whenever A(x) is integrable, and in particular when it is con-
tinuous. To apply the definition to calculate the volume of a solid using cross-sections 
perpendicular to the x-axis, take the following steps:

DEFINITION The volume of a solid of integrable cross-sectional area A(x) from 
x = a to x = b is the integral of A from a to b,

V =
L

b

a
A(x) dx.

Calculating the Volume of a Solid
1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.

3. Find the limits of integration.

4. Integrate A(x) to find the volume.

EXAMPLE 1  A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square 
x m on a side. Find the volume of the pyramid.

Solution
1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the 

origin and include a typical cross-section (Figure 6.5).
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2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is

A(x) = x2.

3. The limits of integration. The squares lie on the planes from x = 0 to x = 3.

4. Integrate to find the volume:

V =
L

3

0
A(x) dx =

L

3

0
x2 dx = x3

3 d 0
3

= 9 m3.

EXAMPLE 2  A curved wedge is cut from a circular cylinder of radius 3 by two 
planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the 
first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the 
x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with x Ú 0 that 
is cut from the circle x2 + y2 = 9 by the 45° plane when it intersects the y-axis.  
For any x in the interval 30, 34 , the y-values in this semicircular base vary from 

y = -29 - x2 to y = 29 - x2. When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose 
width extends across the semicircular base. The area of this cross-section is

A(x) = (height)(width) = (x)1229 - x22
= 2x29 - x2 .

The rectangles run from x = 0 to x = 3, so we have

V =
L

b

a
A(x) dx =

L

3

0
2x29 - x2 dx

= - 2
3 (9 - x2)3>2 d

0

3 Let u = 9 - x2,  
du = -2x dx , integrate, 
and substitute back.

= 0 + 2
3 (9)3>2

= 18.

EXAMPLE 3  Cavalieri’s principle says that solids with equal altitudes and identical 
cross-sectional areas at each height have the same volume (Figure 6.7). This follows 
immediately from the definition of volume, because the cross-sectional area function A(x)
and the interval 3a, b4  are the same for both solids.

x

y

0

−3

3

x

x
45°

2"9 − x2

 x, −"9 − x2
a           b

FIGURE 6.6 The wedge of Example 2, 
sliced perpendicular to the x-axis. The 
cross-sections are rectangles.

FIGURE 6.5 The cross-sections of the 
pyramid in Example 1 are squares.

0

y

x (m)

Typical cross-section

3

3

3
x

x

x

a

b Same volume

Same cross-section
area at every level

FIGURE 6.7 Cavalieri’s principle: These solids have the
same volume, which can be illustrated with stacks of coins.

HISTORICAL BIOGRAPHY

Bonaventura Cavalieri
(1598–1647)
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Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is 
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8, 
we need only observe that the cross-sectional area A(x) is the area of a disk of radius R(x),
the distance of the planar region’s boundary from the axis of revolution. The area is then

A(x) = p(radius)2 = p3R(x)4 2.

So the definition of volume in this case gives

0

x

y

R(x) =
"

x

x

y

y =
"

x

y =
"

x

0 4x

(a)

(b)

4

R(x) =
"

x

x

Disk

FIGURE 6.8 The region (a) and solid of 
revolution (b) in Example 4.

This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius R(x).

Volume by Disks for Rotation About the x-axis

V =
L

b

a
A(x) dx =

L

b

a
p3R(x)4 2 dx.

EXAMPLE 4  The region between the curve y = 2x, 0 … x … 4, and the x-axis is 
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid 
(Figure 6.8). The volume is

V =
L

b

a
p3R(x)4 2 dx

=
L

4

0
p32x42 dx

Radius R(x) = 2x for 
rotation around x-axis.

= p
L

4

0
x dx = px2

2
d

0

4

= p
(4)2

2
= 8p.

EXAMPLE 5  The circle

x2 + y2 = a2

is rotated about the x-axis to generate a sphere. Find its volume.

Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between -a and a is

A(x) = py2 = p(a2 - x2).
R(x) = 2a2 - x2 for 
rotation around x-axis.

Therefore, the volume is

V =
L

a

-a
A(x) dx =

L

a

-a
p(a2 - x2) dx = p c a2x - x3

3 d -a

a

= 4
3pa3.

The axis of revolution in the next example is not the x-axis, but the rule for calculating 
the volume is the same: Integrate p(radius)2 between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded 
by y = 2x and the lines y = 1, x = 4 about the line y = 1.
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Solution We draw figures showing the region, a typical radius, and the generated solid 
(Figure 6.10). The volume is

V =
L

4

1
p3R(x)4 2 dx

=
L

4

1
p32x - 142 dx

Radius R(x) = 2x - 1 
for rotation around y = 1.

= p
L

4

1
3x - 22x + 14 dx Expand integrand.

= p c x2

2
- 2 # 23 x3>2 + x d

1

4

= 7p
6

. Integrate.

x

y

−a

(x, y)

a

Δx

x

A(x) = p(a2 − x2)

x

x2 + y2 = a2

x2 + y2 = a2

FIGURE 6.9 The sphere generated by rotating the 
circle x2 + y2 = a2 about the x-axis. The radius is 
R(x) = y = 2a2 - x2 (Example 5).
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"
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FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6.

To find the volume of a solid generated by revolving a region between the y-axis and a 
curve x = R(y), c … y … d, about the y-axis, we use the same method with x replaced by y.
In this case, the area of the circular cross-section is

A(y) = p3 radius4 2 = p3R(y)4 2,

and the definition of volume gives
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EXAMPLE 7  Find the volume of the solid generated by revolving the region between 
the y-axis and the curve x = 2>y, 1 … y … 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid 
(Figure 6.11). The volume is

V =
L

4

1
p3R(y)4 2 dy

=
L

4

1
pa2yb

2

dy  
Radius R(y) = 2

y  for

rotation around y-axis.

= p
L

4

1

4
y2 dy = 4p c- 1

y d
1

4

= 4p c 3
4
d = 3p.

Volume by Disks for Rotation About the y-axis

V =
L

d

c
A(y) dy =

L

d

c
p3R(y)4 2 dy.

4

1

0

2

y

y

x

x

2
y , y

2
yx =

2
yx =

2
yR(y) =

2
yR(y) =

0

1

4

y

2

(a)

(b)

y

a b

FIGURE 6.11 The region (a) and part 
of the solid of revolution (b) in Example 7.
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R(y) = 2 − y2

(b)(a)

x

y

y

0 1 5

x = y2 + 1

3

(3,
"

2)

(3, −
"
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FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8.

EXAMPLE 8  Find the volume of the solid generated by revolving the region between 
the parabola x = y2 + 1 and the line x = 3 about the line x = 3.

Solution We draw figures showing the region, a typical radius, and the generated solid 
(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and have 
y-coordinates from y = -22 to y = 22. The volume is

V =
L

22

-22
p3R(y)4 2 dy y = {22 when x = 3

=
L

22

-22
p32 - y24 2 dy

Radius R(y) = 3 - (y2 + 1) 
for rotation around axis x = 3.

= p
L

22

-22
34 - 4y2 + y44 dy Expand integrand.

= p c 4y - 4
3 y3 +

y5

5
d
-22

22

Integrate.

= 64p22
15

.
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Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of 
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The 
dimensions of a typical washer are

Outer radius: R(x)

Inner radius: r(x)

The washer’s area is

A(x) = p3R(x)4 2 - p3r(x)4 2 = p(3R(x)4 2 - 3r(x)4 2).

Consequently, the definition of volume in this case gives

y

x

0
a

x
b

y = R(x)

y = r(x)

0

x

y y

0

x

(x, R(x))

(x, r(x))

Washer

xx

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral 

1
b

a A(x) dx leads to a slightly different formula.
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(−2, 5)

(1, 2)

−2 x 0 1Interval of
integration

Washer cross-section
Outer radius: R(x) = −x + 3 
Inner radius: r(x) = x2 + 1

R(x) = −x + 3

(1, 2)

(−2, 5)

(a)

(b)

x

y

r(x) = x2 + 1

x

R(x) =−x + 3

r(x) = x2 + 1

FIGURE 6.14 (a) The region in 
Example 9 spanned by a line segment 
perpendicular to the axis of revolution. 
(b) When the region is revolved about 
the x-axis, the line segment generates a 
washer.

Volume by Washers for Rotation About the x-axis

V =
L

b

a
A(x) dx =

L

b

a
p( 3R(x)4 2 - 3r(x)4 2) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9  The region bounded by the curve y = x2 + 1 and the line y = -x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the four steps for calculating the volume of a solid as discussed early in 
this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolu-
tion (Figure 6.14).

Outer radius: R(x) = -x + 3

Inner radius: r(x) = x2 + 1
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3. Find the limits of integration by finding the x-coordinates of the intersection points of 
the curve and line in Figure 6.14a.

x2 + 1 = -x + 3

x2 + x - 2 = 0

 (x + 2)(x - 1) = 0

x = -2, x = 1 Limits of integration

4. Evaluate the volume integral.

V =
L

b

a
p( 3R(x)4 2 - 3r(x)4 2) dx Rotation around x-axis

=
L

1

-2
p((-x + 3)2 - (x2 + 1)2) dx

Values from Steps 2 
and 3

= p
L

1

-2
(8 - 6x - x2 - x4) dx Simplify algebraically.

= p c 8x - 3x2 - x3

3 - x5

5
d
-2

1

= 117p
5

Integrate.
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FIGURE 6.15 (a) The region being 
rotated about the y-axis, the washer radii,
and limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).

To find the volume of a solid formed by revolving a region about the y-axis, we use 
the same procedure as in Example 9, but integrate with respect to y instead of x. In this 
situation the line segment sweeping out a typical washer is perpendicular to the y-axis (the 
axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10  The region bounded by the parabola y = x2 and the line y = 2x in the 
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the 
solid.

Solution First we sketch the region and draw a line segment across it perpendicular to 
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = 2y, r(y) = y>2 
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are 
c = 0 and d = 4. We integrate to find the volume:

V =
L

d

c
p( 3R(y)4 2 - 3r(y)4 2) dy Rotation around y-axis

=
L

4

0
pa 32y4 2 - c y

2
d 2b dy

Substitute for radii and 
limits of integration.

= p
L

4

0
ay -

y2

4
b dy = p c y2

2
-

y3

12
d

0

4

= 8
3p.
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Volumes by Slicing
Find the volumes of the solids in Exercises 1–10.

1. The solid lies between planes perpendicular to the x-axis at x = 0
and x = 4. The cross-sections perpendicular to the axis on the 
interval 0 … x … 4 are squares whose diagonals run from the 
parabola y = -2x to the parabola y = 2x.

2. The solid lies between planes perpendicular to the x-axis at 
x = -1 and x = 1. The cross-sections perpendicular to the 
x-axis are circular disks whose diameters run from the parabola 
y = x2 to the parabola y = 2 - x2.

y = x2

y = 2 − x2

2

0

x

y

3. The solid lies between planes perpendicular to the x-axis at 
x = -1 and x = 1. The cross-sections perpendicular to the 
x-axis between these planes are squares whose bases run from the 
semicircle y = -21 - x2 to the semicircle y = 21 - x2.

4. The solid lies between planes perpendicular to the x-axis at 
x = -1 and x = 1. The cross-sections perpendicular to the x-axis 
between these planes are squares whose diagonals run from the 
semicircle y = -21 - x2 to the semicircle y = 21 - x2.

5. The base of a solid is the region between the curve y = 22sin x
and the interval 30, p4  on the x-axis. The cross-sections perpen-
dicular to the x-axis are

a. equilateral triangles with bases running from the x-axis to the 
curve as shown in the accompanying figure.

0

p

y = 2
"

sin x

x

y

b. squares with bases running from the x-axis to the curve.

6. The solid lies between planes perpendicular to the x-axis at 
x = -p>3 and x = p>3. The cross-sections perpendicular to 
the x-axis are

a. circular disks with diameters running from the curve 
y = tan x to the curve y = sec x.

b. squares whose bases run from the curve y = tan x to the 
curve y = sec x.

7. The base of a solid is the region bounded by the graphs of 
y = 3x, y = 6, and x = 0. The cross-sections perpendicular to 
the x-axis are

a. rectangles of height 10.

b. rectangles of perimeter 20.

8. The base of a solid is the region bounded by the graphs of 
y = 2x and y = x>2. The cross-sections perpendicular to the 
x-axis are

a. isosceles triangles of height 6.

b. semicircles with diameters running across the base of the solid.

9. The solid lies between planes perpendicular to the y-axis at y = 0
and y = 2. The cross-sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola 
x = 25y2.

10. The base of the solid is the disk x2 + y2 … 1. The cross-sections 
by planes perpendicular to the y-axis between y = -1 and y = 1
are isosceles right triangles with one leg in the disk.

1
x2 + y2 = 1

0

y

x

11. Find the volume of the given right tetrahedron. (Hint: Consider 
slices perpendicular to one of the labeled edges.)

3

4

5

y

x

12. Find the volume of the given pyramid, which has a square base of 
area 9 and height 5.

3

5

3

y

x

13. A twisted solid A square of side length s lies in a plane perpen-
dicular to a line L. One vertex of the square lies on L. As this square 
moves a distance h along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of 
once? Give reasons for your answer.

Exercises 6.1
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14. Cavalieri’s principle A solid lies between planes perpendicular 
to the x-axis at x = 0 and x = 12. The cross-sections by planes 
perpendicular to the x-axis are circular disks whose diameters run 
from the line y = x>2 to the line y = x as shown in the accom-
panying figure. Explain why the solid has the same volume as a 
right circular cone with base radius 3 and height 12.

x12

y

0

y = x

y =
2
x

Volumes by the Disk Method
In Exercises 15–18, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

15. About the x-axis 16. About the y-axis

x

y

0 2

1

x + 2y = 2

x

y

0

2

3

x =
3y
2

17. About the y-axis 18. About the x-axis

Q R

x

y

0

1

4
x = tan yp

x

y

0

y = sin x cos x

2

2
1

p

Find the volumes of the solids generated by revolving the regions 
bounded by the lines and curves in Exercises 19–28 about the x-axis.

19. y = x2, y = 0, x = 2 20. y = x3, y = 0, x = 2

21. y = 29 - x2, y = 0 22. y = x - x2, y = 0

23. y = 2cos x, 0 … x … p>2, y = 0, x = 0

24. y = sec x, y = 0, x = -p>4, x = p>4
25. y = e-x, y = 0, x = 0, x = 1

26. The region between the curve y = 2cot x and the x-axis from 
x = p>6 to x = p>2

27. The region between the curve y = 1>122x2 and the x-axis from 
x = 1>4 to x = 4

28. y = ex-1, y = 0, x = 1, x = 3

In Exercises 29 and 30, find the volume of the solid generated by 
revolving the region about the given line.

29. The region in the first quadrant bounded above by the line 
y = 22, below by the curve y = sec x tan x, and on the left by 
the y-axis, about the line y = 22

30. The region in the first quadrant bounded above by the line y = 2,
below by the curve y = 2 sin x, 0 … x … p>2, and on the left by 
the y-axis, about the line y = 2

Find the volumes of the solids generated by revolving the regions 
bounded by the lines and curves in Exercises 31–36 about the y-axis.

31. The region enclosed by x = 25y2, x = 0, y = -1, y = 1

32. The region enclosed by x = y3>2, x = 0, y = 2

33. The region enclosed by x = 22 sin 2y, 0 … y … p>2, x = 0

34. The region enclosed by x = 2cos (py>4), -2 … y … 0,
x = 0

35. x = 2>2y + 1, x = 0, y = 0, y = 3

36. x = 22y>( y2 + 1), x = 0, y = 1

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded 
regions in Exercises 37 and 38 about the indicated axes.

37. The x-axis 38. The y-axis

x

y

0−

y = 1
y =

"

cos x

2
p

2
p x

y

0 1

x = tan y
4
p

Find the volumes of the solids generated by revolving the regions 
bounded by the lines and curves in Exercises 39–44 about the x-axis.

39. y = x, y = 1, x = 0

40. y = 22x, y = 2, x = 0

41. y = x2 + 1, y = x + 3

42. y = 4 - x2, y = 2 - x

43. y = sec x, y = 22, -p>4 … x … p>4
44. y = sec x, y = tan x, x = 0, x = 1

In Exercises 45–48, find the volume of the solid generated by revolv-
ing each region about the y-axis.

45. The region enclosed by the triangle with vertices (1, 0), (2, 1), 
and (1, 1)

46. The region enclosed by the triangle with vertices (0, 1), (1, 0), 
and (1, 1)

47. The region in the first quadrant bounded above by the parabola 
y = x2, below by the x-axis, and on the right by the line x = 2

48. The region in the first quadrant bounded on the left by the circle 
x2 + y2 = 3, on the right by the line x = 23, and above by the 
line y = 23

In Exercises 49 and 50, find the volume of the solid generated by 
revolving each region about the given axis.

49. The region in the first quadrant bounded above by the curve 
y = x2, below by the x-axis, and on the right by the line x = 1,
about the line x = -1
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50. The region in the second quadrant bounded above by the curve 
y = -x3, below by the x-axis, and on the left by the line x = -1,
about the line x = -2

Volumes of Solids of Revolution
51. Find the volume of the solid generated by revolving the region 

bounded by y = 2x and the lines y = 2 and x = 0 about

a. the x-axis. b. the y-axis.

c. the line y = 2. d. the line x = 4.

52. Find the volume of the solid generated by revolving the triangular 
region bounded by the lines y = 2x, y = 0, and x = 1 about

a. the line x = 1. b. the line x = 2.

53. Find the volume of the solid generated by revolving the region 
bounded by the parabola y = x2 and the line y = 1 about

a. the line y = 1. b. the line y = 2.

c. the line y = -1.

54. By integration, find the volume of the solid generated by revolv-
ing the triangular region with vertices (0, 0), (b, 0), (0, h) about

a. the x-axis. b. the y-axis.

Theory and Applications
55. The volume of a torus The disk x2 + y2 … a2 is revolved 

about the line x = b (b 7 a) to generate a solid shaped like a 
doughnut and called a torus. Find its volume. (Hint:

1
a
-a2a2 - y2 dy = pa2>2, since it is the area of a semicircle of 

radius a.)

56. Volume of a bowl A bowl has a shape that can be generated by 
revolving the graph of y = x2>2 between y = 0 and y = 5 about 
the y-axis.

a. Find the volume of the bowl.

b. Related rates If we fill the bowl with water at a constant 
rate of 3 cubic units per second, how fast will the water level 
in the bowl be rising when the water is 4 units deep?

57. Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth h.
Find the volume of water in the bowl.

b. Related rates Water runs into a sunken concrete hemi-
spherical bowl of radius 5 m at the rate of 0.2 m3>sec. How 
fast is the water level in the bowl rising when the water is
4 m deep?

58. Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of 
revolution by a light shining directly above it.

59. Volume of a hemisphere Derive the formula V = (2>3)pR3

for the volume of a hemisphere of radius R by comparing its 
cross-sections with the cross-sections of a solid right circular cyl-
inder of radius R and height R from which a solid right circular 
cone of base radius R and height R has been removed, as sug-
gested by the accompanying figure.

h

RR
h h

"R2 − h2

60. Designing a plumb bob Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you 
decide to shape it like the solid of revolution shown here. Find the 
plumb bob’s volume. If you specify a brass that weighs 8.5 g>cm3, 
how much will the plumb bob weigh (to the nearest gram)?

0
6

x (cm)

y (cm)
y = "36 − x2x

12

61. Designing a wok You are designing a wok frying pan that will 
be shaped like a spherical bowl with handles. A bit of experimen-
tation at home persuades you that you can get one that holds 
about 3 L if you make it 9 cm deep and give the sphere a radius of 
16 cm. To be sure, you picture the wok as a solid of revolution, as 
shown here, and calculate its volume with an integral. To the 
nearest cubic centimeter, what volume do you really get? 
(1 L = 1000 cm3)

9 cm deep

0

−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

62. Max-min The arch y = sin x, 0 … x … p, is revolved about 
the line y = c, 0 … c … 1, to generate the solid in the accompa-
nying figure.

a. Find the value of c that minimizes the volume of the solid. 
What is the minimum volume?

b. What value of c in 30, 14  maximizes the volume of the solid?

c.  Graph the solid’s volume as a function of c, first for 
0 … c … 1 and then on a larger domain. What happens to 
the volume of the solid as c moves away from 30, 14 ? Does 
this make sense physically? Give reasons for your answers.

y

0

x

y = c

p

y = sin x

T
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63. Consider the region R bounded by the graphs of y = ƒ(x) 7 0,
x = a 7 0, x = b 7 a, and y = 0 (see accompanying figure). 
If the volume of the solid formed by revolving R about the x-axis
is 4p, and the volume of the solid formed by revolving R about 
the line y = -1 is 8p, find the area of R.

x

y

0 b

R

a

y = f (x)

64. Consider the region R given in Exercise 63. If the volume of the 
solid formed by revolving R around the x-axis is 6p, and the vol-
ume of the solid formed by revolving R around the line y = -2 is 
10p, find the area of R.

6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral V = 1
b

a A(x) dx,
where A(x) is an integrable cross-sectional area of the solid from x = a to x = b. The 
area A(x) was obtained by slicing through the solid with a plane perpendicular to the 
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-
trate in our first example. To overcome this difficulty, we use the same integral definition 
for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie 
cutters. We slice straight down through the solid so that the axis of each cylinder is parallel 
to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the cylin-
ders increase with each slice. In this way the solid is sliced up into thin cylindrical shells 
of constant thickness that grow outward from their common axis, like circular tree rings. 
Unrolling a cylindrical shell shows that its volume is approximately that of a rectangular 
slab with area A(x) and thickness ∆x. This slab interpretation allows us to apply the same 
integral definition for volume as before. The following example provides some insight 
before we derive the general method.

EXAMPLE 1  The region enclosed by the x-axis and the parabola y = ƒ(x) = 3x - x2

is revolved about the vertical line x = -1 to generate a solid (Figure 6.16). Find the vol-
ume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because 
we would need to express the x-values of the left and right sides of the parabola in 
Figure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical 
washer, requiring us to solve y = 3x - x2 for x, which leads to complicated formulas.) 
Instead of rotating a horizontal strip of thickness ∆y, we rotate a vertical strip of thick-
ness ∆x. This rotation produces a cylindrical shell of height yk above a point xk within 
the base of the vertical strip and of thickness ∆x. An example of a cylindrical shell is 
shown as the orange-shaded region in Figure 6.17. We can think of the cylindrical shell 
shown in the figure as approximating a slice of the solid obtained by cutting straight 
down through it, parallel to the axis of revolution, all the way around close to the inside 
hole. We then cut another cylindrical slice around the enlarged hole, then another, and so 
on, obtaining n cylinders. The radii of the cylinders gradually increase, and the heights 
of the cylinders follow the contour of the parabola: shorter to taller, then back to shorter 
(Figure 6.16a).
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Each slice is sitting over a subinterval of the x-axis of length (width) ∆xk . Its radius is 
approximately (1 + xk), and its height is approximately 3xk - xk

2. If we unroll the cylin-
der at xk and flatten it out, it becomes (approximately) a rectangular slab with thickness 
∆xk (Figure 6.18). The outer circumference of the kth cylinder is 2p # radius = 2p(1 + xk),
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that 
of a rectangular solid, the area of the rectangle times its thickness,

∆Vk = circumference * height * thickness

= 2p(1 + xk) # 13xk - xk
22 # ∆xk .

Summing together the volumes ∆Vk of the individual cylindrical shells over the interval 30, 34  gives the Riemann sum

a

n

k=1
∆Vk = a

n

k=1
2p(xk + 1)13xk - xk

22∆xk .

y

x
3

Axis of
revolution

 x = −1

(b)

x

y = 3x − x2

y

1 2 3−2 −1 0

−1

−2

1

2

Axis of
revolution

x = −1

(a)

0

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution. 
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = -1.

3−3

y

x
0 xk

yk

x = −1

FIGURE 6.17 A cylindrical shell of 
height yk obtained by rotating a vertical
strip of thickness ∆xk about the line 
x = -1. The outer radius of the cylinder 
occurs at xk , where the height of the
parabola is yk = 3xk - xk

2 (Example 1).

Radius = 1 + xk

Outer circumference = 2p • radius = 2p(1 + xk)
Δxk

Δxk = thickness

l = 2p(1 + xk)

h = (3xk − xk
2)

(3xk − xk
2)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a 
nearly rectangular solid (Example 1).
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Taking the limit as the thickness ∆xk S 0 and n S q gives the volume integral

V = lim
nSq a

n

k=1
 2p(xk + 1)13xk - xk

22 ∆xk

=
L

3

0
2p(x + 1)(3x - x2) dx

=
L

3

0
2p(3x2 + 3x - x3 - x2) dx

= 2p
L

3

0
(2x2 + 3x - x3) dx

= 2p c 23 x3 + 3
2

x2 - 1
4

x4 d
0

3

= 45p
2

.

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function y = ƒ(x)
and the x-axis over the finite closed interval 3a, b4  lies to the right of the vertical line 
x = L (Figure 6.19a). We assume a Ú L, so the vertical line may touch the region, but 
not pass through it. We generate a solid S by rotating this region about the vertical 
line L.

Let P be a partition of the interval 3a, b4  by the points a = x0 6 x1 6 g 6 xn = b,
and let ck be the midpoint of the kth subinterval 3xk-1, xk4 . We approximate the region in 
Figure 6.19a with rectangles based on this partition of 3a, b4 . A typical approximating 
rectangle has height ƒ(ck) and width ∆xk = xk - xk-1. If this rectangle is rotated about the 
vertical line x = L, then a shell is swept out, as in Figure 6.19b. A formula from geometry 
tells us that the volume of the shell swept out by the rectangle is

∆Vk = 2p * average shell radius * shell height * thickness

= 2p # (ck - L) # ƒ(ck) # ∆xk . R = xk - L and r = xk-1 - L

The volume of a cylindrical shell of 
height h with inner radius r and outer 
radius R is

pR2h - pr2h = 2paR + r
2
b(h)(R - r).

x

b

Rectangle
height = f(ck)

ck

xk

y = f(x)

xk−1

Δxk

a

(b)

Vertical axis
of revolution

y = f (x)

x = L

a ck
xkxk−1

b

(a)

Vertical axis
of revolution

x

Δxk

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line 
x = L, a solid is produced which can be sliced into cylindrical shells. A typical
shell is shown in (b).
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We approximate the volume of the solid S by summing the volumes of the shells swept out 
by the n rectangles based on P:

V ≈ a

n

k=1
∆Vk .

The limit of this Riemann sum as each ∆xk S 0 and n S q gives the volume of the solid 
as a definite integral:

V = lim
nSqa

n

k=1
∆Vk =

L

b

a
2p(shell radius)(shell height) dx

=
L

b

a
2p(x - L)ƒ(x) dx.

We refer to the variable of integration, here x, as the thickness variable. We use the 
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal 
line L as well.

Shell Formula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the x-axis and 
the graph of a continuous function y = ƒ(x) Ú 0, L … a … x … b, about a ver-
tical line x = L is

V =
L

b

a
2pa shell

radius
b a shell

height
b dx.

EXAMPLE 2  The region bounded by the curve y = 2x, the x-axis, and the line 
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis 
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

Interval of
integration

y

x

(4, 2)

4

x

Shell radius

0

x

(b)

2

–4

x

y

0 4

2

Shell radius

Interval of integration

x

Shell
height

y =
"

x

(a)

f(x) =
"

x

x

y =
"

x

"

x = Shell height

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell 
swept out by the vertical segment in part (a) with a width ∆x.
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The shell thickness variable is x, so the limits of integration for the shell formula are 
a = 0 and b = 4 (Figure 6.20). The volume is then

V =
L

b

a
2pa shell

radius
b a shell

height
b dx

=
L

4

0
2p(x)12x2 dx

= 2p
L

4

0
x3>2 dx = 2p c 2

5
x5>2 d

0

4

= 128p
5

.

So far, we have used vertical axes of revolution. For horizontal axes, we replace the 
x’s with y’s.

EXAMPLE 3  The region bounded by the curve y = 2x, the x-axis, and the line 
x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the 
shell method.

Solution This is the solid whose volume was found by the disk method in Example 4 of 
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw 
a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-
ment’s length (shell height) and distance from the axis of revolution (shell radius). (We 
drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell 
formula method are a = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of the 
solid is

V =
L

b

a
2pa shell

radius
b a shell

height
b dy

=
L

2

0
2p( y)(4 - y2) dy

= 2p
L

2

0
(4y - y3) dy

= 2p c 2y2 -
y4

4
d

0

2

= 8p.

(b)
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x = y2

(a)

y

Shell height
y

y (4, 2)

2

0

4

Shell
radius

y =
"

x

x

4 − y2

y

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3. 
(b) The shell swept out by the horizontal segment in part (a) with a width ∆y.
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The shell method gives the same answer as the washer method when both are used to 
calculate the volume of a region. We do not prove that result here, but it is illustrated in 
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually 
special cases of a general volume formula we will look at when studying double and triple 
integrals in Chapter 15. That general formula also allows for computing volumes of solids 
other than those swept out by regions of revolution.

Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the 
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of 
revolution. Label the segment’s height or length (shell height) and distance 
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2p (shell radius) (shell height) with respect to the 
thickness variable (x or y) to find the volume.

Revolution About the Axes
In Exercises 1–6, use the shell method to find the volumes of the 
solids generated by revolving the shaded region about the indicated 
axis.

1. 2.

x

y

0 2

1

y = 1 + x2

4

x

y

0 2

2
y = 2 − x2

4

3. 4.

x

y

0 2

x = y2

y =
"

2
"

2

x

y

0 3

x = 3 − y2

y =
"

3
"

3

5. The y-axis 6. The y-axis

x

y

0

1

2

x =
"

3

"

3

y =
"

x2 + 1

x

y

0 3

5
"

x3 + 9

9xy =

Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by 
revolving the regions bounded by the curves and lines in Exercises 
7–12 about the y-axis.

7. y = x, y = -x>2, x = 2

8. y = 2x, y = x>2, x = 1

9. y = x2, y = 2 - x, x = 0, for x Ú 0

10. y = 2 - x2, y = x2, x = 0

11. y = 2x - 1, y = 2x, x = 0

12. y = 3>122x2, y = 0, x = 1, x = 4

Exercises 6.2
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13. Let ƒ(x) = e (sin x)>x, 0 6 x … p
1, x = 0

a. Show that xƒ(x) = sin x, 0 … x … p.

b. Find the volume of the solid generated by revolving the 
shaded region about the y-axis in the accompanying figure.

x

y

0

1

y =
1, x = 0

,  0 < x ≤ psin x
x

p

14. Let g(x) = e (tan x)2>x, 0 6 x … p>4
0, x = 0

a. Show that x g(x) = (tan x)2, 0 … x … p>4.

b. Find the volume of the solid generated by revolving the 
shaded region about the y-axis in the accompanying figure.

x

y

0

y =
0, x = 0

,  0 < x ≤
tan2 x

x 4

4

4
p

p

p

Revolution About the x-Axis
Use the shell method to find the volumes of the solids generated by 
revolving the regions bounded by the curves and lines in Exercises 
15–22 about the x-axis.

15. x = 2y, x = -y, y = 2

16. x = y2, x = -y, y = 2, y Ú 0

17. x = 2y - y2, x = 0 18. x = 2y - y2, x = y

19. y = 0 x 0 , y = 1 20. y = x, y = 2x, y = 2

21. y = 2x, y = 0, y = x - 2

22. y = 2x, y = 0, y = 2 - x

Revolution About Horizontal and Vertical Lines
In Exercises 23–26, use the shell method to find the volumes of the 
solids generated by revolving the regions bounded by the given curves 
about the given lines.

23. y = 3x, y = 0, x = 2

a. The y-axis b. The line x = 4

c. The line x = -1 d. The x@axis

e. The line y = 7 f. The line y = -2

24. y = x3, y = 8, x = 0

a. The y-axis b. The line x = 3

c. The line x = -2 d. The x@axis

e. The line y = 8 f. The line y = -1

25. y = x + 2, y = x2

a. The line x = 2 b. The line x = -1

c. The x@axis d. The line y = 4

26. y = x4, y = 4 - 3x2

a. The line x = 1 b. The x@axis

In Exercises 27 and 28, use the shell method to find the volumes of 
the solids generated by revolving the shaded regions about the indi-
cated axes.

27. a. The x-axis b. The line y = 1

c. The line y = 8>5 d. The line y = -2>5

x

y

0

1

1

x = 12(y2 − y3)

28. a. The x-axis b. The line y = 2

c. The line y = 5 d. The line y = -5>8

x

y

2

(2, 2)

10

2
x

x =
y2

2

x = −
y4

4
y2

2

Choosing the Washer Method or Shell Method
For some regions, both the washer and shell methods work well for 
the solid generated by revolving the region about the coordinate axes, 
but this is not always the case. When a region is revolved about the 
y-axis, for example, and washers are used, we must integrate with 
respect to y. It may not be possible, however, to express the integrand 
in terms of y. In such a case, the shell method allows us to integrate 
with respect to x instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region 
bounded by y = x and y = x2 about each coordinate axis using

a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the tri-
angular region bounded by the lines 2y = x + 4, y = x, and 
x = 0 about

a. the x-axis using the washer method.

b. the y-axis using the shell method.

c. the line x = 4 using the shell method.

d. the line y = 8 using the washer method.

In Exercises 31–36, find the volumes of the solids generated by 
revolving the regions about the given axes. If you think it would be 
better to use washers in any given instance, feel free to do so.
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31. The triangle with vertices (1, 1), (1, 2), and (2, 2) about

a. the x-axis b. the y-axis

c. the line x = 10>3 d. the line y = 1

32. The region bounded by y = 2x, y = 2, x = 0 about

a. the x-axis b. the y-axis

c. the line x = 4 d. the line y = 2

33. The region in the first quadrant bounded by the curve x = y - y3

and the y-axis about

a. the x-axis b. the line y = 1

34. The region in the first quadrant bounded by x = y - y3, x = 1, 
and y = 1 about

a. the x-axis b. the y-axis

c. the line x = 1 d. the line y = 1

35. The region bounded by y = 2x and y = x2>8 about

a. the x-axis b. the y-axis

36. The region bounded by y = 2x - x2 and y = x about

a. the y-axis b. the line x = 1

37. The region in the first quadrant that is bounded above by the 
curve y = 1>x1>4, on the left by the line x = 1>16, and below by 
the line y = 1 is revolved about the x-axis to generate a solid. 
Find the volume of the solid by

a. the washer method. b. the shell method.

38. The region in the first quadrant that is bounded above by the 
curve y = 1>2x, on the left by the line x = 1>4, and below by 
the line y = 1 is revolved about the y-axis to generate a solid. 
Find the volume of the solid by

a. the washer method. b. the shell method.

Theory and Examples
39. The region shown here is to be revolved about the x-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you 
use to find the volume of the solid? How many integrals would be 
required in each case? Explain.

x

y

0 1

1
(1, 1)

−2

x = y2
x = 3y2 − 2

40. The region shown here is to be revolved about the y-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you 
use to find the volume of the solid? How many integrals would be 
required in each case? Give reasons for your answers.

x

y

1

1

−1

0

y = x2

y =−x4

41. A bead is formed from a sphere of radius 5 by drilling through a 
diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.

b. Find the volume of the removed portion of the sphere.

42. A Bundt cake, well known for having a ringed shape, is formed 
by revolving around the y-axis the region bounded by the graph 
of y = sin (x2 - 1) and the x-axis over the interval 1 … x …
21 + p. Find the volume of the cake.

43. Derive the formula for the volume of a right circular cone of 
height h and radius r using an appropriate solid of revolution.

44. Derive the equation for the volume of a sphere of radius r using 
the shell method.

45. Equivalence of the washer and shell methods for finding vol-
ume Let ƒ be differentiable and increasing on the interval 
a … x … b, with a 7 0, and suppose that ƒ has a differentiable 
inverse, ƒ-1. Revolve about the y-axis the region bounded by the 
graph of ƒ and the lines x = a and y = ƒ(b) to generate a solid. 
Then the values of the integrals given by the washer and shell 
methods for the volume have identical values:

L

ƒ(b)

ƒ(a)
p((ƒ-1(y))2 - a2) dy =

L

b

a
2px(ƒ(b) - ƒ(x)) dx.

To prove this equality, define

W(t) =
L

ƒ(t)

ƒ(a)
p((ƒ-1(y))2 - a2) dy

S(t) =
L

t

a
2px(ƒ(t) - ƒ(x)) dx.

Then show that the functions W and S agree at a point of 3a, b4
and have identical derivatives on 3a, b4 . As you saw in Section 
4.8, Exercise 128, this will guarantee W(t) = S(t) for all t in 
3a, b4 . In particular, W(b) = S(b). (Source: “Disks and Shells 
Revisited” by Walter Carlip, in American Mathematical Monthly,
Feb. 1991, vol. 98, no. 2, pp. 154–156.)

46. The region between the curve y = sec-1 x and the x-axis from 
x = 1 to x = 2 (shown here) is revolved about the y-axis to gen-
erate a solid. Find the volume of the solid.

y = sec−1 x

x

y

210

p
3

47. Find the volume of the solid generated by revolving the region 
enclosed by the graphs of y = e-x2

, y = 0, x = 0, and x = 1
about the y-axis.

48. Find the volume of the solid generated by revolving the region 
enclosed by the graphs of y = ex>2, y = 1, and x = ln 3 about 
the x-axis.
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6.3 Arc Length

We know what is meant by the length of a straight-line segment, but without calculus, we 
have no precise definition of the length of a general winding curve. If the curve is the 
graph of a continuous function defined over an interval, then we can find the length of 
the curve using a procedure similar to that we used for defining the area between the curve 
and the x-axis. This procedure results in a division of the curve from point A to point B
into many pieces and joining successive points of division by straight-line segments. We 
then sum the lengths of all these line segments and define the length of the curve to be the 
limiting value of this sum as the number of segments goes to infinity.

Length of a Curve y = ƒ(x)

Suppose the curve whose length we want to find is the graph of the function y = ƒ(x) from 
x = a to x = b. In order to derive an integral formula for the length of the curve, we assume 
that ƒ has a continuous derivative at every point of 3a, b4 . Such a function is called smooth,
and its graph is a smooth curve because it does not have any breaks, corners, or cusps.

x

y

0 xk−1

Pk−1

xk

Lk

Δxk

Δyk
Pk

y = f (x)

FIGURE 6.23 The arc Pk-1Pk of the 
curve y = ƒ(x) is approximated by the 
straight-line segment shown here, which 
has length Lk = 2(∆xk)2 + (∆yk)2.

FIGURE 6.22 The length of the polygonal path P0P1P2gPn approximates the 
length of the curve y = ƒ(x) from point A to point B.

x

y

y = f (x)

x0 = a b = xn

B = Pn

x1 x2 xk−1 xk

P0 = A

P1
P2

Pk−1

Pk

We partition the interval 3a, b4  into n subintervals with a = x0 6 x1 6 x2 6 g6
xn = b. If yk = ƒ(xk), then the corresponding point Pk(xk , yk) lies on the curve. Next we 
connect successive points Pk-1 and Pk with straight-line segments that, taken together, 
form a polygonal path whose length approximates the length of the curve (Figure 6.22). If 
∆xk = xk - xk-1 and ∆yk = yk - yk-1, then a representative line segment in the path has 
length (see Figure 6.23)

Lk = 2(∆xk)2 + (∆yk)2,

so the length of the curve is approximated by the sum

a

n

k=1
Lk = a

n

k=1
2(∆xk)2 + (∆yk)2. (1)

We expect the approximation to improve as the partition of 3a, b4  becomes finer. Now, by 
the Mean Value Theorem, there is a point ck , with xk-1 6 ck 6 xk , such that

∆yk = ƒ′(ck) ∆xk .
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With this substitution for ∆yk , the sums in Equation (1) take the form

a

n

k=1
Lk = a

n

k=1
2(∆xk)2 + (ƒ′(ck)∆xk)2 = a

n

k=1
21 + 3ƒ′(ck)4 2 ∆xk . (2)

Because 21 + 3ƒ′(x)4 2 is continuous on 3a, b4 , the limit of the Riemann sum on the 
right-hand side of Equation (2) exists as the norm of the partition goes to zero, giving

lim
nSq a

n

k=1
Lk = lim

nSq a

n

k=1
21 + 3ƒ′(ck)4 2 ∆xk =

L

b

a
21 + 3ƒ′(x)4 2 dx.

We define the value of this limiting integral to be the length of the curve.

DEFINITION If ƒ′ is continuous on 3a, b4 , then the length (arc length) of the 
curve y = ƒ(x) from the point A = (a, ƒ(a)) to the point B = (b, ƒ(b)) is the 
value of the integral

L =
L

b

a
21 + 3ƒ′(x)4 2 dx =

L

b

a B1 + ady
dx
b2

dx. (3)

EXAMPLE 1  Find the length of the curve (Figure 6.24)

y = 422
3 x3>2 - 1, 0 … x … 1.

Solution We use Equation (3) with a = 0, b = 1, and

y = 422
3 x3>2 - 1 x = 1, y ≈ 0.89

dy
dx

= 422
3

# 3
2

x1>2 = 222x1>2

ady
dx
b2

= 1222x1>222 = 8x.

The length of the curve over x = 0 to x = 1 is

L =
L

1

0 B1 + ady
dx
b2

dx =
L

1

0
21 + 8x dx

Eq. (3) with 
a = 0, b = 1.

Let u = 1 + 8x ,
integrate, and 
replace u by 
1 + 8x .

= 2
3
# 1

8 (1 + 8x)3>2 d
0

1

= 13
6

≈ 2.17.

Notice that the length of the curve is slightly larger than the length of the straight-line segment 
joining the points A = (0, -1) and B = 11, 422>3 - 12 on the curve (see Figure 6.24):

2.17 7 212 + (1.89)2 ≈ 2.14. Decimal approximations

x

y

0

A

B

1

(1, 0.89)

−1

y = x3/2 − 14
"

2
3

FIGURE 6.24 The length of 
the curve is slightly larger than the 
length of the line segment joining 
points A and B (Example 1).

x

y

0

A

B

41

y = +x3

12
1
x

FIGURE 6.25 The curve in 
Example 2, where A = (1, 13>12)
and B = (4, 67>12).

EXAMPLE 2  Find the length of the graph of

ƒ(x) = x3

12
+ 1

x , 1 … x … 4.

Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

ƒ′(x) = x2

4
- 1

x2
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so

1 + 3ƒ′(x)4 2 = 1 + ax2

4
- 1

x2b
2

= 1 + a x4

16
- 1

2
+ 1

x4b

= x4

16
+ 1

2
+ 1

x4 = ax2

4
+ 1

x2b
2

.

The length of the graph over 31, 44  is
L =

L

4

1
21 + 3ƒ′(x)4 2 dx =

L

4

1
ax2

4
+ 1

x2b dx

= c x3

12
- 1

x d
4

1
= a64

12
- 1

4
b - a 1

12
- 1b = 72

12
= 6.

EXAMPLE 3  Find the length of the curve

y = 1
2

(ex + e-x ), 0 … x … 2.

Solution We use Equation (3) with a = 0, b = 2, and

y = 1
2

(ex + e-x )

dy
dx

= 1
2

(ex - e-x )

ady
dx
b2

= 1
4

(e2x - 2 + e-2x )

1 + ady
dx
b2

= 1
4

(e2x + 2 + e-2x ) = c 1
2

(ex + e-x) d 2.
The length of the curve from x = 0 to x = 2 is

L =
L

2

0 B1 + ady
dx
b2

dx =
L

2

0

1
2

(ex + e-x ) dx
Eq. (3) with
a = 0, b = 2.

= 1
2
c ex - e-x d

0

2

= 1
2

(e2 - e-2) ≈ 3.63.

Dealing with Discontinuities in dy ,dx

At a point on a curve where dy >dx fails to exist, dx >dy may exist. In this case, we may be 
able to find the curve’s length by expressing x as a function of y and applying the follow-
ing analogue of Equation (3):

Formula for the Length of x = g( y), c " y " d

If g′ is continuous on 3c, d4 , the length of the curve x = g(y) from A = (g(c), c)
to B = (g(d), d) is

L =
L

d

c B1 + adx
dy
b2

dy =
L

d

c
21 + 3g′(y)]2 dy. (4)
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EXAMPLE 4  Find the length of the curve y = (x>2)2>3 from x = 0 to x = 2.

Solution The derivative

dy
dx

= 2
3 ax

2
b-1>3 a1

2
b = 1

3 a2xb
1>3

is not defined at x = 0, so we cannot find the curve’s length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

y = ax
2
b2>3

y3>2 = x
2

Raise both sides
to the power 3>2.

x = 2y3>2. Solve for x.

From this we see that the curve whose length we want is also the graph of x = 2y3>2 from 
y = 0 to y = 1 (Figure 6.26).

The derivative

dx
dy

= 2a3
2
by1>2 = 3y1>2

is continuous on 30, 14 . We may therefore use Equation (4) to find the curve’s length:

L =
L

d

c B1 + adx
dy
b2

dy =
L

1

0
21 + 9y dy

Eq. (4) with
c = 0, d = 1.
Let u = 1 + 9y,
du>9 = dy,
integrate, and 
substitute back.

= 1
9
# 2
3 (1 + 9y)3>2 d

0

1

= 2
27
110210 - 12 ≈ 2.27.

The Differential Formula for Arc Length

If y = ƒ(x) and if ƒ′ is continuous on 3a, b4 , then by the Fundamental Theorem of Cal-
culus we can define a new function

s(x) =
L

x

a
21 + 3 ƒ′(t)4 2 dt. (5)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and mea-
sures the length along the curve y = ƒ(x) from the initial point P0(a, ƒ(a)) to the point 
Q(x, ƒ(x)) for each x∊ 3a, b4 . The function s is called the arc length function for 
y = ƒ(x). From the Fundamental Theorem, the function s is differentiable on (a, b) and

ds
dx

= 21 + 3 ƒ′(x)4 2 = B1 + ady
dx
b2

.

Then the differential of arc length is

ds = B1 + ady
dx
b2

dx. (6)

A useful way to remember Equation (6) is to write

ds = 2dx2 + dy2, (7)

which can be integrated between appropriate limits to give the total length of a curve. From 
this point of view, all the arc length formulas are simply different expressions for the equation 

x

y

0

1

2

(2, 1)

1

y =
2	3x

2Q R

FIGURE 6.26 The graph of 
y = (x>2)2>3 from x = 0 to x = 2
is also the graph of x = 2y3>2 from 
y = 0 to y = 1 (Example 4).
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L = 1ds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7). 
Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of 
Figure 6.27a. That is, ds ≈ ∆s.

EXAMPLE 5  Find the arc length function for the curve in Example 2, taking 
A = (1, 13>12) as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

1 + 3ƒ′(x)4 2 = ax2

4
+ 1

x2b
2

.

Therefore the arc length function is given by

s(x) =
L

x

1
21 + 3ƒ′(t)4 2 dt =

L

x

1
at2

4
+ 1

t2b dt

= c t3

12
- 1

t d
x

1
= x3

12
- 1

x + 11
12

.

To compute the arc length along the curve from A = (1, 13>12) to B = (4, 67>12), for 
instance, we simply calculate

s(4) = 43

12
- 1

4
+ 11

12
= 6.

This is the same result we obtained in Example 2.

y

x
0

dx

ds
dy

f

(a)

y

x
0

dx

ds
dy

f

(b)

FIGURE 6.27 Diagrams for remembering 
the equation ds = 2dx2 + dy2.

Finding Lengths of Curves
Find the lengths of the curves in Exercises 1–14. If you have a grapher, 
you may want to graph these curves to see what they look like.

1. y = (1>3)(x2 + 2)3>2 from x = 0 to x = 3

2. y = x3>2 from x = 0 to x = 4

3. x = (y3>3) + 1>(4y) from y = 1 to y = 3

4. x = (y3>2>3) - y1>2 from y = 1 to y = 9

5. x = (y4>4) + 1>(8y2) from y = 1 to y = 2

6. x = (y3>6) + 1>(2y) from y = 2 to y = 3

7. y = (3>4)x4>3 - (3>8)x2>3 + 5, 1 … x … 8

8. y = (x3>3) + x2 + x + 1>(4x + 4), 0 … x … 2

9. y = ln x - x2

8
from x = 1 to x = 2

10. y = x2

2
- ln x

4
from x = 1 to x = 3

11. y = x3

3
+ 1

4x
, 1 … x … 3

12. y = x5

5
+ 1

12x3 ,
1
2

… x … 1

13. x =
L

y

0
2sec4 t - 1 dt, -p>4 … y … p>4

14. y =
L

x

-2
23t4 - 1 dt, -2 … x … -1

Finding Integrals for Lengths of Curves
In Exercises 15–22, do the following.

a. Set up an integral for the length of the curve.

b. Graph the curve to see what it looks like.

c. Use your grapher’s or computer’s integral evaluator to find 
the curve’s length numerically.

15. y = x2, -1 … x … 2

16. y = tan x, -p>3 … x … 0

17. x = sin y, 0 … y … p
18. x = 21 - y2, -1>2 … y … 1>2
19. y2 + 2y = 2x + 1 from (-1, -1) to (7, 3)

20. y = sin x - x cos x, 0 … x … p

21. y =
L

x

0
tan t dt, 0 … x … p>6

22. x =
L

y

0
2sec2 t - 1 dt, -p>3 … y … p>4

Theory and Examples
23. a.  Find a curve with a positive derivative through the point (1, 1) 

whose length integral (Equation 3) is

L =
L

4

1 A1 + 1
4x

dx.

b. How many such curves are there? Give reasons for your answer.

T

Exercises 6.3
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24. a.  Find a curve with a positive derivative through the point (0, 1) 
whose length integral (Equation 4) is

L =
L

2

1 A1 + 1
y4 dy.

b. How many such curves are there? Give reasons for your answer.

25. Find the length of the curve

y =
L

x

0
2cos 2t dt

  from x = 0 to x = p>4.

26. The length of an astroid The graph of the equation x2>3 +
y2>3 = 1 is one of a family of curves called astroids (not “aster-
oids”) because of their starlike appearance (see the accompanying 
figure). Find the length of this particular astroid by finding 
the length of half the first-quadrant portion, y = (1 - x2>3)3>2,
22>4 … x … 1, and multiplying by 8.

x

y

0

1

1−1

−1

x2	3 + y2	3 = 1

27. Length of a line segment Use the arc length formula (Equation 3) 
to find the length of the line segment y = 3 - 2x, 0 … x … 2.
Check your answer by finding the length of the segment as the 
hypotenuse of a right triangle.

28. Circumference of a circle Set up an integral to find the cir-
cumference of a circle of radius r centered at the origin. You will 
learn how to evaluate the integral in Section 8.4.

29. If 9x2 = y(y - 3)2, show that

ds2 =
(y + 1)2

4y
dy2.

30. If 4x2 - y2 = 64, show that

ds2 = 4
y2

(5x2 - 16) dx2.

31. Is there a smooth (continuously differentiable) curve y = ƒ(x)
whose length over the interval 0 … x … a is always 22a? Give 
reasons for your answer.

32. Using tangent fins to derive the length formula for curves
Assume that ƒ is smooth on 3a, b4  and partition the interval 3a, b4
in the usual way. In each subinterval 3xk-1, xk4 , construct the 
tangent fin at the point (xk-1, ƒ(xk-1)), as shown in the accompa-
nying figure.

a. Show that the length of the kth tangent fin over the interval 
[xk-1, xk] equals 2(∆xk)2 + (ƒ′(xk-1) ∆xk)2.

b. Show that

lim
nSq a

n

k=1
(length of kth tangent fin) =

L

b

a
21 + (ƒ′(x))2 dx,

  which is the length L of the curve y = ƒ(x) from a to b.

x

Δxk

Tangent fin
with slope 
f ′(xk−1)

xk−1 xk

(xk−1, f (xk−1))

y = f (x)

33. Approximate the arc length of one-quarter of the unit circle 
(which is p>2) by computing the length of the polygonal approx-
imation with n = 4  segments (see accompanying figure).

x

y

0 10.750.50.25

34. Distance between two points Assume that the two points (x1, y1)
and (x2, y2) lie on the graph of the straight line y = mx + b. Use 
the arc length formula (Equation 3) to find the distance between 
the two points.

35. Find the arc length function for the graph of ƒ(x) = 2x3>2 using 
(0, 0) as the starting point. What is the length of the curve from 
(0, 0) to (1, 2)?

36. Find the arc length function for the curve in Exercise 8, using 
(0, 1>4) as the starting point. What is the length of the curve from 
(0, 1>4) to (1, 59>24)?

COMPUTER EXPLORATIONS
In Exercises 37–42, use a CAS to perform the following steps for the 
given graph of the function over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See 
Figure 6.22.)

b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare 
your approximations for n = 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

37. ƒ(x) = 21 - x2, -1 … x … 1

38. ƒ(x) = x1>3 + x2>3, 0 … x … 2

39. ƒ(x) = sin (px2), 0 … x … 22

40. ƒ(x) = x2 cos x, 0 … x … p

41. ƒ(x) = x - 1
4x2 + 1

, - 1
2

… x … 1

42. ƒ(x) = x3 - x2, -1 … x … 1
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6.4 Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you similar to 
what is called a surface of revolution. The surface surrounds a volume of revolution, and 
many applications require that we know the area of the surface rather than the volume it 
encloses. In this section we define areas of surfaces of revolution. More general surfaces 
are treated in Chapter 16.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an 
interval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if 
you revolve only the bounding curve itself, it does not sweep out any interior volume but 
rather a surface that surrounds the solid and forms part of its boundary. Just as we were 
interested in defining and finding the length of a curve in the last section, we are now 
interested in defining and finding the area of a surface generated by revolving a curve 
about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line 
segments about the x-axis. If we rotate the horizontal line segment AB having length ∆x
about the x-axis (Figure 6.28a), we generate a cylinder with surface area 2py∆x. This area 
is the same as that of a rectangle with side lengths ∆x and 2py (Figure 6.28b). The length 
2py is the circumference of the circle of radius y generated by rotating the point (x, y) on 
the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now 
when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From 
classical geometry, the surface area of this frustum is 2py*L, where y* = (y1 + y2)>2 is 
the average height of the slanted segment AB above the x-axis. This surface area is the 
same as that of a rectangle with side lengths L and 2py* (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by 
revolving more general curves about the x-axis. Suppose we want to find the area of the 
surface swept out by revolving the graph of a nonnegative continuous function 
y = ƒ(x), a … x … b, about the x-axis. We partition the closed interval 3a, b4  in the usual 
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30 
shows a typical arc PQ and the band it sweeps out as part of the graph of ƒ.

y

y2y1

A

B

(a)

L

2py*

NOT TO SCALE

(b)

x

y*

0

L

FIGURE 6.29 (a) The frustum of a cone generated by rotating 
the slanted line segment AB of length L about the x-axis has area 

2py* L. (b) The area of the rectangle for y* =
y1 + y2

2
, the average 

height of AB above the x-axis.

FIGURE 6.28 (a) A cylindrical surface 
generated by rotating the horizontal line 
segment AB of length ∆x about the x-axis
has area 2py∆x . (b) The cut and rolled-
out cylindrical surface as a rectangle.

y

0

A B

y

x

(a)

x

Δx

2py

NOT TO SCALE

(b)

Δx
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As the arc PQ revolves about the x-axis, the line segment joining P and Q sweeps out 
a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area of this 
frustum approximates the surface area of the band swept out by the arc PQ. The surface 
area of the frustum of the cone shown in Figure 6.31 is 2py*L, where y* is the average 
height of the line segment joining P and Q, and L is its length (just as before). Since 
ƒ Ú 0, from Figure 6.32 we see that the average height of the line segment is 

y* = (ƒ(xk-1) + ƒ(xk))>2, and the slant length is L = 2(∆xk)2 + (∆yk)2. Therefore,

 Frustum surface area = 2p # ƒ(xk-1) + ƒ(xk)
2

# 2(∆xk)2 + (∆yk)2

= p(ƒ(xk-1) + ƒ(xk))2(∆xk)2 + (∆yk)2.

The area of the original surface, being the sum of the areas of the bands swept out by 
arcs like arc PQ, is approximated by the frustum area sum

a

n

k=1
p(ƒ(xk-1) + ƒ(xk))2(∆xk)2 + (∆yk)2. (1)

We expect the approximation to improve as the partition of 3a, b4  becomes finer. More-
over, if the function ƒ is differentiable, then by the Mean Value Theorem, there is a point 
(ck , ƒ(ck)) on the curve between P and Q where the tangent is parallel to the segment PQ
(Figure 6.33). At this point,

 ƒ′(ck) =
∆yk

∆xk
,

∆yk = ƒ′(ck) ∆xk .

With this substitution for ∆yk , the sums in Equation (1) take the form

a

n

k=1
p(ƒ(xk-1) + ƒ(xk))2(∆xk)2 + (ƒ′(ck) ∆xk)2

= a

n

k=1
p(ƒ(xk-1) + ƒ(xk))21 + (ƒ′(ck))2 ∆xk. (2)

These sums are not the Riemann sums of any function because the points xk-1, xk , and ck

are not the same. However, it can be proved that as the norm of the partition of 3a, b4  goes 
to zero, the sums in Equation (2) converge to the integral

L

b

a
2pƒ(x)21 + (ƒ′(x))2 dx.

We therefore define this integral to be the area of the surface swept out by the graph of ƒ 
from a to b.

xk

xk−1

P
Q

x

FIGURE 6.31 The line segment joining 
P and Q sweeps out a frustum of a cone.

y = f (x)

Segment length:
L =

"

(Δxk)2 + (Δyk)2

Q

P

r2 = f (xk)
r1 = f (xk − 1)

Δyk

Δxk

xk – 1 xk

FIGURE 6.32 Dimensions associated 
with the arc and line segment PQ.

y y = f(x)
P Q

0

xk−1 xk

a

xb

FIGURE 6.30 The surface generated 
by revolving the graph of a nonnegative 
function y = ƒ(x), a … x … b, about the 
x-axis. The surface is a union of bands like 
the one swept out by the arc PQ.

DEFINITION If the function ƒ(x) Ú 0 is continuously differentiable on 3a, b4 ,
the area of the surface generated by revolving the graph of y = ƒ(x) about the 
x-axis is

S =
L

b

a
2pyB1 + ady

dx
b2

dx =
L

b

a
2pƒ(x)21 + (ƒ′(x))2 dx. (3)

The square root in Equation (3) is the same one that appears in the formula for the arc 
length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1  Find the area of the surface generated by revolving the curve y = 22x, 
1 … x … 2, about the x-axis (Figure 6.34).
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Solution We evaluate the formula

S =
L

b

a
2pyB1 + ady

dx
b2

dx Eq. (3)

with

a = 1, b = 2, y = 22x,
dy
dx

= 1

2x
.

First, we perform some algebraic manipulation on the radical in the integrand to transform 
it into an expression that is easier to integrate.

B1 + ady
dx
b2

= B1 + a 1

2x
b2

= A1 + 1
x = A

x + 1
x = 2x + 1

2x

With these substitutions, we have

S =
L

2

1
2p # 22x

2x + 1

2x
dx = 4p

L

2

1
2x + 1 dx

= 4p # 2
3 (x + 1)3>2 d

1

2

= 8p
3 1323 - 2222.

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

y = f (x)

Q

P
Δyk

Δxk

xk−1 xkck

Tangent parallel
to chord

(ck, f (ck))

FIGURE 6.33 If ƒ is smooth, the Mean 
Value Theorem guarantees the existence of 
a point ck where the tangent is parallel to 
segment PQ.

0
1

2
x

y

(1, 2)

y = 2
"

x

(2, 2
"

2)

FIGURE 6.34 In Example 1 we calcu-
late the area of this surface.

A(0, 1)

B(1, 0)

x + y = 1

0

x

y

FIGURE 6.35 Revolving line segment 
AB about the y-axis generates a cone whose 
lateral surface area we can now calculate in 
two different ways (Example 2).

Surface Area for Revolution About the y-Axis

If x = g(y) Ú 0 is continuously differentiable on 3c, d4 , the area of the surface 
generated by revolving the graph of x = g(y) about the y-axis is

S =
L

d

c
2pxB1 + adx

dy
b2

dy =
L

d

c
2pg(y)21 + (g′(y))2 dy. (4)

EXAMPLE 2  The line segment x = 1 - y, 0 … y … 1, is revolved about the y-axis to 
generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base area).

Solution Here we have a calculation we can check with a formula from geometry:

Lateral surface area = base circumference
2

* slant height = p22.

To see how Equation (4) gives the same result, we take

c = 0, d = 1, x = 1 - y,
dx
dy

= -1,

B1 + adx
dy
b2

= 21 + (-1)2 = 22
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and calculate

S =
L

d

c
2pxB1 + adx

dy
b2

dy =
L

1

0
2p(1 - y)22 dy

= 2p22 c y -
y2

2
d

0

1

= 2p22 a1 - 1
2
b

= p22.

The results agree, as they should.

Finding Integrals for Surface Area
In Exercises 1–8:

a. Set up an integral for the area of the surface generated by 
revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like. If you can, graph 
the surface too.

c. Use your utility’s integral evaluator to find the surface’s area 
numerically.

1. y = tan x, 0 … x … p>4; x@axis

2. y = x2, 0 … x … 2; x@axis

3. xy = 1, 1 … y … 2; y@axis

4. x = sin y, 0 … y … p; y@axis

5. x1>2 + y1>2 = 3 from (4, 1) to (1, 4); x-axis

6. y + 22y = x, 1 … y … 2; y@axis

7. x =
L

y

0
tan t dt, 0 … y … p>3; y@axis

8. y =
L

x

1
2t2 - 1 dt, 1 … x … 25; x@axis

Finding Surface Area
9. Find the lateral (side) surface area of the cone generated by 

revolving the line segment y = x>2, 0 … x … 4, about the 
x-axis. Check your answer with the geometry formula

Lateral surface area = 1
2

* base circumference * slant height.

10. Find the lateral surface area of the cone generated by revolving 
the line segment y = x>2, 0 … x … 4, about the y-axis. Check 
your answer with the geometry formula

Lateral surface area = 1
2

* base circumference * slant height.

11. Find the surface area of the cone frustum generated by revolving 
the line segment y = (x>2) + (1>2), 1 … x … 3, about the 
x-axis. Check your result with the geometry formula

Frustum surface area = p(r1 + r2) * slant height.

12. Find the surface area of the cone frustum generated by revolving 
the line segment y = (x>2) + (1>2), 1 … x … 3, about the 
y-axis. Check your result with the geometry formula

Frustum surface area = p(r1 + r2) * slant height.

T

T

Find the areas of the surfaces generated by revolving the curves in 
Exercises 13–23 about the indicated axes. If you have a grapher, you 
may want to graph these curves to see what they look like.

13. y = x3>9, 0 … x … 2; x@axis

14. y = 2x, 3>4 … x … 15>4; x@axis

15. y = 22x - x2, 0.5 … x … 1.5; x@axis

16. y = 2x + 1, 1 … x … 5; x@axis

17. x = y3>3, 0 … y … 1; y@axis

18. x = (1>3)y3>2 - y1>2, 1 … y … 3; y@axis

19. x = 224 - y, 0 … y … 15>4; y@axis

4

0
x

y

x = 2
"

4 − y

15
4

1,
15
4a      b

20. x = 22y - 1, 5>8 … y … 1; y@axis

x

y

1
2

5
8

,5
8 0

1
2 1

1 (1, 1)

x =
"

2y − 1
a  b

21. x = (ey + e-y)>2,  0 … y … ln 2; y-axis

0

ln 2

1

x = ey + e−y

2

x

y

Exercises 6.4
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22. y = (1>3)(x2 + 2)3>2, 0 … x … 22; y@axis (Hint: Express 
ds = 2dx2 + dy2 in terms of dx, and evaluate the integral 
S = 1 2px ds with appropriate limits.)

23. x = (y4>4) + 1>(8y2), 1 … y … 2; x@axis (Hint: Express 

ds = 2dx2 + dy2 in terms of dy, and evaluate the integral 

S = 1 2py ds with appropriate limits.)

24. Write an integral for the area of the surface generated by revolv-
ing the curve y = cos x, -p>2 … x … p>2, about the x-axis. In 
Section 8.4 we will see how to evaluate such integrals.

25. Testing the new definition Show that the surface area of a 
sphere of radius a is still 4pa2 by using Equation (3) to find the 
area of the surface generated by revolving the curve 
y = 2a2 - x2,  -a … x … a, about the x-axis.

26. Testing the new definition The lateral (side) surface area of a 
cone of height h and base radius r should be pr2r2 + h2, the 
semiperimeter of the base times the slant height. Show that this is 
still the case by finding the area of the surface generated by 
revolving the line segment y = (r>h) x, 0 … x … h, about the 
x-axis.

27. Enameling woks Your company decided to put out a deluxe 
version of a wok you designed. The plan is to coat it inside with 
white enamel and outside with blue enamel. Each enamel will be 
sprayed on 0.5 mm thick before baking. (See accompanying fig-
ure.) Your manufacturing department wants to know how much 
enamel to have on hand for a production run of 5000 woks. What 
do you tell them? (Neglect waste and unused material and give 
your answer in liters. Remember that 1 cm3 = 1 mL, so 
1 L = 1000 cm3.)

9 cm deep

0
−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

28. Slicing bread Did you know that if you cut a spherical loaf of 
bread into slices of equal width, each slice will have the same 
amount of crust? To see why, suppose the semicircle 
y = 2r2 - x2 shown here is revolved about the x-axis to gener-
ate a sphere. Let AB be an arc of the semicircle that lies above an 
interval of length h on the x-axis. Show that the area swept out by 
AB does not depend on the location of the interval. (It does 
depend on the length of the interval.)

h

x

y

r

A
B

a0 a + h−r

y =
"

r2 − x2

T

29. The shaded band shown here is cut from a sphere of radius R by 
parallel planes h units apart. Show that the surface area of the 
band is 2pRh.

h

R

30. Here is a schematic drawing of the 90-ft dome used by the U.S. 
National Weather Service to house radar in Bozeman, Montana.

a. How much outside surface is there to paint (not counting the 
bottom)?

b. Express the answer to the nearest square foot.

A
xi

s

45 ft

22.5 ft

Center
Radius
45 ft

31. An alternative derivation of the surface area formula Assume
ƒ is smooth on 3a, b4  and partition 3a, b4  in the usual way. In 
the kth subinterval 3xk-1, xk4 , construct the tangent line to the 
curve at the midpoint mk = (xk-1 + xk)>2, as in the accompany-
ing figure.

a. Show that

r1 = ƒ(mk) - ƒ′(mk)
∆xk

2
and r2 = ƒ(mk) + ƒ′(mk)

∆xk

2
.

b. Show that the length Lk of the tangent line segment in the kth
subinterval is Lk = 2(∆xk)2 + (ƒ′(mk) ∆xk)2.

xk−1

r1

r2

mk xk

y = f (x)

Δxk

x

T



6.5  Work and Fluid Forces 395

c. Show that the lateral surface area of the frustum of the cone 
swept out by the tangent line segment as it revolves about the 
x-axis is 2pƒ(mk)21 + (ƒ′(mk))2 ∆xk .

d. Show that the area of the surface generated by revolving 
y = ƒ(x) about the x-axis over 3a, b4  is

lim
nSq a

n

k=1
alateral surface area

of kth frustum
b =

L

b

a
2pƒ(x)21 + (ƒ′(x))2 dx.

32. The surface of an astroid Find the area of the surface gener-
ated by revolving about the x-axis the portion of the astroid 
x2>3 + y2>3 = 1 shown in the accompanying figure. 

  (Hint: Revolve the first-quadrant portion y = (1 - x2>3)3>2,
0 … x … 1, about the x-axis and double your result.)

x2	3 + y2	3 = 1

x

y

−1 0

1

1

6.5 Work and Fluid Forces

In everyday life, work means an activity that requires muscular or mental effort. In sci-
ence, the term refers specifically to a force acting on an object and the object’s subsequent 
displacement. This section shows how to calculate work. The applications run from com-
pressing railroad car springs and emptying subterranean tanks to forcing subatomic parti-
cles to collide and lifting satellites into orbit.

Work Done by a Constant Force

When an object moves a distance d along a straight line as a result of being acted on by a 
force of constant magnitude F in the direction of motion, we define the work W done by 
the force on the object with the formula

W = Fd (Constant@force formula for work). (1)

From Equation (1) we see that the unit of work in any system is the unit of force mul-
tiplied by the unit of distance. In SI units (SI stands for Système International, or Interna-
tional System), the unit of force is a newton, the unit of distance is a meter, and the unit of 
work is a newton-meter (N # m). This combination appears so often it has a special name, 
the joule. In the British system, the unit of work is the foot-pound, a unit sometimes used 
in applications.

EXAMPLE 1  Suppose you jack up the side of a 2000-lb car 1.25 ft to change a tire. 
The jack applies a constant vertical force of about 1000 lb in lifting the side of the car (but 
because of the mechanical advantage of the jack, the force you apply to the jack itself is 
only about 30 lb). The total work performed by the jack on the car is 1000 * 1.25 = 1250
ft-lb. In SI units, the jack has applied a force of 4448 N through a distance of 0.381 m to 
do 4448 * 0.381 ≈ 1695 J of work.

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are stretching or compressing 
a spring, the formula W = Fd  has to be replaced by an integral formula that takes the 
variation in F into account.

Suppose that the force performing the work acts on an object moving along a straight 
line, which we take to be the x-axis. We assume that the magnitude of the force is a continu-
ous function F of the object’s position x. We want to find the work done over the interval 
from x = a to x = b. We partition 3a, b4  in the usual way and choose an arbitrary point ck

in each subinterval 3xk-1, xk4 . If the subinterval is short enough, the continuous function F

Joules
The joule, abbreviated J, is named after 
the English physicist James Prescott 
Joule (1818–1889). The defining equa-
tion is

1 joule = (1 newton)(1 meter).

In symbols, 1 J = 1 N # m.
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will not vary much from xk-1 to xk . The amount of work done across the interval will be 
about F(ck) times the distance ∆xk , the same as it would be if F were constant and we 
could apply Equation (1). The total work done from a to b is therefore approximated by 
the Riemann sum

Work ≈ a

n

k=1
F(ck) ∆xk .

We expect the approximation to improve as the norm of the partition goes to zero, so we 
define the work done by the force from a to b to be the integral of F from a to b:

lim
nSq a

n

k=1
F(ck) ∆xk =

L

b

a
F(x) dx.

The units of the integral are joules if F is in newtons and x is in meters, and foot-pounds if 
F is in pounds and x is in feet. So the work done by a force of F(x) = 1>x2 newtons in 
moving an object along the x-axis from x = 1 m to x = 10 m is

W =
L

10

1

1
x2 dx = - 1

x d
1

10

= - 1
10

+ 1 = 0.9 J.

Hooke’s Law for Springs: F = kx

One calculation for work arises in finding the work required to stretch or compress a 
spring. Hooke’s Law says that the force required to hold a stretched or compressed spring 
x units from its natural (unstressed) length is proportional to x. In symbols,

F = kx. (3)

The constant k, measured in force units per unit length, is a characteristic of the 
spring, called the force constant (or spring constant) of the spring. Hooke’s Law, Equa-
tion (3), gives good results as long as the force doesn’t distort the metal in the spring. We 
assume that the forces in this section are too small to do that.

EXAMPLE 2  Find the work required to compress a spring from its natural length of 
1 ft to a length of 0.75 ft if the force constant is k = 16 lb>ft.
Solution We picture the uncompressed spring laid out along the x-axis with its movable 
end at the origin and its fixed end at x = 1 ft (Figure 6.36). This enables us to describe the 
force required to compress the spring from 0 to x with the formula F = 16x. To compress 
the spring from 0 to 0.25 ft, the force must increase from

F(0) = 16 # 0 = 0 lb to F(0.25) = 16 # 0.25 = 4 lb.

The work done by F over this interval is

W =
L

0.25

0
16x dx = 8x2 d

0

0.25

= 0.5 ft@lb.
Eq. (2) with 
a = 0, b = 0.25, 
F(x) = 16x

DEFINITION The work done by a variable force F(x) in moving an object along 
the x-axis from x = a to x = b is

W =
L

b

a
F(x) dx. (2)

FIGURE 6.36 The force F needed to 
hold a spring under compression increases 
linearly as the spring is compressed
(Example 2).

x

F

0 Uncompressed

x (ft)

F

0 0.25

4

Fo
rc

e 
(l

b)

1

Compressed

x

(a)

Amount compressed

(b)

Work done by F
from x = 0  to x = 0.25

F = 16x
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EXAMPLE 3  A spring has a natural length of 1 m. A force of 24 N holds the spring 
stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural length?

(c) How far will a 45-N force stretch the spring?

Solution
(a) The force constant. We find the force constant from Equation (3). A force of 24 N 

maintains the spring at a position where it is stretched 0.8 m from its natural length, so

24 = k(0.8) Eq. (3) with
F = 24, x = 0.8k = 24>0.8 = 30 N>m.

(b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging along 
the x-axis with its free end at x = 0 (Figure 6.37). The force required to stretch the 
spring x m beyond its natural length is the force required to hold the free end of the 
spring x units from the origin. Hooke’s Law with k = 30 says that this force is

F(x) = 30x.

  The work done by F on the spring from x = 0 m to x = 2 m is

W =
L

2

0
30x dx = 15x2 d

0

2

= 60 J.

(c) How far will a 45-N force stretch the spring? We substitute F = 45 in the equation 
F = 30x to find

45 = 30x, or x = 1.5 m.

A 45-N force will keep the spring stretched 1.5 m beyond its natural length.

Lifting Objects and Pumping Liquids from Containers

The work integral is useful to calculate the work done in lifting objects whose weights 
vary with their elevation.

EXAMPLE 4  A 5-lb bucket is lifted from the ground into the air by pulling in 20 ft of 
rope at a constant speed (Figure 6.38). The rope weighs 0.08 lb>ft. How much work was 
spent lifting the bucket and rope?

Solution The bucket has constant weight, so the work done lifting it alone is weight *
distance = 5 # 20 = 100 ft@lb.

The weight of the rope varies with the bucket’s elevation, because less of it is freely 
hanging. When the bucket is x ft off the ground, the remaining proportion of the rope still 
being lifted weighs (0.08) # (20 - x) lb. So the work in lifting the rope is

Work on rope =
L

20

0
(0.08)(20 - x) dx =

L

20

0
(1.6 - 0.08x) dx

= 31.6x - 0.04x240
20 = 32 - 16 = 16 ft@lb.

The total work for the bucket and rope combined is

100 + 16 = 116 ft@lb.

How much work does it take to pump all or part of the liquid from a container? Engi-
neers often need to know the answer in order to design or choose the right pump, or to com-
pute the cost, to transport water or some other liquid from one place to another. To find out 
how much work is required to pump the liquid, we imagine lifting the liquid out one thin 

24 N

x (m)

x = 0

0.8

1

FIGURE 6.37 A 24-N weight stretches 
this spring 0.8 m beyond its unstressed 
length (Example 3).

20

x

0

FIGURE 6.38 Lifting the bucket in 
Example 4.
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horizontal slab at a time and applying the equation W = Fd to each slab. We then evaluate 
the integral this leads to as the slabs become thinner and more numerous. The integral we get 
each time depends on the weight of the liquid and the dimensions of the container, but the 
way we find the integral is always the same. The next example shows what to do.

EXAMPLE 5  The conical tank in Figure 6.39 is filled to within 2 ft of the top with olive 
oil weighing 57 lb>ft3. How much work does it take to pump the oil to the rim of the tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to the y-axis
at the points of a partition of the interval 30, 84 .

The typical slab between the planes at y and y + ∆y has a volume of about

∆V = p(radius)2(thickness) = pa1
2

yb2

∆y = p
4

y2 ∆y ft3.

The force F(y) required to lift this slab is equal to its weight,

F(y) = 57 ∆V = 57p
4

y2 ∆y lb.
Weight = (weight per unit
volume) * volume

The distance through which F(y) must act to lift this slab to the level of the rim of the 
cone is about (10 - y) ft, so the work done lifting the slab is about

∆W = 57p
4

(10 - y)y2 ∆y ft@lb.

Assuming there are n slabs associated with the partition of 30, 84 , and that y = yk denotes 
the plane associated with the kth slab of thickness ∆yk , we can approximate the work done 
lifting all of the slabs with the Riemann sum

W ≈ a

n

k=1

57p
4

(10 - yk)yk
2 ∆yk ft@lb.

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-
tion goes to zero and the number of slabs tends to infinity:

W = lim
nSq a

n

k=1

57p
4

 (10 - yk)yk
2 ∆yk =

L

8

0

57p
4

 (10 - y)y2 dy

= 57p
4 L

8

0
(10y2 - y3) dy

= 57p
4
c 10y3

3 -
y4

4
d

0

8

≈ 30,561 ft@lb.

Fluid Pressure and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure 
against them increases with depth. The pressure at any point on a dam depends only on 
how far below the surface the point is and not on how much the surface of the dam hap-
pens to be tilted at that point. The pressure, in pounds per square foot at a point h feet 
below the surface, is always 62.4h. The number 62.4 is the weight-density of freshwater in 
pounds per cubic foot. The pressure h feet below the surface of any fluid is the fluid’s 
weight-density times h.

x

y

10

8
10 − y

0

5

y1
2

y = 2x or x = y1
2

(5, 10)

Δy

y

FIGURE 6.39 The olive oil and tank in 
Example 5.

FIGURE 6.40 To withstand the increas-
ing pressure, dams are built thicker as they 
go down.

Weight-density
A fluid’s weight-density w is its weight 
per unit volume. Typical values (lb>ft3)
are listed below.

Gasoline 42
Mercury 849
Milk 64.5
Molasses 100
Olive oil 57
Seawater 64
Freshwater 62.4

The Pressure-Depth Equation

In a fluid that is standing still, the pressure p at depth h is the fluid’s weight-
density w times h:

p = wh. (4)
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In a container of fluid with a flat horizontal base, the total force exerted by the fluid 
against the base can be calculated by multiplying the area of the base by the pressure at the 
base. We can do this because total force equals force per unit area (pressure) times area. 
(See Figure 6.41.) If F, p, and A are the total force, pressure, and area, then

F = total force = force per unit area * area

= pressure * area = pA

= whA. p = wh from Eq. (4)

h

FIGURE 6.41 These containers are 
filled with water to the same depth and 
have the same base area. The total force is 
therefore the same on the bottom of each 
container. The containers’ shapes do not 
matter here.

For example, the weight-density of freshwater is 62.4 lb>ft3, so the fluid force at the bot-
tom of a 10 ft * 20 ft rectangular swimming pool 3 ft deep is

F = whA = (62.4 lb>ft3)(3 ft)(10 # 20 ft2)

= 37,440 lb.

For a flat plate submerged horizontally, like the bottom of the swimming pool just 
discussed, the downward force acting on its upper face due to liquid pressure is given by 
Equation (5). If the plate is submerged vertically, however, then the pressure against it will 
be different at different depths and Equation (5) no longer is usable in that form (because 
h varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical 
plate submerged in a fluid of weight-density w. To find it, we model the plate as a region 
extending from y = a to y = b in the xy-plane (Figure 6.42). We partition 3a, b4  in the 
usual way and imagine the region to be cut into thin horizontal strips by planes perpen-
dicular to the y-axis at the partition points. The typical strip from y to y + ∆y is ∆y units 
wide by L(y) units long. We assume L(y) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough, 
however, the pressure will remain close to its bottom-edge value of w * (strip depth). The 
force exerted by the fluid against one side of the strip will be about

∆F = (pressure along bottom edge) * (area)

= w # (strip depth) # L(y)∆y.

Assume there are n strips associated with the partition of a … y … b and that yk is the bot-
tom edge of the kth strip having length L(yk) and width ∆yk . The force against the entire 
plate is approximated by summing the forces against each strip, giving the Riemann sum

F ≈ a

n

k=1
(w # (strip depth)k

# L(yk))∆yk. (6)

The sum in Equation (6) is a Riemann sum for a continuous function on 3a, b4, and we 
expect the approximations to improve as the norm of the partition goes to zero. The force 
against the plate is the limit of these sums:

lim
nSq a

n

k=1
(w # (strip depth)k

# L(yk))∆yk =
L

b

a
w # (strip depth) # L(y) dy.

Fluid Force on a Constant-Depth Surface

F = pA = whA (5)

y

Surface of fluid

Strip length at level y 

Submerged vertical
plate

b

y

a

Δy

Strip
depth

L(y)

FIGURE 6.42 The force exerted by a 
fluid against one side of a thin, flat horizon-
tal strip is about ∆F = pressure * area =
w * (strip depth) * L(y)∆y.
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EXAMPLE 6  A flat isosceles right-triangular plate with base 6 ft and height 3 ft is 
submerged vertically, base up, 2 ft below the surface of a swimming pool. Find the force 
exerted by the water against one side of the plate.

Solution We establish a coordinate system to work in by placing the origin at the plate’s 
bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 6.43). 
The surface of the pool lies along the line y = 5 and the plate’s top edge along the line 
y = 3. The plate’s right-hand edge lies along the line y = x, with the upper-right vertex at 
(3, 3). The length of a thin strip at level y is

L(y) = 2x = 2y.

The depth of the strip beneath the surface is (5 - y). The force exerted by the water 
against one side of the plate is therefore

F =
L

b

a
w # a strip

depth
b # L(y) dy Eq. (7)

=
L

3

0
62.4 (5 - y)2y dy

= 124.8
L

3

0
(5y - y2) dy

= 124.8 c 5
2

y2 -
y3

3 d 0
3

= 1684.8 lb.

The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in fluid of weight-density w runs from 
y = a to y = b on the y-axis. Let L(y) be the length of the horizontal strip mea-
sured from left to right along the surface of the plate at level y. Then the force 
exerted by the fluid against one side of the plate is

F =
L

b

a
w # (strip depth) # L(y) dy. (7)

x (ft)
0

Pool surface at

Depth:
5 − y y (3, 3)

Δy

y = 5

y = 3

y = x or x = y

y (ft)

(x, x) = (y, y)

x = y

FIGURE 6.43 To find the force on one 
side of the submerged plate in Example 6, 
we can use a coordinate system like the 
one here.

Springs
1. Spring constant It took 1800 J of work to stretch a spring from 

its natural length of 2 m to a length of 5 m. Find the spring’s force 
constant.

2. Stretching a spring A spring has a natural length of 10 in. An 
800-lb force stretches the spring to 14 in.

a. Find the force constant.

b. How much work is done in stretching the spring from 10 in. 
to 12 in.?

c. How far beyond its natural length will a 1600-lb force stretch 
the spring?

3. Stretching a rubber band A force of 2 N will stretch a rubber 
band 2 cm (0.02 m). Assuming that Hooke’s Law applies, how far 
will a 4-N force stretch the rubber band? How much work does it 
take to stretch the rubber band this far?

4. Stretching a spring If a force of 90 N stretches a spring 1 m 
beyond its natural length, how much work does it take to stretch 
the spring 5 m beyond its natural length?

5. Subway car springs It takes a force of 21,714 lb to compress a 
coil spring assembly on a New York City Transit Authority subway 
car from its free height of 8 in. to its fully compressed height of 5 in.

a. What is the assembly’s force constant?

b. How much work does it take to compress the assembly the 
first half inch? the second half inch? Answer to the nearest 
in.-lb.

6. Bathroom scale A bathroom scale is compressed 1>16 in. 
when a 150-lb person stands on it. Assuming that the scale 
behaves like a spring that obeys Hooke’s Law, how much does 
someone who compresses the scale 1 >8 in. weigh? How much 
work is done compressing the scale 1 >8 in.?

Exercises 6.5
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Work Done by a Variable Force
7. Lifting a rope A mountain climber is about to haul up a 50-m 

length of hanging rope. How much work will it take if the rope 
weighs 0.624 N>m?

8. Leaky sandbag A bag of sand originally weighing 144 lb was 
lifted at a constant rate. As it rose, sand also leaked out at a con-
stant rate. The sand was half gone by the time the bag had been 
lifted to 18 ft. How much work was done lifting the sand this far? 
(Neglect the weight of the bag and lifting equipment.)

9. Lifting an elevator cable An electric elevator with a motor at
the top has a multistrand cable weighing 4.5 lb>ft. When the car is at 
the first floor, 180 ft of cable are paid out, and effectively 0 ft are out 
when the car is at the top floor. How much work does the motor do 
just lifting the cable when it takes the car from the first floor to the top?

10. Force of attraction When a particle of mass m is at (x, 0), it is 
attracted toward the origin with a force whose magnitude is k>x2.
If the particle starts from rest at x = b and is acted on by no other 
forces, find the work done on it by the time it reaches x = a,  
0 6 a 6 b.

11. Leaky bucket Assume the bucket in Example 4 is leaking. It 
starts with 2 gal of water (16 lb) and leaks at a constant rate. It 
finishes draining just as it reaches the top. How much work was 
spent lifting the water alone? (Hint: Do not include the rope and 
bucket, and find the proportion of water left at elevation x ft.)

12. (Continuation of Exercise 11.) The workers in Example 4 and 
Exercise 11 changed to a larger bucket that held 5 gal (40 lb) of 
water, but the new bucket had an even larger leak so that it, too, 
was empty by the time it reached the top. Assuming that the water 
leaked out at a steady rate, how much work was done lifting the 
water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers
13. Pumping water The rectangular tank shown here, with its top 

at ground level, is used to catch runoff water. Assume that the 
water weighs 62.4 lb>ft3.

a. How much work does it take to empty the tank by pumping 
the water back to ground level once the tank is full?

b. If the water is pumped to ground level with a (5>11)-
horsepower (hp) motor (work output 250 ft-lb > sec), how long 
will it take to empty the full tank (to the nearest minute)?

c. Show that the pump in part (b) will lower the water level 
10 ft (halfway) during the first 25 min of pumping.

d. The weight of water What are the answers to parts (a) and
(b) in a location where water weighs 62.26 lb>ft3? 62.59 lb>ft3?

y

0

10 ft
12 ft

Δy

20

y

Ground
level

14. Emptying a cistern The rectangular cistern (storage tank for 
rainwater) shown has its top 10 ft below ground level. The cis-
tern, currently full, is to be emptied for inspection by pumping its 
contents to ground level.

a. How much work will it take to empty the cistern?

b. How long will it take a 1>2-hp pump, rated at 275 ft-lb > sec,
to pump the tank dry?

c. How long will it take the pump in part (b) to empty the tank 
halfway? (It will be less than half the time required to empty 
the tank completely.)

d. The weight of water What are the answers to parts (a) 
through (c) in a location where water weighs 62.26 lb>ft3? 
62.59 lb>ft3?

Ground level

10 ft

20 ft 12 ft

0

10

20

y

15. Pumping oil How much work would it take to pump oil from 
the tank in Example 5 to the level of the top of the tank if the tank 
were completely full?

16. Pumping a half-full tank Suppose that, instead of being full,
the tank in Example 5 is only half full. How much work does it 
take to pump the remaining oil to a level 4 ft above the top of 
the tank?

17. Emptying a tank A vertical right-circular cylindrical tank 
measures 30 ft high and 20 ft in diameter. It is full of kerosene 
weighing 51.2 lb>ft3. How much work does it take to pump the 
kerosene to the level of the top of the tank?

18. a.  Pumping milk Suppose that the conical container in Exam-
ple 5 contains milk (weighing 64.5 lb>ft3) instead of olive oil. 
How much work will it take to pump the contents to the rim?

b. Pumping oil How much work will it take to pump the oil 
in Example 5 to a level 3 ft above the cone’s rim?

19. The graph of y = x2 on 0 … x … 2 is revolved about the y-axis
to form a tank that is then filled with salt water from the Dead Sea 
(weighing approximately 73 lb/ft3). How much work does it take 
to pump all of the water to the top of the tank?

20. A right-circular cylindrical tank of height 10 ft and radius 5 ft is 
lying horizontally and is full of diesel fuel weighing 53 lb/ft3.
How much work is required to pump all of the fuel to a point 15 ft 
above the top of the tank?

21. Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the axis 
of integration along the vertical axis of the sphere. Use the figure 
here to find how much work it takes to empty a full hemispherical 
water reservoir of radius 5 m by pumping the water to a height of 
4 m above the top of the reservoir. Water weighs 9800 N>m3.

x

y

0 5

y

Δy

4 m

0 y 0 = −y

"25 − y2
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22. You are in charge of the evacuation and repair of the storage tank 
shown here. The tank is a hemisphere of radius 10 ft and is full of 
benzene weighing 56 lb>ft3. A firm you contacted says it can 
empty the tank for 1>2¢ per foot-pound of work. Find the work 
required to empty the tank by pumping the benzene to an outlet 
2 ft above the top of the tank. If you have $5000 budgeted for the 
job, can you afford to hire the firm?

x

z

10

y

10 2 ft

Outlet pipe
x2 + y2 + z2 = 100

0

Work and Kinetic Energy
23. Kinetic energy If a variable force of magnitude F(x) moves an 

object of mass m along the x-axis from x1 to x2, the object’s 
velocity y can be written as dx >dt (where t represents time). Use 
Newton’s second law of motion F = m(dy>dt) and the Chain Rule

dy
dt

= dy
dx

dx
dt

= ydy
dx

  to show that the net work done by the force in moving the object 
from x1 to x2 is

W =
L

x2

x1

F(x) dx = 1
2

my2
2 - 1

2
my1

2,

where y1 and y2 are the object’s velocities at x1 and x2. In phys-
ics, the expression (1>2)my2 is called the kinetic energy of an 
object of mass m moving with velocity y. Therefore, the work 
done by the force equals the change in the object’s kinetic energy,
and we can find the work by calculating this change.

In Exercises 24–28, use the result of Exercise 23.

24. Tennis A 2-oz tennis ball was served at 160 ft>sec (about 
109 mph). How much work was done on the ball to make it go 
this fast? (To find the ball’s mass from its weight, express the 
weight in pounds and divide by 32 ft>sec2, the acceleration of 
gravity.)

25. Baseball How many foot-pounds of work does it take to throw 
a baseball 90 mph? A baseball weighs 5 oz, or 0.3125 lb.

26. Golf A 1.6-oz golf ball is driven off the tee at a speed of 280 ft>sec
(about 191 mph). How many foot-pounds of work are done on the 
ball getting it into the air?

27. On June 11, 2004, in a tennis match between Andy Roddick and
Paradorn Srichaphan at the Stella Artois tournament in London, 
England, Roddick hit a serve measured at 153 mi >h. How much 
work was required by Andy to serve a 2-oz tennis ball at that speed?

28. Softball How much work has to be performed on a 6.5-oz soft-
ball to pitch it 132 ft > sec (90 mph)?

29. Drinking a milkshake The truncated conical container shown 
here is full of strawberry milkshake that weighs 4>9 oz>in3. As 
you can see, the container is 7 in. deep, 2.5 in. across at the base, 
and 3.5 in. across at the top (a standard size at Brigham’s in 
Boston). The straw sticks up an inch above the top. About how 

much work does it take to suck up the milkshake through the 
straw (neglecting friction)? Answer in inch-ounces.

x

y

1.25

0

7

y

8

8 − y

y + 17.5
14

Δy

(1.75, 7)

y = 14x − 17.5

Dimensions in inches

30. Water tower Your town has decided to drill a well to increase 
its water supply. As the town engineer, you have determined that 
a water tower will be necessary to provide the pressure needed for 
distribution, and you have designed the system shown here. The 
water is to be pumped from a 300-ft well through a vertical 4-in. 
pipe into the base of a cylindrical tank 20 ft in diameter and 25 ft 
high. The base of the tank will be 60 ft above ground. The pump 
is a 3-hp pump, rated at 1650 ft # lb>sec. To the nearest hour, how 
long will it take to fill the tank the first time? (Include the time it 
takes to fill the pipe.) Assume that water weighs 62.4 lb>ft3.

Submersible pump

Water surface

Ground

NOT  TO SCALE

4 in.

300 ft

60 ft

25 ft

10 ft

31. Putting a satellite in orbit The strength of Earth’s gravita-
tional field varies with the distance r from Earth’s center, and the 
magnitude of the gravitational force experienced by a satellite of 
mass m during and after launch is

F(r) = mMG
r2 .

Here, M = 5.975 * 1024 kg is Earth’s mass, G = 6.6720 *
10-11 N # m2 kg-2 is the universal gravitational constant, and r is 
measured in meters. The work it takes to lift a 1000-kg satellite 
from Earth’s surface to a circular orbit 35,780 km above Earth’s 
center is therefore given by the integral

Work =
L

35,780,000

6,370,000

1000MG
r2 dr  joules.

Evaluate the integral. The lower limit of integration is Earth’s 
radius in meters at the launch site. (This calculation does not take 
into account energy spent lifting the launch vehicle or energy 
spent bringing the satellite to orbit velocity.)
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32. Forcing electrons together Two electrons r meters apart repel 
each other with a force of

F = 23 * 10-29

r2 newtons.

a. Suppose one electron is held fixed at the point (1, 0) on the 
x-axis (units in meters). How much work does it take to move 
a second electron along the x-axis from the point (-1, 0) to 
the origin?

b. Suppose an electron is held fixed at each of the points (-1, 0)
and (1, 0). How much work does it take to move a third elec-
tron along the x-axis from (5, 0) to (3, 0)?

Finding Fluid Forces
33. Triangular plate Calculate the fluid force on one side of the 

plate in Example 6 using the coordinate system shown here.

x (ft)
0 5

−5

Surface of pool

y x

y (ft)

(x, y)

y = −2Depth 0 y 0

34. Triangular plate Calculate the fluid force on one side of the 
plate in Example 6 using the coordinate system shown here.

x (ft)
0 3

1

−3

−3

y (ft)

Pool surface  at y = 2

35. Rectangular plate In a pool filled with water to a depth of 
10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectan-
gular plate if the plate rests vertically at the bottom of the pool

a. on its 4-ft edge. b. on its 3-ft edge.

36. Semicircular plate Calculate the fluid force on one side of a 
semicircular plate of radius 5 ft that rests vertically on its diame-
ter at the bottom of a pool filled with water to a depth of 6 ft.

x

y

5
6Surface of water

37. Triangular plate The isosceles triangular plate shown here is 
submerged vertically 1 ft below the surface of a freshwater lake.

a. Find the fluid force against one face of the plate.

b. What would be the fluid force on one side of the plate if the 
water were seawater instead of freshwater?

A

Surface level

B
4 ft

4 ft

1 ft

38. Rotated triangular plate The plate in Exercise 37 is revolved 
180° about line AB so that part of the plate sticks out of the lake, 
as shown here. What force does the water exert on one face of the 
plate now?

A

Surface
level

B
4 ft

3 ft

1 ft

39. New England Aquarium The viewing portion of the rectangular 
glass window in a typical fish tank at the New England Aquarium in 
Boston is 63 in. wide and runs from 0.5 in. below the water’s surface 
to 33.5 in. below the surface. Find the fluid force against this portion 
of the window. The weight-density of seawater is 64 lb>ft3. (In case 
you were wondering, the glass is 3>4 in. thick and the tank walls 
extend 4 in. above the water to keep the fish from jumping out.)

40. Semicircular plate A semicircular plate 2 ft in diameter sticks 
straight down into freshwater with the diameter along the surface. 
Find the force exerted by the water on one side of the plate.

41. Tilted plate Calculate the fluid force on one side of a 5 ft by 
5 ft square plate if the plate is at the bottom of a pool filled with 
water to a depth of 8 ft and

a. lying flat on its 5 ft by 5 ft face.

b. resting vertically on a 5-ft edge.

c. resting on a 5-ft edge and tilted at 45° to the bottom of the pool.

42. Tilted plate Calculate the fluid force on one side of a right-
triangular plate with edges 3 ft, 4 ft, and 5 ft if the plate sits at the 
bottom of a pool filled with water to a depth of 6 ft on its 3-ft 
edge and tilted at 60° to the bottom of the pool.

43. The cubical metal tank shown here has a parabolic gate held in 
place by bolts and designed to withstand a fluid force of 160 lb 
without rupturing. The liquid you plan to store has a weight-
density of 50 lb>ft3.

a. What is the fluid force on the gate when the liquid is 2 ft deep?

b. What is the maximum height to which the container can be 
filled without exceeding the gate’s design limitation?

x (ft)
10

Enlarged view of
parabolic gate

−1

Parabolic gate

(−1, 1) (1, 1)

y (ft)

y = x2

4 ft

4 ft

4 ft
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44. The end plates of the trough shown here were designed to with-
stand a fluid force of 6667 lb. How many cubic feet of water can 
the tank hold without exceeding this limitation? Round down to 
the nearest cubic foot. What is the value of h?

End view of trough

x (ft)

y (ft)

0

(4, 10)(−4, 10)

Dimensional
view of trough

10 ft

30 ft

(0, h)
y = x5

2

8 ft

45. A vertical rectangular plate a units long by b units wide is sub-
merged in a fluid of weight-density w with its long edges parallel 
to the fluid’s surface. Find the average value of the pressure along 
the vertical dimension of the plate. Explain your answer.

46. (Continuation of Exercise 45.) Show that the force exerted by the 
fluid on one side of the plate is the average value of the pressure 
(found in Exercise 45) times the area of the plate.

47. Water pours into the tank shown here at the rate of 4 ft3>min. The 
tank’s cross-sections are 4-ft-diameter semicircles. One end of 
the tank is movable, but moving it to increase the volume 

compresses a spring. The spring constant is k = 100 lb>ft. If the 
end of the tank moves 5 ft against the spring, the water will drain 
out of a safety hole in the bottom at the rate of 5 ft3>min. Will the 
movable end reach the hole before the tank overflows?

2 ft

Movable end Water in

5 ft

Side view

Movable
end

Water
in

Drain
hole

Drain
hole

y

x

4 ft

x2 + y2 = 4

48. Watering trough The vertical ends of a watering trough are 
squares 3 ft on a side.

a. Find the fluid force against the ends when the trough is full.

b. How many inches do you have to lower the water level in the 
trough to reduce the fluid force by 25%?

6.6 Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated at a 
single point, called the center of mass (Figure 6.44). It is important to know how to locate 
this point, and doing so is basically a mathematical enterprise. Here we consider masses 
distributed along a line or region in the plane. Masses distributed across a region or curve 
in three-dimensional space are treated in Chapters 15 and 16.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses m1, m2,
and m3 on a rigid x-axis supported by a fulcrum at the origin.

x
m1

Fulcrum
at origin

m2 m3

x1 x2 x30

The resulting system might balance, or it might not, depending on how large the masses 
are and how they are arranged along the x-axis.

Each mass mk exerts a downward force mkg (the weight of mk) equal to the magnitude of 
the mass times the acceleration due to gravity. Note that gravitational acceleration is downward, 
hence negative. Each of these forces has a tendency to turn the x-axis about the origin, the way 
a child turns a seesaw. This turning effect, called a torque, is measured by multiplying the force 
mkg by the signed distance xk from the point of application to the origin. By convention, a 
positive torque induces a counterclockwise turn. Masses to the left of the origin exert positive 
(counterclockwise) torque. Masses to the right of the origin exert negative (clockwise) torque.

The sum of the torques measures the tendency of a system to rotate about the origin. 
This sum is called the system torque.

System torque = m1gx1 + m2gx2 + m3gx3 (1)
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The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

g # (m1x1 + m2x2 + m3x3).(++++)++++*
a feature of
the system

6

a feature of the
environment

Thus, the torque is the product of the gravitational acceleration g, which is a feature of the 
environment in which the system happens to reside, and the number (m1x1 +
m2x2 + m3x3), which is a feature of the system itself, a constant that stays the same no 
matter where the system is placed.

The number (m1x1 + m2x2 + m3x3) is called the moment of the system about the 
origin. It is the sum of the moments m1x1, m2x2, m3x3 of the individual masses.

M0 = Moment of system about origin = a mkxk

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulcrum to make the system balance, that 

is, at what point x to place it to make the torques add to zero.

x
m1

Special location
for balance

m2 m3

x1 x2 x30 x

The torque of each mass about the fulcrum in this special location is

 Torque of mk about x = asigned distance
of mk from x

b adownward
force

b
= (xk - x)mkg.

When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for x:

a (xk - x)mkg = 0 Sum of the torques equals zero.

x = a mkxk

a mk

. Solved for x

This last equation tells us to find x by dividing the system’s moment about the origin by 
the system’s total mass:

x = a mkxk

a mk

=
system moment about origin

system mass . (2)

The point x is called the system’s center of mass.

Masses Distributed over a Plane Region

Suppose that we have a finite collection of masses located in the plane, with mass mk at 
the point (xk, yk) (see Figure 6.45). The mass of the system is

System mass: M = a mk .

Each mass mk has a moment about each axis. Its moment about the x-axis is mkyk, and 
its moment about the y-axis is mkxk . The moments of the entire system about the two 
axes are

 Moment about x@axis: Mx = a mkyk ,

 Moment about y@axis: My = a mkxk .

FIGURE 6.44 A wrench gliding on 
ice turning about its center of mass 
as the center glides in a vertical line. 
(Source: PSSC Physics, 2nd ed.,
Reprinted by permission of Education
Development Center, Inc.)

x

y

0

xk

xk

yk

yk

mk

(xk, yk)

FIGURE 6.45 Each mass mk has a
moment about each axis.
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The x-coordinate of the system’s center of mass is defined to be

x =
My

M = a mkxk

a mk

. (3)

With this choice of x, as in the one-dimensional case, the system balances about the line 
x = x (Figure 6.46).

The y-coordinate of the system’s center of mass is defined to be

y =
Mx

M = a mkyk

a mk

. (4)

With this choice of y, the system balances about the line y = y as well. The torques 
exerted by the masses about the line y = y cancel out. Thus, as far as balance is con-
cerned, the system behaves as if all its mass were at the single point (x, y). We call this 
point the system’s center of mass.

Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-
minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of 
mass to be continuous, and the formulas we use to calculate x and y contain integrals 
instead of finite sums. The integrals arise in the following way.

Imagine that the plate occupying a region in the xy-plane is cut into thin strips parallel 
to one of the axes (in Figure 6.47, the y-axis). The center of mass of a typical strip is 
(x∼, y∼). We treat the strip’s mass ∆m as if it were concentrated at (x∼, y∼). The moment of 
the strip about the y-axis is then x∼ ∆m. The moment of the strip about the x-axis is y∼ ∆m.
Equations (3) and (4) then become

x =
My

M = a x∼ ∆m

a ∆m
, y =

Mx

M = a y∼ ∆m

a ∆m
.

The sums are Riemann sums for integrals and approach these integrals as limiting values 
as the strips into which the plate is cut become narrower and narrower. We write these 
integrals symbolically as

x = 1 x∼ dm

1 dm
and y = 1 y∼ dm

1 dm
.

x

y

0

Bala
nc

e l
ine

Balanceline

y = y

x =
x

c.m.
y

x

FIGURE 6.46 A two-dimensional array 
of masses balances on its center of mass.

x

y

~x0

Strip
c.m.

~y
~x

~y

Strip of mass Δm

~ ~(x, y)

FIGURE 6.47 A plate cut into thin 
strips parallel to the y-axis. The moment 
exerted by a typical strip about each axis 
is the moment its mass ∆m would exert if 
concentrated at the strip’s center of mass 
(x∼, y∼).

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in 
the xy-Plane

Moment about the x@axis: Mx =
L

y∼ dm

Moment about the y@axis: My =
L

x∼ dm

(5)

Mass: M =
L

dm

Center of mass: x =
My

M , y =
Mx

M
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The differential dm is the mass of the strip. For this section, we assume the density d of the 
plate is a constant or a continuous function of x. Then dm = d dA, which is the mass per 
unit area d times the area dA of the strip.

To evaluate the integrals in Equations (5), we picture the plate in the coordinate plane 
and sketch a strip of mass parallel to one of the coordinate axes. We then express the 
strip’s mass dm and the coordinates (x∼, y∼) of the strip’s center of mass in terms of x or y.
Finally, we integrate y∼ dm, x∼ dm, and dm between limits of integration determined by the 
plate’s location in the plane.

EXAMPLE 1  The triangular plate shown in Figure 6.48 has a constant density of 
d = 3 g>cm2. Find

(a) the plate’s moment My about the y-axis.

(b) the plate’s mass M.

(c) the x-coordinate of the plate’s center of mass (c.m.).

Solution Method 1: Vertical Strips (Figure 6.49)

(a) The moment My: The typical vertical strip has the following relevant data.

center of mass (c.m.): (x∼, y∼) = (x, x)
length: 2x
width: dx

area: dA = 2x dx
mass: dm = d dA = 3 # 2x dx = 6x dx

distance of c.m. from y-axis: x∼ = x

  The moment of the strip about the y-axis is

x∼ dm = x # 6x dx = 6x2 dx.

  The moment of the plate about the y-axis is therefore

My =
L

x∼ dm =
L

1

0
6x2 dx = 2x3 d

0

1

= 2 g # cm.

(b) The plate’s mass:

M =
L

dm =
L

1

0
6x dx = 3x2 d

0

1

= 3 g.

(c) The x-coordinate of the plate’s center of mass:

x =
My

M =
2 g # cm

3 g = 2
3 cm.

By a similar computation, we could find Mx and y = Mx>M.

Method 2: Horizontal Strips (Figure 6.50)

(a) The moment My: The y-coordinate of the center of mass of a typical horizontal strip is 
y (see the figure), so

y∼ = y.

  The x-coordinate is the x-coordinate of the point halfway across the triangle. This 
makes it the average of y >2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand 
x-value):

x∼ =
( y>2) + 1

2
=

y
4

+ 1
2

=
y + 2

4
.

Density of a plate
A material’s density is its mass per unit 
area. For wires, rods, and narrow strips, 
we use mass per unit length.

x (cm)

y (cm)

0

2

1

(1, 2)

y = 2x

x = 1

y = 0

FIGURE 6.48 The plate in Example 1.

x

y

0

2

1

(1, 2)

Units in centimeters

Strip c.m.
is halfway.

x 2x

dx

y = 2x

(x, 2x)

~ ~(x, y) = (x, x)

FIGURE 6.49 Modeling the plate in 
Example 1 with vertical strips.

a      b

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.
is halfway.

y dy

~ ~(x, y) =
4

y + 2
, y

2
y

, y

2
2
y

1 +

2
y

x =

(1, y)

2
y

1 −

a   b

FIGURE 6.50 Modeling the plate in 
Example 1 with horizontal strips.
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  We also have

length: 1 -
y
2

=
2 - y

2

width: dy

area: dA =
2 - y

2
dy

mass: dm = d dA = 3 # 2 - y
2

dy

distance of c.m. to y-axis: x∼ =
y + 2

4
.

The moment of the strip about the y-axis is

x∼ dm =
y + 2

4
# 3 # 2 - y

2
dy = 3

8  (4 - y2) dy.

The moment of the plate about the y-axis is

My =
L

x∼ dm =
L

2

0

3
8  (4 - y2) dy = 3

8  c 4y -
y3

3 d 0
2

= 3
8  a16

3 b = 2 g # cm.

(b) The plate’s mass:

M =
L

dm =
L

2

0

3
2

  (2 - y) dy = 3
2

  c 2y -
y2

2
d

0

2

= 3
2

  (4 - 2) = 3 g.

(c) The x-coordinate of the plate’s center of mass:

x =
My

M =
2 g # cm

3 g = 2
3  cm.

By a similar computation, we could find Mx and y.

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of 
mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at 
their intersection. These facts often help to simplify our work.

EXAMPLE 2  Find the center of mass of a thin plate covering the region bounded 
above by the parabola y = 4 - x2 and below by the x-axis (Figure 6.51). Assume the den-
sity of the plate at the point (x, y) is d = 2x2, which is twice the square of the distance 
from the point to the y-axis.

Solution The mass distribution is symmetric about the y-axis, so x = 0. We model the 
distribution of mass with vertical strips, since the density is given as a function of the vari-
able x. The typical vertical strip (see Figure 6.51) has the following relevant data.

center of mass (c.m.): (x∼, y∼) = ax,
4 - x2

2
b

length: 4 - x2

width: dx

area: dA = (4 - x2) dx

mass: dm = d dA = d(4 - x2) dx

distance from c.m. to x-axis: y∼ = 4 - x2

2

The moment of the strip about the x-axis is

y∼ dm = 4 - x2

2
# d(4 - x2) dx = d

2
  (4 - x2)2 dx.

x

y

0

4

−2 2
dx
x

Center of mass
y = 4 − x2

~ ~(x, y) =
2

4 − x2
x,

2
y

4 − x2

a       b

FIGURE 6.51 Modeling the plate in 
Example 2 with vertical strips.
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The moment of the plate about the x-axis is

Mx =
L

y∼ dm =
L

2

-2

d
2

(4 - x2)2 dx =
L

2

-2
x2(4 - x2)2 dx

=
L

2

-2

(16x2 - 8x4 + x6) dx = 2048
105

M =
L

dm =
L

2

-2
d(4 - x2) dx =

L

2

-2
2x2(4 - x2) dx

=
L

2

-2

(8x2 - 2x4) dx = 256
15

.

Therefore,

y =
Mx

M = 2048
105

# 15
256

= 8
7.

The plate’s center of mass is

(x, y) = a0,
8
7b .

Plates Bounded by Two Curves

Suppose a plate covers a region that lies between two curves y = g(x) and y = ƒ(x),
where ƒ(x) Ú g(x) and a … x … b. The typical vertical strip (see Figure 6.52) has

center of mass (c.m.): (x∼, y∼) = 1x, 1
2 3ƒ(x) + g(x)42

length: ƒ(x) - g(x)

width: dx

area: dA = 3ƒ(x) - g(x)4 dx

mass: dm = d dA = d3ƒ(x) - g(x)4 dx.

The moment of the plate about the y-axis is

My =
L

xdm =
L

b

a
xd3ƒ(x) - g(x)4 dx,

and the moment about the x-axis is

Mx =
L

y dm =
L

b

a

1
2
3ƒ(x) + g(x)4 # d3ƒ(x) - g(x)4 dx

=
L

b

a

d
2
3ƒ2(x) - g2(x)4 dx.

These moments give the formulas

x

y

0 bdxa

y = f (x)

y = g(x)

~ ~(x, y)

FIGURE 6.52 Modeling the plate bounded 
by two curves with vertical strips. The strip 

c.m. is halfway, so y∼ = 1
2
3ƒ(x) + g(x)4 .

x = 1
M L

b

a
dx 3ƒ(x) - g(x)4 dx (6)

y = 1
M L

b

a

d
2
3ƒ2(x) - g2(x)4 dx (7)
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EXAMPLE 3  Find the center of mass for the thin plate bounded by the curves 
g(x) = x>2 and ƒ(x) = 2x, 0 … x … 1 (Figure 6.53), using Equations (6) and (7) with 
the density function d(x) = x2.

Solution We first compute the mass of the plate, where dm = d3ƒ(x) - g(x)4 dx:

M =
L

1

0
x2a2x - x

2
b dx =

L

1

0
ax5>2 - x3

2
b dx = c 27x7>2 - 1

8x4 d 1
0
= 9

56
.

Then from Equations (6) and (7) we get

x = 56
9 L

1

0
x2 # x a2x - x

2
b dx

= 56
9 L

1

0
ax7>2 - x4

2
b dx

= 56
9 c 29 x9>2 - 1

10
x5 d 1

0
= 308

405
,

and

y = 56
9 L

1

0

x2

2
ax - x2

4
b dx

= 28
9 L

1

0
ax3 - x4

4
b dx

= 28
9 c 14 x4 - 1

20
x5 d 1

0
= 252

405
.

The center of mass is shown in Figure 6.53.

Centroids

The center of mass in Example 3 is not located at the geometric center of the region. This 
is due to the region’s nonuniform density. When the density function is constant, it can-
cels out of the numerator and denominator of the formulas for x and y. Thus, when the 
density is constant, the location of the center of mass is a feature of the geometry of the 
object and not of the material from which it is made. In such cases, engineers may call 
the center of mass the centroid of the shape, as in “Find the centroid of a triangle or a 
solid cone.” To do so, just set d equal to 1 and proceed to find x and y as before, by divid-
ing moments by masses.

EXAMPLE 4  Find the center of mass (centroid) of a thin wire of constant density d
shaped like a semicircle of radius a.

Solution We model the wire with the semicircle y = 2a2 - x2 (Figure 6.54). The dis-
tribution of mass is symmetric about the y-axis, so x = 0. To find y, we imagine the wire 
divided into short subarc segments. If ( x∼, y∼) is the center of mass of a subarc and u is the 
angle between the x-axis and the radial line joining the origin to ( x∼, y∼), then y∼ = a sin u
is a function of the angle u measured in radians (see Figure 6.54a). The length ds of the 
subarc containing ( x∼, y∼) subtends an angle of du radians, so ds = a du. Thus a typical 
subarc segment has these relevant data for calculating y:

length: ds = a du

mass: dm = d ds = da du
Mass per unit length 
times length

distance of c.m. to x-axis: y∼ = a sin u.

x

y

0 1

1

f (x) =
"

x

g(x) =
2
x

c.m.

FIGURE 6.53 The region in Example 3.

a b

x

y

0−a a

(a)

x

y

0−a a

a

c.m.

A typical small 
segment of wire has 
dm = d ds = da du.

(a cosu, a sinu)
du

u

y =
"

a2 − x2

(b)

0, a2

~ ~(x, y) =

p

FIGURE 6.54 The semicircular wire in 
Example 4. (a) The dimensions and 
variables used in finding the center of 
mass. (b) The center of mass does not lie 
on the wire.
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Hence,

y = 1 y∼ dm

1dm
= 1

p

0 a sin u # da du

1
p

0 da du
=
da23-cos u40

p

dap
= 2
pa.

The center of mass lies on the axis of symmetry at the point (0, 2a>p), about two-thirds of 
the way up from the origin (Figure 6.54b). Notice how d cancels in the equation for y, so 
we could have set d = 1 everywhere and obtained the same value for y.

In Example 4 we found the center of mass of a thin wire lying along the graph of a 
differentiable function in the xy-plane. In Chapter 16 we will learn how to find the center 
of mass of a wire lying along a more general smooth curve in the plane or in space.

Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Figure 6.55), we 
can take a shortcut to find the force against one side of the plate. From Equation (7) in 
Section 6.5, and the definition of the moment about the x-axis, we have

F =
L

b

a
w * (strip depth) * L(y) dy

= w
L

b

a
(strip depth) * L(y) dy

= w * (moment about surface level line of region occupied by plate)

= w * (depth of plate>s centroid) * (area of plate).

Surface level of fluid

h = centroid depth

Plate centroid

FIGURE 6.55 The force against one 
side of the plate is w # h # plate area.

Fluid Forces and Centroids

The force of a fluid of weight-density w against one side of a submerged flat ver-
tical plate is the product of w, the distance h from the plate’s centroid to the fluid 
surface, and the plate’s area:

F = whA. (8)

EXAMPLE 5  A flat isosceles triangular plate with base 6 ft and height 3 ft is sub-
merged vertically, base up with its vertex at the origin, so that the base is 2 ft below the 
surface of a swimming pool. (This is Example 6, Section 6.5.) Use Equation (8) to find the 
force exerted by the water against one side of the plate.

Solution The centroid of the triangle (Figure 6.43) lies on the y-axis, one-third of the 
way from the base to the vertex, so h = 3 (where y = 2), since the pool’s surface is 
y = 5. The triangle’s area is

A = 1
2

(base)(height) = 1
2

(6)(3) = 9.

Hence,

F = whA = (62.4)(3)(9) = 1684.8 lb.

The Theorems of Pappus

In the fourth century, an Alexandrian Greek named Pappus discovered two formulas that 
relate centroids to surfaces and solids of revolution. The formulas provide shortcuts to a 
number of otherwise lengthy calculations.
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Proof  We draw the axis of revolution as the x-axis with the region R in the first quad-
rant (Figure 6.56). We let L(y) denote the length of the cross-section of R perpendicular to 
the y-axis at y. We assume L(y) to be continuous.

By the method of cylindrical shells, the volume of the solid generated by revolving 
the region about the x-axis is

V =
L

d

c
2p(shell radius)(shell height) dy = 2p

L

d

c
y L(y) dy. (10)

The y-coordinate of R’s centroid is

y = L

d

c
y∼ dA

A
= L

d

c
y L(y) dy

A
, y∼ = y, dA = L(y) dy

so that

L

d

c
y L(y) dy = Ay.

Substituting Ay for the last integral in Equation (10) gives V = 2pyA. With r equal to y,
we have V = 2prA.

EXAMPLE 6  Find the volume of the torus (doughnut) generated by revolving a circular 
disk of radius a about an axis in its plane at a distance b Ú a from its center (Figure 6.57).

Solution We apply Pappus’s Theorem for volumes. The centroid of a disk is located at 
its center, the area is A = pa2, and r = b is the distance from the centroid to the axis of 
revolution (see Figure 6.57). Substituting these values into Equation (9), we find the vol-
ume of the torus to be

V = 2p(b)(pa2) = 2p2ba2.

The next example shows how we can use Equation (9) in Pappus’s Theorem to find one 
of the coordinates of the centroid of a plane region of known area A when we also know the 
volume V of the solid generated by revolving the region about the other coordinate axis. 
That is, if y is the coordinate we want to find, we revolve the region around the x-axis so 
that y = r is the distance from the centroid to the axis of revolution. The idea is that the 
rotation generates a solid of revolution whose volume V is an already known quantity. Then 
we can solve Equation (9) for r, which is the value of the centroid’s coordinate y.

EXAMPLE 7  Locate the centroid of a semicircular region of radius a.

Solution We consider the region between the semicircle y = 2a2 - x2 (Figure 6.58) and 
the x-axis and imagine revolving the region about the x-axis to generate a solid sphere. By 
symmetry, the x-coordinate of the centroid is x = 0. With y = r in Equation (9), we have

y = V
2pA

=
(4>3)pa3

2p(1>2)pa2 = 4
3pa.

THEOREM 1 Pappus’s Theorem for Volumes If a plane region is revolved 
once about a line in the plane that does not cut through the region’s interior, then 
the volume of the solid it generates is equal to the region’s area times the distance 
traveled by the region’s centroid during the revolution. If r is the distance from 
the axis of revolution to the centroid, then

V = 2prA. (9)

x

y

d

c

0

L(y)

R

Centroid

r= y

FIGURE 6.56 The region R is to be 
revolved (once) about the x-axis to gener-
ate a solid. A 1700-year-old theorem says 
that the solid’s volume can be calculated 
by multiplying the region’s area by the 
distance traveled by its centroid during the 
revolution.

Area: pa2

Circumference: 2pa

Distance from axis of
revolution to centroid

a
b

y

z

x

FIGURE 6.57 With Pappus’s first 
theorem, we can find the volume of a torus 
without having to integrate (Example 6).

Centroid

a

−a a0

a

x

y

3p
4

FIGURE 6.58 With Pappus’s first 
theorem, we can locate the centroid of 
a semicircular region without having to 
integrate (Example 7).
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The proof we give assumes that we can model the axis of revolution as the x-axis and the 
arc as the graph of a continuously differentiable function of x.

Proof  We draw the axis of revolution as the x-axis with the arc extending from x = a
to x = b in the first quadrant (Figure 6.59). The area of the surface generated by the arc is

S =
L

x=b

x=a
2py ds = 2p

L

x=b

x=a
y ds. (12)

The y-coordinate of the arc’s centroid is

y = L

x=b

x=a
y∼ ds

L

x=b

x=a
ds

= L

x=b

x=a
y ds

L .
L = 1 ds is the arc’s 
length and y∼ = y.

Hence

L

x=b

x=a
y ds = yL.

Substituting yL for the last integral in Equation (12) gives S = 2pyL. With r equal to y,
we have S = 2prL.

EXAMPLE 8  Use Pappus’s area theorem to find the surface area of the torus in Example 6.

Solution From Figure 6.57, the surface of the torus is generated by revolving a circle of 
radius a about the z-axis, and b Ú a is the distance from the centroid to the axis of revolu-
tion. The arc length of the smooth curve generating this surface of revolution is the cir-
cumference of the circle, so L = 2pa. Substituting these values into Equation (11), we 
find the surface area of the torus to be

S = 2p(b)(2pa) = 4p2ba.

THEOREM 2—Pappus’s Theorem for Surface Areas If an arc of a smooth 
plane curve is revolved once about a line in the plane that does not cut through 
the arc’s interior, then the area of the surface generated by the arc equals the 
length L of the arc times the distance traveled by the arc’s centroid during the 
revolution. If r is the distance from the axis of revolution to the centroid, then

S = 2prL. (11)

0

x

y

ds

y

a

b

~

Arc

FIGURE 6.59 Figure for proving 
Pappus’s Theorem for surface area. The 
arc length differential ds is given by 
Equation (6) in Section 6.3.

Thin Plates with Constant Density
In Exercises 1–14, find the center of mass of a thin plate of constant 
density d covering the given region.

1. The region bounded by the parabola y = x2 and the line y = 4

2. The region bounded by the parabola y = 25 - x2 and the x-axis

3. The region bounded by the parabola y = x - x2 and the line 
y = -x

4. The region enclosed by the parabolas y = x2 - 3 and y = -2x2

5. The region bounded by the y-axis and the curve x = y - y3,
0 … y … 1

Exercises 6.6
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6. The region bounded by the parabola x = y2 - y and the line 
y = x

7. The region bounded by the x-axis and the curve y = cos x,
-p>2 … x … p>2

8. The region between the curve y = sec2 x, -p>4 … x … p>4
and the x-axis

9. The region between the curve y = 1>x and the x-axis from x = 1
to x = 2. Give the coordinates to two decimal places.

10. a. The region cut from the first quadrant by the circle x2 + y2 = 9

b. The region bounded by the x-axis and the semicircle 
y = 29 - x2

  Compare your answer in part (b) with the answer in part (a).

11. The region in the first and fourth quadrants enclosed by the 
curves y = 1>(1 + x2) and y = -1>(1 + x2) and by the lines 
x = 0 and x = 1

12. The region bounded by the parabolas y = 2x2 - 4x and 
y = 2x - x2

13. The region between the curve y = 1>2x and the x-axis from 
x = 1 to x = 16

14. The region bounded above by the curve y = 1>x3, below by the 
curve y = -1>x3, and on the left and right by the lines x = 1
and x = a 7 1. Also, find limaSq x.

Thin Plates with Varying Density
15. Find the center of mass of a thin plate covering the region 

between the x-axis and the curve y = 2>x2, 1 … x … 2, if the 
plate’s density at the point (x, y) is d(x) = x2.

16. Find the center of mass of a thin plate covering the region 
bounded below by the parabola y = x2 and above by the line 
y = x if the plate’s density at the point (x, y) is d(x) = 12x.

17. The region bounded by the curves y = {4>2x and the lines 
x = 1 and x = 4 is revolved about the y-axis to generate a solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if 
the plate’s density at the point (x, y) is d(x) = 1>x.

c. Sketch the plate and show the center of mass in your sketch.

18. The region between the curve y = 2>x and the x-axis from x = 1
to x = 4 is revolved about the x-axis to generate a solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if 
the plate’s density at the point (x, y) is d(x) = 2x.

c. Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles
19. The centroid of a triangle lies at the intersection of the trian-

gle’s medians You may recall that the point inside a triangle 
that lies one-third of the way from each side toward the opposite 
vertex is the point where the triangle’s three medians intersect. 
Show that the centroid lies at the intersection of the medians by 
showing that it too lies one-third of the way from each side 
toward the opposite vertex. To do so, take the following steps.

  i)  Stand one side of the triangle on the x-axis as in part (b) of 
the accompanying figure. Express dm in terms of L and dy.

T

 ii)   Use similar triangles to show that L = (b>h)(h - y). Sub-
stitute this expression for L in your formula for dm.

iii)  Show that y = h>3.

iv)  Extend the argument to the other sides.

0

h

b

dy

L
y

(a) (b)

Centroid

h − y

x

y

Use the result in Exercise 19 to find the centroids of the triangles 
whose vertices appear in Exercises 20–24. Assume a, b 7 0.

20. (-1, 0), (1, 0), (0, 3) 21. (0, 0), (1, 0), (0, 1)

22. (0, 0), (a, 0), (0, a) 23. (0, 0), (a, 0), (0, b)

24. (0, 0), (a, 0), (a >2, b)

Thin Wires
25. Constant density Find the moment about the x-axis of a wire 

of constant density that lies along the curve y = 2x from x = 0
to x = 2.

26. Constant density Find the moment about the x-axis of a wire 
of constant density that lies along the curve y = x3 from x = 0
to x = 1.

27. Variable density Suppose that the density of the wire in Exam-
ple 4 is d = k sin u (k constant). Find the center of mass.

28. Variable density Suppose that the density of the wire in Exam-
ple 4 is d = 1 + k 0 cos u 0  (k constant). Find the center of mass.

Plates Bounded by Two Curves
In Exercises 29–32, find the centroid of the thin plate bounded by the 
graphs of the given functions. Use Equations (6) and (7) with d = 1
and M = area of the region covered by the plate.

29. g(x) = x2 and ƒ(x) = x + 6

30. g(x) = x2 (x + 1), ƒ(x) = 2, and x = 0

31. g(x) = x2(x - 1) and ƒ(x) = x2

32. g(x) = 0, ƒ(x) = 2 + sin x, x = 0, and x = 2p

  (Hint:
L

x sin x dx = sin x - x cos x + C.)

Theory and Examples
Verify the statements and formulas in Exercises 33 and 34.

33. The coordinates of the centroid of a differentiable plane curve are

x = 1 x ds

length
, y = 1 y ds

length
.



x

y

0

ds
x

y

34. Whatever the value of p 7 0 in the equation y = x2>(4p), the 
y-coordinate of the centroid of the parabolic segment shown here 
is y = (3>5)a.

x

y

0

a

y = a3
5

y = x2

4p

The Theorems of Pappus
35. The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4) is 

revolved about the x-axis to generate a solid. Find the volume and 
surface area of the solid.

36. Use a theorem of Pappus to find the volume generated by revolv-
ing about the line x = 5 the triangular region bounded by the 
coordinate axes and the line 2x + y = 6 (see Exercise 19).

37. Find the volume of the torus generated by revolving the circle 
(x - 2)2 + y2 = 1 about the y-axis.

38. Use the theorems of Pappus to find the lateral surface area and the 
volume of a right-circular cone.

39. Use Pappus’s Theorem for surface area and the fact that the sur-
face area of a sphere of radius a is 4pa2 to find the centroid of the 
semicircle y = 2a2 - x2.

40. As found in Exercise 39, the centroid of the semicircle 
y = 2a2 - x2 lies at the point (0, 2a>p). Find the area of the 
surface swept out by revolving the semicircle about the line y = a.

41. The area of the region R enclosed by the semiellipse 
y = (b>a)2a2 - x2 and the x-axis is (1>2)pab, and the volume 
of the ellipsoid generated by revolving R about the x-axis is 
(4>3)pab2. Find the centroid of R. Notice that the location is 
independent of a.

42. As found in Example 7, the centroid of the region enclosed by the 
x-axis and the semicircle y = 2a2 - x2 lies at the point 
(0, 4a>3p). Find the volume of the solid generated by revolving 
this region about the line y = -a.

43. The region of Exercise 42 is revolved about the line y = x - a
to generate a solid. Find the volume of the solid.

44. As found in Exercise 39, the centroid of the semicircle 
y = 2a2 - x2 lies at the point (0, 2a>p). Find the area of the 
surface generated by revolving the semicircle about the line 
y = x - a.

In Exercises 45 and 46, use a theorem of Pappus to find the centroid 
of the given triangle. Use the fact that the volume of a cone of radius r
and height h is V = 1

3 pr2h.

45.

x

y

(0, 0)

(0, b)

(a, 0)

46.

x

y

(0, 0)

(a, b)

(a, c)

Chapter 6 Questions to Guide Your Review

1. How do you define and calculate the volumes of solids by the 
method of slicing? Give an example.

2. How are the disk and washer methods for calculating volumes 
derived from the method of slicing? Give examples of volume 
calculations by these methods.

3. Describe the method of cylindrical shells. Give an example.

4. How do you find the length of the graph of a smooth function 
over a closed interval? Give an example. What about functions 
that do not have continuous first derivatives?

5. How do you define and calculate the area of the surface swept out 
by revolving the graph of a smooth function y = ƒ(x), a … x … b,
about the x-axis? Give an example.

6. How do you define and calculate the work done by a variable 
force directed along a portion of the x-axis? How do you calculate 
the work it takes to pump a liquid from a tank? Give examples.

7. How do you calculate the force exerted by a liquid against a por-
tion of a flat vertical wall? Give an example.

8. What is a center of mass? a centroid?

9. How do you locate the center of mass of a thin flat plate of mate-
rial? Give an example.

10. How do you locate the center of mass of a thin plate bounded by 
two curves y = ƒ(x) and y = g(x) over a … x … b?

Chapter 6  Questions to Guide Your Review 415
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Chapter 6 Practice Exercises

Volumes
Find the volumes of the solids in Exercises 1–16.

1. The solid lies between planes perpendicular to the x-axis at x = 0
and x = 1. The cross-sections perpendicular to the x-axis
between these planes are circular disks whose diameters run from 
the parabola y = x2 to the parabola y = 2x.

2. The base of the solid is the region in the first quadrant between 
the line y = x and the parabola y = 22x. The cross-sections of 
the solid perpendicular to the x-axis are equilateral triangles 
whose bases stretch from the line to the curve.

3. The solid lies between planes perpendicular to the x-axis at 
x = p>4 and x = 5p>4. The cross-sections between these 
planes are circular disks whose diameters run from the curve 
y = 2 cos x to the curve y = 2 sin x.

4. The solid lies between planes perpendicular to the x-axis at 
x = 0 and x = 6. The cross-sections between these planes 
are squares whose bases run from the x-axis up to the curve 
x1>2 + y1>2 = 26.

x

y

6

6

x1	2 + y1	2 =
"

6

5. The solid lies between planes perpendicular to the x-axis at x = 0
and x = 4. The cross-sections of the solid perpendicular to the 
x-axis between these planes are circular disks whose diameters 
run from the curve x2 = 4y to the curve y2 = 4x.

6. The base of the solid is the region bounded by the parabola 
y2 = 4x and the line x = 1 in the xy-plane. Each cross-section 
perpendicular to the x-axis is an equilateral triangle with one edge 
in the plane. (The triangles all lie on the same side of the plane.)

7. Find the volume of the solid generated by revolving the region 
bounded by the x-axis, the curve y = 3x4, and the lines x = 1
and x = -1 about (a) the x-axis; (b) the y-axis; (c) the line 
x = 1; (d) the line y = 3.

8. Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the curve y = 4>x3 and the lines x = 1
and y = 1>2 about (a) the x-axis; (b) the y-axis; (c) the line 
x = 2; (d) the line y = 4.

9. Find the volume of the solid generated by revolving the region 
bounded on the left by the parabola x = y2 + 1 and on the right 
by the line x = 5 about (a) the x-axis; (b) the y-axis; (c) the line 
x = 5.

10. Find the volume of the solid generated by revolving the region 
bounded by the parabola y2 = 4x and the line y = x about (a)
the x-axis; (b) the y-axis; (c) the line x = 4; (d) the line y = 4.

11. Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the x-axis, the line x = p>3, and the 
curve y = tan x in the first quadrant about the x-axis.

12. Find the volume of the solid generated by revolving the region 
bounded by the curve y = sin x and the lines x = 0, x = p, and 
y = 2 about the line y = 2.

13. Find the volume of the solid generated by revolving the region 
bounded by the curve x = ey2

 and the lines y = 0, x = 0, and 
y = 1 about the x-axis.

14. Find the volume of the solid generated by revolving about the 
x-axis the region bounded by y = 2 tan x, y = 0, x = -p>4, and 
x = p>4. (The region lies in the first and third quadrants and 
resembles a skewed bowtie.)

15. Volume of a solid sphere hole A round hole of radius 23 ft is 
bored through the center of a solid sphere of a radius 2 ft. Find the 
volume of material removed from the sphere.

16. Volume of a football The profile of a football resembles the 
ellipse shown here. Find the football’s volume to the nearest 
cubic inch.

x

y

0−

+ = 1
4x2

121
y2

12

2
11

2
11

Lengths of Curves
Find the lengths of the curves in Exercises 17–20.

17. y = x1>2 - (1>3)x3>2, 1 … x … 4

18. x = y2>3, 1 … y … 8

19. y = x2 - (ln x)>8, 1 … x … 2

20. x = (y3>12) + (1>y), 1 … y … 2

Areas of Surfaces of Revolution
In Exercises 21–24, find the areas of the surfaces generated by revolv-
ing the curves about the given axes.

21. y = 22x + 1, 0 … x … 3; x@axis

22. y = x3>3, 0 … x … 1; x@axis

23. x = 24y - y2, 1 … y … 2; y@axis

24. x = 2y, 2 … y … 6; y@axis

Work
25. Lifting equipment A rock climber is about to haul up 100 N 

(about 22.5 lb) of equipment that has been hanging beneath her 
on 40 m of rope that weighs 0.8 newton per meter. How much 
work will it take? (Hint: Solve for the rope and equipment sepa-
rately, then add.)

26. Leaky tank truck You drove an 800-gal tank truck of water 
from the base of Mt. Washington to the summit and discovered 
on arrival that the tank was only half full. You started with a full 
tank, climbed at a steady rate, and accomplished the 4750-ft 



elevation change in 50 min. Assuming that the water leaked out at 
a steady rate, how much work was spent in carrying water to the 
top? Do not count the work done in getting yourself and the truck 
there. Water weighs 8 lb >U.S. gal.

27. Earth’s attraction The force of attraction on an object below 
Earth’s surface is directly proportional to its distance from Earth’s 
center. Find the work done in moving a weight of w lb located a
mi below Earth’s surface up to the surface itself. Assume Earth’s 
radius is a constant r mi.

28. Garage door spring A force of 200 N will stretch a garage 
door spring 0.8 m beyond its unstressed length. How far will a 
300-N force stretch the spring? How much work does it take to 
stretch the spring this far from its unstressed length?

29. Pumping a reservoir A reservoir shaped like a right-circular 
cone, point down, 20 ft across the top and 8 ft deep, is full of 
water. How much work does it take to pump the water to a level 
6 ft above the top?

30. Pumping a reservoir (Continuation of Exercise 29.) The reser-
voir is filled to a depth of 5 ft, and the water is to be pumped to 
the same level as the top. How much work does it take?

31. Pumping a conical tank A right-circular conical tank, point 
down, with top radius 5 ft and height 10 ft is filled with a liquid 
whose weight-density is 60 lb>ft3. How much work does it take 
to pump the liquid to a point 2 ft above the tank? If the pump is 
driven by a motor rated at 275 ft-lb > sec (1 >2 hp), how long will 
it take to empty the tank?

32. Pumping a cylindrical tank A storage tank is a right-circular 
cylinder 20 ft long and 8 ft in diameter with its axis horizontal. If 
the tank is half full of olive oil weighing 57 lb>ft3, find the work 
done in emptying it through a pipe that runs from the bottom of 
the tank to an outlet that is 6 ft above the top of the tank.

Centers of Mass and Centroids
33. Find the centroid of a thin, flat plate covering the region enclosed 

by the parabolas y = 2x2 and y = 3 - x2.

34. Find the centroid of a thin, flat plate covering the region enclosed by
the x-axis, the lines x = 2 and x = -2, and the parabola y = x2.

35. Find the centroid of a thin, flat plate covering the “triangular” 
region in the first quadrant bounded by the y-axis, the parabola 
y = x2>4, and the line y = 4.

36. Find the centroid of a thin, flat plate covering the region enclosed 
by the parabola y2 = x and the line x = 2y.
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37. Find the center of mass of a thin, flat plate covering the region 
enclosed by the parabola y2 = x and the line x = 2y if the den-
sity function is d(y) = 1 + y. (Use horizontal strips.)

38. a.  Find the center of mass of a thin plate of constant density cov-
ering the region between the curve y = 3>x3>2 and the x-axis
from x = 1 to x = 9.

b. Find the plate’s center of mass if, instead of being constant, 
the density is d(x) = x. (Use vertical strips.)

Fluid Force
39. Trough of water The vertical triangular plate shown here is the 

end plate of a trough full of water (w = 62.4). What is the fluid 
force against the plate?

x

y

40

2

−4

UNITS IN FEET

y = x
2

40. Trough of maple syrup The vertical trapezoidal plate shown 
here is the end plate of a trough full of maple syrup weighing 
75 lb>ft3. What is the force exerted by the syrup against the end 
plate of the trough when the syrup is 10 in. deep?

x

y

20

1

−2

UNITS IN FEET

y = x − 2

41. Force on a parabolic gate A flat vertical gate in the face of a 
dam is shaped like the parabolic region between the curve 
y = 4x2 and the line y = 4, with measurements in feet. The top 
of the gate lies 5 ft below the surface of the water. Find the force 
exerted by the water against the gate (w = 62.4).

42. You plan to store mercury (w = 849 lb>ft3) in a vertical rectan-
gular tank with a 1 ft square base side whose interior side wall 
can withstand a total fluid force of 40,000 lb. About how many 
cubic feet of mercury can you store in the tank at any one time?

T
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Volume and Length
1. A solid is generated by revolving about the x-axis the region 

bounded by the graph of the positive continuous function 
y = ƒ(x), the x-axis, the fixed line x = a, and the variable line 
x = b, b 7 a. Its volume, for all b, is b2 - ab. Find ƒ(x).

2. A solid is generated by revolving about the x-axis the region 
bounded by the graph of the positive continuous function 
y = ƒ(x), the x-axis, and the lines x = 0 and x = a. Its volume, 
for all a 7 0, is a2 + a. Find ƒ(x).

3. Suppose that the increasing function ƒ(x) is smooth for x Ú 0
and that ƒ(0) = a. Let s(x) denote the length of the graph of ƒ 
from (0, a) to (x, ƒ(x)), x 7 0. Find ƒ(x) if s(x) = Cx for some 
constant C. What are the allowable values for C?

4. a. Show that for 0 6 a … p>2,

L

a

0
21 + cos2u du 7 2a2 + sin2a.

b. Generalize the result in part (a).
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5. Find the volume of the solid formed by revolving the region 
bounded by the graphs of y = x and y = x2 about the line y = x.

6. Consider a right-circular cylinder of diameter 1. Form a wedge by 
making one slice parallel to the base of the cylinder completely 
through the cylinder, and another slice at an angle of 45° to the first 
slice and intersecting the first slice at the opposite edge of the cylin-
der (see accompanying diagram). Find the volume of the wedge.

45° wedge

r = 1
2

Surface Area
7. At points on the curve y = 22x, line segments of length h = y

are drawn perpendicular to the xy-plane. (See accompanying fig-
ure.) Find the area of the surface formed by these perpendiculars 
from (0, 0) to 13, 2232.

x

0

3
x

y = 2
"

x

2
"

x

2
"

3

(3, 2
"

3)

y

8. At points on a circle of radius a, line segments are drawn perpen-
dicular to the plane of the circle, the perpendicular at each point P
being of length ks, where s is the length of the arc of the circle 
measured counterclockwise from (a, 0) to P and k is a positive 
constant, as shown here. Find the area of the surface formed by 
the perpendiculars along the arc beginning at (a, 0) and extending 
once around the circle.

0

a
a

x

y

Work
9. A particle of mass m starts from rest at time t = 0 and is moved 

along the x-axis with constant acceleration a from x = 0 to 
x = h against a variable force of magnitude F(t) = t2. Find the 
work done.

10. Work and kinetic energy Suppose a 1.6-oz golf ball is placed 
on a vertical spring with force constant k = 2 lb>in. The spring is 
compressed 6 in. and released. About how high does the ball go 
(measured from the spring’s rest position)?

Centers of Mass
11. Find the centroid of the region bounded below by the x-axis and 

above by the curve y = 1 - xn, n an even positive integer. What 
is the limiting position of the centroid as n S q?

12. If you haul a telephone pole on a two-wheeled carriage behind a 
truck, you want the wheels to be 3 ft or so behind the pole’s cen-
ter of mass to provide an adequate “tongue” weight. The 40-ft 
wooden telephone poles used by Verizon have a 27-in. circumfer-
ence at the top and a 43.5-in. circumference at the base. About 
how far from the top is the center of mass?

13. Suppose that a thin metal plate of area A and constant density d
occupies a region R in the xy-plane, and let My be the plate’s 
moment about the y-axis. Show that the plate’s moment about the 
line x = b is

a. My - bdA if the plate lies to the right of the line, and

b. bdA - My if the plate lies to the left of the line.

14. Find the center of mass of a thin plate covering the region bounded 
by the curve y2 = 4ax and the line x = a, a = positive constant,
if the density at (x, y) is directly proportional to (a) x, (b) 0 y 0 .

15. a.  Find the centroid of the region in the first quadrant bounded 
by two concentric circles and the coordinate axes, if the cir-
cles have radii a and b, 0 6 a 6 b, and their centers are at 
the origin.

b. Find the limits of the coordinates of the centroid as a appro-
aches b and discuss the meaning of the result.

16. A triangular corner is cut from a square 1 ft on a side. The area of 
the triangle removed is 36 in2. If the centroid of the remaining 
region is 7 in. from one side of the original square, how far is it 
from the remaining sides?

Fluid Force
17. A triangular plate ABC is submerged in water with its plane verti-

cal. The side AB, 4 ft long, is 6 ft below the surface of the water, 
while the vertex C is 2 ft below the surface. Find the force exerted 
by the water on one side of the plate.

18. A vertical rectangular plate is submerged in a fluid with its top 
edge parallel to the fluid’s surface. Show that the force exerted by 
the fluid on one side of the plate equals the average value of the 
pressure up and down the plate times the area of the plate.
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Chapter 6 Technology Application Projects

Mathematica/Maple Modules:

Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I and Part II: Volumes of Revolution; and Part III: Lengths of Curves.

Modeling a Bungee Cord Jump
Collect data (or use data previously collected) to build and refine a model for the force exerted by a jumper’s bungee cord. Use the work-energy 
theorem to compute the distance fallen for a given jumper and a given length of bungee cord.
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OVERVIEW Our treatment of the logarithmic and exponential functions has been rather 
informal until now, appealing to intuition and graphs to describe what they mean and to 
explain some of their characteristics. In this chapter, we give a rigorous analytic approach 
to the definitions and properties of these functions, and we study a wide range of applied 
problems in which they play a role. We also introduce the hyperbolic functions and their 
inverses, with their applications to integration and hanging cables. Like the trigonometric 
functions, all of these functions belong to the class of transcendental functions.

7.1 The Logarithm Defined as an Integral

In Chapter 1, we introduced the natural logarithm function ln x as the inverse of the expo-
nential function ex. The function ex was chosen as that function in the family of general 
exponential functions ax, a 7 0, whose graph has slope 1 as it crosses the y-axis. The 
function ax was presented intuitively, however, based on its graph at rational values of x.

In this section we recreate the theory of logarithmic and exponential functions from 
an entirely different point of view. Here we define these functions analytically and recover 
their behaviors. To begin, we use the Fundamental Theorem of Calculus to define the natu-
ral logarithm function ln x as an integral. We quickly develop its properties, including the 
algebraic, geometric, and analytic properties seen before. Next we introduce the function 
ex as the inverse function of ln x, and establish its previously seen properties. Defining 
ln x as an integral and ex as its inverse is an indirect approach. While it may at first seem 
strange, it gives an elegant and powerful way to obtain and validate the key properties of 
logarithmic and exponential functions.

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as ln x, is the value of an integral. 
The integral is suggested from our earlier results in Chapter 5.

DEFINITION The natural logarithm is the function given by

ln x =
L

x

1

1
t dt, x 7 0.

From the Fundamental Theorem of Calculus, ln x is a continuous function. Geometri-
cally, if x 7 1, then ln x is the area under the curve y = 1>t from t = 1 to t = x  
(Figure 7.1). For 0 6 x 6 1, ln x gives the negative of the area under the curve from x to 1, 

Integrals and  
Transcendental  
Functions

7
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and the function is not defined for x … 0. From the Zero Width Interval Rule for definite 
integrals, we also have

ln 1 =
L

1

1

1
t dt = 0.

x

y

0 x x1

1

1

1

y = ln x

y = 1
x

If x = 1, then ln x = dt = 0.1
t

gives the negative of this area.

x

1

1

x
If 0 < x < 1, then ln x = dt = −1

t dt1
t

gives this area.

x

1

dtIf x > 1, then ln x = 1
t

y = ln x

L L

L

L

FIGURE 7.1 The graph of y = ln x and its relation to the function 
y = 1>x, x 7 0. The graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the axis as x moves from 1 
to the left.

Notice that we show the graph of y = 1>x in Figure 7.1 but use y = 1>t in the inte-
gral. Using x for everything would have us writing

ln x =
L

x

1

1
x dx,

with x meaning two different things. So we change the variable of integration to t.
By using rectangles to obtain finite approximations of the area under the graph of 

y = 1>t and over the interval between t = 1 and t = x, as in Section 5.1, we can approx-
imate the values of the function ln x. Several values are given in Table 7.1. There is an 
important number between x = 2 and x = 3 whose natural logarithm equals 1. This 
number, which we now define, exists because ln x is a continuous function and therefore 
satisfies the Intermediate Value Theorem on 32, 34 .

TABLE 7.1 Typical 2-place 

values of ln x

x ln x

0 undefined

0.05 -3.00

0.5 -0.69

1 0

2 0.69

3 1.10

4 1.39

10 2.30
DEFINITION The number e is that number in the domain of the natural
logarithm satisfying

ln (e) =
L

e

1

1
t dt = 1.

Interpreted geometrically, the number e corresponds to the point on the x-axis for 
which the area under the graph of y = 1>t and above the interval 31, e4  equals the area 
of the unit square. That is, the area of the region shaded blue in Figure 7.1 is 1 sq unit 
when x = e. We will see further on that this is the same number e ≈ 2.718281828 we 
have encountered before.
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The Derivative of y = ln x

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

d
dx

ln x = d
dxL

x

1

1
t dt = 1

x .

For every positive value of x, we have

d
dx

ln x = 1
x . (1)

Therefore, the function y = ln x is a solution to the initial value problem dy>dx = 1>x,
x 7 0, with y (1) = 0. Notice that the derivative is always positive.

If u is a differentiable function of x whose values are positive, so that ln u is defined, 
then applying the Chain Rule we obtain

d
dx

ln u = 1
u

du
dx

, u 7 0. (2)

1 2

1

x

y

1
2

0

y = 1
x

(b)

(1, 0)
x

y

0

y = ln x

(a)

FIGURE 7.2 (a) The graph of the 
natural logarithm. (b) The rectangle of 
height y = 1>2 fits beneath the graph of 
y = 1>x for the interval 1 … x … 2.

d
dx

ln � x � = 1
x , x ≠ 0. (3)

The derivative of ln � x � can be found just as in Example 3(c) of Section 3.8, giving

Moreover, if b is any constant with bx 7 0, Equation (2) gives

d
dx

ln bx = 1
bx
# d
dx

(bx) = 1
bx

(b) = 1
x .

The Graph and Range of ln x

The derivative d(ln x)>dx = 1>x is positive for x 7 0, so ln x is an increasing function of 
x. The second derivative, -1>x2, is negative, so the graph of ln x is concave down. (See 
Figure 7.2a.)

The function ln x has the following familiar algebraic properties, which we stated in 
Section 1.6. In Section 4.2 we showed these properties are a consequence of Corollary 2 of 
the Mean Value Theorem, and those derivations still apply.

1. ln bx = ln b + ln x 2. ln
b
x = ln b - ln x

3. ln 1
x = - ln x 4. ln xr = r ln x , r rational

We can estimate the value of ln 2 by considering the area under the graph of y = 1>x
and above the interval 31, 24 . In Figure 7.2(b) a rectangle of height 1 >2 over the interval 
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31, 24  fits under the graph. Therefore the area under the graph, which is ln 2, is greater 
than the area, 1 >2, of the rectangle. So ln 2 7 1>2. Knowing this we have

ln 2n = n ln 2 7 na1
2
b = n

2
.

This result shows that ln (2n) S q as n S q. Since ln x is an increasing function, we get 
that

lim
xSq

ln x = q .

We also have

lim
xS0 +

 ln x = lim
tSq

 ln t-1 =  lim
tSq

(- ln t) = -q . x = 1>t = t-1

We defined ln x for x 7 0, so the domain of ln x is the set of positive real numbers. The 
above discussion and the Intermediate Value Theorem show that its range is the entire real 
line, giving the familiar graph of y = ln x shown in Figure 7.2(a).

The Integral 1(1/u) du

Equation (3) leads to the following integral formula.

If u is a differentiable function that is never zero,

L

1
u du = ln � u � + C. (4)

Equation (4) applies anywhere on the domain of 1>u, the points where u ≠ 0. It says that 
integrals of a certain form lead to logarithms. If u = ƒ(x), then du = ƒ′(x) dx and

L

ƒ′(x)
ƒ(x)

dx = ln � ƒ(x) � + C

whenever ƒ(x) is a differentiable function that is never zero.

EXAMPLE 1 Here we recognize an integral of the form 
L

du
u .

L

p>2

-p>2
4 cosu

3 + 2 sinu
du =

L

5

1

2
u du

= 2 ln � u � d
1

5

= 2 ln � 5 � - 2 ln � 1 � = 2 ln 5

Note that u = 3 + 2 sinu is always positive on 3-p>2, p>24 , so Equation (4) applies.

u = 3 + 2 sin u , du = 2 cos u du ,

u(-p/2) = 1, u(p/2) = 5

The Inverse of ln x and the Number e

The function ln x, being an increasing function of x with domain (0, q) and range 
(-q, q), has an inverse ln-1 x with domain (-q, q) and range (0, q). The graph of 
ln-1 x is the graph of ln x reflected across the line y = x. As you can see in Figure 7.3,

lim
xSq

ln-1 x = q and lim
xS-q

ln-1 x = 0.
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The function ln-1 x is also denoted by exp x. We now show that ln-1 x = exp x is an expo-
nential function with base e.

The number e was defined to satisfy the equation ln (e) = 1, so e = exp (1). We can 
raise the number e to a rational power r using algebra:

e2 = e # e , e-2 = 1
e2 , e1>2 = 2e , e2>3 = 23 e2,

and so on. Since e is positive, er is positive too. Thus, er has a logarithm. When we take 
the logarithm, we find that for r rational

ln er = r ln e = r # 1 = r .

Then applying the function ln-1 to both sides of the equation ln er = r, we find that

er = exp r for r rational .  exp is ln-1. (5)

We have not yet found a way to give an exact meaning to ex for x irrational. But ln-1 x has 
meaning for any x, rational or irrational. So Equation (5) provides a way to extend the 
definition of ex to irrational values of x. The function exp x is defined for all x, so we use it 
to assign a value to ex at every point.

x

y

1

10 2 e 4

2

e

4

−1−2

5

6

7

8

(1, e)

y = ln x

y = ln−1x
or

x = ln y

FIGURE 7.3 The graphs of y = ln x
and y = ln-1 x = exp x. The number e is 
ln-1 1 = exp (1) .

DEFINITION For every real number x, we define the natural exponential func-
tion to be ex = exp x .

For the first time we have a precise meaning for a number raised to an irrational power. 
Usually the exponential function is denoted by ex rather than exp x. Since ln x and ex are 
inverses of one another, we have

Typical values of ex

x ex (rounded)

-1 0.37

0 1

1 2.72

2 7.39

10 22026

100 2.6881 * 1043

Inverse Equations for ex and ln x

elnx = x (all x 7 0)

ln (ex) = x (all x)

The Derivative and Integral of ex

The exponential function is differentiable because it is the inverse of a differentiable function 
whose derivative is never zero. We calculate its derivative using Theorem 3 of Section 3.8 
and our knowledge of the derivative of ln x. Let

ƒ(x) = ln x and y = ex = ln-1 x = ƒ -1(x).

Then,

dy
dx

= d
dx

(ex) = d
dx

ln-1 x

= d
dx

ƒ -1(x)

= 1
ƒ′(ƒ -1(x))

Theorem 3, Section 3.8

= 1
ƒ′(ex)

ƒ-1(x) = ex

= 1

a 1
exb

ƒ′(z) = 1
z with z = ex

= ex .

The notations ln-1 x, exp x, and ex all 
refer to the natural exponential function.
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That is, for y = ex, we find that dy>dx = ex so the natural exponential function ex is its 
own derivative, just as we claimed in Section 3.3. We will see in the next section that the 
only functions that behave this way are constant multiples of ex. The Chain Rule extends 
the derivative result in the usual way to a more general form.

If u is any differentiable function of x, then

d
dx

eu = eu  
du
dx

. (6)

Since ex 7 0, its derivative is also everywhere positive, so it is an increasing and con-
tinuous function for all x, having limits

lim
xS-q

ex = 0 and lim
xSq

ex = q .

It follows that the x-axis (y = 0) is a horizontal asymptote of the graph y = ex (see 
Figure 7.3).

Equation (6) also tells us the indefinite integral of eu.

L
eu du = eu + C

If ƒ(x) = ex, then from Equation (6), ƒ′(0) = e0 = 1. That is, the exponential func-
tion ex has slope 1 as it crosses the y-axis at x = 0. This agrees with our assertion for the 
natural exponential in Section 3.3.

Laws of Exponents

Even though ex is defined in a seemingly roundabout way as ln-1 x , it obeys the familiar 
laws of exponents from algebra. Theorem 1 shows us that these laws are consequences of 
the definitions of ln x and ex . We proved the laws in Section 4.2, and the proofs are still 
valid here because they are based on the inverse relationship between ln x and ex .

THEOREM 1—Laws of Exponents for ex For all numbers x , x1 , and x2 , the 
natural exponential ex obeys the following laws:

1. ex1 # ex2 = ex1+ x2 2. e-x = 1
ex

3. ex1

ex2
= ex1- x2 4. (ex1)x2 = ex1x2 = (ex2)x1

The General Exponential Function ax

Since a = elna for any positive number a, we can think of ax as (elna)x = ex lna. We there-
fore make the following definition, consistent with what we stated in Section 1.6.

DEFINITION For any numbers a 7 0 and x, the exponential function with base 
a is given by

ax = ex lna.
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When a = e ,  the definition gives ax = ex lna = ex lne = ex #1 = ex .  Similarly, the power 
function ƒ(x) = xr  is defined to be xr = er In x  for any real number r, rational or 
irrational.

Theorem 1 is also valid for ax , the exponential function with base a. For example,

ax1 # ax2 = ex1 lna # ex2 lna Definition of ax

= ex1 lna+ x2 lna Law 1

= e(x1+ x2)lna Factor ln a

= ax1+ x2. Definition of ax

Starting with the definition ax = ex ln a, a 7 0, we get the derivative

d
dx

ax = d
dx

ex ln a = (ln a)ex ln a = (ln a) ax,

so

d
dx

ax = ax ln a .

Alternatively, we get the same derivative rule by applying logarithmic differentiation:

y = ax

 ln y = x ln a Taking logarithms

1
y

dy
dx

= ln a Differentiating with respect to x

dy
dx

= y ln a = ax ln a .

With the Chain Rule, we get a more general form, as in Section 3.8.

The General Power Function

xr is the function er ln x

If a 7 0 and u is a differentiable function of x, then au is a differentiable function
of x and

d
dx

au = au ln a  
du
dx

.

The integral equivalent of this last result is

L
au du = au

ln a
+ C.

Logarithms with Base a

If a is any positive number other than 1, the function ax is one-to-one and has a nonzero 
derivative at every point. It therefore has a differentiable inverse.

DEFINITION For any positive number a ≠ 1, the logarithm of x with base a,
denoted by log a x, is the inverse function of ax.
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As stated in Section 1.6, the function loga x is just a numerical multiple of ln x. We 
see this from the following derivation:

y = loga x Defining equation for y 

ay = x Equivalent equation

ln ay = ln x Natural log of both sides

y ln a = ln x Algebra Rule 4 for natural log

y = ln x
ln a

Solve for y.

loga x = ln x
ln a

Substitute for y.

It then follows easily that the arithmetic rules satisfied by loga x are the same as the 
ones for ln x. These rules, given in Table 7.2, can be proved by dividing the corresponding 
rules for the natural logarithm function by ln a. For example,

ln xy = ln x + ln y Rule 1 for natural logarithms c

ln xy
ln a

= ln x
ln a

+
ln y
ln a

c divided by ln a c

loga xy = loga x + loga y . c gives Rule 1 for base a logarithms.

Derivatives and Integrals Involving logax

To find derivatives or integrals involving base a logarithms, we convert them to natural 
logarithms. If u is a positive differentiable function of x, then

d
dx

(loga u) = d
dx
aln u

ln a
b = 1

ln a
d
dx

(ln u) = 1
ln a

# 1
u

du
dx

.

Inverse Equations for ax and loga x

aloga x = x (x 7 0)

loga(ax) = x (all x)

TABLE 7.2 Rules for base a
logarithms

For any numbers x 7 0 and 

y 7 0,

1. Product Rule:

loga xy = loga x + loga y

2. Quotient Rule:

loga
x
y = loga x - loga y

3. Reciprocal Rule:

loga
1
y = - loga y

4. Power Rule:

loga xy = y loga x

d
dx

(loga u) = 1
ln a

# 1
u

du
dx

EXAMPLE 2  We illustrate the derivative and integral results.

(a)
d
dx

log10(3x + 1) = 1
ln 10

# 1
3x + 1

d
dx

(3x + 1) = 3
(ln 10)(3x + 1)

The graph of y = loga x can be obtained by reflecting the graph of y = ax across the 
45° line y = x (Figure 7.4). When a = e, we have loge x = inverse of ex = ln x. Since 
loga x and ax are inverses of one another, composing them in either order gives the identity 
function.

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

FIGURE 7.4 The graph of 2x and its 
inverse, log2 x.
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(b)
L

log2 x
x dx = 1

ln 2L

ln x
x dx log2 x = ln x

ln 2

= 1
ln 2L

u du u = ln x, du = 1
x dx

= 1
ln 2

u2

2
+ C = 1

ln 2
(ln x)2

2
+ C =

(ln x)2

2 ln 2
+ C

Summary

In this section we used calculus to give precise definitions of the logarithmic and expo-
nential functions. This approach is somewhat different from our earlier treatments of the 
polynomial, rational, and trigonometric functions. There we first defined the function and 
then we studied its derivatives and integrals. Here we started with an integral from which 
the functions of interest were obtained. The motivation behind this approach was to 
address mathematical difficulties that arise when we attempt to define functions such as ax

for any real number x, rational or irrational. Defining ln x as the integral of the function 
1>t from t = 1 to t = x enabled us to define all of the exponential and logarithmic func-
tions, and then derive their key algebraic and analytic properties.

Integration
Evaluate the integrals in Exercises 1–46. 22.

L
ecsc (p+ t) csc (p + t) cot (p + t) dt

23.
L

ln (p>2)

ln (p>6)
2eycos ey dy 24.

L

2ln p

0
2xex2

cos (ex2
) dx

25.
L

er

1 + er dr 26.
L

dx
1 + ex

27.
L

1

0
2-u du 28.

L

0

-2
5-u du

29.
L

22

1
x2(x2) dx 30.

L

4

1

21x

1x
dx

31.
L

p>2

0
7cos t sin t dt 32.

L

p>4

0
a1

3
b tan t

sec2 t dt

33.
L

4

2
x2x(1 + ln x) dx 34.

L

2

1

2ln x

x dx

35.
L

3

0
122 + 12x22 dx 36.

L

e

1
x(ln 2)-1 dx

37.
L

log10 x
x dx 38.

L

4

1

log2 x
x dx

39.
L

4

1

ln 2 log2 x
x dx 40.

L

e

1

2 ln 10 log10 x
x dx

41.
L

2

0

log2 (x + 2)
x + 2

dx 42.
L

10

1>10

log10 (10x)
x dx

43.
L

9

0

2 log10 (x + 1)
x + 1

dx 44.
L

3

2

2 log2 (x - 1)
x - 1

dx

1.
L

-2

-3

dx
x 2.

L

0

-1

3 dx
3x - 2

3.
L

2y dy

y2 - 25
4.

L

8r dr
4r2 - 5

5.
L

3 sec2 t
6 + 3 tan t

dt 6.
L

secy tan y
2 + secy

dy

7.
L

dx
21x + 2x

8.
L

sec x dx

2ln (sec x + tan x)

9.
L

ln3

ln2
ex dx 10.

L
8e(x+1) dx

11.
L

4

1

(ln x)3

2x
dx 12.

L

ln (ln x)
x ln x

dx

13.
L

ln9

ln4
ex>2 dx 14.

L
tan x ln (cos x) dx

15.
L

e2r

2r
dr 16.

L

e-2r

2r
dr

17.
L

2t e-t2
dt 18.

L

ln x dx

x2ln2 x + 1

19.
L

e1>x
x2 dx 20.

L

e-1>x2

x3 dx

21.
L

esecpt sec pt tan pt dt

Transcendental Numbers and 
Transcendental Functions
Numbers that are solutions of polynomial 
equations with rational coefficients are 
called algebraic: -2 is algebraic because 
it satisfies the equation x + 2 = 0, and 
23 is algebraic because it satisfies the 
equation x2 - 3 = 0. Numbers such as 
e and p that are not algebraic are called 
transcendental.

We call a function y = ƒ(x) algebraic 
if it satisfies an equation of the form

Pnyn + g + P1y + P0 = 0

in which the P’s are polynomials in x
with rational coefficients. The function 
y = 1>2x + 1 is algebraic because it satis-
fies the equation (x + 1)y2 - 1 = 0. Here 
the polynomials are P2 = x + 1, P1 = 0,
and P0 = -1. Functions that are not alge-
braic are called transcendental.

Exercises 7.1
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Initial Value Problems
Solve the initial value problems in Exercises 47–52.

47.
dy
dt

= et sin (et - 2) , y(ln 2) = 0

48.
dy
dt

= e-t sec2 (pe-t) , y(ln 4) = 2>p

49.
d2y

dx2 = 2e-x , y(0) = 1 and y′(0) = 0

50.
d2y

dt2 = 1 - e2t , y(1) = -1 and y′(1) = 0

51.
dy
dx

= 1 + 1
x , y(1) = 3

52.
d2y

dx2 = sec2 x , y(0) = 0 and y′(0) = 1

Theory and Applications
53. The region between the curve y = 1>x2 and the x-axis from 

x = 1>2 to x = 2 is revolved about the y-axis to generate a 
solid. Find the volume of the solid.

54. In Section 6.2, Exercise 6, we revolved about the y-axis the 
region between the curve y = 9x>2x3 + 9 and the x-axis from 
x = 0 to x = 3 to generate a solid of volume 36p. What volume 
do you get if you revolve the region about the x-axis instead? (See 
Section 6.2, Exercise 6, for a graph.)

Find the lengths of the curves in Exercises 55 and 56.

55. y = (x2>8) - ln x, 4 … x … 8

56. x = (y>4)2 - 2 ln (y>4), 4 … y … 12

57. The linearization of ln (1 + x) at x = 0 Instead of approxi-
mating ln x near x = 1, we approximate ln (1 + x) near x = 0.
We get a simpler formula this way.

a. Derive the linearization ln (1 + x) ≈ x at x = 0.

  b. Estimate to five decimal places the error involved in replacing 
ln (1 + x) by x on the interval 30, 0.14 .

c. Graph ln (1 + x) and x together for 0 … x … 0.5. Use differ-
ent colors, if available. At what points does the approximation 
of ln (1 + x) seem best? Least good? By reading coordinates 
from the graphs, find as good an upper bound for the error as 
your grapher will allow.

58. The linearization of ex at x = 0

  a. Derive the linear approximation ex ≈ 1 + x at x = 0.

b. Estimate to five decimal places the magnitude of the error 
involved in replacing ex by 1 + x on the interval 30, 0.24 .

c. Graph ex and 1 + x together for -2 … x … 2. Use different 
colors, if available. On what intervals does the approximation 
appear to overestimate ex? Underestimate ex?

59. Show that for any number a 7 1

L

a

1
ln x dx +

L

lna

0
ey dy = a ln a ,

T

T

T

  as suggested by the accompanying figure.

x

y

10 a

ln a

y = ln x

60. The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of ex is concave up over every interval of 
x-values.

b. Show, by reference to the accompanying figure, that if 
0 6 a 6 b then

e(ln a+ ln b)>2 # (ln b - ln a) 6
L

lnb

lna
ex dx 6 eln a + eln b

2
# (ln b - ln a) .

x

2

F

C

B

E

DA

M

NOT TO SCALE

y = ex

ln a + ln b ln bln a

c. Use the inequality in part (b) to conclude that

2ab 6 b - a
ln b - ln a

6 a + b
2

.

This inequality says that the geometric mean of two positive 
numbers is less than their logarithmic mean, which in turn is less 
than their arithmetic mean.

Grapher Explorations
61. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) 

together for 0 6 x … 10. What is going on? Explain.

62. Graph y = ln � sin x �  in the window 0 … x … 22, -2 … y … 0.
Explain what you see. How could you change the formula to turn 
the arches upside down?

63. a. Graph y = sin x and the curves y = ln (a + sin x) for a = 2,
   4, 8, 20, and 50 together for 0 … x … 23.

  b. Why do the curves flatten as a increases? (Hint: Find an 
a-dependent upper bound for � y′ � .)

64. Does the graph of y = 1x - ln x, x 7 0, have an inflection 
point? Try to answer the question (a) by graphing, (b) by using 
calculus.

65. The equation x2 = 2x has three solutions:x = 2, x = 4, and one 
other. Estimate the third solution as accurately as you can by 
graphing.

T

45.
L

dx
x log10 x

46.
L

dx
x(log8 x)2
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66. Could xln 2 possibly be the same as 2ln x for some x 7 0? Graph 
the two functions and explain what you see.

67. Which is bigger, pe or eP? Calculators have taken some of the 
mystery out of this once-challenging question. (Go ahead and 
check; you will see that it is a surprisingly close call.) You can 
answer the question without a calculator, though.

a. Find an equation for the line through the origin tangent to the 
graph of y = ln x.

[−3, 6] by [−3, 3]

  b. Give an argument based on the graphs of y = ln x and the 
tangent line to explain why ln x 6 x>e for all positive x ≠ e.

  c. Show that ln (xe) 6 x for all positive x ≠ e.

  d. Conclude that xe 6 ex for all positive x ≠ e.

  e. So which is bigger, pe or ep?

68. A decimal representation of e Find e to as many decimal 
places as your calculator allows by solving the equation ln x = 1
using Newton’s method in Section 4.7.

T

T

T

Calculations with Other Bases
69. Most scientific calculators have keys for log10 x and ln x. To 

find logarithms to other bases, we use the equation log a x =
(ln x)>(ln a).

  Find the following logarithms to five decimal places.

  a. log3 8

  b. log7 0.5

    c. log20 17

  d. log0.5 7

    e. ln x, given that log10 x = 2.3

     f. ln x, given that log2 x = 1.4

   g. ln x, given that log2 x = -1.5

  h. ln x, given that log10 x = -0.7

70. Conversion factors

a. Show that the equation for converting base 10 logarithms to 
base 2 logarithms is

log2 x = ln 10
ln 2

  log10 x.

b. Show that the equation for converting base a logarithms to 
base b logarithms is

logb x = ln a
ln b

  loga x.

T

7.2 Exponential Change and Separable Differential Equations

Exponential functions increase or decrease very rapidly with changes in the independent 
variable. They describe growth or decay in many natural and industrial situations. The 
variety of models based on these functions partly accounts for their importance. We now 
investigate the basic proportionality assumption that leads to such exponential change.

Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the size of a 
population, the amount of a decaying radioactive material, and the temperature difference 
between a hot object and its surrounding medium. Such quantities are said to undergo 
exponential change.

If the amount present at time t = 0 is called y0, then we can find y as a function of t
by solving the following initial value problem:

Differential equation:  
dy
dt

= ky (1a)

Initial condition: y = y0 when t = 0. (1b)

If y is positive and increasing, then k is positive, and we use Equation (1a) to say that the 
rate of growth is proportional to what has already been accumulated. If y is positive and 
decreasing, then k is negative, and we use Equation (1a) to say that the rate of decay is 
proportional to the amount still left.
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We see right away that the constant function y = 0 is a solution of Equation (1a) if 
y0 = 0. To find the nonzero solutions, we divide Equation (1a) by y:

1
y
# dy

dt
= k y ≠  0

L

1
y

dy
dt

dt =
L

k dt Integrate with respect to t;

 ln � y � = kt + C 1 (1>u) du = ln � u � + C.

� y � = ekt+C Exponentiate.

� y � = eC # ekt ea+b = ea # eb

y = {eCekt If � y � = r, then y = {r.

y = Aekt. A is a shorter name for {eC .

By allowing A to take on the value 0 in addition to all possible values {eC, we can 
include the solution y = 0 in the formula.

We find the value of A for the initial value problem by solving for A when y = y0 and 
t = 0:

y0 = Aek #  0 = A.

The solution of the initial value problem

dy
dt

= ky , y(0) = y0

is

y = y0ekt . (2)

Quantities changing in this way are said to undergo exponential growth if k 7 0 and 
exponential decay if k 6 0. The number k is called the rate constant of the change. (See 
Figure 7.5.)

The derivation of Equation (2) shows also that the only functions that are their own 
derivatives (so k = 1) are constant multiples of the exponential function.

Before presenting several examples of exponential change, let’s consider the process 
we used to derive it.

Separable Differential Equations

Exponential change is modeled by a differential equation of the form dy>dx = ky for 
some nonzero constant k. More generally, suppose we have a differential equation of the 
form

dy
dx

= ƒ(x, y), (3)

where ƒ is a function of both the independent and dependent variables. A solution of the 
equation is a differentiable function y = y(x) defined on an interval of x-values (perhaps 
infinite) such that

d
dx

y(x) = ƒ(x, y(x))

on that interval. That is, when y(x) and its derivative y′(x) are substituted into the differen-
tial equation, the resulting equation is true for all x in the solution interval. The general
solution is a solution y(x) that contains all possible solutions and it always contains an 
arbitrary constant.

y0
t

y

k = 1.3

k = 1

k = 0.6

y = y0 ekt

(a)

y0

t

y

k =−1.3

k = −1

k = −0.5

(b)

y = y0 ekt

FIGURE 7.5 Graphs of (a) exponential 
growth and (b) exponential decay. As � k �
increases, the growth (k 7 0) or decay
(k 6 0) intensifies.
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Equation (3) is separable if ƒ can be expressed as a product of a function of x and a 
function of y. The differential equation then has the form

dy
dx

= g(x)H( y).
g is a function of x;
H is a function of y.

When we rewrite this equation in the form

dy
dx

=
g(x)
h(y)

, H(y) = 1
h(y)

its differential form allows us to collect all y terms with dy and all x terms with dx:

h(y) dy = g(x) dx.

Now we simply integrate both sides of this equation:

L
h(y) dy =

L
g(x) dx . (4)

After completing the integrations, we obtain the solution y defined implicitly as a function 
of x.

The justification that we can simply integrate both sides in Equation (4) is based on 
the Substitution Rule (Section 5.5):

L
h(y) dy =

L
h(y(x))

dy
dx

dx

=
L

h(y(x))
g(x)

h(y(x))
dx

dy

dx
=

g(x)

h(y)

=
L

g(x) dx.

EXAMPLE 1  Solve the differential equation

dy
dx

= (1 + y)ex , y 7 -1.

Solution Since 1 + y is never zero for y 7 -1, we can solve the equation by separat-
ing the variables.

dy
dx

= (1 + y)ex

dy = (1 + y)ex dx
Treat dy/dx as a quotient of 
differentials and multiply 
both sides by dx.dy

1 + y
= ex dx Divide by (1 + y) .

L

dy
1 + y

=
L

ex dx Integrate both sides.

ln (1 + y) = ex + C
C represents the combined 
constants of integration.

The last equation gives y as an implicit function of x.

EXAMPLE 2  Solve the equation y(x + 1)
dy
dx

= x(y2 + 1).



7.2  Exponential Change and Separable Differential Equations 433

Solution We change to differential form, separate the variables, and integrate:

y(x + 1) dy = x(y2 + 1) dx

y dy

y2 + 1
= x dx

x + 1
x ≠ -1

L

y dy

1 + y2 =
L
a1 - 1

x + 1
b dx Divide x by x + 1.

1
2

ln (1 + y2) = x - ln � x + 1 � + C .

The last equation gives the solution y as an implicit function of x.

The initial value problem

dy
dt

= ky, y(0) = y0

involves a separable differential equation, and the solution y = y0ekt expresses exponen-
tial change. We now present several examples of such change.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, animals, or 
bacteria, for example) is a discontinuous function of time because it takes on discrete val-
ues. However, when the number of individuals becomes large enough, the population can 
be approximated by a continuous function. Differentiability of the approximating function 
is another reasonable hypothesis in many settings, allowing for the use of calculus to 
model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and 
assume a constant fertility, then at any instant t the birth rate is proportional to the number 
y(t) of individuals present. Let’s assume, too, that the death rate of the population is stable 
and proportional to y(t). If, further, we neglect departures and arrivals, the growth rate dy>dt
is the birth rate minus the death rate, which is the difference of the two proportionalities 
under our assumptions. In other words, dy>dt = ky so that y = y0ekt, where y0 is the size of 
the population at time t = 0. As with all kinds of growth, there may be limitations imposed 
by the surrounding environment, but we will not go into these here. (We treat one model 
imposing such limitations in Section 9.4.) When k is positive, the proportionality dy>dt = ky
models unlimited population growth. (See Figure 7.6.)

EXAMPLE 3  The biomass of a yeast culture in an experiment is initially 29 grams. 
After 30 minutes the mass is 37 grams. Assuming that the equation for unlimited popula-
tion growth gives a good model for the growth of the yeast when the mass is below 100 
grams, how long will its take for the mass to double from its initial value?

Solution Let y(t) be the yeast biomass after t minutes. We use the exponential growth 
model dy>dt = ky for unlimited population growth, with solution y = y0ekt.

We have y0 = y(0) = 29. We are also told that,

y(30) = 29ek(30) = 37.

Solving this equation for k, we find

ek(30) = 37
29

30k = ln a37
29
b

k = 1
30

ln a37
29
b ≈ 0.008118.

TABLE 7.3 Population of yeast

Time
(hr)

Yeast biomass
(mg)

0 9.6

1 18.3

2 29.0

3 47.2

4 71.1

5 119.1

6 174.6

7 257.3

8 350.7

9 441.0

10 513.3
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FIGURE 7.6 Graph of the growth of a 
yeast population over a 10-hour period, 
based on the data in Table 7.3.
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Then the mass of the yeast in grams after t minutes is given by the equation

y = 29e(0.008118)t.

To solve the problem we find the time t for which y(t) = 58, which is twice the initial amount.

 29e(0.008118)t = 58

 (0.008118)t = ln a58
29
b

t = ln 2
0.008118

≈ 85.38

It takes about 85 minutes for the yeast population to double.

In the next example we model the number of people within a given population who 
are infected by a disease which is being eradicated from the population. Here the constant 
of proportionality k is negative, and the model describes an exponentially decaying num-
ber of infected individuals.

EXAMPLE 4  One model for the way diseases die out when properly treated assumes 
that the rate dy>dt at which the number of infected people changes is proportional to the 
number y. The number of people cured is proportional to the number y that are infected 
with the disease. Suppose that in the course of any given year the number of cases of a 
disease is reduced by 20%. If there are 10,000 cases today, how many years will it take to 
reduce the number to 1000?

Solution We use the equation y = y0ekt . There are three things to find: the value of y0,
the value of k, and the time t when y = 1000.

The value of y0. We are free to count time beginning anywhere we want. If we count 
from today, then y = 10,000 when t = 0, so y0 = 10,000. Our equation is now

y = 10,000ekt . (5)

The value of k. When t = 1 year, the number of cases will be 80% of its present 
value, or 8000. Hence,

 8000 = 10,000ek(1) Eq. (5) with t = 1 and  
y = 8000

ek = 0.8

 ln (ek) = ln 0.8 Logs of both sides

k = ln 0.8 6 0. In 0.8 ≈ -0.223

At any given time t,

y = 10,000e(ln0.8)t. (6)

The value of t that makes y = 1000. We set y equal to 1000 in Equation (6) and solve 
for t:

 1000 = 10,000e(ln0.8)t

e(ln0.8)t = 0.1

 (ln 0.8)t = ln 0.1 Logs of both sides

t = ln 0.1
ln 0.8

≈ 10.32 years .

It will take a little more than 10 years to reduce the number of cases to 1000. (See 
Figure 7.7.)

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is 
called radioactive decay, and an element whose atoms go spontaneously through this 
process is called radioactive. Sometimes when an atom emits some of its mass through 
this process of radioactivity, the remainder of the atom re-forms to make an atom of some 

t

y

1050

1,000

5,000

10,000

y = 10,000e(ln 0.8)t

FIGURE 7.7 A graph of the number 
of people infected by a disease exhibits 
exponential decay (Example 4).
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new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a 
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element 
decays (as measured by the number of nuclei that change per unit time) is approximately 
proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive 
element is described by the equation dy>dt = -ky , k 7 0. It is conventional to use 
-k , with k 7 0, to emphasize that y is decreasing. If y0 is the number of radioactive nuclei 
present at time zero, the number still present at any later time t will be

y = y0e-kt , k 7 0.

In Section 1.6, we defined the half-life of a radioactive element to be the time required 
for half of the radioactive nuclei present in a sample to decay. It is an interesting fact that the 
half-life is a constant that does not depend on the number of radioactive nuclei initially pres-
ent in the sample, but only on the radioactive substance. We found the half-life is given by

For radon-222 gas, t is measured in days 
and k = 0.18. For radium-226, which 
used to be painted on watch dials to 
make them glow at night (a dangerous 
practice), t is measured in years and 
k = 4.3 * 10-4.

Half@life = ln 2
k

(7)

For example, the half-life for radon-222 is

half@life = ln 2
0.18

≈ 3.9 days.

EXAMPLE 5  The decay of radioactive elements can sometimes be used to date 
events from Earth’s past. In a living organism, the ratio of radioactive carbon, carbon-14, 
to ordinary carbon stays fairly constant during the lifetime of the organism, being approxi-
mately equal to the ratio in the organism’s atmosphere at the time. After the organism’s 
death, however, no new carbon is ingested, and the proportion of carbon-14 in the organ-
ism’s remains decreases as the carbon-14 decays.

Scientists who do carbon-14 dating often use a figure of 5730 years for its half-life. Find 
the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

Solution We use the decay equation y = y0e-kt. There are two things to find: the value 
of k and the value of t when y is 0.9y0 (90% of the radioactive nuclei are still present). That 
is, find t when y0e-kt = 0.9y0 , or e-kt = 0.9.

The value of k. We use the half-life Equation (7):

k = ln 2
half@life

= ln 2
5730

(about 1.2 * 10-4).

The value of t that makes e-kt = 0.9.

e-kt = 0.9

e-(ln2>5730)t = 0.9

- ln 2
5730

t = ln 0.9 Logs of both sides

t = - 5730 ln 0.9
ln 2

≈ 871 years

The sample is about 871 years old.

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver bar 
immersed in a large tub of water cools to the temperature of the surrounding water. In situ-
ations like these, the rate at which an object’s temperature is changing at any given time is 
roughly proportional to the difference between its temperature and the temperature of the 

Carbon-14 dating uses the half-life of 
5730 years.
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surrounding medium. This observation is called Newton’s Law of Cooling, although it 
applies to warming as well.

If H is the temperature of the object at time t and HS is the constant surrounding tem-
perature, then the differential equation is

dH
dt

= -k(H - HS). (8)

If we substitute y for (H - HS), then

dy
dt

= d
dt

(H - HS) = dH
dt

- d
dt

(HS)

= dH
dt

- 0 HS is a constant.

= dH
dt

= -k(H - HS) Eq. (8)

= -ky. H - HS = y

Now we know that the solution of dy>dt = -ky is y = y0e-kt, where y(0) = y0. Substitut-
ing (H - HS) for y, this says that

H - HS = (H0 - HS)e-kt, (9)

where H0 is the temperature at t = 0. This equation is the solution to Newton’s Law of 
Cooling.

EXAMPLE 6  A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, 
the egg’s temperature is 38°C. Assuming that the water has not warmed appreciably, how 
much longer will it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and sub-
tract the 5 min that have already elapsed. Using Equation (9) with HS = 18 and H0 = 98,
the egg’s temperature t min after it is put in the sink is

H = 18 + (98 - 18)e-kt = 18 + 80e-kt.

To find k, we use the information that H = 38 when t = 5:

38 = 18 + 80e-5k

e-5k = 1
4

-5k = ln 1
4

= - ln 4

k = 1
5

ln 4 = 0.2 ln 4 (about 0.28).

The egg’s temperature at time t is H = 18 + 80e-(0.2 ln4)t. Now find the time t when 
H = 20:

20 = 18 + 80e-(0.2 ln4)t

80e-(0.2 ln4)t = 2

e-(0.2 ln4)t = 1
40

-(0.2 ln 4)t = ln 1
40

= - ln 40

t = ln 40
0.2 ln 4

≈ 13 min.

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool. 
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C.
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Verifying Solutions
In Exercises 1–4, show that each function y = ƒ(x) is a solution of the 
accompanying differential equation.

1. 2y′ + 3y = e-x

  a. y = e-x b. y = e-x + e-(3>2)x

  c. y = e-x + Ce-(3>2)x

2. y′ = y2

  a. y = - 1
x b. y = - 1

x + 3
c. y = - 1

x + C

3. y = 1
x
L

x

1

et

t dt, x2y′ + xy = ex

4. y = 1

21 + x4L

x

1
21 + t4 dt , y′ + 2x3

1 + x4 y = 1

Initial Value Problems
In Exercises 5–8, show that each function is a solution of the given 
initial value problem.

Differential Initial  Solution
equation equation candidate

5. y′ + y = 2
1 + 4e2x y(- ln 2) = p

2
y = e-x tan-1(2ex)

6. y′ = e-x2 - 2xy y(2) = 0 y = (x - 2)e-x2

7. xy′ + y = -sin x , yap
2
b = 0 y = cos x

x
x 7 0

8. x2y′ = xy - y2 , y(e) = e y = x
ln x

x 7 1

Separable Differential Equations
Solve the differential equation in Exercises 9–22.

9. 22xy  
dy
dx

= 1, x, y 7 0 10.
dy
dx

= x22y, y 7 0

11.
dy
dx

= ex-y 12.
dy
dx

= 3x2 e-y

13.
dy
dx

= 2ycos22y 14. 22xy
dy
dx

= 1

15. 2x  
dy
dx

= ey+2x , x 7 0 16. (sec x)
dy
dx

= ey+ sin x

17.
dy
dx

= 2x21 - y2 , -1 6 y 6 1

18.
dy
dx

= e2x-y

ex+y

19. y2
dy
dx

= 3x2y3 - 6x2 20.
dy
dx

= xy + 3x - 2y - 6

21. 1
x

dy
dx

= yex2 + 22y ex2
22.

dy
dx

= ex-y + ex + e-y + 1

Applications and Examples
The answers to most of the following exercises are in terms of loga-
rithms and exponentials. A calculator can be helpful, enabling you to 
express the answers in decimal form.

23. Human evolution continues The analysis of tooth shrinkage
by C. Loring Brace and colleagues at the University of Michi-
gan’s Museum of Anthropology indicates that human tooth size is 
continuing to decrease and that the evolutionary process did not 
come to a halt some 30,000 years ago, as many scientists contend. 

In northern Europeans, for example, tooth size reduction now has 
a rate of 1% per 1000 years.

a. If t represents time in years and y represents tooth size, use the 
condition that y = 0.99y0 when t = 1000 to find the value of 
k in the equation y = y0ekt. Then use this value of k to answer 
the following questions.

b. In about how many years will human teeth be 90% of their 
present size?

c. What will be our descendants’ tooth size 20,000 years from 
now (as a percentage of our present tooth size)?

24. Atmospheric pressure The earth’s atmospheric pressure p is often 
modeled by assuming that the rate dp>dh at which p changes with 
the altitude h above sea level is proportional to p. Suppose that the 
pressure at sea level is 1013 millibars (about 14.7 pounds per square 
inch) and that the pressure at an altitude of 20 km is 90 millibars.

a. Solve the initial value problem

Differential equation: dp>dh = kp (k a constant)

Initial condition: p = p0  when  h = 0

to express p in terms of h. Determine the values of p0 and k
from the given altitude-pressure data.

b. What is the atmospheric pressure at h = 50 km?

  c. At what altitude does the pressure equal 900 millibars?

25. First-order chemical reactions In some chemical reactions, 
the rate at which the amount of a substance changes with time is 
proportional to the amount present. For the change of d@glucono
lactone into gluconic acid, for example,

dy
dt

= -0.6y

when t is measured in hours. If there are 100 grams of d@glucono
lactone present when t = 0, how many grams will be left after 
the first hour?

26. The inversion of sugar The processing of raw sugar has a step
called “inversion” that changes the sugar’s molecular structure. 
Once the process has begun, the rate of change of the amount of 
raw sugar is proportional to the amount of raw sugar remaining. If 
1000 kg of raw sugar reduces to 800 kg of raw sugar during the first 
10 hours, how much raw sugar will remain after another 14 hours?

27. Working underwater The intensity L(x) of light x feet beneath 
the surface of the ocean satisfies the differential equation

dL
dx

= -kL.

As a diver, you know from experience that diving to 18 ft in the Carib-
bean Sea cuts the intensity in half. You cannot work without artificial 
light when the intensity falls below one-tenth of the surface value. 
About how deep can you expect to work without artificial light?

28. Voltage in a discharging capacitor Suppose that electricity is 
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if t is measured in seconds,

dV
dt

= - 1
40

V.

Solve this equation for V, using V0 to denote the value of V when 
t = 0. How long will it take the voltage to drop to 10% of its 
original value?

Exercises 7.2
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29. Cholera bacteria Suppose that the bacteria in a colony can 
grow unchecked, by the law of exponential change. The colony 
starts with 1 bacterium and doubles every half-hour. How many 
bacteria will the colony contain at the end of 24 hours? (Under 
favorable laboratory conditions, the number of cholera bacteria 
can double every 30 min. In an infected person, many bacteria are 
destroyed, but this example helps explain why a person who feels 
well in the morning may be dangerously ill by evening.)

30. Growth of bacteria A colony of bacteria is grown under ideal 
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 hours there are 10,000 bacteria. 
At the end of 5 hours there are 40,000. How many bacteria were 
present initially?

31. The incidence of a disease (Continuation of Example 4.) Sup-
pose that in any given year the number of cases can be reduced by 
25% instead of 20%.

  a. How long will it take to reduce the number of cases to 1000?

  b. How long will it take to eradicate the disease, that is, reduce 
the number of cases to less than 1?

32. Drug concentration An antibiotic is administered intrave-
nously into the bloodstream at a constant rate r. As the drug flows 
through the patient’s system and acts on the infection that is pres-
ent, it is removed from the bloodstream at a rate proportional to 
the amount in the bloodstream at that time. Since the amount of 
blood in the patient is constant, this means that the concentration 
y = y(t) of the antibiotic in the bloodstream can be modeled by 
the differential equation

dy
dt

= r - ky, k 7 0 and constant.

  a. If y(0) = y0, find the concentration y(t) at any time t.

  b. Assume that y0 6 (r>k) and find limySq y(t). Sketch the 
solution curve for the concentration.

33. Endangered species Biologists consider a species of animal or 
plant to be endangered if it is expected to become extinct within 20 
years. If a certain species of wildlife is counted to have 1147 mem-
bers at the present time, and the population has been steadily declin-
ing exponentially at an annual rate averaging 39% over the past 7 
years, do you think the species is endangered? Explain your answer.

34. The U.S. population The U.S. Census Bureau keeps a running 
clock totaling the U.S. population. On September 20, 2012, the 
total was increasing at the rate of 1 person every 12 sec. The 
population figure for 8:11 p.m. EST on that day was 314,419,198.

  a. Assuming exponential growth at a constant rate, find the rate 
constant for the population’s growth (people per 365-day year).

  b. At this rate, what will the U.S. population be at 8:11 p.m. EST 
on September 20, 2019?

35. Oil depletion Suppose the amount of oil pumped from one of 
the canyon wells in Whittier, California, decreases at the continu-
ous rate of 10% per year. When will the well’s output fall to one-
fifth of its present value?

36. Continuous price discounting To encourage buyers to place 
100-unit orders, your firm’s sales department applies a continu-
ous discount that makes the unit price a function p(x) of the num-
ber of units x ordered. The discount decreases the price at the rate 
of $0.01 per unit ordered. The price per unit for a 100-unit order 
is p(100) = +20.09.

  a. Find p(x) by solving the following initial value problem:

Differential equation:
dp
dx

= - 1
100

p

Initial condition: p(100) = 20.09.

  b. Find the unit price p(10) for a 10-unit order and the unit price 
p(90) for a 90-unit order.

  c. The sales department has asked you to find out if it is dis-
counting so much that the firm’s revenue, r(x) = x # p(x), will 
actually be less for a 100-unit order than, say, for a 90-unit 
order. Reassure them by showing that r has its maximum 
value at x = 100.

  d. Graph the revenue function r(x) = xp(x) for 0 … x … 200.

37. Plutonium-239 The half-life of the plutonium isotope is 24,360 
years. If 10 g of plutonium is released into the atmosphere by a 
nuclear accident, how many years will it take for 80% of the iso-
tope to decay?

38. Polonium-210 The half-life of polonium is 139 days, but your 
sample will not be useful to you after 95% of the radioactive 
nuclei present on the day the sample arrives has disintegrated. For 
about how many days after the sample arrives will you be able to 
use the polonium?

39. The mean life of a radioactive nucleus Physicists using the 
radioactivity equation y = y0e-kt call the number 1>k the mean life
of a radioactive nucleus. The mean life of a radon nucleus is about 
1>0.18 = 5.6 days. The mean life of a carbon-14 nucleus is more 
than 8000 years. Show that 95% of the radioactive nuclei originally 
present in a sample will disintegrate within three mean lifetimes, 
i.e., by time t = 3>k. Thus, the mean life of a nucleus gives a quick 
way to estimate how long the radioactivity of a sample will last.

40. Californium-252 What costs $27 million per gram and can be 
used to treat brain cancer, analyze coal for its sulfur content, and 
detect explosives in luggage? The answer is californium-252, a radio-
active isotope so rare that only 8 g of it have been made in the West-
ern world since its discovery by Glenn Seaborg in 1950. The half-life 
of the isotope is 2.645 years—long enough for a useful service life 
and short enough to have a high radioactivity per unit mass. One 
microgram of the isotope releases 170 million neutrons per minute.

  a. What is the value of k in the decay equation for this isotope?

  b. What is the isotope’s mean life? (See Exercise 39.)

  c. How long will it take 95% of a sample’s radioactive nuclei to 
disintegrate?

41. Cooling soup Suppose that a cup of soup cooled from 90°C to 
60°C after 10 min in a room whose temperature was 20°C. Use 
Newton’s Law of Cooling to answer the following questions.

  a. How much longer would it take the soup to cool to 35°C?

  b. Instead of being left to stand in the room, the cup of 90°C 
soup is put in a freezer whose temperature is -15°C. How 
long will it take the soup to cool from 90°C to 35°C?

42. A beam of unknown temperature An aluminum beam was 
brought from the outside cold into a machine shop where the tem-
perature was held at 65°F. After 10 min, the beam warmed to 
35°F and after another 10 min it was 50°F. Use Newton’s Law of 
Cooling to estimate the beam’s initial temperature.

43. Surrounding medium of unknown temperature A pan of 
warm water (46°C) was put in a refrigerator. Ten minutes later, the 
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water’s temperature was 39°C; 10 min after that, it was 33°C. Use 
Newton’s Law of Cooling to estimate how cold the refrigerator was.

44. Silver cooling in air The temperature of an ingot of silver is 
60°C above room temperature right now. Twenty minutes ago, it 
was 70°C above room temperature. How far above room temper-
ature will the silver be

  a. 15 min from now?

  b. 2 hours from now?

  c. When will the silver be 10°C above room temperature?

45. The age of Crater Lake The charcoal from a tree killed in the 
volcanic eruption that formed Crater Lake in Oregon contained 
44.5% of the carbon-14 found in living matter. About how old is 
Crater Lake?

46. The sensitivity of carbon-14 dating to measurement To see 
the effect of a relatively small error in the estimate of the amount 
of carbon-14 in a sample being dated, consider this hypothetical 
situation:

  a. A bone fragment found in central Illinois in the year 2000 
contains 17% of its original carbon-14 content. Estimate the 
year the animal died.

  b. Repeat part (a), assuming 18% instead of 17%.

  c. Repeat part (a), assuming 16% instead of 17%.

47. Carbon-14 The oldest known frozen human mummy, discov-
ered in the Schnalstal glacier of the Italian Alps in 1991 and called 
Otzi, was found wearing straw shoes and a leather coat with goat 
fur, and holding a copper ax and stone dagger. It was estimated 
that Otzi died 5000 years before he was discovered in the melting 
glacier. How much of the original carbon-14 remained in Otzi at 
the time of his discovery?

48. Art forgery A painting attributed to Vermeer (1632–1675), 
which should contain no more than 96.2% of its original car-
bon-14, contains 99.5% instead. About how old is the forgery?

49. Lascaux Cave paintings Prehistoric cave paintings of animals 
were found in the Lascaux Cave in France in 1940. Scientific 
analysis revealed that only 15% of the original carbon-14 in the 
paintings remained. What is an estimate of the age of the 
paintings?

50. Incan mummy The frozen remains of a young Incan woman 
were discovered by archeologist Johan Reinhard on Mt. Ampato 
in Peru during an expedition in 1995.

  a. How much of the original carbon-14 was present if the esti-
mated age of the “Ice Maiden” was 500 years?

  b. If a 1% error can occur in the carbon-14 measurement, what is 
the oldest possible age for the Ice Maiden?

7.3 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions ex and e- x. The hyperbolic functions simplify many mathematical expressions and 
occur frequently in mathematical and engineering applications. In this section we give a 
brief introduction to these functions, their graphs, their derivatives, their integrals, and 
their inverse functions.

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

sinh x = ex - e-x

2
and cosh x = ex + e-x

2
.

We pronounce sinh x as “cinch x,” rhyming with “pinch x,” and cosh x as “kosh x,” rhym-
ing with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent, 
secant, and cosecant functions. The defining equations and graphs of these functions are 
shown in Table 7.4. We will see that the hyperbolic functions bear many similarities to the 
trigonometric functions after which they are named.

Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign, 
these resemble identities we know for the trigonometric functions. The identities are 
proved directly from the definitions, as we show here for the second one:

2 sinh x cosh x = 2aex - e-x

2
b aex + e-x

2
b

= e2x - e-2x

2

= sinh 2x.
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The other identities are obtained similarly, by substituting in the definitions of the 
hyperbolic functions and using algebra. Like many standard functions, hyperbolic func-
tions and their inverses are easily evaluated with calculators, which often have special 
keys for that purpose.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the 
unit circle x2 + y2 = 1. So the trigonometric functions are sometimes called the circular
functions. Because of the first identity

cosh2u - sinh2u = 1,

with u substituted for x in Table 7.5, the point having coordinates (cosh u, sinh u) lies on 
the right-hand branch of the hyperbola x2 - y2 = 1. This is where the hyperbolic func-
tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8. 
They play an important role in science and engineering as well. The hyperbolic cosine 
describes the shape of a hanging cable or wire that is strung between two points at the same 
height and hanging freely (see Exercise 83). The shape of the St. Louis Arch is an inverted 
hyperbolic cosine. The hyperbolic tangent occurs in the formula for the velocity of an ocean 
wave moving over water having a constant depth, and the inverse hyperbolic tangent describes 
how relative velocities sum according to Einstein’s Law in the Special Theory of Relativity.

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions 
ex and e-x, have derivatives at every point at which they are defined (Table 7.6). Again, 
there are similarities with trigonometric functions.

TABLE 7.4 The six basic hyperbolic functions

x

y

1

−1
1

2
3

−2
−3

2 3−2−1−3

(a)

y = sinh xy = ex

2

y = −
e−x

2

Hyperbolic sine:

sinh x = ex - e-x

2

Hyperbolic cosine:

cosh x = ex + e-x

2

x

y

1−1 2 3−2−3

(b)

y = cosh x

y = e−x

2 1
2
3

ex

2
y =

Hyperbolic tangent:

tanh x = sinh x
cosh x

= ex - e-x

ex + e-x

Hyperbolic cotangent:

coth x = cosh x
sinh x

= ex + e-x

ex - e-x

x

y

2

1−1 2−2

−2

(c)

y = coth x

y = tanh x

y = coth x

y = 1

y = −1

Hyperbolic secant:

sech x = 1
cosh x

= 2
ex + e-x

x

y

1−1 0 2−2

2

(d)

y = sech x

y = 1

Hyperbolic cosecant:

csch x = 1
sinh x

= 2
ex - e-x  

x

y

1−1 2−2

2

1

−1

(e)

y = csch x

TABLE 7.5 Identities for 

hyperbolic functions

cosh2 x - sinh2 x = 1

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh2 x + sinh2 x

cosh2 x = cosh 2x + 1
2

sinh2 x = cosh 2x - 1
2

tanh2 x = 1 - sech2 x

coth2 x = 1 + csch2 x

TABLE 7.6 Derivatives of 

hyperbolic functions

d
dx

(sinh u) = cosh u
du
dx

d
dx

(cosh u) = sinh u
du
dx

d
dx

(tanh u) = sech2 u
du
dx

d
dx

(coth u) = -csch2 u
du
dx

d
dx

(sech u) = -sech u tanh u
du
dx

d
dx

(csch u) = -csch u coth u
du
dx
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The derivative formulas are derived from the derivative of eu:

d
dx

(sinh u) = d
dx
aeu - e-u

2
b Definition of sinh u

=
eu du>dx + e-u du>dx

2
Derivative of eu

= cosh u
du
dx

. Definition of cosh u

This gives the first derivative formula. From the definition, we can calculate the derivative 
of the hyperbolic cosecant function, as follows:

d
dx

(csch u) = d
dx
a 1

sinh u
b Definition of csch u

= - cosh u
sinh2 u

du
dx

Quotient Rule for derivatives

= - 1
sinh u

cosh u
sinh u

du
dx

Rearrange terms.

= -csch u coth u
du
dx

Definitions of csch u and coth u

The other formulas in Table 7.6 are obtained similarly.
The derivative formulas lead to the integral formulas in Table 7.7.

EXAMPLE 1  We illustrate the derivative and integral formulas.

(a) d
dt
1tanh 21 + t22 = sech2 21 + t2 # d

dt
121 + t22

= t

21 + t2
sech221 + t2

(b)
L

coth 5x dx =
L

cosh 5x
sinh 5x

dx = 1
5L

du
u

u = sinh 5x ,
du = 5 cosh 5x dx

= 1
5

ln � u � + C = 1
5

ln � sinh 5x � + C

(c)
L

1

0
sinh2 x dx =

L

1

0

cosh 2x - 1
2

dx Table 7.5

= 1
2L

1

0
(cosh 2x - 1) dx = 1

2
c sinh 2x

2
- x d

0

1

= sinh 2
4

- 1
2
≈ 0.40672 Evaluate with a calculator.

(d)
L

ln 2

0
4ex sinh x dx =

L

ln 2

0
4ex ex - e-x

2
dx =

L

ln 2

0
(2e2x - 2) dx

= 3e2x - 2x40
ln 2 = (e2 ln2 - 2 ln 2) - (1 - 0)

= 4 - 2 ln 2 - 1 ≈ 1.6137

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see 
Chapter 8). Since d(sinh x)>dx = cosh x 7 0, the hyperbolic sine is an increasing func-
tion of x. We denote its inverse by

y = sinh-1 x.

TABLE 7.7 Integral formulas for 

hyperbolic functions

L
sinh u du = cosh u + C

L
cosh u du = sinh u + C

L
sech2 u du = tanh u + C

L
csch2 u du = -coth u + C

L
sech u tanh u du = -sech u + C

L
csch u coth u du = -csch u + C
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For every value of x in the interval -q 6 x 6 q, the value of y = sinh-1 x is the number 
whose hyperbolic sine is x. The graphs of y = sinh x and y = sinh-1 x are shown in 
Figure 7.8a.

The function y = cosh x is not one-to-one because its graph in Table 7.4 does not 
pass the horizontal line test. The restricted function y = cosh x, x Ú 0, however, is one-
to-one and therefore has an inverse, denoted by

y = cosh-1 x.

For every value of x Ú 1, y = cosh-1 x is the number in the interval 0 … y 6 q whose 
hyperbolic cosine is x. The graphs of y = cosh x, x Ú 0, and y = cosh-1 x are shown in 
Figure 7.8b.

Like y = cosh x, the function y = sech x = 1>cosh x fails to be one-to-one, but its 
restriction to nonnegative values of x does have an inverse, denoted by

y = sech-1 x.

For every value of x in the interval (0, 14 , y = sech-1 x is the nonnegative number whose 
hyperbolic secant is x. The graphs of y = sech x, x Ú 0, and y = sech-1 x are shown in 
Figure 7.8c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and 
therefore have inverses, denoted by

y = tanh-1 x, y = coth-1 x, y = csch-1 x.

These functions are graphed in Figure 7.9.

x
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y = cosh−1 x
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FIGURE 7.8 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about 
the line y = x.
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FIGURE 7.9 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.
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Useful Identities

We use the identities in Table 7.8 to calculate the values of sech-1 x, csch-1 x, and coth-1 x
on calculators that give only cosh-1 x, sinh-1 x, and tanh-1 x. These identities are direct 
consequences of the definitions. For example, if 0 6 x … 1, then

sech acosh-1 a1xb b = 1

cosh acosh-1 a1xb b
= 1

a1xb
= x.

We also know that sech (sech-1 x) = x, so because the hyperbolic secant is one-to-one on 
(0, 14 , we have

cosh-1 a1xb = sech-1 x.

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the 
derivative formulas in Table 7.9.

TABLE 7.8 Identities for 

inverse hyperbolic functions

sech-1 x = cosh-1 1
x

csch-1 x = sinh-1 1
x

coth-1 x = tanh-1 1
x

TABLE 7.9 Derivatives of inverse hyperbolic functions

d(sinh-1 u)
dx

= 1

21 + u2

du
dx

d(cosh-1 u)
dx

= 1

2u2 - 1

du
dx

, u 7 1

d(tanh-1 u)
dx

= 1
1 - u2

du
dx

, � u � 6 1

d(coth-1 u)
dx

= 1
1 - u2

du
dx

, � u � 7 1

d(sech-1 u)
dx

= - 1

u21 - u2

du
dx

, 0 6 u 6 1

d(csch-1 u)
dx

= - 1

� u �21 + u2

du
dx

, u ≠ 0

The restrictions � u � 6 1 and � u � 7 1 on the derivative formulas for tanh-1 u and 
coth-1 u come from the natural restrictions on the values of these functions. (See Figure 7.9a 
and b.) The distinction between � u � 6 1 and � u � 7 1 becomes important when we con-
vert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in 
Example 2, where we calculate d(cosh-1 u)>dx . The other derivatives are obtained by 
similar calculations.

EXAMPLE 2  Show that if u is a differentiable function of x whose values are greater 
than 1, then

d
dx

(cosh-1 u) = 1

2u2 - 1

du
dx

.
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Solution First we find the derivative of y = cosh-1 x for x 7 1 by applying Theorem 3 
of Section 3.8 with ƒ(x) = cosh x and ƒ-1(x) = cosh-1 x. Theorem 3 can be applied 
because the derivative of cosh x is positive for 0 6 x.

(ƒ-1)′(x) = 1
ƒ′(ƒ-1 (x))

Theorem 3, Section 3.8

= 1
sinh (cosh-1 x)

ƒ′(u) = sinh u

= 1

2cosh2(cosh-1 x) - 1

cosh2 u - sinh2 u = 1,

sinh u = 2cosh2 u - 1

= 1

2x2 - 1
cosh (cosh-1 x) = x

The Chain Rule gives the final result:

d
dx

(cosh-1 u) = 1

2u2 - 1

du
dx

.

With appropriate substitutions, the derivative formulas in Table 7.9 lead to the integra-
tion formulas in Table 7.10. Each of the formulas in Table 7.10 can be verified by differen-
tiating the expression on the right-hand side.

HISTORICAL BIOGRAPHY

Sonya Kovalevsky 
(1850–1891)

TABLE 7.10 Integrals leading to inverse hyperbolic functions

1.
L

du

2a2 + u2
= sinh-1 auab + C, a 7 0

2.
L

du

2u2 - a2
= cosh-1 auab + C, u 7 a 7 0

3.
L

du
a2 - u2 = d 1

a tanh-1 auab + C, u2 6 a2

1
a coth-1 auab + C, u2 7 a2

4.
L

du

u2a2 - u2
= - 1

a sech-1 auab + C, 0 6 u 6 a

5.
L

du

u2a2 + u2
= - 1

a csch-1 ` ua ` + C , u ≠ 0 and a 7 0

EXAMPLE 3  Evaluate

L

1

0

2 dx

23 + 4x2
.

Solution The indefinite integral is

L

2 dx

23 + 4x2
=

L

du

2a2 + u2
u = 2x, du = 2 dx, a = 23

= sinh-1 auab + C Formula from Table 7.10

= sinh-1 a 2x

23
b + C.
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Therefore,

L

1

0

2 dx

23 + 4x2
= sinh-1 a 2x

23
b d

0

1

= sinh-1 a 2

23
b - sinh-1 (0)

= sinh-1 a 2

23
b - 0 ≈ 0.98665.

Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity cosh2 x - sinh2 x = 1 to find the values of the 
remaining five hyperbolic functions.

1. sinh x = - 3
4

2. sinh x = 4
3

3. cosh x = 17
15

, x 7 0 4. cosh x = 13
5

, x 7 0

Rewrite the expressions in Exercises 5–10 in terms of exponentials 
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)

7. cosh 5x + sinh 5x 8. cosh 3x - sinh 3x

9. (sinh x + cosh x)4

10. ln (cosh x + sinh x) + ln (cosh x - sinh x)

11. Prove the identities

sinh (x + y) = sinh x cosh y + cosh x sinh y,

cosh (x + y) = cosh x cosh y + sinh x sinh y.

  Then use them to show that

  a. sinh 2x = 2 sinh x cosh x.

  b. cosh 2x = cosh2 x + sinh2 x.

12. Use the definitions of cosh x and sinh x to show that

cosh2 x - sinh2 x = 1.

Finding Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. y = 6 sinh
x
3

14. y = 1
2

sinh (2x + 1)

15. y = 22t tanh 2t 16. y = t2 tanh
1
t

17. y = ln (sinh z) 18. y = ln (cosh z)

19. y = sech u(1 - ln sech u) 20. y = csch u(1 - ln csch u)

21. y = ln cosh y - 1
2

tanh2 y 22. y = ln sinh y - 1
2

coth2 y

23. y = (x2 + 1) sech (ln x)

  (Hint: Before differentiating, express in terms of exponentials 
and simplify.)

24. y = (4x2 - 1) csch (ln 2x)

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. y = sinh-11x 26. y = cosh-1 22x + 1

27. y = (1 - u) tanh-1u 28. y = (u2 + 2u) tanh-1(u + 1)

29. y = (1 - t) coth-12t 30. y = (1 - t2) coth-1 t

31. y = cos-1 x - x sech-1 x 32. y = ln x + 21 - x2 sech-1 x

33. y = csch-1 a1
2
b u 34. y = csch-1 2u

35. y = sinh-1 (tan x)

36. y = cosh-1 (sec x), 0 6 x 6 p>2
Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.
L

sech x dx = tan-1(sinh x) + C

  b.
L

sech x dx = sin-1(tanh x) + C

38.
L

x sech-1 x dx = x2

2
sech-1 x - 1

2
21 - x2 + C

39.
L

x coth-1 x dx = x2 - 1
2

coth-1 x + x
2

+ C

40.
L

tanh-1 x dx = x tanh-1 x + 1
2

ln (1 - x2) + C

Evaluating Integrals
Evaluate the integrals in Exercises 41–60.

41.
L

sinh 2x dx 42.
L

sinh
x
5

dx

43.
L

6 cosh ax
2

- ln 3b dx 44.
L

4 cosh (3x - ln 2) dx

45.
L

tanh
x
7

dx 46.
L

coth
u

23
du

47.
L

sech2 ax - 1
2
b dx 48.

L
csch2 (5 - x) dx

49.
L

sech 2t tanh 2t dt

2t
50.

L

csch (ln t) coth (ln t) dt
t

51.
L

ln4

ln2
coth x dx 52.

L

ln2

0
tanh 2x dx

Exercises 7.3
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  Then show that (ƒ(x) + ƒ(-x))>2 is even and that (ƒ(x) -
ƒ(-x))>2 is odd.

76. Derive the formula sinh-1 x = ln1x + 2x2 + 12 for all real x.
Explain in your derivation why the plus sign is used with the 
square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the 
action of gravity encounters an air resistance proportional to the 
square of the velocity, then the body’s velocity t sec into the fall 
satisfies the differential equation

m
dy
dt

= mg - ky2,

where k is a constant that depends on the body’s aerodynamic 
properties and the density of the air. (We assume that the fall is 
short enough so that the variation in the air’s density will not 
affect the outcome significantly.)

a. Show that

y = A
mg
k

tanhaA
gk
m tb

     satisfies the differential equation and the initial condition that 
y = 0 when t = 0.

  b. Find the body’s limiting velocity, limtSqy.

  c. For a 160-lb skydiver (mg = 160), with time in seconds and 
distance in feet, a typical value for k is 0.005. What is the 
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a. s = a cos kt + b sin kt.

  b. s = a cosh kt + b sinh kt.

  Show in both cases that the acceleration d2s>dt2 is proportional to 
s but that in the first case it is directed toward the origin, whereas 
in the second case it is directed away from the origin.

79. Volume A region in the first quadrant is bounded above by the
curve y = cosh x, below by the curve y = sinh x, and on the left 
and right by the y-axis and the line x = 2, respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

80. Volume The region enclosed by the curve y = sech x, the 
x-axis, and the lines x = { ln23 is revolved about the x-axis to 
generate a solid. Find the volume of the solid.

81. Arc length Find the length of the graph of y = (1>2) cosh 2x
from x = 0 to x = ln25.

82. Use the definitions of the hyperbolic functions to find each of the 
following limits.

a. lim
xSq

tanh x b. lim
xS-q

tanh x

  c. lim
xSq

sinh x d. lim
xS-q

sinh x

  e. lim
xSq

sech x   f. lim
xSq

coth x

  g. lim
xS0+

coth x h. lim
xS0-

coth x

  i. lim
xS-q

csch x

83. Hanging cables Imagine a cable, like a telephone line or TV 
cable, strung from one support to another and hanging freely. The 
cable’s weight per unit length is a constant w and the horizontal 

53.
L

-ln2

-ln4
2eucosh u du 54.

L

ln2

0
4e-u sinh u du

55.
L

p>4

-p>4
cosh (tan u) sec2 u du 56.

L

p>2

0
2 sinh (sin u) cos u du

57.
L

2

1

cosh (ln t)
t dt 58.

L

4

1

8 cosh 1x
1x

dx

59.
L

0

-ln2
cosh2 ax

2
b dx 60.

L

ln10

0
4 sinh2 ax

2
b dx

Inverse Hyperbolic Functions and Integrals
When hyperbolic function keys are not available on a calculator, it is 
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

 sinh-1 x = ln1x + 2x2 + 12, -q 6 x 6 q

 cosh-1 x = ln1x + 2x2 - 12, x Ú 1

 tanh-1 x = 1
2

ln
1 + x
1 - x

,          � x � 6 1

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 csch-1 x = ln a1x + 21 + x2

� x �
b , x ≠ 0

 coth-1 x = 1
2

ln
x + 1
x - 1

,          � x � 7 1

Use the formulas in the box here to express the numbers in Exercises 
61–66 in terms of natural logarithms.

61. sinh-1 (-5>12) 62. cosh-1 (5>3)

63. tanh-1(-1>2) 64. coth-1 (5>4)

65. sech-1 (3>5) 66. csch-11-1>132
Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.
b. natural logarithms.

67.
L

223

0

dx

24 + x2
68.

L

1>3

0

6 dx

21 + 9x2

69.
L

2

5>4
dx

1 - x2 70.
L

1>2

0

dx
1 - x2

71.
L

3>13

1>5
dx

x21 - 16x2
72.

L

2

1

dx

x24 + x2

73.
L

p

0

cos x dx

21 + sin2 x
74.

L

e

1

dx

x21 + (ln x)2

Applications and Examples
75. Show that if a function ƒ is defined on an interval symmetric 

about the origin (so that ƒ is defined at -x whenever it is defined 
at x), then

ƒ(x) =
ƒ(x) + ƒ(-x)

2
+

ƒ(x) - ƒ(-x)
2

. (1)
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tension at its lowest point is a vector of length H. If we choose a 
coordinate system for the plane of the cable in which the x-axis is 
horizontal, the force of gravity is straight down, the positive 
y-axis points straight up, and the lowest point of the cable lies at 
the point y = H>w on the y-axis (see accompanying figure), then 
it can be shown that the cable lies along the graph of the hyper-
bolic cosine

y = H
w cosh 

w
H

x.

x

y

0

H

Hanging
cable

H
w

y =      cosh xH
w

w
H

  Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next 
accompanying figure displays the tension at P as a vector of 
length (magnitude) T, as well as the tension H at the lowest 
point A. Show that the cable’s slope at P is

tan f =
dy
dx

= sinh 
w
H

x.

x

y

0

H

T

T cos f

f
P(x, y)

y =      cosh xH
w

w
H

H
wA 0,Q R

  b. Using the result from part (a) and the fact that the horizontal 
tension at P must equal H (the cable is not moving), show that 
T = wy. Hence, the magnitude of the tension at P(x, y) is 
exactly equal to the weight of y units of cable.

84. (Continuation of Exercise 83.) The length of arc AP in the 
Exercise 83 figure is s = (1>a) sinh ax, where a = w>H. Show 
that the coordinates of P may be expressed in terms of s as

x = 1
a sinh-1 as, y = As2 + 1

a2 .

85. Area Show that the area of the region in the first quadrant 
enclosed by the curve y = (1>a) cosh ax, the coordinate axes, 
and the line x = b is the same as the area of a rectangle of height 
1 >a and length s, where s is the length of the curve from x = 0 to 
x = b. Draw a figure illustrating this result.

86. The hyperbolic in hyperbolic functions Just as x = cos u and 
y = sin u are identified with points (x, y) on the unit circle, the 

functions x = cosh u and y = sinh u are identified with points 
(x, y) on the right-hand branch of the unit hyperbola, 
x2 - y2 = 1.

    Another analogy between hyperbolic and circular functions 
is that the variable u in the coordinates (cosh u, sinh u) for the 
points of the right-hand branch of the hyperbola x2 - y2 = 1 is 
twice the area of the sector AOP pictured in the accompanying 
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

A(u) = 1
2

cosh u sinh u -
L

cosh u

1
2x2 - 1 dx.

b. Differentiate both sides of the equation in part (a) with respect 
to u to show that

A′(u) = 1
2

.

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your solu-
tion? With C determined, what does your solution say about 
the relationship of u to A(u)?

Since cosh2 u - sinh2 u = 1, the point 
(cosh u, sinh u) lies on the right-hand 
branch of the hyperbola x2 - y2 = 1 
for every value of u.

x

y

1

10

u
:

−∞−1

u:
∞

P(cosh u, sinh u)
u = 0

x2 − y2 = 1

One of the analogies between hyperbolic and circular func-
tions is revealed by these two diagrams (Exercise 86).

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 − y2 = 1
x2 + y2 = 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u = 0
u = 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)
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7.4 Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the 
rates at which functions of x grow as x becomes large. Exponential functions are important 
in these comparisons because of their very fast growth, and logarithmic functions because 
of their very slow growth. In this section we introduce the little-oh and big-oh notation 
used to describe the results of these comparisons. We restrict our attention to functions 
whose values eventually become and remain positive as x S q.

Growth Rates of Functions

You may have noticed that exponential functions like 2x and ex seem to grow more 
rapidly as x gets large than do polynomials and rational functions. These exponentials 
certainly grow more rapidly than x itself, and you can see 2x outgrowing x2 as x
increases in Figure 7.10. In fact, as x S q, the functions 2x and ex grow faster than 
any power of x, even x1,000,000 (Exercise 19). In contrast, logarithmic functions like 
y = log2 x and y = ln x grow more slowly as x S q than any positive power of x
(Exercise 21).

To get a feeling for how rapidly the values of y = ex grow with increasing x, think of 
graphing the function on a large blackboard, with the axes scaled in centimeters. At 
x = 1 cm, the graph is e1 ≈ 3 cm above the x-axis. At x = 6 cm, the graph is 
e6 ≈ 403 cm ≈ 4 m high (it is about to go through the ceiling if it hasn’t done so 
already). At x = 10 cm, the graph is e10 ≈ 22,026 cm ≈ 220 m high, higher than most 
buildings. At x = 24 cm, the graph is more than halfway to the moon, and at x = 43 cm
from the origin, the graph is high enough to reach past the sun’s closest stellar neighbor, 
the red dwarf star Proxima Centauri. By contrast, with axes scaled in centimeters, you 
have to go nearly 5 light-years out on the x-axis to find a point where the graph of y = ln x
is even y = 43 cm high. See Figure 7.11.

These important comparisons of exponential, polynomial, and logarithmic functions 
can be made precise by defining what it means for a function ƒ(x) to grow faster than 
another function g(x) as x S q.
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FIGURE 7.10 The graphs of ex, 2x,
and x2.
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FIGURE 7.11 Scale drawings of the 
graphs of ex and ln x.

DEFINITION Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as x S q if

lim
xSq

  
ƒ(x)
g(x)

= q

or, equivalently, if

lim
xSq

  
g(x)
ƒ(x)

= 0.

We also say that g grows slower than ƒ as x S q.

2. ƒ and g grow at the same rate as x S q if

lim
xSq

  
ƒ(x)
g(x)

= L

where L is finite and positive.
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According to these definitions, y = 2x does not grow faster than y = x. The two 
functions grow at the same rate because

lim
xSq

2x
x = lim

xSq
2 = 2,

which is a finite, positive limit. The reason for this departure from more common usage is 
that we want “ƒ grows faster than g” to mean that for large x-values g is negligible when 
compared with ƒ.

EXAMPLE 1  Let’s compare the growth rates of several common functions.

(a) ex grows faster than x2 as x S q because

lim
xSq

ex

x2 = lim
xSq

ex

2x
= lim

xSq
ex

2
= q.

(1)1* (1)1*
Using l’Hopital’s Rule twice

q>q q>q
(b) 3x grows faster than 2x as x S q because

lim
xSq

3x

2x = lim
xSq
a3

2
b x

= q.

(c) x2 grows faster than ln x as x S q because

lim
xSq

x2

ln x
= lim

xSq
2x

1>x = lim
xSq

2x2 = q. l’Hopital’s Rule

(d) ln x grows slower than x1>n as x S q for any positive integer n because

lim
xSq

ln x
x1>n = lim

xSq

1>x
(1>n) x(1>n)-1

l’Hopital’s Rule

= lim
xSq

n
x1>n = 0. n is constant.

(e) As part (b) suggests, exponential functions with different bases never grow at the 
same rate as x S q. If a 7 b 7 0, then ax grows faster than bx. Since (a>b) 7 1,

lim
xSq

ax

bx = lim
xSq
aa

b
b x

= q.

(f) In contrast to exponential functions, logarithmic functions with different bases a 7 1
and b 7 1 always grow at the same rate as x S q:

lim
xSq

loga x
logb x

= lim
xSq

ln x>ln a

ln x>ln b
= ln b

ln a
.

  The limiting ratio is always finite and never zero.

If ƒ grows at the same rate as g as x S q, and g grows at the same rate as h as x S q,
then ƒ grows at the same rate as h as x S q. The reason is that

lim
xSq

ƒ
g = L1 and lim

xSq

g
h

= L2

together imply

lim
xSq

ƒ
h

= lim
xSq

ƒ
g
# g

h
= L1L2.

If L1 and L2 are finite and nonzero, then so is L1L2.



450 Chapter 7: Integrals and Transcendental Functions

EXAMPLE 2  Show that 2x2 + 5 and (21x - 1)2 grow at the same rate as x S q.

Solution We show that the functions grow at the same rate by showing that they both 
grow at the same rate as the function g(x) = x:

lim
xSq

2x2 + 5
x = lim

xSqA1 + 5
x2 = 1,

lim
xSq

121x - 122
x = lim

xSq
a21x - 1

1x
b2

= lim
xSq
a2 - 1

1x
b2

= 4.

Order and Oh-Notation

The “little-oh” and “big-oh” notation was invented by number theorists a hundred years 
ago and is now commonplace in mathematical analysis and computer science. Notice that 
saying f = o(g) as x S q is another way to say that ƒ grows slower than g as x S q.

DEFINITION A function ƒ is of smaller order than g as x S q if 

lim
xSq

ƒ(x)
g(x)

= 0. We indicate this by writing ƒ = o(g) (“ƒ is little-oh of g”).

EXAMPLE 3  Here we use little-oh notation.

(a) ln x = o(x) as x S q because lim
xSq

ln x
x = 0

(b) x2 = o(x3 + 1) as x S q because lim
xSq

x2

x3 + 1
= 0

DEFINITION Let ƒ(x) and g(x) be positive for x sufficiently large. Then ƒ is of
at most the order of g as x S q if there is a positive integer M for which

ƒ(x)
g(x)

… M,

for x sufficiently large. We indicate this by writing ƒ = O(g)  (“ƒ is big-oh of g”).

EXAMPLE 4  Here we use big-oh notation.

(a) x + sin x = O(x) as x S q because
x + sin x

x … 2 for x sufficiently large.

(b) ex + x2 = O(ex) as x S q because
ex + x2

ex S 1 as x S q.

(c) x = O(ex) as x S q because
x
ex S 0 as x S q.

If you look at the definitions again, you will see that ƒ = o(g) implies ƒ = O(g) for func-
tions that are positive for x sufficiently large. Also, if ƒ and g grow at the same rate, then 
ƒ = O(g) and g = O(ƒ) (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number
of steps a computer must take to execute the algorithm. There can be significant differences 
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in how efficiently algorithms perform, even if they are designed to accomplish the same 
task. These differences are often described in big-oh notation. Here is an example.

Webster’s International Dictionary lists about 26,000 words that begin with the letter 
a. One way to look up a word, or to learn if it is not there, is to read through the list one 
word at a time until you either find the word or determine that it is not there. This method, 
called sequential search, makes no particular use of the words’ alphabetical arrangement 
in the list. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle 
of the list (give or take a few words). If you do not find the word, then go to the middle of 
the half that contains it and forget about the half that does not. (You know which half con-
tains it because you know the list is ordered alphabetically.) This method, called a binary
search, eliminates roughly 13,000 words in a single step. If you do not find the word on 
the second try, then jump to the middle of the half that contains it. Continue this way until 
you have either found the word or divided the list in half so many times there are no words 
left. How many times do you have to divide the list to find the word or learn that it is not 
there? At most 15, because

(26,000>215) 6 1.

That certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to find 

a word or determine that it is not in the list. A binary search, as the second algorithm is 
called, takes on the order of log2 n steps. The reason is that if 2m-1 6 n … 2m, then 
m - 1 6 log2 n … m, and the number of bisections required to narrow the list to one 
word will be at most m = <log2 n= , the integer ceiling for log2 n.

Big-oh notation provides a compact way to say all this. The number of steps in a 
sequential search of an ordered list is O(n); the number of steps in a binary search is 
O(log2 n). In our example, there is a big difference between the two (26,000 vs. 15), and 
the difference can only increase with n because n grows faster than log2 n as n S q.

Summary

The integral definition of the natural logarithm function ln x in Section 7.1 is the key to 
obtaining precisely the exponential and logarithmic functions ax and loga x for any base 
a 7 0. The differentiability and increasing behavior of ln x allow us to define its differen-
tiable inverse, the natural exponential function ex, through Theorem 3 in Chapter 3. Then 
ex provides for the definition of the differentiable function ax = ex ln a, giving a simple and 
precise meaning of irrational exponents, and from which we see that every exponential 
function is just ex raised to an appropriate power, ln a. The increasing (or decreasing) 
behavior of ax gives its differentiable inverse loga x, using Theorem 3 again. Moreover, we 
saw that loga x = (ln x)>(ln a) is just a multiple of the natural logarithm function. So ex

and ln x give the entire array of exponential and logarithmic functions using the algebraic 
operations of taking constant powers and constant multiples. Furthermore, the differentia-
bility of ex and ax establishes the existence of the limits

lim
hS0

eh - 1
h

= 1 and lim
hS0

ah - 1
h

= ln a

(claimed in Section 3.3) as the slopes of those functions where they cross the y-axis. These 
limits were foundational to defining informally the natural exponential function ex in 
Section 3.3, which then gave rise to ln x as its inverse in Section 3.8.

In this chapter we have seen the important roles the exponential and logarithmic func-
tions play in analyzing problems associated with growth and decay, in comparing the 
growth rates of various functions, and in measuring the efficiency of a computer algo-
rithm. In Chapters 9 and 17 we will see that exponential functions play a major role in the 
solutions to differential equations.
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Comparisons with the Exponential ex

1. Which of the following functions grow faster than ex as x S q?
Which grow at the same rate as ex? Which grow slower?

a. x - 3 b. x3 + sin2 x

c. 2x d. 4x

e. (3>2)x f. ex>2
g. ex>2 h. log10 x

2. Which of the following functions grow faster than ex as x S q?
Which grow at the same rate as ex? Which grow slower?

a. 10x4 + 30x + 1 b. x ln x - x

c. 21 + x4 d. (5>2)x

e. e-x f. xex

g. ecos x h. ex-1

Comparisons with the Power x2

3. Which of the following functions grow faster than x2 as x S q?
Which grow at the same rate as x2? Which grow slower?

a. x2 + 4x b. x5 - x2

c. 2x4 + x3 d. (x + 3)2

e. x ln x f. 2x

g. x3e-x h. 8x2

4. Which of the following functions grow faster than x2 as x S q?
Which grow at the same rate as x2? Which grow slower?

  a. x2 + 2x b. 10x2

  c. x2e-x d. log10 (x2)

  e. x3 - x2 f. (1>10)x

  g. (1.1)x h. x2 + 100x

Comparisons with the Logarithm ln x
5. Which of the following functions grow faster than ln x as x S q?

Which grow at the same rate as ln x? Which grow slower?

  a. log3 x b. ln 2x

  c. ln2x d. 2x

  e. x f. 5 ln x

  g. 1>x h. ex

6. Which of the following functions grow faster than ln x as 
x S q? Which grow at the same rate as ln x? Which grow 
slower?

  a. log2 (x2) b. log10 10x

  c. 1>2x d. 1>x2

  e. x - 2 ln x f. e-x

  g. ln (ln x) h. ln (2x + 5)

Ordering Functions by Growth Rates
7. Order the following functions from slowest growing to fastest 

growing as x S q.

  a. ex b. xx

  c. (ln x)x d. ex>2

8. Order the following functions from slowest growing to fastest 
growing as x S q.

  a. 2x b. x2

  c. (ln 2)x d. ex

Big-oh and Little-oh; Order
9. True, or false? As x S q,

  a. x = o(x) b. x = o(x + 5)

  c. x = O(x + 5) d. x = O(2x)

  e. ex = o(e2x) f. x + ln x = O(x)

  g. ln x = o(ln 2x) h. 2x2 + 5 = O(x)

10. True, or false? As x S q,

a. 1
x + 3

= Oa1xb b. 1
x + 1

x2 = Oa1xb
  c. 1

x - 1
x2 = oa1xb d. 2 + cos x = O(2)

  e. ex + x = O(ex) f. x ln x = o(x2)

  g. ln (ln x) = O(ln x) h. ln (x) = o(ln (x2 + 1))

11. Show that if positive functions ƒ(x) and g(x) grow at the same rate 
as x S q, then ƒ = O(g) and g = O(ƒ).

12. When is a polynomial ƒ (x) of smaller order than a polynomial 
g(x) as x S q? Give reasons for your answer.

13. When is a polynomial ƒ(x) of at most the order of a polynomial 
g(x) as x S q? Give reasons for your answer.

14. What do the conclusions we drew in Section 2.8 about the limits 
of rational functions tell us about the relative growth of polyno-
mials as x S q?

Other Comparisons
15. Investigate

lim
xSq

ln (x + 1)
ln x

and lim
xSq

ln (x + 999)
ln x

.

  Then use l’Hôpital’s Rule to explain what you find.

16. (Continuation of Exercise 15.) Show that the value of

lim
xSq

ln (x + a)
ln x

  is the same no matter what value you assign to the constant a.
What does this say about the relative rates at which the functions 
ƒ(x) = ln (x + a) and g(x) = ln x grow?

17. Show that 210x + 1 and 2x + 1 grow at the same rate as 
x S q by showing that they both grow at the same rate as 2x as 
x S q.

18. Show that 2x4 + x and 2x4 - x3 grow at the same rate as x S q
by showing that they both grow at the same rate as x2 as x S q.

19. Show that ex grows faster as x S q than xn for any positive inte-
ger n, even x1,000,000. (Hint: What is the nth derivative of xn?)

20. The function ex outgrows any polynomial Show that ex grows 
faster as x S q than any polynomial

anxn + an-1xn-1 + g + a1x + a0.

T

Exercises 7.4
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21. a. Show that ln x grows slower as x S q than x1>n for any posi-
tive integer n, even x1>1,000,000.

b. Although the values of x1>1,000,000 eventually overtake the val-
ues of ln x, you have to go way out on the x-axis before this 
happens. Find a value of x greater than 1 for which 
x1>1,000,000 7 ln x. You might start by observing that when 
x 7 1 the equation ln x = x1>1,000,000 is equivalent to the 
equation ln (ln x) = (ln x)>1,000,000.

c. Even x1>10 takes a long time to overtake ln x. Experiment with 
a calculator to find the value of x at which the graphs of x1>10

and ln x cross, or, equivalently, at which ln x = 10 ln (ln x).
Bracket the crossing point between powers of 10 and then 
close in by successive halving.

d. (Continuation of part (c).) The value of x at which ln x =
10 ln (ln x) is too far out for some graphers and root finders to 
identify. Try it on the equipment available to you and see 
what happens.

22. The function ln x grows slower than any polynomial Show 
that ln x grows slower as x S q than any nonconstant polynomial.

T

T

T

Algorithms and Searches
23. a. Suppose you have three different algorithms for solving the 

same problem and each algorithm takes a number of steps that 
is of the order of one of the functions listed here:

n log2 n, n3>2, n(log2 n)2.

     Which of the algorithms is the most efficient in the long run? 
Give reasons for your answer.

b. Graph the functions in part (a) together to get a sense of how 
rapidly each one grows.

24. Repeat Exercise 23 for the functions

n, 2n log2 n, (log2 n)2.

25. Suppose you are looking for an item in an ordered list one million 
items long. How many steps might it take to find that item with a 
sequential search? A binary search?

26. You are looking for an item in an ordered list 450,000 items long 
(the length of Webster’s Third New International Dictionary).
How many steps might it take to find the item with a sequential 
search? A binary search?

T

T

T

Chapter 7 Questions to Guide Your Review

1. How is the natural logarithm function defined as an integral? 
What are its domain, range, and derivative? What arithmetic 
properties does it have? Comment on its graph.

2. What integrals lead to logarithms? Give examples.

3. What are the integrals of tan x and cot x? sec x and csc x?

4. How is the exponential function ex defined? What are its domain, 
range, and derivative? What laws of exponents does it obey? 
Comment on its graph.

5. How are the functions ax  and loga x  defined? Are there any 
restrictions on a? How is the graph of loga x  related to the 
graph of ln x? What truth is there in the statement that there is 
really only one exponential function and one logarithmic 
function?

6. How do you solve separable first-order differential equations?

7. What is the law of exponential change? How can it be derived 
from an initial value problem? What are some of the applications 
of the law?

8. What are the six basic hyperbolic functions? Comment on their 
domains, ranges, and graphs. What are some of the identities 
relating them?

9. What are the derivatives of the six basic hyperbolic functions? 
What are the corresponding integral formulas? What similarities 
do you see here with the six basic trigonometric functions?

10. How are the inverse hyperbolic functions defined? Comment on 
their domains, ranges, and graphs. How can you find values of 
sech-1 x, csch-1 x, and coth-1 x using a calculator’s keys for 
cosh-1 x, sinh-1 x, and tanh-1 x?

11. What integrals lead naturally to inverse hyperbolic functions?

12. How do you compare the growth rates of positive functions as 
x S q?

13. What roles do the functions ex and ln x play in growth comparisons?

14. Describe big-oh and little-oh notation. Give examples.

15. Which is more efficient—a sequential search or a binary search? 
Explain.

Chapter 7 Practice Exercises

Integration
Evaluate the integrals in Exercises 1–12.

1.
L

ex sin (ex) dx 2.
L

et cos (3et - 2) dt

3.
L

p

0
tan

x
3

dx 4.
L

1>4

1>6
2 cot px dx

5.
L

p>6

-p>2
cos t

1 - sin t
dt 6. ex sec ex dx

7.
L

ln (x - 5)
x - 5

dx 8.
L

cos (1 - lny)
y dy
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9.
L

7

1

3
x dx 10.

L

32

1

1
5x

dx

11.
L

e2

e

1

x2ln x
dx 12.

L

4

2
(1 + ln t)t ln t dt

Solving Equations with Logarithmic or Exponential Terms
In Exercises 13–18, solve for y.

13. 3y = 2y+1 14. 4-y = 3y+2

15. 9e2y = x2 16. 3y = 3 ln x

17. ln (y - 1) = x + ln y 18. ln (10 ln y) = ln 5x

Comparing Growth Rates of Functions
19. Does ƒ grow faster, slower, or at the same rate as g as x S q?

Give reasons for your answers.

a. ƒ(x) = log2 x, g(x) = log3 x

b. ƒ(x) = x, g(x) = x + 1
x

c. ƒ(x) = x>100, g(x) = xe-x

d. ƒ(x) = x, g(x) = tan-1 x

e. ƒ(x) = csc-1 x, g(x) = 1>x
f. ƒ(x) = sinh x, g(x) = ex

20. Does ƒ grow faster, slower, or at the same rate as g as x S q?
Give reasons for your answers.

a. ƒ(x) = 3-x, g(x) = 2-x

b. ƒ(x) = ln 2x, g(x) = ln x2

c. ƒ(x) = 10x3 + 2x2, g(x) = ex

d. ƒ(x) = tan-1(1>x), g(x) = 1>x
e. ƒ(x) = sin-1(1>x), g(x) = 1>x2

f. ƒ(x) = sech x, g(x) = e-x

21. True, or false? Give reasons for your answers.

a. 1
x2 + 1

x4 = Oa 1
x2b b. 1

x2 + 1
x4 = Oa 1

x4b
c. x = o(x + ln x) d. ln (ln x) = o(ln x)

e. tan-1 x = O(1) f. cosh x = O(ex)

22. True, or false? Give reasons for your answers.

a. 1
x4 = Oa 1

x2 + 1
x4b b. 1

x4 = oa 1
x2 + 1

x4b
c. ln x = o(x + 1) d. ln 2x = O(ln x)

e. sec-1 x = O(1) f. sinh x = O(ex)

Theory and Applications
23. The function ƒ(x) = ex + x, being differentiable and one-to-one, 

has a differentiable inverse ƒ-1(x). Find the value of dƒ-1>dx at 
the point ƒ(ln 2).

24. Find the inverse of the function ƒ(x) = 1 + (1>x), x ≠ 0. Then 
show that ƒ-1(ƒ(x)) = ƒ(ƒ-1(x)) = x and that

dƒ-1

dx
`
ƒ(x)

= 1
ƒ′(x)

.

25. A particle is traveling upward and to the right along the curve 
y = ln x. Its x-coordinate is increasing at the rate (dx>dt) =
2x m>sec. At what rate is the y-coordinate changing at the point 
(e2, 2)?

26. A girl is sliding down a slide shaped like the curve y = 9e-x>3.
Her y-coordinate is changing at the rate dy>dt = (-1>4)29 - y
ft>sec. At approximately what rate is her x-coordinate changing 
when she reaches the bottom of the slide at x = 9 ft? (Take e3 to 
be 20 and round your answer to the nearest ft > sec.)

27. The functions ƒ(x) = ln 5x and g(x) = ln 3x differ by a constant. 
What constant? Give reasons for your answer.

28.  a. If (ln x)>x = (ln 2)>2, must x = 2?

b. If (ln x)>x = -2 ln 2, must x = 1>2?

  Give reasons for your answers.

29. The quotient (log4 x)>(log2 x) has a constant value. What value? 
Give reasons for your answer.

30. logx (2) vs. log2 (x) How does ƒ(x) = logx (2) compare with 
g(x) = log2 (x)? Here is one way to find out.

a. Use the equation loga b = (ln b)>(ln a) to express ƒ(x) and 
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in 
relation to the signs and values of g.

In Exercises 31–34, solve the differential equation.

31.
dy
dx

= 2ycos22y 32. y′ =
3y(x + 1)2

y - 1

33. yy′ = sec y2 sec2 x 34. y cos2 x dy + sin x dx = 0

In Exercises 35–38, solve the initial value problem.

35.
dy
dx

= e-x-y-2, y(0) = -2

36.
dy
dx

=
y ln y

1 + x2 , y(0) = e2

37. x dy - 1y + 2y2 dx = 0, y(1) = 1

38. y-2 dx
dy

= ex

e2x + 1
, y(0) = 1

39. What is the age of a sample of charcoal in which 90% of the 
carbon-14 originally present has decayed?

40. Cooling a pie A deep-dish apple pie, whose internal tempera-
ture was 220°F when removed from the oven, was set out on a 
breezy 40°F porch to cool. Fifteen minutes later, the pie’s internal 
temperature was 180°F. How long did it take the pie to cool from 
there to 70°F?

T
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1. Let A(t) be the area of the region in the first quadrant enclosed by 
the coordinate axes, the curve y = e-x, and the vertical line 
x = t, t 7 0. Let V(t) be the volume of the solid generated by 
revolving the region about the x-axis. Find the following limits.

a. lim
tSq

A(t) b. lim
tSq

V(t)>A(t) c. lim
tS0 +

V(t)>A(t)

2. Varying a logarithm’s base

a. Find lim loga 2 as a S 0+ , 1-, 1+ , and q.

b. Graph y = loga 2 as a function of a over the interval 
0 6 a … 4.

3. Graph ƒ(x) = tan-1 x + tan-1(1>x) for -5 … x … 5. Then use 
calculus to explain what you see. How would you expect ƒ to 
behave beyond the interval 3-5, 54? Give reasons for your 
answer.

4. Graph ƒ(x) = (sin x)sin x over 30, 3p4. Explain what you see.

5. Even-odd decompositions

a. Suppose that g is an even function of x and h is an odd func-
tion of x. Show that if g(x) + h(x) = 0 for all x then 
g(x) = 0 for all x and h(x) = 0 for all x.

b. Use the result in part (a) to show that if ƒ(x) =
ƒE(x) + ƒO(x) is the sum of an even function ƒE(x) and an 
odd function ƒO(x), then

ƒE(x) = (ƒ(x) + ƒ(-x))>2 and ƒO(x) = (ƒ(x) - ƒ(-x))>2.

c. What is the significance of the result in part (b)?

6. Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties:

i. g(x + y) =
g(x) + g(y)
1 - g(x)g(y)

 for all real numbers x, y, and 

x + y in the domain of g.

ii. lim
hS0

g(h) = 0

iii. lim
hS0

g(h)
h

= 1

T

T

T

a. Show that g(0) = 0.

b. Show that g′(x) = 1 + 3g(x)42.

c. Find g(x) by solving the differential equation in part (b).

7. Center of mass Find the center of mass of a thin plate of con-
stant density covering the region in the first and fourth quadrants 
enclosed by the curves y = 1>(1 + x2) and y = -1>(1 + x2)
and by the lines x = 0 and x = 1.

8. Solid of revolution The region between the curve y = 1>121x2
and the x-axis from x = 1>4 to x = 4 is revolved about the x-axis 
to generate a solid.

a. Find the volume of the solid.

b. Find the centroid of the region.

9. The Rule of 70 If you use the approximation ln 2 ≈ 0.70
(in place of 0.69314 c), you can derive a rule of thumb that 
says, “To estimate how many years it will take an amount of 
money to double when invested at r percent compounded continu-
ously, divide r into 70.” For instance, an amount of money invested 
at 5% will double in about 70>5 = 14 years. If you want it to 
double in 10 years instead, you have to invest it at 70>10 = 7,.
Show how the Rule of 70 is derived. (A similar “Rule of 72” uses 
72 instead of 70, because 72 has more integer factors.)

10. Urban gardening A vegetable garden 50 ft wide is to be grown 
between two buildings, which are 500 ft apart along an east-west 
line. If the buildings are 200 ft and 350 ft tall, where should the 
garden be placed in order to receive the maximum number of hours 
of sunlight exposure? (Hint: Determine the value of x in the accom-
panying figure that maximizes sunlight exposure for the garden.)

50 450 − x

200 ft tall

West

350 ft tall

East
x

u2 u1

T

Chapter 7 Additional and Advanced Exercises
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OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral once 
we have an antiderivative for the integrand function. However, finding antiderivatives (or 
indefinite integrals) is not as straightforward as finding derivatives. We need to develop 
some techniques to help us. Nevertheless, we note that it is not always possible to find an 
antiderivative expressed in terms of elementary functions.

In this chapter we study a number of important techniques which apply to finding 
integrals for specialized classes of functions such as trigonometric functions, products of 
certain functions, and rational functions. Since we cannot always find an antiderivative, 
we also develop some numerical methods for calculating definite integrals. Finally, we 
extend the idea of the definite integral to improper integrals, and we apply them to finding 
probabilities.

8.1 Using Basic Integration Formulas

Table 8.1 summarizes the forms of indefinite integrals for many of the functions we have 
studied so far, and the substitution method helps us use the table to evaluate more compli-
cated functions involving these basic ones. In this section we combine the Substitution 
Rules (studied in Chapter 5) with algebraic methods and trigonometric identities to help us 
use Table 8.1. A more extensive Table of Integrals is given at the back of the book, and we 
discuss its use in Section 8.6.

Sometimes we have to rewrite an integral to match it to a standard form in Table 8.1. 
We have used this procedure before, but here is another example.

EXAMPLE 1  Evaluate the integral

L

5

3

2x - 3

2x2 - 3x + 1
dx.

Solution We rewrite the integral and apply the Substitution Rule for Definite Integrals 
presented in Section 5.6, to find

L

5

3

2x - 3

2x2 - 3x + 1
dx =

L

11

1

du

2u

u = x2 - 3x + 1, du = (2x - 3) dx;

u = 1 when x = 3, u = 11 when x = 5

=
L

11

1
u-1>2 du

= 22u d 11

1
= 21211 - 12 ≈ 4.63. Table 8.1, Formula 2

Techniques of 
Integration

8
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EXAMPLE 2  Complete the square to evaluate

L

dx

28x - x2
.

Solution We complete the square to simplify the denominator:

 8x - x2 = -(x2 - 8x) = -(x2 - 8x + 16 - 16)

= -(x2 - 8x + 16) + 16 = 16 - (x - 4)2.

Then

L

dx

28x - x2
=

L

dx

216 - (x - 4)2

=
L

du

2a2 - u2
  

a = 4, u = (x - 4),

du = dx

= sin-1 auab + C Table 8.1, Formula 18

= sin-1 ax - 4
4
b + C.

TABLE 8.1 Basic integration formulas

1.
L

k dx = kx + C (any number k)

2.
L

xn dx = xn+1

n + 1
+ C (n ≠ -1)

3.
L

dx
x = ln 0 x 0 + C

4.
L

ex dx = ex + C

5.
L

ax dx = ax

ln a
+ C (a 7 0, a ≠ 1)

6.
L

sin x dx = -cos x + C

7.
L

cos x dx = sin x + C

8.
L

sec2 x dx = tan x + C

9.
L

csc2 x dx = -cot x + C

10.
L

sec x tan x dx = sec x + C

11.
L

csc x cot x dx = -csc x + C

12.
L

tan x dx = ln 0 sec x 0 + C

13.
L

cot x dx = ln 0 sin x 0 + C

14.
L

sec x dx = ln 0 sec x + tan x 0 + C

15.
L

csc x dx = - ln 0 csc x + cot x 0 + C

16.
L

sinh x dx = cosh x + C

17.
L

cosh x dx = sinh x + C

18.
L

dx

2a2 - x2
= sin-1ax

ab + C

19.
L

dx
a2 + x2 = 1

a tan -1ax
ab + C

20.
L

dx

x2x2 - a2
= 1

a sec-1 ` xa ` + C

21.
L

dx

2a2 + x2
= sinh-1ax

ab + C (a 7 0)

22.
L

dx

2x2 - a2
= cosh-1ax

ab + C (x 7 a 7 0)
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EXAMPLE 3  Evaluate the integral

L
(cos x sin 2x + sin x cos 2x) dx.

Solution Here we can replace the integrand with an equivalent trigonometric expression 
using the Sine Addition Formula to obtain a simple substitution:

L
(cos x sin 2x + sin x cos 2x) dx =

L
(sin (x + 2x)) dx

=
L

sin 3x dx

=
L

1
3 sin u du u = 3x, du = 3 dx

= - 1
3 cos 3x + C. Table 8.1, Formula 6

In Section 5.5 we found the indefinite integral of the secant function by multiplying it 
by a fractional form identically equal to one, and then integrating the equivalent result. We 
can use that same procedure in other instances as well, which we illustrate next.

EXAMPLE 4 Find
L

p>4

0

dx
1 - sin x

.

Solution We multiply the numerator and denominator of the integrand by 1 + sin x,
which is simply a multiplication by a form of the number one. This procedure transforms 
the integral into one we can evaluate:

L

p>4

0

dx
1 - sin x

=
L

p>4

0

1
1 - sin x

# 1 + sin x
1 + sin x

dx

=
L

p>4

0

1 + sin x
1 - sin2 x

dx

=
L

p>4

0

1 + sin x
cos2 x

dx

=
L

p>4

0
(sec2 x + sec x tan x) dx

= c tan x + sec x d p>4
0

= 11 + 22 - (0 + 1)2 = 22.

EXAMPLE 5 Evaluate

L

3x2 - 7x
3x + 2

dx.

Solution The integrand is an improper fraction since the degree of the numerator is 
greater than the degree of the denominator. To integrate it, we perform long division to 
obtain a quotient plus a remainder that is a proper fraction:

3x2 - 7x
3x + 2

= x - 3 + 6
3x + 2

.

x - 3

3x + 2)3x2 - 7x

3x2 + 2x

-9x

-9x - 6

+ 6

Use  Table 8.1,
Formulas 8 and 10
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Therefore,

L

3x2 - 7x
3x + 2

dx =
L
ax - 3 + 6

3x + 2
b dx = x2

2
- 3x + 2 ln 0 3x + 2 0 + C.

Reducing an improper fraction by long division (Example 5) does not always lead to 
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Evaluate

L

3x + 2

21 - x2
dx.

Solution We first separate the integrand to get

L

3x + 2

21 - x2
dx = 3

L

x dx

21 - x2
+ 2

L

dx

21 - x2
.

In the first of these new integrals, we substitute

u = 1 - x2, du = -2x dx, so x dx = -1
2

du.

Then we obtain

 3
L

x dx

21 - x2
= 3

L

(-1>2) du

2u
= - 3

2L
u-1>2 du

= - 3
2
# u1>2
1>2 + C1 = -321 - x2 + C1.

The second of the new integrals is a standard form,

2
L

dx

21 - x2
= 2 sin-1 x + C2.  Table 8.1, Formula 18

Combining these results and renaming C1 + C2 as C gives

L

3x + 2

21 - x2
dx = -321 - x2 + 2 sin-1 x + C.

The question of what to substitute for in an integrand is not always quite so clear. 
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try 
another method altogether. The next several sections of the text present some of these new 
methods, but substitution works in the next example.

EXAMPLE 7 Evaluate

L

dx11 + 2x23 .

Solution We might try substituting for the term 2x, but we quickly realize the deriva-
tive factor 1>2x is missing from the integrand, so this substitution will not help. The 
other possibility is to substitute for 11 + 2x2, and it turns out this works:

L

dx11 + 2x23 =
L

2(u - 1) du

u3

u = 1 + 2x, du = 1

22x
dx;

dx = 22x du = 2(u - 1) du

=
L
a 2

u2 - 2
u3b du
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= -2
u

+ 1
u2 + C

= 1 - 2u
u2 + C

=
1 - 211 + 2x2
11 + 2x22 + C

= C - 1 + 22x11 + 2x22 .

When evaluating definite integrals, a property of the integrand may help us in calcu-
lating the result.

EXAMPLE 8 Evaluate 
L

p>2

-p>2
x3 cos x dx.

Solution No substitution or algebraic manipulation is clearly helpful here. But we 
observe that the interval of integration is the symmetric interval 3-p>2, p>24 . Moreover, 
the factor x3 is an odd function, and cos x is an even function, so their product is odd. 
Therefore,

L

p>2

-p>2
x3 cos x dx = 0. Theorem 8, Section 5.6

Assorted Integrations

The integrals in Exercises 1–40 are in no particular order. Evaluate 
each integral using any algebraic method or trigonometric identity 
you think is appropriate, and then use a substitution to reduce it to a 
standard form.

1.
L

1

0

16x
8x2 + 2

dx 2.
L

x2

x2 + 1
dx

3.
L

(sec x - tan x)2 dx 4.
L

p>3

p>4
dx

cos2 x tan x

5.
L

1 - x

21 - x2
dx 6.

L

dx

x - 2x

7.
L

e-cot z

sin2 z
dz 8.

L

2ln z3

16z
dz

9.
L

dz
ez + e- z 10.

L

2

1

8 dx
x2 - 2x + 2

11.
L

0

-1

4 dx
1 + (2x + 1)2 12.

L

3

-1

4x2 - 7
2x + 3

dx

13.
L

dt
1 - sec t

14.
L

 csc t sin 3t dt

15.
L

p>4

0

1 + sin u
cos2 u

du 16.
L

du

22u - u2

17.
L

ln y

y + 4y ln2 y
dy 18.

L

22y dy

22y

19.
L

du
sec u + tan u

20.
L

dt

t23 + t2

21.
L

4t3 - t2 + 16t
t2 + 4

dt 22.
L

x + 22x - 1

2x2x - 1
dx

23.
L

p>2

0
21 - cos u du 24.

L
(sec t + cot t)2 dt

25.
L

dy

2e2y - 1
26.

L

6 dy

2y (1 + y)

27.
L

2 dx

x21 - 4 ln2 x
28.

L

dx

(x - 2)2x2 - 4x + 3

29.
L

(csc x - sec x)(sin x + cos x) dx

30.
L

3 sinh ax
2

+ ln 5b dx

31.
L

3

22

2x3

x2 - 1
dx 32.

L

1

-1
21 + x2 sin x dx

33.
L

0

-1 A
1 + y
1 - y

dy 34.
L

ez+ez
dz

Exercises 8.1
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35.
L

7 dx

(x - 1)2x2 - 2x - 48
36.

L

dx

(2x + 1)24x + 4x2

37.
L

2u3 - 7u2 + 7u
2u - 5

du 38.
L

du
cos u - 1

39.
L

dx
1 + ex

Hint: Use long division.

Evaluate

L
(1 + 3x3)ex3

dx.

48. Use the substitution u =  tan x to evaluate the integral

L

dx
1 + sin2 x

.

49. Use the substitution u = x4 + 1 to evaluate the integral

L
x72x4 + 1 dx.

50. Using different substitutions Show that the integral

L
((x2 - 1)(x + 1))-2>3dx

can be evaluated with any of the following substitutions.

a. u = 1>(x + 1)

b. u = ((x - 1)>(x + 1))k for k = 1, 1>2, 1>3, -1>3, -2>3,
and -1

c. u = tan-1 x d. u = tan-1 2x

e. u = tan-1 ((x - 1)>2) f. u = cos-1 x

g. u = cosh-1 x

  What is the value of the integral?

40.
L

2x
1 + x3 dx

Hint: Let u = x3>2.
Theory and Examples
41. Area Find the area of the region bounded above by y = 2 cos x

and below by y = sec x, -p>4 … x … p>4.

42. Volume Find the volume of the solid generated by revolving 
the region in Exercise 41 about the x-axis.

43. Arc length Find the length of the curve y = ln (cos x),
0 … x … p>3.

44. Arc length Find the length of the curve y = ln (sec x),
0 … x … p>4.

45. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = sec x, and the lines x = -p>4, x = p>4.

46. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = csc x, and the lines x = p>6, x = 5p>6.

47. The functions y = ex3
 and y = x3ex3

 do not have elementary anti-
derivatives, but y = (1 + 3x3)ex3

 does.

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

L
ƒ(x)g(x) dx.

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly 
without difficulty. The integrals

L
x cos x dx and

L
x2ex dx

are such integrals because ƒ(x) = x or ƒ(x) = x2 can be differentiated repeatedly to 
become zero, and g(x) = cos x or g(x) = ex can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

L
 ln x dx and

L
ex cos x dx.

In the first case, ƒ(x) =  ln x is easy to differentiate and g(x) = 1 easily integrates to x. In 
the second case, each part of the integrand appears again after repeated differentiation or 
integration.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says that

d
dx
3ƒ(x)g(x)4 = ƒ′(x)g(x) + ƒ(x)g′(x).
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In terms of indefinite integrals, this equation becomes

L

d
dx
3ƒ(x)g(x)4 dx =

L
3ƒ′(x)g(x) + ƒ(x)g′(x)4 dx

or

L

d
dx
3ƒ(x)g(x)4 dx =

L
ƒ′(x)g(x) dx +

L
ƒ(x)g′(x) dx.

Rearranging the terms of this last equation, we get

L
ƒ(x)g′(x) dx =

L

d
dx
3ƒ(x)g(x)4 dx -

L
ƒ′(x)g(x) dx,

leading to the integration by parts formula

L
ƒ(x)g′(x) dx = ƒ(x)g(x) -

L
ƒ′(x)g(x) dx (1)

Sometimes it is easier to remember the formula if we write it in differential form. Let 
u = ƒ(x) and y = g(x). Then du = ƒ′(x) dx and dy = g′(x) dx. Using the Substitution 
Rule, the integration by parts formula becomes

Integration by Parts Formula

L
u dy = uy -

L
ydu (2)

This formula expresses one integral, 1u dy, in terms of a second integral, 1ydu. 
With a proper choice of u and y, the second integral may be easier to evaluate than the 
first. In using the formula, various choices may be available for u and dy. The next exam-
ples illustrate the technique. To avoid mistakes, we always list our choices for u and dy,
then we add to the list our calculated new terms du and y, and finally we apply the formula 
in Equation (2).

EXAMPLE 1 Find

L
x cos x dx.

Solution We use the formula 1u dy = uy - 1y du with

u = x, dy = cos x dx,

du = dx, y = sin x. Simplest antiderivative of cos x

Then

L
x cos x dx = x sin x -

L
sin x dx = x sin x + cos x + C.

There are four apparent choices available for u and dy in Example 1:

1. Let u = 1 and dy = x cos x dx. 2. Let u = x and dy = cos x dx.

3. Let u = x cos x and dy = dx. 4. Let u = cos x and dy = x dx.
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Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know how 
to integrate. For instance, Choice 3, with du = (cos x - x sin x) dx, leads to the integral

L
(x cos x - x2 sin x) dx.

The goal of integration by parts is to go from an integral 1u dy that we don’t see how 
to evaluate to an integral 1y du that we can evaluate. Generally, you choose dy first to be 
as much of the integrand, including dx, as you can readily integrate; u is the leftover part. 
When finding y from dy, any antiderivative will work and we usually pick the simplest 
one; no arbitrary constant of integration is needed in y because it would simply cancel out 
of the right-hand side of Equation (2).

EXAMPLE 2 Find

L
ln x dx.

Solution Since 1 ln x dx can be written as 1 ln x # 1 dx, we use the formula 

1u dy = uy - 1y du with

u = ln x Simplifies when differentiated dy = dx Easy to integrate

du = 1
x dx, y = x. Simplest antiderivative

Then from Equation (2),

L
ln x dx = x ln x -

L
x # 1x dx = x ln x -

L
dx = x ln x - x + C.

Sometimes we have to use integration by parts more than once.

EXAMPLE 3 Evaluate

L
x2ex dx.

Solution With u = x2, dy = ex dx, du = 2x dx, and y = ex, we have

L
x2ex dx = x2ex - 2

L
xex dx.

The new integral is less complicated than the original because the exponent on x is reduced 
by one. To evaluate the integral on the right, we integrate by parts again with 
u = x, dy = ex dx. Then du = dx, y = ex, and

L
xex dx = xex -

L
ex dx = xex - ex + C.

Using this last evaluation, we then obtain

L
x2ex dx = x2ex - 2

L
xex dx

= x2ex - 2xex + 2ex + C,

where the constant of integration is renamed after substituting for the integral on the right.

The technique of Example 3 works for any integral 1 xnex dx in which n is a positive 
integer, because differentiating xn will eventually lead to zero and integrating ex is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.



464 Chapter 8: Techniques of Integration

EXAMPLE 4 Evaluate

L
ex cos x dx.

Solution Let u = ex and dy = cos x dx. Then du = ex dx, y = sin x, and

L
ex cos x dx = ex sin x -

L
ex sin x dx.

The second integral is like the first except that it has sin x in place of cos x. To evaluate it, 
we use integration by parts with

u = ex, dy = sin x dx, y = -cos x, du = ex dx.

Then

L
ex cos x dx = ex sin x - a-ex cos x -

L
(-cos x)(ex dx)b

= ex sin x + ex cos x -
L

ex cos x dx.

The unknown integral now appears on both sides of the equation. Adding the integral to 
both sides and adding the constant of integration give

2
L

ex cos x dx = ex sin x + ex cos x + C1.

Dividing by 2 and renaming the constant of integration give

L
ex cos x dx = ex sin x + ex cos x

2
+ C.

EXAMPLE 5  Obtain a formula that expresses the integral

L
cosn x dx

in terms of an integral of a lower power of cos x.

Solution We may think of cosn x as cosn-1 x # cos x. Then we let

u = cosn-1 x and dy = cos x dx,

so that

du = (n - 1) cosn-2 x (-sin x dx) and y = sin x.

Integration by parts then gives

L
cosn x dx = cosn-1 x sin x + (n - 1)

L
sin2 x cosn-2 x dx

= cosn-1 x sin x + (n - 1)
L

(1 - cos2 x) cosn-2 x dx

= cosn-1 x sin x + (n - 1)
L

cosn-2 x dx - (n - 1)
L

cosn x dx.

If we add

(n - 1)
L

cosn x dx
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to both sides of this equation, we obtain

n
L

cosn x dx = cosn-1 x sin x + (n - 1)
L

cosn-2 x dx.

We then divide through by n, and the final result is

L
cosn x dx = cosn-1 x sin x

n + n - 1
n

L
cosn-2 x dx.

The formula found in Example 5 is called a reduction formula because it replaces an inte-
gral containing some power of a function with an integral of the same form having the 
power reduced. When n is a positive integer, we may apply the formula repeatedly until the 
remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

L
cos3 x dx = cos2 x sin x

3 + 2
3L

cos x dx

= 1
3 cos2 x sin x + 2

3 sin x + C.

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-
damental Theorem in order to evaluate definite integrals by parts. Assuming that both ƒ′
and g′ are continuous over the interval 3a, b4 , Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

L

b

a
ƒ(x)g′(x) dx = ƒ(x)g(x) d

a

b

-
L

b

a
ƒ′(x)g(x) dx (3)

EXAMPLE 6  Find the area of the region bounded by the curve y = xe-x and the 
x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

L

4

0
xe-x dx.

Let u = x, dy = e-x dx, y = -e-x, and du = dx. Then,

L

4

0
xe-x dx = -xe-x40

4 -
L

4

0
(-e-x) dx

= 3-4e-4 - (-0e-0)4 +
L

4

0
e-x dx

= -4e-4 - e-x40
4

= -4e-4 - (e-4 - e-0) = 1 - 5e-4 ≈ 0.91.

Tabular Integration Can Simplify Repeated Integrations

We have seen that integrals of the form 1ƒ(x)g(x) dx, in which ƒ can be differentiated repeat-
edly to become zero and g can be integrated repeatedly without difficulty, are natural candi-
dates for integration by parts. However, if many repetitions are required, the notation and calcu-
lations can be cumbersome; or, you choose substitutions for a repeated integration by parts that 
just ends up giving back the original integral you were trying to find. In situations like these, 

FIGURE 8.1 The region in Example 6.

x

y

1 2 3 4−1 0

−0.5

−1

0.5

1

y = xe−x
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there is a nice way to organize the calculations that prevents these pitfalls and simplifies the 
work. It is called tabular integration and is illustrated in the next examples.

EXAMPLE 7 Evaluate

L
x2ex dx.

Solution With ƒ(x) = x2 and g(x) = ex, we list:

ƒ(x)  and its derivatives   g(x)  and its integrals

x2 (+) ex

2x (-) ex

2 (+) ex

0   ex

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

L
x2ex dx = x2ex - 2xex + 2ex + C.

Compare this with the result in Example 3.

EXAMPLE 8  Find the integral

1
p
L

p

-p
ƒ(x) cos nx dx

for ƒ(x) = 1 on 3-p, 0) and ƒ(x) = x3 on 30, p4 , where n is a positive integer.

Solution The integral is

1
p

L

p

-p
ƒ(x) cos nx dx = 1

p
L

0

-p
cos nx dx + 1

p
L

p

0
x3 cos nx dx

= 1
np sin nx d 0

-p
+ 1
p

L

p

0
x3 cos nx dx

= 1
p

L

p

0
x3 cos nx dx.

Using tabular integration to find an antiderivative, we have

ƒ(x)  and its derivatives   g(x)  and its integrals

x3 (+) cos nx

3x2 (-) 1
n sin nx

6x (+) - 1
n2 cos nx

6 (-) - 1
n3 sin nx

0   1
n4 cos nx
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1
p

L

p

0
x3 cos nx dx

= 1
p c x

3

n sin nx + 3x3

n2 cos nx - 6x
n3 sin nx - 6

n4 cos nx d p
0

= 1
p a3p

2 cos np
n2 - 6 cos np

n4 + 6
n4b

= 3
p ap

2n2(-1)n + 2(-1)n+1 + 2

n4 b . cos np = (-1)n

Integrals like those in Example 8 occur frequently in electrical engineering.

Integration by Parts
Evaluate the integrals in Exercises 1–24 using integration by parts.

1.
L

x sin
x
2

dx 2.
L
u cos pu du

3.
L

t2 cos t dt 4.
L

x2 sin x dx

5.
L

2

1
x ln x dx 6.

L

e

1
x3 ln x dx

7.
L

xex dx 8.
L

xe3x dx

9.
L

x2e-x dx 10.
L

(x2 - 2x + 1)e2x dx

11.
L

tan -1 y dy 12.
L

sin-1 y dy

13.
L

x sec2 x dx 14.
L

4x sec2 2x dx

15.
L

x3ex dx 16.
L

p4e-p dp

17.
L

(x2 - 5x)ex dx 18.
L

(r2 + r + 1)er dr

19.
L

x5ex dx 20.
L

t2e4t dt

21.
L

eu sin u du 22.
L

e-y cos y dy

23.
L

e2x cos 3x dx 24.
L

e-2x sin 2x dx

Using Substitution
Evaluate the integrals in Exercise 25–30 by using a substitution prior 
to integration by parts.

25.
L

e23s+9 ds 26.
L

1

0
x21 - x dx

27.
L

p>3

0
x tan2 x dx 28.

L
ln (x + x2) dx

29.
L

sin (ln x) dx 30.
L

z(ln z)2 dz

Evaluating Integrals
Evaluate the integrals in Exercises 31–52. Some integrals do not 
require integration by parts.

31.
L

x sec x2 dx 32.
L

cos 2x

2x
dx

33.
L

x (ln x)2 dx 34.
L

1
x (ln x)2 dx

35.
L

ln x
x2 dx 36.

L

(ln x)3

x dx

37.
L

x3 ex4
dx 38.

L
x5 ex3

dx

39.
L

x32x2 + 1 dx 40.
L

x2 sin x3 dx

41.
L

sin 3x cos 2x dx 42.
L

sin 2x cos 4x dx

43.
L
2x ln x dx 44.

L

e2x

2x
dx

45.
L

cos 2x dx 46.
L
2x e2x dx

47.
L

p>2

0
u2 sin 2u du 48.

L

p>2

0
x3 cos 2x dx

49.
L

2

2>23
t sec-1 t dt 50.

L

1>22

0
2x sin-1 (x2) dx

51.
L

x tan-1 x dx 52.
L

x2 tan-1 x
2

dx

Exercises 8.2
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58. Finding volume Find the volume of the solid generated by 
revolving the region bounded by the x-axis and the curve 
y = x sin x, 0 … x … p, about

a. the y-axis.

b. the line x = p.

  (See Exercise 53 for a graph.)

59. Consider the region bounded by the graphs of y = ln x, y = 0,
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the x-axis.

c. Find the volume of the solid formed by revolving this region 
about the line x = -2.

d. Find the centroid of the region.

60. Consider the region bounded by the graphs of y = tan-1 x, y = 0,
and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the y-axis.

61. Average value A retarding force, symbolized by the dashpot in 
the accompanying figure, slows the motion of the weighted spring 
so that the mass’s position at time t is

y = 2e-t cos t, t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

0

Massy

Dashpot

y

62. Average value In a mass-spring-dashpot system like the one in 
Exercise 61, the mass’s position at time t is

y = 4e-t(sin t - cos t), t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

Reduction Formulas
In Exercises 63–67, use integration by parts to establish the reduction 
formula.

63.
L

xn cos x dx = xn sin x - n
L

xn-1 sin x dx

64.
L

xn sin x dx = -xn cos x + n
L

xn-1 cos x dx

Theory and Examples
53. Finding area Find the area of the region enclosed by the curve 

y = x sin x and the x-axis (see the accompanying figure) for

a. 0 … x … p.

b. p … x … 2p.

c. 2p … x … 3p.

d. What pattern do you see here? What is the area between the 
curve and the x-axis for np … x … (n + 1)p, n an arbitrary 
nonnegative integer? Give reasons for your answer.

x

y

0 2pp

5

y = x sin x10

−5

3p

54. Finding area Find the area of the region enclosed by the curve 
y = x cos x and the x-axis (see the accompanying figure) for

a. p>2 … x … 3p>2.

b. 3p>2 … x … 5p>2.

c. 5p>2 … x … 7p>2.

d. What pattern do you see? What is the area between the curve 
and the x-axis for

a2n - 1
2
bp … x … a2n + 1

2
bp,

  n an arbitrary positive integer? Give reasons for your answer.

0

10

−10

y = x cos x

x

y

p
2

7p
2

5p
2

3p
2

55. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ex, and the line x = ln 2 about the line 
x = ln 2.

56. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = e-x, and the line x = 1

a. about the y-axis.

b. about the line x = 1.

57. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cos x, 0 … x … p>2, about

a. the y-axis.

b. the line x = p>2.
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For the integral of cos-1 x we get

L
cos -1 xdx = x cos-1 x -

L
cos ydy y = cos-1 x

= x cos-1 x - sin y + C

= x cos-1 x - sin (cos-1 x) + C.

Use the formula

L
ƒ -1(x) dx = xƒ -1(x) -

L
ƒ(y) dy y = ƒ -1(x) (4)

to evaluate the integrals in Exercises 71–74. Express your answers in 
terms of x.

71.
L

sin-1 x dx 72.
L

tan-1 x dx

73.
L

sec-1 x dx 74.
L

log2 x dx

Another way to integrate ƒ -1(x) (when ƒ -1 is integrable, of 
course) is to use integration by parts with u = ƒ -1(x) and dy = dx to 
rewrite the integral of ƒ -1 as

L
ƒ -1(x) dx = xƒ -1(x) -

L
x a d

dx
 ƒ -1(x)b dx. (5)

Exercises 75 and 76 compare the results of using Equations (4) and (5).

75. Equations (4) and (5) give different formulas for the integral of 
cos-1 x:

a.
L

cos-1 x dx = x cos-1 x -  sin  (cos-1 x) + C Eq. (4)

b.
L

cos-1 x dx = x cos-1 x - 21 - x2 + C Eq. (5)

  Can both integrations be correct? Explain.

76. Equations (4) and (5) lead to different formulas for the integral of 
tan-1 x:

a.
L

tan-1 x dx = x tan-1 x - ln sec (tan-1 x) + C Eq. (4)

b.
L

tan-1 x dx = x tan-1 x - ln 21 + x2 + C Eq. (5)

  Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer 
with respect to x.

77.
L

 sinh-1 x dx 78.
L

tanh-1 x dx

65.
L

xneax dx = xneax

a - n
a
L

xn-1eax dx, a ≠ 0

66.
L

(ln x)n dx = x(ln x)n - n
L

(ln x)n-1 dx

67.
L

xm(ln x)n dx = xm+1

m + 1
 (ln x)n - n

m + 1
#

L
xm (ln x)n-1 dx, m ≠ -1

68. Use Example 5 to show that

L

p>2

0
sinn x dx =

L

p>2

0
cosn x dx

= μ
ap

2
b1 # 3 # 5g(n - 1)

2 # 4 # 6gn
,  n even

2 # 4 # 6g(n - 1)
1 # 3 # 5gn

,  n odd

69. Show that

L

b

a
a
L

b

x
ƒ(t) dtb dx =

L

b

a
(x - a)ƒ(x) dx.

70. Use integration by parts to obtain the formula

L
21 - x2 dx = 1

2
x 21 - x2 + 1

2L

1

21 - x2
dx.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually 
gives good results:

L
ƒ -1(x) dx =

L
yƒ′(y) dy

y = ƒ -1(x), x = ƒ( y)
dx = ƒ′( y) dy

= yƒ(y) -
L

ƒ(y) dy  
Integration by parts with 
u = y, dy = ƒ′( y) dy

= xƒ-1(x) -
L

ƒ(y) dy

The idea is to take the most complicated part of the integral, in this 
case ƒ -1(x), and simplify it first. For the integral of ln x, we get

L
ln x dx =

L
yey dy

y = ln x, x = e y

dx = e y dy

= yey - ey + C

= x ln x - x + C.

8.3 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric 
functions. In principle, we can always express such integrals in terms of sines and cosines, 
but it is often simpler to work with other functions, as in the integral

L
sec2 x dx = tan x + C.
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The general idea is to use identities to transform the integrals we have to find into integrals 
that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form

L
sinm x cosn x dx,

where m and n are nonnegative integers (positive or zero). We can divide the appropriate 
substitution into three cases according to m and n being odd or even.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin2 x =
1 - cos2 x to obtain

sinm x = sin2k+1 x = (sin2 x)k sin x = (1 - cos2 x)k sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to 
-d(cos x).

Case 2 If m is even and n is odd in 1sinm x cosn x dx, we write n as 2k + 1
and use the identity cos2 x = 1 - sin2 x to obtain

cosn x = cos2k+1 x = (cos2 x)k cos x = (1 - sin2 x)k cos x.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in 1sinm x cosn x dx, we substitute

sin2 x = 1 - cos 2x
2

, cos2 x = 1 + cos 2x
2

(2)

to reduce the integrand to one in lower powers of cos 2x.

Here are some examples illustrating each case.

EXAMPLE 1 Evaluate

L
sin3 x cos2 x dx.

Solution This is an example of Case 1.

L
sin3 x cos2 x dx =

L
sin2 x cos2 x sin x dx m is odd.

=
L

(1 - cos2 x) (cos2 x)(-d (cos x)) sin x dx = -d(cos x)

=
L

(1 - u2)(u2)(-du) u = cos x

=
L

(u4 - u2) du Multiply terms.

= u5

5
- u3

3 + C = cos5 x
5

- cos3 x
3 + C
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EXAMPLE 2 Evaluate

L
cos5 x dx.

Solution This is an example of Case 2, where m = 0 is even and n = 5 is odd.

L
cos5 x dx =

L
cos4 x cos x dx =

L
(1 - sin2 x)2 d(sin x) cos x dx = d(sin x)

=
L

(1 - u2)2 du u = sin x

=
L

(1 - 2u2 + u4) du Square 1 - u2.

= u - 2
3 u3 + 1

5
u5 + C = sin x - 2

3 sin3 x + 1
5

sin5 x + C

EXAMPLE 3 Evaluate

L
sin2 x cos4 x dx.

Solution This is an example of Case 3.

L
sin2 x cos4 x dx =

L
a1 - cos 2x

2
b a1 + cos 2x

2
b2

dx m and n both even

= 1
8L

(1 - cos 2x)(1 + 2 cos 2x + cos2 2x) dx

= 1
8L

(1 + cos 2x - cos2 2x - cos3 2x) dx

= 1
8 c x + 1

2
sin 2x -

L
(cos2 2x + cos3 2x) dx d

For the term involving cos2 2x, we use

L
cos2 2x dx = 1

2L
(1 + cos 4x) dx

= 1
2
ax + 1

4
sin 4xb . Omitting the constant of 

integration until the final result

For the cos3 2x term, we have

L
cos3 2x dx =

L
(1 - sin2 2x) cos 2x dx u = sin 2x,

du = 2 cos 2x dx

= 1
2L

(1 - u2) du = 1
2
asin 2x - 1

3 sin3 2xb . Again omitting C

Combining everything and simplifying, we get

L
sin2 x cos4 x dx = 1

16
ax - 1

4
sin 4x + 1

3 sin3 2xb + C.
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Eliminating Square Roots

In the next example, we use the identity cos2 u = (1 + cos 2u)>2 to eliminate a square root.

EXAMPLE 4 Evaluate

L

p>4

0
21 + cos 4x dx.

Solution To eliminate the square root, we use the identity

cos2 u = 1 + cos 2u
2

or 1 + cos 2u = 2 cos2 u.

With u = 2x, this becomes

1 + cos 4x = 2 cos2 2x.

Therefore,

L

p>4

0
21 + cos 4x dx =

L

p>4

0
22 cos2 2x dx =

L

p>4

0
222cos2 2x dx

= 22
L

p>4

0

0 cos 2x 0 dx = 22
L

p>4

0
cos 2x dx

cos 2x Ú 0 on 
30, p>44

= 22 c sin 2x
2
d

0

p>4
= 22

2
31 - 04 = 22

2
.

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant and their squares. To integrate higher 
powers, we use the identities tan2 x = sec2 x - 1 and sec2 x = tan2 x + 1, and integrate 
by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5 Evaluate

L
tan4 x dx.

Solution

L
tan4 x dx =

L
tan2 x # tan2 x dx =

L
tan2 x # (sec2 x - 1) dx

=
L

tan2 x sec2 x dx -
L

tan2 x dx

=
L

tan2 x sec2 x dx -
L

(sec2 x - 1) dx

=
L

tan2 x sec2 x dx -
L

sec2 x dx +
L

dx

In the first integral, we let

u = tan x, du = sec2 x dx

and have

L
u2 du = 1

3 u3 + C1.
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The remaining integrals are standard forms, so

L
tan4 x dx = 1

3 tan3 x - tan x + x + C.

EXAMPLE 6 Evaluate

L
sec3 x dx.

Solution We integrate by parts using

u = sec x, dy = sec2 x dx, y = tan x, du = sec x tan x dx.

Then

L
sec3 x dx = sec x tan x -

L
(tan x)(sec x tan x dx)

= sec x tan x -
L

(sec2 x - 1) sec x dx tan2 x = sec2 x - 1

= sec x tan x +
L

sec x dx -
L

sec3 x dx.

Combining the two secant-cubed integrals gives

2
L

sec3 x dx = sec x tan x +
L

sec x dx

and

L
sec3 x dx = 1

2
sec x tan x + 1

2
ln 0 sec x + tan x 0 + C.

EXAMPLE 7 Evaluate

L
tan4 x sec4 x dx.

Solution

L
(tan4 x) (sec4 x) dx =

L
(tan4 x) (1 + tan2 x) (sec2 x) dx sec2 x = 1 + tan2 x

=
L

(tan4 x + tan6 x) (sec2 x) dx

=
L

(tan4 x) (sec2 x) dx +
L

(tan6 x) (sec2 x) dx

=
L

u4 du +
L

u6 du = u5

5
+ u7

7 + C
u = tan x,
du = sec2 x dx

= tan5 x
5

+ tan7 x
7 + C

Products of Sines and Cosines

The integrals

L
sin mx sin nx dx,

L
sin mx cos nx dx, and

L
cos mx cos nx dx

arise in many applications involving periodic functions. We can evaluate these integrals 
through integration by parts, but two such integrations are required in each case. It is sim-
pler to use the identities

sin mx sin nx = 1
2
3cos (m - n)x - cos (m + n)x4 , (3)

sin mx cos nx = 1
2
3sin (m - n)x + sin (m + n)x4 , (4)

cos mx cos nx = 1
2
3cos (m - n)x + cos (m + n)x4 . (5)
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These identities come from the angle sum formulas for the sine and cosine functions 
(Section 1.3). They give functions whose antiderivatives are easily found.

EXAMPLE 8 Evaluate

L
sin 3x cos 5x dx.

Solution From Equation (4) with m = 3 and n = 5, we get

L
sin 3x cos 5x dx = 1

2L
3sin (-2x) + sin 8x4 dx

= 1
2L

(sin 8x - sin 2x) dx

= - cos 8x
16

+ cos 2x
4

+ C.

Powers of Sines and Cosines
Evaluate the integrals in Exercises 1–22.

1.
L

cos 2x dx 2.
L

p

0
3 sin

x
3

dx

3.
L

cos3 x sin x dx 4.
L

sin4 2x cos 2x dx

5.
L

sin3 x dx 6.
L

cos3 4x dx

7.
L

sin5 x dx 8.
L

p

0
sin5 x

2
dx

9.
L

cos3 x dx 10.
L

p>6

0
3 cos5 3x dx

11.
L

sin3 x cos3 x dx 12.
L

cos3 2x sin5 2x dx

13.
L

cos2 x dx 14.
L

p>2

0
sin2 x dx

15.
L

p>2

0
sin7 y dy 16.

L
7 cos7 t dt

17.
L

p

0
8 sin4 x dx 18.

L
8 cos4 2px dx

19.
L

16 sin2 x cos2 x dx 20.
L

p

0
8 sin4 y cos2 y dy

21.
L

8 cos3 2u sin 2u du 22.
L

p>2

0
sin2 2u cos3 2u du

Integrating Square Roots
Evaluate the integrals in Exercises 23–32.

23.
L

2p

0 A
1 - cos x

2
dx 24.

L

p

0
21 - cos 2x dx

25.
L

p

0
21 - sin2 t dt 26.

L

p

0
21 - cos2 u du

27.
L

p>2

p>3
sin2 x

21 - cos x
dx 28.

L

p/6

0
21 + sin x dx

aHint: Multiply by B
1 - sin x
1 - sin x

.b

29.
L

p

5p>6
cos4 x

21 - sin x
dx 30.

L

3p>4

p>2
21 - sin 2x dx

31.
L

p>2

0
u21 - cos 2u du 32.

L

p

-p
(1 - cos2 t)3>2 dt

Powers of Tangents and Secants
Evaluate the integrals in Exercises 33–50.

33.
L

sec2 x tan x dx 34.
L

sec x tan2 x dx

35.
L

sec3 x tan x dx 36.
L

sec3 x tan3 x dx

37.
L

sec2 x tan2 x dx 38.
L

sec4 x tan2 x dx

39.
L

0

-p>3
2 sec3 x dx 40.

L
ex sec3 ex dx

41.
L

sec4 u du 42.
L

3 sec4 3x dx

43.
L

p>2

p>4
csc4 u du 44.

L
sec6 x dx

45.
L

4 tan3 x dx 46.
L

p>4

-p>4
6 tan4 x dx

47.
L

tan5 x dx 48.
L

cot6 2x dx

49.
L

p>3

p>6
cot3 x dx 50.

L
8 cot4 t dt

Exercises 8.3
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8.4 Trigonometric Substitutions

Trigonometric substitutions occur when we replace the variable of integration by a trigo-
nometric function. The most common substitutions are x = a tan u, x = a sin u, and 
x = a sec u. These substitutions are effective in transforming integrals involving 
2a2 + x2, 2a2 - x2, and 2x2 - a2 into integrals we can evaluate directly since they 
come from the reference right triangles in Figure 8.2.

Products of Sines and Cosines
Evaluate the integrals in Exercises 51–56.

51.
L

sin 3x cos 2x dx 52.
L

sin 2x cos 3x dx

53.
L

p

-p
sin 3x sin 3x dx 54.

L

p>2

0
sin x cos x dx

55.
L

cos 3x cos 4x dx 56.
L

p>2

-p>2
cos x cos 7x dx

Exercises 57–62 require the use of various trigonometric identities 
before you evaluate the integrals.

57.
L

sin2 u cos 3u du 58.
L

cos2 2u sin u du

59.
L

cos3 u sin 2u du 60.
L

sin3 u cos 2u du

61.
L

sin u cos u cos 3u du 62.
L

sin u sin 2u sin 3u du

Assorted Integrations
Use any method to evaluate the integrals in Exercises 63–68.

63.
L

sec3 x
tan x dx 64.

L

sin3 x
cos4 x

dx

65.
L

tan2 x
csc x dx 66.

L

cot x
cos2 x

dx

67.
L

x sin2 x dx 68.
L

x cos3 x dx

Applications
69. Arc length Find the length of the curve

y = ln (sec x), 0 … x … p>4.

70. Center of gravity Find the center of gravity of the region 
bounded by the x-axis, the curve y = sec x, and the lines x =
-p>4, x = p>4.

71. Volume Find the volume generated by revolving one arch of 
the curve y = sin x about the x-axis.

72. Area Find the area between the x-axis and the curve y =
21 + cos 4x, 0 … x … p.

73. Centroid Find the centroid of the region bounded by the graphs 
of y = x + cos x and y = 0 for 0 … x … 2p.

74. Volume Find the volume of the solid formed by revolving the 
region bounded by the graphs of y = sin x + sec x, y = 0, x = 0,
and x = p>3 about the x@axis.

With x = a tan u,

a2 + x2 = a2 + a2 tan2 u = a2(1 + tan2 u) = a2 sec2 u.

With x = a sin u,

a2 - x2 = a2 - a2 sin2 u = a2(1 - sin2 u) = a2 cos2 u.

FIGURE 8.2 Reference triangles for the three basic substitutions 
identifying the sides labeled x and a for each substitution.

u u u

a

a

a

x
xx

"a2 − x2

x = a tan u x = a sin u x = a sec u

"x2 − a2"a2 + x2

"a2 + x2 = a 0 sec u 0 "a2 − x2 = a 0 cos u 0 "x2 − a2 = a 0 tan u 0
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With x = a sec u,

x2 - a2 = a2 sec2 u - a2 = a2(sec2 u - 1) = a2 tan2 u.

We want any substitution we use in an integration to be reversible so that we can 
change back to the original variable afterward. For example, if x = a tan u, we want to be 
able to set u = tan-1 (x>a) after the integration takes place. If x = a sin u, we want to be 
able to set u = sin-1 (x>a) when we’re done, and similarly for x = a sec u.

As we know from Section 1.6, the functions in these substitutions have inverses only 
for selected values of u (Figure 8.3). For reversibility,

x = a tan u requires u = tan-1 ax
ab with - p

2
6 u 6 p

2
,

x = a sin u requires u = sin-1 ax
ab with - p

2
… u … p

2
,

x = a sec u requires u = sec-1 ax
ab with d 0 … u 6 p

2
if

x
a Ú 1,

p
2

6 u … p if
x
a … -1.

To simplify calculations with the substitution x = a sec u, we will restrict its use to 
integrals in which x>a Ú 1. This will place u in 30, p>2) and make tan u Ú 0. We will 

then have 2x2 - a2 = 2a2 tan2 u = 0 a tan u 0 = a tan u, free of absolute values, pro-
vided a 7 0.

u

u

u

x
a

x
a

x
a

x
a

p
2

p
2

p
2

p
2−

p
2−

p
u = sec−1

x
au = sin−1

x
au = tan−1

0

0 1−1

0 1−1

FIGURE 8.3 The arctangent, arcsine, 
and arcsecant of x>a, graphed as functions 
of x>a.

Procedure for a Trigonometric Substitution
1. Write down the substitution for x, calculate the differential dx, and specify 

the selected values of u for the substitution.

2. Substitute the trigonometric expression and the calculated differential into 
the integrand, and then simplify the results algebraically.

3. Integrate the trigonometric integral, keeping in mind the restrictions on the 
angle u for reversibility.

4. Draw an appropriate reference triangle to reverse the substitution in the inte-
gration result and convert it back to the original variable x.

EXAMPLE 1 Evaluate

L

dx

24 + x2
.

Solution We set

x = 2 tan u, dx = 2 sec2 u du, -p
2

6 u 6 p
2

,

4 + x2 = 4 + 4 tan2 u = 4(1 + tan2 u) = 4 sec2 u.
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Then

L

dx

24 + x2
=

L

2 sec2 u du

24 sec2 u
=

L

sec2 u du0 sec u 0 2sec2 u = 0 sec u 0

=
L

sec u du secu 7 0 for - p
2

6 u 6 p
2

= ln 0 sec u + tan u 0 + C

= ln ` 24 + x2

2
+ x

2
` + C. From Fig. 8.4

Notice how we expressed ln 0 sec u + tan u 0  in terms of x: We drew a reference triangle for 
the original substitution x = 2 tan u (Figure 8.4) and read the ratios from the triangle.

EXAMPLE 2  Here we find an expression for the inverse hyperbolic sine function in 
terms of the natural logarithm. Following the same procedure as in Example 1, we find 
that

L

dx

2a2 + x2
=

L
sec udu x = a tan u, dx = a sec2 u du

= ln 0  sec u + tan u 0 + C

= ln ` 2a2 + x2

a + x
a ` + C Fig. 8.2

From Table 7.9, sinh-1 (x>a) is also an antiderivative of 1>2a2 + x2 , so the two anti-
derivatives differ by a constant, giving

sinh-1 x
a =  ln ` 2a2 + x2

a + x
a ` + C.

Setting x = 0 in this last equation, we find 0 = ln 0 1 0 + C, so C = 0. Since 

2a2 + x2 7 0 x 0 , we conclude that

FIGURE 8.4 Reference triangle for 
x = 2 tan u (Example 1):

 tan u = x
2

and

 sec u = 24 + x2

2
.

u

2

x
"4 + x2

sinh-1 x
a = ln a2a2 + x2

a + x
ab

(See also Exercise 76 in Section 7.3.)

EXAMPLE 3 Evaluate

L

x2 dx

29 - x2
.

Solution We set

x = 3 sin u, dx = 3 cos u du, - p
2

6 u 6 p
2

9 - x2 = 9 - 9 sin2 u = 9(1 - sin2 u) = 9 cos2 u.
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Then

L

x2 dx

29 - x2
=

L

9 sin2 u # 3 cos u du0 3 cos u 0
= 9

L
sin2 u du cosu 7 0 for - p

2
6 u 6 p

2

= 9
L

1 - cos 2u
2

du

= 9
2
au - sin 2u

2
b + C

= 9
2

 (u - sin u cos u) + C sin 2u = 2 sin u cos u

= 9
2
asin-1 x

3 - x
3
# 29 - x2

3 b + C From Fig. 8.5

= 9
2

 sin-1 x
3 - x

2
29 - x2 + C.

EXAMPLE 4 Evaluate

L

dx

225x2 - 4
, x 7 2

5
.

Solution We first rewrite the radical as

225x2 - 4 = B25ax2 - 4
25
b

= 5Cx2 - a2
5
b2

to put the radicand in the form x2 - a2. We then substitute

x = 2
5

 sec u, dx = 2
5

 sec u tan u du, 0 6 u 6 p
2

x2 - a2
5
b2

= 4
25

 sec2 u - 4
25

= 4
25

 (sec2 u - 1) = 4
25

 tan2 u

Cx2 - a2
5
b2

= 2
5
0 tan u 0 = 2

5
 tan u.

tan u 7 0 for
0 6 u 6 p>2

With these substitutions, we have

L

dx

225x2 - 4
=

L

dx

52x2 - (4>25)
=

L

(2>5) sec u tan u du

5 # (2>5) tan u

= 1
5L

sec u du = 1
5

 ln 0 sec u + tan u 0 + C

= 1
5

 ln ` 5x
2

+ 225x2 - 4
2

` + C. From Fig. 8.6

FIGURE 8.5 Reference triangle for 
x = 3 sin u (Example 3):

 sin u = x
3

and

 cos u = 29 - x2

3
.

u

3 x

"9 − x2

u

2

5x
"25x2 − 4

FIGURE 8.6 If x = (2>5)sec u,
0 6 u 6 p>2, then u = sec-1 (5x>2),
and we can read the values of the other 
trigonometric functions of u from this 
right triangle (Example 4).
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Using Trigonometric Substitutions
Evaluate the integrals in Exercises 1–14.

1.
L

dx

29 + x2
2.

L

3 dx

21 + 9x2

3.
L

2

-2

dx
4 + x2 4.

L

2

0

dx
8 + 2x2

5.
L

3>2

0

dx

29 - x2
6.

L

1>222

0

2 dx

21 - 4x2

7.
L
225 - t2 dt 8.

L
21 - 9t2 dt

9.
L

dx

24x2 - 49
, x 7 7

2
10.

L

5 dx

225x2 - 9
, x 7 3

5

11.
L

2y2 - 49
y dy, y 7 7 12.

L

2y2 - 25

y3 dy, y 7 5

13.
L

dx

x22x2 - 1
, x 7 1 14.

L

2 dx

x32x2 - 1
, x 7 1

Assorted Integrations
Use any method to evaluate the integrals in Exercises 15–34. Most 
will require trigonometric substitutions, but some can be evaluated by 
other methods.

15.
L

x

29 - x2
dx 16.

L

x2

4 + x2 dx

17.
L

x3 dx

2x2 + 4
18.

L

dx

x22x2 + 1

19.
L

8 dw

w224 - w2
20.

L

29 - w2

w2 dw

21.
LA

x + 1
1 - x

dx 22.
L

x 2x2 - 4 dx

23.
L

23>2

0

4x2 dx
(1 - x2)3>2 24.

L

1

0

dx
(4 - x2)3>2

25.
L

dx
(x2 - 1)3>2 , x 7 1 26.

L

x2 dx
(x2 - 1)5>2 , x 7 1

27.
L

(1 - x2)3>2
x6 dx 28.

L

(1 - x2)1>2
x4 dx

29.
L

8 dx
(4x2 + 1)2

30.
L

6 dt
(9t2 + 1)2

31.
L

x3 dx
x2 - 1

32.
L

xdx
25 + 4x2

33.
L

y2 dy
(1 - y2)5>2 34.

L

(1 - r2)5>2
r8 dr

In Exercises 35–48, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.

35.
L

ln 4

0

et dt

2e2t + 9
36.

L

ln (4>3)

ln (3>4)

et dt
(1 + e2t)3>2

37.
L

1>4

1>12

2 dt

2t + 4t2t
38.

L

e

1

dy

y21 + (ln y)2

39.
L

dx

x2x2 - 1
40.

L

dx
1 + x2

41.
L

x dx

2x2 - 1
42.

L

dx

21 - x2

43.
L

x dx

21 + x4
44.

L

21 - (ln x)2

x ln x
dx

45.
LB

4 - x
x dx 46.

LA
x

1 - x3 dx

(Hint: Let x = u2.) (Hint: Let u = x3>2.)

47.
L
2x 21 - x dx 48.

L

2x - 2

2x - 1
dx

Initial Value Problems
Solve the initial value problems in Exercises 49–52 for y as a function 
of x.

49. x
dy
dx

= 2x2 - 4, x Ú 2, y(2) = 0

50. 2x2 - 9
dy
dx

= 1, x 7 3, y(5) = ln 3

51. (x2 + 4)
dy
dx

= 3, y(2) = 0

52. (x2 + 1)2
dy
dx

= 2x2 + 1, y(0) = 1

Applications and Examples
53. Area Find the area of the region in the first quadrant that is 

enclosed by the coordinate axes and the curve y = 29 - x2>3.

54. Area Find the area enclosed by the ellipse

x2

a2 +
y2

b2 = 1.

55. Consider the region bounded by the graphs of y = sin-1 x, y = 0,
and x = 1>2.

a. Find the area of the region.

b. Find the centroid of the region.

56. Consider the region bounded by the graphs of y = 2x tan-1 x
and y = 0 for 0 … x … 1. Find the volume of the solid formed 
by revolving this region about the x-axis (see accompanying 
figure).

x

y

0 1

y =
"

x tan−1 x

Exercises 8.4
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57. Evaluate 1x3 21 - x2 dx using

a. integration by parts.

b. a u-substitution.

c. a trigonometric substitution.

58. Path of a water skier Suppose that a boat is positioned at the 
origin with a water skier tethered to the boat at the point (30, 0) 
on a rope 30 ft long. As the boat travels along the positive y-axis,
the skier is pulled behind the boat along an unknown path 
y = ƒ(x), as shown in the accompanying figure.

a. Show that ƒ′(x) = -2900 - x2

x .

(Hint: Assume that the skier is always pointed directly at the boat 
and the rope is on a line tangent to the path y = ƒ(x).)

b. Solve the equation in part (a) for ƒ(x), using ƒ(30) = 0.

NOT  TO SCALE

x

y

0 (30, 0)x

f (x) (x, f (x)) skier

30 ft rope

y = f (x) path of skier

boat

8.5  Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum 
of simpler fractions, called partial fractions, which are easily integrated. For instance, the 
rational function (5x - 3)>(x2 - 2x - 3) can be rewritten as

5x - 3
x2 - 2x - 3

= 2
x + 1

+ 3
x - 3.

You can verify this equation algebraically by placing the fractions on the right side over a 
common denominator (x + 1)(x - 3). The skill acquired in writing rational functions as 
such a sum is useful in other settings as well (for instance, when using certain transform 
methods to solve differential equations). To integrate the rational function 
(5x - 3)>(x2 - 2x - 3) on the left side of our previous expression, we simply sum the 
integrals of the fractions on the right side:

L

5x - 3
(x + 1)(x - 3)

dx =
L

2
x + 1

dx +
L

3
x - 3 dx

= 2 ln 0 x + 1 0 + 3 ln 0 x - 3 0 + C.

The method for rewriting rational functions as a sum of simpler fractions is called the
method of partial fractions. In the case of the preceding example, it consists of finding 
constants A and B such that

5x - 3
x2 - 2x - 3

= A
x + 1

+ B
x - 3. (1)

(Pretend for a moment that we do not know that A = 2 and B = 3 will work.) We call the 
fractions A>(x + 1) and B>(x - 3) partial fractions because their denominators are 
only part of the original denominator x2 - 2x - 3. We call A and B undetermined coef-
ficients until suitable values for them have been found.

To find A and B, we first clear Equation (1) of fractions and regroup in powers of x,
obtaining

5x - 3 = A(x - 3) + B(x + 1) = (A + B)x - 3A + B.

This will be an identity in x if and only if the coefficients of like powers of x on the two 
sides are equal:

A + B = 5, -3A + B = -3.

Solving these equations simultaneously gives A = 2 and B = 3.
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General Description of the Method

Success in writing a rational function ƒ(x)>g(x) as a sum of partial fractions depends on 
two things:

● The degree of ƒ(x) must be less than the degree of g(x). That is, the fraction must be 
proper. If it isn’t, divide ƒ(x) by g(x) and work with the remainder term. Example 3 of 
this section illustrates such a case.

● We must know the factors of g(x). In theory, any polynomial with real coefficients can 
be written as a product of real linear factors and real quadratic factors. In practice, the 
factors may be hard to find.

Here is how we find the partial fractions of a proper fraction ƒ(x)>g(x) when the factors of 
g are known. A quadratic polynomial (or factor) is irreducible if it cannot be written as 
the product of two linear factors with real coefficients. That is, the polynomial has no real 
roots.

Method of Partial Fractions when ƒ(x) ,g(x)  is Proper

1. Let x - r be a linear factor of g(x). Suppose that (x - r)m is the highest 
power of x - r that divides g(x). Then, to this factor, assign the sum of the 
m partial fractions:

A1

(x - r)
+

A2

(x - r)2 + g+
Am

(x - r)m .

Do this for each distinct linear factor of g(x).

2. Let x2 + px + q be an irreducible quadratic factor of g(x) so that 
x2 + px + q has no real roots. Suppose that (x2 + px + q)n is the highest 
power of this factor that divides g(x). Then, to this factor, assign the sum of 
the n partial fractions:

B1x + C1

(x2 + px + q)
+

B2x + C2

(x2 + px + q)2 + g+
Bnx + Cn

(x2 + px + q)n .

Do this for each distinct quadratic factor of g(x).

3. Set the original fraction ƒ(x)>g(x) equal to the sum of all these partial 
fractions. Clear the resulting equation of fractions and arrange the terms in 
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting 
equations for the undetermined coefficients.

EXAMPLE 1  Use partial fractions to evaluate

L

x2 + 4x + 1
(x - 1)(x + 1)(x + 3)

dx.

Solution The partial fraction decomposition has the form

x2 + 4x + 1
(x - 1)(x + 1)(x + 3)

= A
x - 1

+ B
x + 1

+ C
x + 3.

To find the values of the undetermined coefficients A, B, and C, we clear fractions and get

x2 + 4x + 1 = A(x + 1)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 1)

= A(x2 + 4x + 3) + B(x2 + 2x - 3) + C(x2 - 1)
= (A + B + C)x2 + (4A + 2B)x + (3A - 3B - C).
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The polynomials on both sides of the above equation are identical, so we equate coeffi-
cients of like powers of x, obtaining

Coefficient of x2: A + B + C = 1

Coefficient of x1: 4A + 2B = 4

Coefficient of x0: 3A - 3B - C = 1

There are several ways of solving such a system of linear equations for the unknowns A, B,
and C, including elimination of variables or the use of a calculator or computer. Whatever 
method is used, the solution is A = 3>4, B = 1>2, and C = -1>4. Hence we have

L

x2 + 4x + 1
(x - 1)(x + 1)(x + 3)

dx =
L
c 3
4

1
x - 1

+ 1
2

1
x + 1

- 1
4

1
x + 3 d dx

= 3
4

ln 0 x - 1 0 + 1
2

ln 0 x + 1 0 - 1
4

ln 0 x + 3 0 + K,

where K is the arbitrary constant of integration (to avoid confusion with the undetermined 
coefficient we labeled as C).

EXAMPLE 2  Use partial fractions to evaluate

L

6x + 7
(x + 2)2 dx.

Solution First we express the integrand as a sum of partial fractions with undetermined 
coefficients.

6x + 7
(x + 2)2 = A

x + 2
+ B

(x + 2)2

6x + 7 = A(x + 2) + B Multiply both sides by (x + 2)2.

= Ax + (2A + B)

Equating coefficients of corresponding powers of x gives

A = 6 and 2A + B = 12 + B = 7, or A = 6 and B = -5.

Therefore,

L

6x + 7
(x + 2)2 dx =

L
a 6

x + 2
- 5

(x + 2)2b dx

= 6
L

dx
x + 2

- 5
L

(x + 2)-2 dx

= 6 ln 0 x + 2 0 + 5(x + 2)-1 + C.

The next example shows how to handle the case when ƒ(x)>g(x) is an improper frac-
tion. It is a case where the degree of ƒ is larger than the degree of g.

EXAMPLE 3  Use partial fractions to evaluate

L

2x3 - 4x2 - x - 3
x2 - 2x - 3

dx.

Solution First we divide the denominator into the numerator to get a polynomial plus a 
proper fraction.

2x

x2 - 2x - 3)2x3 - 4x2 - x - 3

2x3 - 4x2 - 6x - 3

5x - 3
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Then we write the improper fraction as a polynomial plus a proper fraction.

2x3 - 4x2 - x - 3
x2 - 2x - 3

= 2x + 5x - 3
x2 - 2x - 3

We found the partial fraction decomposition of the fraction on the right in the opening 
example, so

L

2x3 - 4x2 - x - 3
x2 - 2x - 3

dx =
L

2x dx +
L

5x - 3
x2 - 2x - 3

dx

=
L

2x dx +
L

2
x + 1

dx +
L

3
x - 3 dx

= x2 + 2 ln 0 x + 1 0 + 3 ln 0 x - 3 0 + C.

EXAMPLE 4  Use partial fractions to evaluate

L

-2x + 4
(x2 + 1)(x - 1)2

dx.

Solution The denominator has an irreducible quadratic factor as well as a repeated linear 
factor, so we write

-2x + 4
(x2 + 1)(x - 1)2 = Ax + B

x2 + 1
+ C

x - 1
+ D

(x - 1)2 . (2)

Clearing the equation of fractions gives

-2x + 4 = (Ax + B)(x - 1)2 + C(x - 1)(x2 + 1) + D(x2 + 1)
= (A + C)x3 + (-2A + B - C + D)x2

+ (A - 2B + C)x + (B - C + D).

Equating coefficients of like terms gives

Coefficients of x3:  0 = A + C

Coefficients of x2:  0 = -2A + B - C + D

Coefficients of x1: -2 = A - 2B + C

Coefficients of x0:  4 = B - C + D

We solve these equations simultaneously to find the values of A, B, C, and D:

-4 = -2A, A = 2 Subtract fourth equation from second.

C = -A = -2 From the first equation

B = (A + C + 2)>2 = 1 From the third equation and C = -A

D = 4 - B + C = 1. From the fourth equation.

We substitute these values into Equation (2), obtaining

-2x + 4
(x2 + 1)(x - 1)2 = 2x + 1

x2 + 1
- 2

x - 1
+ 1

(x - 1)2 .

Finally, using the expansion above we can integrate:

L

-2x + 4
(x2 + 1)(x - 1)2 dx =

L
a2x + 1

x2 + 1
- 2

x - 1
+ 1

(x - 1)2b dx

=
L
a 2x

x2 + 1
+ 1

x2 + 1
- 2

x - 1
+ 1

(x - 1)2b dx

= ln (x2 + 1) + tan-1 x - 2 ln 0 x - 1 0 - 1
x - 1

+ C.
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EXAMPLE 5  Use partial fractions to evaluate

L

dx
x(x2 + 1)2

.

Solution The form of the partial fraction decomposition is

1
x(x2 + 1)2

= A
x + Bx + C

x2 + 1
+ Dx + E

(x2 + 1)2
.

Multiplying by x(x2 + 1)2, we have

1 = A(x2 + 1)2 + (Bx + C)x(x2 + 1) + (Dx + E)x

= A(x4 + 2x2 + 1) + B(x4 + x2) + C(x3 + x) + Dx2 + Ex

= (A + B)x4 + Cx3 + (2A + B + D)x2 + (C + E)x + A.

If we equate coefficients, we get the system

A + B = 0, C = 0, 2A + B + D = 0, C + E = 0, A = 1.

Solving this system gives A = 1, B = -1, C = 0, D = -1, and E = 0. Thus,

L

dx
x(x2 + 1)2 =

L
c 1x + -x

x2 + 1
+ -x

(x2 + 1)2 d dx

=
L

dx
x -

L

x dx
x2 + 1

-
L

x dx
(x2 + 1)2

=
L

dx
x - 1

2L

du
u - 1

2L

du
u2

u = x2 + 1,
du = 2x dx

= ln 0 x 0 - 1
2

ln 0 u 0 + 1
2u

+ K

= ln 0 x 0 - 1
2

ln (x2 + 1) + 1
2(x2 + 1)

+ K

= ln
0 x 0

2x2 + 1
+ 1

2(x2 + 1)
+ K.

The Heaviside “Cover-up” Method for Linear Factors

When the degree of the polynomial ƒ(x) is less than the degree of g(x) and

g(x) = (x - r1)(x - r2)g(x - rn)

is a product of n distinct linear factors, each raised to the first power, there is a quick way 
to expand ƒ(x)>g(x) by partial fractions.

EXAMPLE 6 Find A, B, and C in the partial fraction expansion

x2 + 1
(x - 1)(x - 2)(x - 3)

= A
x - 1

+ B
x - 2

+ C
x - 3. (3)

Solution If we multiply both sides of Equation (3) by (x - 1) to get

x2 + 1
(x - 2)(x - 3)

= A +
B(x - 1)

x - 2
+

C(x - 1)
x - 3

and set x = 1, the resulting equation gives the value of A:

(1)2 + 1
(1 - 2)(1 - 3)

= A + 0 + 0,

A = 1.

HISTORICAL BIOGRAPHY

Oliver Heaviside
(1850–1925)
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Thus, the value of A is the number we would have obtained if we had covered the factor 
(x - 1) in the denominator of the original fraction

x2 + 1
(x - 1)(x - 2)(x - 3)

(4)

and evaluated the rest at x = 1:

A =
(1)2 + 1

� (x - 1) � (1 - 2)(1 - 3)
= 2

(-1)(-2)
= 1.

A
Cover

Similarly, we find the value of B in Equation (3) by covering the factor (x - 2) in Expres-
sion (4) and evaluating the rest at x = 2:

B =
(2)2 + 1

(2 - 1) � (x - 2) � (2 - 3)
= 5

(1)(-1)
= -5.

A
Cover

Finally, C is found by covering the (x - 3) in Expression (4) and evaluating the rest at 
x = 3:

C =
(3)2 + 1

(3 - 1)(3 - 2) � (x - 3) �
= 10

(2)(1)
= 5.

A
Cover

Heaviside Method

1. Write the quotient with g(x) factored:

ƒ(x)
g(x)

=
ƒ(x)

(x - r1)(x - r2)g(x - rn)
.

2. Cover the factors (x - ri) of g(x) one at a time, each time replacing all the 
uncovered x’s by the number ri . This gives a number Ai for each root ri:

A1 =
ƒ(r1)

(r1 - r2)g(r1 - rn)

A2 =
ƒ(r2)

(r2 - r1)(r2 - r3)g(r2 - rn)

f

An =
ƒ(rn)

(rn - r1)(rn - r2)g(rn - rn-1)
.

3. Write the partial fraction expansion of ƒ(x)>g(x) as

ƒ(x)
g(x)

=
A1

(x - r1)
+

A2

(x - r2)
+ g+

An

(x - rn)
.

EXAMPLE 7  Use the Heaviside Method to evaluate

L

x + 4
x3 + 3x2 - 10x

dx.
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Solution The degree of ƒ(x) = x + 4 is less than the degree of the cubic polynomial 
g(x) = x3 + 3x2 - 10x, and, with g(x) factored,

x + 4
x3 + 3x2 - 10x

= x + 4
x(x - 2)(x + 5)

.

The roots of g(x) are r1 = 0, r2 = 2, and r3 = -5. We find

A1 = 0 + 4

� x � (0 - 2)(0 + 5)
= 4

(-2)(5)
= -2

5

A
Cover

A2 = 2 + 4

2 � (x - 2) � (2 + 5)
= 6

(2)(7)
= 3

7

A
Cover

A3 = -5 + 4

(-5)(-5 - 2) � (x + 5) �
= -1

(-5)(-7)
= - 1

35
.

A
Cover

Therefore,

x + 4
x(x - 2)(x + 5)

= - 2
5x

+ 3
7(x - 2)

- 1
35(x + 5)

,

and

L

x + 4
x(x - 2)(x + 5)

dx = -2
5

ln 0 x 0 + 3
7 ln 0 x - 2 0 - 1

35
ln 0 x + 5 0 + C.

Other Ways to Determine the Coefficients

Another way to determine the constants that appear in partial fractions is to differentiate, 
as in the next example. Still another is to assign selected numerical values to x.

EXAMPLE 8 Find A, B, and C in the equation

x - 1
(x + 1)3 = A

x + 1
+ B

(x + 1)2 + C
(x + 1)3

by clearing fractions, differentiating the result, and substituting x = -1.

Solution We first clear fractions:

x - 1 = A(x + 1)2 + B(x + 1) + C.

Substituting x = -1 shows C = -2. We then differentiate both sides with respect to x,
obtaining

1 = 2A(x + 1) + B.

Substituting x = -1 shows B = 1. We differentiate again to get 0 = 2A, which shows 
A = 0. Hence,

x - 1
(x + 1)3 = 1

(x + 1)2 - 2
(x + 1)3 .

In some problems, assigning small values to x, such as x = 0, {1, {2, to get equa-
tions in A, B, and C provides a fast alternative to other methods.
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EXAMPLE 9 Find A, B, and C in the expression

x2 + 1
(x - 1)(x - 2)(x - 3)

= A
x - 1

+ B
x - 2

+ C
x - 3

by assigning numerical values to x.

Solution Clear fractions to get

x2 + 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2) .

Then let x = 1, 2, 3 successively to find A, B, and C:

x = 1: (1)2 + 1 = A(-1)(-2) + B(0) + C(0)

2 = 2A

A = 1

x = 2: (2)2 + 1 = A(0) + B(1)(-1) + C(0)

5 = -B

B = -5

x = 3: (3)2 + 1 = A(0) + B(0) + C(2)(1)

10 = 2C

C = 5.

Conclusion:

x2 + 1
(x - 1)(x - 2)(x - 3)

= 1
x - 1

- 5
x - 2

+ 5
x - 3.

Expanding Quotients into Partial Fractions
Expand the quotients in Exercises 1–8 by partial fractions.

1.
5x - 13

(x - 3)(x - 2)
2.

5x - 7
x2 - 3x + 2

3.
x + 4

(x + 1)2 4.
2x + 2

x2 - 2x + 1

5.
z + 1

z2(z - 1)
6.

z
z3 - z2 - 6z

7.
t2 + 8

t2 - 5t + 6
8.

t4 + 9
t4 + 9t2

Nonrepeated Linear Factors
In Exercises 9–16, express the integrand as a sum of partial fractions 
and evaluate the integrals.

9.
L

dx
1 - x2 10.

L

dx
x2 + 2x

11.
L

x + 4
x2 + 5x - 6

dx 12.
L

2x + 1
x2 - 7x + 12

dx

13.
L

8

4

y dy

y2 - 2y - 3
14.

L

1

1>2
y + 4

y2 + y
dy

15.
L

dt
t3 + t2 - 2t

16.
L

x + 3
2x3 - 8x

dx

Repeated Linear Factors
In Exercises 17–20, express the integrand as a sum of partial fractions 
and evaluate the integrals.

17.
L

1

0

x3 dx
x2 + 2x + 1

18.
L

0

-1

x3 dx
x2 - 2x + 1

19.
L

dx
(x2 - 1)2

20.
L

x2 dx
(x - 1)(x2 + 2x + 1)

Irreducible Quadratic Factors
In Exercises 21–32, express the integrand as a sum of partial fractions 
and evaluate the integrals.

21.
L

1

0

dx
(x + 1)(x2 + 1)

22.
L

23

1

3t2 + t + 4
t3 + t

dt

23.
L

y2 + 2y + 1

(y2 + 1)2
dy 24.

L

8x2 + 8x + 2
(4x2 + 1)2

dx

25.
L

2s + 2
(s2 + 1)(s - 1)3

ds 26.
L

s4 + 81
s(s2 + 9)2

ds

27.
L

x2 - x + 2
x3 - 1

dx 28.
L

1
x4 + x

dx

29.
L

x2

x4 - 1
dx 30.

L

x2 + x
x4 - 3x2 - 4

dx

31.
L

2u3 + 5u2 + 8u + 4
(u2 + 2u + 2)2

du

32.
L

u4 - 4u3 + 2u2 - 3u + 1
(u2 + 1)3

du

Exercises 8.5
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56. The y-axis

1

1
x

y y = 2
(x + 1)(2 − x)

0

57. Find, to two decimal places, the x-coordinate of the centroid of 
the region in the first quadrant bounded by the x-axis, the curve 
y = tan-1 x, and the line x = 23.

58. Find the x-coordinate of the centroid of this region to two decimal 
places.

x

y

(3, 1.83)

(5, 0.98)

30 5

y = 4x2 + 13x − 9
x3 + 2x2 − 3x

59. Social diffusion Sociologists sometimes use the phrase “social 
diffusion” to describe the way information spreads through a 
population. The information might be a rumor, a cultural fad, or 
news about a technical innovation. In a sufficiently large popula-
tion, the number of people x who have the information is treated 
as a differentiable function of time t, and the rate of diffusion, 
dx>dt, is assumed to be proportional to the number of people who 
have the information times the number of people who do not. 
This leads to the equation

dx
dt

= kx(N - x),

where N is the number of people in the population.
Suppose t is in days, k = 1>250, and two people start a 

rumor at time t = 0 in a population of N = 1000 people.

a. Find x as a function of t.

b. When will half the population have heard the rumor? (This is 
when the rumor will be spreading the fastest.)

60. Second-order chemical reactions Many chemical reactions 
are the result of the interaction of two molecules that undergo a 
change to produce a new product. The rate of the reaction typi-
cally depends on the concentrations of the two kinds of mole-
cules. If a is the amount of substance A and b is the amount of 
substance B at time t = 0, and if x is the amount of product at 
time t, then the rate of formation of x may be given by the differ-
ential equation

dx
dt

= k(a - x)(b - x) ,

or

1
(a - x)(b - x)

dx
dt

= k ,

where k is a constant for the reaction. Integrate both sides of this 
equation to obtain a relation between x and t (a) if a = b, and 
(b) if a ≠ b. Assume in each case that x = 0 when t = 0.

T

T

T

T

Improper Fractions
In Exercises 33–38, perform long division on the integrand, write the 
proper fraction as a sum of partial fractions, and then evaluate the 
integral.

33.
L

2x3 - 2x2 + 1
x2 - x

dx 34.
L

x4

x2 - 1
dx

35.
L

9x3 - 3x + 1
x3 - x2 dx 36.

L

16x3

4x2 - 4x + 1
dx

37.
L

y4 + y2 - 1

y3 + y
dy 38.

L

2y4

y3 - y2 + y - 1
dy

Evaluating Integrals
Evaluate the integrals in Exercises 39–50.

39.
L

et dt
e2t + 3et + 2

40.
L

e4t + 2e2t - et

e2t + 1
dt

41.
L

cos ydy

sin2 y + sin y - 6
42.

L

sin u du
cos2 u + cos u - 2

43.
L

(x - 2)2 tan-1 (2x) - 12x3 - 3x

(4x2 + 1)(x - 2)2
dx

44.
L

(x + 1)2 tan-1 (3x) + 9x3 + x

(9x2 + 1)(x + 1)2
dx

45.
L

1

x3>2 - 2x
dx 46.

L

1

(x1>3 - 1) 2x
dx

   (Hint: Let x = u6.)

47.
L

2x + 1
x dx 48.

L

1

x2x + 9
dx

(Hint: Let x + 1 = u2.)

49.
L

1
x(x4 + 1)

dx 50.
L

1
x6(x5 + 4)

dx

aHint: Multiply by 
x3

x3 .b
Initial Value Problems
Solve the initial value problems in Exercises 51–54 for x as a function 
of t.

51. (t2 - 3t + 2) dx
dt

= 1 (t 7 2), x(3) = 0

52. (3t4 + 4t2 + 1) dx
dt

= 223, x(1) = -p23>4
53. (t2 + 2t) dx

dt
= 2x + 2 (t, x 7 0), x(1) = 1

54. (t + 1) 
dx
dt

= x2 + 1 (t 7 -1), x(0) = 0

Applications and Examples
In Exercises 55 and 56, find the volume of the solid generated by 
revolving the shaded region about the indicated axis.

55. The x-axis

x

y

2

0 0.5 2.5

(0.5, 2.68) (2.5, 2.68)

y = 3

"3x − x2
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8.6 Integral Tables and Computer Algebra Systems

In this section we discuss how to use tables and computer algebra systems (CAS) to evalu-
ate integrals.

Integral Tables

A Brief Table of Integrals is provided at the back of the book, after the index. (More exten-
sive tables appear in compilations such as CRC Mathematical Tables, which contain thou-
sands of integrals.) The integration formulas are stated in terms of constants a, b, c, m, n,
and so on. These constants can usually assume any real value and need not be integers. 
Occasional limitations on their values are stated with the formulas. Formula 21 requires 
n ≠ -1, for example, and Formula 27 requires n ≠ -2.

The formulas also assume that the constants do not take on values that require divid-
ing by zero or taking even roots of negative numbers. For example, Formula 24 assumes 
that a ≠ 0, and Formulas 29a and 29b cannot be used unless b is positive.

EXAMPLE 1 Find

L
x(2x + 5)-1 dx.

Solution We use Formula 24 at the back of the book (not 22, which requires n ≠ -1):

L
x(ax + b)-1 dx = x

a - b
a2 ln 0 ax + b 0 + C.

With a = 2 and b = 5, we have

L
x(2x + 5)-1 dx = x

2
- 5

4
ln 0 2x + 5 0 + C.

EXAMPLE 2 Find

L

dx

x22x - 4
.

Solution We use Formula 29b:

L

dx

x2ax - b
= 2

2b
tan-1 A

ax - b
b

+ C.

With a = 2 and b = 4, we have

L

dx

x22x - 4
= 2

24
tan-1 A

2x - 4
4

+ C = tan-1 A
x - 2

2
+ C.

EXAMPLE 3 Find

L
x sin-1 x dx.

Solution We begin by using Formula 106:

L
xn sin-1 ax dx = xn+1

n + 1
sin-1 ax - a

n + 1L

xn+1 dx

21 - a2x2
, n ≠ -1.
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With n = 1 and a = 1, we have

L
x sin-1 x dx = x2

2
sin-1 x - 1

2L

x2 dx

21 - x2
.

Next we use Formula 49 to find the integral on the right:

L

x2

2a2 - x2
dx = a2

2
sin-1 ax

ab - 1
2

x2a2 - x2 + C.

With a = 1,

L

x2 dx

21 - x2
= 1

2
sin-1 x - 1

2
x21 - x2 + C.

The combined result is

L
x sin-1 x dx = x2

2
sin-1 x - 1

2
a1

2
sin-1 x - 1

2
x21 - x2 + Cb

= ax2

2
- 1

4
bsin-1 x + 1

4
x21 - x2 + C′.

Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened by apply-
ing reduction formulas like

L
tann x dx = 1

n - 1
tann-1 x -

L
tann-2 x dx (1)

L
(ln x)n dx = x(ln x)n - n

L
(ln x)n-1 dx (2)

L
sinn x cosm x dx = -sinn-1 x cosm+1 x

m + n + n - 1
m + nL

sinn-2 x cosm x dx (n ≠ -m).

(3)

By applying such a formula repeatedly, we can eventually express the original integral in terms of 
a power low enough to be evaluated directly. The next example illustrates this procedure.

EXAMPLE 4 Find

L
tan5 x dx.

Solution We apply Equation (1) with n = 5 to get

L
tan5 x dx = 1

4
tan4 x -

L
tan3 x dx.

We then apply Equation (1) again, with n = 3, to evaluate the remaining integral:

L
tan3 x dx = 1

2
tan2 x -

L
tan x dx = 1

2
tan2 x + ln 0 cos x 0 + C.

The combined result is

L
tan5 x dx = 1

4
tan4 x - 1

2
tan2 x - ln 0 cos x 0 + C′.

As their form suggests, reduction formulas are derived using integration by parts. (See 
Example 5 in Section 8.2.)
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Integration with a CAS

A powerful capability of computer algebra systems is their ability to integrate symboli-
cally. This is performed with the integrate command specified by the particular system 
(for example, int in Maple, Integrate in Mathematica).

EXAMPLE 5  Suppose that you want to evaluate the indefinite integral of the function

ƒ(x) = x22a2 + x2.

Using Maple, you first define or name the function:

7 ƒJ x¿2 * sqrt (a¿2 + x¿2);

Then you use the integrate command on ƒ, identifying the variable of integration:

7 int(ƒ, x);

Maple returns the answer

1
4

x(a2 + x2)3>2 - 1
8 a2x2a2 + x2 - 1

8 a4 ln 1x + 2a2 + x22.
If you want to see if the answer can be simplified, enter

7 simplify(,);

Maple returns

1
8 a2x2a2 + x2 + 1

4
x32a2 + x2 - 1

8 a4 ln 1x + 2a2 + x22.
If you want the definite integral for 0 … x … p>2, you can use the format

7 int(ƒ, x = 0..Pi>2);

Maple will return the expression

1
64
p(4a2 + p2)(3>2) - 1

32
a2p24a2 + p2 + 1

8 a4 ln (2)

- 1
8 a4 ln 1p + 24a2 + p22 + 1

16
a4 ln (a2).

You can also find the definite integral for a particular value of the constant a:

7 aJ 1;

7 int( ƒ, x = 0..1);

Maple returns the numerical answer

3
822 + 1

8 ln122 - 12.
EXAMPLE 6  Use a CAS to find

L
sin2 x cos3 x dx.

Solution With Maple, we have the entry

7 int ((sin¿2)(x) * (cos¿3)(x), x);

with the immediate return

-1
5

sin (x) cos (x)4 + 1
15

cos (x)2 sin (x) + 2
15

sin (x).

Computer algebra systems vary in how they process integrations. We used Maple in 
Examples 5 and 6. Mathematica would have returned somewhat different results:
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1. In Example 5, given

In [1]J Integrate 3x¿2 * Sqrt 3a¿2 + x¿24 , x4
Mathematica returns

Out [1] = 2a2 + x2 aa2x
8 + x3

4
b - 1

8 a4 Log 3x + 2a2 + x24
without having to simplify an intermediate result. The answer is close to Formula 22 
in the integral tables.

2. The Mathematica answer to the integral

In [2]J Integrate 3Sin 3x4 ¿2 * Cos 3x4 ¿3, x4
in Example 6 is

Out [2] =
Sin 3x4

8 - 1
48

Sin 33 x4 - 1
80

Sin 35 x4
differing from the Maple answer. Both answers are correct.

Although a CAS is very powerful and can aid us in solving difficult problems, each 
CAS has its own limitations. There are even situations where a CAS may further compli-
cate a problem (in the sense of producing an answer that is extremely difficult to use or 
interpret). Note, too, that neither Maple nor Mathematica returns an arbitrary constant 
+C. On the other hand, a little mathematical thinking on your part may reduce the prob-
lem to one that is quite easy to handle. We provide an example in Exercise 67.

Many hardware devices have an availability to integration applications, based on soft-
ware (like Maple or Mathematica), that provide for symbolic input of the integrand to 
return symbolic output of the indefinite integral. Many of these software applications cal-
culate definite integrals as well. These applications give another tool for finding integrals, 
aside from using integral tables. However, in some instances, the integration software may 
not provide an output answer at all.

Nonelementary Integrals

The development of computers and calculators that find antiderivatives by symbolic 
manipulation has led to a renewed interest in determining which antiderivatives can be 
expressed as finite combinations of elementary functions (the functions we have been 
studying) and which cannot. Integrals of functions that do not have elementary antideriva-
tives are called nonelementary integrals. These integrals can sometimes be expressed 
with infinite series (Chapter 10) or approximated using numerical methods for their evalu-
ation (Section 8.7). Examples of nonelementary integrals include the error function (which 
measures the probability of random errors)

erf (x) = 2

2pL

x

0
e-t2

dt

and integrals such as

L
sin x2 dx and

L
21 + x4 dx

that arise in engineering and physics. These and a number of others, such as

L

ex

x dx,
L

e(ex) dx,
L

1
ln x

dx,
L

ln (ln x) dx,
L

sin x
x dx,

L
21 - k2 sin2 x dx, 0 6 k 6 1,
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look so easy they tempt us to try them just to see how they turn out. It can be proved, how-
ever, that there is no way to express these integrals as finite combinations of elementary 
functions. The same applies to integrals that can be changed into these by substitution. 
The integrands all have antiderivatives, as a consequence of the Fundamental Theorem of 
Calculus, Part 1, because they are continuous. However, none of the antiderivatives are 
elementary. The integrals you are asked to evaluate in the present chapter have elementary 
antiderivatives, but you may encounter nonelementary integrals in your other work.

Using Integral Tables
Use the table of integrals at the back of the book to evaluate the inte-
grals in Exercises 1–26.

1.
L

dx

x2x - 3
2.

L

dx

x2x + 4

3.
L

x  dx

2x - 2
4.

L

x dx
(2x + 3)3>2

5.
L

x22x - 3 dx 6.
L

x(7x + 5)3>2 dx

7.
L

29 - 4x
x2 dx 8.

L

dx

x224x - 9

9.
L

x24x - x2 dx 10.
L

2x - x2

x dx

11.
L

dx

x27 + x2
12.

L

dx

x27 - x2

13.
L

24 - x2

x dx 14.
L

2x2 - 4
x dx

15.
L

e2t cos 3t dt 16.
L

e-3t sin 4t dt

17.
L

x cos-1 x dx 18.
L

x tan-1 x dx

19.
L

x2 tan-1 x dx 20.
L

tan-1 x
x2 dx

21.
L

sin 3x cos 2x dx 22.
L

sin 2x cos 3x dx

23.
L

8 sin 4t sin 
t
2

dt 24.
L

sin 
t
3

 sin 
t
6

dt

25.
L

cos 
u

3
 cos 
u

4
du 26.

L
cos 
u

2
 cos 7u du

Substitution and Integral Tables
In Exercises 27–40, use a substitution to change the integral into one 
you can find in the table. Then evaluate the integral.

27.
L

x3 + x + 1
(x2 + 1)2

dx 28.
L

x2 + 6x
(x2 + 3)2

dx

29.
L

sin-1 2x dx 30.
L

cos-1 2x

2x
dx

31.
L

2x

21 - x
dx 32.

L

22 - x

2x
dx

33.
L

cot t21 - sin2 t dt, 0 6 t 6 p>2

34.
L

dt

tan t24 - sin2 t
35.

L

dy

y23 + (ln y)2

36.
L

tan-1 2y dy 37.
L

1

2x2 + 2x + 5
dx

     (Hint: Complete the square.)

38.
L

x2

2x2 - 4x + 5
dx 39.

L
25 - 4x - x2 dx

40.
L

x2 22x - x2 dx

Using Reduction Formulas
Use reduction formulas to evaluate the integrals in Exercises 41–50.

41.
L

sin5 2x dx 42.
L

8 cos4 2pt dt

43.
L

sin2 2u cos3 2u du 44.
L

2 sin2 t sec4 t dt

45.
L

4 tan3 2x dx 46.
L

8 cot4 t dt

47.
L

2 sec3 px dx 48.
L

3 sec4 3x dx

49.
L

csc5 x dx 50.
L

16x3(ln x)2 dx

Evaluate the integrals in Exercises 51–56 by making a substitution 
(possibly trigonometric) and then applying a reduction formula.

51.
L

et sec3 (et - 1) dt 52.
L

csc3 2u
2u du

53.
L

1

0
 22x2 + 1 dx 54.

L

23>2

0

dy

(1 - y2)5>2

55.
L

2

1

(r2 - 1)3>2
r dr 56.

L

1>23

0

dt
(t2 + 1)7>2

Exercises 8.6
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64. What is the largest value

L

b

a
x22x - x2 dx

can have for any a and b? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 65 and 66, use a CAS to perform the integrations.

65. Evaluate the integrals

a.
L

x ln x dx b.
L

x2 ln x dx c.
L

x3 ln x dx.

d. What pattern do you see? Predict the formula for 1x4 ln xdx
and then see if you are correct by evaluating it with a CAS.

e. What is the formula for 1xn ln xdx, n Ú 1? Check your 
answer using a CAS.

66. Evaluate the integrals

a.
L

ln x
x2 dx b.

L

ln x
x3 dx c.

L

ln x
x4 dx.

d. What pattern do you see? Predict the formula for

L

ln x
x5 dx

and then see if you are correct by evaluating it with a CAS.

e. What is the formula for

L

ln x
xn dx, n Ú 2?

Check your answer using a CAS.

67. a. Use a CAS to evaluate

L

p>2

0

sinn x
sinn x + cosn x

dx

where n is an arbitrary positive integer. Does your CAS find 
the result?

b. In succession, find the integral when n = 1, 2, 3, 5, and 7.
Comment on the complexity of the results.

c. Now substitute x = (p>2) - u and add the new and old inte-
grals. What is the value of

L

p>2

0

sinn x
sinn x + cosn x

dx?

This exercise illustrates how a little mathematical ingenuity solves
a problem not immediately amenable to solution by a CAS.

Applications
57. Surface area Find the area of the surface generated by revolv-

ing the curve y = 2x2 + 2, 0 … x … 22, about the x-axis.

58. Arc length Find the length of the curve y = x2,  0 … x …
23>2.

59. Centroid Find the centroid of the region cut from the first 
quadrant by the curve y = 1>2x + 1 and the line x = 3.

60. Moment about y-axis A thin plate of constant density d = 1
occupies the region enclosed by the curve y = 36>(2x + 3) and 
the line x = 3 in the first quadrant. Find the moment of the plate 
about the y-axis.

61. Use the integral table and a calculator to find to two decimal 
places the area of the surface generated by revolving the curve 
y = x2, -1 … x … 1, about the x-axis.

62. Volume The head of your firm’s accounting department has
asked you to find a formula she can use in a computer program to 
calculate the year-end inventory of gasoline in the company’s tanks. 
A typical tank is shaped like a right circular cylinder of radius r and 
length L, mounted horizontally, as shown in the accompanying 
figure. The data come to the accounting office as depth measure-
ments taken with a vertical measuring stick marked in centimeters.

a. Show, in the notation of the figure, that the volume of gaso-
line that fills the tank to a depth d is

V = 2L
L

-r+d

-r
2r2 - y2 dy.

b. Evaluate the integral.

y

r

−r
L

d = Depth of
gasoline

Measuring stick

63. What is the largest value

L

b

a
2x - x2 dx

can have for any a and b? Give reasons for your answer.

T

8.7 Numerical Integration

The antiderivatives of some functions, like sin (x2), 1 > ln x, and 21 + x4, have no ele-
mentary formulas. When we cannot find a workable antiderivative for a function ƒ that we 
have to integrate, we can partition the interval of integration, replace ƒ by a closely fitting 
polynomial on each subinterval, integrate the polynomials, and add the results to approxi-
mate the definite integral of ƒ. This procedure is an example of numerical integration. In this 
section we study two such methods, the Trapezoidal Rule and Simpson’s Rule. In our 
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The length ∆x = (b - a)>n is called the step size or mesh size. The area of the trapezoid 
that lies above the ith subinterval is

∆xayi-1 + yi

2
b = ∆x

2
(yi-1 + yi),

where yi-1 = ƒ(xi-1) and yi = ƒ(xi). (See Figure 8.7.) The area below the curve y = ƒ(x)
and above the x-axis is then approximated by adding the areas of all the trapezoids:

T = 1
2

(y0 + y1)∆x + 1
2

(y1 + y2)∆x + g

+ 1
2

(yn-2 + yn-1)∆x + 1
2

(yn-1 + yn)∆x

= ∆x a1
2

y0 + y1 + y2 + g+ yn-1 + 1
2

ynb
= ∆x

2
(y0 + 2y1 + 2y2 + g+ 2yn-1 + yn),

where

y0 = ƒ(a), y1 = ƒ(x1), . . . , yn-1 = ƒ(xn-1), yn = ƒ(b).

The Trapezoidal Rule says: Use T to estimate the integral of ƒ from a to b.

x

y = f (x)

Trapezoid area
(y1 + y2)Δx1

2

x0 = a x1

y1 y2 yn−1

xn−1 xn = b

yn

x2
Δx

FIGURE 8.7 The Trapezoidal Rule approximates short 
stretches of the curve y = ƒ(x) with line segments. To 
approximate the integral of ƒ from a to b, we add the 
areas of the trapezoids made by joining the ends of the 
segments to the x-axis.

presentation we assume that ƒ is positive, but the only requirement is for it to be continu-
ous over the interval of integration 3a, b4 .
Trapezoidal Approximations

The Trapezoidal Rule for the value of a definite integral is based on approximating the 
region between a curve and the x-axis with trapezoids instead of rectangles, as in Figure 8.7. 
It is not necessary for the subdivision points x0, x1, x2, . . . , xn in the figure to be evenly 
spaced, but the resulting formula is simpler if they are. We therefore assume that the 
length of each subinterval is

∆x = b - a
n .
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EXAMPLE 1  Use the Trapezoidal Rule with n = 4 to estimate 1
2

1 x2 dx. Compare the 
estimate with the exact value.

Solution Partition 31, 24  into four subintervals of equal length (Figure 8.8). Then eval-
uate y = x2 at each partition point (Table 8.2).

Using these y-values, n = 4, and ∆x = (2 - 1)>4 = 1>4 in the Trapezoidal Rule, 
we have

T = ∆x
2
ay0 + 2y1 + 2y2 + 2y3 + y4b

= 1
8 a1 + 2a25

16
b + 2 a36

16
b + 2a49

16
b + 4b

= 75
32

= 2.34375.

Since the parabola is concave up, the approximating segments lie above the curve, giving 
each trapezoid slightly more area than the corresponding strip under the curve. The exact 
value of the integral is

L

2

1
x2 dx = x3

3 d 1
2

= 8
3 - 1

3 = 7
3.

The T approximation overestimates the integral by about half a percent of its true value of 
7 >3. The percentage error is (2.34375 - 7>3)>(7>3) ≈ 0.00446, or 0.446%.

Simpson’s Rule: Approximations Using Parabolas

Another rule for approximating the definite integral of a continuous function results 
from using parabolas instead of the straight-line segments that produced trapezoids. As 
before, we partition the interval 3a, b4  into n subintervals of equal length h = ∆x =
(b - a)>n, but this time we require that n be an even number. On each consecutive pair 
of intervals we approximate the curve y = ƒ(x) Ú 0 by a parabola, as shown in Figure 8.9. 
A typical parabola passes through three consecutive points (xi-1 , yi-1), (xi , yi), and 
(xi+1, yi+1) on the curve.

Let’s calculate the shaded area beneath a parabola passing through three consecutive 
points. To simplify our calculations, we first take the case where x0 = -h, x1 = 0, and 

The Trapezoidal Rule

To approximate 1
b

a ƒ(x) dx, use

T = ∆x
2
ay0 + 2y1 + 2y2 + g+ 2yn-1 + ynb .

The y’s are the values of ƒ at the partition points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn-1 = a + (n - 1)∆x, xn = b,

where ∆x = (b - a)>n.

x

y

20 1

1

4

5
4

6
4

7
4

y = x2

25
16

36
16

49
16

FIGURE 8.8 The trapezoidal 
approximation of the area under the graph 
of y = x2 from x = 1 to x = 2 is a slight 
overestimate (Example 1).

TABLE 8.2

x y = x2

1 1
5
4

25
16

6
4

36
16

7
4

49
16

2 4

x

y

Parabola

h h

y0 yn−1 yn

xn−1 xn= b

y1 y2

y = f (x)

0 a = x0 x1 x2 h

FIGURE 8.9 Simpson’s Rule approxi-
mates short stretches of the curve with 
parabolas.



x2 = h (Figure 8.10), where h = ∆x = (b - a)>n. The area under the parabola will be 
the same if we shift the y-axis to the left or right. The parabola has an equation of the form

y = Ax2 + Bx + C,

so the area under it from x = -h to x = h is

Ap = L
h

-h
(Ax2 + Bx + C ) dx

= cAx3

3 + Bx2

2
+ Cx d

-h

h

= 2Ah3

3 + 2Ch = h
3 (2Ah2 + 6C ) .

Since the curve passes through the three points (-h, y0), (0, y1), and (h, y2), we also have

y0 = Ah2 - Bh + C, y1 = C, y2 = Ah2 + Bh + C,

from which we obtain

C = y1,

Ah2 - Bh = y0 - y1,

Ah2 + Bh = y2 - y1,

2Ah2 = y0 + y2 - 2y1.

Hence, expressing the area Ap in terms of the ordinates y0, y1, and y2, we have

Ap = h
3 (2Ah2 + 6C ) = h

3 ((y0 + y2 - 2y1) + 6y1) = h
3 (y0 + 4y1 + y2).

Now shifting the parabola horizontally to its shaded position in Figure 8.9 does not change 
the area under it. Thus the area under the parabola through (x0, y0), (x1, y1), and (x2, y2) in 
Figure 8.9 is still

h
3 (y0 + 4y1 + y2).

Similarly, the area under the parabola through the points (x2, y2), (x3, y3), and (x4, y4) is

h
3 (y2 + 4y3 + y4).

Computing the areas under all the parabolas and adding the results gives the approximation

L
b

a
ƒ(x) dx ≈ h

3 (y0 + 4y1 + y2) + h
3 (y2 + 4y3 + y4) +

g

+ h
3 (yn-2 + 4yn-1 + yn)

= h
3 (y0 + 4y1 + 2y2 + 4y3 + 2y4 +

g
+ 2yn-2 + 4yn-1 + yn).

The result is known as Simpson’s Rule. The function need not be positive, as in our deriva-
tion, but the number n of subintervals must be even to apply the rule because each para-
bolic arc uses two subintervals.

0 h−h

y = Ax2 + Bx + C

y0 y1 y2

(−h, y0)
(0, y1)

(h, y2)

x

y

FIGURE 8.10 By integrating from -h
to h, we find the shaded area to be

h
3

(y0 + 4y1 + y2) .

HISTORICAL BIOGRAPHY

Thomas Simpson
(1720–1761)
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Note the pattern of the coefficients in the above rule: 1, 4, 2, 4, 2, 4, 2, . . . , 4, 1.

EXAMPLE 2  Use Simpson’s Rule with n = 4 to approximate 1
2

0 5x4 dx.

Solution Partition 30, 24  into four subintervals and evaluate y = 5x4 at the partition 
points (Table 8.3). Then apply Simpson’s Rule with n = 4 and ∆x = 1>2:

S = ∆x
3 ay0 + 4y1 + 2y2 + 4y3 + y4b

= 1
6
a0 + 4a 5

16
b + 2(5) + 4a405

16
b + 80b

= 32 1
12

.

This estimate differs from the exact value (32) by only 1>12, a percentage error of less 
than three-tenths of one percent, and this was with just four subintervals.

Error Analysis

Whenever we use an approximation technique, the issue arises as to how accurate the approx-
imation might be. The following theorem gives formulas for estimating the errors when using 
the Trapezoidal Rule and Simpson’s Rule. The error is the difference between the approxi-
mation obtained by the rule and the actual value of the definite integral 1

b
a ƒ(x) dx.

Simpson’s Rule

To approximate 1
b

a ƒ(x) dx, use

S = ∆x
3 (y0 + 4y1 + 2y2 + 4y3 + g + 2yn-2 + 4yn-1 + yn) .

The y’s are the values of ƒ at the partition points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn-1 = a + (n - 1)∆x, xn = b.

The number n is even, and ∆x = (b - a)>n.

TABLE 8.3

x y = 5x4

0 0

1
2

5
16

1 5

3
2

405
16

2 80

THEOREM 1—Error Estimates in the Trapezoidal and Simpson’s Rules
If ƒ″ is continuous and M is any upper bound for the values of 0 ƒ″ 0  on 3a, b4 ,
then the error ET  in the trapezoidal approximation of the integral of ƒ from a to b
for n steps satisfies the inequality

0ET 0 … M(b - a)3

12n2 . Trapezoidal Rule

If ƒ(4) is continuous and M is any upper bound for the values of 0 ƒ(4) 0  on 3a, b4 ,
then the error ES in the Simpson’s Rule approximation of the integral of ƒ from a
to b for n steps satisfies the inequality

0ES 0 … M(b - a)5

180n4 . Simpson’s Rule

To see why Theorem 1 is true in the case of the Trapezoidal Rule, we begin with a result 
from advanced calculus, which says that if ƒ″ is continuous on the interval 3a, b4 , then

L

b

a
ƒ(x) dx = T - b - a

12
# ƒ″(c)(∆x)2
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for some number c between a and b. Thus, as ∆x approaches zero, the error defined by

ET = - b - a
12

# ƒ″(c)(∆x)2

approaches zero as the square of ∆x.
The inequality

0ET 0 … b - a
12

max 0 ƒ″(x) 0 (∆x)2 ,

where max refers to the interval 3a, b4 , gives an upper bound for the magnitude of the 
error. In practice, we usually cannot find the exact value of max 0 ƒ″(x) 0  and have to esti-
mate an upper bound or “worst case” value for it instead. If M is any upper bound for the 
values of 0 ƒ″(x) 0  on 3a, b4 , so that 0 ƒ″(x) 0 … M  on 3a, b4 , then

0ET 0 … b - a
12

M(∆x)2.

If we substitute (b - a)>n for ∆x, we get

0ET 0 … M(b - a)3

12n2 .

To estimate the error in Simpson’s Rule, we start with a result from advanced calculus 
that says that if the fourth derivative ƒ(4) is continuous, then

L

b

a
ƒ(x) dx = S - b - a

180
# ƒ(4)(c)(∆x)4

for some point c between a and b. Thus, as ∆x approaches zero, the error,

ES = - b - a
180

# ƒ(4)(c)(∆x)4,

approaches zero as the fourth power of ∆x. (This helps to explain why Simpson’s Rule is 
likely to give better results than the Trapezoidal Rule.)

The inequality

0ES 0 … b - a
180

max 0 ƒ(4)(x) 0 (∆x)4,

where max refers to the interval 3a, b4 , gives an upper bound for the magnitude of the 
error. As with max 0 ƒ″ 0  in the error formula for the Trapezoidal Rule, we usually cannot 
find the exact value of max 0 ƒ(4)(x) 0  and have to replace it with an upper bound. If M is any 
upper bound for the values of 0 ƒ(4) 0  on 3a, b4 , then

0ES 0 … b - a
180

M(∆x)4.

Substituting (b - a)>n for ∆x in this last expression gives

0ES 0 … M(b - a)5

180n4 .

EXAMPLE 3  Find an upper bound for the error in estimating 1
2

0 5x4 dx using Simpson’s 
Rule with n = 4 (Example 2).

Solution To estimate the error, we first find an upper bound M for the magnitude of the 
fourth derivative of ƒ(x) = 5x4 on the interval 0 … x … 2. Since the fourth derivative has 
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the constant value ƒ(4)(x) = 120, we take M = 120. With b - a = 2 and n = 4, the 
error estimate for Simpson’s Rule gives

0ES 0 … M(b - a)5

180n4 =
120(2)5

180 # 44 = 1
12

.

This estimate is consistent with the result of Example 2.

Theorem 1 can also be used to estimate the number of subintervals required when 
using the Trapezoidal or Simpson’s Rule if we specify a certain tolerance for the error.

EXAMPLE 4  Estimate the minimum number of subintervals needed to approximate 
the integral in Example 3 using Simpson’s Rule with an error of magnitude less than 10-4.

Solution Using the inequality in Theorem 1, if we choose the number of subintervals n
to satisfy

M(b - a)5

180n4 6 10-4,

then the error ES in Simpson’s Rule satisfies 0ES 0 6 10-4 as required.
From the solution in Example 3, we have M = 120 and b - a = 2, so we want n to 

satisfy
120(2)5

180n4 6 1
104

or, equivalently,

n4 7 64 # 104

3 .

It follows that

n 7 10a64
3 b

1>4
≈ 21.5.

Since n must be even in Simpson’s Rule, we estimate the minimum number of subin-
tervals required for the error tolerance to be n = 22.

EXAMPLE 5  As we saw in Chapter 7, the value of ln 2 can be calculated from the integral

ln 2 =
L

2

1

1
x dx.

Table 8.4 shows T and S values for approximations of 1
2

1 (1>x) dx using various val-
ues of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule.

TABLE 8.4 Trapezoidal Rule approximations (Tn)  and Simpson’s Rule approxi-

mations (Sn) of ln 2 = 1
2

1
(1>x) dx

   0Error 0 0Error 0
n Tn less thanc Sn less thanc

10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004
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In particular, notice that when we double the value of n (thereby halving the value of 
h = ∆x), the T error is divided by 2 squared, whereas the S error is divided by 2 to the 
fourth.

This has a dramatic effect as ∆x = (2 - 1)>n gets very small. The Simpson approxi-
mation for n = 50 rounds accurately to seven places and for n = 100 agrees to nine deci-
mal places (billionths)!

If ƒ(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

ES = - b - a
180

 ƒ(4)(c)(∆x)4 = - b - a
180

 (0)(∆x)4 = 0.

Thus, there will be no error in the Simpson approximation of any integral of ƒ. In other 
words, if ƒ is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s 
Rule will give the value of any integral of ƒ exactly, whatever the number of subdivisions. 
Similarly, if ƒ is a constant or a linear function, then its second derivative is zero, and

ET = - b - a
12

 ƒ″(c)(∆x)2 = - b - a
12

 (0)(∆x)2 = 0.

The Trapezoidal Rule will therefore give the exact value of any integral of ƒ. This is no 
surprise, for the trapezoids fit the graph perfectly.

Although decreasing the step size ∆x reduces the error in the Simpson and Trapezoi-
dal approximations in theory, it may fail to do so in practice. When ∆x is very small, say 
∆x = 10-8, computer or calculator round-off errors in the arithmetic required to evaluate 
S and T may accumulate to such an extent that the error formulas no longer describe what 
is going on. Shrinking ∆x below a certain size can actually make things worse. You should 
consult a text on numerical analysis for more sophisticated methods if you are having 
problems with round-off error using the rules discussed in this section.

EXAMPLE 6  A town wants to drain and fill a small polluted swamp (Figure 8.11). 
The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the 
area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-
ply by 5. To estimate the area, we use Simpson’s Rule with ∆x = 20 ft and the y’s equal 
to the distances measured across the swamp, as shown in Figure 8.11.

S = ∆x
3  (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6)

= 20
3  (146 + 488 + 152 + 216 + 80 + 120 + 13) = 8100

The volume is about (8100)(5) = 40,500 ft3 or 1500 yd3.

Vertical spacing = 20 ft 

13 ft

122 ft

Ignored

76 ft

54 ft

40 ft

30 ft

146 ft

FIGURE 8.11 The dimensions of the 
swamp in Example 6.

Estimating Definite Integrals
The instructions for the integrals in Exercises 1–10 have two parts, 
one for the Trapezoidal Rule and one for Simpson’s Rule.

I. Using the Trapezoidal Rule

  a. Estimate the integral with n = 4 steps and find an upper 
bound for 0ET 0 .

  b. Evaluate the integral directly and find 0ET 0 .
  c. Use the formula ( 0ET 0 >(true value)) * 100 to express 0ET 0  as 

a percentage of the integral’s true value.

II. Using Simpson’s Rule

  a. Estimate the integral with n = 4 steps and find an upper 
bound for 0ES 0 .

  b. Evaluate the integral directly and find 0ES 0 .
c. Use the formula ( 0ES 0 >(true value)) * 100 to express 0ES 0  as 

a percentage of the integral’s true value.

1.
L

2

1
x dx 2.

L

3

1
 (2x - 1) dx

Exercises 8.7
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24. Distance traveled The accompanying table shows time-to-
speed data for a sports car accelerating from rest to 130 mph. 
How far had the car traveled by the time it reached this speed? 
(Use trapezoids to estimate the area under the velocity curve, but 
be careful: The time intervals vary in length.)

Speed change Time (sec)

Zero to 30 mph 2.2
40 mph 3.2
50 mph 4.5
60 mph 5.9
70 mph 7.8
80 mph 10.2
90 mph 12.7

100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

25. Wing design The design of a new airplane requires a gasoline 
tank of constant cross-sectional area in each wing. A scale draw-
ing of a cross-section is shown here. The tank must hold 5000 lb 
of gasoline, which has a density of 42 lb>ft3. Estimate the length 
of the tank by Simpson’s Rule.

y1y0
y2 y3 y4 y5 y6

y0 = 1.5 ft, y1 = 1.6 ft, y2 = 1.8 ft, y3 = 1.9 ft,
y4 = 2.0 ft, y5 = y6 = 2.1 ft Horizontal spacing = 1 ft

26. Oil consumption on Pathfinder Island A diesel generator 
runs continuously, consuming oil at a gradually increasing rate 
until it must be temporarily shut down to have the filters replaced. 
Use the Trapezoidal Rule to estimate the amount of oil consumed 
by the generator during that week.

Oil consumption rate
Day (liters , h)

Sun 0.019
Mon 0.020
Tue 0.021
Wed 0.023
Thu 0.025
Fri 0.028
Sat 0.031
Sun 0.035

Theory and Examples
27. Usable values of the sine-integral function The sine-integral 

function,

Si(x) =
L

x

0

sin t
t dt,    “Sine integral of x”

3.
L

1

-1

(x2 + 1) dx 4.
L

0

-2

(x2 - 1) dx

5.
L

2

0

(t3 + t) dt 6.
L

1

-1

(t3 + 1) dt

7.
L

2

1

1
s2 ds 8.

L

4

2

1
(s - 1)2 ds

9.
L

p

0
sin t dt 10.

L

1

0
sin pt dt

Estimating the Number of Subintervals
In Exercises 11–22, estimate the minimum number of subintervals 
needed to approximate the integrals with an error of magnitude less 
than 10-4 by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The 
integrals in Exercises 11–18 are the integrals from Exercises 1–8.)

11.
L

2

1
x dx 12.

L

3

1
(2x - 1) dx

13.
L

1

-1
(x2 + 1) dx 14.

L

0

-2
(x2 - 1) dx

15.
L

2

0
(t3 + t) dt 16.

L

1

-1
(t3 + 1) dt

17.
L

2

1

1
s2 ds 18.

L

4

2

1
(s - 1)2 ds

19.
L

3

0
2x + 1 dx 20.

L

3

0

1

2x + 1
dx

21.
L

2

0
sin (x + 1) dx 22.

L

1

-1
cos (x + p) dx

Estimates with Numerical Data
23. Volume of water in a swimming pool A rectangular swim-

ming pool is 30 ft wide and 50 ft long. The accompanying table 
shows the depth h(x) of the water at 5-ft intervals from one end of 
the pool to the other. Estimate the volume of water in the pool 
using the Trapezoidal Rule with n = 10 applied to the integral

V =
L

50

0
30 # h(x) dx.

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h(x) x h(x)

  0 6.0 30 11.5
  5 8.2 35 11.9

10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0    
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  turns out to be

Length = 4a
L

p>2

0
21 - e2 cos2 t dt,

  where e = 2a2 - b2>a is the ellipse’s eccentricity. The integral 
in this formula, called an elliptic integral, is nonelementary 
except when e = 0 or 1.

a. Use the Trapezoidal Rule with n = 10 to estimate the length 
of the ellipse when a = 1 and e = 1>2.

b. Use the fact that the absolute value of the second derivative 
of ƒ(t) = 21 - e2 cos2 t is less than 1 to find an upper 
bound for the error in the estimate you obtained in part (a).

Applications
32. The length of one arch of the curve y = sin x is given by

L =
L

p

0
21 + cos2 x dx.

  Estimate L by Simpson’s Rule with n = 8.

33. Your metal fabrication company is bidding for a contract to make 
sheets of corrugated iron roofing like the one shown here. The 
cross-sections of the corrugated sheets are to conform to the curve

y = sin
3p
20

x, 0 … x … 20 in.

  If the roofing is to be stamped from flat sheets by a process that 
does not stretch the material, how wide should the original mate-
rial be? To find out, use numerical integration to approximate the 
length of the sine curve to two decimal places.

Corrugated sheet

20
y = sin x

20 in.

x (in.)

y

3p
20

Original sheet

0

34. Your engineering firm is bidding for the contract to construct the 
tunnel shown here. The tunnel is 300 ft long and 50 ft wide at the 
base. The cross-section is shaped like one arch of the curve 
y = 25 cos (px>50). Upon completion, the tunnel’s inside sur-
face (excluding the roadway) will be treated with a waterproof 
sealer that costs $2.35 per square foot to apply. How much will it 
cost to apply the sealer? (Hint: Use numerical integration to find 
the length of the cosine curve.)

x (ft)

y

0
−25

25

y = 25 cos (px
50)

300 ft

NOT TO SCALE

T

T

T

  is one of the many functions in engineering whose formulas can-
not be simplified. There is no elementary formula for the antide-
rivative of (sin t) > t. The values of Si(x), however, are readily 
estimated by numerical integration.

    Although the notation does not show it explicitly, the func-
tion being integrated is

ƒ(t) = c sin t
t , t ≠ 0

1, t = 0,

  the continuous extension of (sin t) > t to the interval 30, x4 . The 
function has derivatives of all orders at every point of its domain. 
Its graph is smooth, and you can expect good results from Simp-
son’s Rule.

t

y

0 x 2p

1
dtSi (x) =

x

0L

sin t
t

y = sin t
t

−p p

a. Use the fact that 0 ƒ(4) 0 … 1 on 30, p>24  to give an upper 
bound for the error that will occur if

Siap
2
b =

L

p>2

0

sin t
t dt

  is estimated by Simpson’s Rule with n = 4.

b. Estimate Si(p>2) by Simpson’s Rule with n = 4.

c. Express the error bound you found in part (a) as a percentage 
of the value you found in part (b).

28. The error function The error function,

erf (x) = 2

2pL

x

0
e-t2

dt,

  important in probability and in the theories of heat flow and sig-
nal transmission, must be evaluated numerically because there is 
no elementary expression for the antiderivative of e-t2

.

a. Use Simpson’s Rule with n = 10 to estimate erf (1).

b. In 30, 14 ,
` d4

dt4
(e-t2) ` … 12.

  Give an upper bound for the magnitude of the error of the 
estimate in part (a).

29. Prove that the sum T in the Trapezoidal Rule for 1
b

a ƒ(x) dx is a 
Riemann sum for ƒ continuous on 3a, b4 . (Hint: Use the Inter-
mediate Value Theorem to show the existence of ck in the subin-
terval [xk-1, xk] satisfying ƒ(ck) = (ƒ(xk-1) + ƒ(xk))>2.)

30. Prove that the sum S in Simpson’s Rule for 1
b

a ƒ(x) dx is a 
Riemann sum for ƒ continuous on 3a, b4 . (See Exercise 29.)

31. Elliptic integrals The length of the ellipse

x2

a2 +
y2

b2 = 1

T
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Find, to two decimal places, the areas of the surfaces generated by 
revolving the curves in Exercises 35 and 36 about the x-axis.

35. y = sin x, 0 … x … p
36. y = x2>4, 0 … x … 2

37. Use numerical integration to estimate the value of

sin-1 0.6 =
L

0.6

0

dx

21 - x2
.

  For reference, sin-1 0.6 = 0.64350 to five decimal places.

38. Use numerical integration to estimate the value of

p = 4
L

1

0

1
1 + x2 dx.

39. Drug assimilation An average adult under age 60 years assimi-
lates a 12-hr cold medicine into his or her system at a rate modeled by

dy
dt

= 6 - ln (2t2 - 3t + 3),

  where y is measured in milligrams and t is the time in hours since 
the medication was taken. What amount of medicine is absorbed 
into a person’s system over a 12-hr period?

40. Effects of an antihistamine The concentration of an antihista-
mine in the bloodstream of a healthy adult is modeled by

C = 12.5 - 4 ln (t2 - 3t + 4),

  where C is measured in grams per liter and t is the time in hours 
since the medication was taken. What is the average level of con-
centration in the bloodstream over a 6-hr period?

8.8 Improper Integrals

Up to now, we have required definite integrals to have two properties. First, the domain of 
integration 3a, b4  must be finite. Second, the range of the integrand must be finite on this 
domain. In practice, we may encounter problems that fail to meet one or both of these con-
ditions. The integral for the area under the curve y = (ln x)>x2 from x = 1 to x = q is 
an example for which the domain is infinite (Figure 8.12a). The integral for the area under 
the curve of y = 1>2x between x = 0 and x = 1 is an example for which the range of 
the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be improper
and are calculated as limits. We will see in Section 8.9 that improper integrals play an 
important role in probability. They are also useful when investigating the convergence of 
certain infinite series in Chapter 10.

Infinite Limits of Integration

Consider the infinite region (unbounded on the right) that lies under the curve y = e-x>2 in 
the first quadrant (Figure 8.13a). You might think this region has infinite area, but we will 
see that the value is finite. We assign a value to the area in the following way. First find the 
area A(b) of the portion of the region that is bounded on the right by x = b (Figure 
8.13b).

A(b) =
L

b

0
e-x>2 dx = -2e-x>2 d

0

b

= -2e-b>2 + 2

Then find the limit of A(b) as b S q

lim
bSq

A(b) = lim
bSq

(-2e-b>2 + 2) = 2.

The value we assign to the area under the curve from 0 to q is

L

q

0
e-x>2 dx = lim

bSqL

b

0
e-x>2 dx = 2.

FIGURE 8.12 Are the areas under these 
infinite curves finite? We will see that the 
answer is yes for both curves.

x

y

0

0.1

1 2 3 4 5 6

0.2

(a)

y = ln x
x2

(b)

x

y

0

1

1

"

x
1y =
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It can be shown that the choice of c in Part 3 of the definition is unimportant. We can 
evaluate or determine the convergence or divergence of 1

q
-q ƒ(x) dx with any convenient 

choice.
Any of the integrals in the above definition can be interpreted as an area if ƒ Ú 0 on 

the interval of integration. For instance, we interpreted the improper integral in Figure 8.13 
as an area. In that case, the area has the finite value 2. If ƒ Ú 0 and the improper integral 
diverges, we say the area under the curve is infinite.

x

x

y

(a)

y

(b)

b

Area = 2

Area = −2e−b
2 + 2

FIGURE 8.13 (a) The area in the first 
quadrant under the curve y = e-x>2.
(b) The area is an improper integral of the 
first type.

DEFINITION Integrals with infinite limits of integration are improper inte-
grals of Type I.

1. If ƒ(x) is continuous on [a, q), then

L

q

a
ƒ(x) dx = lim

bSqL

b

a
ƒ(x) dx.

2. If ƒ(x) is continuous on (-q, b4 , then

L

b

-q
ƒ(x) dx = lim

aS-qL

b

a
ƒ(x) dx.

3. If ƒ(x) is continuous on (-q, q), then

L

q

-q
ƒ(x) dx =

L

c

-q
ƒ(x) dx +

L

q

c
ƒ(x) dx,

  where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and 
that the limit is the value of the improper integral. If the limit fails to exist, the 
improper integral diverges.

EXAMPLE 1  Is the area under the curve y = (ln x)>x2 from x = 1 to x = q finite? 
If so, what is its value?

Solution We find the area under the curve from x = 1 to x = b and examine the limit 
as b S q. If the limit is finite, we take it to be the area under the curve (Figure 8.14). The 
area from 1 to b is

L

b

1

ln x
x2 dx = c (ln x)a- 1

xb d
1

b

-
L

b

1
a- 1

xb a1xb dx

Integration by parts with 
u = ln x, dy = dx>x2,
du = dx>x, y = -1>x

= - ln b
b

- c 1x d
1

b

= - ln b
b

- 1
b

+ 1.

x

y

0

0.1

1 b

0.2 y = ln x
x2

FIGURE 8.14 The area under this curve 
is an improper integral (Example 1).
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The limit of the area as b S q is

L

q

1

ln x
x2 dx = lim

bSq L

b

1

ln x
x2 dx

= lim
bSq

c- ln b
b

- 1
b

+ 1 d

= - c lim
bSq

ln b
b
d - 0 + 1

= - c lim
bSq

1>b
1
d + 1 = 0 + 1 = 1. l’HÔpital’s Rule

Thus, the improper integral converges and the area has finite value 1.

EXAMPLE 2 Evaluate

L

q

-q

dx
1 + x2 .

Solution According to the definition (Part 3), we can choose c = 0 and write

L

q

-q

dx
1 + x2 =

L

0

-q

dx
1 + x2 +

L

q

0

dx
1 + x2 .

Next we evaluate each improper integral on the right side of the equation above.

L

0

-q

dx
1 + x2 = lim

aS-qL

0

a

dx
1 + x2

= lim
aS-q

tan-1 x d
a

0

= lim
aS-q

(tan-1 0 - tan-1 a) = 0 - a-p
2
b = p

2

L

q

0

dx
1 + x2 = lim

bSqL

b

0

dx
1 + x2

= lim
bSq

tan-1 x d
0

b

= lim
bSq

(tan-1 b - tan-1 0) = p
2

- 0 = p
2

Thus,

L

q

-q

dx
1 + x2 = p

2
+ p

2
= p.

Since 1>(1 + x2) 7 0, the improper integral can be interpreted as the (finite) area beneath 
the curve and above the x-axis (Figure 8.15).

HISTORICAL BIOGRAPHY

Lejeune Dirichlet
(1805–1859)

x

y

0

y = 1
1 + x2 Area = p

NOT TO SCALE

FIGURE 8.15 The area under this curve 
is finite (Example 2).
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The Integral
L

H

1

dx
x   

p

The function y = 1>x is the boundary between the convergent and divergent improper 
integrals with integrands of the form y = 1>x p. As the next example shows, the improper 
integral converges if p 7 1 and diverges if p … 1.

EXAMPLE 3  For what values of p does the integral 1
q

1 dx>x p converge? When the 
integral does converge, what is its value?

Solution If p ≠ 1,

L

b

1

dx
x p = x-p+1

-p + 1
d

1

b

= 1
1 - p

 (b-p+1 - 1) = 1
1 - p

a 1
b p-1 - 1b .

Thus,

L

q

1

dx
x p = lim

bSqL

b

1

dx
x p

= lim
bSq

c 1
1 - p

a 1
b p-1 - 1b d = c 1

p - 1
, p 7 1

q, p 6 1

because

lim
bSq

1
b p-1 = e0, p 7 1

q, p 6 1.

Therefore, the integral converges to the value 1>( p - 1) if p 7 1 and it diverges if 
p 6 1.

If p = 1, the integral also diverges:

L

q

1

dx
x p =

L

q

1

dx
x

= lim
bSqL

b

1

dx
x

= lim
bSq

 ln x d b
1

= lim
bSq

(ln b - ln 1) = q.

Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an 
infinite discontinuity—at a limit of integration or at some point between the limits of inte-
gration. If the integrand ƒ is positive over the interval of integration, we can again interpret 
the improper integral as the area under the graph of ƒ and above the x-axis between the 
limits of integration.

Consider the region in the first quadrant that lies under the curve y = 1>2x from 
x = 0 to x = 1 (Figure 8.12b). First we find the area of the portion from a to 1 (Figure 8.16):

L

1

a

dx

2x
= 22x d

a

1

= 2 - 22a.

x

y

0

1

1a

"

x
1y =

Area = 2 − 2
"

a

FIGURE 8.16 The area under this curve 
is an example of an improper integral of 
the second kind.



508 Chapter 8: Techniques of Integration

Then we find the limit of this area as a S 0+ :

lim
aS0 +

L

1

a

dx

2x
= lim

aS0 +
12 - 22a2 = 2.

Therefore the area under the curve from 0 to 1 is finite and is defined to be

L

1

0

dx

2x
= lim

aS0 +
L

1

a

dx

2x
= 2.

DEFINITION Integrals of functions that become infinite at a point within the 
interval of integration are improper integrals of Type II.

1. If ƒ(x) is continuous on (a, b4  and discontinuous at a, then

L

b

a
ƒ(x) dx = lim

cSa +
L

b

c
ƒ(x) dx .

2. If ƒ(x) is continuous on 3a, b) and discontinuous at b, then

L

b

a
ƒ(x) dx = lim

cSb-
L

c

a
ƒ(x) dx.

3. If ƒ(x) is discontinuous at c, where a 6 c 6 b, and continuous on 3a, c) ∪ (c, b4 , then

L

b

a
ƒ(x) dx =

L

c

a
ƒ(x) dx +

L

b

c
ƒ(x) dx .

In each case, if the limit is finite we say the improper integral converges and that 
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.

In Part 3 of the definition, the integral on the left side of the equation converges if both
integrals on the right side converge; otherwise it diverges.

EXAMPLE 4  Investigate the convergence of

L

1

0

1
1 - x

dx.

Solution The integrand ƒ(x) = 1>(1 - x) is continuous on 30, 1) but is discontinuous 
at x = 1 and becomes infinite as x S 1- (Figure 8.17). We evaluate the integral as

lim
bS1-

L

b

0

1
1 - x

dx = lim
bS1-

c- ln 0 1 - x 0 d
0

b

= lim
bS1-

3- ln (1 - b) + 04 = q.

The limit is infinite, so the integral diverges.

x

y

0

1

1b

y = 1
1 − x

FIGURE 8.17 The area beneath the 
curve and above the x-axis for 30, 1) is 
not a real number (Example 4).
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EXAMPLE 5 Evaluate

L

3

0

dx
(x - 1)2>3 .

Solution The integrand has a vertical asymptote at x = 1 and is continuous on 30, 1)
and (1, 34  (Figure 8.18). Thus, by Part 3 of the definition above,

L

3

0

dx
(x - 1)2>3 =

L

1

0

dx
(x - 1)2>3 +

L

3

1

dx
(x - 1)2>3 .

Next, we evaluate each improper integral on the right-hand side of this equation.

L

1

0

dx
(x - 1)2>3 = lim

bS1-
L

b

0

dx
(x - 1)2>3

= lim
bS1-

 3(x - 1)1>3 d
b

0

= lim
bS1-

33(b - 1)1>3 + 34 = 3

L

3

1

dx
(x - 1)2>3 = lim

cS1 +
L

3

c

dx
(x - 1)2>3

= lim
cS1 +

 3(x - 1)1>3 d
3

c

= lim
cS1 +

33(3 - 1)1>3 - 3(c - 1)1>34 = 323 2

We conclude that

L

3

0

dx
(x - 1)2>3 = 3 + 323 2.

Improper Integrals with a CAS

Computer algebra systems can evaluate many convergent improper integrals. To evaluate 
the integral

L

q

2

x + 3
(x - 1)(x2 + 1)

dx

(which converges) using Maple, enter

7 ƒJ (x + 3)>((x - 1) * (x¿2 + 1));

Then use the integration command

7 int(ƒ, x = 2..infinity);

Maple returns the answer

-1
2
p + ln (5) + arctan (2).

To obtain a numerical result, use the evaluation command evalf and specify the num-
ber of digits as follows:

7 evalf(,, 6);

x

y

0 3b

1

1
c

y = 1
(x − 1)2
3

FIGURE 8.18 Example 5 shows that the 
area under the curve exists (so it is a real 
number).
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The symbol % instructs the computer to evaluate the last expression on the screen, in this 
case (-1>2)p + ln (5) + arctan (2). Maple returns 1.14579.

Using Mathematica, entering

In [1]J Integrate 3(x + 3)>((x - 1)(x¿2 + 1)), 5x, 2, Infinity64
returns

Out [1]= -p
2

+ ArcTan 324 + Log 354 .
To obtain a numerical result with six digits, use the command “N3%, 64 ”; it also yields 
1.14579.

Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it 
converges or diverges. If the integral diverges, that’s the end of the story. If it converges, 
we can use numerical methods to approximate its value. The principal tests for conver-
gence or divergence are the Direct Comparison Test and the Limit Comparison Test.

EXAMPLE 6  Does the integral 1
q

1 e-x2
dx converge?

Solution By definition,

L

q

1
e-x2

dx = lim
bSqL

b

1
e-x2

dx.

We cannot evaluate this integral directly because it is nonelementary. But we can show 
that its limit as b S q is finite. We know that 1

b
1 e-x2

dx is an increasing function of b.
Therefore either it becomes infinite as b S q or it has a finite limit as b S q. It does 
not become infinite: For every value of x Ú 1, we have e-x2 … e-x (Figure 8.19) so 
that

L

b

1
e-x2

dx …
L

b

1
e-x dx = -e-b + e-1 6 e-1 ≈ 0.36788.

Hence,

L

q

1
e-x2

dx = lim
bSqL

b

1
e-x2

dx

converges to some definite finite value. We do not know exactly what the value is except 
that it is something positive and less than 0.37. Here we are relying on the completeness 
property of the real numbers, discussed in Appendix 6.

The comparison of e-x2
 and e-x in Example 6 is a special case of the following test.

x

y

0 b1

1

y = e−x

y = e−x2

(1, e−1)

FIGURE 8.19 The graph of e-x2
 lies 

below the graph of e-x for x 7 1
(Example 6).

THEOREM 2—Direct Comparison Test Let ƒ and g be continuous on 3a, q)
with 0 … ƒ(x) … g(x) for all x Ú a. Then

1.
L

∞

a
ƒ(x) dx converges if

L

∞

a
g(x) dx converges.

2.
L

∞

a
g(x) dx diverges if

L

∞

a
ƒ(x) dx diverges.
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Proof The reasoning behind the argument establishing Theorem 2 is similar to that in 
Example 6. If 0 … ƒ(x) … g(x) for x Ú a, then from Rule 7 in Theorem 2 of Section 5.3 
we have

L

b

a
 ƒ(x) dx …

L

b

a
g(x) dx, b 7 a.

From this it can be argued, as in Example 6, that

L

q

a
 ƒ(x) dx converges if

L

q

a
g(x) dx converges.

Turning this around says that

L

q

a
g(x) dx diverges if

L

q

a
 ƒ(x) dx diverges.

Although the theorem is stated for Type I improper integrals, a similar result is true 
for integrals of Type II as well.

EXAMPLE 7  These examples illustrate how we use Theorem 2.

(a)
L

q

1

sin2 x
x2 dx  converges because

0 … sin2 x
x2 … 1

x2 on 31, q) and
L

q

1

1
x2 dx converges. Example 3

(b)
L

q

1

1

2x2 - 0.1
dx diverges because

1

2x2 - 0.1
Ú 1

x on 31, q) and
L

q

1

1
x dx diverges. Example 3

(c)
L

p>2

0

cos  x

2x
dx converges because

0 … cos  x

2x
… 1

2x
on c 0, 

p
2
d ,

and

L

p>2

0

dx

2x
= lim

aS0 +
L

p>2

a

dx

2x

= lim
aS0 +

24x d
p>2

a

22x = 24x

= lim
aS0 +
122p - 24a2 = 22p converges.

HISTORICAL BIOGRAPHY

Karl Weierstrass
(1815–1897)

THEOREM 3—Limit Comparison Test If the positive functions ƒ and g are con-
tinuous on 3a, q), and if

lim
xSq

ƒ(x)
g(x)

= L, 0 6 L 6 q,

then

L

q

a
ƒ(x) dx and

L

q

a
g(x) dx

both converge or both diverge.
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We omit the proof of Theorem 3.

Although the improper integrals of two functions from a to q may both converge, 
this does not mean that their integrals necessarily have the same value, as the next example 
shows.

EXAMPLE 8 Show that

L

q

1

dx
1 + x2

converges by comparison with 1
q

1 (1>x2) dx. Find and compare the two integral values.

Solution The functions ƒ(x) = 1>x2 and g(x) = 1>(1 + x2) are positive and continu-
ous on 31, q). Also,

lim
xSq

ƒ(x)
g(x)

= lim
xSq

1>x2

1>(1 + x2)
= lim

xSq
1 + x2

x2

= lim
xSq

a 1
x2 + 1b = 0 + 1 = 1,

a positive finite limit (Figure 8.20). Therefore, 
L

q

1

dx
1 + x2 converges because 

L

q

1

dx
x2

converges.
The integrals converge to different values, however:

L

q

1

dx
x2 = 1

2 - 1
= 1 Example 3

and

L

q

1

dx
1 + x2 = lim

bSqL

b

1

dx
1 + x2

= lim
bSq

3 tan-1 b - tan-1 14 = p
2

- p
4

= p
4

.

EXAMPLE 9  Investigate the convergence of 
L

q

1

1 - e-x

x dx.

Solution The integrand suggests a comparison of ƒ(x) = (1 - e-x)>x with g(x) = 1>x.
However, we cannot use the Direct Comparison Test because ƒ(x) … g(x) and the integral 
of g(x) diverges. On the other hand, using the Limit Comparison Test we find that

lim
xSq

ƒ(x)
g(x)

= lim
xSq

a1 - e-x

x b ax
1
b = lim

xSq
(1 - e-x) = 1,

which is a positive finite limit. Therefore, 
L

q

1

1 - e-x

x dx diverges because 
L

q

1

dx
x

diverges. Approximations to the improper integral are given in Table 8.5. Note that the 
values do not appear to approach any fixed limiting value as b S q.

FIGURE 8.20 The functions in 
Example 8.

x

y

0

1

321

y = 1
1 + x2

y = 1
x2

TABLE 8.5

b
L

b

1

1 − e−x

x dx

  2 0.5226637569

  5 1.3912002736

   10 2.0832053156

   100 4.3857862516

1000 6.6883713446

10000 8.9909564376

100000 11.2935415306



8.8  Improper Integrals 513

Evaluating Improper Integrals
The integrals in Exercises 1–34 converge. Evaluate the integrals with-
out using tables.

1.
L

q

0

dx
x2 + 1

2.
L

q

1

dx
x1.001

3.
L

1

0

dx

2x
4.

L

4

0

dx

24 - x

5.
L

1

-1

dx
x2>3 6.

L

1

-8

dx
x1>3

7.
L

1

0

dx

21 - x2
8.

L

1

0

dr
r0.999

9.
L

-2

-q

2 dx
x2 - 1

10.
L

2

-q

2 dx
x2 + 4

11.
L

q

2

2
y2 - y

dy 12.
L

q

2

2 dt
t2 - 1

13.
L

q

-q

2x dx
(x2 + 1)2

14.
L

q

-q

x dx
(x2 + 4)3>2

15.
L

1

0

u + 1

2u2 + 2u
du 16.

L

2

0

s + 1

24 - s2
ds

17.
L

q

0

dx

(1 + x)2x
18.

L

q

1

1

x2x2 - 1
dx

19.
L

q

0

dy
(1 + y2) (1 + tan-1 y)

20.
L

q

0

16 tan-1 x
1 + x2 dx

21.
L

0

-q
ueu du 22.

L

q

0
2e-u sin u du

23.
L

0

-q
e- 0x 0 dx 24.

L

q

-q
2xe-x2

dx

25.
L

1

0
x ln x dx 26.

L

1

0
(- ln x) dx

27.
L

2

0

ds

24 - s2
28.

L

1

0

4r dr

21 - r4

29.
L

2

1

ds

s2s2 - 1
30.

L

4

2

dt

t2t2 - 4

31.
L

4

-1

dx

2 0 x 0 32.
L

2

0

dx

2 0 x - 1 0
33.

L

q

-1

du
u2 + 5u + 6

34.
L

q

0

dx
(x + 1)(x2 + 1)

Testing for Convergence
In Exercises 35–64, use integration, the Direct Comparison Test, or 
the Limit Comparison Test to test the integrals for convergence. If 
more than one method applies, use whatever method you prefer.

35.
L

p>2

0
tan u du 36.

L

p>2

0
cot u du

37.
L

1

0

ln x
x2 dx 38.

L

2

1

dx
x ln x

39.
L

 ln 2

0
x-2e-1>x dx 40.

L

1

0

e-2x

2x
dx

41.
L

p

0

dt

2t + sin t
42.

L

1

0

dt
t - sin t

(Hint: t Ú sin t for t Ú 0)

43.
L

2

0

dx
1 - x2 44.

L

2

0

dx
1 - x

45.
L

1

-1
 ln 0 x 0 dx 46.

L

1

-1
-x ln 0 x 0 dx

47.
L

q

1

dx
x3 + 1

48.
L

q

4

dx

2x - 1

49.
L

q

2

dy

2y - 1
50.

L

q

0

du
1 + eu

51.
L

q

0

dx

2x6 + 1
52.

L

q

2

dx

2x2 - 1

53.
L

q

1

2x + 1
x2 dx 54.

L

q

2

x dx

2x4 - 1

55.
L

q

p

2 + cos x
x dx 56.

L

q

p

1 + sin x
x2 dx

57.
L

q

4

2 dt
t3>2 - 1

58.
L

q

2

1
ln x

dx

59.
L

q

1

ex

x dx 60.
L

q

ee

 ln (ln x) dx

61.
L

q

1

1

2ex - x
dx 62.

L

q

1

1
ex - 2x dx

63.
L

q

-q

dx

2x4 + 1
64.

L

q

-q
  

dx
ex + e-x

Theory and Examples
65. Find the values of p for which each integral converges.

a.
L

2

1

dx
x(ln x) p    b.

L

q

2

dx
x(ln x) p

66. 1
H

−H ƒ(x) dx may not equal lim
bSH 1

b
-b ƒ(x) dx Show that

L

q

0

2x dx
x2 + 1

diverges and hence that

L

q

-q

2x dx
x2 + 1

diverges. Then show that

lim
bSq L

b

-b
  

2x dx
x2 + 1

= 0.

Exercises 67–70 are about the infinite region in the first quadrant 
between the curve y = e-x and the x-axis.

67. Find the area of the region.

68. Find the centroid of the region.

69. Find the volume of the solid generated by revolving the region 
about the y-axis.

Exercises 8.8
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about that for a moment. It is common sense that a finite 
amount of paint cannot cover an infinite surface. But if we fill 
the horn with paint (a finite amount), then we will have cov-
ered an infinite surface. Explain the apparent contradiction.

77. Sine-integral function The integral

Si (x) =
L

x

0

sin t
t dt,

called the sine-integral function, has important applications in 
optics.

a. Plot the integrand (sin t)>t for t 7 0. Is the sine-integral 
function everywhere increasing or decreasing? Do you think 
Si (x) = 0 for x 7 0? Check your answers by graphing the 
function Si (x) for 0 … x … 25.

b. Explore the convergence of

L

q

0

sin t
t dt.

If it converges, what is its value?

78. Error function The function

erf (x) =
L

x

0
  

2e-t2

2p dt,

called the error function, has important applications in probabil-
ity and statistics.

a. Plot the error function for 0 … x … 25.

b. Explore the convergence of

L

q

0

2e-t2

2p dt.

If it converges, what appears to be its value? You will see 
how to confirm your estimate in Section 15.4, Exercise 41.

79. Normal probability distribution The function

ƒ(x) = 1

s22p
e- 1

2 1x -m
s 22

  is called the normal probability density function with mean m and 
standard deviation s. The number m tells where the distribution 
is centered, and s measures the “scatter” around the mean. (See 
Section 8.9.)

From the theory of probability, it is known that

L

q

-q
ƒ(x) dx = 1.

In what follows, let m = 0 and s = 1.

a. Draw the graph of ƒ. Find the intervals on which ƒ is increas-
ing, the intervals on which ƒ is decreasing, and any local 
extreme values and where they occur.

b. Evaluate

L

n

-n
 ƒ(x) dx

for n = 1, 2, and 3.

T

T

T

70. Find the volume of the solid generated by revolving the region 
about the x-axis.

71. Find the area of the region that lies between the curves y = sec x
and y = tan x from x = 0 to x = p>2.

72. The region in Exercise 71 is revolved about the x-axis to generate 
a solid.

a. Find the volume of the solid.

b. Show that the inner and outer surfaces of the solid have infi-
nite area.

73. Evaluate the integrals.

a.
L

1

0

dt

2t (1 + t)
b.

L

q

0

dt

2t (1 + t)

74. Evaluate
L

q

3

dx

x2x2 - 9
.

75. Estimating the value of a convergent improper integral whose 
domain is infinite

a. Show that

L

q

3
e-3x dx = 1

3
e-9 6 0.000042,

and hence that 1
q

3 e-x2
dx 6 0.000042. Explain why this 

means that 1
q

0 e-x2
dx can be replaced by 1

3
0 e-x2

dx without 
introducing an error of magnitude greater than 0.000042.

b. Evaluate 1
3

0  e
-x2

dx numerically.

76. The infinite paint can or Gabriel’s horn As Example 3 shows, 
the integral 1

q
1 (dx>x) diverges. This means that the integral

L

q

1
2p

1
xA1 + 1

x4 dx,

which measures the surface area of the solid of revolution traced 
out by revolving the curve y = 1>x, 1 … x, about the x-axis,
diverges also. By comparing the two integrals, we see that, for 
every finite value b 7 1,

L

b

1
2p

1
xA1 + 1

x4 dx 7 2p
L

b

1

1
x dx.

x

y

1
0

b

y = 1
x

  However, the integral

L

q

1
pa1xb

2

dx

for the volume of the solid converges.

a. Calculate it.

b. This solid of revolution is sometimes described as a can that 
does not hold enough paint to cover its own interior. Think 

T
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c. Give a convincing argument that

L

q

-q
 ƒ(x) dx = 1.

(Hint: Show that 0 6 ƒ(x) 6 e-x>2 for x 7 1, and for b 7 1,

L

q

b
e-x>2 dx S 0 as b S q.)

80. Show that if ƒ(x) is integrable on every interval of real numbers 
and a and b are real numbers with a 6 b, then

a. 1
a
-q ƒ(x) dx and 1

q
a  ƒ(x) dx both converge if and only if

1
b
-q ƒ(x) dx and 1

q
b  ƒ(x) dx both converge.

b. 1
a
-q ƒ(x) dx + 1

q
a  ƒ(x) dx = 1

b
-q ƒ(x) dx + 1

q
b  ƒ(x) dx

when the integrals involved converge.

COMPUTER EXPLORATIONS
In Exercises 81–84, use a CAS to explore the integrals for various 
values of p (include noninteger values). For what values of p does the 
integral converge? What is the value of the integral when it does con-
verge? Plot the integrand for various values of p.

81.
L

e

0
x p ln x dx 82.

L

q

e
x p ln x dx

83.
L

q

0
x p ln x dx 84.

L

q

-q
x p ln 0 x 0 dx

Use a CAS to evaluate the integrals.

85.
L

2>p

0
sin 

1
x dx 86.

L

2>p

0
x sin 

1
x dx

8.9 Probability

The outcome of some events, such as a heavy rock falling from a great height, can be mod-
eled so that we can predict with high accuracy what will happen. On the other hand, many 
events have more than one possible outcome and which one of them will occur is uncer-
tain. If we toss a coin, a head or a tail will result with each outcome being equally likely, 
but we do not know in advance which one it will be. If we randomly select and then weigh 
a person from a large population, there are many possible weights the person might have, 
and it is not certain whether the weight will be between 180 and 190 lb. We are told it is 
highly likely, but not known for sure, that an earthquake of magnitude 6.0 or greater on the 
Richter scale will occur near a major population area in California within the next one 
hundred years. Events having more than one possible outcome are probabilistic in nature, 
and when modeling them we assign a probability to the likelihood that a particular out-
come may occur. In this section we show how calculus plays a central role in making pre-
dictions with probabilistic models.

Random Variables

We begin our discussion with some familiar examples of uncertain events for which the 
collection of all possible outcomes is finite.

EXAMPLE 1

(a) If we toss a coin once, there are two possible outcomes 5H, T6 , where H represents 
the coin landing head face up and T a tail landing face up. If we toss a coin three times, 
there are eight possible outcomes, taking into account the order in which a head or tail 
occurs. The set of outcomes is 5HHH, HHT, HTH, THH, HTT, THT, TTH, TTT6 .

(b) If we roll a six-sided die once, the set of possible outcomes is 51, 2, 3, 4, 5, 66  repre-
senting the six faces of the die.

(c) If we select at random two cards from a 52-card deck, there are 52 possible outcomes 
for the first card drawn and then 51 possibilities for the second card. Since the 
order of the cards does not matter, there are (52 # 51)>2 = 1,326 possible outcomes 
altogether.

It is customary to refer to the set of all possible outcomes as the sample space for an 
event. With an uncertain event we are usually interested in which outcomes, if any, are 
more likely to occur than others, and to how large an extent. In tossing a coin three times, 



516 Chapter 8: Techniques of Integration

is it more likely that two heads or that one head will result? To answer such questions, we 
need a way to quantify the outcomes.

Random variables that have only finitely many values are called discrete random 
variables. A continuous random variable can take on values in an entire interval, and it is 
associated with a distribution function, which we explain later.

EXAMPLE 2

(a) Suppose we toss a coin three times giving the possible outcomes 5HHH, HHT, HTH,
THH, HTT, THT, TTH, TTT6. Define the random variable X to be the number of 
heads that appear. So X(HHT) = 2, X(THT) = 1, and so forth. Since X can only 
assume the values 0, 1, 2, or 3, it is a discrete random variable.

(b) We spin an arrow anchored by a pin located at the origin. The arrow can wind up 
pointing in any possible direction and we define the random variable X as the radian 
angle the arrow makes with the positive x-axis, measured counterclockwise. In this 
case, X is a continuous random variable that can take on any value in the interval 30, 2p).

(c) The weight of a randomly selected person in a given population is a continuous ran-
dom variable W. The cholesterol level of a randomly chosen person, and the waiting 
time for service of a person in a queue at a bank, are also continuous random vari-
ables.

(d) The scores on the national ACT Examination for college admissions in a particular 
year are described by a discrete random variable S taking on integer values between 
1 and 36. If the number of outcomes is large, or for reasons involving statistical analy-
sis, discrete random variables such as test scores are often modeled as continuous 
random variables (Example 13).

(e) We roll a pair of dice and define the random variable X to be the sum of the numbers 
on the top faces. This sum can only assume the integer values from 2 through 12, so X
is a discrete random variable.

(f ) A tire company produces tires for mid-sized sedans. The tires are guaranteed to last 
for 30,000 miles, but some will fail sooner and some will last many more miles 
beyond 30,000. The lifetime in miles of a tire is described by a continuous random 
variable L.

Probability Distributions

A probability distribution describes the probabilistic behavior of a random variable. Our 
chief interest is in probability distributions associated with continuous random variables, 
but to gain some perspective we first consider a distribution for a discrete random variable.

Suppose we toss a coin three times, with each side H or T equally likely to occur on a 
given toss. We define the discrete random variable X that assigns the number of heads 
appearing in each outcome, giving

5HHH, HHT, HTH, HTT, THH, THT, TTH, TTT6
X T T T T T T T T

  3 2 2 1 2 1 1 0

Next we count the frequency or number of times a specific value of X occurs. Because 
each of the eight outcomes is equally likely to occur, we can calculate the probability of 

DEFINITION A random variable is a function X that assigns a numerical 
value to each outcome in a sample space.
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the random variable X by dividing the frequency of each value by the total number of out-
comes. We summarize our results as follows:

DEFINITIONS A probability density function for a continuous random vari-
able is a function ƒ defined over (-q, q) and having the following properties:

1. ƒ is continuous, except possibly at a finite number of points.

2. ƒ is nonnegative, so ƒ Ú 0.

3.
L

q

-q
ƒ(x) dx = 1.

If X is a continuous random variable with probability density function ƒ, the 
probability that X assumes a value in the interval between X = c and X = d  is 
the area integral

P(c … X … d ) =
L

d

c
ƒ(X  ) dX .

Value of X 0 1 2 3

Frequency 1 3 3 1

P(X) 1>8 3>8 3>8 1>8

We display this information in a probability bar graph of the discrete random variable 
X, as shown in Figure 8.21. The values of X are portrayed by intervals of length 1 on the 
x-axis so the area of each bar in the graph is the probability of the corresponding outcome. 
For instance, the probability that exactly two heads occurs in the three tosses of the coin is 
the area of the bar associated with the value X = 2, which is 3 >8. Similarly, the probability 
that two or more heads occurs is the sum of areas of the bars associated with the values 
X = 2 and X = 3, or 4 >8. The probability that either zero or three heads occurs is 
1
8 + 1

8 = 1
4, and so forth. Note that the total area of all the bars in the graph is 1, which is 

the sum of all the probabilities for X.
With a continuous random variable, even when the outcomes are equally likely, we 

cannot simply count the number of outcomes in the sample space or the frequencies of 
outcomes that lead to a specific value of X. In fact, the probability that X takes on any par-
ticular one of its values is zero. What is meaningful to ask is how probable it is that the 
random variable takes on a value within some specified interval of values.

We capture the information we need about the probabilities of X in a function whose 
graph behaves much like the bar graph in Figure 8.21. That is, we take a nonnegative func-
tion ƒ defined over the range of the random variable with the property that the total area 
beneath the graph of ƒ is 1. The probability that a value of the random variable X lies 
within some specified interval 3c, d 4  is then the area under the graph of ƒ over that inter-
val. The following definition assumes the range of the continuous random variable X is 
any real value, but the definition is general enough to account for random variables having 
a range of finite length.

3210
X

P

1
8

1
4

3
8

FIGURE 8.21 Probability bar graph for 
the random variable X when tossing a fair 
coin three times.

We note that the probability a continuous random variable X assumes a particular real 
value c is P(X = c) = 1

c
c ƒ(X) dX = 0, consistent with our previous assertion. Since the 

area under the graph of ƒ over the interval 3c, d 4  is only a portion of the total area beneath 
the graph, the probability P(c … X … d) is always a number between zero and one. Fig-
ure 8.22 illustrates a probability density function.

A probability density function for a random variable X resembles the density function 
for a wire of varying density. To obtain the mass of a segment of the wire, we integrate the 

X

y

x

y

y = f (x)

f (x) dx = 1
L−∞

∞

c d

P(c ≤ X ≤ d ) =
d

c
f (X ) dX

L

FIGURE 8.22 A probability density 
function for the continuous random 
variable X.
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density of the wire over an interval. To obtain the probability that a random variable has val-
ues in a particular interval, we integrate the probability density function over that interval.

EXAMPLE 3 Let ƒ(x) = 2e-2x if 0 … x 6 q and ƒ(x) = 0 for all negative values of x.

(a) Verify that ƒ is a probability density function.

(b) The time T in hours until a car passes a spot on a remote road is described by the 
probability density function ƒ. Find the probability P(T … 1) that a hitchhiker at that 
spot will see a car within one hour.

(c) Find the probability P(T = 1) that a car passes by the spot after precisely one hour.

Solution
(a) The function ƒ is continuous except at x = 0, and is everywhere nonnegative. More-

over,

L

q

-q
ƒ(x) dx =

L

q

0
 2e-2x dx = lim

bSqL

b

0
 2e-2x dx = lim

bSq
11 - e-2b2 = 1.

So all of the conditions are satisfied and we have shown that ƒ is a probability density 
function.

(b) The probability that a car comes after a time lapse between zero and one hour is given 
by integrating the probability density function over the interval 30, 14. So

P(T … 1) =
L

1

0
2e-2T dT = -e-2T d

1

0
= 1 - e-2 ≈  0.865.

This result can be interpreted to mean that if 100 people were to hitchhike at that spot, 
about 87 of them can expect to see a car within one hour.

(c) This probability is the integral 1
1

1 ƒ(T) dT , which equals zero. We interpret this to 
mean that a sufficiently accurate measurement of the time until a car comes by the 
spot would have no possibility of being precisely equal to one hour. It might be very 
close, perhaps, but it would not be exactly one hour.

We can extend the definition to finite intervals. If ƒ is a nonnegative function with at 
most finitely many discontinuities over the interval 3a, b4 , and its extension F to 
(-q, q), obtained by defining F to be 0 outside of 3a, b4 , satisfies the definition for a 
probability density function, then ƒ is a probability density function for 3a, b 4 . This 
means that 1

b
a ƒ(x)  dx = 1. Similar definitions can be made for the intervals (a, b),

(a, b4 , and 3a, b) .

EXAMPLE 4 Show that ƒ(x) = 4
27

x2(3 - x) is a probability density function over 
the interval 30, 34.

Solution The function ƒ is continuous and nonnegative over 30, 34. Also,

L

3

0

4
27

x2(3 - x) dx = 4
27
c x3 - 1

4
x4 d 3

0
= 4

27
a27 - 81

4
b = 1.

We conclude that ƒ is a probability density function over 30, 34 .
Exponentially Decreasing Distributions

The distribution in Example 3 is called an exponentially decreasing probability density
function. These probability density functions always take on the form

ƒ(x) = e 0 if x 6 0

ce-cx if x Ú 0
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(see Exercise 23). Exponential density functions can provide models for describing ran-
dom variables such as the lifetimes of light bulbs, radioactive particles, tooth crowns, and 
many kinds of electronic components. They also model the amount of time until some 
specific event occurs, such as the time until a pollinator arrives at a flower, the arrival 
times of a bus at a stop, the time between individuals joining a queue, the waiting time 
between phone calls at a help desk, and even the lengths of the phone calls themselves. A 
graph of an exponential density function is shown in Figure 8.23.

Random variables with exponential distributions are memoryless. If we think of X as 
describing the lifetime of some object, then the probability that the object survives for at 
least s + t hours, given that it has survived t hours, is the same as the initial probability 
that it survives for at least s hours. For instance, the current age t of a radioactive particle 
does not change the probability that it will survive for at least another time period of 
length s. Sometimes the exponential distribution is used as a model when the memoryless 
principle is violated, because it provides reasonable approximations that are good enough 
for their intended use. For instance, this might be the case when predicting the lifetime of 
an artificial hip replacement or heart valve for a particular patient. Here is an application 
illustrating the exponential distribution.

EXAMPLE 5  An electronics company models the lifetime T in years of a chip they 
manufacture with the exponential density function

ƒ(T) = e 0 if T 6 0

0.1e-0.1T if T Ú 0.

Using this model,

(a) Find the probability P(T 7 2) that a chip will last for more than two years.

(b) Find the probability P(4 … T … 5) that a chip will fail in the fifth year.

(c) If 1000 chips are shipped to a customer, how many can be expected to fail within 
three years?

Solution
(a) The probability that a chip lasts at least two years is

P(T 7 2) =
L

q

2
0.1e-0.1T dT = lim

bSqL

b

2
0.1e-0.1T dT

= lim
bSq
3e-0.2 - e-0.1b4 = e-0.2 ≈ 0.819.

  That is, about 82% of the chips last more than two years.

(b) The probability is

P(4 … T … 5) =
L

5

4
0.1e-0.1T dT = -e-0.1T d 5

4
= e-0.4 - e-0.5 ≈ 0.064

  which means that about 6% of the chips fail during the fifth year.

(c) We want the probability

P(0 … T … 3) =
L

3

0
0.1e-0.1T dT = -e-0.1T d 3

0
= 1 - e-0.3 ≈ 0.259.

  We can expect that about 259 of the 1000 chips will fail within three years.

Expected Values, Means, and Medians

Suppose the weight in lbs of a steer raised on a cattle ranch is a continuous random variable 
W  with probability density function ƒ(W) and that the rancher can sell a steer for g(W )
dollars. How much can the rancher expect to earn for a randomly chosen steer on the ranch?

x

y

0 4 8 12 16

0.02

0.04

0.06

0.08

0.10

Area = 1

0

0.1e−0.1x
f (x) =

if x < 0

if x ≥ 0

FIGURE 8.23 An exponentially 
decreasing probability density function.
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To answer this question, we consider a small interval 3Wi , Wi+14  of width ∆Wi and 
note that the probability a steer has weight in this interval is

L

Wi + 1

Wi

ƒ(W) dW ≈ ƒ(Wi) ∆Wi .

The earning on a steer in this interval is approximately g(Wi). The Riemann sum

a g(Wi) ƒ(Wi) ∆Wi

then approximates the amount the rancher would receive for a steer. We assume that steers 
have a maximum weight, so ƒ is zero outside some finite interval 30, b4. Then taking the 
limit of the Riemann sum as the width of each interval approaches zero gives the integral

L

q

-q
g(W ) ƒ(W ) dW.

This integral estimates how much the rancher can expect to earn for a typical steer on the 
ranch and is the expected value of the function g.

The expected values of certain functions of a random variable X have particular 
importance in probability and statistics. One of the most important of these functions is 
the expected value of the function g(X) = X .

DEFINITION The expected value or mean of a continuous random variable X
with probability density function ƒ is the number

m = E(X) =
L

q

-q
Xƒ(X) dx.

The expected value E(X ) can be thought of as a weighted average of the random vari-
able X, where each value of X is weighted by ƒ(X ). The mean can also be interpreted as 
the long-run average value of the random variable X, and it is one measure of the centrality 
of the random variable X.

EXAMPLE 6  Find the mean of the random variable X with exponential probability 
density function

ƒ(x) = e 0 if X 6 0

ce-cX if X Ú 0.

Solution From the definition we have

m =
L

q

-q
Xƒ(X) dX =

L

q

0
Xce-cX dX

= lim
bSq L

b

0
Xce-cX dX = lim

bSq
a-Xe-cX d b

0
+

L

b

0
e-cX dXb

= lim
bSq
a-be-cb - 1

ce-cb + 1
cb = 1

c . l’Hôpital’s Rule on first term

Therefore, the mean is m = 1>c.

From the result in Example 6, knowing the mean or expected value m of a random 
variable X having an exponential density function allows us to write its entire formula.
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EXAMPLE 7  Suppose the time T before a chip fails in Example 5 is modeled instead 
by the exponential density function with a mean of eight years. Find the probability that a 
chip will fail within five years.

Solution The exponential density function with mean m = 8 is

ƒ(T ) = c 0 if T 6 0

1
8e-T>8 if T Ú 0

Then the probability a chip will fail within five years is the definite integral

P(0 … T … 5) =
L

5

0
0.125e-0.125T dT = -e-0.125T d 5

0
= 1 - e-0.625 ≈ 0.465

so about 47% of the chips can be expected to fail within five years.

EXAMPLE 8  Find the expected value for the random variable X with probability den-
sity function given by Example 4.

Solution The expected value is

m = E(X) =
L

3

0

4
27

X3(3 - X ) dX = 4
27
c 3
4

X4 - 1
5

X5 d 3
0

= 4
27
a243

4
- 243

5
b = 1.8

From Figure 8.24, you can see that this expected value is reasonable because the 
region beneath the probability density function appears to be balanced about the vertical 
line X = 1.8. That is, the horizontal coordinate of the centroid of a plate described by the 
region is X = 1.8.

There are other ways to measure the centrality of a random variable with a given 
probability density function.

DEFINITION The median of a continuous random variable X with probability 
density function ƒ is the number m for which 

L

m

-q
 ƒ(X) dX = 1

2
and

L

q

m
 ƒ(X) dX = 1

2
.

Exponential Density Function for a Random Variable X with Mean M

ƒ(X  ) = e 0 if X 6 0

m-1e-X>m  if X Ú 0

X

y

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0

f (X) = X 2(3 − X)
4
27

FIGURE 8.24 The expected value of a 
random variable with this probability den-
sity function is m = 1.8 (Example 8).

The definition of the median means that there is an equal likelihood that the random 
variable X will be smaller than m or larger than m.
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EXAMPLE 9  Find the median of a random variable X with exponential probability 
density function

ƒ(X  ) = e 0 if X 6 0

ce-cX if X Ú 0.

Solution The median m must satisfy

1
2

=
L

m

0
ce-cX dX = -e-cX d m

0
= 1 - e-cm.

It follows that

e-cm = 1
2

or m = 1
c ln 2.

Also,

1
2

= lim
bSq L

b

m
ce-cX dX = lim

bSq
a-e-cX d b

m
= lim

bSq
1e-cm - e-cb2 = e-cm

giving the same value for m. Since 1>c is the mean m of X with an exponential distribu-
tion, we conclude that the median is m = m ln 2. The mean and median differ because the 
probability density function is skewed and spreads toward the right.

Variance and Standard Deviation

Random variables with exactly the same mean m but different distributions can behave 
very differently (see Figure 8.25). The variance of a random variable X measures how 
spread out the values of X are in relation to the mean, and we measure this dispersion by 
the expected value of (X - m)2. Since the variance measures the expected square of the 
difference from the mean, we often work instead with its square root.

DEFINITIONS The variance of a random variable X with probability density 
function ƒ is the expected value of (X - m)2:

Var(X ) =
L

q

-q
(X - m)2ƒ(X ) dX

The standard deviation of X is

sX = 2Var(X ) = CL

q

-q
(X - m)2ƒ(X ) dX .

EXAMPLE 10  Find the standard deviation of the random variable T in Example 5, 
and find the probability that T lies within one standard deviation of the mean.

Solution The probability density function is the exponential density function with mean 
m = 10 by Example 6. To find the standard deviation we first calculate the variance integral:

L

q

-q
(T - m)2ƒ(T ) dT =

L

q

0
(T - 10)2(0.1e-0.1T) dT

= lim
bSq L

b

0
 (T - 10)2(0.1e-0.1T) dT

y = f (x)

m
x

FIGURE 8.25 Probability density 
functions with the same mean can have 
different spreads in relation to the mean. 
The blue and red regions under the curves 
have equal area.
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= lim
bSq

c 1-(T - 10)2 - 20(T - 10)2e-0.1T d b
0

+ lim
bSq L

b

0
20e-0.1T dT Integrating by parts

= 30 + (-10)2 + 20(-10)4 - 20 lim
bSq
110e-0.1T d b

0

= -100 - 200 lim
bSq

1e-0.1b - 12 = 100.

The standard deviation is the square root of the variance, so s = 10.0.
To find the probability that T lies within one standard deviation of the mean, we find 

the probability P(m - s … T … m + s). For this example, we have

P(10 - 10 … T … 10 + 10) =
L

20

0
0.1e-0.1T dT = -e-0.1T d 20

0
= 1 - e-2 ≈ 0.865

This means that about 87% of the chips will fail within twenty years.

Uniform Distributions

The uniform distribution is very simple, but it occurs commonly in applications. The 
probability density function for this distribution on the interval 3a, b4  is

ƒ(x) = 1
b - a

, a … x … b.

If each outcome in the sample space is equally likely to occur, then the random variable X
has a uniform distribution. Since ƒ is constant on 3a, b4 , a random variable with a uni-
form distribution is just as likely to be in one subinterval of a fixed length as in any other 
of the same length. The probability that X assumes a value in a subinterval of 3a, b4  is the 
length of that subinterval divided by (b - a).

EXAMPLE 11  An anchored arrow is spun around the origin, and the random variable 
X is the radian angle the arrow makes with the positive x-axis, measured within the inter-
val 30, 2p). Assuming there is equal probability for the arrow pointing in any direction, 
find the probability density function and the probability that the arrow ends up pointing 
between North and East.

Solution We model the probability density function with the uniform distribution 
ƒ(x) = 1>2p, 0 … x 6 2p, and ƒ(x) = 0 elsewhere.

The probability that the arrow ends up pointing between North and East is given by

Pa0 … X … p
2
b =

L

p>2

0

1
2p

dx = 1
4

.

Normal Distributions

Numerous applications use the normal distribution, which is defined by the probability 
density function

ƒ(x) = 1

s22p
e-(x-m)2> 2s2

.

It can be shown that the mean of a random variable X with this probability density func-
tion is m and its standard deviation is s. In applications the values of m and s are often 
estimated using large sets of data. The function is graphed in Figure 8.26, and the graph is 

m m + sm − s

f (x) = e−(x−m)2
2s21
s
"

2p

x

FIGURE 8.26 The normal probability 
density function with mean m and standard 
deviation s.
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sometimes called a bell curve because of its shape. Since the curve is symmetric about the 
mean, the median for X is the same as its mean. It is often observed in practice that many ran-
dom variables have approximately a normal distribution. Some examples illustrating this phe-
nomenon are the height of a man, the annual rainfall in a certain region, an individual’s blood 
pressure, the serum cholesterol level in the blood, the brain weights in a certain population of 
adults, and the amount of growth in a given period for a population of sunflower seeds.

The normal probability density function does not have an antiderivative expressible in 
terms of familiar functions. Once m and s are fixed, however, an integral involving the 
normal probability density function can be computed using numerical integration meth-
ods. Usually we use the numerical integration capability of a computer or calculator to 
estimate the values of these integrals. Such computations show that for any normal distri-
bution, we get the following values for the probability that the random variable X lies 
within k = 1, 2, 3, or 4 standard deviations of the mean:

P(m - s 6 X 6 m + s) ≈ 0.68269

P(m - 2s 6 X 6 m + 2s) ≈ 0.95450

P(m - 3s 6 X 6 m + 3s) ≈ 0.99730

P(m - 4s 6 X 6 m + 4s) ≈ 0.99994

This means, for instance, that the random variable X will take on a value within two stan-
dard deviations of the mean about 95% of the time. About 68% of the time, X will lie 
within one standard deviation of the mean (see Figure 8.27).

EXAMPLE 12  An individual’s blood pressure is an important indicator of overall 
health. A medical study of healthy individuals between 14 and 70 years of age modeled 
their systolic blood pressure using a normal distribution with mean 119.7 mm Hg and 
standard deviation 10.9 mm Hg.

(a) Using this model, what percentage of the population has a systolic blood pressure 
between 140 and 160 mm Hg, the levels set by the American Heart Association for 
Stage 1 hypertension?

(b) What percentage has a blood pressure between 160 and 180 mm Hg, the levels set by 
the American Heart Association for Stage 2 hypertension?

(c) What percentage has a blood pressure in the normal range of 90–120, as set by the 
American Heart Association?

Solution
(a) Since we cannot find an antiderivative, we use a computer to evaluate the probability 

integral of the normal probability density function with m = 119.7 and s = 10.9:

P(140 … X … 160) =
L

160

140

1

10.922p
e-(X-119.7)2>2(10.9)2

dX ≈ 0.03117.

  This means that about 3% of the population in the studied age range have Stage 1 
hypertension.

(b) Again we use a computer to calculate the probability that the blood pressure is 
between 160 and 180 mm Hg:

P(160 … X … 180) =
L

180

160

1

10.922p
e-(X-119.7)2>2(10.9)2

dX ≈ 0.00011.

  We conclude that about 0.011% of the population has Stage 2 hypertension.

(c) The probability that the blood pressure falls in the normal range is

m m+ s m+ 2s m+ 3sm− sm− 2sm− 3s

34%

68% within
1 standard
deviation

of the mean

95% within 2 standard
deviations of the mean

99.7% within 3 standard
deviations of the mean

13.6%
2.14%2.14%

13.6%

34%

FIGURE 8.27 Probabilities of the 
normal distribution within its standard 
deviation bands.

P(90 … X … 120) =
L

120

90

1

10.922p
e-(X-119.7)2>2(10.9)2

dX ≈ 0.50776.

  That is, about 51% of the population has a normal systolic blood pressure.
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Many national tests are standardized using the normal distribution. The following 
example illustrates modeling the discrete random variable for scores on a test using the 
normal distribution function for a continuous random variable.

EXAMPLE 13  The ACT is a standardized test taken by high school students seeking 
admission to many colleges and universities. The test measures knowledge skills and pro-
ficiency in the areas of English, math, and science, with scores ranging over the interval 31, 364. Nearly 1.5 million high school students took the test in 2009, and the composite 
mean score across the academic areas was m = 21.1 with standard deviation s = 5.1.

(a) What percentage of the population had an ACT score between 18 and 24?

(b) What is the ranking of a student who scored 27 on the test?

(c) What is the minimal integer score a student needed to get in order to be in the top 8% 
of the scoring population?

Solution
(a) We use a computer to evaluate the probability integral of the normal probability den-

sity function with m = 21.1 and s = 5.1:

P(18 … X … 24) =
L

24

18

1

5.122p
e-(X-21.1)2>2(5.1)2

dX ≈ 0.44355.

  This means that about 44% of the students had an ACT score between 18 and 24.

(b) Again we use a computer to calculate the probability of a student getting a score 
lower than 27 on the test:

P(1 … X 6 27) =
L

27

1

1

5.122p
e-(X-21.1)2>2(5.1)2

dX ≈ 0.87630.

  We conclude that about 88% of the students scored below a score of 27, so the student 
ranked in the top 12% of the population.

(c) We look at how many students had a mark higher than 28:

P(28 6 X … 36) =
L

36

28

1

5.122p
e- (X-21.1)2>2(5.1)2

dX ≈ 0.0863.

  Since this number gives more than 8% of the students, we look at the next higher 
integer score:

P(29 6 X … 36) =
L

36

29

1

5.122p
e- (X-21.1)2>2(5.1)2

dX ≈ 0.0595.

  Therefore, 29 is the lowest integer score a student could get in order to score in the top 
8% of the population (and actually scoring here in the top 6%).

The simplest form for a normal distribution of X occurs when its mean is zero and its 
standard deviation is one. The standard normal probability density function ƒ giving mean 
m = 0 and standard deviation s = 1 is

ƒ(X ) = 1

22p
e-X2>2.

Note that the substitution z = (X - m)>s gives the equivalent integrals

L

b

a

1

s22p
e-((X-m)>s)2> 2 dX =

L

b

a

1

22p
e-z2> 2 dz,

where a = (a - m)>s and b = (b - m)>s. So we can convert random variable values 
to the “z-values” to standardize a normal distribution, and then use the integral on the 
right-hand side of the last equation to calculate probabilities for the original random 
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variable normal distribution with mean m and standard deviation s. In a normal distribu-
tion, we know that 95.5% of the population lies within two standard deviations of the 
mean, so a random variable X converted to a z-value has more than a 95% chance of occur-
ring in the interval 3-2, 24.

Probability Density Functions
In Exercises 1–8, determine which are probability density functions 
and justify your answer.

1. ƒ(x) = 1
18

x  over  34, 84
2. ƒ(x) = 1

2
 (2 - x)  over  30, 24

3. ƒ(x) = 2x  over  c 0, 
ln (1 + ln 2)

ln 2
d

4. ƒ(x) = x - 1  over  30, 1 + 23 4
5. ƒ(x) = c 1

x2 x Ú 1

0 x 6 1

6. ƒ(x) = c 8
p(4 + x2)

x Ú 0

0 x 6 0

7. ƒ(x) = 2 cos 2x  over  c 0, 
p

4
d

8. ƒ(x) = 1
x  over  (0, e4

9. Let ƒ be the probability density function for the random variable 
L in Example 2f. Explain the meaning of each integral.

a.
L

32,000

25,000
ƒ(L) dL b.

L

q

30,000
ƒ(L) dL

c.
L

20,000

0
ƒ(L) dL d.

L

15,000

-q
ƒ(L) dL

10. Let ƒ(X ) be the uniform distribution for the random variable X in 
Example 11. Express the following probabilities as integrals.

a. The probability that the arrow points either between South 
and West or between North and West.

b. The probability that the arrow makes an angle of at least 
2 radians.

Verify that the functions in Exercises 11–16 are probability density 
functions for a continuous random variable X over the given interval. 
Determine the specified probability.

11. ƒ(x) = xe-x  over  30, q), P(1 … X … 3)

12. ƒ(x) = ln x
x2   over  31, q), P(2 6 X 6 15)T

13. ƒ(x) = 3
2

x (2 - x)  over  30, 1], P(0.5 7 X )

14. ƒ(x) = sin 2px
px2   over  c 200

1059
, qb , P(X 6 p>6)

15. ƒ(x) = c 2
x3 x 7 1

0 x … 1
over (-q, q), P(4 … X 6 9)

16. ƒ(x) = sin x  over  30, p>24 , Pap
6

6 X … p
4
b

In Exercises 17–20, find the value of the constant c so that the given 
function is a probability density function for a random variable over 
the specified interval.

17. ƒ(x) = 1
6

x  over  33, c4 18. ƒ(x) = 1
x  over  3c, c + 14

19. ƒ(x) = 4e-2x  over  30, c4
20. ƒ(x) = cx225 - x2  over  30, 54
21. Let ƒ(x) = c

1 + x2 . Find the value of c so that ƒ is a probability 

density function. If ƒ is a probability density function for the ran-
dom variable X, find the probability P(1 … X 6 2).

22. Find the value of c so that ƒ(x) = c2x11 - x2 is a probability 
density function for the random variable X over 30, 14, and find 
the probability P(0.25 … X … 0.5).

23. Show that if the exponentially decreasing function

ƒ(x) = e 0 if x 6 0

Ae-cx if x Ú 0

is a probability density function, then A = c.

24. Suppose ƒ is a probability density function for the random vari-
able X with mean m. Show that its variance satisfies

Var (X ) =
L

q

-q
X2ƒ(X ) dX - m2.

Compute the mean and median for a random variable with the proba-
bility density functions in Exercises 25–28.

25. ƒ(x) = 1
8

x  over  30, 44 26. ƒ(x) = 1
9

x2  over  30, 34

27. ƒ(x) = c 2
x3 x Ú 1

0 x 6 1
28. ƒ(x) = c 1

x 1 … x … e

0  Otherwise

T

Exercises 8.9



8.9  Probability 527

b. What is the probability of waiting more than 25 minutes for a 
traveler arriving during the 7–8 a.m. hour?

c. What is the probability of waiting between 35 and 50 minutes 
for a traveler arriving during the 4–5 p.m. hour?

d. What is the probability of waiting less than 20 minutes for a 
traveler arriving during the 4–5 p.m. hour?

37. Printer lifetime The lifetime of a $200 printer is exponentially 
distributed with a mean of 2 years. The manufacturer agrees to 
pay a full refund to a buyer if the printer fails during the first year 
following its purchase, and a one-half refund if it fails during the 
second year. If the manufacturer sells 100 printers, how much 
should it expect to pay in refunds?

38. Failure time The time between failures of a photocopier is 
exponentially distributed. Half of the copiers at a university 
require service during the first 2 years of operations. If the univer-
sity purchased 150 copiers, how many do you expect to require 
service during the first year of their operation?

Normal Distributions
39. Cholesterol levels The serum cholesterol levels of children 

aged 12 to 14 years follows a normal distribution with mean 
m = 162 mg/dl and standard deviation s = 28 mg/dl. In a popu-
lation of 1000 of these children, how many would you expect to 
have serum cholesterol levels between 165 and 193? between 148 
and 167?

40. Annual rainfall The annual rainfall in inches for San Fran-
cisco, California, is approximately a normal random variable with 
mean 20.11 in. and standard deviation 4.7 in. What is the proba-
bility that next year’s rainfall will exceed 17 in.?

41. Manufacturing time The assembly time in minutes for a com-
ponent at an electronic manufacturing plant is normally distrib-
uted with a mean of m = 55 and standard deviation s = 4. What 
is the probability that a component will be made in less than one 
hour?

42. Lifetime of a tire Assume the random variable L in Example 
2f is normally distributed with mean m = 22,000 miles and 
s = 4,000 miles.

a. In a batch of 4000 tires, how many can be expected to last for 
at least 18,000 miles?

b. What is the minimum number of miles you would expect to 
find as the lifetime for 90% of the tires?

43. Height The average height of American females aged 18–24 is 
normally distributed with mean m = 65.5 inches and s = 2.5
inches.

a. What percentage of females are taller than 68 inches?

b. What is the probability a female is between 5′1″ and 5′4″
tall?

44. Life expectancy At birth, a French citizen has an average life 
expectancy of 81 years with a standard deviation of 7 years. If 
100 newly born French babies are selected at random, how many 
would you expect to live between 75 and 85 years? Assume life 
expectancy is normally distributed.

45. Length of pregnancy A team of medical practitioners deter-
mines that in a population of 1000 females with ages ranging 
from 20 to 35 years, the length of pregnancy from conception 
to birth is approximately normally distributed with a mean of 

T

Exponential Distributions
29. Digestion time The digestion time in hours of a fixed amount 

of food is exponentially distributed with a mean of 1 hour. What 
is the probability that the food is digested in less than 30 minutes?

30. Pollinating flowers A biologist models the time in minutes 
until a bee arrives at a flowering plant with an exponential distri-
bution having a mean of 4 minutes. If 1000 flowers are in a field, 
how many can be expected to be pollinated within 5 minutes?

31. Lifetime of light bulbs A manufacturer of light bulbs finds that 
the mean lifetime of a bulb is 1200 hours. Assume the life of a 
bulb is exponentially distributed.

a. Find the probability that a bulb will last less than its guaran-
teed lifetime of 1000 hours.

b. In a batch of light bulbs, what is the expected time until half 
the light bulbs in the batch fail?

32. Lifetime of an electronic component The life expectancy in 
years of a component in a microcomputer is exponentially distrib-
uted, and 1>3 of the components fail in the first 3 years. The 
company that manufactures the component offers a 1 year war-
ranty. What is the probability that a component will fail during 
the warranty period?

33. Lifetime of an organism A hydra is a small fresh-water ani-
mal, and studies have shown that its probability of dying does not 
increase with the passage of time. The lack of influence of age on 
mortality rates for this species indicates that an exponential distri-
bution is an appropriate model for the mortality of hydra. A biolo-
gist studies a population of 500 hydra and observes that 200 of 
them die within the first 2 years. How many of the hydra would 
you expect to die within the first six months?

34. Car accidents The number of days that elapse between the 
beginning of a calendar year and the moment a high-risk driver is 
involved in an accident is exponentially distributed. Based on 
historical data, an insurance company expects that 30% of high-
risk drivers will be involved in an accident during the first 50 days 
of the calendar year. In a group of 100 high-risk drivers, how 
many do you expect to be involved in an accident during the first 
80 days of the calendar year?

35. Customer service time The mean waiting time to get served 
after walking into a bakery is 30 seconds. Assume that an expo-
nential density function describes the waiting times.

a. What is the probability a customer waits 15 seconds or less?

b. What is the probability a customer waits longer than one 
minute?

c. What is the probability a customer waits exactly 5 minutes?

d. If 200 customers come to the bakery in a day, how many are 
likely to be served within three minutes?

36. Airport waiting time According to the U.S. Customs and Bor-
der Protection Agency, the average airport wait time at Chicago’s 
O’Hare International airport is 16 minutes for a traveler arriving 
during the hours 7–8 a.m., and 32 minutes for arrival during the 
hours 4–5 p.m. The wait time is defined as the total processing 
time from arrival at the airport until the completion of a passen-
ger’s security screening. Assume the wait time is exponentially 
distributed.

a. What is the probability of waiting between 10 and 30 minutes 
for a traveler arriving during the 7–8 a.m. hour?
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52. Suppose you toss a fair coin n times and record the number of 
heads that land. Assume that n is large and approximate the dis-
crete random variable X with a continuous random variable that is 
normally distributed with m = n>2 and s = 2n>2. If n = 400,
find the given probabilities.

a. P(190 … X 6 210) b. P(X 6 170)

c. P(X 7 220) d. P(X = 300)

Discrete Random Variables
53. A fair coin is tossed four times and the random variable X assigns 

the number of tails that appear in each outcome.

a. Determine the set of possible outcomes.

b. Find the value of X for each outcome.

c. Create a probability bar graph for X, as in Figure 8.21. What 
is the probability that at least two heads appear in the four 
tosses of the coin?

54. You roll a pair of six-sided dice, and the random variable X
assigns to each outcome the sum of the number of dots showing 
on each face, as in Example 2e.

a. Find the set of possible outcomes.

b. Create a probability bar graph for X.

c. What is the probability that X = 8?

d. What is the probability that X … 5? X 7 9?

55. Three people are asked their opinion in a poll about a particular 
brand of a common product found in grocery stores. They can 
answer in one of three ways: “Like the product brand” (L), “Dis-
like the product brand” (D), or “Undecided” (U). For each out-
come, the random variable X assigns the number of L’s that 
appear.

a. Find the set of possible outcomes and the range of X.

b. Create a probability bar graph for X.

c. What is the probability that at least two people like the product 
brand?

d. What is the probability that no more than one person dislikes 
the product brand?

56. Spacecraft components A component of a spacecraft has both 
a main system and a backup system operating throughout a flight. 
The probability that both systems fail sometime during the flight 
is 0.0148. Assuming that each system separately has the same 
failure rate, what is the probability that the main system fails dur-
ing the flight?

266 days and a standard deviation of 16 days. How many of these 
females would you expect to have a pregnancy lasting from 36 
weeks to 40 weeks?

46. Brain weights In a population of 500 adult Swedish males, 
medical researchers find their brain weights to be approximately 
normally distributed with mean m = 1400 gm and standard devi-
ation s = 100 gm.

a. What percentage of brain weights are between 1325 and 
1450 gm?

b. How many males in the population would you expect to have 
a brain weight exceeding 1480 gm?

47. Blood pressure Diastolic blood pressure in adults is normally 
distributed with m = 80 mm Hg and s = 12 mm Hg. In a ran-
dom sample of 300 adults, how many would be expected to have 
a diastolic blood pressure below 70 mm Hg?

48. Albumin levels Serum albumin in healthy 20-year-old males is 
normally distributed with m = 4.4 and s = 0.2. How likely is it 
for a healthy 20-year-old male to have a level in the range 4.3 to 
4.45?

49. Quality control A manufacturer of generator shafts finds that it 
needs to add additional weight to its shafts in order to achieve 
proper static and dynamic balance. Based on experimental tests, 
the average weight it needs to add is m = 35 gm with s = 9 gm. 
Assuming a normal distribution, from 1000 randomly selected 
shafts, how many would be expected to need an added weight in 
excess of 40 gm?

50. Miles driven A taxicab company in New York City analyzed 
the daily number of miles driven by each of its drivers. It found 
the average distance was 200 mi with a standard deviation of 30 mi. 
Assuming a normal distribution, what prediction can we make 
about the percentage of drivers who will log in either more than 
260 mi or less than 170 mi?

51. Germination of sunflower seeds The germination rate of a 
particular seed is the percentage of seeds in the batch which suc-
cessfully emerge as plants. Assume that the germination rate for a 
batch of sunflower seeds is 80%, and that among a large popula-
tion of n seeds the number of successful germinations is normally 
distributed with mean m = 0.8n and s = 0.42n.

a. In a batch of n = 2500 seeds, what is the probability that at 
least 1960 will successfully germinate?

b. In a batch of n = 2500 seeds, what is the probability that at 
most 1980 will successfully germinate?

c. In a batch of n = 2500 seeds, what is the probability that 
between 1940 and 2020 will successfully germinate?

Chapter 8 Questions to Guide Your Review

1. What is the formula for integration by parts? Where does it come 
from? Why might you want to use it?

2. When applying the formula for integration by parts, how do you 
choose the u and dy? How can you apply integration by parts to 
an integral of the form 1ƒ(x) dx?

3. If an integrand is a product of the form sinn x cosm x, where m and 
n are nonnegative integers, how do you evaluate the integral? 
Give a specific example of each case.

4. What substitutions are made to evaluate integrals of sin mx sin nx,
sin mx cos nx, and cos mx cos nx? Give an example of each case.
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13. What tests are available for determining the convergence and 
divergence of improper integrals that cannot be evaluated 
directly? Give examples of their use.

14. What is a random variable? What is a continuous random vari-
able? Give some specific examples.

15. What is a probability density function? What is the probability that 
a continuous random variable has a value in the interval 3c, d4?

16. What is an exponentially decreasing probability density function? 
What are some typical events that might be modeled by this dis-
tribution? What do we mean when we say such distributions are 
memoryless?

17. What is the expected value of a continuous random variable? 
What is the expected value of an exponentially distributed ran-
dom variable?

18. What is the median of a continuous random variable? What is the 
median of an exponential distribution?

19. What does the variance of a random variable measure? What is 
the standard deviation of a continuous random variable X?

20. What probability density function describes the normal distribu-
tion? What are some examples typically modeled by a normal 
distribution? How do we usually calculate probabilities for a nor-
mal distribution?

21. In a normal distribution, what percentage of the population lies 
within 1 standard deviation of the mean? Within 2 standard devi-
ations?

5. What substitutions are sometimes used to transform integrals 
involving 2a2 - x2, 2a2 + x2, and 2x2 - a2 into integrals 
that can be evaluated directly? Give an example of each case.

6. What restrictions can you place on the variables involved in the 
three basic trigonometric substitutions to make sure the substitu-
tions are reversible (have inverses)?

7. What is the goal of the method of partial fractions?

8. When the degree of a polynomial ƒ(x) is less than the degree of a 
polynomial g(x), how do you write ƒ(x)>g(x) as a sum of partial 
fractions if g(x)

a. is a product of distinct linear factors?

b. consists of a repeated linear factor?

c. contains an irreducible quadratic factor?

  What do you do if the degree of ƒ is not less than the degree of g?

9. How are integral tables typically used? What do you do if a par-
ticular integral you want to evaluate is not listed in the table?

10. What is a reduction formula? How are reduction formulas used? 
Give an example.

11. How would you compare the relative merits of Simpson’s Rule 
and the Trapezoidal Rule?

12. What is an improper integral of Type I? Type II? How are the 
values of various types of improper integrals defined? Give 
examples.

Chapter 8 Practice Exercises

Integration by Parts
Evaluate the integrals in Exercises 1–8 using integration by parts.

1.
L

ln (x + 1) dx 2.
L

x2 ln x dx

3.
L

tan-1 3x dx 4.
L

cos-1 ax
2
b dx

5.
L

(x + 1)2ex dx 6.
L

x2 sin (1 - x) dx

7.
L

ex cos 2x dx 8.
L

x sin x cos x dx

Partial Fractions
Evaluate the integrals in Exercises 9–28. It may be necessary to use a 
substitution first.

9.
L

x dx
x2 - 3x + 2

10.
L

x dx
x2 + 4x + 3

11.
L

dx
x(x + 1)2 12.

L

x + 1
x2(x - 1)

dx

13.
L

sin udu
cos 2u + cos u - 2

14.
L

cos udu
sin2 u + sin u - 6

15.
L

3x2 + 4x + 4
x3 + x

dx 16.
L

4xdx
x3 + 4x

17.
L

y + 3
2y3 - 8y

dy 18.
L

(3y - 7) dy
(y - 1)(y - 2)(y - 3)

19.
L

dt
t4 + 4t2 + 3

20.
L

t dt
t4 - t2 - 2

21.
L

x3 + x2

x2 + x - 2
dx 22.

L

x3 + 1
x3 - x

dx

23.
L

x3 + 4x2

x2 + 4x + 3
dx 24.

L

2x3 + x2 - 21x + 24
x2 + 2x - 8

dx

25.
L

dx

x(32x + 1)
26.

L

dx

x11 + 23 x2
27.

L

ds
es - 1

28.
L

ds

2es + 1

Trigonometric Substitutions
Evaluate the integrals in Exercises 29–32 (a) without using a trigono-
metric substitution, (b) using a trigonometric substitution.

29.
L

y dy

216 - y2
30.

L

x dx

24 + x2

31.
L

x dx
4 - x2 32.

L

t dt

24t2 - 1
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official figure, a numerical average of the daily normal mean air 
temperatures for the year, is 25.7°F, which is slightly higher than 
the average value of ƒ(x).

50. Heat capacity of a gas Heat capacity Cy is the amount of heat 
required to raise the temperature of a given mass of gas with con-
stant volume by 1°C, measured in units of cal >deg-mol (calories 
per degree gram molecular weight). The heat capacity of oxygen 
depends on its temperature T and satisfies the formula

Cy = 8.27 + 10-5 (26T - 1.87T2).

  Use Simpson’s Rule to find the average value of Cy and the tem-
perature at which it is attained for 20° … T … 675°C.

51. Fuel efficiency An automobile computer gives a digital readout 
of fuel consumption in gallons per hour. During a trip, a passen-
ger recorded the fuel consumption every 5 min for a full hour of 
travel.

Time Gal , h Time Gal , h

  0 2.5 35 2.5
  5 2.4 40 2.4

10 2.3 45 2.3
15 2.4 50 2.4
20 2.4 55 2.4
25 2.5 60 2.3
30 2.6    

a. Use the Trapezoidal Rule to approximate the total fuel con-
sumption during the hour.

b. If the automobile covered 60 mi in the hour, what was its 
fuel efficiency (in miles per gallon) for that portion of the 
trip?

52. A new parking lot To meet the demand for parking, your town 
has allocated the area shown here. As the town engineer, you have 
been asked by the town council to find out if the lot can be built 
for $11,000. The cost to clear the land will be $0.10 a square foot, 
and the lot will cost $2.00 a square foot to pave. Use Simpson’s 
Rule to find out if the job can be done for $11,000.

67.5 ft

54 ft

Ignored

51 ft

54 ft

49.5 ft

64.4 ft

36 ft

42 ft

0 ft

Vertical spacing = 15 ft

Evaluate the integrals in Exercises 33–36.

33.
L

x dx
9 - x2 34.

L

dx
x(9 - x2)

35.
L

dx
9 - x2 36.

L

dx

29 - x2

Trigonometric Integrals
Evaluate the integrals in Exercises 37–44.

37.
L

sin3 x cos4 x dx 38.
L

cos5 x sin5 x dx

39.
L

tan4 x sec2 x dx 40.
L

tan3 x sec3 x dx

41.
L

sin 5u cos 6u du 42.
L

sec2 u sin3 u du

43.
L
21 + cos (t>2) dt 44.

L
et2tan2 et + 1 dt

Numerical Integration
45. According to the error-bound formula for Simpson’s Rule, how 

many subintervals should you use to be sure of estimating the 
value of

ln 3 =
L

3

1

1
x dx

  by Simpson’s Rule with an error of no more than 10-4 in absolute 
value? (Remember that for Simpson’s Rule, the number of subin-
tervals has to be even.)

46. A brief calculation shows that if 0 … x … 1, then the second 
derivative of ƒ(x) = 21 + x4 lies between 0 and 8. Based on 
this, about how many subdivisions would you need to estimate 
the integral of ƒ from 0 to 1 with an error no greater than 10-3 in 
absolute value using the Trapezoidal Rule?

47. A direct calculation shows that

L

p

0
2 sin2 x dx = p.

  How close do you come to this value by using the Trapezoidal 
Rule with n = 6? Simpson’s Rule with n = 6? Try them and 
find out.

48. You are planning to use Simpson’s Rule to estimate the value of 
the integral

L

2

1
ƒ(x) dx

  with an error magnitude less than 10-5. You have determined that 0 ƒ(4)(x) 0 … 3 throughout the interval of integration. How many 
subintervals should you use to ensure the required accuracy? 
(Remember that for Simpson’s Rule the number has to be even.)

49. Mean temperature Use Simpson’s Rule to approximate the 
average value of the temperature function

ƒ(x) = 37 sin a 2p
365

(x - 101)b + 25

  for a 365-day year. This is one way to estimate the annual mean air 
temperature in Fairbanks, Alaska. The National Weather Service’s 

T
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83.
L

dy

y2 - 2y + 2
84.

L

x dx

28 - 2x2 - x4

85.
L

z + 1
z2(z2 + 4)

dz 86.
L

x2(x - 1)1>3 dx

87.
L

t dt

29 - 4t2
88.

L

tan-1 x
x2 dx

89.
L

et dt
e2t + 3et + 2

90.
L

tan3 t dt

91.
L

q

1
  

ln y

y3 dy 92.
L

y3>2(ln y)2 dy

93.
L

eln2x dx 94.
L

eu23 + 4eu du

95.
L

sin 5t dt
1 + (cos 5t)2 96.

L

dy

2e2y - 1

97.
L

dr

1 + 2r
98.

L

4x3 - 20x
x4 - 10x2 + 9

dx

99.
L

x3

1 + x2 dx 100.
L

x2

1 + x3 dx

101.
L

1 + x2

1 + x3 dx 102.
L

1 + x2

(1 + x)3 dx

103.
L
2x #31 + 2x dx 104.

L
31 + 21 + x dx

105.
L

1

2x # 21 + x
dx 106.

L

1>2

0
31 + 21 - x2 dx

107.
L

ln x
x + x ln x

dx 108.
L

1
x # ln x # ln (ln x)

dx

109.
L

xln x ln x
x dx 110.

L
(ln x)ln x c 1x +

ln (ln x)
x d dx

111.
L

1

x21 - x4
dx 112.

L

21 - x
x dx

113. a. Show that 1
a

0  ƒ(x) dx = 1
a

0  ƒ(a - x) dx.

b. Use part (a) to evaluate

L

p>2

0

sin x
sin x + cos x

dx.

114.
L

sin x
sin x + cos x

dx 115.
L

sin2 x
1 + sin2 x

dx

116.
L

1 - cos x
1 + cos x

dx

Improper Integrals
Evaluate the improper integrals in Exercises 53–62.

53.
L

3

0

dx

29 - x2
54.

L

1

0
ln x dx

55.
L

2

0

dy

(y - 1)2>3 56.
L

0

-2

du
(u + 1)3>5

57.
L

q

3

2 du
u2 - 2u

58.
L

q

1

3y - 1
4y3 - y2 dy

59.
L

q

0
x2e-x dx 60.

L

0

-q
xe3x dx

61.
L

q

-q
  

dx
4x2 + 9

62.
L

q

-q
  

4 dx
x2 + 16

Which of the improper integrals in Exercises 63–68 converge and 
which diverge?

63.
L

q

6

du

2u2 + 1
64.

L

q

0
e-u cos u du

65.
L

q

1
  

ln z
z dz 66.

L

q

1

e-t

2t
dt

67.
L

q

-q
  

2 dx
ex + e-x 68.

L

q

-q
  

dx
x2(1 + ex)

Assorted Integrations
Evaluate the integrals in Exercises 69–116. The integrals are listed in 
random order so you need to decide which integration technique to use.

69.
L

x dx

1 + 2x
70.

L

x3 + 2
4 - x2 dx

71.
L
22x - x2 dx 72.

L

dx

2-2x - x2

73.
L

2 - cos x + sin x
sin2 x

dx 74.
L

sin2 u cos5 u du

75.
L

9 dy
81 - y4 76.

L

q

2

dx
(x - 1)2

77.
L
u cos (2u + 1) du 78.

L

x3 dx
x2 - 2x + 1

79.
L

sin 2udu
(1 + cos 2u)2 80.

L

p>2

p>4
21 + cos 4x dx

81.
L

x dx

22 - x
82.

L

21 - y2

y2 dy

Chapter 8 Additional and Advanced Exercises

Evaluating Integrals
Evaluate the integrals in Exercises 1–6.

1.
L

(sin-1 x)2 dx

2.
L

dx
x(x + 1)(x + 2)g(x + m)

3.
L

x sin-1 xdx 4.
L

sin-1 2y dy
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20. Finding volume The infinite region bounded by the coordi-
nate axes and the curve y = - ln x in the first quadrant is 
revolved about the x-axis to generate a solid. Find the volume of 
the solid.

21. Centroid of a region Find the centroid of the region in the first 
quadrant that is bounded below by the x-axis, above by the curve 
y = ln x, and on the right by the line x = e.

22. Centroid of a region Find the centroid of the region in the 
plane enclosed by the curves y = {(1 - x2)-1>2 and the lines 
x = 0 and x = 1.

23. Length of a curve Find the length of the curve y = ln x from 
x = 1 to x = e.

24. Finding surface area Find the area of the surface generated by 
revolving the curve in Exercise 23 about the y-axis.

25. The surface generated by an astroid The graph of the equa-
tion x2>3 + y2>3 = 1 is an astroid (see accompanying figure). 
Find the area of the surface generated by revolving the curve 
about the x-axis.

x2
3 + y2
3 = 1

x

y

0−1 1

−1

1

26. Length of a curve Find the length of the curve

y =
L

x

1
32t - 1 dt , 1 … x … 16.

27. For what value or values of a does

L

q

1
a ax

x2 + 1
- 1

2x
b dx

  converge? Evaluate the corresponding integral(s).

28. For each x 7 0, let G(x) = 1
q

0 e-xt dt. Prove that xG(x) = 1 for 
each x 7 0.

29. Infinite area and finite volume What values of p have the fol-
lowing property: The area of the region between the curve 
y = x-p, 1 … x 6 q, and the x-axis is infinite but the volume of 
the solid generated by revolving the region about the x-axis is 
finite.

30. Infinite area and finite volume What values of p have the fol-
lowing property: The area of the region in the first quadrant 
enclosed by the curve y = x-p, the y-axis, the line x = 1, and the 
interval 30, 14  on the x-axis is infinite but the volume of the solid 
generated by revolving the region about one of the coordinate 
axes is finite.

5.
L

dt

t - 21 - t2
6.

L

dx
x4 + 4

Evaluate the limits in Exercises 7 and 8.

7. lim
xSqL

x

-x
sin t dt 8. lim

xS0 +
x
L

1

x

cos t
t2 dt

Evaluate the limits in Exercises 9 and 10 by identifying them with 
definite integrals and evaluating the integrals.

9. lim
nSq a

n

k=1
ln A

n
1 + k

n 10. lim
nSq a

n-1

k=0

1

2n2 - k2

Applications
11. Finding arc length Find the length of the curve

y =
L

x

0
2cos 2t dt, 0 … x … p>4.

12. Finding arc length Find the length of the graph of the function 
y = ln (1 - x2), 0 … x … 1>2.

13. Finding volume The region in the first quadrant that is enclosed 
by the x-axis and the curve y = 3x21 - x is revolved about the 
y-axis to generate a solid. Find the volume of the solid.

14. Finding volume The region in the first quadrant that is enclosed 
by the x-axis, the curve y = 5>1x25 - x2, and the lines x = 1
and x = 4 is revolved about the x-axis to generate a solid. Find 
the volume of the solid.

15. Finding volume The region in the first quadrant enclosed by the 
coordinate axes, the curve y = ex, and the line x = 1 is revolved 
about the y-axis to generate a solid. Find the volume of the solid.

16. Finding volume The region in the first quadrant that is bounded 
above by the curve y = ex - 1, below by the x-axis, and on the 
right by the line x = ln 2 is revolved about the line x = ln 2 to 
generate a solid. Find the volume of the solid.

17. Finding volume Let R be the “triangular” region in the first 
quadrant that is bounded above by the line y = 1, below by the 
curve y = ln x, and on the left by the line x = 1. Find the vol-
ume of the solid generated by revolving R about

a. the x-axis. b. the line y = 1.

18. Finding volume (Continuation of Exercise 17.) Find the vol-
ume of the solid generated by revolving the region R about

a. the y-axis. b. the line x = 1.

19. Finding volume The region between the x-axis and the curve

y = ƒ(x) = e0, x = 0

x ln x, 0 6 x … 2

  is revolved about the x-axis to generate the solid shown here.

a. Show that ƒ is continuous at x = 0.

b. Find the volume of the solid.

y

0

y = x ln x

x
1 2
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or

L
e2x cos x dx = e2x sin x + 2e2x cos x

5
+ C,

after dividing by 5 and adding the constant of integration.

Use tabular integration to evaluate the integrals in Exercises 33–40.

33.
L

e2x cos 3x dx 34.
L

e3x sin 4x dx

35.
L

sin 3x sin x dx 36.
L

cos 5x sin 4x dx

37.
L

eax sin bx dx 38.
L

eax cos bx dx

39.
L

ln (ax) dx 40.
L

x2 ln (ax) dx

The Substitution z = tan (x ,2)
The substitution

z = tan 
x
2

(1)

reduces the problem of integrating a rational expression in sin x and 
cos x to a problem of integrating a rational function of z. This in turn 
can be integrated by partial fractions.

From the accompanying figure

A

P(cos x, sin x)

sin x
x

cos x1 0

1

2
x

we can read the relation

tan 
x
2

= sin x
1 + cos x

.

To see the effect of the substitution, we calculate

 cos x = 2 cos2 ax
2
b - 1 = 2

sec2 (x>2)
- 1

= 2
1 + tan2 (x>2)

- 1 = 2
1 + z2 - 1

 cos x = 1 - z2

1 + z2 , (2)

and

 sin x = 2 sin 
x
2

 cos 
x
2

= 2 
sin (x>2)

cos (x>2)
#  cos2 ax

2
b

= 2 tan 
x
2
# 1
sec2 (x>2)

=
2 tan (x>2)

1 + tan2 (x>2)

 sin x = 2z
1 + z2 . (3)

31. Integrating the square of the derivative If ƒ is continuously 
differentiable on 30, 14  and ƒ(1) = ƒ(0) = -1>6, prove that

L

1

0
(ƒ′(x))2 dx Ú 2

L

1

0
ƒ(x) dx + 1

4
.

Hint: Consider the inequality 0 …
L

1

0
aƒ′(x) + x - 1

2
b2

dx.

Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

32. (Continuation of Exercise 31.) If ƒ is continuously differentiable 
on 30, a4  for a 7 0, and ƒ(a) = ƒ(0) = b, prove that

L

a

0
(ƒ′(x))2 dx Ú 2

L

a

0
ƒ(x) dx - a2ab + a3

12
b .

Hint: Consider the inequality 0 …
L

a

0
aƒ′(x) + x - a

2
b2

dx.

Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

Tabular Integration
The technique of tabular integration also applies to integrals of the 
form 1ƒ(x)g(x) dx when neither function can be differentiated repeat-
edly to become zero. For example, to evaluate

L
e2x cos x dx

we begin as before with a table listing successive derivatives of e2x

and integrals of cos x:

e2x and its   cos x and its
derivatives  integrals

e2x (+ ) cos x

2e2x (- ) sin x

4e2x (+ ) -cos x d Stop here: Row is same as 
first row except for multi-
plicative constants (4 on the 
left, -1 on the right).

We stop differentiating and integrating as soon as we reach a row that 
is the same as the first row except for multiplicative constants. We 
interpret the table as saying

L
e2x cos x dx = + (e2x sin x) - (2e2x(-cos x))

+
L

(4e2x)(-cos x) dx.

We take signed products from the diagonal arrows and a signed inte-
gral for the last horizontal arrow. Transposing the integral on the 
right-hand side over to the left-hand side now gives

5
L

e2x cos x dx = e2x sin x + 2e2x cos x



534 Chapter 8: Techniques of Integration

For each positive x, the number Γ(x) is the integral of tx-1e-t with 
respect to t from 0 to q. Figure 8.28 shows the graph of Γ near the 
origin. You will see how to calculate Γ(1>2) if you do Additional 
Exercise 23 in Chapter 15.

Finally, x = 2 tan-1 z, so

dx = 2 dz
1 + z2 . (4)

Examples

a.
L

1
1 + cos x

dx =
L

1 + z2

2
2 dz

1 + z2

=
L

dz = z + C

= tan ax
2
b + C

b.
L

1
2 + sin x

dx =
L

1 + z2

2 + 2z + 2z2

2 dz
1 + z2

=
L

dz
z2 + z + 1

=
L

dz
(z + (1>2))2 + 3>4

=
L

du
u2 + a2

= 1
a tan-1 auab + C

= 2

23
tan-1 2z + 1

23
+ C

= 2

23
tan-1

1 + 2 tan (x>2)

23
+ C

Use the substitutions in Equations (1)–(4) to evaluate the integrals in 
Exercises 41–48. Integrals like these arise in calculating the average 
angular velocity of the output shaft of a universal joint when the input 
and output shafts are not aligned.

41.
L

dx
1 - sin x

42.
L

dx
1 + sin x + cos x

43.
L

p>2

0

dx
1 + sin x

44.
L

p>2

p>3
dx

1 - cos x

45.
L

p>2

0

du
2 + cos u

46.
L

2p>3

p>2
cos u du

sin u cos u + sin u

47.
L

dt
sin t - cos t

48.
L

cos t dt
1 - cos t

Use the substitution z = tan (u>2) to evaluate the integrals in Exer-
cises 49 and 50.

49.
L

sec u du 50.
L

csc u du

The Gamma Function and Stirling’s Formula
Euler’s gamma function Γ(x) (“gamma of x”; Γ is a Greek capital g)
uses an integral to extend the factorial function from the nonnegative 
integers to other real values. The formula is

Γ(x) =
L

q

0
tx-1e-t dt, x 7 0.

x

y

0 1−1 3−2 2−3

−1

−2

−3

1

2

3
y = Γ(x)

FIGURE 8.28 Euler’s gamma function 
Γ(x) is a continuous function of x whose 
value at each positive integer n + 1 is 
n!. The defining integral formula for Γ is 
valid only for x 7 0, but we can extend 
Γ to negative noninteger values of x with 
the formula Γ(x) = (Γ(x + 1))>x, which 
is the subject of Exercise 51.

51. If n is a nonnegative integer, 𝚪(n + 1) = n!

a. Show that Γ(1) = 1.

b. Then apply integration by parts to the integral for Γ(x + 1) to 
show that Γ(x + 1) = xΓ(x). This gives

Γ(2) = 1Γ(1) = 1

Γ(3) = 2Γ(2) = 2

Γ(4) = 3Γ(3) = 6

f

Γ(n + 1) = n Γ(n) = n! (5)

c. Use mathematical induction to verify Equation (5) for every 
nonnegative integer n.

52. Stirling’s formula Scottish mathematician James Stirling 
(1692–1770) showed that

lim
xSq
aexb

x

A
x

2p
Γ(x) = 1,

  so, for large x,

Γ(x) = axeb
x

A
2p
x (1 + P(x)), P(x) S 0 as x S q. (6)

  Dropping P(x) leads to the approximation

Γ(x) ≈ axeb
x

A
2p
x (Stirling>s formula). (7)
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c. A refinement of Equation (6) gives

Γ(x) = axeb
x

A
2p
x e1>(12x)(1 + P(x))

or

Γ(x) ≈ axeb
x

A
2p
x e1>(12x),

  which tells us that

n! ≈ aneb
n 22np e1>(12n). (10)

  Compare the values given for 10! by your calculator, Stirling’s 
approximation, and Equation (10).

Ta. Stirling’s approximation for n! Use Equation (7) and the 
fact that n! = nΓ(n) to show that

n! ≈ aneb
n 22np (Stirling>s approximation). (8)

  As you will see if you do Exercise 104 in Section 10.1, Equa-
tion (8) leads to the approximation

2n n! ≈ n
e . (9)

b. Compare your calculator’s value for n! with the value given 
by Stirling’s approximation for n = 10, 20, 30,c, as far as 
your calculator can go.

T

Chapter 8 Technology Application Projects

Mathematica/Maple Modules:

Riemann, Trapezoidal, and Simpson Approximations
Part I: Visualize the error involved in using Riemann sums to approximate the area under a curve.
Part II: Build a table of values and compute the relative magnitude of the error as a function of the step size ∆x.
Part III: Investigate the effect of the derivative function on the error.
Parts IV and V: Trapezoidal Rule approximations.
Part VI: Simpson’s Rule approximations.

Games of Chance: Exploring the Monte Carlo Probabilistic Technique for Numerical Integration
Graphically explore the Monte Carlo method for approximating definite integrals.

Computing Probabilities with Improper Integrals
More explorations of the Monte Carlo method for approximating definite integrals.
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OVERVIEW Many real-world problems, when formulated mathematically, lead to differ-
ential equations. We encountered a number of these equations in previous chapters when 
studying phenomena such as the motion of an object moving along a straight line, the 
decay of a radioactive material, the growth of a population, and the cooling of a heated 
object placed within a medium of lower temperature.

In Section 4.8 we introduced differential equations of the form dy>dx = ƒ(x), where ƒ
is given and y is an unknown function of x. When ƒ is continuous over some interval, we 
learned that the general solution y(x) was found directly by integration, y = 1ƒ(x) dx. 
Next, in Section 7.2, we investigated differential equations of the form dy>dx = ƒ(x, y),
where ƒ is a function of both the independent variable x and the dependent variable y.
There we learned how to find the general solution when the differential equation is separable. 
In this chapter we further extend our study to include other commonly occurring first-order 
differential equations. They involve only first derivatives of the unknown function y(x), and 
model phenomena such as simple electrical circuits, or the resulting concentration of a 
chemical being added and mixed with some other fluid in a container. Differential equa-
tions involving second derivatives are studied in Chapter 17.

9.1 Solutions, Slope Fields, and Euler’s Method

We begin this section by defining general differential equations involving first derivatives. 
We then look at slope fields, which give a geometric picture of the solutions to such equa-
tions. Many differential equations cannot be solved by obtaining an explicit formula for 
the solution. However, we can often find numerical approximations to solutions. We pre-
sent one such method here, called Euler’s method, which is the basis for many other 
numerical methods as well.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation

dy
dx

= ƒ(x, y) (1)

in which ƒ(x, y) is a function of two variables defined on a region in the xy-plane. The 
equation is of first order because it involves only the first derivative dy >dx (and not 
higher-order derivatives). We point out that the equations

y′ = ƒ(x, y)    and    
d
dx

y = ƒ(x, y)

are equivalent to Equation (1) and all three forms will be used interchangeably in the text.

First-Order  
Differential Equations

9
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A solution of Equation (1) is a differentiable function y = y(x) defined on an interval 
I of x-values (perhaps infinite) such that

d
dx

y(x) = ƒ(x, y(x))

on that interval. That is, when y(x) and its derivative y′(x) are substituted into Equation (1), 
the resulting equation is true for all x over the interval I. The general solution to a first-order 
differential equation is a solution that contains all possible solutions. The general solution 
always contains an arbitrary constant, but having this property doesn’t mean a solution is the 
general solution. That is, a solution may contain an arbitrary constant without being the gen-
eral solution. Establishing that a solution is the general solution may require deeper results 
from the theory of differential equations and is best studied in a more advanced course.

EXAMPLE 1  Show that every member of the family of functions

y = C
x + 2

is a solution of the first-order differential equation

dy
dx

= 1
x (2 - y)

on the interval (0, q), where C is any constant.

Solution Differentiating y = C>x + 2 gives

dy
dx

= C
d
dx
a1xb + 0 = - C

x2 .

We need to show that the differential equation is satisfied when we substitute into it the 
expressions (C>x) + 2 for y, and -C>x2 for dy>dx. That is, we need to verify that for all 
x∊(0, q),

- C
x2 = 1

x c 2 - aCx + 2b d .
This last equation follows immediately by expanding the expression on the right-hand side:

1
x c 2 - aCx + 2b d = 1

x a- C
x b = - C

x2 .

Therefore, for every value of C, the function y = C>x + 2 is a solution of the differential 
equation.

As was the case in finding antiderivatives, we often need a particular rather than the 
general solution to a first-order differential equation y′ = ƒ(x, y). The particular solution
satisfying the initial condition y(x0) = y0 is the solution y = y(x) whose value is y0 when 
x = x0. Thus the graph of the particular solution passes through the point (x0, y0) in the 
xy-plane. A first-order initial value problem is a differential equation y′ = ƒ(x, y) whose 
solution must satisfy an initial condition y(x0) = y0.

EXAMPLE 2  Show that the function

y = (x + 1) - 1
3 ex

is a solution to the first-order initial value problem

dy
dx

= y - x, y(0) = 2
3.
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Solution The equation

dy
dx

= y - x

is a first-order differential equation with ƒ(x, y) = y - x.

On the left side of the equation:

dy
dx

= d
dx
ax + 1 - 1

3 exb = 1 - 1
3 ex .

On the right side of the equation:

y - x = (x + 1) - 1
3 ex - x = 1 - 1

3 ex .

The function satisfies the initial condition because

y(0) = c (x + 1) - 1
3 ex d

x=0
= 1 - 1

3 = 2
3.

The graph of the function is shown in Figure 9.1.

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(x0) = y0 for the solution of a differential equa-
tion y′ = ƒ(x, y), the solution curve (graph of the solution) is required to pass through the 
point (x0, y0) and to have slope ƒ(x0, y0) there. We can picture these slopes graphically by 
drawing short line segments of slope ƒ (x, y) at selected points (x, y) in the region of the 
xy-plane that constitutes the domain of ƒ. Each segment has the same slope as the solution 
curve through (x, y) and so is tangent to the curve there. The resulting picture is called a 
slope field (or direction field) and gives a visualization of the general shape of the solu-
tion curves. Figure 9.2a shows a slope field, with a particular solution sketched into it in 
Figure 9.2b. We see how these line segments indicate the direction the solution curve takes 
at each point it passes through.

−4 −2 2 4

−4

−3

−2

−1

1

2

x

y

0, 2
3

y = (x + 1) − ex1
3

a b

FIGURE 9.1 Graph of the solution to 
the initial value problem in Example 2.

0 2−2−4 4

2

4

−2

−4

0 2−2−4 4

2

4

−2

−4

(a) (b)

x x

y y 0, 2
3a b

FIGURE 9.2 (a) Slope field for 
dy
dx

= y - x. (b) The particular solu-

tion curve through the point a0,
2
3
b  (Example 2).

Figure 9.3 shows three slope fields and we see how the solution curves behave by fol-
lowing the tangent line segments in these fields. Slope fields are useful because they dis-
play the overall behavior of the family of solution curves for a given differential equation. 
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For instance, the slope field in Figure 9.3b reveals that every solution y(x) to the differen-
tial equation specified in the figure satisfies limxS{q y(x) = 0. We will see that knowing 
the overall behavior of the solution curves is often critical to understanding and predicting 
outcomes in a real-world system modeled by a differential equation.

Constructing a slope field with pencil and paper can be quite tedious. All our exam-
ples were generated by computer software.

Euler’s Method

If we do not require or cannot immediately find an exact solution giving an explicit for-
mula for an initial value problem y′ = ƒ(x, y), y(x0) = y0, we can often use a computer to 
generate a table of approximate numerical values of y for values of x in an appropriate 
interval. Such a table is called a numerical solution of the problem, and the method by 
which we generate the table is called a numerical method.

Given a differential equation dy>dx = ƒ(x, y) and an initial condition y(x0) = y0, we 
can approximate the solution y = y(x) by its linearization

L(x) = y(x0) + y′(x0)(x - x0) or L(x) = y0 + ƒ(x0, y0)(x - x0).

The function L(x) gives a good approximation to the solution y(x) in a short interval about 
x0 (Figure 9.4). The basis of Euler’s method is to patch together a string of linearizations 
to approximate the curve over a longer stretch. Here is how the method works.

We know the point (x0, y0) lies on the solution curve. Suppose that we specify a new 
value for the independent variable to be x1 = x0 + dx. (Recall that dx = ∆x in the defini-
tion of differentials.) If the increment dx is small, then

y1 = L(x1) = y0 + ƒ(x0, y0) dx

is a good approximation to the exact solution value y = y(x1). So from the point (x0, y0),
which lies exactly on the solution curve, we have obtained the point (x1, y1), which lies 
very close to the point (x1, y(x1)) on the solution curve (Figure 9.5).

Using the point (x1, y1) and the slope ƒ(x1, y1) of the solution curve through (x1, y1),
we take a second step. Setting x2 = x1 + dx, we use the linearization of the solution curve 
through (x1, y1) to calculate

y2 = y1 + ƒ(x1, y1) dx.

(a) y′ = y − x2 (b) y′ = −
1 + x2

2xy
(c) y′ = (1 − x)y + x

2

FIGURE 9.3 Slope fields (top row) and selected solution curves (bottom row). In computer 
renditions, slope segments are sometimes portrayed with arrows, as they are here, but they 
should be considered as just tangent line segments.

0

y
y = L(x) = y0 + f (x0, y0)(x − x0)

y = y (x)

(x0, y0)y0

x0
x

FIGURE 9.4 The linearization L(x) of 
y = y(x) at x = x0.

0

y

y = y(x)

(x1, y(x1))

(x1, y1)

x0 x1 = x0 + dx
dx x

(x0, y0)

FIGURE 9.5 The first Euler step 
approximates y(x1) with y1 = L(x1).
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This gives the next approximation (x2, y2) to values along the solution curve y = y(x)
(Figure 9.6). Continuing in this fashion, we take a third step from the point (x2, y2) with 
slope ƒ(x2, y2) to obtain the third approximation

y3 = y2 + ƒ(x2, y2) dx,

and so on. We are literally building an approximation to one of the solutions by following 
the direction of the slope field of the differential equation.

The steps in Figure 9.6 are drawn large to illustrate the construction process, so the 
approximation looks crude. In practice, dx would be small enough to make the red curve 
hug the blue one and give a good approximation throughout.

EXAMPLE 3  Find the first three approximations y1, y2, y3 using Euler’s method for 
the initial value problem

y′ = 1 + y, y(0) = 1,

starting at x0 = 0 with dx = 0.1.

Solution We have the starting values x0 = 0 and y0 = 1. Next we determine the values 
of x at which the Euler approximations will take place: x1 = x0 + dx = 0.1,
x2 = x0 + 2 dx = 0.2, and x3 = x0 + 3 dx = 0.3. Then we find

First: y1 = y0 + ƒ(x0, y0) dx

= y0 + (1 + y0) dx

= 1 + (1 + 1)(0.1) = 1.2

Second: y2 = y1 + ƒ(x1, y1) dx

= y1 + (1 + y1) dx

= 1.2 + (1 + 1.2)(0.1) = 1.42

Third: y3 = y2 + ƒ(x2, y2) dx

= y2 + (1 + y2) dx

= 1.42 + (1 + 1.42)(0.1) = 1.662

The step-by-step process used in Example 3 can be continued easily. Using equally 
spaced values for the independent variable in the table for the numerical solution, and gen-
erating n of them, set

x1 = x0 + dx

x2 = x1 + dx

f

xn = xn-1 + dx.

Then calculate the approximations to the solution,

y1 = y0 + ƒ(x0, y0) dx

y2 = y1 + ƒ(x1, y1) dx

f

yn = yn-1 + ƒ(xn-1, yn-1) dx.

The number of steps n can be as large as we like, but errors can accumulate if n is too 
large.

Euler’s method is easy to implement on a computer or calculator. The software pro-
gram generates a table of numerical solutions to an initial value problem, allowing us to 
input x0 and y0, the number of steps n, and the step size dx. It then calculates the approxi-
mate solution values y1, y2, c, yn in iterative fashion, as just described.

x

y

0

Euler approximation

Error

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

x0 x1 x2 x3

dx dx dx

True solution curve
y = y(x)

FIGURE 9.6 Three steps in the Euler 
approximation to the solution of the initial 
value problem y′ = ƒ(x, y), y(x0) = y0.
As we take more steps, the errors involved
usually accumulate, but not in the 
exaggerated way shown here.

HISTORICAL BIOGRAPHY

Leonhard Euler
(1703–1783)
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Solving the separable equation in Example 3, we find that the exact solution to the 
initial value problem is y = 2ex - 1. We use this information in Example 4.

EXAMPLE 4 Use Euler’s method to solve

y′ = 1 + y, y(0) = 1,

on the interval 0 … x … 1, starting at x0 = 0 and taking (a) dx = 0.1 and (b) dx = 0.05.
Compare the approximations with the values of the exact solution y = 2ex - 1.

Solution
(a) We used a computer to generate the approximate values in Table 9.1. The “error” col-

umn is obtained by subtracting the unrounded Euler values from the unrounded val-
ues found using the exact solution. All entries are then rounded to four decimal 
places.

TABLE 9.1 Euler solution of y ′ = 1 + y, y (0) = 1,

step size dx = 0.1

x y (Euler) y (exact) Error

0 1 1 0

0.1 1.2 1.2103 0.0103

0.2 1.42 1.4428 0.0228

0.3 1.662 1.6997 0.0377

0.4 1.9282 1.9836 0.0554

0.5 2.2210 2.2974 0.0764

0.6 2.5431 2.6442 0.1011

0.7 2.8974 3.0275 0.1301

0.8 3.2872 3.4511 0.1639

0.9 3.7159 3.9192 0.2033

1.0 4.1875 4.4366 0.2491

    By the time we reach x = 1 (after 10 steps), the error is about 5.6% of the exact 
solution. A plot of the exact solution curve with the scatterplot of Euler solution 
points from Table 9.1 is shown in Figure 9.7.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the 
results and their comparisons with the exact solutions when we decrease the step size 
to 0.05, doubling the number of steps to 20. As in Table 9.1, all computations are per-
formed before rounding. This time when we reach x = 1, the relative error is only 
about 2.9%.

It might be tempting to reduce the step size even further in Example 4 to obtain 
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approxi-
mate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making 
numerical calculations are important but are appropriate for a more advanced course. 
There are numerical methods more accurate than Euler’s method, usually presented in a 
further study of differential equations or in a numerical analysis course.

10

1

2

3

4

x

y

y = 2ex − 1

FIGURE 9.7 The graph of y = 2ex - 1
superimposed on a scatterplot of the 
Euler approximations shown in Table 9.1 
(Example 4).
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TABLE 9.2 Euler solution of y′ = 1 + y, y(0) = 1,

step size dx = 0.05

x y (Euler) y (exact) Error

0 1 1 0

0.05 1.1 1.1025 0.0025

0.10 1.205 1.2103 0.0053

0.15 1.3153 1.3237 0.0084

0.20 1.4310 1.4428 0.0118

0.25 1.5526 1.5681 0.0155

0.30 1.6802 1.6997 0.0195

0.35 1.8142 1.8381 0.0239

0.40 1.9549 1.9836 0.0287

0.45 2.1027 2.1366 0.0340

0.50 2.2578 2.2974 0.0397

0.55 2.4207 2.4665 0.0458

0.60 2.5917 2.6442 0.0525

0.65 2.7713 2.8311 0.0598

0.70 2.9599 3.0275 0.0676

0.75 3.1579 3.2340 0.0761

0.80 3.3657 3.4511 0.0853

0.85 3.5840 3.6793 0.0953

0.90 3.8132 3.9192 0.1060

0.95 4.0539 4.1714 0.1175

1.00 4.3066 4.4366 0.1300

Slope Fields
In Exercises 1–4, match the differential equations with their slope 
fields, graphed here.
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1. y′ = x + y 2. y′ = y + 1

3. y′ = -x
y 4. y′ = y2 - x2

Exercises 9.1
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In Exercises 5 and 6, copy the slope fields and sketch in some of the 
solution curves.

5. y′ = (y + 2)(y - 2)

2

−2

−2 2 4−4

−4

4

x

y

6. y′ = y(y + 1)(y - 1)

2

−2

−2 2 4−4

−4

4

x

y

Integral Equations
In Exercises 7–10, write an equivalent first-order differential equation 
and initial condition for y.

7. y = -1 +
L

x

1
(t - y(t)) dt

8. y =
L

x

1

1
t dt

9. y = 2 -
L

x

0
(1 + y(t)) sin t dt

10. y = 1 +
L

x

0
y(t) dt

Using Euler’s Method
In Exercises 11–16, use Euler’s method to calculate the first three 
approximations to the given initial value problem for the specified 
increment size. Calculate the exact solution and investigate the accuracy 
of your approximations. Round your results to four decimal places.

11. y′ = 1 -
y
x , y(2) = -1, dx = 0.5

12. y′ = x(1 - y), y(1) = 0, dx = 0.2

13. y′ = 2xy + 2y, y(0) = 3, dx = 0.2

14. y′ = y2(1 + 2x), y(-1) = 1, dx = 0.5

15. y′ = 2xex2
, y(0) = 2, dx = 0.1

16. y′ = yex, y(0) = 2, dx = 0.5

17. Use the Euler method with dx = 0.2 to estimate y(1) if y′ = y
and y(0) = 1. What is the exact value of y(1)?

18. Use the Euler method with dx = 0.2 to estimate y(2) if y′ = y>x
and y(1) = 2. What is the exact value of y(2)?

T

T

19. Use the Euler method with dx = 0.5 to estimate y(5) if y′ =
y2>2x and y(1) = -1. What is the exact value of y(5)?

20. Use the Euler method with dx = 1>3 to estimate y(2) if y′ =
x sin y and y(0) = 1. What is the exact value of y(2)?

21. Show that the solution of the initial value problem

y′ = x + y, y(x0) = y0

  is

y = -1 - x + (1 + x0 + y0) ex-x0.

22. What integral equation is equivalent to the initial value problem 
y′ = ƒ(x), y(x0) = y0?

COMPUTER EXPLORATIONS
In Exercises 23–28, obtain a slope field and add to it graphs of the 
solution curves passing through the given points.

23. y′ = y with

a. (0, 1) b. (0, 2) c. (0, -1)

24. y′ = 2(y - 4) with

a. (0, 1) b. (0, 4) c. (0, 5)

25. y′ = y(x + y) with

a. (0, 1) b. (0, -2) c. (0, 1>4) d. (-1, -1)

26. y′ = y2 with

a. (0, 1) b. (0, 2) c. (0, -1) d. (0, 0)

27. y′ = (y - 1)(x + 2) with

a. (0, -1) b. (0, 1) c. (0, 3) d. (1, - 1)

28. y′ =
xy

x2 + 4
 with

a. (0, 2) b. (0, -6) c. 1-223, -42
In Exercises 29 and 30, obtain a slope field and graph the particular 
solution over the specified interval. Use your CAS DE solver to find 
the general solution of the differential equation.

29. A logistic equation y′ = y(2 - y), y(0) = 1>2; 0 … x … 4,
0 … y … 3

30. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6

Exercises 31 and 32 have no explicit solution in terms of elementary 
functions. Use a CAS to explore graphically each of the differential 
equations.

31. y′ = cos (2x - y), y(0) = 2; 0 … x … 5, 0 … y … 5

32. A Gompertz equation y′ = y(1>2 - ln y), y(0) = 1>3;
0 … x … 4, 0 … y … 3

33. Use a CAS to find the solutions of y′ + y = ƒ(x) subject to the 
initial condition y(0) = 0, if ƒ(x) is

a. 2x b. sin 2x c. 3ex>2 d. 2e-x>2 cos 2x.

  Graph all four solutions over the interval -2 … x … 6 to com-
pare the results.

34.  a. Use a CAS to plot the slope field of the differential equation

y′ = 3x2 + 4x + 2
2(y - 1)

  over the region -3 … x … 3 and -3 … y … 3.

b. Separate the variables and use a CAS integrator to find the 
general solution in implicit form.
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c. Using a CAS implicit function grapher, plot solution curves 
for the arbitrary constant values C = -6, -4, -2, 0, 2, 4, 6.

d. Find and graph the solution that satisfies the initial condition 
y(0) = -1.

In Exercises 35–38, use Euler’s method with the specified step size to 
estimate the value of the solution at the given point x*. Find the value 
of the exact solution at x*.

35. y′ = 2xex2
, y(0) = 2, dx = 0.1, x* = 1

36. y′ = 2y2(x - 1), y(2) = -1>2, dx = 0.1, x* = 3

37. y′ = 2x>y, y 7 0, y(0) = 1, dx = 0.1, x* = 1

38. y′ = 1 + y2, y(0) = 0, dx = 0.1, x* = 1

Use a CAS to explore graphically each of the differential equations in 
Exercises 39–42. Perform the following steps to help with your explo-
rations.

a. Plot a slope field for the differential equation in the given 
xy-window.

b. Find the general solution of the differential equation using 
your CAS DE solver.

c. Graph the solutions for the values of the arbitrary constant 
C = -2, -1, 0, 1, 2 superimposed on your slope field plot.

d. Find and graph the solution that satisfies the specified initial 
condition over the interval 30, b4 .

e. Find the Euler numerical approximation to the solution of the 
initial value problem with 4 subintervals of the x-interval and 
plot the Euler approximation superimposed on the graph pro-
duced in part (d).

f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
Euler approximations superimposed on the graph from part (e).

g. Find the error (y(exact) - y(Euler)) at the specified point 
x = b for each of your four Euler approximations. Discuss 
the improvement in the percentage error.

39. y′ = x + y, y(0) = -7>10; -4 … x … 4, -4 … y … 4;
b = 1

40. y′ = -x>y, y(0) = 2; -3 … x … 3, -3 … y … 3; b = 2

41. y′ = y(2 - y), y(0) = 1>2; 0 … x … 4, 0 … y … 3; b = 3

42. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6;
b = 3p>2

9.2 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

dy
dx

+ P(x)y = Q(x), (1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s stan-
dard form. Since the exponential growth>decay equation dy>dx = ky (Section 7.2) can 
be put in the standard form

dy
dx

- ky = 0,

we see it is a linear equation with P(x) = -k and Q(x) = 0. Equation (1) is linear (in y)
because y and its derivative dy >dx occur only to the first power, they are not multiplied 

together, nor do they appear as the argument of a function 1such as sin y, ey, or 2dy>dx2.
EXAMPLE 1  Put the following equation in standard form:

x
dy
dx

= x2 + 3y, x 7 0.

Solution

x
dy
dx

= x2 + 3y

dy
dx

= x + 3
x y Divide by x.

dy
dx

- 3
x  y = x

Standard form with P(x) = -3>x
and Q(x) = x

Notice that P(x) is -3>x, not +3>x. The standard form is y′ + P(x)y = Q(x), so the 
minus sign is part of the formula for P(x).
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Solving Linear Equations

We solve the equation

dy
dx

+ P(x)y = Q(x)

by multiplying both sides by a positive function y(x) that transforms the left-hand side into 
the derivative of the product y(x) # y. We will show how to find y in a moment, but first we 
want to show how, once found, it provides the solution we seek.

Here is why multiplying by y(x) works:

dy
dx

+ P(x)y = Q(x)
Original equation is 
in standard form.

y(x)
dy
dx

+ P(x)y(x)y = y(x)Q(x) Multiply by positive y(x).

d
dx

(y(x) # y) = y(x)Q(x)
y(x) is chosen to make

y
dy

dx
+ Pyy = d

dx
(y # y).

y(x) # y =
L
y(x)Q(x) dx

Integrate with respect 
to x.

y = 1
y(x)L

y(x)Q(x) dx (2)

Equation (2) expresses the solution of Equation (1) in terms of the functions y(x) and 
Q(x). We call y(x) an integrating factor for Equation (1) because its presence makes the 
equation integrable.

Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-
rectly, in the construction of the positive function y(x). We have

d
dx

(yy) = y
dy
dx

+ Pyy Condition imposed on y

y
dy
dx

+ y
dy
dx

= y
dy
dx

+ Pyy Derivative Product Rule

y
dy
dx

= Pyy The terms y
dy

dx
 cancel.

This last equation will hold if

dy
dx

= Py

dy
y = P dx Variables separated, y 7 0

L

dy
y =

L
P dx Integrate both sides.

lny =
L

P dx
Since y 7 0, we do not need absolute 

value signs in ln y.

eln y = e1P dx Exponentiate both sides to solve for y.

y = e1P dx (3)

Thus a formula for the general solution to Equation (1) is given by Equation (2), where y(x)
is given by Equation (3). However, rather than memorizing the formula, just remember how 
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When you integrate the product on the left-hand side in this procedure, you always obtain 
the product y(x)y of the integrating factor and solution function y because of the way y is 
defined.

To solve the linear equation y′ + P(x)y = Q(x), multiply both sides by the inte-
grating factor y(x) = e1P(x) dx and integrate both sides.

EXAMPLE 2  Solve the equation

x
dy
dx

= x2 + 3y, x 7 0.

Solution First we put the equation in standard form (Example 1):

dy
dx

- 3
x y = x,

so P(x) = -3>x is identified.
The integrating factor is

y(x) = e1P(x) dx = e1(-3>x) dx

= e-3 ln 0x 0 Constant of integration is 0, 
so y is as simple as possible.

= e-3 ln x    x 7 0

= eln x-3 = 1
x3 .

Next we multiply both sides of the standard form by y(x) and integrate:

1
x3
# ady

dx
- 3

x yb = 1
x3
# x

1
x3

dy
dx

- 3
x4 y = 1

x2

d
dx
a 1

x3 yb = 1
x2 Left-hand side is 

d
dx

(y # y).

1
x3 y =

L

1
x2 dx Integrate both sides.

1
x3 y = - 1

x + C.

Solving this last equation for y gives the general solution:

y = x3 a- 1
x + Cb = -x2 + Cx3, x 7 0.

HISTORICAL BIOGRAPHY

Adrien Marie Legendre
(1752–1833)

EXAMPLE 3  Find the particular solution of

3xy′ - y = ln x + 1, x 7 0,

satisfying y(1) = -2.

to find the integrating factor once you have the standard form so P(x) is correctly identified. 
Any antiderivative of P works for Equation (3).
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Solution With x 7 0, we write the equation in standard form:

y′ - 1
3x

y = ln x + 1
3x

.

Then the integrating factor is given by

y = e1-dx>3x = e(-1>3)lnx = x-1>3. x 7 0

Thus

x-1>3y = 1
3L

(ln x + 1)x-4>3 dx. Left-hand side is yy.

Integration by parts of the right-hand side gives

x-1>3y = -x-1>3(ln x + 1) +
L

x-4>3 dx + C.

Therefore

x-1>3y = -x-1>3(ln x + 1) - 3x-1>3 + C

or, solving for y,

y = -(ln x + 4) + Cx1>3.

When x = 1 and y = -2 this last equation becomes

-2 = -(0 + 4) + C,

so

C = 2.

Substitution into the equation for y gives the particular solution

y = 2x1>3 - ln x - 4.

In solving the linear equation in Example 2, we integrated both sides of the equation 
after multiplying each side by the integrating factor. However, we can shorten the amount 
of work, as in Example 3, by remembering that the left-hand side always integrates into 
the product y(x) # y of the integrating factor times the solution function. From Equation (2) 
this means that

y(x)y =
L
y(x)Q(x) dx. (4)

We need only integrate the product of the integrating factor y(x) with Q(x) on the right-
hand side of Equation (1) and then equate the result with y(x)y to obtain the general solu-
tion. Nevertheless, to emphasize the role of y(x) in the solution process, we sometimes 
follow the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by 
Equation (1), the linear equation is separable and can be solved by the method of 
Section 7.2:

dy
dx

+ P(x)y = Q(x)

dy
dx

+ P(x)y = 0 Q(x) = 0

dy
y = -P(x) dx Separating the variables
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RL Circuits

The diagram in Figure 9.8 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. 
There is a switch whose terminals at a and b can be closed to connect a constant electrical 
source of V volts.

Ohm’s Law, V = RI, has to be augmented for such a circuit. The correct equation 
accounting for both resistance and inductance is

L
di
dt

+ Ri = V, (5)

where i is the current in amperes and t is the time in seconds. By solving this equation, we 
can predict how the current will flow after the switch is closed.

EXAMPLE 4  The switch in the RL circuit in Figure 9.8 is closed at time t = 0. How 
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of t.
Its standard form is

di
dt

+ R
L i = V

L , (6)

and the corresponding solution, given that i = 0 when t = 0, is

i = V
R - V

R e-(R>L)t. (7)

(We leave the calculation of the solution for you to do in Exercise 28.) Since R and L are 
positive, -(R>L) is negative and e-(R>L)t S 0 as t S q. Thus,

lim
tSq

i = lim
tSq
aVR - V

R e-(R>L)tb = V
R - V

R
# 0 = V

R .

At any given time, the current is theoretically less than V >R, but as time passes, the cur-
rent approaches the steady-state value V >R. According to the equation

L
di
dt

+ Ri = V,

I = V>R is the current that will flow in the circuit if either L = 0 (no inductance) or 
di>dt = 0 (steady current, i = constant) (Figure 9.9).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a 
steady-state solution V >R and a transient solution -(V>R)e-(R>L)t that tends to zero as 
t S q.

Switch

R L

a b

i

V
+ −

FIGURE 9.8 The RL circuit in 
Example 4.

i

t
0 432

i = (1 − e−Rt�L)V
R

I = V
R I

e

L
R

L
R

L
R

L
R

FIGURE 9.9 The growth of the current 
in the RL circuit in Example 4. I is the 
current’s steady-state value. The number 
t = L>R is the time constant of the circuit. 
The current gets to within 5% of its 
steady-state value in 3 time constants 
(Exercise 27).

Exercises 9.2
First-Order Linear Equations
Solve the differential equations in Exercises 1–14.

1. x
dy
dx

+ y = ex, x 7 0 2. ex
dy
dx

+ 2exy = 1

3. xy′ + 3y = sin x
x2 , x 7 0

4. y′ + (tan x)y = cos2 x, -p>2 6 x 6 p>2

5. x
dy
dx

+ 2y = 1 - 1
x , x 7 0

6. (1 + x) y′ + y = 2x 7. 2y′ = ex>2 + y

8. e2x y′ + 2e2x y = 2x 9. xy′ - y = 2x ln x

10. x
dy
dx

= cos x
x - 2y, x 7 0



9.2  First-Order Linear Equations 549

11. (t - 1)3 ds
dt

+ 4(t - 1)2s = t + 1, t 7 1

12. (t + 1)
ds
dt

+ 2s = 3(t + 1) + 1
(t + 1)2 , t 7 -1

13. sin u
dr
du

+ (cos u)r = tan u , 0 6 u 6 p>2

14. tan u
dr
du

+ r = sin2 u , 0 6 u 6 p>2
Solving Initial Value Problems
Solve the initial value problems in Exercises 15–20.

15.
dy
dt

+ 2y = 3, y(0) = 1

16. t
dy
dt

+ 2y = t3 , t 7 0, y(2) = 1

17. u
dy
du

+ y = sin u , u 7 0, y(p>2) = 1

18. u
dy
du

- 2y = u3 sec u tan u , u 7 0, y(p>3) = 2

19. (x + 1)
dy
dx

- 2(x2 + x)y = ex2

x + 1
, x 7 -1, y(0) = 5

20.
dy
dx

+ xy = x , y(0) = -6

21. Solve the exponential growth >decay initial value problem for y
as a function of t by thinking of the differential equation as a first-
order linear equation with P(x) = -k and Q(x) = 0:

dy
dt

= ky (k constant) , y(0) = y0

22. Solve the following initial value problem for u as a function of t:

du
dt

+ k
m u = 0 (k and m positive constants) , u(0) = u0

a. as a first-order linear equation.

b. as a separable equation.

Theory and Examples
23. Is either of the following equations correct? Give reasons for your 

answers.

a. x
L

1
x dx = x ln � x � + C b. x

L

1
x dx = x ln � x � + Cx

24. Is either of the following equations correct? Give reasons for your 
answers.

a. 1
cos x

L
cos x dx = tan x + C

b. 1
cos x

L
cos x dx = tan x + C

cos x

25. Current in a closed RL circuit How many seconds after the 
switch in an RL circuit is closed will it take the current i to reach 
half of its steady-state value? Notice that the time depends on R
and L and not on how much voltage is applied.

26. Current in an open RL circuit If the switch is thrown open 
after the current in an RL circuit has built up to its steady-state 
value I = V>R, the decaying current (see accompanying figure) 
obeys the equation

L
di
dt

+ Ri = 0,

  which is Equation (5) with V = 0.

a. Solve the equation to express i as a function of t.

b. How long after the switch is thrown will it take the current to 
fall to half its original value?

c. Show that the value of the current when t = L>R is I>e. (The 
significance of this time is explained in the next exercise.)

i

t
0

32

V
R

I
e

L
R

L
R

L
R

27. Time constants Engineers call the number L>R the time constant
of the RL circuit in Figure 9.9. The significance of the time con-
stant is that the current will reach 95% of its final value within 3 
time constants of the time the switch is closed (Figure 9.9). Thus, 
the time constant gives a built-in measure of how rapidly an indi-
vidual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to 
t = 3L>R and show that it is about 95% of the steady-state 
value I = V>R.

b. Approximately what percentage of the steady-state current 
will be flowing in the circuit 2 time constants after the switch 
is closed (i.e., when t = 2L>R)?

28. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

di
dt

+ R
L

i = V
L

is

i = V
R

+ Ce-(R>L)t.

b. Then use the initial condition i(0) = 0 to determine the value 
of C. This will complete the derivation of Equation (7).

c. Show that i = V>R is a solution of Equation (6) and that 
i = Ce-(R>L)t satisfies the equation

di
dt

+ R
L

i = 0.
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A Bernoulli differential equation is of the form

dy
dx

+ P(x)y = Q(x)yn.

Observe that, if n = 0 or 1, the Bernoulli equation is linear. 
For other values of n, the substitution u = y1-n transforms 
the Bernoulli equation into the linear equation

du
dx

+ (1 - n)P(x)u = (1 - n)Q(x).

For example, in the equation

dy
dx

- y = e-x y2

  we have n = 2, so that u = y1-2 = y-1 and du>dx =
-y-2 dy>dx. Then dy>dx = -y2 du>dx = -u-2 du>dx.
Substitution into the original equation gives

-u-2 du
dx

- u-1 = e-x u-2

  or, equivalently,

du
dx

+ u = -e-x.

  This last equation is linear in the (unknown) dependent variable u.

Solve the Bernoulli equations in Exercises 29–32.

29. y′ - y = -y2 30. y′ - y = xy2

31. xy′ + y = y-2 32. x2y′ + 2xy = y3

HISTORICAL BIOGRAPHY

James Bernoulli
(1654–1705)

9.3 Applications

We now look at four applications of first-order differential equations. The first application 
analyzes an object moving along a straight line while subject to a force opposing its 
motion. The second is a model of population growth. The third application considers a 
curve or curves intersecting each curve in a second family of curves orthogonally (that is, 
at right angles). The final application analyzes chemical concentrations entering and leav-
ing a container. The various models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object, 
such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object 
moves, the more its forward progress is resisted by the air through which it passes. Picture 
the object as a mass m moving along a coordinate line with position function s and velocity 
y at time t. From Newton’s second law of motion, the resisting force opposing the motion is

Force = mass * acceleration = m
dy
dt

.

If the resisting force is proportional to velocity, we have

m
dy
dt

= -ky or
dy
dt

= - k
my (k 7 0).

This is a separable differential equation representing exponential change. The solution to 
the equation with initial condition y = y0 at t = 0 is (Section 7.2)

y = y0e-(k>m)t. (1)

What can we learn from Equation (1)? For one thing, we can see that if m is some-
thing large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for 
the velocity to approach zero (because t must be large in the exponent of the equation in 
order to make kt >m large enough for y to be small). We can learn even more if we inte-
grate Equation (1) to find the position s as a function of time t.

Suppose that an object is coasting to a stop and the only force acting on it is a resis-
tance proportional to its speed. How far will it coast? To find out, we start with Equation 
(1) and solve the initial value problem

ds
dt

= y0e-(k>m)t, s(0) = 0.
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Integrating with respect to t gives

s = -
y0m

k
e-(k>m)t + C.

Substituting s = 0 when t = 0 gives

0 = -
y0m

k
+ C and C =

y0m
k

.

The body’s position at time t is therefore

s(t) = -
y0m

k
e-(k>m)t +

y0m
k

=
y0m

k
(1 - e-(k/m)t). (2)

To find how far the body will coast, we find the limit of s(t) as t S q. Since -(k>m) 6 0,
we know that e-(k>m)t S 0 as t S q, so that

lim
tSq

s(t) = lim
tSq

y0m
k

(1 - e-(k>m)t)

=
y0m

k
(1 - 0) =

y0m
k

.

Thus,

Distance coasted =
y0m

k
. (3)

The number y0m>k is only an upper bound (albeit a useful one). It is true to life in one 
respect, at least: If m is large, the body will coast a long way.

In the English system, in which weight is 
measured in pounds, mass is measured in 
slugs. Thus,

Pounds = slugs * 32,

assuming the gravitational constant is 
32 ft > sec2.

EXAMPLE 1  For a 192-lb ice skater, the k in Equation (1) is about 1 >3 slug > sec and 
m = 192>32 = 6 slugs. How long will it take the skater to coast from 11 ft > sec (7.5 
mph) to 1 ft > sec? How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

11e-t>18 = 1

e-t>18 = 1>11

- t>18 = ln (1>11) = - ln 11

t = 18 ln 11 ≈ 43 sec.

Eq. (1) with k = 1>3,

m = 6, v0 = 11, v = 1

We answer the second question with Equation (3):

Distance coasted =
y0m

k
= 11 # 6

1>3
= 198 ft.

Inaccuracy of the Exponential Population Growth Model

In Section 7.2 we modeled population growth with the Law of Exponential Change:

dP
dt

= kP, P(0) = P0

where P is the population at time t, k 7 0 is a constant growth rate, and P0 is the size of 
the population at time t = 0. In Section 7.2 we found the solution P = P0ekt to this model.

To assess the model, notice that the exponential growth differential equation says that

dP>dt
P = k (4)
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is constant. This rate is called the relative growth rate. Now, Table 9.3 gives the world 
population at midyear for the years 1980 to 1989. Taking dt = 1 and dP ≈ ∆P, we see 
from the table that the relative growth rate in Equation (4) is approximately the constant 
0.017. Thus, based on the tabled data with t = 0 representing 1980, t = 1 representing 
1981, and so forth, the world population could be modeled by the initial value problem,

dP
dt

= 0.017P, P(0) = 4454.

The solution to this initial value problem gives the population function P = 4454e0.017t. In 
year 2008 (so t = 28), the solution predicts the world population in midyear to be about 
7169 million, or 7.2 billion (Figure 9.10), which is more than the actual population of 
6707 million from the U.S. Bureau of the Census. A more realistic model would consider 
environmental and other factors affecting the growth rate, which has been steadily declin-
ing to about 0.012 since 1987. We consider one such model in Section 9.4.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the 
family at right angles, or orthogonally (Figure 9.11). For instance, each straight line 
through the origin is an orthogonal trajectory of the family of circles x2 + y2 = a2, cen-
tered at the origin (Figure 9.12). Such mutually orthogonal systems of curves are of particu-
lar importance in physical problems related to electrical potential, where the curves in one 
family correspond to strength of an electric field and those in the other family correspond to 
constant electric potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 2  Find the orthogonal trajectories of the family of curves xy = a, where 
a ≠ 0 is an arbitrary constant.

Solution The curves xy = a form a family of hyperbolas having the coordinate axes as 
asymptotes. First we find the slopes of each curve in this family, or their dy >dx values. 
Differentiating xy = a implicitly gives

x
dy
dx

+ y = 0 or
dy
dx

= -
y
x .

Source: U.S. Bureau of the Census (Sept., 2007): www.census

.gov/ipc/www/idb.

TABLE 9.3 World population (midyear)

Population 
Year (millions) 𝚫P>P
1980 4454 76>4454 ≈ 0.0171

1981 4530 80>4530 ≈ 0.0177

1982 4610 80>4610 ≈ 0.0174

1983 4690 80>4690 ≈ 0.0171

1984 4770 81>4770 ≈ 0.0170

1985 4851 82>4851 ≈ 0.0169

1986 4933 85>4933 ≈ 0.0172

1987 5018 87>5018 ≈ 0.0173

1988 5105 85>5105 ≈ 0.0167

1989 5190

t

P

0 10 30

7000

5000

4000

World population (1980–2008)

P = 4454e0.017t

FIGURE 9.10 Notice that the value of 
the solution P = 4454e0.017t is 7169 when 
t = 28, which is nearly 7% more than the 
actual population in 2008.

Orthogonal trajectory

FIGURE 9.11 An orthogonal trajec-
tory intersects the family of curves at right 
angles, or orthogonally.

x

y

FIGURE 9.12 Every straight line through 
the origin is orthogonal to the family of 
circles centered at the origin.
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Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas xy = a is 
y′ = -y>x. On an orthogonal trajectory the slope of the tangent line at this same point 
must be the negative reciprocal, or x >y. Therefore, the orthogonal trajectories must satisfy 
the differential equation

dy
dx

= x
y .

This differential equation is separable and we solve it as in Section 7.2:

y dy = x dx Separate variables.

L
y dy =

L
x dx Integrate both sides.

1
2

y2 = 1
2

x2 + C

y2 - x2 = b, (5)

where b = 2C is an arbitrary constant. The orthogonal trajectories are the family of 
hyperbolas given by Equation (5) and sketched in Figure 9.13.

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-
ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as 
well. The mixture is kept uniform by stirring and flows out of the container at a known 
rate. In this process, it is often important to know the concentration of the chemical in the 
container at any given time. The differential equation describing the process is based on 
the formula

Rate of change
of amount

in container
= £ rate at which

chemical
arrives

≥ - £ rate at which
chemical
departs.

≥ . (6)

If y(t) is the amount of chemical in the container at time t and V(t) is the total volume of 
liquid in the container at time t, then the departure rate of the chemical at time t is

Departure rate =
y(t)
V(t)

# (outflow rate)

= a concentration in
container at time t

b # (outflow rate). (7)

Accordingly, Equation (6) becomes

dy
dt

= (chemical>s arrival rate) -
y(t)
V(t)

# (outflow rate). (8)

If, say, y is measured in pounds, V in gallons, and t in minutes, the units in Equation (8) are

pounds
minutes

=
pounds
minutes

-
pounds
gallons

# gallons
minutes

.

EXAMPLE 3  In an oil refinery, a storage tank contains 2000 gal of gasoline that ini-
tially has 100 lb of an additive dissolved in it. In preparation for winter weather, gasoline 
containing 2 lb of additive per gallon is pumped into the tank at a rate of 40 gal >min.

x

y

x2 − y2 = b
b ≠ 0

xy = a,
a ≠ 0

0

FIGURE 9.13 Each curve is orthogonal 
to every curve it meets in the other family 
(Example 2).
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Solution Let y be the amount (in pounds) of additive in the tank at time t. We know that 
y = 100 when t = 0. The number of gallons of gasoline and additive in solution in the 
tank at any time t is

V(t) = 2000 gal + a40
gal
min

- 45
gal
min
b (t min)

= (2000 - 5t) gal.

Therefore,

Rate out =
y(t)
V(t)

# outflow rate Eq. (7)

= a y
2000 - 5t

b 45
Outflow rate is 45 gal/min 
and V = 2000 - 5t .

=
45y

2000 - 5t
lb

min
.

Also,

Rate in = a2 lb
gal
b a40

gal
min
b

= 80
lb

min
.

The differential equation modeling the mixture process is

dy
dt

= 80 -
45y

2000 - 5t
Eq. (8)

in pounds per minute.
To solve this differential equation, we first write it in standard linear form:

dy
dt

+ 45
2000 - 5t

y = 80.

Thus, P(t) = 45>(2000 - 5t) and Q(t) = 80. The integrating factor is

y(t) = e1P dt = e1
45

2000 - 5t dt

= e-9 ln (2000-5t) 2000 - 5t 7 0

= (2000 - 5t)-9 .

40 gal�min containing 2 lb�gal

45 gal�min containing y  lb�gal
V

FIGURE 9.14 The storage tank in Example 3 mixes input 
liquid with stored liquid to produce an output liquid.

The well-mixed solution is pumped out at a rate of 45 gal >min. How much of the additive 
is in the tank 20 min after the pumping process begins (Figure 9.14)?
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Multiplying both sides of the standard equation by y(t) and integrating both sides gives

(2000 - 5t)-9 # ady
dt

+ 45
2000 - 5t

yb = 80(2000 - 5t)-9

(2000 - 5t)-9
dy
dt

+ 45(2000 - 5t)-10 y = 80(2000 - 5t)-9

d
dt
3 (2000 - 5t)-9y4 = 80(2000 - 5t)-9

(2000 - 5t)-9y =
L

80(2000 - 5t)-9 dt

(2000 - 5t)-9y = 80 # (2000 - 5t)-8

(-8)(-5)
+ C.

The general solution is

y = 2(2000 - 5t) + C(2000 - 5t)9.

Because y = 100 when t = 0, we can determine the value of C:

100 = 2(2000 - 0) + C(2000 - 0)9

C = - 3900
(2000)9 .

The particular solution of the initial value problem is

y = 2(2000 - 5t) - 3900
(2000)9 (2000 - 5t)9.

The amount of additive in the tank 20 min after the pumping begins is

y(20) = 232000 - 5(20)4 - 3900
(2000)9 32000 - 5(20)4 9 ≈ 1342 lb.

Exercises 9.3
Motion Along a Line
1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast-

ing on level ground at 9 m > sec. The k in Equation (1) is about 3.9 
kg > sec.

a. About how far will the cyclist coast before reaching a com-
plete stop?

b. How long will it take the cyclist’s speed to drop to 1 m > sec?

2. Coasting battleship Suppose that an Iowa class battleship has 
mass around 51,000 metric tons (51,000,000 kg) and a k value in 

Equation (1) of about 59,000 kg > sec. Assume that the ship loses 
power when it is moving at a speed of 9 m > sec.

a. About how far will the ship coast before it is dead in the water?

b. About how long will it take the ship’s speed to drop to 1 m>sec?

3. The data in Table 9.4 were collected with a motion detector and a 
CBL™ by Valerie Sharritts, then a mathematics teacher at St. Fran-
cis DeSales High School in Columbus, Ohio. The table shows the 
distance s (meters) coasted on inline skates in t sec by her daughter 
Ashley when she was 10 years old. Find a model for Ashley’s 
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position given by the data in Table 9.4 in the form of Equation (2). 
Her initial velocity was y0 = 2.75 m>sec, her mass m = 39.92 kg
(she weighed 88 lb), and her total coasting distance was 4.91 m.

4. Coasting to a stop Table 9.5 shows the distance s (meters) 
coasted on inline skates in terms of time t (seconds) by Kelly 
Schmitzer. Find a model for her position in the form of Equation 
(2). Her initial velocity was y0 = 0.80 m>sec, her mass 
m = 49.90 kg (110 lb), and her total coasting distance was 1.32 m.

TABLE 9.4 Ashley Sharritts skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 2.24 3.05 4.48 4.77

0.16 0.31 2.40 3.22 4.64 4.82

0.32 0.57 2.56 3.38 4.80 4.84

0.48 0.80 2.72 3.52 4.96 4.86

0.64 1.05 2.88 3.67 5.12 4.88

0.80 1.28 3.04 3.82 5.28 4.89

0.96 1.50 3.20 3.96 5.44 4.90

1.12 1.72 3.36 4.08 5.60 4.90

1.28 1.93 3.52 4.18 5.76 4.91

1.44 2.09 3.68 4.31 5.92 4.90

1.60 2.30 3.84 4.41 6.08 4.91

1.76 2.53 4.00 4.52 6.24 4.90

1.92 2.73 4.16 4.63 6.40 4.91

2.08 2.89 4.32 4.69 6.56 4.91

TABLE 9.5 Kelly Schmitzer skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 1.5 0.89 3.1 1.30

0.1 0.07 1.7 0.97 3.3 1.31

0.3 0.22 1.9 1.05 3.5 1.32

0.5 0.36 2.1 1.11 3.7 1.32

0.7 0.49 2.3 1.17 3.9 1.32

0.9 0.60 2.5 1.22 4.1 1.32

1.1 0.71 2.7 1.25 4.3 1.32

1.3 0.81 2.9 1.28 4.5 1.32

Orthogonal Trajectories
In Exercises 5–10, find the orthogonal trajectories of the family of 
curves. Sketch several members of each family.

5. y = mx 6. y = cx2

7. kx2 + y2 = 1 8. 2x2 + y2 = c2

9. y = ce-x 10. y = ekx

11. Show that the curves 2x2 + 3y2 = 5 and y2 = x3 are orthogonal.

12. Find the family of solutions of the given differential equation and 
the family of orthogonal trajectories. Sketch both families.

a. x dx + y dy = 0 b. x dy - 2y dx = 0

Mixture Problems
13. Salt mixture A tank initially contains 100 gal of brine in which 

50 lb of salt are dissolved. A brine containing 2 lb >gal of salt runs 
into the tank at the rate of 5 gal >min. The mixture is kept uniform 
by stirring and flows out of the tank at the rate of 4 gal >min.

a. At what rate (pounds per minute) does salt enter the tank at 
time t?

b. What is the volume of brine in the tank at time t?

c. At what rate (pounds per minute) does salt leave the tank at 
time t?

d. Write down and solve the initial value problem describing the 
mixing process.

e. Find the concentration of salt in the tank 25 min after the 
process starts.

14. Mixture problem A 200-gal tank is half full of distilled water. 
At time t = 0, a solution containing 0.5 lb >gal of concentrate 
enters the tank at the rate of 5 gal >min, and the well-stirred mix-
ture is withdrawn at the rate of 3 gal >min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate 
will it contain?

15. Fertilizer mixture A tank contains 100 gal of fresh water. A 
solution containing 1 lb >gal of soluble lawn fertilizer runs into 
the tank at the rate of 1 gal >min, and the mixture is pumped out 
of the tank at the rate of 3 gal >min. Find the maximum amount of 
fertilizer in the tank and the time required to reach the maximum.

16. Carbon monoxide pollution An executive conference room of a 
corporation contains 4500 ft3 of air initially free of carbon monox-
ide. Starting at time t = 0, cigarette smoke containing 4% carbon 
monoxide is blown into the room at the rate of 0.3 ft3>min. A ceil-
ing fan keeps the air in the room well circulated and the air leaves 
the room at the same rate of 0.3 ft3>min. Find the time when the 
concentration of carbon monoxide in the room reaches 0.01%.

9.4 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the 
concavity of the graph. We can build on our knowledge of how derivatives determine the 
shape of a graph to solve differential equations graphically. We will see that the ability to 
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discern physical behavior from graphs is a powerful tool in understanding real-world sys-
tems. The starting ideas for a graphical solution are the notions of phase line and equilib-
rium value. We arrive at these notions by investigating, from a point of view quite diff-
erent from that studied in Chapter 4, what happens when the derivative of a differentiable 
function is zero.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

1
5

  ln (5y - 15) = x + 1,

we obtain

1
5
a 5

5y - 15
b dy

dx
= 1.

Solving for y′ = dy>dx we find y′ = 5y - 15 = 5(y - 3). In this case the derivative y′
is a function of y only (the dependent variable) and is zero when y = 3.

A differential equation for which dy >dx is a function of y only is called an autonomous
differential equation. Let’s investigate what happens when the derivative in an autonomous 
equation equals zero. We assume any derivatives are continuous.

DEFINITION If dy>dx = g(y) is an autonomous differential equation, then the 
values of y for which dy>dx = 0 are called equilibrium values or rest points.

Thus, equilibrium values are those at which no change occurs in the dependent vari-
able, so y is at rest. The emphasis is on the value of y where dy>dx = 0, not the value of 
x, as we studied in Chapter 4. For example, the equilibrium values for the autonomous 
differential equation

dy
dx

= (y + 1)(y - 2)

are y = -1 and y = 2.
To construct a graphical solution to an autonomous differential equation, we first 

make a phase line for the equation, a plot on the y-axis that shows the equation’s equilib-
rium values along with the intervals where dy >dx and d2y>dx2 are positive and negative. 
Then we know where the solutions are increasing and decreasing, and the concavity of the 
solution curves. These are the essential features we found in Section 4.4, so we can deter-
mine the shapes of the solution curves without having to find formulas for them.

EXAMPLE 1  Draw a phase line for the equation

dy
dx

= ( y + 1)(y - 2)

and use it to sketch solutions to the equation.

Solution

1. Draw a number line for y and mark the equilibrium values y = -1 and y = 2, where
dy>dx = 0.

−1 2
y



We can encapsulate the information about the sign of y′ on the phase line itself. 
Since y′ 7 0 on the interval to the left of y = -1, a solution of the differential equa-
tion with a y-value less than -1 will increase from there toward y = -1. We display 
this information by drawing an arrow on the interval pointing to -1.

–1 2
y

y′ > 0 y′ < 0 y′ > 0

2. Identify and label the intervals where y′ 7 0 and y′ 6 0. This step resembles what 
we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

−1 2
y

Similarly, y′ 6 0 between y = -1 and y = 2, so any solution with a value in 
this interval will decrease toward y = -1.

For y 7 2, we have y′ 7 0, so a solution with a y-value greater than 2 will 
increase from there without bound.

In short, solution curves below the horizontal line y = -1 in the xy-plane rise 
toward y = -1. Solution curves between the lines y = -1 and y = 2 fall away from 
y = 2 toward y = -1. Solution curves above y = 2 rise away from y = 2 and keep 
going up.

3. Calculate y″ and mark the intervals where y″ 7 0 and y″ 6 0. To find y″, we dif-
ferentiate y′ with respect to x, using implicit differentiation.

y′ = (y + 1)(y - 2) = y2 - y - 2

y″ = d
dx

(y′) = d
dx

(y2 - y - 2)

= 2yy′ - y′

= (2y - 1)y′

= (2y - 1)(y + 1)(y - 2).

Formula for y′c

differentiated implicitly
with respect to x

From this formula, we see that y″ changes sign at y = -1, y = 1>2, and y = 2. We 
add the sign information to the phase line.

−1 2
y

y′ > 0 y′ < 0 y′ < 0 y′ > 0
y″ < 0 y″ > 0 y″ < 0 y″ > 0

1
2

4. Sketch an assortment of solution curves in the xy-plane. The horizontal lines 
y = -1, y = 1>2, and y = 2 partition the plane into horizontal bands in which we 
know the signs of y′ and y″. In each band, this information tells us whether the solu-
tion curves rise or fall and how they bend as x increases (Figure 9.15).

The “equilibrium lines” y = -1 and y = 2 are also solution curves. (The constant 
functions y = -1 and y = 2 satisfy the differential equation.) Solution curves that cross 
the line y = 1>2 have an inflection point there. The concavity changes from concave 
down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the 
equilibrium value y = -1 as x increases. Solutions in the upper band rise steadily 
away from the value y = 2.

y

x

−1

2

0

y′ > 0

y′ < 0

y′ < 0

y′ > 0

y″ < 0

y″ > 0

y″ < 0

y″ > 0

1
2

FIGURE 9.15 Graphical solutions from 
Example 1 include the horizontal lines 
y = -1 and y = 2 through the equilib-
rium values. No two solution curves can 
ever cross or touch each other.
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Stable and Unstable Equilibria

Look at Figure 9.15 once more, in particular at the behavior of the solution curves near the 
equilibrium values. Once a solution curve has a value near y = -1, it tends steadily 
toward that value; y = -1 is a stable equilibrium. The behavior near y = 2 is just the 
opposite: All solutions except the equilibrium solution y = 2 itself move away from it as 
x increases. We call y = 2 an unstable equilibrium. If the solution is at that value, it 
stays, but if it is off by any amount, no matter how small, it moves away. (Sometimes an 
equilibrium value is unstable because a solution moves away from it only on one side of 
the point.)

Now that we know what to look for, we can already see this behavior on the initial 
phase line (the second diagram in Step 2 of Example 1). The arrows lead away from 
y = 2 and, once to the left of y = 2, toward y = -1.

We now present several applied examples for which we can sketch a family of solu-
tion curves to the differential equation models using the method in Example 1.

Newton’s Law of Cooling

In Section 7.2 we solved analytically the differential equation

dH
dt

= -k(H - HS), k 7 0

modeling Newton’s Law of Cooling. Here H is the temperature of an object at time t and 
HS is the constant temperature of the surrounding medium.

Suppose that the surrounding medium (say, a room in a house) has a constant Celsius 
temperature of 15°C. We can then express the difference in temperature as H(t) - 15.
Assuming H is a differentiable function of time t, by Newton’s Law of Cooling, there is a 
constant of proportionality k 7 0 such that

dH
dt

= -k(H - 15) (1)

(minus k to give a negative derivative when H 7 15).
Since dH>dt = 0 at H = 15, the temperature 15°C is an equilibrium value. If 

H 7 15, Equation (1) tells us that (H - 15) 7 0 and dH>dt 6 0. If the object is hotter 
than the room, it will get cooler. Similarly, if H 6 15, then (H - 15) 6 0 and 
dH>dt 7 0. An object cooler than the room will warm up. Thus, the behavior described 
by Equation (1) agrees with our intuition of how temperature should behave. These obser-
vations are captured in the initial phase line diagram in Figure 9.16. The value H = 15 is 
a stable equilibrium.

We determine the concavity of the solution curves by differentiating both sides of 
Equation (1) with respect to t:

d
dt
adH

dt
b = d

dt
(-k(H - 15))

d2H
dt2 = -k

dH
dt

.

Since -k is negative, we see that d2H>dt2 is positive when dH>dt 6 0 and negative when 
dH>dt 7 0. Figure 9.17 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the 
equilibrium value of 15°C, the graph of H(t) will be decreasing and concave upward. If the 
temperature is below 15°C (the temperature of the surrounding medium), the graph of H(t)
will be increasing and concave downward. We use this information to sketch typical solu-
tion curves (Figure 9.18).

15
H

> 0 < 0dH
dt

dH
dt

FIGURE 9.16 First step in construct-
ing the phase line for Newton’s Law of 
Cooling. The temperature tends toward the 
equilibrium (surrounding-medium) value 
in the long run.

15
H

< 0dH
dt

> 0dH
dt

< 0d2H
dt2 > 0d2H

dt2

FIGURE 9.17 The complete phase line 
for Newton’s Law of Cooling.

H

Initial
temperature

t

15

Temperature
of surrounding
medium

Initial
temperature

FIGURE 9.18 Temperature versus 
time. Regardless of initial temperature, 
the object’s temperature H(t) tends toward 
15°C, the temperature of the surrounding 
medium.
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From the upper solution curve in Figure 9.18, we see that as the object cools down, 
the rate at which it cools slows down because dH>dt approaches zero. This observation is 
implicit in Newton’s Law of Cooling and contained in the differential equation, but the 
flattening of the graph as time advances gives an immediate visual representation of the 
phenomenon.

A Falling Body Encountering Resistance

Newton observed that the rate of change in momentum encountered by a moving object is 
equal to the net force applied to it. In mathematical terms,

F = d
dt

 (my), (2)

where F is the net force acting on the object, and m and y are the object’s mass and veloc-
ity. If m varies with time, as it will if the object is a rocket burning fuel, the right-hand side 
of Equation (2) expands to

m
dy
dt

+ ydm
dt

using the Derivative Product Rule. In many situations, however, m is constant, dm>dt = 0,
and Equation (2) takes the simpler form

F = m
dy
dt

or F = ma, (3)

known as Newton’s second law of motion (see Section 9.3).
In free fall, the constant acceleration due to gravity is denoted by g and the one force 

propelling the body downward is

Fp = mg,

the force due to gravity. If, however, we think of a real body falling through the air—say, a 
penny from a great height or a parachutist from an even greater height—we know that at some 
point air resistance is a factor in the speed of the fall. A more realistic model of free fall would 
include air resistance, shown as a force Fr in the schematic diagram in Figure 9.19.

For low speeds well below the speed of sound, physical experiments have shown that 
Fr is approximately proportional to the body’s velocity. The net force on the falling body 
is therefore

F = Fp - Fr ,

giving

m
dy
dt

= mg - ky

dy
dt

= g - k
my . (4)

We can use a phase line to analyze the velocity functions that solve this differential equation.
The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to 

zero, is

y =
mg
k

.

If the body is initially moving faster than this, dy>dt is negative and the body slows 
down. If the body is moving at a velocity below mg>k, then dy>dt 7 0 and the body 
speeds up. These observations are captured in the initial phase line diagram in Figure 9.20.

y

> 0 < 0dy
dt

dy
dt

mg
k

FIGURE 9.20 Initial phase line for the 
falling body encountering resistance.

m
y = 0

y positive

Fp = mg

Fr = ky

FIGURE 9.19 An object falling under the
propulsion due to gravity, with a resistive 
force assumed to be proportional to the 
velocity.
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We determine the concavity of the solution curves by differentiating both sides of 
Equation (4) with respect to t:

d2y

dt2 = d
dt
ag - k

myb = - k
m

dy
dt

.

We see that d2y>dt2 6 0 when y 6 mg>k and d2y>dt2 7 0 when y 7 mg>k.
Figure 9.21 adds this information to the phase line. Notice the similarity to the phase line 
for Newton’s Law of Cooling (Figure 9.17). The solution curves are similar as well 
(Figure 9.22).

Figure 9.22 shows two typical solution curves. Regardless of the initial velocity, we 
see the body’s velocity tending toward the limiting value y = mg>k. This value, a stable 
equilibrium point, is called the body’s terminal velocity. Skydivers can vary their termi-
nal velocity from 95 mph to 180 mph by changing the amount of body area opposing the 
fall, which affects the value of k.

Logistic Population Growth

In Section 9.3 we examined population growth using the model of exponential change. 
That is, if P represents the number of individuals and we neglect departures and arrivals, 
then

dP
dt

= kP, (5)

where k 7 0 is the birth rate minus the death rate per individual per unit time.
Because the natural environment has only a limited number of resources to sustain 

life, it is reasonable to assume that only a maximum population M can be accommodated. 
As the population approaches this limiting population or carrying capacity, resources 
become less abundant and the growth rate k decreases. A simple relationship exhibiting 
this behavior is

k = r (M - P),

where r 7 0 is a constant. Notice that k decreases as P increases toward M and that k is 
negative if P is greater than M. Substituting r(M - P) for k in Equation (5) gives the dif-
ferential equation

dP
dt

= r(M - P)P = rMP - rP2. (6)

The model given by Equation (6) is referred to as logistic growth.
We can forecast the behavior of the population over time by analyzing the phase line 

for Equation (6). The equilibrium values are P = M  and P = 0, and we can see that 
dP>dt 7 0 if 0 6 P 6 M  and dP>dt 6 0 if P 7 M. These observations are recorded 
on the phase line in Figure 9.23.

We determine the concavity of the population curves by differentiating both sides of 
Equation (6) with respect to t:

d2P
dt2 = d

dt
(rMP - rP2)

= rM
dP
dt

- 2rP
dP
dt

= r(M - 2P)
dP
dt

. (7)

If P = M>2, then d2P>dt2 = 0. If P 6 M>2, then (M - 2P) and dP>dt are positive and 
d2P>dt2 7 0. If M>2 6 P 6 M, then (M - 2P) 6 0, dP>dt 7 0, and d2P>dt2 6 0.

y

< 0dy
dt

> 0dy
dt

< 0d2y

dt2 > 0d2y

dt2

mg
k

FIGURE 9.21 The completed phase line 
for the falling body.

Initial
velocity

Initial
velocity

y

t

mg
k

mg
k

y =

FIGURE 9.22 Typical velocity curves for 
a falling body encountering resistance. The 
value y = mg>k is the terminal velocity.

0 M
P

> 0 < 0dP
dt

dP
dt

FIGURE 9.23 The initial phase line for 
logistic growth (Equation 6).
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If P 7 M, then (M - 2P) and dP >dt are both negative and d2P>dt2 7 0. We add this 
information to the phase line (Figure 9.24).

The lines P = M>2 and P = M  divide the first quadrant of the tP-plane into horizon-
tal bands in which we know the signs of both dP >dt and d2P>dt2. In each band, we know 
how the solution curves rise and fall, and how they bend as time passes. The equilibrium 
lines P = 0 and P = M  are both population curves. Population curves crossing the line 
P = M>2 have an inflection point there, giving them a sigmoid shape (curved in two 
directions like a letter S). Figure 9.25 displays typical population curves. Notice that each 
population curve approaches the limiting population M as t S q.

0 M
P

< 0dP
dt

> 0dP
dt

> 0d2P
dt2 > 0d2P

dt2< 0d2P
dt2

M
2

FIGURE 9.24 The completed phase line 
for logistic growth (Equation 6).

Time

Limiting
populationM

Po
pu

la
tio

n

t

P

M
2

FIGURE 9.25 Population curves for logistic growth.

Phase Lines and Solution Curves
In Exercises 1–8,

a. Identify the equilibrium values. Which are stable and which 
are unstable?

b. Construct a phase line. Identify the signs of y′ and y″.
  c. Sketch several solution curves.

1.
dy
dx

= (y + 2)(y - 3) 2.
dy
dx

= y2 - 4

3.
dy
dx

= y3 - y 4.
dy
dx

= y2 - 2y

5. y′ = 2y, y 7 0 6. y′ = y - 2y, y 7 0

7. y′ = (y - 1)(y - 2)(y - 3) 8. y′ = y3 - y2

Models of Population Growth
The autonomous differential equations in Exercises 9–12 represent 
models for population growth. For each exercise, use a phase line 
analysis to sketch solution curves for P(t), selecting different starting 
values P(0). Which equilibria are stable, and which are unstable?

9.
dP
dt

= 1 - 2P 10.
dP
dt

= P(1 - 2P)

11.
dP
dt

= 2P(P - 3) 12.
dP
dt

= 3P(1 - P)aP - 1
2
b

13. Catastrophic change in logistic growth Suppose that a healthy 
population of some species is growing in a limited environment 

Exercises 9.4
and that the current population P0 is fairly close to the carrying 
capacity M0. You might imagine a population of fish living in a 
freshwater lake in a wilderness area. Suddenly a catastrophe such 
as the Mount St. Helens volcanic eruption contaminates the lake 
and destroys a significant part of the food and oxygen on which 
the fish depend. The result is a new environment with a carrying 
capacity M1 considerably less than M0 and, in fact, less than the 
current population P0. Starting at some time before the catastro-
phe, sketch a “before-and-after” curve that shows how the fish 
population responds to the change in environment.

14. Controlling a population The fish and game department in a 
certain state is planning to issue hunting permits to control the 
deer population (one deer per permit). It is known that if the deer 
population falls below a certain level m, the deer will become 
extinct. It is also known that if the deer population rises above the 
carrying capacity M, the population will decrease back to M
through disease and malnutrition.

a. Discuss the reasonableness of the following model for the 
growth rate of the deer population as a function of time:

dP
dt

= rP(M - P)(P - m),

where P is the population of the deer and r is a positive con-
stant of proportionality. Include a phase line.

b. Explain how this model differs from the logistic model 
dP>dt = rP(M - P) . Is it better or worse than the logistic 
model?
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c. Show that if P 7 M  for all t, then limtSq P(t) = M.

d. What happens if P 6 m for all t?

e. Discuss the solutions to the differential equation. What are 
the equilibrium points of the model? Explain the dependence 
of the steady-state value of P on the initial values of P. About 
how many permits should be issued?

Applications and Examples
15. Skydiving If a body of mass m falling from rest under the 

action of gravity encounters an air resistance proportional to the 
square of velocity, then the body’s velocity t seconds into the fall 
satisfies the equation

m
dy
dt

= mg - ky2, k 7 0

  where k is a constant that depends on the body’s aerodynamic 
properties and the density of the air. (We assume that the fall is 
too short to be affected by changes in the air’s density.)

a. Draw a phase line for the equation.

b. Sketch a typical velocity curve.

c. For a 110-lb skydiver (mg = 110) and with time in seconds 
and distance in feet, a typical value of k is 0.005. What is the 
diver’s terminal velocity? Repeat for a 200-lb skydiver.

16. Resistance proportional to !Y A body of mass m is projected 
vertically downward with initial velocity y0. Assume that the 
resisting force is proportional to the square root of the velocity 
and find the terminal velocity from a graphical analysis.

17. Sailing A sailboat is running along a straight course with the 
wind providing a constant forward force of 50 lb. The only other 
force acting on the boat is resistance as the boat moves through 
the water. The resisting force is numerically equal to five times 
the boat’s speed, and the initial velocity is 1 ft > sec. What is the 
maximum velocity in feet per second of the boat under this wind?

18. The spread of information Sociologists recognize a phenome-
non called social diffusion, which is the spreading of a piece of 
information, technological innovation, or cultural fad among a pop-
ulation. The members of the population can be divided into two 
classes: those who have the information and those who do not. In a 
fixed population whose size is known, it is reasonable to assume 
that the rate of diffusion is proportional to the number who have the 
information times the number yet to receive it. If X denotes the num-
ber of individuals who have the information in a population of N
people, then a mathematical model for social diffusion is given by

dX
dt

= kX(N - X),

  where t represents time in days and k is a positive constant.

a. Discuss the reasonableness of the model.

b. Construct a phase line identifying the signs of X′ and X″.
c. Sketch representative solution curves.

d. Predict the value of X for which the information is spreading 
most rapidly. How many people eventually receive the infor-
mation?

19. Current in an RL circuit The accompanying diagram repre-
sents an electrical circuit whose total resistance is a constant R
ohms and whose self-inductance, shown as a coil, is L henries, 
also a constant. There is a switch whose terminals at a and b can 
be closed to connect a constant electrical source of V volts. From 
Section 9.2, we have

L
di
dt

+ Ri = V,

  where i is the current in amperes and t is the time in seconds.

Switch

R L

a b

i

V
+ −

      Use a phase line analysis to sketch the solution curve assum-
ing that the switch in the RL circuit is closed at time t = 0. What 
happens to the current as t S q? This value is called the steady-
state solution.

20. A pearl in shampoo Suppose that a pearl is sinking in a thick 
fluid, like shampoo, subject to a frictional force opposing its fall 
and proportional to its velocity. Suppose that there is also a resis-
tive buoyant force exerted by the shampoo. According to Archi-
medes’ principle, the buoyant force equals the weight of the fluid 
displaced by the pearl. Using m for the mass of the pearl and P for 
the mass of the shampoo displaced by the pearl as it descends, 
complete the following steps.

a. Draw a schematic diagram showing the forces acting on the 
pearl as it sinks, as in Figure 9.19.

b. Using y(t) for the pearl’s velocity as a function of time t,
write a differential equation modeling the velocity of the 
pearl as a falling body.

c. Construct a phase line displaying the signs of y′ and y″.
d. Sketch typical solution curves.

e. What is the terminal velocity of the pearl?

9.5 Systems of Equations and Phase Planes

In some situations we are led to consider not one, but several, first-order differential equa-
tions. Such a collection is called a system of differential equations. In this section we pres-
ent an approach to understanding systems through a graphical procedure known as a 
phase-plane analysis. We present this analysis in the context of modeling the populations 
of trout and bass living in a common pond.
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Phase Planes

A general system of two first-order differential equations may take the form

dx
dt

= F(x, y),

dy
dt

= G(x, y).

Such a system of equations is called autonomous because dx>dt and dy>dt do not depend 
on the independent variable time t, but only on the dependent variables x and y. A solution
of such a system consists of a pair of functions x(t) and y(t) that satisfies both of the dif-
ferential equations simultaneously for every t over some time interval (finite or infinite).

We cannot look at just one of these equations in isolation to find solutions x(t) or y(t)
since each derivative depends on both x and y. To gain insight into the solutions, we look 
at both dependent variables together by plotting the points (x(t), y(t)) in the xy-plane start-
ing at some specified point. Therefore the solution functions define a solution curve 
through the specified point, called a trajectory of the system. The xy-plane itself, in which 
these trajectories reside, is referred to as the phase plane. Thus we consider both solutions 
together and study the behavior of all the solution trajectories in the phase plane. It can be 
proved that two trajectories can never cross or touch each other. (Solution trajectories are 
examples of parametric curves, which are studied in detail in Chapter 11.)

A Competitive-Hunter Model

Imagine two species of fish, say trout and bass, competing for the same limited resources 
(such as food and oxygen) in a certain pond. We let x(t) represent the number of trout and 
y(t) the number of bass living in the pond at time t. In reality x(t) and y(t) are always inte-
ger valued, but we will approximate them with real-valued differentiable functions. This 
allows us to apply the methods of differential equations.

Several factors affect the rates of change of these populations. As time passes, each 
species breeds, so we assume its population increases proportionally to its size. Taken by 
itself, this would lead to exponential growth in each of the two populations. However, 
there is a countervailing effect from the fact that the two species are in competition. A 
large number of bass tends to cause a decrease in the number of trout, and vice versa. Our 
model takes the size of this effect to be proportional to the frequency with which the two 
species interact, which in turn is proportional to xy, the product of the two populations. 
These considerations lead to the following model for the growth of the trout and bass in 
the pond:

dx
dt

= (a - by)x, (1a)

dy
dt

= (m - nx)y. (1b)

Here x(t) represents the trout population, y(t) the bass population, and a, b, m, n are positive 
constants. A solution of this system then consists of a pair of functions x(t) and y(t) that 
gives the population of each fish species at time t. Each equation in (1) contains both of the 
unknown functions x and y, so we are unable to solve them individually. Instead, we will use 
a graphical analysis to study the solution trajectories of this competitive-hunter model.

We now examine the nature of the phase plane in the trout-bass population model. We 
will be interested in the 1st quadrant of the xy-plane, where x Ú 0 and y Ú 0, since popu-
lations cannot be negative. First, we determine where the bass and trout populations are 
both constant. Noting that the (x(t), y(t)) values remain unchanged when dx>dt = 0 and 
dy>dt = 0, Equations (1a and 1b) then become

(a - by)x = 0,

(m - nx)y = 0.

This pair of simultaneous equations has two solutions: (x, y) = (0, 0) and (x, y) =
(m>n, a>b). At these (x, y) values, called equilibrium or rest points, the two populations 
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remain at constant values over all time. The point (0, 0) represents a pond containing no 
members of either fish species; the point (m>n, a>b) corresponds to a pond with an 
unchanging number of each fish species.

Next, we note that if y = a>b, then Equation (1a) implies dx>dt = 0, so the trout 
population x(t) is constant. Similarly, if x = m>n, then Equation (1b) implies dy>dt = 0,
and the bass population y(t) is constant. This information is recorded in Figure 9.26.

In setting up our competitive-hunter model, precise values of the constants a, b, m, n will 
not generally be known. Nonetheless, we can analyze the system of Equations (1) to learn the 
nature of its solution trajectories. We begin by determining the signs of dx>dt and dy>dt
throughout the phase plane. Although x(t) represents the number of trout and y(t) the number 
of bass at time t, we are thinking of the pair of values (x(t), y(t)) as a point tracing out a trajec-
tory curve in the phase plane. When dx>dt is positive, x(t) is increasing and the point is mov-
ing to the right in the phase plane. If dx>dt is negative, the point is moving to the left. Likewise, 
the point is moving upward where dy>dt is positive and downward where dy>dt is negative.

We saw that dy>dt = 0 along the vertical line x = m>n. To the left of this line, dy>dt
is positive since dy>dt = (m - nx)y and x 6 m>n. So the trajectories on this side of the 
line are directed upward. To the right of this line, dy>dt is negative and the trajectories 
point downward. The directions of the associated trajectories are indicated in Figure 9.27. 
Similarly, above the horizontal line y = a>b, we have dx>dt 6 0 and the trajectories 
head leftward; below this line they head rightward, as shown in Figure 9.28. Combining 
this information gives four distinct regions in the plane A, B, C, D, with their respective 
trajectory directions shown in Figure 9.29.

Next, we examine what happens near the two equilibrium points. The trajectories near 
(0, 0) point away from it, upward and to the right. The behavior near the equilibrium point 
(m>n, a>b) depends on the region in which a trajectory begins. If it starts in region B, for 
instance, then it will move downward and leftward toward the equilibrium point. Depend-
ing on where the trajectory begins, it may move downward into region D, leftward into 
region A, or perhaps straight into the equilibrium point. If it enters into regions A or D,

FIGURE 9.27 To the left 
of the line x = m>n the 
trajectories move upward, 
and to the right they move 
downward.
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FIGURE 9.28 Above the 
line y = a>b the trajectories 
move to the left, and below it 
they move to the right.
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FIGURE 9.29 Composite graphical 
analysis of the trajectory directions in the 
four regions determined by x = m>n and 
y = a>b.
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FIGURE 9.26 Rest points in the competitive-hunter model given by Equations (1a) and (1b).
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then it will continue to move away from the rest point. We say that both rest points are 
unstable, meaning (in this setting) there are trajectories near each point that head away 
from them. These features are indicated in Figure 9.30.

It turns out that in each of the half-planes above and below the line y = a>b, there is 
exactly one trajectory approaching the equilibrium point (m>n, a>b) (see Exercise 7). 
Above these two trajectories the bass population increases and below them it decreases. 
The two trajectories approaching the equilibrium point are suggested in Figure 9.31.

Our graphical analysis leads us to conclude that, under the assumptions of the 
competitive-hunter model, it is unlikely that both species will reach equilibrium levels. 
This is because it would be almost impossible for the fish populations to move exactly 
along one of the two approaching trajectories for all time. Furthermore, the initial popula-
tions point (x0, y0) determines which of the two species is likely to survive over time, and 
mutual coexistence of the species is highly improbable.

Limitations of the Phase-Plane Analysis Method

Unlike the situation for the competitive-hunter model, it is not always possible to deter-
mine the behavior of trajectories near a rest point. For example, suppose we know that the 
trajectories near a rest point, chosen here to be the origin (0, 0), behave as in Figure 9.32. 
The information provided by Figure 9.32 is not sufficient to distinguish between the three 
possible trajectories shown in Figure 9.33. Even if we could determine that a trajectory 
near an equilibrium point resembles that of Figure 9.33c, we would still not know how the 
other trajectories behave. It could happen that a trajectory closer to the origin behaves like 
the motions displayed in Figure 9.33a or 9.33b. The spiraling trajectory in Figure 9.33b 
can never actually reach the rest point in a finite time period.

FIGURE 9.31 Qualitative results of 
analyzing the competitive-hunter model. 
There are exactly two trajectories ap-
proaching the point (m>n, a>b).
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FIGURE 9.32 Trajectory direction 
near the rest point (0, 0).

FIGURE 9.34 The solution 
x2 + y2 = 1 is a limit cycle.
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FIGURE 9.30 Motion along the 
trajectories near the rest points (0, 0) 
and (m>n, a>b).
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FIGURE 9.33 Three possible trajectory motions: (a) periodic motion, (b) motion 
toward an asymptotically stable rest point, and (c) motion near an unstable rest point.

Another Type of Behavior

The system

dx
dt

= y + x - x(x2 + y2), (2a)

dy
dt

= -x + y - y(x2 + y2) (2b)

can be shown to have only one equilibrium point at (0, 0). Yet any trajectory starting on the unit 
circle traverses it clockwise because, when x2 + y2 = 1, we have dy>dx = -x>y (see 
Exercise 2). If a trajectory starts inside the unit circle, it spirals outward, asymptotically approach-
ing the circle as t S q. If a trajectory starts outside the unit circle, it spirals inward, again 
asymptotically approaching the circle as t S q. The circle x2 + y2 = 1 is called a limit cycle
of the system (Figure 9.34). In this system, the values of x and y eventually become periodic.
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1. List three important considerations that are ignored in the 
competitive-hunter model as presented in the text.

2. For the system (2a) and (2b), show that any trajectory starting on 
the unit circle x2 + y2 = 1 will traverse the unit circle in a peri-
odic solution. First introduce polar coordinates and rewrite the 
system as dr>dt = r(1 - r2) and -du>dt = -1.

3. Develop a model for the growth of trout and bass, assuming that in 
isolation trout demonstrate exponential decay [so that a 6 0 in 
Equations (1a) and (1b)] and that the bass population grows logisti-
cally with a population limit M. Analyze graphically the motion in 
the vicinity of the rest points in your model. Is coexistence possible?

4. How might the competitive-hunter model be validated? Include a 
discussion of how the various constants a, b, m, and n might be 
estimated. How could state conservation authorities use the model 
to ensure the survival of both species?

5. Consider another competitive-hunter model defined by

dx
dt

= aa1 - x
k1
b x - bxy,

dy
dt

= ma1 -
y

k2
b y - nxy,

  where x and y represent trout and bass populations, respectively.

a. What assumptions are implicitly being made about the 
growth of trout and bass in the absence of competition?

b. Interpret the constants a, b, m, n, k1, and k2 in terms of the 
physical problem.

c. Perform a graphical analysis:

    i) Find the possible equilibrium levels.

   ii) Determine whether coexistence is possible.

    iii) Pick several typical starting points and sketch typical tra-
jectories in the phase plane.

   iv) Interpret the outcomes predicted by your graphical analysis 
in terms of the constants a, b, m, n, k1, and k2.

Note: When you get to part (iii), you should realize that five cases 
exist. You will need to analyze all five cases.

6. An economic model Consider the following economic model. 
Let P be the price of a single item on the market. Let Q be the 
quantity of the item available on the market. Both P and Q are 
functions of time. If one considers price and quantity as two inter-
acting species, the following model might be proposed:

dP
dt

= aPa b
Q

- Pb ,

dQ
dt

= cQ(ƒP - Q),

  where a, b, c, and ƒ are positive constants. Justify and discuss the 
adequacy of the model.

a. If a = 1, b = 20,000, c = 1, and ƒ = 30, find the equilib-
rium points of this system. If possible, classify each equilib-
rium point with respect to its stability. If a point cannot be 
readily classified, give some explanation.

b. Perform a graphical stability analysis to determine what will 
happen to the levels of P and Q as time increases.

c. Give an economic interpretation of the curves that determine 
the equilibrium points.

7. Two trajectories approach equilibrium Show that the two 
trajectories leading to (m>n, a>b) shown in Figure 9.31 are 
unique by carrying out the following steps.

a. From system (1a) and (1b) apply the Chain Rule to derive the 
following equation:

dy
dx

=
(m - nx)y
(a - by)x

.

b. Separate the variables, integrate, and exponentiate to obtain

yae-by = Kxme-nx,

where K is a constant of integration.

c. Let ƒ(y) = ya>eby and g(x) = xm>enx. Show that ƒ(y) has a 
unique maximum of My = (a>eb)a when y = a>b as shown in 
Figure 9.35. Similarly, show that g(x) has a unique maximum 
Mx = (m>en)m when x = m>n, also shown in Figure 9.35.

Exercises 9.5

d. Consider what happens as (x, y) approaches (m>n, a>b). Take 
limits in part (b) as x S m>n and y S a>b to show that either

lim
xSm>n c a

ya

ebyb ae
nx

xmb d = K

ySa>b
or My>Mx = K. Thus any solution trajectory that approaches 
(m>n, a>b) must satisfy

ya

eby = aMy

Mx
b axm

enxb .

e. Show that only one trajectory can approach (m>n, a>b) from 
below the line y = a>b. Pick y0 6 a>b. From Figure 9.35 
you can see that ƒ(y0) 6 My, which implies that

FIGURE 9.35 Graphs of the functions 
ƒ(y) = ya>eby and g(x) = xm>enx.
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My

Mx
axm

enxb = y0
a>eby0 6 My.

  This in turn implies that

xm

enx 6 Mx.

  Figure 9.35 tells you that for g(x) there is a unique value 
x0 6 m>n satisfying this last inequality. That is, for each 
y 6 a>b there is a unique value of x satisfying the equation in 
part (d). Thus there can exist only one trajectory solution 
approaching (m>n, a>b) from below, as shown in Figure 9.36.

f. Use a similar argument to show that the solution trajectory 
leading to (m>n, a>b) is unique if y0 7 a>b.

where a, b, c, d are positive constants. The values of these constants 
vary according to the specific situation being modeled. We can study 
the nature of the population changes without setting these constants to 
specific values.

9. What happens to the rabbit population if there are no foxes present?

10. What happens to the fox population if there are no rabbits present?

11. Show that (0, 0) and (c>d, a>b) are equilibrium points. Explain 
the meaning of each of these points.

12. Show, by differentiating, that the function

C(t) = a ln y(t) - by(t) - dx(t) + c ln x(t)

  is constant when x(t) and y(t) are positive and satisfy the predator-
prey equations.

While x and y may change over time, C(t) does not. Thus, C is a con-
served quantity and its existence gives a conservation law. A trajectory 
that begins at a point (x, y) at time t = 0 gives a value of C that 
remains unchanged at future times. Each value of the constant C gives 
a trajectory for the autonomous system, and these trajectories close up, 
rather than spiraling inward or outward. The rabbit and fox populations 
oscillate through repeated cycles along a fixed trajectory. Figure 9.37 
shows several trajectories for the predator-prey system.

8. Show that the second-order differential equation y″ = F(x, y, y′)
can be reduced to a system of two first-order differential equations

dy
dx

= z,

dz
dx

= F(x, y, z).

  Can something similar be done to the nth-order differential equa-
tion y(n) = F1x, y, y′, y″,c , y(n-1)2?

Lotka-Volterra Equations for a Predator-Prey Model

In 1925 Lotka and Volterra introduced the predator-prey equations, a 
system of equations that models the populations of two species, one of 
which preys on the other. Let x(t) represent the number of rabbits liv-
ing in a region at time t, and y(t) the number of foxes in the same 
region. As time passes, the number of rabbits increases at a rate pro-
portional to their population, and decreases at a rate proportional to 
the number of encounters between rabbits and foxes. The foxes, which 
compete for food, increase in number at a rate proportional to the 
number of encounters with rabbits but decrease at a rate proportional 
to the number of foxes. The number of encounters between rabbits 
and foxes is assumed to be proportional to the product of the two 
populations. These assumptions lead to the autonomous system

dx
dt

= (a - by)x

dy
dt

= (-c + dx)y

13. Using a procedure similar to that in the text for the competitive-
hunter model, show that each trajectory is traversed in a counter-
clockwise direction as time t increases.

Along each trajectory, both the rabbit and fox populations fluctuate 
between their maximum and minimum levels. The maximum and 
minimum levels for the rabbit population occur where the trajectory 
intersects the horizontal line y = a>b. For the fox population, they 
occur where the trajectory intersects the vertical line x = c>d. When 
the rabbit population is at its maximum, the fox population is below 
its maximum value. As the rabbit population declines from this point 
in time, we move counterclockwise around the trajectory, and the fox 
population grows until it reaches its maximum value. At this point the 
rabbit population has declined to x = c>d and is no longer at its peak 
value. We see that the fox population reaches its maximum value at a 
later time than the rabbits. The predator population lags behind that of 
the prey in achieving its maximum values. This lag effect is shown in 
Figure 9.38, which graphs both x(t) and y(t).

FIGURE 9.36 For any 
y 6 a>b only one solution 
trajectory leads to the rest point 
(m>n, a>b).
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14. At some time during a trajectory cycle, a wolf invades the rabbit-
fox territory, eats some rabbits, and then leaves. Does this mean 
that the fox population will from then on have a lower maximum 
value? Explain your answer.
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FIGURE 9.38 The fox and rabbit populations oscillate periodically, 
with the maximum fox population lagging the maximum rabbit 
population.

Chapter 9 Questions to Guide Your Review

1. What is a first-order differential equation? When is a function a 
solution of such an equation?

2. What is a general solution? A particular solution?

3. What is the slope field of a differential equation y′ = ƒ(x, y)?
What can we learn from such fields?

4. Describe Euler’s method for solving the initial value problem 
y′ = ƒ(x, y), y(x0) = y0 numerically. Give an example. Comment 
on the method’s accuracy. Why might you want to solve an initial 
value problem numerically?

5. How do you solve linear first-order differential equations?

6. What is an orthogonal trajectory of a family of curves? Describe 
how one is found for a given family of curves.

7. What is an autonomous differential equation? What are its equi-
librium values? How do they differ from critical points? What is a 
stable equilibrium value? Unstable?

8. How do you construct the phase line for an autonomous differen-
tial equation? How does the phase line help you produce a graph 
which qualitatively depicts a solution to the differential equation?

9. Why is the exponential model unrealistic for predicting long-term 
population growth? How does the logistic model correct for the 
deficiency in the exponential model for population growth? What 
is the logistic differential equation? What is the form of its solu-
tion? Describe the graph of the logistic solution.

10. What is an autonomous system of differential equations? What is 
a solution to such a system? What is a trajectory of the system?

Chapter 9 Practice Exercises

In Exercises 1–16 solve the differential equation.

1. y′ = xey2x - 2 2. y′ = xyex2

3. sec x dy + x cos2 y dx = 0 4. 2x2 dx - 32y cscx dy = 0

5. y′ = ey

xy 6. y′ = xex-y csc y

7. x(x - 1) dy - y dx = 0 8. y′ = (y2 - 1)x-1

9. 2y′ - y = xex>2 10.
y′
2

+ y = e-x sin x

11. xy′ + 2y = 1 - x-1 12. xy′ - y = 2x ln x

13. (1 + ex) dy + (yex + e-x) dx = 0

14. e-x dy + (e-xy - 4x) dx = 0

15. (x + 3y2) dy + y dx = 0 (Hint: d(xy) = y dx + x dy)

16. x dy + (3y - x-2 cos x) dx = 0, x 7 0

Initial Value Problems
In Exercises 17–22 solve the initial value problem.

17. (x + 1)
dy
dx

+ 2y = x, x 7 -1, y(0) = 1

18. x
dy
dx

+ 2y = x2 + 1, x 7 0, y(1) = 1

19.
dy
dx

+ 3x2y = x2, y(0) = -1

20. x dy + (y - cos x) dx = 0, yap
2
b = 0

21. xy′ + (x - 2)y = 3x3e-x, y(1) = 0

22. y dx + (3x - xy + 2) dy = 0, y(2) = -1, y 6 0
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Euler’s Method
In Exercises 23 and 24, use Euler’s method to solve the initial value 
problem on the given interval starting at x0 with dx = 0.1.

23. y′ = y + cos x, y(0) = 0; 0 … x … 2; x0 = 0

24. y′ = (2 - y)(2x + 3), y(-3) = 1; -3 … x … -1; x0 = -3

In Exercises 25 and 26, use Euler’s method with dx = 0.05 to esti-
mate y(c) where y is the solution to the given initial value problem.

25. c = 3;
dy
dx

=
x - 2y
x + 1

, y(0) = 1

26. c = 4;
dy
dx

=
x2 - 2y + 1

x , y(1) = 1

In Exercises 27 and 28, use Euler’s method to solve the initial value 
problem graphically, starting at x0 = 0 with

a. dx = 0.1. b. dx = -0.1.

27.
dy
dx

= 1
ex+y+2 , y(0) = -2

28.
dy
dx

= -
x2 + y
ey + x

, y(0) = 0

Slope Fields
In Exercises 29–32, sketch part of the equation’s slope field. Then add 
to your sketch the solution curve that passes through the point 
P(1, -1). Use Euler’s method with x0 = 1 and dx = 0.2 to estimate 
y(2). Round your answers to four decimal places. Find the exact value 
of y(2) for comparison.

29. y′ = x 30. y′ = 1>x
31. y′ = xy 32. y′ = 1>y
Autonomous Differential Equations and Phase Lines
In Exercises 33 and 34:

a. Identify the equilibrium values. Which are stable and which 
are unstable?

b. Construct a phase line. Identify the signs of y′ and y″.
c. Sketch a representative selection of solution curves.

33.
dy
dx

= y2 - 1 34.
dy
dx

= y - y2

Applications

35. Escape velocity The gravitational attraction F exerted by an 
airless moon on a body of mass m at a distance s from the moon’s 
center is given by the equation F = -mg R2s-2, where g is the 
acceleration of gravity at the moon’s surface and R is the moon’s 
radius (see accompanying figure). The force F is negative because 
it acts in the direction of decreasing s.

T

T

T

T

T

T

Moon’s
center

Mass m

F = −
mgR2

s2

R
s

a. If the body is projected vertically upward from the moon’s
surface with an initial velocity y0 at time t = 0, use Newton’s
second law, F = ma, to show that the body’s velocity at posi-
tion s is given by the equation

y2 =
2gR2

s + y0
2 - 2gR.

Thus, the velocity remains positive as long as y0 Ú 22gR. 
The velocity y0 = 22gR is the moon’s escape velocity. A 
body projected upward with this velocity or a greater one 
will escape from the moon’s gravitational pull.

b. Show that if y0 = 22gR, then

s = Ra1 +
3y0

2R
tb2>3

.

36. Coasting to a stop Table 9.6 shows the distance s (meters) 
coasted on inline skates in t sec by Johnathon Krueger. Find a 
model for his position in the form of Equation (2) of Section 9.3. 
His initial velocity was y0 = 0.86 m>sec, his mass m = 30.84 kg
(he weighed 68 lb), and his total coasting distance 0.97 m.

Chapter 9 Additional and Advanced Exercises

Theory and Applications
1. Transport through a cell membrane Under some conditions, 

the result of the movement of a dissolved substance across a 
cell’s membrane is described by the equation

dy
dt

= k  
A
V

 (c - y).

In this equation, y is the concentration of the substance inside the 
cell and dy>dt is the rate at which y changes over time. The letters

TABLE 9.6 Johnathon Krueger skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 0.93 0.61 1.86 0.93

0.13 0.08 1.06 0.68 2.00 0.94

0.27 0.19 1.20 0.74 2.13 0.95

0.40 0.28 1.33 0.79 2.26 0.96

0.53 0.36 1.46 0.83 2.39 0.96

0.67 0.45 1.60 0.87 2.53 0.97

0.80 0.53 1.73 0.90 2.66 0.97
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k, A, V, and c stand for constants, k being the permeability coeffi-
cient (a property of the membrane), A the surface area of the mem-
brane, V the cell’s volume, and c the concentration of the sub-
stance outside the cell. The equation says that the rate at which the 
concentration changes within the cell is proportional to the differ-
ence between it and the outside concentration.

a. Solve the equation for y(t), using y0 to denote y(0).

b. Find the steady-state concentration, limtSq y(t).

2. Height of a rocket If an external force F acts upon a system 
whose mass varies with time, Newton’s law of motion is

d(my)
dt

= F + (y + u)
dm
dt

.

  In this equation, m is the mass of the system at time t, y is its 
velocity, and y + u is the velocity of the mass that is entering (or 
leaving) the system at the rate dm>dt. Suppose that a rocket of 
initial mass m0 starts from rest, but is driven upward by firing 
some of its mass directly backward at the constant rate of 
dm>dt = -b units per second and at constant speed relative to 
the rocket u = -c. The only external force acting on the rocket is 
F = -mg due to gravity. Under these assumptions, show that 
the height of the rocket above the ground at the end of t seconds 
(t small compared to m0>b) is

y = c c t +
m0 - bt

b
ln

m0 - bt
m0

d - 1
2

gt2.

3. a.  Assume that P(x) and Q(x) are continuous over the interval 
[a, b]. Use the Fundamental Theorem of Calculus, Part 1, to 
show that any function y satisfying the equation

y(x)y =
L
y(x)Q(x) dx + C

for y(x) = e1P(x) dx is a solution to the first-order linear 
equation

dy
dx

+ P(x)y = Q(x).

b. If C = y0y(x0) - 1
x

x0
y(t)Q(t) dt, then show that any solu-

tion y in part (a) satisfies the initial condition y(x0) = y0.

4. (Continuation of Exercise 3.) Assume the hypotheses of Exercise 3, 
and assume that y1(x) and y2(x) are both solutions to the first-
order linear equation satisfying the initial condition y(x0) = y0.

a. Verify that y(x) = y1(x) - y2(x) satisfies the initial value 
problem

y′ + P(x)y = 0, y(x0) = 0.

b. For the integrating factor y(x) = e1P(x) dx, show that

d
dx

(y(x)3y1(x) - y2(x)4) = 0.

Conclude that y(x)3y1(x) - y2(x)4 K constant.

c. From part (a), we have y1(x0) - y2(x0) = 0. Since y(x) 7 0
for a 6 x 6 b, use part (b) to establish that y1(x) - y2(x) K 0
on the interval (a, b). Thus y1(x) = y2(x) for all a 6 x 6 b.

Homogeneous Equations
A first-order differential equation of the form

dy
dx

= Fayxb
is called homogeneous. It can be transformed into an equation whose 
variables are separable by defining the new variable y = y>x. Then, 
y = yx and

dy
dx

= y + x
dy
dx

.

Substitution into the original differential equation and collecting terms 
with like variables then gives the separable equation

dx
x + dy

y - F(y)
= 0 .

After solving this separable equation, the solution of the original 
equation is obtained when we replace y by y>x .

Solve the homogeneous equations in Exercises 5–10. First put the 
equation in the form of a homogeneous equation.

5. (x2 + y2) dx + xy dy = 0

6. x2 dy + (y2 - xy) dx = 0

7. (xey>x + y) dx - x dy = 0

8. (x + y) dy + (x - y) dx = 0

9. y′ =
y
x + cos

y - x
x

10. ax sin
y
x - y cos

y
xb dx + x cos

y
x dy = 0

Chapter 9 Technology Application Projects

Mathematica/Maple Modules:

Drug Dosages: Are They Effective? Are They Safe?
Formulate and solve an initial value model for the absorption of a drug in the bloodstream.

First-Order Differential Equations and Slope Fields
Plot slope fields and solution curves for various initial conditions to selected first-order differential equations.
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OVERVIEW Up to this point in calculus, we have focused on the derivative and integral of 
a function. Now we introduce a third key topic of interest in the analysis and computation 
of functions, called infinite series. Such series give us precise ways to express many num-
bers and functions, both familiar and new, as arithmetic sums with infinitely many terms. 
For example, we will learn that

p
4

= 1 - 1
3 + 1

5
- 1

7 + 1
9 - g

and

cos x = 1 - x2

2
+ x4

24
- x6

720
- x8

40,320
- g.

Often scientists and engineers simplify a problem by replacing a function with an 
approximation using the first few terms of a series that expresses it. One method repre-
sents a known differentiable function ƒ (x) as an infinite series in powers of x, so it looks 
like a “polynomial with infinitely many terms,” as we see with the cosine function given 
above. Moreover, the method extends our knowledge of how to evaluate, differentiate, and 
integrate polynomials, so we can work with even more general functions than any encoun-
tered before. These new functions are commonly solutions to differential equations arising 
in important applications of mathematics to science and engineering.

Everyone knows how to add two numbers together, or even several. But how do you 
add together infinitely many numbers? Or more generally, how do you add infinitely many 
powers of x? In this chapter we answer these questions, which are part of the theory of 
infinite sequences and series. As with the differential and integral calculus, limits play a 
major role in the development of infinite series.

HISTORICAL ESSAY

Sequences and Series

10.1 Sequences

Sequences are fundamental to the study of infinite series and many applications of mathe-
matics. We have already seen an example of a sequence when we studied Newton’s 
Method in Section 4.7. There we produced a sequence of approximations xn that became 
closer and closer to the root of a differentiable function. Now we will explore general 
sequences of numbers and the conditions under which they converge to a finite number.

Representing Sequences

A sequence is a list of numbers

a1 , a2 , a3 , . . . , an , . . .

Infinite Sequences
and Series

10
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in a given order. Each of a1, a2, a3 and so on represents a number. These are the terms of 
the sequence. For example, the sequence

2, 4, 6, 8, 10, 12, c, 2n, c

has first term a1 = 2, second term a2 = 4, and nth term an = 2n. The integer n is 
called the index of an, and indicates where an occurs in the list. Order is important. The 
sequence 2, 4, 6, 8 . . . is not the same as the sequence 4, 2, 6, 8 . . . .

We can think of the sequence

a1, a2, a3, c, an , c

as a function that sends 1 to a1, 2 to a2, 3 to a3, and in general sends the positive integer n
to the nth term an. More precisely, an infinite sequence of numbers is a function whose 
domain is the set of positive integers.

The function associated with the sequence

2, 4, 6, 8, 10, 12, c, 2n, c

sends 1 to a1 = 2, 2 to a2 = 4, and so on. The general behavior of this sequence is 
described by the formula an = 2n.

We can equally well make the domain the integers larger than a given number n0, and 
we allow sequences of this type also. For example, the sequence

12, 14, 16, 18, 20, 22c

is described by the formula an = 10 + 2n. It can also be described by the simpler formula 
bn = 2n, where the index n starts at 6 and increases. To allow such simpler formulas, we 
let the first index of the sequence be any integer. In the sequence above, 5an6  starts with 
a1 while 5bn6  starts with b6.

Sequences can be described by writing rules that specify their terms, such as

an = 2n, bn = (-1)n+1 1
n , cn = n - 1

n , dn = (-1)n+1,

or by listing terms:

5an6 = 521, 22, 23, c, 2n, c6
5bn6 = e1, - 1

2
, 1

3, - 1
4

, c, (-1)n+1 1
n , c f

5cn6 = e0, 1
2

, 2
3,

3
4

, 4
5

, c, n - 1
n , c f

5dn6 = 51, -1, 1, -1, 1, -1, c, (-1)n+1, c6 .

We also sometimes write a sequence using its rule, as with

5an6 = 52n 6q
n=1.

Figure 10.1 shows two ways to represent sequences graphically. The first marks the 
first few points from a1, a2, a3, c, an, con the real axis. The second method shows the 
graph of the function defining the sequence. The function is defined only on integer 
inputs, and the graph consists of some points in the xy-plane located at (1, a1),
(2, a2),c , (n, an), . . . .

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. 
This happens in the sequence

e1, 1
2

, 1
3, 1

4
, c, 1

n , c f
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whose terms approach 0 as n gets large, and in the sequence

e0, 1
2

, 2
3,

3
4

, 4
5

, c, 1 - 1
n , c f

whose terms approach 1. On the other hand, sequences like

521, 22, 23, c, 2n, c6
have terms that get larger than any number as n increases, and sequences like

51, -1, 1, -1, 1, -1, c, (-1)n+1, c6
bounce back and forth between 1 and -1, never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It 
says that if we go far enough out in the sequence, by taking the index n to be larger than 
some value N, the difference between an and the limit of the sequence becomes less than 
any preselected number P 7 0.

0

an = 
"

n

1 2

0 1 32 4 5

1

3

2

1

0 1 32 4 5

0

an =

1

0

1

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an = (−1)n+1 1
n

FIGURE 10.1 Sequences can be represented as points on the real line or 
as points in the plane where the horizontal axis n is the index number of the 
term and the vertical axis an is its value.

DEFINITIONS The sequence 5an6 converges to the number L if for every posi-
tive number P there corresponds an integer N such that for all n,

n 7 N 1 � an - L � 6 P.

If no such number L exists, we say that 5an6 diverges.
If 5an6  converges to L, we write limnSq an = L, or simply an S L, and 

call L the limit of the sequence (Figure 10.2).

aN

(N, aN)

0 1 32 N n

L

L − P

L − P L + PL

L + P
(n, an)

0 a2 a3 a1 an

n

an

FIGURE 10.2 In the representation of 
a sequence as points in the plane, an S L
if y = L is a horizontal asymptote of the 
sequence of points 5(n, an)6 . In this figure, 
all the an>s after aN  lie within P of L.

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends 
to q (limxSqƒ(x) in Section 2.6). We will exploit this connection to calculate limits of 
sequences.

EXAMPLE 1  Show that

(a) lim
nSq

1
n = 0 (b) lim

nSq
k = k (any constant k)

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)
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Solution

(a) Let P 7 0 be given. We must show that there exists an integer N such that for all n,

n 7 N 1 ` 1n - 0 ` 6 P.

  This implication will hold if (1>n) 6 P or n 7 1>P. If N is any integer greater than 
1>P, the implication will hold for all n 7 N. This proves that limnSq(1>n) = 0.

(b) Let P 7 0 be given. We must show that there exists an integer N such that for all n,

n 7 N 1 � k - k � 6 P.

  Since k - k = 0, we can use any positive integer for N and the implication will hold. 
This proves that limnSqk = k for any constant k.

EXAMPLE 2 Show that the sequence 51, -1, 1, -1, 1, -1, c, (-1)n+1, c6
diverges.

Solution Suppose the sequence converges to some number L. By choosing P = 1>2 in 
the definition of the limit, all terms an of the sequence with index n larger than some N
must lie within P = 1>2 of L. Since the number 1 appears repeatedly as every other term 
of the sequence, we must have that the number 1 lies within the distance P = 1>2 of L. It 
follows that �L - 1 � 6 1>2, or equivalently, 1>2 6 L 6 3>2. Likewise, the number 
-1 appears repeatedly in the sequence with arbitrarily high index. So we must also have 
that �L - (-1) � 6 1>2, or equivalently, -3>2 6 L 6 -1>2. But the number L cannot 
lie in both of the intervals (1 >2, 3 >2) and (-3>2, -1>2) because they have no overlap. 
Therefore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number P smaller than 1, not 
just 1>2.

The sequence 51n6  also diverges, but for a different reason. As n increases, its terms 
become larger than any fixed number. We describe the behavior of this sequence by writing

lim
nSq

2n = q.

In writing infinity as the limit of a sequence, we are not saying that the differences between the 
terms an and q become small as n increases. Nor are we asserting that there is some number 
infinity that the sequence approaches. We are merely using a notation that captures the idea that 
an eventually gets and stays larger than any fixed number as n gets large (see Figure 10.3a). 
The terms of a sequence might also decrease to negative infinity, as in Figure 10.3b.

0 1 32 N

M

n

an

0 N

m

n

an

1 32

(a)

(b)

FIGURE 10.3 (a) The sequence 
diverges to q because no matter 
what number M is chosen, the 
terms of the sequence after some 
index N all lie in the yellow 
band above M. (b) The sequence 
diverges to -q because all terms 
after some index N lie below any 
chosen number m.

DEFINITION The sequence 5an6 diverges to infinity if for every number M there is 
an integer N such that for all n larger than N, an 7 M. If this condition holds we write

lim
nSq

an = q or an S q.

Similarly, if for every number m there is an integer N such that for all n 7 N  we 
have an 6 m, then we say 5an6 diverges to negative infinity and write

lim
nSq

an = -q or an S -q.

A sequence may diverge without diverging to infinity or negative infinity, as we saw 
in Example 2. The sequences 51, -2, 3, -4, 5, -6, 7, -8,c6  and 51, 0, 2, 0, 3, 0,c6
are also examples of such divergence. 

The convergence or divergence of a sequence is not affected by the values of any 
number of its initial terms (whether we omit or change the first 10, 1000, or even the first 
million terms does not matter). From Figure 10.2, we can see that only the part of the 
sequence that remains after discarding some initial number of terms determines whether 
the sequence has a limit and the value of that limit when it does exist.
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Calculating Limits of Sequences

Since sequences are functions with domain restricted to the positive integers, it is not surpris-
ing that the theorems on limits of functions given in Chapter 2 have versions for  sequences.

THEOREM 1 Let 5an6  and 5bn6  be sequences of real numbers, and let A and B
be real numbers. The following rules hold if limnSqan = A and limnSqbn = B.

1. Sum Rule: limnSq(an + bn) = A + B

2. Difference Rule: limnSq(an - bn) = A - B

3. Constant Multiple Rule: limnSq(k # bn) = k # B (any number k)

4. Product Rule: limnSq(an
# bn) = A # B

5. Quotient Rule: limnSq
an

bn
= A

B if B ≠ 0

The proof is similar to that of Theorem 1 of Section 2.2 and is omitted.

EXAMPLE 3  By combining Theorem 1 with the limits of Example 1, we have:

(a) lim
nSq
a- 1

nb = -1 # lim
nSq

1
n = -1 # 0 = 0 Constant Multiple Rule and Example la

(b) lim
nSq
an - 1

n b = lim
nSq
a1 - 1

nb = lim
nSq

1 - lim
nSq

1
n = 1 - 0 = 1

Difference Rule 
and Example la

(c) lim
nSq

5
n2 = 5 # lim

nSq
1
n
# lim

nSq
1
n = 5 # 0 # 0 = 0 Product Rule

(d) lim
nSq

4 - 7n6

n6 + 3
= lim

nSq

(4>n6) - 7

1 + (3>n6)
= 0 - 7

1 + 0
= -7. Sum and Quotient Rules

Be cautious in applying Theorem 1. It does not say, for example, that each of the 
sequences 5an6  and 5bn6  have limits if their sum 5an + bn6  has a limit. For instance, 5an6 = 51, 2, 3, c6  and 5bn6 = 5-1, -2, -3, c6  both diverge, but their sum 5an + bn6 = 50, 0, 0, c6  clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence 5an6  diverges. For suppose, to the contrary, that 5can6  converges for some number c ≠ 0.
Then, by taking k = 1>c in the Constant Multiple Rule in Theorem 1, we see that the sequence

e 1
c
# can f = 5an6

converges. Thus, 5can6  cannot converge unless 5an6  also converges. If 5an6  does not 
converge, then 5can6  does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2. 
You are asked to prove the theorem in Exercise 109. (See Figure 10.4.)

0

L

n
an

bn

cn

FIGURE 10.4 The terms of 
sequence 5bn6  are sandwiched 
between those of 5an6  and 
5cn6 , forcing them to the same 
common limit L.

THEOREM 2—The Sandwich Theorem for Sequences Let 5an6 , 5bn6 , and 5cn6  be sequences of real numbers. If an … bn … cn holds for all n beyond 
some index N, and if limnSq an = limnSq cn = L, then limnSq bn = L also.

An immediate consequence of Theorem 2 is that, if � bn � … cn and cn S 0, then 
bn S 0 because -cn … bn … cn. We use this fact in the next example.

EXAMPLE 4  Since 1>n S 0, we know that

(a) cos n
n S 0 because - 1

n … cos n
n … 1

n ;



10.1  Sequences 577

(b) 1
2n S 0 because 0 … 1

2n … 1
n ;

(c) (-1)n 1
n S 0 because - 1

n … (-1)n 1
n … 1

n .

The application of Theorems 1 and 2 is broadened by a theorem stating that applying 
a continuous function to a convergent sequence produces a convergent sequence. We state 
the theorem, leaving the proof as an exercise (Exercise 110).

THEOREM 3—The Continuous Function Theorem for Sequences Let 5an6  be 
a sequence of real numbers. If an S L and if ƒ is a function that is continuous at 
L and defined at all an, then ƒ(an) S ƒ(L).

EXAMPLE 5  Show that 2(n + 1)>n S 1.

Solution We know that (n + 1)>n S 1. Taking ƒ(x) = 1x and L = 1 in Theorem 3 
gives 1(n + 1)>n S 11 = 1.

EXAMPLE 6  The sequence 51>n6  converges to 0. By taking an = 1>n, ƒ(x) = 2x,
and L = 0 in Theorem 3, we see that 21>n = ƒ(1>n) S ƒ(L) = 20 = 1. The sequence 521>n6  converges to 1 (Figure 10.5).

Using L’Hôpital’s Rule

The next theorem formalizes the connection between limnSq an and limxSq ƒ(x). It 
enables us to use l’Hôpital’s Rule to find the limits of some sequences.

1
3

0

1

(1, 2)

y = 2x

1

2

, 21/3

, 21/2

1
3

1
2

1
2

x

y

a b

a b

FIGURE 10.5 As n S q, 1>n S 0
and 21>n S 20 (Example 6). The terms of 
51>n6  are shown on the x-axis; the terms 
of 521>n6  are shown as the y-values on the 
graph of ƒ(x) = 2x.

THEOREM 4 Suppose that ƒ(x) is a function defined for all x Ú n0 and that 5an6  is a sequence of real numbers such that an = ƒ(n) for n Ú n0. Then

lim
xSq

ƒ(x) = L 1 lim
nSq

an = L.

Proof Suppose that limxSqƒ(x) = L. Then for each positive number P there is a 
number M such that for all x,

x 7 M 1 � ƒ(x) - L � 6 P.

Let N be an integer greater than M and greater than or equal to n0. Then

n 7 N 1 an = ƒ(n) and � an - L � = � ƒ(n) - L � 6 P.

EXAMPLE 7  Show that

lim
nSq

ln n
n = 0.

Solution The function (ln x)>x is defined for all x Ú 1 and agrees with the given 
sequence at positive integers. Therefore, by Theorem 4, limnSq(ln n)>n will equal 
limxSq(ln x)>x if the latter exists. A single application of l’Hôpital’s Rule shows that

lim
xSq

ln x
x = lim

xSq

1>x
1

= 0
1

= 0.

We conclude that limnSq (ln n)>n = 0.
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When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a 
continuous real variable and differentiate directly with respect to n. This saves us from 
having to rewrite the formula for an as we did in Example 7.

EXAMPLE 8  Does the sequence whose nth term is

an = an + 1
n - 1

bn

converge? If so, find limnSqan.

Solution The limit leads to the indeterminate form 1q. We can apply l’Hôpital’s Rule if 
we first change the form to q # 0 by taking the natural logarithm of an:

ln an = ln an + 1
n - 1

bn

= n ln an + 1
n - 1

b .

Then,

lim
nSq

ln an = lim
nSq

n ln an + 1
n - 1

b q # 0 form

= lim
nSq

ln an + 1
n - 1

b
1>n 0

0
 form

= lim
nSq

-2> (n2 - 1)
-1>n2

L’Hôpital’s Rule: differentiate 
numerator and denominator.

= lim
nSq

2n2

n2 - 1
= 2.

Since ln an S 2 and ƒ(x) = ex is continuous, Theorem 4 tells us that

an = elnan S e2.

The sequence 5an6  converges to e2.

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

THEOREM 5 The following six sequences converge to the limits listed below:

1. lim
nSq

ln n
n = 0    2. lim

nSq
2n n = 1

3. lim
nSq

x1>n = 1 (x 7 0)   4. lim
nSq

xn = 0 ( � x � 6 1)

5. lim
nSq
a1 + x

nb
n

= ex (any x) 6. lim
nSq

xn

n!
= 0 (any x)

In Formulas (3) through (6), x remains fixed as n S q.

Proof  The first limit was computed in Example 7. The next two can be proved by tak-
ing logarithms and applying Theorem 4 (Exercises 107 and 108). The remaining proofs 
are given in Appendix 5.
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EXAMPLE 9  These are examples of the limits in Theorem 5.

(a)
ln1n22

n = 2 ln n
n S 2 # 0 = 0  Formula 1

(b) 2n n2 = n2>n = 1n1/n22 S (1)2 = 1 Formula 2

(c) 2n 3n = 31>n1n1/n2S 1 # 1 = 1 Formula 3 with x = 3 and Formula 2

(d) a- 1
2
bn

S 0 Formula 4 with x = - 1
2

(e) an - 2
n bn

= a1 + -2
n b

n

S e-2 Formula 5 with x = -2

(f ) 100n

n!
S 0 Formula 6 with x = 100

Recursive Definitions

So far, we have calculated each an directly from the value of n. But sequences are often 
defined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that 
precede it.

EXAMPLE 10

(a) The statements a1 = 1 and an = an-1 + 1 for n 7 1 define the sequence 1, 2, 3, c,
n, c of positive integers. With a1 = 1, we have a2 = a1 + 1 = 2, a3 = a2 + 1 = 3,
and so on.

(b) The statements a1 = 1 and an = n # an-1 for n 7 1 define the sequence 
1, 2, 6, 24, c, n!, c of factorials. With a1 = 1, we have a2 = 2 # a1 = 2, 
a3 = 3 # a2 = 6, a4 = 4 # a3 = 24, and so on.

(c) The statements a1 = 1, a2 = 1, and an+1 = an + an-1 for n 7 2 define the 
sequence 1, 1, 2, 3, 5, c of Fibonacci numbers. With a1 = 1 and a2 = 1, we have 
a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5, and so on.

(d) As we can see by applying Newton’s method (see Exercise 135), the statements 
x0 = 1 and xn+1 = xn - 3 (sin xn - xn

2)>(cos xn - 2xn)4  for n 7 0 define a sequence 
that, when it converges, gives a solution to the equation sin x - x2 = 0.

Bounded Monotonic Sequences

Two concepts that play a key role in determining the convergence of a sequence are those 
of a bounded sequence and a monotonic sequence.

Factorial Notation

The notation n! (“n factorial”)
means the product 1 # 2 # 3gn
of the integers from 1 to n.
Notice that (n + 1)! = (n + 1) # n!.
Thus, 4! = 1 # 2 # 3 # 4 = 24 and 
5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
We define 0! to be 1. Factorials grow 
even faster than exponentials, as the 
table suggests. The values in the table 
are rounded.

n en n!

1 3 1

5 148 120

10 22,026 3,628,800

20 4.9 * 108 2.4 * 1018

DEFINITIONS A sequence 5an6  is bounded from above if there exists a 
number M such that an … M  for all n. The number M is an upper bound for 5an6 . If M is an upper bound for 5an6  but no number less than M is an upper 
bound for 5an6 , then M is the least upper bound for 5an6 .

A sequence 5an6  is bounded from below if there exists a number m such 
that an Ú m for all n. The number m is a lower bound for 5an6 . If m is a lower 
bound for 5an6  but no number greater than m is a lower bound for 5an6 , then m
is the greatest lower bound for 5an6 .

If 5an6  is bounded from above and below, then 5an6  is bounded. If 5an6
is not bounded, then we say that 5an6  is an unbounded sequence.
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EXAMPLE 11

(a) The sequence 1, 2, 3, c, n, c has no upper bound because it eventually surpasses 
every number M. However, it is bounded below by every real number less than or 
equal to 1. The number m = 1 is the greatest lower bound of the sequence.

(b) The sequence 1
2

, 2
3,

3
4

, c, n
n + 1

, c is bounded above by every real number greater 

than or equal to 1. The upper bound M = 1 is the least upper bound (Exercise 127). 

The sequence is also bounded below by every number less than or equal to 1
2

, which 

is its greatest lower bound.

If a sequence 5an6  converges to the number L, then by definition there is a number N
such that � an - L � 6 1 if n 7 N. That is,

L - 1 6 an 6 L + 1 for n 7 N.

If M is a number larger than L + 1 and all of the finitely many numbers a1, a2, c, aN,
then for every index n we have an … M  so that 5an6  is bounded from above. Similarly, if 
m is a number smaller than L - 1 and all of the numbers a1, a2, c, aN, then m is a lower 
bound of the sequence. Therefore, all convergent sequences are bounded.

Although it is true that every convergent sequence is bounded, there are bounded 
sequences that fail to converge. One example is the bounded sequence 5(-1)n+16  dis-
cussed in Example 2. The problem here is that some bounded sequences bounce around in 
the band determined by any lower bound m and any upper bound M (Figure 10.6). An 
important type of sequence that does not behave that way is one for which each term is at 
least as large, or at least as small, as its predecessor.

Convergent sequences are bounded 

DEFINITIONS A sequence 5an6  is nondecreasing if an … an+1 for all n. That 
is, a1 … a2 … a3 … . . . . The sequence is nonincreasing if an Ú an+1 for all n.
The sequence 5an6  is monotonic if it is either nondecreasing or nonincreasing.

0

M

m

n

an

1 32

FIGURE 10.6 Some bounded sequences 
bounce around between their bounds and 
fail to converge to any limiting value.

EXAMPLE 12

(a) The sequence 1, 2, 3, c, n, c is nondecreasing.

(b) The sequence 1
2

, 2
3,

3
4

, c, n
n + 1

, c is nondecreasing.

(c) The sequence 1, 1
2

, 1
4

, 1
8, c, 1

2n , c is nonincreasing.

(d) The constant sequence 3, 3, 3, c, 3, c is both nondecreasing and nonincreasing.

(e) The sequence 1, -1, 1, -1, 1, -1, c is not monotonic.

A nondecreasing sequence that is bounded from above always has a least upper 
bound. Likewise, a nonincreasing sequence bounded from below always has a greatest 
lower bound. These results are based on the completeness property of the real numbers, 
discussed in Appendix 6. We now prove that if L is the least upper bound of a nondecreas-
ing sequence then the sequence converges to L, and that if L is the greatest lower bound of 
a nonincreasing sequence then the sequence converges to L.

THEOREM 6—The Monotonic Sequence Theorem If a sequence 5an6  is both 
bounded and monotonic, then the sequence converges.

Proof Suppose 5an6  is nondecreasing, L is its least upper bound, and we plot the points 
(1, a1), (2, a2),c , (n, an),c  in the xy-plane. If M is an upper bound of the sequence, 
all these points will lie on or below the line y = M  (Figure 10.7). The line y = L is the 

0

L

L − P

M

N

y = L

y = M

x

y

FIGURE 10.7 If the terms of a nonde-
creasing sequence have an upper bound M,
they have a limit L … M.
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lowest such line. None of the points (n, an) lies above y = L, but some do lie above any 
lower line y = L - P, if P is a positive number. The sequence converges to L because

a. an … L for all values of n, and

b. given any P 7 0, there exists at least one integer N for which aN 7 L - P.

The fact that 5an6  is nondecreasing tells us further that

an Ú aN 7 L - P for all n Ú N.

Thus, all the numbers an beyond the Nth number lie within P of L. This is precisely the 
condition for L to be the limit of the sequence 5an6.

The proof for nonincreasing sequences bounded from below is similar.

It is important to realize that Theorem 6 does not say that convergent sequences are 
monotonic. The sequence 5(-1)n+1>n6  converges and is bounded, but it is not monotonic 
since it alternates between positive and negative values as it tends toward zero. What the 
theorem does say is that a nondecreasing sequence converges when it is bounded from 
above, but it diverges to infinity otherwise.

Exercises 10.1
Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term an of a 
sequence 5an6 . Find the values of a1, a2, a3, and a4.

1. an = 1 - n
n2 2. an = 1

n!

3. an =
(-1)n+1

2n - 1
4. an = 2 + (-1)n

5. an = 2n

2n+1 6. an = 2n - 1
2n

Each of Exercises 7–12 gives the first term or two of a sequence along 
with a recursion formula for the remaining terms. Write out the first 
ten terms of the sequence.

7. a1 = 1, an+1 = an + (1>2n)

8. a1 = 1, an+1 = an>(n + 1)

9. a1 = 2, an+1 = (-1)n+1an>2
10. a1 = -2, an+1 = nan>(n + 1)

11. a1 = a2 = 1, an+2 = an+1 + an

12. a1 = 2, a2 = -1, an+2 = an+1>an

Finding a Sequence’s Formula
In Exercises 13–26, find a formula for the nth term of the sequence.

13. The sequence 1, -1, 1, -1, 1,c   1’s with alternating signs

14. The sequence -1, 1, -1, 1, -1,c   1’s with alternating signs

15. The sequence 1, -4, 9, -16, 25,c   Squares of the positive inte-
gers, with alternating signs

16. The sequence 1, - 1
4

,
1
9

, - 1
16

,
1
25

, c   Reciprocals of squares of 
the positive integers, with 
alternating signs

17. 1
9

,
2
12

,
22

15
,

23

18
,

24

21
, c    Powers of 2 divided by 

multiples of 3

18. - 3
2

, - 1
6

,
1
12

,
3
20

,
5
30

, c  Integers differing by 2 
divided by products of 
consecutive integers

19. The sequence 0, 3, 8, 15, 24, c Squares of the positive 
integers diminished by 1

20. The sequence -3, -2, -1, 0, 1,c   Integers, beginning with -3

21. The sequence 1, 5, 9, 13, 17, c   Every other odd positive 
integer

22. The sequence 2, 6, 10, 14, 18,c   Every other even positive 
integer

23.
5
1

,
8
2

,
11
6

,
14
24

,
17
120

, c     Integers differing by 3 
divided by factorials

24. 1
25

,
8

125
,

27
625

,
64

3125
,

125
15,625

, c   Cubes of positive integers 
divided by powers of 5

25. The sequence 1, 0, 1, 0, 1, c    Alternating 1’s and 0’s

26. The sequence 0, 1, 1, 2, 2, 3, 3, 4,c   Each positive integer 
repeated

Convergence and Divergence
Which of the sequences 5an6  in Exercises 27–90 converge, and 
which diverge? Find the limit of each convergent sequence.

27. an = 2 + (0.1)n 28. an =
n + (-1)n

n

29. an = 1 - 2n
1 + 2n

30. an = 2n + 1

1 - 32n

31. an = 1 - 5n4

n4 + 8n3 32. an = n + 3
n2 + 5n + 6

33. an = n2 - 2n + 1
n - 1

34. an = 1 - n3

70 - 4n2
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35. an = 1 + (-1)n 36. an = (-1)n a1 - 1
nb

37. an = an + 1
2n
b a1 - 1

nb 38. an = a2 - 1
2nb a3 + 1

2nb
39. an =

(-1)n+1

2n - 1
40. an = a- 1

2
bn

41. an = A
2n

n + 1
42. an = 1

(0.9)n

43. an = sin ap
2

+ 1
nb 44. an = np cos (np)

45. an = sin n
n 46. an = sin2 n

2n

47. an = n
2n 48. an = 3n

n3

49. an =
ln (n + 1)

2n
50. an = ln n

ln 2n

51. an = 81>n 52. an = (0.03)1>n

53. an = a1 + 7
nb

n

54. an = a1 - 1
nb

n

55. an = 2n 10n 56. an = 2n n2

57. an = a3nb
1>n

58. an = (n + 4)1>(n+4)

59. an = ln n
n1>n 60. an = ln n - ln (n + 1)

61. an = 2n 4nn 62. an = 2n 32n+1

63. an = n!
nn  (Hint: Compare with 1 >n.)

64. an =
(-4)n

n!
65. an = n!

106n

66. an = n!
2n # 3n 67. an = a1nb

1>(ln n)

68. an = lna1 + 1
nb

n

69. an = a3n + 1
3n - 1

bn

70. an = a n
n + 1

bn

71. an = a xn

2n + 1
b1>n

, x 7 0

72. an = a1 - 1
n2b

n

73. an = 3n # 6n

2-n # n!
74. an =

(10>11)n

(9/10)n + (11/12)n 75. an = tanh n

76. an = sinh (ln n) 77. an = n2

2n - 1
  sin 

1
n

78. an = na1 - cos 
1
nb 79. an = 2n sin 

1

2n

80. an = (3n + 5n)1>n 81. an = tan-1 n

82. an = 1

2n
  tan-1 n 83. an = a1

3
bn

+ 1

22n

84. an = 2n n2 + n 85. an =
(ln n)200

n

86. an =
(ln n)5

2n
87. an = n - 2n2 - n

88. an = 1

2n2 - 1 - 2n2 + n

89. an = 1
n
L

n

1

1
x dx 90. an =

L

n

1

1
xp dx, p 7 1

Recursively Defined Sequences
In Exercises 91–98, assume that each sequence converges and find its 
limit.

91. a1 = 2, an+1 = 72
1 + an

92. a1 = -1, an+1 =
an + 6
an + 2

93. a1 = -4, an+1 = 28 + 2an

94. a1 = 0, an+1 = 28 + 2an

95. a1 = 5, an+1 = 25an

96. a1 = 3, an+1 = 12 - 2an

97. 2, 2 + 1
2

, 2 + 1

2 + 1
2

, 2 + 1

2 + 1

2 + 1
2

,c

98. 21, 31 + 21, 41 + 31 + 21,

51 + 41 + 31 + 21,c

Theory and Examples
99. The first term of a sequence is x1 = 1. Each succeeding term is 

the sum of all those that come before it:

xn+1 = x1 + x2 + g + xn.

Write out enough early terms of the sequence to deduce a gen-
eral formula for xn that holds for n Ú 2.

100. A sequence of rational numbers is described as follows:

1
1

, 
3
2

, 
7
5

, 
17
12

, c, 
a
b

, 
a + 2b
a + b

, c.

Here the numerators form one sequence, the denominators form 
a second sequence, and their ratios form a third sequence. Let xn

and yn be, respectively, the numerator and the denominator of 
the nth fraction rn = xn>yn.

a. Verify that x1
2 - 2y1

2 = -1, x2
2 - 2y2

2 = +  1 and, more 
generally, that if a2 - 2b2 = -1 or + 1, then

(a + 2b)2 - 2(a + b)2 = +1 or -1,

respectively.

b. The fractions rn = xn>yn approach a limit as n increases. 
What is that limit? (Hint: Use part (a) to show that 
rn

2 - 2 = {(1>yn)2 and that yn is not less than n.)

101. Newton’s method The following sequences come from the 
recursion formula for Newton’s method,

xn+1 = xn -
ƒ(xn)

ƒ′(xn)
.
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  Do the sequences converge? If so, to what value? In each case, 
begin by identifying the function ƒ that generates the sequence.

a. x0 = 1, xn+1 = xn -
xn

2 - 2
2xn

=
xn

2
+ 1

xn

b. x0 = 1, xn+1 = xn -
tan xn - 1

sec2 xn

c. x0 = 1, xn+1 = xn - 1

102. a. Suppose that ƒ(x) is differentiable for all x in 30, 14  and that 
ƒ(0) = 0. Define sequence 5an6  by the rule an = nƒ(1>n).
Show that limnSqan = ƒ′(0). Use the result in part (a) to find 
the limits of the following sequences 5an6 .

b. an = n tan-1 1
n c. an = n(e1>n - 1)

 d. an = n lna1 + 2
nb

103. Pythagorean triples A triple of positive integers a, b, and c is 
called a Pythagorean triple if a2 + b2 = c2. Let a be an odd 
positive integer and let

b = j a2

2
k and c = l a2

2
m

  be, respectively, the integer floor and ceiling for a2>2.

a

a2

2

u

l m a2

2
j k

a. Show that a2 + b2 = c2. (Hint: Let a = 2n + 1 and express 
b and c in terms of n.)

b. By direct calculation, or by appealing to the accompanying 
figure, find

lim
aSq

j a2

2
k

l a2

2
m

.

104. The nth root of n!

a. Show that limnSq(2np)1>(2n) = 1 and hence, using Stirling’s 
approximation (Chapter 8, Additional Exercise 52a), that

2n n! ≈ n
e for large values of n.

 b. Test the approximation in part (a) for n = 40, 50, 60, c, as 
far as your calculator will allow.

105. a. Assuming that limnSq(1>nc) = 0 if c is any positive con-
stant, show that

lim
nSq

ln n
nc = 0

if c is any positive constant.

T

b. Prove that limnSq(1>nc) = 0 if c is any positive constant. 
(Hint: If P = 0.001 and c = 0.04, how large should N be to 
ensure that �1>nc - 0 � 6 P if n 7 N?)

106. The zipper theorem Prove the “zipper theorem” for sequences: 
If 5an6  and 5bn6  both converge to L, then the sequence

a1, b1, a2, b2,c , an, bn,c

converges to L.

107. Prove that limnSq2n n = 1.

108. Prove that limnSq x1>n = 1, (x 7 0).

109. Prove Theorem 2. 110. Prove Theorem 3.

In Exercises 111–114, determine if the sequence is monotonic and if it 
is bounded.

111. an = 3n + 1
n + 1

112. an =
(2n + 3)!
(n + 1)!

113. an = 2n3n

n!
114. an = 2 - 2

n - 1
2n

Which of the sequences in Exercises 115–124 converge, and which 
diverge? Give reasons for your answers.

115. an = 1 - 1
n 116. an = n - 1

n

117. an = 2n - 1
2n 118. an = 2n - 1

3n

119. an = ((-1)n + 1)an + 1
n b

120. The first term of a sequence is x1 = cos (1). The next terms are 
x2 = x1 or cos (2), whichever is larger; and x3 = x2 or cos (3), 
whichever is larger (farther to the right). In general,

xn+1 = max 5xn, cos (n + 1)6 .

121. an = 1 + 22n

2n
122. an = n + 1

n

123. an = 4n+1 + 3n

4n

124. a1 = 1, an+1 = 2an - 3

In Exercises 125–126, use the definition of convergence to prove the 
given limit.

125. lim
nSq

sin n
n = 0 126. lim

nSq
a1 - 1

n2b = 1

127.  The sequence {n , (n + 1)} has a least upper bound of 1
Show that if M is a number less than 1, then the terms of 
5n>(n + 1)6  eventually exceed M. That is, if M 6 1 there is 
an integer N such that n>(n + 1) 7 M  whenever n 7 N. Since 
n>(n + 1) 6 1 for every n, this proves that 1 is a least upper 
bound for 5n>(n + 1)6 .

128. Uniqueness of least upper bounds Show that if M1 and M2

are least upper bounds for the sequence 5an6 , then M1 = M2.
That is, a sequence cannot have two different least upper bounds.

129. Is it true that a sequence 5an6  of positive numbers must con-
verge if it is bounded from above? Give reasons for your answer.
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130. Prove that if 5an6  is a convergent sequence, then to every posi-
tive number P there corresponds an integer N such that for all m
and n,

m 7 N and n 7 N 1 �am - an � 6 P.

131.  Uniqueness of limits Prove that limits of sequences are 
unique. That is, show that if L1 and L2 are numbers such that 
an S L1 and an S L2, then L1 = L2.

132. Limits and subsequences If the terms of one sequence appear 
in another sequence in their given order, we call the first 
sequence a subsequence of the second. Prove that if two sub-
sequences of a sequence 5an6  have different limits L1 ≠ L2,
then 5an6  diverges.

133. For a sequence 5an6  the terms of even index are denoted by a2k

and the terms of odd index by a2k+1. Prove that if a2k S L and 
a2k+1 S L, then an S L.

134. Prove that a sequence 5an6  converges to 0 if and only if the 
sequence of absolute values 5 �an �6  converges to 0.

135.  Sequences generated by Newton’s method Newton’s method, 
applied to a differentiable function ƒ(x), begins with a starting 
value x0 and constructs from it a sequence of numbers 5xn6  that 
under favorable circumstances converges to a zero of ƒ. The  
recursion formula for the sequence is

xn+1 = xn -
ƒ(xn)

ƒ′(xn)
.

a. Show that the recursion formula for ƒ(x) = x2 - a, a 7 0,
can be written as xn+1 = (xn + a>xn)>2.

b. Starting with x0 = 1 and a = 3, calculate successive terms 
of the sequence until the display begins to repeat. What 
number is being approximated? Explain.

136. A recursive definition of P ,2 If you start with x1 = 1 and  
define the subsequent terms of 5xn6  by the rule 
xn = xn-1 + cos xn-1, you generate a sequence that converges 

T

T

rapidly to p>2. (a) Try it. (b) Use the accompanying figure to 
explain why the convergence is so rapid.

10

cos xn − 11

xn − 1

xn − 1
x

y

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the sequences in Exer-
cises 137–148.

a. Calculate and then plot the first 25 terms of the sequence. 
Does the sequence appear to be bounded from above or 
below? Does it appear to converge or diverge? If it does 
converge, what is the limit L?

b. If the sequence converges, find an integer N such that 
�an - L � … 0.01 for n Ú N. How far in the sequence do 
you have to get for the terms to lie within 0.0001 of L?

137. an = 2n n 138. an = a1 + 0.5
n b

n

139. a1 = 1, an+1 = an + 1
5n

140. a1 = 1, an+1 = an + (-2)n

141. an = sin n 142. an = n sin
1
n

143. an = sin n
n 144. an = ln n

n

145. an = (0.9999)n 146. an = (123456)1>n

147. an = 8n

n!
148. an = n41

19n

10.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + g + an + g
The goal of this section is to understand the meaning of such an infinite sum and to  
develop methods to calculate it. Since there are infinitely many terms to add in an infinite 
series, we cannot just keep adding to see what comes out. Instead we look at the result of 
summing just the first n terms of the sequence. The sum of the first n terms

sn = a1 + a2 + a3 + g + an

is an ordinary finite sum and can be calculated by normal addition. It is called the nth  partial 
sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting value in 
the same sense that the terms of a sequence approach a limit, as discussed in Section 10.1.

For example, to assign meaning to an expression like

1 + 1
2

+ 1
4

+ 1
8 + 1

16
+ g
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we add the terms one at a time from the beginning and look for a pattern in how these  
partial sums grow.

Partial sum   Value
Suggestive expression 

for partial sum

First: s1 = 1 1 2 - 1

Second: s2 = 1 + 1
2

3
2

2 - 1
2

Third: s3 = 1 + 1
2

+ 1
4

7
4 2 - 1

4
f f f f

nth: sn = 1 + 1
2

+ 1
4

+ g + 1
2n-1

2n - 1
2n-1 2 - 1

2n-1

Indeed there is a pattern. The partial sums form a sequence whose nth term is

sn = 2 - 1
2n-1 .

This sequence of partial sums converges to 2 because limnSq(1>2n-1) = 0. We say

“the sum of the infinite series 1 + 1
2

+ 1
4

+ g + 1
2n-1 + g is 2.”

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add 
an infinite number of terms one by one? No. But we can still define their sum by defining 
it to be the limit of the sequence of partial sums as n S q, in this case 2 (Figure 10.8). 
Our knowledge of sequences and limits enables us to break away from the confines of 
finite sums.

DEFINITIONS Given a sequence of numbers 5an6 , an expression of the form

a1 + a2 + a3 + g + an + g

is an infinite series. The number an is the nth term of the series. The sequence 5sn6
defined by

s1 = a1

s2 = a1 + a2

f

sn = a1 + a2 + g + an = a

n

k=1
ak

f

is the sequence of partial sums of the series, the number sn being the nth partial 
sum. If the sequence of partial sums converges to a limit L, we say that the series 
converges and that its sum is L. In this case, we also write

a1 + a2 + g + an + g = a

q

n=1
an = L.

If the sequence of partial sums of the series does not converge, we say that the  
series diverges.

HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)
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When we begin to study a given series a1 + a2 + g + an + g, we might not 
know whether it converges or diverges. In either case, it is convenient to use sigma nota-
tion to write the series as

a

q

n=1
an, a

q

k=1
ak, or a an

A useful shorthand 
when summation 
from 1 to q is 
understood

Geometric Series

Geometric series are series of the form

a + ar + ar2 + g + arn-1 + g = a

q

n=1
arn-1

in which a and r are fixed real numbers and a ≠ 0. The series can also be written as 
g

q
n=0 arn. The ratio r can be positive, as in

1 + 1
2

+ 1
4

+ g + a1
2
bn-1

+ g , r = 1>2 , a = 1

or negative, as in

1 - 1
3 + 1

9 - g + a- 1
3b

n-1

+ g . r = -1>3 , a = 1

If r = 1, the nth partial sum of the geometric series is

sn = a + a(1) + a(1)2 + g + a(1)n-1 = na,

and the series diverges because limnSq sn = {q, depending on the sign of a. If r = -1,
the series diverges because the nth partial sums alternate between a and 0. If � r � ≠ 1, we 
can determine the convergence or divergence of the series in the following way:

sn = a + ar + ar2 + g + arn-1

rsn = ar + ar2 + g + arn-1 + arn Multiply sn by r.

sn - rsn = a - arn

sn(1 - r) = a(1 - rn)

sn =
a(1 - rn)

1 - r
, (r ≠ 1). We can solve for sn if r ≠ 1.

If � r � 6 1, then rn S 0 as n S q (as in Section 10.1) and sn S a>(1 - r). If � r � 7 1,
then � rn � S q and the series diverges.

Subtract rsn from sn. Most of 
the terms on the right cancel. 
Factor.

0

1

21�2 1�8

1�4

FIGURE 10.8 As the lengths 1, 1�2, 1�4, 1�8,c  are added one by one, the sum 
approaches 2.

If � r � 6 1, the geometric series a + ar + ar2 + g + arn-1 + g converges 
to a>(1 - r):

a

q

n=1
arn-1 = a

1 - r
, � r � 6 1.

If � r � Ú 1, the series diverges.
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We have determined when a geometric series converges or diverges, and to what 
value. Often we can determine that a series converges without knowing the value to which 
it converges, as we will see in the next several sections. The formula a>(1 - r) for the 
sum of a geometric series applies only when the summation index begins with n = 1 in 
the expression g

q
n=1 arn-1 (or with the index n = 0 if we write the series as g

q
n=0 arn).

EXAMPLE 1  The geometric series with a = 1>9 and r = 1>3 is

1
9 + 1

27
+ 1

81
+ g = a

q

n=1

1
9 a13b

n-1

=
1>9

1 - (1>3)
= 1

6
.

EXAMPLE 2  The series

a

q

n=0

(-1)n5
4n = 5 - 5

4
+ 5

16
- 5

64
+ g

is a geometric series with a = 5 and r = -1>4. It converges to

a
1 - r

= 5
1 + (1>4)

= 4.

EXAMPLE 3  You drop a ball from a meters above a flat surface. Each time the ball 
hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but 
less than 1. Find the total distance the ball travels up and down (Figure 10.9).

Solution The total distance is

s = a + 2ar + 2ar2 + 2ar3 + g = a + 2ar
1 - r

= a 1 + r
1 - r

.
(+++++)+++++*

This sum is 2ar>(1 - r).

If a = 6 m and r = 2>3, for instance, the distance is

s = 6 # 1 + (2>3)

1 - (2>3)
= 6a5>3

1>3b = 30 m.

EXAMPLE 4  Express the repeating decimal 5.232323c as the ratio of two integers.

Solution From the definition of a decimal number, we get a geometric series

 5.232323c = 5 + 23
100

+ 23
(100)2 + 23

(100)3 + g

= 5 + 23
100
a1 + 1

100
+ a 1

100
b2

+ gb a = 1,
r = 1>100

(++++++)++++++*

1>(1 - 0.01)

= 5 + 23
100
a 1

0.99
b = 5 + 23

99 = 518
99

Unfortunately, formulas like the one for the sum of a convergent geometric series are rare 
and we usually have to settle for an estimate of a series’ sum (more about this later). The 
next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5  Find the sum of the “telescoping” series a

q

n=1

1
n(n + 1)

.

ar

ar2

ar3

(a)

a

FIGURE 10.9 (a) Example 3 shows how 
to use a geometric series to calculate the 
total vertical distance traveled by a bounc-
ing ball if the height of each rebound is 
reduced by the factor r. (b) A stroboscopic 
photo of a bouncing ball. (Source: PSSC 
Physics, 2nd ed., Reprinted by permission 
of Educational Development Center, Inc.)

(b)
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Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for sk. The key observation is the partial fraction decomposition

1
n(n + 1)

= 1
n - 1

n + 1
,

so

a

k

n=1

1
n(n + 1)

= a

k

n=1
a1n - 1

n + 1
b

and

sk = a1
1

- 1
2
b + a1

2
- 1

3 b + a13 - 1
4
b + g+ a1

k
- 1

k + 1
b .

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

sk = 1 - 1
k + 1

.

We now see that sk S 1 as k S q. The series converges, and its sum is 1:

a

q

n=1

1
n(n + 1)

= 1.

The nth-Term Test for a Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6  The series

a

q

n=1

n + 1
n = 2

1
+ 3

2
+ 4

3 + g+ n + 1
n + g

diverges because the partial sums eventually outgrow every preassigned number. Each 
term is greater than 1, so the sum of n terms is greater than n.

We now show that limnSqan must equal zero if the series g
q
n=1 an converges. To see 

why, let S represent the series’ sum and sn = a1 + a2 + g+ an the nth partial sum. 
When n is large, both sn and sn-1 are close to S, so their difference, an, is close to zero. 
More formally,

an = sn - sn-1 S S - S = 0.
Difference Rule 
for sequences

This establishes the following theorem. 

THEOREM 7 If a

q

n=1
an converges, then an S 0.

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

The nth-Term Test for Divergence

a

q

n=1
an diverges if lim

nSq
an fails to exist or is different from zero.

EXAMPLE 7  The following are all examples of divergent series.

(a) a

q

n=1
n2 diverges because n2 S q.

Caution

Theorem 7 does not say that g
q
n=1 an

converges if an S 0. It is possible for a 
series to diverge when an S 0.
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(b) a

q

n=1

n + 1
n  diverges because n + 1

n S 1. limnSq an ≠ 0

(c) a

q

n=1
(-1)n+1 diverges because limnSq(-1)n+1 does not exist.

(d) a

q

n=1

-n
2n + 5

 diverges because limnSq
-n

2n + 5
= - 1

2
≠ 0.

EXAMPLE 8  The series

1 + 1
2

+ 1
2

+ 1
4

+ 1
4

+ 1
4

+ 1
4

+ g + 1
2n + 1

2n + g + 1
2n + g

(+)+* (+++)+++*    (++++)++++*

2 terms 4 terms 2n terms

diverges because the terms can be grouped into infinitely many clusters each of which 
adds to 1, so the partial sums increase without bound. However, the terms of the series 
form a sequence that converges to 0. Example 1 of Section 10.3 shows that the harmonic 
series g1>n also behaves in this manner.

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them 
term by term, or multiply them by constants to make new convergent series.

THEOREM 8 If gan = A and gbn = B are convergent series, then

1. Sum Rule: g (an + bn) = gan + gbn = A + B

2. Difference Rule: g (an - bn) = gan - gbn = A - B

3. Constant Multiple Rule: gkan = kgan = kA (any number k).

Proof The three rules for series follow from the analogous rules for sequences in 
Theorem 1, Section 10.1. To prove the Sum Rule for series, let

An = a1 + a2 + g + an, Bn = b1 + b2 + g+ bn.

Then the partial sums of g (an + bn) are

sn = (a1 + b1) + (a2 + b2) + g+ (an + bn)

= (a1 + g+ an) + (b1 + g+ bn)

= An + Bn.

Since An S A and Bn S B, we have sn S A + B by the Sum Rule for sequences. The 
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of gkan

form the sequence

sn = ka1 + ka2 + g+ kan = k(a1 + a2 + g+ an) = kAn,

which converges to kA by the Constant Multiple Rule for sequences.

As corollaries of Theorem 8, we have the following results. We omit the proofs.

1. Every nonzero constant multiple of a divergent series diverges.

2. If gan converges and gbn diverges, then g (an + bn) and g (an - bn) both 
diverge.
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Caution Remember that g (an + bn) can converge when gan and gbn both diverge. For 
example, gan = 1 + 1 + 1 + g and gbn = (-1) + (-1) + (-1) + g diverge, 
whereas g (an + bn) = 0 + 0 + 0 + gconverges to 0.

EXAMPLE 9  Find the sums of the following series.

(a) a

q

n=1

3n-1 - 1
6n-1 = a

q

n=1
a 1

2n-1 - 1
6n-1b

= a

q

n=1

1
2n-1 - a

q

n=1

1
6n-1 Difference Rule

= 1
1 - (1>2)

- 1
1 - (1>6)

Geometric series with 

a = 1 and r = 1>2, 1>6
= 2 - 6

5
= 4

5

(b) a

q

n=0

4
2n = 4a

q

n=0

1
2n Constant Multiple Rule

= 4a 1
1 - (1>2)

b Geometric series with a = 1, r = 1>2
= 8

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without 
altering the series’ convergence or divergence, although in the case of convergence this will 
usually change the sum. If g

q
n=1 an converges, then g

q
n=k an converges for any k 7 1 and

a

q

n=1
an = a1 + a2 + g+ ak-1 + a

q

n= k
an.

Conversely, if g
q
n=k an converges for any k 7 1, then g

q
n=1 an converges. Thus,

a

q

n=1

1
5n = 1

5
+ 1

25
+ 1

125
+ a

q

n=4

1
5n

and

a

q

n=4

1
5n = aa

q

n=1

1
5nb - 1

5
- 1

25
- 1

125
.

The convergence or divergence of a series is not affected by its first few terms. Only the 
“tail” of the series, the part that remains when we sum beyond some finite number of ini-
tial terms, influences whether it converges or diverges.

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its 
convergence. To raise the starting value of the index h units, replace the n in the formula 
for an by n - h:

a

q

n=1
an = a

q

n=1+h
an-h = a1 + a2 + a3 + g.

To lower the starting value of the index h units, replace the n in the formula for an by n + h:

a

q

n=1
an = a

q

n=1-h
an+h = a1 + a2 + a3 + g.

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
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We saw this reindexing in starting a geometric series with the index n = 0 instead of the 
index n = 1, but we can use any other starting index value as well. We usually give prefer-
ence to indexings that lead to simple expressions.

EXAMPLE 10  We can write the geometric series

a

q

n=1

1
2n-1 = 1 + 1

2
+ 1

4
+ g

as

a

q

n=0

1
2n , a

q

n=5

1
2n-5 , or even a

q

n=-4

1
2n+4 .

The partial sums remain the same no matter what indexing we choose to use.

Exercises 10.2
Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series 
and use it to find the series’ sum if the series converges.

1. 2 + 2
3

+ 2
9

+ 2
27

+ g+ 2
3n-1 + g

2.
9

100
+ 9

1002 + 9
1003 + g + 9

100n + g

3. 1 - 1
2

+ 1
4

- 1
8

+ g + (-1)n-1 1
2n-1 + g

4. 1 - 2 + 4 - 8 + g + (-1)n-1 2n-1 + g

5. 1
2 # 3 + 1

3 # 4 + 1
4 # 5 + g + 1

(n + 1)(n + 2)
+ g

6.
5

1 # 2 + 5
2 # 3 + 5

3 # 4 + g + 5
n(n + 1)

+ g

Series with Geometric Terms
In Exercises 7–14, write out the first eight terms of each series to 
show how the series starts. Then find the sum of the series or show 
that it diverges.

7. a

q

n=0

(-1)n

4n 8. a

q

n=2

1
4n

9. a

q

n=1
a1 - 7

4nb 10. a

q

n=0
(-1)n 5

4n

11. a

q

n=0
a 5

2n + 1
3nb 12. a

q

n=0
a 5

2n - 1
3nb

13. a

q

n=0
a 1

2n +
(-1)n

5n b 14. a

q

n=0
a2n+1

5n b
In Exercises 15–18, determine if the geometric series converges or 
diverges. If a series converges, find its sum.

15. 1 + a2
5
b + a2

5
b2

+ a2
5
b3

+ a2
5
b4

+ g

16. 1 + (-3) + (-3)2 + (-3)3 + (-3)4 + g

17. a1
8
b + a1

8
b2

+ a1
8
b3

+ a1
8
b4

+ a1
8
b5

+ g

18. a-2
3
b2

+ a-2
3
b3

+ a-2
3
b4

+ a-2
3
b5

+ a-2
3
b6

+ g

Repeating Decimals
Express each of the numbers in Exercises 19–26 as the ratio of two  
integers.

19. 0.23 = 0.23 23 23c

20. 0.234 = 0.234 234 234c

21. 0.7 = 0.7777c

22. 0.d = 0.ddddc , where d is a digit

23. 0.06 = 0.06666c

24. 1.414 = 1.414 414 414c

25. 1.24123 = 1.24 123 123 123c

26. 3.142857 = 3.142857 142857c

Using the nth-Term Test
In Exercises 27–34, use the nth-Term Test for divergence to show that 
the series is divergent, or state that the test is inconclusive.

27. a

q

n=1

n
n + 10

28. a

q

n=1

n(n + 1)
(n + 2)(n + 3)

29. a

q

n=0

1
n + 4

30. a

q

n=1

n
n2 + 3

31. a

q

n=1
cos

1
n 32. a

q

n=0

en

en + n

33. a

q

n=1
ln

1
n 34. a

q

n=0
cos np

Telescoping Series
In Exercises 35–40, find a formula for the nth partial sum of the series 
and use it to determine if the series converges or diverges. If a series 
converges, find its sum.

35. a

q

n=1
a1n - 1

n + 1
b 36. a

q

n=1
a 3

n2 - 3
(n + 1)2b

37. a

q

n=1
1ln2n + 1 - ln2n2
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38. a

q

n=1
 (tan (n) - tan (n - 1))

39. a

q

n=1
acos-1 a 1

n + 1
b - cos-1 a 1

n + 2
b b

40. a

q

n=1
12n + 4 - 2n + 32

Find the sum of each series in Exercises 41–48.

41. a

q

n=1

4
(4n - 3)(4n + 1)

42. a

q

n=1

6
(2n - 1)(2n + 1)

43. a

q

n=1

40n
(2n - 1)2(2n + 1)2 44. a

q

n=1
  

2n + 1
n2(n + 1)2

45. a

q

n=1
a 1

2n
- 1

2n + 1
b 46. a

q

n=1
a 1

21>n - 1
21>(n+1)

b

47. a

q

n=1
a 1

ln (n + 2)
- 1

ln (n + 1)
b

48. a

q

n=1
(tan-1(n) - tan-1(n + 1))

Convergence or Divergence
Which series in Exercises 49–68 converge, and which diverge? Give 
reasons for your answers. If a series converges, find its sum.

49. a

q

n=0
a 1

22
bn

50. a

q

n=0
1222n

51. a

q

n=1
(-1)n+1 3

2n 52. a

q

n=1
(-1)n+1n

53. a

q

n=0
cos anp

2
b 54. a

q

n=0

cos np
5n

55. a

q

n=0
e-2n 56. a

q

n=1
ln

1
3n

57. a

q

n=1

2
10n 58. a

q

n=0
  
1
xn , � x � 7 1

59. a

q

n=0

2n - 1
3n 60. a

q

n=1
a1 - 1

nb
n

61. a

q

n=0

n!
1000n 62. a

q

n=1
  
nn

n!

63. a

q

n=1

2n + 3n

4n 64. a

q

n=1

2n + 4n

3n + 4n

65. a

q

n=1
ln a n

n + 1
b 66. a

q

n=1
lna n

2n + 1
b

67. a

q

n=0
a e
pb

n

68. a

q

n=0

enp

pne

Geometric Series with a Variable x
In each of the geometric series in Exercises 69–72, write out the first 
few terms of the series to find a and r, and find the sum of the series. 
Then express the inequality � r � 6 1 in terms of x and find the values 
of x for which the inequality holds and the series converges.

69. a

q

n=0
(-1)nxn 70. a

q

n=0
(-1)nx2n

71. a

q

n=0
3ax - 1

2
bn

72. a

q

n=0

(-1)n

2
a 1

3 + sin x
bn

In Exercises 73–78, find the values of x for which the given geometric 
series converges. Also, find the sum of the series (as a function of x)
for those values of x.

73. a

q

n=0
2nxn 74. a

q

n=0
(-1)nx-2n

75. a

q

n=0
(-1)n(x + 1)n 76. a

q

n=0
a- 1

2
bn

(x - 3)n

77. a

q

n=0
sinn x 78. a

q

n=0
(ln x)n

Theory and Examples
79. The series in Exercise 5 can also be written as

a

q

n=1

1
(n + 1)(n + 2)

and a

q

n=-1

1
(n + 3)(n + 4)

.

Write it as a sum beginning with (a) n = -2, (b) n = 0,
(c) n = 5.

80. The series in Exercise 6 can also be written as

a

q

n=1

5
n(n + 1)

and a

q

n=0

5
(n + 1)(n + 2)

.

Write it as a sum beginning with (a) n = -1, (b) n = 3,
(c) n = 20.

81. Make up an infinite series of nonzero terms whose sum is

a. 1 b. -3 c. 0.

82. (Continuation of Exercise 81.) Can you make an infinite series of 
nonzero terms that converges to any number you want? Explain.

83. Show by example that g(an>bn) may diverge even though gan

and gbn converge and no bn equals 0.

84. Find convergent geometric series A = gan and B = gbn that 
illustrate the fact that ganbn may converge without being equal 
to AB.

85. Show by example that g(an>bn) may converge to something 
other than A >B even when A = gan, B = gbn ≠ 0, and no bn

equals 0.

86. If gan converges and an 7 0 for all n, can anything be said 
about g(1>an)? Give reasons for your answer.

87. What happens if you add a finite number of terms to a divergent 
series or delete a finite number of terms from a divergent series? 
Give reasons for your answer.

88. If gan converges and gbn diverges, can anything be said about 
their term-by-term sum g(an + bn)? Give reasons for your  answer.

89. Make up a geometric series garn-1 that converges to the number 
5 if

a. a = 2 b. a = 13>2.

90. Find the value of b for which

1 + eb + e2b + e3b + g = 9.

91. For what values of r does the infinite series

1 + 2r + r2 + 2r3 + r4 + 2r5 + r6 + g

  converge? Find the sum of the series when it converges.
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92. The accompanying figure shows the first five of a sequence of 
squares. The outermost square has an area of 4 m2. Each of the 
other squares is obtained by joining the midpoints of the sides of 
the squares before it. Find the sum of the areas of all the squares.

93. Drug dosage A patient takes a 300 mg tablet for the control of 
high blood pressure every morning at the same time. The concen-
tration of the drug in the patient’s system decays exponentially at 
a constant hourly rate of k = 0.12.

a. How many milligrams of the drug are in the patient’s system 
just before the second tablet is taken? Just before the third 
tablet is taken?

b. In the long run, after taking the medication for at least six 
months, what quantity of drug is in the patient’s body just 
before taking the next regularly scheduled morning tablet?

94. Show that the error (L - sn) obtained by replacing a convergent 
geometric series with one of its partial sums sn is arn>(1 - r).

95. The Cantor set To construct this set, we begin with the closed 
interval 30, 14 . From that interval, remove the middle open 
interval (1>3, 2>3), leaving the two closed intervals 30, 1>34  and 
32>3, 14 . At the second step we remove the open middle third 
interval from each of those remaining. From 30, 1>34  we remove 
the open interval (1>9, 2>9), and from 32>3, 14  we remove 
(7>9, 8>9), leaving behind the four closed intervals 30, 1>94 ,

3 2>9,1>3 4 , 3 2>3, 7>9 4 , and 3 8>9, 1 4 . At the next step, we 
remove the middle open third interval from each closed interval 
left behind, so (1>27, 2>27) is removed from 3 0, 1>9 4 , leaving 
the closed intervals 30, 1>27 4  and 3 2>27, 1>9 4 ; (7>27, 8>27)
is removed from 3 2>9, 1>3 4 , leaving behind 3 2>9, 7>27 4  and 
3 8>27, 1>3 4 , and so forth. We continue this process repeatedly 
without stopping, at each step removing the open third interval 
from every closed interval remaining behind from the preceding 
step. The numbers remaining in the interval 3 0, 1 4, after all open 
middle third intervals have been removed, are the points in the 
Cantor set (named after Georg Cantor, 1845–1918). The set has 
some interesting properties.

a. The Cantor set contains infinitely many numbers in 3 0, 1 4 .
List 12 numbers that belong to the Cantor set.

b. Show, by summing an appropriate geometric series, that the 
total length of all the open middle third intervals that have 
been removed from 3 0, 1 4  is equal to 1.

96. Helga von Koch’s snowflake curve Helga von Koch’s snow-
flake is a curve of infinite length that encloses a region of finite 
area. To see why this is so, suppose the curve is generated by 
starting with an equilateral triangle whose sides have length 1.

a. Find the length Ln of the nth curve Cn and show that 
limnSq Ln = q.

b. Find the area An of the region enclosed by Cn and show that 
limnSq An = (8>5) A1.

C1 C4C3C2

10.3 The Integral Test

The most basic question we can ask about a series is whether it converges or not. In this 
section and the next two, we study this question, starting with series that have nonnegative 
terms. Such a series converges if its sequence of partial sums is bounded. If we establish 
that a given series does converge, we generally do not have a formula available for its sum. 
So for a convergent series, we need to investigate the error involved when using a partial 
sum to approximate its total sum.

Nondecreasing Partial Sums

Suppose that g
q
n=1 an is an infinite series with an Ú 0 for all n. Then each partial sum is 

greater than or equal to its predecessor because sn+1 = sn + an, so

s1 … s2 … s3 … g … sn … sn+1 … g.

Since the partial sums form a nondecreasing sequence, the Monotonic Sequence Theorem 
(Theorem 6, Section 10.1) gives the following result.

COROLLARY OF THEOREM 6 A series g
q
n=1 an of nonnegative terms converges 

if and only if its partial sums are bounded from above.
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EXAMPLE 1  As an application of the above corollary, consider the harmonic series

a

q

n=1

1
n = 1 + 1

2
+ 1

3 + g + 1
n + g.

Although the nth term 1 >n does go to zero, the series diverges because there is no upper 
bound for its partial sums. To see why, group the terms of the series in the following way:

1 + 1
2

+ a13 + 1
4
b + a1

5
+ 1

6
+ 1

7 + 1
8b + a19 + 1

10
+ g + 1

16
b + g .

(+)+* (+++)+++*   (++++)++++*

7 2
4 = 1

2       7 4
8 = 1

2 7 8
16 = 1

2

The sum of the first two terms is 1.5. The sum of the next two terms is 1>3 + 1>4, which 
is greater than 1>4 + 1>4 = 1>2. The sum of the next four terms is 1>5 + 1>6 +
1>7 + 1>8, which is greater than 1>8 + 1>8 + 1>8 + 1>8 = 1>2. The sum of the next 
eight terms is 1>9 + 1>10 + 1>11 + 1>12 + 1>13 + 1>14 + 1>15 + 1>16, which is 
greater than 8>16 = 1>2. The sum of the next 16 terms is greater than 16>32 = 1>2, and 
so on. In general, the sum of 2n terms ending with 1>2n+1 is greater than 2n>2n+1 = 1>2. 
If n = 2k, the partial sum sn is greater than k >2, so the sequence of partial sums is not 
bounded from above. The harmonic series diverges.

The Integral Test

We now introduce the Integral Test with a series that is related to the harmonic series, but 
whose nth term is 1>n2 instead of 1 >n.

EXAMPLE 2  Does the following series converge?

a

q

n=1

1
n2 = 1 + 1

4
+ 1

9 + 1
16

+ g + 1
n2 + g

Solution We determine the convergence of g
q
n=1(1>n2)  by comparing it with 

1
q

1 (1>x2) dx. To carry out the comparison, we think of the terms of the series as values of 
the function ƒ(x) = 1>x2 and interpret these values as the areas of rectangles under the 
curve y = 1>x2.

As Figure 10.10 shows,

sn = 1
12 + 1

22 + 1
32 + g + 1

n2

= ƒ(1) + ƒ(2) + ƒ(3) + g + ƒ(n)

6 ƒ(1) +
L

n

1

1
x2 dx

Rectangle areas sum to less 
than area under graph.

6 1 +
L

q

1

1
x2 dx 1

n
1 (1>x2) dx 6 1

q
1 (1>x2) dx

6 1 + 1 = 2.
As in Section 8.8, Example 3, 

1
q

1 (1>x2) dx = 1.

Thus the partial sums of g
q
n=1 (1>n2)  are bounded from above (by 2) and the series 

converges.

0 1

Graph of f (x) =

(1, f (1))

(2, f (2))

(3, f (3))
(n, f (n))

2 3 4 … n − 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

FIGURE 10.10 The sum of the areas
of the rectangles under the graph of 
ƒ(x) = 1>x2 is less than the area under the 
graph (Example 2).

THEOREM 9—The Integral Test Let 5an6  be a sequence of positive terms. 
Suppose that an = ƒ(n), where ƒ is a continuous, positive, decreasing function of 
x for all x Ú N  (N a positive integer). Then the series g

q
n=N an and the integral 

1
q

N ƒ(x) dx both converge or both diverge.

Caution
The series and integral need not have 
the same value in the convergent case. 
You will see in Example 6 that 

g
q
n=1 (1>n2) ≠ 1

q
1 (1>x2) dx = 1.
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Proof We establish the test for the case N = 1. The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with ƒ(n) = an for every 

n. This leads us to observe that the rectangles in Figure 10.11a, which have areas 
a1, a2, . . . , an, collectively enclose more area than that under the curve y = ƒ(x) from 
x = 1 to x = n + 1. That is,

L

n+1

1
ƒ(x) dx … a1 + a2 + g + an.

In Figure 10.11b the rectangles have been faced to the left instead of to the right. If we 
momentarily disregard the first rectangle of area a1, we see that

a2 + a3 + g + an …
L

n

1
ƒ(x) dx.

If we include a1, we have

a1 + a2 + g + an … a1 +
L

n

1
ƒ(x) dx.

Combining these results gives

L

n+1

1
ƒ(x) dx … a1 + a2 + g + an … a1 +

L

n

1
ƒ(x) dx.

These inequalities hold for each n, and continue to hold as n S q.

If 1
q

1 ƒ(x) dx is finite, the right-hand inequality shows that gan is finite. If 

1
q

1 ƒ(x) dx is infinite, the left-hand inequality shows that gan is infinite. Hence the series 
and the integral are both finite or both infinite.

EXAMPLE 3  Show that the p-series

a

q

n=1

1
np = 1

1p + 1
2p + 1

3p + g + 1
np + g

(p a real constant) converges if p 7 1, and diverges if p … 1.

Solution If p 7 1, then ƒ(x) = 1>xp is a positive decreasing function of x. Since

L

q

1

1
xp  dx =

L

q

1
x-p dx = lim

bSq
c x-p+1

-p + 1
d

1

b

= 1
1 - p

 lim
bSq
a 1

bp-1 - 1b
= 1

1 - p
(0 - 1) = 1

p - 1
,

bp-1 S q as b S q
because p - 1 7 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
1>(p - 1). The series converges, but we don’t know the value it converges to.

If p … 0, the series diverges by the nth-term test. If 0 6 p 6 1, then 1 - p 7 0 and

L

q

1

1
xp  dx = 1

1 - p
  lim
bSq

(b1-p - 1) = q.

The series diverges by the Integral Test.

0 1 2 n3 n + 1

a1
a2

an

(a)

0 1 2 n3 n − 1

a1

a3
an

(b)

a2

x

y

x

y

y = f (x)

y = f (x)

FIGURE 10.11 Subject to the con-
ditions of the Integral Test, the series 
g

q
n=1 an and the integral 1

q
1  ƒ(x) dx both 

converge or both diverge.
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If p = 1, we have the (divergent) harmonic series

1 + 1
2

+ 1
3 + g + 1

n + g.

We have convergence for p 7 1 but divergence for all other values of p.

The p-series with p = 1 is the harmonic series (Example 1). The p-Series Test 
shows that the harmonic series is just barely divergent; if we increase p to 1.000000001, 
for instance, the series converges!

The slowness with which the partial sums of the harmonic series approach infinity is 
impressive. For instance, it takes more than 178 million terms of the harmonic series to 
move the partial sums beyond 20. (See also Exercise 43b.)

EXAMPLE 4  The series g
q
n=1 (1>(n2 + 1)) is not a p-series, but it converges by the 

Integral Test. The function ƒ(x) = 1>(x2 + 1) is positive, continuous, and decreasing for 
x Ú 1, and

L

q

1

1
x2 + 1

dx = lim
bSq
3arctan x41

b

= lim
bSq
3arctan b - arctan 14

= p
2

- p
4

= p
4

.

The Integral Test tells us the series converges, but p>4 is not the sum of the series.

EXAMPLE 5  Determine the convergence or divergence of the series.

(a) a

q

n=1
ne-n2

(b) a

q

n=1

1
2 ln n

Solutions
(a) We apply the Integral Test and find that

L

q

1

x
ex2   dx = 1

2L

q

1

du
eu    u = x2, du = 2x dx

= lim
bSq
c- 1

2
e-u d b

1

= lim
bSq
a- 1

2eb + 1
2e
b = 1

2e
.

Since the integral converges, the series also converges.

(b) Again applying the Integral Test,

L

q

1

dx
2ln x =

L

q

0

eu du
2u u = ln x, x = eu, dx = eu du

=
L

q

0
ae

2
bu

du

= lim
bSq

1
ln 1e

22 a a
e
2
bb

- 1b = q. (e>2) 7 1

The improper integral diverges, so the series diverges also.

Error Estimation

For some convergent series, such as the geometric series or the telescoping series in 
Example 5 of Section 10.2, we can actually find the total sum of the series. That is, we can 
find the limiting value S of the sequence of partial sums. For most convergent series, 

The p-series a

H

n=1

1
np

converges if p 7 1, diverges if p … 1.
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however, we cannot easily find the total sum. Nevertheless, we can estimate the sum by add-
ing the first n terms to get sn, but we need to know how far off sn is from the total sum S.

Suppose that a series Σan is shown to be convergent by the Integral Test, and we want 
to estimate the size of the remainder Rn measuring the difference between the total sum S
of the series and its nth partial sum sn. That is, we wish to estimate

Rn = S - sn = an+1 + an+2 + an+3 + g.

To get a lower bound for the remainder, we compare the sum of the areas of the rect-
angles with the area under the curve y = ƒ(x) for x Ú n (see Figure 10.11a). We see that

Rn = an+1 + an+2 + an+3 + g Ú
L

q

n+1
ƒ(x) dx.

Similarly, from Figure 10.11b, we find an upper bound with

Rn = an+1 + an+2 + an+3 + g …
L

q

n
ƒ(x) dx.

These comparisons prove the following result, giving bounds on the size of the remainder.

Bounds for the Remainder in the Integral Test

Suppose 5ak6  is a sequence of positive terms with ak = ƒ(k), where ƒ is a con-
tinuous positive decreasing function of x for all x Ú n, and that Σan converges 
to S. Then the remainder Rn = S - sn satisfies the inequalities

L

q

n+1
ƒ(x) dx … Rn …

L

q

n
ƒ(x) dx. (1)

If we add the partial sum sn to each side of the inequalities in (1), we get

sn +
L

q

n+1
ƒ(x) dx … S … sn +

L

q

n
ƒ(x) dx (2)

since sn + Rn = S. The inequalities in (2) are useful for estimating the error in approxi-
mating the sum of a series known to converge by the Integral Test. The error can be no 
larger than the length of the interval containing S, with endpoints given by (2).

EXAMPLE 6  Estimate the sum of the series Σ(1>n2) using the inequalities in (2) and 
n = 10.

Solution We have that

L

q

n

1
x2 dx = lim

bSq
c-1

x d
n

b

= lim
bSq
a-1

b
+ 1

nb = 1
n .

Using this result with the inequalities in (2), we get

s10 + 1
11

… S … s10 + 1
10

.

Taking s10 = 1 + (1>4) + (1>9) + (1>16) + g + (1>100) ≈ 1.54977, these last 
inequalities give

1.64068 … S … 1.64977.

If we approximate the sum S by the midpoint of this interval, we find that

a

q

n=1

1
n2 ≈ 1.6452.
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The error in this approximation is then less than half the length of the interval, so the error 
is less than 0.005. Using a trigonometric Fourier series (studied in advanced calculus), it 
can be shown that S is equal to p2>6 ≈ 1.64493.

Exercises 10.3
39. a

q

n=1
sech n 40. a

q

n=1
sech2 n

Theory and Examples
For what values of a, if any, do the series in Exercises 41 and 42  converge?

41. a

q

n=1
a a

n + 2
- 1

n + 4
b 42. a

q

n=3
a 1

n - 1
- 2a

n + 1
b

43. a.  Draw illustrations like those in Figures 10.11a and 10.11b to 
show that the partial sums of the harmonic series satisfy the  
inequalities

ln (n + 1) =
L

n+1

1

1
x dx … 1 + 1

2
+ g+ 1

n

… 1 +
L

n

1

1
x dx = 1 + ln n.

b. There is absolutely no empirical evidence for the divergence 
of the harmonic series even though we know it diverges. The 
partial sums just grow too slowly. To see what we mean, sup-
pose you had started with s1 = 1 the day the universe was 
formed, 13 billion years ago, and added a new term every 
second. About how large would the partial sum sn be today, 
assuming a 365-day year?

44. Are there any values of x for which g
q
n=1(1>nx) converges? Give 

reasons for your answer.

45. Is it true that if g
q
n=1 an is a divergent series of positive numbers, 

then there is also a divergent series g
q
n=1 bn of positive numbers 

with bn 6 an for every n? Is there a “smallest” divergent series of 
positive numbers? Give reasons for your answers.

46. (Continuation of Exercise 45.) Is there a “largest” convergent 
series of positive numbers? Explain.

47. gHn=1 11 ,2n + 12 diverges

a. Use the accompanying graph to show that the partial sum

s50 = g
50
n=1 11>2n + 12 satisfies

L

51

1

1

2x + 1
dx 6 s50 6

L

50

0

1

2x + 1
dx.

Conclude that 11.5 6 s50 6 12.3.

0

1

1 2 3 4 5 ···

···

48 49 50 51
x

y

"

x + 1

1
f (x) =

T

11. a

q

n=1

1
10n 12. a

q

n=1
e-n 13. a

q

n=1

n
n + 1

14. a

q

n=1

5
n + 1

15. a

q

n=1

3

2n
16. a

q

n=1

-2

n2n

17. a

q

n=1
- 1

8n 18. a

q

n=1

-8
n 19. a

q

n=2

ln n
n

20. a

q

n=2

ln n

2n
21. a

q

n=1

2n

3n 22. a

q

n=1

5n

4n + 3

23. a

q

n=0

-2
n + 1

24. a

q

n=1

1
2n - 1

25. a

q

n=1

2n

n + 1

26. a

q

n=1
a1 + 1

nb
n

27. a

q

n=2

2n
ln n

29. a

q

n=1

1
(ln 2)n 30. a

q

n=1

1
(ln 3)n

31. a

q

n=3

(1>n)

(ln n)2ln2 n - 1
32. a

q

n=1

1
n(1 + ln2 n)

33. a

q

n=1
n sin

1
n 34. a

q

n=1
n tan

1
n

35. a

q

n=1

en

1 + e2n 36. a

q

n=1

2
1 + en

37. a

q

n=1

8 tan-1 n
1 + n2 38. a

q

n=1

n
n2 + 1

Applying the Integral Test
Use the Integral Test to determine if the series in Exercises 1–10 con-
verge or diverge. Be sure to check that the conditions of the Integral 
Test are satisfied.

1. a

q

n=1

1
n2 2. a

q

n=1

1
n0.2 3. a

q

n=1

1
n2 + 4

4. a

q

n=1

1
n + 4

5. a

q

n=1
e-2n 6. a

q

n=2

1
n(ln n)2

7. a

q

n=1

n
n2 + 4

8. a

q

n=2

ln (n2)
n

9. a

q

n=1

n2

en>3 10. a

q

n=2

n - 4
n2 - 2n + 1

Determining Convergence or Divergence
Which of the series in Exercises 11–40 converge, and which diverge? 
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’ con-
vergence or divergence.)

The p-series for p = 2

a

q

n=1

1
n2 = p

2

6
≈ 1.64493

28. a

q

n=1

1

2n12n + 12
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b. What should n be in order that the partial sum

sn = g
n
i=1 11>2i + 12 satisfy sn 7 1000?

48. g
H

n=1 (1>n4) converges

a. Use the accompanying graph to find an upper bound for the 

error if s30 = g
30
n=1 (1>n4) is used to estimate the value of 

g
q
n=1 (1>n4).

29

2×10−6

30 31 32 33
x

y

x4
1f (x) =

···

b. Find n so that the partial sum sn = g
n
i=1 (1>i4)  estimates the 

value of g
q
n=1 (1>n4)  with an error of at most 0.000001.

49. Estimate the value of g
q
n=1 (1>n3)  to within 0.01 of its exact value.

50. Estimate the value of g
q
n=2 (1> (n2 + 4) )  to within 0.1 of its exact 

value.

51. How many terms of the convergent series g
q
n=1 (1>n1.1)  should 

be used to estimate its value with error at most 0.00001?

52. How many terms of the convergent series g
q
n=4 (1>n(ln n)3)

should be used to estimate its value with error at most 0.01?

53. The Cauchy condensation test The Cauchy condensation test 
says: Let 5an6  be a nonincreasing sequence (an Ú an+1 for all n)
of positive terms that converges to 0. Then gan converges if and 
only if g2na2n converges. For example, g(1>n) diverges because 
g2n # (1>2n) = g1 diverges. Show why the test works.

54. Use the Cauchy condensation test from Exercise 53 to show that

a. a

q

n=2

1
n ln n

 diverges;

b. a

q

n=1

1
np converges if p 7 1 and diverges if p … 1.

55. Logarithmic p-series

a. Show that the improper integral

L

q

2

dx
x(ln x)p (p a positive constant)

  converges if and only if p 7 1.

b. What implications does the fact in part (a) have for the con-
vergence of the series

a

q

n=2

1
n(ln n)p ?

  Give reasons for your answer.

56. (Continuation of Exercise 55.) Use the result in Exercise 55 to 
determine which of the following series converge and which 
diverge. Support your answer in each case.

a. a

q

n=2

1
n(ln n)

b. a

q

n=2

1
n (ln n)1.01

c. a

q

n=2

1
n ln (n3)

d. a

q

n=2

1
n (ln n)3

57. Euler’s constant Graphs like those in Figure 10.11 suggest that as 
n increases there is little change in the difference between the sum

1 + 1
2

+ g+ 1
n

and the integral

ln n =
L

n

1

1
x dx.

To explore this idea, carry out the following steps.

a. By taking ƒ(x) = 1>x in the proof of Theorem 9, show that

ln (n + 1) … 1 + 1
2

+ g + 1
n … 1 + ln n

or

0 6 ln (n + 1) - ln n … 1 + 1
2

+ g+ 1
n - ln n … 1.

  Thus, the sequence

an = 1 + 1
2

+ g + 1
n - ln n

  is bounded from below and from above.

b. Show that

1
n + 1

6
L

n+1

n

1
x dx = ln (n + 1) - ln n,

  and use this result to show that the sequence 5an6  in part (a) 
is decreasing.

  Since a decreasing sequence that is bounded from below con-
verges, the numbers an defined in part (a) converge:

1 + 1
2

+ g + 1
n - ln n S g.

  The number g, whose value is 0.5772 . . ., is called Euler’s
constant.

58. Use the Integral Test to show that the series

a

q

n=0
e-n2

converges.

59. a. For the series g (1>n3) , use the inequalities in Equation (2) 
with n = 10 to find an interval containing the sum S.

b. As in Example 5, use the midpoint of the interval found in 
part (a) to approximate the sum of the series. What is the 
maximum error for your approximation?

60. Repeat Exercise 59 using the series g (1>n4).

61. Area Consider the sequence 51>n6q
n=1. On each subinterval 

(1>(n + 1), 1>n) within the interval 30, 14 , erect the rectangle 
with area an having height 1 >n and width equal to the length of 
the subinterval. Find the total area aan of all the rectangles. 
(Hint: Use the result of Example 5 in Section 10.2.)

62. Area Repeat Exercise 61, using trapezoids instead of rectan-
gles. That is, on the subinterval (1>(n + 1), 1>n), let an denote 
the area of the trapezoid having heights y = 1>(n + 1) at 
x = 1>(n + 1) and y = 1>n at x = 1>n.
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10.4 Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few 
others. We can test the convergence of many more series by comparing their terms to those 
of a series whose convergence is known.

THEOREM 10—The Comparison Test Let gan, gcn, and gdn be series with 
nonnegative terms. Suppose that for some integer N

dn … an … cn for all n 7 N.

(a) If gcn converges, then gan also converges.

(b) If gdn diverges, then gan also diverges.

Proof  In Part (a), the partial sums of gan are bounded above by

M = a1 + a2 + g+ aN + a

q

n=N+1
cn.

They therefore form a nondecreasing sequence with a limit L … M. That is, if gcn con-
verges, then so does gan. Figure 10.12 depicts this result, where each term of each series is 
interpreted as the area of a rectangle ( just as we did for the Integral Test in Figure 10.11).

In Part (b), the partial sums of gan are not bounded from above. If they were, the 
partial sums for gdn would be bounded by

M* = d1 + d2 + g+ dN + a

q

n=N+1
an

and gdn would have to converge instead of diverge.

EXAMPLE 1  We apply Theorem 10 to several series.

(a) The series

a

q

n=1

5
5n - 1

  diverges because its nth term

5
5n - 1

= 1

n - 1
5

7 1
n

  is greater than the nth term of the divergent harmonic series.

(b) The series

a

q

n=0

1
n!

= 1 + 1
1!

+ 1
2!

+ 1
3!

+ g

  converges because its terms are all positive and less than or equal to the corresponding 
terms of

1 + a

q

n=0

1
2n = 1 + 1 + 1

2
+ 1

22 + g.

  The geometric series on the left converges and we have

1 + a

q

n=0

1
2n = 1 + 1

1 - (1>2)
= 3.

HISTORICAL BIOGRAPHY

Albert of Saxony
(ca. 1316–1390)

n
1 2 3 4 5 n−1 n

c1

c2

c3

c4 c5
cn−1 cn

a1 a2
a3

a4
a5 an

···

y

FIGURE 10.12 If the total area gcn

of the taller cn rectangles is finite, then 
so is the total area gan of the shorter 
an rectangles.
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     The fact that 3 is an upper bound for the partial sums of g
q
n=0(1>n!) does not mean 

that the series converges to 3. As we will see in Section 10.9, the series converges to e.

(c) The series

5 + 2
3 + 1

7 + 1 + 1

2 + 21
+ 1

4 + 22
+ 1

8 + 23
+ g+ 1

2n + 2n
+ g

  converges. To see this, we ignore the first three terms and compare the remaining 
terms with those of the convergent geometric series g

q
n=0(1>2n). The term 

1>12n + 2n2 of the truncated sequence is less than the corresponding term 1>2n of 
the geometric series. We see that term by term we have the comparison

1 + 1

2 + 21
+ 1

4 + 22
+ 1

8 + 23
+ g… 1 + 1

2
+ 1

4
+ 1

8 + g.

  So the truncated series and the original series converge by an application of the Com-
parison Test.

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which an is a  
rational function of n.

THEOREM 11—Limit Comparison Test Suppose that an 7 0 and bn 7 0 for 
all n Ú N  (N an integer).

1. If lim
nSq

an

bn
= c 7 0, then gan and gbn both converge or both diverge.

2. If lim
nSq

an

bn
= 0 and gbn converges, then gan converges.

3. If lim
nSq

an

bn
= q and gbn diverges, then gan diverges.

Proof  We will prove Part 1. Parts 2 and 3 are left as Exercises 55a and b.
Since c>2 7 0, there exists an integer N such that for all n

n 7 N 1 ` an

bn
- c ` 6 c

2
.

Limit definition with 
P = c>2, L = c, and 
an replaced by an>bn

Thus, for n 7 N,

- c
2

6
an

bn
- c 6 c

2
,

c
2

6
an

bn
6 3c

2
,

ac
2
bbn 6 an 6 a3c

2
bbn .

If gbn converges, then g (3c>2)bn converges and gan converges by the Direct Compari-
son Test. If gbn diverges, then g (c>2)bn diverges and gan diverges by the Direct Com-
parison Test.

EXAMPLE 2  Which of the following series converge, and which diverge?

(a) 3
4

+ 5
9 + 7

16
+ 9

25
+ g = a

q

n=1

2n + 1
(n + 1)2 = a

q

n=1

2n + 1
n2 + 2n + 1
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(b) 1
1

+ 1
3 + 1

7 + 1
15

+ g = a

q

n=1

1
2n - 1

(c) 1 + 2 ln 2
9 + 1 + 3 ln 3

14
+ 1 + 4 ln 4

21
+ g= a

q

n=2

1 + n ln n
n2 + 5

Solution We apply the Limit Comparison Test to each series.

(a) Let an = (2n + 1)>(n2 + 2n + 1). For large n, we expect an to behave like 
2n>n2 = 2>n since the leading terms dominate for large n, so we let bn = 1>n. Since

a

q

n=1
bn = a

q

n=1

1
n diverges

  and

lim
nSq

an

bn
= lim

nSq
2n2 + n

n2 + 2n + 1
= 2,

gan diverges by Part 1 of the Limit Comparison Test. We could just as well have 
taken bn = 2>n, but 1 >n is simpler.

(b) Let an = 1>(2n - 1). For large n, we expect an to behave like 1>2n, so we let 
bn = 1>2n. Since

a

q

n=1
bn = a

q

n=1

1
2n converges

  and

lim
nSq

an

bn
= lim

nSq
2n

2n - 1

= lim
nSq

1
1 - (1>2n)

= 1,

gan converges by Part 1 of the Limit Comparison Test.

(c) Let an = (1 + n ln n)>(n2 + 5). For large n, we expect an to behave like (n ln n)>n2 =
(ln n)>n, which is greater than 1 >n for n Ú 3, so we let bn = 1>n. Since

a

q

n=2
bn = a

q

n=2

1
n diverges

  and

lim
nSq

an

bn
= lim

nSq
n + n2 ln n

n2 + 5

= q,

gan diverges by Part 3 of the Limit Comparison Test.

EXAMPLE 3  Does a

q

n=1

ln n
n3>2  converge?

Solution Because ln n grows more slowly than nc for any positive constant c (Section 10.1, 
Exercise 105), we can compare the series to a convergent p-series. To get the p-series, we 
see that

ln n
n3>2 6 n1>4

n3>2 = 1
n5>4
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for n sufficiently large. Then taking an = (ln n)>n3>2 and bn = 1>n5>4, we have

lim
nSq

an

bn
= lim

nSq
ln n
n1>4

= lim
nSq

1>n
(1>4)n-3>4 l’Hôpital’s Rule

= lim
nSq

4
n1>4 = 0.

Since gbn = g (1>n5>4) is a p-series with p 7 1, it converges, so gan converges by Part 2 
of the Limit Comparison Test.

Exercises 10.4
Comparison Test
In Exercises 1–8, use the Comparison Test to determine if each series 
converges or diverges.

1. a

q

n=1

1
n2 + 30

2. a

q

n=1

n - 1
n4 + 2

3. a

q

n=2

1

2n - 1

4. a

q

n=2

n + 2
n2 - n

5. a

q

n=1

cos2 n
n3>2 6. a

q

n=1

1
n3n

7. a

q

n=1 A
n + 4
n4 + 4

8. a

q

n=1

2n + 1

2n2 + 3

Limit Comparison Test
In Exercises 9–16, use the Limit Comparison Test to determine if each 
series converges or diverges.

9. a

q

n=1

n - 2
n3 - n2 + 3

( Hint: Limit Comparison with g
q
n=1 (1>n2) )

10. a

q

n=1 A
n + 1
n2 + 21Hint: Limit Comparison with g

q
n=1 11>2n 22

11. a

q

n=2

n(n + 1)

(n2 + 1)(n - 1)
12. a

q

n=1

2n

3 + 4n

13. a

q

n=1

5n

2n 4n
14. a

q

n=1
a2n + 3

5n + 4
bn

15. a

q

n=2

1
ln n

  (Hint: Limit Comparison with g
q
n=2 (1>n))

16. a

q

n=1
lna1 + 1

n2b
( Hint: Limit Comparison with g

q
n=1 (1>n2) )

Determining Convergence or Divergence
Which of the series in Exercises 17–54 converge, and which diverge? 
Use any method, and give reasons for your answers.

37. a

q

n=1

1
3n-1 + 1

38. a

q

n=1

3n-1 + 1
3n 39. a

q

n=1

n + 1
n2 + 3n

# 1
5n

17. a

q

n=1

1

22n + 23 n
18. a

q

n=1

3

n + 2n
19. a

q

n=1

sin2 n
2n

20. a

q

n=1

1 + cos n
n2 21. a

q

n=1

2n
3n - 1

22. a

q

n=1

n + 1

n22n

23. a

q

n=1

10n + 1
n(n + 1)(n + 2)

24. a

q

n=3

5n3 - 3n
n2(n - 2)(n2 + 5)

25. a

q

n=1
a n

3n + 1
bn

26. a

q

n=1

1

2n3 + 2
27. a

q

n=3

1
ln (ln n)

28. a

q

n=1

(ln n)2

n3
29. a

q

n=2

1

2n ln n
30. a

q

n=1

(ln n)2

n3>2

31. a

q

n=1

1
1 + ln n

32. a

q

n=2

ln (n + 1)
n + 1

33. a

q

n=2

1

n2n2 - 1

34. a

q

n=1

2n
n2 + 1

35. a

q

n=1

1 - n
n2n 36. a

q

n=1

n + 2n

n22n

44. a

q

n=1

(n - 1)!
(n + 2)!

45. a

q

n=1
sin

1
n 46. a

q

n=1
tan

1
n

47. a

q

n=1

tan-1 n
n1.1 48. a

q

n=1

sec-1 n
n1.3 49. a

q

n=1

coth n
n2

50. a

q

n=1

tanh n
n2 51. a

q

n=1

1

n2n n
52. a

q

n=1

2n n
n2

53. a

q

n=1

1
1 + 2 + 3 + g+ n

54. a

q

n=1

1
1 + 22 + 32 + g+ n2

Theory and Examples
55. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

56. If g
q
n=1an is a convergent series of nonnegative numbers, can 

anything be said about g
q
n=1(an>n)? Explain.

57. Suppose that an 7 0 and bn 7 0 for n Ú N  (N an integer). If 
limnSq (an>bn) = q and gan converges, can anything be said 
about gbn? Give reasons for your answer.

58. Prove that if gan is a convergent series of nonnegative terms, 
then gan

2 converges.

40. a

q

n=1

2n + 3n

3n + 4n 41. a

q

n=1

2n - n
n2n 42. a

q

n=1

ln n

2n en

43. a

q

n=2

1
n!

  (Hint: First show that (1>n!) … (1>n(n - 1)) for n Ú 2.)
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59. Suppose that an 7 0 and lim
nSq

an = q. Prove that gan diverges.

60. Suppose that an 7 0 and lim
nSq

n2an = 0. Prove that gan con-
verges.

61. Show that g
q
n=2 ((ln n)q>np)  converges for -q 6 q 6 q and 

p 7 1.

  (Hint: Limit Comparison with g
q
n=2 1>nr for 1 6 r 6 p.)

62. (Continuation of Exercise 61.) Show that g
q
n=2 ((ln n)q>np)

diverges for -q 6 q 6 q and 0 6 p 6 1.

  (Hint: Limit Comparison with an appropriate p-series.)

63. Decimal numbers Any real number in the interval 30, 14 can be 
represented by a decimal (not necessarily unique) as

0.d1d2d3d4 . . . =
d1

10
+

d2

102 +
d3

103 +
d4

104 + g,

  where di is one of the integers 0, 1, 2, 3, . . . , 9. Prove that the series 
on the right-hand side always converges.

64. If gan is a convergent series of positive terms, prove that 
g sin (an) converges.

In Exercises 65–70, use the results of Exercises 61 and 62 to deter-
mine if each series converges or diverges.

65. a

q

n=2

(ln n)3

n4 66. a

q

n=2 A
ln n

n

67. a

q

n=2

(ln n)1000

n1.001 68. a

q

n=2

(ln n)1>5
n0.99

69. a

q

n=2

1
n1.1(ln n)3 70. a

q

n=2

1

2n # ln n

COMPUTER EXPLORATIONS
71. It is not yet known whether the series

a

q

n=1

1
n3 sin2 n

  converges or diverges. Use a CAS to explore the behavior of the 
series by performing the following steps.

a. Define the sequence of partial sums

sk = a

k

n=1

1
n3 sin2 n

.

  What happens when you try to find the limit of sk as k S q?
Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points (k, sk) for the sequence of partial 
sums. Do they appear to converge? What would you estimate 
the limit to be?

c. Next plot the first 200 points (k, sk). Discuss the behavior in 
your own words.

d. Plot the first 400 points (k, sk). What happens when k = 355?
Calculate the number 355>113. Explain from you calculation 
what happened at k = 355. For what values of k would you 
guess this behavior might occur again?

72. a. Use Theorem 8 to show that

S = a

q

n=1

1
n(n + 1)

+ a

q

n=1
a 1

n2 - 1
n(n + 1)

b
where S = a

q
n=1(1>n2) , the sum of a convergent p-series.

b. From Example 5, Section 10.2, show that

S = 1 + a

q

n=1

1
n2(n + 1)

.

c. Explain why taking the first M terms in the series in part (b) 
gives a better approximation to S than taking the first M
terms in the original series a

q
n=1(1>n2).

d. We know the exact value of S is p2>6. Which of the sums

a

1000000

n=1

1
n2 or 1 + a

1000

n=1

1
n2(n + 1)

  gives a better approximation to S?

10.5 Absolute Convergence; The Ratio and Root Tests

When some of the terms of a series are positive and others are negative, the series may or 
may not converge. For example, the geometric series

5 - 5
4

+ 5
16

- 5
64

+ g= a

q

n=0
5a-1

4
bn

(1)

converges (since 0 r 0 = 1
4

6 1), whereas the different geometric series

1 - 5
4

+ 25
16

- 125
64

+ g = a

q

n=0
a-5

4
bn

(2)

diverges (since 0 r 0 = 5>4 7 1). In series (1), there is some cancelation in the partial 
sums, which may be assisting the convergence property of the series. However, if we make 
all of the terms positive in series (1) to form the new series

5 + 5
4

+ 5
16

+ 5
64

+ g = a

q

n=0
` 5a-1

4
bn ` = a

q

n=0
5a1

4
bn

,
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we see that it still converges. For a general series with both positive and negative terms, we 
can apply the tests for convergence studied before to the series of absolute values of its 
terms. In doing so, we are led naturally to the following concept.

DEFINITION A series a an converges absolutely (is absolutely convergent) if 
the corresponding series of absolute values, a 0 an 0 , converges.

So the geometric series (1) is absolutely convergent. We observed, too, that it is also con-
vergent. This situation is always true: An absolutely convergent series is convergent as 
well, which we now prove.

THEOREM 12—The Absolute Convergence Test If a

q

n=1
0 an 0  converges, then a

q

n=1
an

converges.

Proof For each n,

- 0 an 0 … an … 0 an 0 , so 0 … an + 0 an 0 … 2 0 an 0.
If Σq

n=1 0 an 0  converges, then Σq
n=1 2 0 an 0  converges and, by the Direct Comparison Test, the 

nonnegative series Σq
n=1 (an + 0 an 0 ) converges. The equality an = (an + 0 an 0 ) - 0 an 0  now 

lets us express Σq
n=1 an as the difference of two convergent series: 

a

q

n=1
an = a

q

n=1
(an + 0 an 0 - 0 an 0 ) = a

q

n=1
(an + 0 an 0 ) - a

q

n=1
0 an 0 .

Therefore, a
q
n=1 an converges.

EXAMPLE 1  This example gives two series that converge absolutely.

(a) For a

q

n=1
(-1)n+1 1

n2 = 1 - 1
4

+ 1
9 - 1

16
+ g, the corresponding series of absolute 

values is the convergent series

a

q

n=1

1
n2 = 1 + 1

4
+ 1

9 + 1
16

+ g.

  The original series converges because it converges absolutely.

(b) For a

q

n=1

sin n
n2 = sin 1

1
+ sin 2

4
+ sin 3

9 + g, which contains both positive and 

negative terms, the corresponding series of absolute values is

a

q

n=1
` sin n

n2 ` = � sin 1 �
1

+
� sin 2 �

4
+ g,

  which converges by comparison with a
q
n=1(1>n2)  because � sin n � … 1 for every n.

The original series converges absolutely; therefore it converges.

Caution Be careful when using Theorem 12. A convergent series need not converge 
absolutely, as you will see in the next section.
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The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 
an+1>an . For a geometric series a arn, this rate is a constant ((arn+1)/(arn) = r), and the 
series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a 
powerful rule extending that result.

THEOREM 13—The Ratio Test Let a an be any series and suppose that

lim
nSq
` an+1

an
` = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if 
r 7 1 or r is infinite, (c) the test is inconclusive if r = 1.

Proof

(a) R * 1. Let r be a number between r and 1. Then the number P = r - r is positive. 
Since

` an+1
an
` S r,

0 an+1>an 0  must lie within P of r when n is large enough, say, for all n Ú N. In  particular,

` an+1
an
` 6 r + P = r, when n Ú N.

That is,

0 aN+1 0 6 r 0 aN 0 ,
0 aN+2 0 6 r 0 aN+1 0 6 r2 0 aN 0 ,
0 aN+3 0 6 r 0 aN+2 0 6 r3 0 aN 0 ,

f

0 aN+m 0 6 r 0 aN+m-1 0 6 rm 0 aN 0 .
Therefore.

a

q

m=N
0 am 0 = a

q

m=0
0 aN+m 0 … a

q

m=0
0 aN 0 rm = 0 aN 0 a

q

m=0
rm.

The geometric series on the right-hand side converges because 0 6 r 6 1, so the series of 
absolute values a

q
m=N 0 am 0  converges by the Comparison Test. Because adding or delet-

ing finitely many terms in a series does not affect its convergence or divergence property, 
the series a

q
n=1 0 an 0  also converges. That is, the series a an is absolutely convergent.

(b) 1 * R " H. From some index M on,

` an+1
an
` 7 1 and 0 aM 0 6 0 aM+1 0 6 0 aM+2 0 6 g.

The terms of the series do not approach zero as n becomes infinite, and the series diverges 
by the nth-Term Test.

(c) R = 1. The two series

a

q

n=1

1
n and a

q

n=1

1
n2
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  show that some other test for convergence must be used when r = 1.

For a

q

n=1

1
n : ` an+1

an
` = 1>(n + 1)

1>n = n
n + 1

S 1.

For a

q

n=1

1
n2 : ` an+1

an
` = 1>(n + 1)2

1>n2 = a n
n + 1

b2

S 12 = 1.

In both cases, r = 1, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of 
expressions involving n or expressions raised to a power involving n.

EXAMPLE 2  Investigate the convergence of the following series.

(a) a

q

n=0

2n + 5
3n (b) a

q

n=1

(2n)!
n!n!

(c) a

q

n=1

4nn!n!
(2n)!

Solution We apply the Ratio Test to each series.

(a) For the series a
q
n=0 (2n + 5)/3n,

` an+1
an
` = (2n+1 + 5)>3n+1

(2n + 5)>3n = 1
3
# 2n+1 + 5

2n + 5
= 1

3
# a2 + 5 # 2-n

1 + 5 # 2-nb S 1
3
# 2
1

= 2
3.

The series converges absolutely (and thus converges) because r = 2>3 is less than 1. This 
does not mean that 2>3 is the sum of the series. In fact,

a

q

n=0

2n + 5
3n = a

q

n=0
a23b

n

+ a

q

n=0

5
3n = 1

1 - (2/3)
+ 5

1 - (1/3)
= 21

2
.

(b) If an =
(2n)!
n!n!

, then an+1 =
(2n + 2)!

(n + 1)!(n + 1)!
and

` an+1
an
` = n!n!(2n + 2)(2n + 1)(2n)!

(n + 1)!(n + 1)!(2n)!

=
(2n + 2)(2n + 1)
(n + 1)(n + 1)

= 4n + 2
n + 1

S 4.

  The series diverges because r = 4 is greater than 1.

(c) If an = 4nn!n!/(2n)!, then

` an+1
an
` = 4n+1(n + 1)!(n + 1)!

(2n + 2)(2n + 1)(2n)!
# (2n)!

4nn!n!

=
4(n + 1)(n + 1)
(2n + 2)(2n + 1)

=
2(n + 1)
2n + 1

S 1.

  Because the limit is r = 1, we cannot decide from the Ratio Test whether the series 
converges. When we notice that an+1>an = (2n + 2)>(2n + 1), we conclude that 
an+1 is always greater than an because (2n + 2)>(2n + 1) is always greater than 1. 
Therefore, all terms are greater than or equal to a1 = 2, and the nth term does not 
approach zero as n S q. The series diverges.

The Root Test

The convergence tests we have so far for Σanwork best when the formula for an is rela-
tively simple. However, consider the series with the terms
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an = en>2n , n odd

1>2n , n even.

To investigate convergence we write out several terms of the series:

a

q

n=1
an = 1

21 + 1
22 + 3

23 + 1
24 + 5

25 + 1
26 + 7

27 + g

= 1
2

+ 1
4

+ 3
8 + 1

16
+ 5

32
+ 1

64
+ 7

128
+ g.

Clearly, this is not a geometric series. The nth term approaches zero as n S q, so the nth-
Term Test does not tell us if the series diverges. The Integral Test does not look promising. 
The Ratio Test produces

` an+1
an
` = μ

1
2n

, n odd

n + 1
2

, n even

As n S q, the ratio is alternately small and large and has no limit. However, we will see 
that the following test establishes that the series converges.

THEOREM 14—The Root Test Let a an be any series and suppose that

lim
nSq

= 2n 0 an 0 = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if 
r 7 1 or r is infinite, (c) the test is inconclusive if r = 1.

Proof

(a) R * 1. Choose an P 7 0 so small that r + P 6 1. Since 2n 0 an 0 S r, the terms 
2n 0 an 0  eventually get to within P of r. So there exists an index M  such that

2n 0 an 0 6 r + P when n Ú M.

  Then it is also true that

0 an 0 6 (r + P)n for n Ú M.

  Now, g
q
n=M (r + P)n, a geometric series with ratio (r + P) 6 1, converges. By the 

Comparison Test, g
q
n=M 0 an 0  converges, from which it follows that

a

q

n=1
0 an 0 = 0 a1 0 + g + 0 aM-1 0 + a

q

n=M
0 an 0

  converges. Therefore, gan converges absolutely.

(b) 1 * R " H. For all indices beyond some integer M, we have 2n 0 an 0 7 1, so that 0 an 0 7 1 for n 7 M. The terms of the series do not converge to zero. The series 
diverges by the nth-Term Test.

(c) R = 1. The series g
q
n=1 (1>n) and g

q
n=1 (1>n2) show that the test is not conclusive 

when r = 1. The first series diverges and the second converges, but in both cases 

2n 0 an 0 S 1.

EXAMPLE 3  Consider again the series with terms an = en>2n, n odd

1>2n, n even.

Does gan converge?
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Solution We apply the Root Test, finding that

2n 0 an 0 = e2
n

n>2, n odd

1>2, n even.

Therefore,

1
2

… 2n 0 an 0 … 2
n

n
2

.

Since 2n n S 1 (Section 10.1, Theorem 5), we have limnSq2n 0 an 0 = 1>2 by the Sandwich 
Theorem. The limit is less than 1, so the series converges absolutely by the Root Test.

EXAMPLE 4  Which of the following series converge, and which diverge?

(a) a

q

n=1

n2

2n (b) a

q

n=1

2n

n3 (c) a

q

n=1
a 1

1 + n
bn

Solution We apply the Root Test to each series, noting that each series has positive terms.

(a) a

q

n=1

n2

2n converges because B
n n2

2n = 2
n

n2

2n 2n
=
12n n22

2
S 12

2
6 1.

(b) a

q

n=1

2n

n3 diverges because A
n 2n

n3 = 212n n23 S 2
13 7 1.

(c) a

q

n=1
a 1

1 + n
bn

 converges because B
n a 1

1 + n
bn

= 1
1 + n

S 0 6 1.

Exercises 10.5
Using the Ratio Test
In Exercises 1–8, use the Ratio Test to determine if each series con-
verges absolutely or diverges.

1. a

q

n=1

2n

n!
2. a

q

n=1
(-1)n n + 2

3n

3. a

q

n=1

(n - 1)!

(n + 1)2 4. a

q

n=1

2n+1

n3n-1

5. a

q

n=1

n4

(-4)n 6. a

q

n=2

3n+2

ln n

7. a

q

n=1
(-1)n

n2(n + 2)!

n! 32n 8. a

q

n=1

n5n

(2n + 3) ln (n + 1)

Using the Root Test
In Exercises 9–16, use the Root Test to determine if each series con-
verges absolutely or diverges.

9. a

q

n=1

7
(2n + 5)n 10. a

q

n=1

4n

(3n)n

11. a

q

n=1
a4n + 3

3n - 5
bn

12. a

q

n=1
a- lnae2 + 1

nb b
n+1

13. a

q

n=1

-8
(3 + (1>n))2n 14. a

q

n=1
sinn a 1

2n
b

15. a

q

n=1
(-1)n a1 - 1

nb
n2

  (Hint: lim
nSq

(1 + x>n)n = ex)

16. a

q

n=2

(-1)n

n1+n

Determining Convergence or Divergence
In Exercises 17–44, use any method to determine if the series con-
verges or diverges. Give reasons for your answer.

17. a

q

n=1

n22

2n 18. a

q

n=1
(-1)n n2e-n

19. a

q

n=1
n!(-e)-n 20. a

q

n=1

n!
10n

21. a

q

n=1

n10

10n 22. a

q

n=1
an - 2

n bn
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23. a

q

n=1

2 + (-1)n

1.25n 24. a

q

n=1

(-2)n

3n

25. a

q

n=1
(-1)n a1 - 3

nb
n

26. a

q

n=1
a1 - 1

3n
bn

27. a

q

n=1

ln n
n3 28. a

q

n=1

(- ln n)n

nn

29. a

q

n=1
a1n - 1

n2b 30. a

q

n=1
a1n - 1

n2b
n

31. a

q

n=1

en

ne 32. a

q

n=1

n ln n
(-2)n

33. a

q

n=1

(n + 1)(n + 2)
n!

34. a

q

n=1
e-n(n3)

35. a

q

n=1

(n + 3)!
3!n!3n 36. a

q

n=1

n2n(n + 1)!
3nn!

37. a

q

n=1

n!
(2n + 1)!

38. a

q

n=1

n!
(-n)n

39. a

q

n=2

-n
(ln n)n 40. a

q

n=2

n
(ln n)(n>2)

41. a

q

n=1

n! ln n
n(n + 2)!

42. a

q

n=1

(-3)n

n32n

43. a

q

n=1

(n!)2

(2n)!
44. a

q

n=1

(2n + 3)(2n + 3)
3n + 2

Recursively Defined Terms Which of the series g
q
n=1an defined 

by the formulas in Exercises 45–54 converge, and which diverge? 
Give reasons for your answers.

45. a1 = 2, an+1 = 1 + sin n
n an

46. a1 = 1, an+1 = 1 + tan-1 n
n an

47. a1 = 1
3

, an+1 = 3n - 1
2n + 5

an

48. a1 = 3, an+1 = n
n + 1

an

49. a1 = 2, an+1 = 2
n an

50. a1 = 5, an+1 = 2
n

n
2

an

51. a1 = 1, an+1 = 1 + ln n
n an

52. a1 = 1
2

, an+1 = n + ln n
n + 10

an

53. a1 = 1
3

, an+1 = 2n an

54. a1 = 1
2

, an+1 = (an)n+1

Convergence or Divergence
Which of the series in Exercises 55–62 converge, and which diverge? 
Give reasons for your answers.

55. a

q

n=1

2nn!n!
(2n)!

56. a

q

n=1

(-1)n (3n)!
n!(n + 1)!(n + 2)!

57. a

q

n=1

(n!)n

(nn)2 58. a

q

n=1
(-1)n

(n!)n

n(n2)

59. a

q

n=1

nn

2(n2)
60. a

q

n=1

nn

(2n)2

61. a

q

n=1

1 # 3 # g # (2n - 1)
4n2nn!

62. a

q

n=1

1 # 3 # g # (2n - 1)

32 # 4 # g # (2n)4(3n + 1)

Theory and Examples
63. Neither the Ratio Test nor the Root Test helps with p-series. Try 

them on

a

q

n=1

1
np

  and show that both tests fail to provide information about 
convergence.

64. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

a

q

n=2

1
(ln n)p ( p constant).

65. Let an = en>2n, if n is a prime number

1>2n, otherwise.

  Does gan converge? Give reasons for your answer.

66. Show that g
q
n=1 2(n2)>n! diverges. Recall from the Laws of Expo-

nents that 2(n2) = (2n)n.

10.6 Alternating Series and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

1 - 1
2

+ 1
3 - 1

4
+ 1

5
- g +

(-1)n+1

n + g (1)

-2 + 1 - 1
2

+ 1
4

- 1
8 + g +

(-1)n4
2n + g (2)

1 - 2 + 3 - 4 + 5 - 6 + g + (-1)n+1n + g (3)
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We see from these examples that the nth term of an alternating series is of the form

an = (-1)n+1un or an = (-1)nun

where un = � an �  is a positive number.
Series (1), called the alternating harmonic series, converges, as we will see in a 

moment. Series (2), a geometric series with ratio r = -1>2, converges to  -2> 31 + (1>2)4 =
-4>3. Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternat-
ing Series Test. This test is for convergence of an alternating series and cannot be used to 
conclude that such a series diverges. The test is also valid for the alternating series 
-u1 + u2 - u3 + g, like the one in Series (2) given above.

THEOREM 15—The Alternating Series Test The series

a

q

n=1
(-1)n+1un = u1 - u2 + u3 - u4 + g

converges if all three of the following conditions are satisfied:

1. The un>s are all positive.

2. The positive un>s are (eventually) nonincreasing: un Ú un+1 for all n Ú N,
for some integer N.

3. un S 0.

Proof Assume N = 1. If n is an even integer, say n = 2m, then the sum of the first n
terms is

s2m = (u1 - u2) + (u3 - u4) + g + (u2m-1 - u2m)

= u1 - (u2 - u3) - (u4 - u5) - g - (u2m-2 - u2m-1) - u2m.

The first equality shows that s2m is the sum of m nonnegative terms, since each term in 
parentheses is positive or zero. Hence s2m+2 Ú s2m, and the sequence 5s2m6  is non-
decreasing. The second equality shows that s2m … u1. Since 5s2m6  is nondecreasing and 
bounded from above, it has a limit, say

lim
mSq

s2m = L. (4)

If n is an odd integer, say n = 2m + 1, then the sum of the first n terms is 
s2m+1 = s2m + u2m+1. Since un S 0,

lim
mSq

u2m+1 = 0

and, as m S q,

s2m+1 = s2m + u2m+1 S L + 0 = L. (5)

Combining the results of Equations (4) and (5) gives limnSq sn = L (Section 10.1, 
Exercise 133).

EXAMPLE 1  The alternating harmonic series

a

q

n=1
(-1)n+1 1

n = 1 - 1
2

+ 1
3 - 1

4
+ g

clearly satisfies the three requirements of Theorem 15 with N = 1; it therefore con-
verges.

Rather than directly verifying the definition un Ú un+1, a second way to show that the 
sequence {un} is nonincreasing is to define a differentiable function ƒ(x) satisfying 
ƒ(n) = un. That is, the values of ƒ match the values of the sequence at every positive 
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integer n. If ƒ′(x) … 0 for all x greater than or equal to some positive integer N, then ƒ(x)
is nonincreasing for x Ú N. It follows that ƒ(n) Ú ƒ(n + 1), or un Ú un+1, for n Ú N.

EXAMPLE 2  Consider the sequence where un = 10n>(n2 + 16). Define ƒ(x) =
10x>(x2 + 16). Then from the Derivative Quotient Rule,

ƒ′(x) =
10(16 - x2)

(x2 + 16)2 … 0 whenever x Ú 4.

It follows that un Ú un+1 for n Ú 4. That is, the sequence 5un6  is nonincreasing for 
n Ú 4.

A graphical interpretation of the partial sums (Figure 10.13) shows how an alternating 
series converges to its limit L when the three conditions of Theorem 15 are satisfied with 
N = 1. Starting from the origin of the x-axis, we lay off the positive distance s1 = u1. To 
find the point corresponding to s2 = u1 - u2, we back up a distance equal to u2. Since 
u2 … u1, we do not back up any farther than the origin. We continue in this seesaw fash-
ion, backing up or going forward as the signs in the series demand. But for n Ú N, each 
forward or backward step is shorter than (or at most the same size as) the preceding step 
because un+1 … un. And since the nth term approaches zero as n increases, the size of step 
we take forward or backward gets smaller and smaller. We oscillate across the limit L, and 
the amplitude of oscillation approaches zero. The limit L lies between any two successive 
sums sn and sn+1 and hence differs from sn by an amount less than un+1.

Because

�L - sn � 6 un+1 for n Ú N,

we can make useful estimates of the sums of convergent alternating series.

L0

+u1

−u2

+u3

−u4

s2 s4 s3 s1

x

FIGURE 10.13 The partial sums of 
an alternating series that satisfies the 
hypotheses of Theorem 15 for N = 1
straddle the limit from the beginning.

THEOREM 16—The Alternating Series Estimation Theorem If the alternat-
ing series a

q
n=1(-1)n+1un satisfies the three conditions of Theorem 15, then for 

n Ú N ,

sn = u1 - u2 + g + ( - 1)n+1un

approximates the sum L of the series with an error whose absolute value is less 
than un+1, the absolute value of the first unused term. Furthermore, the sum L
lies between any two successive partial sums sn and sn+1, and the remainder, 
L - sn, has the same sign as the first unused term.

We leave the verification of the sign of the remainder for Exercise 61.

EXAMPLE 3  We try Theorem 16 on a series whose sum we know:

a

q

n=0
(-1)n 1

2n = 1 - 1
2

+ 1
4

- 1
8 + 1

16
- 1

32
+ 1

64
- 1

128
+ 1

256
- g.

The theorem says that if we truncate the series after the eighth term, we throw away a total 
that is positive and less than 1 >256. The sum of the first eight terms is s8 =  0.6640625 and 
the sum of the first nine terms is s9 =  0.66796875. The sum of the geometric series is

1
1 - (-1>2)

= 1
3>2 = 2

3,

and we note that 0.6640625 6 (2 >3) 6 0.66796875. The difference, (2 >3) - 0.6640625 =
0.0026041666 . . . , is positive and is less than (1 >256) = 0.00390625.
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Conditional Convergence

If we replace all the negative terms in the alternating series in Example 3, changing them 
to positive terms instead, we obtain the geometric series g1>2n . The original series and 
the new series of absolute values both converge (although to different sums). For an abso-
lutely convergent series, changing infinitely many of the negative terms in the series to 
positive values does not change its property of still being a convergent series. Other con-
vergent series may behave differently. The convergent alternating harmonic series has 
infinitely many negative terms, but if we change its negative terms to positive values, the 
resulting series is the divergent harmonic series. So the presence of infinitely many nega-
tive terms is essential to the convergence of the alternating harmonic series. The following 
terminology distinguishes these two types of convergent series.

The alternating harmonic series is conditionally convergent, or converges conditionally.
The next example extends that result to the alternating p-series.

EXAMPLE 4  If p is a positive constant, the sequence 51>np6  is a decreasing 
sequence with limit zero. Therefore the alternating p-series

a

q

n=1

(-1)n-1

np = 1 - 1
2p + 1

3p - 1
4p + g,  p 7 0

converges.
If p > 1, the series converges absolutely as an ordinary p-series. If 0 6 p … 1, the 

series converges conditionally by the alternating series test. For instance,

Absolute convergence  1p = 3>22: 1 - 1
23>2 + 1

33>2 - 1
43>2 + g

Conditional convergence  1p = 1>22: 1 - 1

22
+ 1

23
- 1

24
+ g

We need to be careful when using a conditionally convergent series. We have seen 
with the alternating harmonic series that altering the signs of infinitely many terms of a 
conditionally convergent series can change its convergence status. Even more, simply 
changing the order of occurrence of infinitely many of its terms can also have a significant 
effect, as we now discuss.

Rearranging Series

We can always rearrange the terms of a finite sum. The same result is true for an infinite 
series that is absolutely convergent (see Exercise 70 for an outline of the proof).

DEFINITION A convergent series that is not absolutely convergent is conditionally 
convergent.

THEOREM 17—The Rearrangement Theorem for Absolutely Convergent Series If 
g

q
n=1an converges absolutely, and b1, b2,c , bn,cis any arrangement of the 

sequence 5an6 , then gbn converges absolutely and

a

q

n=1
bn = a

q

n=1
an.
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On the other hand, if we rearrange the terms of a conditionally convergent series, we 
can get different results. In fact, for any real number r, a given conditionally convergent 
series can be rearranged so its sum is equal to r. (We omit the proof of this fact.) Here’s an 
example of summing the terms of a conditionally convergent series with different order-
ings, with each ordering giving a different value for the sum.

EXAMPLE 5  We know that the alternating harmonic series g
q
n=1 (-1)n+1>n con-

verges to some number L. Moreover, by Theorem 16, L lies between the successive partial 
sums s2 = 1>2 and s3 = 5>6, so L ≠ 0. If we multiply the series by 2 we obtain

 2L = 2 a

q

n=1

(-1)n+1

n = 2a1 - 1
2

+ 1
3 - 1

4
+ 1

5
- 1

6
+ 1

7 - 1
8 + 1

9 - 1
10

+ 1
11

- gb
= 2 - 1 + 2

3 - 1
2

+ 2
5

- 1
3 + 2

7 - 1
4

+ 2
9 - 1

5
+ 2

11
- g.

Now we change the order of this last sum by grouping each pair of terms with the same odd 
denominator, but leaving the negative terms with the even denominators as they are placed (so 
the denominators are the positive integers in their natural order). This rearrangement gives

(2 - 1) - 1
2

+ a23 - 1
3b - 1

4
+ a2

5
- 1

5
b - 1

6
+ a27 - 1

7b - 1
8 + g

= a1 - 1
2

+ 1
3 - 1

4
+ 1

5
- 1

6
+ 1

7 - 1
8 + 1

9 - 1
10

+ 1
11

- gb
= a

q

n=1

(-1)n+1

n = L.

So by rearranging the terms of the conditionally convergent series g
q
n=1 2(-1)n+1>n, the 

series becomes g
q
n=1 (-1)n+1>n, which is the alternating harmonic series itself. If the two 

series are the same, it would imply that 2L = L, which is clearly false since L ≠ 0.

Example 5 shows that we cannot rearrange the terms of a conditionally convergent 
series and expect the new series to be the same as the original one. When we use a condi-
tionally convergent series, the terms must be added together in the order they are given to 
obtain a correct result. To the contrary, Theorem 17 guarantees that the terms of an abso-
lutely convergent series can be summed in any order without affecting the result.

Summary of Tests

We have developed a variety of tests to determine convergence or divergence for an infi-
nite series of constants. There are other tests we have not presented which are sometimes 
given in more advanced courses. Here is a summary of the tests we have considered.

1. The nth-Term Test: If it is not true that an S 0, then the series diverges.

2. Geometric series: g arn converges if � r � 6 1; otherwise it diverges.

3. p-series: g1>np converges if p 7 1; otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test or try comparing to a 
known series with the Comparison Test or the Limit Comparison Test. Try the 
Ratio or Root Test.

5. Series with some negative terms: Does g � an �  converge by the Ratio or 
Root Test, or by another of the tests listed above? Remember, absolute con-
vergence implies convergence.

6. Alternating series: gan converges if the series satisfies the conditions of the 
Alternating Series Test.
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Determining Convergence or Divergence
In Exercises 1–14, determine if the alternating series converges or 
diverges. Some of the series do not satisfy the conditions of the Alter-
nating Series Test.

1. a

q

n=1
(-1)n+1 1

2n
2. a

q

n=1
(-1)n+1 1

n3>2

3. a

q

n=1
(-1)n+1 1

n3n 4. a

q

n=2
(-1)n 4

(ln n)2

5. a

q

n=1
(-1)n n

n2 + 1
6. a

q

n=1
(-1)n+1 n2 + 5

n2 + 4

7. a

q

n=1
(-1)n+1 2n

n2 8. a

q

n=1
(-1)n 10n

(n + 1)!

9. a

q

n=1
(-1)n+1 a n

10
bn

10. a

q

n=2
(-1)n+1 1

ln n

11. a

q

n=1
(-1)n+1 ln n

n 12. a

q

n=1
(-1)n ln a1 + 1

nb

13. a

q

n=1
(-1)n+1 2n + 1

n + 1
14. a

q

n=1
(-1)n+1 32n + 1

2n + 1

Absolute and Conditional Convergence
Which of the series in Exercises 15–48 converge absolutely, which 
converge, and which diverge? Give reasons for your answers.

15. a

q

n=1
(-1)n+1(0.1)n 16. a

q

n=1
(-1)n+1

(0.1)n

n

17. a

q

n=1
(-1)n 1

2n
18. a

q

n=1

(-1)n

1 + 2n

19. a

q

n=1
(-1)n+1 n

n3 + 1
20. a

q

n=1
(-1)n+1 n!

2n

21. a

q

n=1
(-1)n 1

n + 3
22. a

q

n=1
(-1)n sin n

n2

23. a

q

n=1
(-1)n+1 3 + n

5 + n
24. a

q

n=1

(-2)n+1

n + 5n

25. a

q

n=1
(-1)n+1 1 + n

n2 26. a

q

n=1
(-1)n+112n 102

27. a

q

n=1
(-1)nn2(2>3)n 28. a

q

n=2
(-1)n+1 1

n ln n

29. a

q

n=1
(-1)n tan-1 n

n2 + 1
30. a

q

n=1
(-1)n ln n

n - ln n

31. a

q

n=1
(-1)n n

n + 1
32. a

q

n=1
(-5)-n

33. a

q

n=1

(-100)n

n!
34. a

q

n=1

(-1)n-1

n2 + 2n + 1

35. a

q

n=1

cos np

n2n
36. a

q

n=1

cos np
n

37. a

q

n=1

(-1)n(n + 1)n

(2n)n 38. a

q

n=1

(-1)n+1(n!)2

(2n)!

Exercises 10.6
39. a

q

n=1
(-1)n

(2n)!
2nn!n

40. a

q

n=1
(-1)n

(n!)23n

(2n + 1)!

41. a

q

n=1
(-1)n12n + 1 - 2n2

42. a

q

n=1
(-1)n12n2 + n - n2

43. a

q

n=1
(-1)n12n + 1n - 2n2

44. a

q

n=1

(-1)n

2n + 2n + 1
45. a

q

n=1
(-1)n sech n

46. a

q

n=1
(-1)n csch n

47. 1
4

- 1
6

+ 1
8

- 1
10

+ 1
12

- 1
14

+ g

48. 1 + 1
4

- 1
9

- 1
16

+ 1
25

+ 1
36

- 1
49

- 1
64

+ g

Error Estimation
In Exercises 49–52, estimate the magnitude of the error involved in 
using the sum of the first four terms to approximate the sum of the 
entire series.

49. a

q

n=1
(-1)n+1 1

n 50. a

q

n=1
(-1)n+1 1

10n

51. a

q

n=1
(-1)n+1

(0.01)n

n
As you will see in Section 10.7, 
the sum is ln (1.01).

52. 1
1 + t

= a

q

n=0
(-1)ntn, 0 6 t 6 1

In Exercises 53–56, determine how many terms should be used to 
estimate the sum of the entire series with an error of less than 0.001.

53. a

q

n=1
(-1)n 1

n2 + 3
54. a

q

n=1
(-1)n+1 n

n2 + 1

55. a

q

n=1
(-1)n+1 11n + 32n23 56. a

q

n=1
(-1)n 1

ln (ln (n + 2))

Approximate the sums in Exercises 57 and 58 with an error of magni-
tude less than 5 * 10-6.

57. a

q

n=0
(-1)n 1

(2n)!

As you will see in Section 10.9, the sum is 
cos 1, the cosine of 1 radian.

58. a

q

n=0
(-1)n 1

n!

As you will see in Section 10.9, 
the sum is e-1.

Theory and Examples
59. a. The series

1
3

- 1
2

+ 1
9

- 1
4

+ 1
27

- 1
8

+ g + 1
3n - 1

2n + g

   does not meet one of the conditions of Theorem 14. Which one?

b. Use Theorem 17 to find the sum of the series in part (a).

T
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60. The limit L of an alternating series that satisfies the conditions of 
Theorem 15 lies between the values of any two consecutive par-
tial sums. This suggests using the average

sn + sn+1

2
= sn + 1

2
 (-1)n+2an+1

  to estimate L. Compute

s20 + 1
2
# 1

21

  as an approximation to the sum of the alternating harmonic series. 
The exact sum is ln 2 = 0.69314718 .c

61. The sign of the remainder of an alternating series that satis-
fies the conditions of Theorem 15 Prove the assertion in Theo-
rem 16 that whenever an alternating series satisfying the condi-
tions of Theorem 15 is approximated with one of its partial sums, 
then the remainder (sum of the unused terms) has the same sign 
as the first unused term. (Hint: Group the remainder’s terms in 
consecutive pairs.)

62. Show that the sum of the first 2n terms of the series

1 - 1
2

+ 1
2

- 1
3

+ 1
3

- 1
4

+ 1
4

- 1
5

+ 1
5

- 1
6

+ g

is the same as the sum of the first n terms of the series

1
1 # 2 + 1

2 # 3 + 1
3 # 4 + 1

4 # 5 + 1
5 # 6 + g.

Do these series converge? What is the sum of the first 2n + 1
terms of the first series? If the series converge, what is their sum?

63. Show that if g
q
n=1 an diverges, then g

q
n=1 �an �  diverges.

64. Show that if g
q
n=1 an converges absolutely, then

` a
q

n=1
an ` … a

q

n=1
�an � .

65. Show that if g
q
n=1 an and g

q
n=1 bn both converge absolutely, then 

so do the following.

a. a

q

n=1
(an + bn) b. a

q

n=1
(an - bn)

c. a

q

n=1
kan (k any number)

T 66. Show by example that g
q
n=1 anbn may diverge even if g

q
n=1 an

and g
q
n=1bn both converge.

67. If gan converges absolutely, prove that g an
2 converges.

68. Does the series

a

q

n=1
a1

n
- 1

n2b
  converge or diverge? Justify your answer.

69. In the alternating harmonic series, suppose the goal is to arrange
the terms to get a new series that converges to -1>2. Start the new 
arrangement with the first negative term, which is -1>2. When-
ever you have a sum that is less than or equal to -1>2, start intro-
ducing positive terms, taken in order, until the new total is greater 
than -1>2. Then add negative terms until the total is less than or 
equal to -1>2 again. Continue this process until your partial sums 
have been above the target at least three times and finish at or 
below it. If sn is the sum of the first n terms of your new series, 
plot the points (n, sn) to illustrate how the sums are behaving.

70. Outline of the proof of the Rearrangement Theorem (Theo-
rem 17)

a. Let P be a positive real number, let L = g
q
n=1an, and let 

sk = g
k
n=1  an. Show that for some index N1 and for some 

index N2 Ú N1,

a

q

n=N1

�an � 6 P
2

and � sN2
- L � 6 P

2
.

Since all the terms a1, a2,c, aN2
 appear somewhere in the 

sequence 5bn6 , there is an index N3 Ú N2 such that if 
n Ú N3, then 1gn

k=1bk2 - sN2
 is at most a sum of terms am

with m Ú N1. Therefore, if n Ú N3,

` a
n

k=1
bk - L ` … ` a

n

k=1
bk - sN2

` + � sN2
- L �

… a

q

k=N1

�ak � + � sN2
- L � 6 P.

b. The argument in part (a) shows that if g
q
n=1  an converges 

absolutely then g
q
n=1bn converges and g

q
n=1bn = g

q
n=1an.

Now show that because g
q
n=1 �an �  converges, g

q
n=1 �bn �

converges to g
q
n=1 �an � .

T

10.7 Power Series

Now that we can test many infinite series of numbers for convergence, we can study sums 
that look like “infinite polynomials.” We call these sums power series because they are 
defined as infinite series of powers of some variable, in our case x. Like polynomials, 
power series can be added, subtracted, multiplied, differentiated, and integrated to give 
new power series. With power series we can extend the methods of calculus we have 
developed to a vast array of functions, making the techniques of calculus applicable in a 
much wider setting.
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Power Series and Convergence

We begin with the formal definition, which specifies the notation and terminology used for 
power series.

DEFINITIONS A power series about x = 0 is a series of the form

a

q

n=0
cnxn = c0 + c1x + c2x2 + g+ cnxn + g. (1)

A power series about x = a is a series of the form

a

q

n=0
cn(x - a)n = c0 + c1(x - a) + c2(x - a)2 + g + cn(x - a)n + g (2)

in which the center a and the coefficients c0, c1, c2,c, cn,care constants.

Equation (1) is the special case obtained by taking a = 0 in Equation (2). We will see that 
a power series defines a function ƒ(x) on a certain interval where it converges. Moreover, this 
function will be shown to be continuous and differentiable over the interior of that interval.

EXAMPLE 1  Taking all the coefficients to be 1 in Equation (1) gives the geometric 
power series

a

q

n=0
xn = 1 + x + x2 + g + xn + g.

This is the geometric series with first term 1 and ratio x. It converges to 1>(1 - x) for 
� x � 6 1. We express this fact by writing

1
1 - x

= 1 + x + x2 + g + xn + g , -1 6 x 6 1. (3)

Up to now, we have used Equation (3) as a formula for the sum of the series on the 
right. We now change the focus: We think of the partial sums of the series on the right as 
polynomials Pn(x) that approximate the function on the left. For values of x near zero, we 
need take only a few terms of the series to get a good approximation. As we move toward 
x = 1, or -1, we must take more terms. Figure 10.14 shows the graphs of 

Power Series for a Reciprocal

1
1 - x

= a

q

n=0
xn, � x � 6 1

0

1

1−1

2

3

4

5

7

8

9

y2 = 1 + x + x2

y1 = 1 + x

y0 = 1

y = 1
1 − x

y8 = 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8

x

y

FIGURE 10.14 The graphs of ƒ(x) = 1>(1 - x) in Example 1 
and four of its polynomial approximations.
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ƒ(x) = 1>(1 - x) and the approximating polynomials yn = Pn(x) for n = 0, 1, 2, and 8. 
The function ƒ(x) = 1>(1 - x) is not continuous on intervals containing x = 1, where it 
has a vertical asymptote. The approximations do not apply when x Ú 1.

EXAMPLE 2  The power series

1 - 1
2

 (x - 2) + 1
4

 (x - 2)2 + g + a- 1
2
bn

(x - 2)n + g (4)

matches Equation (2) with a = 2, c0 = 1, c1 = -1>2, c2 = 1>4,c, cn = (-1>2)n.

This is a geometric series with first term 1 and ratio r = - x - 2
2

. The series converges 

for ` x - 2
2
` 6 1 or 0 6 x 6 4. The sum is

1
1 - r

=
1

1 + x - 2
2

= 2
x ,

so

2
x = 1 -

(x - 2)
2

+
(x - 2)2

4
- g + a- 1

2
bn

(x - 2)n + g , 0 6 x 6 4.

Series (4) generates useful polynomial approximations of ƒ(x) = 2>x for values of x near 2:

P0(x) = 1

P1(x) = 1 - 1
2

 (x - 2) = 2 - x
2

P2(x) = 1 - 1
2

 (x - 2) + 1
4

 (x - 2)2 = 3 - 3x
2

+ x2

4
,

and so on (Figure 10.15).

The following example illustrates how we test a power series for convergence by 
using the Ratio Test to see where it converges and diverges.

EXAMPLE 3  For what values of x do the following power series converge?

(a) a

q

n=1
(-1)n-1 xn

n = x - x2

2
+ x3

3 - g

(b) a

q

n=1
(-1)n-1 x2n-1

2n - 1
= x - x3

3 + x5

5
- g

(c) a

q

n=0

xn

n!
= 1 + x + x2

2!
+ x3

3!
+ g

(d) a

q

n=0
n!xn = 1 + x + 2!x2 + 3!x3 + g

Solution Apply the Ratio Test to the series g � un � , where un is the nth term of the power 
series in question.

(a) ` un+1
un
` = ` xn+1

n + 1
# n
x ` = n

n + 1
� x � S � x � .

The series converges absolutely for � x � 6 1. It diverges if � x � 7 1 because the nth
term does not converge to zero. At x = 1, we get the alternating harmonic series 
1 - 1>2 + 1>3 - 1>4 + g, which converges. At x = -1, we get -1 - 1>2 -

0 2

1

1

y1 = 2 −

y2 = 3 −     +

y0 = 1

(2, 1) y =

3

2 3x
2

x2

4
2
x

x
2
x

y

FIGURE 10.15 The graphs of 
ƒ(x) = 2>x and its first three polynomial 
approximations (Example 2).
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1>3 - 1>4 - g, the negative of the harmonic series; it diverges. Series (a) con-
verges for -1 6 x … 1 and diverges elsewhere.

−1 0 1
x

(b) ` un+1
un
` = ` x2n+1

2n + 1
# 2n - 1

x2n-1 ` = 2n - 1
2n + 1

x2 S x2. 2(n + 1) - 1 = 2n + 1

  The series converges absolutely for x2 6 1. It diverges for x2 7 1 because the nth
term does not converge to zero. At x = 1 the series becomes 1 - 1>3 +
1>5 - 1>7 + g , which converges by the Alternating Series Theorem. It also con-
verges at x = -1 because it is again an alternating series that satisfies the conditions 
for convergence. The value at x = -1 is the negative of the value at x = 1. Series (b) 
converges for -1 … x … 1 and diverges elsewhere.

−1 0 1
x

(c) ` un+1
un
` = ` xn+1

(n + 1)!
# n!
xn ` = � x �

n + 1
S 0 for every x. n!

(n + 1)! = 1 # 2 # 3 gn
1 # 2 # 3 gn # (n + 1)

  The series converges absolutely for all x.

0
x

(d) ` un+1
un
` = ` (n + 1)!xn+1

n!xn ` = (n + 1) � x � S q unless x = 0.

  The series diverges for all values of x except x = 0.

0
x

The previous example illustrated how a power series might converge. The next result 
shows that if a power series converges at more than one value, then it converges over an 
entire interval of values. The interval might be finite or infinite and contain one, both, or 
none of its endpoints. We will see that each endpoint of a finite interval must be tested 
independently for convergence or divergence.

THEOREM 18—The Convergence Theorem for Power Series If the power series 

a

q

n=0
anxn = a0 + a1x + a2x2 + g converges at x = c ≠ 0, then it converges 

absolutely for all x with � x � 6 � c � . If the series diverges at x = d, then it 
diverges for all x with � x � 7 � d � .

Proof  The proof uses the Comparison Test, with the given series compared to a con-
verging geometric series.

Suppose the series g
q
n=0 ancn converges. Then limnSq ancn = 0 by the nth-Term 

Test. Hence, there is an integer N such that � ancn � 6 1 for all n 7 N, so that

� an � 6 1
� c �n

for n 7 N. (5)
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Now take any x such that � x � 6 � c � , so that � x � > � c � 6 1. Multiplying both sides of 
Equation (5) by � x � n gives

� an � � x �n 6
� x � n

� c �n
for n 7 N.

Since � x>c � 6 1, it follows that the geometric series g
q
n=0 � x>c �n converges. By the 

Comparison Test (Theorem 10), the series g
q
n=0 � an � � xn �  converges, so the original 

power series g
q
n=0  anxn converges absolutely for - � c � 6 x 6 � c �  as claimed by the the-

orem. (See Figure 10.16.)
Now suppose that the series g

q
n=0  anxn diverges at x = d. If x is a number with 

� x � 7 � d �  and the series converges at x, then the first half of the theorem shows that the 
series also converges at d, contrary to our assumption. So the series diverges for all x with 
� x � 7 � d � .

To simplify the notation, Theorem 18 deals with the convergence of series of the form 
ganxn. For series of the form gan(x - a)n we can replace x - a by x′ and apply the 
results to the series gan(x′)n.

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion 
that a power series gcn(x - a)n behaves in one of three possible ways. It might converge 
only at x = a, or converge everywhere, or converge on some interval of radius R centered 
at x = a. We prove this as a Corollary to Theorem 18.

COROLLARY TO THEOREM 18 The convergence of the series gcn(x - a)n is 
described by one of the following three cases:

1. There is a positive number R such that the series diverges for x with 
� x - a � 7 R but converges absolutely for x with � x - a � 6 R. The series 
may or may not converge at either of the endpoints x = a - R and 
x = a + R.

2. The series converges absolutely for every x (R = q).

3. The series converges at x = a and diverges elsewhere (R = 0).

0 @d @−@d @ −R

series
diverges

series
diverges

series
converges

R−@ c @ @ c @
x

FIGURE 10.16 Convergence of ganxn

at x = c implies absolute convergence on 
the interval - � c � 6 x 6 � c � ; diver-
gence at x = d implies divergence for 
� x � 7 �d � . The corollary to Theorem 18 
asserts the existence of a radius of con-
vergence R Ú 0. For � x � 6 R the series 
converges absolutely and for � x � 7 R it 
diverges.

Proof  We first consider the case where a = 0, so that we have a power series 
g

q
n=0 cnxn centered at 0. If the series converges everywhere we are in Case 2. If it con-

verges only at x = 0 then we are in Case 3. Otherwise there is a nonzero number d such 
that g

q
n=0 cndn diverges. Let S be the set of values of x for which g

q
n=0 cnxn converges. 

The set S does not include any x with � x � 7 � d � , since Theorem 18 implies the series 
diverges at all such values. So the set S is bounded. By the Completeness Property of the 
Real Numbers (Appendix 6) S has a least upper bound R. (This is the smallest number 
with the property that all elements of S are less than or equal to R.) Since we are not in 
Case 3, the series converges at some number b ≠ 0 and, by Theorem 18, also on the open 
interval (- � b � , � b � ). Therefore R 7 0.

If � x � 6 R then there is a number c in S with � x � 6 c 6 R, since otherwise R would 
not be the least upper bound for S. The series converges at c since c∊S, so by Theorem 18 
the series converges absolutely at x.

Now suppose � x � 7 R. If the series converges at x, then Theorem 18 implies it con-
verges absolutely on the open interval (- � x � , � x � ), so that S contains this interval. Since R
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is an upper bound for S, it follows that � x � … R, which is a contradiction. So if � x � 7 R
then the series diverges. This proves the theorem for power series centered at a = 0.

For a power series centered at an arbitrary point x = a, set x′ = x - a and repeat the 
argument above, replacing x with x′. Since x′ = 0 when x = a, convergence of the series 
g

q
n=0 � cn(x′)n �  on a radius R open interval centered at x′ = 0 corresponds to convergence 

of the series g
q
n=0 � cn(x - a)n �  on a radius R open interval centered at x = a.

R is called the radius of convergence of the power series, and the interval of radius R
centered at x = a is called the interval of convergence. The interval of convergence may 
be open, closed, or half-open, depending on the particular series. At points x with 
� x - a � 6 R, the series converges absolutely. If the series converges for all values of x,
we say its radius of convergence is infinite. If it converges only at x = a, we say its radius 
of convergence is zero.

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to find the interval where the series con-
verges absolutely. Ordinarily, this is an open interval

� x - a � 6 R or a - R 6 x 6 a + R.

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the 
Integral Test, or the Alternating Series Test.

3.  If the interval of absolute convergence is a - R 6 x 6 a + R, the series 
diverges for � x - a � 7 R (it does not even converge conditionally) because 
the nth term does not approach zero for those values of x.

Operations on Power Series

On the intersection of their intervals of convergence, two power series can be added and 
subtracted term by term just like series of constants (Theorem 8). They can be multiplied 
just as we multiply polynomials, but we often limit the computation of the product to the 
first few terms, which are the most important. The following result gives a formula for the 
coefficients in the product, but we omit the proof. (Power series can also be divided in a 
way similar to division of polynomials, but we do not give a formula for the general coef-
ficient here.)

THEOREM 19—The Series Multiplication Theorem for Power Series If

A(x) = g
q
n=0 anxn and B(x) = g

q
n=0 bnxn converge absolutely for � x � 6 R, and

cn = a0bn + a1bn-1 + a2bn-2 + g + an-1b1 + anb0 = a

n

k=0
akbn- k ,

then g
q
n=0 cnxn converges absolutely to A(x)B(x) for � x � 6 R:

aa
q

n=0
anxnb # aa

q

n=0
bnxnb = a

q

n=0
cnxn .

Finding the general coefficient cn in the product of two power series can be very 
tedious and the term may be unwieldy. The following computation provides an illustration 
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of a product where we find the first few terms by multiplying the terms of the second 
series by each term of the first series:

aa
q

n=0
xnb # aa

q

n=0
(-1)n xn+1

n + 1
b

= (1 + x + x2 + g) ax - x2

2
+ x3

3 - gb Multiply second series . . .

= ax - x2

2
+ x3

3 - gb + ax2 - x3

2
+ x4

3 - gb + ax3 - x4

2
+ x5

3 - gb + g
(+++)+++*    (+++)+++*    (+++)+++*

by 1 by x by x 2

= x + x2

2
+ 5x3

6
- x4

6 g
. and gather the first four powers.

We can also substitute a function ƒ(x) for x in a convergent power series.

THEOREM 20 If g
q
n=0 anxn converges absolutely for � x � 6 R, then 

g
q
n=0 an(ƒ(x))n converges absolutely for any continuous function ƒ on � ƒ(x) � 6 R.

Since 1>(1 - x) = g
q
n=0 xn converges absolutely for � x � 6 1, it follows from Theorem 

20 that 1> (1 - 4x2) = g
q
n=0 (4x2)n converges absolutely for � 4x2 � 6 1 or � x � 6 1>2.

A theorem from advanced calculus says that a power series can be differentiated term 
by term at each interior point of its interval of convergence.

THEOREM 21—The Term-by-Term Differentiation Theorem If gcn(x - a)n

has radius of convergence R 7 0, it defines a function

ƒ(x) = a

q

n=0
cn(x - a)n on the interval a - R 6 x 6 a + R.

This function ƒ has derivatives of all orders inside the interval, and we obtain the 
derivatives by differentiating the original series term by term:

ƒ′(x) = a

q

n=1
ncn(x - a)n-1 ,

ƒ″(x) = a

q

n=2
n(n - 1)cn(x - a)n-2 ,

and so on. Each of these derived series converges at every point of the interval 
a - R 6 x 6 a + R.

EXAMPLE 4  Find series for ƒ′(x) and ƒ″(x) if

ƒ(x) = 1
1 - x

= 1 + x + x2 + x3 + x4 + g+ xn + g

= a

q

n=0
xn, -1 6 x 6 1.

Solution We differentiate the power series on the right term by term:

ƒ′(x) = 1
(1 - x)2 = 1 + 2x + 3x2 + 4x3 + g+ nxn-1 + g

= a

q

n=1
nxn-1, -1 6 x 6 1;



10.7  Power Series 623

ƒ″(x) = 2
(1 - x)3 = 2 + 6x + 12x2 + g + n(n - 1)xn-2 + g

= a

q

n=2
n(n - 1)xn-2, -1 6 x 6 1.

Caution Term-by-term differentiation might not work for other kinds of series. For 
example, the trigonometric series

a

q

n=1

sin (n!x)

n2

converges for all x. But if we differentiate term by term we get the series

a

q

n=1

n! cos (n!x)

n2 ,

which diverges for all x. This is not a power series since it is not a sum of positive integer 
powers of x.

It is also true that a power series can be integrated term by term throughout its interval 
of convergence. This result is proved in a more advanced course.

THEOREM 22—The Term-by-Term Integration Theorem Suppose that

ƒ(x) = a

q

n=0
cn(x - a)n

converges for a - R 6 x 6 a + R (R 7 0). Then

a

q

n=0
cn

(x - a)n+1

n + 1

converges for a - R 6 x 6 a + R and

L
ƒ(x) dx = a

q

n=0
cn

(x - a)n+1

n + 1
+ C

for a - R 6 x 6 a + R.

EXAMPLE 5  Identify the function

ƒ(x) = a

q

n=0

(-1)n x2n+1

2n + 1
= x - x3

3 + x5

5
- g , -1 … x … 1.

Solution We differentiate the original series term by term and get

ƒ′(x) = 1 - x2 + x4 - x6 + g , -1 6 x 6 1. Theorem 21

This is a geometric series with first term 1 and ratio -x2, so

ƒ′(x) = 1
1 - (-x2)

= 1
1 + x2 .

We can now integrate ƒ′(x) = 1> (1 + x2)  to get

L
ƒ′(x) dx =

L

dx
1 + x2 = tan-1 x + C.

The series for ƒ(x) is zero when x = 0, so C = 0. Hence

ƒ(x) = x - x3

3 + x5

5
- x7

7 + g = tan-1 x, -1 6 x 6 1. (6)

The Number P as a Series

p

4
= tan-1 1 = a

q

n=0

(-1)n

2n + 1
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It can be shown that the series also converges to tan-1 x at the endpoints x = {1, but we 
omit the proof.

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 22 can guarantee the convergence of the differ-
entiated series only inside the interval.

EXAMPLE 6  The series

1
1 + t

= 1 - t + t2 - t3 + g

converges on the open interval -1 6 t 6 1. Therefore,

ln (1 + x) =
L

x

0

1
1 + t

dt = t - t2

2
+ t3

3 - t4

4
+ g d

0

x

Theorem 22

= x - x2

2
+ x3

3 - x4

4
+ g

or

ln (1 + x) = a

q

n=1

(-1)n-1 xn

n , -1 6 x 6 1.

It can also be shown that the series converges at x = 1 to the number ln 2, but that was not 
guaranteed by the theorem.

Alternating Harmonic Series Sum

ln 2 = a

q

n=1

(-1)n-1

n

Exercises 10.7
Intervals of Convergence
In Exercises 1–36, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely, (c)
conditionally?

1. a

q

n=0
xn 2. a

q

n=0
(x + 5)n

3. a

q

n=0
(-1)n(4x + 1)n 4. a

q

n=1

(3x - 2)n

n

5. a

q

n=0

(x - 2)n

10n 6. a

q

n=0
(2x)n

7. a

q

n=0

nxn

n + 2
8. a

q

n=1

(-1)n(x + 2)n

n

9. a

q

n=1

xn

n2n 3n
10. a

q

n=1

(x - 1)n

2n

11. a

q

n=0

(-1)nxn

n!
12. a

q

n=0

3nxn

n!

13. a

q

n=1

4nx2n

n 14. a

q

n=1

(x - 1)n

n3 3n

15. a

q

n=0

xn

2n2 + 3
16. a

q

n=0

(-1)nxn+1

2n + 3

17. a

q

n=0

n(x + 3)n

5n 18. a

q

n=0

nxn

4n(n2 + 1)

19. a

q

n=0

2nxn

3n 20. a

q

n=1
2n n(2x + 5)n

21. a

q

n=1
(2 + (-1)n) # (x + 1)n-1

22. a

q

n=1

(-1)n 32n(x - 2)n

3n

23. a

q

n=1
a1 + 1

nb
n

xn 24. a

q

n=1
(ln n)xn

25. a

q

n=1
nnxn 26. a

q

n=0
n!(x - 4)n

27. a

q

n=1

(-1)n+1(x + 2)n

n2n 28. a

q

n=0
(-2)n(n + 1)(x - 1)n

29. a

q

n=2

xn

n(ln n)2

Get the information you need about 

a 1> (n(ln n)2)  from Section 10.3, 

Exercise 55.

30. a

q

n=2

xn

n ln n

Get the information you need about

a 1>(n ln n) from Section 10.3, 

Exercise 54.

31. a

q

n=1

(4x - 5)2n+1

n3>2 32. a

q

n=1

(3x + 1)n+1

2n + 2
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33. a

q

n=1

1
2 # 4 # 6g(2n)

xn

34. a

q

n=1

3 # 5 # 7g(2n + 1)

n2 # 2n xn+1

35. a

q

n=1

1 + 2 + 3 + g + n
12 + 22 + 32 + g + n2 xn

36. a

q

n=1
12n + 1 - 2n2(x - 3)n

In Exercises 37–40, find the series’ radius of convergence.

37. a

q

n=1

n!
3 # 6 # 9g3n

xn

38. a

q

n=1
a 2 # 4 # 6g(2n)

2 # 5 # 8g(3n - 1)
b2

xn

39. a

q

n=1

(n!)2

2n(2n)!
xn

40. a

q

n=1
a n

n + 1
bn2

xn

  (Hint: Apply the Root Test.)

In Exercises 41–48, use Theorem 20 to find the series’ interval of con-
vergence and, within this interval, the sum of the series as a function 
of x.

41. a

q

n=0
3nxn 42. a

q

n=0
(ex - 4)n

43. a

q

n=0

(x - 1)2n

4n 44. a

q

n=0

(x + 1)2n

9n

45. a

q

n=0
a2x

2
- 1bn

46. a

q

n=0
(ln x)n

47. a

q

n=0
ax2 + 1

3
bn

48. a

q

n=0
ax2 - 1

2
bn

Using the Geometric Series
49. In Example 2 we represented the function ƒ(x) = 2>x as a power 

series about x = 2. Use a geometric series to represent ƒ(x) as a 
power series about x = 1, and find its interval of convergence.

50. Use a geometric series to represent each of the given functions as a
power series about x = 0, and find their intervals of convergence.

a. ƒ(x) = 5
3 - x

b. g(x) = 3
x - 2

51. Represent the function g(x) in Exercise 50 as a power series about 
x = 5, and find the interval of convergence.

52. a. Find the interval of convergence of the power series

a

q

n=0

8
4n+2 xn.

b. Represent the power series in part (a) as a power series about
x = 3 and identify the interval of convergence of the new 
series. (Later in the chapter you will understand why the new 
interval of convergence does not necessarily include all of the 
numbers in the original interval of convergence.)

Theory and Examples
53. For what values of x does the series

    1 - 1
2

 (x - 3) + 1
4

 (x - 3)2 + g + a- 1
2
bn

(x - 3)n + g

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does 
the new series converge? What is its sum?

54. If you integrate the series in Exercise 53 term by term, what new 
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

55. The series

sin x = x - x3

3!
+ x5

5!
- x7

7!
+ x9

9!
- x11

11!
+ g

converges to sin x for all x.

a. Find the first six terms of a series for cos x. For what values 
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that 
converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate 
the first six terms of a series for 2 sin x cos x. Compare your 
answer with the answer in part (b).

56. The series

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ g

converges to ex for all x.

a. Find a series for (d>dx)ex. Do you get the series for ex?
Explain your answer.

b. Find a series for 1ex dx. Do you get the series for ex? Explain 
your answer.

c. Replace x by -x in the series for ex to find a series that con-
verges to e-x for all x. Then multiply the series for ex and e-x

to find the first six terms of a series for e-x # ex.

57. The series

tan x = x + x3

3
+ 2x5

15
+ 17x7

315
+ 62x9

2835
+ g

converges to tan x for -p>2 6 x 6 p>2.

a. Find the first five terms of the series for ln � sec x � . For what 
values of x should the series converge?

b. Find the first five terms of the series for sec2 x. For what val-
ues of x should this series converge?

c. Check your result in part (b) by squaring the series given for 
sec x in Exercise 58.

58. The series

sec x = 1 + x2

2
+ 5

24
x4 + 61

720
x6 + 277

8064
x8 + g

converges to sec x for -p>2 6 x 6 p>2.

a. Find the first five terms of a power series for the function 
ln � sec x + tan x � . For what values of x should the series 
converge?
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b. Find the first four terms of a series for sec x tan x. For what 
values of x should the series converge?

c. Check your result in part (b) by multiplying the series for 
sec x by the series given for tan x in Exercise 57.

59. Uniqueness of convergent power series

a. Show that if two power series g
q
n=0 anxn  and g

q
n=0 bnxn  are 

convergent and equal for all values of x in an open interval 
(-c, c), then an = bn  for every n. (Hint: Let 
ƒ(x) = g

q
n=0 anxn = g

q
n=0 bnxn. Differentiate term by term 

to show that an  and bn  both equal ƒ(n)(0)>(n!).)

b. Show that if g
q
n=0 anxn = 0 for all x in an open interval 

(-c, c), then an = 0 for every n.

60. The sum of the seriesgHn=0 (n2
,2n) To find the sum of this 

series, express 1>(1 - x) as a geometric series, differentiate both 
sides of the resulting equation with respect to x, multiply both 
sides of the result by x, differentiate again, multiply by x again, 
and set x equal to 1 >2. What do you get?

10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for a few func-
tions having a special form, like ƒ(x) = 1>(1 - x) or g(x) = 3>(x - 2). Now we expand 
our capability to represent a function with a power series. This section shows how func-
tions that are infinitely differentiable generate power series called Taylor series. In many 
cases, these series provide useful polynomial approximations of the generating functions. 
Because they are used routinely by mathematicians and scientists, Taylor series are con-
sidered one of the most important themes of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power 
series is a continuous function with derivatives of all orders. But what about the other way 
around? If a function ƒ(x) has derivatives of all orders on an interval, can it be expressed as 
a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power 
series about x = a,

 ƒ(x) = a

q

n=0
an(x - a)n

= a0 + a1(x - a) + a2(x - a)2 + g + an(x - a)n + g

with a positive radius of convergence. By repeated term-by-term differentiation within the 
interval of convergence I, we obtain

 ƒ′(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + g + nan(x - a)n-1 + g ,

 ƒ″(x) = 1 # 2a2 + 2 # 3a3(x - a) + 3 # 4a4(x - a)2 + g ,

 ƒ‴(x) = 1 # 2 # 3a3 + 2 # 3 # 4a4(x - a) + 3 # 4 # 5a5(x - a)2 + g ,

with the nth derivative, for all n, being

ƒ(n)(x) = n!an + a sum of terms with (x - a) as a factor.

Since these equations all hold at x = a, we have

ƒ′(a) = a1, ƒ″(a) = 1 # 2a2, ƒ‴(a) = 1 # 2 # 3a3,

and, in general,

ƒ(n)(a) = n!an .
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These formulas reveal a pattern in the coefficients of any power series g
q
n=0 an(x - a)n

that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an 
open question), then there is only one such series, and its nth coefficient is

an =
ƒ(n)(a)

n!
.

If ƒ has a series representation, then the series must be

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

+ g +
ƒ(n)(a)

n!
(x - a)n + g. (1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval 
containing x = a and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interval of convergence? The answer is maybe—for some 
functions it will but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series 
we will study in this chapter.

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

DEFINITIONS Let ƒ be a function with derivatives of all orders throughout some 
interval containing a as an interior point. Then the Taylor series generated by ƒ
at x = a is

a

q

k=0

ƒ(k)(a)
k!

(x - a)k = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

+ g +
ƒ(n)(a)

n!
(x - a)n + g.

The Maclaurin series of ƒ is the Taylor series generated by ƒ at x = 0, or

a

q

k=0

ƒ(k)(0)
k!

xk = ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g.

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.

EXAMPLE 1  Find the Taylor series generated by ƒ(x) = 1>x at a = 2. Where, if 
anywhere, does the series converge to 1 >x?

Solution We need to find ƒ(2), ƒ′(2), ƒ″(2),c. Taking derivatives we get

ƒ(x) = x-1, ƒ′(x) = -x-2, ƒ″(x) = 2!x-3, g, ƒ(n)(x) = (-1)nn!x-(n+1),

so that

ƒ(2) = 2-1 = 1
2

, ƒ′(2) = - 1
22 ,

ƒ″(2)
2!

= 2-3 = 1
23 , g,

ƒ(n)(2)
n!

=
(-1)n

2n+1 .

The Taylor series is

ƒ(2) + ƒ′(2)(x - 2) +
ƒ″(2)

2!
(x - 2)2 + g +

ƒ(n)(2)
n!

(x - 2)n + g

= 1
2

-
(x - 2)

22 +
(x - 2)2

23 - g + (-1)n
(x - 2)n

2n+1 + g.
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This is a geometric series with first term 1 >2 and ratio r = -(x - 2)>2. It converges 
absolutely for � x - 2 � 6 2 and its sum is

1>2
1 + (x - 2)>2 = 1

2 + (x - 2)
= 1

x .

In this example the Taylor series generated by ƒ(x) = 1>x at a = 2 converges to 1 >x for 
� x - 2 � 6 2 or 0 6 x 6 4.

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one 
given by

P1(x) = ƒ(a) + ƒ′(a)(x - a).

In Section 3.11 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ 
has derivatives of higher order at a, then it has higher-order polynomial approximations 
as well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of ƒ.

DEFINITION Let ƒ be a function with derivatives of order k for k = 1, 2, c , N
in some interval containing a as an interior point. Then for any integer n from 0 
through N, the Taylor polynomial of order n generated by ƒ at x = a is the 
polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g

+
ƒ(k)(a)

k!
(x - a)k + g +

ƒ(n)(a)
n!

(x - a)n.

We speak of a Taylor polynomial of order n rather than degree n because ƒ(n)(a) may 
be zero. The first two Taylor polynomials of ƒ(x) = cos x at x = 0, for example, are 
P0(x) = 1 and P1(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of ƒ at x = a provides the best linear approximation of ƒ in 
the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial 
approximations of their respective degrees. (See Exercise 40.)

EXAMPLE 2  Find the Taylor series and the Taylor polynomials generated by ƒ(x) = ex

at x = 0.

Solution Since ƒ(n)(x) = ex and ƒ(n)(0) = 1 for every n = 0, 1, 2, c, the Taylor series 
generated by ƒ at x = 0 (see Figure 10.17) is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g

= 1 + x + x2

2
+ g + xn

n!
+ g

= a

q

k=0

xk

k!
.

This is also the Maclaurin series for ex. In the next section we will see that the series con-
verges to ex at every x.

0.5

1.0

y = e x

0 0.5

1.5

2.0

2.5

3.0
y = P3(x)

y = P2(x)

y = P1(x)

1.0

x

y

−0.5

FIGURE 10.17 The graph of ƒ(x) = ex

and its Taylor polynomials

P1(x) = 1 + x

P2(x) = 1 + x + (x2>2!)
P3(x) = 1 + x + (x2>2!) + (x3>3!).

Notice the very close agreement near the 
center x = 0 (Example 2).
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The Taylor polynomial of order n at x = 0 is

Pn(x) = 1 + x + x2

2
+ g + xn

n!
.

EXAMPLE 3  Find the Taylor series and Taylor polynomials generated by ƒ(x) = cos x
at x = 0.

Solution The cosine and its derivatives are

ƒ(x) = cos x, ƒ′(x) = -sin x,

ƒ″(x) = -cos x, ƒ(3)(x) = sin x,

f f

ƒ(2n)(x) = (-1)n cos x, ƒ(2n+1)(x) = (-1)n+1 sin x.

At x = 0, the cosines are 1 and the sines are 0, so

ƒ(2n)(0) = (-1)n, ƒ(2n+1)(0) = 0.

The Taylor series generated by ƒ at 0 is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 +

ƒ‴(0)
3!

x3 + g +
ƒ(n)(0)

n!
xn + g

= 1 + 0 # x - x2

2!
+ 0 # x3 + x4

4!
+ g + (-1)n x2n

(2n)!
+ g

= a

q

k=0

(-1)kx2k

(2k)!
.

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the 
Taylor series generated by the cosine function, which is consistent with the fact that it is an 
even function. In Section 10.9, we will see that the series converges to cos x at every x.

Because ƒ(2n+1)(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

P2n(x) = P2n+1(x) = 1 - x2

2!
+ x4

4!
- g + (-1)n x2n

(2n)!
.

Figure 10.18 shows how well these polynomials approximate ƒ(x) = cos x near x = 0.
Only the right-hand portions of the graphs are given because the graphs are symmetric 
about the y-axis.

0 1

1
y = cos x

2

−1

−2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 10.18 The polynomials

P2n(x) = a

n

k=0

(-1)kx2k

(2k)!

converge to cos x as n S q. We can deduce the behavior of
cos x arbitrarily far away solely from knowing the values of the 
cosine and its derivatives at x = 0 (Example 3).
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EXAMPLE 4  It can be shown (though not easily) that

ƒ(x) = e0, x = 0

e-1>x2
, x ≠ 0

(Figure 10.19) has derivatives of all orders at x = 0 and that ƒ(n)(0) = 0 for all n. This 
means that the Taylor series generated by ƒ at x = 0 is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g

= 0 + 0 # x + 0 # x2 + g + 0 # xn + g

= 0 + 0 + g + 0 + g.

The series converges for every x (its sum is 0) but converges to ƒ(x) only at x = 0. That is, 
the Taylor series generated by ƒ(x) in this example is not equal to the function ƒ(x) over 
the entire interval of convergence.

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a 
given interval?

The answers are provided by a theorem of Taylor in the next section.

0 1 2

1

−1−2

e−1�x2
, x ≠ 0

 0 , x = 0
y =

x

y

FIGURE 10.19 The graph of the con-
tinuous extension of y = e-1>x2

 is so flat 
at the origin that all of its derivatives there 
are zero (Example 4). Therefore its Taylor 
series, which is zero everywhere, is not the 
function itself.

Exercises 10.8
Finding Taylor Polynomials
In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3 
generated by ƒ at a.

1. ƒ(x) = e2x, a = 0 2. ƒ(x) = sin x, a = 0

3. ƒ(x) = ln x, a = 1 4. ƒ(x) = ln (1 + x), a = 0

5. ƒ(x) = 1>x, a = 2 6. ƒ(x) = 1>(x + 2), a = 0

7. ƒ(x) = sin x, a = p>4 8. ƒ(x) = tan x, a = p>4
9. ƒ(x) = 2x, a = 4 10. ƒ(x) = 21 - x, a = 0

Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11–22.

11. e-x 12. xex

13. 1
1 + x

14.
2 + x
1 - x

15. sin 3x 16. sin
x
2

17. 7 cos (-x) 18. 5 cos px

19. cosh x = ex + e-x

2
20. sinh x = ex - e-x

2

21. x4 - 2x3 - 5x + 4 22.
x2

x + 1

Finding Taylor and Maclaurin Series
In Exercises 23–32, find the Taylor series generated by ƒ at x = a.

23. ƒ(x) = x3 - 2x + 4, a = 2

24. ƒ(x) = 2x3 + x2 + 3x - 8, a = 1

25. ƒ(x) = x4 + x2 + 1, a = -2

26. ƒ(x) = 3x5 - x4 + 2x3 + x2 - 2, a = -1

27. ƒ(x) = 1>x2, a = 1

28. ƒ(x) = 1>(1 - x)3, a = 0

29. ƒ(x) = ex, a = 2

30. ƒ(x) = 2x, a = 1

31. ƒ(x) = cos (2x + (p>2)), a = p>4
32. ƒ(x) = 2x + 1, a = 0

In Exercises 33–36, find the first three nonzero terms of the Maclaurin 
series for each function and the values of x for which the series con-
verges absolutely.

33. ƒ(x) = cos x - (2>(1 - x))

34. ƒ(x) = (1 - x + x2)ex

35. ƒ(x) = (sin x) ln (1 + x)

36. ƒ(x) = x sin2 x

Theory and Examples
37. Use the Taylor series generated by ex at x = a to show that

ex = ea c 1 + (x - a) +
(x - a)2

2!
+ g d .

38. (Continuation of Exercise 37.) Find the Taylor series generated by 
ex at x = 1. Compare your answer with the formula in Exercise 37.

39. Let ƒ(x) have derivatives through order n at x = a. Show that the 
Taylor polynomial of order n and its first n derivatives have the 
same values that ƒ and its first n derivatives have at x = a.
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40. Approximation properties of Taylor polynomials Suppose 
that ƒ(x) is differentiable on an interval centered at x = a and that 
g(x) = b0 + b1(x - a) + g + bn(x - a)n is a polynomial of 
degree n with constant coefficients b0, . . . , bn. Let E(x) =
ƒ(x) - g(x). Show that if we impose on g the conditions

i) E(a) = 0 The approximation error is zero at x = a.

ii) lim
xSa

E(x)
(x - a)n = 0,

The error is negligible when 
compared to (x - a)n.

then

g(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

+
ƒ(n)(a)

n!
 (x - a)n.

Thus, the Taylor polynomial Pn(x) is the only polynomial of 
degree less than or equal to n whose error is both zero at 
x = a and negligible when compared with (x - a)n.

Quadratic Approximations The Taylor polynomial of order 2 gen-
erated by a twice-differentiable function ƒ(x) at x = a is called the 
quadratic approximation of ƒ at x = a. In Exercises 41–46, find the 
(a) linearization (Taylor polynomial of order 1) and (b) quadratic 
approximation of ƒ at x = 0.

41. ƒ(x) = ln (cos x) 42. ƒ(x) = esin x

43. ƒ(x) = 1>21 - x2 44. ƒ(x) = cosh x

45. ƒ(x) = sin x 46. ƒ(x) = tan x

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to con-
verge to that (generating) function. We answer the question in this section with the follow-
ing theorem.

THEOREM 23—Taylor’s Theorem If ƒ and its first n derivatives ƒ′, ƒ″,c , ƒ(n)

are continuous on the closed interval between a and b, and ƒ(n) is differentiable 
on the open interval between a and b, then there exists a number c between a and 
b such that

 ƒ(b) = ƒ(a) + ƒ′(a)(b - a) +
ƒ″(a)

2!
 (b - a)2 + g

+
ƒ(n)(a)

n!
 (b - a)n +

ƒ(n+1)(c)
(n + 1)!

 (b - a)n+1.

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 45). There is a 
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an 
independent variable. Taylor’s formula is easier to use in circumstances like these if we 
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each 
positive integer n and for each x in I,

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

+
ƒ(n)(a)

n!
 (x - a)n + Rn(x), (1)

where

Rn(x) =
ƒ(n+1)(c)
(n + 1)!

(x - a)n+1 for some c between a and x. (2)
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When we state Taylor’s theorem this way, it says that for each x∊I,

ƒ(x) = Pn(x) + Rn(x).

The function Rn(x) is determined by the value of the (n + 1)st derivative ƒ(n+1) at a point 
c that depends on both a and x, and that lies somewhere between them. For any value of n
we want, the equation gives both a polynomial approximation of ƒ of that order and a for-
mula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function Rn(x) is called the remainder 
of order n or the error term for the approximation of ƒ by Pn(x) over I.

If Rn(x) S 0 as n S q for all x∊I, we say that the Taylor series generated by ƒ
at x = a converges to ƒ on I, and we write

ƒ(x) = a

q

k=0

ƒ(k)(a)
k!

(x - a)k.

Often we can estimate Rn without knowing the value of c, as the following example illustrates.

EXAMPLE 1  Show that the Taylor series generated by ƒ(x) = ex at x = 0 converges 
to ƒ(x) for every real value of x.

Solution The function has derivatives of all orders throughout the interval I = (-q, q).
Equations (1) and (2) with ƒ(x) = ex and a = 0 give

ex = 1 + x + x2

2!
+ g + xn

n!
+ Rn(x)

Polynomial from 
Section 10.8, Example 2

and

Rn(x) = ec

(n + 1)!
xn+1 for some c between 0 and x.

Since ex is an increasing function of x, ec lies between e0 = 1 and ex. When x is negative, 
so is c, and ec 6 1. When x is zero, ex = 1 so that Rn(x) = 0. When x is positive, so is c,
and ec 6 ex. Thus, for Rn(x) given as above,

�Rn(x) � …
� x � n+1

(n + 1)!
when x … 0,  ec 6 1

and

�Rn(x) � 6 ex xn+1

(n + 1)!
when x 7 0. ec 6 ex

Finally, because

lim
nSq

xn+1

(n + 1)!
= 0 for every x, Section 10.1, Theorem 5

lim
nSq

Rn(x) = 0, and the series converges to ex for every x. Thus,

ex = a

q

k=0

xk

k!
= 1 + x + x2

2!
+ g + xk

k!
+ g. (3)

We can use the result of Example 1 with x = 1 to write

e = 1 + 1 + 1
2!

+ g + 1
n!

+ Rn(1),

The Number e as a Series

e = a

q

n=0

1
n!
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where for some c between 0 and 1,

Rn(1) = ec 1
(n + 1)!

6 3
(n + 1)!

. ec 6 e1 6 3

Estimating the Remainder

It is often possible to estimate Rn(x) as we did in Example 1. This method of estimation is 
so convenient that we state it as a theorem for future reference.

THEOREM 24—The Remainder Estimation Theorem If there is a positive con-
stant M such that � ƒ(n+1)(t) � … M  for all t between x and a, inclusive, then the 
remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

�Rn(x) � … M
� x - a � n+1

(n + 1)!
.

If this inequality holds for every n and the other conditions of Taylor’s Theorem 
are satisfied by ƒ, then the series converges to ƒ(x).

The next two examples use Theorem 24 to show that the Taylor series generated by 
the sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2  Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are

ƒ(x) = sin x, ƒ′(x) = cos x,

ƒ″(x) = -sin x, ƒ‴(x) = -cos x,

f f

ƒ(2k)(x) = (-1)k sin x, ƒ(2k+1)(x) = (-1)k cos x,

so

f (2k)(0) = 0 and f (2k+1)(0) = (-1)k.

The series has only odd-powered terms and, for n = 2k + 1, Taylor’s Theorem gives

sin x = x - x3

3!
+ x5

5!
- g +

(-1)kx2k+1

(2k + 1)!
+ R2k+1(x).

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the 
Remainder Estimation Theorem with M = 1 to obtain

�R2k+1(x) � … 1 # � x � 2k+2

(2k + 2)!
.

From Theorem 5, Rule 6, we have ( � x � 2k+2>(2k + 2)!) S 0 as k S q, whatever the value 
of x, so R2k+1(x) S 0 and the Maclaurin series for sin x converges to sin x for every x.
Thus,

sin x = a

q

k=0

(-1)kx2k+1

(2k + 1)!
= x - x3

3!
+ x5

5!
- x7

7!
+ g. (4)
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EXAMPLE 3  Show that the Taylor series for cos x at x = 0 converges to cos x for 
every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 10.8, 
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

cos x = 1 - x2

2!
+ x4

4!
- g + (-1)k x2k

(2k)!
+ R2k(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the 
Remainder Estimation Theorem with M = 1  gives

�R2k(x) � … 1 # � x � 2k+1

(2k + 1)!
.

For every value of x, R2k(x) S 0 as k S q. Therefore, the series converges to cos x for 
every value of x. Thus,

cos x = a

q

k=0

(-1)kx2k

(2k)!
= 1 - x2

2!
+ x4

4!
- x6

6!
+ g. (5)

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and mul-
tiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4  Using known series, find the first few terms of the Taylor series for the 
given function using power series operations.

(a) 1
3 (2x + x cos x) (b) ex cos x

Solution

(a) 1
3 (2x + x cos x) = 2

3 x + 1
3 x a1 - x2

2!
+ x4

4!
- g + (-1)k x2k

(2k)!
+ gb

= 2
3 x + 1

3 x - x3

3!
+ x5

3 # 4!
- g = x - x3

6
+ x5

72
- g

(b) ex cos x = a1 + x + x2

2!
+ x3

3!
+ x4

4!
+ gb # a1 - x2

2!
+ x4

4!
- gb

= a1 + x + x2

2!
+ x3

3!
+ x4

4!
+ gb - ax2

2!
+ x3

2!
+ x4

2!2!
+ x5

2!3!
+ gb

+ ax4

4!
+ x5

4!
+ x6

2!4!
+ gb + g

= 1 + x - x3

3 - x4

6
+ g

By Theorem 20, we can use the Taylor series of the function ƒ to find the Taylor series 
of ƒ(u(x)) where u(x) is any continuous function. The Taylor series resulting from this 
substitution will converge for all x such that u(x) lies within the interval of convergence of 

Multiply the first 
series by each term 
of the second series.
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the Taylor series of ƒ. For instance, we can find the Taylor series for cos 2x by substituting 
2x for x in the Taylor series for cos x:

cos 2x = a

q

k=0

(-1)k(2x)2k

(2k)!
= 1 -

(2x)2

2!
+

(2x)4

4!
-

(2x)6

6!
+ g  Eq. (5) with 2x for x

= 1 - 22x2

2!
+ 24x4

4!
- 26x6

6!
+ g

= a

q

k=0
(-1)k 22kx2k

(2k)!
.

EXAMPLE 5  For what values of x can we replace sin x by x - (x3>3!)  with an error 
of magnitude no greater than 3 * 10-4?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an 
alternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 10.6), the error in truncating

sin x = x - x3

3!
+ x5

5!
- g

after (x3>3!)  is no greater than

` x5

5!
` = � x � 5

120
.

Therefore the error will be less than or equal to 3 * 10-4 if

� x � 5

120
6 3 * 10-4 or � x � 6 25 360 * 10-4 ≈ 0.514.

Rounded down, 
to be safe

The Alternating Series Estimation Theorem tells us something that the Remainder 
Estimation Theorem does not: namely, that the estimate x - (x3>3!)  for sin x is an under-
estimate when x is positive, because then x5>120 is positive.

Figure 10.20 shows the graph of sin x, along with the graphs of a number of its 
approximating Taylor polynomials. The graph of P3(x) = x - (x3>3!)  is almost indistin-
guishable from the sine curve when 0 … x … 1.

1

y = sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

−1

−2

x

y

FIGURE 10.20 The polynomials

P2n+1(x) = a

n

k=0

(-1)kx2k+1

(2k + 1)!

converge to sin x as n S q. Notice how closely P3(x) approxi-
mates the sine curve for x … 1 (Example 5).
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A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming a 6 b. The proof for a 7 b is nearly the same.
The Taylor polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g +

f (n)(a)
n!

(x - a)n

and its first n derivatives match the function ƒ and its first n derivatives at x = a. We do 
not disturb that matching if we add another term of the form K(x - a)n+1, where K is any 
constant, because such a term and its first n derivatives are all equal to zero at x = a. The 
new function

fn(x) = Pn(x) + K(x - a)n+1

and its first n derivatives still agree with ƒ and its first n derivatives at x = a.
We now choose the particular value of K that makes the curve y = fn(x) agree with 

the original curve y = ƒ(x) at x = b. In symbols,

ƒ(b) = Pn(b) + K(b - a)n+1, or K =
ƒ(b) - Pn(b)

(b - a)n+1 . (6)

With K defined by Equation (6), the function

F(x) = ƒ(x) - fn(x)

measures the difference between the original function ƒ and the approximating function 
fn for each x in 3a, b4 .

We now use Rolle’s Theorem (Section 4.2). First, because F(a) = F(b) = 0 and both 
F and F′ are continuous on 3a, b4 , we know that

F′(c1) = 0 for some c1 in (a, b).

Next, because F′(a) = F′(c1) = 0 and both F′ and F″ are continuous on 3a, c14 , we know 
that

F″(c2) = 0 for some c2 in (a, c1).

Rolle’s Theorem, applied successively to F″, F‴, . . . , F (n-1), implies the existence of

c3 in (a, c2) such that F‴(c3) = 0,

c4 in (a, c3) such that F (4)(c4) = 0,

f

cn in (a, cn-1) such that F (n)(cn) = 0.

Finally, because F (n) is continuous on 3a, cn4  and differentiable on (a, cn), and 
F (n)(a) = F (n)(cn) = 0, Rolle’s Theorem implies that there is a number cn+1 in (a, cn) such 
that

F (n+1)(cn+1) = 0. (7)

If we differentiate F(x) = ƒ(x) - Pn(x) - K(x - a)n+1 a total of n + 1 times, we get

F (n+1)(x) = ƒ(n+1)(x) - 0 - (n + 1)!K. (8)

Equations (7) and (8) together give

K =
ƒ(n+1)(c)
(n + 1)!

for some number c = cn+1 in (a, b). (9)
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Equations (6) and (9) give

ƒ(b) = Pn(b) +
ƒ(n+1)(c)
(n + 1)!

(b - a)n+1.

This concludes the proof.

Exercises 10.9
38. If cos x is replaced by 1 - (x2>2)  and � x � 6 0.5, what estimate 

can be made of the error? Does 1 - (x2>2)  tend to be too large, 
or too small? Give reasons for your answer.

39. How close is the approximation sin x = x when � x � 6 10-3 ?
For which of these values of x is x 6 sin x?

40. The estimate 21 + x = 1 + (x>2) is used when x is small. Esti-
mate the error when � x � 6 0.01.

41. The approximation ex = 1 + x + (x2>2)  is used when x is small. 
Use the Remainder Estimation Theorem to estimate the error 
when � x � 6 0.1.

42. (Continuation of Exercise 41.) When x 6 0, the series for ex is 
an alternating series. Use the Alternating Series Estimation Theo-
rem to estimate the error that results from replacing ex by 
1 + x + (x2>2) when -0.1 6 x 6 0. Compare your estimate 
with the one you obtained in Exercise 41.

Theory and Examples
43. Use the identity sin2 x = (1 - cos 2x)>2 to obtain the Maclaurin 

series for sin2 x. Then differentiate this series to obtain the 
Maclaurin series for 2 sin x cos x. Check that this is the series for 
sin 2x.

44. (Continuation of Exercise 43.) Use the identity cos2 x =
cos 2x + sin2 x to obtain a power series for cos2 x.

45. Taylor’s Theorem and the Mean Value Theorem Explain
how the Mean Value Theorem (Section 4.2, Theorem 4) is a spe-
cial case of Taylor’s Theorem.

46. Linearizations at inflection points Show that if the graph of a 
twice-differentiable function ƒ(x) has an inflection point at 
x = a, then the linearization of ƒ at x = a is also the quadratic 
approximation of ƒ at x = a. This explains why tangent lines fit 
so well at inflection points.

47. The (second) second derivative test Use the equation

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(c2)

2
(x - a)2

  to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that ƒ′(a) = 0. Then

a. ƒ has a local maximum at a if ƒ″ … 0 throughout an interval 
whose interior contains a;

b. ƒ has a local minimum at a if ƒ″ Ú 0 throughout an interval 
whose interior contains a.

Finding Taylor Series
Use substitution (as in Example 4) to find the Taylor series at x = 0
of the functions in Exercises 1–10.

4. sin apx
2
b 5. cos 5x2 6. cos 1x2>3>222

7. ln (1 + x2) 8. tan-1 (3x4) 9. 1

1 + 3
4 x3

1. e-5x 2. e-x>2 3. 5 sin (-x)

10. 1
2 - x

Use power series operations to find the Taylor series at x = 0 for the 
functions in Exercises 11–28.

11. xex 12. x2 sin x 13.
x2

2
- 1 + cos x

14. sin x - x + x3

3!
15. x cos px 16. x2 cos (x2)

17. cos2 x (Hint: cos2 x = (1 + cos 2x)>2.)

18. sin2 x 19.
x2

1 - 2x
20. x ln (1 + 2x)

21. 1
(1 - x)2 22. 2

(1 - x)3 23. x tan-1 x2

24. sin x # cos x 25. ex + 1
1 + x

26. cos x - sin x

27.
x
3

ln (1 + x2) 28. ln (1 + x) - ln (1 - x)

Find the first four nonzero terms in the Maclaurin series for the func-
tions in Exercises 29–34.

29. ex sin x 30.
ln (1 + x)

1 - x
31. (tan-1 x)2

32. cos2 x # sin x 33. esin x 34. sin (tan-1 x)

Error Estimates
35. Estimate the error if P3(x) = x - (x3>6)  is used to estimate the 

value of sin x at x = 0.1.

36. Estimate the error if P4(x) = 1 + x + (x2>2) + (x3>6) + (x4>24)
is used to estimate the value of ex at x = 1>2.

37. For approximately what values of x can you replace sin x by 
x - (x3>6)  with an error of magnitude no greater than 5 * 10-4 ?
Give reasons for your answer.
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48. A cubic approximation Use Taylor’s formula with a = 0 and 
n = 3 to find the standard cubic approximation of ƒ(x) =
1>(1 - x) at x = 0. Give an upper bound for the magnitude of 
the error in the approximation when � x � … 0.1.

49. a. Use Taylor’s formula with n = 2 to find the quadratic approx-
imation of ƒ(x) = (1 + x)k at x = 0 (k a constant).

b. If k = 3, for approximately what values of x in the interval 
30, 14  will the error in the quadratic approximation be less 
than 1 >100?

50. Improving approximations of P

a. Let P be an approximation of p accurate to n decimals. Show 
that P + sin P gives an approximation correct to 3n deci-
mals. (Hint: Let P = p + x.)

b. Try it with a calculator.

51. The Taylor series generated by ƒ(x) = g
H
n=0 anxn is g

H
n=0 anxn

A function defined by a power series g
q
n=0 anxn with a radius of 

convergence R 7 0 has a Taylor series that converges to the 
function at every point of (-R, R). Show this by showing that the 
Taylor series generated by ƒ(x) = g

q
n=0 anxn is the series 

g
q
n=0 anxn itself.

An immediate consequence of this is that series like

x sin x = x2 - x4

3!
+ x6

5!
- x8

7!
+ g

  and

x2ex = x2 + x3 + x4

2!
+ x5

3!
+ g,

  obtained by multiplying Taylor series by powers of x, as well as 
series obtained by integration and differentiation of convergent 
power series, are themselves the Taylor series generated by the 
functions they represent.

52. Taylor series for even functions and odd functions (Continu-
ation of Section 10.7, Exercise 59.) Suppose that ƒ(x) = g

q
n=0 anxn

converges for all x in an open interval (-R, R). Show that

a. If ƒ is even, then a1 = a3 = a5 = g = 0, i.e., the Taylor 
series for ƒ at x = 0 contains only even powers of x.

b. If ƒ is odd, then a0 = a2 = a4 = g = 0, i.e., the Taylor 
series for ƒ at x = 0 contains only odd powers of x.

COMPUTER EXPLORATIONS
Taylor’s formula with n = 1 and a = 0 gives the linearization of a 
function at x = 0. With n = 2 and n = 3 we obtain the standard 

T

quadratic and cubic approximations. In these exercises we explore the 
errors associated with these approximations. We seek answers to two 
questions:

a. For what values of x can the function be replaced by each 
approximation with an error less than 10-2?

b. What is the maximum error we could expect if we replace the 
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering 
questions (a) and (b) for the functions and intervals in Exercises 
53–58.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials P1(x), P2(x), and P3(x) at 
x = 0.

Step 3: Calculate the (n + 1)st derivative ƒ(n+1)(c) associ-
ated with the remainder term for each Taylor polynomial. 
Plot the derivative as a function of c over the specified inter-
val and estimate its maximum absolute value, M.

Step 4: Calculate the remainder Rn(x) for each polynomial. 
Using the estimate M from Step 3 in place of ƒ(n+1)(c), plot 
Rn(x) over the specified interval. Then estimate the values of 
x that answer question (a).

Step 5: Compare your estimated error with the actual error 
En(x) = �ƒ(x) - Pn(x) �  by plotting En(x) over the specified 
interval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approxima-
tions together. Discuss the graphs in relation to the informa-
tion discovered in Steps 4 and 5.

53. ƒ(x) = 1

21 + x
, � x � … 3

4

54. ƒ(x) = (1 + x)3>2, - 1
2

… x … 2

55. ƒ(x) = x
x2 + 1

, � x � … 2

56. ƒ(x) = (cos x)(sin 2x), � x � … 2

57. ƒ(x) = e-x cos 2x, � x � … 1

58. ƒ(x) = ex>3 sin 2x, � x � … 2

10.10 The Binomial Series and Applications of Taylor Series

We can use Taylor series to solve problems that would otherwise be intractable. For exam-
ple, many functions have antiderivatives that cannot be expressed using familiar functions. In 
this section we show how to evaluate integrals of such functions by giving them as Taylor 
series. We also show how to use Taylor series to evaluate limits that lead to indeterminate 
forms and how Taylor series can be used to extend the exponential function from real to 
complex numbers. We begin with a discussion of the binomial series, which comes from the 
Taylor series of the function ƒ(x) = (1 + x)m, and conclude the section with Table 10.1, 
which lists some commonly used Taylor series.
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The Binomial Series for Powers and Roots

The Taylor series generated by ƒ(x) = (1 + x)m, when m is constant, is

1 + mx +
m(m - 1)

2!
x2 +

m(m - 1)(m - 2)
3!

x3 + g

+
m(m - 1)(m - 2)g (m - k + 1)

k!
xk + g. (1)

This series, called the binomial series, converges absolutely for � x � 6 1. To derive the 
series, we first list the function and its derivatives:

ƒ(x) = (1 + x)m

ƒ′(x) = m(1 + x)m-1

ƒ″(x) = m(m - 1)(1 + x)m-2

ƒ‴(x) = m(m - 1)(m - 2)(1 + x)m-3

f

ƒ(k)(x) = m(m - 1)(m - 2)g(m - k + 1)(1 + x)m- k.

We then evaluate these at x = 0 and substitute into the Taylor series formula to obtain 
Series (1).

If m is an integer greater than or equal to zero, the series stops after (m + 1) terms 
because the coefficients from k = m + 1 on are zero.

If m is not a positive integer or zero, the series is infinite and converges for � x � 6 1.
To see why, let uk be the term involving xk. Then apply the Ratio Test for absolute conver-
gence to see that

` uk+1
uk
` = `m - k

k + 1
x ` S � x � as k S q .

Our derivation of the binomial series shows only that it is generated by (1 + x)m and 
converges for � x � 6 1. The derivation does not show that the series converges to 
(1 + x)m. It does, but we leave the proof to Exercise 58. The following formulation gives 
a succinct way to express the series.

EXAMPLE 1  If m = -1,

a-1

1
b = -1, a-1

2
b =

-1(-2)
2!

= 1,

The Binomial Series

For -1 6 x 6 1,

(1 + x)m = 1 + a

q

k=1
am

k
b xk ,

where we define

am
1
b = m, am

2
b =

m(m - 1)
2!

,

and

am
k
b =

m(m - 1)(m - 2)g(m - k + 1)
k!

for k Ú 3.
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and

a-1

k
b =

-1(-2)(-3)g(-1 - k + 1)
k!

= (-1)k ak!
k!
b = (-1)k.

With these coefficient values and with x replaced by -x, the binomial series formula gives 
the familiar geometric series

(1 + x)-1 = 1 + a

q

k=1
(-1)kxk = 1 - x + x2 - x3 + g + (-1)kxk + g.

EXAMPLE 2  We know from Section 3.11, Example 1, that 21 + x ≈ 1 + (x>2)
for � x �  small. With m = 1>2, the binomial series gives quadratic and higher-order 
approximations as well, along with error estimates that come from the Alternating Series 
Estimation Theorem:

(1 + x)1>2 = 1 + x
2

+
a1

2
b a- 1

2
b

2!
x2 +

a1
2
b a- 1

2
b a- 3

2
b

3!
x3

+
a1

2
b a- 1

2
b a- 3

2
b a- 5

2
b

4!
x4 + g

= 1 + x
2

- x2

8 + x3

16
- 5x4

128
+ g.

Substitution for x gives still other approximations. For example,

21 - x2 ≈ 1 - x2

2
- x4

8 for � x2 � small

A1 - 1
x ≈ 1 - 1

2x
- 1

8x2 for ` 1x ` small, that is, � x � large.

Evaluating Nonelementary Integrals

Sometimes we can use a familiar Taylor series to find the sum of a given power series in 
terms of a known function. For example,

x2 - x6

3!
+ x10

5!
- x14

7!
+ g = (x2) -

(x2)3

3!
+

(x2)5

5!
-

(x2)7

7!
+ g = sin x2 .

Additional examples are provided in Exercises 59–62.
Taylor series can be used to express nonelementary integrals in terms of series. Inte-

grals like 1 sin x2 dx arise in the study of the diffraction of light.

EXAMPLE 3  Express 1 sin x2 dx as a power series.

Solution From the series for sin x we substitute x2 for x to obtain

sin x2 = x2 - x6

3!
+ x10

5!
- x14

7!
+ x18

9!
- g.

Therefore,

L
sin x2 dx = C + x3

3 - x7

7 # 3! + x11

11 # 5! - x15

15 # 7! + x19

19 # 9! - g.
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EXAMPLE 4  Estimate 1
1

0 sin x2 dx with an error of less than 0.001.

Solution From the indefinite integral in Example 3, we easily find that

L

1

0
sin x2 dx = 1

3 - 1
7 # 3! + 1

11 # 5! - 1
15 # 7! + 1

19 # 9! - g.

The series on the right-hand side alternates, and we find by numerical evaluations that

1
11 # 5! ≈ 0.00076

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

L

1

0
sin x2 dx ≈ 1

3 - 1
42

≈ 0.310.

With two more terms we could estimate

L

1

0
sin x2 dx ≈ 0.310268

with an error of less than 10-6. With only one term beyond that we have

L

1

0
sin x2 dx ≈ 1

3 - 1
42

+ 1
1320

- 1
75600

+ 1
6894720

≈ 0.310268303,

with an error of about 1.08 * 10-9. To guarantee this accuracy with the error formula for 
the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 10.7, Example 5, we found a series for tan-1 x by differentiating to get

d
dx

tan-1 x = 1
1 + x2 = 1 - x2 + x4 - x6 + g

and then integrating to get

tan-1 x = x - x3

3 + x5

5
- x7

7 + g.

However, we did not prove the term-by-term integration theorem on which this conclusion 
depended. We now derive the series again by integrating both sides of the finite formula

1
1 + t2 = 1 - t2 + t4 - t6 + g + (-1)nt2n +

(-1)n+1t2n+2

1 + t2 , (2)

in which the last term comes from adding the remaining terms as a geometric series with 
first term a = (-1)n+1t2n+2 and ratio r = - t2. Integrating both sides of Equation (2) from 
t = 0 to t = x gives

tan-1 x = x - x3

3 + x5

5
- x7

7 + g + (-1)n x2n+1

2n + 1
+ Rn(x),

where

Rn(x) =
L

x

0

(-1)n+1t2n+2

1 + t2 dt.

The denominator of the integrand is greater than or equal to 1; hence

�Rn(x) � …
L

�x�

0
t2n+2 dt =

� x �2n+3

2n + 3
.
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If � x � … 1, the right side of this inequality approaches zero as n S q. Therefore 
limnSqRn(x) = 0 if � x � … 1 and

tan-1 x = a

q

n=0

(-1)nx2n+1

2n + 1
, � x � … 1.

tan-1 x = x - x3

3 + x5

5
- x7

7 + g, � x � … 1.

(3)

We take this route instead of finding the Taylor series directly because the formulas 
for the higher-order derivatives of tan-1 x are unmanageable. When we put x = 1 in Equa-
tion (3), we get Leibniz’s formula:

p
4

= 1 - 1
3 + 1

5
- 1

7 + 1
9 - g +

(-1)n

2n + 1
+ g.

Because this series converges very slowly, it is not used in approximating p to many decimal 
places. The series for tan-1 x converges most rapidly when x is near zero. For that reason, 
people who use the series for tan-1 x to compute p use various trigonometric identities.

For example, if

a = tan-1 1
2

and b = tan-1 1
3,

then

tan (a + b) =
tan a + tan b

1 - tan a tan b
=

1
2 + 1

3

1 - 1
6

= 1 = tan
p
4

and

p
4

= a + b = tan-1 1
2

+ tan-1 1
3.

Now Equation (3) may be used with x = 1>2 to evaluate tan-1 (1>2) and with x = 1>3 to 
give tan-1 (1>3). The sum of these results, multiplied by 4, gives p.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as 
Taylor series.

EXAMPLE 5  Evaluate

lim
xS1

ln x
x - 1

.

Solution  We represent ln x as a Taylor series in powers of x - 1. This can be accom-
plished by calculating the Taylor series generated by ln x at x = 1 directly or by replacing 
x by x - 1 in the series for ln (1 + x) in Section 10.7, Example 6. Either way, we obtain

ln x = (x - 1) - 1
2

(x - 1)2 + g,

from which we find that

lim
xS1

ln x
x - 1

= lim
xS1
a1 - 1

2
(x - 1) + gb = 1.

Of course, this particular limit can be evaluated using l’Hôpital’s Rule just as well.

EXAMPLE 6  Evaluate

lim
xS0

sin x - tan x
x3 .
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Solution The Taylor series for sin x and tan x, to terms in x5, are

sin x = x - x3

3!
+ x5

5!
- g, tan x = x + x3

3 + 2x5

15
+ g.

Subtracting the series term by term, it follows that

sin x - tan x = - x3

2
- x5

8 - g = x3 a- 1
2

- x2

8 - gb .

Division of both sides by x3 and taking limits then gives

lim
xS0

sin x - tan x
x3 = lim

xS0
a- 1

2
- x2

8 - gb

= - 1
2

.

If we apply series to calculate limxS0((1>sin x) - (1/x)), we not only find the limit suc-
cessfully but also discover an approximation formula for csc x.

EXAMPLE 7  Find lim
xS0
a 1

sin x
- 1

xb .

Solution Using algebra and the Taylor series for sin x, we have

1
sin x

- 1
x = x - sin x

x sin x
=

x - ax - x3

3!
+ x5

5!
- gb

x # ax - x3

3!
+ x5

5!
- gb

=
x3 a 1

3!
- x2

5!
+ gb

x2 a1 - x2

3!
+ gb

= x #
1
3!

- x2

5!
+ g

1 - x2

3!
+ g

.

Therefore,

lim
xS0
a 1

sin x
- 1

xb = lim
xS0

§x #
1
3!

- x2

5!
+ g

1 - x2

3!
+ g

¥ = 0.

From the quotient on the right, we can see that if � x �  is small, then

1
sin x

- 1
x ≈ x # 1

3!
= x

6
or csc x ≈ 1

x + x
6

.

Euler’s Identity

A complex number is a number of the form a + bi, where a and b are real numbers and 
i = 2-1 (see Appendix 7). If we substitute x = iu (u real) in the Taylor series for ex and 
use the relations

i2 = -1, i3 = i2i = - i, i4 = i2i2 = 1, i5 = i4i = i,
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and so on, to simplify the result, we obtain

eiu = 1 + iu
1!

+ i2u2

2!
+ i3u3

3!
+ i4u4

4!
+ i5u5

5!
+ i6u6

6!
+ g

= a1 - u
2

2!
+ u

4

4!
- u

6

6!
+ gb + iau - u

3

3!
+ u

5

5!
- gb = cos u + i sin u.

This does not prove that eiu = cos u + i sin u because we have not yet defined what 
it means to raise e to an imaginary power. Rather, it says how to define eiu to be consistent 
with other things we know about the exponential function for real numbers.

DEFINITION

For any real number u, eiu = cos u + i sin u. (4)

Equation (4), called Euler’s identity, enables us to define ea+bi to be ea # ebi for any 
complex number a + bi. One consequence of the identity is the equation

eip = -1.

When written in the form eip + 1 = 0, this equation combines five of the most important 
constants in mathematics.

TABLE 10.1 Frequently used Taylor series

1
1 - x

= 1 + x + x2 + g+ xn + g = a

q

n=0
xn, � x � 6 1

1
1 + x

= 1 - x + x2 - g + (-x)n + g = a

q

n=0
(-1)nxn, � x � 6 1

ex = 1 + x + x2

2!
+ g + xn

n!
+ g = a

q

n=0

xn

n!
, � x � 6 q

sin x = x - x3

3!
+ x5

5!
- g+ (-1)n x2n+1

(2n + 1)!
+ g = a

q

n=0

(-1)nx2n+1

(2n + 1)!
, � x � 6 q

cos x = 1 - x2

2!
+ x4

4!
- g + (-1)n x2n

(2n)!
+ g = a

q

n=0

(-1)nx2n

(2n)!
, � x � 6 q

ln (1 + x) = x - x2

2
+ x3

3 - g + (-1)n-1 xn

n + g = a

q

n=1

(-1)n-1xn

n , -1 6 x … 1

tan-1 x = x - x3

3 + x5

5
- g + (-1)n x2n+1

2n + 1
+ g = a

q

n=0

(-1)nx2n+1

2n + 1
, � x � … 1
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Binomial Series
Find the first four terms of the binomial series for the functions in 
Exercises 1–10.

Exercises 10.10
Indeterminate Forms
Use series to evaluate the limits in Exercises 29–40.

29. lim
xS0

ex - (1 + x)

x2 30. lim
xS0

ex - e-x

x

31. lim
tS0

1 - cos t - (t2>2)
t4 32. lim

uS0

sin u - u + (u3>6)
u5

33. lim
yS0

y - tan-1 y

y3 34. lim
yS0

tan-1 y - sin y

y3 cos y

35. lim
xSq

x2 (e-1>x2 - 1) 36. lim
xSq

 (x + 1) sin 
1

x + 1

37. lim
xS0

ln (1 + x2)
1 - cos x

38. lim
xS2

x2 - 4
ln (x - 1)

39. lim
xS0

sin 3x2

1 - cos 2x
40. lim

xS0

ln (1 + x3)
x # sin x2

Using Table 10.1
In Exercises 41–52, use Table 10.1 to find the sum of each series.

41. 1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ g

42. a1
4
b3

+ a1
4
b4

+ a1
4
b5

+ a1
4
b6

+ g

43. 1 - 32

42 # 2!
+ 34

44 # 4!
- 36

46 # 6!
+ g

44. 1
2

- 1
2 # 22 + 1

3 # 23 - 1
4 # 24 + g

45.
p

3
- p3

33 # 3!
+ p5

35 # 5!
- p7

37 # 7!
+ g

46. 2
3

- 23

33 # 3 + 25

35 # 5 - 27

37 # 7 + g

47. x3 + x4 + x5 + x6 + g

48. 1 - 32x2

2!
+ 34x4

4!
- 36x6

6!
+ g

49. x3 - x5 + x7 - x9 + x11 - g

50. x2 - 2x3 + 22x4

2!
- 23x5

3!
+ 24x6

4!
- g

51. -1 + 2x - 3x2 + 4x3 - 5x4 + g

52. 1 + x
2

+ x2

3
+ x3

4
+ x4

5
+ g

Theory and Examples
53. Replace x by -x in the Taylor series for ln (1 + x) to obtain a 

series for ln (1 - x). Then subtract this from the Taylor series for 
ln (1 + x) to show that for � x � 6 1,

ln
1 + x
1 - x

= 2ax + x3

3
+ x5

5
+ gb .

54. How many terms of the Taylor series for ln (1 + x) should you 
add to be sure of calculating ln (1.1) with an error of magnitude 
less than 10-8? Give reasons for your answer.

1. (1 + x)1>2 2. (1 + x)1>3 3. (1 - x)-3

4. (1 - 2x)1>2 5. a1 + x
2
b-2

6. a1 - x
3
b4

7. (1 + x3)-1>2 8. (1 + x2)-1>3

9. a1 + 1
xb

1>2
10.

x

23 1 + x

Find the binomial series for the functions in Exercises 11–14.

11. (1 + x)4 12. (1 + x2)3

13. (1 - 2x)3 14. a1 - x
2
b4

Approximations and Nonelementary Integrals
In Exercises 15–18, use series to estimate the integrals’ values with an 
error of magnitude less than 10-5. (The answer section gives the inte-
grals’ values rounded to seven decimal places.)

15.
L

0.6

0
sin x2 dx 16.

L

0.4

0

e-x - 1
x dx

17.
L

0.5

0

1

21 + x4
dx 18.

L

0.35

0
23 1 + x2 dx

Use series to approximate the values of the integrals in Exercises 
19–22 with an error of magnitude less than 10-8.

19.
L

0.1

0

sin x
x dx 20.

L

0.1

0
e-x2

dx

21.
L

0.1

0
21 + x4 dx 22.

L

1

0

1 - cos x
x2 dx

23. Estimate the error if cos t2 is approximated by 1 - t4

2
+ t8

4!
 in the 

integral 1
1

0 cos t2 dt.

24. Estimate the error if cos 2t is approximated by 1 - t
2

+ t2

4!
- t3

6!
in the integral 1

1
0 cos 2t dt.

In Exercises 25–28, find a polynomial that will approximate F(x)
throughout the given interval with an error of magnitude less than 
10-3.

25. F(x) =
L

x

0
sin t2 dt, 30, 14

26. F(x) =
L

x

0
t2e-t2

dt, 30, 14

27. F(x) =
L

x

0
tan-1 t dt, (a) 30, 0.54 (b) 30, 14

28. F(x) =
L

x

0
  
ln (1 + t)

t dt, (a) 30, 0.54 (b) 30, 14

T

T
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55. According to the Alternating Series Estimation Theorem, how 
many terms of the Taylor series for tan-1 1 would you have to add 
to be sure of finding p>4 with an error of magnitude less than 
10-3? Give reasons for your answer.

56. Show that the Taylor series for ƒ(x) = tan-1 x diverges for 
� x � 7 1.

57. Estimating Pi About how many terms of the Taylor series for 
tan-1 x would you have to use to evaluate each term on the right-
hand side of the equation

p = 48 tan-1 1
18

+ 32 tan-1 1
57

- 20 tan-1 1
239

  with an error of magnitude less than 10-6? In contrast, the con-
vergence of g

q
n=1(1>n2)  to p2>6 is so slow that even 50 terms 

will not yield two-place accuracy.

58. Use the following steps to prove that the binomial series in Equa-
tion (1) converges to (1 + x)m.

a. Differentiate the series

ƒ(x) = 1 + a

q

k=1
am

k
bxk

to show that

ƒ′(x) =
mƒ(x)
1 + x

, -1 6 x 6 1.

b. Define g(x) = (1 + x)-m ƒ(x) and show that g′(x) = 0.

c. From part (b), show that

ƒ(x) = (1 + x)m.

59. a. Use the binomial series and the fact that

d
dx

sin-1 x = (1 - x2)-1>2

  to generate the first four nonzero terms of the Taylor series 
for sin-1 x. What is the radius of convergence?

b. Series for cos-1 x Use your result in part (a) to find the first 
five nonzero terms of the Taylor series for cos-1 x.

60. a. Series for sinh-1 x Find the first four nonzero terms of the 
Taylor series for

sinh-1 x =
L

x

0

dt

21 + t2
. 

b. Use the first three terms of the series in part (a) to estimate 
sinh-1 0.25. Give an upper bound for the magnitude of the 
estimation error.

61. Obtain the Taylor series for 1>(1 + x)2 from the series for 
-1>(1 + x).

62. Use the Taylor series for 1> (1 - x2)  to obtain a series for 
2x> (1 - x2)2.

63. Estimating Pi The English mathematician Wallis discovered 
the formula

p

4
= 2 # 4 # 4 # 6 # 6 # 8 # g

3 # 3 # 5 # 5 # 7 # 7 # g.

Find p to two decimal places with this formula.

T

T

T

64. The complete elliptic integral of the first kind is the integral

K =
L

p/2

0

du

21 - k2 sin2 u
,

where 0 6 k 6 1 is constant.

a. Show that the first four terms of the binomial series for 
1>21 - x are

(1 - x)-1/2 = 1 + 1
2

x + 1 # 3
2 # 4 x2 + 1 # 3 # 5

2 # 4 # 6 x3 + g.

b. From part (a) and the reduction integral Formula 67 at the 
back of the book, show that

K = p
2
c 1 + a1

2
b2

k2 + a1 # 3
2 # 4b

2

k4 + a1 # 3 # 5
2 # 4 # 6 b

2

k6 + g d .
65. Series for sin-1 x Integrate the binomial series for (1 - x2)-1>2

to show that for � x � 6 1,

sin-1 x = x + a

q

n=1

1 # 3 # 5 # g # (2n - 1)
2 # 4 # 6 # g # (2n)

x2n+1

2n + 1
.

66. Series for tan-1 x for ∣x ∣ + 1 Derive the series

 tan-1 x = p
2

- 1
x

+ 1
3x3 - 1

5x5 + g, x 7 1

 tan-1 x = - p
2

- 1
x

+ 1
3x3 - 1

5x5 + g, x 6 -1,

by integrating the series

1
1 + t2 = 1

t2
# 1

1 + (1>t2)
= 1

t2 - 1
t4 + 1

t6 - 1
t8 + g

in the first case from x to q and in the second case from -q to x.

Euler’s Identity
67. Use Equation (4) to write the following powers of e in the form 

a + bi.

a. e-ip b. eip>4 c. e-ip>2
68. Use Equation (4) to show that

cos u = eiu + e-iu

2
and sin u = eiu - e-iu

2i
.

69. Establish the equations in Exercise 68 by combining the formal 
Taylor series for eiu and e-iu.

70. Show that

a. cosh iu = cos u, b. sinh iu = i sin u.

71. By multiplying the Taylor series for ex and sin x, find the terms 
through x5 of the Taylor series for ex sin x. This series is the 
imaginary part of the series for

ex # eix = e(1+ i)x.

  Use this fact to check your answer. For what values of x should 
the series for ex sin x converge?

72. When a and b are real, we define e(a+ ib)x with the equation

e(a+ ib)x = eax # eibx = eax(cos bx + i sin bx).
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  Differentiate the right-hand side of this equation to show that

d
dx

e(a+ ib)x = (a + ib)e(a+ ib)x .

  Thus the familiar rule (d>dx)ekx = kekx holds for k complex as 
well as real.

73. Use the definition of eiu to show that for any real numbers u, u1,
and u2,

a. eiu1eiu2 = ei(u1+u2) , b. e-iu = 1>eiu .

74. Two complex numbers a + ib and c + id  are equal if and only if 
a = c and b = d. Use this fact to evaluate

L
eax cos bx dx and

L
eax sin bx dx

  from

L
e(a+ ib)x dx = a - ib

a2 + b2 e(a+ ib)x + C ,

  where C = C1 + iC2 is a complex constant of integration.

Chapter 10 Questions to Guide Your Review

1. What is an infinite sequence? What does it mean for such a 
sequence to converge? To diverge? Give examples.

2. What is a monotonic sequence? Under what circumstances does 
such a sequence have a limit? Give examples.

3. What theorems are available for calculating limits of sequences? 
Give examples.

4. What theorem sometimes enables us to use l’Hôpital’s Rule to 
calculate the limit of a sequence? Give an example.

5. What are the six commonly occurring limits in Theorem 5 that 
arise frequently when you work with sequences and series?

6. What is an infinite series? What does it mean for such a series to 
converge? To diverge? Give examples.

7. What is a geometric series? When does such a series converge? 
Diverge? When it does converge, what is its sum? Give examples.

8. Besides geometric series, what other convergent and divergent 
series do you know?

9. What is the nth-Term Test for Divergence? What is the idea 
behind the test?

10. What can be said about term-by-term sums and differences of 
convergent series? About constant multiples of convergent and 
divergent series?

11. What happens if you add a finite number of terms to a convergent 
series? A divergent series? What happens if you delete a finite 
number of terms from a convergent series? A divergent series?

12. How do you reindex a series? Why might you want to do this?

13. Under what circumstances will an infinite series of nonnegative 
terms converge? Diverge? Why study series of nonnegative terms?

14. What is the Integral Test? What is the reasoning behind it? Give 
an example of its use.

15. When do p-series converge? Diverge? How do you know? Give 
examples of convergent and divergent p-series.

16. What are the Direct Comparison Test and the Limit Comparison 
Test? What is the reasoning behind these tests? Give examples of 
their use.

17. What are the Ratio and Root Tests? Do they always give you the 
information you need to determine convergence or divergence? 
Give examples.

18. What is absolute convergence? Conditional convergence? How 
are the two related?

19. What is an alternating series? What theorem is available for 
determining the convergence of such a series?

20. How can you estimate the error involved in approximating the 
sum of an alternating series with one of the series’ partial sums? 
What is the reasoning behind the estimate?

21. What do you know about rearranging the terms of an absolutely 
convergent series? Of a conditionally convergent series?

22. What is a power series? How do you test a power series for con-
vergence? What are the possible outcomes?

23. What are the basic facts about

a. sums, differences, and products of power series?

b. substitution of a function for x in a power series?

c. term-by-term differentiation of power series?

d. term-by-term integration of power series?

Give examples.

24. What is the Taylor series generated by a function ƒ(x) at a point 
x = a? What information do you need about ƒ to construct the 
series? Give an example.

25. What is a Maclaurin series?

26. Does a Taylor series always converge to its generating function? 
Explain.

27. What are Taylor polynomials? Of what use are they?

28. What is Taylor’s formula? What does it say about the errors 
involved in using Taylor polynomials to approximate functions? 
In particular, what does Taylor’s formula say about the error in a 
linearization? A quadratic approximation?

29. What is the binomial series? On what interval does it converge? 
How is it used?

30. How can you sometimes use power series to estimate the values 
of nonelementary definite integrals? To find limits?

31. What are the Taylor series for 1>(1 - x), 1>(1 + x), ex, sin x,
cos x, ln (1 + x), and tan-1 x? How do you estimate the errors 
involved in replacing these series with their partial sums?
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Chapter 10 Practice Exercises

Determining Convergence of Sequences
Which of the sequences whose nth terms appear in Exercises 1–18 
converge, and which diverge? Find the limit of each convergent 
sequence.

1. an = 1 +
(-1)n

n 2. an =
1 - (-1)n

2n

3. an = 1 - 2n

2n 4. an = 1 + (0.9)n

5. an = sin
np
2

6. an = sin np

7. an =
ln (n2)

n 8. an =
ln (2n + 1)

n

9. an = n + ln n
n 10. an =

ln (2n3 + 1)
n

11. an = an - 5
n bn

12. an = a1 + 1
nb

-n

13. an = An
3n

n 14. an = a3nb
1>n

15. an = n(21>n - 1) 16. an = 2n 2n + 1

17. an =
(n + 1)!

n!
18. an =

(-4)n

n!

Convergent Series
Find the sums of the series in Exercises 19–24.

19. a

q

n=3

1
(2n - 3)(2n - 1)

20. a

q

n=2

-2
n(n + 1)

21. a

q

n=1

9
(3n - 1)(3n + 2)

22. a

q

n=3

-8
(4n - 3)(4n + 1)

23. a

q

n=0
e-n 24. a

q

n=1
(-1)n 3

4n

Determining Convergence of Series
Which of the series in Exercises 25–40 converge absolutely, which 
converge conditionally, and which diverge? Give reasons for your 
answers.

25. a

q

n=1

1

2n
26. a

q

n=1

-5
n

27. a

q

n=1

(-1)n

2n
28. a

q

n=1

1
2n3

29. a

q

n=1

(-1)n

ln (n + 1)
30. a

q

n=2

1
n (ln n)2

31. a

q

n=1

ln n
n3 32. a

q

n=3

ln n
ln (ln n)

33. a

q

n=1

(-1)n

n2n2 + 1
34. a

q

n=1

(-1)n3n2

n3 + 1

35. a

q

n=1

n + 1
n!

36. a

q

n=1

(-1)n(n2 + 1)
2n2 + n - 1

37. a

q

n=1

(-3)n

n!
38. a

q

n=1

2n3n

nn

39. a

q

n=1

1

2n(n + 1)(n + 2)
40. a

q

n=2

1

n2n2 - 1

Power Series
In Exercises 41–50, (a) find the series’ radius and interval of conver-
gence. Then identify the values of x for which the series converges 
(b) absolutely and (c) conditionally.

41. a

q

n=1

(x + 4)n

n3n 42. a

q

n=1

(x - 1)2n-2

(2n - 1)!

43. a

q

n=1

(-1)n-1(3x - 1)n

n2 44. a

q

n=0

(n + 1)(2x + 1)n

(2n + 1)2n

45. a

q

n=1

xn

nn 46. a

q

n=1

xn

2n

47. a

q

n=0

(n + 1)x2n-1

3n 48. a

q

n=0

(-1)n(x - 1)2n+1

2n + 1

49. a

q

n=1
(csch n)xn 50. a

q

n=1
(coth n)xn

Maclaurin Series
Each of the series in Exercises 51–56 is the value of the Taylor series 
at x = 0 of a function ƒ(x) at a particular point. What function and 
what point? What is the sum of the series?

51. 1 - 1
4

+ 1
16

- g + (-1)n 1
4n + g

52. 2
3

- 4
18

+ 8
81

- g + (-1)n-1 2n

n3n + g

53. p - p
3

3!
+ p

5

5!
- g + (-1)n p2n+1

(2n + 1)!
+ g

54. 1 - p2

9 # 2! + p4

81 # 4! - g + (-1)n p2n

32n(2n)!
+ g

55. 1 + ln 2 +
(ln 2)2

2!
+ g +

(ln 2)n

n!
+ g

56. 1

23
- 1

923
+ 1

4523
- g

+ (-1)n-1 1

(2n - 1)12322n-1 + g
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Find Taylor series at x = 0 for the functions in Exercises 57–64.

57. 1
1 - 2x

58. 1
1 + x3

59. sin px 60. sin
2x
3

61. cos (x5>3) 62. cos
x3

25

63. e(px>2) 64. e-x2

Taylor Series
In Exercises 65–68, find the first four nonzero terms of the Taylor 
series generated by ƒ at x = a.

65. ƒ(x) = 23 + x2 at x = -1

66. ƒ(x) = 1>(1 - x) at x = 2

67. ƒ(x) = 1>(x + 1) at x = 3

68. ƒ(x) = 1>x at x = a 7 0

Nonelementary Integrals
Use series to approximate the values of the integrals in Exercises 
69–72 with an error of magnitude less than 10-8. (The answer section 
gives the integrals’ values rounded to 10 decimal places.)

69.
L

1>2

0
e-x3

dx 70.
L

1

0
x sin (x3) dx

71.
L

1>2

0

tan-1 x
x dx 72.

L

1>64

0

tan-1 x

2x
dx

Using Series to Find Limits
In Exercises 73–78:

a. Use power series to evaluate the limit.

b. Then use a grapher to support your calculation.

73. lim
xS0

7 sin x
e2x - 1

74. lim
uS0

eu - e-u - 2u
u - sin u

75. lim
tS0
a 1

2 - 2 cos t
- 1

t2b 76. lim
hS0

(sin h)>h - cos h

h2

77. lim
zS0

1 - cos2 z
ln (1 - z) + sin z

78. lim
yS0

y2

cos y - cosh y

Theory and Examples
79. Use a series representation of sin 3x to find values of r and s for 

which

lim
xS0
asin 3x

x3 + r
x2 + sb = 0.

80. Compare the accuracies of the approximations sin x ≈ x and 
sin x ≈ 6x>(6 + x2) by comparing the graphs of ƒ(x) = sin x - x
and g(x) = sin x - (6x>(6 + x2)). Describe what you find.

T

T

81. Find the radius of convergence of the series

a

q

n=1

2 # 5 # 8 # g # (3n - 1)
2 # 4 # 6 # g # (2n)

xn.

82. Find the radius of convergence of the series

a

q

n=1

3 # 5 # 7 # g # (2n + 1)
4 # 9 # 14 # g # (5n - 1)

(x - 1)n.

83. Find a closed-form formula for the nth partial sum of the series 
g

q
n=2 ln (1 - (1>n2) )  and use it to determine the convergence or 

divergence of the series.

84. Evaluate g
q
k=2 (1> (k2 - 1) )  by finding the limits as n S q of 

the series’ nth partial sum.

85. a. Find the interval of convergence of the series

y = 1 + 1
6

x3 + 1
180

x6 + g

+
1 # 4 # 7 #g# (3n - 2)

(3n)!
x3n + g.

b. Show that the function defined by the series satisfies a differ-
ential equation of the form

d2y

dx2 = xa y + b

   and find the values of the constants a and b.

86. a. Find the Maclaurin series for the function x2>(1 + x).

b. Does the series converge at x = 1? Explain.

87. If g
q
n=1 an and g

q
n=1 bn are convergent series of nonnegative 

numbers, can anything be said about g
q
n=1 anbn? Give reasons for 

your answer.

88. If g
q
n=1 an and g

q
n=1 bn are divergent series of nonnegative num-

bers, can anything be said about g
q
n=1 anbn? Give reasons for 

your answer.

89. Prove that the sequence 5xn6  and the series g
q
k=1(xk+1 - xk)

both converge or both diverge.

90. Prove that g
q
n=1(an>(1 + an)) converges if an 7 0 for all n and 

g
q
n=1 an converges.

91. Suppose that a1, a2, a3,c , an are positive numbers satisfying 
the following conditions:

 i) a1 Ú a2 Ú a3 Ú g;

ii) the series a2 + a4 + a8 + a16 + g diverges.

Show that the series

a1

1
+

a2

2
+

a3

3
+ g

diverges.

92. Use the result in Exercise 91 to show that

1 + a

q

n=2

1
n ln n

diverges.
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Chapter 10 Additional and Advanced Exercises

Determining Convergence of Series
Which of the series g

q
n=1 an defined by the formulas in Exercises 1–4 

converge, and which diverge? Give reasons for your answers.

1. a

q

n=1

1
(3n - 2)n+ (1>2)

2. a

q

n=1

(tan-1 n)2

n2 + 1

3. a

q

n=1
(-1)n tanh n 4. a

q

n=2

logn(n!)

n3

Which of the series g
q
n=1an defined by the formulas in Exercises 5–8 

converge, and which diverge? Give reasons for your answers.

5. a1 = 1, an+1 =
n(n + 1)

(n + 2)(n + 3)
an

(Hint: Write out several terms, see which factors cancel, and then 
generalize.)

6. a1 = a2 = 7, an+1 = n
(n - 1)(n + 1)

an if n Ú 2

7. a1 = a2 = 1, an+1 = 1
1 + an

if n Ú 2

8. an = 1>3n if n is odd, an = n>3n if n is even

Choosing Centers for Taylor Series
Taylor’s formula

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g

+
ƒ(n)(a)

n!
(x - a)n +

ƒ(n+1)(c)
(n + 1)!

(x - a)n+1

expresses the value of ƒ at x in terms of the values of ƒ and its deriva-
tives at x = a. In numerical computations, we therefore need a to be a 
point where we know the values of ƒ and its derivatives. We also need 
a to be close enough to the values of ƒ we are interested in to make 
(x - a)n+1 so small we can neglect the remainder.

In Exercises 9–14, what Taylor series would you choose to represent 
the function near the given value of x? (There may be more than one 
good answer.) Write out the first four nonzero terms of the series you 
choose.

9. cos x near x = 1 10. sin x near x = 6.3

11. ex near x = 0.4 12. ln x near x = 1.3

13. cos x near x = 69 14. tan-1 x near x = 2

Theory and Examples
15. Let a and b be constants with 0 6 a 6 b. Does the sequence 
5(an + bn)1>n6  converge? If it does converge, what is the limit?

16. Find the sum of the infinite series

1 + 2
10

+ 3
102 + 7

103 + 2
104 + 3

105 + 7
106 + 2

107

+ 3
108 + 7

109 + g.

17. Evaluate

a

q

n=0 L

n+1

n

1
1 + x2 dx.

18. Find all values of x for which

a

q

n=1

nxn

(n + 1)(2x + 1)n

  converges absolutely.

19. a. Does the value of

lim
nSq
a1 -

cos (a>n)
n bn

, a constant,

  appear to depend on the value of a? If so, how?

b. Does the value of

lim
nSq
a1 -

cos (a>n)

bn
bn

, a and b constant, b ≠ 0,

  appear to depend on the value of b? If so, how?

c. Use calculus to confirm your findings in parts (a) and (b).

20. Show that if g
q
n=1 an converges, then

a

q

n=1
a1 + sin (an)

2
bn

  converges.

21. Find a value for the constant b that will make the radius of con-
vergence of the power series

a

q

n=2

bnxn

ln n

  equal to 5.

22. How do you know that the functions sin x, ln x, and ex are not 
polynomials? Give reasons for your answer.

23. Find the value of a for which the limit

lim
xS0

sin (ax) - sin x - x

x3

  is finite and evaluate the limit.

24. Find values of a and b for which

lim
xS0

cos (ax) - b

2x2 = -1.

25. Raabe’s (or Gauss’s) Test The following test, which we state 
without proof, is an extension of the Ratio Test.

     Raabe’s Test: If g
q
n=1un is a series of positive constants and 

there exist constants C, K, and N such that

un
un+1

= 1 + C
n +

ƒ(n)

n2 ,

where �ƒ(n) � 6 K  for n Ú N, then g
q
n=1 un converges if C 7 1

and diverges if C … 1.

     Show that the results of Raabe’s Test agree with what you 
know about the series g

q
n=1 (1>n2)  and g

q
n=1(1>n).

T
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26. (Continuation of Exercise 25.) Suppose that the terms of g
q
n=1 un

are defined recursively by the formulas

u1 = 1, un+1 =
(2n - 1)2

(2n)(2n + 1)
un.

Apply Raabe’s Test to determine whether the series converges.

27. If g
q
n=1an converges, and if an ≠ 1 and an 7 0 for all n,

a. Show that g
q
n=1an

2 converges.

b. Does g
q
n=1an>(1 - an) converge? Explain.

28. (Continuation of Exercise 27.) If g
q
n=1an converges, and if 

1 7 an 7 0 for all n, show that g
q
n=1 ln (1 - an) converges.

(Hint: First show that � ln (1 - an) � … an>(1 - an).)

29. Nicole Oresme’s Theorem Prove Nicole Oresme’s Theorem that

1 + 1
2
# 2 + 1

4
# 3 + g + n

2n-1 + g = 4.

(Hint: Differentiate both sides of the equation 1>(1 - x) =
1 + g

q
n=1  xn.)

30. a. Show that

a

q

n=1

n(n + 1)
xn = 2x2

(x - 1)3

    for � x � 7 1 by differentiating the identity

a

q

n=1
xn+1 = x2

1 - x

   twice, multiplying the result by x, and then replacing x by 1 >x.

b. Use part (a) to find the real solution greater than 1 of the 
equation

x = a

q

n=1

n(n + 1)
xn .

31. Quality control

a. Differentiate the series

1
1 - x

= 1 + x + x2 + g + xn + g

   to obtain a series for 1>(1 - x)2.

b. In one throw of two dice, the probability of getting a roll of  
7 is p =  1>6. If you throw the dice repeatedly, the probability 
that a 7 will appear for the first time at the nth throw is qn-1p,
where q = 1 - p = 5>6. The expected number of throws 
until a 7 first appears is g

q
n=1nqn-1p. Find the sum of this 

series.

c. As an engineer applying statistical control to an industrial opera-
tion, you inspect items taken at random from the assembly line. 
You classify each sampled item as either “good” or “bad.” If the 
probability of an item’s being good is p and of an item’s being 
bad is q = 1 - p, the probability that the first bad item found is 
the nth one inspected is pn-1q. The average number inspected 
up to and including the first bad item found is g

q
n=1npn-1q.

Evaluate this sum, assuming 0 6 p 6 1.

32. Expected value Suppose that a random variable X may assume 
the values 1, 2, 3, . . . , with probabilities p1, p2, p3, . . . , where pk

is the probability that X equals k (k = 1, 2, 3, c). Suppose also 
that pk Ú 0 and that gq

k=1 pk = 1. The expected value of X,
denoted by E(X), is the number gq

k=1 kpk, provided the series 
converges. In each of the following cases, show that gq

k=1 pk = 1 
and find E(X) if it exists. (Hint: See Exercise 31.)

a. pk = 2-k b. pk = 5k-1

6k

c. pk = 1
k(k + 1)

= 1
k

- 1
k + 1

33. Safe and effective dosage The concentration in the blood 
resulting from a single dose of a drug normally decreases with 
time as the drug is eliminated from the body. Doses may there-
fore need to be repeated periodically to keep the concentration 
from dropping below some particular level. One model for the 
effect of repeated doses gives the residual concentration just 
before the (n + 1)st dose as

Rn = C0e-kt0 + C0e-2kt0 + g + C0e-nkt0 ,

where Co = the change in concentration achievable by a single 
dose (mg>mL), k = the elimination constant (h–1), and t0 = time 
between doses (h). See the accompanying figure.

t0

C0

0

Time (h)

C
on

ce
nt

ra
tio

n 
(m

g�
m

L
)

C1 = C0 + C0e−k t0

R1 = C0e−k t0

R2
R3

Rn

Cn−1
C2

t

C

a. Write Rn in closed from as a single fraction, and find 
R = limnSq Rn.

b. Calculate R1 and R10 for C0 = 1 mg>mL, k = 0.1 h-1, and 
t0 = 10 h. How good an estimate of R is R10?

c. If k = 0.01 h-1 and t0 = 10 h, find the smallest n such that 
Rn 7 (1>2)R. Use C0 = 1 mg>mL.

(Source: Prescribing Safe and Effective Dosage, B. Horelick and 
S. Koont, COMAP, Inc., Lexington, MA.)

34. Time between drug doses (Continuation of Exercise 33.) If a 
drug is known to be ineffective below a concentration CL and 
harmful above some higher concentration CH, one need to find 
values of C0 and t0 that will produce a concentration that is safe 
(not above CH) but effective (not below CL ). See the accompany-
ing figure. We therefore want to find values for C0 and t0 for which

R = CL and C0 + R = CH .

t0

CL

0 Time

C
on

ce
nt

ra
tio

n 
in

 b
lo

od

C0

Highest safe level
CH

Lowest effective level

t

C

T
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Thus C0 = CH - CL . When these values are substituted in the equa-
tion for R obtained in part (a) of Exercise 33, the resulting equation 
simplifies to

t0 = 1
k

ln
CH

CL
.

To reach an effective level rapidly, one might administer a “loading” 
dose that would produce a concentration of CH mg>mL. This could be 
followed every t0 hours by a dose that raises the concentration by 
C0 = CH - CL mg>mL.

a. Verify the preceding equation for t0.

b. If k = 0.05 h-1 and the highest safe concentration is e
times the lowest effective concentration, find the length of 
time between doses that will ensure safe and effective con-
centrations.

c. Given CH = 2 mg>mL, CL = 0.5 mg>mL, and k = 0.02 h-1,
determine a scheme for administering the drug.

d. Suppose that k = 0.2 h-1 and that the smallest effective con-
centration is 0.03 mg>mL. A single dose that produces a 
concentration of 0.1 mg>mL is administered. About how 
long will the drug remain effective?

Chapter 10 Technology Application Projects

Mathematica/Maple Modules:

Bouncing Ball
The model predicts the height of a bouncing ball, and the time until it stops bouncing.

Taylor Polynomial Approximations of a Function
A graphical animation shows the convergence of the Taylor polynomials to functions having derivatives of all orders over an interval in their 
domains.
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OVERVIEW In this chapter we study new ways to define curves in the plane. Instead of 
thinking of a curve as the graph of a function or equation, we consider a more general way 
of thinking of a curve as the path of a moving particle whose position is changing over 
time. Then each of the x- and y-coordinates of the particle’s position becomes a function of 
a third variable t. We can also change the way in which points in the plane themselves are 
described by using polar coordinates rather than the rectangular or Cartesian system. Both 
of these new tools are useful for describing motion, like that of planets and satellites, or 
projectiles moving in the plane or space. In addition, we review the geometric definitions 
and standard equations of parabolas, ellipses, and hyperbolas. These curves are called 
conic sections, or conics, and model the paths traveled by projectiles, planets, or any other 
object moving under the sole influence of a gravitational or electromagnetic force.

11.1 Parametrizations of Plane Curves

In previous chapters, we have studied curves as the graphs of functions or of equations 
involving the two variables x and y. We are now going to introduce another way to describe 
a curve by expressing both coordinates as functions of a third variable t.

Parametric Equations

Figure 11.1 shows the path of a moving particle in the xy-plane. Notice that the path fails 
the vertical line test, so it cannot be described as the graph of a function of the variable x.
However, we can sometimes describe the path by a pair of equations, x = ƒ(t) and 
y = g(t), where ƒ and g are continuous functions. When studying motion, t usually 
denotes time. Equations like these describe more general curves than those described by a 
single function, and they provide not only the graph of the path traced out but also the 
location of the particle (x, y) = (ƒ(t), g(t)) at any time t.

Parametric Equations 
and Polar Coordinates

11

DEFINITION If x and y are given as functions

x = ƒ(t), y = g(t)

over an interval I of t-values, then the set of points (x, y) = (ƒ(t), g(t)) defined by 
these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable t is a parameter for the curve, and its domain I is the parameter interval.
If I is a closed interval, a … t … b, the point (ƒ(a), g(a)) is the initial point of the curve and 
(ƒ(b), g(b)) is the terminal point. When we give parametric equations and a parameter 

( f (t), g(t))

Position of particle
at time t

FIGURE 11.1 The curve or path traced
by a particle moving in the xy-plane is not 
always the graph of a function or single 
equation.
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interval for a curve, we say that we have parametrized the curve. The equations and interval 
together constitute a parametrization of the curve. A given curve can be represented by dif-
ferent sets of parametric equations. (See Exercises 19 and 20.)

EXAMPLE 2  Identify geometrically the curve in Example 1 (Figure 11.2) by elimi-
nating the parameter t and obtaining an algebraic equation in x and y.

Solution We solve the equation y = t + 1 for the parameter t and substitute the result 
into the parametric equation for x. This procedure gives t = y - 1 and

x = t2 = ( y - 1)2 = y2 - 2y + 1.

The equation x = y2 - 2y + 1 represents a parabola, as displayed in Figure 11.2. It is 
sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of 
parametric equations, as we did here.

EXAMPLE 3  Graph the parametric curves

(a) x = cos t, y = sin t, 0 … t … 2p.

(b) x = a cos t, y = a sin t, 0 … t … 2p.

Solution

(a) Since x2 + y2 = cos2 t + sin2 t = 1, the parametric curve lies along the unit circle 
x2 + y2 = 1. As t increases from 0 to 2p, the point (x, y) = (cos t, sin t) starts at 
(1, 0) and traces the entire circle once counterclockwise (Figure 11.3).

EXAMPLE 1  Sketch the curve defined by the parametric equations

x = t2, y = t + 1, -q 6 t 6 q.

Solution We make a brief table of values (Table 11.1), plot the points (x, y), and draw a 
smooth curve through them (Figure 11.2). Each value of t gives a point (x, y) on the curve, 
such as t = 1 giving the point (1, 2) recorded in Table 11.1. If we think of the curve as the 
path of a moving particle, then the particle moves along the curve in the direction of the 
arrows shown in Figure 11.2. Although the time intervals in the table are equal, the con-
secutive points plotted along the curve are not at equal arc length distances. The reason for 
this is that the particle slows down as it gets nearer to the y-axis along the lower branch of 
the curve as t increases, and then speeds up after reaching the y-axis at (0, 1) and moving 
along the upper branch. Since the interval of values for t is all real numbers, there is no 
initial point and no terminal point for the curve.

(1, 2)
(4, 3)

(4, −1)

(9, 4)

(9, −2)

(0, 1)
(1, 0)

x

y

t = 0

t = −1

t = 1
t = 2

t = 3

t = −2

t = −3

FIGURE 11.2 The curve given by the 
parametric equations x = t2 and y = t + 1
(Example 1).

TABLE 11.1 Values of 

x = t2 and y = t + 1 for 

selected values of t.

t x y

-3 9 -2

-2 4 -1

-1 1 0

0 0 1

1 1 2

2 4 3

3 9 4

x
0

t

(1, 0)

y

x2 + y2 = 1

P(cos t, sin t)

t = 0t = p

t = 3p
2

t = p
2

Figure 11.3 The equations x = cos t
and y = sin t describe motion on the circle 
x2 + y2 = 1. The arrow shows the direc-
tion of increasing t (Example 3).
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(b) For x = a cos t, y = a sin t, 0 … t … 2p, we have x2 + y2 = a2 cos2 t + a2 sin2 t = a2.
The parametrization describes a motion that begins at the point (a, 0) and traverses 
the circle x2 + y2 = a2 once counterclockwise, returning to (a, 0) at t = 2p. The 
graph is a circle centered at the origin with radius r = 0 a 0  and coordinate points 
(a cos t, a sin t).

x

y

0

y = x2

(−2, 4) (2, 4)

(1, 1)

t = −2 t = 2

t = 1

P(t, t 2)

FIGURE 11.5 The path defined by 
x = t, y = t2, -q 6 t 6 q is the entire 
parabola y = x2 (Example 5).

EXAMPLE 4  The position P(x, y) of a particle moving in the xy-plane is given by the 
equations and parameter interval

x = 2t, y = t, t Ú 0.

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations x = 2t
and y = t, which might produce a recognizable algebraic relation between x and y. We 
find that

y = t = 12t22 = x2.

Thus, the particle’s position coordinates satisfy the equation y = x2, so the particle moves 
along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire para-
bola y = x2; it is only half the parabola. The particle’s x-coordinate is never negative. The 
particle starts at (0, 0) when t = 0 and rises into the first quadrant as t increases (Figure 
11.4). The parameter interval is 30, q) and there is no terminal point.

The graph of any function y = ƒ(x) can always be given a natural parametrization
x = t and y = ƒ(t). The domain of the parameter in this case is the same as the domain of 
the function ƒ.

EXAMPLE 5  A parametrization of the graph of the function ƒ(x) = x2 is given by

x = t, y = ƒ(t) = t2, -q 6 t 6 q.

When t Ú 0, this parametrization gives the same path in the xy-plane as we had in Exam-
ple 4. However, since the parameter t here can now also be negative, we obtain the left-
hand part of the parabola as well; that is, we have the entire parabolic curve. For this 
parametrization, there is no starting point and no terminal point (Figure 11.5).

Notice that a parametrization also specifies when (the value of the parameter) a parti-
cle moving along the curve is located at a specific point along the curve. In Example 4, the 
point (2, 4) is reached when t = 4; in Example 5, it is reached “earlier” when t = 2. You 
can see the implications of this aspect of parametrizations when considering the possibil-
ity of two objects coming into collision: they have to be at the exact same location point 
P(x, y) for some (possibly different) values of their respective parameters. We will say 
more about this aspect of parametrizations when we study motion in Chapter 13.

EXAMPLE 6  Find a parametrization for the line through the point (a, b) having slope m.

Solution A Cartesian equation of the line is y - b = m(x - a). If we set the parameter 
t = x - a, we find that x = a + t and y - b = mt. That is,

x = a + t, y = b + mt, -q 6 t 6 q

parametrizes the line. This parametrization differs from the one we would obtain by the 
natural parametrization in Example 5 when t = x. However, both parametrizations describe 
the same line.

x

y

0

(1, 1)

(2, 4)

Starts at
t = 0

t = 1

t = 4

y = x2, x ≥ 0

P(
"

t, t)

FIGURE 11.4 The equations x = 2t
and y = t and the interval t Ú 0 de-
scribe the path of a particle that traces the 
right-hand half of the parabola y = x2

(Example 4).
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EXAMPLE 7  Sketch and identify the path traced by the point P(x, y) if

x = t + 1
t , y = t - 1

t , t 7 0.

Solution We make a brief table of values in Table 11.2, plot the points, and draw a 
smooth curve through them, as we did in Example 1. Next we eliminate the parameter t
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

x - y = at + 1
t b - at - 1

t b = 2
t .

If we add the two parametric equations, we get

x + y = at + 1
t b + at - 1

t b = 2t.

We can then eliminate the parameter t by multiplying these last equations together:

(x - y)(x + y) = a2t b (2t) = 4,

or, expanding the expression on the left-hand side, we obtain a standard equation for a 
hyperbola (reviewed in Section 11.6):

x2 - y2 = 4. (1)

Thus the coordinates of all the points P(x, y) described by the parametric equations satisfy 
Equation (1). However, Equation (1) does not require that the x-coordinate be positive. So 
there are points (x, y) on the hyperbola that do not satisfy the parametric equation 
x = t + (1>t), t 7 0, for which x is always positive. That is, the parametric equations do 
not yield any points on the left branch of the hyperbola given by Equation (1), points 
where the x-coordinate would be negative. For small positive values of t, the path lies in 
the fourth quadrant and rises into the first quadrant as t increases, crossing the x-axis when 
t = 1 (see Figure 11.6). The parameter domain is (0, q) and there is no starting point and 
no terminal point for the path.

Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented 
by different parametrizations. In the case of Example 7, we can also represent the right-
hand branch of the hyperbola by the parametrization

x = 24 + t2, y = t, -q 6 t 6 q,

which is obtained by solving Equation (1) for x Ú 0 and letting y be the parameter. Still 
another parametrization for the right-hand branch of the hyperbola given by Equation (1) is

x = 2 sec t, y = 2 tan t, -p
2

6 t 6 p
2

.

This parametrization follows from the trigonometric identity sec2 t - tan2 t = 1, so

x2 - y2 = 4 sec2 t - 4 tan2 t = 4(sec2 t - tan2 t) = 4.

As t runs between -p>2 and p>2, x = sec t remains positive and y = tan t runs between 
-q and q, so P traverses the hyperbola’s right-hand branch. It comes in along the 
branch’s lower half as t S 0-, reaches (2, 0) at t = 0, and moves out into the first quad-
rant as t increases steadily toward p>2. This is the same hyperbola branch for which a 
portion is shown in Figure 11.6.

t = 1
t = 2

t = 5

t = 10

t = 0.4

t = 0.2

t = 0.1

5 10

−5

−10

5

0

10

(10.1, −9.9)

(5.2, −4.8)

(2.9, −2.1)
(2, 0)

(2.5, 1.5)

(10.1, 9.9)

(5.2, 4.8)

x

y

FIGURE 11.6 The curve for 
x = t + (1>t), y = t - (1>t), t 7 0
in Example 7. (The part shown is for 
0.1 … t … 10.)

TABLE 11.2 Values of 

x = t + (1>t ) and y = t - (1>t )
for selected values of t.

t 1 , t x y

0.1 10.0 10.1 -9.9

0.2 5.0 5.2 -4.8

0.4 2.5 2.9 -2.1

1.0 1.0 2.0 0.0

2.0 0.5 2.5 1.5

5.0 0.2 5.2 4.8

10.0 0.1 10.1 9.9

HISTORICAL BIOGRAPHY

Christian Huygens
(1629–1695)
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Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the 
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christian 
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we 
define in Example 8. He hung the bob from a fine wire constrained by guards that caused 
it to draw up as it swung away from center (Figure 11.7), and we describe the path para-
metrically in the next example.

EXAMPLE 8  A wheel of radius a rolls along a horizontal straight line. Find paramet-
ric equations for the path traced by a point P on the wheel’s circumference. The path is 
called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel 
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t
through which the wheel turns, measured in radians. Figure 11.8 shows the wheel a short 
while later when its base lies at units from the origin. The wheel’s center C lies at (at, a)
and the coordinates of P are

x = at + a cos u, y = a + a sin u.

To express u in terms of t, we observe that t + u = 3p>2 in the figure, so that

u = 3p
2

- t.

This makes

cos u = cos a3p
2

- tb = -sin t, sin u = sin a3p
2

- tb = -cos t.

The equations we seek are

x = at - a sin t, y = a - a cos t.

These are usually written with the a factored out:

x = a(t - sin t), y = a(1 - cos t). (2)

Figure 11.9 shows the first arch of the cycloid and part of the next.

Brachistochrones and Tautochrones

If we turn Figure 11.9 upside down, Equations (2) still apply and the resulting curve (Fig-
ure 11.10) has two interesting physical properties. The first relates to the origin O and the 
point B at the bottom of the first arch. Among all smooth curves joining these points, the 
cycloid is the curve along which a frictionless bead, subject only to the force of gravity, 
will slide from O to B the fastest. This makes the cycloid a brachistochrone (“brah-kiss-
toe-krone”), or shortest-time curve for these points. The second property is that even if 
you start the bead partway down the curve toward B, it will still take the bead the same 
amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-krone”), or 
same-time curve for O and B.

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 11.7 In Huygens’ pendulum 
clock, the bob swings in a cycloid, so the 
frequency is independent of the amplitude.

x

y

t
a
u

C(at, a)

M0 at

P(x, y) = (at + a cos u, a + a sin u)

FIGURE 11.8 The position of P(x, y) on 
the rolling wheel at angle t (Example 8).

O
x

y

(x, y)

2pa

t
a

FIGURE 11.9 The cycloid curve 
x = a(t - sin t), y = a(1 - cos t), for 
t Ú 0.

x

y

O a

a

2a

2a

2papa

P(at − a sin t, a − a cos t)

B(ap, 2a)

FIGURE 11.10 Turning Figure 11.9 
upside down, the y-axis points downward, 
indicating the direction of the gravitational 
force. Equations (2) still describe the curve 
parametrically.
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Are there any other brachistochrones joining O and B, or is the cycloid the only one? 
We can formulate this as a mathematical question in the following way. At the start, the 
kinetic energy of the bead is zero, since its velocity (speed) is zero. The work done by 
gravity in moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and 
this must equal the change in kinetic energy. (See Exercise 23 in Section 6.5.) That is,

mgy = 1
2

my2 - 1
2

m(0)2.

Thus, the speed of the bead when it reaches (x, y) has to be

y = 22gy.

That is,

ds
dT

= 22gy
ds is the arc length differ-
ential along the bead’s path 
and T represents time.

or

dT = ds

22gy
=
21 + (dy>dx)2 dx

22gy
. (3)

The time Tƒ it takes the bead to slide along a particular path y = ƒ(x) from O to B(ap, 2a) is

Tf =
L

x=ap

x=0 B
1 + (dy>dx)2

2gy
dx. (4)

What curves y = ƒ(x), if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the 

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its speed faster. With a higher speed, the bead could travel a lon-
ger path and still reach B first. Indeed, this is the right idea. The solution, from a branch of 
mathematics known as the calculus of variations, is that the original cycloid from O to B is 
the one and only brachistochrone for O and B (Figure 11.11).

In the next section we show how to find the arc length differential ds for a parame-
trized curve. Once we know how to find ds, we can calculate the time given by the right-
hand side of Equation (4) for the cycloid. This calculation gives the amount of time it takes 
a frictionless bead to slide down the cycloid to B after it is released from rest at O. The 
time turns out to be equal to p2a>g, where a is the radius of the wheel defining the par-
ticular cycloid. Moreover, if we start the bead at some lower point on the cycloid, corre-
sponding to a parameter value t0 7 0, we can integrate the parametric form of ds>22gy
in Equation (3) over the interval 3 t0, p4  to find the time it takes the bead to reach the point 
B. That calculation results in the same time T = p2a>g. It takes the bead the same 
amount of time to reach B no matter where it starts, which makes the cycloid a tauto-
chrone. Beads starting simultaneously from O, A, and C in Figure 11.12, for instance, will 
all reach B at exactly the same time. This is the reason why Huygens’ pendulum clock in 
Figure 11.7 is independent of the amplitude of the swing.

cycloid

O

B

FIGURE 11.11 The cycloid is the 
unique curve which minimizes the time it 
takes for a frictionless bead to slide from 
point O to B.

O
x

y

A

B
C

FIGURE 11.12 Beads released simulta-
neously on the upside-down cycloid at O,
A, and C will reach B at the same time.
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Finding Cartesian from Parametric Equations
Exercises 1–18 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation. (The 
graphs will vary with the equation used.) Indicate the portion of the 
graph traced by the particle and the direction of motion.

1. x = 3t, y = 9t2, -q 6 t 6 q
2. x = -2t, y = t, t Ú 0

3. x = 2t - 5, y = 4t - 7, -q 6 t 6 q
4. x = 3 - 3t, y = 2t, 0 … t … 1

5. x = cos 2t, y = sin 2t, 0 … t … p
6. x = cos (p - t), y = sin (p - t), 0 … t … p
7. x = 4 cos t, y = 2 sin t, 0 … t … 2p

8. x = 4 sin t, y = 5 cos t, 0 … t … 2p

9. x = sin t, y = cos 2t, - p
2

… t … p
2

10. x = 1 + sin t, y = cos t - 2, 0 … t … p
11. x = t2, y = t6 - 2t4, -q 6 t 6 q

12. x = t
t - 1

, y = t - 2
t + 1

, -1 6 t 6 1

13. x = t, y = 21 - t2, -1 … t … 0

14. x = 2t + 1, y = 2t, t Ú 0

15. x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
16. x = -sec t, y = tan t, -p>2 6 t 6 p>2
17. x = -cosh t, y = sinh t, -q 6 t 6 q
18. x = 2 sinh t, y = 2 cosh t, -q 6 t 6 q

Finding Parametric Equations
19. Find parametric equations and a parameter interval for the motion 

of a particle that starts at (a, 0) and traces the circle x2 + y2 = a2

  a. once clockwise.

  b. once counterclockwise.

  c. twice clockwise.

  d. twice counterclockwise.

  (There are many ways to do these, so your answers may not be 
the same as the ones in the back of the book.)

20. Find parametric equations and a parameter interval for the motion 
of a particle that starts at (a, 0) and traces the ellipse 
(x2>a2) + (y2>b2) = 1

  a. once clockwise. b. once counterclockwise.

  c. twice clockwise. d. twice counterclockwise.

  (As in Exercise 19, there are many correct answers.)

In Exercises 21–26, find a parametrization for the curve.

21. the line segment with endpoints (-1, -3) and (4, 1)

22. the line segment with endpoints (-1, 3) and (3, -2)

23. the lower half of the parabola x - 1 = y2

24. the left half of the parabola y = x2 + 2x

25. the ray (half line) with initial point (2, 3) that passes through the 
point (-1, -1)

26. the ray (half line) with initial point (-1, 2) that passes through the 
point (0, 0)

27. Find parametric equations and a parameter interval for the motion 
of a particle starting at the point (2, 0) and tracing the top half of 
the circle x2 + y2 = 4 four times.

28. Find parametric equations and a parameter interval for the motion 
of a particle that moves along the graph of y = x2 in the follow-
ing way: Beginning at (0, 0) it moves to (3, 9), and then travels 
back and forth from (3, 9) to (-3, 9) infinitely many times.

29. Find parametric equations for the semicircle

x2 + y2 = a2, y 7 0,

  using as parameter the slope t = dy>dx of the tangent to the 
curve at (x, y).

30. Find parametric equations for the circle

x2 + y2 = a2,

  using as parameter the arc length s measured counterclockwise 
from the point (a, 0) to the point (x, y).

31. Find a parametrization for the line segment joining points (0, 2)
and (4, 0) using the angle u in the accompanying figure as the 
parameter.

x

y

2

0 4

u

(x, y)

32. Find a parametrization for the curve y = 2x with terminal point 
(0, 0) using the angle u in the accompanying figure as the parameter.

x

y

u

(x, y)

y =
"

x

0

33. Find a parametrization for the circle (x - 2)2 + y2 = 1 starting 
at (1, 0) and moving clockwise once around the circle, using the 
central angle u in the accompanying figure as the parameter.

x

y

1

1

1 2 30

u

(x, y)

Exercises 11.1



34. Find a parametrization for the circle x2 + y2 = 1 starting at (1, 0)
and moving counterclockwise to the terminal point (0, 1), using 
the angle u in the accompanying figure as the parameter.

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

35. The witch of Maria Agnesi The bell-shaped witch of Maria 
Agnesi can be constructed in the following way. Start with a cir-
cle of radius 1, centered at the point (0, 1), as shown in the 
accompanying figure. Choose a point A on the line y = 2 and 
connect it to the origin with a line segment. Call the point where 
the segment crosses the circle B. Let P be the point where the 
vertical line through A crosses the horizontal line through B. The 
witch is the curve traced by P as A moves along the line y = 2.
Find parametric equations and a parameter interval for the witch 
by expressing the coordinates of P in terms of t, the radian mea-
sure of the angle that segment O-A makes with the positive x-axis.
The following equalities (which you may assume) will help.

  a. x = AQ b. y = 2 - AB sin t

c. AB # OA = (AQ)2

x

y

O

Q A

B P(x, y)(0, 1)

y = 2

t

36. Hypocycloid When a circle rolls on the inside of a fixed circle, 
any point P on the circumference of the rolling circle describes a 
hypocycloid. Let the fixed circle be x2 + y2 = a2, let the radius 
of the rolling circle be b, and let the initial position of the tracing 
point P be A(a, 0). Find parametric equations for the hypocy-
cloid, using as the parameter the angle u from the positive x-axis
to the line joining the circles’ centers. In particular, if b = a>4,
as in the accompanying figure, show that the hypocycloid is the 
astroid

x = a cos3 u, y = a sin3 u.

x

y

O P

C
A(a, 0)b

u

37. As the point N moves along the line y = a in the accompanying 
figure, P moves in such a way that OP = MN. Find parametric 
equations for the coordinates of P as functions of the angle t that 
the line ON makes with the positive y-axis.

x

y

N

M

A(0, a)

t

P

O

38. Trochoids A wheel of radius a rolls along a horizontal straight 
line without slipping. Find parametric equations for the curve traced 
out by a point P on a spoke of the wheel b units from its center. As 
parameter, use the angle u through which the wheel turns. The 
curve is called a trochoid, which is a cycloid when b = a.

Distance Using Parametric Equations
39. Find the point on the parabola x = t, y = t2, -q 6 t 6 q,

closest to the point (2, 1>2). (Hint: Minimize the square of the 
distance as a function of t.)

40. Find the point on the ellipse x = 2 cos t, y = sin t, 0 … t … 2p
closest to the point (3>4, 0). (Hint: Minimize the square of the 
distance as a function of t.)

GRAPHER EXPLORATIONS
If you have a parametric equation grapher, graph the equations over 
the given intervals in Exercises 41–48.

41. Ellipse x = 4 cos t, y = 2 sin t, over

  a. 0 … t … 2p

b. 0 … t … p
  c. -p>2 … t … p>2.

42. Hyperbola branch x = sec t (enter as 1 >cos (t)), y = tan t
(enter as sin (t) >cos (t)), over

  a. -1.5 … t … 1.5

b. -0.5 … t … 0.5

c. -0.1 … t … 0.1.

43. Parabola x = 2t + 3, y = t2 - 1, -2 … t … 2

44. Cycloid x = t - sin t, y = 1 - cos t, over

  a. 0 … t … 2p

b. 0 … t … 4p

  c. p … t … 3p.

45. Deltoid

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

  What happens if you replace 2 with -2 in the equations for x and 
y? Graph the new equations and find out.

46. A nice curve

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

  What happens if you replace 3 with -3 in the equations for x and 
y? Graph the new equations and find out.

T
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47. a. Epicycloid

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

  b. Hypocycloid

   x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

  c. Hypotrochoid

   x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

48. a. x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t;
   0 … t … 2p

  b. x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t;
0 … t … p

  c. x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t;
0 … t … 2p

  d. x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t;
0 … t … p

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, lengths, 
and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = ƒ(t) and y = g(t) is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable 
function of x, the derivatives dy>dt, dx>dt, and dy>dx are related by the Chain Rule:

dy
dt

=
dy
dx
# dx

dt
.

If dx>dt ≠ 0, we may divide both sides of this equation by dx>dt to solve for dy>dx.

Parametric Formula for dy ,dx

If all three derivatives exist and dx>dt ≠ 0,

dy
dx

=
dy>dt

dx>dt
. (1)

If parametric equations define y as a twice-differentiable function of x, we can apply 
Equation (1) to the function dy>dx = y′ to calculate d2y>dx2 as a function of t:

d2y

dx2 = d
dx

( y′) =
dy′>dt

dx>dt
. Eq. (1) with y′ in place of y

Parametric Formula for d2y ,dx2

If the equations x = ƒ(t), y = g(t) define y as a twice-differentiable func-
tion of x, then at any point where dx>dt ≠ 0 and y′ = dy>dx,

d2y

dx2 =
dy′>dt

dx>dt
. (2)

EXAMPLE 1  Find the tangent to the curve

x = sec t, y = tan t, -p
2

6 t 6 p
2

,

at the point 122, 12, where t = p>4 (Figure 11.13).

FIGURE 11.13 The curve in Example 1 
is the right-hand branch of the hyperbola 
x2 - y2 = 1.

x

y

0 1 2

1

2

(
"

2, 1)
t = p

4

x = sec t, y = tan t,
p
2

p
2

– < t <
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Solution The slope of the curve at t is

dy
dx

=
dy>dt

dx>dt
= sec2 t

sec t tan t = sec t
tan t . Eq. (1)

Setting t equal to p>4 gives

dy
dx

2
t=p>4

=
sec (p>4)

tan (p>4)

= 22
1

= 22.

The tangent line is

y - 1 = 22 1x - 222
y = 22 x - 2 + 1

y = 22 x - 1.

Finding d2y ,dx2 in Terms of t

1. Express y′ = dy>dx in terms of t.

2. Find dy′>dt.

3. Divide dy′>dt by dx>dt.

EXAMPLE 2  Find d2y>dx2 as a function of t if x = t - t2 and y = t - t3.

Solution

1. Express y′ = dy>dx in terms of t.

y′ =
dy
dx

=
dy>dt

dx>dt
= 1 - 3t2

1 - 2t

2. Differentiate y′ with respect to t.

dy′
dt

= d
dt
a1 - 3t2

1 - 2t
b = 2 - 6t + 6t2

(1 - 2t)2 Derivative Quotient Rule

3. Divide dy′>dt by dx>dt.

d2y

dx2 =
dy′>dt

dx>dt
=

(2 - 6t + 6t2) >(1 - 2t)2

1 - 2t
= 2 - 6t + 6t2

(1 - 2t)3 Eq. (2)

EXAMPLE 3  Find the area enclosed by the astroid (Figure 11.14)

x = cos3 t, y = sin3 t, 0 … t … 2p.

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the 
first quadrant where 0 … t … p>2. We can apply the definite integral formula for area 
studied in Chapter 5, using substitution to express the curve and differential dx in terms of 
the parameter t. So,FIGURE 11.14 The astroid in Example 3.

x

y

0

1

1−1

−1

x = cos3 t
y = sin3 t
0 ≤ t ≤ 2p
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A = 4 
L

1

0
y dx

= 4 
L

p>2

0
 sin3t # 3 cos2 t sin t dt Substitution for y and dx

= 12 
L

p>2

0
a1 - cos 2t

2
b2 a1 + cos 2t

2
b dt sin4 t = a1 - cos 2t

2
b 2

= 3
2 L

p>2

0
 (1 - 2 cos 2t + cos2 2t)(1 + cos 2t) dt Expand squared term.

= 3
2 L

p>2

0

(1 - cos 2t - cos2 2t + cos3 2t) dt Multiply terms.

= 3
2
c
L

p>2

0
(1 - cos 2t) dt -

L

p>2

0
 cos2 2t dt +

L

p>2

0
 cos3 2t dt d

= 3
2
c at - 1

2
 sin 2tb - 1

2
at + 1

4
 sin 2tb + 1

2
asin 2t - 1

3 sin3 2tb d p>2
0

Section 8.3, 
Example 3

= 3
2
cap

2
- 0 - 0 - 0b - 1

2
ap

2
+ 0 - 0 - 0b + 1

2
(0 - 0 - 0 + 0)d Evaluate.

= 3p
8 .

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

x = ƒ(t) and y = g(t), a … t … b.

We assume the functions ƒ and g are continuously differentiable (meaning they 
have continuous first derivatives) on the interval 3a, b4 . We also assume that the 
derivatives ƒ′(t) and g′(t) are not simultaneously zero, which prevents the curve C  
from having any corners or cusps. Such a curve is called a smooth curve. We 
subdivide the path (or arc) AB into n pieces at points A = P0, P1, P2,c, Pn = B  
(Figure 11.15). These points correspond to a partition of the interval 3a, b4  by 
a = t0 6 t1 6 t2 6 g 6 tn = b,  where Pk = (ƒ(tk), g(tk)). Join successive points 
of this subdivision by straight-line segments (Figure 11.15). A representative line 
segment has length

Lk = 2(∆xk)2 + (∆yk)2

= 23ƒ(tk) - ƒ(tk-1)4 2 + 3g(tk) - g(tk-1)4 2

(see Figure 11.16). If ∆tk is small, the length Lk is approximately the length of arc Pk-1Pk.
By the Mean Value Theorem there are numbers tk* and tk** in 3 tk-1, tk4  such that

∆xk = ƒ(tk) - ƒ(tk-1) = ƒ′(tk*) ∆tk ,

∆yk = g(tk) - g(tk-1) = g′(tk**) ∆tk .

y

x
0

A = P0

B = Pn

P1

P2

C

Pk

Pk−1

FIGURE 11.15 The length of the smooth 
curve C from A to B is approximated by the 
sum of the lengths of the polygonal path 
(straight-line segments) starting at A = P0,
then to P1, and so on, ending at B = Pn.

FIGURE 11.16 The arc Pk-1Pk is
approximated by the straight-line
segment shown here, which has length 
Lk = 2(∆xk)2 + (∆yk)2.

y

x
0

Lk

Δxk

Δyk

Pk–1 = ( f (tk–1), g(tk–1))

Pk = ( f (tk), g(tk))
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Assuming the path from A to B is traversed exactly once as t increases from t = a to 
t = b, with no doubling back or retracing, an approximation to the (yet to be defined) 
“length” of the curve AB is the sum of all the lengths Lk:

a

n

k=1
Lk = a

n

k=1
2(∆xk)2 + (∆yk)2

= a

n

k=1
23ƒ′(tk*) 4 2 + 3g′(tk**) 4 2 ∆tk .

Although this last sum on the right is not exactly a Riemann sum (because ƒ′ and g′ are 
evaluated at different points), it can be shown that its limit, as the norm of the partition 
tends to zero and the number of segments n S q, is the definite integral

lim
� �P� �S0 a

n

k=1
23ƒ′(tk *) 4 2 + 3g′(tk **) 4 2 ∆tk =

L

b

a
23ƒ′(t)4 2 + 3g′(t)4 2 dt.

Therefore, it is reasonable to define the length of the curve from A to B as this integral.

DEFINITION If a curve C is defined parametrically by x = ƒ(t) and y = g(t),
a … t … b, where ƒ′ and g′ are continuous and not simultaneously zero on 3a, b4 , and C is traversed exactly once as t increases from t = a to t = b, then 
the length of C is the definite integral

L =
L

b

a
23ƒ′(t)4 2 + 3g′(t)4 2 dt.

A smooth curve C does not double back or reverse the direction of motion over the time 
interval 3a, b4  since (ƒ′)2 + (g′)2 7 0 throughout the interval. At a point where a curve 
does start to double back on itself, either the curve fails to be differentiable or both deriva-
tives must simultaneously equal zero. We will examine this phenomenon in Chapter 13, 
where we study tangent vectors to curves.

If x = ƒ(t) and y = g(t), then using the Leibniz notation we have the following result 
for arc length:

L =
L

b

a B a
dx
dt
b2

+ ady
dt
b2

dt. (3)

If there are two different parametrizations for a curve C whose length we want to find, 
it does not matter which one we use. However, the parametrization we choose must meet 
the conditions stated in the definition of the length of C (see Exercise 41 for an example).

EXAMPLE 4  Using the definition, find the length of the circle of radius r defined 
parametrically by

x = r cos t and y = r sin t, 0 … t … 2p.

Solution As t varies from 0 to 2p, the circle is traversed exactly once, so the circumfer-
ence is

L =
L

2p

0 B a
dx
dt
b2

+ ady
dt
b2

dt.
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We find

dx
dt

= -r sin t,
dy
dt

= r cos t

and

adx
dt
b2

+ ady
dt
b2

= r2(sin2 t + cos2 t) = r2.

So

L =
L

2p

0
2r2 dt = r 3 t42p

0 = 2pr.

EXAMPLE 5  Find the length of the astroid (Figure 11.14)

x = cos3 t, y = sin3 t, 0 … t … 2p.

Solution Because of the curve’s symmetry with respect to the coordinate axes, its length 
is four times the length of the first-quadrant portion. We have

x = cos3 t, y = sin3 t

adx
dt
b2

= 33 cos2 t(-sin t)4 2 = 9 cos4 t sin2 t

ady
dt
b2

= 33 sin2 t(cos t)4 2 = 9 sin4 t cos2 t

B a
dx
dt
b2

+ ady
dt
b2

= 29 cos2 t sin2 t (cos2 t + sin2 t)
(++)++*

1

= 29 cos2 t sin2 t

= 3 � cos t sin t � cos t sin t Ú 0 for 
0 … t … p>2

= 3 cos t sin t.

Therefore,

Length of first@quadrant portion =
L

p>2

0
3 cos t sin t dt

= 3
2L

p>2

0
sin 2t dt

cos t sin t =
(1>2) sin 2t

= - 3
4

cos 2t d
0

p>2
= 3

2
.

The length of the astroid is four times this: 4(3>2) = 6.

EXAMPLE 6  Find the perimeter of the ellipse 
x2

a2 +
y2

b2 = 1.

Solution Parametrically, we represent the ellipse by the equations x = a sin t and 
y = b cos t, a 7 b and 0 … t … 2p. Then,
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adx
dt
b2

+ ady
dt
b2

= a2 cos2 t + b2 sin2 t

= a2 - (a2 - b2) sin2 t

= a231 - e2 sin2 t4      e = 1 - b2

a2
, not the 

number 2.71828 . . .

From Equation (3), the perimeter is given by

P = 4a
L

p>2

0
21 - e2 sin2 t dt.

(We investigate the meaning of e in Section 11.7.) The integral for P is nonelementary and 
known as the complete elliptic integral of the second kind. We can compute its value to 
within any degree of accuracy using infinite series in the following way. From the bino-
mial expansion for 21 - x in Section 10.10, we have

21 - e2 sin2 t = 1 - 1
2

e2 sin2 t - 1
2 # 4 e4 sin4 t - g, 0 e sin t 0 … e 6 1

Then to each term in this last expression we apply the integral Formula 157 (at the back of 
the book) for 1

p>2
0 sinn t dt when n is even, giving the perimeter

P = 4a
L

p>2

0

21 - e2 sin2 t dt

= 4a cp
2

- a1
2

e2b a1
2
# p

2
b - a 1

2 # 4 e4b a1 # 3
2 # 4 #

p
2
b - a 1 # 3

2 # 4 # 6 e6b a1 # 3 # 5
2 # 4 # 6 #

p
2
b - gd

= 2pa c 1 - a1
2
b2

e2 - a1 # 3
2 # 4b

2 e4

3 - a1 # 3 # 5
2 # 4 # 6b

2 e6

5
- gd .

Since e 6 1, the series on the right-hand side converges by comparison with the geomet-
ric series g

q
n=1 (e2)n.

Length of a Curve y = ƒ(x )

The length formula in Section 6.3 is a special case of Equation (3). Given a continuously 
differentiable function y = ƒ(x), a … x … b, we can assign x = t as a parameter. The 
graph of the function ƒ is then the curve C defined parametrically by

x = t and y = ƒ(t), a … t … b,

a special case of what we considered before. Then,

dx
dt

= 1 and
dy
dt

= ƒ′(t).

From Equation (1), we have

dy
dx

=
dy>dt

dx>dt
= ƒ′(t),

giving

adx
dt
b2

+ ady
dt
b2

= 1 + 3ƒ′(t)4 2

= 1 + 3ƒ′(x)4 2. t = x

HISTORICAL BIOGRAPHY

Gregory St. Vincent
(1584–1667)
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Substitution into Equation (3) gives the arc length formula for the graph of y = ƒ(x), in 
agreement with Equation (3) in Section 6.3.

The Arc Length Differential

Consistent with our discussion in Section 6.3, we can define the arc length function for a 
parametrically defined curve x = ƒ(t) and y = g(t), a … t … b, by

s(t) =
L

t

a
23ƒ′(z)4 2 + 3g′(z)4 2 dz.

Then, by the Fundamental Theorem of Calculus,

ds
dt

= 33ƒ′(t)4 2 + 3g′(t)4 2 = B a
dx
dt
b2

+ ady
dt
b2

.

The differential of arc length is

ds = B a
dx
dt
b2

+ ady
dt
b2

dt. (4)

Equation (4) is often abbreviated to

ds = 2dx2 + dy2.

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to 
find the total length of a curve.

Here’s an example where we use the arc length formula to find the centroid of an arc.

EXAMPLE 7  Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be d = 1 and calculate the curve’s mass and 
moments about the coordinate axes as we did in Section 6.6.

The distribution of mass is symmetric about the line y = x, so x = y. A typical seg-
ment of the curve (Figure 11.17) has mass

dm = 1 # ds = B a
dx
dt
b2

+ ady
dt
b2

dt = 3 cos t sin t dt.
From
Example 5

The curve’s mass is

M =
L

p>2

0
dm =

L

p>2

0
3 cos t sin t dt = 3

2
. Again from Example 5

The curve’s moment about the x-axis is

Mx =
L

y∼ dm =
L

p>2

0
sin3 t # 3 cos t sin t dt

= 3
L

p>2

0
sin4 t cos t dt = 3 # sin5 t

5
d p>2

0
= 3

5
.

It follows that

y =
Mx

M =
3>5
3>2 = 2

5
.

The centroid is the point (2>5, 2>5).

FIGURE 11.17 The centroid (c.m.) 
of the astroid arc in Example 7.

x

y

0

B(0, 1)

A(1, 0)

c.m.
ds

~ ~(x, y) = (cos3 t, sin3 t)
~x

~y
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EXAMPLE 8  Find the time Tc it takes for a frictionless bead to slide along the cycloid 
x = a(t - sin t), y = a(1 - cos t)  from t = 0 to t = p (see Figure 11.12).

Solution From Equation (3) in Section 11.1, we want to find the time

Tc =
L

t=p

t=0

ds

22gy

for ds and y expressed parametrically in terms of the parameter t. For the cycloid, 
dx>dt = a(1 - cos t) and dy>dt = a sin t, so

ds = B a
dx
dt
b2

+ ady
dt
b2

dt

= 2a2 (1 - 2 cos t + cos2 t + sin2 t) dt

= 2a2 (2 - 2 cos t) dt.

Substituting for ds and y in the integrand, it follows that

Tc =
L

p

0 B
a2(2 - 2 cos t)
2ga (1 - cos t)

dt y = a(1 - cos t)

=
L

p

0 A
a
g dt = pA

a
g ,

which is the amount of time it takes the frictionless bead to slide down the cycloid to B
after it is released from rest at O (see Figure 11.12).

Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is 
revolved about a coordinate axis. Specifically, we found that the surface area is 
S = 12py ds for revolution about the x-axis, and S = 12px ds for revolution about the 
y-axis. If the curve is parametrized by the equations x = ƒ(t) and y = g(t), a … t … b,
where ƒ and g are continuously differentiable and (ƒ′)2 + (g′)2 7 0 on 3a, b4 , then the 
arc length differential ds is given by Equation (4). This observation leads to the following 
formulas for area of surfaces of revolution for smooth parametrized curves.

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = ƒ(t), y = g(t), a … t … b, is traversed exactly once as t
increases from a to b, then the areas of the surfaces generated by revolving the 
curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y # 0):

S =
L

b

a
2py B a

dx
dt
b2

+ ady
dt
b2

dt (5)

2. Revolution about the y-axis (x # 0):

S =
L

b

a
2px B a

dx
dt
b2

+ ady
dt
b2

dt (6)

As with length, we can calculate surface area from any convenient parametrization that 
meets the stated criteria.
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EXAMPLE 9  The standard parametrization of the circle of radius 1 centered at the 
point (0, 1) in the xy-plane is

x = cos t, y = 1 + sin t, 0 … t … 2p.

Use this parametrization to find the area of the surface swept out by revolving the circle 
about the x-axis (Figure 11.18).

Solution We evaluate the formula

S =
L

b

a
2pyB a

dx
dt
b2

+ ady
dt
b2

dt
Eq. (5) for revolution 
about the x-axis;
y = 1 + sin t Ú 0

=
L

2p

0
2p(1 + sin t) 2(-sin t)2 + (cos t)2 dt

(++++)++++*
1

= 2p
L

2p

0
(1 + sin t) dt

= 2p c t - cos t d
0

2p

= 4p2.

Circle
x = cos t
y = 1 + sin t
0 ≤ t ≤ 2p

x

y

(0, 1)

FIGURE 11.18 In Example 9 we cal-
culate the area of the surface of revolution 
swept out by this parametrized curve.

Tangents to Parametrized Curves
In Exercises 1–14, find an equation for the line tangent to the curve at 
the point defined by the given value of t. Also, find the value of d2y>dx2

at this point.

1. x = 2 cos t, y = 2 sin t, t = p>4
2. x = sin 2pt, y = cos 2pt, t = -1>6
3. x = 4 sin t, y = 2 cos t, t = p>4
4. x = cos t, y = 23 cos t, t = 2p>3
5. x = t, y = 2t, t = 1>4
6. x = sec2 t - 1, y = tan t, t = -p>4
7. x = sec t, y = tan t, t = p>6
8. x = -2t + 1, y = 23t, t = 3

9. x = 2t2 + 3, y = t4, t = -1

10. x = 1>t, y = -2 + ln t, t = 1

11. x = t - sin t, y = 1 - cos t, t = p>3
12. x = cos t, y = 1 + sin t, t = p>2
13. x = 1

t + 1
, y = t

t - 1
, t = 2

14. x = t + et, y = 1 - et, t = 0

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 15–20 define x and y implic-
itly as differentiable functions x = ƒ(t), y = g(t), find the slope of 
the curve x = ƒ(t), y = g(t) at the given value of t.

15. x3 + 2t2 = 9, 2y3 - 3t2 = 4, t = 2

16. x = 25 - 1t, y(t - 1) = 2t, t = 4

17. x + 2x3>2 = t2 + t, y2t + 1 + 2t2y = 4, t = 0

18. x sin t + 2x = t, t sin t - 2t = y, t = p

19. x = t3 + t, y + 2t3 = 2x + t2, t = 1

20. t = ln (x - t), y = tet, t = 0

Exercises 11.2

Surface Area
Find the areas of the surfaces generated by revolving the curves in 
Exercises 31–34 about the indicated axes.

31. x = cos t, y = 2 + sin t, 0 … t … 2p; x@axis

Area
21. Find the area under one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

22. Find the area enclosed by the y-axis and the curve

x = t - t2, y = 1 + e-t .

23. Find the area enclosed by the ellipse

x = a cos t, y = b sin t, 0 … t … 2p .

24. Find the area under y = x3 over 30, 14  using the following  
parametrizations.

a. x = t2, y = t6 b. x = t3, y = t9

29. x = 8 cos t + 8t sin t
y = 8 sin t - 8t cos t,
0 … t … p>2

30. x = ln (sec t + tan t) - sin t

y = cos t, 0 … t … p>3

Lengths of Curves
Find the lengths of the curves in Exercises 25–30.

25. x = cos t, y = t + sin t, 0 … t … p
26. x = t3, y = 3t2>2, 0 … t … 23

27. x = t2>2, y = (2t + 1)3>2>3, 0 … t … 4

28. x = (2t + 3)3>2>3, y = t + t2>2, 0 … t … 3
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32. x = (2>3)t3>2, y = 22t, 0 … t … 23; y@axis

33. x = t + 22, y = (t2>2) + 22t, -22 … t … 22; y@axis

34. x = ln (sec t + tan t) - sin t, y = cos t, 0 … t … p>3; x-axis

35. A cone frustum The line segment joining the points (0, 1) and 
(2, 2) is revolved about the x-axis to generate a frustum of a cone. 
Find the surface area of the frustum using the parametrization 
x = 2t, y = t + 1, 0 … t … 1. Check your result with the geom-
etry formula: Area = p(r1 + r2)(slant height).

36. A cone The line segment joining the origin to the point (h, r) is 
revolved about the x-axis to generate a cone of height h and base 
radius r. Find the cone’s surface area with the parametric equa-
tions x = ht, y = rt, 0 … t … 1. Check your result with the 
geometry formula: Area = pr(slant height).

Centroids
37. Find the coordinates of the centroid of the curve

x = cos t + t sin t, y = sin t - t cos t, 0 … t … p>2.

38. Find the coordinates of the centroid of the curve

x = et cos t, y = et sin t, 0 … t … p.

39. Find the coordinates of the centroid of the curve

x = cos t, y = t + sin t, 0 … t … p.

40. Most centroid calculations for curves are done with a calculator 
or computer that has an integral evaluation program. As a case in 
point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

x = t3, y = 3t2>2, 0 … t … 23.

Theory and Examples
41. Length is independent of parametrization To illustrate the 

fact that the numbers we get for length do not depend on the way we 
parametrize our curves (except for the mild restrictions preventing 
doubling back mentioned earlier), calculate the length of the semi-
circle y = 21 - x2 with these two different parametrizations:

  a. x = cos 2t, y = sin 2t, 0 … t … p>2.

b. x = sin pt, y = cos pt, -1>2 … t … 1>2.

42. a. Show that the Cartesian formula

L =
L

d

c B1 + adx
dy
b2

dy

    for the length of the curve x = g(y), c … y … d  (Section 6.3, 
Equation 4), is a special case of the parametric length formula

L =
L

b

a B a
dx
dt
b2

+ ady
dt
b2

dt.

   Use this result to find the length of each curve.

  b. x = y3>2, 0 … y … 4>3
c. x = 3

2
y2>3, 0 … y … 1

43. The curve with parametric equations

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

  is called a limaçon and is shown in the accompanying figure. Find 
the points (x, y) and the slopes of the tangent lines at these points for

  a. u = 0. b. u = p>2 . c. u = 4p>3 .

T

x

y

−1

1

3

1

44. The curve with parametric equations

x = t, y = 1 - cos t, 0 … t … 2p

  is called a sinusoid and is shown in the accompanying figure. 
Find the point (x, y) where the slope of the tangent line is

  a. largest. b. smallest.

x

y

2

0 2p

The curves in Exercises 45 and 46 are called Bowditch curves or 
Lissajous figures. In each case, find the point in the interior of the 
first quadrant where the tangent to the curve is horizontal, and 
find the equations of the two tangents at the origin.

45. 46.

x

y

1−1

x = sin t
y = sin 2t

x

y

1−1

1

−1

x = sin 2t
y = sin 3t

47. Cycloid

  a. Find the length of one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

  b. Find the area of the surface generated by revolving one arch of 
the cycloid in part (a) about the x-axis for a = 1.

48. Volume Find the volume swept out by revolving the region 
bounded by the x-axis and one arch of the cycloid

x = t - sin t, y = 1 - cos t

  about the x-axis.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to perform the following steps for the 
given curve over the closed interval.

a. Plot the curve together with the polygonal path approximations for 
n = 2, 4, 8 partition points over the interval. (See Figure 11.15.)

T
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b. Find the corresponding approximation to the length of the curve 
by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare your 
approximations for n = 2, 4, 8 with the actual length given by 
the integral. How does the actual length compare with the approx-
imations as n increases? Explain your answer.

49. x = 1
3

t3, y = 1
2

t2, 0 … t … 1

50. x = 2t3 - 16t2 + 25t + 5, y = t2 + t - 3, 0 … t … 6

51. x = t - cos t, y = 1 + sin t, -p … t … p

52. x = et cos t, y = et sin t, 0 … t … p

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. You 
will see that polar coordinates are very useful for calculating many multiple integrals stud-
ied in Chapter 15. They are also useful in describing the paths of planets and satellites.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray
from O (Figure 11.19). Usually the positive x-axis is chosen as the initial ray. Then each 
point P can be located by assigning to it a polar coordinate pair (r, u) in which r gives 
the directed distance from O to P and u gives the directed angle from the initial ray to ray 
OP. So we label the point P as

P(r, u)

Directed angle from 
initial ray to OP

Directed distance 
from O to P

O

r

Initial ray

Origin (pole)

x

P(r, u)

u

FIGURE 11.19 To define polar 
coordinates for the plane, we start with an 
origin, called the pole, and an initial ray.

As in trigonometry, u is positive when measured counterclockwise and negative when 
measured clockwise. The angle associated with a given point is not unique. While a point 
in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar 
coordinates. For instance, the point 2 units from the origin along the ray u = p>6 has 
polar coordinates r = 2, u = p>6. It also has coordinates r = 2, u = -11p>6 (Figure 
11.20). In some situations we allow r to be negative. That is why we use directed distance 
in defining P(r, u). The point P(2, 7p>6) can be reached by turning 7p>6 radians coun-
terclockwise from the initial ray and going forward 2 units (Figure 11.21). It can also be 
reached by turning p>6 radians counterclockwise from the initial ray and going backward
2 units. So the point also has polar coordinates r = -2, u = p>6.

EXAMPLE 1  Find all the polar coordinates of the point P(2, p>6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of p>6 radians with the initial ray, and mark the point (2, p>6)
(Figure 11.22). We then find the angles for the other coordinate pairs of P in which r = 2
and r = -2.

For r = 2, the complete list of angles is

p
6

,
p
6
{ 2p,

p
6
{ 4p,

p
6
{ 6p,c.

O x
Initial ray
u = 0

u= p
6

−11p
6

P  2, = P  2, −11p
6

p
6a b a b

FIGURE 11.20 Polar coordinates are 
not unique.

FIGURE 11.21 Polar coordinates can 
have negative r-values.

O
x

u = 0

u= p
6

p
6

7p
6

P  2, = P –2,p
6

7p
6a b a b
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For r = -2, the angles are

- 5p
6

, - 5p
6
{ 2p, - 5p

6
{ 4p, - 5p

6
{ 6p,c.

The corresponding coordinate pairs of P are

a2,
p
6

+ 2npb , n = 0, {1, {2,c

and

a-2, - 5p
6

+ 2npb , n = 0, {1, {2,c.

When n = 0, the formulas give (2, p>6) and (-2, -5p>6). When n = 1, they give 
(2, 13p>6) and (-2, 7p>6), and so on.

O

7p
6

–5p
6

Initial ray
x

6

  2, =   –2, – 5p
6

p
6

=   –2, 7p

etc.

p
6

a b

a b

a b

FIGURE 11.22 The point P(2, p>6)
has infinitely many polar coordinate pairs 
(Example 1).

EXAMPLE 2  A circle or line can have more than one polar equation.

(a) r = 1 and r = -1 are equations for the circle of radius 1 centered at O.

(b) u = p>6, u = 7p>6, and u = -5p>6 are equations for the line in Figure 11.22.

Equations of the form r = a and u = u0 can be combined to define regions, seg-
ments, and rays.

EXAMPLE 3  Graph the sets of points whose polar coordinates satisfy the following 
conditions.

(a) 1 … r … 2 and 0 … u … p
2

(b) -3 … r … 2 and u = p
4

(c) 2p
3 … u … 5p

6
(no restriction on r)

Solution The graphs are shown in Figure 11.24.

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 
together and take the initial polar ray as the positive x-axis. The ray u = p>2, r 7 0,

Polar Equations and Graphs

If we hold r fixed at a constant value r = a ≠ 0, the point P(r, u) will lie � a �  units from 
the origin O. As u varies over any interval of length 2p, P then traces a circle of radius 
� a �  centered at O (Figure 11.23).

If we hold u fixed at a constant value u = u0 and let r vary between -q and q, the 
point P(r, u) traces the line through O that makes an angle of measure u0 with the initial 
ray. (See Figure 11.21 for an example.)

x

0 a 0

r = a

O

FIGURE 11.23 The polar equation for a 
circle is r = a.

x

y

0 1

(a)

2

x

y

0
3

(b)

2

(c)

x

y

0

1 ≤ r ≤ 2, 0 ≤ u ≤ p2

u = ,p
4

−3 ≤ r ≤ 2p
4

2p
3

5p
6

2p
3

5p
6≤ u ≤

FIGURE 11.24 The graphs of typical 
inequalities in r and u (Example 3).
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The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and u. On the other hand, if x and y are given, the third 
equation gives two possible choices for r (a positive and a negative value). For each 
(x, y) ≠ (0, 0), there is a unique u∊ 30, 2p) satisfying the first two equations, each then 
giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

Equations Relating Polar and Cartesian Coordinates

x = r cos u, y = r sin u, r2 = x2 + y2, tan u =
y
x

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 11.25 The usual way to relate 
polar and Cartesian coordinates.

becomes the positive y-axis (Figure 11.25). The two coordinate systems are then related 
by the following equations.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordinate 
and Cartesian coordinate equations.

Polar equation Cartesian equivalent

r cos u = 2 x = 2

r2 cos u sin u = 4 xy = 4

r2 cos2u - r2 sin2u = 1 x2 - y2 = 1

r = 1 + 2r cos u y2 - 3x2 - 4x - 1 = 0

r = 1 - cos u x4 + y4 + 2x2y2 + 2x3 + 2xy2 - y2 = 0

Some curves are more simply expressed with polar coordinates; others are not.

EXAMPLE 5  Find a polar equation for the circle x2 + (y - 3)2 = 9 (Figure 11.26).

Solution We apply the equations relating polar and Cartesian coordinates:

x2 + (y - 3)2 = 9

x2 + y2 - 6y + 9 = 9 Expand ( y - 3)2.

x2 + y2 - 6y = 0 Cancelation

r2 - 6r sin u = 0 x2 + y2 = r2, y = r sin u

r = 0 or r - 6 sin u = 0

r = 6 sin u Includes both possibilities

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) r cos u = -4

(b) r2 = 4r cos u

(c) r = 4
2 cos u - sin u

Solution We use the substitutions r cos u = x, r sin u = y, and r2 = x2 + y2.

(a) r cos u = -4

The Cartesian equation: r cos u = -4

x = -4 Substitution

The graph: Vertical line through x = -4 on the x@axis

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9
or

r = 6 sin u

FIGURE 11.26 The circle in Example 5.
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(b) r2 = 4r cos u

The Cartesian equation: r2 = 4r cos u

x2 + y2 = 4x

x2 - 4x + y2 = 0

x2 - 4x + 4 + y2 = 4

(x - 2)2 + y2 = 4

Substitution

Completing the square

Factoring

The graph: Circle, radius 2, center (h, k) = (2, 0)

(c) r = 4
2 cos u - sin u

The Cartesian equation: r(2 cos u - sin u) = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

Multiplying by r

Substitution

Solve for y.

The graph: Line, slope m = 2, y@intercept b = -4

Polar Coordinates
1. Which polar coordinate pairs label the same point?

  a. (3, 0) b. (-3, 0) c. (2, 2p>3)

  d. (2, 7p>3) e. (-3, p) f. (2, p>3)

  g. (-3, 2p) h. (-2, -p>3)

2. Which polar coordinate pairs label the same point?

  a. (-2, p>3) b. (2, -p>3) c. (r, u)

  d. (r, u + p) e. (-r, u) f. (2, -2p>3)

  g. (-r, u + p) h. (-2, 2p>3)

3. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (2, p>2) b. (2, 0)

  c. (-2, p>2) d. (-2, 0)

4. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (3, p>4) b. (-3, p>4)

  c. (3, -p>4) d. (-3, -p>4)

Polar to Cartesian Coordinates
5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in 
polar coordinates).

  a. 122, p>42 b. (1, 0)

  c. (0, p>2) d. 1-22, p>42

  e. (-3, 5p>6) f. (5, tan-1(4>3))

  g. (-1, 7p) h. 1223, 2p>32
Cartesian to Polar Coordinates
7. Find the polar coordinates, 0 … u 6 2p and r Ú 0, of the fol-

lowing points given in Cartesian coordinates.

a. (1, 1) b. (-3, 0)

  c. 123, -12 d. (-3, 4)

8. Find the polar coordinates, -p … u 6 p and r Ú 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, -2) b. (0, 3)

c. 1-23, 12 d. (5, -12)

9. Find the polar coordinates, 0 … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (3, 3) b. (-1, 0)

  c. 1-1, 232 d. (4, -3)

10. Find the polar coordinates, -p … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, 0) b. (1, 0)

  c. (0, -3) d. a23
2

,
1
2
b

Graphing Sets of Polar Coordinate Points
Graph the sets of points whose polar coordinates satisfy the equations 
and inequalities in Exercises 11–26.

11. r = 2 12. 0 … r … 2

13. r Ú 1 14. 1 … r … 2

Exercises 11.3
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15. 0 … u … p>6, r Ú 0 16. u = 2p>3, r … -2

17. u = p>3, -1 … r … 3 18. u = 11p>4, r Ú -1

19. u = p>2, r Ú 0 20. u = p>2, r … 0

21. 0 … u … p, r = 1 22. 0 … u … p, r = -1

23. p>4 … u … 3p>4, 0 … r … 1

24. -p>4 … u … p>4, -1 … r … 1

25. -p>2 … u … p>2, 1 … r … 2

26. 0 … u … p>2, 1 … � r � … 2

Polar to Cartesian Equations
Replace the polar equations in Exercises 27–52 with equivalent Carte-
sian equations. Then describe or identify the graph.

27. r cos u = 2 28. r sin u = -1

29. r sin u = 0 30. r cos u = 0

31. r = 4 csc u 32. r = -3 sec u

33. r cos u + r sin u = 1 34. r sin u = r cos u

35. r2 = 1 36. r2 = 4r sin u

37. r = 5
sin u - 2 cos u

38. r2 sin 2u = 2

39. r = cot u csc u 40. r = 4 tan u sec u

41. r = csc u er cos u 42. r sin u = ln r + ln cos u

43. r2 + 2r2 cos u sin u = 1 44. cos2u = sin2u

45. r2 = -4r cos u 46. r2 = -6r sin u

47. r = 8 sin u 48. r = 3 cos u

49. r = 2 cos u + 2 sin u 50. r = 2 cos u - sin u

51. r sin au + p
6
b = 2 52. r sin a2p

3
- ub = 5

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53–66 with equivalent 
polar equations.

53. x = 7 54. y = 1 55. x = y

56. x - y = 3 57. x2 + y2 = 4 58. x2 - y2 = 1

59.
x2

9
+

y2

4
= 1 60. xy = 2

61. y2 = 4x 62. x2 + xy + y2 = 1

63. x2 + (y - 2)2 = 4 64. (x - 5)2 + y2 = 25

65. (x - 3)2 + (y + 1)2 = 4 66. (x + 2)2 + (y - 5)2 = 16

67. Find all polar coordinates of the origin.

68. Vertical and horizontal lines

  a. Show that every vertical line in the xy-plane has a polar equa-
tion of the form r = a sec u.

  b. Find the analogous polar equation for horizontal lines in the 
xy-plane.

11.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian xy-
plane. This section describes some techniques for graphing these equations using symme-
tries and tangents to the graph.

Symmetry

Figure 11.27 illustrates the standard polar coordinate tests for symmetry. The following 
summary says how the symmetric points are related.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point (r, u) lies on the graph, then the point 
(r, -u) or (-r, p - u) lies on the graph (Figure 11.27a).

2. Symmetry about the y-axis: If the point (r, u) lies on the graph, then the point 
(r, p - u) or (-r, -u) lies on the graph (Figure 11.27b).

3. Symmetry about the origin: If the point (r, u) lies on the graph, then the point 
(-r, u) or (r, u + p) lies on the graph (Figure 11.27c).
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Slope of the Curve r = ƒ(U) in the Cartesian xy-Plane

dy
dx
`
(r, u)

=
ƒ′(u) sin u + ƒ(u) cos u
ƒ′(u) cos u - ƒ(u) sin u

provided dx>du ≠ 0 at (r, u).

If the curve r = ƒ(u) passes through the origin at u = u0, then ƒ(u0) = 0, and the slope 
equation gives

dy
dx
`
(0, u0)

=
ƒ′(u0) sin u0
ƒ′(u0) cos u0

= tan u0.

If the graph of r = ƒ(u) passes through the origin at the value u = u0, the slope of the 
curve there is tan u0. The reason we say “slope at (0, u0)” and not just “slope at the origin” 
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different u@values. This is not the case in our first example, however.

Slope

The slope of a polar curve r = ƒ(u) in the xy-plane is still given by dy >dx, which is not 
r′ = dƒ>du. To see why, think of the graph of ƒ as the graph of the parametric equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

If ƒ is a differentiable function of u, then so are x and y and, when dx>du ≠ 0, we can 
calculate dy >dx from the parametric formula

dy
dx

=
dy>du
dx>du

Section 11.2, Eq. (1) 
with t = u

=

d
du

(ƒ(u) # sin u)

d
du

(ƒ(u) # cos u)

=

df
du

sin u + ƒ(u) cos u

df
du

cos u - ƒ(u) sin u
Product Rule for derivatives

Therefore we see that dy>dx is not the same as dƒ>du.

x

y

(r, u)

(r, −u)
or (−r, p − u)

0

(a) About the x-axis

x

y

0

0

(b) About the y-axis

(r, p − u)
or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c) About the origin

(r, u)

FIGURE 11.27 Three tests for 
symmetry in polar coordinates.

EXAMPLE 1  Graph the curve r = 1 - cos u in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

(r, u) on the graph 1 r = 1 - cos u

1 r = 1 - cos (-u) cos u = cos (-u)

1 (r, -u) on the graph.



11.4  Graphing Polar Coordinate Equations 677

As u increases from 0 to p, cos u decreases from 1 to -1, and r = 1 - cos u increases 
from a minimum value of 0 to a maximum value of 2. As u continues on from p to 
2p, cos u increases from -1 back to 1 and r decreases from 2 back to 0. The curve starts 
to repeat when u = 2p because the cosine has period 2p.

The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope 
tan (2p) = 0.

We make a table of values from u = 0 to u = p, plot the points, draw a smooth curve 
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 11.28). The curve is called a cardioid because of its heart 
shape.

(b)

x

y
r2 = 4 cos u

2 2
0

Loop for r = −2
"

cos u,

≤ u ≤ p
2

p
2

− ≤ u ≤ p
2

p
2

−

Loop for r = 2
"

cos u,

FIGURE 11.29 The graph of r2 = 4 cos u. The arrows show the direction of increas-
ing u. The values of r in the table are rounded (Example 2).

U cos U r = t22cos U

0 1 {2

{
p
6
23
2

≈{1.9

{
p
4

1

22
≈{1.7

{
p
3

1
2

≈{1.4

{
p
2

0 0

(a)

U r = 1 − cos U

0 0

p
3

1
2

p
2

1

2p
3

3
2

p 2

EXAMPLE 2  Graph the curve r2 = 4 cos u in the Cartesian xy-plane.

Solution The equation r2 = 4 cos u requires cos u Ú 0, so we get the entire graph by 
running u from -p>2 to p>2. The curve is symmetric about the x-axis because

(r, u) on the graph 1 r2 = 4 cos u

1 r2 = 4 cos (-u)      cos u = cos (-u)

1 (r, -u) on the graph.

The curve is also symmetric about the origin because

(r, u) on the graph 1 r2 = 4 cos u

1 (-r)2 = 4 cos u

1 (-r, u) on the graph.

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when u = -p>2 and u = p>2. It has a vertical 

tangent both times because tan u is infinite.
For each value of u in the interval between -p>2 and p>2, the formula r2 = 4 cos u

gives two values of r:

r = {22cos u.

We make a short table of values, plot the corresponding points, and use information 
about symmetry and tangents to guide us in connecting the points with a smooth curve 
(Figure 11.29).

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1, p2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1, p
2

1, 3p
2

p
3

1
2

,

5p
3

1
2

,

a b

a b

a b

a b

a b

a b

a b

a b

a b

FIGURE 11.28 The steps in graphing the 
cardioid r = 1 - cos u (Example 1). The 
arrow shows the direction of increasing u.
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Converting a Graph from the rU- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 
(r, u)@values, plot the corresponding points there, and connect them in order of increasing 
u. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = ƒ(u) in the Cartesian ru@plane,

2. then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph, even when hastily drawn, shows at a glance where r is positive, negative, and non-
existent, as well as where r is increasing and decreasing. Here’s an example.

USING TECHNOLOGY Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u)
into parametric form using the equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be 
necessary to use the parameter t rather than u for the graphing device.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution Here we begin by plotting r2 (not r) as a function of u in the Cartesian 
r2u@plane. See Figure 11.30a. We pass from there to the graph of r = {2sin 2u in the 
ru@plane (Figure 11.30b), and then draw the polar graph (Figure 11.30c). The graph in 
Figure 11.30b “covers” the final polar graph in Figure 11.30c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The 
double covering does no harm, however, and we actually learn a little more about the 
behavior of the function this way.

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

1. r = 1 + cos u 2. r = 2 - 2 cos u

3. r = 1 - sin u 4. r = 1 + sin u

5. r = 2 + sin u 6. r = 1 + 2 sin u

7. r = sin (u>2) 8. r = cos (u>2)

9. r2 = cos u 10. r2 = sin u

11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane
Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangents at these points.

17. Cardioid r = -1 + cos u; u = {p>2
18. Cardioid r = -1 + sin u; u = 0, p

19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

Exercises 11.4

−1

0

1

3p
2p2

p
4

p

p

2

r2 = sin 2u

(a)

(b)

(c)

−1

1

0

r = +
"

sin 2u

r = −
"

sin 2u

p p
2

3p
2

r2

u

u

r

No square roots of
negative numbers

± parts from
square roots

x

y

r2 = sin 2u

0

FIGURE 11.30 To plot r = ƒ(u) in 
the Cartesian ru@plane in (b), we first 
plot r2 = sin 2u in the r2u@plane in (a) 
and then ignore the values of u for which 
sin 2u is negative. The radii from the 
sketch in (b) cover the polar graph of the 
lemniscate in (c) twice (Example 3).
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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 21. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

21. Limaçons with an inner loop

  a. r = 1
2

+ cos u b. r = 1
2

+ sin u

22. Cardioids

  a. r = 1 - cos u b. r = -1 + sin u

23. Dimpled limaçons

  a. r = 3
2

+ cos u b. r = 3
2

- sin u

24. Oval limaçons

  a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane
25. Sketch the region defined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

26. Sketch the region defined by the inequalities 0 … r … 2 sec u
and -p>4 … u … p>4.

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 0 … r … 2 - 2 cos u 28. 0 … r2 … cos u

29. Which of the following has the same graph as r = 1 - cos u?

  a. r = -1 - cos u b. r = 1 + cos u

  Confirm your answer with algebra.

T

30. Which of the following has the same graph as r = cos 2u?

  a. r = -sin (2u + p>2) b. r = -cos (u>2)

  Confirm your answer with algebra.
31. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

32. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin
u

2
.

33. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

34. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

  a. r = u
b. r = -u

  c. A logarithmic spiral: r = eu>10

  d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

  (Use different colors for the two branches.)

35. Graph the equation r = sin18
7 u2 for 0 … u … 14p.

36. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

  for 0 … u … 10p.

T

T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates. The defining ideas are the same as before, but the formulas are different in 
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.31 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and 
central angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of 
radius rk , or

Ak = 1
2

rk
2 ∆uk = 1

2
1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a

n

k=1
Ak = a

n

k=1

1
2
1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are then led to the 
following formula defining the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.31 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.
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A = lim
‘P‘S0 a

n

k=1

1
2
1ƒ(uk)22 ∆uk

=
L

b

a

1
2
1ƒ(u)22 du.

Area of the Fan-Shaped Region Between the Origin and the Curve r = ƒ(U) ,
A " U " B

A =
L

b

a

1
2

r2 du

This is the integral of the area differential (Figure 11.32)

dA = 1
2

r2 du = 1
2
1ƒ(u)22 du.

O
x

y

P(r, u)

du

u

r

dA =    r 2du1
2

FIGURE 11.32 The area differential dA
for the curve r = ƒ(u).

EXAMPLE 1  Find the area of the region in the xy-plane enclosed by the cardioid 
r = 2(1 + cos u).

Solution We graph the cardioid (Figure 11.33) and determine that the radius OP sweeps 
out the region exactly once as u runs from 0 to 2p. The area is therefore

L

u=2p

u=0

1
2

r2 du =
L

2p

0

1
2
# 4(1 + cos u)2 du

=
L

2p

0
2(1 + 2 cos u + cos2u) du

=
L

2p

0
a2 + 4 cos u + 2 # 1 + cos 2u

2
b du

=
L

2p

0
(3 + 4 cos u + cos 2u) du

= c 3u + 4 sin u + sin 2u
2
d

0

2p

= 6p - 0 = 6p.

To find the area of a region like the one in Figure 11.34, which lies between two polar 
curves r1 = r1(u) and r2 = r2(u) from u = a to u = b, we subtract the integral of 
(1>2)r1

2 du from the integral of (1>2)r2
2 du. This leads to the following formula.

x

y

0 4

r

r = 2(1 + cos u)

u = 0, 2p

P(r, u)2

−2

FIGURE 11.33 The cardioid in Example 1.

y

x
0

u = b

u = a

r2

r1

FIGURE 11.34 The area of the shaded 
region is calculated by subtracting the area 
of the region between r1 and the origin 
from the area of the region between r2 and 
the origin.

Area of the Region 0 " r1(U) " r " r2(U), A " U " B

A =
L

b

a

1
2

r2
2 du -

L

b

a

1
2

r1
2 du =

L

b

a

1
2
1r2

2 - r1
22 du (1)

EXAMPLE 2  Find the area of the region that lies inside the circle r = 1 and outside 
the cardioid r = 1 - cos u.

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion (Figure 11.35). The outer curve is r2 = 1, the inner curve is r1 = 1 - cos u, and u
runs from -p>2 to p>2. The area, from Equation (1), is

x

y

0

r2 = 1

r1 = 1 − cos u

Upper limit
u = p
2

Lower limit
u = −p
2

u

FIGURE 11.35 The region and limits of 
integration in Example 2.
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A =
L

p>2

-p>2
1
2
1r2

2 - r1
22 du

= 2
L

p>2

0

1
2
1r2

2 - r1
22 du Symmetry

=
L

p>2

0
(1 - (1 - 2 cos u + cos2u)) du Square r1.

=
L

p>2

0
(2 cos u - cos2u) du =

L

p>2

0
a2 cos u - 1 + cos 2u

2
b du

= c 2 sin u - u
2

- sin 2u
4
d

0

p>2
= 2 - p

4
.

The fact that we can represent a point in different ways in polar coordinates requires extra 
care in deciding when a point lies on the graph of a polar equation and in determining the 
points in which polar graphs intersect. (We needed intersection points in Example 2.) In 
Cartesian coordinates, we can always find the points where two curves cross by solving 
their equations simultaneously. In polar coordinates, the story is different. Simultaneous 
solution may reveal some intersection points without revealing others, so it is sometimes 
difficult to find all points of intersection of two polar curves. One way to identify all the 
points of intersection is to graph the equations.

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve r = ƒ(u), a … u … b,
by parametrizing the curve as

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u, a … u … b. (2)

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du.

This equation becomes

L =
L

b

a Br2 + adr
du
b2

du

when Equations (2) are substituted for x and y (Exercise 29).

Length of a Polar Curve

If r = ƒ(u) has a continuous first derivative for a … u … b and if the point 
P(r, u) traces the curve r = ƒ(u) exactly once as u runs from a to b, then the 
length of the curve is

L =
L

b

a Br2 + adr
du
b2

du. (3)

EXAMPLE 3  Find the length of the cardioid r = 1 - cos u.

Solution We sketch the cardioid to determine the limits of integration (Figure 11.36). 
The point P(r, u) traces the curve once, counterclockwise as u runs from 0 to 2p, so these 
are the values we take for a and b.

0

1

2

r

x

y

u

r = 1 − cos u
P(r, u)

FIGURE 11.36 Calculating the length 
of a cardioid (Example 3).
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With

r = 1 - cos u,
dr
du

= sin u,

we have

r2 + adr
du
b2

= (1 - cos u)2 + (sin u)2

= 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u(++)++*
1

and

L =
L

b

a Br2 + adr
du
b2

du =
L

2p

0
22 - 2 cos u du

=
L

2p

0 A4 sin2 u
2

du 1 - cos u = 2 sin2 (u>2)

=
L

2p

0
2 ` sin

u
2
` du

=
L

2p

0
2 sin

u
2

du       sin (u>2) Ú 0 for 0 … u … 2p

= c-4 cos
u
2
d

0

2p

= 4 + 4 = 8.

Finding Polar Areas
Find the areas of the regions in Exercises 1–8.

1. Bounded by the spiral r = u for 0 … u … p

x

y

0

r = u
p
2
p
2

,

(p, p)

a b

2. Bounded by the circle r = 2 sin u for p>4 … u … p>2

x

y

0

r = 2 sin u

2
p
2

,

u = p
4

a b

3. Inside the oval limaçon r = 4 + 2 cos u

4. Inside the cardioid r = a(1 + cos u), a 7 0

5. Inside one leaf of the four-leaved rose r = cos 2u

6. Inside one leaf of the three-leaved rose r = cos 3u

x

y

1

r = cos 3u

7. Inside one loop of the lemniscate r2 = 4 sin 2u

8. Inside the six-leaved rose r2 = 2 sin 3u

Find the areas of the regions in Exercises 9–18.

9. Shared by the circles r = 2 cos u and r = 2 sin u

10. Shared by the circles r = 1 and r = 2 sin u

11. Shared by the circle r = 2 and the cardioid r = 2(1 - cos u)

12. Shared by the cardioids r = 2(1 + cos u) and r = 2(1 - cos u)

13. Inside the lemniscate r2 = 6 cos 2u and outside the circle r = 23

Exercises 11.5
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14. Inside the circle r = 3a cos u and outside the cardioid 
r = a(1 + cos u), a 7 0

15. Inside the circle r = -2 cos u and outside the circle r = 1

16. Inside the circle r = 6 above the line r = 3 csc u

17. Inside the circle r = 4 cos u and to the right of the vertical line 
r = sec u

18. Inside the circle r = 4 sin u and below the horizontal line 
r = 3 csc u

19. a. Find the area of the shaded region in the accompanying figure.

x

y

0 1−1

(1, p
4)

r = tan u
< u < p

2
p
2

–

r = (
"

2
2) csc u

b. It looks as if the graph of r = tan u, -p>2 6 u 6 p>2, could 
be asymptotic to the lines x = 1 and x = -1. Is it? Give 
reasons for your answer.

20. The area of the region that lies inside the cardioid curve 
r = cos u + 1 and outside the circle r = cos u is not

1
2L

2p

0
3(cos u + 1)2 - cos2u4 du = p.

  Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21–28.

21. The spiral r = u2, 0 … u … 25

22. The spiral r = eu>22, 0 … u … p
23. The cardioid r = 1 + cos u

24. The curve r = a sin2 (u>2), 0 … u … p, a 7 0

25. The parabolic segment r = 6>(1 + cos u), 0 … u … p>2
26. The parabolic segment r = 2>(1 - cos u), p>2 … u … p

27. The curve r = cos3 (u>3), 0 … u … p>4
28. The curve r = 21 + sin 2u, 0 … u … p22

29. The length of the curve r = ƒ(U) , A … U … B Assuming
that the necessary derivatives are continuous, show how the sub-
stitutions

x = ƒ(u) cos u, y = ƒ(u) sin u

  (Equations 2 in the text) transform

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du

  into

L =
L

b

a Br2 + adr
du
b2

du.

30. Circumferences of circles As usual, when faced with a new 
formula, it is a good idea to try it on familiar objects to be sure it 
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles (a 7 0).

  a. r = a b. r = a cos u c. r = a sin u

Theory and Examples
31. Average value If ƒ is continuous, the average value of the polar 

coordinate r over the curve r = ƒ(u), a … u … b, with respect to 
u is given by the formula

rav = 1
b - aL

b

a

ƒ(u) du.

  Use this formula to find the average value of r with respect to u
over the following curves (a 7 0).

  a. The cardioid r = a(1 - cos u)

  b. The circle r = a

  c. The circle r = a cos u, -p>2 … u … p>2
32. r = ƒ(U) vs. r = 2ƒ(U) Can anything be said about the rela-

tive lengths of the curves r = ƒ(u), a … u … b, and r = 2ƒ(u),
a … u … b? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics
because they are formed by cutting a double cone with a plane (Figure 11.37). This geom-
etry method was the only way they could be described by Greek mathematicians who did 
not have our tools of Cartesian or polar coordinates. In the next section we express the 
conics in polar coordinates.

Parabolas

DEFINITIONS A set that consists of all the points in a plane equidistant from a 
given fixed point and a given fixed line in the plane is a parabola. The fixed 
point is the focus of the parabola. The fixed line is the directrix.
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Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane
parallel to cone axis

(a)

(b)

FIGURE 11.37 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, 
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular to 
L. We consider this to be a degenerate case and assume henceforth that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive 
y-axis and that the directrix is the line y = -p (Figure 11.38). In the notation of the figure, 
a point P(x, y) lies on the parabola if and only if PF = PQ. From the distance formula,

PF = 2(x - 0)2 + (y - p)2 = 2x2 + (y - p)2

PQ = 2(x - x)2 + ( y - (-p))2 = 2( y + p)2.

When we equate these expressions, square, and simplify, we get

y = x2

4p
or x2 = 4py. Standard form (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the 
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola 
x2 = 4py lies at the origin (Figure 11.38). The positive number p is the parabola’s focal 
length.

Directrix: y = −p

The vertex lies
halfway between
directrix and focus.

Q(x, −p)

P(x, y)

F(0, p)
Focus

p

p

x2 = 4py

L

x

y

FIGURE 11.38 The standard form of 
the parabola x2 = 4py, p 7 0.
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If the parabola opens downward, with its focus at (0, -p) and its directrix the line 
y = p, then Equations (1) become

y = - x2

4p
and x2 = -4py.

By interchanging the variables x and y, we obtain similar equations for parabolas opening 
to the right or to the left (Figure 11.39).

Vertex

Directrix
x = −p

0

Focus

F(p, 0)

y2 = 4px

x

y

(a)

Directrix
x = p

0

Focus

F(−p, 0)

y2 = −4px

Vertex

x

y

(b)

FIGURE 11.39 (a) The parabola y2 = 4px. (b) The parabola y2 = -4px.

EXAMPLE 1  Find the focus and directrix of the parabola y2 = 10x.

Solution We find the value of p in the standard equation y2 = 4px:

4p = 10, so p = 10
4

= 5
2

.

Then we find the focus and directrix for this value of p:

Focus: ( p, 0) = a5
2

, 0b

Directrix: x = -p or x = - 5
2

.

Ellipses

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 11.40 Points on the focal axis 
of an ellipse.

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.41), and PF1 + PF2 is denoted by 2a,
then the coordinates of a point P on the ellipse satisfy the equation

2(x + c)2 + y2 + 2(x - c)2 + y2 = 2a.

x

y

Focus Focus

Center0F1(−c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 11.41 The ellipse defined by 
the equation PF1 + PF2 = 2a is the graph 
of the equation (x2>a2) + (y2>b2) = 1,
where b2 = a2 - c2.

DEFINITIONS An ellipse is the set of points in a plane whose distances from 
two fixed points in the plane have a constant sum. The two fixed points are the 
foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on 
the axis halfway between the foci is the center. The points where the focal axis 
and ellipse cross are the ellipse’s vertices (Figure 11.40).
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To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

x2

a2 +
y2

a2 - c2 = 1. (2)

Since PF1 + PF2 is greater than the length F1F2 (by the triangle inequality for triangle 
PF1F2), the number 2a is greater than 2c. Accordingly, a 7 c and the number a2 - c2 in 
Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P
whose coordinates satisfy an equation of this form with 0 6 c 6 a also satisfies the 
equation PF1 + PF2 = 2a. A point therefore lies on the ellipse if and only if its coordi-
nates satisfy Equation (2).

If

b = 2a2 - c2, (3)

then a2 - c2 = b2 and Equation (2) takes the form

x2

a2 +
y2

b2 = 1. (4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both 
coordinate axes. It lies inside the rectangle bounded by the lines x = {a and y = {b. It 
crosses the axes at the points ({a, 0) and (0, {b). The tangents at these points are per-
pendicular to the axes because

dy
dx

= - b2x
a2y

Obtained from Eq. (4)
by implicit differentiation

is zero if x = 0 and infinite if y = 0.
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining 

the points ({a, 0). The minor axis is the line segment of length 2b joining the points 
(0, {b). The number a itself is the semimajor axis, the number b the semiminor axis.
The number c, found from Equation (3) as

c = 2a2 - b2,

is the center-to-focus distance of the ellipse. If a = b, the ellipse is a circle.

EXAMPLE 2  The ellipse

x2

16
+

y2

9 = 1 (5)

(Figure 11.42) has

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

Center@to@focus distance: c = 216 - 9 = 27

Foci: ({c, 0) = 1{27, 02
Vertices: ({a, 0) = ({4, 0)

Center: (0, 0).

If we interchange x and y in Equation (5), we have the equation

x2

9 +
y2

16
= 1. (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and verti-
ces on the y-axis. There is no confusion in analyzing Equations (5) and (6). If we find the 
intercepts on the coordinate axes, we will know which way the major axis runs because it 
is the longer of the two axes.

x

y

(0, 3)

(0, −3)

Vertex
(4, 0)

Vertex
(−4, 0)

Focus Focus

Center

0(−
"

7, 0) (
"

7, 0)

x2

16
y2

9
+ = 1

FIGURE 11.42 An ellipse with its 
major axis horizontal (Example 2).
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Standard-Form Equations for Ellipses Centered at the Origin

Foci on the x@axis:
x2

a2 +
y2

b2 = 1 (a 7 b)

Center@to@focus distance: c = 2a2 - b2

Foci: ({c, 0)

Vertices: ({a, 0)

Foci on the y@axis:
x2

b2 +
y2

a2 = 1 (a 7 b)

Center@to@focus distance: c = 2a2 - b2

Foci: (0, {c)

Vertices: (0, {a)

In each case, a is the semimajor axis and b is the semiminor axis.

Hyperbolas

DEFINITIONS A hyperbola is the set of points in a plane whose distances from 
two fixed points in the plane have a constant difference. The two fixed points are 
the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the 
axis halfway between the foci is the hyperbola’s center. The points where the 
focal axis and hyperbola cross are the vertices (Figure 11.43).

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.44) and the constant difference is 2a,
then a point (x, y) lies on the hyperbola if and only if

2(x + c)2 + y2 - 2(x - c)2 + y2 = {2a. (7)

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

x2

a2 +
y2

a2 - c2 = 1. (8)

So far, this looks just like the equation for an ellipse. But now a2 - c2 is negative because 
2a, being the difference of two sides of triangle PF1F2, is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point 
P whose coordinates satisfy an equation of this form with 0 6 a 6 c also satisfies 
Equation (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy 
Equation (8).

If we let b denote the positive square root of c2 - a2,

b = 2c2 - a2, (9)

then a2 - c2 = -b2 and Equation (8) takes the more compact form

x2

a2 -
y2

b2 = 1. (10)

Focus Focus

Center

Focal axis

Vertices

FIGURE 11.43 Points on the focal axis 
of a hyperbola.

x

y

0F1(−c, 0) F2(c, 0)

x = −a x = a

P(x, y)

FIGURE 11.44 Hyperbolas have two 
branches. For points on the right-hand 
branch of the hyperbola shown here, 
PF1 - PF2 = 2a. For points on the left-
hand branch, PF2 - PF1 = 2a. We then 
let b = 2c2 - a2.
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The differences between Equation (10) and the equation for an ellipse (Equation 4) are the 
minus sign and the new relation

c2 = a2 + b2. From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate 
axes. It crosses the x-axis at the points ({a, 0). The tangents at these points are vertical 
because

dy
dx

= b2x
a2y

Obtained from Eq. (10) by 
implicit differentiation

is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the curve lies 
between the lines x = -a and x = a.

The lines

y = {
b
a x

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find 
the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new 
equation for y:

x2

a2 -
y2

b2 = 1 S x2

a2 -
y2

b2 = 0 S y = {
b
a x.

(++)++* (++)++* (+)+*
hyperbola 0 for 1 asymptotes

EXAMPLE 3  The equation

x2

4
-

y2

5
= 1 (11)

is Equation (10) with a2 = 4 and b2 = 5 (Figure 11.45). We have

Center@to@focus distance: c = 2a2 + b2 = 24 + 5 = 3

Foci: ({c, 0) = ({3, 0), Vertices: ({a, 0) = ({2, 0)

Center: (0, 0)

Asymptotes:
x2

4
-

y2

5
= 0 or y = {

25
2

x.

If we interchange x and y in Equation (11), the foci and vertices of the resulting 
hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before, 
but now their equations will be y = {2x>25.

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x@axis:
x2

a2 -
y2

b2 = 1

Center@to@focus distance: c = 2a2 + b2

Foci: ({c, 0)

Vertices: ({a, 0)

Asymptotes:
x2

a2 -
y2

b2 = 0 or y = {
b
a x

Notice the difference in the asymptote equations (b >a in the first, a >b in the second).

Foci on the y@axis:
y2

a2 - x2

b2 = 1

Center@to@focus distance: c = 2a2 + b2

Foci: (0, {c)

Vertices: (0, {a)

Asymptotes:
y2

a2 - x2

b2 = 0 or y = {
a
b

x

x

y

F(3, 0)F(−3, 0)

2−2

y = − x"

5
2

y = x"

5
2

x2

4
y2

5
− = 1

FIGURE 11.45 The hyperbola and its 
asymptotes in Example 3.
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We shift conics using the principles reviewed in Section 1.2, replacing x by x + h and 
y by y + k.

EXAMPLE 4  Show that the equation x2 - 4y2 + 2x + 8y - 7 = 0 represents a 
hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y
as follows:

(x2 + 2x) - 4( y2 - 2y) = 7

(x2 + 2x + 1) - 4( y2 - 2y + 1) = 7 + 1 - 4

(x + 1)2

4
- ( y - 1)2 = 1.

This is the standard form Equation (10) of a hyperbola with x replaced by x + 1 and y
replaced by y - 1. The hyperbola is shifted one unit to the left and one unit upward, and it 
has center x + 1 = 0 and y - 1 = 0, or x = -1 and y = 1. Moreover,

a2 = 4, b2 = 1, c2 = a2 + b2 = 5,

so the asymptotes are the two lines

x + 1
2

- ( y - 1) = 0 and
x + 1

2
+ ( y - 1) = 0,

or

y - 1 = {
1
2

 (x + 1).

The shifted foci have coordinates 1-1 { 25, 12.

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

x2 = 2y, x2 = -6y, y2 = 8x, y2 = -4x.

Then find each parabola’s focus and directrix.

1.

x

y 2.

x

y

3.

x

y 4.

x

y

Match each conic section in Exercises 5–8 with one of these equations:

x2

4
+

y2

9
= 1,

x2

2
+ y2 = 1, 

y2

4
- x2 = 1,

x2

4
-

y2

9
= 1.

Then find the conic section’s foci and vertices. If the conic section is a 
hyperbola, find its asymptotes as well.

5.

x

y 6.

x

y

Exercises 11.6
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7.   8.

x

y

x

y

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s 
focus and directrix. Then sketch the parabola. Include the focus and 
directrix in your sketch.

9. y2 = 12x 10. x2 = 6y 11. x2 = -8y

12. y2 = -2x 13. y = 4x2 14. y = -8x2

15. x = -3y2 16. x = 2y2

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

17. 16x2 + 25y2 = 400 18. 7x2 + 16y2 = 112

19. 2x2 + y2 = 2 20. 2x2 + y2 = 4

21. 3x2 + 2y2 = 6 22. 9x2 + 10y2 = 90

23. 6x2 + 9y2 = 54 24. 169x2 + 25y2 = 4225

Exercises 25 and 26 give information about the foci and vertices of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation from the given information.

25. Foci: 1{22, 02 Vertices: ({2, 0)

26. Foci: (0, {4) Vertices: (0, {5)

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in 
standard form and find the hyperbola’s asymptotes. Then sketch the 
hyperbola. Include the asymptotes and foci in your sketch.

27. x2 - y2 = 1 28. 9x2 - 16y2 = 144

29. y2 - x2 = 8 30. y2 - x2 = 4

31. 8x2 - 2y2 = 16 32. y2 - 3x2 = 3

33. 8y2 - 2x2 = 16 34. 64x2 - 36y2 = 2304

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case, 
find the hyperbola’s standard-form equation from the information given.

Shifting Conic Sections
You may wish to review Section 1.2 before solving Exercises 39–56.

39. The parabola y2 = 8x is shifted down 2 units and right 1 unit to 
generate the parabola ( y + 2)2 = 8(x - 1).

  a. Find the new parabola’s vertex, focus, and directrix.

  b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

40. The parabola x2 = -4y is shifted left 1 unit and up 3 units to 
generate the parabola (x + 1)2 = -4(y - 3).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

41. The ellipse (x2>16) + (y2>9) = 1 is shifted 4 units to the right 
and 3 units up to generate the ellipse

(x - 4)2

16
+

(y - 3)2

9
= 1.

  a. Find the foci, vertices, and center of the new ellipse.

  b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

42. The ellipse (x2>9) + (y2>25) = 1 is shifted 3 units to the left 
and 2 units down to generate the ellipse

(x + 3)2

9
+

( y + 2)2

25
= 1.

  a. Find the foci, vertices, and center of the new ellipse.

  b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

43. The hyperbola (x2>16) - (y2>9) = 1 is shifted 2 units to the 
right to generate the hyperbola

(x - 2)2

16
-

y2

9
= 1.

  a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

  b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

44. The hyperbola (y2>4) - (x2>5) = 1 is shifted 2 units down to 
generate the hyperbola

( y + 2)2

4
- x2

5
= 1.

  a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

  b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units 
up or down and to the right or left each parabola is to be shifted. Find 
an equation for the new parabola, and find the new vertex, focus, and 
directrix.

45. y2 = 4x, left 2, down 3 46. y2 = -12x, right 4, up 3

47. x2 = 8y, right 1, down 7 48. x2 = 6y, left 3, down 2

35. Foci: 10, {222
  Asymptotes: y = {x

36. Foci: ({2, 0)

  Asymptotes: y = {
1

23
x

37. Vertices: ({3, 0)

  Asymptotes: y = {
4
3

x

38. Vertices: (0, {2)

  Asymptotes: y = {
1
2

x
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Exercises 49–52 give equations for ellipses and tell how many units up 
or down and to the right or left each ellipse is to be shifted. Find an 
equation for the new ellipse, and find the new foci, vertices, and center.

49.
x2

6
+

y2

9
= 1, left 2, down 1

50.
x2

2
+ y2 = 1, right 3, up 4

51.
x2

3
+

y2

2
= 1, right 2, up 3

52.
x2

16
+

y2

25
= 1, left 4, down 5

Exercises 53–56 give equations for hyperbolas and tell how many 
units up or down and to the right or left each hyperbola is to be 
shifted. Find an equation for the new hyperbola, and find the new cen-
ter, foci, vertices, and asymptotes.

53.
x2

4
-

y2

5
= 1, right 2, up 2

54.
x2

16
-

y2

9
= 1, left 2, down 1

55. y2 - x2 = 1, left 1, down 1

56.
y2

3
- x2 = 1, right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate, 
of the conic sections in Exercises 57–68.

57. x2 + 4x + y2 = 12

58. 2x2 + 2y2 - 28x + 12y + 114 = 0

59. x2 + 2x + 4y - 3 = 0 60. y2 - 4y - 8x - 12 = 0

61. x2 + 5y2 + 4x = 1 62. 9x2 + 6y2 + 36y = 0

63. x2 + 2y2 - 2x - 4y = -1

64. 4x2 + y2 + 8x - 2y = -1

65. x2 - y2 - 2x + 4y = 4 66. x2 - y2 + 4x - 6y = 6

67. 2x2 - y2 + 6y = 3 68. y2 - 4x2 + 16x = 24

Theory and Examples
69. If lines are drawn parallel to the coordinate axes through a point P

on the parabola y2 = kx, k 7 0, the parabola partitions the rect-
angular region bounded by these lines and the coordinate axes 
into two smaller regions, A and B.

  a. If the two smaller regions are revolved about the y-axis, show 
that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the 
regions about the x-axis?

0
x

y

A

B

P

y2 = kx

70. Suspension bridge cables hang in parabolas The suspension 
bridge cable shown in the accompanying figure supports a uni-
form load of w pounds per horizontal foot. It can be shown that 
if H is the horizontal tension of the cable at the origin, then the 
curve of the cable satisfies the equation

dy
dx

= w
H

x.

  Show that the cable hangs in a parabola by solving this differential 
equation subject to the initial condition that y = 0 when x = 0.

x

y

Bridge cable

0

71. The width of a parabola at the focus Show that the number 
4p is the width of the parabola x2 = 4py (p 7 0) at the focus by 
showing that the line y = p cuts the parabola at points that are 
4p units apart.

72. The asymptotes of (x2
,a2) − ( y2

,b2) = 1 Show that the 
vertical distance between the line y = (b>a)x and the upper half 
of the right-hand branch y = (b>a)2x2 - a2 of the hyperbola 
(x2>a2) - (y2>b2) = 1 approaches 0 by showing that

lim
xSq
aba x - b

a2x2 - a2b = b
a lim

xSq
1x - 2x2 - a22 = 0.

  Similar results hold for the remaining portions of the hyperbola 
and the lines y = {(b>a)x.

73. Area Find the dimensions of the rectangle of largest area that 
can be inscribed in the ellipse x2 + 4y2 = 4 with its sides paral-
lel to the coordinate axes. What is the area of the rectangle?

74. Volume Find the volume of the solid generated by revolving 
the region enclosed by the ellipse 9x2 + 4y2 = 36 about the 
(a) x-axis, (b) y-axis.

75. Volume The “triangular” region in the first quadrant bounded 
by the x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36
is revolved about the x-axis to generate a solid. Find the volume 
of the solid.

76. Tangents Show that the tangents to the curve y2 = 4px from 
any point on the line x = -p are perpendicular.

77. Tangents Find equations for the tangents to the circle 
(x - 2)2 + ( y - 1)2 = 5 at the points where the circle crosses 
the coordinate axes.

78. Volume The region bounded on the left by the y-axis, on the 
right by the hyperbola x2 - y2 = 1, and above and below by 
the lines y = {3 is revolved about the y-axis to generate a 
solid. Find the volume of the solid.

79. Centroid Find the centroid of the region that is bounded below 
by the x-axis and above by the ellipse (x2>9) + (y2>16) = 1.

80. Surface area The curve y = 2x2 + 1, 0 … x … 22, which 
is part of the upper branch of the hyperbola y2 - x2 = 1, is 
revolved about the x-axis to generate a surface. Find the area of 
the surface.
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81. The reflective property of parabolas The accompanying fig-
ure shows a typical point P(x0, y0) on the parabola y2 = 4px. The 
line L is tangent to the parabola at P. The parabola’s focus lies at 
F( p, 0). The ray L′ extending from P to the right is parallel to the 
x-axis. We show that light from F to P will be reflected out along 
L′ by showing that b equals a. Establish this equality by taking 
the following steps.

  a. Show that tan b = 2p>y0 .

  b. Show that tan f = y0>(x0 - p).

  c. Use the identity

tan a =
tan f - tan b

1 + tan f tan b

   to show that tan a = 2p>y0.

  Since a and b are both acute, tan b = tan a implies b = a.

This reflective property of parabolas is used in applications like 
car headlights, radio telescopes, and satellite TV dishes.

x

y

0 F( p, 0)

P(x0, y0)

f

a

b

b

L

L′

y0

y2 = 4px

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 
because satellites, moons, planets, and comets all move approximately along ellipses, 
parabolas, and hyperbolas that can be described with a single relatively simple polar coor-
dinate equation. We develop that equation here after first introducing the idea of a conic 
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, 
parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

x2

a2 +
y2

b2 = 1, (a 7 b)

for an ellipse, we can still determine c from the equation c = 2a2 - b2. If we fix a and vary 
c over the interval 0 … c … a, the resulting ellipses will vary in shape. They are circles if 
c = 0 (so that a = b) and flatten, becoming more oblong, as c increases. If c = a, the foci 
and vertices overlap and the ellipse degenerates into a line segment. Thus we are led to con-
sider the ratio e = c>a. We use this ratio for hyperbolas as well, except in this case c equals 
2a2 + b2 instead of 2a2 - b2. We define these ratios with the term eccentricity.

DEFINITION

The eccentricity of the ellipse (x2>a2) + (y2>b2) = 1 (a 7 b) is

e = c
a = 2a2 - b2

a .

The eccentricity of the hyperbola (x2>a2) - (y2>b2) = 1 is

e = c
a = 2a2 + b2

a .

The eccentricity of a parabola is e = 1.
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Whereas a parabola has one focus and one directrix, each ellipse has two foci and two 
directrices. These are the lines perpendicular to the major axis at distances {a>e from 
the center. From Figure 11.46 we see that a parabola has the property

PF = 1 # PD (1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For 
an ellipse, it can be shown that the equations that replace Equation (1) are

PF1 = e # PD1, PF2 = e # PD2 . (2)

Here, e is the eccentricity, P is any point on the ellipse, F1 and F2 are the foci, and D1 and 
D2 are the points on the directrices nearest P (Figure 11.47).

In both Equations (2) the directrix and focus must correspond; that is, if we use the 
distance from P to F1, we must also use the distance from P to the directrix at the same 
end of the ellipse. The directrix x = -a>e corresponds to F1(-c, 0), and the directrix 
x = a>e corresponds to F2(c, 0).

As with the ellipse, it can be shown that the lines x = {a>e act as directrices for the 
hyperbola and that

PF1 = e # PD1 and PF2 = e # PD2 . (3)

Here P is any point on the hyperbola, F1 and F2 are the foci, and D1 and D2 are the points 
nearest P on the directrices (Figure 11.48).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance 
between the foci to the distance between the vertices (because c>a = 2c>2a).

0 F(c, 0)

D P(x, y)

x

y
Directrix

x = −c

FIGURE 11.46 The distance from the 
focus F to any point P on a parabola equals 
the distance from P to the nearest point D
on the directrix, so PF = PD.

Eccentricity = distance between foci
distance between vertices

PF = e # PD, (4)

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a 
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation PF = e # PD unites the parabola, ellipse, and hyper-
bola in the following way. Suppose that the distance PF of a point P from a fixed point F
(the focus) is a constant multiple of its distance from a fixed line (the directrix). That is, 
suppose

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if e = 1,

(b) an ellipse of eccentricity e if e 6 1, and

(c) a hyperbola of eccentricity e if e 7 1.

As e increases (e S 1-), ellipses become more oblong, and (e S q) hyperbolas flatten 
toward two lines parallel to the directrix. There are no coordinates in Equation (4), and 
when we try to translate it into Cartesian coordinate form, it translates in different ways 
depending on the size of e. However, as we are about to see, in polar coordinates the equa-
tion PF = e # PD translates into a single equation regardless of the value of e.

Given the focus and corresponding directrix of a hyperbola centered at the origin and 
with foci on the x-axis, we can use the dimensions shown in Figure 11.48 to find e.

x

y
Directrix 1
x = −

a
e

Directrix 2
x = a

eb

−b

0

a
c = ae

a
e

D1 D2
P(x, y)

F1(−c, 0) F2(c, 0)

FIGURE 11.47 The foci and directrices 
of the ellipse (x2>a2) + (y2>b2) = 1.
Directrix 1 corresponds to focus F1 and 
directrix 2 to focus F2.

Directrix 1
x = − a

e

Directrix 2
x = a

e

a

c = ae

a
e

F1(−c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 11.48 The foci and directrices 
of the hyperbola (x2>a2) - ( y2>b2) = 1.
No matter where P lies on the hyperbola, 
PF1 = e # PD1 and PF2 = e # PD2.
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Knowing e, we can derive a Cartesian equation for the hyperbola from the equation 
PF = e # PD, as in the next example. We can find equations for ellipses centered at the ori-
gin and with foci on the x-axis in a similar way, using the dimensions shown in Figure 11.47.

EXAMPLE 1  Find a Cartesian equation for the hyperbola centered at the origin that 
has a focus at (3, 0) and the line x = 1 as the corresponding directrix.

Solution We first use the dimensions shown in Figure 11.48 to find the hyperbola’s 
eccentricity. The focus is (see Figure 11.49)

(c, 0) = (3, 0), so c = 3.

Again from Figure 11.48, the directrix is the line

x = a
e = 1, so a = e.

When combined with the equation e = c>a that defines eccentricity, these results give

e = c
a = 3

e , so e2 = 3 and e = 23.

Knowing e, we can now derive the equation we want from the equation PF = e # PD.
In the coordinates of Figure 11.49, we have

PF = e # PD Eq. (4)

2(x - 3)2 + (y - 0)2 = 23 � x - 1 � e = 23

x2 - 6x + 9 + y2 = 3(x2 - 2x + 1) Square both sides.

2x2 - y2 = 6

x2

3 -
y2

6
= 1.

Polar Equations

To find a polar equation for an ellipse, parabola, or hyperbola, we place one focus at the 
origin and the corresponding directrix to the right of the origin along the vertical line 
x = k (Figure 11.50). In polar coordinates, this makes

PF = r
and

PD = k - FB = k - r cos u.

The conic’s focus–directrix equation PF = e # PD then becomes

r = e(k - r cos u),

which can be solved for r to obtain the following expression.

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x = 1

y

x2

3
y2

6
− = 1

FIGURE 11.49 The hyperbola and 
directrix in Example 1.

Polar Equation for a Conic with Eccentricity e

r = ke
1 + e cos u

, (5)

where x = k 7 0 is the vertical directrix.

Conic section

P

F B

r

r cos u

Focus at
origin

D

x
k

x = k

Directrix

FIGURE 11.50 If a conic section is put 
in the position with its focus placed at the 
origin and a directrix perpendicular to the 
initial ray and right of the origin, we can 
find its polar equation from the conic’s 
focus–directrix equation.
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EXAMPLE 2  Here are polar equations for three conics. The eccentricity values iden-
tifying the conic are the same for both polar and Cartesian coordinates.

e = 1
2

: ellipse r = k
2 + cos u

e = 1 : parabola r = k
1 + cos u

e = 2 : hyperbola r = 2k
1 + 2 cos u

Focus at origin

Directrix x = k

r = ke
1 + e cos u

x
Focus at origin

Directrix x = −k

r = ke
1 − e cos u

x

Directrix y = k

r = ke
1 + e sin u

y

Focus at
origin

Directrix y = −k

r = ke
1 − e sin u

y
Focus at origin

(a) (b)

(c) (d)

FIGURE 11.51 Equations for conic sections with 
eccentricity e 7 0 but different locations of the directrix. 
The graphs here show a parabola, so e = 1.

EXAMPLE 3  Find an equation for the hyperbola with eccentricity 3 >2 and directrix 
x = 2.

Solution We use Equation (5) with k = 2 and e = 3>2:

r =
2(3>2)

1 + (3>2) cos u
or r = 6

2 + 3 cos u
.

You may see variations of Equation (5), depending on the location of the directrix. If 
the directrix is the line x = -k to the left of the origin (the origin is still a focus), we 
replace Equation (5) with

r = ke
1 - e cos u

.

The denominator now has a (-) instead of a (+). If the directrix is either of the lines y = k or 
y = -k, the equations have sines in them instead of cosines, as shown in Figure 11.51.

EXAMPLE 4  Find the directrix of the parabola

r = 25
10 + 10 cos u

.
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Solution We divide the numerator and denominator by 10 to put the equation in stan-
dard polar form:

r =
5>2

1 + cos u
.

This is the equation

r = ke
1 + e cos u

with k = 5>2 and e = 1. The equation of the directrix is x = 5>2.

From the ellipse diagram in Figure 11.52, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

k = a
e - ea.

From this, we find that ke = a(1 - e2). Replacing ke in Equation (5) by a(1 - e2) gives 
the standard polar equation for an ellipse.

Center
Focus at
origin

ea

a

a
e

x

Directrix
x = k

FIGURE 11.52 In an ellipse with
semimajor axis a, the focus–directrix 
distance is k = (a>e) - ea, so 
ke = a(1 - e2).

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

r =
a(1 - e2)

1 + e cos u
(6)

Notice that when e = 0, Equation (6) becomes r = a, which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point P0(r0, u0), with 
r0 Ú 0 (Figure 11.53). Then, if P(r, u) is any other point on L, the points P, P0, and O are 
the vertices of a right triangle, from which we can read the relation

r0 = r cos (u - u0).

The Standard Polar Equation for Lines

If the point P0(r0, u0) is the foot of the perpendicular from the origin to the line L,
and r0 Ú 0, then an equation for L is

r cos (u - u0) = r0. (7)

For example, if u0 = p>3 and r0 = 2, we find that

r cos au - p3 b = 2

r acos ucos 
p
3 + sin u sin 

p
3 b = 2

1
2

r cos u + 23
2

r sin u = 2, or x + 23 y = 4.

x

y

O

u0

r0

u

r

L

P(r, u)

P0(r0 , u0)

FIGURE 11.53 We can obtain a polar 
equation for line L by reading the relation 
r0 = r cos (u - u0) from the right triangle 
OP0P.
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Circles

To find a polar equation for the circle of radius a centered at P0(r0, u0), we let P(r, u) be a 
point on the circle and apply the Law of Cosines to triangle OP0P (Figure 11.54). This 
gives

a2 = r0
2 + r2 - 2r0r cos (u - u0).

If the circle passes through the origin, then r0 = a and this equation simplifies to

a2 = a2 + r2 - 2ar cos (u - u0)
r2 = 2ar cos (u - u0)
r = 2a cos (u - u0).

If the circle’s center lies on the positive x-axis, u0 = 0 and we get the further simplifica-
tion

r = 2a cos u. (8)

If the center lies on the positive y-axis, u = p>2, cos (u - p>2) = sin u, and the 
equation r = 2a cos (u - u0) becomes

r = 2a sin u. (9)

Equations for circles through the origin centered on the negative x- and y-axes can be 
obtained by replacing r with -r in the above equations.

EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for cir-
cles through the origin and having centers that lie on the x- or y-axis.

O
x

y

u0

r0
u

r

a

P(r, u)

P0(r0 , u0)

FIGURE 11.54 We can get a polar 
equation for this circle by applying the 
Law of Cosines to triangle OP0P.

Center Polar
Radius (polar coordinates) equation

3 (3, 0) r = 6 cos u

2 (2, p>2) r = 4 sin u

1 >2 (-1>2, 0) r = -cos u

1 (-1, p>2) r = -2 sin u

Ellipses and Eccentricity
In Exercises 1–8, find the eccentricity of the ellipse. Then find and 
graph the ellipse’s foci and directrices.

1. 16x2 + 25y2 = 400 2. 7x2 + 16y2 = 112

3. 2x2 + y2 = 2 4. 2x2 + y2 = 4

5. 3x2 + 2y2 = 6 6. 9x2 + 10y2 = 90

7. 6x2 + 9y2 = 54 8. 169x2 + 25y2 = 4225

Exercises 9–12 give the foci or vertices and the eccentricities of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation in Cartesian coordinates.

11. Vertices: (0, {70)

Eccentricity: 0.1

12. Vertices: ({10, 0)

Eccentricity: 0.24

Exercises 11.7

9. Foci: (0, {3)

Eccentricity: 0.5

10. Foci: ({8, 0)

Eccentricity: 0.2

Exercises 13–16 give foci and corresponding directrices of ellipses 
centered at the origin of the xy-plane. In each case, use the dimensions 
in Figure 11.47 to find the eccentricity of the ellipse. Then find the 
ellipse’s standard-form equation in Cartesian coordinates.

13. Focus: 125, 02
  Directrix: x = 9

25

14. Focus: (4, 0)

  Directrix: x = 16
3

15. Focus: (-4, 0)

  Directrix: x = -16

16. Focus: 1-22, 02
  Directrix: x = -222
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Hyperbolas and Eccentricity
In Exercises 17–24, find the eccentricity of the hyperbola. Then find 
and graph the hyperbola’s foci and directrices.

17. x2 - y2 = 1 18. 9x2 - 16y2 = 144

19. y2 - x2 = 8 20. y2 - x2 = 4

21. 8x2 - 2y2 = 16 22. y2 - 3x2 = 3

23. 8y2 - 2x2 = 16 24. 64x2 - 36y2 = 2304

Exercises 25–28 give the eccentricities and the vertices or foci of 
hyperbolas centered at the origin of the xy-plane. In each case, find the 
hyperbola’s standard-form equation in Cartesian coordinates.

25. Eccentricity: 3

  Vertices: (0, {1)

26. Eccentricity: 2

  Vertices: ({2, 0)

27. Eccentricity: 3

  Foci: ({3, 0)

28. Eccentricity: 1.25

  Foci: (0, {5)

Eccentricities and Directrices
Exercises 29–36 give the eccentricities of conic sections with one 
focus at the origin along with the directrix corresponding to that focus. 
Find a polar equation for each conic section.

29. e = 1, x = 2 30. e = 1, y = 2

31. e = 5, y = -6 32. e = 2, x = 4

33. e = 1>2, x = 1 34. e = 1>4, x = -2

35. e = 1>5, y = -10 36. e = 1>3, y = 6

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the direc-
trix that corresponds to the focus at the origin. Label the vertices with 
appropriate polar coordinates. Label the centers of the ellipses as well.

37. r = 1
1 + cos u

38. r = 6
2 + cos u

39. r = 25
10 - 5 cos u

40. r = 4
2 - 2 cos u

41. r = 400
16 + 8 sin u

42. r = 12
3 + 3 sin u

43. r = 8
2 - 2 sin u

44. r = 4
2 - sin u

Lines
Sketch the lines in Exercises 45–48 and find Cartesian equations for 
them.

45. r cos au - p
4
b = 22 46. r cos au + 3p

4
b = 1

47. r cos au - 2p
3
b = 3 48. r cos au + p

3
b = 2

Find a polar equation in the form r cos (u - u0) = r0 for each of the 
lines in Exercises 49–52.

49. 22 x + 22 y = 6 50. 23 x - y = 1

51. y = -5 52. x = -4

Circles
Sketch the circles in Exercises 53–56. Give polar coordinates for their 
centers and identify their radii.

53. r = 4 cos u 54. r = 6 sin u

55. r = -2 cos u 56. r = -8 sin u

Find polar equations for the circles in Exercises 57–64. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

57. (x - 6)2 + y2 = 36 58. (x + 2)2 + y2 = 4

59. x2 + (y - 5)2 = 25 60. x2 + (y + 7)2 = 49

61. x2 + 2x + y2 = 0 62. x2 - 16x + y2 = 0

63. x2 + y2 + y = 0 64. x2 + y2 - 4
3

y = 0

Examples of Polar Equations
Graph the lines and conic sections in Exercises 65–74.

65. r = 3 sec (u - p>3) 66. r = 4 sec (u + p>6)

67. r = 4 sin u 68. r = -2 cos u

69. r = 8>(4 + cos u) 70. r = 8>(4 + sin u)

71. r = 1>(1 - sin u) 72. r = 1>(1 + cos u)

73. r = 1>(1 + 2 sin u) 74. r = 1>(1 + 2 cos u)

75. Perihelion and aphelion A planet travels about its sun in an 
ellipse whose semimajor axis has length a. (See accompanying 
figure.)

  a. Show that r = a(1 - e) when the planet is closest to the sun 
and that r = a(1 + e) when the planet is farthest from the sun.

  b. Use the data in the table in Exercise 76 to find how close each 
planet in our solar system comes to the sun and how far away 
each planet gets from the sun.

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

u
a

76. Planetary orbits Use the data in the table below and Equation 
(6) to find polar equations for the orbits of the planets.

Semimajor axis
Planet (astronomical units) Eccentricity

Mercury 0.3871 0.2056
Venus 0.7233 0.0068
Earth 1.000 0.0167
Mars 1.524 0.0934
Jupiter 5.203 0.0484
Saturn 9.539 0.0543
Uranus 19.18 0.0460
Neptune 30.06 0.0082

T
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Chapter 11 Questions to Guide Your Review

1. What is a parametrization of a curve in the xy-plane? Does a func-
tion y = ƒ(x) always have a parametrization? Are parametriza-
tions of a curve unique? Give examples.

2. Give some typical parametrizations for lines, circles, parabolas, 
ellipses, and hyperbolas. How might the parametrized curve dif-
fer from the graph of its Cartesian equation?

3. What is a cycloid? What are typical parametric equations for 
cycloids? What physical properties account for the importance of 
cycloids?

4. What is the formula for the slope dy>dx of a parametrized curve 
x = ƒ(t), y = g(t)? When does the formula apply? When can you 
expect to be able to find d2y>dx2 as well? Give examples.

5. How can you sometimes find the area bounded by a parametrized 
curve and one of the coordinate axes?

6. How do you find the length of a smooth parametrized curve 
x = ƒ(t), y = g(t), a … t … b? What does smoothness have to 
do with length? What else do you need to know about the  param-
etrization in order to find the curve’s length? Give examples.

7. What is the arc length function for a smooth parametrized curve? 
What is its arc length differential?

8. Under what conditions can you find the area of the surface gener-
ated by revolving a curve x = ƒ(t), y = g(t), a … t … b, about 
the x-axis? the y-axis? Give examples.

9. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change 
from one coordinate system to the other?

10. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

11. How do you graph equations in polar coordinates? Include in 
your discussion symmetry, slope, behavior at the origin, and the 
use of Cartesian graphs. Give examples.

12. How do you find the area of a region 0 … r1(u) … r … r2(u),
a … u … b, in the polar coordinate plane? Give examples.

13. Under what conditions can you find the length of a curve 
r = ƒ(u), a … u … b, in the polar coordinate plane? Give an 
example of a typical calculation.

14. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a 
parabola from its equation?

15. What is an ellipse? What are the Cartesian equations for ellipses 
centered at the origin with foci on one of the coordinate axes? 
How can you find the foci, vertices, and directrices of such an 
ellipse from its equation?

16. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate 
axes? How can you find the foci, vertices, and directrices of such 
an ellipse from its equation?

17. What is the eccentricity of a conic section? How can you classify 
conic sections by eccentricity? How does eccentricity change the 
shape of ellipses and hyperbolas?

18. Explain the equation PF = e # PD.

19. What are the standard equations for lines and conic sections in 
polar coordinates? Give examples.

Chapter 11 Practice Exercises

Identifying Parametric Equations in the Plane
Exercises 1–6 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation and 
indicate the direction of motion and the portion traced by the particle.

1. x = t>2, y = t + 1; -q 6 t 6 q
2. x = 2t, y = 1 - 2t; t Ú 0

3. x = (1>2) tan t, y = (1>2) sec t; -p>2 6 t 6 p>2
4. x = -2 cos t, y = 2 sin t; 0 … t … p
5. x = -cos t, y = cos2 t; 0 … t … p
6. x = 4 cos t, y = 9 sin t; 0 … t … 2p

Finding Parametric Equations and Tangent Lines
7. Find parametric equations and a parameter interval for the 

motion of a particle in the xy-plane that traces the ellipse 
16x2 + 9y2 = 144 once counterclockwise. (There are many ways 
to do this.)

8. Find parametric equations and a parameter interval for the motion 
of a particle that starts at the point (-2, 0) in the xy-plane and traces 
the circle x2 + y2 = 4 three times clockwise. (There are many 
ways to do this.)

In Exercises 9 and 10, find an equation for the line in the xy-plane that is 
tangent to the curve at the point corresponding to the given value of t.
Also, find the value of d2y>dx2 at this point.

9. x = (1>2) tan t, y = (1>2) sec t; t = p>3
10. x = 1 + 1>t2, y = 1 - 3>t; t = 2

11. Eliminate the parameter to express the curve in the form y = ƒ(x) .

  a. x = 4t2, y = t3 - 1

  b. x = cos t, y = tan t

12. Find parametric equations for the given curve.

  a. Line through (1, -2) with slope 3

  b. (x - 1)2 + ( y + 2)2 = 9

  c. y = 4x2 - x

d. 9x2 + 4y2 = 36



700 Chapter 11: Parametric Equations and Polar Coordinates

Lengths of Curves
Find the lengths of the curves in Exercises 13–19.

13. y = x1>2 - (1>3)x3>2, 1 … x … 4

14. x = y2>3, 1 … y … 8

15. y = (5>12)x6>5 - (5>8)x4>5, 1 … x … 32

16. x = (y3>12) + (1>y), 1 … y … 2

17. x = 5 cos t - cos 5t, y = 5 sin t - sin 5t, 0 … t … p>2
18. x = t3 - 6t2, y = t3 + 6t2, 0 … t … 1

19. x = 3 cos u, y = 3 sin u, 0 … u … 3p
2

20. Find the length of the enclosed loop x = t2, y = (t3>3) - t

  shown here. The loop starts at t = -23 and ends at t = 23.

y

0

1

1

−1

2 4
x

t = ±
"

3t = 0

t > 0

t < 0

Surface Areas
Find the areas of the surfaces generated by revolving the curves in 
Exercises 21 and 22 about the indicated axes.

21. x = t2>2, y = 2t, 0 … t … 25; x-axis

22. x = t2 + 1>(2t), y = 42t, 1>22 … t … 1; y-axis

Polar to Cartesian Equations
Sketch the lines in Exercises 23–28. Also, find a Cartesian equation 
for each line.

23. r cos au + p
3
b = 223 24. r cos au - 3p

4
b = 22

2

25. r = 2 sec u 26. r = -22 sec u

27. r = - (3>2) csc u 28. r = 13232 csc u

Find Cartesian equations for the circles in Exercises 29–32. Sketch 
each circle in the coordinate plane and label it with both its Cartesian 
and polar equations.

29. r = -4 sin u 30. r = 323 sin u

31. r = 222 cos u 32. r = -6 cos u

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 33–36. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

33. x2 + y2 + 5y = 0 34. x2 + y2 - 2y = 0

35. x2 + y2 - 3x = 0 36. x2 + y2 + 4x = 0

Graphs in Polar Coordinates
Sketch the regions defined by the polar coordinate inequalities in 
Exercises 37 and 38.

37. 0 … r … 6 cos u 38. -4 sin u … r … 0

Match each graph in Exercises 39–46 with the appropriate equation 
(a)–(l). There are more equations than graphs, so some equations will 
not be matched.

  a. r = cos 2u b. r cos u = 1 c. r = 6
1 - 2 cos u

  d. r = sin 2u e. r = u f. r2 = cos 2u

  g. r = 1 + cos u h. r = 1 - sin u i. r = 2
1 - cos u

  j. r2 = sin 2u k. r = -sin u l. r = 2 cos u + 1

39. Four-leaved rose 40. Spiral

x

y

x

y

41. Limaçon 42. Lemniscate

x

y

x

y

43. Circle 44. Cardioid

x

y

x

y

45. Parabola 46. Lemniscate

x

y

x

y

Area in Polar Coordinates
Find the areas of the regions in the polar coordinate plane described in 
Exercises 47–50.

47. Enclosed by the limaçon r = 2 - cos u

48. Enclosed by one leaf of the three-leaved rose r = sin 3u

49. Inside the “figure eight” r = 1 + cos 2u and outside the circle 
r = 1

50. Inside the cardioid r = 2(1 + sin u) and outside the circle 
r = 2 sin u
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Length in Polar Coordinates
Find the lengths of the curves given by the polar coordinate equations 
in Exercises 51–54.

51. r = -1 + cos u

52. r = 2 sin u + 2 cos u, 0 … u … p>2
53. r = 8 sin3(u>3), 0 … u … p>4
54. r = 21 + cos 2u, -p>2 … u … p>2
Graphing Conic Sections
Sketch the parabolas in Exercises 55–58. Include the focus and direc-
trix in each sketch.

55. x2 = -4y 56. x2 = 2y

57. y2 = 3x 58. y2 = - (8>3)x

Find the eccentricities of the ellipses and hyperbolas in Exercises 
59–62. Sketch each conic section. Include the foci, vertices, and 
asymptotes (as appropriate) in your sketch.

59. 16x2 + 7y2 = 112 60. x2 + 2y2 = 4

61. 3x2 - y2 = 3 62. 5y2 - 4x2 = 20

Exercises 63–68 give equations for conic sections and tell how many 
units up or down and to the right or left each curve is to be shifted. 
Find an equation for the new conic section, and find the new foci, 
vertices, centers, and asymptotes, as appropriate. If the curve is a 
parabola, find the new directrix as well.

63. x2 = -12y, right 2, up 3 64. y2 = 10x, left 1>2, down 1

65.
x2

9
+

y2

25
= 1, left 3, down 5

66.
x2

169
+

y2

144
= 1, right 5, up 12

67.
y2

8
- x2

2
= 1, right 2, up 222

68.
x2

36
-

y2

64
= 1, left 10, down 3

Identifying Conic Sections
Complete the squares to identify the conic sections in Exercises 69–76. 
Find their foci, vertices, centers, and asymptotes (as appropriate). If the 
curve is a parabola, find its directrix as well.

69. x2 - 4x - 4y2 = 0 70. 4x2 - y2 + 4y = 8

71. y2 - 2y + 16x = -49 72. x2 - 2x + 8y = -17

73. 9x2 + 16y2 + 54x - 64y = -1

74. 25x2 + 9y2 - 100x + 54y = 44

75. x2 + y2 - 2x - 2y = 0 76. x2 + y2 + 4x + 2y = 1

Conics in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given 
in Exercises 77–80. Give polar coordinates for the vertices and, in the 
case of ellipses, for the centers as well.

77. r = 2
1 + cos u

78. r = 8
2 + cos u

79. r = 6
1 - 2 cos u

80. r = 12
3 + sin u

Exercises 81–84 give the eccentricities of conic sections with one 
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

81. e = 2, r cos u = 2

82. e = 1, r cos u = -4

83. e = 1>2, r sin u = 2

84. e = 1>3, r sin u = -6

Theory and Examples
85. Find the volume of the solid generated by revolving the region 

enclosed by the ellipse 9x2 + 4y2 = 36 about (a) the x-axis,
(b) the y-axis.

86. The “triangular” region in the first quadrant bounded by the 
x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36 is 
revolved about the x-axis to generate a solid. Find the volume of 
the solid.

87. Show that the equations x = r cos u, y = r sin u transform the 
polar equation

r = k
1 + e cos u

  into the Cartesian equation

(1 - e2)x2 + y2 + 2kex - k2 = 0.

88. Archimedes spirals The graph of an equation of the form 
r = au, where a is a nonzero constant, is called an Archimedes
spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

Chapter 11 Additional and Advanced Exercises

Finding Conic Sections
1. Find an equation for the parabola with focus (4, 0) and directrix 

x = 3. Sketch the parabola together with its vertex, focus, and 
directrix.

2. Find the vertex, focus, and directrix of the parabola

x2 - 6x - 12y + 9 = 0.

3. Find an equation for the curve traced by the point P(x, y) if the 
distance from P to the vertex of the parabola x2 = 4y is twice the 
distance from P to the focus. Identify the curve.

4. A line segment of length a + b runs from the x-axis to the y-axis.
The point P on the segment lies a units from one end and b units 
from the other end. Show that P traces an ellipse as the ends of 
the segment slide along the axes.

5. The vertices of an ellipse of eccentricity 0.5 lie at the points 
(0, {2). Where do the foci lie?

6. Find an equation for the ellipse of eccentricity 2 >3 that has the 
line x = 2 as a directrix and the point (4, 0) as the corresponding 
focus.



702 Chapter 11: Parametric Equations and Polar Coordinates

7. One focus of a hyperbola lies at the point (0, -7) and the corre-
sponding directrix is the line y = -1. Find an equation for the 
hyperbola if its eccentricity is (a) 2, (b) 5.

8. Find an equation for the hyperbola with foci (0, -2) and (0, 2)
that passes through the point (12, 7).

9. Show that the line

b2xx1 + a2yy1 - a2b2 = 0

  is tangent to the ellipse b2x2 + a2y2 - a2b2 = 0 at the point 
(x1, y1) on the ellipse.

10. Show that the line

b2xx1 - a2yy1 - a2b2 = 0

  is tangent to the hyperbola b2x2 - a2y2 - a2b2 = 0 at the point 
(x1, y1) on the hyperbola.

Equations and Inequalities
What points in the xy-plane satisfy the equations and inequalities in 
Exercises 11–16? Draw a figure for each exercise.

11. (x2 - y2 - 1)(x2 + y2 - 25)(x2 + 4y2 - 4) = 0

12. (x + y)(x2 + y2 - 1) = 0

13. (x2>9) + ( y2>16) … 1

14. (x2>9) - ( y2>16) … 1

15. (9x2 + 4y2 - 36)(4x2 + 9y2 - 16) … 0

16. (9x2 + 4y2 - 36)(4x2 + 9y2 - 16) 7 0

Polar Coordinates
17. a. Find an equation in polar coordinates for the curve

x = e2t cos t, y = e2t sin t; -q 6 t 6 q.

  b. Find the length of the curve from t = 0 to t = 2p.

18. Find the length of the curve r = 2 sin3(u>3), 0 … u … 3p, in the 
polar coordinate plane.

Exercises 19–22 give the eccentricities of conic sections with one 
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

19. e = 2, r cos u = 2 20. e = 1, r cos u = -4

21. e = 1>2, r sin u = 2 22. e = 1>3, r sin u = -6

Theory and Examples
23. Epicycloids When a circle rolls externally along the circumfer-

ence of a second, fixed circle, any point P on the circumference 
of the rolling circle describes an epicycloid, as shown here. Let 
the fixed circle have its center at the origin O and have radius a.

x

y

O

u

b
C

P

A(a, 0)

  Let the radius of the rolling circle be b and let the initial position 
of the tracing point P be A(a, 0). Find parametric equations for 
the epicycloid, using as the parameter the angle u from the posi-
tive x-axis to the line through the circles’ centers.

24. Find the centroid of the region enclosed by the x-axis and the 
cycloid arch

x = a(t - sin t), y = a(1 - cos t); 0 … t … 2p.

The Angle Between the Radius Vector and the Tangent Line to a 
Polar Coordinate Curve In Cartesian coordinates, when we want 
to discuss the direction of a curve at a point, we use the angle f mea-
sured counterclockwise from the positive x-axis to the tangent line. In 
polar coordinates, it is more convenient to calculate the angle c from 
the radius vector to the tangent line (see the accompanying figure). 
The angle f can then be calculated from the relation

f = u + c, (1)

which comes from applying the Exterior Angle Theorem to the trian-
gle in the accompanying figure.

x

y

0
u f

c

r

r = f (u)

P(r, u)

Suppose the equation of the curve is given in the form r = ƒ(u),
where ƒ(u) is a differentiable function of u. Then

x = r cos u and y = r sin u (2)

are differentiable functions of u with

dx
du

= -r sin u + cos u
dr
du

,

dy
du

= r cos u + sin u
dr
du

. (3)

Since c = f - u from (1),

tan c = tan (f - u) =
tan f - tan u

1 + tan f tan u
.

Furthermore,

tan f =
dy
dx

=
dy>du
dx>du

because tan f is the slope of the curve at P. Also,

tan u =
y
x .

Hence

tan c =

dy>du
dx>du -

y
x

1 +
y
x

dy>du
dx>du

=
x

dy
du

- y
dx
du

x
dx
du

+ y
dy
du

. (4)

The numerator in the last expression in Equation (4) is found from 
Equations (2) and (3) to be

x
dy
du

- y
dx
du

= r2.



Similarly, the denominator is

x
dx
du

+ y
dy
du

= r
dr
du

.

When we substitute these into Equation (4), we obtain

tan c = r
dr>du

. (5)

This is the equation we use for finding c as a function of u.

25. Show, by reference to a figure, that the angle b between the tan-
gents to two curves at a point of intersection may be found from 
the formula

tan b =
tan c2 - tan c1

1 + tan c2 tan c1
. (6)

When will the two curves intersect at right angles?

26. Find the value of tan c for the curve r = sin4(u>4).

27. Find the angle between the radius vector to the curve r =
2a sin 3u and its tangent when u = p>6.

28. a. Graph the hyperbolic spiral ru = 1. What appears to happen 
to c as the spiral winds in around the origin?

b. Confirm your finding in part (a) analytically.

29. The circles r = 23 cos u and r = sin u intersect at the point 
123>2, p>32. Show that their tangents are perpendicular there.

30. Find the angle at which the cardioid r = a(1 - cos u) crosses 
the ray u = p>2.

T

Chapter 11 Technology Application Projects

Mathematica ,Maple Modules:

Radar Tracking of a Moving Object
Part I: Convert from polar to Cartesian coordinates.

Parametric and Polar Equations with a Figure Skater
Part I: Visualize position, velocity, and acceleration to analyze motion defined by parametric equations.
Part II: Find and analyze the equations of motion for a figure skater tracing a polar plot.

Chapter 11  Technology Application Projects 703
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OVERVIEW This chapter is foundational to the study of multivariable calculus. To apply 
calculus in many real-world situations and in higher mathematics, we need an analytic 
geometry to describe three-dimensional space. To accomplish this objective, we introduce 
three-dimensional coordinate systems and vectors. Building on what we already know 
about coordinates in the xy-plane, we establish coordinates in space by adding a third axis 
that measures distance above and below the xy-plane. Then we define vectors and use 
them to study the analytic geometry of space. Vectors provide simple ways to define 
equations for lines, planes, curves, and surfaces in space. We use these geometric concepts 
throughout the remainder of the text to study motion in space and the calculus of functions 
of several variables and vector fields, with their many important applications in science, 
engineering, operations research, economics, and higher mathematics.

12.1 Three-Dimensional Coordinate Systems

To locate a point in space, we use three mutually perpendicular coordinate axes, arranged 
as in Figure 12.1. The axes shown there make a right-handed coordinate frame. When you 
hold your right hand so that the fingers curl from the positive x-axis toward the positive 
y-axis, your thumb points along the positive z-axis. So when you look down on the xy-
plane from the positive direction of the z-axis, positive angles in the plane are measured 
counterclockwise from the positive x-axis and around the positive z-axis. (In a left-handed
coordinate frame, the z-axis would point downward in Figure 12.1 and angles in the plane 
would be positive when measured clockwise from the positive x-axis. Right-handed and 
left-handed coordinate frames are not equivalent.)

The Cartesian coordinates (x, y, z) of a point P in space are the values at which the 
planes through P perpendicular to the axes cut the axes. Cartesian coordinates for space 
are also called rectangular coordinates because the axes that define them meet at right 
angles. Points on the x-axis have y- and z-coordinates equal to zero. That is, they have 
coordinates of the form (x, 0, 0). Similarly, points on the y-axis have coordinates of the 
form (0, y, 0), and points on the z-axis have coordinates of the form (0, 0, z).

The planes determined by the coordinates axes are the xy-plane, whose standard 
equation is z = 0; the yz-plane, whose standard equation is x = 0; and the xz-plane,
whose standard equation is y = 0. They meet at the origin (0, 0, 0) (Figure 12.2). The 
origin is also identified by simply 0 or sometimes the letter O.

The three coordinate planes x = 0, y = 0, and z = 0 divide space into eight cells 
called octants. The octant in which the point coordinates are all positive is called the first 
octant; there is no convention for numbering the other seven octants.

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this 
being the number at which that plane cuts the x-axis. The y- and z-coordinates can be any 
numbers. Similarly, the points in a plane perpendicular to the y-axis have a common 

Vectors and the  
Geometry of Space

12

z

x

(x, 0, 0)

(x, y, 0)

(x, 0, z)

(0, 0, z)

(0, y, z)

(0, y, 0)

x = constant

y = constant

z = constant

y

P(x, y, z)0

FIGURE 12.1 The Cartesian coordinate 
system is right-handed.
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y-coordinate and the points in a plane perpendicular to the z-axis have a common z-coordi-
nate. To write equations for these planes, we name the common coordinate’s value. The 
plane x = 2 is the plane perpendicular to the x-axis at x = 2. The plane y = 3 is the 
plane perpendicular to the y-axis at y = 3. The plane z = 5 is the plane perpendicular to 
the z-axis at z = 5. Figure 12.3 shows the planes x = 2, y = 3, and z = 5, together with 
their intersection point (2, 3, 5).

The planes x = 2 and y = 3 in Figure 12.3 intersect in a line parallel to the z-axis.
This line is described by the pair of equations x = 2, y = 3. A point (x, y, z) lies on the 
line if and only if x = 2 and y = 3. Similarly, the line of intersection of the planes y = 3
and z = 5 is described by the equation pair y = 3, z = 5. This line runs parallel to the 
x-axis. The line of intersection of the planes x = 2 and z = 5, parallel to the y-axis, is 
described by the equation pair x = 2, z = 5.

In the following examples, we match coordinate equations and inequalities with the 
sets of points they define in space.

EXAMPLE 1  We interpret these equations and inequalities geometrically.

(a) z Ú 0 The half-space consisting of the points on and above 
the xy-plane.

(b) x = -3 The plane perpendicular to the x-axis at x = -3. This 
plane lies parallel to the yz-plane and 3 units behind it.

(c) z = 0, x … 0, y Ú 0 The second quadrant of the xy-plane.

(d) x Ú 0, y Ú 0, z Ú 0 The first octant.

(e) -1 … y … 1 The slab between the planes y = -1 and y = 1
(planes included).

(f) y = -2, z = 2 The line in which the planes y = -2 and z = 2 inter-
sect. Alternatively, the line through the point (0, -2, 2)
parallel to the x-axis.

EXAMPLE 2  What points P(x, y, z) satisfy the equations

x2 + y2 = 4 and z = 3?

Solution The points lie in the horizontal plane z = 3 and, in this plane, make up the 
circle x2 + y2 = 4. We call this set of points “the circle x2 + y2 = 4 in the plane z = 3”
or, more simply, “the circle x2 + y2 = 4, z = 3” (Figure 12.4).

z

yz-plane: x = 0

xz-plane: y = 0

xy-plane: z = 0

y

x

(0, 0, 0)

Origin

FIGURE 12.2 The planes x = 0, y = 0, and z = 0 divide 
space into eight octants.

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y = 3, z = 5

Line x = 2, z = 5

Plane y = 3

Line x = 2, y = 3

Plane z = 5

Plane x = 2

FIGURE 12.3 The planes x = 2, y = 3, and 
z = 5 determine three lines through the point (2, 3, 5).

x

z

(0, 2, 0)

y(2, 0, 0)

(0, 2, 3)

The circle
x2 + y2 = 4, z = 3

The plane
z = 3

x2 + y2 = 4, z = 0

(2, 0, 3)

FIGURE 12.4 The circle x2 + y2 = 4
in the plane z = 3 (Example 2).
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Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.

The Distance Between P1(x1, y1, z1)  and P2(x2, y2, z2)

0P1P2 0 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

Proof  We construct a rectangular box with faces parallel to the coordinate planes and 
the points P1 and P2 at opposite corners of the box (Figure 12.5). If A(x2, y1, z1) and 
B(x2, y2, z1) are the vertices of the box indicated in the figure, then the three box edges 
P1A, AB, and BP2 have lengths

0P1A 0 = 0 x2 - x1 0 , 0AB 0 = 0 y2 - y1 0 , 0BP2 0 = 0 z2 - z1 0 .
Because triangles P1BP2 and P1AB are both right-angled, two applications of the Pythago-
rean theorem give

0P1P2 0 2 = 0P1B 0 2 + 0BP2 0 2 and 0P1B 0 2 = 0P1A 0 2 + 0AB 0 2
(see Figure 12.5). So

0P1P2 0 2 = 0P1B 0 2 + 0BP2 0 2
= 0P1A 0 2 + 0AB 0 2 + 0BP2 0 2 Substitute0P1B 0 2 = 0P1A 0 2 + 0AB 0 2.
= 0 x2 - x1 0 2 + 0 y2 - y1 0 2 + 0 z2 - z1 0 2
= (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 .

Therefore

0P1P2 0 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2.

EXAMPLE 3  The distance between P1(2, 1, 5) and P2(-2, 3, 0) is

0P1P2 0 = 2(-2 - 2)2 + (3 - 1)2 + (0 - 5)2

= 216 + 4 + 25

= 245 ≈ 6.708.

We can use the distance formula to write equations for spheres in space (Figure 12.6). 
A point P(x, y, z) lies on the sphere of radius a centered at P0(x0, y0, z0) precisely when 0P0P 0 = a or

(x - x0)2 + (y - y0)2 + (z - z0)2 = a2.

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 12.5 We find the distance 
between P1 and P2 by applying the
Pythagorean theorem to the right
triangles P1AB and P1BP2.

P0(x0, y0, z0)
P(x, y, z)

a

y

z

0

x

FIGURE 12.6 The sphere of radius a
centered at the point (x0, y0, z0).

The Standard Equation for the Sphere of Radius a and Center (x0, y0, z0)

(x - x0)2 + (y - y0)2 + (z - z0)2 = a2

EXAMPLE 4  Find the center and radius of the sphere

x2 + y2 + z2 + 3x - 4z + 1 = 0.

Solution We find the center and radius of a sphere the way we find the center and radius 
of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each 
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quadratic as a squared linear expression. Then, from the equation in standard form, read 
off the center and radius. For the sphere here, we have

x2 + y2 + z2 + 3x - 4z + 1 = 0

(x2 + 3x) + y2 + (z2 - 4z) = -1

ax2 + 3x + a3
2
b2b + y2 + az2 - 4z + a-4

2
b2b = -1 + a3

2
b2

+ a-4
2
b2

ax + 3
2
b2

+ y2 + (z - 2)2 = -1 + 9
4

+ 4 = 21
4

.

From this standard form, we read that x0 = -3>2, y0 = 0, z0 = 2, and a = 221>2. The 

center is (-3>2, 0, 2). The radius is 221>2.

EXAMPLE 5  Here are some geometric interpretations of inequalities and equations 
involving spheres.

(a) x2 + y2 + z2 6 4 The interior of the sphere x2 + y2 + z2 = 4.

(b) x2 + y2 + z2 … 4 The solid ball bounded by the sphere x2 + y2 +
z2 = 4. Alternatively, the sphere x2 + y2 + z2 =
4 together with its interior.

(c) x2 + y2 + z2 7 4 The exterior of the sphere x2 + y2 + z2 = 4.

(d) x2 + y2 + z2 = 4, z … 0  The lower hemisphere cut from the sphere x2 +
y2 + z2 = 4 by the xy-plane (the plane z = 0).

Just as polar coordinates give another way to locate points in the xy-plane (Section 
11.3), alternative coordinate systems, different from the Cartesian coordinate system 
developed here, exist for three-dimensional space. We examine two of these coordinate 
systems in Section 15.7.

Geometric Interpretations of Equations
In Exercises 1–16, give a geometric description of the set of points in 
space whose coordinates satisfy the given pairs of equations.

1. x = 2, y = 3 2. x = -1, z = 0

3. y = 0, z = 0 4. x = 1, y = 0

5. x2 + y2 = 4, z = 0 6. x2 + y2 = 4, z = -2

7. x2 + z2 = 4, y = 0 8. y2 + z2 = 1, x = 0

9. x2 + y2 + z2 = 1, x = 0

10. x2 + y2 + z2 = 25, y = -4

11. x2 + y2 + (z + 3)2 = 25, z = 0

12. x2 + (y - 1)2 + z2 = 4, y = 0

13. x2 + y2 = 4, z = y

14. x2 + y2 + z2 = 4, y = x

15. y = x2, z = 0

16. z = y2, x = 1

Geometric Interpretations of Inequalities and Equations
In Exercises 17–24, describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and 
inequalities.

17. a. x Ú 0, y Ú 0, z = 0 b. x Ú 0, y … 0, z = 0

18. a. 0 … x … 1 b. 0 … x … 1, 0 … y … 1

c. 0 … x … 1, 0 … y … 1, 0 … z … 1

19. a. x2 + y2 + z2 … 1 b. x2 + y2 + z2 7 1

20. a. x2 + y2 … 1, z = 0 b. x2 + y2 … 1, z = 3

c. x2 + y2 … 1, no restriction on z

21. a. 1 … x2 + y2 + z2 … 4

b. x2 + y2 + z2 … 1, z Ú 0

22. a. x = y, z = 0 b. x = y, no restriction on z

23. a. y Ú x2, z Ú 0 b. x … y2, 0 … z … 2

24. a. z = 1 - y, no restriction on x

b. z = y3, x = 2

Exercises 12.1
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44. P1(3, 4, 5), P2(2, 3, 4)

45. P1(0, 0, 0), P2(2, -2, -2)

46. P1(5, 3, -2), P2(0, 0, 0)

Spheres
Find the centers and radii of the spheres in Exercises 47–50.

47. (x + 2)2 + y2 + (z - 2)2 = 8

48. (x - 1)2 + ay + 1
2
b2

+ (z + 3)2 = 25

49. 1x - 2222 + 1y - 2222 + 1z + 2222 = 2

50. x2 + ay + 1
3
b2

+ az - 1
3
b2

= 16
9

Find equations for the spheres whose centers and radii are given in 
Exercises 51–54.

  Center Radius

51. (1, 2, 3) 214

52. (0, -1, 5) 2

53. a-1,
1
2

, - 2
3
b 4

9

54. (0, -7, 0) 7

Find the centers and radii of the spheres in Exercises 55–58.

55. x2 + y2 + z2 + 4x - 4z = 0

56. x2 + y2 + z2 - 6y + 8z = 0

57. 2x2 + 2y2 + 2z2 + x + y + z = 9

58. 3x2 + 3y2 + 3z2 + 2y - 2z = 9

Theory and Examples
59. Find a formula for the distance from the point P(x, y, z) to the

a. x-axis. b. y-axis. c. z-axis.

60. Find a formula for the distance from the point P(x, y, z) to the

a. xy-plane. b. yz-plane. c. xz-plane.

61. Find the perimeter of the triangle with vertices A(-1, 2, 1),
B(1, -1, 3), and C(3, 4, 5).

62. Show that the point P(3, 1, 2) is equidistant from the points 
A(2, -1, 3) and B(4, 3, 1).

63. Find an equation for the set of all points equidistant from the 
planes y = 3 and y = -1.

64. Find an equation for the set of all points equidistant from the 
point (0, 0, 2) and the xy-plane.

65. Find the point on the sphere x2 + (y - 3)2 + (z + 5)2 = 4
nearest

a. the xy-plane. b. the point (0, 7, -5).

66. Find the point equidistant from the points (0, 0, 0), (0, 4, 0), 
(3, 0, 0), and (2, 2, -3).

In Exercises 25–34, describe the given set with a single equation or 
with a pair of equations.

25. The plane perpendicular to the

a. x-axis at (3, 0, 0) b. y-axis at (0, -1, 0)

c. z-axis at (0, 0, -2)

26. The plane through the point (3, -1, 2) perpendicular to the

a. x-axis b. y-axis c. z-axis

27. The plane through the point (3, -1, 1) parallel to the

a. xy-plane b. yz-plane c. xz-plane

28. The circle of radius 2 centered at (0, 0, 0) and lying in the

a. xy-plane b. yz-plane c. xz-plane

29. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane b. yz-plane c. plane y = 2

30. The circle of radius 1 centered at (-3, 4, 1) and lying in a plane 
parallel to the

a. xy-plane b. yz-plane c. xz-plane

31. The line through the point (1, 3, -1) parallel to the

a. x-axis b. y-axis c. z-axis

32. The set of points in space equidistant from the origin and the 
point (0, 2, 0)

33. The circle in which the plane through the point (1, 1, 3) perpen-
dicular to the z-axis meets the sphere of radius 5 centered at the 
origin

34. The set of points in space that lie 2 units from the point (0, 0, 1) 
and, at the same time, 2 units from the point (0, 0, -1)

Inequalities to Describe Sets of Points
Write inequalities to describe the sets in Exercises 35–40.

35. The slab bounded by the planes z = 0 and z = 1 (planes 
included)

36. The solid cube in the first octant bounded by the coordinate 
planes and the planes x = 2, y = 2, and z = 2

37. The half-space consisting of the points on and below the xy-plane

38. The upper hemisphere of the sphere of radius 1 centered at the 
origin

39. The (a) interior and (b) exterior of the sphere of radius 1 centered 
at the point (1, 1, 1)

40. The closed region bounded by the spheres of radius 1 and radius 2 
centered at the origin. (Closed means the spheres are to be 
included. Had we wanted the spheres left out, we would have 
asked for the open region bounded by the spheres. This is analo-
gous to the way we use closed and open to describe intervals: 
closed means endpoints included, open means endpoints left out. 
Closed sets include boundaries; open sets leave them out.)

Distance
In Exercises 41–46, find the distance between points P1 and P2.

41. P1(1, 1, 1), P2(3, 3, 0)

42. P1(-1, 1, 5), P2(2, 5, 0)

43. P1(1, 4, 5), P2(4, -2, 7)
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12.2 Vectors

Some of the things we measure are determined simply by their magnitudes. To record 
mass, length, or time, for example, we need only write down a number and name an appro-
priate unit of measure. We need more information to describe a force, displacement, or 
velocity. To describe a force, we need to record the direction in which it acts as well as 
how large it is. To describe a body’s displacement, we have to say in what direction it 
moved as well as how far. To describe a body’s velocity, we have to know where the body 
is headed as well as how fast it is going. In this section we show how to represent things 
that have both magnitude and direction in the plane or in space.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by 
a directed line segment (Figure 12.7). The arrow points in the direction of the action and 
its length gives the magnitude of the action in terms of a suitably chosen unit. For exam-
ple, a force vector points in the direction in which the force acts and its length is a measure 
of the force’s strength; a velocity vector points in the direction of motion and its length is 
the speed of the moving object. Figure 12.8 displays the velocity vector v at a specific  
location for a particle moving along a path in the plane or in space. (This application of 
vectors is studied in Chapter 13.)

Initial
point

Terminal
point

A

B

AB

FIGURE 12.7 The directed line 
segment rAB  is called a vector.

x

y

y

z

0
0

x

v v

(a)  two dimensions (b)  three dimensions

FIGURE 12.8 The velocity vector of a particle moving along a path 
(a) in the plane (b) in space. The arrowhead on the path indicates the 
direction of motion of the particle.

The arrows we use when we draw vectors are understood to represent the same vector 
if they have the same length, are parallel, and point in the same direction (Figure 12.9) 
regardless of the initial point.

In textbooks, vectors are usually written in lowercase, boldface letters, for example u,
v, and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector. 
In handwritten form, it is customary to draw small arrows above the letters, for example us,
ys, ws, and Fs.

We need a way to represent vectors algebraically so that we can be more precise about 
the direction of a vector. Let v = rPQ. There is one directed line segment equal to rPQ
whose initial point is the origin (Figure 12.10). It is the representative of v in standard
position and is the vector we normally use to represent v. We can specify v by writing the 

DEFINITIONS The vector represented by the directed line segment rAB has 
initial point A and terminal point B and its length is denoted by 0rAB 0 . Two 
vectors are equal if they have the same length and direction.

x

y

O

A

P

D

C

F

E

B

FIGURE 12.9 The four arrows in the 
plane (directed line segments) shown here 
have the same length and direction. They 
therefore represent the same vector, and 
we write rAB = rCD = rOP = rEF.

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(v1, v2, v3)Position vector
of PQ

v = ⟨v1, v2, v3⟩ v3

v1
v2

FIGURE 12.10 A vector rPQ  in stan-
dard position has its initial point at the 
origin. The directed line segments rPQ  and 
v are parallel and have the same length.
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coordinates of its terminal point (v1, v2, v3) when v is in standard position. If v is a vector 
in the plane its terminal point (v1, v2) has two coordinates.

DEFINITION If v is a two-dimensional vector in the plane equal to the vector 
with initial point at the origin and terminal point (v1, v2), then the component
form of v is

v = 8v1, v29 .
If v is a three-dimensional vector equal to the vector with initial point at the ori-
gin and terminal point (v1, v2, v3), then the component form of v is

v = 8v1, v2, v39 .

The magnitude or length of the vector v = rPQ  is the nonnegative number

0 v 0 = 2v1
2 + v2

2 + v3
2 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

(see Figure 12.10).

The only vector with length 0 is the zero vector 0 = 80, 09  or 0 = 80, 0, 09 . This 
vector is also the only vector with no specific direction.

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial 
point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector v representing rPQ  has components

v1 = x2 - x1 = -5 - (-3) = -2, v2 = y2 - y1 = 2 - 4 = -2,

So a two-dimensional vector is an ordered pair v = 8v1, v29  of real numbers, and a 
three-dimensional vector is an ordered triple v = 8v1, v2, v39  of real numbers. The num-
bers v1, v2, and v3 are the components of v.

If v = 8v1, v2, v39  is represented by the directed line segment rPQ, where the initial 
point is P(x1, y1, z1) and the terminal point is Q(x2, y2, z2), then x1 + v1 = x2, y1 + v2 = y2,
and z1 + v3 = z2 (see Figure 12.10). Thus, v1 = x2 - x1, v2 = y2 - y1, and v3 = z2 - z1

are the components of rPQ.
In summary, given the points P(x1, y1, z1) and Q(x2, y2, z2), the standard position vec-

tor v = 8v1, v2, v39  equal to rPQ  is

v = 8x2 - x1, y2 - y1, z2 - z19 .
If v is two-dimensional with P(x1, y1) and Q(x2, y2) as points in the plane, then 
v = 8x2 - x1, y2 - y19 . There is no third component for planar vectors. With this under-
standing, we will develop the algebra of three-dimensional vectors and simply drop the 
third component when the vector is two-dimensional (a planar vector).

Two vectors are equal if and only if their standard position vectors are identical. Thus 8u1, u2, u39  and 8v1, v2, v39  are equal if and only if u1 = v1, u2 = v2, and u3 = v3.
The magnitude or length of the vector rPQ is the length of any of its equivalent 

directed line segment representations. In particular, if v = 8x2 - x1, y2 - y1, z2 - z19  is 
the standard position vector for rPQ, then the distance formula gives the magnitude or 
length of v, denoted by the symbol 0 v 0  or 7v 7 .

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
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  and

v3 = z2 - z1 = 2 - 1 = 1.

  The component form of rPQ  is

v = 8-2, -2, 19 .
(b) The length or magnitude of v = rPQ  is

0 v 0 = 2(-2)2 + (-2)2 + (1)2 = 29 = 3.

EXAMPLE 2  A small cart is being pulled along a smooth horizontal floor with a 20-lb 
force F making a 45° angle to the floor (Figure 12.11). What is the effective force moving 
the cart forward?

Solution The effective force is the horizontal component of F = 8a, b9 , given by

a = 0F 0 cos 45° = (20)a22
2
b ≈ 14.14 lb.

Notice that F is a two-dimensional vector.

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication.
A scalar is simply a real number, and is called such when we want to draw attention to its 
differences from vectors. Scalars can be positive, negative, or zero and are used to “scale” 
a vector by multiplication.

x

y

45

F = ⟨a, b⟩

FIGURE 12.11 The force pulling the 
cart forward is represented by the vector 
F whose horizontal component is the
effective force (Example 2).

DEFINITIONS Let u = 8u1, u2, u39  and v = 8v1, v2, v39  be vectors with k a 
scalar.

Addition:  u + v = 8u1 + v1, u2 + v2, u3 + v39
Scalar multiplication: ku = 8ku1, ku2, ku39

We add vectors by adding the corresponding components of the vectors. We multiply 
a vector by a scalar by multiplying each component by the scalar. The definitions apply to 
planar vectors except there are only two components, 8u1, u29  and 8v1, v29 .

The definition of vector addition is illustrated geometrically for planar vectors in Fig-
ure 12.12a, where the initial point of one vector is placed at the terminal point of the other. 
Another interpretation is shown in Figure 12.12b (called the parallelogram law of 

⟨u1  +  v1, u2 +  v2⟩

v2

v1

u2

u1

u

vu + v

x

y

(a)

u

v
u + v

x

y

(b)

0 0

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law 
of vector addition in which both vectors are in standard position.
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addition), where the sum, called the resultant vector, is the diagonal of the parallelogram. 
In physics, forces add vectorially as do velocities, accelerations, and so on. So the force 
acting on a particle subject to two gravitational forces, for example, is obtained by adding 
the two force vectors.

Figure 12.13 displays a geometric interpretation of the product ku of the scalar k and 
vector u. If k 7 0, then ku has the same direction as u; if k 6 0, then the direction of ku
is opposite to that of u. Comparing the lengths of u and ku, we see that

0 ku 0 = 2(ku1)2 + (ku2)2 + (ku3)2 = 2k2(u1
2 + u2

2 + u3
2)

= 2k22u1
2 + u2

2 + u3
2 = 0 k 0 0 u 0 .

The length of ku is the absolute value of the scalar k times the length of u. The vector 
(-1)u = -u has the same length as u but points in the opposite direction.

The difference u - v of two vectors is defined by

u - v = u + (-v).

If u = 8u1, u2, u39  and v = 8v1, v2, v39 , then

u - v = 8u1 - v1, u2 - v2, u3 - v39 .
Note that (u - v) + v = u, so adding the vector (u - v) to v gives u (Figure 12.14a). 
Figure 12.14b shows the difference u - v as the sum u + (-v).

EXAMPLE 3 Let u = 8-1, 3, 19  and v = 84, 7, 09. Find the components of

(a) 2u + 3v (b) u - v (c) ` 1
2

u ` .
Solution

(a) 2u + 3v = 28-1, 3, 19 + 384, 7, 09 = 8-2, 6, 29 + 812, 21, 09 = 810, 27, 29
(b) u - v = 8-1, 3, 19 - 84, 7, 09 = 8-1 - 4, 3 - 7, 1 - 09 = 8-5, -4, 19
(c) ` 1

2
u ` = ` h- 1

2
,

3
2

, 1
2
i ` = Ca- 1

2
b2

+ a3
2
b2

+ a1
2
b2

= 1
2
211.

Vector operations have many of the properties of ordinary arithmetic.

u

1.5u

2u −2u

FIGURE 12.13 Scalar multiples of u.

u

v

u − v

(a)

u

v

−v

u + (−v)

(b)

FIGURE 12.14 (a) The vector 
u - v, when added to v, gives u.
(b) u - v = u + (-v).

Properties of Vector Operations
Let u, v, w be vectors and a, b be scalars.

1. u + v = v + u 2. (u + v) + w = u + (v + w)

3. u + 0 = u 4. u + (-u) = 0

5. 0 u = 0 6. 1u = u

7. a(bu) = (ab)u 8. a(u + v) = au + av

9. (a + b) u = au + bu

These properties are readily verified using the definitions of vector addition and multi-
plication by a scalar. For instance, to establish Property 1, we have

u + v = 8u1, u2, u39 + 8v1, v2, v39
= 8u1 + v1, u2 + v2, u3 + v39
= 8v1 + u1, v2 + u2, v3 + u39
= 8v1, v2, v39 + 8u1, u2, u39
= v + u.
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When three or more space vectors lie in the same plane, we say they are coplanar
vectors. For example, the vectors u, v, and u + v are always coplanar.

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

i = 81, 0, 09 , j = 80, 1, 09 , and k = 80, 0, 19 .
Any vector v = 8v1, v2, v39  can be written as a linear combination of the standard unit 
vectors as follows:

v = 8v1, v2, v39 = 8v1, 0, 09 + 80, v2, 09 + 80, 0, v39
= v181, 0, 09 + v280, 1, 09 + v380, 0, 19
= v1i + v2 j + v3 k.

We call the scalar (or number) v1 the i@component of the vector v, v2 the 
j@component, and v3 the k@component. In component form, the vector from P1(x1, y1, z1)
to P2(x2, y2, z2) is

rP1P2 = (x2 - x1)i + ( y2 - y1)j + (z2 - z1)k

(Figure 12.15).
Whenever v ≠ 0, its length 0 v 0  is not zero and

` 10 v 0 v 2 = 10 v 0 0 v 0 = 1.

That is, v> 0 v 0  is a unit vector in the direction of v, called the direction of the nonzero 
vector v.

EXAMPLE 4  Find a unit vector u in the direction of the vector from P1(1, 0, 1) to 
P2(3, 2, 0).

Solution We divide rP1P2 by its length:

rP1P2 = (3 - 1)i + (2 - 0)j + (0 - 1)k = 2i + 2j - k

0 rP1P2 0 = 2(2)2 + (2)2 + (-1)2 = 24 + 4 + 1 = 29 = 3

u =
rP1P2

0 rP1P2 0 =
2i + 2j - k

3 = 2
3 i + 2

3 j - 1
3 k.

The unit vector u is the direction of rP1P2.

EXAMPLE 5 If v = 3i - 4j is a velocity vector, express v as a product of its speed 
times its direction of motion.

Solution Speed is the magnitude (length) of v:

0 v 0 = 2(3)2 + (-4)2 = 29 + 16 = 5.

The unit vector v> 0 v 0  is the direction of v:

v0 v 0 =
3i - 4j

5
= 3

5
i - 4

5
j.

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 = x2i + y2 j + z2k

P1P2

P1(x1, y1, z1)

OP1 = x1i + y1j + z1k

FIGURE 12.15 The vector from P1 to 
P2 is rP1P2 = (x2 - x1)i +
(y2 - y1)j + (z2 - z1)k.
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So

v = 3i - 4j = 5a3
5

i - 4
5

jb .

(+)+*
Length Direction of motion
(speed)

In summary, we can express any nonzero vector v in terms of its two important features, 
length and direction, by writing v = 0 v 0 v0 v 0 .

If v ≠ 0, then

1. v0 v 0  is a unit vector called the direction of v;

2. the equation v = 0 v 0 v0 v 0  expresses v as its length times its direction.

EXAMPLE 6  A force of 6 newtons is applied in the direction of the vector 
v = 2i + 2j - k. Express the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction 
v0 v 0 , so

F = 6
v0 v 0 = 6

2i + 2j - k

222 + 22 + (-1)2
= 6

2i + 2j - k
3

= 6a23 i + 2
3 j - 1

3 kb .

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a 
line segment are found by averaging.

The midpoint M of the line segment joining points P1(x1, y1, z1) and P2(x2, y2, z2)
is the point

ax1 + x2

2
,

y1 + y2

2
,

z1 + z2

2
b .

To see why, observe (Figure 12.16) that

rOM = rOP1 + 1
2

( rP1P2) = rOP1 + 1
2

(rOP2 - rOP1)

= 1
2

(rOP1 + rOP2)

=
x1 + x2

2
i +

y1 + y2

2
j +

z1 + z2

2
k.

EXAMPLE 7  The midpoint of the segment joining P1(3, -2, 0) and P2(7, 4, 4) is

a3 + 7
2

, -2 + 4
2

,
0 + 4

2
b = (5, 1, 2).

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 + x2

2
z1 + z2

2
y1 + y2

2
, , ba

FIGURE 12.16 The coordinates of the 
midpoint are the averages of the 
coordinates of P1 and P2.
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Applications

An important application of vectors occurs in navigation.

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph 
tailwind blowing in the direction 60° north of east. The airplane holds its compass heading 
due east but, because of the wind, acquires a new ground speed and direction. What are 
they?

Solution If u is the velocity of the airplane alone and v is the velocity of the tailwind, 
then 0 u 0 = 500 and 0 v 0 = 70 (Figure 12.17). The velocity of the airplane with respect to 
the ground is given by the magnitude and direction of the resultant vector u + v. If we let the 
positive x-axis represent east and the positive y-axis represent north, then the component 
forms of u and v are

u = 8500, 09 and v = 870 cos 60°, 70 sin 60°9 = 835, 35239 .
Therefore,

u + v = 8535, 35239 = 535i + 3523 j

0 u + v 0 = 25352 + (3513)2 ≈ 538.4

and

u = tan-1 3523
535

≈ 6.5°. Figure 12.17

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 
6.5° north of east.

Another important application occurs in physics and engineering when several forces 
are acting on a single object.

EXAMPLE 9  A 75-N weight is suspended by two wires, as shown in Figure 12.18a. 
Find the forces F1 and F2 acting in both wires.

Solution The force vectors F1 and F2 have magnitudes 0F1 0  and 0F2 0  and components 
that are measured in newtons. The resultant force is the sum F1 + F2 and must be equal in 
magnitude and acting in the opposite (or upward) direction to the weight vector w (see 
Figure 12.18b). It follows from the figure that

F1 = 8- 0F1 0 cos 55°, 0F1 0 sin 55°9 and F2 = 8 0F2 0 cos 40°, 0F2 0 sin 40°9 .
Since F1 + F2 = 80, 759 , the resultant vector leads to the system of equations

- 0F1 0 cos 55° + 0F2 0 cos 40° = 0

0F1 0 sin 55° + 0F2 0 sin 40° = 75.

Solving for 0F2 0  in the first equation and substituting the result into the second equation, 
we get

0F2 0 = 0F1 0 cos 55°
cos 40° and 0F1 0 sin 55° +

0F1 0 cos 55°
cos 40° sin 40° = 75.

It follows that

0F1 0 = 75
sin 55° + cos 55° tan 40° ≈ 57.67 N,

E

N

u

v
u + v30̊

70

500

NOT TO SCALE

u

FIGURE 12.17 Vectors representing 
the velocities of the airplane u and tailwind 
v in Example 8.

F1

F2

40°

75

40°

55°

55°

(a)

(b)

0F1 0

0F2 0 F2

F1

40°55°

F = F1+ F2 = ⟨0, 75⟩

w = ⟨0, −75⟩

FIGURE 12.18 The suspended weight 
in Example 9.
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and

0F2 0 = 75 cos 55°
sin 55° cos 40° + cos 55° sin 40°

= 75 cos 55°
sin (55° + 40°) ≈ 43.18 N.

The force vectors are then F1 = 8-33.08, 47.249  and F2 = 833.08, 27.769 .

Vectors in the Plane
In Exercises 1–8, let u = 83, -29  and v = 8-2, 59 . Find the (a)
component form and (b) magnitude (length) of the vector.

1. 3u 2. -2v

3. u + v 4. u - v

5. 2u - 3v 6. -2u + 5v

7.
3
5

u + 4
5

v 8. - 5
13

u + 12
13

v

In Exercises 9–16, find the component form of the vector.

9. The vector rPQ, where P = (1, 3) and Q = (2, -1)

10. The vector rOP  where O is the origin and P is the midpoint of seg-
ment RS, where R = (2, -1) and S = (-4, 3)

11. The vector from the point A = (2, 3) to the origin

12. The sum of rAB  and rCD, where A = (1, -1), B = (2, 0),
C = (-1, 3), and D = (-2, 2)

13. The unit vector that makes an angle u = 2p>3 with the positive 
x-axis

14. The unit vector that makes an angle u = -3p>4 with the positive 
x-axis

15. The unit vector obtained by rotating the vector 80, 19 120° coun-
terclockwise about the origin

16. The unit vector obtained by rotating the vector 81, 09 135° coun-
terclockwise about the origin

Vectors in Space
In Exercises 17–22, express each vector in the form v = v1i +
v2j + v3k.

17. rP1P2 if P1 is the point (5, 7, -1) and P2 is the point (2, 9, -2)

18. rP1P2 if P1 is the point (1, 2, 0) and P2 is the point (-3, 0, 5)

19. rAB  if A is the point (-7, -8, 1) and B is the point (-10, 8, 1)

20. rAB  if A is the point (1, 0, 3) and B is the point (-1, 4, 5)

21. 5u - v if u = 81, 1, -19  and v = 82, 0, 39
22. -2u + 3v if u = 8-1, 0, 29  and v = 81, 1, 19

Geometric Representations
In Exercises 23 and 24, copy vectors u, v, and w head to tail as 
needed to sketch the indicated vector.

23.

a. u + v b. u + v + w

c. u - v d. u - w

24.

a. u - v b. u - v + w

c. 2u - v d. u + v + w

Length and Direction
In Exercises 25–30, express each vector as a product of its length and 
direction.

25. 2i + j - 2k 26. 9i - 2j + 6k

27. 5k 28.
3
5

i + 4
5

k

29. 1

26
i - 1

26
j - 1

26
k 30. i

23
+

j

23
+ k

23

v

w
u

u

w

v

Exercises 12.2
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F1 F2

45°

100

30°

46. Consider a 50-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F1 is 35 N, find 
angle a and the magnitude of vector F2.

F1

F2

60°a

50

47. Consider a w-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F2 is 100 N, find 
w and the magnitude of vector F1.

F1 F2

35°

w

40°

48. Consider a 25-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitudes of vectors F1 and F2 are 
both 75 N, then angles a and b are equal. Find a.

F1 F2

25

a b

49. Location A bird flies from its nest 5 km in the direction 60° 
north of east, where it stops to rest on a tree. It then flies 10 km in 
the direction due southeast and lands atop a telephone pole. Place 
an xy-coordinate system so that the origin is the bird’s nest, the 
x-axis points east, and the y-axis points north.

a. At what point is the tree located?

b. At what point is the telephone pole?

50. Use similar triangles to find the coordinates of the point Q that 
divides the segment from P1(x1, y1, z1) to P2(x2, y2, z2) into two 
lengths whose ratio is p>q = r .

51. Medians of a triangle Suppose that A, B, and C are the corner 
points of the thin triangular plate of constant density shown here.

a. Find the vector from C to the midpoint M of side AB.

b. Find the vector from C to the point that lies two-thirds of the 
way from C to M on the median CM.

c. Find the coordinates of the point in which the medians of 
∆ABC intersect. According to Exercise 19, Section 6.6, this 
point is the plate’s center of mass. (See the accompanying 
figure.)

31. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 2 i

b. 23 -k

c. 1
2

3
5

j + 4
5

k

d. 7
6
7

i - 2
7

j + 3
7

k

32. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 7 - j

b. 22 - 3
5

i - 4
5

k

c.
13
12

3
13

i - 4
13

j - 12
13

k

d. a 7 0
1

22
i + 1

23
j - 1

26
k

33. Find a vector of magnitude 7 in the direction of v = 12i - 5k.

34. Find a vector of magnitude 3 in the direction opposite to the 
direction of v = (1>2)i - (1>2)j - (1>2)k.

Direction and Midpoints
In Exercises 35–38, find

a. the direction of rP1P2 and

b. the midpoint of line segment P1P2.

35. P1(-1, 1, 5) P2(2, 5, 0)

36. P1(1, 4, 5) P2(4, -2, 7)

37. P1(3, 4, 5) P2(2, 3, 4)

38. P1(0, 0, 0) P2(2, -2, -2)

39. If rAB = i + 4j - 2k and B is the point (5, 1, 3), find A.

40. If rAB = -7i + 3j + 8k and A is the point (-2, -3, 6), find B.

Theory and Applications
41. Linear combination Let u = 2i + j, v = i + j, and w =

i - j. Find scalars a and b such that u = av + bw.

42. Linear combination Let u = i - 2j, v = 2i + 3j, and w =
i + j. Write u = u1 + u2, where u1 is parallel to v and u2 is 
parallel to w. (See Exercise 41.)

43. Velocity An airplane is flying in the direction 25° west of north 
at 800 km >h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and 
the positive y-axis represents due north.

44. (Continuation of Example 8.) What speed and direction should 
the jetliner in Example 8 have in order for the resultant vector to 
be 500 mph due east?

45. Consider a 100-N weight suspended by two wires as shown in the 
accompanying figure. Find the magnitudes and components of 
the force vectors F1 and F2.
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z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

52. Find the vector from the origin to the point of intersection of the 
medians of the triangle whose vertices are

A(1, -1, 2), B(2, 1, 3), and C(-1, 2, -1).

53. Let ABCD be a general, not necessarily planar, quadrilateral in 
space. Show that the two segments joining the midpoints of oppo-
site sides of ABCD bisect each other. (Hint: Show that the seg-
ments have the same midpoint.)

54. Vectors are drawn from the center of a regular n-sided polygon in 
the plane to the vertices of the polygon. Show that the sum of the 
vectors is zero. (Hint: What happens to the sum if you rotate the 
polygon about its center?)

55. Suppose that A, B, and C are vertices of a triangle and that a, b,
and c are, respectively, the midpoints of the opposite sides. Show 
that rAa + rBb + rCc = 0.

56. Unit vectors in the plane Show that a unit vector in the plane 
can be expressed as u = (cosu)i + (sinu)j, obtained by rotating 
i through an angle u in the counterclockwise direction. Explain 
why this form gives every unit vector in the plane.

12.3  The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at 
the point where F is applied, then we want the magnitude of F in the direction of v. Figure 
12.19 shows that the scalar quantity we seek is the length 0F 0 cos u, where u is the angle 
between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly 
from their components. A key part of the calculation is an expression called the dot prod-
uct. Dot products are also called inner or scalar products because the product results in a 
scalar, not a vector. After investigating the dot product, we apply it to finding the projec-
tion of one vector onto another (as displayed in Figure 12.19) and to finding the work done 
by a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an 
angle u of measure 0 … u … p (Figure 12.20). If the vectors do not lie along the same 
line, the angle u is measured in the plane containing both of them. If they do lie along the 
same line, the angle between them is 0 if they point in the same direction and p if they 
point in opposite directions. The angle u is the angle between u and v. Theorem 1 gives a 
formula to determine this angle.

v

F

Length = 0 F 0  cos u

u

FIGURE 12.19 The magnitude of the 
force F in the direction of vector v is the 
length 0F 0 cosu of the projection of F
onto v.

THEOREM 1—Angle Between Two Vectors The angle u between two nonzero 
vectors u = 8u1, u2, u39 and v = 8v1, v2, v39  is given by

u = cos-1 au1v1 + u2v2 + u3v30 u 0 0 v 0 b .
v

u

u

FIGURE 12.20 The angle between u
and v.

We use the law of cosines to prove Theorem 1, but before doing so, we focus attention 
on the expression u1v1 + u2v2 + u3v3 in the calculation for u. This expression is the sum 
of the products of the corresponding components for the vectors u and v.
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EXAMPLE 1  We illustrate the definition.

(a) 81, -2, -19 # 8-6, 2, -39 = (1)(-6) + (-2)(2) + (-1)(-3)

= -6 - 4 + 3 = -7

(b) a1
2

i + 3j + kb # (4i - j + 2k) = a1
2
b (4) + (3)(-1) + (1)(2) = 1

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

8u1, u29 # 8v1, v29 = u1v1 + u2v2 .

We will see throughout the remainder of the book that the dot product is a key tool for 
many important geometric and physical calculations in space (and the plane), not just for 
finding the angle between two vectors.

Proof of Theorem 1  Applying the law of cosines (Equation (8), Section 1.3) to the 
triangle in Figure 12.21, we find that

0w 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0 0 v 0 cos u Law of cosines

2 0 u 0 0 v 0 cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2.
Because w = u - v, the component form of w is 8u1 - v1, u2 - v2, u3 - v39 . So

0 u 0 2 = 12u1
2 + u2

2 + u3
222 = u1

2 + u2
2 + u3

2

0 v 0 2 = 12v1
2 + v2

2 + v3
222 = v1

2 + v2
2 + v3

2

0w 0 2 = 12(u1 - v1)2 + (u2 - v2)2 + (u3 - v3)222
= (u1 - v1)2 + (u2 - v2)2 + (u3 - v3)2

= u1
2 - 2u1v1 + v1

2 + u2
2 - 2u2v2 + v2

2 + u3
2 - 2u3v3 + v3

2

and

0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1v1 + u2v2 + u3v3).

Therefore,

2 0 u 0 0 v 0 cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1v1 + u2v2 + u3v3)0 u 0 0 v 0 cos u = u1v1 + u2v2 + u3v3

cos u =
u1v1 + u2v2 + u3v30 u 0 0 v 0 .

Since 0 … u 6 p, we have

u = cos-1 au1v1 + u2v2 + u3v30 u 0 0 v 0 b .

DEFINITION  The dot product u # v (“u dot v”) of vectors u = 8u1, u2, u39
and v = 8v1, v2, v39  is the scalar

u # v = u1v1 + u2v2 + u3v3 .

u

v

u

w

FIGURE 12.21 The parallelogram law 
of addition of vectors gives w = u - v.

The Angle Between Two Nonzero Vectors u and v

u = cos-1 a u # v0 u 0 0 v 0 b
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EXAMPLE 2  Find the angle between u = i - 2j - 2k and v = 6i + 3j + 2k.

Solution We use the formula above:

u # v = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4

0 u 0 = 2(1)2 + (-2)2 + (-2)2 = 29 = 3

0 v 0 = 2(6)2 + (3)2 + (2)2 = 249 = 7

u = cos-1 a u # v0 u 0 0 v 0 b = cos-1 a -4
(3)(7)

b ≈ 1.76 radians or 100.98°.

The angle formula applies to two-dimensional vectors as well. Note that the angle u is 
acute if u # v 7 0 and obtuse if u # v 6 0.

EXAMPLE 3  Find the angle u in the triangle ABC determined by the vertices 
A = (0, 0), B = (3, 5), and C = (5, 2) (Figure 12.22).

Solution The angle u is the angle between the vectors rCA and rCB. The component 
forms of these two vectors are

rCA = 8-5, -29 and rCB = 8-2, 39 .
First we calculate the dot product and magnitudes of these two vectors.

rCA # rCB = (-5)(-2) + (-2)(3) = 4

0 rCA 0 = 2(-5)2 + (-2)2 = 229

0 rCB 0 = 2(-2)2 + (3)2 = 213

Then applying the angle formula, we have

u = cos-1 ¢ rCA # rCB

0 rCA 0 0 rCB 0 ≤
= cos-1 ¢ 41229212132≤
≈ 78.1° or 1.36 radians.

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if the angle between them is p>2. For such 
vectors, we have u # v = 0 because cos (p>2) = 0. The converse is also true. If u and v
are nonzero vectors with u # v = 0 u 0 0 v 0 cos u = 0, then cos u = 0 and u = cos-1 0 = p>2.
The following definition also allows for one or both of the vectors to be the zero vector.

x

y

A

u

B(3, 5)

C(5, 2)

1

1

FIGURE 12.22 The triangle in 
Example 3.

DEFINITION Vectors u and v are orthogonal if u # v = 0.

EXAMPLE 4  To determine if two vectors are orthogonal, calculate their dot product.

(a) u = 83, -29  and v = 84, 69  are orthogonal because u # v = (3)(4) + (-2)(6) = 0.

(b) u = 3i - 2j + k and v = 2j + 4k are orthogonal because u # v = (3)(0) +
(-2)(2) + (1)(4) = 0.
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(c) 0 is orthogonal to every vector u since

0 # u = 80, 0, 09 # 8u1, u2, u39
= (0)(u1) + (0)(u2) + (0)(u3)

= 0.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers 
(scalars).

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1. u # v = v # u 2. (cu) # v = u # (cv) = c(u # v)

3. u # (v + w) = u # v + u # w 4. u # u = 0 u 0 2
5. 0 # u = 0.

Proofs of Properties 1 and 3  The properties are easy to prove using the definition. 
For instance, here are the proofs of Properties 1 and 3.

1. u # v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v # u
3. u # (v + w) = 8u1, u2, u39 # 8v1 + w1, v2 + w2, v3 + w39

= u1(v1 + w1) + u2(v2 + w2) + u3(v3 + w3)

= u1v1 + u1w1 + u2v2 + u2w2 + u3v3 + u3w3

= (u1v1 + u2v2 + u3v3) + (u1w1 + u2w2 + u3w3)

= u # v + u # w
We now return to the problem of projecting one vector onto another, posed in the 

opening to this section. The vector projection of u = rPQ  onto a nonzero vector v = rPS
(Figure 12.23) is the vector rPR determined by dropping a perpendicular from Q to the line 
PS. The notation for this vector is

projv u (“the vector projection of u onto v”).

If u represents a force, then projv u represents the effective force in the direction of v  
(Figure 12.24).

If the angle u between u and v is acute, projv u has length 0 u 0 cosu and direction 
v> 0 v 0  (Figure 12.25). If u is obtuse, cos u 6 0 and projv u has length - 0 u 0 cosu and 
direction -v> 0 v 0 . In both cases,

 projv u = 1 0 u 0 cosu2 v0 v 0
= au # v0 v 0 b v0 v 0 0 u 0 cosu =

0 u 0 0 v 0 cosu

0 v 0 = u # v
0 v 0

= au # v0 v 0 2bv.

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.23 The vector projection 
of u onto v.

v

Force = u

projv u

FIGURE 12.24 If we pull on the box 
with force u, the effective force moving 
the box forward in the direction v is the 
projection of u onto v.
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The number 0 u 0 cosu is called the scalar component of u in the direction of v (or of u
onto v). To summarize,

u

v

(b)

u

v

(a)

u

u

projv u projv u

Length = 0u 0  cos u Length = −0u 0  cos u

FIGURE 12.25 The length of projv u is (a) 0 u 0 cos u if cos u Ú 0 and 
(b) - 0 u 0 cosu if cosu 6 0.

The vector projection of u onto v is the vector

projv u = au # v0 v 0 2bv. (1)

The scalar component of u in the direction of v is the scalar

0 u 0 cosu = u # v0 v 0 = u # v0 v 0 . (2)

Note that both the vector projection of u onto v and the scalar component of u onto v
depend only on the direction of the vector v and not its length (because we dot u with 
v> 0 v 0 , which is the direction of v).

EXAMPLE 5  Find the vector projection of u = 6i + 3j + 2k onto v = i - 2j - 2k
and the scalar component of u in the direction of v.

Solution We find projv u from Equation (1):

projv u = u # v
v # v v = 6 - 6 - 4

1 + 4 + 4
(i - 2j - 2k)

= - 4
9 (i - 2j - 2k) = - 4

9 i + 8
9 j + 8

9 k .

We find the scalar component of u in the direction of v from Equation (2):

0 u 0 cosu = u # v0 v 0 = (6i + 3j + 2k) # a13 i - 2
3 j - 2

3 kb

= 2 - 2 - 4
3 = - 4

3.

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in the 
next example.

EXAMPLE 6  Find the vector projection of a force F = 5i + 2j onto v = i - 3j and 
the scalar component of F in the direction of v.
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Solution The vector projection is

projv F = ¢F # v0 v 0 2 ≤v

= 5 - 6
1 + 9

(i - 3j) = - 1
10

(i - 3j)

= - 1
10

i + 3
10

j .

The scalar component of F in the direction of v is

0F 0 cosu = F # v0 v 0 = 5 - 6

21 + 9
= - 1

210
.

A routine calculation (see Exercise 29) verifies that the vector u - projv u is orthogo-
nal to the projection vector projv u (which has the same direction as v). So the equation

u = projv u + (u - projv u) = ¢u # v0 v 0 2 ≤v + ¢u - ¢u # v0 v 0 2 ≤v≤
(+)+* (++)++*

Parallel to v Orthogonal to v

expresses u as a sum of orthogonal vectors.

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving 
an object through a distance d as W = Fd . That formula holds only if the force is directed 
along the line of motion. If a force F moving an object through a displacement D = rPQ
has some other direction, the work is performed by the component of F in the direction of 
D. If u is the angle between F and D (Figure 12.26), then

Work = ascalar component of F
in the direction of D

b (length of D)

= ( 0F 0 cosu) 0D 0
= F # D.

F

P QD

0F 0  cos u

u

FIGURE 12.26 The work done by a 
constant force F during a displacement D
is ( 0F 0 cos u) 0D 0 , which is the dot product 
F # D .

DEFINITION The work done by a constant force F acting through a displace-
ment D = rPQ  is

W = F # D.

EXAMPLE 7 If 0F 0 = 40 N (newtons), 0D 0 = 3 m, and u = 60°, the work done by 
F in acting from P to Q is

Work = F # D Definition

= 0F 0 0D 0 cosu

= (40)(3) cos 60° Given values

= (120)(1>2) = 60 J (joules).

We encounter more challenging work problems in Chapter 16 when we learn to find 
the work done by a variable force along a more general path in space.
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Dot Product and Projections
In Exercises 1–8, find

a. v # u, 0 v 0 , 0 u 0
b. the cosine of the angle between v and u

c. the scalar component of u in the direction of v

d. the vector projv u .

1. v = 2i - 4j + 25k, u = -2i + 4j - 25k

2. v = (3>5)i + (4>5)k, u = 5i + 12j

3. v = 10i + 11j - 2k, u = 3j + 4k

4. v = 2i + 10j - 11k, u = 2i + 2j + k

5. v = 5j - 3k, u = i + j + k

6. v = - i + j, u = 22i + 23j + 2k

7. v = 5i + j, u = 2i + 217j

8. v = h 1

22
,

1

23
i, u = h 1

22
, - 1

23
i

Angle Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest 
hundredth of a radian.

9. u = 2i + j, v = i + 2j - k

10. u = 2i - 2j + k, v = 3i + 4k

11. u = 23i - 7j, v = 23i + j - 2k

12. u = i + 22j - 22k, v = - i + j + k

13. Triangle Find the measures of the angles of the triangle whose 
vertices are A = (-1, 0), B = (2, 1), and C = (1, -2) .

14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are A = (1, 0), B = (0, 3),
C = (3, 4), and D = (4, 1) .

15. Direction angles and direction cosines The direction angles
a, b, and g of a vector v = ai + bj + ck are defined as follows:

a is the angle between v and the positive x-axis (0 … a … p)

b is the angle between v and the positive y-axis (0 … b … p)

g is the angle between v and the positive z-axis (0 … g … p) .

y

z

x

v

0
b

a

g

T

a. Show that

cos a = a0 v 0 , cos b = b0 v 0 , cos g = c0 v 0 ,
  and cos2a + cos2b + cos2g = 1. These cosines are called 

the direction cosines of v.

b. Unit vectors are built from direction cosines Show that if 
v = ai + bj + ck is a unit vector, then a, b, and c are the 
direction cosines of v.

16. Water main construction A water main is to be constructed 
with a 20% grade in the north direction and a 10% grade in the 
east direction. Determine the angle u required in the water main 
for the turn from north to east.

East

North

u

Theory and Examples
17. Sums and differences In the accompanying figure, it looks as 

if v1 + v2 and v1 - v2 are orthogonal. Is this mere coincidence, 
or are there circumstances under which we may expect the sum of 
two vectors to be orthogonal to their difference? Give reasons for 
your answer.

v1 + v2

v1 − v2

v2

v1 −v2

18. Orthogonality on a circle Suppose that AB is the diameter of a 
circle with center O and that C is a point on one of the two arcs 
joining A and B. Show that rCA  and rCB  are orthogonal.

B
O

v

A

C

u−u

19. Diagonals of a rhombus Show that the diagonals of a rhombus 
(parallelogram with sides of equal length) are perpendicular.

Exercises 12.3
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32. Line parallel to a vector Show that the vector v = ai + bj is 
parallel to the line bx - ay = c by establishing that the slope of 
the line segment representing v is the same as the slope of the 
given line.

In Exercises 33–36, use the result of Exercise 31 to find an equation 
for the line through P perpendicular to v. Then sketch the line. Include 
v in your sketch as a vector starting at the origin.

33. P(2, 1), v = i + 2j 34. P(-1, 2), v = -2i - j

35. P(-2, -7), v = -2i + j 36. P(11, 10), v = 2i - 3j

In Exercises 37–40, use the result of Exercise 32 to find an equation 
for the line through P parallel to v. Then sketch the line. Include v in 
your sketch as a vector starting at the origin.

37. P(-2, 1), v = i - j 38. P(0, -2), v = 2i + 3j

39. P(1, 2), v = - i - 2j 40. P(1, 3), v = 3i - 2j

Work
41. Work along a line Find the work done by a force F = 5i

(magnitude 5 N) in moving an object along the line from the origin 
to the point (1, 1) (distance in meters).

42. Locomotive The Union Pacific’s Big Boy locomotive could 
pull 6000-ton trains with a tractive effort (pull) of 602,148 N 
(135,375 lb). At this level of effort, about how much work did 
Big Boy do on the (approximately straight) 605-km journey from 
San Francisco to Los Angeles?

43. Inclined plane How much work does it take to slide a crate 20 m 
along a loading dock by pulling on it with a 200-N force at an 
angle of 30° from the horizontal?

44. Sailboat The wind passing over a boat’s sail exerted a 1000-lb 
magnitude force F as shown here. How much work did the wind 
perform in moving the boat forward 1 mi? Answer in foot-pounds.

F

60°
1000 lb
magnitude
force

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right 
angles is the same as the angle determined by vectors normal to the 
lines or by the vectors parallel to the lines.

u

u

u

n1
n2

L2

L2

L1

L1
v1

v2

20. Perpendicular diagonals Show that squares are the only rect-
angles with perpendicular diagonals.

21. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length. 
(This fact is often exploited by carpenters.)

22. Diagonal of parallelogram Show that the indicated diagonal 
of the parallelogram determined by vectors u and v bisects the 
angle between u and v if 0 u 0 = 0 v 0 .

u

v

23. Projectile motion A gun with muzzle velocity of 1200 ft > sec
is fired at an angle of 8° above the horizontal. Find the horizontal 
and vertical components of the velocity.

24. Inclined plane Suppose that a box is being towed up an 
inclined plane as shown in the figure. Find the force w needed to 
make the component of the force parallel to the inclined plane 
equal to 2.5 lb.

15°

33°

w

25. a. Cauchy-Schwartz inequality Since u # v = 0 u 0 0 v 0 cos u,
show that the inequality 0 u # v 0 … 0 u 0 0 v 0  holds for any vectors 
u and v.

b. Under what circumstances, if any, does 0 u # v 0  equal 0 u 0 0 v 0 ?
Give reasons for your answer.

26. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that u # u Ú 0
for every vector u and that u # u = 0 if and only if u = 0 .

27. Orthogonal unit vectors If u1 and u2 are orthogonal unit vec-
tors and v = au1 + bu2, find v # u1 .

28. Cancellation in dot products In real-number multiplication, if 
uv1 = uv2 and u ≠ 0, we can cancel the u and conclude that 
v1 = v2 . Does the same rule hold for the dot product? That is, if 
u # v1 = u # v2 and u ≠ 0, can you conclude that v1 = v2? Give 
reasons for your answer.

29. Using the definition of the projection of u onto v, show by direct 
calculation that (u - projv u) # projv u = 0.

30. A force F = 2i + j - 3k is applied to a spacecraft with velocity 
vector v = 3i - j . Express F as a sum of a vector parallel to v
and a vector orthogonal to v.

Equations for Lines in the Plane
31. Line perpendicular to a vector Show that v = ai + bj is per-

pendicular to the line ax + by = c by establishing that the slope 
of the vector v is the negative reciprocal of the slope of the given 
line.
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Use this fact and the results of Exercise 31 or 32 to find the acute 
angles between the lines in Exercises 45–50.

45. 3x + y = 5, 2x - y = 4

46. y = 23x - 1, y = -23x + 2

47. 23x - y = -2, x - 23y = 1

48. x + 23y = 1, 11 - 232x + 11 + 232y = 8

49. 3x - 4y = 3, x - y = 7

50. 12x + 5y = 1, 2x - 2y = 3

12.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used 
the notions of slope and angle of inclination. In space, we want a way to describe how a 
plane is tilting. We accomplish this by multiplying two vectors in the plane together to get 
a third vector perpendicular to the plane. The direction of this third vector tells us the 
“inclination” of the plane. The product we use to multiply the vectors together is the vec-
tor or cross product, the second of the two vector multiplication methods. We study the 
cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. If u and v are not parallel, they deter-
mine a plane. We select a unit vector n perpendicular to the plane by the right-hand rule.
This means that we choose n to be the unit (normal) vector that points the way your right 
thumb points when your fingers curl through the angle u from u to v (Figure 12.27). Then 
we define a new vector as follows.

v

u

n
u

u × v

FIGURE 12.27 The construction of 
u * v .

DEFINITION The cross product u :  v (“u cross v”) is the vector

u * v = ( 0 u 0 0 v 0 sin u) n.

Unlike the dot product, the cross product is a vector. For this reason it’s also called the 
vector product of u and v, and applies only to vectors in space. The vector u * v is 
orthogonal to both u and v because it is a scalar multiple of n.

There is a straightforward way to calculate the cross product of two vectors from their 
components. The method does not require that we know the angle between them (as sug-
gested by the definition), but we postpone that calculation momentarily so we can focus 
first on the properties of the cross product.

Since the sines of 0 and p are both zero, it makes sense to define the cross product of 
two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define 
u * v to be zero. This way, the cross product of two vectors u and v is zero if and only if 
u and v are parallel or one or both of them are zero.

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u * v = 0 .

Properties of the Cross Product

If u, v, and w are any vectors and r, s are scalars, then

1. (ru) * (sv) = (rs)(u * v) 2. u * (v + w) = u * v + u * w

3. v * u = -(u * v) 4. (v + w) * u = v * u + w * u

5. 0 * u = 0 6. u * (v * w) = (u # w)v - (u # v)w

The cross product obeys the following laws.
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To visualize Property 3, for example, notice that when the fingers of your right hand 
curl through the angle u from v to u, your thumb points the opposite way; the unit vector 
we choose in forming v * u is the negative of the one we choose in forming u * v
(Figure 12.28).

Property 1 can be verified by applying the definition of cross product to both sides of 
the equation and comparing the results. Property 2 is proved in Appendix 8. Property 4 
follows by multiplying both sides of the equation in Property 2 by -1 and reversing the 
order of the products using Property 3. Property 5 is a definition. As a rule, cross product 
multiplication is not associative so (u * v) * w does not generally equal u * (v * w).
(See Additional Exercise 17.)

When we apply the definition and Property 3 to calculate the pairwise cross products 
of i, j, and k, we find (Figure 12.29)

i * j = -(j * i) = k

j * k = -(k * j) = i

k * i = -(i * k) = j

and

i * i = j * j = k * k = 0 .

0 u : v 0 Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of u * v is

v

u

u−n

v × u

FIGURE 12.28 The construction of 
v * u .

y

x

z
k = i × j

j = k × i

i = j × k

FIGURE 12.29 The pairwise cross 
products of i, j, and k.

i

jk

Diagram for recalling
cross products

0 u * v 0 = 0 u 0 0 v 0 0 sinu 0 0 n 0 = 0 u 0 0 v 0 sinu .

This is the area of the parallelogram determined by u and v (Figure 12.30), 0 u 0  being the 
base of the parallelogram and 0 v 0 0 sinu 0  the height.

Determinant Formula for u : v

Our next objective is to calculate u * v from the components of u and v relative to a 
Cartesian coordinate system.

Suppose that

u = u1 i + u2 j + u3 k and v = v1 i + v2 j + v3 k .

Then the distributive laws and the rules for multiplying i, j, and k tell us that

u * v = (u1 i + u2 j + u3 k) * (v1 i + v2 j + v3 k)

= u1v1 i * i + u1v2 i * j + u1v3 i * k

+ u2v1j * i + u2v2 j * j + u2v3 j * k

+ u3v1k * i + u3v2k * j + u3v3k * k

= (u2v3 - u3v2)i - (u1v3 - u3v1)j + (u1v2 - u2v1)k .

The component terms in the last line are hard to remember, but they are the same as 
the terms in the expansion of the symbolic determinant

3 i j k
u1 u2 u3

v1 v2 v3

3 .

v

u

u

h = 0 v 0 0 sin u 0

Area = base · height
= 0u 0  · 0 v 0 0 sin u 0
= 0u × v 0

FIGURE 12.30 The parallelogram 
determined by u and v.
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So we restate the calculation in this easy-to-remember form.Determinants
2 * 2 and 3 * 3 determinants are 
evaluated as follows:2 a b

c d
2 = ad - bc

3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 = a1
2 b2 b3

c2 c3

2
- a2

2 b1 b3

c1 c3

2 + a3
2 b1 b2

c1 c2

2

Calculating the Cross Product as a Determinant

If u = u1i + u2 j + u3 k and v = v1i + v2 j + v3 k, then

u * v = 3 i j k
u1 u2 u3

v1 v2 v3

3 .
EXAMPLE 1 Find u * v and v * u if u = 2i + j + k and v = -4i + 3j + k .

Solution We expand the symbolic determinant:

u * v = 3 i j k
2 1 1

-4 3 1

3 = ` 1 1

3 1
` i - ` 2 1

-4 1
` j + ` 2 1

-4 3
` k

= -2i - 6j + 10k

v * u = -(u * v) = 2i + 6j - 10k Property 3

EXAMPLE 2  Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1),
and R(-1, 1, 2) (Figure 12.31).

Solution The vector rPQ * rPR is perpendicular to the plane because it is perpendicular 
to both vectors. In terms of components,

rPQ = (2 - 1)i + (1 + 1)j + (-1 - 0)k = i + 2j - k
rPR = (-1 - 1)i + (1 + 1)j + (2 - 0)k = -2i + 2j + 2k

rPQ * rPR = 3 i j k
1 2 -1

-2 2 2

3 = ` 2 -1

2 2
` i - ` 1 -1

-2 2
` j + ` 1 2

-2 2
` k

= 6i + 6k.

EXAMPLE 3  Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and 
R(-1, 1, 2) (Figure 12.31).

Solution The area of the parallelogram determined by P, Q, and R is

0 rPQ * rPR 0 = 0 6i + 6k 0 Values from Example 2

= 2(6)2 + (6)2 = 22 # 36 = 622.

The triangle’s area is half of this, or 322.

EXAMPLE 4  Find a unit vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1),
and R(-1, 1, 2) .

Solution Since rPQ * rPR is perpendicular to the plane, its direction n is a unit vector 
perpendicular to the plane. Taking values from Examples 2 and 3, we have

n =
rPQ * rPR

0 rPQ * rPR 0 =
6i + 6k

622
= 1

22
i + 1

22
k .

y

x

z

0

P(1, −1, 0)

Q(2, 1, –1)

R(−1, 1, 2)

FIGURE 12.31 The vector rPQ * rPR  is 
perpendicular to the plane of triangle PQR
(Example 2). The area of triangle PQR is 
half of 0 rPQ * rPR 0  (Example 3).
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For ease in calculating the cross product using determinants, we usually write vectors 
in the form v = v1i + v2 j + v3k rather than as ordered triples v = 8v1, v2, v39 .
Torque

When we turn a bolt by applying a force F to a wrench (Figure 12.32), we produce a 
torque that causes the bolt to rotate. The torque vector points in the direction of the axis 
of the bolt according to the right-hand rule (so the rotation is counterclockwise when 
viewed from the tip of the vector). The magnitude of the torque depends on how far out on 
the wrench the force is applied and on how much of the force is perpendicular to the 
wrench at the point of application. The number we use to measure the torque’s magnitude 
is the product of the length of the lever arm r and the scalar component of F perpendicular 
to r. In the notation of Figure 12.32,

Magnitude of torque vector = 0 r 0 0F 0 sinu,

or 0 r * F 0 . If we let n be a unit vector along the axis of the bolt in the direction of the 
torque, then a complete description of the torque vector is r * F, or

Torque vector = ( 0 r 0 0F 0 sinu) n .

Recall that we defined u * v to be 0 when u and v are parallel. This is consistent with the 
torque interpretation as well. If the force F in Figure 12.32 is parallel to the wrench, mean-
ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s 
handle, the torque produced is zero.

EXAMPLE 5  The magnitude of the torque generated by force F at the pivot point P in 
Figure 12.33 is

0 rPQ * F 0 = 0 rPQ 0 0F 0 sin 70°
≈ (3)(20)(0.94)

≈ 56.4 ft@lb .

In this example the torque vector is pointing out of the page toward you.

Triple Scalar or Box Product

The product (u * v) # w is called the triple scalar product of u, v, and w (in that order). 
As you can see from the formula

0 (u * v) # w 0 = 0 u * v 0 0w 0 0 cosu 0 ,
the absolute value of this product is the volume of the parallelepiped (parallelogram-sided 
box) determined by u, v, and w (Figure 12.34). The number 0 u * v 0  is the area of the base 

n

r

F

Torque

Component of F
perpendicular to r.
Its length is 0F 0  sin u. u

FIGURE 12.32 The torque vector 
describes the tendency of the force F to 
drive the bolt forward.

F

P Q
3 ft bar

20 lb
magnitude
force

70°

FIGURE 12.33 The magnitude of the 
torque exerted by F at P is about 56.4 ft-lb 
(Example 5). The bar rotates counter-
clockwise around P.

v

w

u

uHeight = 0w 0 0 cos u 0

u × v

Area of base
= 0u × v 0

Volume = area of base · height
= 0u × v 0 0w 0 0 cos u 0
= 0 (u × v) · w 0

FIGURE 12.34 The number 0 (u * v) # w 0  is the volume of a parallelepiped.
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parallelogram. The number 0w 0 0 cos u 0  is the parallelepiped’s height. Because of this 
geometry, (u * v) # w is also called the box product of u, v, and w.

By treating the planes of v and w and of w and u as the base planes of the parallelepi-
ped determined by u, v, and w, we see that

(u * v) # w = (v * w) # u = (w * u) # v .

Since the dot product is commutative, we also have

(u * v) # w = u # (v * w) .

The triple scalar product can be evaluated as a determinant:

(u * v) # w = c ` u2 u3

v2 v3
` i - ` u1 u3

v1 v3
` j + ` u1 u2

v1 v2
` k d # w

= w1 ` u2 u3

v2 v3
` - w2 ` u1 u3

v1 v3
` + w3 ` u1 u2

v1 v2
`

= 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3 .

The dot and cross may be inter-
changed in a triple scalar product 
without altering is value.

Calculating the Triple Scalar Product as a Determinant

(u * v) # w = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3
EXAMPLE 6  Find the volume of the box (parallelepiped) determined by u = i + 2j - k,
v = -2i + 3k, and w = 7j - 4k .

Solution Using the rule for calculating a 3 * 3 determinant, we find

(u * v) # w = 3 1 2 -1

-2 0 3

0 7 -4

3 = (1) 2 0 3

7 -4
2 - (2) 2 -2 3

0 -4
2 + (-1) 2 -2 0

0 7
2 = -23.

The volume is 0 (u * v) # w 0 = 23 units cubed.

Cross Product Calculations
In Exercises 1–8, find the length and direction (when defined) of 
u * v and v * u .

1. u = 2i - 2j - k, v = i - k

2. u = 2i + 3j, v = - i + j

3. u = 2i - 2j + 4k, v = - i + j - 2k

4. u = i + j - k, v = 0

5. u = 2i, v = -3j

6. u = i * j, v = j * k

7. u = -8i - 2j - 4k, v = 2i + 2j + k

8. u = 3
2

i - 1
2

j + k, v = i + j + 2k

In Exercises 9–14, sketch the coordinate axes and then include the 
vectors u, v, and u * v as vectors starting at the origin.

9. u = i, v = j 10. u = i - k, v = j

11. u = i - k, v = j + k 12. u = 2i - j, v = i + 2j

13. u = i + j, v = i - j 14. u = j + 2k, v = i

Exercises 12.4
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d. (cu) # v = u # (cv) = c(u # v) (any number c)

e. c(u * v) = (cu) * v = u * (cv) (any number c)

f. u # u = 0 u 0 2
g. (u * u) # u = 0

h. (u * v) # u = v # (u * v)

29. Given nonzero vectors u, v, and w, use dot product and cross 
product notation, as appropriate, to describe the following.

a. The vector projection of u onto v

b. A vector orthogonal to u and v

c. A vector orthogonal to u * v and w

d. The volume of the parallelepiped determined by u, v, and w

e. A vector orthogonal to u * v and u * w

f. A vector of length 0 u 0  in the direction of v

30. Compute (i * j) * j and i * (j * j) . What can you conclude 
about the associativity of the cross product?

31. Let u, v, and w be vectors. Which of the following make sense, 
and which do not? Give reasons for your answers.

a. (u * v) # w
b. u * (v # w)

c. u * (v * w)

d. u # (v # w)

32. Cross products of three vectors Show that except in degener-
ate cases, (u * v) * w lies in the plane of u and v, whereas 
u * (v * w) lies in the plane of v and w. What are the degener-
ate cases?

33. Cancelation in cross products If u * v = u * w and u ≠ 0,
then does v = w? Give reasons for your answer.

34. Double cancelation If u ≠ 0 and if u * v = u * w and 
u # v = u # w, then does v = w? Give reasons for your answer.

Area of a Parallelogram
Find the areas of the parallelograms whose vertices are given in Exer-
cises 35–40.

35. A(1, 0), B(0, 1), C(-1, 0), D(0, -1)

36. A(0, 0), B(7, 3), C(9, 8), D(2, 5)

37. A(-1, 2), B(2, 0), C(7, 1), D(4, 3)

38. A(-6, 0), B(1, -4), C(3, 1), D(-4, 5)

39. A(0, 0, 0), B(3, 2, 4), C(5, 1, 4), D(2, -1, 0)

40. A(1, 0, -1), B(1, 7, 2), C(2, 4, -1), D(0, 3, 2)

Area of a Triangle
Find the areas of the triangles whose vertices are given in Exercises 
41–47.

41. A(0, 0), B(-2, 3), C(3, 1)

42. A(-1, -1), B(3, 3), C(2, 1)

43. A(-5, 3), B(1, -2), C(6, -2)

44. A(-6, 0), B(10, -5), C(-2, 4)

45. A(1, 0, 0), B(0, 2, 0), C(0, 0, -1)

46. A(0, 0, 0), B(-1, 1, -1), C(3, 0, 3)

47. A(1, -1, 1), B(0, 1, 1), C(1, 0, -1)

Triangles in Space
In Exercises 15–18,

a. Find the area of the triangle determined by the points P, Q,
and R.

b. Find a unit vector perpendicular to plane PQR.

15. P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1)

16. P(1, 1, 1), Q(2, 1, 3), R(3, -1, 1)

17. P(2, -2, 1), Q(3, -1, 2), R(3, -1, 1)

18. P(-2, 2, 0), Q(0, 1, -1), R(-1, 2, -2)

Triple Scalar Products
In Exercises 19–22, verify that (u * v) # w = (v * w) # u =
(w * u) # v and find the volume of the parallelepiped (box) deter-
mined by u, v, and w.

u v w

19. 2i 2j 2k

20. i - j + k 2i + j - 2k - i + 2j - k

21. 2i + j 2i - j + k i + 2k

22. i + j - 2k - i - k 2i + 4j - 2k

Theory and Examples
23. Parallel and perpendicular vectors Let u = 5i - j + k, v =

j - 5k, w = -15i + 3j - 3k . Which vectors, if any, are (a)
perpendicular? (b) Parallel? Give reasons for your answers.

24. Parallel and perpendicular vectors Let u = i + 2j - k,
v = - i + j + k, w = i + k, r = - (p>2)i - pj + (p>2)k .
Which vectors, if any, are (a) perpendicular? (b) Parallel? Give 
reasons for your answers.

In Exercises 25 and 26, find the magnitude of the torque exerted by F
on the bolt at P if 0 rPQ 0 = 8 in. and 0F 0 = 30 lb. Answer in foot-
pounds.

25.    26.

F

Q

P

60°
F

Q

P

135°

27. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

a. 0 u 0 = 2u # u
b. u # u = 0 u 0
c. u * 0 = 0 * u = 0

d. u * (-u) = 0

e. u * v = v * u

f. u * (v + w) = u * v + u * w

g. (u * v) # v = 0

h. (u * v) # w = u # (v * w)

28. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

a. u # v = v # u b. u * v = - (v * u)

c. (-u) * v = - (u * v)
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48. Find the volume of a parallelepiped if four of its eight vertices are 
A(0, 0, 0), B(1, 2, 0), C(0, -3, 2), and D(3, -4, 5) .

49. Triangle area Find a 2 * 2 determinant formula for the area 
of the triangle in the xy-plane with vertices at (0, 0), (a1, a2), and 
(b1, b2) . Explain your work.

50. Triangle area Find a concise 3 * 3 determinant  formula that 
gives the area of a triangle in the xy-plane having vertices 
(a1, a2), (b1, b2), and (c1, c2) .

12.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line 
segments, and planes in space. We will use these representations throughout the rest of the 
book in studying the calculus of curves and surfaces in space.

Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In 
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point P0(x0, y0, z0) parallel to a vec-
tor v = v1 i + v2 j + v3 k . Then L is the set of all points P(x, y, z) for which rP0P is paral-
lel to v (Figure 12.35). Thus, rP0P = tv for some scalar parameter t. The value of t depends 
on the location of the point P along the line, and the domain of t is (-q, q) . The 
expanded form of the equation rP0P = tv is

(x - x0)i + (y - y0)j + (z - z0)k = t(v1 i + v2 j + v3 k),

which can be rewritten as

xi + yj + zk = x0i + y0j + z0 k + t(v1 i + v2 j + v3 k) . (1)

If r(t) is the position vector of a point P(x, y, z) on the line and r0 is the position vector 
of the point P0(x0, y0, z0), then Equation (1) gives the following vector form for the equa-
tion of a line in space.

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 12.35 A point P lies on L
through P0 parallel to v if and only if rP0P
is a scalar multiple of v.

Vector Equation for a Line

A vector equation for the line L through P0(x0, y0, z0) parallel to v is

r(t) = r0 + tv, -q 6 t 6 q, (2)

where r is the position vector of a point P(x, y, z) on L and r0 is the position 
vector of P0(x0, y0, z0) .

Parametric Equations for a Line

The standard parametrization of the line through P0(x0, y0, z0) parallel to
v = v1 i + v2 j + v3 k is

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3, -q 6 t 6 q (3)

Equating the corresponding components of the two sides of Equation (1) gives three 
scalar equations involving the parameter t:

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3 .

These equations give us the standard parametrization of the line for the parameter interval 
-q 6 t 6 q .
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EXAMPLE 1  Find parametric equations for the line through (-2, 0, 4) parallel to 
v = 2i + 4j - 2k (Figure 12.36).

Solution With P0(x0, y0, z0) equal to (-2, 0, 4) and v1i + v2j + v3k equal to 
2i + 4j - 2k, Equations (3) become

x = -2 + 2t, y = 4t, z = 4 - 2t .

EXAMPLE 2  Find parametric equations for the line through P(-3, 2, -3) and 
Q(1, -1, 4) .

Solution The vector
rPQ = (1 - (-3))i + (-1 - 2)j + (4 - (-3))k

= 4i - 3j + 7k

is parallel to the line, and Equations (3) with (x0, y0, z0) = (-3, 2, -3) give

x = -3 + 4t, y = 2 - 3t, z = -3 + 7t .

We could have chosen Q(1, -1, 4) as the “base point” and written

x = 1 + 4t, y = -1 - 3t, z = 4 + 7t .

These equations serve as well as the first; they simply place you at a different point on the 
line for a given value of t.

Notice that parametrizations are not unique. Not only can the “base point” change, but 
so can the parameter. The equations x = -3 + 4t3, y = 2 - 3t3, and z = -3 + 7t3 also 
parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line 
through the points. We then find the t-values for the endpoints and restrict t to lie in the 
closed interval bounded by these values. The line equations together with this added 
restriction parametrize the segment.

EXAMPLE 3  Parametrize the line segment joining the points P(-3, 2, -3) and 
Q(1, -1, 4) (Figure 12.37).

Solution We begin with equations for the line through P and Q, taking them, in this 
case, from Example 2:

x = -3 + 4t, y = 2 - 3t, z = -3 + 7t .

We observe that the point

(x, y, z) = (-3 + 4t, 2 - 3t, -3 + 7t)

on the line passes through P(-3, 2, -3) at t = 0 and Q(1, -1, 4) at t = 1. We add the 
restriction 0 … t … 1 to parametrize the segment:

x = -3 + 4t, y = 2 - 3t, z = -3 + 7t, 0 … t … 1.

The vector form (Equation (2)) for a line in space is more revealing if we think of a 
line as the path of a particle starting at position P0(x0, y0, z0) and moving in the direction of 
vector v. Rewriting Equation (2), we have

r(t) = r0 + tv

= r0 + t 0 v 0 v0 v 0 . (4)

y

z

0

x

2 4

4

2

4

8

v = 2i + 4j − 2k

t = 2
P2(2, 8, 0)

P1(0, 4, 2)

t = 1

t = 0

P0(–2, 0, 4)

FIGURE 12.36 Selected points and 
parameter values on the line in Example 1. 
The arrows show the direction of 
increasing t.

y

z

0

x

1 2

−1

−3

t = 1

t = 0
P(−3, 2, −3)

Q(1, −1, 4)

FIGURE 12.37 Example 3 derives a 
parametrization of line segment PQ. The 
arrow shows the direction of increasing t.

Initial Time Speed Direction
position
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In other words, the position of the particle at time t is its initial position plus its distance 
moved (speed * time) in the direction v> 0 v 0  of its straight-line motion.

EXAMPLE 4  A helicopter is to fly directly from a helipad at the origin in the direc-
tion of the point (1, 1, 1) at a speed of 60 ft > sec. What is the position of the helicopter 
after 10 sec?

Solution We place the origin at the starting position (helipad) of the helicopter. Then the 
unit vector

u = 1

23
i + 1

23
j + 1

23
k

gives the flight direction of the helicopter. From Equation (4), the position of the helicop-
ter at any time t is

r(t) = r0 + t(speed)u

= 0 + t(60)¢ 1

23
i + 1

23
j + 1

23
k≤

= 2023t(i + j + k) .

When t = 10 sec,

r(10) = 20023 (i + j + k)

= 820023, 20023, 200239 .

After 10 sec of flight from the origin toward (1, 1, 1), the helicopter is located at the point 120023, 20023, 200232 in space. It has traveled a distance of (60 ft>sec)(10 sec) =
600 ft, which is the length of the vector r(10).

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vec-
tor v, we find the absolute value of the scalar component of rPS  in the direction of a vector 
normal to the line (Figure 12.38). In the notation of the figure, the absolute value of the 

scalar component is 0rPS 0 sinu, which is 
0rPS * v 0
0 v 0 .

S

P
v

u

0PS 0  sin u

FIGURE 12.38 The distance from 
S to the line through P parallel to v is 0rPS 0 sinu, where u is the angle between 
rPS  and v.

Distance from a Point S to a Line Through P Parallel to v

d =
0rPS * v 0
0 v 0 (5)

EXAMPLE 5  Find the distance from the point S(1, 1, 5) to the line

L: x = 1 + t, y = 3 - t, z = 2t.

Solution We see from the equations for L that L passes through P(1, 3, 0) parallel to 
v = i - j + 2k . With

rPS = (1 - 1)i + (1 - 3)j + (5 - 0)k = -2j + 5k
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and

rPS * v = 3 i j k
0 -2 5

1 -1 2

3 = i + 5j + 2k,

Equation (5) gives

d =
0rPS * v 0
0 v 0 = 21 + 25 + 4

21 + 1 + 4
= 230

26
= 25.

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orienta-
tion. This “tilt” is defined by specifying a vector that is perpendicular or normal to the 
plane.

Suppose that plane M passes through a point P0(x0, y0, z0) and is normal to the nonzero 
vector n = Ai + Bj + Ck . Then M is the set of all points P(x, y, z) for which rP0P is 
orthogonal to n (Figure 12.39). Thus, the dot product n # rP0P = 0. This equation is equiv-
alent to

(Ai + Bj + Ck) # 3 (x - x0)i + (y - y0)j + (z - z0)k4 = 0,

so the plane M  consists of the points (x, y, z) satisfying

A(x - x0) + B( y - y0) + C(z - z0) = 0.

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

FIGURE 12.39 The standard equation 
for a plane in space is defined in terms of 
a vector normal to the plane: A point P
lies in the plane through P0 normal to n if 
and only if n # rP0P = 0.

Equation for a Plane

The plane through P0(x0, y0, z0) normal to n = Ai + Bj + Ck has

Vector equation: n # rP0P = 0

Component equation: A(x - x0) + B(y - y0) + C(z - z0) = 0

Component equation simplified: Ax + By + Cz = D, where

D = Ax0 + By0 + Cz0

EXAMPLE 6  Find an equation for the plane through P0(-3, 0, 7) perpendicular to 
n = 5i + 2j - k .

Solution The component equation is

5(x - (-3)) + 2(y - 0) + (-1)(z - 7) = 0.

Simplifying, we obtain

5x + 15 + 2y - z + 7 = 0

5x + 2y - z = -22.

Notice in Example 6 how the components of n = 5i + 2j - k became the coeffi-
cients of x, y, and z in the equation 5x + 2y - z = -22. The vector n = Ai + Bj + Ck
is normal to the plane Ax + By + Cz = D .
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EXAMPLE 7  Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0).

Solution We find a vector normal to the plane and use it with one of the points (it does 
not matter which) to write an equation for the plane.

The cross product

rAB * rAC = 3 i j k
2 0 -1

0 3 -1

3 = 3i + 2j + 6k

is normal to the plane. We substitute the components of this vector and the coordinates of 
A(0, 0, 1) into the component form of the equation to obtain

3(x - 0) + 2(y - 0) + 6(z - 1) = 0

3x + 2y + 6z = 6.

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel
if and only if their normals are parallel, or n1 = kn2 for some scalar k. Two planes that are 
not parallel intersect in a line.

EXAMPLE 8  Find a vector parallel to the line of intersection of the planes 
3x - 6y - 2z = 15 and 2x + y - 2z = 5.

Solution The line of intersection of two planes is perpendicular to both planes’ normal 
vectors n1 and n2 (Figure 12.40) and therefore parallel to n1 * n2 . Turning this around, 
n1 * n2 is a vector parallel to the planes’ line of intersection. In our case,

n1 * n2 = 3 i j k
3 -6 -2

2 1 -2

3 = 14i + 2j + 15k .

Any nonzero scalar multiple of n1 * n2 will do as well.

EXAMPLE 9  Find parametric equations for the line in which the planes 
3x - 6y - 2z = 15 and 2x + y - 2z = 5 intersect.

Solution We find a vector parallel to the line and a point on the line and use Equations (3).
Example 8 identifies v = 14i + 2j + 15k as a vector parallel to the line. To find a 

point on the line, we can take any point common to the two planes. Substituting z = 0 in 
the plane equations and solving for x and y simultaneously identifies one of these points as 
(3, -1, 0) . The line is

x = 3 + 14t, y = -1 + 2t, z = 15t .

The choice z = 0 is arbitrary and we could have chosen z = 1 or z = -1 just as well. Or 
we could have let x = 0 and solved for y and z. The different choices would simply give 
different parametrizations of the same line.

Sometimes we want to know where a line and a plane intersect. For example, if we are 
looking at a flat plate and a line segment passes through it, we may be interested in know-
ing what portion of the line segment is hidden from our view by the plate. This application 
is used in computer graphics (Exercise 74).

PLANE 2

PLA
N

E
1

n1 × n2

n2

n1

FIGURE 12.40 How the line of 
intersection of two planes is related to 
the planes’ normal vectors (Example 8).
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EXAMPLE 10  Find the point where the line

x = 8
3 + 2t, y = -2t, z = 1 + t

intersects the plane 3x + 2y + 6z = 6.

Solution The point

a83 + 2t, -2t, 1 + tb
lies in the plane if its coordinates satisfy the equation of the plane, that is, if

3a83 + 2tb + 2(-2t) + 6(1 + t) = 6

8 + 6t - 4t + 6 + 6t = 6

8t = -8

t = -1.
The point of intersection is

(x, y, z) 0 t=-1 = a83 - 2, 2, 1 - 1b = a 2
3, 2, 0b .

The Distance from a Point to a Plane

If P is a point on a plane with normal n, then the distance from any point S to the plane is 
the length of the vector projection of rPS  onto n. That is, the distance from S to the plane is

d = `rPS # n0 n 0 ` (6)

where n = Ai + Bj + Ck is normal to the plane.

EXAMPLE 11  Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

Solution We find a point P in the plane and calculate the length of the vector projection 
of rPS  onto a vector n normal to the plane (Figure 12.41). The coefficients in the equation 
3x + 2y + 6z = 6 give

n = 3i + 2j + 6k .

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n = 3i + 2j + 6k

Distance from
S to the plane

P(0, 3, 0)

3x + 2y + 6z = 6

S(1, 1, 3)

FIGURE 12.41 The distance from S to the plane is the 
length of the vector projection of rPS  onto n (Example 11).
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The points on the plane easiest to find from the plane’s equation are the intercepts. If 
we take P to be the y-intercept (0, 3, 0), then

rPS = (1 - 0)i + (1 - 3)j + (3 - 0)k

= i - 2j + 3k,

0 n 0 = 2(3)2 + (2)2 + (6)2 = 249 = 7.

The distance from S to the plane is

d = `rPS # n0 n 0 `   Length of projn
rPS

= ` (i - 2j + 3k) # a37 i + 2
7 j + 6

7 kb `
= ` 37 - 4

7 + 18
7 ` = 17

7 .

Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their 
normal vectors (Figure 12.42).

EXAMPLE 12  Find the angle between the planes 3x - 6y - 2z = 15 and 
2x + y - 2z = 5.

Solution The vectors

n1 = 3i - 6j - 2k, n2 = 2i + j - 2k

are normals to the planes. The angle between them is

u = cos-1 a n1
# n20 n1 0 0 n2 0 b

= cos-1 a 4
21
b

≈ 1.38 radians. About 79 degrees

n2
n1

u

u

FIGURE 12.42 The angle between two 
planes is obtained from the angle between 
their normals.

Lines and Line Segments
Find parametric equations for the lines in Exercises 1–12.

1. The line through the point P(3, -4, -1) parallel to the vector 
i + j + k

2. The line through P(1, 2, -1) and Q(-1, 0, 1)

3. The line through P(-2, 0, 3) and Q(3, 5, -2)

4. The line through P(1, 2, 0) and Q(1, 1, -1)

5. The line through the origin parallel to the vector 2j + k

6. The line through the point (3, -2, 1) parallel to the line 
x = 1 + 2t, y = 2 - t, z = 3t

7. The line through (1, 1, 1) parallel to the z-axis

8. The line through (2, 4, 5) perpendicular to the plane 
3x + 7y - 5z = 21

9. The line through (0, -7, 0) perpendicular to the plane 
x + 2y + 2z = 13

10. The line through (2, 3, 0) perpendicular to the vectors u = i +
2j + 3k and v = 3i + 4j + 5k

11. The x-axis 12. The z-axis

Find parametrizations for the line segments joining the points in Exer-
cises 13–20. Draw coordinate axes and sketch each segment, indicat-
ing the direction of increasing t for your parametrization.

13. (0, 0, 0), (1, 1, 3 >2) 14. (0, 0, 0),   (1, 0, 0)

15. (1, 0, 0), (1, 1, 0) 16. (1, 1, 0),   (1, 1, 1)

17. (0, 1, 1), (0, -1, 1) 18. (0, 2, 0),   (3, 0, 0)

19. (2, 0, 2), (0, 2, 0) 20. (1, 0, -1), (0, 3, 0)

Exercises 12.5
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Angles
Find the angles between the planes in Exercises 47 and 48.

47. x + y = 1, 2x + y - 2z = 2

48. 5x + y - z = 10, x - 2y + 3z = -1

Use a calculator to find the acute angles between the planes in Exer-
cises 49–52 to the nearest hundredth of a radian.

49. 2x + 2y + 2z = 3, 2x - 2y - z = 5

50. x + y + z = 1, z = 0 (the xy@plane)

51. 2x + 2y - z = 3, x + 2y + z = 2

52. 4y + 3z = -12, 3x + 2y + 6z = 6

Intersecting Lines and Planes
In Exercises 53–56, find the point in which the line meets the plane.

53. x = 1 - t, y = 3t, z = 1 + t; 2x - y + 3z = 6

54. x = 2,  y = 3 + 2t,  z = -2 - 2t;  6x + 3y - 4z = -12

55. x = 1 + 2t, y = 1 + 5t, z = 3t; x + y + z = 2

56. x = -1 + 3t, y = -2, z = 5t; 2x - 3z = 7

Find parametrizations for the lines in which the planes in Exercises 
57–60 intersect.

57. x + y + z = 1, x + y = 2

58. 3x - 6y - 2z = 3, 2x + y - 2z = 2

59. x - 2y + 4z = 2, x + y - 2z = 5

60. 5x - 2y = 11, 4y - 5z = -17

Given two lines in space, either they are parallel, they intersect, or 
they are skew (lie in parallel planes). In Exercises 61 and 62, deter-
mine whether the lines, taken two at a time, are parallel, intersect, or 
are skew. If they intersect, find the point of intersection. Otherwise, 
find the distance between the two lines.

61. L1: x = 3 + 2t, y = -1 + 4t, z = 2 - t;  -q 6 t 6 q
L2: x = 1 + 4s, y = 1 + 2s, z = -3 + 4s;  -q 6 s 6 q
L3: x = 3 + 2r, y = 2 + r, z = -2 + 2r;   -q 6 r 6 q

62. L1: x = 1 + 2t, y = -1 - t, z = 3t; -q 6 t 6 q
L2: x = 2 - s, y = 3s, z = 1 + s; -q 6 s 6 q
L3: x = 5 + 2r, y = 1 - r, z = 8 + 3r; -q 6 r 6 q

Theory and Examples
63. Use Equations (3) to generate a parametrization of the line 

through P(2, -4, 7) parallel to v1 = 2i - j + 3k . Then generate 
another parametrization of the line using the point P2(-2, -2, 1)
and the vector v2 = - i + (1>2)j - (3>2)k .

64. Use the component form to generate an equation for the plane 
through P1(4, 1, 5) normal to n1 = i - 2j + k . Then generate 
another equation for the same plane using the point P2(3, -2, 0)
and the normal vector n2 = -22i + 222j - 22k .

65. Find the points in which the line x = 1 + 2t, y = -1 - t, 
z = 3t meets the coordinate planes. Describe the reasoning 
behind your answer.

66. Find equations for the line in the plane z = 3 that makes an angle 
of p>6 rad with i and an angle of p>3 rad with j. Describe the 
reasoning behind your answer.

67. Is the line x = 1 - 2t, y = 2 + 5t, z = -3t parallel to the plane 
2x + y - z = 8? Give reasons for your answer.

T

Planes
Find equations for the planes in Exercises 21–26.

21. The plane through P0(0, 2, -1) normal to n = 3i - 2j - k

22. The plane through (1, -1, 3) parallel to the plane

3x + y + z = 7

23. The plane through (1, 1, -1), (2, 0, 2), and (0, -2, 1)

24. The plane through (2, 4, 5), (1, 5, 7), and (-1, 6, 8)

25. The plane through P0(2, 4, 5) perpendicular to the line

x = 5 + t, y = 1 + 3t, z = 4t

26. The plane through A(1, -2, 1) perpendicular to the vector from 
the origin to A

27. Find the point of intersection of the lines x = 2t + 1, y = 3t + 2,
z = 4t + 3, and x = s + 2, y = 2s + 4, z = -4s - 1, and 

then find the plane determined by these lines.

28. Find the point of intersection of the lines x = t, y = - t + 2,
z = t + 1, and x = 2s + 2, y = s + 3, z = 5s + 6, and then 

find the plane determined by these lines.

In Exercises 29 and 30, find the plane containing the intersecting 
lines.

29. L1: x = -1 + t, y = 2 + t, z = 1 - t; -q 6 t 6 q
L2: x = 1 - 4s, y = 1 + 2s, z = 2 - 2s; -q 6 s 6 q

30. L1: x = t, y = 3 - 3t, z = -2 - t; -q 6 t 6 q
L2: x = 1 + s,  y = 4 + s,  z = -1 + s;  -q 6 s 6 q

31. Find a plane through P0(2, 1, -1) and perpendicular to the line of 
intersection of the planes 2x + y - z = 3, x + 2y + z = 2.

32. Find a plane through the points P1(1, 2, 3), P2(3, 2, 1) and perpen-
dicular to the plane 4x - y + 2z = 7.

Distances
In Exercises 33–38, find the distance from the point to the line.

33. (0, 0, 12); x = 4t, y = -2t, z = 2t

34. (0, 0, 0); x = 5 + 3t, y = 5 + 4t, z = -3 - 5t

35. (2, 1, 3); x = 2 + 2t, y = 1 + 6t, z = 3

36. (2, 1, -1); x = 2t, y = 1 + 2t, z = 2t

37. (3, -1, 4); x = 4 - t, y = 3 + 2t, z = -5 + 3t

38. (-1, 4, 3); x = 10 + 4t, y = -3, z = 4t

In Exercises 39–44, find the distance from the point to the plane.

39. (2, -3, 4), x + 2y + 2z = 13

40. (0, 0, 0), 3x + 2y + 6z = 6

41. (0, 1, 1), 4y + 3z = -12

42. (2, 2, 3), 2x + y + 2z = 4

43. (0, -1, 0), 2x + y + 2z = 4

44. (1, 0, -1), -4x + y + z = 4

45. Find the distance from the plane x + 2y + 6z = 1 to the plane 
x + 2y + 6z = 10.

46. Find the distance from the line x = 2 + t, y = 1 + t, 
z = - (1>2) - (1>2)t to the plane x + 2y + 6z = 10.
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68. How can you tell when two planes A1x + B1y + C1z = D1 and 
A2x + B2y + C2z = D2 are parallel? Perpendicular? Give rea-
sons for your answer.

69. Find two different planes whose intersection is the line 
x = 1 + t, y = 2 - t, z = 3 + 2t . Write equations for each 
plane in the form Ax + By + Cz = D .

70. Find a plane through the origin that is perpendicular to the plane 
M: 2x + 3y + z = 12 in a right angle. How do you know that 
your plane is perpendicular to M?

71. The graph of (x>a) + (y>b) + (z>c) = 1 is a plane for any non-
zero numbers a, b, and c. Which planes have an equation of this 
form?

72. Suppose L1 and L2 are disjoint (nonintersecting) nonparallel 
lines. Is it possible for a nonzero vector to be perpendicular to 
both L1 and L2? Give reasons for your answer.

73. Perspective in computer graphics In computer graphics and 
perspective drawing, we need to represent objects seen by the eye 
in space as images on a two-dimensional plane. Suppose that the 
eye is at E(x0, 0, 0) as shown here and that we want to represent a 
point P1(x1, y1, z1) as a point on the yz-plane. We do this by pro-
jecting P1 onto the plane with a ray from E. The point P1 will be 
portrayed as the point P(0, y, z). The problem for us as graphics 
designers is to find y and z given E and P1 .

a. Write a vector equation that holds between rEP  and rEP1 . Use 
the equation to express y and z in terms of x0, x1, y1, and z1 .

b. Test the formulas obtained for y and z in part (a) by investi-
gating their behavior at x1 = 0 and x1 = x0 and by seeing 
what happens as x0 S q . What do you find?

0 y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)

74. Hidden lines in computer graphics Here is another typical 
problem in computer graphics. Your eye is at (4, 0, 0). You are 
looking at a triangular plate whose vertices are at (1, 0, 1), (1, 1, 0), 
and (-2, 2, 2) . The line segment from (1, 0, 0) to (0, 2, 2) passes 
through the plate. What portion of the line segment is hidden 
from your view by the plate? (This is an exercise in finding inter-
sections of lines and planes.)

12.6 Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this sec-
tion, we extend our inventory to include a variety of cylinders and quadric surfaces. Quadric 
surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres are quadric 
surfaces, but there are others of equal interest which will be needed in Chapters 14–16.

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar 
curve while holding the line parallel to a given fixed line. The curve is called a generating
curve for the cylinder (Figure 12.43). In solid geometry, where cylinder means circular 
cylinder, the generating curves are circles, but now we allow generating curves of any 
kind. The cylinder in our first example is generated by a parabola.

EXAMPLE 1  Find an equation for the cylinder made by the lines parallel to the z-axis
that pass through the parabola y = x2, z = 0 (Figure 12.44).

Solution The point P0(x0, x0
2, 0) lies on the parabola y = x2 in the xy-plane. Then, for 

any value of z, the point Q(x0, x0
2, z) lies on the cylinder because it lies on the line 

x = x0, y = x0
2 through P0 parallel to the z-axis. Conversely, any point Q(x0, x0

2, z) whose 
y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on the line 
x = x0, y = x0

2 through P0 parallel to the z-axis (Figure 12.44).
Regardless of the value of z, therefore, the points on the surface are the points whose 

coordinates satisfy the equation y = x2 . This makes y = x2 an equation for the cylinder. 
Because of this, we call the cylinder “the cylinder y = x2 .”

y

z

x
Lines through
generating curve
parallel to x-axis

Generating curve
(in the yz-plane)

FIGURE 12.43 A cylinder and generat-
ing curve.
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As Example 1 suggests, any curve ƒ(x, y) = c in the xy-plane defines a cylinder par-
allel to the z-axis whose equation is also ƒ(x, y) = c . For instance, the equation 
x2 + y2 = 1 defines the circular cylinder made by the lines parallel to the z-axis that pass 
through the circle x2 + y2 = 1 in the xy-plane.

In a similar way, any curve g(x, z) = c in the xz-plane defines a cylinder parallel to 
the y-axis whose space equation is also g(x, z) = c. Any curve h(y, z) = c defines a cylin-
der parallel to the x-axis whose space equation is also h(y, z) = c. The axis of a cylinder 
need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. In this 
section we study quadric surfaces given by the equation

Ax2 + By2 + Cz2 + Dz = E,

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, parabo-
loids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. We pres-
ent a few examples illustrating how to sketch a quadric surface, and then give a summary 
table of graphs of the basic types.

EXAMPLE 2  The ellipsoid

x2

a2 +
y2

b2 + z2

c2 = 1

(Figure 12.45) cuts the coordinate axes at ({a, 0, 0), (0, {b, 0), and (0, 0, {c) . It lies 
within the rectangular box defined by the inequalities 0 x 0 … a, 0 y 0 … b, and 0 z 0 … c . The 
surface is symmetric with respect to each of the coordinate planes because each variable in 
the defining equation is squared.

x

z

y

PA
RABOLA

0

y = x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

FIGURE 12.44 Every point of the cyl-
inder in Example 1 has coordinates of the 
form (x0, x0

2, z) . We call it “the cylinder 
y = x2 .”

y

x

z

E
L

L
IP

S
E

c

z0

a

b y

x

z

E
L

L
IP

S
E

ELLIPSE

Elliptical cross-section
      in the plane z = z0

The ellipse + = 1

in the xy-plane

x2

a2

y2

b2

The ellipse + = 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2+ = 1

FIGURE 12.45 The ellipsoid

x2

a2 +
y2

b2 + z2

c2 = 1

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

The curves in which the three coordinate planes cut the surface are ellipses. For example,

x2

a2 +
y2

b2 = 1 when z = 0.
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The curve cut from the surface by the plane z = z0, 0 z0 0 6 c, is the ellipse

x2

a2(1 - (z0>c)2)
+

y2

b2(1 - (z0>c)2)
= 1.

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolu-
tion. If all three are equal, the surface is a sphere.

EXAMPLE 3  The hyperbolic paraboloid

y2

b2 - x2

a2 = z
c , c 7 0

has symmetry with respect to the planes x = 0 and y = 0 (Figure 12.46). The cross-
sections in these planes are

x = 0: the parabola z = c
b2 y2 . (1)

y = 0: the parabola z = - c
a2 x2 . (2)

In the plane x = 0, the parabola opens upward from the origin. The parabola in the plane 
y = 0 opens downward.

If we cut the surface by a plane z = z0 7 0, the cross-section is a hyperbola,

y2

b2 - x2

a2 =
z0
c ,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If 
z0 is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in 
Equation (2).

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-
eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of 
a surface. We will say more about saddle points in Section 14.7.

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface 
shown is symmetric with respect to the z-axis, but other coordinate axes can serve as well 
(with appropriate changes to the equation).

y

z

x y

z

x

The parabola z = y2 in the yz-planec
b2

The parabola z = − x2

in the xz-plane

c
a2

Part of the hyperbola − = 1

in the plane z = c

y2

b2
x2

a2

Part of the hyperbola − = 1

in the plane z = −c

y2

b2
x2

a2

Saddle
point

PARABOLA

P
A

R
A

B
O

LA

HYPERBOLA

FIGURE 12.46 The hyperbolic paraboloid (y2>b2) - (x2>a2) = z>c, c 7 0. The cross-sections in planes perpendicular to the 
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.
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TABLE 12.1 Graphs of Quadric Surfaces

a

b

z

y

x

z = c

z

y

x

ELLIPSE
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Y

P
E

R
B

O
L
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The ellipse + = 2
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x2

a2

y2

b2

The ellipse + = 1

in the xy-plane

x2

a2

y2

b2
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y2
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z2

c2

a
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b
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Y
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E
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a b

x

y
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z

y

x
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z 5 c
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in the yz-plane

c
b

The line z 5 x
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c
a
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in the plane z 5 c

ELLIPTICAL CONE
x2

a2 +
y2

b2 = z2

c2
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y2
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a2 = z
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z

y

x

HY
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L
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0
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E
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B
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L
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"
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The hyperbola
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The hyperbola
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z2

c2

y2
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(0, 0, c)
Vertex

(0, 0, −c)
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H
Y
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z
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x
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Matching Equations with Surfaces
In Exercises 1–12, match the equation with the surface it defines. 
Also, identify each surface by type (paraboloid, ellipsoid, etc.). The 
surfaces are labeled (a)–(1).

1. x2 + y2 + 4z2 = 10 2. z2 + 4y2 - 4x2 = 4

3. 9y2 + z2 = 16 4. y2 + z2 = x2

5. x = y2 - z2 6. x = -y2 - z2

7. x2 + 2z2 = 8 8. z2 + x2 - y2 = 1

9. x = z2 - y2 10. z = -4x2 - y2

11. x2 + 4z2 = y2 12. 9x2 + 4y2 + 2z2 = 36

a. b.z

y
x

z

y
x

c. d.z

yx

z

yx

e. f.z

y
x

z

yx

g. h.z

y
x

z

yx

i. j.
z

y
x

z

yx

k. l.z

x y

  

z

y
x

Drawing
Sketch the surfaces in Exercises 13–44.

CYLINDERS
13. x2 + y2 = 4 14. z = y2 - 1

15. x2 + 4z2 = 16 16. 4x2 + y2 = 36

ELLIPSOIDS
17. 9x2 + y2 + z2 = 9 18. 4x2 + 4y2 + z2 = 16

19. 4x2 + 9y2 + 4z2 = 36 20. 9x2 + 4y2 + 36z2 = 36

PARABOLOIDS AND CONES
21. z = x2 + 4y2 22. z = 8 - x2 - y2

23. x = 4 - 4y2 - z2 24. y = 1 - x2 - z2

25. x2 + y2 = z2 26. 4x2 + 9z2 = 9y2

HYPERBOLOIDS
27. x2 + y2 - z2 = 1 28. y2 + z2 - x2 = 1

29. z2 - x2 - y2 = 1 30. (y2>4) - (x2>4) - z2 = 1

HYPERBOLIC PARABOLOIDS
31. y2 - x2 = z 32. x2 - y2 = z

ASSORTED
33. z = 1 + y2 - x2 34. 4x2 + 4y2 = z2

35. y = - (x2 + z2) 36. 16x2 + 4y2 = 1

37. x2 + y2 - z2 = 4 38. x2 + z2 = y

39. x2 + z2 = 1 40. 16y2 + 9z2 = 4x2

41. z = - (x2 + y2) 42. y2 - x2 - z2 = 1

43. 4y2 + z2 - 4x2 = 4 44. x2 + y2 = z

Theory and Examples
45. a. Express the area A of the cross-section cut from the ellipsoid

x2 +
y2

4
+ z2

9
= 1

  by the plane z = c as a function of c. (The area of an ellipse 
with semiaxes a and b is pab .)

b. Use slices perpendicular to the z-axis to find the volume of 
the ellipsoid in part (a).

c. Now find the volume of the ellipsoid

x2

a2 +
y2

b2 + z2

c2 = 1.

  Does your formula give the volume of a sphere of radius a if 
a = b = c?

Exercises 12.6
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46. The barrel shown here is shaped like an ellipsoid with equal pieces 
cut from the ends by planes perpendicular to the z-axis. The cross-
sections perpendicular to the z-axis are circular. The barrel is 2h
units high, its midsection radius is R, and its end radii are both r.
Find a formula for the barrel’s volume. Then check two things. 
First, suppose the sides of the barrel are straightened to turn the 
barrel into a cylinder of radius R and height 2h. Does your formula 
give the cylinder’s volume? Second, suppose r = 0 and h = R so 
the barrel is a sphere. Does your formula give the sphere’s volume?

z

y

h r

−h

R

x r

47. Show that the volume of the segment cut from the paraboloid

x2

a2 +
y2

b2 = z
c

  by the plane z = h equals half the segment’s base times its 
altitude.

48. a. Find the volume of the solid bounded by the hyperboloid

x2

a2 +
y2

b2 - z2

c2 = 1

  and the planes z = 0 and z = h, h 7 0.

b. Express your answer in part (a) in terms of h and the areas A0

and Ah of the regions cut by the hyperboloid from the planes 
z = 0 and z = h .

c. Show that the volume in part (a) is also given by the formula

V = h
6

(A0 + 4Am + Ah),

where Am is the area of the region cut by the hyperboloid 
from the plane z = h>2.

Viewing Surfaces
Plot the surfaces in Exercises 49–52 over the indicated domains. If 
you can, rotate the surface into different viewing positions.

49. z = y2, -2 … x … 2, -0.5 … y … 2

50. z = 1 - y2, -2 … x … 2, -2 … y … 2

51. z = x2 + y2, -3 … x … 3, -3 … y … 3

52. z = x2 + 2y2 over

a. -3 … x … 3, -3 … y … 3

b. -1 … x … 1, -2 … y … 3

c. -2 … x … 2, -2 … y … 2

d. -2 … x … 2, -1 … y … 1

COMPUTER EXPLORATIONS
Use a CAS to plot the surfaces in Exercises 53–58. Identify the type 
of quadric surface from your graph.

53.
x2

9
+

y2

36
= 1 - z2

25
54.

x2

9
- z2

9
= 1 -

y2

16

55. 5x2 = z2 - 3y2 56.
y2

16
= 1 - x2

9
+ z

57.
x2

9
- 1 =

y2

16
+ z2

2
58. y - 24 - z2 = 0

T

Chapter 12 Questions to Guide Your Review

1. When do directed line segments in the plane represent the same 
vector?

2. How are vectors added and subtracted geometrically? Algebra-
ically?

3. How do you find a vector’s magnitude and direction?

4. If a vector is multiplied by a positive scalar, how is the result 
related to the original vector? What if the scalar is zero? Negative?

5. Define the dot product (scalar product) of two vectors. Which 
algebraic laws are satisfied by dot products? Give examples. 
When is the dot product of two vectors equal to zero?

6. What geometric interpretation does the dot product have? Give 
examples.

7. What is the vector projection of a vector u onto a vector v? Give 
an example of a useful application of a vector projection.

8. Define the cross product (vector product) of two vectors. Which 
algebraic laws are satisfied by cross products, and which are not? 
Give examples. When is the cross product of two vectors equal to 
zero?

9. What geometric or physical interpretations do cross products 
have? Give examples.

10. What is the determinant formula for calculating the cross product 
of two vectors relative to the Cartesian i, j, k-coordinate system? 
Use it in an example.

11. How do you find equations for lines, line segments, and planes in 
space? Give examples. Can you express a line in space by a single 
equation? A plane?

12. How do you find the distance from a point to a line in space? 
From a point to a plane? Give examples.

13. What are box products? What significance do they have? How 
are they evaluated? Give an example.

14. How do you find equations for spheres in space? Give examples.

15. How do you find the intersection of two lines in space? A line and 
a plane? Two planes? Give examples.

16. What is a cylinder? Give examples of equations that define cylin-
ders in Cartesian coordinates.

17. What are quadric surfaces? Give examples of different kinds of 
ellipsoids, paraboloids, cones, and hyperboloids (equations and 
sketches).
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Chapter 12 Practice Exercises

Vector Calculations in Two Dimensions
In Exercises 1–4, let u = 8-3, 49  and v = 82, -59 . Find (a) the 
component form of the vector and (b) its magnitude.

1. 3u - 4v 2. u + v

3. -2u 4. 5v

In Exercises 5–8, find the component form of the vector.

5. The vector obtained by rotating 80, 19  through an angle of 2p>3
radians

6. The unit vector that makes an angle of p>6 radian with the posi-
tive x-axis

7. The vector 2 units long in the direction 4i - j

8. The vector 5 units long in the direction opposite to the direction 
of (3>5)i + (4>5)j

Express the vectors in Exercises 9–12 in terms of their lengths and 
directions.

9. 22i + 22j 10. - i - j

11. Velocity vector v = (-2 sin t)i + (2 cos t)j when t = p>2.

12. Velocity vector v = (et cos t - et sin t)i + (et sin t + et cos t)j
when t = ln 2.

Vector Calculations in Three Dimensions
Express the vectors in Exercises 13 and 14 in terms of their lengths 
and directions.

13. 2i - 3j + 6k 14. i + 2j - k

15. Find a vector 2 units long in the direction of v = 4i - j + 4k .

16. Find a vector 5 units long in the direction opposite to the direction 
of v = (3>5)i + (4>5)k .

In Exercises 17 and 18, find 0 v 0 , 0 u 0 , v # u, u # v, v * u, u * v,0 v * u 0 , the angle between v and u, the scalar component of u in the 
direction of v, and the vector projection of u onto v.

17. v = i + j

v = 2i + j - 2k

In Exercises 25 and 26, find (a) the area of the parallelogram deter-
mined by vectors u and v and (b) the volume of the parallelepiped 
determined by the vectors u, v, and w.

25. u = i + j - k, v = 2i + j + k, w = - i - 2j + 3k

26. u = i + j, v = j, w = i + j + k

Lines, Planes, and Distances
27. Suppose that n is normal to a plane and that v is parallel to the 

plane. Describe how you would find a vector n that is both per-
pendicular to v and parallel to the plane.

28. Find a vector in the plane parallel to the line ax + by = c .

In Exercises 29 and 30, find the distance from the point to the line.

29. (2, 2, 0); x = - t, y = t, z = -1 + t

30. (0, 4, 1); x = 2 + t, y = 2 + t, z = t

31. Parametrize the line that passes through the point (1, 2, 3) parallel 
to the vector v = -3i + 7k.

32. Parametrize the line segment joining the points P(1, 2, 0) and 
Q(1, 3, -1) .

In Exercises 33 and 34, find the distance from the point to the plane.

33. (6, 0, -6), x - y = 4

34. (3, 0, 10), 2x + 3y + z = 2

35. Find an equation for the plane that passes through the point 
(3, -2, 1) normal to the vector n = 2i + j + k .

36. Find an equation for the plane that passes through the point 
(-1, 6, 0) perpendicular to the line x = -1 + t, y = 6 - 2t,
z = 3t .

In Exercises 37 and 38, find an equation for the plane through points 
P, Q, and R.

37. P(1, -1, 2), Q(2, 1, 3), R(-1, 2, -1)

38. P(1, 0, 0), Q(0, 1, 0), R(0, 0, 1)

39. Find the points in which the line x = 1 + 2t, y = -1 - t,
z = 3t meets the three coordinate planes.

40. Find the point in which the line through the origin perpendicular 
to the plane 2x - y - z = 4 meets the plane 3x - 5y +
2z = 6.

41. Find the acute angle between the planes x = 7 and x + y +
22z = -3.

42. Find the acute angle between the planes x + y = 1 and y + z = 1.

43. Find parametric equations for the line in which the planes 
x + 2y + z = 1 and x - y + 2z = -8 intersect.

44. Show that the line in which the planes

x + 2y - 2z = 5 and 5x - 2y - z = 0

  intersect is parallel to the line

x = -3 + 2t, y = 3t, z = 1 + 4t .

In Exercises 19 and 20, find projv u.

19. v = 2i + j - k

u = i + j - 5k

20. u = i - 2j

v = i + j + k

In Exercises 21 and 22, draw coordinate axes and then sketch u, v,
and u * v as vectors at the origin.

21. u = i, v = i + j 22. u = i - j, v = i + j

23. If 0 v 0 = 2, 0w 0 = 3, and the angle between v and w is p>3, find 0 v - 2w 0 .
24. For what value or values of a will the vectors u = 2i + 4j - 5k

and v = -4i - 8j + ak be parallel?

18. v = i + j + 2k

u = - i - k
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a. (2i - 3j + 3k) # ((x + 2)i + (y - 1)j + zk) = 0

b. x = 3 - t, y = -11t, z = 2 - 3t

c. (x + 2) + 11(y - 1) = 3z

d. (2i - 3j + 3k) * ((x + 2)i + (y - 1)j + zk) = 0

e. (2i - j + 3k) * (-3i + k) # ((x + 2)i + (y - 1)j + zk)
= 0

62. The parallelogram shown here has vertices at A(2, -1, 4),
B(1, 0, -1), C(1, 2, 3), and D. Find

z

y

x

D

C(1, 2, 3)

A(2, −1, 4)

B(1, 0, −1)

a. the coordinates of D,

b. the cosine of the interior angle at B,

c. the vector projection of rBA  onto rBC,

d. the area of the parallelogram,

e. an equation for the plane of the parallelogram,

f. the areas of the orthogonal projections of the parallelogram 
on the three coordinate planes.

63. Distance between skew lines Find the distance between the 
line L1 through the points A(1, 0, -1) and B(-1, 1, 0) and the 
line L2 through the points C(3, 1, -1) and D(4, 5, -2) . The dis-
tance is to be measured along the line perpendicular to the two 
lines. First find a vector n perpendicular to both lines. Then proj-
ect rAC  onto n.

64. (Continuation of Exercise 63.) Find the distance between the line 
through A(4, 0, 2) and B(2, 4, 1) and the line through C(1, 3, 2) 
and D(2, 2, 4).

Quadric Surfaces
Identify and sketch the surfaces in Exercises 65–76.

65. x2 + y2 + z2 = 4 66. x2 + (y - 1)2 + z2 = 1

67. 4x2 + 4y2 + z2 = 4 68. 36x2 + 9y2 + 4z2 = 36

69. z = - (x2 + y2) 70. y = - (x2 + z2)
71. x2 + y2 = z2 72. x2 + z2 = y2

73. x2 + y2 - z2 = 4 74. 4y2 + z2 - 4x2 = 4

75. y2 - x2 - z2 = 1 76. z2 - x2 - y2 = 1

45. The planes 3x + 6z = 1 and 2x + 2y - z = 3 intersect in a line.

a. Show that the planes are orthogonal.

b. Find equations for the line of intersection.

46. Find an equation for the plane that passes through the point 
(1, 2, 3) parallel to u = 2i + 3j + k and v = i - j + 2k .

47. Is v = 2i - 4j + k related in any special way to the plane 
2x + y = 5? Give reasons for your answer.

48. The equation n # rP0P = 0 represents the plane through P0 normal 
to n. What set does the inequality n # rP0P 7 0 represent?

49. Find the distance from the point P(1, 4, 0) to the plane through 
A(0, 0, 0), B(2, 0, -1), and C(2, -1, 0) .

50. Find the distance from the point (2, 2, 3) to the plane 
2x + 3y + 5z = 0.

51. Find a vector parallel to the plane 2x - y - z = 4 and orthogo-
nal to i + j + k .

52. Find a unit vector orthogonal to A in the plane of B and C if 
A = 2i - j + k, B = i + 2j + k, and C = i + j - 2k .

53. Find a vector of magnitude 2 parallel to the line of intersection of 
the planes x + 2y + z - 1 = 0 and x - y + 2z + 7 = 0.

54. Find the point in which the line through the origin perpendicular 
to the plane 2x - y - z = 4 meets the plane 3x - 5y +
2z = 6.

55. Find the point in which the line through P(3, 2, 1) normal to the 
plane 2x - y + 2z = -2 meets the plane.

56. What angle does the line of intersection of the planes 
2x + y - z = 0 and x + y + 2z = 0 make with the positive 
x-axis?

57. The line

L: x = 3 + 2t, y = 2t, z = t

  intersects the plane x + 3y - z = -4 in a point P. Find the 
coordinates of P and find equations for the line in the plane 
through P perpendicular to L.

58. Show that for every real number k the plane

x - 2y + z + 3 + k(2x - y - z + 1) = 0

  contains the line of intersection of the planes

x - 2y + z + 3 = 0 and 2x - y - z + 1 = 0.

59. Find an equation for the plane through A(-2, 0, -3) and 
B(1, -2, 1) that lies parallel to the line through 
C(-2, -13>5, 26>5) and D(16>5, -13>5, 0) .

60. Is the line x = 1 + 2t, y = -2 + 3t, z = -5t related in any way 
to the plane -4x - 6y + 10z = 9? Give reasons for your answer.

61. Which of the following are equations for the plane through the 
points P(1, 1, -1), Q(3, 0, 2), and R(-2, 1, 0)?
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Chapter 12 Additional and Advanced Exercises

1. Submarine hunting Two surface ships on maneuvers are trying 
to determine a submarine’s course and speed to prepare for an air-
craft intercept. As shown here, ship A is located at (4, 0, 0), whereas 
ship B is located at (0, 5, 0). All coordinates are given in thousands 
of feet. Ship A locates the submarine in the direction of the vector 
2i + 3j - (1>3)k, and ship B locates it in the direction of the vec-
tor 18i - 6j - k . Four minutes ago, the submarine was located at 
(2, -1, -1>3) . The aircraft is due in 20 min. Assuming that the 
submarine moves in a straight line at a constant speed, to what 
position should the surface ships direct the aircraft?

z

y
x

(4, 0, 0)

Submarine

(0, 5, 0)
Ship A

Ship B

NOT TO SCALE

2. A helicopter rescue Two helicopters, H1 and H2, are traveling 
together. At time t = 0, they separate and follow different 
straight-line paths given by

H1: x = 6 + 40t, y = -3 + 10t, z = -3 + 2t

H2: x = 6 + 110t, y = -3 + 4t, z = -3 + t .

  Time t is measured in hours, and all coordinates are measured in 
miles. Due to system malfunctions, H2 stops its flight at (446, 
13, 1) and, in a negligible amount of time, lands at (446, 13, 0). 
Two hours later, H1 is advised of this fact and heads toward H2 at 
150 mph. How long will it take H1 to reach H2?

3. Torque The operator’s manual for the Toro® 21-in. lawnmower 
says “tighten the spark plug to 15 ft@lb (20.4 N # m).” If you are 
installing the plug with a 10.5-in. socket wrench that places the 
center of your hand 9 in. from the axis of the spark plug, about 
how hard should you pull? Answer in pounds.

9 in.

4. Rotating body The line through the origin and the point A(1, 1, 1) 
is the axis of rotation of a rigid body rotating with a constant 
angular speed of 3 >2 rad > sec. The rotation appears to be 

clockwise when we look toward the origin from A. Find the 
velocity v of the point of the body that is at the position B(1, 3, 2).

y

z

O

x

1

1

3
v

B(1, 3, 2)A(1, 1, 1)

5. Consider the weight suspended by two wires in each diagram. 
Find the magnitudes and components of vectors F1 and F2, and 
angles a and b .

a.

F1
F2

100 lbs

5 ft
a b

4 ft3 ft

b.

F1 F2

200 lbs

13 ft

a b

12 ft
5 ft

(Hint: This triangle is a right triangle.)

6. Consider a weight of w N suspended by two wires in the diagram, 
where T1 and T2 are force vectors directed along the wires.

T1 T2

a b

w

ba

a. Find the vectors T1 and T2 and show that their magnitudes are

0T1 0 = w cosb
sin (a + b)

and

0T2 0 = w cos a
sin (a + b)

.
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11. Use vectors to show that the distance from P1(x1, y1) to the line 
ax + by = c is

d =
0 ax1 + by1 - c 0
2a2 + b2

.

12. a. Use vectors to show that the distance from P1(x1, y1, z1) to the 
plane Ax + By + Cz = D is

d =
0Ax1 + By1 + Cz1 - D 0
2A2 + B2 + C2

.

b. Find an equation for the sphere that is tangent to the planes 
x + y + z = 3 and x + y + z = 9 if the planes 2x - y = 0
and 3x - z = 0 pass through the center of the sphere.

13. a. Distance between parallel planes Show that the distance 
between the parallel planes Ax + By + Cz = D1 and 
Ax + By + Cz = D2 is

d =
0D1 - D2 0

0Ai + Bj + Ck 0 .
b. Find the distance between the planes 2x + 3y - z = 6 and 

2x + 3y - z = 12.

c. Find an equation for the plane parallel to the plane 
2x - y + 2z = -4 if the point (3, 2, -1) is equidistant from 
the two planes.

d. Write equations for the planes that lie parallel to and 5 units 
away from the plane x - 2y + z = 3.

14. Prove that four points A, B, C, and D are coplanar (lie in a com-
mon plane) if and only if rAD # (rAB * rBC) = 0.

15. The projection of a vector on a plane Let P be a plane in 
space and let v be a vector. The vector projection of v onto the 
plane P, projP v, can be defined informally as follows. Suppose 
the sun is shining so that its rays are normal to the plane P. Then 
projP v is the “shadow” of v onto P. If P is the plane 
x + 2y + 6z = 6 and v = i + j + k, find projP v .

16. The accompanying figure shows nonzero vectors v, w, and z,
with z orthogonal to the line L, and v and w making equal angles 
b with L. Assuming 0 v 0 = 0w 0 , find w in terms of v and z.

v w

z

L
bb

17. Triple vector products The triple vector products
(u * v) * w and u * (v * w) are usually not equal, although 
the formulas for evaluating them from components are similar:

(u * v) * w = (u # w)v - (v # w)u .

u * (v * w) = (u # w)v - (u # v)w .

  Verify each formula for the following vectors by evaluating its 
two sides and comparing the results.

    u v w

a. 2i 2j 2k

b. i - j + k 2i + j - 2k - i + 2j - k

c. 2i + j 2i - j + k i + 2k

d. i + j - 2k - i - k 2i + 4j - 2k

b. For a fixed b determine the value of a which minimizes the 
magnitude 0T1 0 .

c. For a fixed a determine the value of b which minimizes the 
magnitude 0T2 0 .

7. Determinants and planes

a. Show that

3 x1 - x y1 - y z1 - z

x2 - x y2 - y z2 - z

x3 - x y3 - y z3 - z

3 = 0

  is an equation for the plane through the three noncollinear 
points P1(x1, y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3) .

b. What set of points in space is described by the equation

4 x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

4 = 0 ?

8. Determinants and lines Show that the lines

x = a1s + b1, y = a2s + b2, z = a3s + b3, -q 6 s 6 q

  and

x = c1t + d1, y = c2t + d2, z = c3t + d3, -q 6 t 6 q,

  intersect or are parallel if and only if

3 a1 c1 b1 - d1

a2 c2 b2 - d2

a3 c3 b3 - d3

3 = 0.

9. Consider a regular tetrahedron of side length 2.

a. Use vectors to find the angle u formed by the base of the 
tetrahedron and any one of its other edges.

C

P

B

2 1

1

22

A

D

u

b. Use vectors to find the angle u formed by any two adjacent 
faces of the tetrahedron. This angle is commonly referred to 
as a dihedral angle.

10. In the figure here, D is the midpoint of side AB of triangle ABC,
and E is one-third of the way between C and B. Use vectors to 
prove that F is the midpoint of line segment CD.

C

A B

E

F

D
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21. Use vectors to prove that

(a2 + b2)(c2 + d2) Ú (ac + bd)2

  for any four numbers a, b, c, and d. (Hint: Let u = ai + bj and 
v = ci + dj .)

22. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show u ~ u Ú 0 for 
every vector u and that u # u = 0 if and only if u = 0.

23. Show that 0 u + v 0 … 0 u 0 + 0 v 0  for any vectors u and v.

24. Show that w = 0 v 0 u + 0 u 0 v bisects the angle between u and v.

25. Show that 0 v 0 u + 0 u 0 v and 0 v 0 u - 0 u 0 v are orthogonal.

18. Cross and dot products Show that if u, v, w, and r are any 
vectors, then

a. u * (v * w) + v * (w * u) + w * (u * v) = 0

b. u * v = (u # v * i)i + (u # v * j)j + (u # v * k)k

c. (u * v) # (w * r) = ` u # w v # w
u # r v # r ` .

19. Cross and dot products Prove or disprove the formula

u * (u * (u * v)) # w = - 0 u 0 2 u # v * w .

20. By forming the cross product of two appropriate vectors, derive 
the trigonometric identity

sin (A - B) = sin A cos B - cos A sin B .

Chapter 12 Technology Application Projects

Mathematica/Maple Modules:

Using Vectors to Represent Lines and Find Distances
Parts I and II: Learn the advantages of interpreting lines as vectors.
Part III: Use vectors to find the distance from a point to a line.

Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas
Use the concept of planes in space to obtain a two-dimensional image.

Getting Started in Plotting in 3D
Part I: Use the vector definition of lines and planes to generate graphs and equations, and to compare different forms for the equations of a
single line.
Part II: Plot functions that are defined implicitly.
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OVERVIEW Now that we have learned about vectors and the geometry of space, we can 
combine these ideas with our earlier study of functions. In this chapter we introduce the 
calculus of vector-valued functions. The domains of these functions are sets of real num-
bers, as before, but their ranges consist of vectors, not scalars. When a vector-valued func-
tion changes, the change can occur in both magnitude and direction, so the derivative is 
itself a vector. The integral of a vector-valued function is also a vector. We use the calculus 
of these functions to describe the paths and motions of objects moving in a plane or in 
space, so their velocities and accelerations are given by vectors. We also introduce new 
scalars that quantify the turning and twisting in the path of an object moving in space.

Vector-Valued Functions 
and Motion in Space

13

13.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, we think of the particle’s 
coordinates as functions defined on I:

x = ƒ(t), y = g(t), z = h(t), t∊I. (1)

The points (x, y, z) = (ƒ(t), g(t), h(t)), t∊I, make up the curve in space that we call the 
particle’s path. The equations and interval in Equation (1) parametrize the curve.

A curve in space can also be represented in vector form. The vector

r(t) = rOP = ƒ(t)i + g(t)j + h(t)k (2)

from the origin to the particle’s position P(ƒ(t), g(t), h(t)) at time t is the particle’s posi-
tion vector (Figure 13.1). The functions ƒ, g, and h are the component functions (com-
ponents) of the position vector. We think of the particle’s path as the curve traced by r
during the time interval I. Figure 13.2 displays several space curves generated by a com-
puter graphing program. It would not be easy to plot these curves by hand.

Equation (2) defines r as a vector function of the real variable t on the interval I. More 
generally, a vector-valued function or vector function on a domain set D is a rule that 
assigns a vector in space to each element in D. For now, the domains will be intervals of 
real numbers resulting in a space curve. Later, in Chapter 16, the domains will be regions 
in the plane. Vector functions will then represent surfaces in space. Vector functions on a 
domain in the plane or space also give rise to “vector fields,” which are important to the 
study of the flow of a fluid, gravitational fields, and electromagnetic phenomena. We 
investigate vector fields and their applications in Chapter 16.

Real-valued functions are called scalar functions to distinguish them from vector 
functions. The components of r in Equation (2) are scalar functions of t. The domain of a 
vector-valued function is the common domain of its components.

r

y

z

O

x

P( f (t), g(t), h(t))

FIGURE 13.1 The position vector 
r = rOP  of a particle moving through 
space is a function of time.
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EXAMPLE 1  Graph the vector function

r(t) = (cos t)i + (sin t)j + tk.

Solution The vector function

r(t) = (cos t)i + (sin t)j + tk

is defined for all real values of t. The curve traced by r winds around the circular cylinder 
x2 + y2 = 1 (Figure 13.3). The curve lies on the cylinder because the i- and j-components
of r, being the x- and y-coordinates of the tip of r, satisfy the cylinder’s equation:

x2 + y2 = (cos t)2 + (sin t)2 = 1.

The curve rises as the k-component z = t increases. Each time t increases by 2p, the 
curve completes one turn around the cylinder. The curve is called a helix (from an old 
Greek word for “spiral”). The equations

x = cos t, y = sin t, z = t

parametrize the helix, the interval -q 6 t 6 q being understood. Figure 13.4 shows 
more helices. Note how constant multiples of the parameter t can change the number of 
turns per unit of time.

y

z

0

x

(1, 0, 0)

r
P

t

x2 + y2 = 1t = 0

t = p
2

t = 2p
t = p

2p

FIGURE 13.3 The upper half of the 
helix r(t) = (cos t)i + (sin t)j + tk
(Example 1).

y

x

y

r(t) = (cos t)i + (sin t)j + tk

x

z

y

r(t) = (cos 5t)i + (sin 5t)j + tk

z

r(t) = (cos t)i + (sin t)j + 0.3tk

x

z

FIGURE 13.4 Helices spiral upward around a cylinder, like coiled springs.

Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits 
of real-valued functions.

r(t) = (cos t)i + (sin t)j + (sin2t)k
r(t) = (sin3t)(cos t)i +

(sin3t)(sin t)j + tk
r(t) = (4 + sin20t)(cos t)i +

   (4 + sin20t)(sint)j +
   (cos20t)k

y

z

x y

(a) (b) (c)

z

x
y

x

z

FIGURE 13.2 Space curves are defined by the position vectors r(t).
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If L = L1i + L2 j + L3k, then it can be shown that limtSt0
r(t) = L precisely when

lim
tSt0

ƒ(t) = L1, lim
tSt0

g(t) = L2, and lim
tSt0

h(t) = L3.

We omit the proof. The equation

lim
tSt0

r(t) = a lim
tSt0

ƒ(t)b i + a lim
tSt0

g(t)b j + a lim
tSt0

h(t)bk (3)

provides a practical way to calculate limits of vector functions.

EXAMPLE 2  If r(t) = (cos t)i + (sin t)j + tk, then

lim
tSp>4 r(t) = a lim

tSp>4 cos tb i + a lim
tSp>4 sin tb j + a lim

tSp>4 tbk

= 22
2

i + 22
2

j + p
4

k.

We define continuity for vector functions the same way we define continuity for scalar 
functions defined over an interval.

DEFINITION A vector function r(t) is continuous at a point t = t0 in its 
domain if limtSt0

r(t) = r(t0). The function is continuous if it is continuous over 
its interval domain.

DEFINITION Let r(t) = ƒ(t)i + g(t)j + h(t)k be a vector function with domain 
D, and L a vector. We say that r has limit L as t approaches t0 and write

lim
tSt0

r(t) = L

if, for every number P 7 0, there exists a corresponding number d 7 0 such 
that for all t∊D

� r(t) - L � 6 P whenever 0 6 � t - t0 � 6 d.

To calculate the limit of a vector func-
tion, we find the limit of each component 
scalar function.

From Equation (3), we see that r(t) is continuous at t = t0 if and only if each compo-
nent function is continuous there (Exercise 31).

EXAMPLE 3  

(a) All the space curves shown in Figures 13.2 and 13.4 are continuous because their 
component functions are continuous at every value of t in (-q, q).

(b) The function

g(t) = (cos t)i + (sin t)j + :t;k
is discontinuous at every integer, where the greatest integer function :t;  is 
discontinuous.

Derivatives and Motion

Suppose that r(t) = ƒ(t)i + g(t)j + h(t)k is the position vector of a particle moving along 
a curve in space and that ƒ, g, and h are differentiable functions of t. Then the difference 
between the particle’s positions at time t and time t + ∆t is

∆r = r(t + ∆t) - r(t)
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(Figure 13.5a). In terms of components, we find

∆r = r(t + ∆t) - r(t)

= 3ƒ(t + ∆t)i + g(t + ∆t)j + h(t + ∆t)k4
- 3ƒ(t)i + g(t)j + h(t)k4

= 3ƒ(t + ∆t) - ƒ(t)4 i + 3g(t + ∆t) - g(t)4 j + 3h(t + ∆t) - h(t)4k.

As ∆t approaches zero, three things seem to happen simultaneously. First, Q approaches P
along the curve. Second, the secant line PQ seems to approach a limiting position tangent 
to the curve at P. Third, the quotient ∆r>∆t (Figure 13.5b) approaches the limit

lim
∆tS0

∆r
∆t

= c lim
∆tS0

ƒ(t + ∆t) - ƒ(t)
∆t

d i + c lim
∆tS0

g(t + ∆t) - g(t)
∆t

d j

+ c lim
∆tS0

h(t + ∆t) - h(t)
∆t

dk

= c dƒ
dt
d i + c dg

dt
d j + c dh

dt
dk.

These observations lead us to the following definition.

y

z

(a)
x

P

C

O

O

Q
r(t + Δ t) − r(t)

r(t)

r(t + Δ t)

y

z

(b)
x

P

C

Q

r(t + Δ t) − r(t)

r(t)

r′(t)

r(t + Δ t)

Δ t

FIGURE 13.5 As ∆t S 0, the point Q
approaches the point P along the curve C.
In the limit, the vector rPQ >∆t becomes 
the tangent vector r′(t).

DEFINITION The vector function r(t) = ƒ(t)i + g(t)j + h(t)k has a derivative 
(is differentiable) at t if ƒ, g, and h have derivatives at t. The derivative is the 
vector function

r′(t) = dr
dt

= lim
∆tS0

r(t + ∆t) - r(t)
∆t

=
dƒ
dt

  i +
dg
dt

  j + dh
dt

  k.

A vector function r is differentiable if it is differentiable at every point of its domain. 
The curve traced by r is smooth if dr >dt is continuous and never 0, that is, if ƒ, g, and h
have continuous first derivatives that are not simultaneously 0.

The geometric significance of the definition of derivative is shown in Figure 13.5. The 
points P and Q have position vectors r(t) and r(t + ∆t), and the vector rPQ  is represented 
by r(t + ∆t) - r(t). For ∆t 7 0, the scalar multiple (1>∆t)(r(t + ∆t) - r(t)) points in 
the same direction as the vector rPQ. As ∆t S 0, this vector approaches a vector that is 
tangent to the curve at P (Figure 13.5b). The vector r′(t), when different from 0, is defined 
to be the vector tangent to the curve at P. The tangent line to the curve at a point 
(ƒ(t0), g(t0), h(t0)) is defined to be the line through the point parallel to r′(t0). We require 
dr>dt ≠ 0 for a smooth curve to make sure the curve has a continuously turning tangent 
at each point. On a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a finite number of smooth curves pieced together in a con-
tinuous fashion is called piecewise smooth (Figure 13.6).

Look once again at Figure 13.5. We drew the figure for ∆t positive, so ∆r points for-
ward, in the direction of the motion. The vector ∆r>∆t, having the same direction as ∆r,
points forward too. Had ∆t been negative, ∆r would have pointed backward, against the 
direction of motion. The quotient ∆r>∆t, however, being a negative scalar multiple of ∆r,
would once again have pointed forward. No matter how ∆r points, ∆r>∆t points forward 
and we expect the vector dr>dt = lim∆tS0 ∆r>∆t, when different from 0, to do the same. 
This means that the derivative dr >dt, which is the rate of change of position with respect 
to time, always points in the direction of motion. For a smooth curve, dr>dt is never zero; 
the particle does not stop or reverse direction.

C1

C2

C3 C4

C5

FIGURE 13.6 A piecewise smooth 
curve made up of five smooth curves con-
nected end to end in a continuous fashion. 
The curve here is not smooth at the points 
joining the five smooth curves.
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EXAMPLE 4  Find the velocity, speed, and acceleration of a particle whose motion in 
space is given by the position vector r(t) = 2 cos t i + 2 sin t j + 5 cos2 t k. Sketch the 
velocity vector v(7p>4).

Solution The velocity and acceleration vectors at time t are

v(t) = r′(t) = -2 sin t i + 2 cos t j - 10 cos t sin t k

= -2 sin t i + 2 cos t j - 5 sin 2t k,

a(t) = r″(t) = -2 cos t i - 2 sin t j - 10 cos 2t k,

and the speed is

� v(t) � = 2(-2 sin t)2 + (2 cos t)2 + (-5 sin 2t)2 = 24 + 25 sin2 2t .

When t = 7p>4, we have

va7p
4
b = 22i + 22j + 5k, aa7p

4
b = -22 i + 22 j, 2 va7p

4
b 2 = 229.

A sketch of the curve of motion, and the velocity vector when t = 7p>4, can be seen in 
Figure 13.7.

We can express the velocity of a moving particle as the product of its speed and 
direction:

Velocity = � v � a v
� v �
b = (speed)(direction).

Differentiation Rules

Because the derivatives of vector functions may be computed component by component, 
the rules for differentiating vector functions have the same form as the rules for differenti-
ating scalar functions.

DEFINITIONS If r is the position vector of a particle moving along a smooth 
curve in space, then

v(t) = dr
dt

is the particle’s velocity vector, tangent to the curve. At any time t, the direction 
of v is the direction of motion, the magnitude of v is the particle’s speed, and 
the derivative a = dv>dt, when it exists, is the particle’s acceleration vector. In 
summary,

1. Velocity is the derivative of position: v = dr
dt

.

2. Speed is the magnitude of velocity: Speed = � v � .

3. Acceleration is the derivative of velocity: a = dv
dt

= d2r
dt2 .

4. The unit vector v> � v �  is the direction of motion at time t.

z

x

y

7p
4

r′

7p
4

t =

a b

FIGURE 13.7 The curve and the 
velocity vector when t = 7p>4 for the 
motion given in Example 4.
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We will prove the product rules and Chain Rule but leave the rules for constants, scalar 
multiples, sums, and differences as exercises.

Proof of the Dot Product Rule Suppose that

u = u1(t)i + u2(t)j + u3(t)k

and

v = y1(t)i + y2(t)j + y3(t)k.

Then

d
dt

 (u # v) = d
dt

 (u1y1 + u2y2 + u3y3)

= u1
=y1 + u2

=y2 + u3
=y3 + u1y1

= + u2y2
= + u3y3

= .
(+++)++++* (++++)+++*

u′ # v u # v′

Proof of the Cross Product Rule We model the proof after the proof of the Product 
Rule for scalar functions. According to the definition of derivative,

d
dt

 (u * v) = lim
hS0

u(t + h) * v(t + h) - u(t) * v(t)
h

.

To change this fraction into an equivalent one that contains the difference quotients for the 
derivatives of u and v, we subtract and add u(t) * v(t + h) in the numerator. Then

d
dt

 (u * v)

= lim
hS0

  
u(t + h) * v(t + h) - u(t) * v(t + h) + u(t) * v(t + h) - u(t) * v(t)

h

= lim
hS0
cu(t + h) - u(t)

h
* v(t + h) + u(t) *

v(t + h) - v(t)
h

d
= lim

hS0
  
u(t + h) - u(t)

h
* lim

hS0
  v(t + h) + lim

hS0
  u(t) * lim

hS0

v(t + h) - v(t)
h

.

Differentiation Rules for Vector Functions

Let u and v be differentiable vector functions of t, C a constant vector, c any sca-
lar, and ƒ any differentiable scalar function.

1. Constant Function Rule:
d
dt

C = 0

2. Scalar Multiple Rules:
d
dt
3cu(t)4 = cu′(t)

d
dt
3ƒ(t)u(t)4 = ƒ′(t)u(t) + ƒ(t)u′(t)

3. Sum Rule:
d
dt
3u(t) + v(t)4 = u′(t) + v′(t)

4. Difference Rule:
d
dt
3u(t) - v(t)4 = u′(t) - v′(t)

5. Dot Product Rule:
d
dt
3u(t) # v(t)4 = u′(t) # v(t) + u(t) # v′(t)

6. Cross Product Rule:
d
dt
3u(t) * v(t)4 = u′(t) * v(t) + u(t) * v′(t)

7. Chain Rule:
d
dt
3u(ƒ(t))4 = ƒ′(t)u′(ƒ(t))

When you use the Cross Product Rule, 
remember to preserve the order of the 
factors. If u comes first on the left side
of the equation, it must also come first
on the right or the signs will be wrong.
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The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 32). As h approaches 
zero, v(t + h) approaches v(t) because v, being differentiable at t, is continuous at t (Exer-
cise 33). The two fractions approach the values of du >dt and dv >dt at t. In short,

d
dt

 (u * v) = du
dt

* v + u * dv
dt

.

Proof of the Chain Rule Suppose that u(s) = a(s)i + b(s)j + c(s)k is a differen-
tiable vector function of s and that s = ƒ(t) is a differentiable scalar function of t. Then a,
b, and c are differentiable functions of t, and the Chain Rule for differentiable real-valued 
functions gives

d
dt
3u(s)4 = da

dt
i + db

dt
  j + dc

dt
k

= da
ds

ds
dt

i + db
ds

ds
dt

  j + dc
ds

ds
dt

k

= ds
dt
ada

ds
  i + db

ds
  j + dc

ds
  kb

= ds
dt

du
ds

= ƒ′(t)u′(ƒ(t)). s = ƒ(t)

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector dr >dt,
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is 
always the case for a differentiable vector function of constant length: The vector and its first 
derivative are orthogonal. By direct calculation,

r(t) # r(t) = c2 � r(t) � = c is constant.

d
dt
3r(t) # r(t)4 = 0 Differentiate both sides.

r′(t) # r(t) + r(t) # r′(t) = 0 Rule 5 with r(t) = u(t) = v(t)

2r′(t) # r(t) = 0.

The vectors r′(t) and r(t) are orthogonal because their dot product is 0. In summary,

As an algebraic convenience, we  
sometimes write the product of a scalar c
and a vector v as vc instead of cv. This 
permits us, for instance, to write the 
Chain Rule in a familiar form:

du
dt

= du
ds

  
ds
dt

,

where s = ƒ(t).

y

z

x

P
r(t)

dr
dt

FIGURE 13.8 If a particle moves on 
a sphere in such a way that its position r
is a differentiable function of time, then 
r # (dr>dt) = 0.

If r is a differentiable vector function of t of constant length, then

r # dr
dt

= 0. (4)

We will use this observation repeatedly in Section 13.4. The converse is also true (see 
Exercise 27).

Motion in the Plane
In Exercises 1–4, r(t) is the position of a particle in the xy-plane at 
time t. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the 
given value of t.

1. r(t) = (t + 1)i + (t2 - 1)j, t = 1

2. r(t) = t
t + 1

i + 1
t  j, t = - 1

2

3. r(t) = et i + 2
9

e2tj, t = ln 3

4. r(t) = (cos 2t)i + (3 sin 2t)j, t = 0

Exercises 13.1
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Exercises 5–8 give the position vectors of particles moving along var-
ious curves in the xy-plane. In each case, find the particle’s velocity 
and acceleration vectors at the stated times and sketch them as vectors 
on the curve.

5. Motion on the circle x2 + y2 = 1

r(t) = (sin t)i + (cos t)j; t = p>4 and p>2
6. Motion on the circle x2 + y2 = 16

r(t) = a4 cos
t
2
b i + a4 sin

t
2
bj; t = p and 3p>2

7. Motion on the cycloid x = t - sin t, y = 1 - cos t

r(t) = (t - sin t)i + (1 - cos t)j; t = p and 3p>2
8. Motion on the parabola y = x2 + 1

r(t) = ti + (t2 + 1)j; t = -1, 0, and 1

Motion in Space
In Exercises 9–14, r(t) is the position of a particle in space at time t.
Find the particle’s velocity and acceleration vectors. Then find the par-
ticle’s speed and direction of motion at the given value of t. Write the 
particle’s velocity at that time as the product of its speed and direction.

9. r(t) = (t + 1)i + (t2 - 1)j + 2tk, t = 1

10. r(t) = (1 + t)i + t2

22
j + t3

3
k, t = 1

11. r(t) = (2 cos t)i + (3 sin t)j + 4tk, t = p>2
12. r(t) = (sec t)i + (tan t)j + 4

3
tk, t = p>6

13. r(t) = (2 ln (t + 1))i + t2j + t2

2
k, t = 1

14. r(t) = (e-t)i + (2 cos 3t)j + (2 sin 3t)k, t = 0

In Exercises 15–18, r(t) is the position of a particle in space at time t.
Find the angle between the velocity and acceleration vectors at time 
t = 0.

15. r(t) = (3t + 1)i + 23tj + t2k

16. r(t) = a22
2

tb i + a22
2

t - 16t2bj

17. r(t) = (ln (t2 + 1))i + (tan-1 t)j + 2t2 + 1 k

18. r(t) = 4
9

(1 + t)3>2i + 4
9

(1 - t)3>2j + 1
3

tk

Tangents to Curves
As mentioned in the text, the tangent line to a smooth curve 
r(t) = ƒ(t)i + g(t)j + h(t)k at t = t0 is the line that passes through 
the point (ƒ(t0), g(t0), h(t0)) parallel to v(t0), the curve’s velocity vec-
tor at t0. In Exercises 19–22, find parametric equations for the line that 
is tangent to the given curve at the given parameter value t = t0.

19. r(t) = (sin t)i + (t2 - cos t)j + etk, t0 = 0

20. r(t) = t2 i + (2t - 1)j + t3k, t0 = 2

21. r(t) = ln t i + t - 1
t + 2

j + t ln t k, t0 = 1

22. r(t) = (cos t)i + (sin t)j + (sin 2t)k, t0 = p
2

Theory and Examples
23. Motion along a circle Each of the following equations in parts 

(a)–(e) describes the motion of a particle having the same path, 
namely the unit circle x2 + y2 = 1. Although the path of each 
particle in parts (a)–(e) is the same, the behavior, or “dynamics,” 
of each particle is different. For each particle, answer the follow-
ing questions.

i) Does the particle have constant speed? If so, what is its con-
stant speed?

 ii) Is the particle’s acceleration vector always orthogonal to its 
velocity vector?

iii) Does the particle move clockwise or counterclockwise 
around the circle?

iv) Does the particle begin at the point (1, 0)?

  a. r(t) = (cos t)i + (sin t)j, t Ú 0

  b. r(t) = cos (2t)i + sin (2t)j, t Ú 0

  c. r(t) = cos (t - p>2)i + sin (t - p>2)j, t Ú 0

  d. r(t) = (cos t)i - (sin t)j, t Ú 0

  e. r(t) = cos (t2)i + sin (t2)j, t Ú 0

24. Motion along a circle Show that the vector-valued function

r(t) = (2i + 2j + k)

+ cos t ¢ 1

22
i - 1

22
j≤ + sin t ¢ 1

23
i + 1

23
j + 1

23
k≤

  describes the motion of a particle moving in the circle of radius 1 
centered at the point (2, 2, 1) and lying in the plane 
x + y - 2z = 2.

25. Motion along a parabola A particle moves along the top of the 
parabola y2 = 2x from left to right at a constant speed of 5 units 
per second. Find the velocity of the particle as it moves through 
the point (2, 2).

26. Motion along a cycloid A particle moves in the xy-plane in 
such a way that its position at time t is

r(t) = (t - sin t)i + (1 - cos t)j.

a. Graph r(t). The resulting curve is a cycloid.

  b. Find the maximum and minimum values of �v �  and �a � .
(Hint: Find the extreme values of �v �2 and �a �2 first and take 
square roots later.)

27. Let r be a differentiable vector function of t. Show that if 
r # (dr>dt) = 0 for all t, then � r �  is constant.

28. Derivatives of triple scalar products

  a. Show that if u, v, and w are differentiable vector functions of 
t, then

d
dt

(u # v * w) = du
dt
# v * w + u # dv

dt
* w + u # v * dw

dt
.

  b. Show that

d
dt
ar # dr

dt
* d2r

dt2b = r # adr
dt

* d3r
dt3b .

  (Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

T
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29. Prove the two Scalar Multiple Rules for vector functions.

30. Prove the Sum and Difference Rules for vector functions.

31. Component test for continuity at a point Show that the vector 
function r defined by r(t) = ƒ(t)i + g(t)j + h(t)k is continuous 
at t = t0 if and only if ƒ, g, and h are continuous at t0.

32. Limits of cross products of vector functions Suppose that 
r1(t) = ƒ1(t)i + ƒ2(t)j + ƒ3(t)k, r2(t) = g1(t)i + g2(t)j + g3(t)k,
limtSt0

r1(t) = A, and limtSt0
r2(t) = B. Use the determinant for-

mula for cross products and the Limit Product Rule for scalar 
functions to show that

lim
tSt0

(r1(t) * r2(t)) = A * B.

33. Differentiable vector functions are continuous Show that if 
r(t) = ƒ(t)i + g(t)j + h(t)k is differentiable at t = t0, then it is 
continuous at t0 as well.

34. Constant Function Rule Prove that if u is the vector function 
with the constant value C, then du>dt = 0.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 35–38.

a. Plot the space curve traced out by the position vector r.

b. Find the components of the velocity vector dr >dt.

c. Evaluate dr >dt at the given point t0 and determine the equation of 
the tangent line to the curve at r(t0).

d. Plot the tangent line together with the curve over the given interval.

35. r(t) = (sin t - t cos t)i + (cos t + t sin t)j + t2k,
0 … t … 6p, t0 = 3p>2

36. r(t) = 22t i + et j + e-t k, -2 … t … 3, t0 = 1

37. r(t) = (sin 2t)i + (ln (1 + t))j + tk, 0 … t … 4p,
t0 = p>4

38. r(t) = (ln (t2 + 2))i + (tan-1 3t)j + 2t2 + 1 k,
-3 … t … 5, t0 = 3

In Exercises 39 and 40, you will explore graphically the behavior of 
the helix

r(t) = (cos at)i + (sin at)j + btk

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

39. Set b = 1. Plot the helix r(t) together with the tangent line to the 
curve at t = 3p>2 for a = 1, 2, 4, and 6 over the interval 
0 … t … 4p. Describe in your own words what happens to the 
graph of the helix and the position of the tangent line as a
increases through these positive values.

40. Set a = 1. Plot the helix r(t) together with the tangent line to the 
curve at t = 3p>2 for b = 1>4, 1>2, 2, and 4 over the interval 
0 … t … 4p. Describe in your own words what happens to the 
graph of the helix and the position of the tangent line as b
increases through these positive values.

13.2 Integrals of Vector Functions; Projectile Motion

In this section we investigate integrals of vector functions and their application to motion 
along a path in space or in the plane.

Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector function r(t) on an 
interval I if dR>dt = r at each point of I. If R is an antiderivative of r on I, it can be 
shown, working one component at a time, that every antiderivative of r on I has the form 
R + C for some constant vector C (Exercise 41). The set of all antiderivatives of r on I is 
the indefinite integral of r on I.

DEFINITION The indefinite integral of r with respect to t is the set of all anti-
derivatives of r, denoted by 1r(t) dt. If R is any antiderivative of r, then

L
r(t) dt = R(t) + C.

The usual arithmetic rules for indefinite integrals apply.
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EXAMPLE 1  To integrate a vector function, we integrate each of its components.

L
((cos t)i + j - 2tk) dt = a

L
cos t dtb i + a

L
dtb j - a

L
2t dtbk (1)

= (sin t + C1)i + (t + C2)j - (t2 + C3)k (2)

= (sin t)i + tj - t2k + C C = C1i + C2j - C3k

As in the integration of scalar functions, we recommend that you skip the steps in Equa-
tions (1) and (2) and go directly to the final form. Find an antiderivative for each compo-
nent and add a constant vector at the end.

Definite integrals of vector functions are best defined in terms of components. The 
definition is consistent with how we compute limits and derivatives of vector functions.

DEFINITION If the components of r(t) = ƒ(t)i + g(t)j + h(t)k are integrable 
over 3a, b4 , then so is r, and the definite integral of r from a to b is

L

b

a
r(t) dt = a

L

b

a
ƒ(t) dtb i + a

L

b

a
g(t) dtb j + a

L

b

a
h(t) dtbk.

EXAMPLE 2  As in Example 1, we integrate each component.

L

p

0
((cos t)i + j - 2tk) dt = a

L

p

0
cos t dtb i + a

L

p

0
dtbj - a

L

p

0
2t dtbk

= 3sin t4p
0

i + 3 t4
0

p

j - 3 t24
0

p
k

= 30 - 04 i + 3p - 04 j - 3p2 - 024k
= pj - p2k

The Fundamental Theorem of Calculus for continuous vector functions says that

L

b

a
r(t) dt = R(t) d

a

b

= R(b) - R(a)

where R is any antiderivative of r, so that R′(t) = r(t) (Exercise 42). Notice that an anti-
derivative of a vector function is also a vector function, whereas a definite integral of a 
vector function is a single constant vector.

EXAMPLE 3  Suppose we do not know the path of a hang glider, but only its accel-
eration vector a(t) = -(3 cos t)i - (3 sin t)j + 2k. We also know that initially (at time 
t = 0) the glider departed from the point (4, 0, 0) with velocity v(0) = 3j. Find the glider’s 
position as a function of t.

Solution Our goal is to find r(t) knowing

The differential equation: a = d2r
dt2 = -(3 cos t)i - (3 sin t)j + 2k

The initial conditions: v(0) = 3j  and  r(0) = 4i + 0j + 0k.

Integrating both sides of the differential equation with respect to t gives

v(t) = -(3 sin t)i + (3 cos t)j + 2tk + C1.

We use v(0) = 3j to find C1:

3j = -(3 sin 0)i + (3 cos 0)j + (0)k + C1

3j = 3j + C1

C1 = 0.
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The glider’s velocity as a function of time is

dr
dt

= v(t) = -(3 sin t)i + (3 cos t)j + 2tk.

Integrating both sides of this last differential equation gives

r(t) = (3 cos t)i + (3 sin t)j + t2k + C2.

We then use the initial condition r(0) = 4i to find C2:

4i = (3 cos 0)i + (3 sin 0)j + (02)k + C2

4i = 3i + (0)j + (0)k + C2

C2 = i.

The glider’s position as a function of t is

r(t) = (1 + 3 cos t)i + (3 sin t)j + t2k.

This is the path of the glider shown in Figure 13.9. Although the path resembles that of a 
helix due to its spiraling nature around the z-axis, it is not a helix because of the way it is 
rising. (We say more about this in Section 13.5.)

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the 
motion of a projectile. In physics, projectile motion describes how an object fired at some 
angle from an initial position, and acted upon by only the force of gravity, moves in a ver-
tical coordinate plane. In the classic example, we ignore the effects of any frictional drag 
on the object, which may vary with its speed and altitude, and also the fact that the force of 
gravity changes slightly with the projectile’s changing height. In addition, we ignore the 
long-distance effects of Earth turning beneath the projectile, such as in a rocket launch or 
the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable 
approximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a 
particle moving in a vertical coordinate plane and that the only force acting on the projectile 
during its flight is the constant force of gravity, which always points straight down. We 
assume that the projectile is launched from the origin at time t = 0 into the first quadrant 
with an initial velocity v0 (Figure 13.10). If v0 makes an angle a with the horizontal, then

v0 = ( � v0 � cos a)i + ( � v0 � sin a)j.

If we use the simpler notation y0 for the initial speed � v0 � , then

v0 = (y0 cos a)i + (y0 sin a)j. (3)

The projectile’s initial position is

r0 = 0i + 0j = 0. (4)

Newton’s second law of motion says that the force acting on the projectile is equal to 
the projectile’s mass m times its acceleration, or m(d2r>dt2) if r is the projectile’s position 
vector and t is time. If the force is solely the gravitational force -mgj, then

m
d2r
dt2 = -mgj and

d2r
dt2 = -gj,

z

x y

(4, 0, 0)

FIGURE 13.9 The path of the hang 
glider in Example 3. Although the path 
spirals around the z-axis, it is not a helix.

x

y

(a)

(b)

x

y

0
R

Horizontal range

v

a = −gj

@ v0 @  cos a i

@ v0 @  sin a j
v0

r = 0 at
time t = 0

(x, y)

a = −gj

r = x i + yj

a

FIGURE 13.10 (a) Position, velocity, 
acceleration, and launch angle at t = 0.
(b) Position, velocity, and acceleration at a 
later time t.



762 Chapter 13: Vector-Valued Functions and Motion in Space

where g is the acceleration due to gravity. We find r as a function of t by solving the fol-
lowing initial value problem.

Differential equation:
d2r
dt2 = -gj

Initial conditions: r = r0 and
dr
dt

= v0 when t = 0

The first integration gives

dr
dt

= -(gt)j + v0 .

A second integration gives

r = - 1
2

gt2j + v0t + r0 .

Substituting the values of v0 and r0 from Equations (3) and (4) gives

r = - 1
2

gt2j + (y0 cos a)ti + (y0 sin a)tj + 0.
(++++++)++++++*

v0t

Collecting terms, we have

Ideal Projectile Motion Equation

r = (y0 cos a)ti + a(y0 sin a)t - 1
2

gt2b j. (5)

Equation (5) is the vector equation of the path for ideal projectile motion. The angle a
is the projectile’s launch angle (firing angle, angle of elevation), and y0, as we said 
before, is the projectile’s initial speed. The components of r give the parametric equations

x = (y0 cos a)t and y = (y0 sin a)t - 1
2

gt2, (6)

where x is the distance downrange and y is the height of the projectile at time t Ú 0.

EXAMPLE 4  A projectile is fired from the origin over horizontal ground at an initial 
speed of 500 m > sec and a launch angle of 60°. Where will the projectile be 10 sec later?

Solution We use Equation (5) with y0 = 500, a = 60°, g = 9.8, and t = 10 to find the 
projectile’s components 10 sec after firing.

r = (y0 cos a)ti + a(y0 sin a)t - 1
2

gt2b j

= (500)a1
2
b (10)i + a(500)a23

2
b10 - a1

2
b (9.8)(100)b j

≈ 2500i + 3840j

Ten seconds after firing, the projectile is about 3840 m above ground and 2500 m down-
range from the origin.
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Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we 
substitute t = x>(y0 cos a) from the first equation into the second, we obtain the Cartesian 
coordinate equation

y = - a g

2y0
2 cos2a

bx2 + (tan a)x.

This equation has the form y = ax2 + bx, so its graph is a parabola.
A projectile reaches its highest point when its vertical velocity component is zero. 

When fired over horizontal ground, the projectile lands when its vertical component 
equals zero in Equation (5), and the range R is the distance from the origin to the point of 
impact. We summarize the results here, which you are asked to verify in Exercise 27.

Height, Flight Time, and Range for Ideal Projectile Motion

For ideal projectile motion when an object is launched from the origin over a 
horizontal surface with initial speed y0 and launch angle a:

Maximum height: ymax =
(y0 sin a)2

2g

Flight time: t =
2y0 sin a

g

Range: R =
y0

2

g sin 2a.

If we fire our ideal projectile from the point (x0, y0) instead of the origin (Figure 13.11), 
the position vector for the path of motion is

r = (x0 + (y0 cos a)t)i + ay0 + (y0 sin a)t - 1
2

gt2b j, (7)

as you are asked to show in Exercise 29.

0
x

y

a

v0

(x0, y0)

FIGURE 13.11 The path of a projectile 
fired from (x0, y0) with an initial veloc-
ity v0 at an angle of a degrees with the 
horizontal.

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile, due to a 
gust of wind. We also assume that the path of the baseball in Example 5 lies in a vertical 
plane.

EXAMPLE 5  A baseball is hit when it is 3 ft above the ground. It leaves the bat with 
initial speed of 152 ft > sec, making an angle of 20° with the horizontal. At the instant the 
ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite 
the direction the ball is taking toward the outfield, adding a component of -8.8i (ft>sec)
to the ball’s initial velocity (8.8 ft>sec = 6 mph).

(a) Find a vector equation (position vector) for the path of the baseball.

(b) How high does the baseball go, and when does it reach maximum height?

(c) Assuming that the ball is not caught, find its range and flight time.
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Solution

(a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the 
baseball is

v0 = (y0 cos a)i + (y0 sin a)j - 8.8i

= (152 cos 20°)i + (152 sin 20°)j - (8.8)i

= (152 cos 20° - 8.8)i + (152 sin 20°)j.

The initial position is r0 = 0i + 3j. Integration of d2r>dt2 = -gj gives

dr
dt

= -(gt)j + v0 .

A second integration gives

r = - 1
2

gt2j + v0t + r0 .

Substituting the values of v0 and r0 into the last equation gives the position vector of 
the baseball.

r = - 1
2

gt2j + v0t + r0

= -16t2j + (152 cos 20° - 8.8)ti + (152 sin 20°)tj + 3j

= (152 cos 20° - 8.8)ti + 13 + (152 sin 20°)t - 16t22j.
(b) The baseball reaches its highest point when the vertical component of velocity is 

zero, or

dy
dt

= 152 sin 20° - 32t = 0.

Solving for t we find

t = 152 sin 20°
32

≈ 1.62 sec.

Substituting this time into the vertical component for r gives the maximum height

ymax = 3 + (152 sin 20°)(1.62) - 16(1.62)2

≈ 45.2 ft.

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec 
after leaving the bat.

(c) To find when the baseball lands, we set the vertical component for r equal to 0 and 
solve for t:

3 + (152 sin 20°)t - 16t2 = 0

3 + (51.99)t - 16t2 = 0.

The solution values are about t = 3.3 sec and t = -0.06 sec. Substituting the posi-
tive time into the horizontal component for r, we find the range

R = (152 cos 20° - 8.8)(3.3)

≈ 442 ft.

Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec.

In Exercises 37 and 38, we consider projectile motion when there is air resistance 
slowing down the flight.
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Integrating Vector-Valued Functions
Evaluate the integrals in Exercises 1–10.

1.
L

1

0
3 t3i + 7j + (t + 1)k4 dt

2.
L

2

1
c (6 - 6t)i + 32tj + a4

t2bk d dt

3.
L

p>4

-p>4
3(sin t)i + (1 + cos t)j + (sec2 t)k4 dt

4.
L

p>3

0
3(sec t tan t)i + (tan t)j + (2 sin t cos t)k4 dt

5.
L

4

1
c 1t i + 1

5 - t
j + 1

2t
k d dt

6.
L

1

0
c 2

21 - t2
i + 23

1 + t2 k d dt

7.
L

1

0
3 tet2

i + e-t j + k4 dt

8.
L

ln3

1
3 tet i + et j + ln t k4 dt

9.
L

p>2

0
3cos t i - sin 2t j + sin2 t k4 dt

10.
L

p/4

0
3sec t i + tan2 t j - t sin t k4 dt

Initial Value Problems
Solve the initial value problems in Exercises 11–16 for r as a vector 
function of t.

11. Differential equation:
dr
dt

= - t i - t j - t k

Initial condition: r(0) = i + 2j + 3k

12. Differential equation:
dr
dt

= (180t)i + (180t - 16t2)j

Initial condition: r(0) = 100j

13. Differential equation:
dr
dt

= 3
2

(t + 1)1>2i + e-t j + 1
t + 1

k

Initial condition: r(0) = k

14. Differential equation:
dr
dt

= (t3 + 4t)i + tj + 2t2k

Initial condition: r(0) = i + j

15. Differential equation:
d2r
dt2 = -32k

Initial conditions: r(0) = 100k and

dr
dt

2
t=0

= 8i + 8j

16. Differential equation:
d2r
dt2 = - (i + j + k)

Initial conditions: r(0) = 10i + 10j + 10k and

dr
dt

2
t=0

= 0

Motion Along a Straight Line
17. At time t = 0, a particle is located at the point (1, 2, 3). It travels 

in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and 
constant acceleration 3i - j + k. Find an equation for the posi-
tion vector r(t) of the particle at time t.

18. A particle traveling in a straight line is located at the point 
(1, -1, 2) and has speed 2 at time t = 0. The particle moves 
toward the point (3, 0, 3) with constant acceleration 2i + j + k.
Find its position vector r(t) at time t.

Projectile Motion
Projectile flights in the following exercises are to be treated as ideal 
unless stated otherwise. All launch angles are assumed to be measured 
from the horizontal. All projectiles are assumed to be launched from 
the origin over a horizontal surface unless stated otherwise.

19. Travel time A projectile is fired at a speed of 840 m > sec at an 
angle of 60°. How long will it take to get 21 km downrange?

20. Range and height versus speed

  a. Show that doubling a projectile’s initial speed at a given 
launch angle multiplies its range by 4.

  b. By about what percentage should you increase the initial 
speed to double the height and range?

21. Flight time and height A projectile is fired with an initial 
speed of 500 m > sec at an angle of elevation of 45°.

  a. When and how far away will the projectile strike?

  b. How high overhead will the projectile be when it is 5 km 
downrange?

  c. What is the greatest height reached by the projectile?

22. Throwing a baseball A baseball is thrown from the stands 32 ft 
above the field at an angle of 30° up from the horizontal. When 
and how far away will the ball strike the ground if its initial speed 
is 32 ft > sec?

23. Firing golf balls A spring gun at ground level fires a golf ball 
at an angle of 45°. The ball lands 10 m away.

  a. What was the ball’s initial speed?

  b. For the same initial speed, find the two firing angles that 
make the range 6 m.

24. Beaming electrons An electron in a TV tube is beamed hori-
zontally at a speed of 5 * 106 m>sec toward the face of the tube 
40 cm away. About how far will the electron drop before it hits?

25. Equal-range firing angles What two angles of elevation will 
enable a projectile to reach a target 16 km downrange on the same 
level as the gun if the projectile’s initial speed is 400 m > sec?

26. Finding muzzle speed Find the muzzle speed of a gun whose 
maximum range is 24.5 km.

Exercises 13.2
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31. Launching downhill An ideal projectile is launched straight 
down an inclined plane as shown in the accompanying figure.

  a. Show that the greatest downhill range is achieved when the 
initial velocity vector bisects angle AOR.

  b. If the projectile were fired uphill instead of down, what 
launch angle would maximize its range? Give reasons for 
your answer.

A

R

V
er

tic
al

O

Hill

v0

a

32. Elevated green A golf ball is hit with an initial speed of 
116 ft > sec at an angle of elevation of 45° from the tee to a green 
that is elevated 45 ft above the tee as shown in the diagram. 
Assuming that the pin, 369 ft downrange, does not get in the way, 
where will the ball land in relation to the pin?

369 ft

Pin

Green

45 ft

NOT TO SCALE

Tee

45°
116 ft�sec

33. Volleyball A volleyball is hit when it is 4 ft above the ground 
and 12 ft from a 6-ft-high net. It leaves the point of impact with 
an initial velocity of 35 ft > sec at an angle of 27° and slips by the 
opposing team untouched.

  a. Find a vector equation for the path of the volleyball.

b. How high does the volleyball go, and when does it reach 
maximum height?

  c. Find its range and flight time.

  d. When is the volleyball 7 ft above the ground? How far 
(ground distance) is the volleyball from where it will land?

  e. Suppose that the net is raised to 8 ft. Does this change things? 
Explain.

34. Shot put In Moscow in 1987, Natalya Lisouskaya set a women’s 
world record by putting an 8 lb 13 oz shot 73 ft 10 in. Assuming 
that she launched the shot at a 40° angle to the horizontal from 
6.5 ft above the ground, what was the shot’s initial speed?

35. Model train The accompanying multiflash photograph shows a 
model train engine moving at a constant speed on a straight hori-
zontal track. As the engine moved along, a marble was fired into 
the air by a spring in the engine’s smokestack. The marble, which 

27. Verify the results given in the text (following Example 4) for the 
maximum height, flight time, and range for ideal projectile 
motion.

28. Colliding marbles The accompanying figure shows an experi-
ment with two marbles. Marble A was launched toward marble B
with launch angle a and initial speed y0. At the same instant, 
marble B was released to fall from rest at R tan a units directly 
above a spot R units downrange from A. The marbles were found 
to collide regardless of the value of y0. Was this mere coinci-
dence, or must this happen? Give reasons for your answer.

B

A

R

1
2

a

v0

R tan a
gt2

29. Firing from (x0, y0) Derive the equations

x = x0 + (y0 cos a)t,

y = y0 + (y0 sin a)t - 1
2

gt2

  (see Equation (7) in the text) by solving the following initial 
value problem for a vector r in the plane.

Differential equation:
d2r
dt2 = -gj

Initial conditions: r(0) = x0 i + y0j

dr
dt

(0) = (y0 cos a)i + (y0 sin a)j

30. Where trajectories crest For a projectile fired from the ground 
at launch angle a with initial speed y0, consider a as a variable 
and y0 as a fixed constant. For each a, 0 6 a 6 p>2, we obtain 
a parabolic trajectory as shown in the accompanying figure. Show 
that the points in the plane that give the maximum heights of 
these parabolic trajectories all lie on the ellipse

x2 + 4ay -
y0

2

4g
b2

=
y0

4

4g2 ,

  where x Ú 0.

x

y

0

Ellipse

1
2

Parabolic
trajectory

R, ymaxa b
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continued to move with the same forward speed as the engine, 
rejoined the engine 1 sec after it was fired. Measure the angle the 
marble’s path made with the horizontal and use the information to 
find how high the marble went and how fast the engine was moving.

Source: PSSC Physics, 2nd ed., Reprinted by permission of
Educational Development Center, Inc.

36. Hitting a baseball under a wind gust A baseball is hit when it 
is 2.5 ft above the ground. It leaves the bat with an initial velocity 
of 145 ft > sec at a launch angle of 23°. At the instant the ball is 
hit, an instantaneous gust of wind blows against the ball, adding a 
component of -14i (ft>sec) to the ball’s initial velocity. A 15-ft-
high fence lies 300 ft from home plate in the direction of the 
flight.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach max-
imum height?

c. Find the range and flight time of the baseball, assuming that 
the ball is not caught.

d. When is the baseball 20 ft high? How far (ground distance) is 
the baseball from home plate at that height?

e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag
The main force affecting the motion of a projectile, other than gravity, 
is air resistance. This slowing down force is drag force, and it acts in 
a direction opposite to the velocity of the projectile (see accompany-
ing figure). For projectiles moving through the air at relatively low 
speeds, however, the drag force is (very nearly) proportional to the 
speed (to the first power) and so is called linear.

y

x

Drag force

Velocity

Gravity

37. Linear drag Derive the equations

x =
y0

k
(1 - e-kt) cos a

y =
y0

k
(1 - e-kt)(sin a) +

g

k2
(1 - kt - e-kt)

  by solving the following initial value problem for a vector r in the 
plane.

Differential equation:
d2r
dt2 = -gj - kv = -gj - k

dr
dt

Initial conditions: r(0) = 0

dr
dt

2
t=0

= v0 = (y0 cos a)i + (y0 sin a)j

The drag coefficient k is a positive constant representing 
resistance due to air density, y0 and a are the projectile’s initial 
speed and launch angle, and g is the acceleration of gravity.

38. Hitting a baseball with linear drag Consider the baseball 
problem in Example 5 when there is linear drag (see Exercise 37). 
Assume a drag coefficient k = 0.12, but no gust of wind.

a. From Exercise 37, find a vector form for the path of the base-
ball.

b. How high does the baseball go, and when does it reach maxi-
mum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 30 ft high? How far (ground distance) is 
the baseball from home plate at that height?

e. A 10-ft-high outfield fence is 340 ft from home plate in the 
direction of the flight of the baseball. The outfielder can jump 
and catch any ball up to 11 ft off the ground to stop it from 
going over the fence. Has the batter hit a home run?

Theory and Examples
39. Establish the following properties of integrable vector functions.

a. The Constant Scalar Multiple Rule:

L

b

a
kr(t) dt = k

L

b

a
r(t) dt (any scalar k)

The Rule for Negatives,

L

b

a
(-r(t)) dt = -

L

b

a
r(t) dt,

  is obtained by taking k = -1.

  b. The Sum and Difference Rules:

L

b

a
(r1(t) { r2(t)) dt =

L

b

a
r1(t) dt {

L

b

a
r2(t) dt

c. The Constant Vector Multiple Rules:

L

b

a
C # r(t) dt = C #

L

b

a
r(t) dt (any constant vector C)

and

L

b

a
C * r(t) dt = C *

L

b

a
r(t) dt (any constant vector C)
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  at every point t of (a, b). Then use the conclusion in part (b) of 
Exercise 41 to show that if R is any antiderivative of r on 3a, b4
then

L

b

a
r(t) dt = R(b) - R(a).

43. Hitting a baseball with linear drag under a wind gust Con-
sider again the baseball problem in Example 5. This time assume 
a drag coefficient of 0.08 and an instantaneous gust of wind that 
adds a component of -17.6i (ft>sec) to the initial velocity at the 
instant the baseball is hit.

  a. Find a vector equation for the path of the baseball.

  b. How high does the baseball go, and when does it reach maxi-
mum height?

  c. Find the range and flight time of the baseball.

  d. When is the baseball 35 ft high? How far (ground distance) is 
the baseball from home plate at that height?

  e. A 20-ft-high outfield fence is 380 ft from home plate in the 
direction of the flight of the baseball. Has the batter hit a home 
run? If “yes,” what change in the horizontal component of the 
ball’s initial velocity would have kept the ball in the park? If 
“no,” what change would have allowed it to be a home run?

44. Height versus time Show that a projectile attains three-
quarters of its maximum height in half the time it takes to reach 
the maximum height.

40. Products of scalar and vector functions Suppose that the sca-
lar function u(t) and the vector function r(t) are both defined for 
a … t … b.

  a. Show that ur is continuous on 3a, b4  if u and r are continu-
ous on 3a, b4 .

  b. If u and r are both differentiable on 3a, b4 , show that ur is 
differentiable on 3a, b4  and that

d
dt

(ur) = u
dr
dt

+ r
du
dt

.

41. Antiderivatives of vector functions

  a. Use Corollary 2 of the Mean Value Theorem for scalar func-
tions to show that if two vector functions R1(t) and R2(t)
have identical derivatives on an interval I, then the functions 
differ by a constant vector value throughout I.

  b. Use the result in part (a) to show that if R(t) is any antideriva-
tive of r(t) on I, then any other antiderivative of r on I equals 
R(t) + C for some constant vector C.

42. The Fundamental Theorem of Calculus The Fundamental 
Theorem of Calculus for scalar functions of a real variable holds 
for vector functions of a real variable as well. Prove this by using 
the theorem for scalar functions to show first that if a vector func-
tion r(t) is continuous for a … t … b, then

d
dtL

t

a
r(t) dt = r(t)

13.3 Arc Length in Space

In this and the next two sections, we study the mathematical features of a curve’s shape 
that describe the sharpness of its turning and its twisting.

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable 
length. This enables us to locate points along these curves by giving their directed distance 
s along the curve from some base point, the way we locate points on coordinate axes by 
giving their directed distance from the origin (Figure 13.12). This is what we did for plane 
curves in Section 13.2.

To measure distance along a smooth curve in space, we add a z-term to the formula 
we use for curves in the plane.

Base point

s–2

–1 20
1

3
4

FIGURE 13.12 Smooth curves can be 
scaled like number lines, the coordinate of 
each point being its directed distance along 
the curve from a preselected base point.

DEFINITION The length of a smooth curve r(t) = x(t)i + y(t)j + z(t)k,
a … t … b, that is traced exactly once as t increases from t = a to t = b, is

L =
L

b

a Ca
dx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

dt. (1)

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is � v � , the length of a velocity vector dr >dt. This 
enables us to write the formula for length a shorter way.
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EXAMPLE 1  A glider is soaring upward along the helix r(t) = (cos t)i + (sin t)j + tk.
How long is the glider’s path from t = 0 to t = 2p?

Solution The path segment during this time corresponds to one full turn of the helix 
(Figure 13.13). The length of this portion of the curve is

L =
L

b

a
� v � dt =

L

2p

0
2(-sin t)2 + (cos t)2 + (1)2 dt

=
L

2p

0
22 dt = 2p22 units of length.

This is 22 times the circumference of the circle in the xy-plane over which the helix 
stands.

If we choose a base point P(t0) on a smooth curve C parametrized by t, each value of t
determines a point P(t) = (x(t), y(t), z(t)) on C and a “directed distance”

s(t) =
L

t

t0

� v(t) � dt,

measured along C from the base point (Figure 13.14). This is the arc length function we 
defined in Section 11.2 for plane curves that have no z-component. If t 7 t0, s(t) is the 
distance along the curve from P(t0) to P(t). If t 6 t0, s(t) is the negative of the distance. 
Each value of s determines a point on C, and this parametrizes C with respect to s. We call 
s an arc length parameter for the curve. The parameter’s value increases in the direction 
of increasing t. We will see that the arc length parameter is particularly effective for inves-
tigating the turning and twisting nature of a space curve.

y

z

0

x

(1, 0, 0)

r
P

t = 0

t = p
2

t = 2p
t = p

2p

FIGURE 13.13 The helix in Example 1, 
r(t) = (cos t)i + (sin t)j + tk.

Arc Length Formula

L =
L

b

a
� v � dt (2)

Arc Length Parameter with Base Point P(t0)

s(t) =
L

t

t0

23x′(t)4 2 + 3y′(t)4 2 + 3z′(t)4 2 dt =
L

t

t0

� v(t) � dt (3)

We use the Greek letter t (“tau”) as the variable of integration in Equation (3) because 
the letter t is already in use as the upper limit.

If a curve r(t) is already given in terms of some parameter t and s(t) is the arc length 
function given by Equation (3), then we may be able to solve for t as a function of s: t = t(s).
Then the curve can be reparametrized in terms of s by substituting for t: r = r(t(s)). The 
new parametrization identifies a point on the curve with its directed distance along the curve 
from the base point.

EXAMPLE 2  This is an example for which we can actually find the arc length param-
etrization of a curve. If t0 = 0, the arc length parameter along the helix

r(t) = (cos t)i + (sin t)j + tk

x

0

y

r

z

Base
point

P(t0)

s(t)

P(t)

FIGURE 13.14 The directed distance 
along the curve from P(t0) to any point 
P(t) is

s(t) =
L

t

t0

�v(t) � dt.
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from t0 to t is

s(t) =
L

t

t0

� v(t) � dt Eq. (3)

=
L

t

0
22 dt Value from Example 1

= 22 t.

Solving this equation for t gives t = s>22. Substituting into the position vector r gives 
the following arc length parametrization for the helix:

r(t(s)) = ¢cos
s

22
≤i + ¢sin

s

22
≤j + s

22
k.

Unlike Example 2, the arc length parametrization is generally difficult to find analyti-
cally for a curve already given in terms of some other parameter t. Fortunately, however, 
we rarely need an exact formula for s(t) or its inverse t(s).

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is 
smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function 
of t with derivative

ds
dt

= � v(t) � . (4)

Equation (4) says that the speed with which a particle moves along its path is the magni-
tude of v, consistent with what we know.

Although the base point P(t0) plays a role in defining s in Equation (3), it plays no 
role in Equation (4). The rate at which a moving particle covers distance along its path is 
independent of how far away it is from the base point.

Notice that ds>dt 7 0 since, by definition, � v �  is never zero for a smooth curve. We 
see once again that s is an increasing function of t.

Unit Tangent Vector

We already know the velocity vector v = dr>dt is tangent to the curve r(t) and that the 
vector

T = v
� v �

is therefore a unit vector tangent to the (smooth) curve, called the unit tangent vector
(Figure 13.15). The unit tangent vector T is a differentiable function of t whenever v is a 
differentiable function of t. As we will see in Section 13.5, T is one of three unit vectors in 
a traveling reference frame that is used to describe the motion of objects traveling in three 
dimensions.

EXAMPLE 3  Find the unit tangent vector of the curve

r(t) = (1 + 3 cos t)i + (3 sin t)j + t2k

representing the path of the glider in Example 3, Section 13.2.

HISTORICAL BIOGRAPHY

Josiah Willard Gibbs
(1839–1903)

y

z

0

x

r

s

v

P(t0)

T = v
@ v @

FIGURE 13.15 We find the unit tangent 
vector T by dividing v by �v � .
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Solution In that example, we found

v = dr
dt

= -(3 sin t)i + (3 cos t)j + 2tk

and

� v � = 29 + 4t2.

Thus,

T = v
� v �

= - 3 sin t

29 + 4t2
i + 3 cos t

29 + 4t2
j + 2t

29 + 4t2
k.

For the counterclockwise motion

r(t) = (cos t)i + (sin t)j

around the unit circle, we see that

v = (-sin t)i + (cos t)j

is already a unit vector, so T = v and T is orthogonal to r (Figure 13.16).
The velocity vector is the change in the position vector r with respect to time t, but 

how does the position vector change with respect to arc length? More precisely, what is 
the derivative dr>ds? Since ds>dt 7 0 for the curves we are considering, s is one-to-one 
and has an inverse that gives t as a differentiable function of s (Section 3.8). The derivative 
of the inverse is

dt
ds

= 1
ds>dt

= 1
� v �

.

This makes r a differentiable function of s whose derivative can be calculated with the 
Chain Rule to be

dr
ds

= dr
dt

dt
ds

= v 1
� v �

= v
� v �

= T. (5)

This equation says that dr >ds is the unit tangent vector in the direction of the velocity vec-
tor v (Figure 13.15).

x

y

0
t

r

T = v

P(x, y)

(1, 0)

x2 + y2 = 1

FIGURE 13.16 Counterclockwise
motion around the unit circle.

Finding Tangent Vectors and Lengths
In Exercises 1–8, find the curve’s unit tangent vector. Also, find the 
length of the indicated portion of the curve.

1. r(t) = (2 cos t)i + (2 sin t)j + 25tk, 0 … t … p
2. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5tk, 0 … t … p
3. r(t) = ti + (2>3)t3>2 k, 0 … t … 8

4. r(t) = (2 + t)i - (t + 1)j + tk, 0 … t … 3

5. r(t) = (cos3 t )j + (sin3 t )k, 0 … t … p>2
6. r(t) = 6t3 i - 2t3j - 3t3k, 1 … t … 2

7. r(t) = (t cos t)i + (t sin t)j + 1222>32t3>2k, 0 … t … p
8. r(t) = (t sin t + cos t)i + (t cos t - sin t)j, 22 … t … 2

9. Find the point on the curve

r(t) = (5 sin t)i + (5 cos t)j + 12tk

  at a distance 26p units along the curve from the point (0, 5, 0) in 
the direction of increasing arc length.

10. Find the point on the curve

r(t) = (12 sin t)i - (12 cos t)j + 5t k

  at a distance 13p units along the curve from the point (0, -12, 0)
in the direction opposite to the direction of increasing arc length.

Arc Length Parameter
In Exercises 11–14, find the arc length parameter along the curve 
from the point where t = 0 by evaluating the integral

s =
L

t

0
�v(t) � dt

from Equation (3). Then find the length of the indicated portion of the 
curve.

11. r(t) = (4 cos t)i + (4 sin t)j + 3t k, 0 … t … p>2
12. r(t) = (cos t + t sin t)i + (sin t - t cos t)j, p>2 … t … p
13. r(t) = (et cos t)i + (et sin t)j + et k, - ln 4 … t … 0

14. r(t) = (1 + 2t)i + (1 + 3t)j + (6 - 6t)k, -1 … t … 0

Exercises 13.3
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19. The involute of a circle If a string wound around a fixed circle 
is unwound while held taut in the plane of the circle, its end P
traces an involute of the circle. In the accompanying figure, the 
circle in question is the circle x2 + y2 = 1 and the tracing point 
starts at (1, 0). The unwound portion of the string is tangent to the 
circle at Q, and t is the radian measure of the angle from the posi-
tive x-axis to segment OQ. Derive the parametric equations

x = cos t + t sin t, y = sin t - t cos t, t 7 0

  of the point P(x, y) for the involute.

x

y

Q

t

O 1 (1, 0)

String

P(x, y)

20. (Continuation of Exercise 19.) Find the unit tangent vector to the 
involute of the circle at the point P(x, y).

21. Distance along a line Show that if u is a unit vector, then the 
arc length parameter along the line r(t) = P0 + t u from the point 
P0(x0 , y0 , z0) where t = 0, is t itself.

22. Use Simpson’s Rule with n = 10 to approximate the length of 
arc of r(t) = t i + t2j + t3k from the origin to the point (2, 4, 8).

Theory and Examples
15. Arc length Find the length of the curve

r(t) = 122t2i + 122t2j + (1 - t2)k

from (0, 0, 1) to 122, 22, 02.
16. Length of helix The length 2p22 of the turn of the helix in 

Example 1 is also the length of the diagonal of a square 2p units 
on a side. Show how to obtain this square by cutting away and 
flattening a portion of the cylinder around which the helix winds.

17. Ellipse

a. Show that the curve r(t) = (cos t)i + (sin t)j + (1 - cos t)k,
 0 … t … 2p, is an ellipse by showing that it is the intersec-
tion of a right circular cylinder and a plane. Find equations 
for the cylinder and plane.

b. Sketch the ellipse on the cylinder. Add to your sketch the unit 
tangent vectors at t = 0, p>2, p, and 3p>2.

  c. Show that the acceleration vector always lies parallel to the 
plane (orthogonal to a vector normal to the plane). Thus, if 
you draw the acceleration as a vector attached to the ellipse, it 
will lie in the plane of the ellipse. Add the acceleration vec-
tors for t = 0, p>2, p, and 3p>2 to your sketch.

d. Write an integral for the length of the ellipse. Do not try to 
evaluate the integral; it is nonelementary.

e. Numerical integrator Estimate the length of the ellipse to 
two decimal places.

18. Length is independent of parametrization To illustrate that 
the length of a smooth space curve does not depend on the param-
etrization you use to compute it, calculate the length of one turn 
of the helix in Example 1 with the following parametrizations.

a. r(t) = (cos 4t)i + (sin 4t)j + 4t k, 0 … t … p>2
b. r(t) = 3cos (t>2)4 i + 3sin (t>2)4j + (t>2)k, 0 … t … 4p

c. r(t) = (cos t)i - (sin t)j - t k, -2p … t … 0

T

13.4 Curvature and Normal Vectors of a Curve

In this section we study how a curve turns or bends. To gain perspective, we look first at 
curves in the coordinate plane. Then we consider curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, T = dr>ds turns as the curve 
bends. Since T is a unit vector, its length remains constant and only its direction changes 
as the particle moves along the curve. The rate at which T turns per unit of length along 
the curve is called the curvature (Figure 13.17). The traditional symbol for the curvature 
function is the Greek letter k (“kappa”).

DEFINITION If T is the unit vector of a smooth curve, the curvature function of 
the curve is

k = ` d T
ds
` .

x

y

0

s

P T

T

T

P0

FIGURE 13.17 As P moves along the 
curve in the direction of increasing arc 
length, the unit tangent vector turns. The 
value of 0 d T>ds 0  at P is called the curva-
ture of the curve at P.
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If 0 d T>ds 0  is large, T turns sharply as the particle passes through P, and the curvature at 
P is large. If 0 d T>ds 0  is close to zero, T turns more slowly and the curvature at P is smaller.

If a smooth curve r(t) is already given in terms of some parameter t other than the arc 
length parameter s, we can calculate the curvature as

k = ` dT
ds
` = ` dT

dt
dt
ds
` Chain Rule

= 10 ds>dt 0 ` dT
dt
`

= 10 v 0 ` dT
dt
` .       

ds
dt

= 0 v 0

Formula for Calculating Curvature

If r(t) is a smooth curve, then the curvature is the scalar function

k = 10 v 0 ` dT
dt
` , (1)

where T = v> 0 v 0  is the unit tangent vector.

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant 
for straight lines and circles.

EXAMPLE 1  A straight line is parametrized by r(t) = C + tv for constant vectors 
C and v. Thus, r′(t) = v, and the unit tangent vector T = v> 0 v 0  is a constant vector that 
always points in the same direction and has derivative 0 (Figure 13.18). It follows that, for 
any value of the parameter t, the curvature of the straight line is zero:

k = 10 v 0 ` dT
dt
` = 10 v 0 0 0 0 = 0.

EXAMPLE 2  Here we find the curvature of a circle. We begin with the parametrization

r(t) = (a cos t)i + (a sin t)j
of a circle of radius a. Then,

v = dr
dt

= -(a sin t)i + (a cos t)j

0 v 0 = 2(-a sin t)2 + (a cos t)2 = 2a2 = 0 a 0 = a.
Since a 7 0,0 a 0 = a.

From this we find

T = v0 v 0 = -(sin t)i + (cos t)j

dT
dt

= -(cos t)i - (sin t)j

` dT
dt
` = 2cos2 t + sin2 t = 1.

Hence, for any value of the parameter t, the curvature of the circle is

k = 10 v 0 ` dT
dt
` = 1

a (1) = 1
a = 1

radius
.

Although the formula for calculating k in Equation (1) is also valid for space curves, in 
the next section we find a computational formula that is usually more convenient to apply.

T

FIGURE 13.18 Along a straight line, T
always points in the same direction. The 
curvature, 0 dT>ds 0 , is zero (Example 1).
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Among the vectors orthogonal to the unit tangent vector T is one of particular signifi-
cance because it points in the direction in which the curve is turning. Since T has constant 
length (namely, 1), the derivative dT >ds is orthogonal to T (Equation 4, Section 13.1). 
Therefore, if we divide dT >ds by its length k, we obtain a unit vector N orthogonal to T
(Figure 13.19).

DEFINITION At a point where k ≠ 0, the principal unit normal vector for a 
smooth curve in the plane is

N = 1
k

dT
ds

.

The vector dT >ds points in the direction in which T turns as the curve bends. There-
fore, if we face in the direction of increasing arc length, the vector dT >ds points toward the 
right if T turns clockwise and toward the left if T turns counterclockwise. In other words, the 
principal normal vector N will point toward the concave side of the curve (Figure 13.19).

If a smooth curve r(t) is already given in terms of some parameter t other than the arc 
length parameter s, we can use the Chain Rule to calculate N directly:

N =
dT>ds

0 dT>ds 0
=

(dT>dt)(dt>ds)

0 dT>dt 0 0 dt>ds 0
=

dT>dt

0 dT>dt 0 . dt
ds

= 1
ds>dt

7 0 cancels.

This formula enables us to find N without having to find k and s first.

T

s

T

N = 1
k

dT
ds

N = 1
k

dT
ds

P0

P1
P2

FIGURE 13.19 The vector dT >ds,
normal to the curve, always points in the 
direction in which T is turning. The unit 
normal vector N is the direction of dT >ds.

Formula for Calculating N
If r(t) is a smooth curve, then the principal unit normal is

N =
dT>dt

0 dT>dt 0 , (2)

where T = v> 0 v 0  is the unit tangent vector.

EXAMPLE 3  Find T and N for the circular motion

r(t) = (cos 2t)i + (sin 2t)j.

Solution We first find T:

v = -(2 sin 2t)i + (2 cos 2t)j

0 v 0 = 24 sin2 2t + 4 cos2 2t = 2

T = v0 v 0 = -(sin 2t)i + (cos 2t)j.

From this we find

dT
dt

= -(2 cos 2t)i - (2 sin 2t)j

` dT
dt
` = 24 cos2 2t + 4 sin2 2t = 2
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and

N =
dT>dt

0 dT>dt 0
= -(cos 2t)i - (sin 2t)j. Eq. (2)

Notice that T # N = 0, verifying that N is orthogonal to T. Notice too, that for the circular 
motion here, N points from r(t) toward the circle’s center at the origin.

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where k ≠ 0 is 
the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. has center that lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature, 
which, according to Example 2, is

Radius of curvature = r = 1
k .

To find r, we find k and take the reciprocal. The center of curvature of the curve at P is 
the center of the circle of curvature.

EXAMPLE 4  Find and graph the osculating circle of the parabola y = x2 at the origin.

Solution We parametrize the parabola using the parameter t = x (Section 11.1, 
Example 5):

r(t) = t i + t2j.

First we find the curvature of the parabola at the origin, using Equation (1):

v = dr
dt

= i + 2t j

0 v 0 = 21 + 4t2

so that

T = v0 v 0 = (1 + 4t2)-1>2i + 2t(1 + 4t2)-1>2j.

From this we find

d T
dt

= -4t(1 + 4t2)-3>2 i + 32(1 + 4t2)-1>2 - 8t2(1 + 4t2)-3>24 j.

At the origin, t = 0, so the curvature is

k(0) = 10 v(0) 0 ` dT
dt

(0) ` Eq. (1)

= 1

21
0 0i + 2j 0

= (1)202 + 22 = 2.

Curve

N
T

P(x, y)

Center of
curvature

Radius of
curvature

Circle of
curvature

FIGURE 13.20 The center of the 
osculating circle at P(x, y) lies toward the 
inner side of the curve.
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Therefore, the radius of curvature is 1>k = 1>2. At the origin we have t = 0 and T = i, so 
N = j. Thus the center of the circle is (0, 1>2). The equation of the osculating circle is, then,

(x - 0)2 + ay - 1
2
b2

= a1
2
b2

.

You can see from Figure 13.21 that the osculating circle is a better approximation to the 
parabola at the origin than is the tangent line approximation y = 0.

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector r(t) as a function of some 
parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector 
T is dr>ds = v> 0 v 0 . The curvature in space is then defined to be

k = ` dT
ds
` = 10 v 0 ` dT

dt
` (3)

just as for plane curves. The vector dT >ds is orthogonal to T, and we define the principal
unit normal to be

N = 1
k

dT
ds

=
dT>dt

0 dT>dt 0 . (4)

EXAMPLE 5  Find the curvature for the helix (Figure 13.22)

r(t) = (a cos t)i + (a sin t)j + btk, a, b Ú 0, a2 + b2 ≠ 0.

Solution We calculate T from the velocity vector v:

v = -(a sin t)i + (a cos t)j + bk

0 v 0 = 2a2 sin2 t + a2 cos2 t + b2 = 2a2 + b2

T = v0 v 0 = 1

2a2 + b2
3-(a sin t)i + (a cos t)j + bk4 .

Then using Equation (3),

k = 10 v 0 ` dT
dt
`

= 1

2a2 + b2
` 1

2a2 + b2
3-(a cos t)i - (a sin t)j4 `

= a
a2 + b2 0-(cos t)i - (sin t)j 0

= a
a2 + b22(cos t)2 + (sin t)2 = a

a2 + b2 .

From this equation, we see that increasing b for a fixed a decreases the curvature. Decreas-
ing a for a fixed b eventually decreases the curvature as well.

If b = 0, the helix reduces to a circle of radius a and its curvature reduces to 1 >a, as 
it should. If a = 0, the helix becomes the z-axis, and its curvature reduces to 0, again as it 
should.

x

y

0 1

Osculating
circle

1
2

y = x2

FIGURE 13.21 The osculating circle 
for the parabola y = x2 at the origin 
(Example 4).

y

z

0

x

(a, 0, 0)

r
P

t = 0

t = p
2

t = 2p
t = p

2pb

x2 + y2 = a2

FIGURE 13.22 The helix

r(t) = (a cos t)i + (a sin t)j + btk,

drawn with a and b positive and t Ú 0
(Example 5).
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EXAMPLE 6  Find N for the helix in Example 5 and describe how the vector is pointing.

Solution We have

dT
dt

= - 1

2a2 + b2
3 (a cos t)i + (a sin t)j4        Example 5

` dT
dt
` = 1

2a2 + b2
2a2 cos2 t + a2 sin2 t = a

2a2 + b2

N =
dT>dt

0 dT>dt 0 Eq. (4)

= - 2a2 + b2

a
# 1

2a2 + b2
3 (a cos t)i + (a sin t)j4

= -(cos t)i - (sin t)j.

Thus, N is parallel to the xy-plane and always points toward the z-axis.

Plane Curves
Find T, N, and k for the plane curves in Exercises 1–4.

1. r(t) = ti + (ln cos t)j, -p>2 6 t 6 p>2
2. r(t) = (ln sec t)i + tj, -p>2 6 t 6 p>2
3. r(t) = (2t + 3)i + (5 - t2)j

4. r(t) = (cos t + t sin t)i + (sin t - t cos t)j, t 7 0

5. A formula for the curvature of the graph of a function in the
xy-plane

  a. The graph y = ƒ(x) in the xy-plane automatically has the 
parametrization x = x, y = ƒ(x), and the vector formula 
r(x) = xi + ƒ(x)j. Use this formula to show that if ƒ is a 
twice-differentiable function of x, then

k(x) =
0 ƒ″(x) 0

31 + (ƒ′(x))243>2 .

  b. Use the formula for k in part (a) to find the curvature of 
y = ln (cos x), -p>2 6 x 6 p>2. Compare your answer 
with the answer in Exercise 1.

  c. Show that the curvature is zero at a point of inflection.

6. A formula for the curvature of a parametrized plane curve

  a. Show that the curvature of a smooth curve r(t) = ƒ(t)i +
g(t)j defined by twice-differentiable functions x = ƒ(t) and 
y = g(t) is given by the formula

k =
0 x# y$ - y

#
x
$ 0

(x
# 2 + y

# 2)3>2 .

  The dots in the formula denote differentiation with respect to t,
one derivative for each dot. Apply the formula to find the curva-
tures of the following curves.

  b. r(t) = t i + (ln sin t)j, 0 6 t 6 p
  c. r(t) = 3 tan-1 (sinh t)4 i + (ln cosh t)j

7. Normals to plane curves

a. Show that n(t) = -g′(t)i + ƒ′(t)j and -n(t) = g′(t)i -
ƒ′(t)j are both normal to the curve r(t) = ƒ(t)i + g(t)j at the 
point (ƒ(t), g(t)).

  To obtain N for a particular plane curve, we can choose the one of 
n or -n from part (a) that points toward the concave side of the 
curve, and make it into a unit vector. (See Figure 13.19.) Apply 
this method to find N for the following curves.

b. r(t) = t i + e2tj

  c. r(t) = 24 - t2 i + t j, -2 … t … 2

8. (Continuation of Exercise 7.)

  a. Use the method of Exercise 7 to find N for the curve r(t) =
t i + (1>3)t3j when t 6 0; when t 7 0.

  b. Calculate N for t ≠ 0 directly from T using Equation (4) for 
the curve in part (a). Does N exist at t = 0? Graph the curve 
and explain what is happening to N as t passes from negative 
to positive values.

Space Curves
Find T, N, and k for the space curves in Exercises 9–16.

9. r(t) = (3 sin t)i + (3 cos t)j + 4tk

10. r(t) = (cos t + t sin t)i + (sin t - t cos t)j + 3k

11. r(t) = (et cos t)i + (et sin t)j + 2k

12. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5tk

13. r(t) = (t3>3)i + (t2>2)j, t 7 0

14. r(t) = (cos3 t)i + (sin3 t)j, 0 6 t 6 p>2
15. r(t) = ti + (a cosh (t>a))j, a 7 0

16. r(t) = (cosh t)i - (sinh t)j + tk

More on Curvature
17. Show that the parabola y = ax2, a ≠ 0, has its largest curvature 

at its vertex and has no minimum curvature. (Note: Since the cur-
vature of a curve remains the same if the curve is translated or 
rotated, this result is true for any parabola.)

Exercises 13.4
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28. Osculating circle Find a parametrization of the osculating cir-
cle for the parabola y = x2 when x = 1.

COMPUTER EXPLORATIONS
In Exercises 29–36 you will use a CAS to explore the osculating circle 
at a point P on a plane curve where k ≠ 0. Use a CAS to perform the 
following steps:

a. Plot the plane curve given in parametric or function form over 
the specified interval to see what it looks like.

b. Calculate the curvature k of the curve at the given value t0 using 
the appropriate formula from Exercise 5 or 6. Use the parametriza-
tion x = t and y = ƒ(t) if the curve is given as a function 
y = ƒ(x).

c. Find the unit normal vector N at t0. Notice that the signs of the 
components of N depend on whether the unit tangent vector T is 
turning clockwise or counterclockwise at t = t0. (See Exercise 7.)

d. If C = ai + bj is the vector from the origin to the center (a, b)
of the osculating circle, find the center C from the vector equa-
tion

C = r(t0) + 1
k(t0)

N(t0).

  The point P(x0, y0) on the curve is given by the position vector 
r(t0).

e. Plot implicitly the equation (x - a)2 + (y - b)2 = 1>k2 of the 
osculating circle. Then plot the curve and osculating circle 
together. You may need to experiment with the size of the view-
ing window, but be sure the axes are equally scaled.

29. r(t) = (3 cos t)i + (5 sin t)j, 0 … t … 2p, t0 = p>4
30. r(t) = (cos3 t)i + (sin3 t)j, 0 … t … 2p, t0 = p>4
31. r(t) = t2i + (t3 - 3t)j, -4 … t … 4, t0 = 3>5
32. r(t) = (t3 - 2t2 - t)i + 3t

21 + t2
j, -2 … t … 5, t0 = 1

33. r(t) = (2t - sin t)i + (2 - 2 cos t)j, 0 … t … 3p,
t0 = 3p>2

34. r(t) = (e-t cos t)i + (e-t sin t)j, 0 … t … 6p, t0 = p>4
35. y = x2 - x, -2 … x … 5, x0 = 1

36. y = x(1 - x)2>5, -1 … x … 2, x0 = 1>2

18. Show that the ellipse x = a cos t, y = b sin t, a 7 b 7 0, has its 
largest curvature on its major axis and its smallest curvature on its 
minor axis. (As in Exercise 17, the same is true for any ellipse.)

19. Maximizing the curvature of a helix In Example 5, we found 
the curvature of the helix r(t) = (a cos t)i + (a sin t)j + btk
(a, b Ú 0) to be k = a> (a2 + b2). What is the largest value k
can have for a given value of b? Give reasons for your answer.

20. Total curvature We find the total curvature of the portion of 
a smooth curve that runs from s = s0 to s = s1 7 s0 by integrat-
ing k from s0 to s1. If the curve has some other parameter, say t,
then the total curvature is

K =
L

s1

s0

k ds =
L

t1

t0

k
ds
dt

dt =
L

t1

t0

k 0 v 0 dt,

  where t0 and t1 correspond to s0 and s1. Find the total curvatures of

a. The portion of the helix r(t) = (3 cos t)i + (3 sin t)j + tk,
0 … t … 4p.

  b. The parabola y = x2, -q 6 x 6 q.

21. Find an equation for the circle of curvature of the curve 
r(t) = ti + (sin t)j at the point (p>2, 1). (The curve parame-
trizes the graph of y = sin x in the xy-plane.)

22. Find an equation for the circle of curvature of the curve r(t) =
(2 ln t)i - 3 t + (1>t)4j, e-2 … t … e2, at the point (0, -2),
where t = 1.

The formula

k(x) =
0 ƒ″(x) 0

31 + (ƒ′(x))243>2 ,

derived in Exercise 5, expresses the curvature k(x) of a twice-differen-
tiable plane curve y = ƒ(x) as a function of x. Find the curvature func-
tion of each of the curves in Exercises 23–26. Then graph ƒ(x) together 
with k(x) over the given interval. You will find some surprises.

23. y = x2, -2 … x … 2 24. y = x4>4, -2 … x … 2

25. y = sin x, 0 … x … 2p 26. y = ex, -1 … x … 2

27. Osculating circle Show that the center of the osculating circle 
  for the parabola y = x2 at the point (a, a2)  is located at

a-4a3, 3a2 + 1
2
b .

T

13.5 Tangential and Normal Components of Acceleration

If you are traveling along a space curve, the Cartesian i, j, and k coordinate system for 
representing the vectors describing your motion is not truly relevant to you. What is mean-
ingful instead are the vectors representative of your forward direction (the unit tangent 
vector T), the direction in which your path is turning (the unit normal vector N), and the 
tendency of your motion to “twist” out of the plane created by these vectors in the direc-
tion perpendicular to this plane (defined by the unit binormal vector B = T * N).
Expressing the acceleration vector along the curve as a linear combination of this TNB
frame of mutually orthogonal unit vectors traveling with the motion (Figure 13.23) is par-
ticularly revealing of the nature of the path and motion along it.
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The TNB Frame

The binormal vector of a curve in space is B = T * N, a unit vector orthogonal to both T
and N (Figure 13.24). Together T, N, and B define a moving right-handed vector frame that 
plays a significant role in calculating the paths of particles moving through space. It is called 
the Frenet (“fre-nay”) frame (after Jean-Frédéric Frenet, 1816–1900), or the TNB frame.

Tangential and Normal Components of Acceleration

When an object is accelerated by gravity, brakes, or a combination of rocket motors, we 
usually want to know how much of the acceleration acts in the direction of motion, in the 
tangential direction T. We can calculate this using the Chain Rule to rewrite v as

v = dr
dt

= dr
ds

ds
dt

= T ds
dt

.

Then we differentiate both ends of this string of equalities to get

a = dv
dt

= d
dt
aT ds

dt
b = d2s

dt2 T + ds
dt

dT
dt

= d2s
dt2 T + ds

dt
adT

ds
ds
dt
b = d2s

dt2 T + ds
dt
akN ds

dt
b dT

ds
= kN

= d2s
dt2 T + kads

dt
b2

N.

y

z

x

N = 1
k

dT
ds

P0

s

P

B = T × N

T = dr
dsr

FIGURE 13.23 The TNB frame of 
mutually orthogonal unit vectors traveling 
along a curve in space.

T

P

B

N

FIGURE 13.24 The vectors T, N, and B
(in that order) make a right-handed frame 
of mutually orthogonal unit vectors in 
space.

DEFINITION If the acceleration vector is written as

a = aTT + aNN, (1)

then

aT = d2s
dt2 = d

dt
0 v 0 and aN = kads

dt
b2

= k 0 v 0 2 (2)

are the tangential and normal scalar components of acceleration.

Notice that the binormal vector B does not appear in Equation (1). No matter how the path 
of the moving object we are watching may appear to twist and turn in space, the accelera-
tion a always lies in the plane oƒ T and N orthogonal to B. The equation also tells us 
exactly how much of the acceleration takes place tangent to the motion (d2s>dt2)  and how 
much takes place normal to the motion 3k(ds>dt)24  (Figure 13.25).

What information can we discover from Equations (2)? By definition, acceleration a
is the rate of change of velocity v, and in general, both the length and direction of v change 
as an object moves along its path. The tangential component of acceleration aT measures 
the rate of change of the length of v (that is, the change in the speed). The normal compo-
nent of acceleration aN measures the rate of change of the direction of v.

Notice that the normal scalar component of the acceleration is the curvature times the 
square of the speed. This explains why you have to hold on when your car makes a sharp 
(large k), high-speed (large 0 v 0 ) turn. If you double the speed of your car, you will experi-
ence four times the normal component of acceleration for the same curvature.

If an object moves in a circle at a constant speed, d2s>dt2 is zero and all the accelera-
tion points along N toward the circle’s center. If the object is speeding up or slowing 
down, a has a nonzero tangential component (Figure 13.26).

To calculate aN, we usually use the formula aN = 2 0 a 0 2 - aT
2 , which comes from 

solving the equation 0 a 0 2 = a # a = aT
2 + aN

2 for aN. With this formula, we can find aN

without having to calculate k first.

T

s

N

a

P0

aT = d2s
dt2

2
aN = k

ds
dtQ R

FIGURE 13.25 The tangential and 
normal components of acceleration. The 
acceleration a always lies in the plane of T
and N, orthogonal to B.
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EXAMPLE 1  Without finding T and N, write the acceleration of the motion

r(t) = (cos t + t sin t)i + (sin t - t cos t)j, t 7 0

in the form a = aTT + aNN. (The path of the motion is the involute of the circle in 
Figure 13.27. See also Section 13.3, Exercise 19.)

Solution We use the first of Equations (2) to find aT:

v = dr
dt

= (-sin t + sin t + t cos t)i + (cos t - cos t + t sin t)j

= (t cos t)i + (t sin t)j

0 v 0 = 2t2 cos2 t + t2 sin2 t = 2t2 = 0 t 0 = t t 7 0

aT = d
dt
0 v 0 = d

dt
(t) = 1. Eq. (2)

Knowing aT, we use Equation (3) to find aN:

a = (cos t - t sin t)i + (sin t + t cos t)j

0 a 0 2 = t2 + 1 After some algebra

aN = 2 0 a 0 2 - aT
2

= 2(t2 + 1) - (1) = 2t2 = t.

We then use Equation (1) to find a:

a = aTT + aNN = (1)T + (t)N = T + tN.

Torsion

How does dB >ds behave in relation to T, N, and B? From the rule for differentiating a 
cross product in Section 13.1, we have

dB
ds

=
d(T * N)

ds
= dT

ds
* N + T * dN

ds
.

Since N is the direction of dT >ds, (dT>ds) * N = 0 and

dB
ds

= 0 + T * dN
ds

= T * dN
ds

.

From this we see that dB >ds is orthogonal to T, since a cross product is orthogonal to its 
factors.

Since dB >ds is also orthogonal to B (the latter has constant length), it follows that 
dB >ds is orthogonal to the plane of B and T. In other words, dB >ds is parallel to N, so 
dB >ds is a scalar multiple of N. In symbols,

dB
ds

= -tN.

The negative sign in this equation is traditional. The scalar t is called the torsion along the 
curve. Notice that

dB
ds

# N = -tN # N = -t(1) = -t.

We use this equation for our next definition.

P

C

T

a

d2s
dt2

k 0 v 0 2N = Nr
0 v 0 2

FIGURE 13.26 The tangential and 
normal components of the acceleration of 
an object that is speeding up as it moves 
counterclockwise around a circle of 
radius r.

Formula for Calculating the Normal Component of Acceleration

aN = 2 0 a 0 2 - aT
2 (3)

Strin
g

O

y

t

(1, 0)
x

Q r

T
a

x2 + y2 = 1 

P(x, y)tN

FIGURE 13.27 The tangential and 
normal components of the acceleration 
of the motion r(t) = (cos t + t sin t)i +
(sin t - t cos t)j, for t 7 0. If a string 
wound around a fixed circle is unwound 
while held taut in the plane of the circle, 
its end P traces an involute of the circle 
(Example 1).
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Unlike the curvature k, which is never negative, the torsion t may be positive, nega-
tive, or zero.

The three planes determined by T, N, and B are named and shown in Figure 13.28. 
The curvature k = 0 dT>ds 0  can be thought of as the rate at which the normal plane turns 
as the point P moves along its path. Similarly, the torsion t = -(dB>ds) # N is the rate at 
which the osculating plane turns about T as P moves along the curve. Torsion measures 
how the curve twists.

Look at Figure 13.29. If P is a train climbing up a curved track, the rate at which the 
headlight turns from side to side per unit distance is the curvature of the track. The rate at 
which the engine tends to twist out of the plane formed by T and N is the torsion. It can be 
shown that a space curve is a helix if and only if it has constant nonzero curvature and 
constant nonzero torsion.

DEFINITION Let B = T * N. The torsion function of a smooth curve is

t = - dB
ds

# N. (4)

P

Binormal

Osculating plane
Unit tangent

N
T

B

Normal plane

Principal
normal

Rectifying
plane

FIGURE 13.28 The names of the three 
planes determined by T, N, and B.

T
N

B

P

The torsion
at P is −(dB�ds) ∙ N.

ds
dB

The curvature at P
is @ (dT�ds) @ .

s increases

s = 0

FIGURE 13.29 Every moving body travels with a TNB frame 
that characterizes the geometry of its path of motion.

Formulas for Computing Curvature and Torsion

We now give easy-to-use formulas for computing the curvature and torsion of a smooth 
curve. From Equations (1) and (2), we have

v * a = ads
dt

Tb * c d2s
dt2 T + kads

dt
b2

N d v = dr>dt =
(ds>dt)T

= ads
dt

d2s
dt2b (T * T) + kads

dt
b3

(T * N)

= kads
dt
b3

B.
T * T = 0 and 
T * N = B

It follows that

0 v * a 0 = k ` ds
dt
`
3 0B 0 = k 0 v 0 3. ds

dt
= 0 v 0 and 0B 0 = 1

Solving for k gives the following formula.
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Equation (5) calculates the curvature, a geometric property of the curve, from the 
velocity and acceleration of any vector representation of the curve in which 0 v 0  is different 
from zero. From any formula for motion along a curve, no matter how variable the motion 
may be (as long as v is never zero), we can calculate a geometric property of the curve that 
seems to have nothing to do with the way the curve is parametrically defined.

The most widely used formula for torsion, derived in more advanced texts, is given in 
a determinant form.

Vector Formula for Curvature

k =
0 v * a 0
0 v 0 3 (5)

Newton’s Dot Notation for Derivatives
The dots in Equation (6) denote differ-
entiation with respect to t, one derivative 
for each dot. Thus, x

#
 (“x dot”) means 

dx >dt, x
$
 (“x double dot”) means d2x>dt2,

and x
%

 (“x triple dot”) means d3x>dt3.
Similarly, y

# = dy>dt, and so on.

Formula for Torsion

t =

3 x
#

y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%
3

0 v * a 0 2 (if v * a ≠ 0) (6)

This formula calculates the torsion directly from the derivatives of the component func-
tions x = ƒ(t), y = g(t), z = h(t) that make up r. The determinant’s first row comes from 
v, the second row comes from a, and the third row comes from a

# = da>dt. Newton’s dot 
notation for derivatives is traditional.

EXAMPLE 2  Use Equations (5) and (6) to find the curvature k and torsion t for the 
helix

r(t) = (a cos t)i + (a sin t)j + btk, a, b Ú 0, a2 + b2 ≠ 0.

Solution We calculate the curvature with Equation (5):

v = -(a sin t)i + (a cos t)j + bk

a = -(a cos t)i - (a sin t)j

v * a = 3 i j k
-a sin t a cos t b

-a cos t -a sin t 0

3
= (ab sin t)i - (ab cos t)j + a2k

k =
0 v * a 0
0 v 0 3 = 2a2b2 + a4

(a2 + b2)3>2 = a2a2 + b2

(a2 + b2)3>2 = a
a2 + b2 . (7)

Notice that Equation (7) agrees with the result in Example 5 in Section 13.4, where we 
calculated the curvature directly from its definition.

To evaluate Equation (6) for the torsion, we find the entries in the determinant by dif-
ferentiating r with respect to t. We already have v and a, and

a
# = da

dt
= (a sin t)i - (a cos t)j.
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Hence,

t =

3 x
#

y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%

3
0 v * a 0 2 =

3 -a sin t a cos t b

-a cos t -a sin t 0

a sin t -a cos t 0

3
1a2a2 + b222 Value of 0 v * a 0

from Eq. (7)

=
b(a2 cos2 t + a2 sin2 t)

a2(a2 + b2)

= b
a2 + b2 .

From this last equation we see that the torsion of a helix about a circular cylinder is 
constant. In fact, constant curvature and constant torsion characterize the helix among all 
curves in space.

Computation Formulas for Curves in Space

Unit tangent vector: T = v0 v 0
Principal unit normal vector: N =

dT>dt

0 dT>dt 0
Binormal vector: B = T * N

Curvature: k = ` dT
ds
` = 0 v * a 0

0 v 0 3

Torsion: t = - dB
ds

# N =

3 x
#

y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%
3

0 v * a 0 2
Tangential and normal scalar
components of acceleration:      a = aTT + aNN

aT = d
dt
0 v 0

aN = k 0 v 0 2 = 2 0 a 0 2 - aT
2

Finding Tangential and Normal Components
In Exercises 1 and 2, write a in the form a = aTT + aNN without 
finding T and N.

1. r(t) = (a cos t)i + (a sin t)j + bt k

2. r(t) = (1 + 3t)i + (t - 2)j - 3t k

In Exercises 3–6, write a in the form a = aTT + aNN at the given 
value of t without finding T and N.

3. r(t) = (t + 1)i + 2tj + t2k, t = 1

4. r(t) = (t cos t)i + (t sin t)j + t2k, t = 0

5. r(t) = t2i + (t + (1>3)t3)j + (t - (1>3)t3)k, t = 0

6. r(t) = (et cos t)i + (et sin t)j + 22etk, t = 0

Finding the TNB Frame
In Exercises 7 and 8, find r, T, N, and B at the given value of t. Then 
find equations for the osculating, normal, and rectifying planes at that 
value of t.

7. r(t) = (cos t)i + (sin t)j - k, t = p>4
8. r(t) = (cos t)i + (sin t)j + t k, t = 0

Exercises 13.5
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In Exercises 9–16 of Section 13.4, you found T, N, and k. Now, in the 
following Exercises 9–16, find B and t for these space curves.

9. r(t) = (3 sin t)i + (3 cos t)j + 4tk

10. r(t) = (cos t + t sin t)i + (sin t - t cos t)j + 3k

11. r(t) = (et cos t)i + (et sin t)j + 2k

12. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5tk

13. r(t) = (t3>3)i + (t2>2)j, t 7 0

14. r(t) = (cos3 t)i + (sin3 t)j, 0 6 t 6 p>2
15. r(t) = ti + (a cosh (t>a))j, a 7 0

16. r(t) = (cosh t)i - (sinh t)j + tk

Physical Applications
17. The speedometer on your car reads a steady 35 mph. Could you 

be accelerating? Explain.

18. Can anything be said about the acceleration of a particle that is 
moving at a constant speed? Give reasons for your answer.

19. Can anything be said about the speed of a particle whose acceler-
ation is always orthogonal to its velocity? Give reasons for your 
answer.

20. An object of mass m travels along the parabola y = x2 with a 
constant speed of 10 units > sec. What is the force on the object 
due to its acceleration at (0, 0)? at (21>2, 2)? Write your answers 
in terms of i and j. (Remember Newton’s law, F = ma.)

Theory and Examples
21. Show that k and t are both zero for the line

r(t) = (x0 + At)i + ( y0 + Bt)j + (z0 + Ct)k.

22. Show that a moving particle will move in a straight line if the 
normal component of its acceleration is zero.

23. A sometime shortcut to curvature If you already know 0 aN 0
and 0 v 0 , then the formula aN = k 0 v 0 2 gives a convenient way to 
find the curvature. Use it to find the curvature and radius of cur-
vature of the curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j, t 7 0.

  (Take aN and 0 v 0  from Example 1.)

24. What can be said about the torsion of a smooth plane curve 
r(t) = ƒ(t)i + g(t)j? Give reasons for your answer.

25. Differentiable curves with zero torsion lie in planes That a 
sufficiently differentiable curve with zero torsion lies in a plane is 
a special case of the fact that a particle whose velocity remains 
perpendicular to a fixed vector C moves in a plane perpendicular 
to C. This, in turn, can be viewed as the following result.

Suppose r(t) = ƒ(t)i + g(t)j + h(t)k is twice differentiable 
for all t in an interval 3a, b4 , that r = 0 when t = a, and that 
v # k = 0 for all t in 3a, b4 . Show that h(t) = 0 for all t in 
3a, b4 . (Hint: Start with a = d2r>dt2 and apply the initial condi-
tions in reverse order.)

26. A formula that calculates T from B and v If we start with the 
definition t = - (dB>ds) # N and apply the Chain Rule to rewrite 
dB >ds as

dB
ds

= dB
dt

dt
ds

= dB
dt

10 v 0 ,
  we arrive at the formula

t = - 10 v 0 a
dB
dt

# Nb .

  Use the formula to find the torsion of the helix in Example 2.

COMPUTER EXPLORATIONS
Rounding the answers to four decimal places, use a CAS to find v, a,
speed, T, N, B, k, t, and the tangential and normal components of 
acceleration for the curves in Exercises 27–30 at the given values of t.

27. r(t) = (t cos t)i + (t sin t)j + tk, t = 23

28. r(t) = (et cos t)i + (et sin t)j + etk, t = ln 2

29. r(t) = (t - sin t)i + (1 - cos t)j + 2- tk, t = -3p

30. r(t) = (3t - t2)i + (3t2)j + (3t + t3)k, t = 1

13.6 Velocity and Acceleration in Polar Coordinates

In this section we derive equations for velocity and acceleration in polar coordinates. 
These equations are useful for calculating the paths of planets and satellites in space, and 
we use them to examine Kepler’s three laws of planetary motion.

Motion in Polar and Cylindrical Coordinates

When a particle at P(r, u) moves along a curve in the polar coordinate plane, we express 
its position, velocity, and acceleration in terms of the moving unit vectors

ur = (cos u)i + (sin u)j, uu = -(sin u)i + (cos u)j, (1)

shown in Figure 13.30. The vector ur points along the position vector rOP, so r = rur .
The vector uu , orthogonal to ur , points in the direction of increasing u.

O

y

x

r

uu

ur
P(r, u)

u

FIGURE 13.30 The length of r is the 
positive polar coordinate r of the point P.
Thus, ur , which is r> 0 r 0 , is also r > r.
Equations (1) express ur and uu in terms 
of i and j.
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We find from Equations (1) that

dur

du
= -(sin u)i + (cos u)j = uu

duu
du

= -(cos u)i - (sin u)j = -ur .

When we differentiate ur and uu with respect to t to find how they change with time, 
the Chain Rule gives

u
#
r =

dur

du
u
#
= u

#
uu , u

#
u =

duu
du
u
#
= -u

#
ur . (2)

Hence, we can express the velocity vector in terms of ur and uu as

v = r
# = d

dt
(rur) = r

#
ur + ru

#
r = r

#
ur + ru

#
uu .

See Figure 13.31. As in the previous section, we use Newton’s dot notation for time deriva-
tives to keep the formulas as simple as we can: u

#
r means dur>dt, u

#
 means du>dt, and so on.

The acceleration is

a = v
# = (r

$
ur + r

#
u
#
r) + (r

#
u
#
uu + ru

$
uu + ru

#
u
#
u).

When Equations (2) are used to evaluate u
#
r and u

#
u and the components are separated, the 

equation for acceleration in terms of ur and uu becomes

a = (r
$ - ru

#
2)ur + (ru

$
+ 2r

#
u
#
)uu .

To extend these equations of motion to space, we add zk to the right-hand side of the 
equation r = rur . Then, in these cylindrical coordinates, we have

.

.

O

y

x

r

v

P(r, u)

rur

ruuu

u

FIGURE 13.31 In polar coordinates, the 
velocity vector is

v = r
#
ur + ru

#
uu .

Position: r = rur + zk

Velocity: v = r
#
ur + ru

#
uu + z

#
k (3)

Acceleration: a = (r
$ - ru

#
2)ur + (ru

$
+ 2r

#
u
#
)uu + z

$
k

The vectors ur , uu , and k make a right-handed frame (Figure 13.32) in which

ur * uu = k , uu * k = ur , k * ur = uu .

Planets Move in Planes

Newton’s law of gravitation says that if r is the radius vector from the center of a sun of 
mass M to the center of a planet of mass m, then the force F of the gravitational attraction 
between the planet and sun is

F = - GmM0 r 0 2 r0 r 0
(Figure 13.33). The number G is the universal gravitational constant. If we measure mass 
in kilograms, force in newtons, and distance in meters, G is about 6.6738 * 10-11 Nm2 kg-2.

Combining the gravitation law with Newton’s second law, F = mr
$
, for the force act-

ing on the planet gives

mr
$ = - GmM0 r 0 2 r0 r 0 ,
r
$ = - GM0 r 0 2 r0 r 0 .

The planet is therefore accelerated toward the sun’s center of mass at all times.

x

y

z

k

zk

r = rur + zk

rur

ur

uu

u

FIGURE 13.32 Position vector and 
basic unit vectors in cylindrical coordi-
nates. Notice that 0 r 0 ≠ r if z ≠ 0 since 0 r 0 = 2r2 + z2 .

r
m

M

r
0 r 0

F = −GmM
0 r 0 2

r
0 r 0

FIGURE 13.33 The force of gravity is 
directed along the line joining the centers 
of mass.
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Since r
$
 is a scalar multiple of r, we have

r * r
$ = 0.

From this last equation,

d
dt

 (r * r
#
) = r

# * r
# + r * r

$ = r * r
$ = 0.(+)+*

0

It follows that

r * r
# = C (4)

for some constant vector C.
Equation (4) tells us that r and r

#
 always lie in a plane perpendicular to C. Hence, the 

planet moves in a fixed plane through the center of its sun (Figure 13.34). We next see how 
Kepler’s laws describe the motion in a precise way.

Kepler’s First Law (Ellipse Law)

Kepler’s first law says that a planet’s path is an ellipse with the sun at one focus. The 
eccentricity of the ellipse is

e =
r0y0

2

GM
- 1 (5)

and the polar equation (see Section 11.7, Equation (5)) is

r =
(1 + e)r0

1 + e cos u
. (6)

Here y0 is the speed when the planet is positioned at its minimum distance r0 from the sun. 
We omit the lengthy proof. The sun’s mass M is 1.99 * 1030 kg.

Kepler’s Second Law (Equal Area Law)

Kepler’s second law says that the radius vector from the sun to a planet (the vector r in our 
model) sweeps out equal areas in equal times, as displayed in Figure 13.35. In that figure, we 
assume the plane of the planet is the xy-plane, so the unit vector in the direction of C is k. We 
introduce polar coordinates in the plane, choosing as initial line u = 0, the direction r when 0 r 0 = r is a minimum value. Then at t = 0, we have r(0) = r0 being a minimum so

r
# 0 t=0 = dr

dt
2
t=0

= 0 and y0 = 0 v 0 t=0 = 3ru# 4 t=0 . Eq. (3), z
# = 0

To derive Kepler’s second law, we use Equation (3) to evaluate the cross product 
C = r * r

#
 from Equation (4):

C = r * r
# = r * v

= r   ur * (r
#
ur + ru

#
uu)   Eq. (3), z

# = 0

= rr
#
(ur * ur) + r(ru

#
)(ur * uu)(+)+* (+)+*

0 k

= r (ru
#
) k. (7)

Setting t equal to zero shows that

C = 3r(ru
#
)4 t=0 k = r0y0k.

Substituting this value for C in Equation (7) gives

r0y0k = r2u
#
k, or r2u

#
= r0y0 .

.

.
r

r

Planet

Sun

C = r × r

FIGURE 13.34 A planet that obeys 
Newton’s laws of gravitation and motion 
travels in the plane through the sun’s cen-
ter of mass perpendicular to C = r * r

#
.

r

Planet

Sun

FIGURE 13.35 The line joining a 
planet to its sun sweeps over equal 
areas in equal times.
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This is where the area comes in. The area differential in polar coordinates is

dA = 1
2

r2 du

(Section 11.5). Accordingly, dA>dt has the constant value

dA
dt

= 1
2

r2u
#
= 1

2
r0y0 . (8)

So dA>dt is constant, giving Kepler’s second law.

Kepler’s Third Law (Time–Distance Law)

The time T it takes a planet to go around its sun once is the planet’s orbital period.
Kepler’s third law says that T and the orbit’s semimajor axis a are related by the equation

T2

a3 = 4p2

GM
.

Since the right-hand side of this equation is constant within a given solar system, the ratio 
of T2 to a3 is the same for every planet in the system.

Here is a partial derivation of Kepler’s third law. The area enclosed by the planet’s 
elliptical orbit is calculated as follows:

Area =
L

T

0
dA

=
L

T

0

1
2

r0y0 dt Eq. (8)

= 1
2

Tr0y0 .

If b is the semiminor axis, the area of the ellipse is pab, so

T = 2pab
r0y0

= 2pa2

r0y0
21 - e2.

For any ellipse, 
b = a21 - e2. (9)

It remains only to express a and e in terms of r0, y0, G, and M. Equation (5) does this 
for e. For a, we observe that setting u equal to p in Equation (6) gives

rmax = r0
1 + e
1 - e

.

Hence, from Figure 13.36,

2a = r0 + rmax =
2r0

1 - e
=

2r0GM

2GM - r0y0
2 . (10)

Squaring both sides of Equation (9) and substituting the results of Equations (5) and (10) 
produces Kepler’s third law (Exercise 9).

HISTORICAL BIOGRAPHY

Johannes Kepler
(1571–1630)

r

Planet

Sunrmax r0

FIGURE 13.36 The length of the major 
axis of the ellipse is 2a = r0 + rmax .

In Exercises 1–5, find the velocity and acceleration vectors in terms of 
ur and uu .

1. r = a(1 - cos u) and
du
dt

= 3

2. r = a sin 2u and
du
dt

= 2t

3. r = eau and
du
dt

= 2

4. r = a(1 + sin t) and u = 1 - e-t

5. r = 2 cos 4t and u = 2t

6. Type of orbit For what values of y0 in Equation (5) is the orbit 
in Equation (6) a circle? An ellipse? A parabola? A hyperbola?

7. Circular orbits Show that a planet in a circular orbit moves 
with a constant speed. (Hint: This is a consequence of one of 
Kepler’s laws.)

8. Suppose that r is the position vector of a particle moving along 
a plane curve and dA >dt is the rate at which the vector sweeps 

Exercises 13.6
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out area. Without introducing coordinates, and assuming the nec-
essary derivatives exist, give a geometric argument based on 
increments and limits for the validity of the equation

dA
dt

= 1
2
0 r * r

# 0 .
9. Kepler’s third law Complete the derivation of Kepler’s third 

law (the part following Equation (10)).

10. Do the data in the accompanying table support Kepler’s third 
law? Give reasons for your answer.

Semimajor axis
Planet a (1010 m) Period T (years)

Mercury 5.79 0.241
Venus 10.81 0.615
Mars 22.78 1.881
Saturn 142.70 29.457

11. Earth’s major axis Estimate the length of the major axis of 
Earth’s orbit if its orbital period is 365.256 days.

12. Estimate the length of the major axis of the orbit of Uranus if its 
orbital period is 84 years.

13. The eccentricity of Earth’s orbit is e = 0.0167, so the orbit is 
nearly circular, with radius approximately 150 * 106 km. Find 
the rate dA >dt in units of km2>sec satisfying Kepler’s second law.

14. Jupiter’s orbital period Estimate the oribital period of Jupiter, 
assuming that a = 77.8 * 1010 m.

15. Mass of Jupiter Io is one of the moons of Jupiter. It has a semi-
major axis of 0.042 * 1010 m and an orbital period of 1.769 
days. Use these data to estimate the mass of Jupiter.

16. Distance from Earth to the moon The period of the moon’s 
rotation around Earth is 2.36055 * 106 sec. Estimate the distance 
to the moon.

Chapter 13 Questions to Guide Your Review

1. State the rules for differentiating and integrating vector functions. 
Give examples.

2. How do you define and calculate the velocity, speed, direction of 
motion, and acceleration of a body moving along a sufficiently 
differentiable space curve? Give an example.

3. What is special about the derivatives of vector functions of con-
stant length? Give an example.

4. What are the vector and parametric equations for ideal projectile 
motion? How do you find a projectile’s maximum height, flight 
time, and range? Give examples.

5. How do you define and calculate the length of a segment of a 
smooth space curve? Give an example. What mathematical assump-
tions are involved in the definition?

6. How do you measure distance along a smooth curve in space 
from a preselected base point? Give an example.

7. What is a differentiable curve’s unit tangent vector? Give an 
example.

8. Define curvature, circle of curvature (osculating circle), center of 
curvature, and radius of curvature for twice-differentiable curves 
in the plane. Give examples. What curves have zero curvature? 
Constant curvature?

9. What is a plane curve’s principal normal vector? When is it 
defined? Which way does it point? Give an example.

10. How do you define N and k for curves in space? How are these 
quantities related? Give examples.

11. What is a curve’s binormal vector? Give an example. How is this 
vector related to the curve’s torsion? Give an example.

12. What formulas are available for writing a moving object’s accel-
eration as a sum of its tangential and normal components? Give 
an example. Why might one want to write the acceleration this 
way? What if the object moves at a constant speed? At a constant 
speed around a circle?

13. State Kepler’s laws.

Chapter 13 Practice Exercises

Motion in the Plane
In Exercises 1 and 2, graph the curves and sketch their velocity and 
acceleration vectors at the given values of t. Then write a in the form 
a = aTT + aNN without finding T and N, and find the value of k at 
the given values of t.

3. The position of a particle in the plane at time t is

r = 1

21 + t2
i + t

21 + t2
j.

  Find the particle’s highest speed.
4. Suppose r(t) = (et cos t)i + (et sin t)j. Show that the angle 

between r and a never changes. What is the angle?
1. r(t) = (4 cos t)i + 122 sin t2j, t = 0 and p>4
2. r(t) = 123 sec t2i + 123 tan t2j, t = 0
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5. Finding curvature At point P, the velocity and acceleration of 
a particle moving in the plane are v = 3i + 4j and a = 5i + 15j.
Find the curvature of the particle’s path at P.

6. Find the point on the curve y = ex where the curvature is greatest.

7. A particle moves around the unit circle in the xy-plane. Its posi-
tion at time t is r = xi + yj, where x and y are differentiable 
functions of t. Find dy >dt if v # i = y. Is the motion clockwise or 
counterclockwise?

8. You send a message through a pneumatic tube that follows the 
curve 9y = x3 (distance in meters). At the point (3, 3), v # i = 4
and a # i = -2. Find the values of v # j and a # j at (3, 3).

9. Characterizing circular motion A particle moves in the plane 
so that its velocity and position vectors are always orthogonal. 
Show that the particle moves in a circle centered at the origin.

10. Speed along a cycloid A circular wheel with radius 1 ft and 
center C rolls to the right along the x-axis at a half-turn per sec-
ond. (See the accompanying figure.) At time t seconds, the posi-
tion vector of the point P on the wheel’s circumference is

r = (pt - sin pt)i + (1 - cos pt)j.

  a. Sketch the curve traced by P during the interval 0 … t … 3.

  b. Find v and a at t = 0, 1, 2, and 3 and add these vectors to 
your sketch.

  c. At any given time, what is the forward speed of the topmost 
point of the wheel? Of C?

x

y

1

C

P

pt
r

0

Projectile Motion
11. Shot put A shot leaves the thrower’s hand 6.5 ft above the 

ground at a 45° angle at 44 ft > sec. Where is it 3 sec later?

12. Javelin A javelin leaves the thrower’s hand 7 ft above the 
ground at a 45° angle at 80 ft > sec. How high does it go?

13. A golf ball is hit with an initial speed y0 at an angle a to the hori-
zontal from a point that lies at the foot of a straight-sided hill that 
is inclined at an angle f to the horizontal, where

0 6 f 6 a 6 p
2

.

  Show that the ball lands at a distance

2y0
2 cos a

g cos2f
sin (a - f),

  measured up the face of the hill. Hence, show that the great-
est range that can be achieved for a given y0 occurs when

a = (f>2) + (p>4), i.e., when the initial velocity vector bisects 
the angle between the vertical and the hill.

14. Javelin In Potsdam in 1988, Petra Felke of (then) East Germany 
set a women’s world record by throwing a javelin 262 ft 5 in.

  a. Assuming that Felke launched the javelin at a 40° angle to the 
horizontal 6.5 ft above the ground, what was the javelin’s ini-
tial speed?

  b. How high did the javelin go?

Motion in Space
Find the lengths of the curves in Exercises 15 and 16.

15. r(t) = (2 cos t)i + (2 sin t)j + t2k, 0 … t … p>4
16. r(t) = (3 cos t)i + (3 sin t)j + 2t3>2k, 0 … t … 3

In Exercises 17–20, find T, N, B, k, and t at the given value of t.

17. r(t) = 4
9

(1 + t)3>2 i + 4
9

(1 - t)3>2 j + 1
3

tk, t = 0

18. r(t) = (et sin 2t)i + (et cos 2t)j + 2etk, t = 0

19. r(t) = ti + 1
2

e2tj, t = ln 2

20. r(t) = (3 cosh 2t)i + (3 sinh 2t)j + 6tk, t = ln 2

In Exercises 21 and 22, write a in the form a = aTT + aNN at t = 0
without finding T and N.

21. r(t) = (2 + 3t + 3t2)i + (4t + 4t2)j - (6 cos t)k

22. r(t) = (2 + t)i + (t + 2t2)j + (1 + t2)k

23. Find T, N, B, k, and t as functions of t if

r(t) = (sin t)i + 122 cos t2j + (sin t)k.

24. At what times in the interval 0 … t … p are the velocity and 
acceleration vectors of the motion r(t) = i + (5 cos t)j +
(3 sin t)k orthogonal?

25. The position of a particle moving in space at time t Ú 0 is

r(t) = 2i + a4 sin
t
2
bj + a3 - t

pbk.

  Find the first time r is orthogonal to the vector i - j.

26. Find equations for the osculating, normal, and rectifying planes 
of the curve r(t) = ti + t2j + t3k at the point (1, 1, 1).

27. Find parametric equations for the line that is tangent to the curve 
r(t) = eti + (sin t)j + ln (1 - t)k at t = 0.

28. Find parametric equations for the line tangent to the helix r(t) =
122 cos t2i + 122 sin t2j + tk at the point where t = p>4.

Theory and Examples
29. Synchronous curves By eliminating a from the ideal projec-

tile equations

x = (y0 cos a)t, y = (y0 sin a)t - 1
2

gt2,

  show that x2 + (y + gt2>2)2 = y0
2 t2. This shows that projec-

tiles launched simultaneously from the origin at the same initial 
speed will, at any given instant, all lie on the circle of radius y0t
centered at (0, -gt2>2), regardless of their launch angle. These 
circles are the synchronous curves of the launching.

T



790 Chapter 13: Vector-Valued Functions and Motion in Space

30. Radius of curvature Show that the radius of curvature of a 
twice-differentiable plane curve r(t) = ƒ(t)i + g(t)j is given by 
the formula

r =
x
#

  

2 + y
# 2

2x
$

  

2 + y
$

  

2 - s
$

   

2
, where s

$ = d
dt
2x

#
  

2 + y
#

  

2.

31. An alternative definition of curvature in the plane An alterna-
tive definition gives the curvature of a sufficiently differentiable 
plane curve to be 0 df>ds 0 , where f is the angle between T and i
(Figure 13.37a). Figure 13.37b shows the distance s measured 

x

y

y

x

0

f

f
u

T

i

(a)

(b)

O

a
s

s = 0 at (a, 0)

P

Tx2 + y2 = a2

FIGURE 13.37 Figures for Exercise 31.

counterclockwise around the circle x2 + y2 = a2 from the point 
(a, 0) to a point P, along with the angle f at P. Calculate the circle’s 
curvature using the alternative definition. (Hint: f = u + p>2.)

32. The view from Skylab 4 What percentage of Earth’s surface area
could the astronauts see when Skylab 4 was at its apogee height, 
437 km above the surface? To find out, model the visible surface 
as the surface generated by revolving the circular arc GT, shown 
here, about the y-axis. Then carry out these steps:

1. Use similar triangles in the figure to show that y0>6380 =
6380>(6380 + 437). Solve for y0 .

  2. To four significant digits, calculate the visible area as

VA =
L

6380

y0

2pxC1 + adx
dy
b2

dy.

3. Express the result as a percentage of Earth’s surface area.

y

x

437 G

6380

0

T

S (Skylab)

y0

x = "(6380)2 − y2

Chapter 13 Additional and Advanced Exercises

Applications
1. A frictionless particle P, starting from rest at time t = 0 at the 

point (a, 0, 0), slides down the helix

r(u) = (a cos u)i + (a sin u)j + buk (a, b 7 0)

  under the influence of gravity, as in the accompanying figure. The u
in this equation is the cylindrical coordinate u and the helix is the 
curve r = a, z = bu, u Ú 0, in cylindrical coordinates. We assume 
u to be a differentiable function of t for the motion. The law of 
conservation of energy tells us that the particle’s speed after it has 
fallen straight down a distance z is 22gz, where g is the constant 
acceleration of gravity.

a. Find the angular velocity du>dt when u = 2p.

  b. Express the particle’s u@ and z-coordinates as functions of t.

c. Express the tangential and normal components of the velocity 
dr >dt and acceleration d2r>dt2 as functions of t. Does the 
acceleration have any nonzero component in the direction of 
the binormal vector B?

x

The helix
r = a, z = bu

z

Positive z-axis
points down.

a

P

r

y

2. Suppose the curve in Exercise 1 is replaced by the conical helix 
r = au, z = bu shown in the accompanying figure.

a. Express the angular velocity du>dt as a function of u.

  b.  Express the distance the particle travels along the helix as a 
function of u.
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8. Arc length in cylindrical coordinates

a. Show that when you express ds2 = dx2 + dy2 + dz2 in terms 
of cylindrical coordinates, you get ds2 = dr2 + r2 du2 + dz2.

  b. Interpret this result geometrically in terms of the edges and a 
diagonal of a box. Sketch the box.

c. Use the result in part (a) to find the length of the curve 
r = eu, z = eu, 0 … u … ln 8.

9. Unit vectors for position and motion in cylindrical coordi-
nates When the position of a particle moving in space is given 
in cylindrical coordinates, the unit vectors we use to describe its 
position and motion are

ur = (cos u)i + (sin u)j, uu = - (sin u)i + (cos u)j,

  and k (see accompanying figure). The particle’s position vector is 
then r = rur + zk, where r is the positive polar distance coordi-
nate of the particle’s position.

y

z

x

k

r

uu

ur

z

r

(r, u, 0)

u

0

  a. Show that ur , uu , and k, in this order, form a right-handed 
frame of unit vectors.

b. Show that

dur

du
= uu and

duu
du

= -ur .

c. Assuming that the necessary derivatives with respect to t exist, 
express v = r

#
 and a = r

$
 in terms of ur , uu , k , r

#
, and u

#
.

  d. Conservation of angular momentum Let r(t) denote the 
position in space of a moving object at time t. Suppose the 
force acting on the object at time t is

F(t) = - c0 r(t) 0 3 r(t),

    where c is a constant. In physics the angular momentum of 
an object at time t is defined to be L(t) = r(t) * mv(t),
where m is the mass of the object and v(t) is the velocity. 
Prove that angular momentum is a conserved quantity; i.e., 
prove that L(t) is a constant vector, independent of time. 
Remember Newton’s law F = ma. (This is a calculus prob-
lem, not a physics problem.)

Conical helix
r = au, z = bu

Positive z-axis points down.

Cone z =    rb
a

z

x

y

P

Motion in Polar and Cylindrical Coordinates
3. Deduce from the orbit equation

r =
(1 + e)r0

1 + e cos u

  that a planet is closest to its sun when u = 0 and show that 
r = r0 at that time.

4. A Kepler equation The problem of locating a planet in its orbit 
at a given time and date eventually leads to solving “Kepler” 
equations of the form

ƒ(x) = x - 1 - 1
2

 sin x = 0.

a. Show that this particular equation has a solution between 
x = 0 and x = 2.

  b. With your computer or calculator in radian mode, use Newton’s
method to find the solution to as many places as you can.

5. In Section 13.6, we found the velocity of a particle moving in the 
plane to be

v = x
#
i + y

#
j = r

#
ur + ru

#
uu .

a. Express x
#
 and y

#
 in terms of r

#
 and ru

#
 by evaluating the dot 

products v # i and v # j.
  b. Express r

#
 and ru

#
 in terms of x

#
 and y

#
 by evaluating the dot 

products v # ur and v # uu .
6. Express the curvature of a twice-differentiable curve r = ƒ(u) in 

the polar coordinate plane in terms of ƒ and its derivatives.

7. A slender rod through the origin of the polar coordinate plane 
rotates (in the plane) about the origin at the rate of 3 rad >min. A 
beetle starting from the point (2, 0) crawls along the rod toward 
the origin at the rate of 1 in. >min.

a. Find the beetle’s acceleration and velocity in polar form when 
it is halfway to (1 in. from) the origin.

b. To the nearest tenth of an inch, what will be the length of
the path the beetle has traveled by the time it reaches the 
origin?

T

T



Chapter 13 Technology Application Projects

Mathematica ,Maple Modules:

Radar Tracking of a Moving Object
Visualize position, velocity, and acceleration vectors to analyze motion.

Parametric and Polar Equations with a Figure Skater
Visualize position, velocity, and acceleration vectors to analyze motion.

Moving in Three Dimensions
Compute distance traveled, speed, curvature, and torsion for motion along a space curve. Visualize and compute the tangential, normal, and binor-
mal vectors associated with motion along a space curve.
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Overview Many functions depend on more than one independent variable. For instance, 
the volume of a right circular cylinder is a function V = pr2h of its radius and its height, 
so it is a function V(r, h) of two variables r and h. The speed of sound through seawater is 
primarily a function of salinity S and temperature T. The surface area of the human body is 
a function of its height h and weight w. The monthly payment on a home mortgage is a 
function of the principal borrowed P, the interest rate i, and the term t of the loan.

In this chapter we extend the basic ideas of single-variable differential calculus to 
functions of several variables. Their derivatives are more varied and interesting because of 
the different ways the variables can interact. The applications of these derivatives are also 
more varied than for single-variable calculus, and in the next chapter we will see that the 
same is true for integrals involving several variables.

14.1 Functions of Several variables

Real-valued functions of several independent real variables are defined analogously to 
functions in the single-variable case. Points in the domain are ordered pairs (triples, qua-
druples, n-tuples) of real numbers, and values in the range are real numbers as we have 
worked with all along.

Partial Derivatives

14

Definitions Suppose D is a set of n-tuples of real numbers (x1, x2, . . . , xn). A  
real-valued function ƒ on D is a rule that assigns a unique (single) real number

w = ƒ(x1, x2, . . . , xn)

to each element in D. The set D is the function’s domain. The set of w-values taken 
on by ƒ is the function’s range. The symbol w is the dependent variable of ƒ, and 
ƒ is said to be a function of the n independent variables x1 to xn. We also call the 
xj’s the function’s input variables and call w the function’s output variable.

If ƒ is a function of two independent variables, we usually call the independent vari-
ables x and y and the dependent variable z, and we picture the domain of ƒ as a region in 
the xy-plane (Figure 14.1). If ƒ is a function of three independent variables, we call the 
independent variables x, y, and z and the dependent variable w, and we picture the domain 
as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To 
say that the volume of a right circular cylinder is a function of its radius and height, we might 
write V = ƒ(r, h). To be more specific, we might replace the notation ƒ(r, h) by the formula 
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that calculates the value of V from the values of r and h, and write V = pr2h. In either case, 
r and h would be the independent variables and V the dependent variable of the function.

As usual, we evaluate functions defined by formulas by substituting the values of the 
independent variables in the formula and calculating the corresponding value of the depen-

dent variable. For example, the value of ƒ(x, y, z) = 2x2 + y2 + z2 at the point (3, 0, 4) is

ƒ(3, 0, 4) = 2(3)2 + (0)2 + (4)2 = 225 = 5.

Domains and ranges

In defining a function of more than one variable, we follow the usual practice of excluding 
inputs that lead to complex numbers or division by zero. If ƒ(x, y) = 2y - x2, y cannot 
be less than x2. If ƒ(x, y) = 1>(xy), xy cannot be zero. The domain of a function is 
assumed to be the largest set for which the defining rule generates real numbers, unless the 
domain is otherwise specified explicitly. The range consists of the set of output values for 
the dependent variable.

example 1 

 (a) These are functions of two variables. Note the restrictions that may apply to their 
domains in order to obtain a real value for the dependent variable z.

y

x z
0 0D f (x, y)

f (a, b)

f

(a, b)

(x, y)

Figure 14.1 An arrow diagram for the function z = ƒ(x, y).

 (b) These are functions of three variables with restrictions on some of their domains.

Function Domain Range

z = 2y - x2 y Ú x2 30, q)

z = 1
xy xy ≠ 0 (-q, 0) ∪ (0, q)

z = sin xy Entire plane 3-1, 14

Function Domain Range

w = 2x2 + y2 + z2 Entire space 30, q)

w = 1
x2 + y2 + z2 (x, y, z) ≠ (0, 0, 0) (0, q)

w = xy ln z Half-space z 7 0 (-q, q)

Functions of Two variables

Regions in the plane can have interior points and boundary points just like intervals on the 
real line. Closed intervals 3a, b4  include their boundary points, open intervals (a, b) don’t 
include their boundary points, and intervals such as 3a, b) are neither open nor closed.
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Definitions A point (x0, y0) in a region (set) R in the xy-plane is an interior 
point of R if it is the center of a disk of positive radius that lies entirely in R 
(Figure 14.2). A point (x0 , y0) is a boundary point of R if every disk centered at 
(x0 , y0) contains points that lie outside of R as well as points that lie in R. (The 
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. 
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary 
points (Figure 14.3).

Definitions A region in the plane is bounded if it lies inside a disk of finite 
radius. A region is unbounded if it is not bounded.

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

Figure 14.2 Interior points and 
boundary points of a plane region R. An 
interior point is necessarily a point of R. A 
boundary point of R need not belong to R.

y

x
0

y

x
0

y

x
0

{(x, y) 0  x2 + y2 < 1}
Open unit disk.
Every point an
interior point.

{(x, y) 0  x2 + y2 = 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) 0  x2 + y2 ≤ 1}
Closed unit disk.
Contains all
boundary points.

Figure 14.3 Interior points and boundary points of the unit disk in the plane.

As with a half-open interval of real numbers 3a, b), some regions in the plane are 
neither open nor closed. If you start with the open disk in Figure 14.3 and add to it some, 
but not all, of its boundary points, the resulting set is neither open nor closed. The bound-
ary points that are there keep the set from being open. The absence of the remaining 
boundary points keeps the set from being closed.

Examples of bounded sets in the plane include line segments, triangles, interiors of 
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include 
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, 
half-planes, and the plane itself.

example 2  Describe the domain of the function ƒ(x, y) = 2y - x2.

Solution Since ƒ is defined only where y - x2 Ú 0, the domain is the closed, 
unbounded region shown in Figure 14.4. The parabola y = x2 is the boundary of the 
domain. The points above the parabola make up the domain’s interior. 

graphs, Level Curves, and Contours of Functions of Two variables

There are two standard ways to picture the values of a function ƒ(x, y). One is to draw and 
label curves in the domain on which ƒ has a constant value. The other is to sketch the sur-
face z = ƒ(x, y) in space.

y

x
0 1−1

1

Interior points,
where y − x2 > 0

The parabola
y − x2 = 0
is the boundary.

Outside,
y − x2 < 0

Figure 14.4 The domain of ƒ(x, y) in 
Example 2 consists of the shaded region 
and its bounding parabola.
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example 4  Describe the level surfaces of the function

ƒ(x, y, z) = 2x2 + y2 + z2 .

Definitions The set of points in the plane where a function ƒ(x, y) has a  
constant value ƒ(x, y) = c is called a level curve of ƒ. The set of all points  
(x, y, ƒ(x, y)) in space, for (x, y) in the domain of ƒ, is called the graph of ƒ. The 
graph of ƒ is also called the surface z = ƒ(x, y).

example 3  Graph ƒ(x, y) = 100 - x2 - y2 and plot the level curves ƒ(x, y) = 0, 
ƒ(x, y) = 51, and ƒ(x, y) = 75 in the domain of ƒ in the plane.

Solution The domain of ƒ is the entire xy-plane, and the range of ƒ is the set of real 
numbers less than or equal to 100. The graph is the paraboloid z = 100 - x2 - y2, the 
positive portion of which is shown in Figure 14.5.

The level curve ƒ(x, y) = 0 is the set of points in the xy-plane at which

ƒ(x, y) = 100 - x2 - y2 = 0,  or  x2 + y2 = 100,

which is the circle of radius 10 centered at the origin. Similarly, the level curves 
ƒ(x, y) = 51 and ƒ(x, y) = 75 (Figure 14.5) are the circles

 ƒ(x, y) = 100 - x2 - y2 = 51,  or  x2 + y2 = 49

 ƒ(x, y) = 100 - x2 - y2 = 75,  or  x2 + y2 = 25.

The level curve ƒ(x, y) = 100 consists of the origin alone. (It is still a level curve.)
If x2 + y2 7 100, then the values of ƒ(x, y) are negative. For example, the circle 

x2 + y2 = 144, which is the circle centered at the origin with radius 12, gives the constant 
value ƒ(x, y) = -44 and is a level curve of ƒ. 

The curve in space in which the plane z = c cuts a surface z = ƒ(x, y) is made up of the 
points that represent the function value ƒ(x, y) = c. It is called the contour curve 
ƒ(x, y) = c to distinguish it from the level curve ƒ(x, y) = c in the domain of ƒ. Figure 
14.6 shows the contour curve ƒ(x, y) = 75 on the surface z = 100 - x2 - y2 defined by 
the function ƒ(x, y) = 100 - x2 - y2. The contour curve lies directly above the circle 
x2 + y2 = 25, which is the level curve ƒ(x, y) = 75 in the function’s domain.

Not everyone makes this distinction, however, and you may wish to call both kinds of 
curves by a single name and rely on context to convey which one you have in mind. On 
most maps, for example, the curves that represent constant elevation (height above sea 
level) are called contours, not level curves (Figure 14.7).

Functions of Three variables

In the plane, the points where a function of two independent variables has a constant value 
ƒ(x, y) = c make a curve in the function’s domain. In space, the points where a function 
of three independent variables has a constant value ƒ(x, y, z) = c make a surface in the 
function’s domain.

y

z

x

10
10

100

f(x, y) = 75

f(x, y) = 0

f(x, y) = 51
(a typical
level curve in
the function’s
domain)

The surface
z = f(x, y)
  = 100 − x2 − y2

is the graph of f.

Figure 14.5 The graph and selected 
level curves of the function ƒ(x, y) in 
Example 3.

Definition The set of points (x, y, z) in space where a function of three inde-
pendent variables has a constant value ƒ(x, y, z) = c is called a level surface of ƒ.

Since the graphs of functions of three variables consist of points (x, y, z, ƒ(x, y, z)) lying 
in a four-dimensional space, we cannot sketch them effectively in our three-dimensional 
frame of reference. We can see how the function behaves, however, by looking at its three-
dimensional level surfaces.

z

x

0

y

75

The contour curve f(x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the plane z = 75. 

Plane z = 75

The level curve f(x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the xy-plane.

z = 100 − x2 − y2

100

Figure 14.6 A plane z = c parallel 
to the xy-plane intersecting a surface 
z = ƒ(x, y) produces a contour curve.
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Solution The value of ƒ is the distance from the origin to the point (x, y, z). Each level sur-
face 2x2 + y2 + z2 = c, c 7 0, is a sphere of radius c centered at the origin. Figure 14.8 

shows a cutaway view of three of these spheres. The level surface 2x2 + y2 + z2 = 0 
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the func-
tion’s domain. The level surfaces show how the function’s values change as we move 
through its domain. If we remain on a sphere of radius c centered at the origin, the func-
tion maintains a constant value, namely c. If we move from a point on one sphere to a 
point on another, the function’s value changes. It increases if we move away from the ori-
gin and decreases if we move toward the origin. The way the values change depends on 
the direction we take. The dependence of change on direction is important. We return to it 
in Section 14.5. 

The definitions of interior, boundary, open, closed, bounded, and unbounded for 
regions in space are similar to those for regions in the plane. To accommodate the extra 
dimension, we use solid balls of positive radius instead of disks.

Definitions A point (x0, y0, z0) in a region R in space is an interior point of 
R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point 
(x0, y0, z0) is a boundary point of R if every solid ball centered at (x0, y0, z0) con-
tains points that lie outside of R as well as points that lie inside R (Figure 14.9b). 
The interior of R is the set of interior points of R. The boundary of R is the set 
of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if 
it contains its entire boundary.

Figure 14.7 Contours on Mt. Washington in New Hampshire. (Reprinted by  
permission of the Appalachian Mountain Club.)

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)

Figure 14.9 Interior points and 
boundary points of a region in space. As 
with regions in the plane, a boundary point 
need not belong to the space region R.

x

y

z

1
2

3

"x2 + y2 + z2 = 3

"x2 + y2 + z2 = 2

"x2 + y2 + z2 = 1

Figure 14.8 The level surfaces of 
ƒ(x, y, z) = 2x2 + y2 + z2 are concentric 
spheres (Example 4).

Examples of open sets in space include the interior of a sphere, the open half-space 
z 7 0, the first octant (where x, y, and z are all positive), and space itself. Examples of 
closed sets in space include lines, planes, and the closed half-space z Ú 0. A solid sphere 



798 Chapter 14: Partial Derivatives

with part of its boundary removed or a solid cube with a missing face, edge, or corner 
point is neither open nor closed.

Functions of more than three independent variables are also important. For example, the 
temperature on a surface in space may depend not only on the location of the point P(x, y, z) 
on the surface but also on the time t when it is visited, so we would write T = ƒ(x, y, z, t).

Computer graphing

Three-dimensional graphing software makes it possible to graph functions of two vari-
ables. We can often get information more quickly from a graph than from a formula, since 
the surfaces reveal increasing and decreasing behavior, and high points or low points.

example 5  The temperature w beneath the Earth’s surface is a function of the depth 
x beneath the surface and the time t of the year. If we measure x in feet and t as the number 
of days elapsed from the expected date of the yearly highest surface temperature, we can 
model the variation in temperature with the function

w = cos (1.7 * 10-2t - 0.2x)e-0.2x.

(The temperature at 0 ft is scaled to vary from +1 to -1, so that the variation at x feet can 
be interpreted as a fraction of the variation at the surface.)

Figure 14.10 shows a graph of the function. At a depth of 15 ft, the variation (change 
in vertical amplitude in the figure) is about 5% of the surface variation. At 25 ft, there is 
almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half a year 
out of phase with the surface temperature. When the temperature is lowest on the surface 
(late January, say), it is at its highest 15 ft below. Fifteen feet below the ground, the sea-
sons are reversed. 

Figure 14.11 shows computer-generated graphs of a number of functions of two vari-
ables together with their level curves.

15
25

t
x

w

Figure 14.10 This graph shows the 
seasonal variation of the temperature 
below ground as a fraction of surface 
temperature (Example 5).

z

y

x y

z

x

x

y

(b)

x

y

(c)

x

z

y

z = xye-y2
z = (4x2 + y2)e-x2 - y2

x

y

(a) z = sin x + 2 sin y

Figure 14.11 Computer-generated graphs and level curves of typical functions of two variables.
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Domain, range, and Level Curves
In Exercises 1–4, find the specific function values.

 1. ƒ(x, y) = x2 + xy3

 a. ƒ(0, 0) b. ƒ(-1, 1)

 c. ƒ(2, 3) d. ƒ(-3, -2)

 2. ƒ(x, y) = sin (xy)

 a. ƒa2, 
p

6
b  b. ƒa-3, 

p

12
b

 c. ƒap, 
1
4
b  d. ƒa-p

2
, -7b

 3. ƒ(x, y, z) =
x - y

y2 + z2

 a. ƒ(3, -1, 2) b. ƒa1, 
1
2

, -1
4
b

 c. ƒa0, -  
1
3

, 0b  d. ƒ(2, 2, 100)

 4. ƒ(x, y, z) = 249 - x2 - y2 - z2

 a. ƒ(0, 0, 0) b. ƒ(2, -3, 6)

 c. ƒ(-1, 2, 3) d. ƒa 422
 , 

522
 , 

622
b

In Exercises 5–12, find and sketch the domain for each function.

 5. ƒ(x, y) = 2y - x - 2

 6. ƒ(x, y) = ln (x2 + y2 - 4)

 7. ƒ(x, y) =
(x - 1)( y + 2)

( y - x)( y - x3)

 8. ƒ(x, y) =
sin (xy)

x2 + y2 - 25

 9. ƒ(x, y) = cos-1 ( y - x2)

 10. ƒ(x, y) = ln (xy + x - y - 1)

 11. ƒ(x, y) = 2(x2 - 4)(y2 - 9)

 12. ƒ(x, y) = 1
ln (4 - x2 - y2)

In Exercises 13–16, find and sketch the level curves ƒ(x, y) = c on 
the same set of coordinate axes for the given values of c. We refer to 
these level curves as a contour map.

 13. ƒ(x, y) = x + y - 1, c = -3, -2, -1, 0, 1, 2, 3

 14. ƒ(x, y) = x2 + y2, c = 0, 1, 4, 9, 16, 25

 15. ƒ(x, y) = xy, c = -9, -4, -1, 0, 1, 4, 9

 16. ƒ(x, y) = 225 - x2 - y2
 , c = 0, 1, 2, 3, 4

In Exercises 17–30, (a) find the function’s domain, (b) find the func-
tion’s range, (c) describe the function’s level curves, (d) find the 
boundary of the function’s domain, (e) determine if the domain is an 
open region, a closed region, or neither, and (f ) decide if the domain 
is bounded or unbounded.

 17. ƒ(x, y) = y - x 18. ƒ(x, y) = 2y - x

 19. ƒ(x, y) = 4x2 + 9y2 20. ƒ(x, y) = x2 - y2

 21. ƒ(x, y) = xy 22. ƒ(x, y) = y>x2

 23. ƒ(x, y) = 1216 - x2 - y2
 24. ƒ(x, y) = 29 - x2 - y2

 25. ƒ(x, y) = ln (x2 + y2)  26. ƒ(x, y) = e-(x2 + y2)

 27. ƒ(x, y) = sin-1 ( y - x) 28. ƒ(x, y) = tan-1 ayxb

 29. ƒ(x, y) = ln (x2 + y2 - 1)  30. ƒ(x, y) = ln (9 - x2 - y2)

Matching Surfaces with Level Curves
Exercises 31–36 show level curves for the functions graphed in (a)–(f) 
on the following page. Match each set of curves with the appropriate 
function.

 31.  32. 

x

y

    

y

x

 33.  34. 

x

y

    

x

y

 35.  36. 

x

y

    

x

y

exercises 14.1
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 f. 

  

z = y2 − y4 − x2

z

x y

Functions of Two variables
Display the values of the functions in Exercises 37–48 in two ways: 
(a) by sketching the surface z = ƒ(x, y) and (b) by drawing an assort-
ment of level curves in the function’s domain. Label each level curve 
with its function value.

 37. ƒ(x, y) = y2 38. ƒ(x, y) = 2x

 39. ƒ(x, y) = x2 + y2 40. ƒ(x, y) = 2x2 + y2

 41. ƒ(x, y) = x2 - y 42. ƒ(x, y) = 4 - x2 - y2

 43. ƒ(x, y) = 4x2 + y2 44. ƒ(x, y) = 6 - 2x - 3y

 45. ƒ(x, y) = 1 - 0 y 0  46. ƒ(x, y) = 1 - 0 x 0 - 0 y 0
 47. ƒ(x, y) = 2x2 + y2 + 4 48. ƒ(x, y) = 2x2 + y2 - 4

Finding Level Curves
In Exercises 49–52, find an equation for and sketch the graph of the 
level curve of the function ƒ(x, y) that passes through the given point.

 49. ƒ(x, y) = 16 - x2 - y2, 1222, 222
 50. ƒ(x, y) = 2x2 - 1, (1, 0)

 51. ƒ(x, y) = 2x + y2 - 3 , (3, -1)

 52. ƒ(x, y) =
2y - x

x + y + 1
 , (-1, 1)

Sketching Level Surfaces
In Exercises 53–60, sketch a typical level surface for the function.

 53. ƒ(x, y, z) = x2 + y2 + z2 54. ƒ(x, y, z) = ln (x2 + y2 + z2)
 55. ƒ(x, y, z) = x + z 56. ƒ(x, y, z) = z

 57. ƒ(x, y, z) = x2 + y2 58. ƒ(x, y, z) = y2 + z2

 59. ƒ(x, y, z) = z - x2 - y2

 60. ƒ(x, y, z) = (x2>25) + (y2>16) + (z2>9)

Finding Level Surfaces
In Exercises 61–64, find an equation for the level surface of the func-
tion through the given point.

 61. ƒ(x, y, z) = 2x - y - ln z, (3, -1, 1)

 62. ƒ(x, y, z) = ln (x2 + y + z2), (-1, 2, 1)

 a. 

  
z = (cos x)(cos y) e−"x2 + y2 �4

z

y
x

 b. 

  

z = −
xy2

x2 + y2

z

y
x

 c. 

  

z = 1
4x2 + y2

x y

z

 d. 

  
z = e−y cos x

x

y

z

 e. 

  

z =
xy(x2 − y2)

x2 + y2

z

x

y
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 63. g(x, y, z) = 2x2 + y2 + z2
 , 11, -1, 222

 64. g(x, y, z) =
x - y + z
2x + y - z

 , (1, 0, -2)

In Exercises 65–68, find and sketch the domain of ƒ. Then find an 
equation for the level curve or surface of the function passing through 
the given point.

 65. ƒ(x, y) = a
q

n = 0
 axyb

n

, (1, 2)

 66. g(x, y, z) = a
q

n = 0
 
(x + y)n

n!zn , (ln 4, ln 9, 2)

 67. ƒ(x, y) = L
y

x
 

du21 - u2
, (0, 1)

 68. g(x, y, z) = L
y

x
 

dt
1 + t2 + L

z

0
 

du24 - u2
, 10, 1, 232

COMpuTer expLOraTiOnS
Use a CAS to perform the following steps for each of the functions in 
Exercises 69–72.

 a. Plot the surface over the given rectangle.

 b. Plot several level curves in the rectangle.

 c. Plot the level curve of ƒ through the given point.

 69. ƒ(x, y) = x sin 
y
2

+ y sin 2x, 0 … x … 5p, 0 … y … 5p, 
P(3p, 3p)

 70. ƒ(x, y) = (sin x)(cos y)e2x2 + y2>8, 0 … x … 5p, 
0 … y … 5p, P(4p, 4p)

 71. ƒ(x, y) = sin (x + 2 cos y), -2p … x … 2p, 
-2p … y … 2p, P(p, p)

 72. ƒ(x, y) = e(x0.1 - y) sin (x2 + y2), 0 … x … 2p, 
-2p … y … p, P(p, -p)

Use a CAS to plot the implicitly defined level surfaces in Exercises 
73–76.

 73. 4 ln (x2 + y2 + z2) = 1 74. x2 + z2 = 1

 75. x + y2 - 3z2 = 1

 76. sin ax
2
b - (cos y)2x2 + z2 = 2

Parametrized Surfaces Just as you describe curves in the plane 
parametrically with a pair of equations x = ƒ(t), y = g(t) defined on 
some parameter interval I, you can sometimes describe surfaces in 
space with a triple of equations x = ƒ(u, y), y = g(u, y), z = h(u, y) 
defined on some parameter rectangle a … u … b, c … y … d. Many 
computer algebra systems permit you to plot such surfaces in para-
metric mode. (Parametrized surfaces are discussed in detail in Section 
16.5.) Use a CAS to plot the surfaces in Exercises 77–80. Also plot 
several level curves in the xy-plane.

 77. x = u cos y, y = u sin y, z = u, 0 … u … 2, 
0 … y … 2p

 78. x = u cos y, y = u sin y, z = y, 0 … u … 2, 
0 … y … 2p

 79. x = (2 + cos u) cos y, y = (2 + cos u) sin y, z = sin u, 
0 … u … 2p, 0 … y … 2p

 80. x = 2 cos u cos y, y = 2 cos u sin y, z = 2 sin u, 
0 … u … 2p, 0 … y … p

14.2 Limits and Continuity in Higher Dimensions

This section treats limits and continuity for multivariable functions. These ideas are analo-
gous to limits and continuity for single-variable functions, but including more independent 
variables leads to additional complexity and important differences requiring some new 
ideas.

Limits for Functions of Two variables

If the values of ƒ(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-
ficiently close to a point (x0 , y0), we say that ƒ approaches the limit L as (x, y) approaches 
(x0 , y0). This is similar to the informal definition for the limit of a function of a single vari-
able. Notice, however, that if (x0 , y0) lies in the interior of ƒ’s domain, (x, y) can approach 
(x0 , y0) from any direction. For the limit to exist, the same limiting value must be obtained 
whatever direction of approach is taken. We illustrate this issue in several examples fol-
lowing the definition.
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The definition of limit says that the distance between ƒ(x, y) and L becomes arbitrarily 
small whenever the distance from (x, y) to (x0, y0) is made sufficiently small (but not 0). 
The definition applies to interior points (x0, y0) as well as boundary points of the domain 
of ƒ, although a boundary point need not lie within the domain. The points (x, y) that 
approach (x0 , y0) are always taken to be in the domain of ƒ. See Figure 14.12.

Definition We say that a function ƒ(x, y) approaches the limit L as (x, y)  
approaches (x0 , y0), and write

lim
(x, y)S(x0, y0)

 ƒ(x, y) = L

if, for every number P 7 0, there exists a corresponding number d 7 0 such 
that for all (x, y) in the domain of ƒ,

0 ƒ(x, y) - L 0 6 P  whenever  0 6 2(x - x0)2 + ( y - y0)2 6 d.

y

x z
0 0

D

L − P L + PL

f
(x, y)

(x0, y0)

d

Figure 14.12 In the limit definition, d is the radius of a disk 
centered at (x0, y0). For all points (x, y) within this disk, the function 
values ƒ(x, y) lie inside the corresponding interval (L - P, L + P).

As for functions of a single variable, it can be shown that

 lim
(x, y)S(x0, y0)

 x = x0

 lim
(x, y)S(x0, y0)

 y = y0

 lim
(x, y)S(x0, y0)

 k = k  (any number k).

For example, in the first limit statement above, ƒ(x, y) = x and L = x0 . Using the defini-
tion of limit, suppose that P 7 0 is chosen. If we let d equal this P, we see that

0 6 2(x - x0)2 + ( y - y0)2 6 d = P

implies    

 2(x - x0)2 6 P   (x - x0)2 … (x - x0)2 + (y - y0)2

 0 x - x0 0 6 P   2a2 = 0 a 0
 0 ƒ(x, y) - x0 0 6 P.  x = ƒ(x, y)

That is,

0 ƒ(x, y) - x0 0 6 P  whenever  0 6 2(x - x0)2 + (y - y0)2 6 d.
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So a d has been found satisfying the requirement of the definition, and

lim
(x, y)S(x0, y0)

 ƒ(x, y) = lim
(x, y)S(x0, y0)

 x = x0 .

As with single-variable functions, the limit of the sum of two functions is the sum of 
their limits (when they both exist), with similar results for the limits of the differences, 
constant multiples, products, quotients, powers, and roots.

theorem 1—properties of limits of functions of two Variables  The fol-
lowing rules hold if L, M, and k are real numbers and

lim
(x, y)S(x0, y0)

 ƒ(x, y) = L  and  lim
(x, y)S(x0, y0)

 g(x, y) = M.

1. Sum Rule: lim
(x, y)S(x0, y0)

(ƒ(x, y) + g(x, y)) = L + M

2. Difference Rule: lim
(x, y)S(x0, y0)

(ƒ(x, y) - g(x, y)) = L - M

3. Constant Multiple Rule: lim
(x, y)S(x0, y0)

 kƒ(x, y) = kL  (any number k)

4. Product Rule: lim
(x, y)S(x0, y0)

 (ƒ(x, y) # g(x, y)) = L # M

5. Quotient Rule: lim
(x, y)S(x0, y0) 

 
ƒ(x, y)
g(x, y)

= L
M ,  M ≠ 0

6. Power Rule: lim
(x, y)S(x0, y0)

3ƒ(x, y)4 n = L n, n a positive integer

7. Root Rule: lim
(x, y)S(x0, y0)

2n ƒ(x, y) = 2n L =  L 1>n,

        n a positive integer, and if n is even, 
we assume that L 7 0.

While we won’t prove Theorem 1 here, we give an informal discussion of why it’s 
true. If (x, y) is sufficiently close to (x0 , y0), then ƒ(x, y) is close to L and g(x, y) is close to 
M (from the informal interpretation of limits). It is then reasonable that ƒ(x, y) + g(x, y) is 
close to L + M; ƒ(x, y) - g(x, y) is close to L - M; kƒ(x, y) is close to kL; ƒ(x, y)g(x, y) 
is close to LM; and ƒ(x, y) >g(x, y) is close to L >M if M ≠ 0.

When we apply Theorem 1 to polynomials and rational functions, we obtain the use-
ful result that the limits of these functions as (x, y) S (x0 , y0) can be calculated by evaluat-
ing the functions at (x0 , y0). The only requirement is that the rational functions be defined 
at (x0 , y0).

example 1  In this example, we can combine the three simple results following the 
limit definition with the results in Theorem 1 to calculate the limits. We simply substitute 
the x- and y-values of the point being approached into the functional expression to find the 
limiting value.

(a) lim
(x, y)S(0,1)

  
x - xy + 3

x2y + 5xy - y3 =
0 - (0)(1) + 3

(0)2(1) + 5(0)(1) - (1)3 = -3

(b) lim
(x, y)S(3, -4)

2x2 + y2 = 2(3)2 + (-4)2 = 225 = 5 

example 2  Find lim
(x, y)S(0, 0)

 
x2 - xy2x - 2y

.
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Solution Since the denominator 2x - 2y approaches 0 as (x, y) S (0, 0), we cannot 
use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by 2x + 2y, however, we produce an equivalent fraction whose limit we can find:

 lim
(x, y)S(0,0)

 
x2 - xy2x - 2y

= lim
(x, y)S(0,0)

 
1x2 - xy212x + 2y2
12x - 2y212x + 2y2  

Multiply by a form 
equal to 1.

 = lim
(x, y)S(0,0)

 
x1x - y212x + 2y2

x - y   
Algebra

 = lim
(x, y)S(0,0)

 x12x + 2y2   
Cancel the nonzero 
factor (x - y).

 = 0120 + 202 = 0   
Known limit values

We can cancel the factor (x - y) because the path y = x (along which x - y = 0) is not 
in the domain of the function

 ƒ(x, y) =
x2 - xy2x - 2y

. 

example 3  Find lim
(x, y)S(0,0)

 
4xy2

x2 + y2 if it exists.

Solution We first observe that along the line x = 0, the function always has value 0 
when y ≠ 0. Likewise, along the line y = 0, the function has value 0 provided x ≠ 0. So 
if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0 (see Fig-
ure 14.13). To see if this is true, we apply the definition of limit.

Let P 7 0 be given, but arbitrary. We want to find a d 7 0 such that

` 4xy2

x2 + y2 - 0 ` 6 P  whenever  0 6 2x2 + y2 6 d

or

4 0 x 0 y2

x2 + y2 6 P  whenever  0 6 2x2 + y2 6 d.

Since y2 … x2 + y2 we have that

4 0 x 0 y2

x2 + y2 … 4 0 x 0 = 42x2 … 42x2 + y2.  
y2

x2 + y2
… 1

So if we choose d = P>4 and let 0 6 2x2 + y2 6 d, we get

` 4xy2

x2 + y2 - 0 ` … 42x2 + y2 6 4d = 4aP
4
b = P.

It follows from the definition that

 lim
(x, y)S(0,0)

 
4xy2

x2 + y2 = 0. 

x

z

y11

Figure 14.13 The surface graph 
shows the limit of the function in Example 
3 must be 0, if it exists.
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example 4  If ƒ(x, y) =
y
x  , does  lim

(x, y)S(0, 0)
 ƒ(x, y) exist?

Solution The domain of ƒ does not include the y-axis, so we do not consider any points 
(x, y) where x = 0 in the approach toward the origin (0, 0). Along the x-axis, the value of 
the function is ƒ(x, 0) = 0 for all x ≠ 0. So if the limit does exist as (x, y) S (0, 0), the 
value of the limit must be L = 0. On the other hand, along the line y = x, the value of the 
function is ƒ(x, x) = x>x = 1 for all x ≠ 0. That is, the function ƒ approaches the value 1 
along the line y = x. This means that for every disk of radius d centered at (0, 0), the disk 
will contain points (x, 0) on the x-axis where the value of the function is 0, and also points 
(x, x) along the line y = x where the value of the function is 1. So no matter how small we 
choose d as the radius of the disk in Figure 14.12, there will be points within the disk for 
which the function values differ by 1. Therefore, the limit cannot exist because we can 
take P to be any number less than 1 in the limit definition and deny that L = 0 or 1, or any 
other real number. The limit does not exist because we have different limiting values along 
different paths approaching the point (0, 0). 

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

Definition A function ƒ(x, y) is continuous at the point (x0 , y0) if

1. ƒ is defined at (x0 , y0),

2. lim
(x, y)S(x0, y0)

 ƒ(x, y) exists,

3. lim
(x, y)S(x0, y0)

 ƒ(x, y) = ƒ(x0 , y0).

A function is continuous if it is continuous at every point of its domain.

As with the definition of limit, the definition of continuity applies at boundary points 
as well as interior points of the domain of ƒ. The only requirement is that each point (x, y) 
near (x0 , y0) be in the domain of ƒ.

A consequence of Theorem 1 is that algebraic combinations of continuous functions 
are continuous at every point at which all the functions involved are defined. This means 
that sums, differences, constant multiples, products, quotients, and powers of continuous 
functions are continuous where defined. In particular, polynomials and rational functions 
of two variables are continuous at every point at which they are defined.

example 5  Show that

ƒ(x, y) = •
2xy

x2 + y2 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0)

is continuous at every point except the origin (Figure 14.14).

Solution The function ƒ is continuous at any point (x, y) ≠ (0, 0) because its values are 
then given by a rational function of x and y and the limiting value is obtained by substitut-
ing the values of x and y into the functional expression.

(a)

z

−y

x

x

y

0

0.8
1

0

00.8

0.8

1

−0.8
−1

−0.8

−0.8
−1

(b)

0.8

−0.8

Figure 14.14 (a) The graph of

ƒ(x, y) = •
2xy

x2 + y2 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0).

The function is continuous at every point 
except the origin. (b) The values of ƒ 
are different constants along each line 
y = mx, x ≠ 0 (Example 5).
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At (0, 0), the value of ƒ is defined, but ƒ, we claim, has no limit as (x, y) S (0, 0). The 
reason is that different paths of approach to the origin can lead to different results, as we 
now see.

For every value of m, the function ƒ has a constant value on the “punctured” line 
y = mx, x ≠ 0, because

ƒ(x, y) `
y = mx

=
2xy

x2 + y2 `
y = mx

=
2x(mx)

x2 + (mx)2 = 2mx2

x2 + m2x2 = 2m
1 + m2 .

Therefore, ƒ has this number as its limit as (x, y) approaches (0, 0) along the line:

lim
(x, y)S(0,0)

 ƒ(x, y) = lim
(x, y)S(0,0)

 c ƒ(x, y) `
y = mx
d = 2m

1 + m2 .

along y = mx

This limit changes with each value of the slope m. There is therefore no single number we 
may call the limit of ƒ as (x, y) approaches the origin. The limit fails to exist, and the func-
tion is not continuous. 

Examples 4 and 5 illustrate an important point about limits of functions of two or more 
variables. For a limit to exist at a point, the limit must be the same along every approach 
path. This result is analogous to the single-variable case where both the left- and right-sided 
limits had to have the same value. For functions of two or more variables, if we ever find 
paths with different limits, we know the function has no limit at the point they approach.

example 6  Show that the function

ƒ(x, y) =
2x2y

x4 + y2

(Figure 14.15) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the indeterminate 
form 0 >0. We examine the values of ƒ along parabolic curves that end at (0, 0). Along the 
curve y = kx2, x ≠ 0, the function has the constant value

ƒ(x, y) `
y = kx2

=
2x2y

x4 + y2 `
y = kx2

=
2x2(kx2)

x4 + (kx2)2
= 2kx4

x4 + k2x4 = 2k
1 + k2 .

Therefore,

lim
(x, y)S(0,0)

 ƒ(x, y) = lim
(x, y)S(0,0)

 c ƒ(x, y) `
y = kx2

d = 2k
1 + k2 .

along y = kx2

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola 
y = x2, for instance, k = 1 and the limit is 1. If (x, y) approaches (0, 0) along the x-axis, 
k = 0 and the limit is 0. By the two-path test, ƒ has no limit as (x, y) approaches (0, 0). 

It can be shown that the function in Example 6 has limit 0 along every path y = mx 
(Exercise 53). We conclude that

Two-Path Test for Nonexistence of a Limit

If a function ƒ(x, y) has different limits along two different paths in the domain of 
ƒ as (x, y) approaches (x0 , y0), then lim(x, y)S(x0, y0) ƒ(x, y) does not exist.

Having the same limit along all straight lines approaching (x0 , y0) does not imply 
a limit exists at (x0 , y0).

(a)

x

(b)

y

k = −1

k = 10
k = 3

k = 1

k = −0.1

−1

1

1
1 y

z

x

−1

Figure 14.15 (a) The graph of 
ƒ(x, y) = 2x2y> (x4 + y2). (b) Along each 
path y = kx2 the value of ƒ is constant, but 
varies with k (Example 6).
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Whenever it is correctly defined, the composite of continuous functions is also con-
tinuous. The only requirement is that each function be continuous where it is applied. The 
proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in Sec-
tion 2.5).

Continuity of Composites

If ƒ is continuous at (x0 , y0) and g is a single-variable function continuous at 
ƒ(x0 , y0), then the composite function h = g ∘ f  defined by h(x, y) = g(ƒ(x, y)) 
is continuous at (x0, y0).

For example, the composite functions

ex - y,   cos 
xy

x2 + 1
,  ln (1 + x2y2)

are continuous at every point (x, y).

Functions of More Than Two variables

The definitions of limit and continuity for functions of two variables and the conclusions 
about limits and continuity for sums, products, quotients, powers, and composites all 
extend to functions of three or more variables. Functions like

ln (x + y + z)  and  
y sin z
x - 1

are continuous throughout their domains, and limits like

lim
PS(1,0,-1)

  
ex + z

z2 + cos 2xy
= e1 - 1

(-1)2 + cos 0
= 1

2
,

where P denotes the point (x, y, z), may be found by direct substitution.

extreme values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single 
variable that is continuous throughout a closed, bounded interval 3a, b4  takes on an abso-
lute maximum value and an absolute minimum value at least once in 3a, b4 . The same 
holds true of a function z = ƒ(x, y) that is continuous on a closed, bounded set R in the 
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an absolute 
maximum value at some point in R and an absolute minimum value at some point in R. 
The function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function 
w = ƒ(x, y, z), for example, must take on absolute maximum and minimum values on any 
closed, bounded set (solid ball or cube, spherical shell, rectangular solid) on which it is 
defined. We will learn how to find these extreme values in Section 14.7.

 3. lim
(x, y)S(3,4)

2x2 + y2 - 1 4. lim
(x, y)S(2, -3)

 a1x + 1
yb

2

 5. lim
(x, y)S(0,p>4)

 sec x tan y 6. lim
(x, y)S(0,0)

 cos 
x2 + y3

x + y + 1

Limits with Two variables
Find the limits in Exercises 1–12.

 1. lim
(x, y)S(0,0)

  
3x2 - y2 + 5

x2 + y2 + 2
 2. lim

(x, y)S(0,4)
 

x2y

exercises 14.2
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Continuity for Three variables
At what points (x, y, z) in space are the functions in Exercises 35–40 
continuous?

 35. a. ƒ(x, y, z) = x2 + y2 - 2z2

 b. ƒ(x, y, z) = 2x2 + y2 - 1

 36. a. ƒ(x, y, z) = ln xyz b. ƒ(x, y, z) = ex + y cos z

 37. a. h(x, y, z) = xy sin 
1
z  b. h(x, y, z) = 1

x2 + z2 - 1

 38. a. h(x, y, z) = 1
0 y 0 + 0 z 0  b. h(x, y, z) = 1

0 xy 0 + 0 z 0
 39. a. h(x, y, z) = ln (z - x2 - y2 - 1)

 b. h(x, y, z) = 1

z - 2x2 + y2

 40. a. h(x, y, z) = 24 - x2 - y2 - z2

 b. h(x, y, z) = 1

4 - 2x2 + y2 + z2 - 9

no Limit exists at the Origin
By considering different paths of approach, show that the functions in 
Exercises 41–48 have no limit as (x, y) S (0, 0).

 41. ƒ(x, y) = -  
x2x2 + y2

 42. ƒ(x, y) = x4

x4 + y2

z

y

x

  

z

yx

 43. ƒ(x, y) =
x4 - y2

x4 + y2 44. ƒ(x, y) =
xy

0 xy 0

 45. g(x, y) =
x - y
x + y 46. g(x, y) =

x2 - y
x - y

 47. h(x, y) =
x2 + y

y  48. h(x, y) =
x2y

x4 + y2

Theory and examples
In Exercises 49 and 50, show that the limits do not exist.

 49.  lim
(x, y)S(1,1)

 
xy2 - 1
y - 1

 50.  lim
(x, y)S(1, -1)

 
xy + 1

x2 - y2

 51. Let ƒ(x, y) = c 1, y Ú x4

1, y … 0

0, otherwise.

  Find each of the following limits, or explain that the limit does 
not exist.

 a. lim
(x, y)S(0,1)

 ƒ(x, y)

 b. lim
(x, y)S(2,3)

 ƒ(x, y)

 c. lim
(x, y)S(0,0)

 ƒ(x, y)

 7. lim
(x, y)S(0,ln 2)

 ex - y 8. lim
(x, y)S(1,1)

 ln 0 1 + x2 y2 0

 9. lim
(x, y)S(0,0)

 
ey sin x

x  10. lim
(x, y)S(1>27, p3)

 cos23  xy

 11. lim
(x, y)S(1, p>6)

  
x sin y

x2 + 1
 12. lim

(x, y)S(p>2,0)
  

cos y + 1
y - sin x

Limits of Quotients
Find the limits in Exercises 13–24 by rewriting the fractions first.

 13. lim
(x, y)S(1,1)

  
x2 - 2xy + y2

x - y  14. lim
(x, y)S(1,1)

 
x2 - y2

x - y
   x≠y   x≠y

 15. lim
(x, y)S(1,1)

 
xy - y - 2x + 2

x - 1
   x≠1

 16. lim
(x, y)S(2, -4)

  
y + 4

x2y - xy + 4x2 - 4x   x≠-4, x≠x2

 17. lim
(x, y)S(0,0)

 
x - y + 22x - 22y2x - 2y   x≠y

 18. lim
(x, y)S(2,2)

 
x + y - 42x + y - 2

 19. lim
(x, y)S(2,0)

 
22x - y - 2
2x - y - 4

   x + y≠4   2x - y≠4

 20. lim
(x, y)S(4,3)

 
2x - 2y + 1

x - y - 1
   x≠y + 1

 21. lim
(x, y)S(0,0)

 
sin (x2 + y2)

x2 + y2  22. lim
(x, y)S(0,0)

 
1 - cos (xy)

xy

 23. lim
(x, y)S(1,-1)

 
x3 + y3

x + y  24. lim
(x, y)S(2,2)

 
x - y

x4 - y4

Limits with Three variables
Find the limits in Exercises 25–30.

 25. lim
PS(1,3,4)

 a1x + 1
y + 1

zb  26. lim
PS(1,-1,-1)

  
2xy + yz

x2 + z2

 27. lim
PS(p,p,0)

 (sin2 x + cos2 y + sec2 z)

 28. lim
PS(-1>4,p>2,2)

 tan-1 xyz 29. lim
PS(p,0,3)

 ze-2y cos 2x

 30. lim
PS(2, -3,6)

 ln2x2 + y2 + z2

Continuity for Two variables
At what points (x, y) in the plane are the functions in Exercises 31–34 
continuous?

 31. a. ƒ(x, y) = sin (x + y) b. ƒ(x, y) = ln (x2 + y2)

 32. a. ƒ(x, y) =
x + y
x - y b. ƒ(x, y) =

y

x2 + 1

 33. a. g(x, y) = sin  
1
xy b. g(x, y) =

x + y
2 + cos x

 34. a. g(x, y) =
x2 + y2

x2 - 3x + 2
 b. g(x, y) = 1

x2 - y
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 59. (Continuation of Example 5.)

 a. Reread Example 5. Then substitute m = tan u into the formula

ƒ(x, y) `
y = mx

= 2m
1 + m2

  and simplify the result to show how the value of ƒ varies with 
the line’s angle of inclination.

 b. Use the formula you obtained in part (a) to show that the limit 
of ƒ as (x, y) S (0, 0) along the line y = mx varies from -1 
to 1 depending on the angle of approach.

 60. Continuous extension Define ƒ(0, 0) in a way that extends

ƒ(x, y) = xy 
x2 - y2

x2 + y2

  to be continuous at the origin.

Changing Variables to Polar Coordinates 
If you cannot make any headway with lim(x, y)S(0,0) ƒ(x, y) in rectan-
gular coordinates, try changing to polar coordinates. Substitute 
x = r cos u, y = r sin u, and investigate the limit of the resulting 
expression as r S 0. In other words, try to decide whether there exists 
a number L satisfying the following criterion:

Given P 7 0, there exists a d 7 0 such that for all r and u,

 0 r 0 6 d 1 0 ƒ(r, u) - L 0 6 P. (1)

If such an L exists, then

lim
(x, y)S(0,0)

 ƒ(x, y) = lim
rS0

 ƒ(r cos u, r sin u) = L.

For instance,

lim
(x, y)S(0,0)

 
x3

x2 + y2 = lim
rS0

 
r3 cos3 u

r2 = lim
rS0

 r cos3 u = 0.

To verify the last of these equalities, we need to show that Equation 
(1) is satisfied with ƒ(r, u) = r cos3 u and L = 0. That is, we need to 
show that given any P 7 0, there exists a d 7 0 such that for all r 
and u,

0 r 0 6 d 1 0 r cos3 u - 0 0 6 P.

Since

0 r cos3 u 0 = 0 r 0 0 cos3 u 0 … 0 r 0 # 1 = 0 r 0 ,
the implication holds for all r and u if we take d = P.

In contrast,

x2

x2 + y2 = r2 cos2 u
r2 = cos2 u

takes on all values from 0 to 1 regardless of how small 0 r 0  is, so that 
lim(x, y)S(0,0) x2> (x2 + y2)  does not exist.

In each of these instances, the existence or nonexistence of the 
limit as r S 0 is fairly clear. Shifting to polar coordinates does not 
always help, however, and may even tempt us to false conclusions. 
For example, the limit may exist along every straight line (or ray) 
u = constant and yet fail to exist in the broader sense. Example 5 
illustrates this point. In polar coordinates, ƒ(x, y) = (2x2y) > (x4 + y2)  
becomes

ƒ(r cos u, r sin u) = r cos u sin 2u
r2 cos4 u + sin2 u

 52. Let ƒ(x, y) = e x2, x Ú 0

x3, x 6 0
 .

  Find the following limits.

 a. lim
(x, y)S(3, -2)

 ƒ(x, y)

 b. lim
(x, y)S(-2, 1)

 ƒ(x, y)

 c. lim
(x, y)S(0,0)

 ƒ(x, y)

 53. Show that the function in Example 6 has limit 0 along every 
straight line approaching (0, 0).

 54. If ƒ(x0 , y0) = 3, what can you say about

lim
(x, y)S(x0, y0)

 ƒ(x, y)

  if ƒ is continuous at (x0, y0)? If ƒ is not continuous at (x0, y0)? 
Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that if 
g(x, y) … ƒ(x, y) … h(x, y) for all (x, y) ≠ (x0 , y0) in a disk centered 
at (x0, y0) and if g and h have the same finite limit L as (x, y) S (x0 , y0), 
then

lim
(x, y)S(x0, y0)

 ƒ(x, y) = L.

Use this result to support your answers to the questions in Exercises 
55–58.

 55. Does knowing that

1 -
x2y2

3
6

tan-1 xy
xy 6 1

  tell you anything about

lim
(x, y)S(0,0)

 
tan-1 xy

xy  ?

  Give reasons for your answer.

 56. Does knowing that

2 0 xy 0 -
x2y2

6
6 4 - 4 cos 2 0 xy 0 6 2 0 xy 0

  tell you anything about

lim
(x, y)S(0,0)

 
4 - 4 cos 2 0 xy 0

0 xy 0  ?

  Give reasons for your answer.

 57. Does knowing that 0 sin (1>x) 0 … 1 tell you anything about

lim
(x, y)S(0,0)

 y sin 
1
x ?

  Give reasons for your answer.

 58. Does knowing that 0 cos (1>y) 0 … 1 tell you anything about

lim
(x, y)S(0,0)

 x cos 
1
y ?

  Give reasons for your answer.
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for r ≠ 0. If we hold u constant and let r S 0, the limit is 0. On the 
path y = x2, however, we have r sin u = r2 cos2 u and

ƒ(r cos u, r sin u) = r cos u sin 2u
r2 cos4 u + (r cos2 u)2

= 2r cos2 u sin u
2r2 cos4 u

= r sin u
r2 cos2 u

= 1.

In Exercises 61–66, find the limit of ƒ as (x, y) S (0, 0) or show that 
the limit does not exist.

 61. ƒ(x, y) =
x3 - xy2

x2 + y2  62. ƒ(x, y) = cos ax
3 - y3

x2 + y2b

 63. ƒ(x, y) =
y2

x2 + y2 64. ƒ(x, y) = 2x
x2 + x + y2

 65. ƒ(x, y) = tan-1 a 0 x 0 + 0 y 0
x2 + y2 b

 66. ƒ(x, y) =
x2 - y2

x2 + y2

In Exercises 67 and 68, define ƒ(0, 0) in a way that extends ƒ to be 
continuous at the origin.

 67. ƒ(x, y) = ln a3x2 - x2y2 + 3y2

x2 + y2 b

 68. ƒ(x, y) =
3x2y

x2 + y2

using the Limit Definition
Each of Exercises 69–74 gives a function ƒ(x, y) and a positive number P. 
In each exercise, show that there exists a d 7 0 such that for all (x, y),2x2 + y2 6 d 1 0 ƒ(x, y) - ƒ(0, 0) 0 6 P.

 69. ƒ(x, y) = x2 + y2, P = 0.01

 70. ƒ(x, y) = y> (x2 + 1), P = 0.05

 71. ƒ(x, y) = (x + y)> (x2 + 1), P = 0.01

 72. ƒ(x, y) = (x + y)>(2 + cos x), P = 0.02

 73. ƒ(x, y) =
xy2

x2 + y2  and ƒ(0, 0) = 0, P = 0.04

 74. ƒ(x, y) =
x3 + y4

x2 + y2  and ƒ(0, 0) = 0, P = 0.02

Each of Exercises 75–78 gives a function ƒ(x, y, z) and a positive 
number P. In each exercise, show that there exists a d 7 0 such that 
for all (x, y, z),2x2 + y2 + z2 6 d 1 0 ƒ(x, y, z) - ƒ(0, 0, 0) 0 6 P.

 75. ƒ(x, y, z) = x2 + y2 + z2, P = 0.015

 76. ƒ(x, y, z) = xyz, P = 0.008

 77. ƒ(x, y, z) =
x + y + z

x2 + y2 + z2 + 1
 , P = 0.015

 78. ƒ(x, y, z) = tan2 x + tan2 y + tan2 z, P = 0.03

 79. Show that ƒ(x, y, z) = x + y - z is continuous at every point 
(x0 , y0 , z0).

 80. Show that ƒ(x, y, z) = x2 + y2 + z2 is continuous at the origin.

14.3 partial Derivatives

The calculus of several variables is similar to single-variable calculus applied to several 
variables one at a time. When we hold all but one of the independent variables of a func-
tion constant and differentiate with respect to that one variable, we get a “partial” deriva-
tive. This section shows how partial derivatives are defined and interpreted geometrically, 
and how to calculate them by applying the rules for differentiating functions of a single 
variable. The idea of differentiability for functions of several variables requires more than 
the existence of the partial derivatives because a point can be approached from so many 
different directions. However, we will see that differentiable functions of several variables 
behave in the same way as differentiable single-variable functions, so they are continuous 
and can be well approximated by linear functions.

partial Derivatives of a Function of Two variables

If (x0, y0) is a point in the domain of a function ƒ(x, y), the vertical plane y = y0 will cut 
the surface z = ƒ(x, y) in the curve z = ƒ(x, y0) (Figure 14.16). This curve is the graph of the 
function z = ƒ(x, y0) in the plane y = y0 . The horizontal coordinate in this plane is x; the 
vertical coordinate is z. The y-value is held constant at y0, so y is not a variable.

We define the partial derivative of ƒ with respect to x at the point (x0 , y0) as the ordi-
nary derivative of ƒ(x, y0) with respect to x at the point x = x0 . To distinguish partial 
derivatives from ordinary derivatives we use the symbol 0 rather than the d previously 
used. In the definition, h represents a real number, positive or negative.
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An equivalent expression for the partial derivative is

d
dx

 ƒ(x, y0) 2
x = x0

.

The slope of the curve z = ƒ(x, y0) at the point P(x0 , y0 , ƒ(x0 , y0)) in the plane y = y0 
is the value of the partial derivative of ƒ with respect to x at (x0 , y0). (In Figure 14.16 this 
slope is negative.) The tangent line to the curve at P is the line in the plane y = y0 that 
passes through P with this slope. The partial derivative 0ƒ>0x at (x0 , y0) gives the rate of 
change of ƒ with respect to x when y is held fixed at the value y0.

We use several notations for the partial derivative:

0ƒ
0x (x0 , y0) or ƒx(x0 , y0),  

0z
0x

2
(x0, y0) 

,  and   ƒx ,  
0ƒ
0x ,  zx , or  

0z
0x .

The definition of the partial derivative of ƒ(x, y) with respect to y at a point (x0 , y0) is 
similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at 
the value x0 and take the ordinary derivative of ƒ(x0 , y) with respect to y at y0.

x
y

z

0

 

Tangent line

The curve z = f(x, y0)
in the plane y = y0

P(x0, y0, f(x0, y0))

Vertical axis in
the plane y = y0

z = f(x, y)

y0

x0

Horizontal axis in the plane y = y0

(x0 + h,  y0)
(x0, y0)

Figure 14.16 The intersection of the plane y = y0 
with the surface z = ƒ(x, y), viewed from above the first 
quadrant of the xy-plane.

Definition The partial derivative of ƒ(x, y)  with respect to x at the point 
(x0 , y0)  is

0ƒ
0x `

(x0, y0)
= lim

hS0
 
ƒ(x0 + h, y0) - ƒ(x0 , y0)

h
,

provided the limit exists.

Definition The partial derivative of ƒ(x, y)  with respect to y at the point 
(x0 , y0)  is

0ƒ
0y `

(x0, y0)
= d

dy
 ƒ(x0 , y) `

y = y0

= lim
hS0

 
ƒ(x0 , y0 + h) - ƒ(x0 , y0)

h
,

provided the limit exists.
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The slope of the curve z = ƒ(x0 , y) at the point P(x0 , y0 , ƒ(x0 , y0)) in the vertical 
plane x = x0 (Figure 14.17) is the partial derivative of ƒ with respect to y at (x0 , y0). The 
tangent line to the curve at P is the line in the plane x = x0 that passes through P with this 
slope. The partial derivative gives the rate of change of ƒ with respect to y at (x0, y0) when 
x is held fixed at the value x0 .

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

0ƒ
0y (x0 , y0),  ƒy(x0 , y0),  

0ƒ
0y ,  ƒy .

Notice that we now have two tangent lines associated with the surface z = ƒ(x, y) at 
the point P(x0, y0, ƒ(x0, y0)) (Figure 14.18). Is the plane they determine tangent to the sur-
face at P? We will see that it is for the differentiable functions defined at the end of this 
section, and we will learn how to find the tangent plane in Section 14.6. First we have to 
learn more about partial derivatives themselves.

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z = f(x, y0)
in the plane y = y0

z =  f(x, y)

x = x0y = y0 (x0, y0)

The curve z = f(x0, y)
in the plane x = x0

 P(x0, y0, f(x0, y0))

Figure 14.18 Figures 14.16 and 14.17 combined. The tangent 
lines at the point (x0 , y0 , ƒ(x0 , y0)) determine a plane that, in this 
picture at least, appears to be tangent to the surface.

Calculations

The definitions of 0ƒ>0x and 0ƒ>0y give us two different ways of differentiating ƒ at a 
point: with respect to x in the usual way while treating y as a constant and with respect to y 
in the usual way while treating x as a constant. As the following examples show, the values 
of these partial derivatives are usually different at a given point (x0, y0).

example 1  Find the values of 0ƒ>0x and 0ƒ>0y at the point (4, -5) if

ƒ(x, y) = x2 + 3xy + y - 1.

Solution To find 0ƒ>0x, we treat y as a constant and differentiate with respect to x:

0ƒ
0x = 0

0x (x2 + 3xy + y - 1) = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

The value of 0ƒ>0x at (4, -5) is 2(4) + 3(-5) = -7.

x

z

y

P(x0, y0, f(x0, y0))

y0x0

(x0, y0)

(x0, y0 + k)

The curve z = f(x0, y)
in the plane

x = x0

Horizontal axis
in the plane x = x0

 z = f(x, y)

Tangent line

Vertical axis
in the plane

x = x0

0

Figure 14.17 The intersection of the 
plane x = x0 with the surface z = ƒ(x, y), 
viewed from above the first quadrant of 
the xy-plane.



 14.3  Partial Derivatives 813

To find 0ƒ>0y, we treat x as a constant and differentiate with respect to y:

0ƒ
0y = 0

0y (x2 + 3xy + y - 1) = 0 + 3 # x # 1 + 1 - 0 = 3x + 1.

The value of 0ƒ>0y at (4, -5) is 3(4) + 1 = 13. 

example 2  Find 0ƒ>0y as a function if ƒ(x, y) = y sin xy.

Solution We treat x as a constant and ƒ as a product of y and sin xy:

0ƒ
0y = 0

0y (y sin xy) = y 
0
0y sin xy + (sin xy) 

0
0y ( y)

= ( y cos xy) 
0
0y (xy) + sin xy = xy cos xy + sin xy. 

example 3  Find ƒx and ƒy as functions if

ƒ(x, y) =
2y

y + cos x .

Solution We treat ƒ as a quotient. With y held constant, we get

ƒx = 0
0x a 2y

y + cos xb =
( y + cos x) 

0
0x (2y) - 2y 

0
0x ( y + cos x)

( y + cos x)2

=
( y + cos x)(0) - 2y(-sin x)

( y + cos x)2 =
2y sin x

( y + cos x)2 .

With x held constant, we get

ƒy = 0
0y a 2y

y + cos xb =
( y + cos x) 

0
0y (2y) - 2y 

0
dy

 ( y + cos x)

( y + cos x)2

=
( y + cos x)(2) - 2y(1)

( y + cos x)2 = 2 cos x
( y + cos x)2 . 

Implicit differentiation works for partial derivatives the way it works for ordinary 
derivatives, as the next example illustrates.

example 4  Find 0z>0x if the equation

yz - ln z = x + y

defines z as a function of the two independent variables x and y and the partial derivative 
exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant 
and treating z as a differentiable function of x:

0
0x ( yz) - 0

0x ln z = 0x
0x +

0y
0x

y 
0z
0x - 1

z 
0z
0x = 1 + 0   

With y constant,  
0
0x

 ( yz) = y 
0z
0x

.

ay - 1
zb  

0z
0x = 1

0z
0x = z

yz - 1
. 
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example 5  The plane x = 1 intersects the paraboloid z = x2 + y2 in a parabola. 
Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.19).

Solution The slope is the value of the partial derivative 0z>0y at (1, 2):

0z
0y 2

(1,2)
= 0

0y (x2 + y2) 2
(1,2)

= 2y 2
(1,2)

= 2(2) = 4.

As a check, we can treat the parabola as the graph of the single-variable function 
z = (1)2 + y2 = 1 + y2 in the plane x = 1 and ask for the slope at y = 2. The slope, 
calculated now as an ordinary derivative, is

 
dz
dy

 2
y = 2

= d
dy

 (1 + y2) 2
y = 2

= 2y 2
y = 2

= 4. 

Functions of More Than Two variables

The definitions of the partial derivatives of functions of more than two independent vari-
ables are like the definitions for functions of two variables. They are ordinary derivatives 
with respect to one variable, taken while the other independent variables are held constant.

example 6  If x, y, and z are independent variables and

ƒ(x, y, z) = x sin ( y + 3z),

then

0ƒ
0z = 0

0z 3x sin ( y + 3z)4 = x 
0
0z sin ( y + 3z)

= x cos ( y + 3z) 
0
0z ( y + 3z) = 3x cos ( y + 3z). 

example 7  If resistors of R1, R2, and R3 ohms are connected in parallel to make an 
R-ohm resistor, the value of R can be found from the equation

1
R = 1

R1
+ 1

R2
+ 1

R3

(Figure 14.20). Find the value of 0R>0R2 when R1 = 30, R2 = 45, and R3 = 90 ohms.

Solution To find 0R>0R2, we treat R1 and R3 as constants and, using implicit differentia-
tion, differentiate both sides of the equation with respect to R2:

0
0R2

 a1
Rb = 0

0R2
 a 1

R1
+ 1

R2
+ 1

R3
b

-  1
R2 

0R
0R2

= 0 - 1
R2 2

+ 0

      
0R
0R2

= R2

R2 2
= a R

R2
b

2

.

When R1 = 30, R2 = 45, and R3 = 90,

1
R = 1

30
+ 1

45
+ 1

90
= 3 + 2 + 1

90
= 6

90
= 1

15
,

x

y
1 2

(1, 2, 5)

z

Surface
z = x2 + y2

x = 1

Tangent
line

Plane
x = 1

Figure 14.19 The tangent to the curve 
of intersection of the plane x = 1 and 
surface z = x2 + y2 at the point (1, 2, 5) 
(Example 5).

+ −

R3

R2

R1

Figure 14.20 Resistors arranged this 
way are said to be connected in parallel 
(Example 7). Each resistor lets a portion 
of the current through. Their equivalent 
resistance R is calculated with the formula

1
R

= 1
R1

+ 1
R2

+ 1
R3

.
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so R = 15 and

0R
0R2

= a15
45
b

2

= a13b
2

= 1
9.

Thus at the given values, a small change in the resistance R2 leads to a change in R about 
1>9th as large. 

partial Derivatives and Continuity

A function ƒ(x, y) can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single vari-
able, where the existence of a derivative implies continuity. If the partial derivatives of  
ƒ(x, y) exist and are continuous throughout a disk centered at (x0, y0), however, then ƒ is 
continuous at (x0 , y0), as we see at the end of this section.

example 8  Let

ƒ(x, y) = e0, xy ≠ 0

1, xy = 0

(Figure 14.21).

 (a) Find the limit of ƒ as (x, y) approaches (0, 0) along the line y = x.

 (b) Prove that ƒ is not continuous at the origin.

 (c) Show that both partial derivatives 0ƒ>0x and 0ƒ>0y exist at the origin.

Solution 

 (a) Since ƒ(x, y) is constantly zero along the line y = x (except at the origin), we have

lim
(x, y)S(0,0)

 ƒ(x, y) 2
y = x

= lim
(x, y)S(0,0)

0 = 0.

 (b) Since ƒ(0, 0) = 1, the limit in part (a) proves that ƒ is not continuous at (0, 0).

 (c) To find 0ƒ>0x at (0, 0), we hold y fixed at y = 0. Then ƒ(x, y) = 1 for all x, and the 
graph of ƒ is the line L1 in Figure 14.21. The slope of this line at any x is 0ƒ>0x = 0. 
In particular, 0ƒ>0x = 0 at (0, 0). Similarly, 0ƒ>0y is the slope of line L2 at any y, so 
0ƒ>0y = 0 at (0, 0). 

Example 8 notwithstanding, it is still true in higher dimensions that differentiability at 
a point implies continuity. What Example 8 suggests is that we need a stronger require-
ment for differentiability in higher dimensions than the mere existence of the partial 
derivatives. We define differentiability for functions of two variables (which is slightly 
more complicated than for single-variable functions) at the end of this section and then 
revisit the connection to continuity.

Second-Order partial Derivatives

When we differentiate a function ƒ(x, y) twice, we produce its second-order derivatives. 
These derivatives are usually denoted by

02ƒ

0x2 or ƒxx ,  
02ƒ

0y2 or ƒyy ,

02ƒ
0x0y or ƒyx , and 

02ƒ
0y0x or ƒxy .

y

z

x

0

1

L1

L 2

z =
0,  xy ≠ 0
1,  xy = 0

Figure 14.21 The graph of

ƒ(x, y) = e0, xy ≠ 0

1, xy = 0

consists of the lines L1 and L2 and the  
four open quadrants of the xy-plane. The 
function has partial derivatives at the  
origin but is not continuous there  
(Example 8).
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The defining equations are

02ƒ

0x2 = 0
0x a

0ƒ
0xb ,

02ƒ
0x0y = 0

0x a
0ƒ
0yb ,

and so on. Notice the order in which the mixed partial derivatives are taken:

02ƒ
0x0y Differentiate first with respect to y, then with respect to x.

ƒyx = (ƒy)x Means the same thing.

EXAMPLE 9  If ƒ(x, y) = x cos y + yex, find the second-order derivatives

02ƒ

0x2 ,
02ƒ
0y0x ,

02ƒ

0y2 , and
02ƒ
0x0y .

Solution The first step is to calculate both first partial derivatives.

0ƒ
0x = 0

0x (x cos y + yex)
0ƒ
0y = 0

0y (x cos y + yex)

= cos y + yex = -x sin y + ex

Now we find both partial derivatives of each first partial:

02ƒ
0y0x = 0

0y a
0ƒ
0xb = -sin y + ex

02ƒ
0x0y = 0

0x a
0ƒ
0yb = -sin y + ex

02ƒ

0x2 = 0
0x a

0ƒ
0xb = yex.

02ƒ

0y2 = 0
0y a

0ƒ
0yb = -x cos y.

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

02ƒ
0y0x and

02ƒ
0x0y

in Example 9 are equal. This is not a coincidence. They must be equal whenever 
ƒ, ƒx , ƒy , ƒxy , and ƒyx are continuous, as stated in the following theorem. However, the 
mixed derivatives can be different when the continuity conditions are not satisfied (see 
Exercise 72).

THEOREM 2—The Mixed Derivative Theorem If ƒ(x, y) and its partial derivatives 
ƒx , ƒy , ƒxy , and ƒyx are defined throughout an open region containing a point (a, b)
and are all continuous at (a, b), then

ƒxy(a, b) = ƒyx(a, b).

Theorem 2 is also known as Clairaut’s Theorem, named after the French mathemati-
cian Alexis Clairaut, who discovered it. A proof is given in Appendix 9. Theorem 2 says 
that to calculate a mixed second-order derivative, we may differentiate in either order, 
provided the continuity conditions are satisfied. This ability to proceed in different order 
sometimes simplifies our calculations.

EXAMPLE 10 Find 02w>0x0y if

w = xy + ey

y2 + 1
.

HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)

The order in which partial derivatives 
are taken can sometimes lead to 
different results.
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Solution The symbol 02w>0x0y tells us to differentiate first with respect to y and then 
with respect to x. However, if we interchange the order of differentiation and differentiate 
first with respect to x we get the answer more quickly. In two steps,

0w
0x = y  and  

02w
0y0x = 1.

If we differentiate first with respect to y, we obtain 02w>0x0y = 1 as well. We can differen-
tiate in either order because the conditions of Theorem 2 hold for w at all points (x0 , y0). 
 

partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because 
these appear the most frequently in applications, there is no theoretical limit to how many 
times we can differentiate a function as long as the derivatives involved exist. Thus, we get 
third- and fourth-order derivatives denoted by symbols like

03ƒ

0x0y2 = ƒyyx ,

04ƒ

0x20y2 = ƒyyxx , 

and so on. As with second-order derivatives, the order of differentiation is immaterial as 
long as all the derivatives through the order in question are continuous.

example 11  Find ƒyxyz if  ƒ(x, y, z) = 1 - 2xy2z + x2y.

Solution We first differentiate with respect to the variable y, then x, then y again, and 
finally with respect to z:

 ƒy = -4xyz + x2

 ƒyx = -4yz + 2x

 ƒyxy = -4z

  ƒyxyz = -4.  

Differentiability

The concept of differentiability for functions of several variables is more complicated than 
for single-variable functions because a point in the domain can be approached along more 
than one path. In defining the partial derivatives for a function of two variables, we inter-
sected the surface of the graph with vertical planes parallel to the xz- and yz-planes, creat-
ing a curve on each plane, called a trace. The partial derivatives were seen as the slopes of 
the two tangent lines to these trace curves at the point on the surface corresponding to the 
point (x0 , y0) being approached in the domain. (See Figure 14.18.) For a differentiable 
function, it would seem reasonable to assume that if we were to rotate slightly one of these 
vertical planes, keeping it vertical but no longer parallel to its coordinate plane, then a 
smooth trace curve would appear on that plane that would have a tangent line at the point 
on the surface having a slope differing just slightly from what it was before (when the 
plane was parallel to its coordinate plane). However, the mere existence of the original 
partial derivative does not guarantee that result. For example, the surface might have a “fis-
sure” in the direction of the new plane, so the trace curve is not even continuous at (x0 , y0), 
let alone having a tangent line at the corresponding point on the curve. Just as having a limit 
in the x- and y-coordinate directions does not imply the function itself has a limit at (x0, y0), 
as we see in Figure 14.21, so is it the case that the existence of both partial derivatives is  
not enough by itself to ensure derivatives exist for trace curves in other vertical planes.  
For the existence of differentiability, a property is needed to ensure that no abrupt change 
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occurs in the function resulting from small changes in the independent variables along any 
path approaching (x0 , y0), paths along which both variables x and y are allowed to change, 
rather than just one of them at a time. We saw a way of thinking about the change in a 
function in Section 3.11.

In our study of functions of a single variable, we found that if a function y = ƒ(x) is 
differentiable at x = x0, then the change ∆y resulting in the change of x from 
x0 to x0 + ∆x is close to the change ∆L along the tangent line (or linear approximation L 
of the function ƒ at x0). That is, from Equation (1) in Section 3.11,

∆y = ƒ′(x0)∆x + P∆x

in which P S 0 as ∆x S 0. The extension of this result is what we use to define differen-
tiability for functions of two variables.

Definition A function z = ƒ(x, y) is differentiable at (x0 , y0) if ƒx(x0 , y0) and 
ƒy(x0 , y0) exist and ∆z satisfies an equation of the form

∆z = ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + P1∆x + P2∆y

in which each of P1, P2 S 0 as both ∆x, ∆y S 0. We call ƒ differentiable if it is 
differentiable at every point in its domain, and say that its graph is a smooth surface.

theorem 3—the increment theorem for functions of two Variables Suppose 
that the first partial derivatives of ƒ(x, y) are defined throughout an open region 
R containing the point (x0 , y0) and that ƒx and ƒy are continuous at (x0 , y0). Then 
the change

∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0)

in the value of ƒ that results from moving from (x0 , y0) to another point 
(x0 + ∆x, y0 + ∆y) in R satisfies an equation of the form

∆z = ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + P1∆x + P2∆y

in which each of P1, P2 S 0 as both ∆x, ∆y S 0.

Corollary of theorem 3 If the partial derivatives ƒx and ƒy of a function 
ƒ(x, y) are continuous throughout an open region R, then ƒ is differentiable at 
every point of R.

The following theorem (proved in Appendix 9) and its accompanying corollary tell us 
that functions with continuous first partial derivatives at (x0 , y0) are differentiable there, 
and they are closely approximated locally by a linear function. We study this approxima-
tion in Section 14.6.

If z = ƒ(x, y) is differentiable, then the definition of differentiability ensures that 
∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0) approaches 0 as ∆x and ∆y approach 0. This tells 
us that a function of two variables is continuous at every point where it is differentiable.

theorem 4—Differentiability implies Continuity If a function ƒ(x, y) is dif-
ferentiable at (x0 , y0), then ƒ is continuous at (x0 , y0).
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As we can see from Corollary 3 and Theorem 4, a function ƒ(x, y) must be continuous at a 
point (x0 , y0) if ƒx and ƒy are continuous throughout an open region containing (x0, y0). 
Remember, however, that it is still possible for a function of two variables to be discon-
tinuous at a point where its first partial derivatives exist, as we saw in Example 8. Exis-
tence alone of the partial derivatives at that point is not enough, but continuity of the par-
tial derivatives guarantees differentiability.

Calculating First-Order partial Derivatives
In Exercises 1–22, find 0ƒ>0x and 0ƒ>0y.

 1. ƒ(x, y) = 2x2 - 3y - 4 2. ƒ(x, y) = x2 - xy + y2

 3. ƒ(x, y) = (x2 - 1)(y + 2)

 4. ƒ(x, y) = 5xy - 7x2 - y2 + 3x - 6y + 2

 5. ƒ(x, y) = (xy - 1)2 6. ƒ(x, y) = (2x - 3y)3

 7. ƒ(x, y) = 2x2 + y2 8. ƒ(x, y) = (x3 + ( y>2))2>3

 9. ƒ(x, y) = 1>(x + y) 10. ƒ(x, y) = x> (x2 + y2)
 11. ƒ(x, y) = (x + y)>(xy - 1) 12. ƒ(x, y) = tan-1 (y>x)

 13. ƒ(x, y) = e(x + y + 1) 14. ƒ(x, y) = e-x sin (x + y)

 15. ƒ(x, y) = ln (x + y) 16. ƒ(x, y) = exy ln y

 17. ƒ(x, y) = sin2 (x - 3y) 18. ƒ(x, y) = cos2 (3x - y2)
 19. ƒ(x, y) = xy 20. ƒ(x, y) = logy x

 21. ƒ(x, y) = L
y

x
 g(t) dt (g continuous for all t)

 22. ƒ(x, y) = a∞
n = 0

(xy)n ( 0 xy 0 6 1)

In Exercises 23–34, find ƒx , ƒy , and ƒz .

 23. ƒ(x, y, z) = 1 + xy2 - 2z2

 24. ƒ(x, y, z) = xy + yz + xz

 25. ƒ(x, y, z) = x - 2y2 + z2

 26. ƒ(x, y, z) = (x2 + y2 + z2)-1>2

 27. ƒ(x, y, z) = sin-1 (xyz)

 28. ƒ(x, y, z) = sec-1 (x + yz)

 29. ƒ(x, y, z) = ln (x + 2y + 3z)

 30. ƒ(x, y, z) = yz ln (xy)

 31. ƒ(x, y, z) = e-(x2 + y2 + z2)

 32. ƒ(x, y, z) = e-xyz

 33. ƒ(x, y, z) = tanh (x + 2y + 3z)

 34. ƒ(x, y, z) = sinh (xy - z2)

In Exercises 35–40, find the partial derivative of the function with 
respect to each variable.

 35. ƒ(t, a) = cos (2pt - a)

 36. g(u, y) = y2e(2u>y)

 37. h(r, f, u) = r sin f cos u

 38. g(r, u, z) = r(1 - cos u) - z

 39. Work done by the heart (Section 3.11, Exercise 61)

W(P, V, d, y, g) = PV + Vdy2

2g

 40. Wilson lot size formula (Section 4.6, Exercise 53)

A(c, h, k, m, q) = km
q + cm +

hq
2

Calculating Second-Order partial Derivatives
Find all the second-order partial derivatives of the functions in Exer-
cises 41–50.

 41. ƒ(x, y) = x + y + xy 42. ƒ(x, y) = sin xy

 43. g(x, y) = x2y + cos y + y sin x

 44. h(x, y) = xey + y + 1 45. r(x, y) = ln (x + y)

 46. s(x, y) = tan-1 ( y>x) 47. w = x2 tan (xy)

 48. w = yex2 -  y 49. w = x sin (x2y)

 50. w =
x - y

x2 + y

Mixed partial Derivatives
In Exercises 51–54, verify that wxy = wyx .

 51. w = ln (2x + 3y) 52. w = ex + x ln y + y ln x

 53. w = xy2 + x2y3 + x3y4 54. w = x sin y + y sin x + xy

 55. Which order of differentiation will calculate fxy faster: x first or y 
first? Try to answer without writing anything down.

 a. ƒ(x, y) = x sin y + ey

 b. ƒ(x, y) = 1>x
 c. ƒ(x, y) = y + (x>y)

 d. ƒ(x, y) = y + x2y + 4y3 - ln ( y2 + 1)

 e. ƒ(x, y) = x2 + 5xy + sin x + 7ex

 f. ƒ(x, y) = x ln xy

 56. The fifth-order partial derivative 05ƒ>0x20y3 is zero for each of the 
following functions. To show this as quickly as possible, which 
variable would you differentiate with respect to first: x or y?  
Try to answer without writing anything down.

 a. ƒ(x, y) = y2x4ex + 2

 b. ƒ(x, y) = y2 + y(sin x - x4)
 c. ƒ(x, y) = x2 + 5xy + sin x + 7ex

 d. ƒ(x, y) = xey2>2

exercises 14.3
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using the partial Derivative Definition
In Exercises 57–60, use the limit definition of partial derivative to 
compute the partial derivatives of the functions at the specified points.

 57. ƒ(x, y) = 1 - x + y - 3x2y, 
0ƒ
0x   and   

0ƒ
0y   at (1, 2)

 58. ƒ(x, y) = 4 + 2x - 3y - xy2, 
0ƒ
0x   and   

0ƒ
0y  at (-2, 1)

 59. ƒ(x, y) = 22x + 3y - 1, 
0ƒ
0x and 

0ƒ
0y  at (-2, 3)

 60. 
ƒ(x, y) = c sin (x3 + y4)

x2 + y2 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0),
 

  
0ƒ
0x  and 

0ƒ
0y  at (0, 0)

 61. Let ƒ(x, y) = 2x + 3y - 4. Find the slope of the line tangent to 
this surface at the point (2, -1) and lying in the a. plane x = 2  
b. plane y = -1.

 62. Let ƒ(x, y) = x2 + y3. Find the slope of the line tangent to this 
surface at the point (-1, 1) and lying in the a. plane x = -1  
b. plane y = 1.

 63. Three variables Let w = ƒ(x, y, z) be a function of three inde-
pendent variables and write the formal definition of the partial 
derivative 0ƒ>0z at (x0 , y0 , z0). Use this definition to find 0ƒ>0z at 
(1, 2, 3) for ƒ(x, y, z) = x2yz2.

 64. Three variables Let w = ƒ(x, y, z) be a function of three inde-
pendent variables and write the formal definition of the partial 
derivative 0ƒ>0y at (x0 , y0 , z0). Use this definition to find 0ƒ>0y at 
(-1, 0, 3) for ƒ(x, y, z) = -2xy2 + yz2.

Differentiating implicitly
 65. Find the value of 0z>0x at the point (1, 1, 1) if the equation

xy + z3x - 2yz = 0

  defines z as a function of the two independent variables x and y 
and the partial derivative exists.

 66. Find the value of 0x>0z at the point (1, -1, -3) if the equation

xz + y ln x - x2 + 4 = 0

  defines x as a function of the two independent variables y and z 
and the partial derivative exists.

Exercises 67 and 68 are about the triangle shown here.

c

B

C
A

a

b

 67. Express A implicitly as a function of a, b, and c and calculate 
0A>0a and 0A>0b.

 68. Express a implicitly as a function of A, b, and B and calculate 
0a>0A and 0a>0B.

 69. Two dependent variables Express yx in terms of u and y if the 
equations x = y ln u and y = u ln y define u and y as functions 
of the independent variables x and y, and if yx exists. (Hint: Dif-
ferentiate both equations with respect to x and solve for yx by 
eliminating ux .)

 70. Two dependent variables Find 0x>0u and 0y>0u if the equa-
tions u = x2 - y2 and y = x2 - y define x and y as functions of 
the independent variables u and y, and the partial derivatives 
exist. (See the hint in Exercise 69.) Then let s = x2 + y2 and find 
0s>0u.

Theory and examples

 71. Let ƒ(x, y) = e y3, y Ú 0

-y2, y 6 0.

  Find ƒx 

, ƒy , ƒxy , and ƒyx , and state the domain for each partial 
derivative.

 72. Let ƒ(x, y) = c xy 
x2 - y2

x2 + y2 , if (x, y) ≠ 0,

0, if (x, y) = 0.

 a. Show that 
0ƒ
0y (x, 0) = x for all x, and 

0ƒ
0x (0, y) = -y for all y.

 b. Show that 
02ƒ
0y0x (0, 0) ≠

02ƒ
0x0y (0, 0).

The graph of ƒ is shown on page 800.

The three-dimensional Laplace equation

02ƒ

0x2 +
02ƒ

0y2 +
02ƒ

0z2 = 0

is satisfied by steady-state temperature distributions T = ƒ(x, y, z) 
in space, by gravitational potentials, and by electrostatic poten-
tials. The two-dimensional Laplace equation

02ƒ

0x2 +
02ƒ

0y2 = 0,

obtained by dropping the 02ƒ>0z2 term from the previous equation, 
describes potentials and steady-state temperature distributions in a 
plane (see the accompanying figure). The plane (a) may be treated 
as a thin slice of the solid (b) perpendicular to the z-axis.

(a)

(b)

Boundary temperatures controlled

+        = 0
'2f

'x2

'2f

'y2

+         +         = 0
'2f

'x2

'2f

'y2

'2f

'z2
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Show that each function in Exercises 73–80 satisfies a Laplace 
equation.

 73. ƒ(x, y, z) = x2 + y2 - 2z2

 74. ƒ(x, y, z) = 2z3 - 3(x2 + y2)z

 75. ƒ(x, y) = e-2y cos 2x

 76. ƒ(x, y) = ln2x2 + y2

 77. ƒ(x, y) = 3x + 2y - 4

 78. ƒ(x, y) = tan-1 
x
y

 79. ƒ(x, y, z) = (x2 + y2 + z2)-1>2

 80. ƒ(x, y, z) = e3x + 4y cos 5z

The Wave Equation If we stand on an ocean shore and take a snap-
shot of the waves, the picture shows a regular pattern of peaks and 
valleys in an instant of time. We see periodic vertical motion in space, 
with respect to distance. If we stand in the water, we can feel the rise 
and fall of the water as the waves go by. We see periodic vertical 
motion in time. In physics, this beautiful symmetry is expressed by 
the one-dimensional wave equation

02w
0t2 = c2 

02w
0x2 ,

where w is the wave height, x is the distance variable, t is the time 
variable, and c is the velocity with which the waves are propagated.

w

0

x

In our example, x is the distance across the ocean’s surface, but 
in other applications, x might be the distance along a vibrating string, 
distance through air (sound waves), or distance through space (light 
waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 81–87 are all solutions of 
the wave equation.

 81. w = sin (x + ct)

 82. w = cos (2x + 2ct)

 83. w = sin (x + ct) + cos (2x + 2ct)

 84. w = ln (2x + 2ct)

 85. w = tan (2x - 2ct)

 86. w = 5 cos (3x + 3ct) + ex + ct

 87. w = ƒ(u), where ƒ is a differentiable function of u, and u =  
a(x + ct), where a is a constant

 88. Does a function ƒ(x, y) with continuous first partial derivatives 
throughout an open region R have to be continuous on R? Give 
reasons for your answer.

 89. If a function ƒ(x, y) has continuous second partial derivatives 
throughout an open region R, must the first-order partial deriva-
tives of ƒ be continuous on R? Give reasons for your answer.

 90. The heat equation An important partial differential equation 
that describes the distribution of heat in a region at time t can be 
represented by the one-dimensional heat equation

0ƒ
0t =

02ƒ

0x2 .

  Show that u(x, t) = sin (ax) # e-bt satisfies the heat equation for 
constants a and b. What is the relationship between a and b for 
this function to be a solution?

 91. Let ƒ(x, y) = c xy2

x2 + y4 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0).

  Show that ƒx(0, 0) and ƒy(0, 0) exist, but ƒ is not differentiable at 
(0, 0). (Hint: Use Theorem 4 and show that ƒ is not continuous at 
(0, 0).)

 92. Let ƒ(x, y) = b0, x2 6 y 6 2x2

1, otherwise.

  Show that ƒx(0, 0) and ƒy(0, 0) exist, but ƒ is not differentiable at 
(0, 0).

14.4 The Chain rule

The Chain Rule for functions of a single variable studied in Section 3.6 says that when 
w = ƒ(x) is a differentiable function of x and x = g(t) is a differentiable function of t, w is 
a differentiable function of t and dw >dt can be calculated by the formula

dw
dt

= dw
dx

 
dx
dt

.

For this composite function w(t) = ƒ(g(t)), we can think of t as the independent variable 
and x = g(t) as the “intermediate variable,” because t determines the value of x which in 
turn gives the value of w from the function ƒ. We display the Chain Rule in a “branch dia-
gram” in the margin on the next page.

For functions of several variables the Chain Rule has more than one form, which depends 
on how many independent and intermediate variables are involved. However, once the vari-
ables are taken into account, the Chain Rule works in the same way we just discussed.



Functions of Two Variables

The Chain Rule formula for a differentiable function w = ƒ(x, y) when x = x(t) and 
y = y(t) are both differentiable functions of t is given in the following theorem.

THEOREM 5—Chain Rule For Functions of One Independent Variable and Two 
Intermediate Variables If w = ƒ(x, y) is differentiable and if x = x(t), y = y(t)
are differentiable functions of t, then the composite w = ƒ(x(t), y(t)) is a differ-
entiable function of t and

dw
dt

= ƒx(x(t), y(t)) # x′(t) + ƒy(x(t), y(t)) # y′(t),
or

dw
dt

=
0ƒ
0x

dx
dt

+
0ƒ
0y

dy
dt

.

Proof The proof consists of showing that if x and y are differentiable at t = t0 , then w
is differentiable at t0 and

adw
dt
b

t0

= a0w0x b
P0

adx
dt
b

t0

+ a0w0y b
P0

ady
dt
b

t0

,

where P0 = (x(t0), y(t0)). The subscripts indicate where each of the derivatives is to be 
evaluated.

Let ∆x, ∆y, and ∆w be the increments that result from changing t from t0 to t0 + ∆t.
Since ƒ is differentiable (see the definition in Section 14.3),

∆w = a0w0x b
P0

∆x + a0w0y b
P0

∆y + P1∆x + P2∆y,

where P1, P2 S 0 as ∆x, ∆y S 0. To find dw >dt, we divide this equation through by ∆t
and let ∆t approach zero. The division gives

∆w
∆t

= a0w0x b
P0

∆x
∆t

+ a0w0y b
P0

∆y
∆t

+ P1
∆x
∆t

+ P2

∆y
∆t

.

Letting ∆t approach zero gives

adw
dt
b

t0

= lim
∆tS0

∆w
∆t

= a0w0x b
P0

adx
dt
b

t0

+ a0w0y b
P0

ady
dt
b

t0

+ 0 # adx
dt
b

t0

+ 0 # ady
dt
b

t0

.

Often we write 0w>0x for the partial derivative 0ƒ>0x, so we can rewrite the Chain 
Rule in Theorem 5 in the form

Each of 
0ƒ
0x ,

0w
0x , ƒx indicates the partial 

derivative of ƒ with respect to x.

dw
dt

= 0w
0x

dx
dt

+ 0w
0y

dy
dt

.

To find dw>dt, we read down the route 
from w to t, multiplying derivatives 
along the way.

Chain Rule

t

x

w = f (x)

dx
dt

dw
dx

Intermediate
variable

Dependent
variable

Independent
variable

822 Chapter 14: Partial Derivatives
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However, the meaning of the dependent variable w is different on each side of the preced-
ing equation. On the left-hand side, it refers to the composite function w = ƒ(x(t), y(t)) as 
a function of the single variable t. On the right-hand side, it refers to the function 
w = ƒ(x, y) as a function of the two variables x and y. Moreover, the single derivatives 
dw>dt, dx>dt, and dy>dt are being evaluated at a point t0 , whereas the partial derivatives 
0w>0x and 0w>0y are being evaluated at the point (x0 , y0), with x0 = x(t0) and y0 = y(t0). 
With that understanding, we will use both of these forms interchangeably throughout the 
text whenever no confusion will arise.

The branch diagram in the margin provides a convenient way to remember the 
Chain Rule. The “true” independent variable in the composite function is t, whereas x and 
y are intermediate variables (controlled by t) and w is the dependent variable.

A more precise notation for the Chain Rule shows where the various derivatives in 
Theorem 5 are evaluated:

dw
dt

 (t0) =
0ƒ
0x (x0, y0) #  

dx
dt

 (t0) +
0ƒ
0y (x0, y0) 

#  
dy
dt

 (t0).

example 1  Use the Chain Rule to find the derivative of

w = xy

with respect to t along the path x = cos t, y = sin t. What is the derivative’s value at  
t = p>2?

Solution We apply the Chain Rule to find dw >dt as follows:

dw
dt

= 0w
0x  

dx
dt

+ 0w
0y  

dy
dt

=
0(xy)

0x  #  
d
dt

 (cos t) +
0(xy)

0y  #  
d
dt

 (sin t)

= ( y)(-sin t) + (x)(cos t)

= (sin t)(-sin t) + (cos t)(cos t)

= -sin2 t + cos2 t

= cos 2t.

In this example, we can check the result with a more direct calculation. As a function of t,

w = xy = cos t sin t = 1
2

 sin 2t,

so
dw
dt

= d
dt

 a1
2

 sin 2tb = 1
2

 #  2 cos 2t = cos 2t.

In either case, at the given value of t,

 adw
dt
b

t =p>2
= cos a2 # p

2
b = cos p = -1. 

Functions of Three variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it 
only involves adding the expected third term to the two-variable formula.

To remember the Chain Rule, picture the 
diagram below. To find dw >dt, start at w 
and read down each route to t, multiplying 
derivatives along the way. Then add the 
products.

Chain Rule

t

yx

w = f (x, y)

'w
'y

'w
'x

dy
dt

dx
dt

dw
dt

'w
'x

dx
dt

'w
'y

dy
dt

= +

Intermediate
variables

Dependent
variable

Independent
variable

theorem 6—Chain rule for functions of one independent Variable and 
three intermediate Variables If w = ƒ(x, y, z) is differentiable and x, y, and z 
are differentiable functions of t, then w is a differentiable function of t and

dw
dt

= 0w
0x  

dx
dt

+ 0w
0y  

dy
dt

+ 0w
0z  

dz
dt

.
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The proof is identical with the proof of Theorem 5 except that there are now three 
intermediate variables instead of two. The branch diagram we use for remembering the 
new equation is similar as well, with three routes from w to t.

example 2  Find dw >dt if

w = xy + z,  x = cos t,  y = sin t,  z = t.

In this example the values of w(t) are changing along the path of a helix (Section 13.1) as t 
changes. What is the derivative’s value at t = 0?

Solution Using the Chain Rule for three intermediate variables, we have

 
dw
dt

= 0w
0x  

dx
dt

+ 0w
0y  

dy
dt

+ 0w
0z  

dz
dt

  

 = (y)(-sin t) + (x)(cos t) + (1)(1)   

 = (sin t)(-sin t) + (cos t)(cos t) + 1   
Substitute for 
the intermediate 
variables. = -sin2 t + cos2 t + 1 = 1 + cos 2t,  

so

 adw
dt
b

t = 0
= 1 + cos (0) = 2. 

For a physical interpretation of change along a curve, think of an object whose posi-
tion is changing with time t. If w = T(x, y, z) is the temperature at each point (x, y, z) 
along a curve C with parametric equations x = x(t), y = y(t), and z = z(t), then the com-
posite function w = T(x(t), y(t), z(t)) represents the temperature relative to t along the 
curve. The derivative dw >dt is then the instantaneous rate of change of temperature due to 
the motion along the curve, as calculated in Theorem 6.

Functions Defined on Surfaces

If we are interested in the temperature w = ƒ(x, y, z) at points (x, y, z) on the earth’s sur-
face, we might prefer to think of x, y, and z as functions of the variables r and s that give 
the points’ longitudes and latitudes. If x = g(r, s), y = h(r, s), and z = k(r, s), we could 
then express the temperature as a function of r and s with the composite function

w = ƒ(g(r, s), h(r, s), k(r, s)).

Under the conditions stated below, w has partial derivatives with respect to both r and s 
that can be calculated in the following way.

Here we have three routes from w to 
t instead of two, but finding dw >dt is 
still the same. Read down each route, 
multiplying derivatives along the way; 
then add.

Chain Rule

t

zyx

w = f (x, y, z)

'w
'z

'w
'x 'w

'y

dy
dt dz

dt
dx
dt

dw
dt

'w
'x

dx
dt

'w
'y

dy
dt

= +
'w
'z

dz
dt

+

Intermediate
variables

Dependent
variable

Independent
variable

theorem 7—Chain rule for two independent Variables and three intermediate 
Variables Suppose that w = ƒ(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). 
If all four functions are differentiable, then w has partial derivatives with respect 
to r and s, given by the formulas

0w
0r = 0w

0x  
0x
0r + 0w

0y  
0y
0r + 0w

0z  
0z
0r

0w
0s = 0w

0x  
0x
0s + 0w

0y  
0y
0s + 0w

0z  
0z
0s .

The first of these equations can be derived from the Chain Rule in Theorem 6 by hold-
ing s fixed and treating r as t. The second can be derived in the same way, holding r fixed 
and treating s as t. The branch diagrams for both equations are shown in Figure 14.22.
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example 3  Express 0w>0r and 0w>0s in terms of r and s if

w = x + 2y + z2,  x = r
s ,  y = r2 + ln s,  z = 2r.

Solution Using the formulas in Theorem 7, we find

0w
0r = 0w

0x  
0x
0r + 0w

0y  
0y
0r + 0w

0z  
0z
0r

= (1)a1sb + (2)(2r) + (2z)(2)

= 1
s + 4r + (4r)(2) = 1

s + 12r 
Substitute for intermediate 
variable z.

0w
0s = 0w

0x  
0x
0s + 0w

0y  
0y
0s + 0w

0z  
0z
0s

= (1)a- r
s2b + (2)a1sb + (2z)(0) = 2

s - r
s2 . 

If ƒ is a function of two intermediate variables instead of three, each equation in  
Theorem 7 becomes correspondingly one term shorter.

w

(a)

g h k

f

x y z

r, s

Dependent
variable

Independent
variables

Intermediate
variables

w = f( g(r, s), h(r, s), k(r, s))

(b)

r

zx y

w = f (x, y, z)

'w
'x 'w

'y

'y
'r'x

'r

'w
'z

'z
'r

'w
'r

'w
'x
'x
'r

'w
dy
'y
'r=

'w
'z
'z
'r++

s

zx y

(c)

'w
'x 'w

'y

'y
's'x

's

'w
'z

'z
's

'w
's

'w
'x
'x
's

'w
'y
'y
's=

'w
'z
'z
's++

w = f (x, y, z)

Figure 14.22 Composite function and branch diagrams for Theorem 7.

If w = ƒ(x, y), x = g(r, s), and y = h(r, s), then

0w
0r = 0w

0x  
0x
0r + 0w

0y  
0y
0r  and  

0w
0s = 0w

0x  
0x
0s + 0w

0y  
0y
0s .

Figure 14.23 shows the branch diagram for the first of these equations. The diagram 
for the second equation is similar; just replace r with s.

example 4  Express 0w>0r and 0w>0s in terms of r and s if

w = x2 + y2,  x = r - s,  y = r + s.

Chain Rule

r

yx

 w = f (x, y)

'w
'x

'x
'r

'w
'y

'y
'r

'w
'r

'w
'x
'x
'r

'w
'y
'y
'r= +

Figure 14.23 Branch diagram 
for the equation

0w
0r = 0w

0x  
0x
0r + 0w

0y  
0y
0r .
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Solution The preceding discussion gives the following.

 
0w
0r = 0w

0x  
0x
0r + 0w

0y  
0y
0r  

0w
0s = 0w

0x  
0x
0s + 0w

0y  
0y
0s

 = (2x)(1) + (2y)(1) = (2x)(-1) + (2y)(1)

 = 2(r - s) + 2(r + s) = -2(r - s) + 2(r + s) 

Substitute 
for the 
intermediate 
variables.

 = 4r = 4s 

If ƒ is a function of a single intermediate variable x, our equations are even simpler.

If w = ƒ(x) and x = g(r, s), then

0w
0r = dw

dx
 
0x
0r  and  

0w
0s = dw

dx
 
0x
0s .

In this case, we use the ordinary (single-variable) derivative, dw >dx. The branch diagram 
is shown in Figure 14.24.

implicit Differentiation revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes some of the alge-
bra out of implicit differentiation. Suppose that

1. The function F(x, y) is differentiable and

2.  The equation F(x, y) = 0 defines y implicitly as a differentiable function of x, say 
y = h(x).

Since w = F(x, y) = 0, the derivative dw >dx must be zero. Computing the derivative 
from the Chain Rule (branch diagram in Figure 14.25), we find

0 = dw
dx

= Fx 
dx
dx

+ Fy 
dy
dx

 Theorem 5 with t = x 
and ƒ = F

= Fx
# 1 + Fy

# dy
dx

.

If Fy = 0w>0y ≠ 0, we can solve this equation for dy >dx to get

dy
dx

= -  
Fx

Fy
.

We state this result formally.

Chain Rule

r

x

s

w = f (x)

dw
dx

'x
'r

'x
's

'w
'r

dw
dx

'x
'r=

'w
's

dw
dx

'x
's=

Figure 14.24 Branch diagram for  
differentiating ƒ as a composite function  
of r and s with one intermediate variable.

x

x

w = F(x, y)

= Fx
'w
'x

dx
dx

= 1

y = h(x)

Fy =
'w
'y

dy
dx

= h′(x)

= Fx • 1 + Fy •
dw
dx

dy
dx

Figure 14.25 Branch diagram for 
differentiating w = F(x, y) with respect 
to x. Setting dw>dx = 0 leads to a simple 
computational formula for implicit  
differentiation (Theorem 8).

theorem 8—a formula for implicit Differentiation Suppose that F(x, y) is 
differentiable and that the equation F(x, y) = 0 defines y as a differentiable func-
tion of x. Then at any point where Fy ≠ 0,

 
dy
dx

= -  
Fx

Fy
. (1)
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example 5  Use Theorem 8 to find dy >dx if y2 - x2 - sin xy = 0.

Solution Take F(x, y) = y2 - x2 - sin xy. Then

dy
dx

= -  
Fx

Fy
= -  

-2x - y cos xy
2y - x cos xy

=
2x + y cos xy
2y - x cos xy

.

This calculation is significantly shorter than a single-variable calculation using implicit 
differentiation. 

The result in Theorem 8 is easily extended to three variables. Suppose that the equa-
tion F(x, y, z) = 0 defines the variable z implicitly as a function z = ƒ(x, y). Then for all 
(x, y) in the domain of ƒ, we have F(x, y, ƒ(x, y)) = 0. Assuming that F and ƒ are differen-
tiable functions, we can use the Chain Rule to differentiate the equation F(x, y, z) = 0 
with respect to the independent variable x:

0 = 0F
0x  

0x
0x + 0F

0y  
0y
0x + 0F

0z  
0z
0x

= Fx
# 1 + Fy

# 0 + Fz
# 0z
0x , 

y is constant when 
differentiating with 
respect to x.

so

Fx + Fz 
0z
0x = 0.

A similar calculation for differentiating with respect to the independent variable y gives

Fy + Fz 
0z
0y = 0.

Whenever Fz ≠ 0, we can solve these last two equations for the partial derivatives of 
z = ƒ(x, y) to obtain

 
0z
0x = -  

Fx

Fz
  and 

0z
0y = -  

Fy

Fz
. (2)

An important result from advanced calculus, called the Implicit Function Theorem, 
states the conditions for which our results in Equations (2) are valid. If the partial deriva-
tives Fx, Fy, and Fz are continuous throughout an open region R in space containing the 
point (x0, y0, z0), and if for some constant c, F(x0, y0, z0) = c and Fz(x0, y0, z0) ≠ 0, then 
the equation F(x, y, z) = c defines z implicitly as a differentiable function of x and y near 
(x0, y0, z0), and the partial derivatives of z are given by Equations (2).

example 6  Find  
0z
0x  and  

0z
0y  at  (0, 0, 0)  if  x3 + z2 + yexz + z cos y = 0.

Solution Let F(x, y, z) = x3 + z2 + yexz + z cos y. Then

Fx = 3x2 + zyexz,  Fy = exz - z sin y,  and  Fz = 2z + xyexz + cos y.
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Since F(0, 0, 0) = 0, Fz (0, 0, 0) = 1 ≠ 0, and all first partial derivatives are continuous, 
the Implicit Function Theorem says that F(x, y, z) = 0 defines z as a differentiable func-
tion of x and y near the point (0, 0, 0). From Equations (2),

0z
0x = -  

Fx

Fz
= -  

3x2 + zyexz

2z + xyexz + cos y
  and  

0z
0y = -  

Fy

Fz
= -  

exz - z sin y
2z + xyexz + cos y

.

At (0, 0, 0) we find

 
0z
0x = -  

0
1

= 0  and  
0z
0y = -  1

1
= -1. 

Functions of Many variables

We have seen several different forms of the Chain Rule in this section, but each one is just 
a special case of one general formula. When solving particular problems, it may help to 
draw the appropriate branch diagram by placing the dependent variable on top, the inter-
mediate variables in the middle, and the selected independent variable at the bottom. To 
find the derivative of the dependent variable with respect to the selected independent vari-
able, start at the dependent variable and read down each route of the branch diagram to the 
independent variable, calculating and multiplying the derivatives along each route. Then 
add the products found for the different routes.

In general, suppose that w = ƒ(x, y, . . . , y) is a differentiable function of the inter-
mediate variables x, y, . . . , y (a finite set) and the x, y, . . . , y are differentiable functions 
of the independent variables p, q, . . . , t (another finite set). Then w is a differentiable 
function of the variables p through t, and the partial derivatives of w with respect to these 
variables are given by equations of the form

0w
0p = 0w

0x  
0x
0p + 0w

0y  
0y
0p + g + 0w

0y 
0y
0p .

The other equations are obtained by replacing p by q, . . . , t, one at a time.
One way to remember this equation is to think of the right-hand side as the dot prod-

uct of two vectors with components

a0w
0x , 

0w
0y , . . . , 

0w
0yb  and  a0x

0p , 
0y
0p , . . . , 

0y
0pb .

 (++++)++++* (++++)++++*
 Derivatives of w with  Derivatives of the intermediate 
 respect to the variables with respect to the 
 intermediate variables selected independent variable

Chain rule: One independent variable
In Exercises 1–6, (a) express dw >dt as a function of t, both by using 
the Chain Rule and by expressing w in terms of t and differentiating 
directly with respect to t. Then (b) evaluate dw >dt at the given value 
of t.

 1. w = x2 + y2, x = cos t, y = sin t; t = p

 2. w = x2 + y2, x = cos t + sin t, y = cos t - sin t; t = 0

 3. w = x
z +

y
z , x = cos2 t, y = sin2 t, z = 1>t ; t = 3

 4. w = ln (x2 + y2 + z2), x = cos t, y = sin t, z = 42t ; 
t = 3

 5. w = 2yex - ln z, x = ln (t2 + 1), y = tan-1 t, z = et ; 
t = 1

 6. w = z - sin xy, x = t, y = ln t, z = et - 1 ; t = 1

Chain rule: Two and Three independent variables
In Exercises 7 and 8, (a) express 0z>0u and 0z>0y as functions of u 
and y both by using the Chain Rule and by expressing z directly in 
terms of u and y before differentiating. Then (b) evaluate 0z>0u and 
0z>0y at the given point (u, y).

 7. z = 4ex ln y, x = ln (u cos y), y = u sin y; 
(u, y) = (2, p>4)

exercises 14.4
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 8. z = tan-1 (x>y), x = u cos y, y = u sin y; 
(u, y) = (1.3, p>6)

In Exercises 9 and 10, (a) express 0w>0u and 0w>0y as functions of u 
and y both by using the Chain Rule and by expressing w directly in 
terms of u and y before differentiating. Then (b) evaluate 0w>0u and 
0w>0y at the given point (u, y).

 9. w = xy + yz + xz, x = u + y, y = u - y, z = uy; 
(u, y) = (1>2, 1)

 10. w = ln (x2 + y2 + z2), x = uey sin u, y = uey cos u, 
z = uey; (u, y) = (-2, 0)

In Exercises 11 and 12, (a) express 0u>0x, 0u>0y, and 0u>0z as func-
tions of x, y, and z both by using the Chain Rule and by expressing u 
directly in terms of x, y, and z before differentiating. Then (b) evaluate 
0u>0x, 0u>0y, and 0u>0z at the given point (x, y, z).

 11. u =
p - q
q - r , p = x + y + z, q = x - y + z, 

  r = x + y - z; (x, y, z) = 123, 2, 12
 12. u = eqr sin-1 p, p = sin x, q = z2 ln y, r = 1>z; 
  (x, y, z) = (p>4, 1>2, -1>2)

using a Branch Diagram
In Exercises 13–24, draw a branch diagram and write a Chain Rule 
formula for each derivative.

 13. 
dz
dt

  for  z = ƒ(x, y), x = g(t), y = h(t)

 14. 
dz
dt

  for  z = ƒ(u, y, w), u = g(t), y = h(t), w = k(t)

 15. 
0w
0u   and  

0w
0y   for  w = h(x, y, z), x = ƒ(u, y), y = g(u, y), 

  z = k(u, y)

 16. 
0w
0x   and  

0w
0y   for  w = ƒ(r, s, t), r = g(x, y), s = h(x, y), 

  t = k(x, y)

 17. 
0w
0u   and  

0w
0y   for  w = g(x, y), x = h(u, y), y = k(u, y)

 18. 
0w
0x   and  

0w
0y   for  w = g(u, y), u = h(x, y), y = k(x, y)

 19. 
0z
0t  and  

0z
0s  for  z = ƒ(x, y), x = g(t, s), y = h(t, s)

 20. 
0y
0r  for  y = ƒ(u), u = g(r, s)

 21. 
0w
0s   and  

0w
0t   for  w = g(u), u = h(s, t)

 22. 
0w
0p   for  w = ƒ(x, y, z, y), x = g( p, q), y = h( p, q), 

  z = j(p, q), y = k(p, q)

 23. 
0w
0r   and  

0w
0s   for  w = ƒ(x, y), x = g(r), y = h(s)

 24. 
0w
0s   for  w = g(x, y), x = h(r, s, t), y = k(r, s, t)

implicit Differentiation
Assuming that the equations in Exercises 25–28 define y as a differen-
tiable function of x, use Theorem 8 to find the value of dy >dx at the 
given point.

 25. x3 - 2y2 + xy = 0, (1, 1)

 26. xy + y2 - 3x - 3 = 0, (-1, 1)

 27. x2 + xy + y2 - 7 = 0, (1, 2)

 28. xey + sin xy + y - ln 2 = 0, (0, ln 2)

Find the values of 0z>0x and 0z>0y at the points in Exercises 29–32.

 29. z3 - xy + yz + y3 - 2 = 0, (1, 1, 1)

 30. 1
x + 1

y + 1
z - 1 = 0, (2, 3, 6)

 31. sin (x + y) + sin ( y + z) + sin (x + z) = 0, (p, p, p)

 32. xey + yez + 2 ln x - 2 - 3 ln 2 = 0, (1, ln 2, ln 3)

Finding partial Derivatives at Specified points
 33. Find 0w>0r when r = 1, s = -1 if w = (x + y + z)2, 

x = r - s, y = cos (r + s),  z = sin (r + s).

 34. Find 0w>0y when u = -1, y = 2 if w = xy + ln z, 
x = y2>u, y = u + y,  z = cos u.

 35. Find 0w>0y when u = 0, y = 0 if w = x2 + ( y>x), 
x = u - 2y + 1,  y = 2u + y - 2.

 36. Find 0z>0u when u = 0, y = 1 if z = sin xy + x sin y, 
x = u2 + y2,  y = uy.

 37. Find 0z>0u and 0z>0y when u = ln 2, y = 1 if z =  5 tan-1 x and 
x = eu + ln y.

 38. Find 0z>0u and 0z>0y when u = 1, y = -2 if z =  ln q and 
q = 1y + 3 tan-1 u.

Theory and examples
 39. Assume that w = ƒ(s3 + t2)  and ƒ′(x) = ex. Find 

0w
0t  and 

0w
0s .

 40. Assume that w = ƒats2, 
s
tb , 

0f
0x (x, y) = xy, and 

0f
0y (x, y) =  

x2

2
. 

Find 
0w
0t  and 

0w
0s .

 41. Changing voltage in a circuit The voltage V in a circuit that 
satisfies the law V = IR is slowly dropping as the battery wears 
out. At the same time, the resistance R is increasing as the resistor 
heats up. Use the equation

dV
dt

= 0V
0I

 
dI
dt

+ 0V
0R

 
dR
dt

  to find how the current is changing at the instant when R =  
600 ohms, I = 0.04 amp, dR>dt = 0.5 ohm>sec, and dV>dt =  
-0.01 volt>sec.

R

+ −
V

I

Battery

 42. Changing dimensions in a box The lengths a, b, and c of the 
edges of a rectangular box are changing with time. At the instant 
in question, a = 1 m, b = 2 m, c = 3 m, da>dt = db>dt =
1 m>sec, and dc>dt = -3 m>sec. At what rates are the box’s 
volume V and surface area S changing at that instant? Are the 
box’s interior diagonals increasing in length or decreasing?

 43. If ƒ(u, y, w) is differentiable and u = x - y, y = y - z, and 
w = z - x, show that

0ƒ
0x +

0ƒ
0y +

0ƒ
0z = 0.
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 44. Polar coordinates Suppose that we substitute polar coordinates 
x = r cos u and y = r sin u in a differentiable function 
w = ƒ(x, y).

 a. Show that

0w
0r = ƒx cos u + ƒy sin u

and

1
r 

0w
0u = -ƒx sin u + ƒy cos u.

 b. Solve the equations in part (a) to express ƒx and ƒy in terms of 
0w>0r and 0w>0u.

 c. Show that

(ƒx)2 + (ƒy)2 = a0w
0r b

2

+ 1
r2 a

0w
0u b

2

.

 45. Laplace equations Show that if w = ƒ(u, y) satisfies the 
Laplace equation ƒuu + ƒyy = 0 and if u = (x2 - y2) >2 and 
y = xy, then w satisfies the Laplace equation wxx + wyy = 0.

 46. Laplace equations Let w = ƒ(u) + g(y), where u = x + iy, 
y = x - iy, and i = 2-1. Show that w satisfies the Laplace 
equation wxx + wyy = 0 if all the necessary functions are differ-
entiable.

 47. Extreme values on a helix Suppose that the partial derivatives 
of a function ƒ(x, y, z) at points on the helix x = cos t, y = sin t, 
z = t are

ƒx = cos t,  ƒy = sin t,  ƒz = t2 + t - 2.

  At what points on the curve, if any, can ƒ take on extreme values?

 48. A space curve Let w = x2e2y cos 3z. Find the value of dw >dt 
at the point (1, ln 2, 0) on the curve x = cos t, y = ln (t + 2), 
z = t.

 49. Temperature on a circle Let T = ƒ(x, y) be the temperature at 
the point (x, y) on the circle x = cos t, y = sin t, 0 … t … 2p 
and suppose that

0T
0x = 8x - 4y,  

0T
0y = 8y - 4x.

 a. Find where the maximum and minimum temperatures on the 
circle occur by examining the derivatives dT >dt and d2T>dt2.

 b. Suppose that T = 4x2 - 4xy + 4y2. Find the maximum and 
minimum values of T on the circle.

 50. Temperature on an ellipse Let T = g(x, y) be the temperature 
at the point (x, y) on the ellipse

x = 222 cos t,  y = 22 sin t,  0 … t … 2p,

  and suppose that

0T
0x = y,  

0T
0y = x.

 a. Locate the maximum and minimum temperatures on the 
ellipse by examining dT >dt and d2T>dt2.

 b. Suppose that T = xy - 2. Find the maximum and minimum 
values of T on the ellipse.

Differentiating Integrals Under mild continuity restrictions, it is 
true that if

F(x) = L
b

a
 g(t, x) dt,

then F′(x) = L
b

a
 gx(t, x) dt. Using this fact and the Chain Rule, we 

can find the derivative of

F(x) = L
ƒ(x)

a
 g(t, x) dt

by letting

G(u, x) = L
u

a
 g(t, x) dt,

where u = ƒ(x). Find the derivatives of the functions in Exercises 51 
and 52.

 51. F(x) = L
x2

0
2t4 + x3 dt 52. F(x) = L

1

x2

2t3 + x2 dt

14.5 Directional Derivatives and gradient vectors

If you look at the map (Figure 14.26) showing contours within Yosemite National Park in 
California, you will notice that the streams flow perpendicular to the contours. The 
streams are following paths of steepest descent so the waters reach lower elevations as 
quickly as possible. Therefore, the fastest instantaneous rate of change in a stream’s eleva-
tion above sea level has a particular direction. In this section, you will see why this direc-
tion, called the “downhill” direction, is perpendicular to the contours.

Directional Derivatives in the plane

We know from Section 14.4 that if ƒ(x, y) is differentiable, then the rate at which ƒ changes 
with respect to t along a differentiable curve x = g(t), y = h(t) is

dƒ
dt

=
0ƒ
0x 

dx
dt

+
0ƒ
0y 

dy
dt

.

At any point P0(x0 , y0) = P0(g(t0), h(t0)), this equation gives the rate of change of ƒ with 
respect to increasing t and therefore depends, among other things, on the direction of 
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motion along the curve. If the curve is a straight line and t is the arc length parameter 
along the line measured from P0 in the direction of a given unit vector u, then dƒ >dt is the 
rate of change of ƒ with respect to distance in its domain in the direction of u. By varying 
u, we find the rates at which ƒ changes with respect to distance as we move through P0 in 
different directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that 
P0(x0 , y0) is a point in R, and that u = u1 i + u2 

 

j is a unit vector. Then the equations

x = x0 + su1,  y = y0 + su2

parametrize the line through P0 parallel to u. If the parameter s measures arc length from 
P0 in the direction of u, we find the rate of change of ƒ at P0 in the direction of u by calcu-
lating dƒ >ds at P0 (Figure 14.27).

Figure 14.26 Contours within Yosemite National Park in California 
show streams, which follow paths of steepest descent, running perpendicular 
to the contours. (Source: Yosemite National Park Map from U.S. Geological 
Survey, http://www.usgs.gov)

x

y

0

R

Line x = x0 + su1, y = y0 + su2

u = u1i + u2 j

Direction of
increasing s

P0(x0, y0) 

Figure 14.27 The rate of change of ƒ 
in the direction of u at a point P0 is the rate 
at which ƒ changes along this line at P0.

Definition The derivative of f at P0(x0 , y0) in the direction of the unit vec-
tor u = u1i + u2 j is the number

 adƒ
ds
b

u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s , (1)

provided the limit exists.

The directional derivative defined by Equation (1) is also denoted by

(Du ƒ)P0
. “The derivative of ƒ at P0 

in the direction of u”

The partial derivatives ƒx(x0 , y0) and ƒy(x0 , y0) are the directional derivatives of ƒ at P0 in 
the i and j directions. This observation can be seen by comparing Equation (1) to the defi-
nitions of the two partial derivatives given in Section 14.3.
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example 1  Using the definition, find the derivative of

ƒ(x, y) = x2 + xy

at P0(1, 2) in the direction of the unit vector u = 11>222i + 11>222j.

Solution Applying the definition in Equation (1), we obtain¢dƒ
ds

≤
u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s  Eq. (1)

= lim
sS0

 

ƒ¢1 + s # 122
, 2 + s # 122

≤ - ƒ(1, 2)

s

= lim
sS0

 

¢1 + s22
≤2

+ ¢1 + s22
≤ ¢2 + s22

≤ - (12 + 1 # 2)

s

= lim
sS0

 

¢1 + 2s22
+ s2

2
≤ + ¢2 + 3s22

+ s2

2
≤ - 3

s

= lim
sS0

 

5s22
+ s2

s = lim
sS0

 ¢ 522
+ s≤ = 522

.

The rate of change of ƒ(x, y) = x2 + xy at P0(1, 2) in the direction u is 5>22. 

interpretation of the Directional Derivative

The equation z = ƒ(x, y) represents a surface S in space. If z0 = ƒ(x0 , y0), then the 
point P(x0 , y0 , z0) lies on S. The vertical plane that passes through P and P0(x0 , y0) par-
allel to u intersects S in a curve C (Figure 14.28). The rate of change of ƒ in the direc-
tion of u is the slope of the tangent to C at P in the right-handed system formed by the 
vectors u and k.

When u = i, the directional derivative at P0 is 0ƒ>0x evaluated at (x0 , y0). When 
u = j, the directional derivative at P0 is 0ƒ>0y evaluated at (x0 , y0). The directional deriva-
tive generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in 
any direction u, not just the directions i and j.

For a physical interpretation of the directional derivative, suppose that T = ƒ(x, y) is 
the temperature at each point (x, y) over a region in the plane. Then ƒ(x0 , y0) is the tem-
perature at the point P0(x0, y0) and (Du ƒ)P0

 is the instantaneous rate of change of the tem-
perature at P0 stepping off in the direction u.

Calculation and gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function ƒ. We begin with the line

 x = x0 + su1 ,  y = y0 + su2 , (2)

z

x

yC

Q

s

Surface S:
z = f(x, y)

f(x0 + su1, y0 + su2) − f(x0, y0)

Tangent line

P(x0, y0, z0)

P0(x0, y0) u = u1i + u2j

(x0 + su1, y0 + su2)

Figure 14.28 The slope of the trace 
curve C at P0 is lim

QSP
 slope (PQ); this is the 

directional derivative

adƒ
ds
b

u, P0

= (Du ƒ)P0
.
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through P0(x0, y0), parametrized with the arc length parameter s increasing in the direction 
of the unit vector u = u1 i + u2 

  

j. Then by the Chain Rule we find

adƒ
ds
b

u, P0

= a0ƒ
0xb

P0

 
dx
ds

+ a0ƒ
0yb

P0

 
dy
ds

 Chain Rule for differentiable ƒ

= a0ƒ
0xb

P0

u1 + a0ƒ
0yb

P0

u2 From Eqs. (2), dx>ds = u1 
and dy>ds = u2

= c a0ƒ
0xb

P0

 i + a0ƒ
0yb

P0

j d # c u1 i + u2  j d . (3)

(++++)++++*        (++)++*
 Gradient of ƒ at P0 Direction u

Equation (3) says that the derivative of a differentiable function ƒ in the direction of u 
at P0 is the dot product of u with the special vector, which we now define.

theorem 9—the Directional Derivative is a Dot product If ƒ(x, y) is differ-
entiable in an open region containing P0(x0 , y0), then

 adƒ
ds
b

u, P0

= (∇ƒ)P0
# u, (4)

the dot product of the gradient ∇ƒ at P0 and u. In brief, Du ƒ = ∇ƒ # u.

Definition The gradient vector (gradient) of ƒ(x, y) at a point P0(x0 , y0) is 
the vector

∇ƒ =
0ƒ
0x i +

0ƒ
0y j

obtained by evaluating the partial derivatives of ƒ at P0 .

The notation ∇ƒ is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol ∇  by 
itself is read “del.” Another notation for the gradient is grad ƒ. Using the gradient notation, 
we restate Equation (3) as a theorem.

example 2  Find the derivative of ƒ(x, y) = xey + cos (xy) at the point (2, 0) in the 
direction of v = 3i - 4j.

Solution Recall that the direction of a vector v is the unit vector obtained by dividing v 
by its length:

u = v
0 v 0 = v

5
= 3

5
 i - 4

5
 j.

The partial derivatives of ƒ are everywhere continuous and at (2, 0) are given by

fx(2, 0) = (ey - y sin (xy))(2,0) = e0 - 0 = 1

fy(2, 0) = (xey - x sin (xy))(2,0) = 2e0 - 2 # 0 = 2.

The gradient of ƒ at (2, 0) is

∇ƒ 0 (2,0) = ƒx(2, 0)i + ƒy(2, 0)j = i + 2j
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(Figure 14.29). The derivative of ƒ at (2, 0) in the direction of v is therefore

(Duƒ)(2,0) = ∇ƒ 0 (2,0)
# u  Eq. (4) with the (Du ƒ)P0

 notation

= (i + 2j) # a3
5

 i - 4
5

 jb = 3
5

- 8
5

= -1. 

Evaluating the dot product in the brief version of Equation (4) gives

Duƒ = ∇ƒ # u = 0 ∇ƒ 0 0 u 0  cos u = 0 ∇ƒ 0  cos u,

where u is the angle between the vectors u and ∇ƒ, and reveals the following properties.

x

y

0 1 3 4

−1

1

2
∇ f = i + 2j

u =     i −    j3
5

4
5

P0(2, 0)

Figure 14.29 Picture ∇ƒ as a vector
in the domain of ƒ. The figure shows a 
number of level curves of ƒ. The rate at 
which ƒ changes at (2, 0) in the direction 
u is ∇ƒ # u = -1, which is the component 
of ∇ƒ in the direction of unit vector u 
(Example 2).

Properties of the Directional Derivative Duƒ = ∇ƒ # u = 0 ∇ƒ 0  cos u

1. The function ƒ increases most rapidly when cos u = 1 or when u = 0 and u 
is the direction of ∇ƒ. That is, at each point P in its domain, ƒ increases most 
rapidly in the direction of the gradient vector ∇ƒ at P. The derivative in this 
direction is

Duƒ = 0 ∇ƒ 0  cos (0) = 0 ∇ƒ 0 .
2. Similarly, ƒ decreases most rapidly in the direction of -∇ƒ. The derivative in 

this direction is Duƒ = 0 ∇ƒ 0 cos (p) = - 0 ∇ƒ 0 .
3. Any direction u orthogonal to a gradient ∇f ≠ 0 is a direction of zero change 

in ƒ because u then equals p>2 and

Duƒ = 0 ∇ƒ 0 cos (p>2) = 0 ∇ƒ 0 # 0 = 0.

As we discuss later, these properties hold in three dimensions as well as two.

example 3  Find the directions in which ƒ(x, y) = (x2>2) + (y2>2)

(a) increases most rapidly at the point (1, 1), and

 (b) decreases most rapidly at (1, 1).

 (c) What are the directions of zero change in ƒ at (1, 1)?

Solution

 (a) The function increases most rapidly in the direction of ∇ƒ at (1, 1). The gradient there 
is

(∇ƒ)(1,1) = (xi + yj)(1,1) = i + j.

Its direction is

u =
i + j

0 i + j 0 =
i + j2(1)2 + (1)2

= 122
 i + 122

 j.

 (b) The function decreases most rapidly in the direction of -∇ƒ at (1, 1), which is

-u = -  122
 i - 122

 j.

 (c) The directions of zero change at (1, 1) are the directions orthogonal to ∇ƒ:

n = -  122
 i + 122

 j  and  -n = 122
 i - 122

 j.

See Figure 14.30. 

z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid
increase in f

Most rapid
decrease in f

∇f = i + j

Zero change
in f

−∇f

z = f(x, y)

=      +
2
x2

2
y2

Figure 14.30 The direction in which 
ƒ(x, y) increases most rapidly at (1, 1) is 
the direction of ∇ƒ 0 (1,1) = i + j. It corre-
sponds to the direction of steepest ascent 
on the surface at (1, 1, 1) (Example 3).
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gradients and Tangents to Level Curves

If a differentiable function ƒ(x, y) has a constant value c along a smooth curve 
r = g(t)i + h(t)j (making the curve part of a level curve of ƒ), then ƒ(g(t), h(t)) = c. Dif-
ferentiating both sides of this equation with respect to t leads to the equations

d
dt

 ƒ(g(t), h(t)) = d
dt

 (c)

0ƒ
0x 

dg
dt

+
0ƒ
0y 

dh
dt

= 0     Chain Rule

a0ƒ
0x i +

0ƒ
0y jb # adg

dt
 i + dh

dt
 jb = 0. (5)

(++)++* (++)++*

 ∇ƒ 
dr
dt

Equation (5) says that ∇ƒ is normal to the tangent vector dr >dt, so it is normal to the curve.

At every point (x0 , y0) in the domain of a differentiable function ƒ(x, y), the gra-
dient of ƒ is normal to the level curve through (x0 , y0) (Figure 14.31).

The level curve f (x, y) = f (x0, y0)

(x0, y0)

∇ f (x0, y0)

Figure 14.31 The gradient of a dif-
ferentiable function of two variables at a 
point is always normal to the function’s 
level curve through that point.

y

x
0−1−2

1

1 2

∇ f (−2, 1) = −i + 2j x − 2y = −4

(−2, 1)

"2

2"2

+ y2 = 2x2

4

Figure 14.32 We can find the tangent 
to the ellipse (x2>4) + y2 = 2 by treating 
the ellipse as a level curve of the function 
ƒ(x, y) = (x2>4) + y2 (Example 4).

Equation (5) validates our observation that streams flow perpendicular to the contours 
in topographical maps (see Figure 14.26). Since the downflowing stream will reach its 
destination in the fastest way, it must flow in the direction of the negative gradient vectors 
from Property 2 for the directional derivative. Equation (5) tells us these directions are 
perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves. 
They are the lines normal to the gradients. The line through a point P0(x0 , y0) normal to a 
vector N = Ai + Bj has the equation

A(x - x0) + B( y - y0) = 0

(Exercise 39). If N is the gradient (∇ƒ)(x0, y0) = ƒx(x0 , y0)i + ƒy(x0 , y0)j, the equation gives 
the following formula.

Tangent Line to a Level Curve

 ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)(y - y0) = 0 (6)

example 4  Find an equation for the tangent to the ellipse

x2

4
+ y2 = 2

(Figure 14.32) at the point (-2, 1).

Solution The ellipse is a level curve of the function

ƒ(x, y) = x2

4
+ y2.
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The gradient of ƒ at (-2, 1) is

∇ƒ 0 (-2,1) = ax
2

 i + 2yjb
(-2,1)

= - i + 2 j.

The tangent to the ellipse at (-2, 1) is the line

(-1)(x + 2) + (2)(y - 1) = 0   Eq. (6)

x - 2y = -4. 

If we know the gradients of two functions ƒ and g, we automatically know the gradients of 
their sum, difference, constant multiples, product, and quotient. You are asked to establish 
the following rules in Exercise 40. Notice that these rules have the same form as the cor-
responding rules for derivatives of single-variable functions.

Algebra Rules for Gradients

1. Sum Rule: ∇(ƒ + g) = ∇ƒ + ∇g

2. Difference Rule: ∇(ƒ - g) = ∇ƒ - ∇g

3. Constant Multiple Rule: ∇(kƒ) = k∇ƒ  (any number k)

4. Product Rule: ∇(ƒg) = ƒ∇g + g∇ƒ

5. Quotient Rule: ∇ aƒgb =
g∇ƒ - ƒ∇g

g2  
Scalar multipliers on left 
of gradients

example 5  We illustrate two of the rules with

ƒ(x, y) = x - y g(x, y) = 3y

∇ƒ = i - j ∇g = 3j.
We have

 1. ∇(ƒ - g) = ∇(x - 4y) = i - 4j = ∇ƒ - ∇g  Rule 2

 2. ∇(ƒg) = ∇(3xy - 3y2) = 3yi + (3x - 6y)j

= 3y(i - j) + 3yj + (3x - 6y)j     g∇ƒ plus terms . . . 

simplified.= 3y(i - j) + (3x - 3y)j

= 3y(i - j) + (x - y)3j = g∇ƒ + ƒ∇g Rule 4 

Functions of Three variables

For a differentiable function ƒ(x, y, z) and a unit vector u = u1 
 

i + u2  j + u3 
 

k in space, 
we have

∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k

and

Duƒ = ∇ƒ # u =
0ƒ
0x u1 +

0ƒ
0y u2 +

0ƒ
0z u3.

The directional derivative can once again be written in the form

Duƒ = ∇ƒ # u = 0 ∇ƒ 0 0 u 0  cos u = 0 ∇ƒ 0  cos u,

so the properties listed earlier for functions of two variables extend to three variables. At 
any given point, ƒ increases most rapidly in the direction of ∇ƒ and decreases most rap-
idly in the direction of -∇ƒ. In any direction orthogonal to ∇ƒ, the derivative is zero.
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ExamplE 6  

 (a) Find the derivative of ƒ(x, y, z) = x3 - xy2 - z at P0(1, 1, 0) in the direction of 
v = 2i - 3j + 6k.

 (b) In what directions does ƒ change most rapidly at P0 , and what are the rates of change 
in these directions?

Solution

 (a) The direction of v is obtained by dividing v by its length:

0 v 0 = 2(2)2 + (-3)2 + (6)2 = 249 = 7

u = v
0 v 0 = 2

7 i - 3
7 j + 6

7 k.

The partial derivatives of ƒ at P0 are

ƒx = (3x2 - y2)(1,1,0) = 2,  ƒy = -2xy 0 (1,1,0) = -2,  ƒz = -1 0 (1,1,0) = -1.

The gradient of ƒ at P0 is

∇ƒ 0 (1,1,0) = 2i - 2j - k.

The derivative of ƒ at P0 in the direction of v is therefore

(Duƒ)(1,1,0) = ∇ƒ 0 (1,1,0)
# u = (2i - 2j - k) # a27 i - 3

7 j + 6
7 kb

= 4
7 + 6

7 - 6
7 = 4

7.

 (b) The function increases most rapidly in the direction of ∇ƒ = 2i - 2j - k and 
decreases most rapidly in the direction of -∇ƒ. The rates of change in the directions 
are, respectively,

 0 ∇ƒ 0 = 2(2)2 + (-2)2 + (-1)2 = 29 = 3  and  - 0 ∇ƒ 0 = -3. 

The Chain Rule for Paths

If r(t) = x(t) i + y(t) j + z(t) k is a smooth path C, and w = ƒ(r(t)) is a scalar function 
evaluated along C, then according to the Chain Rule, Theorem 6 in Section 14.4,

dw
dt

= 0w
0x  

dx
dt

+ 0w
0y  

dy
dt

+ 0w
0z  

dz
dt

.

The partial derivatives on the right-hand side of the above equation are evaluated along the 
curve r(t), and the derivatives of the intermediate variables are evaluated at t. If we express 
this equation using vector notation, we have

The Derivative Along a Path

 
d
dt

 ƒ(r(t)) = ∇ƒ(r(t)) # r′(t). (7)

What Equation (7) says is that the derivative of the composite function ƒ(r(t)) is the 
“derivative” (gradient) of the outside function ƒ “times” (dot product) the derivative of the 
inside function r. This is analogous to the “Outside-Inside” Rule for derivatives of com-
posite functions studied in Section 3.6. That is, the multivariable Chain Rule for paths has 
exactly the same form as the rule for single-variable differential calculus when appropriate 
interpretations are given to the meanings of the terms and operations involved.
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Calculating gradients
In Exercises 1–6, find the gradient of the function at the given point. 
Then sketch the gradient together with the level curve that passes 
through the point.

 1. ƒ(x, y) = y - x, (2, 1) 2. ƒ(x, y) = ln (x2 + y2), (1, 1)

 3. g(x, y) = xy2, (2, -1) 4. g(x, y) = x2

2
-

y2

2
, 122, 12

 5. ƒ(x, y) = 22x + 3y, (-1, 2)

 6. ƒ(x, y) = tan-1 
2x
y  , (4, -2)

In Exercises 7–10, find ∇f  at the given point.

 7. ƒ(x, y, z) = x2 + y2 - 2z2 + z ln x, (1, 1, 1)

 8. ƒ(x, y, z) = 2z3 - 3(x2 + y2)z + tan-1 xz, (1, 1, 1)

 9. ƒ(x, y, z) = (x2 + y2 + z2)-1>2 + ln (xyz), (-1, 2, -2)

 10. ƒ(x, y, z) = ex + y cos z + (y + 1) sin-1 x, (0, 0, p>6)

Finding Directional Derivatives
In Exercises 11–18, find the derivative of the function at P0 in the 
direction of u.

 11. ƒ(x, y) = 2xy - 3y2, P0(5, 5), u = 4i + 3j

 12. ƒ(x, y) = 2x2 + y2, P0(-1, 1), u = 3i - 4j

 13. g(x, y) =
x - y
xy + 2

, P0(1, -1), u = 12i + 5j

 14. h(x, y) = tan-1 (y>x) + 23 sin-1 (xy>2), P0(1, 1), 
u = 3i - 2j

 15. ƒ(x, y, z) = xy + yz + zx, P0(1, -1, 2), u = 3i + 6j - 2k

 16. ƒ(x, y, z) = x2 + 2y2 - 3z2, P0(1, 1, 1), u = i + j + k

 17. g(x, y, z) = 3ex cos yz, P0(0, 0, 0), u = 2i + j - 2k

 18. h(x, y, z) = cos xy + eyz + ln zx, P0(1, 0, 1>2), 
u = i + 2j + 2k

In Exercises 19–24, find the directions in which the functions increase 
and decrease most rapidly at P0 . Then find the derivatives of the func-
tions in these directions.

 19. ƒ(x, y) = x2 + xy + y2, P0(-1, 1)

 20. ƒ(x, y) = x2y + exy sin y, P0(1, 0)

 21. ƒ(x, y, z) = (x>y) - yz, P0(4, 1, 1)

 22. g(x, y, z) = xey + z2, P0(1, ln 2, 1>2)

 23. ƒ(x, y, z) = ln xy + ln yz + ln xz, P0(1, 1, 1)

 24. h(x, y, z) = ln (x2 + y2 - 1) + y + 6z, P0(1, 1, 0)

Tangent Lines to Level Curves
In Exercises 25–28, sketch the curve ƒ(x, y) = c together with ∇ƒ 
and the tangent line at the given point. Then write an equation for the 
tangent line.

 25. x2 + y2 = 4, 122, 222
 26. x2 - y = 1, 122, 12
 27. xy = -4, (2, -2)

 28. x2 - xy + y2 = 7, (-1, 2)

Theory and examples
 29. Let ƒ(x, y) = x2 - xy + y2 - y. Find the directions u and the 

values of Du ƒ(1, -1) for which

 a. Du ƒ(1, -1) is largest b. Du ƒ(1, -1) is smallest

 c. Du ƒ(1, -1) = 0 d. Du ƒ(1, -1) = 4

 e. Du ƒ(1, -1) = -3

 30. Let ƒ(x, y) =
(x - y)
(x + y)

. Find the directions u and the values of 

  Du ƒa-  
1
2

, 
3
2
b  for which

 a. Du ƒa-  
1
2

 , 
3
2
b  is largest b. Du ƒa-  

1
2

 , 
3
2
b  is smallest

 c. Du ƒa-  
1
2

 , 
3
2
b = 0 d. Du ƒa-  

1
2

 , 
3
2
b = -2

 e. Du ƒa-  
1
2

 , 
3
2
b = 1

 31. Zero directional derivative In what direction is the derivative 
of ƒ(x, y) = xy + y2 at P(3, 2) equal to zero?

 32. Zero directional derivative In what directions is the derivative 
of ƒ(x, y) = (x2 - y2) > (x2 + y2)  at P(1, 1) equal to zero?

 33. Is there a direction u in which the rate of change of ƒ(x, y) =  
x2 - 3xy + 4y2 at P(1, 2) equals 14? Give reasons for your answer.

 34. Changing temperature along a circle Is there a direction u in 
which the rate of change of the temperature function T(x, y, z) =  
2xy - yz (temperature in degrees Celsius, distance in feet) at 
P(1, -1, 1) is -3°C>ft? Give reasons for your answer.

 35. The derivative of ƒ(x, y) at P0(1, 2) in the direction of i + j is 
222 and in the direction of -2j is -3. What is the derivative of 
ƒ in the direction of - i - 2j? Give reasons for your answer.

 36. The derivative of ƒ(x, y, z) at a point P is greatest in the direction 
of v = i + j - k. In this direction, the value of the derivative is 
223.

 a. What is ∇ƒ at P ? Give reasons for your answer.

 b. What is the derivative of ƒ at P in the direction of i + j ?

 37. Directional derivatives and scalar components How is the 
derivative of a differentiable function ƒ(x, y, z) at a point P0 in the 
direction of a unit vector u related to the scalar component of 
(∇ƒ)P0

 in the direction of u? Give reasons for your answer.

 38. Directional derivatives and partial derivatives Assuming 
that the necessary derivatives of ƒ(x, y, z) are defined, how are 
Di  ƒ, Dj ƒ, and Dk ƒ related to ƒx , ƒy , and ƒz? Give reasons for 
your answer.

 39. Lines in the xy-plane Show that A(x - x0) + B( y - y0) = 0 
is an equation for the line in the xy-plane through the point (x0 , y0) 
normal to the vector N = Ai + Bj.

 40. The algebra rules for gradients Given a constant k and the 
gradients

∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k,  ∇g =

0g
0x i +

0g
0y j +

0g
0z k,

  establish the algebra rules for gradients.

exercises 14.5
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14.6 Tangent planes and Differentials

In single-variable differential calculus we saw how the derivative defined the tangent line to 
the graph of a differentiable function at a point on the graph. The tangent line then provided 
for a linearization of the function at the point. In this section, we will see analogously how 
the gradient defines the tangent plane to the level surface of a function w = ƒ(x, y, z) at a 
point on the surface. In the same way as before, the tangent plane then provides for a linear-
ization of ƒ at the point and defines the total differential of the function.

Tangent planes and normal Lines

If r(t) = x(t) i + y(t) j + z(t) k is a smooth curve on the level surface ƒ(x, y, z) = c of a 
differentiable function ƒ, we found in Equation (7) of the last section that

d
dt

 ƒ(r(t)) = ∇ƒ(r(t)) # r′(t).

Since ƒ is constant along the curve r, the derivative on the left-hand side of the equation is 
0, so the gradient ∇ƒ is orthogonal to the curve’s velocity vector r′.

Now let us restrict our attention to the curves that pass through P0 (Figure 14.33). All 
the velocity vectors at P0 are orthogonal to ∇ƒ at P0 , so the curves’ tangent lines all lie in 
the plane through P0 normal to ∇ƒ.  We now define this plane.

∇ f
v2

v1
P0

f (x, y, z) = c

Figure 14.33 The gradient ∇ƒ is 
orthogonal to the velocity vector of every 
smooth curve in the surface through P0. 
The velocity vectors at P0 therefore lie in a 
common plane, which we call the tangent 
plane at P0 . Definitions The tangent plane at the point P0(x0 , y0 , z0) on the level surface 

ƒ(x, y, z) = c of a differentiable function ƒ is the plane through P0 normal to 
∇ƒ 0 P0

.

The normal line of the surface at P0 is the line through P0 parallel to ∇ƒ 0 P0
.

From Section 12.5, the tangent plane and normal line have the following equations:

Tangent Plane to ƒ(x, y, z) = c at P0(x0 , y0 , z0)

 ƒx(P0)(x - x0) + ƒy(P0)(y - y0) + ƒz(P0)(z - z0) = 0 (1)

Normal Line to ƒ(x, y, z) = c at P0(x0 , y0 , z0)

 x = x0 + ƒx(P0)t,  y = y0 + ƒy(P0)t,  z = z0 + ƒz(P0)t (2)

example 1  Find the tangent plane and normal line of the level surface

ƒ(x, y, z) = x2 + y2 + z - 9 = 0 A circular paraboloid

at the point P0(1, 2, 4).

Solution The surface is shown in Figure 14.34.
The tangent plane is the plane through P0 perpendicular to the gradient of ƒ at P0 . The 

gradient is

∇ƒ 0 P0
= (2xi + 2yj + k)(1,2,4) = 2i + 4j + k.

The tangent plane is therefore the plane

2(x - 1) + 4( y - 2) + (z - 4) = 0,  or  2x + 4y + z = 14.

The line normal to the surface at P0 is

 x = 1 + 2t,  y = 2 + 4t,  z = 4 + t. 

z

y

x

Normal line

Tangent plane

The surface
x2 + y2 + z − 9 = 0

P0(1, 2, 4)

1 2

Figure 14.34 The tangent plane and 
normal line to this level surface at P0 
(Example 1).
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To find an equation for the plane tangent to a smooth surface z = ƒ(x, y) at a point 
P0(x0 , y0 , z0) where z0 = ƒ(x0 , y0), we first observe that the equation z = ƒ(x, y) is equiva-
lent to ƒ(x, y) - z = 0. The surface z = ƒ(x, y) is therefore the zero level surface of the 
function F(x, y, z) = ƒ(x, y) - z. The partial derivatives of F are

Fx = 0
0x (ƒ(x, y) - z) = fx - 0 = fx

Fy = 0
0y (ƒ(x, y) - z) = fy - 0 = fy

Fz = 0
0z (ƒ(x, y) - z) = 0 - 1 =  -1.

The formula

Fx(P0)(x - x0) + Fy(P0)( y - y0) + Fz(P0)(z - z0) = 0

for the plane tangent to the level surface at P0 therefore reduces to

ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - z0) = 0.

Plane Tangent to a Surface z = ƒ(x, y)  at (x0 , y0 , ƒ(x0 , y0))

The plane tangent to the surface z = ƒ(x, y) of a differentiable function ƒ at the 
point P0(x0 , y0 , z0) = (x0 , y0 , ƒ(x0 , y0)) is

 ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - z0) = 0. (3)

example 2  Find the plane tangent to the surface z = x cos y - yex at (0, 0, 0).

Solution We calculate the partial derivatives of ƒ(x, y) = x cos y - yex and use 
Equation (3):

ƒx(0, 0) = (cos y - yex)(0,0) = 1 - 0 # 1 = 1

ƒy(0, 0) = (-x sin y - ex)(0,0) = 0 - 1 =  -1.

The tangent plane is therefore

1 # (x - 0) - 1 # (y - 0) - (z - 0) = 0, Eq. (3)

or

 x - y - z = 0. 

z

y

x

∇g

(1, 1, 3)

∇ f

The cylinder
x2 + y2 − 2 = 0

f(x, y, z)

∇ f × ∇g

The plane
x + z − 4 = 0

g(x, y, z)

The ellipse E

Figure 14.35 This cylinder and plane 
intersect in an ellipse E (Example 3).

example 3  The surfaces

ƒ(x, y, z) = x2 + y2 - 2 = 0   A cylinder

and

g(x, y, z) = x + z - 4 = 0   A plane

meet in an ellipse E (Figure 14.35). Find parametric equations for the line tangent to E at 
the point P0(1, 1, 3).
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Solution The tangent line is orthogonal to both ∇ƒ and ∇g at P0 , and therefore parallel 
to v = ∇ƒ * ∇g. The components of v and the coordinates of P0 give us equations for 
the line. We have

∇ƒ 0 (1,1,3) = (2xi + 2yj)(1,1,3) = 2i + 2j

∇g 0 (1,1,3) = (i + k)(1,1,3) = i + k

v = (2i + 2j) * (i + k) = 3 i j k
2 2 0

1 0 1

3 = 2i - 2j - 2k.

The tangent line to the ellipse of intersection is

 x = 1 + 2t,  y = 1 - 2t,  z = 3 - 2t. 

estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to esti-
mate how much the value of a function ƒ changes if we move a small distance ds from a 
point P0 to another point nearby. If ƒ were a function of a single variable, we would have

dƒ = ƒ′(P0) ds. Ordinary derivative * increment

For a function of two or more variables, we use the formula

dƒ = (∇ƒ 0 P0
# u) ds, Directional derivative * increment

where u is the direction of the motion away from P0 .

Estimating the Change in ƒ in a Direction u

To estimate the change in the value of a differentiable function ƒ when we move 
a small distance ds from a point P0 in a particular direction u, use the formula

dƒ = (∇ƒ 0 P0
# u)  ds

 (+)+* ()*
 Directional Distance 
 derivative increment

example 4  Estimate how much the value of

ƒ(x, y, z) = y sin x + 2yz

will change if the point P(x, y, z) moves 0.1 unit from P0(0, 1, 0) straight toward 
P1(2, 2, -2).

Solution We first find the derivative of ƒ at P0 in the direction of the vector rP0 P1 =  
2i + j - 2k. The direction of this vector is

u =
rP0P1

� rP0P1 �
=
rP0P1

3 = 2
3 i + 1

3 j - 2
3 k.

The gradient of ƒ at P0 is

∇ƒ 0 (0,1,0) = (( y cos x)i + (sin x + 2z)j + 2yk)(0,1,0) = i + 2k.

Therefore,

∇ƒ �P0
# u = (i + 2k) # a23 i + 1

3 j - 2
3 kb = 2

3 - 4
3 = -  23 .
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The change dƒ in ƒ that results from moving ds = 0.1 unit away from P0 in the direction 
of u is approximately

dƒ = (∇ƒ 0 P0
# u)(ds) = a-  23b (0.1) ≈ -0.067 unit.

See Figure 14.36. 

How to Linearize a Function of Two variables

Functions of two variables can be complicated, and we sometimes need to approximate 
them with simpler ones that give the accuracy required for specific applications without 
being so difficult to work with. We do this in a way that is similar to the way we find linear 
replacements for functions of a single variable (Section 3.11).

Suppose the function we wish to approximate is z = ƒ(x, y) near a point (x0 , y0) at 
which we know the values of ƒ, ƒx , and ƒy and at which ƒ is differentiable. If we move 
from (x0 , y0) to any nearby point (x, y) by increments ∆x = x - x0 and ∆y = y - y0 (see 
Figure 14.37), then the definition of differentiability from Section 14.3 gives the change

ƒ(x, y) - ƒ(x0 , y0) = fx(x0 , y0)∆x + ƒy(x0 , y0)∆y + P1∆x + P2∆y,

where P1, P2 S 0 as ∆x, ∆y S 0. If the increments ∆x and ∆y are small, the products 
P1∆x and P2∆y will eventually be smaller still and we have the approximation

ƒ(x, y) ≈ ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)(y - y0).(+++++++++++++)+++++++++++++*
L(x, y)

In other words, as long as ∆x and ∆y are small, ƒ will have approximately the same value 
as the linear function L.

A point
near (x0, y0)

(x, y)

Δy = y − y0

Δx = x − x0
(x0, y0)

A point where
f is differentiable

Figure 14.37 If ƒ is differentiable 
at (x0 , y0), then the value of ƒ at any 
point (x, y) nearby is approximately 
ƒ(x0 , y0) + ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y.

Definitions The linearization of a function ƒ(x, y) at a point (x0 , y0) where ƒ 
is differentiable is the function

L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0).

The approximation

ƒ(x, y) ≈ L(x, y)

is the standard linear approximation of ƒ at (x0 , y0).

From Equation (3), we find that the plane z = L(x, y) is tangent to the surface 
z = ƒ(x, y) at the point (x0 , y0). Thus, the linearization of a function of two variables is a 
tangent-plane approximation in the same way that the linearization of a function of a sin-
gle variable is a tangent-line approximation. (See Exercise 55.)

example 5  Find the linearization of

ƒ(x, y) = x2 - xy + 1
2

 y2 + 3

at the point (3, 2).

P0

2
1

0

1

2
∇f

z

12

P1(2, 2, −2)

x

y

–2

Figure 14.36 As P(x, y, z) moves off 
the level surface at P0 by 0.1 unit directly 
toward P1, the function ƒ changes value by 
approximately -0.067 unit (Example 4).
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Solution We first evaluate ƒ, ƒx , and ƒy at the point (x0 , y0) = (3, 2):

ƒ(3, 2) = ax2 - xy + 1
2

 y2 + 3b
(3,2)

= 8

ƒx(3, 2) = 0
0x ax2 - xy + 1

2
 y2 + 3b

(3,2)
= (2x - y)(3,2) = 4

ƒy(3, 2) = 0
0y ax2 - xy + 1

2
 y2 + 3b

(3,2)
= (-x + y)(3,2) = -1, 

giving

L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)

= 8 + (4)(x - 3) + (-1)(y - 2) = 4x - y - 2.

The linearization of ƒ at (3, 2) is L(x, y) = 4x - y - 2 (see Figure 14.38). 

When approximating a differentiable function ƒ(x, y) by its linearization L(x, y) at 
(x0 , y0), an important question is how accurate the approximation might be.

If we can find a common upper bound M for 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on a rectangle R 
centered at (x0, y0) (Figure 14.39), then we can bound the error E throughout R by 
using a simple formula (derived in Section 14.9). The error is defined by E(x, y) =  
ƒ(x, y) - L(x, y).

Figure 14.38 The tangent plane 
L(x, y) represents the linearization of 
ƒ(x, y) in Example 5.

x

z

4

4 3 2

3

1

y

(3, 2, 8)

z = f (x, y)

L(x, y)

y

x
0

k
h

R

(x0, y0)

Figure 14.39 The rectangular region 
R: 0 x - x0 0 … h, 0 y - y0 0 … k in the 
xy-plane.

The Error in the Standard Linear Approximation

If ƒ has continuous first and second partial derivatives throughout an open set 
containing a rectangle R centered at (x0, y0) and if M is any upper bound for the 
values of 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on R, then the error E(x, y) incurred in replacing 
ƒ(x, y) on R by its linearization

L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)

satisfies the inequality

0E(x, y) 0 … 1
2

 M( 0 x - x0 0 + 0 y - y0 0 )2.

To make 0E(x, y) 0  small for a given M, we just make 0 x - x0 0  and 0 y - y0 0  small.

Differentials

Recall from Section 3.11 that for a function of a single variable, y = ƒ(x), we defined the 
change in ƒ as x changes from a to a + ∆x by

∆ƒ = ƒ(a + ∆x) - ƒ(a)

and the differential of ƒ as

dƒ = ƒ′(a)∆x.

We now consider the differential of a function of two variables.
Suppose a differentiable function ƒ(x, y) and its partial derivatives exist at a point 

(x0, y0). If we move to a nearby point (x0 + ∆x, y0 + ∆y), the change in ƒ is

∆ƒ = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0).
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A straightforward calculation from the definition of L(x, y), using the notation x - x0 = ∆x 
and y - y0 = ∆y, shows that the corresponding change in L is

∆L = L(x0 + ∆x, y0 + ∆y) - L(x0, y0)

= ƒx(x0, y0)∆x + ƒy(x0, y0)∆y.

The differentials dx and dy are independent variables, so they can be assigned any values. 
Often we take dx = ∆x = x - x0 , and dy = ∆y = y - y0 . We then have the following 
definition of the differential or total differential of ƒ.

Definition If we move from (x0, y0) to a point (x0 + dx, y0 + dy) nearby, the 
resulting change

dƒ = ƒx(x0, y0) dx + ƒy(x0, y0) dy

in the linearization of ƒ is called the total differential of f.

example 6  Suppose that a cylindrical can is designed to have a radius of 1 in. and a 
height of 5 in., but that the radius and height are off by the amounts dr = +0.03 and 
dh = -0.1. Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in V = pr2h, we use

∆V ≈ dV = Vr(r0 , h0) dr + Vh(r0 , h0) dh.

With Vr = 2prh and Vh = pr2, we get

dV = 2pr0h0 dr + pr0 2 dh = 2p(1)(5)(0.03) + p(1)2(-0.1)

= 0.3p - 0.1p = 0.2p ≈ 0.63 in3 

example 7  Your company manufactures stainless steel right circular cylindrical 
molasses storage tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks’ 
volumes to small variations in height and radius?

Solution With V = pr2h, the total differential gives the approximation for the change 
in volume as

dV = Vr(5, 25) dr + Vh(5, 25) dh

= (2prh)(5,25) dr + (pr2)(5,25) dh

= 250p dr + 25p dh. 

Thus, a 1-unit change in r will change V by about 250p units. A 1-unit change in h will 
change V by about 25p units. The tank’s volume is 10 times more sensitive to a small 
change in r than it is to a small change of equal size in h. As a quality control engineer 
concerned with being sure the tanks have the correct volume, you would want to pay spe-
cial attention to their radii.

In contrast, if the values of r and h are reversed to make r = 25 and h = 5, then the 
total differential in V becomes

dV = (2prh)(25,5) dr + (pr2)(25,5) dh = 250p dr + 625p dh.

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.40).
The general rule is that functions are most sensitive to small changes in the variables 

that generate the largest partial derivatives. 

(a) (b)

r = 5

r = 25
h = 25

h = 5

Figure 14.40 The volume of cylinder 
(a) is more sensitive to a small change in r 
than it is to an equally small change in h. 
The volume of cylinder (b) is more  
sensitive to small changes in h than it  
is to small changes in r (Example 7).
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Functions of More Than Two variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ƒ(x, y, z) at a point P0(x0, y0, z0) is

L(x, y, z) = ƒ(P0) + ƒx(P0)(x - x0) + ƒy(P0)(y - y0) + ƒz(P0)(z - z0).

2. Suppose that R is a closed rectangular solid centered at P0 and lying in an open region 
on which the second partial derivatives of ƒ are continuous. Suppose also that 
0 ƒxx 0 , 0 ƒyy 0 , 0 ƒzz 0 , 0 ƒxy 0 , 0 ƒxz 0 , and 0 ƒyz 0  are all less than or equal to M throughout R. 
Then the error E(x, y, z) = ƒ(x, y, z) - L(x, y, z) in the approximation of ƒ by L is 
bounded throughout R by the inequality

0E 0 … 1
2

 M( 0 x - x0 0 + 0 y - y0 0 + 0 z - z0 0 )2.

3. If the second partial derivatives of ƒ are continuous and if x, y, and z change from x0 , y0 , 
and z0 by small amounts dx, dy, and dz, the total differential

dƒ = ƒx(P0) dx + ƒy(P0) dy + ƒz(P0) dz

 gives a good approximation of the resulting change in ƒ.

example 8  Find the linearization L(x, y, z) of

ƒ(x, y, z) = x2 - xy + 3 sin z

at the point (x0 , y0 , z0) = (2, 1, 0). Find an upper bound for the error incurred in replacing 
ƒ by L on the rectangular region

R: 0 x - 2 0 … 0.01,  0 y - 1 0 … 0.02,  0 z 0 … 0.01.

Solution Routine calculations give

ƒ(2, 1, 0) = 2,  ƒx(2, 1, 0) = 3,  ƒy(2, 1, 0) = -2,  ƒz(2, 1, 0) = 3.

Thus,

L(x, y, z) = 2 + 3(x - 2) + (-2)( y - 1) + 3(z - 0) = 3x - 2y + 3z - 2.

Since

ƒxx = 2,  ƒyy = 0,  ƒzz = -3 sin z,  ƒxy = -1,  ƒxz = 0,  ƒyz = 0, 

and 0-3 sin z 0 … 3 sin 0.01 ≈ 0.03, we may take M = 2 as a bound on the second par-
tials. Hence, the error incurred by replacing ƒ by L on R satisfies

 0E 0 … 1
2

 (2)(0.01 + 0.02 + 0.01)2 = 0.0016. 

Tangent planes and normal Lines to Surfaces
In Exercises 1–8, find equations for the

(a) tangent plane and

(b) normal line at the point P0 on the given surface.

 1. x2 + y2 + z2 = 3, P0(1, 1, 1)

 2. x2 + y2 - z2 = 18, P0(3, 5, -4)

 3. 2z - x2 = 0, P0(2, 0, 2)

 4. x2 + 2xy - y2 + z2 = 7, P0(1, -1, 3)

 5. cos px - x2y + exz + yz = 4, P0(0, 1, 2)

 6. x2 - xy - y2 - z = 0, P0(1, 1, -1)

 7. x + y + z = 1, P0(0, 1, 0)

 8. x2 + y2 - 2xy - x + 3y - z = -4, P0(2, -3, 18)

In Exercises 9–12, find an equation for the plane that is tangent to the 
given surface at the given point.

 9. z = ln (x2 + y2), (1, 0, 0) 10. z = e-(x2 + y2), (0, 0, 1)

 11. z = 2y - x, (1, 2, 1) 12. z = 4x2 + y2, (1, 1, 5)

exercises 14.6
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Tangent Lines to intersecting Surfaces
In Exercises 13–18, find parametric equations for the line tangent to 
the curve of intersection of the surfaces at the given point.

 13. Surfaces: x + y2 + 2z = 4, x = 1

  Point: (1, 1, 1)

 14. Surfaces: xyz = 1, x2 + 2y2 + 3z2 = 6

  Point: (1, 1, 1)

 15. Surfaces: x2 + 2y + 2z = 4, y = 1

  Point: (1, 1, 1 >2)

 16. Surfaces: x + y2 + z = 2, y = 1

  Point: (1 >2, 1, 1 >2)

 17. Surfaces: x3 + 3x2y2 + y3 + 4xy - z2 = 0, 
   x2 + y2 + z2 = 11

  Point: (1, 1, 3)

 18. Surfaces: x2 + y2 = 4, x2 + y2 - z = 0

  Point: 122, 22, 42

estimating Change
 19. By about how much will

ƒ(x, y, z) = ln2x2 + y2 + z2

  change if the point P(x, y, z) moves from P0(3, 4, 12) a distance of 
ds = 0.1 unit in the direction of 3i + 6j - 2k?

 20. By about how much will

ƒ(x, y, z) = ex cos yz

  change as the point P(x, y, z) moves from the origin a distance of 
ds = 0.1 unit in the direction of 2i + 2j - 2k?

 21. By about how much will

g(x, y, z) = x + x cos z - y sin z + y

  change if the point P(x, y, z) moves from P0(2, -1, 0) a distance 
of ds = 0.2 unit toward the point P1(0, 1, 2)?

 22. By about how much will

h(x, y, z) = cos (pxy) + xz2

  change if the point P(x, y, z) moves from P0(-1, -1, -1) a dis-
tance of ds = 0.1 unit toward the origin?

 23. Temperature change along a circle Suppose that the Celsius 
temperature at the point (x, y) in the xy-plane is T(x, y) = x sin 2y 
and that distance in the xy-plane is measured in meters. A particle 
is moving clockwise around the circle of radius 1 m centered at 
the origin at the constant rate of 2 m > sec.

 a. How fast is the temperature experienced by the particle 
changing in degrees Celsius per meter at the point 
P11>2, 23>22?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

 24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by T(x, y, z) = 2x2 - xyz. 
A particle is moving in this region and its position at time t is 
given by x = 2t2, y = 3t, z = - t2, where time is measured in 
seconds and distance in meters.

 a. How fast is the temperature experienced by the particle 
changing in degrees Celsius per meter when the particle is at 
the point P(8, 6, -4)?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

Finding Linearizations
In Exercises 25–30, find the linearization L(x, y) of the function at 
each point.

 25. ƒ(x, y) = x2 + y2 + 1  at a. (0, 0), b. (1, 1)

 26. ƒ(x, y) = (x + y + 2)2  at a. (0, 0), b. (1, 2)

 27. ƒ(x, y) = 3x - 4y + 5  at a. (0, 0), b. (1, 1)

 28. ƒ(x, y) = x3y4  at a. (1, 1), b. (0, 0)

 29. ƒ(x, y) = ex cos y  at a. (0, 0), b. (0, p>2)

 30. ƒ(x, y) = e2y - x  at a. (0, 0), b. (1, 2)

 31. Wind chill factor Wind chill, a measure of the apparent tem-
perature felt on exposed skin, is a function of air temperature and 
wind speed. The precise formula, updated by the National Weather 
Service in 2001 and based on modern heat transfer theory, a 
human face model, and skin tissue resistance, is

W = W(y, T ) = 35.74 + 0.6215 T - 35.75 y0.16

+ 0.4275 T # y0.16,

  where T is air temperature in °F and y is wind speed in mph. A 
partial wind chill chart is given.

T(°F) 

   30 25 20 15 10 5 0 −5 −10

  5 25 19 13 7 1 -5 -11 -16 -22

  10 21 15 9 3 -4 -10 -16 -22 -28

     Y 15 19 13 6 0 -7 -13 -19 -26 -32

 (mph) 20 17 11 4 -2 -9 -15 -22 -29 -35

  25 16 9 3 -4 -11 -17 -24 -31 -37

  30 15 8 1 -5 -12 -19 -26 -33 -39

  35 14 7 0 -7 -14 -21 -27 -34 -41

 a. Use the table to find W(20, 25), W(30, -10), and W(15, 15).

 b. Use the formula to find W(10, -40), W(50, -40), and 
W(60, 30).

 c. Find the linearization L(y, T ) of the function W(y, T ) at the 
point (25, 5).

 d. Use L(y, T) in part (c) to estimate the following wind chill 
values.

   i) W(24, 6) ii) W(27, 2)

  iii)  W(5, -10) (Explain why this value is much different 
from the value found in the table.)

 32. Find the linearization L(y, T ) of the function W(y, T ) in Exercise 
31 at the point (50, -20). Use it to estimate the following wind 
chill values.

 a. W(49, -22)

 b. W(53, -19)

 c. W(60, -30)
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Bounding the error in Linear approximations
In Exercises 33–38, find the linearization L(x, y) of the function ƒ(x, y) 
at P0. Then find an upper bound for the magnitude 0E 0  of the error in 
the approximation ƒ(x, y) ≈ L(x, y) over the rectangle R.

 33. ƒ(x, y) = x2 - 3xy + 5  at  P0(2, 1),

  R: 0 x - 2 0 … 0.1, 0 y - 1 0 … 0.1

 34. ƒ(x, y) = (1>2)x2 + xy + (1>4)y2 + 3x - 3y + 4  at  P0(2, 2),

  R: 0 x - 2 0 … 0.1, 0 y - 2 0 … 0.1

 35. ƒ(x, y) = 1 + y + x cos y at P0(0, 0),

  R: 0 x 0 … 0.2, 0 y 0 … 0.2

  (Use 0 cos y 0 … 1 and 0 sin y 0 … 1 in estimating E.)

 36. ƒ(x, y) = xy2 + y cos (x - 1)  at  P0(1, 2),

  R: 0 x - 1 0 … 0.1, 0 y - 2 0 … 0.1

 37. ƒ(x, y) = ex cos y  at  P0(0, 0),

  R: 0 x 0 … 0.1, 0 y 0 … 0.1

  (Use ex … 1.11 and 0 cos y 0 … 1 in estimating E.)

 38. ƒ(x, y) = ln x + ln y  at  P0(1, 1),

  R: 0 x - 1 0 … 0.2, 0 y - 1 0 … 0.2

Linearizations for Three variables
Find the linearizations L(x, y, z) of the functions in Exercises 39–44 at 
the given points.

 39. ƒ(x, y, z) = xy + yz + xz at

 a. (1, 1, 1) b. (1, 0, 0) c. (0, 0, 0)

 40. ƒ(x, y, z) = x2 + y2 + z2 at

 a. (1, 1, 1) b. (0, 1, 0) c. (1, 0, 0)

 41. ƒ(x, y, z) = 2x2 + y2 + z2 at

 a. (1, 0, 0) b. (1, 1, 0) c. (1, 2, 2)

 42. ƒ(x, y, z) = (sin xy)>z at

 a. (p>2, 1, 1) b. (2, 0, 1)

 43. ƒ(x, y, z) = ex + cos (y + z) at

 a. (0, 0, 0) b. a0, 
p

2
, 0b  c. a0, 

p

4
, 
p

4
b

 44. ƒ(x, y, z) = tan-1 (xyz) at

 a. (1, 0, 0) b. (1, 1, 0) c. (1, 1, 1)

In Exercises 45–48, find the linearization L(x, y, z) of the function 
ƒ(x, y, z) at P0 . Then find an upper bound for the magnitude of the 
error E in the approximation ƒ(x, y, z) ≈ L(x, y, z) over the region R.

 45. ƒ(x, y, z) = xz - 3yz + 2 at P0(1, 1, 2),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z - 2 0 … 0.02

 46. ƒ(x, y, z) = x2 + xy + yz + (1>4)z2 at P0(1, 1, 2),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z - 2 0 … 0.08

 47. ƒ(x, y, z) = xy + 2yz - 3xz at P0(1, 1, 0),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z 0 … 0.01

 48. ƒ(x, y, z) = 22 cos x sin ( y + z) at P0(0, 0, p>4),

  R: 0 x 0 … 0.01, 0 y 0 … 0.01, 0 z - p>4 0 … 0.01

estimating error; Sensitivity to Change
 49. Estimating maximum error Suppose that T is to be found 

from the formula T = x (ey + e-y), where x and y are found to be 
2 and ln 2 with maximum possible errors of 0 dx 0 = 0.1 and 

0 dy 0 =  0.02. Estimate the maximum possible error in the com-
puted value of T.

 50. Variation in electrical resistance The resistance R produced 
by wiring resistors of R1 and R2 ohms in parallel (see accompa-
nying figure) can be calculated from the formula

1
R

= 1
R1

+ 1
R2

.

 a. Show that

dR = a R
R1
b

2

 dR1 + a R
R2
b

2

 dR2 .

 b. You have designed a two-resistor circuit, like the one shown, 
to have resistances of R1 = 100 ohms and R2 = 400 ohms, 
but there is always some variation in manufacturing and the 
resistors received by your firm will probably not have these 
exact values. Will the value of R be more sensitive to varia-
tion in R1 or to variation in R2? Give reasons for your answer.

+

−
V R1 R2

 c. In another circuit like the one shown, you plan to change R1 
from 20 to 20.1 ohms and R2 from 25 to 24.9 ohms. By about 
what percentage will this change R?

 51. You plan to calculate the area of a long, thin rectangle from mea-
surements of its length and width. Which dimension should you 
measure more carefully? Give reasons for your answer.

 52. a.  Around the point (1, 0), is ƒ(x, y) = x2( y + 1) more sensitive to 
changes in x or to changes in y? Give reasons for your answer.

 b. What ratio of dx to dy will make dƒ equal zero at (1, 0)?

 53. Value of a 2 : 2 determinant If 0 a 0  is much greater than 
0 b 0 , 0 c 0 , and 0 d 0 , to which of a, b, c, and d is the value of the 
determinant

ƒ(a, b, c, d) = ` a b

c d
`

  most sensitive? Give reasons for your answer.

 54. The Wilson lot size formula The Wilson lot size formula in eco-
nomics says that the most economical quantity Q of goods (radios, 
shoes, brooms, whatever) for a store to order is given by the for-
mula Q = 22KM>h, where K is the cost of placing the order, M 
is the number of items sold per week, and h is the weekly holding 
cost for each item (cost of space, utilities, security, and so on). To 
which of the variables K, M, and h is Q most sensitive near the 
point (K0 , M0 , h0) = (2, 20, 0.05)? Give reasons for your answer.

Theory and examples
 55. The linearization of ƒ(x , y) is a tangent-plane approximation 

Show that the tangent plane at the point P0(x0, y0, ƒ(x0, y0)) on the 
surface z = ƒ(x, y) defined by a differentiable function ƒ is the 
plane

ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - ƒ(x0 , y0)) = 0
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  or

z = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0).

  Thus, the tangent plane at P0 is the graph of the linearization of ƒ 
at P0 (see accompanying figure).

z

x

y

(x0,  y0)

z = L(x, y)

z = f(x, y)

(x0,  y0, f(x0, y0))

 56. Change along the involute of a circle Find the derivative of 
ƒ(x, y) = x2 + y2 in the direction of the unit tangent vector of 
the curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j,  t 7 0.

 57. Tangent curves A smooth curve is tangent to the surface at a 
point of intersection if its velocity vector is orthogonal to ∇f  there.

Show that the curve

r(t) = 2t  i + 2t  j + (2t - 1) k

  is tangent to the surface x2 + y2 - z = 1 when t = 1.

 58. Normal curves A smooth curve is normal to a surface 
ƒ(x, y, z) = c at a point of intersection if the curve’s velocity 
vector is a nonzero scalar multiple of ∇ƒ at the point.

Show that the curve

r(t) = 2t  i + 2t  j - 1
4

 (t + 3)k

  is normal to the surface x2 + y2 - z = 3 when t = 1.

14.7 extreme values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded domains 
(see Figures 14.41 and 14.42). We see in this section that we can narrow the search for these 
extreme values by examining the functions’ first partial derivatives. A function of two vari-
ables can assume extreme values only at domain boundary points or at interior domain 
points where both first partial derivatives are zero or where one or both of the first partial 
derivatives fail to exist. However, the vanishing of derivatives at an interior point (a, b) does 
not always signal the presence of an extreme value. The surface that is the graph of the 
function might be shaped like a saddle right above (a, b) and cross its tangent plane there.

Derivative Tests for Local extreme values

To find the local extreme values of a function of a single variable, we look for points 
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function ƒ(x, y) of two variables, we look 
for points where the surface z = ƒ(x, y) has a horizontal tangent plane. At such points, we 
then look for local maxima, local minima, and saddle points. We begin by defining max-
ima and minima.

y

x

Figure 14.41 The function

z = (cos x)(cos y)e-2x2 + y2

has a maximum value of 1 and a mini-
mum value of about -0.067 on the square 
region 0 x 0 … 3p>2, 0 y 0 … 3p>2.

Historical BiograpHy

Siméon-Denis Poisson
(1781–1840)

Definitions Let ƒ(x, y) be defined on a region R containing the point (a, b). 
Then

1. ƒ(a, b) is a local maximum value of ƒ if ƒ(a, b) Ú ƒ(x, y) for all domain 
points (x, y) in an open disk centered at (a, b).

2. ƒ(a, b) is a local minimum value of ƒ if ƒ(a, b) … ƒ(x, y) for all domain 
points (x, y) in an open disk centered at (a, b).

Local maxima correspond to mountain peaks on the surface z = ƒ(x, y) and local minima 
correspond to valley bottoms (Figure 14.43). At such points the tangent planes, when they 
exist, are horizontal. Local extrema are also called relative extrema.
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As with functions of a single variable, the key to identifying the local extrema is the 
First Derivative Test, which we next state and prove.

z

y
x

Figure 14.42 The “roof surface”

z = 1
2

 1 @ 0 x 0 - 0 y 0 @ - 0 x 0 - 0 y 0 2
has a maximum value of 0 and a minimum 
value of -a on the square region 0 x 0 … a, 
0 y 0 … a.

Local maxima
(no greater value of f nearby)

Local minimum
(no smaller value
of f nearby)

Figure 14.43 A local maximum occurs at a mountain peak and a 
local minimum occurs at a valley low point.

Proof  If ƒ has a local extremum at (a, b), then the function g(x) = ƒ(x, b) has a local 
extremum at x = a (Figure 14.44). Therefore, g′(a) = 0 (Chapter 4, Theorem 2). Now 
g′(a) = ƒx(a, b), so ƒx(a, b) = 0. A similar argument with the function h(y) = ƒ(a, y) 
shows that ƒy(a, b) = 0. 

If we substitute the values ƒx(a, b) = 0 and ƒy(a, b) = 0 into the equation

ƒx(a, b)(x - a) + ƒy(a, b)( y - b) - (z - ƒ(a, b)) = 0

for the tangent plane to the surface z = ƒ(x, y) at (a, b), the equation reduces to

0 # (x - a) + 0 # ( y - b) - z + ƒ(a, b) = 0

or

z = ƒ(a, b).

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a 
local extremum, provided there is a tangent plane there.

theorem 10—first Derivative test for local extreme Values If ƒ(x, y) has a 
local maximum or minimum value at an interior point (a, b) of its domain and if 
the first partial derivatives exist there, then ƒx(a, b) = 0 and ƒy(a, b) = 0.

y

x

0

z

a
b

(a, b, 0)

h(y) = f(a, y)

z = f(x, y)

= 0
0f
0y

= 0
0f
0x

g(x) = f(x, b)

Figure 14.44 If a local maximum of 
ƒ occurs at x = a, y = b, then the first 
partial derivatives ƒx(a, b) and ƒy(a, b) are 
both zero.

Definition An interior point of the domain of a function ƒ(x, y) where both ƒx 
and ƒy are zero or where one or both of ƒx and ƒy do not exist is a critical point 
of ƒ.

Theorem 10 says that the only points where a function ƒ(x, y) can assume extreme 
values are critical points and boundary points. As with differentiable functions of a sin-
gle variable, not every critical point gives rise to a local extremum. A differentiable 
function of a single variable might have a point of inflection. A differentiable function 
of two variables might have a saddle point, with the graph of ƒ crossing the tangent 
plane defined there.

8/26/13   6:51 PM
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example 1  Find the local extreme values of ƒ(x, y) = x2 + y2 - 4y + 9.

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the 
partial derivatives ƒx = 2x and ƒy = 2y - 4 exist everywhere. Therefore, local extreme 
values can occur only where

ƒx = 2x = 0  and  ƒy = 2y - 4 = 0.

The only possibility is the point (0, 2), where the value of ƒ is 5. Since ƒ(x, y) =
x2 + (y - 2)2 + 5 is never less than 5, we see that the critical point (0, 2) gives a local 
minimum (Figure 14.46). 

Definition A differentiable function ƒ(x, y) has a saddle point at a critical 
point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) 
where ƒ(x, y) 7 ƒ(a, b) and domain points (x, y) where ƒ(x, y) 6 ƒ(a, b). The 
corresponding point (a, b, ƒ(a, b)) on the surface z = ƒ(x, y) is called a saddle 
point of the surface (Figure 14.45).

x

z

y

x

z

y

z =
xy (x2 − y2)

x2 + y2

z = y2 − y4 − x2

Figure 14.45 Saddle points at the 
origin.

1
2

1 2 3 4

5

z

y
x

10

15

Figure 14.46 The graph of the  
function ƒ(x, y) = x2 + y2 - 4y + 9 is 
a paraboloid which has a local minimum 
value of 5 at the point (0, 2) (Example 1).

theorem 11—second Derivative test for local extreme Values Suppose 
that ƒ(x, y) and its first and second partial derivatives are continuous throughout a 
disk centered at (a, b) and that ƒx(a, b) = ƒy(a, b) = 0. Then

  i) ƒ has a local maximum at (a, b) if ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b).

 ii) ƒ has a local minimum at (a, b) if ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b).

iii) ƒ has a saddle point at (a, b) if ƒxx ƒyy - ƒxy 2 6 0 at (a, b).

 iv)  the test is inconclusive at (a, b) if ƒxx ƒyy - ƒxy 2 = 0 at (a, b). In this case, 
we must find some other way to determine the behavior of ƒ at (a, b).

The expression ƒxx ƒyy - ƒxy 

2 is called the discriminant or Hessian of ƒ. It is some-
times easier to remember it in determinant form,

ƒxx ƒyy - ƒxy 2 = ` ƒxx ƒxy

ƒxy ƒyy
` .

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface curves 
the same way in all directions: downward if ƒxx 6 0, giving rise to a local maximum, and 

example 2  Find the local extreme values (if any) of ƒ(x, y) = y2 - x2.

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the 
partial derivatives ƒx = -2x and ƒy = 2y exist everywhere. Therefore, local extrema can 
occur only at the origin (0, 0) where ƒx = 0 and ƒy = 0. Along the positive x-axis, how-
ever, ƒ has the value ƒ(x, 0) = -x2 6 0; along the positive y-axis, ƒ has the value 
ƒ(0, y) = y2 7 0. Therefore, every open disk in the xy-plane centered at (0, 0) contains 
points where the function is positive and points where it is negative. The function has a 
saddle point at the origin and no local extreme values (Figure 14.47a). Figure 14.47b  
displays the level curves (they are hyperbolas) of ƒ, and shows the function decreasing  
and increasing in an alternating fashion among the four groupings of hyperbolas. 

That ƒx = ƒy = 0 at an interior point (a, b) of R does not guarantee ƒ has a local 
extreme value there. If ƒ and its first and second partial derivatives are continuous on R, 
however, we may be able to learn more from the following theorem, proved in Section 14.9.
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upward if ƒxx 7 0, giving a local minimum. On the other hand, if the discriminant is nega-
tive at (a, b), then the surface curves up in some directions and down in others, so we have a 
saddle point.

example 3  Find the local extreme values of the function

ƒ(x, y) = xy - x2 - y2 - 2x - 2y + 4.

Solution The function is defined and differentiable for all x and y, and its domain has no 
boundary points. The function therefore has extreme values only at the points where ƒx 
and ƒy are simultaneously zero. This leads to

ƒx = y - 2x - 2 = 0,  ƒy = x - 2y - 2 = 0,

or

x = y = -2.

Therefore, the point (-2, -2) is the only point where ƒ may take on an extreme value. To 
see if it does so, we calculate

ƒxx = -2,  ƒyy = -2,  ƒxy = 1.

The discriminant of ƒ at (a, b) = (-2, -2) is

ƒxx ƒyy - ƒxy 

2 = (-2)(-2) - (1)2 = 4 - 1 = 3.

The combination

ƒxx 6 0  and  ƒxx ƒyy - ƒxy 2 7 0

tells us that ƒ has a local maximum at (-2, -2). The value of ƒ at this point is 
ƒ(-2, -2) = 8. 

example 4  Find the local extreme values of ƒ(x, y) = 3y2 - 2y3 - 3x2 + 6xy.

Solution Since ƒ is differentiable everywhere, it can assume extreme values only where

ƒx = 6y - 6x = 0  and  ƒy = 6y - 6y2 + 6x = 0.

From the first of these equations we find x = y, and substitution for y into the second 
equation then gives

6x - 6x2 + 6x = 0  or  6x (2 - x) = 0.

The two critical points are therefore (0, 0) and (2, 2).
To classify the critical points, we calculate the second derivatives:

ƒxx = -6,  ƒyy = 6 - 12y,  ƒxy = 6.

The discriminant is given by

ƒxxƒyy - ƒxy 

2 = (-36 + 72y) - 36 = 72(y - 1).

At the critical point (0, 0) we see that the value of the discriminant is the negative number 
-72, so the function has a saddle point at the origin. At the critical point (2, 2) we see that 
the discriminant has the positive value 72. Combining this result with the negative value of 
the second partial ƒxx = -6, Theorem 11 says that the critical point (2, 2) gives a local 
maximum value of ƒ(2, 2) = 12 - 16 - 12 + 24 = 8. A graph of the surface is shown 
in Figure 14.48. 

example 5  Find the critical points of the function ƒ(x, y) = 10xye- (x2 + y2) and use 
the Second Derivative Test to classify each point as one where a saddle, local minimum, or 
local maximum occurs.

y

x

Saddle
point

f inc

f dec

f inc

f dec

−1−3
−1 −3

3

1

3

1

y

z

x

z = y2 − x2

Figure 14.47 (a) The origin is a saddle 
point of the function ƒ(x, y) = y2 - x2. 
There are no local extreme values  
(Example 2). (b) Level curves for  
the function ƒ in Example 2.

(a)

(b)

3

5

10

3

z

y

x

2
1

Figure 14.48 The surface 
z = 3y2 - 2y3 - 3x2 + 6xy has a saddle 
point at the origin and a local maximum at 
the point (2, 2) (Example 4).
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Solution First we find the partial derivatives fx and fy and set them simultaneously to 
zero in seeking the critical points:

fx = 10ye- (x2 + y2) - 20x2ye- (x2 + y2) = 10y(1 - 2x2)e- (x2 + y2) = 0 1 y = 0 or 1 - 2x2 = 0,

fy = 10xe- (x2 + y2) - 20xy2e- (x2 + y2) = 10x(1 - 2y2)e- (x2 + y2) = 0 1 x = 0 or 1 - 2y2 = 0.

Since both partial derivatives are continuous everywhere, the only critical points are

(0, 0), a 122
, 122

b , a-  122
, 122

b , a 122
, -  122

b , and a-  122
, -  122

b .

Next we calculate the second partial derivatives in order to evaluate the discriminant 
at each critical point:

fxx = -20xy(1 - 2x2)e- (x2 + y2) - 40xye- (x2 + y2) = -20xy(3 - 2x2)e- (x2 + y2),

fxy = fyx = 10(1 - 2x2)e- (x2 + y2) - 20y2(1 - 2x2)e- (x2 + y2) = 10(1 - 2x2)(1 - 2y2)e- (x2 + y2),

fyy = -20xy(1 - 2y2)e- (x2 + y2) - 40xye- (x2 + y2) = -20xy(3 - 2y2)e- (x2 + y2).

The following table summarizes the values needed by the Second Derivative Test.

 Critical 
 Point  ƒxx ƒxy ƒyy Discriminant D

    (0, 0) 0 10 0 -100

 a 122
, 122

b  -  
20
e  0 -  

20
e  

400
e2

 a-  122
, 122

b  
20
e  0 

20
e  

400
e2

 a 122
, -  122

b  
20
e  0 

20
e  

400
e2

 a-  122
, -  122

b  -  
20
e  0 -  

20
e  

400
e2

From the table we find that D 6 0 at the critical point (0, 0), giving a saddle; D 7 0 and 
fxx 6 0 at the critical points 11>22, 1>222 and 1-  1>22, -  1>222, giving local maxi-
mum values there; and D 7 0 and fxx 7 0 at the critical points 1-  1>22, 1>222 and 

11>22, -  1>222, each giving local minimum values. A graph of the surface is shown in 

Figure 14.49. 

absolute Maxima and Minima on Closed Bounded regions

We organize the search for the absolute extrema of a continuous function ƒ(x, y) on a 
closed and bounded region R into three steps.

1. List the interior points of R where ƒ may have local maxima and minima and evaluate 
ƒ at these points. These are the critical points of ƒ.

2. List the boundary points oƒ R where ƒ has local maxima and minima and evaluate ƒ at 
these points. We show how to do this in the next example.

3. Look through the lists for the maximum and minimum values of ƒ. These will be the 
absolute maximum and minimum values of ƒ on R. Since absolute maxima and min-
ima are also local maxima and minima, the absolute maximum and minimum values 
of ƒ appear somewhere in the lists made in Steps 1 and 2.

x

z

y

z = 10xye−(x2 + y2)

Figure 14.49 A graph of the function 
in Example 5.
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example 6  Find the absolute maximum and minimum values of

ƒ(x, y) = 2 + 2x + 4y - x2 - y2

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and 
y = 9 - x.

Solution Since ƒ is differentiable, the only places where ƒ can assume these values are 
points inside the triangle (Figure 14.50a) where ƒx = ƒy = 0 and points on the boundary.

 (a) Interior points. For these we have

fx = 2 - 2x = 0,  fy = 4 - 2y = 0,

  yielding the single point (x, y) = (1, 2). The value of ƒ there is

ƒ(1, 2) = 7.

 (b) Boundary points. We take the triangle one side at a time:

  i) On the segment OA, y = 0. The function

ƒ(x, y) = ƒ(x, 0) = 2 + 2x - x2

  may now be regarded as a function of x defined on the closed interval 0 … x … 9. Its 
extreme values (we know from Chapter 4) may occur at the endpoints

x = 0  where  ƒ(0, 0) = 2

x = 9  where  ƒ(9, 0) = 2 + 18 - 81 =  -61

  and at the interior points where ƒ′(x, 0) = 2 - 2x = 0. The only interior point where 
ƒ′(x, 0) = 0 is x = 1, where

ƒ(x, 0) = ƒ(1, 0) = 3.

  ii) On the segment OB, x = 0 and

ƒ(x, y) = ƒ(0, y) = 2 + 4y - y2.

  As in part i), we consider ƒ(0, y) as a function of y defined on the closed interval 
30, 9]. Its extreme values can occur at the endpoints or at interior points where 
ƒ′(0, y) = 0. Since ƒ′(0, y) = 4 - 2y, the only interior point where ƒ′(0, y) = 0 
occurs at (0, 2), with ƒ(0, 2) = 6. So the candidates for this segment are

ƒ(0, 0) = 2,  ƒ(0, 9) = -43,  ƒ(0, 2) = 6.

  iii)  We have already accounted for the values of ƒ at the endpoints of AB, so we need 
only look at the interior points of the line segment AB. With y = 9 - x, we have

ƒ(x, y) = 2 + 2x + 4(9 - x) - x2 - (9 - x)2 = -43 + 16x - 2x2.

  Setting ƒ′(x, 9 - x) = 16 - 4x = 0 gives

x = 4.

  At this value of x,

y = 9 - 4 = 5  and  ƒ(x, y) = ƒ(4, 5) = -11.

Summary We list all the function value candidates: 7, 2, -61, 3, -43, 6, -11. The maxi-
mum is 7, which ƒ assumes at (1, 2). The minimum is -61, which ƒ assumes at (9, 0). See 
Figure 14.50b. 

Solving extreme value problems with algebraic constraints on the variables usually 
requires the method of Lagrange multipliers introduced in the next section. But sometimes 
we can solve such problems directly, as in the next example.

Figure 14.50 (a) This triangular 
region is the domain of the function in 
Example 6. (b) The graph of the function 
in Example 6. The blue points are the 
candidates for maxima or minima.
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example 7  A delivery company accepts only rectangular boxes the sum of whose 
length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions 
of an acceptable box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box, 
respectively. Then the girth is 2y + 2z. We want to maximize the volume V = xyz of the 
box (Figure 14.51) satisfying x + 2y + 2z = 108 (the largest box accepted by the deliv-
ery company). Thus, we can write the volume of the box as a function of two variables:

V( y, z) = (108 - 2y - 2z)yz V = xyz and 
x = 108 - 2y - 2z

 = 108yz - 2y2z - 2yz2.

Setting the first partial derivatives equal to zero,

Vy( y, z) = 108z - 4yz - 2z2 = (108 - 4y - 2z)z = 0

Vz( y, z) = 108y - 2y2 - 4yz = (108 - 2y - 4z)y = 0,

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0), 
(0, 54), and (54, 0), which are not maximum values. At the point (18, 18), we apply the 
Second Derivative Test (Theorem 11):

Vyy = -4z,  Vzz = -4y,  Vyz = 108 - 4y - 4z.

Then

Vyy Vzz - Vyz 2 = 16yz - 16(27 - y - z)2.

Thus,

Vyy(18, 18) = -4(18) 6 0

and

3Vyy Vzz - Vyz 24 (18,18) = 16(18)(18) - 16(-9)2 7 0

imply that (18, 18) gives a maximum volume. The dimensions of the package are 
x = 108 - 2(18) - 2(18) = 36 in., y = 18 in., and z = 18 in. The maximum volume is 
V = (36)(18)(18) = 11,664 in3, or 6.75 ft3. 

Despite the power of Theorem 11, we urge you to remember its limitations. It does 
not apply to boundary points of a function’s domain, where it is possible for a function to 
have extreme values along with nonzero derivatives. Also, it does not apply to points 
where either ƒx or ƒy fails to exist.

x y

z

Girth = distance
around here

Figure 14.51 The box in Example 7.

Summary of Max-Min Tests

The extreme values of ƒ(x, y) can occur only at

 i) boundary points of the domain of ƒ

 ii)  critical points (interior points where ƒx = ƒy = 0 or points where ƒx or ƒy 
fails to exist).

If the first- and second-order partial derivatives of ƒ are continuous throughout a 
disk centered at a point (a, b) and ƒx(a, b) = ƒy(a, b) = 0, the nature of ƒ(a, b) 
can be tested with the Second Derivative Test:

 i) ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b) 1  local maximum

 ii) ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b) 1  local minimum

 iii) ƒxx ƒyy - ƒxy 2 6 0 at (a, b) 1  saddle point

 iv) ƒxx ƒyy - ƒxy 2 = 0 at (a, b) 1  test is inconclusive
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Finding Local extrema
Find all the local maxima, local minima, and saddle points of the 
functions in Exercises 1–30.

 1. ƒ(x, y) = x2 + xy + y2 + 3x - 3y + 4

 2. ƒ(x, y) = 2xy - 5x2 - 2y2 + 4x + 4y - 4

 3. ƒ(x, y) = x2 + xy + 3x + 2y + 5

 4. ƒ(x, y) = 5xy - 7x2 + 3x - 6y + 2

 5. ƒ(x, y) = 2xy - x2 - 2y2 + 3x + 4

 6. ƒ(x, y) = x2 - 4xy + y2 + 6y + 2

 7. ƒ(x, y) = 2x2 + 3xy + 4y2 - 5x + 2y

 8. ƒ(x, y) = x2 - 2xy + 2y2 - 2x + 2y + 1

 9. ƒ(x, y) = x2 - y2 - 2x + 4y + 6

 10. ƒ(x, y) = x2 + 2xy

 11. ƒ(x, y) = 256x2 - 8y2 - 16x - 31 + 1 - 8x

 12. ƒ(x, y) = 1 - 23 x2 + y2

 13. ƒ(x, y) = x3 - y3 - 2xy + 6

 14. ƒ(x, y) = x3 + 3xy + y3

 15. ƒ(x, y) = 6x2 - 2x3 + 3y2 + 6xy

 16. ƒ(x, y) = x3 + y3 + 3x2 - 3y2 - 8

 17. ƒ(x, y) = x3 + 3xy2 - 15x + y3 - 15y

 18. ƒ(x, y) = 2x3 + 2y3 - 9x2 + 3y2 - 12y

 19. ƒ(x, y) = 4xy - x4 - y4

 20. ƒ(x, y) = x4 + y4 + 4xy

 21. ƒ(x, y) = 1
x2 + y2 - 1

 22. ƒ(x, y) = 1
x + xy + 1

y

 23. ƒ(x, y) = y sin x 24. ƒ(x, y) = e2x cos y

 25. ƒ(x, y) = ex2 + y2 - 4x 26. ƒ(x, y) = ey - yex

 27. ƒ(x, y) = e-y(x2 + y2) 28. ƒ(x, y) = ex(x2 - y2)

 29. ƒ(x, y) = 2 ln x + ln y - 4x - y

 30. ƒ(x, y) = ln (x + y) + x2 - y

Finding absolute extrema
In Exercises 31–38, find the absolute maxima and minima of the func-
tions on the given domains.

 31. ƒ(x, y) = 2x2 - 4x + y2 - 4y + 1 on the closed triangular plate 
bounded by the lines x = 0, y = 2, y = 2x in the first quadrant

 32. D(x, y) = x2 - xy + y2 + 1 on the closed triangular plate in the 
first quadrant bounded by the lines x = 0, y = 4, y = x

 33. ƒ(x, y) = x2 + y2 on the closed triangular plate bounded by the 
lines x = 0, y = 0, y + 2x = 2 in the first quadrant

 34. T(x, y) = x2 + xy + y2 - 6x on the rectangular plate 
0 … x … 5, -3 … y … 3

 35. T(x, y) = x2 + xy + y2 - 6x + 2 on the rectangular plate 
0 … x … 5, -3 … y … 0

 36. ƒ(x, y) = 48xy - 32x3 - 24y2 on the rectangular plate 
0 … x … 1, 0 … y … 1

 37. ƒ(x, y) = (4x - x2) cos y on the rectangular plate 1 … x … 3, 
-p>4 … y … p>4 (see accompanying figure)

z

y
x

z = (4x − x2) cos y

 38. ƒ(x, y) = 4x - 8xy + 2y + 1 on the triangular plate bounded by 
the lines x = 0, y = 0, x + y = 1 in the first quadrant

 39. Find two numbers a and b with a … b such that

L
b

a

(6 - x - x2) dx

  has its largest value.

 40. Find two numbers a and b with a … b such that

L
b

a

(24 - 2x - x2)1>3 dx

  has its largest value.

 41. Temperatures A flat circular plate has the shape of the region 
x2 + y2 … 1. The plate, including the boundary where 
x2 + y2 = 1, is heated so that the temperature at the point (x, y) is

T(x, y) = x2 + 2y2 - x.

  Find the temperatures at the hottest and coldest points on the plate.

 42. Find the critical point of

ƒ(x, y) = xy + 2x - ln x2y

  in the open first quadrant (x 7 0, y 7 0) and show that ƒ takes 
on a minimum there.

Theory and examples
 43. Find the maxima, minima, and saddle points of ƒ(x, y), if any, 

given that

 a. ƒx = 2x - 4y and ƒy = 2y - 4x

 b. ƒx = 2x - 2 and ƒy = 2y - 4

 c. ƒx = 9x2 - 9 and ƒy = 2y + 4

  Describe your reasoning in each case.

 44. The discriminant ƒxx ƒyy - ƒxy 2 is zero at the origin for each of the 
following functions, so the Second Derivative Test fails there. 
Determine whether the function has a maximum, a minimum, or 
neither at the origin by imagining what the surface z = ƒ(x, y) 
looks like. Describe your reasoning in each case.

 a. ƒ(x, y) = x2y2 b. ƒ(x, y) = 1 - x2y2

 c. ƒ(x, y) = xy2 d. ƒ(x, y) = x3y2

 e. ƒ(x, y) = x3y3 f. ƒ(x, y) = x4y4

exercises 14.7
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 45. Show that (0, 0) is a critical point of ƒ(x, y) = x2 + kxy + y2 no 
matter what value the constant k has. (Hint: Consider two cases: 
k = 0 and k ≠ 0.)

 46. For what values of the constant k does the Second Derivative Test 
guarantee that ƒ(x, y) = x2 + kxy + y2 will have a saddle point at 
(0, 0)? A local minimum at (0, 0)? For what values of k is the Sec-
ond Derivative Test inconclusive? Give reasons for your answers.

 47. If ƒx(a, b) = ƒy(a, b) = 0, must ƒ have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

 48. Can you conclude anything about ƒ(a, b) if ƒ and its first and sec-
ond partial derivatives are continuous throughout a disk centered 
at the critical point (a, b) and ƒxx(a, b) and ƒyy(a, b) differ in sign? 
Give reasons for your answer.

 49. Among all the points on the graph of z = 10 - x2 - y2 that lie 
above the plane x + 2y + 3z = 0, find the point farthest from 
the plane.

 50. Find the point on the graph of z = x2 + y2 + 10 nearest the plane 
x + 2y - z = 0.

 51. Find the point on the plane 3x + 2y + z = 6 that is nearest the 
origin.

 52. Find the minimum distance from the point (2, -1, 1) to the plane 
x + y - z = 2.

 53. Find three numbers whose sum is 9 and whose sum of squares is a 
minimum.

 54. Find three positive numbers whose sum is 3 and whose product is 
a maximum.

 55. Find the maximum value of s = xy + yz + xz where 
x + y + z = 6.

 56. Find the minimum distance from the cone z = 2x2 + y2 to the 
point (-6, 4, 0).

 57. Find the dimensions of the rectangular box of maximum volume 
that can be inscribed inside the sphere x2 + y2 + z2 = 4.

 58. Among all closed rectangular boxes of volume 27 cm3, what is 
the smallest surface area?

 59. You are to construct an open rectangular box from 12 ft2 of mate-
rial. What dimensions will result in a box of maximum volume?

 60. Consider the function ƒ(x, y) = x2 + y2 + 2xy - x - y + 1 
over the square 0 … x … 1 and 0 … y … 1.

 a. Show that ƒ has an absolute minimum along the line segment 
2x + 2y = 1 in this square. What is the absolute minimum 
value?

 b. Find the absolute maximum value of ƒ over the square.

Extreme Values on Parametrized Curves To find the extreme val-
ues of a function ƒ(x, y) on a curve x = x(t), y = y(t), we treat ƒ as a 
function of the single variable t and use the Chain Rule to find where 
dƒ >dt is zero. As in any other single-variable case, the extreme values 
of ƒ are then found among the values at the

 a. critical points (points where dƒ >dt is zero or fails to exist), and

 b. endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following 
functions on the given curves.

 61. Functions:

 a. ƒ(x, y) = x + y  b. g(x, y) = xy  c. h(x, y) = 2x2 + y2

  Curves:

  i) The semicircle x2 + y2 = 4, y Ú 0

 ii) The quarter circle x2 + y2 = 4, x Ú 0, y Ú 0

  Use the parametric equations x = 2 cos t, y = 2 sin t.

 62. Functions:

 a. ƒ(x, y) = 2x + 3y

 b. g(x, y) = xy

 c. h(x, y) = x2 + 3y2

  Curves:

    i)  The semiellipse (x2>9) + (y2>4) = 1, y Ú 0

   ii)  The quarter ellipse (x2>9) + (y2>4) = 1, x Ú 0, y Ú 0

  Use the parametric equations x = 3 cos t, y = 2 sin t.

 63. Function: ƒ(x, y) = xy

  Curves:

   i) The line x = 2t, y = t + 1

  ii) The line segment x = 2t, y = t + 1, -1 … t … 0

 iii) The line segment x = 2t, y = t + 1, 0 … t … 1

 64. Functions:

 a. ƒ(x, y) = x2 + y2

 b. g(x, y) = 1> (x2 + y2)
  Curves:

   i) The line x = t, y = 2 - 2t

  ii) The line segment x = t, y = 2 - 2t, 0 … t … 1

 65. Least squares and regression lines When we try to fit a line 
y = mx + b to a set of numerical data points (x1, y1), 
(x2, y2), . . . , (xn, yn), we usually choose the line that minimizes 
the sum of the squares of the vertical distances from the points to 
the line. In theory, this means finding the values of m and b that 
minimize the value of the function

w = (mx1 + b - y1)2 + g + (mxn + b - yn)2. (1)

  (See the accompanying figure.) Show that the values of m and b 
that do this are

m =
aa xkb aa ykb - na xk yk

aa xkb
2

- na xk 2
, (2)

b = 1
n aa yk - ma xkb ,  (3)

  with all sums running from k = 1 to k = n. Many scientific cal-
culators have these formulas built in, enabling you to find m and 
b with only a few keystrokes after you have entered the data.

The line y = mx + b determined by these values of m and 
b is called the least squares line, regression line, or trend line 
for the data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2.  predict values of y for other, experimentally untried values  
of x,

3. handle data analytically.
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We demonstrated these ideas with a variety of applications in Sec-
tion 1.4.

y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y = mx + b

In Exercises 66–68, use Equations (2) and (3) to find the least squares 
line for each set of data points. Then use the linear equation you 
obtain to predict the value of y that would correspond to x = 4.

 66. (-2, 0), (0, 2), (2, 3) 67. (-1, 2), (0, 1), (3, -4)

 68. (0, 0), (1, 2), (2, 3)

COMpuTer expLOraTiOnS
In Exercises 69–74, you will explore functions to identify their local 
extrema. Use a CAS to perform the following steps:

 a. Plot the function over the given rectangle.

 b. Plot some level curves in the rectangle.

 c. Calculate the function’s first partial derivatives and use the CAS 
equation solver to find the critical points. How do the critical 
points relate to the level curves plotted in part (b)? Which critical 
points, if any, appear to give a saddle point? Give reasons for your 
answer.

 d. Calculate the function’s second partial derivatives and find the dis-
criminant ƒxx ƒyy - ƒxy 2 .

 e. Using the max-min tests, classify the critical points found in part (c). 
Are your findings consistent with your discussion in part (c)?

 69. ƒ(x, y) = x2 + y3 - 3xy, -5 … x … 5, -5 … y … 5

 70. ƒ(x, y) = x3 - 3xy2 + y2, -2 … x … 2, -2 … y … 2

 71. ƒ(x, y) = x4 + y2 - 8x2 - 6y + 16, -3 … x … 3, 
-6 … y … 6

 72. ƒ(x, y) = 2x4 + y4 - 2x2 - 2y2 + 3, -3>2 … x … 3>2, 
-3>2 … y … 3>2

 73. ƒ(x, y) = 5x6 + 18x5 - 30x4 + 30xy2 - 120x3, 
-4 … x … 3, -2 … y … 2

 74. ƒ(x, y) = e x5 ln (x2 + y2), (x, y) ≠ (0, 0)

0, (x, y) = (0, 0) 
, 

  -2 … x … 2, -2 … y … 2

14.8 Lagrange Multipliers

Sometimes we need to find the extreme values of a function whose domain is constrained 
to lie within some particular subset of the plane—for example, a disk, a closed triangular 
region, or along a curve. We saw an instance of this situation in Example 6 of the previous 
section. Here we explore a powerful method for finding extreme values of constrained 
functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be 
found by eliminating a variable.

example 1  Find the point p(x, y, z) on the plane 2x + y - z - 5 = 0 that is clos-
est to the origin.

Solution The problem asks us to find the minimum value of the function

0 rOP 0 = 2(x - 0)2 + ( y - 0)2 + (z - 0)2

= 2x2 + y2 + z2

subject to the constraint that

2x + y - z - 5 = 0.

Since 0 rOP 0  has a minimum value wherever the function

ƒ(x, y, z) = x2 + y2 + z2

Historical BiograpHy

Joseph Louis Lagrange 
(1736–1813)
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has a minimum value, we may solve the problem by finding the minimum value of ƒ(x, y, z) 
subject to the constraint 2x + y - z - 5 = 0 (thus avoiding square roots). If we regard x 
and y as the independent variables in this equation and write z as

z = 2x + y - 5,

our problem reduces to one of finding the points (x, y) at which the function

h(x, y) = ƒ(x, y, 2x + y - 5) = x2 + y2 + (2x + y - 5)2

has its minimum value or values. Since the domain of h is the entire xy-plane, the First Deriva-
tive Test of Section 14.7 tells us that any minima that h might have must occur at points where

hx = 2x + 2(2x + y - 5)(2) = 0,  hy = 2y + 2(2x + y - 5) = 0.

This leads to

10x + 4y = 20,  4x + 4y = 10,

and the solution

x = 5
3,  y = 5

6
.

We may apply a geometric argument together with the Second Derivative Test to show that 
these values minimize h. The z-coordinate of the corresponding point on the plane 
z = 2x + y - 5 is

z = 2a53b + 5
6

- 5 =  -  
5
6

.

Therefore, the point we seek is

Closest point:  Pa53, 
5
6

, -  
5
6
b .

The distance from P to the origin is 5>26 ≈ 2.04. 

Attempts to solve a constrained maximum or minimum problem by substitution, as 
we might call the method of Example 1, do not always go smoothly. This is one of the 
reasons for learning the new method of this section.

example 2  Find the points on the hyperbolic cylinder x2 - z2 - 1 = 0 that are 
closest to the origin.

Solution 1 The cylinder is shown in Figure 14.52. We seek the points on the cylinder clos-
est to the origin. These are the points whose coordinates minimize the value of the function

ƒ(x, y, z) = x2 + y2 + z2 Square of the distance

subject to the constraint that x2 - z2 - 1 = 0. If we regard x and y as independent vari-
ables in the constraint equation, then

z2 = x2 - 1

and the values of ƒ(x, y, z) = x2 + y2 + z2 on the cylinder are given by the function

h(x, y) = x2 + y2 + (x2 - 1) = 2x2 + y2 - 1.

To find the points on the cylinder whose coordinates minimize ƒ, we look for the points in 
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

hx = 4x = 0  and  hy = 2y = 0,

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are 
zero. What went wrong?

(1, 0, 0)

z

y

x

x2 − z2 = 1

(−1, 0, 0)

Figure 14.52 The hyperbolic cylinder 
x2 - z2 - 1 = 0 in Example 2.
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What happened was that the First Derivative Test found (as it should have) the point 
in the domain oƒ h where h has a minimum value. We, on the other hand, want the points 
on the cylinder where h has a minimum value. Although the domain of h is the entire  
xy-plane, the domain from which we can select the first two coordinates of the points (x, y, z) 
on the cylinder is restricted to the “shadow” of the cylinder on the xy-plane; it does not 
include the band between the lines x = -1 and x = 1 (Figure 14.53).

We can avoid this problem if we treat y and z as independent variables (instead of x 
and y) and express x in terms of y and z as

x2 = z2 + 1.

With this substitution, ƒ(x, y, z) = x2 + y2 + z2 becomes

k( y, z) = (z2 + 1) + y2 + z2 = 1 + y2 + 2z2

and we look for the points where k takes on its smallest value. The domain of k in the  
yz-plane now matches the domain from which we select the y- and z-coordinates of the 
points (x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have cor-
responding points on the cylinder. The smallest values of k occur where

ky = 2y = 0  and  kz = 4z = 0,

or where y = z = 0. This leads to

x2 = z2 + 1 = 1,  x = {1.

The corresponding points on the cylinder are ({1, 0, 0). We can see from the inequality

k( y, z) = 1 + y2 + 2z2 Ú 1

that the points ({1, 0, 0) give a minimum value for k. We can also see that the minimum 
distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to 
imagine a small sphere centered at the origin expanding like a soap bubble until it just 
touches the cylinder (Figure 14.54). At each point of contact, the cylinder and sphere have 
the same tangent plane and normal line. Therefore, if the sphere and cylinder are repre-
sented as the level surfaces obtained by setting

ƒ(x, y, z) = x2 + y2 + z2 - a2  and  g(x, y, z) = x2 - z2 - 1

equal to 0, then the gradients ∇ƒ and ∇g will be parallel where the surfaces touch. At any 
point of contact, we should therefore be able to find a scalar l (“lambda”) such that

∇ƒ = l∇g,

or

2xi + 2yj + 2zk = l(2xi - 2zk).

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three sca-
lar equations

2x = 2lx,  2y = 0,  2z = -2lz.

For what values of l will a point (x, y, z) whose coordinates satisfy these scalar equa-
tions also lie on the surface x2 - z2 - 1 = 0? To answer this question, we use our knowl-
edge that no point on the surface has a zero x-coordinate to conclude that x ≠ 0. Hence, 
2x = 2lx only if

2 = 2l,  or  l = 1.

On this part, On this part,

x = "z2 + 1

x

z

−11

y
x = −1x = 1

The hyperbolic cylinder x2 − z2 = 1

x = −"z2 + 1

Figure 14.53 The region in the xy-plane 
from which the first two coordinates of the 
points (x, y, z) on the hyperbolic cylinder 
x2 - z2 = 1 are selected excludes the band 
-1 6 x 6 1 in the xy-plane (Example 2).

z

y

x

x2 + y2 + z2 − a2 = 0

x2 − z2 − 1 = 0

Figure 14.54 A sphere expanding 
like a soap bubble centered at the origin 
until it just touches the hyperbolic cylinder 
x2 - z2 - 1 = 0 (Example 2).
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For l = 1, the equation 2z = -2lz becomes 2z = -2z. If this equation is to be satisfied 
as well, z must be zero. Since y = 0 also (from the equation 2y = 0), we conclude that 
the points we seek all have coordinates of the form

(x, 0, 0).

What points on the surface x2 - z2 = 1 have coordinates of this form? The answer is the 
points (x, 0, 0) for which

x2 - (0)2 = 1,  x2 = 1,  or  x = {1.

The points on the cylinder closest to the origin are the points ({1, 0, 0). 

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method 
says that the local extreme values of a function ƒ(x, y, z) whose variables are subject to a 
constraint g(x, y, z) = 0 are to be found on the surface g = 0 among the points where

∇ƒ = l∇g

for some scalar l (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following 

observation, which we state as a theorem.

theorem 12—the orthogonal Gradient theorem Suppose that ƒ(x, y, z) is 
differentiable in a region whose interior contains a smooth curve

C: r(t) = x(t)i + y(t)j + z(t)k.

If P0 is a point on C where ƒ has a local maximum or minimum relative to its 
values on C, then ∇ƒ is orthogonal to C at P0 .

proof  We show that ∇ƒ is orthogonal to the curve’s tangent vector r′ at P0 . The values 
of ƒ on C are given by the composite ƒ(x(t), y(t), z(t)), whose derivative with respect to t is

dƒ
dt

=
0ƒ
0x 

dx
dt

+
0ƒ
0y 

dy
dt

+
0ƒ
0z 

dz
dt

= ∇ƒ # r′.

At any point P0 where ƒ has a local maximum or minimum relative to its values on the 
curve, dƒ>dt = 0, so

 ∇ƒ # r′ = 0. 

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of 
two variables.

Corollary At the points on a smooth curve r(t) = x(t)i + y(t)j where a dif-
ferentiable function ƒ(x, y) takes on its local maxima and minima relative to its 
values on the curve, ∇ƒ # r′ = 0.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ƒ(x, y, z) 
and g(x, y, z) are differentiable and that P0 is a point on the surface g(x, y, z) = 0 where ƒ 
has a local maximum or minimum value relative to its other values on the surface. We 
assume also that ∇g ≠ 0 at points on the surface g(x, y, z) = 0. Then ƒ takes on a local 
maximum or minimum at P0 relative to its values on every differentiable curve through P0 
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on the surface g(x, y, z) = 0. Therefore, ∇ƒ is orthogonal to the tangent vector of every 
such differentiable curve through P0 . So is ∇g, moreover (because ∇g is orthogonal to the 
level surface g = 0, as we saw in Section 14.5). Therefore, at P0 , ∇ƒ is some scalar mul-
tiple l of ∇g.

The Method of Lagrange Multipliers

Suppose that ƒ(x, y, z) and g(x, y, z) are differentiable and ∇g ≠ 0 when 
g(x, y, z) = 0. To find the local maximum and minimum values of ƒ subject to 
the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and l that 
simultaneously satisfy the equations

 ∇ƒ = l∇g  and  g(x, y, z) = 0. (1)

For functions of two independent variables, the condition is similar, but without 
the variable z.

Some care must be used in applying this method. An extreme value may not actually exist 
(Exercise 45).

example 3  Find the greatest and smallest values that the function

ƒ(x, y) = xy

takes on the ellipse (Figure 14.55)

x2

8 +
y2

2
= 1.

Solution We want to find the extreme values of ƒ(x, y) = xy subject to the constraint

g(x, y) = x2

8 +
y2

2
- 1 = 0.

To do so, we first find the values of x, y, and l for which

∇ƒ = l∇g  and  g(x, y) = 0.

The gradient equation in Equations (1) gives

yi + xj = l
4

 xi + lyj,

from which we find

y = l
4

 x,  x = ly,  and  y = l
4

 (ly) = l2

4
 y,

so that y = 0 or l = {2. We now consider these two cases.

Case 1:  If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, y ≠ 0.
Case 2:   If y ≠ 0, then l = {2 and x = {2y. Substituting this in the equation 
g(x, y) = 0 gives

({2y)2

8 +
y2

2
= 1,  4y2 + 4y2 = 8  and  y = {1.

The function ƒ(x, y) = xy therefore takes on its extreme values on the ellipse at the four 
points ({2, 1), ({2, -1). The extreme values are xy = 2 and xy = -2.

y

x
0 2"2

"2 +      = 1
x2

8
y2

2

Figure 14.55 Example 3 shows how 
to find the largest and smallest values of 
the product xy on this ellipse.
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The geometry of the Solution The level curves of the function ƒ(x, y) = xy are the 
hyperbolas xy = c (Figure 14.56). The farther the hyperbolas lie from the origin, the larger 
the absolute value of ƒ. We want to find the extreme values of ƒ(x, y), given that the point 
(x, y) also lies on the ellipse x2 + 4y2 = 8. Which hyperbolas intersecting the ellipse lie 
farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent 
to it, are farthest. At these points, any vector normal to the hyperbola is normal to the 
ellipse, so ∇ƒ = yi + xj is a multiple (l = {2) of ∇g = (x>4)i + yj. At the point  
(2, 1), for example,

∇ƒ = i + 2j,  ∇g = 1
2

 i + j,  and  ∇ƒ = 2∇g .

At the point (-2, 1),

 ∇ƒ = i - 2j,  ∇g = -  1
2

 i + j,  and  ∇ƒ = -2∇g. 

example 4  Find the maximum and minimum values of the function ƒ(x, y) =  
3x + 4y on the circle x2 + y2 = 1.

Solution We model this as a Lagrange multiplier problem with

ƒ(x, y) = 3x + 4y,  g(x, y) = x2 + y2 - 1

and look for the values of x, y, and l that satisfy the equations

∇ƒ = l∇g: 3i + 4j = 2xli + 2ylj

g(x, y) = 0: x2 + y2 - 1 = 0.

The gradient equation in Equations (1) implies that l ≠ 0 and gives

x = 3
2l

,  y = 2
l

.

These equations tell us, among other things, that x and y have the same sign. With these 
values for x and y, the equation g(x, y) = 0 gives

a 3
2l
b

2

+ a2
l
b

2

- 1 = 0,

so
9

4l2 + 4
l2 = 1,  9 + 16 = 4l2,  4l2 = 25,  and  l = {5

2
.

Thus,

x = 3
2l

= {3
5

,  y = 2
l

= {4
5

,

and ƒ(x, y) = 3x + 4y has extreme values at (x, y) = {(3>5, 4>5).
By calculating the value of 3x + 4y at the points {(3>5, 4>5), we see that its maxi-

mum and minimum values on the circle x2 + y2 = 1 are

3a3
5
b + 4a4

5
b = 25

5
= 5  and  3a-  

3
5
b + 4a-  4

5
b = -  

25
5

= -5.

The geometry of the Solution The level curves of ƒ(x, y) = 3x + 4y are the lines 
3x + 4y = c (Figure 14.57). The farther the lines lie from the origin, the larger the abso-
lute value of ƒ. We want to find the extreme values of ƒ(x, y) given that the point (x, y) also 
lies on the circle x2 + y2 = 1. Which lines intersecting the circle lie farthest from the 
origin? The lines tangent to the circle are farthest. At the points of tangency, any vector 
normal to the line is normal to the circle, so the gradient ∇ƒ = 3i + 4j is a multiple 
(l = {5>2) of the gradient ∇g = 2xi + 2yj. At the point (3 >5, 4 >5), for example,

 ∇ƒ = 3i + 4j,  ∇g = 6
5

 i + 8
5

 j,  and  ∇ƒ = 5
2

 ∇g. 

y

x

3x + 4y = 5

3x + 4y = −5

3
5

4
5

,

∇f = 3i + 4j =    ∇g5
2

∇g =    i +    j6
5

8
5

a    bx2 + y2 = 1

Figure 14.57 The function ƒ(x, y) =  
3x + 4y takes on its largest value on the 
unit circle g(x, y) = x2 + y2 - 1 = 0 at 
the point (3 >5, 4 >5) and its smallest value 
at the point (-3>5, -4>5) (Example 4). At 
each of these points, ∇ƒ is a scalar mul-
tiple of ∇g. The figure shows the gradients 
at the first point but not the second.

x

y
xy = −2

∇f = i + 2j
xy = 2

∇g =    i + j1
2

xy = −2xy = 2

0 1

1

Figure 14.56 When subjected to the 
constraint g(x, y) = x2>8 + y2>2 - 1 = 0, 
the function ƒ(x, y) = xy takes on extreme 
values at the four points ({2, {1). These 
are the points on the ellipse when ∇ƒ (red)  
is a scalar multiple of ∇g (blue) (Example 3).
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Cylinder x2 + y2 = 1

z

y

Plane
x + y + z = 1x

P1

(1, 0, 0)

(0, 1, 0)

P2

Figure 14.59 On the ellipse where the plane and 
cylinder meet, we find the points closest to and farthest 
from the origin (Example 5).

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ƒ(x, y, z) 
whose variables are subject to two constraints. If the constraints are

g1(x, y, z) = 0  and  g2(x, y, z) = 0

and g1 and g2 are differentiable, with ∇g1 not parallel to ∇g2, we find the constrained 
local maxima and minima of ƒ by introducing two Lagrange multipliers l and m (mu, 
pronounced “mew”). That is, we locate the points P(x, y, z) where ƒ takes on its con-
strained extreme values by finding the values of x, y, z, l, and m that simultaneously sat-
isfy the three equations

 ∇ƒ = l∇g1 + m∇g2,  g1(x, y, z) = 0,  g2(x, y, z) = 0 (2)

Equations (2) have a nice geometric interpretation. The surfaces g1 = 0 and g2 = 0 (usu-
ally) intersect in a smooth curve, say C (Figure 14.58). Along this curve we seek the points 
where ƒ has local maximum and minimum values relative to its other values on the curve. 
These are the points where ∇ƒ is normal to C, as we saw in Theorem 12. But ∇g1 and ∇g2 
are also normal to C at these points because C lies in the surfaces g1 = 0 and g2 = 0. 
Therefore, ∇ƒ lies in the plane determined by ∇g1 and ∇g2, which means that 
∇ƒ = l∇g1 + m∇g2 for some l and m. Since the points we seek also lie in both surfaces, 
their coordinates must satisfy the equations g1(x, y, z) = 0 and g2(x, y, z) = 0, which are 
the remaining requirements in Equations (2).

example 5  The plane x + y + z = 1 cuts the cylinder x2 + y2 = 1 in an ellipse 
(Figure 14.59). Find the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

ƒ(x, y, z) = x2 + y2 + z2

(the square of the distance from (x, y, z) to the origin) subject to the constraints

g1(x, y, z) = x2 + y2 - 1 = 0 (3)

g2(x, y, z) = x + y + z - 1 = 0. (4)

The gradient equation in Equations (2) then gives

∇ƒ = l∇g1 + m∇g2

2xi + 2yj + 2zk = l(2xi + 2yj) + m(i + j + k)

2xi + 2yj + 2zk = (2lx + m)i + (2ly + m)j + mk

C

g2 = 0

g1 = 0

∇ f

∇g2

∇g1

Figure 14.58 The vectors ∇g1 and 
∇g2 lie in a plane perpendicular to the 
curve C because ∇g1 is normal to the 
surface g1 = 0 and ∇g2 is normal to the 
surface g2 = 0.
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or

 2x = 2lx + m,  2y = 2ly + m,  2z = m. (5)

The scalar equations in Equations (5) yield

2x = 2lx + 2z 1 (1 - l)x = z, 

2y = 2ly + 2z 1 (1 - l)y = z. 
(6)

Equations (6) are satisfied simultaneously if either l = 1 and z = 0 or l ≠ 1 and 
x = y = z>(1 - l).

If z = 0, then solving Equations (3) and (4) simultaneously to find the corresponding 
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you 
look at Figure 14.59.

If x = y, then Equations (3) and (4) give

 x2 + x2 - 1 = 0  x + x + z - 1 = 0

 2x2 = 1  z = 1 - 2x

 x = {22
2

  z = 1 | 22.

The corresponding points on the ellipse are

P1 = a22
2

, 
22
2

, 1 - 22b  and  P2 = a-  
22
2

, -  
22
2

, 1 + 22b .

Here we need to be careful, however. Although P1 and P2 both give local maxima of ƒ on 
the ellipse, P2 is farther from the origin than P1.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on 
the ellipse farthest from the origin is P2 . (See Figure 14.59.) 

Two independent Variables with One Constraint
 1. Extrema on an ellipse Find the points on the ellipse 

x2 + 2y2 = 1 where ƒ(x, y) = xy has its extreme values.

 2. Extrema on a circle Find the extreme values of ƒ(x, y) = xy 
subject to the constraint g(x, y) = x2 + y2 - 10 = 0.

 3. Maximum on a line Find the maximum value of ƒ(x, y) = 49 -  
x2 - y2 on the line x + 3y = 10.

 4. Extrema on a line Find the local extreme values of ƒ(x, y) = x2y 
on the line x + y = 3.

 5. Constrained minimum Find the points on the curve xy2 = 54 
nearest the origin.

 6. Constrained minimum Find the points on the curve x2y = 2 
nearest the origin.

 7. Use the method of Lagrange multipliers to find

 a. Minimum on a hyperbola The minimum value of x + y, 
subject to the constraints xy = 16, x 7 0, y 7 0

 b. Maximum on a line The maximum value of xy, subject to 
the constraint x + y = 16.

 Comment on the geometry of each solution.

 8. Extrema on a curve Find the points on the curve x2 + xy +  
y2 = 1 in the xy-plane that are nearest to and farthest from the 
origin.

 9. Minimum surface area with fixed volume Find the dimen-
sions of the closed right circular cylindrical can of smallest  
surface area whose volume is 16p cm3.

 10. Cylinder in a sphere Find the radius and height of the open 
right circular cylinder of largest surface area that can be inscribed 
in a sphere of radius a. What is the largest surface area?

 11. Rectangle of greatest area in an ellipse Use the method of 
Lagrange multipliers to find the dimensions of the rectangle of 
greatest area that can be inscribed in the ellipse x2>16 + y2>9 = 1 
with sides parallel to the coordinate axes.

 12. Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in 
the ellipse x2>a2 + y2>b2 = 1 with sides parallel to the coordi-
nate axes. What is the largest perimeter?

 13. Extrema on a circle Find the maximum and minimum values 
of x2 + y2 subject to the constraint x2 - 2x + y2 - 4y = 0.

 14. Extrema on a circle Find the maximum and minimum values 
of 3x - y + 6 subject to the constraint x2 + y2 = 4.

 15. Ant on a metal plate The temperature at a point (x, y) on a 
metal plate is T(x, y) = 4x2 - 4xy + y2. An ant on the plate 
walks around the circle of radius 5 centered at the origin. What 
are the highest and lowest temperatures encountered by the ant?

 16. Cheapest storage tank Your firm has been asked to design a 
storage tank for liquid petroleum gas. The customer’s specifica-
tions call for a cylindrical tank with hemispherical ends, and the 
tank is to hold 8000 m3 of gas. The customer also wants to use 
the smallest amount of material possible in building the tank. 
What radius and height do you recommend for the cylindrical 
portion of the tank?

exercises 14.8
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Three independent variables with One Constraint
 17. Minimum distance to a point Find the point on the plane 

x + 2y + 3z = 13 closest to the point (1, 1, 1).

 18. Maximum distance to a point Find the point on the sphere 
x2 + y2 + z2 = 4 farthest from the point (1, -1, 1).

 19. Minimum distance to the origin Find the minimum distance 
from the surface x2 - y2 - z2 = 1 to the origin.

 20. Minimum distance to the origin Find the point on the surface 
z = xy + 1 nearest the origin.

 21. Minimum distance to the origin Find the points on the surface 
z2 = xy + 4 closest to the origin.

 22. Minimum distance to the origin Find the point(s) on the sur-
face xyz = 1 closest to the origin.

 23. Extrema on a sphere Find the maximum and minimum values of

ƒ(x, y, z) = x - 2y + 5z

  on the sphere x2 + y2 + z2 = 30.

 24. Extrema on a sphere Find the points on the sphere 
x2 + y2 + z2 = 25 where ƒ(x, y, z) = x + 2y + 3z has its max-
imum and minimum values.

 25. Minimizing a sum of squares Find three real numbers whose 
sum is 9 and the sum of whose squares is as small as possible.

 26. Maximizing a product Find the largest product the positive 
numbers x, y, and z can have if x + y + z2 = 16.

 27. Rectangular box of largest volume in a sphere Find the dimen-
sions of the closed rectangular box with maximum volume that can 
be inscribed in the unit sphere.

 28. Box with vertex on a plane Find the volume of the largest 
closed rectangular box in the first octant having three faces in the 
coordinate planes and a vertex on the plane x>a + y>b + z>c = 1, 
where a 7 0, b 7 0, and c 7 0.

 29. Hottest point on a space probe A space probe in the shape of 
the ellipsoid

4x2 + y2 + 4z2 = 16

  enters Earth’s atmosphere and its surface begins to heat. After 
1 hour, the temperature at the point (x, y, z) on the probe’s sur-
face is

T(x, y, z) = 8x2 + 4yz - 16z + 600.

  Find the hottest point on the probe’s surface.

30. Extreme temperatures on a sphere Suppose that the Celsius 
temperature at the point (x, y, z) on the sphere x2 + y2 + z2 = 1 
is T = 400xyz2. Locate the highest and lowest temperatures on 
the sphere.

 31. Cobb-Douglas production function During the 1920s, Charles 
Cobb and Paul Douglas modeled total production output P (of a 
firm, industry, or entire economy) as a function of labor hours 
involved x and capital invested y (which includes the monetary 
worth of all buildings and equipment). The Cobb-Douglas produc-
tion function is given by

P(x, y) = kxa y1 -a,

  where k and a are constants representative of a particular firm or 
economy.

 a. Show that a doubling of both labor and capital results in a 
doubling of production P.

 b. Suppose a particular firm has the production function for k =  
120 and a = 3>4. Assume that each unit of labor costs $250 
and each unit of capital costs $400, and that the total expenses 
for all costs cannot exceed $100,000. Find the maximum pro-
duction level for the firm. 

 32. (Continuation oƒ Exercise 31.) If the cost of a unit of labor is c1 
and the cost of a unit of capital is c2, and if the firm can spend 
only B dollars as its total budget, then production P is constrained 
by c1x + c2 

y = B. Show that the maximum production level 
subject to the constraint occurs at the point

x = aB
c1
 and y =

(1 - a)B
c2

.

 33. Maximizing a utility function: an example from economics 
In economics, the usefulness or utility of amounts x and y of two 
capital goods G1 and G2 is sometimes measured by a function 
U(x, y). For example, G1 and G2 might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain 
from manufacturing a product whose synthesis requires different 
amounts of the chemicals depending on the process used. If G1 
costs a dollars per kilogram, G2 costs b dollars per kilogram, and 
the total amount allocated for the purchase of G1 and G2 together 
is c dollars, then the company’s managers want to maximize U(x, y) 
given that ax + by = c. Thus, they need to solve a typical 
Lagrange multiplier problem.

Suppose that

U(x, y) = xy + 2x

  and that the equation ax + by = c simplifies to

2x + y = 30.

  Find the maximum value of U and the corresponding values of x 
and y subject to this latter constraint.

 34. Blood types Human blood types are classified by three gene 
forms A, B, and O. Blood types AA, BB, and OO are homozygous, 
and blood types AB, AO, and BO are heterozygous. If p, q, and r 
represent the proportions of the three gene forms to the popula-
tion, respectively, then the Hardy-Weinberg Law asserts that the 
proportion Q of heterozygous persons in any specific population 
is modeled by

Q(p, q, r) = 2(pq + pr + qr),

  subject to p + q + r = 1. Find the maximum value of Q.

 35. Length of a beam In Section 4.6, Exercise 39, we posed a 
problem of finding the length L of the shortest beam that can 
reach over a wall of height h to a tall building located k units from 
the wall. Use Lagrange multipliers to show that

L = (h2>3 + k2>3)3/2.

 36. Locating a radio telescope You are in charge of erecting a radio 
telescope on a newly discovered planet. To minimize interference, 
you want to place it where the magnetic field of the planet is weak-
est. The planet is spherical, with a radius of 6 units. Based on a 
coordinate system whose origin is at the center of the planet, the 
strength of the magnetic field is given by M(x, y, z) = 6x -  
y2 + xz + 60. Where should you locate the radio telescope?
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extreme values Subject to Two Constraints
 37. Maximize the function ƒ(x, y, z) = x2 + 2y - z2 subject to the 

constraints 2x - y = 0 and y + z = 0.

 38. Minimize the function ƒ(x, y, z) = x2 + y2 + z2 subject to the 
constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.

 39. Minimum distance to the origin Find the point closest to the 
origin on the line of intersection of the planes y + 2z = 12 and 
x + y = 6.

 40. Maximum value on line of intersection Find the maximum 
value that ƒ(x, y, z) = x2 + 2y - z2 can have on the line of inter-
section of the planes 2x - y = 0 and y + z = 0.

 41. Extrema on a curve of intersection Find the extreme values of 
ƒ(x, y, z) = x2yz + 1 on the intersection of the plane z = 1 with 
the sphere x2 + y2 + z2 = 10.

42. a.   Maximum on line of intersection Find the maximum value 
of w = xyz on the line of intersection of the two planes 
x + y + z = 40 and x + y - z = 0.

 b. Give a geometric argument to support your claim that you 
have found a maximum, and not a minimum, value of w.

 43. Extrema on a circle of intersection Find the extreme values of 
the function ƒ(x, y, z) = xy + z2 on the circle in which the plane 
y - x = 0 intersects the sphere x2 + y2 + z2 = 4.

 44. Minimum distance to the origin Find the point closest to the 
origin on the curve of intersection of the plane 2y + 4z = 5 and 
the cone z2 = 4x2 + 4y2.

Theory and examples
 45. The condition ∇ƒ = l∇g is not sufficient Although 

∇ƒ = l∇g is a necessary condition for the occurrence of an 
extreme value of ƒ(x, y) subject to the conditions g(x, y) = 0 and 
∇g ≠ 0, it does not in itself guarantee that one exists. As a case 
in point, try using the method of Lagrange multipliers to find a 
maximum value of ƒ(x, y) = x + y subject to the constraint that 
xy = 16. The method will identify the two points (4, 4) and 
(-4, -4) as candidates for the location of extreme values. Yet the 
sum (x + y) has no maximum value on the hyperbola xy = 16. 
The farther you go from the origin on this hyperbola in the first 
quadrant, the larger the sum ƒ(x, y) = x + y becomes.

 46. A least squares plane The plane z = Ax + By + C is to be 
“fitted” to the following points (xk , yk , zk):

(0, 0, 0),  (0, 1, 1),  (1, 1, 1),  (1, 0, -1).

  Find the values of A, B, and C that minimize

a4

k = 1
(Axk + Byk + C - zk)2 ,

  the sum of the squares of the deviations.

47. a.   Maximum on a sphere Show that the maximum value of 
a2b2c2 on a sphere of radius r centered at the origin of a Car-
tesian abc-coordinate system is (r2>3)3.

 b. Geometric and arithmetic means Using part (a), show 
that for nonnegative numbers a, b, and c,

(abc)1>3 … a + b + c
3

 ;

  that is, the geometric mean of three nonnegative numbers is less 
than or equal to their arithmetic mean.

 48. Sum of products Let a1, a2, . . . , an be n positive numbers. Find 
the maximum of Σi = 1

n  ai  xi subject to the constraint Σi = 1
n  xi 2 = 1.

COMpuTer expLOraTiOnS
In Exercises 49–54, use a CAS to perform the following steps implement-
ing the method of Lagrange multipliers for finding constrained extrema:

 a. Form the function h = ƒ - l1 g1 - l2 g2, where ƒ is the func-
tion to optimize subject to the constraints g1 = 0 and g2 = 0.

 b. Determine all the first partial derivatives of h, including the par-
tials with respect to l1 and l2, and set them equal to 0.

 c. Solve the system of equations found in part (b) for all the 
unknowns, including l1 and l2.

 d. Evaluate ƒ at each of the solution points found in part (c) and select 
the extreme value subject to the constraints asked for in the exercise.

 49. Minimize ƒ(x, y, z) = xy + yz subject to the constraints x2 + y2 -  
2 = 0 and x2 + z2 - 2 = 0.

 50. Minimize ƒ(x, y, z) = xyz subject to the constraints x2 + y2 -  
1 = 0 and x - z = 0.

 51. Maximize ƒ(x, y, z) = x2 + y2 + z2 subject to the constraints 
2y + 4z - 5 = 0 and 4x2 + 4y2 - z2 = 0.

 52. Minimize ƒ(x, y, z) = x2 + y2 + z2 subject to the constraints 
x2 - xy + y2 - z2 - 1 = 0 and x2 + y2 - 1 = 0.

 53. Minimize ƒ(x, y, z, w) = x2 + y2 + z2 + w2 subject to the con-
straints 2x - y + z - w - 1 = 0 and x + y - z +  
w - 1 = 0.

 54. Determine the distance from the line y = x + 1 to the parabola 
y2 = x. (Hint: Let (x, y) be a point on the line and (w, z) a point 
on the parabola. You want to minimize (x - w)2 + (y - z)2.)

14.9 Taylor’s Formula for Two variables

In this section we use Taylor’s formula to derive the Second Derivative Test for local 
extreme values (Section 14.7) and the error formula for linearizations of functions of two 
independent variables (Section 14.6). The use of Taylor’s formula in these derivations 
leads to an extension of the formula that provides polynomial approximations of all orders 
for functions of two independent variables.

Derivation of the Second Derivative Test

Let ƒ(x, y) have continuous partial derivatives in an open region R containing a point P(a, b) 
where ƒx = ƒy = 0 (Figure 14.60). Let h and k be increments small enough to put the 
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point S(a + h, b + k) and the line segment joining it to P inside R. We parametrize the 
segment PS as

x = a + th,  y = b + tk,  0 … t … 1.

If F(t) = ƒ(a + th, b + tk), the Chain Rule gives

F′(t) = ƒx 
dx
dt

+ ƒy 
dy
dt

= hƒx + kƒy .

Since ƒx and ƒy are differentiable (they have continuous partial derivatives), F′ is a 
differentiable function of t and

F″ = 0F′
0x  

dx
dt

+ 0F′
0y  

dy
dt

= 0
0x (hƒx + kƒy) # h + 0

0y (hƒx + kƒy) # k

= h2ƒxx + 2hkƒxy + k2ƒyy . ƒxy = ƒyx

Since F and F′ are continuous on 30, 14  and F′ is differentiable on (0, 1), we can apply 
Taylor’s formula with n = 2 and a = 0 to obtain

F(1) = F(0) + F′(0)(1 - 0) + F″(c) 
(1 - 0)2

2

= F(0) + F′(0) + 1
2

 F″(c) 

(1)

for some c between 0 and 1. Writing Equation (1) in terms of ƒ gives

ƒ(a + h, b + k) = ƒ(a, b) + hƒx(a, b) + kƒy(a, b)

+ 1
2

 1h2ƒxx + 2hkƒxy + k2ƒyy2 2
(a + ch, b + ck)

. (2)

Since ƒx(a, b) = ƒy(a, b) = 0, this reduces to

 ƒ(a + h, b + k) - ƒ(a, b) = 1
2

 1h2ƒxx + 2hkƒxy + k2ƒyy2 2
(a + ch, b + ck)

. (3)

The presence of an extremum of ƒ at (a, b) is determined by the sign of  
ƒ(a + h, b + k) - ƒ(a, b). By Equation (3), this is the same as the sign of

Q(c) = (h2ƒxx + 2hkƒxy + k2ƒyy) 0 (a + ch, b + ck) .

Now, if Q(0) ≠ 0, the sign of Q(c) will be the same as the sign of Q(0) for suffi-
ciently small values of h and k. We can predict the sign of

 Q(0) = h2ƒxx(a, b) + 2hkƒxy(a, b) + k2ƒyy(a, b) (4)

from the signs of ƒxx and ƒxx ƒyy - ƒxy 2 at (a, b). Multiply both sides of Equation (4) by ƒxx 
and rearrange the right-hand side to get

 ƒxx Q(0) = (hƒxx + kƒxy)2 + (ƒxx ƒyy - ƒxy 

2)k2. (5)

From Equation (5) we see that

1. If ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b), then Q(0) 6 0 for all sufficiently small 
nonzero values of h and k, and ƒ has a local maximum value at (a, b).

2. If ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b), then Q(0) 7 0 for all sufficiently small 
nonzero values of h and k, and ƒ has a local minimum value at (a, b).

Part of open region R

(a + th, b + tk),
a typical point
on the segment

P(a, b)
t = 0

Parametrized
segment
in R

t = 1
S(a + h, b + k)

Figure 14.60 We begin the derivation 
of the Second Derivative Test at P(a, b) by 
parametrizing a typical line segment from 
P to a point S nearby.
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3. If ƒxx ƒyy - ƒxy 2 6 0 at (a, b), there are combinations of arbitrarily small nonzero 
values of h and k for which Q(0) 7 0, and other values for which Q(0) 6 0. Arbi-
trarily close to the point P0(a, b, ƒ(a, b)) on the surface z = ƒ(x, y) there are points 
above P0 and points below P0 , so ƒ has a saddle point at (a, b).

4. If ƒxx ƒyy - ƒxy 2 = 0, another test is needed. The possibility that Q(0) equals zero 
prevents us from drawing conclusions about the sign of Q(c).

The error Formula for Linear approximations

We want to show that the difference E(x, y) between the values of a function ƒ(x, y) and its 
linearization L(x, y) at (x0 , y0) satisfies the inequality

0E(x, y) 0 … 1
2

 M( 0 x - x0 0 + 0 y - y0 0 )2.

The function ƒ is assumed to have continuous second partial derivatives throughout an 
open set containing a closed rectangular region R centered at (x0 , y0). The number M is an 
upper bound for 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on R.

The inequality we want comes from Equation (2). We substitute x0 and y0 for a and b, 
and x - x0 and y - y0 for h and k, respectively, and rearrange the result as

ƒ(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)
   (++++++++++++)+++++++++++++*
 linearization L(x, y)

+ 1
2

 1(x - x0)2ƒxx + 2(x - x0)( y - y0)ƒxy + ( y - y0)2ƒyy2 2 (x0 + c(x - x0), y0 + c( y - y0)).

           (++++++++++++++++++++)+++++++++++++++++++++*
 error E(x, y)

This equation reveals that

0E 0 … 1
2

 1 0 x - x0 0 2 0 ƒxx 0 + 2 0 x - x0 0 0 y - y0 0 0 ƒxy 0 + 0 y - y0 0 2 0 ƒyy 0 2.
Hence, if M is an upper bound for the values of 0 ƒxx 0 , 0 ƒxy 0 , and 0 ƒyy 0  on R,

0E 0 … 1
2

 1 0 x - x0 0 2 M + 2 0 x - x0 0 0 y - y0 0M + 0 y - y0 0 2M2
= 1

2
 M( 0 x - x0 0 + 0 y - y0 0 )2.

Taylor’s Formula for Functions of Two variables

The formulas derived earlier for F′ and F″ can be obtained by applying to ƒ(x, y) the 
operators

ah 
0
0x + k 

0
0yb  and  ah 

0
0x + k 

0
0yb

2

= h2 
02

0x2 + 2hk 
02

0x 0y + k2 
02

0y2 .

These are the first two instances of a more general formula,

 F (n)(t) = dn

dtn F(t) = ah 
0
0x + k 

0
0yb

n

ƒ(x, y), (6)

which says that applying dn>dtn to F(t) gives the same result as applying the operator

ah 
0
0x + k 

0
0yb

n

to ƒ(x, y) after expanding it by the Binomial Theorem.
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If partial derivatives of ƒ through order n + 1 are continuous throughout a rectangu-
lar region centered at (a, b), we may extend the Taylor formula for F(t) to

F(t) = F(0) + F′(0)t +
F″(0)

2!
 t2 + g +

F (n)(0)
n!

 t(n) +  remainder, 

and take t = 1 to obtain

F(1) = F(0) + F′(0) +
F″(0)

2!
+ g +

F (n)(0)
n!

+  remainder.

When we replace the first n derivatives on the right of this last series by their equivalent 
expressions from Equation (6) evaluated at t = 0 and add the appropriate remainder term, 
we arrive at the following formula.

Taylor’s Formula for ƒ(x, y) at the Point (a, b)

Suppose ƒ(x, y) and its partial derivatives through order n + 1 are continuous throughout an open rectangular region R 
centered at a point (a, b). Then, throughout R,

ƒ(a + h, b + k) = ƒ(a, b) + (hƒx + kƒy) � (a, b) + 1
2!

 (h2ƒxx + 2hkƒxy + k2ƒyy) 0 (a, b)

+ 1
3!

 (h3ƒxxx + 3h2kƒxxy + 3hk2ƒxyy + k3ƒyyy) � (a, b) + g + 1
n!

 ah 
0
0x + k 

0
0yb

n

ƒ 2
(a, b)

+ 1
(n + 1)!

 ah 
0
0x + k 

0
0yb

n + 1

ƒ 2
(a + ch, b + ck)

. (7)

The first n derivative terms are evaluated at (a, b). The last term is evaluated at some point 
(a + ch, b + ck) on the line segment joining (a, b) and (a + h, b + k).

If (a, b) = (0, 0) and we treat h and k as independent variables (denoting them now 
by x and y), then Equation (7) assumes the following form.

Taylor’s Formula for ƒ(x, y) at the Origin

ƒ(x, y) = ƒ(0, 0) + xƒx + yƒy + 1
2!

 (x2ƒxx + 2xyƒxy + y2ƒyy)

+ 1
3!

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy) + g + 1
n!

 axn 
0n ƒ
0xn  + nxn - 1y 

0n ƒ

0xn - 10y
+ g + yn 

0n ƒ
0yn b

+ 1
(n + 1)!

 axn + 1 
0n + 1 ƒ

0xn + 1  + (n + 1)xny 
0n + 1 ƒ
0xn0y + g + yn + 1 

0n + 1 ƒ

0yn + 1 b 2
(cx, cy)

 (8)

The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a point on 
the line segment joining the origin and (x, y).

Taylor’s formula provides polynomial approximations of two-variable functions. The 
first n derivative terms give the polynomial; the last term gives the approximation error. 
The first three terms of Taylor’s formula give the function’s linearization. To improve on 
the linearization, we add higher-power terms.
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example 1  Find a quadratic approximation to ƒ(x, y) = sin x sin y near the origin. 
How accurate is the approximation if  0 x 0 … 0.1 and  0 y 0 … 0.1?

Solution We take n = 2 in Equation (8):

ƒ(x, y) = ƒ(0, 0) + (xƒx + yƒy) + 1
2

 (x2ƒxx + 2xyƒxy + y2ƒyy)

+ 1
6

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy)(cx, cy) .

Calculating the values of the partial derivatives,

ƒ(0, 0) = sin x sin y 0 (0,0) = 0,  ƒxx(0, 0) = -sin x sin y 0 (0,0) = 0, 

ƒx(0, 0) = cos x sin y 0 (0,0) = 0,  ƒxy(0, 0) = cos x cos y 0 (0,0) = 1, 

ƒy(0, 0) = sin x cos y 0 (0,0) = 0,  ƒyy(0, 0) = -sin x sin y 0 (0,0) = 0, 

we have the result

sin x sin y ≈ 0 + 0 + 0 + 1
2

 (x2(0) + 2xy(1) + y2(0)), or sin x sin y ≈ xy.

The error in the approximation is

E(x, y) = 1
6

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy) 2
(cx, cy)

.

The third derivatives never exceed 1 in absolute value because they are products of sines 
and cosines. Also, 0 x 0 … 0.1 and 0 y 0 … 0.1. Hence

0E(x, y) 0 … 1
6

 ((0.1)3 + 3(0.1)3 + 3(0.1)3 + (0.1)3) = 8
6

 (0.1)3 … 0.00134

(rounded up). The error will not exceed 0.00134 if 0 x 0 … 0.1 and 0 y 0 … 0.1. 

Finding Quadratic and Cubic approximations
In Exercises 1–10, use Taylor’s formula for ƒ(x, y) at the origin to find 
quadratic and cubic approximations of ƒ near the origin.

 1. ƒ(x, y) = xey 2. ƒ(x, y) = ex cos y

 3. ƒ(x, y) = y sin x 4. ƒ(x, y) = sin x cos y

 5. ƒ(x, y) = ex ln (1 + y) 6. ƒ(x, y) = ln (2x + y + 1)

 7. ƒ(x, y) = sin (x2 + y2)  8. ƒ(x, y) = cos (x2 + y2)

 9. ƒ(x, y) = 1
1 - x - y

 10. ƒ(x, y) = 1
1 - x - y + xy

 11. Use Taylor’s formula to find a quadratic approximation of 
ƒ(x, y) = cos x cos y at the origin. Estimate the error in the 
approximation if 0 x 0 … 0.1 and 0 y 0 … 0.1.

 12. Use Taylor’s formula to find a quadratic approximation of ex sin y 
at the origin. Estimate the error in the approximation if 0 x 0 … 0.1 
and 0 y 0 … 0.1.

exercises 14.9

14.10 partial Derivatives with Constrained variables

In finding partial derivatives of functions like w = ƒ(x, y), we have assumed x and y to be 
independent. In many applications, however, this is not the case. For example, the internal 
energy U of a gas may be expressed as a function U = ƒ(P, V, T ) of pressure P, volume 
V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, 
and T obey (and are constrained by) the ideal gas law

PV = nRT  (n and R constant),

and fail to be independent. In this section we learn how to find partial derivatives in situa-
tions like this, which occur in economics, engineering, and physics.
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Decide which variables are Dependent and which are independent

If the variables in a function w = ƒ(x, y, z) are constrained by a relation like the one 
imposed on x, y, and z by the equation z = x2 + y2, the geometric meanings and the 
numerical values of the partial derivatives of ƒ will depend on which variables are chosen 
to be dependent and which are chosen to be independent. To see how this choice can affect 
the outcome, we consider the calculation of 0w>0x when w = x2 + y2 + z2 and 
z = x2 + y2.

example 1  Find 0w>0x if w = x2 + y2 + z2 and z = x2 + y2.

Solution We are given two equations in the four unknowns x, y, z, and w. Like many 
such systems, this one can be solved for two of the unknowns (the dependent variables) in 
terms of the others (the independent variables). In being asked for 0w>0x, we are told that 
w is to be a dependent variable and x an independent variable. The possible choices for the 
other variables come down to

Dependent Independent

w, z x, y

w, y x, z

In either case, we can express w explicitly in terms of the selected independent variables. 
We do this by using the second equation z = x2 + y2 to eliminate the remaining depen-
dent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from the first 
equation by replacing it by x2 + y2. The resulting expression for w is

w = x2 + y2 + z2 = x2 + y2 + (x2 + y2)2

= x2 + y2 + x4 + 2x2y2 + y4

and

 
0w
0x = 2x + 4x3 + 4xy2. (1)

This is the formula for 0w>0x when x and y are the independent variables.
In the second case, where the independent variables are x and z and the remaining 

dependent variable is y, we eliminate the dependent variable y in the expression for w by 
replacing y2 in the second equation by z - x2. This gives

w = x2 + y2 + z2 = x2 + (z - x2) + z2 = z + z2

and

 
0w
0x = 0. (2)

This is the formula for 0w>0x when x and z are the independent variables.
The formulas for 0w>0x in Equations (1) and (2) are genuinely different. We cannot 

change either formula into the other by using the relation z = x2 + y2. There is not just 
one 0w>0x, there are two, and we see that the original instruction to find 0w>0x was 
incomplete. Which 0w>0x? we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equa-
tions differ. The function w = x2 + y2 + z2 measures the square of the distance from the 
point (x, y, z) to the origin. The condition z = x2 + y2 says that the point (x, y, z) lies on 
the paraboloid of revolution shown in Figure 14.61. What does it mean to calculate 0w>0x 
at a point P(x, y, z) that can move only on this surface? What is the value of 0w>0x when 
the coordinates of P are, say, (1, 0, 1)?

y

x

0

(1, 0, 1)

1

P
1

z = x2, y = 0

z = x2 + y2

Circle x2 + y2 = 1
in the plane z = 1 

z

Figure 14.61 If P is constrained 
to lie on the paraboloid z = x2 + y2, 
the value of the partial derivative of 
w = x2 + y2 + z2 with respect to x at 
P depends on the direction of motion 
(Example 1). (1) As x changes, with 
y = 0, P moves up or down the surface 
on the parabola z = x2 in the xz-plane 
with 0w>0x = 2x + 4x3. (2) As x changes, 
with z = 1, P moves on the circle 
x2 + y2 = 1, z = 1, and 0w>0x = 0.
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If we take x and y to be independent, then we find 0w>0x by holding y fixed (at y = 0 
in this case) and letting x vary. Hence, P moves along the parabola z = x2 in the xz-plane. 
As P moves on this parabola, w, which is the square of the distance from P to the origin, 
changes. We calculate 0w>0x in this case (our first solution above) to be

0w
0x = 2x + 4x3 + 4xy2.

At the point P(1, 0, 1), the value of this derivative is

0w
0x = 2 + 4 + 0 = 6.

If we take x and z to be independent, then we find 0w>0x by holding z fixed while x 
varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane 
z = 1. As P moves along this circle, its distance from the origin remains constant, and w, 
being the square of this distance, does not change. That is,

0w
0x = 0,

as we found in our second solution. 

How to Find ew ,ex  when the variables in w = ƒ(x, y, z)   
are Constrained by another equation

As we saw in Example 1, a typical routine for finding 0w>0x when the variables in the 
function w = ƒ(x, y, z) are related by another equation has three steps. These steps apply 
to finding 0w>0y and 0w>0z as well.

1. Decide which variables are to be dependent and which are to be independent. 
(In practice, the decision is based on the physical or theoretical context of our 
work. In the exercises at the end of this section, we say which variables are 
which.)

2. Eliminate the other dependent variable(s) in the expression for w.

3. Differentiate as usual.

If we cannot carry out Step 2 after deciding which variables are dependent, we differ-
entiate the equations as they are and try to solve for 0w>0x afterward. The next example 
shows how this is done.

example 2  Find 0w>0x at the point (x, y, z) = (2, -1, 1) if

w = x2 + y2 + z2,  z3 - xy + yz + y3 = 1,

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differ-
entiate both equations implicitly with respect to x, treating x and y as independent vari-
ables and w and z as dependent variables. This gives

 
0w
0x = 2x + 2z 

0z
0x (3)

and

 3z2 
0z
0x - y + y 

0z
0x + 0 = 0. (4)
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These equations may now be combined to express 0w>0x in terms of x, y, and z. We solve 
Equation (4) for 0z>0x to get

0z
0x =

y

y + 3z2

and substitute into Equation (3) to get

0w
0x = 2x +

2yz

y + 3z2 .

The value of this derivative at (x, y, z) = (2, -1, 1) is

 a0w
0x b

(2,-1,1)
= 2(2) +

2(-1)(1)

-1 + 3(1)2 = 4 + -2
2

= 3. 

Notation

To show what variables are assumed to be independent in calculating a derivative, we can 
use the following notation:

a0w
0x b

y
  0w>0x with x and y independent

a0ƒ
0yb

x, t
  0ƒ>0y with y, x, and t independent

ExamplE 3  Find (0w>0x)y, z  if w = x2 + y - z + sin t  and  x + y = t.

Solution With x, y, z independent, we have

 t = x + y,  w = x2 + y - z + sin (x + y)

 a0w
0x b

y, z
= 2x + 0 - 0 + cos (x + y) 

0
0x (x + y)

 = 2x + cos (x + y). 

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow dia-
gram that shows how the variables and functions are related. If

w = x2 + y - z + sin t  and  x + y = t

and we are asked to find 0w>0x when x, y, and z are independent, the appropriate diagram 
is one like this:

 £x

y

z

≥ S §x

y

z

t

¥ S w (5)

 Independent Intermediate Dependent 
 variables variables variable

Historical BiograpHy

Sonya Kovalevsky
(1850–1891)
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To avoid confusion between the independent and intermediate variables with the same 
symbolic names in the diagram, it is helpful to rename the intermediate variables (so they 
are seen as functions of the independent variables). Thus, let u = x, y = y, and s = z 
denote the renamed intermediate variables. With this notation, the arrow diagram becomes

 £x

y

z

≥ S §u

y

s

t

¥  S w (6)

 Independent Intermediate Dependent 
 variables variables and variable
  relations
  u = x
  y = y
  s = z
  t = x + y

The diagram shows the independent variables on the left, the intermediate variables and 
their relation to the independent variables in the middle, and the dependent variable on the 
right. The function w now becomes

w = u2 + y - s + sin t,

where

u = x,  y = y,  s = z,  and  t = x + y.

To find 0w>0x, we apply the four-variable form of the Chain Rule to w, guided by the 
arrow diagram in Equation (6):

0w
0x = 0w

0u  
0u
0x + 0w

0y 
0y
0x + 0w

0s  
0s
0x + 0w

0t  
0t
0x

= (2u)(1) + (1)(0) + (-1)(0) + (cos t)(1)

= 2u + cos t

= 2x + cos (x + y). Substituting the original independent 
variables u = x and t = x + y

Finding partial Derivatives with Constrained variables
In Exercises 1–3, begin by drawing a diagram that shows the relations 
among the variables.

 1. If w = x2 + y2 + z2 and z = x2 + y2, find

 a. a0w
0y b z

 b. a0w
0z b x

 c. a0w
0z b y

.

 2. If w = x2 + y - z + sin t and x + y = t, find

 a. a0w
0y b x, z

 b. a0w
0y b z, t

 c. a0w
0z b x, y

 d. a0w
0z b y, t

 e. a0w
0t b x, z

 f. a0w
0t b y, z

.

 3. Let U = ƒ(P, V, T ) be the internal energy of a gas that obeys the 
ideal gas law PV = nRT  (n and R constant). Find

 a. a0U
0P
b

V
 b. a0U

0T
b

V
.

 4. Find

 a. a0w
0x b y

 b. a0w
0z b y

  at the point (x, y, z) = (0, 1, p) if

w = x2 + y2 + z2  and  y sin z + z sin x = 0.

 5. Find

 a. a0w
0y b x

 b. a0w
0y b z

  at the point (w, x, y, z) = (4, 2, 1, -1) if

w = x2y2 + yz - z3  and  x2 + y2 + z2 = 6.

 6. Find (0u>0y)x at the point (u, y) = 122, 12 if x = u2 + y2 and 
y = uy.

exercises 14.10



 7. Suppose that x2 + y2 = r2 and x = r cos u, as in polar coordi-
nates. Find

a0x
0rb

u

  and  a0r
0xb y

.

 8. Suppose that

w = x2 - y2 + 4z + t  and  x + 2z + t = 25.

  Show that the equations

0w
0x = 2x - 1  and  

0w
0x = 2x - 2

  each give 0w>0x, depending on which variables are chosen to be 
dependent and which variables are chosen to be independent. 
Identify the independent variables in each case.

Theory and examples
 9. Establish the fact, widely used in hydrodynamics, that if 

ƒ(x, y, z) = 0, then

a0x
0yb z

 a0y
0zb x

 a0z
0xb y

= -1.

  (Hint: Express all the derivatives in terms of the formal partial 
derivatives 0ƒ>0x, 0ƒ>0y, and 0ƒ>0z.)

 10. If z = x + ƒ(u), where u = xy, show that

x 
0z
0x - y 

0z
0y = x.

 11. Suppose that the equation g(x, y, z) = 0 determines z as a differ-
entiable function of the independent variables x and y and that 
gz ≠ 0. Show that

a0z
0yb x

= -  
0g>0y

0g>0z
.

 12. Suppose that ƒ(x, y, z, w) = 0 and g(x, y, z, w) = 0 determine z 
and w as differentiable functions of the independent variables x 
and y, and suppose that

0ƒ
0z 

0g
0w -

0ƒ
0w 

0g
0z ≠ 0.

  Show that

a0z
0xb y

= -  

0ƒ
0x 

0g
0w -

0ƒ
0w 

0g
0x

0ƒ
0z 

0g
0w -

0ƒ
0w 

0g
0z

  and

a0w
0y b x

= -  

0ƒ
0z 

0g
0y -

0ƒ
0y 

0g
0z

0ƒ
0z 

0g
0w -

0ƒ
0w 

0g
0z

.

Chapter 14 Questions to guide Your review

 1. What is a real-valued function of two independent variables? 
Three independent variables? Give examples.

 2. What does it mean for sets in the plane or in space to be open? 
Closed? Give examples. Give examples of sets that are neither 
open nor closed.

 3. How can you display the values of a function ƒ(x, y) of two inde-
pendent variables graphically? How do you do the same for a 
function ƒ(x, y, z) of three independent variables?

 4. What does it mean for a function ƒ(x, y) to have limit L as 
(x, y) S (x0 , y0)? What are the basic properties of limits of func-
tions of two independent variables?

 5. When is a function of two (three) independent variables continu-
ous at a point in its domain? Give examples of functions that are 
continuous at some points but not others.

 6. What can be said about algebraic combinations and composites of 
continuous functions?

 7. Explain the two-path test for nonexistence of limits.

 8. How are the partial derivatives 0ƒ>0x and 0ƒ>0y of a function  
ƒ(x, y) defined? How are they interpreted and calculated?

 9. How does the relation between first partial derivatives and conti-
nuity of functions of two independent variables differ from the 
relation between first derivatives and continuity for real-valued 
functions of a single independent variable? Give an example.

 10. What is the Mixed Derivative Theorem for mixed second-order 
partial derivatives? How can it help in calculating partial deriva-
tives of second and higher orders? Give examples.

 11. What does it mean for a function ƒ(x, y) to be differentiable? 
What does the Increment Theorem say about differentiability?

 12. How can you sometimes decide from examining ƒx and ƒy that a 
function ƒ(x, y) is differentiable? What is the relation between the 
differentiability of ƒ and the continuity of ƒ at a point?

 13. What is the general Chain Rule? What form does it take for func-
tions of two independent variables? Three independent variables? 
Functions defined on surfaces? How do you diagram these differ-
ent forms? Give examples. What pattern enables one to remember 
all the different forms?

 14. What is the derivative of a function ƒ(x, y) at a point P0 in the 
direction of a unit vector u? What rate does it describe? What 
geometric interpretation does it have? Give examples.

 Chapter 14  Questions to Guide Your Review 875



876 Chapter 14: Partial Derivatives

 15. What is the gradient vector of a differentiable function ƒ(x, y)? 
How is it related to the function’s directional derivatives? State 
the analogous results for functions of three independent variables.

 16. How do you find the tangent line at a point on a level curve of a 
differentiable function ƒ(x, y)? How do you find the tangent plane 
and normal line at a point on a level surface of a differentiable 
function ƒ(x, y, z)? Give examples.

 17. How can you use directional derivatives to estimate change?

 18. How do you linearize a function ƒ(x, y) of two independent vari-
ables at a point (x0, y0)? Why might you want to do this? How do 
you linearize a function of three independent variables?

 19. What can you say about the accuracy of linear approximations of 
functions of two (three) independent variables?

 20. If (x, y) moves from (x0, y0) to a point (x0 + dx, y0 + dy) nearby, 
how can you estimate the resulting change in the value of a dif-
ferentiable function ƒ(x, y)? Give an example.

 21. How do you define local maxima, local minima, and saddle points 
for a differentiable function ƒ(x, y)? Give examples.

 22. What derivative tests are available for determining the local 
extreme values of a function ƒ(x, y)? How do they enable you to 
narrow your search for these values? Give examples.

 23. How do you find the extrema of a continuous function ƒ(x, y) on a 
closed bounded region of the xy-plane? Give an example.

 24. Describe the method of Lagrange multipliers and give examples.

 25. How does Taylor’s formula for a function ƒ(x, y) generate poly-
nomial approximations and error estimates?

 26. If w = ƒ(x, y, z), where the variables x, y, and z are constrained 
by an equation g(x, y, z) = 0, what is the meaning of the notation 
(0w>0x)y? How can an arrow diagram help you calculate this par-
tial derivative with constrained variables? Give examples.

Chapter 14 practice exercises

Domain, range, and Level Curves
In Exercises 1–4, find the domain and range of the given function and 
identify its level curves. Sketch a typical level curve.

 1. ƒ(x, y) = 9x2 + y2 2. ƒ(x, y) = ex + y

 3. g(x, y) = 1>xy 4. g(x, y) = 2x2 - y

In Exercises 5–8, find the domain and range of the given function and 
identify its level surfaces. Sketch a typical level surface.

 5. ƒ(x, y, z) = x2 + y2 - z 6. g(x, y, z) = x2 + 4y2 + 9z2

 7. h(x, y, z) = 1
x2 + y2 + z2 8. k(x, y, z) = 1

x2 + y2 + z2 + 1

evaluating Limits
Find the limits in Exercises 9–14.

 9. lim
(x,y)S(p, ln 2)

 ey cos x 10. lim
(x,y)S(0,0)

  
2 + y

x + cos y

 11. lim
(x,y)S(1,1)

 
x - y

x2 - y2 12. lim
(x,y)S(1,1)

 
x3y3 - 1
xy - 1

 13. lim
PS(1, -1, e)

 ln 0 x + y + z 0  14. lim
PS(1,-1,-1)

 tan-1 (x + y + z)

By considering different paths of approach, show that the limits in 
Exercises 15 and 16 do not exist.

 15. lim
(x,y)S(0,0)

 
y

x2 - y
 16. lim

(x,y)S(0,0)
 
x2 + y2

xy

    y≠ x2
 

xy≠0

 17. Continuous extension Let ƒ(x, y) = (x2 - y2) > (x2 + y2)  for 
(x, y) ≠ (0, 0). Is it possible to define ƒ(0, 0) in a way that makes 
ƒ continuous at the origin? Why?

 18. Continuous extension Let

 ƒ(x, y) = •
sin (x - y)

0 x 0 + 0 y 0 , 0 x 0 + 0 y 0 ≠ 0

0, (x, y) = (0, 0).

  Is ƒ continuous at the origin? Why?

partial Derivatives
In Exercises 19–24, find the partial derivative of the function with 
respect to each variable.

 19. g(r, u) = r cos u + r sin u

 20. ƒ(x, y) = 1
2

 ln (x2 + y2) + tan-1  
y
x

 21. ƒ(R1, R2, R3) = 1
R1

+ 1
R2

+ 1
R3

 22. h(x, y, z) = sin (2px + y - 3z)

 23. P(n, R, T, V ) = nRT
V

 (the ideal gas law)

 24. ƒ(r, l, T, w) = 1
2rl

 A T
pw

Second-Order partials
Find the second-order partial derivatives of the functions in Exercises 
25–28.

 25. g(x, y) = y + x
y 26. g(x, y) = ex + y sin x

 27. ƒ(x, y) = x + xy - 5x3 + ln (x2 + 1)
 28. ƒ(x, y) = y2 - 3xy + cos y + 7ey

Chain rule Calculations
 29. Find dw >dt at t = 0 if w = sin (xy + p), x = et, and y =  

ln (t + 1).

 30. Find dw >dt at t = 1 if w = xey + y sin z - cos z, x = 22t, 
y = t - 1 + ln t, and z = pt.

 31. Find 0w>0r and 0w>0s when r = p and s = 0 if w =  
sin (2x - y), x = r + sin s, y = rs.

 32. Find 0w>0u and 0w>0y when u = y = 0 if w =  
ln21 + x2 - tan-1 x and x = 2eu cos y.

 33. Find the value of the derivative of ƒ(x, y, z) = xy + yz + xz 
with respect to t on the curve x = cos t, y = sin t, z = cos 2t at 
t = 1.



 34. Show that if w = ƒ(s) is any differentiable function of s and if 
s = y + 5x, then

0w
0x - 5 

0w
0y = 0.

implicit Differentiation
Assuming that the equations in Exercises 35 and 36 define y as a dif-
ferentiable function of x, find the value of dy >dx at point P.

 35. 1 - x - y2 - sin xy = 0, P(0, 1)

 36. 2xy + ex + y - 2 = 0, P(0, ln 2)

Directional Derivatives
In Exercises 37–40, find the directions in which ƒ increases and 
decreases most rapidly at P0 and find the derivative of ƒ in each direc-
tion. Also, find the derivative of ƒ at P0 in the direction of the vector v.

 37. ƒ(x, y) = cos x cos y, P0(p>4, p>4), v = 3i + 4j

 38. ƒ(x, y) = x2e-2y, P0(1, 0), v = i + j

 39. ƒ(x, y, z) = ln (2x + 3y + 6z), P0(-1, -1, 1), 
v = 2i + 3j + 6k

 40. ƒ(x, y, z) = x2 + 3xy - z2 + 2y + z + 4, P0(0, 0, 0), 
v = i + j + k

 41. Derivative in velocity direction Find the derivative of 
ƒ(x, y, z) = xyz in the direction of the velocity vector of the helix

r(t) = (cos 3t)i + (sin 3t)j + 3t  k

  at t = p>3.

 42. Maximum directional derivative What is the largest value 
that the directional derivative of ƒ(x, y, z) = xyz can have at the 
point (1, 1, 1)?

 43. Directional derivatives with given values At the point (1, 2), 
the function ƒ(x, y) has a derivative of 2 in the direction toward 
(2, 2) and a derivative of -2 in the direction toward (1, 1).

  a. Find ƒx(1, 2) and ƒy(1, 2).

  b.  Find the derivative of ƒ at (1, 2) in the direction toward the 
point (4, 6).

 44. Which of the following statements are true if ƒ(x, y) is differen-
tiable at (x0 , y0)? Give reasons for your answers.

  a.  If u is a unit vector, the derivative of ƒ at (x0 , y0) in the direc-
tion of u is (ƒx(x0 , y0)i + ƒy(x0 , y0)j) # u.

  b.  The derivative of ƒ at (x0 , y0) in the direction of u is a vector.

  c.   The directional derivative of ƒ at (x0 , y0) has its greatest value 
in the direction of ∇ƒ.

  d.  At (x0 , y0), vector ∇ƒ is normal to the curve ƒ(x, y) = ƒ(x0 , y0).

gradients, Tangent planes, and normal Lines
In Exercises 45 and 46, sketch the surface ƒ(x, y, z) = c together with 
∇ƒ at the given points.

 45. x2 + y + z2 = 0; (0, -1, {1), (0, 0, 0)

 46. y2 + z2 = 4; (2, {2, 0), (2, 0, {2)

In Exercises 47 and 48, find an equation for the plane tangent to the 
level surface ƒ(x, y, z) = c at the point P0 . Also, find parametric 
equations for the line that is normal to the surface at P0 .

 47. x2 - y - 5z = 0, P0(2, -1, 1)

 48. x2 + y2 + z = 4, P0(1, 1, 2)

In Exercises 49 and 50, find an equation for the plane tangent to the 
surface z = ƒ(x, y) at the given point.

 49. z = ln (x2 + y2), (0, 1, 0)

 50. z = 1> (x2 + y2), (1, 1, 1>2)

In Exercises 51 and 52, find equations for the lines that are tangent 
and normal to the level curve ƒ(x, y) = c at the point P0 . Then sketch 
the lines and level curve together with ∇ƒ at P0 .

 51. y - sin x = 1, P0(p, 1) 52. 
y2

2
- x2

2
= 3

2
, P0(1, 2)

Tangent Lines to Curves
In Exercises 53 and 54, find parametric equations for the line that is 
tangent to the curve of intersection of the surfaces at the given point.

 53. Surfaces: x2 + 2y + 2z = 4, y = 1

  Point: (1, 1, 1 >2)

 54. Surfaces: x + y2 + z = 2, y = 1

  Point: (1 >2, 1, 1 >2)

Linearizations
In Exercises 55 and 56, find the linearization L(x, y) of the function ƒ(x, y) 
at the point P0 . Then find an upper bound for the magnitude of the error 
E in the approximation ƒ(x, y) ≈ L(x, y) over the rectangle R.

 55. ƒ(x, y) = sin x cos y, P0(p>4, p>4)

  R: ` x - p

4
` … 0.1, ` y - p

4
` … 0.1

 56. ƒ(x, y) = xy - 3y2 + 2, P0(1, 1)

  R: 0 x - 1 0 … 0.1, 0 y - 1 0 … 0.2

Find the linearizations of the functions in Exercises 57 and 58 at the 
given points.

 57. ƒ(x, y, z) = xy + 2yz - 3xz at (1, 0, 0) and (1, 1, 0)

 58. ƒ(x, y, z) = 22 cos x sin ( y + z) at (0, 0, p>4) and (p>4, 
p>4, 0)

estimates and Sensitivity to Change
 59. Measuring the volume of a pipeline You plan to calculate the 

volume inside a stretch of pipeline that is about 36 in. in diameter 
and 1 mile long. With which measurement should you be more 
careful, the length or the diameter? Why?

 60. Sensitivity to change Is ƒ(x, y) = x2 - xy + y2 - 3 more 
sensitive to changes in x or to changes in y when it is near the 
point (1, 2)? How do you know?

 61. Change in an electrical circuit Suppose that the current I 
(amperes) in an electrical circuit is related to the voltage V (volts) 
and the resistance R (ohms) by the equation I = V>R. If the volt-
age drops from 24 to 23 volts and the resistance drops from 100 to 
80 ohms, will I increase or decrease? By about how much? Is the 
change in I more sensitive to change in the voltage or to change in 
the resistance? How do you know?

 62. Maximum error in estimating the area of an ellipse If 
a = 10 cm and b = 16 cm to the nearest millimeter, what should 
you expect the maximum percentage error to be in the calculated 
area A = pab of the ellipse x2>a2 + y2>b2 = 1?

 63. Error in estimating a product Let y = uy and z = u + y, 
where u and y are positive independent variables.
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878 Chapter 14: Partial Derivatives

  a.  If u is measured with an error of 2% and y with an error of 3%, 
about what is the percentage error in the calculated value of y?

  b.  Show that the percentage error in the calculated value of z is 
less than the percentage error in the value of y.

 64. Cardiac index To make different people comparable in studies 
of cardiac output, researchers divide the measured cardiac output 
by the body surface area to find the cardiac index C:

C =
cardiac output

body surface area
.

  The body surface area B of a person with weight w and height h is 
approximated by the formula

B = 71.84w0.425h0.725,

  which gives B in square centimeters when w is measured in kilo-
grams and h in centimeters. You are about to calculate the cardiac 
index of a person 180 cm tall, weighing 70 kg, with cardiac out-
put of 7 L>min. Which will have a greater effect on the calcula-
tion, a 1-kg error in measuring the weight or a 1-cm error in mea-
suring the height?

Local extrema
Test the functions in Exercises 65–70 for local maxima and minima 
and saddle points. Find each function’s value at these points.

 65. ƒ(x, y) = x2 - xy + y2 + 2x + 2y - 4

 66. ƒ(x, y) = 5x2 + 4xy - 2y2 + 4x - 4y

 67. ƒ(x, y) = 2x3 + 3xy + 2y3

 68. ƒ(x, y) = x3 + y3 - 3xy + 15

 69. ƒ(x, y) = x3 + y3 + 3x2 - 3y2

 70. ƒ(x, y) = x4 - 8x2 + 3y2 - 6y

absolute extrema
In Exercises 71–78, find the absolute maximum and minimum values 
of ƒ on the region R.

 71. ƒ(x, y) = x2 + xy + y2 - 3x + 3y

  R: The triangular region cut from the first quadrant by the line 
x + y = 4

 72. ƒ(x, y) = x2 - y2 - 2x + 4y + 1

  R: The rectangular region in the first quadrant bounded by the 
coordinate axes and the lines x = 4 and y = 2

 73. ƒ(x, y) = y2 - xy - 3y + 2x

  R: The square region enclosed by the lines x = {2 and y = {2

 74. ƒ(x, y) = 2x + 2y - x2 - y2

  R: The square region bounded by the coordinate axes and the 
lines x = 2, y = 2 in the first quadrant

 75. ƒ(x, y) = x2 - y2 - 2x + 4y

  R: The triangular region bounded below by the x-axis, above by 
the line y = x + 2, and on the right by the line x = 2

 76. ƒ(x, y) = 4xy - x4 - y4 + 16

  R: The triangular region bounded below by the line y = -2, 
above by the line y = x, and on the right by the line x = 2

 77. ƒ(x, y) = x3 + y3 + 3x2 - 3y2

  R: The square region enclosed by the lines x = {1 and y = {1

 78. ƒ(x, y) = x3 + 3xy + y3 + 1

  R: The square region enclosed by the lines x = {1 and y = {1

Lagrange Multipliers
 79. Extrema on a circle Find the extreme values of ƒ(x, y) =  

x3 + y2 on the circle x2 + y2 = 1.

 80. Extrema on a circle Find the extreme values of ƒ(x, y) = xy 
on the circle x2 + y2 = 1.

 81. Extrema in a disk Find the extreme values of ƒ(x, y) =  
x2 + 3y2 + 2y on the unit disk x2 + y2 … 1.

 82. Extrema in a disk Find the extreme values of ƒ(x, y) =  
x2 + y2 - 3x - xy on the disk x2 + y2 … 9.

 83. Extrema on a sphere Find the extreme values of ƒ(x, y, z) =  
x - y + z on the unit sphere x2 + y2 + z2 = 1.

 84. Minimum distance to origin Find the points on the surface 
x2 - zy = 4 closest to the origin.

 85. Minimizing cost of a box A closed rectangular box is to have 
volume V cm3. The cost of the material used in the box is 
a cents>cm2 for top and bottom, b cents>cm2 for front and back, 
and c cents>cm2 for the remaining sides. What dimensions mini-
mize the total cost of materials?

 86. Least volume Find the plane x>a + y>b + z>c = 1 that passes 
through the point (2, 1, 2) and cuts off the least volume from the 
first octant.

 87. Extrema on curve of intersecting surfaces Find the extreme 
values of ƒ(x, y, z) = x( y + z) on the curve of intersection of the 
right circular cylinder x2 + y2 = 1 and the hyperbolic cylinder 
xz = 1.

 88. Minimum distance to origin on curve of intersecting plane 
and cone Find the point closest to the origin on the curve of 
intersection of the plane x + y + z = 1 and the cone z2 =
2x2 + 2y2.

Theory and examples

 89. Let w = ƒ(r, u), r = 2x2 + y2, and u = tan-1 ( y>x). Find 
0w>0x and 0w>0y and express your answers in terms of r and u.

 90. Let z = ƒ(u, y), u = ax + by, and y = ax - by. Express zx and 
zy in terms of fu , fy , and the constants a and b.

 91. If a and b are constants, w = u3 + tanh u + cos u, and u =
ax + by, show that

a 
0w
0y = b 

0w
0x .

 92. Using the Chain Rule If w = ln (x2 + y2 + 2z),   x = r + s, 
 y = r - s, and z = 2rs, find wr and ws by the Chain Rule. Then 
check your answer another way.

 93. Angle between vectors The equations eu cos y - x = 0 and 
eu sin y - y = 0 define u and y as differentiable functions of x 
and y. Show that the angle between the vectors

0u
0x i + 0u

0y j  and  
0y
0x i + 0y

0y j

  is constant.



 94. Polar coordinates and second derivatives Introducing polar 
coordinates x = r cos u and y = r sin u changes ƒ(x, y) to 
g(r, u). Find the value of 02g>0u2 at the point (r, u) = (2, p>2), 
given that

0ƒ
0x =

0ƒ
0y =

02ƒ

0x2 =
02ƒ

0y2 = 1

  at that point.

 95. Normal line parallel to a plane Find the points on the surface

(y + z)2 + (z - x)2 = 16

  where the normal line is parallel to the yz-plane.

 96. Tangent plane parallel to xy-plane Find the points on the  
surface

xy + yz + zx - x - z2 = 0

  where the tangent plane is parallel to the xy-plane.

 97. When gradient is parallel to position vector Suppose that 
∇ƒ(x, y, z) is always parallel to the position vector x i + y j + z  k. 
Show that ƒ(0, 0, a) = ƒ(0, 0, -a) for any a.

 98. One-sided directional derivative in all directions, but no gra-
dient The one-sided directional derivative of ƒ at P(x0 , y0 , z0) 
in the direction u = u1i + u2 j + u3 

k is the number

lim
sS0 +

 f (x0 + su1, y0 + su2 , z0 + su3) - f (x0 , y0 , z0)
s .

  Show that the one-sided directional derivative of

ƒ(x, y, z) = 2x2 + y2 + z2

  at the origin equals 1 in any direction but that ƒ has no gradient 
vector at the origin.

 99. Normal line through origin Show that the line normal to the 
surface xy + z = 2 at the point (1, 1, 1) passes through the origin.

 100. Tangent plane and normal line

  a. Sketch the surface x2 - y2 + z2 = 4.

  b.  Find a vector normal to the surface at (2, -3, 3). Add the 
vector to your sketch.

  c.  Find equations for the tangent plane and normal line at 
(2, -3, 3).

partial Derivatives with Constrained variables
In Exercises 101 and 102, begin by drawing a diagram that shows the 
relations among the variables.

 101. If w = x2eyz and z = x2 - y2 find

  a. a0w
0y b z

 b. a0w
0z b x

 c. a0w
0z b y

.

 102. Let U = ƒ(P, V, T ) be the internal energy of a gas that obeys 
the ideal gas law PV = nRT  (n and R constant). Find

  a. a0U
0T
b

P
 b. a0U

0V
b

T
.

Chapter 14 additional and advanced exercises

partial Derivatives
 1. Function with saddle at the origin If you did Exercise 60 in 

Section 14.2, you know that the function

ƒ(x, y) = • xy 
x2 - y2

x2 + y2 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0)

  (see the accompanying figure) is continuous at (0, 0). Find 
ƒxy(0, 0) and ƒyx(0, 0).

z

y

x

 2. Finding a function from second partials Find a function 
w = ƒ(x, y) whose first partial derivatives are 0w>0x = 1 +  
ex cos y and 0w>0y = 2y - ex sin y and whose value at the point 
(ln 2, 0) is ln 2.

 3. A proof of Leibniz’s Rule Leibniz’s Rule says that if ƒ is con-
tinuous on 3a, b4  and if u(x) and y(x) are differentiable functions 
of x whose values lie in 3a, b4 , then

d
dxL

y(x)

u(x)
 ƒ(t) dt = ƒ(y(x)) 

dy
dx

- ƒ(u(x)) 
du
dx

.

  Prove the rule by setting

g(u, y) = L
y

u
 ƒ(t) dt,  u = u(x),  y = y(x)

  and calculating dg >dx with the Chain Rule.

 4. Finding a function with constrained second partials Suppose 
that ƒ is a twice-differentiable function of r, that r =

  2x2 + y2 + z2, and that

ƒxx + ƒyy + ƒzz = 0.

  Show that for some constants a and b,

ƒ(r) = a
r + b.

 5. Homogeneous functions A function ƒ(x, y) is homogeneous of 
degree n (n a nonnegative integer) if ƒ(tx, ty) = tnƒ(x, y) for all t, 
x, and y. For such a function (sufficiently differentiable), prove 
that
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  a. x 
0ƒ
0x + y 

0ƒ
0y = nƒ(x, y)

  b. x2 a0
2ƒ

0x2b + 2xya 02ƒ
0x0yb + y2 a0

2ƒ

0y2b = n(n - 1)ƒ.

 6. Surface in polar coordinates Let

ƒ(r, u) = •
sin 6r

6r
 , r ≠ 0

1, r = 0,

  where r and u are polar coordinates. Find

  a. lim
rS0

 ƒ(r, u)  b. ƒr(0, 0)  c. ƒu(r, u), r ≠ 0.

z = f (r, u)

gradients and Tangents
 7. Properties of position vectors Let r = xi + yj + zk and let 

r = 0 r 0 .
  a. Show that ∇r = r>r.

  b. Show that ∇(rn) = nrn - 2r.

  c.  Find a function whose gradient equals r.

  d. Show that r # dr = r dr.

  e.   Show that ∇(A # r) = A for any constant vector A.

 8. Gradient orthogonal to tangent Suppose that a differentiable 
function ƒ(x, y) has the constant value c along the differentiable 
curve x = g(t), y = h(t); that is,

ƒ(g(t), h(t)) = c

  for all values of t. Differentiate both sides of this equation with 
respect to t to show that ∇ƒ is orthogonal to the curve’s tangent 
vector at every point on the curve.

 9. Curve tangent to a surface Show that the curve

r(t) = (ln t)i + (t ln t)j + t  k

  is tangent to the surface

xz2 - yz + cos xy = 1

  at (0, 0, 1).

 10. Curve tangent to a surface Show that the curve

r(t) = at
3

4
- 2b i + a4t - 3bj + cos (t - 2)k

  is tangent to the surface

x3 + y3 + z3 - xyz = 0

  at (0, -1, 1).

extreme values
 11. Extrema on a surface Show that the only possible maxima and 

minima of z on the surface z = x3 + y3 - 9xy + 27 occur at  
(0, 0) and (3, 3). Show that neither a maximum nor a minimum 

occurs at (0, 0). Determine whether z has a maximum or a mini-
mum at (3, 3).

 12. Maximum in closed first quadrant Find the maximum value 
of ƒ(x, y) = 6xye-(2x + 3y) in the closed first quadrant (includes the 
nonnegative axes).

 13. Minimum volume cut from first octant Find the minimum 
volume for a region bounded by the planes x = 0, y = 0, z = 0 
and a plane tangent to the ellipsoid

x2

a2 +
y2

b2 + z2

c2 = 1

  at a point in the first octant.

 14. Minimum distance from a line to a parabola in xy-plane By 
minimizing the function ƒ(x, y, u, y) = (x - u)2 + (y - y)2 
subject to the constraints y = x + 1 and u = y2, find the mini-
mum distance in the xy-plane from the line y = x + 1 to the 
parabola y2 = x.

Theory and examples
 15. Boundedness of first partials implies continuity Prove the 

following theorem: If ƒ(x, y) is defined in an open region R of the 
xy-plane and if ƒx and ƒy are bounded on R, then ƒ(x, y) is con-
tinuous on R. (The assumption of boundedness is essential.)

 16. Suppose that r(t) = g(t)i + h(t)j + k(t)k is a smooth curve in 
the domain of a differentiable function ƒ(x, y, z). Describe the 
relation between dƒ >dt, ∇ƒ, and v = dr>dt. What can be said 
about ∇ƒ and v at interior points of the curve where ƒ has extreme 
values relative to its other values on the curve? Give reasons for 
your answer.

 17. Finding functions from partial derivatives Suppose that ƒ 
and g are functions of x and y such that

0ƒ
0y =

0g
0x  and  

0ƒ
0x =

0g
0y ,

  and suppose that

0ƒ
0x = 0,  ƒ(1, 2) = g(1, 2) = 5,  and  ƒ(0, 0) = 4.

  Find ƒ(x, y) and g(x, y).

 18. Rate of change of the rate of change We know that if ƒ(x, y) is a 
function of two variables and if u = ai + bj is a unit vector, then 
Du ƒ(x, y) = ƒx(x, y)a + ƒy(x, y)b is the rate of change of ƒ(x, y) at 
(x, y) in the direction of u. Give a similar formula for the rate of 
change of the rate of change of ƒ(x, y) at (x, y) in the direction u.

 19. Path of a heat-seeking particle A heat-seeking particle has the 
property that at any point (x, y) in the plane it moves in the direc-
tion of maximum temperature increase. If the temperature at (x, y) 
is T(x, y) = -e-2y cos x, find an equation y = ƒ(x) for the path of 
a heat-seeking particle at the point (p>4, 0).

 20. Velocity after a ricochet A particle traveling in a straight line 
with constant velocity i + j - 5k passes through the point (0, 0, 
30) and hits the surface z = 2x2 + 3y2. The particle ricochets off 
the surface, the angle of reflection being equal to the angle of 
incidence. Assuming no loss of speed, what is the velocity of the 
particle after the ricochet? Simplify your answer.



 21. Directional derivatives tangent to a surface Let S be the sur-
face that is the graph of ƒ(x, y) = 10 - x2 - y2. Suppose that the 
temperature in space at each point (x, y, z) is T(x, y, z) = x2y +  
y2z + 4x + 14y + z.

  a.  Among all the possible directions tangential to the surface S at 
the point (0, 0, 10), which direction will make the rate of 
change of temperature at (0, 0, 10) a maximum?

  b.  Which direction tangential to S at the point (1, 1, 8) will make 
the rate of change of temperature a maximum?

 22. Drilling another borehole On a flat surface of land, geolo-
gists drilled a borehole straight down and hit a mineral deposit at 
1000 ft. They drilled a second borehole 100 ft to the north of the 
first and hit the mineral deposit at 950 ft. A third borehole 100 ft 
east of the first borehole struck the mineral deposit at 1025 ft. 
The geologists have reasons to believe that the mineral deposit is 
in the shape of a dome, and for the sake of economy, they would 
like to find where the deposit is closest to the surface. Assuming 
the surface to be the xy-plane, in what direction from the first 

borehole would you suggest the geologists drill their fourth 
borehole?

The one-dimensional heat equation If w(x, t) represents the tem-
perature at position x at time t in a uniform wire with perfectly insu-
lated sides, then the partial derivatives wxx and wt satisfy a differen-
tial equation of the form

wxx = 1
c2 wt .

This equation is called the one-dimensional heat equation. The value 
of the positive constant c2 is determined by the material from which 
the wire is made.

 23. Find all solutions of the one-dimensional heat equation of the 
form w = ert sin px, where r is a constant.

 24. Find all solutions of the one-dimensional heat equation that have 
the form w = ert sin kx and satisfy the conditions that w(0, t) = 0 
and w(L, t) = 0. What happens to these solutions as t S q?
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Mathematica/Maple Modules:

Plotting Surfaces
Efficiently generate plots of surfaces, contours, and level curves.

Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative
The path of a skateboarder is introduced, first on a level plane, then on a ramp, and finally on a paraboloid. Compute, plot, and analyze the direc-
tional derivative in terms of the skateboarder.

Looking for Patterns and Applying the Method of Least Squares to Real Data
Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to 
the line.

Lagrange Goes Skateboarding: How High Does He Go?
Revisit and analyze the skateboarders’ adventures for maximum and minimum heights from both a graphical and analytic perspective using 
Lagrange multipliers.
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OVERVIEW In this chapter we define the double integral of a function of two variables ƒ(x, y)
over a region in the plane as the limit of approximating Riemann sums. Just as a single inte-
gral represents signed area, so does a double integral represent signed volume. Double inte-
grals can be evaluated using the Fundamental Theorem of Calculus studied in Section 5.4, 
but now the evaluations are done twice by integrating with respect to each of the variables 
x and y in turn. Double integrals can be used to find areas of more general regions in the 
plane than those encountered in Chapter 5. Moreover, just as the Substitution Rule could 
simplify finding single integrals, we can sometimes use polar coordinates to simplify com-
puting a double integral. We study more general substitutions for evaluating double inte-
grals as well.

We also define triple integrals for a function of three variables ƒ(x, y, z) over a region 
in space. Triple integrals can be used to find volumes of still more general regions in 
space, and their evaluation is like that of double integrals with yet a third evaluation. 
Cylindrical or spherical coordinates can sometimes be used to simplify the calculation of 
a triple integral, and we investigate those techniques. Double and triple integrals have a 
number of additional applications, such as calculating the average value of a multivariable 
function, and finding moments and centers of mass for more general regions than those 
encountered before.

15.1 Double and Iterated Integrals over Rectangles

In Chapter 5 we defined the definite integral of a continuous function ƒ(x) over an interval 3a, b4  as a limit of Riemann sums. In this section we extend this idea to define the double
integral of a continuous function of two variables ƒ(x, y) over a bounded rectangle R in the 
plane. The Riemann sums for the integral of a single-variable function ƒ(x) are obtained 
by partitioning a finite interval into thin subintervals, multiplying the width of each subin-
terval by the value of ƒ at a point ck inside that subinterval, and then adding together all the 
products. A similar method of partitioning, multiplying, and summing is used to construct 
double integrals as limits of approximating Riemann sums.

Double Integrals

We begin our investigation of double integrals by considering the simplest type of planar 
region, a rectangle. We consider a function ƒ(x, y) defined on a rectangular region R,

R: a … x … b, c … y … d.

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes 
(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such 
pieces n gets large as the width and height of each piece gets small. These rectangles form 

Multiple Integrals

15

x

y

0 a

c

b

d

R

Δyk

Δxk

ΔAk

(xk, yk)

FIGURE 15.1 Rectangular grid 
partitioning the region R into small
rectangles of area ∆Ak = ∆xk ∆yk .
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a partition of R. A small rectangular piece of width ∆x and height ∆y has area ∆A = ∆x∆y.
If we number the small pieces partitioning R in some order, then their areas are given by 
numbers ∆A1, ∆A2, . . . , ∆An , where ∆Ak is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point (xk , yk) in the kth small rectangle, 
multiply the value of ƒ at that point by the area ∆Ak , and add together the products:

Sn = a

n

k=1
ƒ(xk , yk)∆Ak .

Depending on how we pick (xk , yk) in the kth small rectangle, we may get different values 
for Sn .

We are interested in what happens to these Riemann sums as the widths and heights of 
all the small rectangles in the partition of R approach zero. The norm of a partition P,
written 7P 7 , is the largest width or height of any rectangle in the partition. If 7P 7 = 0.1 
then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. 
Sometimes the Riemann sums converge as the norm of P goes to zero, written 7P 7 S 0. 
The resulting limit is then written as

lim
� �P� �S0 a

n

k=1
ƒ(xk , yk)∆Ak .

As 7P 7 S 0 and the rectangles get narrow and short, their number n increases, so we can 
also write this limit as

lim
nSq a

n

k=1
ƒ(xk , yk)∆Ak ,

with the understanding that 7P 7 S 0, and hence ∆Ak S 0, as n S q.
Many choices are involved in a limit of this kind. The collection of small rectangles is 

determined by the grid of vertical and horizontal lines that determine a rectangular parti-
tion of R. In each of the resulting small rectangles there is a choice of an arbitrary point 
(xk, yk) at which ƒ is evaluated. These choices together determine a single Riemann sum. 
To form a limit, we repeat the whole process again and again, choosing partitions whose 
rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums Sn exists, giving the same limiting value no matter what 
choices are made, then the function ƒ is said to be integrable and the limit is called the 
double integral of ƒ over R, written as

O
R

ƒ(x, y) dA or
O

R

ƒ(x, y) dx dy.

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable, 
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are 
also integrable, including functions that are discontinuous only on a finite number of 
points or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may 
interpret the double integral of ƒ over R as the volume of the 3-dimensional solid region 
over the xy-plane bounded below by R and above by the surface z = ƒ(x, y) (Figure 15.2). 
Each term ƒ(xk , yk)∆Ak in the sum Sn = g ƒ(xk , yk)∆Ak is the volume of a vertical rectan-
gular box that approximates the volume of the portion of the solid that stands directly 
above the base ∆Ak . The sum Sn thus approximates what we want to call the total volume 
of the solid. We define this volume to be

Volume = lim
nSq

Sn =
O

R

ƒ(x, y) dA,

where ∆Ak S 0 as n S q.

z

y
d

b

x
ΔAk

z = f (x, y)

f (xk, yk)

(xk, yk)
R

FIGURE 15.2 Approximating solids 
with rectangular boxes leads us to define 
the volumes of more general solids as 
double integrals. The volume of the solid 
shown here is the double integral of ƒ(x, y)
over the base region R.
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As you might expect, this more general method of calculating volume agrees with the 
methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum 
approximations to the volume becoming more accurate as the number n of boxes increases.

(a) n = 16 (b) n = 64 (c) n = 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z = 4 - x - y over the 
rectangular region R: 0 … x … 2, 0 … y … 1 in the xy-plane. If we apply the method of 
slicing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the 
volume is

L

x=2

x=0
A(x) dx, (1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as 
the integral

A(x) =
L

y=1

y=0
(4 - x - y) dy, (2)

which is the area under the curve z = 4 - x - y in the plane of the cross-section at x. In 
calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-
ing Equations (1) and (2), we see that the volume of the entire solid is

 Volume =
L

x=2

x=0
A(x) dx =

L

x=2

x=0
a
L

y=1

y=0
(4 - x - y) dyb dx

=
L

x=2

x=0
c 4y - xy -

y2

2
d

y=0

y=1

dx =
L

x=2

x=0
a7

2
- xb dx

= c 7
2

x - x2

2
d

0

2

= 5.

If we just wanted to write a formula for the volume, without carrying out any of the 
integrations, we could write

Volume =
L

2

0 L

1

0
(4 - x - y) dydx. (3)

The expression on the right, called an iterated or repeated integral, says that the volume 
is obtained by integrating 4 - x - y with respect to y from y = 0 to y = 1, holding x
fixed, and then integrating the resulting expression in x with respect to x from x = 0 to 
x = 2. The limits of integration 0 and 1 are associated with y, so they are placed on the 
integral closest to dy. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with dx.

y

z

x

x
1

2

4

z = 4 − x − y

A(x) = (4 − x − y) dy
y = 1

y = 0L

FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and 
integrate with respect to y.
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What would have happened if we had calculated the volume by slicing with planes 
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional 
area is

A(y) =
L

x=2

x=0
(4 - x - y) dx = c 4x - x2

2
- xy d

x=0

x=2

= 6 - 2y. (4)

The volume of the entire solid is therefore

Volume =
L

y=1

y=0
A( y) dy =

L

y=1

y=0
(6 - 2y) dy = 36y - y240

1 = 5,

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

Volume =
L

1

0 L

2

0
(4 - x - y) dx dy.

The expression on the right says we can find the volume by integrating 4 - x - y with 
respect to x from x = 0 to x = 2 as in Equation (4) and integrating the result with respect 
to y from y = 0 to y = 1. In this iterated integral, the order of integration is first x and 
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the 
double integral

O
R

(4 - x - y) dA

over the rectangle R: 0 … x … 2, 0 … y … 1? The answer is that both iterated integrals 
give the value of the double integral. This is what we would reasonably expect, since the 
double integral measures the volume of the same region as the two iterated integrals. A theo-
rem published in 1907 by Guido Fubini says that the double integral of any continuous func-
tion over a rectangle can be calculated as an iterated integral in either order of integration. 
(Fubini proved his theorem in greater generality, but this is what it says in our setting.)

y

z

x

y
1

2

4

z = 4 − x − y

A(y) = (4 − x − y) dx
x = 2

x = 0L

FIGURE 15.5 To obtain the cross-
sectional area A(y), we hold y fixed 
and integrate with respect to x.

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)

THEOREM 1—Fubini’s Theorem (First Form) If ƒ(x, y) is continuous 
throughout the rectangular region R: a … x … b, c … y … d, then

O
R

ƒ(x, y) dA =
L

d

c L

b

a
ƒ(x, y) dx dy =

L

b

a L

d

c
ƒ(x, y) dy dx.

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-
ated integrals. Thus, we can evaluate a double integral by integrating with respect to one 
variable at a time using the Fundamental Theorem of Calculus.

Fubini’s Theorem also says that we may calculate the double integral by integrating in 
either order, a genuine convenience. When we calculate a volume by slicing, we may use 
either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1 Calculate 4R ƒ(x, y) dA for

ƒ(x, y) = 100 - 6x2y and R: 0 … x … 2, -1 … y … 1.



Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

O
R

ƒ(x, y) dA = L
1

-1L
2

0

(100 - 6x2y) dx dy = L
1

-1
c 100x - 2x3y d

x=0

x=2

dy

= L
1

-1
(200 - 16y) dy = c 200y - 8y2 d

-1

1

= 400.

Reversing the order of integration gives the same answer:

L
2

0 L
1

-1

(100 - 6x2y) dy dx = L
2

0
c 100y - 3x2y2 d

y=-1

y=1

dx

= L
2

0
3 (100 - 3x2) - (-100 - 3x2) 4 dx

= L
2

0
200 dx = 400.

EXAMPLE 2  Find the volume of the region bounded above by the elliptical parabo-
loid z = 10 + x2 + 3y2 and below by the rectangle R: 0 … x … 1, 0 … y … 2.

Solution The surface and volume are shown in Figure 15.7. The volume is given by the 
double integral

V = O
R

(10 + x2 + 3y2) dA = L
1

0 L
2

0

(10 + x2 + 3y2) dydx

= L
1

0
c 10y + x2y + y3 d

y=0

y=2

dx

= L
1

0

(20 + 2x2 + 8) dx = c 20x + 2
3x

3 + 8x d
0

1

= 86
3 .

1R
2

1

50

z

x

−1

z = 100 − 6x2y

y

100

FIGURE 15.6 The double integral 

4R ƒ(x, y) dA gives the volume under this 
surface over the rectangular 
region R (Example 1).

y

x

z

R
2

10

1

z = 10 + x2 + 3y2

FIGURE 15.7 The double integral 

4R ƒ(x, y) dA gives the volume under this 
surface over the rectangular 
region R (Example 2).

Evaluating Iterated Integrals
In Exercises 1–14, evaluate the iterated integral.

1. L
2

1 L
4

0
2xy dy dx 2. L

2

0 L
1

-1
(x - y) dy dx

3. L
0

-1L
1

-1
(x + y + 1) dx dy 4. L

1

0 L
1

0
a1 -

x2 + y2

2
b dx dy

5. L
3

0 L
2

0

(4 - y2) dy dx 6. L
3

0 L
0

-2

(x2y - 2xy) dy dx

7. L
1

0 L
1

0

y
1 + xy

dx dy 8. L
4

1 L
4

0
ax

2
+ 2yb dx dy

9. L
ln2

0 L
ln5

1
e2x+y dy dx 10. L

1

0 L
2

1
xyexdydx

11. L
2

-1L
p/2

0
y sin x dx dy 12. L

2p

p L
p

0
(sin x + cos y) dxdy

13. L
4

1 L
e

1

ln x
xy dx dy 14. L

2

-1 L
2

1
x ln y dy dx

Evaluating Double Integrals over Rectangles
In Exercises 15–22, evaluate the double integral over the given 
region R.

15. O
R

(6y2 - 2x) dA, R: 0 … x … 1, 0 … y … 2

16. O
R

a2x
y2 b dA, R: 0 … x … 4, 1 … y … 2

17. O
R

xy cos y dA, R: -1 … x … 1, 0 … y … p

18. O
R

y sin (x + y) dA, R: -p … x … 0, 0 … y … p

Exercises 15.1
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19. O
R

ex-y dA, R: 0 … x … ln 2, 0 … y … ln 2

20. O
R

xyexy
2
dA, R: 0 … x … 2, 0 … y … 1

21. O
R

xy3

x2 + 1
dA, R: 0 … x … 1, 0 … y … 2

22. O
R

y

x2y2 + 1
dA, R: 0 … x … 1, 0 … y … 1

In Exercises 23 and 24, integrate ƒ over the given region.

23. Square ƒ(x, y) = 1>(xy) over the square 1 … x … 2,
1 … y … 2

24. Rectangle ƒ(x, y) = y cos xy over the rectangle 0 … x … p,
0 … y … 1

25. Find the volume of the region bounded above by the paraboloid 
z = x2 + y2 and below by the square R: -1 … x … 1,
-1 … y … 1.

26. Find the volume of the region bounded above by the elliptical 
paraboloid z = 16 - x2 - y2 and below by the square 
R: 0 … x … 2, 0 … y … 2.

27. Find the volume of the region bounded above by the plane 
z = 2 - x - y and below by the square R: 0 … x … 1,
0 … y … 1.

28. Find the volume of the region bounded above by the plane 
z = y>2 and below by the rectangle R: 0 … x … 4, 0 … y … 2.

29. Find the volume of the region bounded above by the surface 
z = 2 sin x cos y and below by the rectangle R: 0 … x … p>2,
0 … y … p>4.

30. Find the volume of the region bounded above by the surface 
z = 4 - y2 and below by the rectangle R: 0 … x … 1,
0 … y … 2.

31. Find a value of the constant k so that L
2

1 L
3

0
kx2y dx dy = 1.

32. EvaluateL
1

-1 L
p/2

0
x sin 2y dy dx.

33. Use Fubini’s Theorem to evaluate

L
2

0 L
1

0

x
1 + xy

dx dy.

34. Use Fubini’s Theorem to evaluate

L
1

0 L
3

0
xexy dx dy.

35. Use a software application to compute the integrals

a. L
1

0 L
2

0

y - x

(x + y)3 dx dy

b. L
2

0 L
1

0

y - x

(x + y)3 dy dx

Explain why your results do not contradict Fubini’s Theorem.

36. If ƒ(x, y) is continuous over R: a … x … b, c … y … d  and 

F(x, y) = L
x

a L
y

c
ƒ(u, y) dy du

  on the interior of R, find the second partial derivatives Fxy and Fyx .

T

15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane 
which are more general than rectangles. These double integrals are also evaluated as iterated 
integrals, with the main practical problem being that of determining the limits of integration. 
Since the region of integration may have boundaries other than line segments parallel to the 
coordinate axes, the limits of integration often involve variables, not just constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region 
R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rect-
angular cells whose union contains all points of R. This time, however, we cannot exactly 
fill R with a finite number of rectangles lying inside R, since its boundary is curved, and 
some of the small rectangles in the grid lie partly outside R. A partition of R is formed by 
taking the rectangles that lie completely inside it, not using any that are either partly or 
completely outside. For commonly arising regions, more and more of R is included as the 
norm of a partition (the largest width or height of any rectangle used) approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let ∆Ak be the area of the kth rectangle. We then choose a point (xk , yk) in the kth rect-
angle and form the Riemann sum

Sn = a
n

k=1
ƒ(xk , yk)∆Ak .

R

Δxk

Δyk

ΔAk

(xk, yk)

FIGURE 15.8 A rectangular grid 
partitioning a bounded, nonrectangular 
region into rectangular cells.
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As the norm of the partition forming Sn goes to zero, 7P 7 S 0, the width and height of 
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on 
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

lim
� �P� �S0 a

n

k=1
ƒ(xk , yk)∆Ak =

O
R

ƒ(x, y) dA.

The nature of the boundary of R introduces issues not found in integrals over an interval. 
When R has a curved boundary, the n rectangles of a partition lie inside R but do not cover 
all of R. In order for a partition to approximate R well, the parts of R covered by small 
rectangles lying partly outside R must become negligible as the norm of the partition 
approaches zero. This property of being nearly filled in by a partition of small norm is 
satisfied by all the regions that we will encounter. There is no problem with boundaries 
made from polygons, circles, ellipses, and from continuous graphs over an interval, joined 
end to end. A curve with a “fractal” type of shape would be problematic, but such curves 
arise rarely in most applications. A careful discussion of which type of regions R can be 
used for computing double integrals is left to a more advanced text.

Volumes

If ƒ(x, y) is positive and continuous over R, we define the volume of the solid region 
between R and the surface z = ƒ(x, y) to be 4R ƒ(x, y) dA, as before (Figure 15.9).

If R is a region like the one shown in the xy-plane in Figure 15.10, bounded “above” 
and “below” by the curves y = g2(x) and y = g1(x) and on the sides by the lines 
x = a, x = b, we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

A(x) =
L

y=g2(x)

y=g1(x)
ƒ(x, y) dy

and then integrate A(x) from x = a to x = b to get the volume as an iterated integral:

V =
L

b

a
A(x) dx =

L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx. (1)

z

y

x

R

0

Volume = lim Σ f(xk, yk) ΔAk =∫∫
R

f (x, y) dA

ΔAk(xk, yk)

Height = f(xk, yk)

z = f(x, y)

FIGURE 15.9 We define the volumes of 
solids with curved bases as a limit of 
approximating rectangular boxes.

z

yx

0

R

x
a

b

R

y = g2(x)

y = g1(x)

z = f (x, y)

A(x)

FIGURE 15.10 The area of the vertical 
slice shown here is A(x). To calculate the 
volume of the solid, we integrate this area 
from x = a to x = b:

L

b

a
A(x) dx =

L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx.
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Similarly, if R is a region like the one shown in Figure 15.11, bounded by the curves 
x = h2(y) and x = h1(y) and the lines y = c and y = d, then the volume calculated by 
slicing is given by the iterated integral

Volume =
L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy. (2)

That the iterated integrals in Equations (1) and (2) both give the volume that we 
defined to be the double integral of ƒ over R is a consequence of the following stronger 
form of Fubini’s Theorem.

z

y

y
d

c

x

z = f (x, y)
A(y)

x = h1(y)

x = h2(y)

FIGURE 15.11 The volume of the solid 
shown here is

L

d

c
A( y) dy =

L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy.

For a given solid, Theorem 2 says we can 
calculate the volume as in Figure 15.10, or 
in the way shown here. Both calculations 
have the same result.

THEOREM 2—Fubini’s Theorem (Stronger Form) Let ƒ(x, y) be continuous 
on a region R.

1. If R is defined by a … x … b, g1(x) … y … g2(x), with g1 and g2 continuous 
on 3a, b4 , then

O
R

ƒ(x, y) dA =
L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx.

2. If R is defined by c … y … d, h1(y) … x … h2(y), with h1 and h2 continuous 
on 3c, d4 , then

O
R

ƒ(x, y) dA =
L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy.

EXAMPLE 1  Find the volume of the prism whose base is the triangle in the xy-plane
bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

z = ƒ(x, y) = 3 - x - y.

Solution See Figure 15.12. For any x between 0 and 1, y may vary from y = 0 to y = x
(Figure 15.12b). Hence,

V =
L

1

0 L

x

0
(3 - x - y) dy dx =

L

1

0
c 3y - xy -

y2

2
d

y=0

y= x

dx

=
L

1

0
a3x - 3x2

2
b dx = c 3x2

2
- x3

2
d

x=0

x=1

= 1.

When the order of integration is reversed (Figure 15.12c), the integral for the volume is

V =
L

1

0 L

1

y
(3 - x - y) dx dy =

L

1

0
c 3x - x2

2
- xy d

x= y

x=1

dy

=
L

1

0
a3 - 1

2
- y - 3y +

y2

2
+ y2b dy

=
L

1

0
a5

2
- 4y + 3

2
y2b dy = c 5

2
y - 2y2 +

y3

2
d

y=0

y=1

= 1.

The two integrals are equal, as they should be.
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Although Fubini’s Theorem assures us that a double integral may be calculated as an 
iterated integral in either order of integration, the value of one integral may be easier to 
find than the value of the other. The next example shows how this can happen.

EXAMPLE 2 Calculate

O
R

sin x
x dA,

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line 
x = 1.

(a)

y

z

x
R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y = x

x = 1

z = f(x, y) = 3 − x − y

(c)

y

x
0 1

R

x = 1

y = x

x = y

x = 1

(b)

y

x

R

0 1

y = x

y = x

x = 1

y = 0

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is 
defined as a double integral over R. To evaluate it as an iterated integral, we may integrate first 
with respect to y and then with respect to x, or the other way around (Example 1). (b) Integration 
limits of

L

x=1

x=0 L

y=x

y=0
ƒ(x, y) dy dx .

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate 
from left to right to include all the vertical lines in R. (c) Integration limits of

L

y=1

y=0 L

x=1

x=y
ƒ(x, y) dx dy.

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.
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Solution The region of integration is shown in Figure 15.13. If we integrate first with 
respect to y and then with respect to x, we find

L

1

0
a
L

x

0

sin x
x dyb dx =

L

1

0
ay sin x

x d
y=0

y= xb dx =
L

1

0
sin x dx

= -cos (1) + 1 ≈ 0.46.

If we reverse the order of integration and attempt to calculate

L

1

0 L

1

y

sin x
x dx dy,

we run into a problem because 1((sin x)>x) dx cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one 
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations.

Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in 
the plane. Regions that are more complicated, and for which this procedure fails, can often 
be split up into pieces on which the procedure works.

Using Vertical Cross-Sections When faced with evaluating 4R ƒ(x, y) dA, integrating 
first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 15.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direc-
tion of increasing y. Mark the y-values where L enters and leaves. These are the y-limits 
of integration and are usually functions of x (instead of constants) (Figure 15.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines 
through R. The integral shown here (see Figure 15.14c) is

O
R

ƒ(x, y) dA =
L

x=1

x=0 L

y=21-x2

y=1-x
ƒ(x, y) dy dx.

Using Horizontal Cross-Sections To evaluate the same double integral as an iterated 
integral with the order of integration reversed, use horizontal lines instead of vertical lines 
in Steps 2 and 3 (see Figure 15.15). The integral is

O
R

ƒ(x, y) dA =
L

1

0 L

21-y2

1-y
ƒ(x, y) dx dy.

x

y

0 1

R

1 x2 + y2 = 1

x + y = 1

x

y

0 1x

L

1
R

Leaves at
y =

"

1 − x2

Enters at
y = 1 − x

Leaves at
y =

"

1 − x2

Enters at
y = 1 − x

x

y

0 1x

L

1
R

Smallest x
is x = 0

Largest x
is x = 1

(a)

(b)

(c)

R

x

y

0 1

1

x = 1

y = x

FIGURE 15.13 The region of 
integration in Example 2.

FIGURE 15.14 Finding the limits of 
integration when integrating first with 
respect to y and then with respect to x. x

y

Leaves at
x =

"

1 − y2

Enters at
x = 1 − y

0 1

y

1
R

Smallest y
is y = 0

Largest y
is y = 1

FIGURE 15.15 Finding the limits of 
integration when integrating first with 
respect to x and then with respect to y.
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EXAMPLE 3  Sketch the region of integration for the integral

L

2

0 L

2x

x2

(4x + 2) dy dx

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities x2 … y … 2x and 
0 … x … 2. It is therefore the region bounded by the curves y = x2 and y = 2x between 
x = 0 and x = 2 (Figure 15.16a).

To find limits for integrating in the reverse order, we imagine a horizontal line passing 
from left to right through the region. It enters at x = y>2 and leaves at x = 2y. To 
include all such lines, we let y run from y = 0 to y = 4 (Figure 15.16b). The integral is

L

4

0 L

2y

y>2
(4x + 2) dx dy.

The common value of these integrals is 8.

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties 
that are useful in computations and applications.

0 2

(a)

4 (2, 4)

y

x

y = 2x

y = x2

0 2

(b)

4 (2, 4)

y
2

y

x

x =
"

yx =

FIGURE 15.16 Region of 
integration for Example 3.

If ƒ(x, y) and g(x, y) are continuous on the bounded region R, then the following 
properties hold.

1. Constant Multiple: 
O

R

cƒ(x, y) dA = c
O

R

ƒ(x, y) dA (any number c)

2. Sum and Difference:

O
R

(ƒ(x, y) { g(x, y)) dA =
O

R

ƒ(x, y) dA {
O

R

g(x, y) dA

3. Domination:

(a)
O

R

ƒ(x, y) dA Ú 0 if ƒ(x, y) Ú 0 on R

(b)
O

R

ƒ(x, y) dA Ú
O

R

g(x, y) dA if ƒ(x, y) Ú g(x, y) on R

4. Additivity:
O

R

ƒ(x, y) dA =
O

R1

ƒ(x, y) dA +
O

R2

ƒ(x, y) dA

if R is the union of two nonoverlapping regions R1 and R2

Property 4 assumes that the region of integration R is decomposed into nonoverlap-
ping regions R1 and R2 with boundaries consisting of a finite number of line segments or 
smooth curves. Figure 15.17 illustrates an example of this property.

0
x

y

R1

R2

R

R = R1 ∪ R2

LL LL LL
R1

f (x, y) dA = f (x, y) dA +

R2

f (x, y) dA

FIGURE 15.17 The Additivity Property 
for rectangular regions holds for regions 
bounded by smooth curves.
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The idea behind these properties is that integrals behave like sums. If the function ƒ(x, y)
is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

Sn = a

n

k=1
ƒ(xk , yk)∆Ak

is replaced by a Riemann sum for cƒ

a

n

k=1
cƒ(xk , yk)∆Ak = ca

n

k=1
ƒ(xk , yk)∆Ak = cSn .

Taking limits as n S ∞ shows that c limnS∞Sn = c4R ƒ dA and limnS∞cSn = 4R cƒ dA
are equal. It follows that the Constant Multiple Property carries over from sums to double 
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to dou-
ble integrals for the same reason. While this discussion gives the idea, an actual proof that 
these properties hold requires a more careful analysis of how Riemann sums converge.

EXAMPLE 4  Find the volume of the wedgelike solid that lies beneath the surface z =
16 - x2 - y2 and above the region R bounded by the curve y = 22x, the line 
y = 4x - 2, and the x-axis.

Solution Figure 15.18a shows the surface and the “wedgelike” solid whose volume we 
want to calculate. Figure 15.18b shows the region of integration in the xy-plane. If we inte-
grate in the order dy dx (first with respect to y and then with respect to x), two integrations 
will be required because y varies from y = 0 to y = 21x for 0 … x … 0.5, and then var-
ies from y = 4x - 2 to y = 21x for 0.5 … x … 1. So we choose to integrate in the 
order dx dy, which requires only one double integral whose limits of integration are indi-
cated in Figure 15.18b. The volume is then calculated as the iterated integral:

O
R

(16 - x2 - y2) dA

=
L

2

0 L

(y+2)>4

y2>4
(16 - x2 - y2) dx dy

=
L

2

0
c 16x - x3

3 - xy2 d x= (y+2)>4
x= y2>4

dx

=
L

2

0
c 4(y + 2) -

(y + 2)3

3 # 64
-

(y + 2)y2

4
- 4y2 +

y6

3 # 64
+

y4

4
d dy

= c 191y
24

+
63y2

32
-

145y3

96
-

49y4

768
+

y5

20
+

y7

1344
d 2

0
= 20803

1680
≈ 12.4.

Our development of the double integral has focused on its representation of the vol-
ume of the solid region between R and the surface z = ƒ(x, y) of a positive continuous 
function. Just as we saw with signed area in the case of single integrals, when ƒ(xk , yk) is 
negative, then the product ƒ(xk , yk)∆Ak is the negative of the volume of the rectangular 
box shown in Figure 15.9 that was used to form the approximating Riemann sum. So for 
an arbitrary continuous function ƒ defined over R, the limit of any Riemann sum repre-
sents the signed volume (not the total volume) of the solid region between R and the sur-
face. The double integral has other interpretations as well, and in the next section we will 
see how it is used to calculate the area of a general region in the plane.

16

1

2 y

x

z

y = 4x − 2

z = 16 − x2 − y2

y = 2
"

x

(a)

(b)

0 10.5

(1, 2)2

x

y
y = 4x− 2

y = 2
"

x

R

x =
4
y2

x =
4

y+ 2

FIGURE 15.18 (a) The solid “wedge-
like” region whose volume is found in 
Example 4. (b) The region of integration R
showing the order dx dy.
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Sketching Regions of Integration
In Exercises 1–8, sketch the described regions of integration.

1. 0 … x … 3, 0 … y … 2x

2. -1 … x … 2, x - 1 … y … x2

3. -2 … y … 2, y2 … x … 4

4. 0 … y … 1, y … x … 2y

5. 0 … x … 1, ex … y … e

6. 1 … x … e2, 0 … y … ln x

7. 0 … y … 1, 0 … x … sin-1 y

8. 0 … y … 8,
1
4

y … x … y1>3

Finding Limits of Integration
In Exercises 9–18, write an iterated integral for 4R dA over the 
described region R using (a) vertical cross-sections, (b) horizontal 
cross-sections.

9. 10.

x

y
y = x3

y = 8

x

y

y = 2x

x = 3

11. 12.

x

y

y = x2

y = 3x

x

y

y = 1

x = 2

y = ex

13. Bounded by y = 1x, y = 0, and x = 9

14. Bounded by y = tan x, x = 0, and y = 1

15. Bounded by y = e-x, y = 1, and x = ln 3

16. Bounded by y = 0, x = 0, y = 1, and y = ln x

17. Bounded by y = 3 - 2x, y = x, and x = 0

18. Bounded by y = x2 and y = x + 2

Finding Regions of Integration and Double Integrals
In Exercises 19–24, sketch the region of integration and evaluate the 
integral.

19.
L

p

0 L

x

0
x sin y dy dx 20.

L

p

0 L

sin x

0
y dy dx

21.
L

ln8

1 L

lny

0
ex+y dx dy 22.

L

2

1 L

y2

y
dx dy

23.
L

1

0 L

y2

0
3y3exy dx dy 24.

L

4

1 L

2x

0

3
2

ey>2x dy dx

In Exercises 25–28, integrate ƒ over the given region.

25. Quadrilateral ƒ(x, y) = x>y over the region in the first quad-
rant bounded by the lines y = x, y = 2x, x = 1, and x = 2

26. Triangle ƒ(x, y) = x2 + y2 over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

27. Triangle ƒ(u, y) = y - 2u over the triangular region cut 
from the first quadrant of the uy-plane by the line u + y = 1

28. Curved region ƒ(s, t) = es ln t over the region in the first quad-
rant of the st-plane that lies above the curve s = ln t from t = 1
to t = 2

Each of Exercises 29–32 gives an integral over a region in a Cartesian 
coordinate plane. Sketch the region and evaluate the integral.

29.
L

0

-2L

-y

y

2 dp dy (the py@plane)

30.
L

1

0 L

21- s2

0
8t dt ds (the st@plane)

31.
L

p>3

-p>3L

sec t

0
3 cos t du dt (the tu@plane)

32.
L

3>2

0 L

4-2u

1

4 - 2u
y2 dy du (the uy@plane)

Reversing the Order of Integration
In Exercises 33–46, sketch the region of integration and write an 
equivalent double integral with the order of integration reversed.

33.
L

1

0 L

4-2x

2
dy dx 34.

L

2

0 L

0

y-2
dx dy

35.
L

1

0 L

2y

y
dx dy 36.

L

1

0 L

1-x2

1-x
dy dx

37.
L

1

0 L

ex

1
dy dx 38.

L

ln2

0 L

2

ey

dx dy

39.
L

3>2

0 L

9-4x2

0
16x dy dx 40.

L

2

0 L

4-y2

0
y dx dy

41.
L

1

0 L

21-y2

-21-y2

3y dx dy 42.
L

2

0 L

24-x2

-24-x2

6x dy dx

43.
L

e

1 L

ln x

0
xy dy dx 44.

L

p>6

0 L

1>2

sin x
xy2 dy dx

45.
L

3

0 L

ey

1
(x + y) dx dy 46.

L

13

0 L

tan-1 y

0
2xy dx dy

Exercises 15.2
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In Exercises 67 and 68, sketch the region of integration and the solid 
whose volume is given by the double integral.

67.
L

3

0 L

2-2x>3

0
a1 - 1

3
x - 1

2
yb dy dx

68.
L

4

0 L

216-y2

-216-y2

225 - x2 - y2 dx dy

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to 
improper integrals of one variable. The first iteration of the following 
improper integrals is conducted just as if they were proper integrals. 
One then evaluates an improper integral of a single variable by taking 
appropriate limits, as in Section 8.8. Evaluate the improper integrals 
in Exercises 69–72 as iterated integrals.

69.
L

q

1 L

1

e-x

1
x3y

dy dx 70.
L

1

-1L

1>21-x2

-1>21-x2

(2y + 1) dy dx

71.
L

q

-qL

q

-q

1
(x2 + 1)(y2 + 1)

dx dy

72.
L

q

0 L

q

0
xe-(x+2y) dx dy

Approximating Integrals with Finite Sums
In Exercises 73 and 74, approximate the double integral of ƒ(x, y) over 
the region R partitioned by the given vertical lines x = a and horizon-
tal lines y = c. In each subrectangle, use (xk , yk) as indicated for your 
approximation.

O
R

ƒ(x, y) dA ≈ a

n

k=1
ƒ(xk , yk)∆Ak

73. ƒ(x, y) = x + y over the region R bounded above by the semi-
circle y = 21 - x2 and below by the x-axis, using the partition 
x = -1, -1>2, 0, 1 >4, 1 >2, 1 and y = 0, 1 >2, 1 with (xk , yk) the 
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

74. ƒ(x, y) = x + 2y over the region R inside the circle 
(x - 2)2 + (y - 3)2 = 1 using the partition x = 1, 3 >2, 2, 5 >2,
3 and y = 2, 5 >2, 3, 7 >2, 4 with (xk , yk) the center (centroid) in 
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples
75. Circular sector Integrate ƒ(x, y) = 24 - x2 over the smaller 

sector cut from the disk x2 + y2 … 4 by the rays u = p>6 and 
u = p>2.

76. Unbounded region Integrate ƒ(x, y) = 1> 3 (x2 - x)( y - 1)2>34
over the infinite rectangle 2 … x 6 q, 0 … y … 2.

77. Noncircular cylinder A solid right (noncircular) cylinder has 
its base R in the xy-plane and is bounded above by the paraboloid 
z = x2 + y2. The cylinder’s volume is

V =
L

1

0 L

y

0

(x2 + y2) dx dy +
L

2

1 L

2-y

0

(x2 + y2) dx dy.

  Sketch the base region R and express the cylinder’s volume as a 
single iterated integral with the order of integration reversed. 
Then evaluate the integral to find the volume.

In Exercises 47–56, sketch the region of integration, reverse the order 
of integration, and evaluate the integral.

47.
L

p

0 L

p

x

sin y
y dy dx 48.

L

2

0 L

2

x
2y2 sin xy dy dx

49.
L

1

0 L

1

y
x2exy dx dy 50.

L

2

0 L

4-x2

0

xe2y

4 - y
dy dx

51.
L

22ln3

0 L

2ln3

y>2
ex2

dx dy

52.
L

3

0 L

1

2x>3
ey3

dy dx

53.
L

1>16

0 L

1>2

y1>4
cos (16px5) dx dy

54.
L

8

0 L

2

23 x

dy dx

y4 + 1

55. Square region 4R ( y - 2x2) dA where R is the region bounded 
by the square � x � + �y � = 1

56. Triangular region 4R xy dA where R is the region bounded by 
the lines y = x, y = 2x, and x + y = 2

Volume Beneath a Surface z = ƒ(x, y)
57. Find the volume of the region bounded above by the paraboloid 

z = x2 + y2 and below by the triangle enclosed by the lines 
y = x, x = 0, and x + y = 2 in the xy-plane.

58. Find the volume of the solid that is bounded above by the cylin-
der z = x2 and below by the region enclosed by the parabola 
y = 2 - x2 and the line y = x in the xy-plane.

59. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola y = 4 - x2 and the line 
y = 3x, while the top of the solid is bounded by the plane 
z = x + 4.

60. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the cylinder x2 + y2 = 4, and the plane 
z + y = 3.

61. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the plane x = 3, and the parabolic cylinder 
z = 4 - y2.

62. Find the volume of the solid cut from the first octant by the sur-
face z = 4 - x2 - y.

63. Find the volume of the wedge cut from the first octant by the cyl-
inder z = 12 - 3y2 and the plane x + y = 2.

64. Find the volume of the solid cut from the square column 
� x � + �y � … 1 by the planes z = 0 and 3x + z = 3.

65. Find the volume of the solid that is bounded on the front and back 
by the planes x = 2 and x = 1, on the sides by the cylinders 
y = {1>x, and above and below by the planes z = x + 1 and 
z = 0.

66. Find the volume of the solid bounded on the front and back by the 
planes x = {p>3, on the sides by the cylinders y = {secx,
above by the cylinder z = 1 + y2, and below by the xy-plane.
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78. Converting to a double integral Evaluate the integral

L

2

0
(tan-1 px - tan-1 x) dx.

  (Hint: Write the integrand as an integral.)

79. Maximizing a double integral What region R in the xy-plane
maximizes the value of

O
R

(4 - x2 - 2y2) dA?

  Give reasons for your answer.

80. Minimizing a double integral What region R in the xy-plane
minimizes the value of

O
R

(x2 + y2 - 9) dA?

  Give reasons for your answer.

81. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers 
depending on the order of integration? Give reasons for your 
answer.

82. How would you evaluate the double integral of a continuous 
function ƒ(x, y) over the region R in the xy-plane enclosed by the 
triangle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for 
your answer.

83. Unbounded region Prove that

L

q

-qL

q

-q
e-x2-y2

dx dy = lim
bSq L

b

-b L

b

-b
e-x2-y2

dx dy

= 4a
L

q

0
e-x2

dxb2

.

84. Improper double integral Evaluate the improper integral

L

1

0 L

3

0

x2

( y - 1)2>3 dy dx.

COMPUTER EXPLORATIONS
Use a CAS double-integral evaluator to estimate the values of the 
integrals in Exercises 85–88.

85.
L

3

1 L

x

1

1
xy dy dx 86.

L

1

0 L

1

0
e-(x2+y2) dy dx

87.
L

1

0 L

1

0
tan-1 xy dy dx

88.
L

1

-1L

21-x2

0
321 - x2 - y2 dy dx

Use a CAS double-integral evaluator to find the integrals in Exercises 
89–94. Then reverse the order of integration and evaluate, again with 
a CAS.

89.
L

1

0 L

4

2y
ex2

dx dy

90.
L

3

0 L

9

x2

x cos (y2) dy dx

91.
L

2

0 L

422y

y3

(x2y - xy2) dx dy

92.
L

2

0 L

4-y2

0
exy dx dy

93.
L

2

1 L

x2

0

1
x + y dy dx 94.

L

2

1 L

8

y3

1

2x2 + y2
dx dy

15.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded 
regions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take ƒ(x, y) = 1 in the definition of the double integral over a region R in the preced-
ing section, the Riemann sums reduce to

Sn = a

n

k=1
ƒ(xk , yk)∆Ak = a

n

k=1
∆Ak . (1)

This is simply the sum of the areas of the small rectangles in the partition of R, and approxi-
mates what we would like to call the area of R. As the norm of a partition of R approaches zero, 
the height and width of all rectangles in the partition approach zero, and the coverage of R
becomes increasingly complete (Figure 15.8). We define the area of R to be the limit

lim
� �P� �S0 a

n

k=1
∆Ak =

O
R

dA. (2)



As with the other definitions in this chapter, the definition here applies to a greater 
variety of regions than does the earlier single-variable definition of area, but it agrees with 
the earlier definition on regions to which they both apply. To evaluate the integral in the 
definition of area, we integrate the constant function ƒ(x, y) = 1 over R.

DEFINITION The area of a closed, bounded plane region R is

A = O
R

dA.

(1, 1)

0

y = x

y = x2

y = x 2

1

1

x

y

y = x

FIGURE 15.19 The region in Example 1.
EXAMPLE 1  Find the area of the region R bounded by y = x and y = x2 in the first 
quadrant.

Solution We sketch the region (Figure 15.19), noting where the two curves intersect at 
the origin and (1, 1), and calculate the area as

A = L
1

0 L
x

x2

dy dx = L
1

0
c y d

x2

x

dx

= L
1

0

(x - x2) dx = c x2

2
- x3

3 d 0
1

= 1
6

.

Notice that the single-variable integral 11
0 (x - x2) dx, obtained from evaluating the inside 

iterated integral, is the integral for the area between these two curves using the method of 
Section 5.6.

EXAMPLE 2  Find the area of the region R enclosed by the parabola y = x2 and the 
line y = x + 2.

Solution If we divide R into the regions R1 and R2 shown in Figure 15.20a, we may cal-
culate the area as

A = O
R1

dA + O
R2

dA = L
1

0 L
2y

-2y
dx dy + L

4

1 L
2y

y-2
dx dy.

On the other hand, reversing the order of integration (Figure 15.20b) gives

A = L
2

-1L
x+2

x2

dy dx.

This second result, which requires only one integral, is simpler and is the only one we 
would bother to write down in practice. The area is

A = L
2

-1
c y d

x2

x+2

dx = L
2

-1

(x + 2 - x2) dx = c x2

2
+ 2x - x3

3 d -1

2

= 9
2

.

(2, 4)

y

x
0

(a)

dx dy

(−1, 1)

R1

R2

y = x + 2

y = x 2

1

0

"y

–"y

dx dy
4

1

"y

y – 2

(2, 4)

y

x
0

(b)

y = x + 2

y = x2

dy dx

2

−1

x + 2

x2(−1, 1)

LL

LL

L L

FIGURE 15.20 Calculating this area 
takes (a) two double integrals if the first 
integration is with respect to x, but (b) only 
one if the first integration is with respect 
to y (Example 2).
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EXAMPLE 3  Find the area of the playing field described by

R: - 2 … x … 2, - 1 - 24 - x2 … y … 1 + 24 - x2, using

(a) Fubini’s Theorem (b) Simple geometry.

Solution The region R is shown in Figure 15.21.

(a) From the symmetries observed in the figure, we see that the area of R is 4 times its 
area in the first quadrant. Using Fubini’s Theorem, we have

A = O
R

dA = 4L
2

0 L
1+24-x2

0
dy dx

= 4L
2

0

(1 + 24 - x22 dx
= 4 c x + x

2
24 - x2 + 4

2
sin-1 x

2
d 2

0

Integral Table 

Formula 45

= 4a2 + 0 + 2 # p
2

- 0b = 8 + 4p.

(b) The region R consists of a rectangle mounted on two sides by half disks of radius 2. 
The area can be computed by summing the area of the 4 * 2 rectangle and the area of 
a circle of radius 2, so

A = 8 + p22 = 8 + 4p.

FIGURE 15.21 The playing field 
described by the region R in 
Example 3.

y

x
0 2

2

−2

3

1

−3

Average value of ƒ over R = 1
area of R O

R

ƒ dA. (3)

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R
divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from 
the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance 
of points in R from P.

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable 
function of two variables defined on a bounded region in the plane, the average value is the 
integral over the region divided by the area of the region. This can be visualized by think-
ing of the function as giving the height at one instant of some water sloshing around in a 
tank whose vertical walls lie over the boundary of the region. The average height of the 
water in the tank can be found by letting the water settle down to a constant height. The 
height is then equal to the volume of water in the tank divided by the area of R. We are led 
to define the average value of an integrable function ƒ over a region R as follows:

EXAMPLE 4  Find the average value of ƒ(x, y) = x cos xy over the rectangle 
R: 0 … x … p, 0 … y … 1.
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Area by Double Integrals
In Exercises 1–12, sketch the region bounded by the given lines and 
curves. Then express the region’s area as an iterated double integral 
and evaluate the integral.

1. The coordinate axes and the line x + y = 2

2. The lines x = 0, y = 2x, and y = 4

3. The parabola x = -y2 and the line y = x + 2

4. The parabola x = y - y2 and the line y = -x

5. The curve y = ex and the lines y = 0, x = 0, and x = ln 2

6. The curves y = ln x and y = 2 ln x and the line x = e, in the 
first quadrant

7. The parabolas x = y2 and x = 2y - y2

8. The parabolas x = y2 - 1 and x = 2y2 - 2

9. The lines y = x, y = x>3, and y = 2

10. The lines y = 1 - x and y = 2 and the curve y = ex

11. The lines y = 2x, y = x>2, and y = 3 - x

12. The lines y = x - 2 and y = -x and the curve y = 2x

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 13–18 give the areas 
of regions in the xy-plane. Sketch each region, label each bounding 
curve with its equation, and give the coordinates of the points where 
the curves intersect. Then find the area of the region.

13.
L

6

0 L

2y

y2>3
dx dy 14.

L

3

0 L

x(2-x)

-x
dy dx

15.
L

p>4

0 L

cos x

sin x
dy dx 16.

L

2

-1L

y+2

y2

dx dy

17.
L

0

-1L

1-x

-2x
dy dx +

L

2

0 L

1-x

-x>2
dy dx

18.
L

2

0 L

0

x2-4
dy dx +

L

4

0 L

2x

0
dy dx

Finding Average Values
19. Find the average value of ƒ(x, y) = sin (x + y) over

a. the rectangle 0 … x … p, 0 … y … p.

b. the rectangle 0 … x … p, 0 … y … p>2.

20. Which do you think will be larger, the average value of 
ƒ(x, y) = xy over the square 0 … x … 1, 0 … y … 1, or the 

average value of ƒ over the quarter circle x2 + y2 … 1 in the first 
quadrant? Calculate them to find out.

21. Find the average height of the paraboloid z = x2 + y2 over the 
square 0 … x … 2, 0 … y … 2.

22. Find the average value of ƒ(x, y) = 1>(xy) over the square 
ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.

Theory and Examples
23. Geometric area Find the area of the region

R: 0 … x … 2, 2 - x … y … 24 - x2,

  using (a) Fubini’s Theorem, (b) simple geometry.

24. Geometric area Find the area of the circular washer with outer 
radius 2 and inner radius 1, using (a) Fubini’s Theorem, (b) simple 
geometry.

25. Bacterium population If ƒ(x, y) = (10,000ey)>(1 + � x � >2)
represents the “population density” of a certain bacterium on the 
xy-plane, where x and y are measured in centimeters, find the total 
population of bacteria within the rectangle -5 … x … 5 and 
-2 … y … 0.

26. Regional population If ƒ(x, y) = 100 ( y + 1) represents the 
population density of a planar region on Earth, where x and y are 
measured in miles, find the number of people in the region 
bounded by the curves x = y2 and x = 2y - y2.

27. Average temperature in Texas According to the Texas Alma-
nac, Texas has 254 counties and a National Weather Service sta-
tion in each county. Assume that at time t0 , each of the 254 weather 
stations recorded the local temperature. Find a formula that would 
give a reasonable approximation of the average temperature in 
Texas at time t0 . Your answer should involve information that you 
would expect to be readily available in the Texas Almanac.

28. If y = ƒ(x) is a nonnegative continuous function over the closed 
interval a … x … b, show that the double integral definition of 
area for the closed plane region bounded by the graph of ƒ, the 
vertical lines x = a and x = b, and the x-axis agrees with the 
definition for area beneath the curve in Section 5.3.

29. Suppose ƒ(x, y) is continuous over a region R in the plane and that 
the area A(R) of the region is defined. If there are constants m and 
M such that m … ƒ(x, y) … M  for all (x, y)∊R, prove that 

mA(R) …
O
R

ƒ(x, y) dA … MA(R).

30. Suppose ƒ(x, y) is continuous and nonnegative over a region R in 
  the plane with a defined area A(R). If 4R ƒ(x, y) dA = 0, prove 
  that ƒ(x, y) = 0 at every point (x, y)∊R.

Exercises 15.3

Solution The value of the integral of ƒ over R is

L

p

0 L

1

0
x cos xy dy dx =

L

p

0
c sin xy d

y=0

y=1

dx
L

x cos xy dy = sin xy + C

=
L

p

0
(sin x - 0) dx = -cos x d

0

p

= 1 + 1 = 2.

The area of R is p. The average value of ƒ over R is 2>p.
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15.4 Double Integrals in Polar Form

Double integrals are sometimes easier to evaluate if we change to polar coordinates. This 
section shows how to accomplish the change and how to evaluate double integrals over 
regions whose boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we 
began by cutting R into rectangles whose sides were parallel to the coordinate axes. These 
were the natural shapes to use because their sides have either constant x-values or constant 
y-values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have 
constant r- and u@values. To avoid ambiguities when describing the region of integration 
with polar coordinates, we use polar coordinate points (r, u) where r Ú 0.

Suppose that a function ƒ(r, u) is defined over a region R that is bounded by the rays 
u = a and u = b and by the continuous curves r = g1(u) and r = g2(u). Suppose also 
that 0 … g1(u) … g2(u) … a for every value of u between a and b. Then R lies in a fan-
shaped region Q defined by the inequalities 0 … r … a and a … u … b, where 
0 … b - a … 2p. See Figure 15.22.

0

R

Q

u = b

u = p
Δr

Δr

ΔAk

2Δr

3Δr

Δu

(rk, uk)

r = g1(u)

a + 2Δu

a + Δu

u = a

u = 0

r = g2(u) r = a

FIGURE 15.22 The region R: g1(u) … r … g2(u), a … u … b, is contained in the fan-
shaped region Q: 0 … r … a, a … u … b, where 0 … b - a … 2p. The partition of Q
by circular arcs and rays induces a partition of R.

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered 
at the origin, with radii ∆r, 2∆r, . . . , m∆r, where ∆r = a>m. The rays are given by

u = a, u = a + ∆u, u = a + 2∆u, c , u = a + m′∆u = b,

where ∆u = (b - a)>m′. The arcs and rays partition Q into small patches called “polar 
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling 
their areas ∆A1, ∆A2, . . . , ∆An . We let (rk , uk) be any point in the polar rectangle whose 
area is ∆Ak . We then form the sum

Sn = a

n

k=1
ƒ(rk , uk)∆Ak .

If ƒ is continuous throughout R, this sum will approach a limit as we refine the grid to make 
∆r and ∆u go to zero. The limit is called the double integral of ƒ over R. In symbols,

lim
nSq

Sn =
O

R

ƒ(r, u) dA.
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To evaluate this limit, we first have to write the sum Sn in a way that expresses ∆Ak in 
terms of ∆r and ∆u. For convenience we choose rk to be the average of the radii of the inner 
and outer arcs bounding the kth polar rectangle ∆Ak. The radius of the inner arc bounding 
∆Ak is then rk - (∆r>2) (Figure 15.23). The radius of the outer arc is rk + (∆r>2).

The area of a wedge-shaped sector of a circle having radius r and angle u is

A = 1
2
u # r2,

as can be seen by multiplying pr2, the area of the circle, by u>2p, the fraction of the cir-
cle’s area contained in the wedge. So the areas of the circular sectors subtended by these 
arcs at the origin are

Inner radius: 1
2
ark - ∆r

2
b2

∆u

Outer radius: 1
2
ark + ∆r

2
b2

∆u.

Therefore,

∆Ak = area of large sector - area of small sector

= ∆u
2
c ark + ∆r

2
b2

- ark - ∆r
2
b2 d = ∆u

2
(2rk ∆r) = rk ∆r ∆u.

Combining this result with the sum defining Sn gives

Sn = a

n

k=1
ƒ(rk , uk) rk ∆r ∆u.

As n S q and the values of ∆r and ∆u approach zero, these sums converge to the double 
integral

lim
nSq

Sn =
O

R

ƒ(r, u) r dr du.

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and u as

O
R

ƒ(r, u) dA =
L

u=b

u=a L

r=g2(u)

r=g1(u)
ƒ(r, u) r dr du.

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for 
polar coordinates. To evaluate 4R ƒ(r, u) dA over a region R in polar coordinates, integrat-
ing first with respect to r and then with respect to u, take the following steps.

1. Sketch. Sketch the region and label the bounding curves (Figure 15.24a).

2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the 
direction of increasing r. Mark the r-values where L enters and leaves R. These are the 
r-limits of integration. They usually depend on the angle u that L makes with the posi-
tive x-axis (Figure 15.24b).

3. Find the u@limits of integration. Find the smallest and largest u@values that bound R.
These are the u@limits of integration (Figure 15.24c). The polar iterated integral is

O
R

ƒ(r, u) dA =
L

u=p>2

u=p>4 L

r=2

r=22 cscu
ƒ(r, u) r dr du.

a b

a b

Small sector

Large sector

0

Δu

Δr
rkΔr

2
rk −

Δr
2

rk +

ΔAk

FIGURE 15.23 The observation that

∆Ak = a area of

large sector
b - a area of

small sector
b

leads to the formula ∆Ak = rk ∆r ∆u.

y

x
0

2
R

x2 + y2 = 4

y =
"

2
"

2
"

2,
"

2Q R

y

x
0

2
R

L

u

Enters at r =
"

2 csc u

Leaves at r = 2

r sin u = y =
"

2
or

r =
"

2 csc u

y

x
0

2
R

L

Largest u is .p
2

Smallest u is .p
4

y = x

"

2

(a)

(b)

(c)

FIGURE 15.24 Finding the limits of 
integration in polar coordinates.
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EXAMPLE 1  Find the limits of integration for integrating ƒ(r, u) over the region R
that lies inside the cardioid r = 1 + cos u and outside the circle r = 1.

Solution

1. We first sketch the region and label the bounding curves (Figure 15.25).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where 
r = 1 and leaves where r = 1 + cosu.

3. Finally we find the u@limits of integration. The rays from the origin that intersect R run 
from u = -p>2 to u = p>2. The integral is

L

p>2

-p>2 L

1+cosu

1
ƒ(r, u) r dr du.

If ƒ(r, u) is the constant function whose value is 1, then the integral of ƒ over R is the 
area of R.

1 2

L

u

Enters
at
r = 1

Leaves at
r = 1 + cos u

r = 1 + cos u

y

x

u =
p
2

u = −p
2

FIGURE 15.25 Finding the limits of 
integration in polar coordinates for the 
region in Example 1.

This formula for area is consistent with all earlier formulas, although we do not prove 
this fact.

EXAMPLE 2  Find the area enclosed by the lemniscate r2 = 4 cos 2u.

Solution We graph the lemniscate to determine the limits of integration (Figure 15.26) and 
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

A = 4
L

p>4

0 L

24 cos 2u

0
r dr du = 4

L

p>4

0
c r2

2
d

r=0

r=24 cos 2u

du

= 4
L

p>4

0
2 cos 2u du = 4 sin 2u d

0

p>4
= 4.

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral 4R ƒ(x, y) dx dy into a polar integral has 
two steps. First substitute x = r cos u and y = r sin u, and replace dx dy by r dr du in the 
Cartesian integral. Then supply polar limits of integration for the boundary of R. The Car-
tesian integral then becomes

O
R

ƒ(x, y) dx dy =
O

G

ƒ(r cos u, r sin u) r dr du,

where G denotes the same region of integration now described in polar coordinates. This is 
like the substitution method in Chapter 5 except that there are now two variables to substi-
tute for instead of one. Notice that the area differential dx dy is not replaced by dr du but 
by r dr du. A more general discussion of changes of variables (substitutions) in multiple 
integrals is given in Section 15.8.

y

x

Enters at
r = 0

r2 = 4 cos 2u
–p

4

p
4

Leaves at
r =

"

4 cos 2u

FIGURE 15.26 To integrate over the
shaded region, we run r from 0 to 
24 cos 2u and u from 0 to p>4
(Example 2).

Area Differential in Polar Coordinates

dA = r dr du

Area in Polar Coordinates

The area of a closed and bounded region R in the polar coordinate plane is

A =
O

R

r dr du.
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EXAMPLE 3 Evaluate

O
R

ex2+ y2
dy dx,

where R is the semicircular region bounded by the x-axis and the curve y = 21 - x2

(Figure 15.27).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral 
and there is no direct way to integrate ex2+ y2

 with respect to either x or y. Yet this integral 
and others like it are important in mathematics—in statistics, for example—and we need 
to find a way to evaluate it. Polar coordinates save the day. Substituting x = r cos u, y =
r sin u and replacing dy dx by r dr du enables us to evaluate the integral as

O
R

ex2+ y2
dy dx =

L

p

0 L

1

0
er2

r dr du =
L

p

0
c 1
2

er2 d
0

1

du

=
L

p

0

1
2

(e - 1) du = p
2

(e - 1).

The r in the r dr du was just what we needed to integrate er2
. Without it, we would have 

been unable to find an antiderivative for the first (innermost) iterated integral.

EXAMPLE 4  Evaluate the integral

L

1

0 L

21-x2

0

(x2 + y2) dy dx.

Solution Integration with respect to y gives

L

1

0
ax2 21 - x2 +

(1 - x2)3>2
3 b dx,

an integral difficult to evaluate without tables.
Things go better if we change the original integral to polar coordinates. The region of 

integration in Cartesian coordinates is given by the inequalities 0 … y … 21 - x2 and 
0 … x … 1, which correspond to the interior of the unit quarter circle x2 + y2 = 1 in the 
first quadrant. (See Figure 15.27, first quadrant.) Substituting the polar coordinates 
x = r cos u, y = r sin u, 0 … u … p>2, and 0 … r … 1, and replacing dx dy by r dr du
in the double integral, we get

L

1

0 L

21-x2

0

(x2 + y2) dy dx =
L

p>2

0 L

1

0

(r2) r dr du

=
L

p>2

0
c r4

4
d r=1

r=0
du =

L

p>2

0

1
4

du = p
8 .

Why is the polar coordinate transformation so effective here? One reason is that x2 + y2

simplifies to r2. Another is that the limits of integration become constants.

EXAMPLE 5  Find the volume of the solid region bounded above by the paraboloid 
z = 9 - x2 - y2 and below by the unit circle in the xy-plane.

Solution The region of integration R is the unit circle x2 + y2 = 1, which is described 
in polar coordinates by r = 1, 0 … u … 2p. The solid region is shown in Figure 15.28. 
The volume is given by the double integral

0 1

1

y

x
−1

r = 1

u = 0u = p

y = "1 − x2

FIGURE 15.27 The semicircular region 
in Example 3 is the region

0 … r … 1, 0 … u … p.

FIGURE 15.28 The solid region in 
Example 5.

2

2
x

y
x2 + y2 = 1

−2

z = 9 − x2 − y2

z

9

R
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O
R

(9 - x2 - y2) dA =
L

2p

0 L

1

0

(9 - r2) r dr du

=
L

2p

0 L

1

0

(9r - r3) dr du

=
L

2p

0
c 9
2

r2 - 1
4

r4 d r=1

r=0
du

= 17
4 L

2p

0
du = 17p

2
.

EXAMPLE 6  Using polar integration, find the area of the region R in the xy-plane
enclosed by the circle x2 + y2 + 4, above the line y = 1, and below the line y = 23x.

Solution A sketch of the region R is shown in Figure 15.29. First we note that the line 
y = 23x has slope 23 = tan u, so u = p>3. Next we observe that the line y = 1 inter-
sects the circle x2 + y2 = 4 when x2 + 1 = 4, or x = 23. Moreover, the radial line 
from the origin through the point (23, 1) has slope 1>23 = tan u, giving its angle of 
inclination as u = p>6. This information is shown in Figure 15.29.

Now, for the region R, as u varies from p>6 to p>3, the polar coordinate r varies 
from the horizontal line y = 1 to the circle x2 + y2 = 4. Substituting r sin u for y in the 
equation for the horizontal line, we have r sin u = 1, or r = csc u, which is the polar 
equation of the line. The polar equation for the circle is r = 2. So in polar coordinates, for 
p>6 … u … p>3, r varies from r = csc u to r = 2. It follows that the iterated integral 
for the area then gives

O
R

dA =
L

p>3

p>6 L

2

csc u

r dr du

=
L

p>3

p>6
c 1
2

r2 d r=2

r= csc u

du

=
L

p>3

p>6
1
2
34 - csc2 u4 du

= 1
2
c 4u + cot u d p>3

p>6
= 1

2
a4p3 + 1

23
b - 1

2
a4p

6
+ 23b = p - 23

3 .

FIGURE 15.29 The region R in 
Example 6.

x

y

y = 1, or
r = csc u

2

2

1

0 1

y =
"

3x

x2 + y2 = 4

(1,
"

3)

(
"

3, 1)

p
6

p
3

R

Regions in Polar Coordinates
In Exercises 1–8, describe the given region in polar coordinates.

1. 2.

x

y

90

9

x

y

40

1

4

3. 4.

x

y

1−1 0

1

x

y

10

"

3

Exercises 15.4
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5. 6.

x

y

10

1

2

2
"

3

x

y

0 1 2

2

2

7. The region enclosed by the circle x2 + y2 = 2x

8. The region enclosed by the semicircle x2 + y2 = 2y, y Ú 0

Evaluating Polar Integrals
In Exercises 9–22, change the Cartesian integral into an equivalent 
polar integral. Then evaluate the polar integral.

9.
L

1

-1L

21-x2

0
dy dx 10.

L

1

0 L

21-y2

0

(x2 + y2) dx dy

11.
L

2

0 L

24-y2

0

(x2 + y2) dx dy

12.
L

a

-aL

2a2-x2

-2a2-x2

dy dx 13.
L

6

0 L

y

0
x dx dy

14.
L

2

0 L

x

0
y dy dx 15.

L

23

1 L

x

1
dy dx

16.
L

2

22L

y

24-y2

dx dy 17.
L

0

-1L

0

-21-x2

2

1 + 2x2 + y2
dy dx

18.
L

1

-1L

21-x2

-21-x2

2
(1 + x2 + y2)2

dy dx

19.
L

ln 2

0 L

2(ln2)2-y2

0
e2x2+y2

dx dy

20.
L

1

-1L

21-y2

-21-y2

ln (x2 + y2 + 1) dx dy

21.
L

1

0 L

22-x2

x
(x + 2y) dy dx

22.
L

2

1 L

22x-x2

0

1
(x2 + y2)2

dy dx

In Exercises 23–26, sketch the region of integration and convert each 
polar integral or sum of integrals to a Cartesian integral or sum of 
integrals. Do not evaluate the integrals.

23.
L

p>2

0 L

1

0
r3 sin u cos u dr du

24.
L

p>2

p>6 L

csc u

1
r2 cos u dr du

25.
L

p>4

0 L

2 sec u

0
r5 sin2 u dr du

26.
L

tan-1 4
3

0 L

3 sec u

0
r7 dr du +

L

p>2

tan-1
4
3 L

4 csc u

0
r7 dr du

Area in Polar Coordinates
27. Find the area of the region cut from the first quadrant by the curve 

r = 2(2 - sin 2u)1>2.
28. Cardioid overlapping a circle Find the area of the region that 

lies inside the cardioid r = 1 + cos u and outside the circle 
r = 1.

29. One leaf of a rose Find the area enclosed by one leaf of the 
rose r = 12 cos 3u.

30. Snail shell Find the area of the region enclosed by the positive 
x-axis and spiral r = 4u>3, 0 … u … 2p. The region looks like a 
snail shell.

31. Cardioid in the first quadrant Find the area of the region cut 
from the first quadrant by the cardioid r = 1 + sin u.

32. Overlapping cardioids Find the area of the region common to 
the interiors of the cardioids r = 1 + cos u and r = 1 - cos u.

Average Values
In polar coordinates, the average value of a function over a region R
(Section 15.3) is given by

1
Area(R) O

R

ƒ(r, u) r dr du.

33. Average height of a hemisphere Find the average height of 
the hemispherical surface z = 2a2 - x2 - y2 above the disk 
x2 + y2 … a2 in the xy-plane.

34. Average height of a cone Find the average height of the (sin-
gle) cone z = 2x2 + y2 above the disk x2 + y2 … a2 in the 
xy-plane.

35. Average distance from interior of disk to center Find the 
average distance from a point P(x, y) in the disk x2 + y2 … a2 to 
the origin.

36. Average distance squared from a point in a disk to a point in 
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk x2 + y2 … 1 to the bound-
ary point A(1, 0).

Theory and Examples
37. Converting to a polar integral Integrate ƒ(x, y) =
3 ln (x2 + y2) 4 >2x2 + y2 over the region 1 … x2 + y2 … e.

38. Converting to a polar integral Integrate ƒ(x, y) =
3 ln (x2 + y2)4 > (x2 + y2)  over the region 1 … x2 + y2 … e2.

39. Volume of noncircular right cylinder The region that lies 
inside the cardioid r = 1 + cos u and outside the circle r = 1 is 
the base of a solid right cylinder. The top of the cylinder lies in 
the plane z = x. Find the cylinder’s volume.

40. Volume of noncircular right cylinder The region enclosed by 
the lemniscate r2 = 2 cos 2u is the base of a solid right cylinder 
whose top is bounded by the sphere z = 22 - r2. Find the cyl-
inder’s volume.
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41. Converting to polar integrals

a. The usual way to evaluate the improper integral 
I = 1

q
0 e-x2

dx is first to calculate its square:

I2 = a
L

q

0
e-x2

dxb a
L

q

0
e-y2

dyb =
L

q

0 L

q

0
e-(x2+y2) dx dy.

  Evaluate the last integral using polar coordinates and solve 
the resulting equation for I.

b. Evaluate

lim
xSq

erf(x) = lim
xSqL

x

0

2e-t2

2p
dt.

42. Converting to a polar integral Evaluate the integral

L

q

0 L

q

0

1
(1 + x2 + y2)2 dx dy.

43. Existence Integrate the function ƒ(x, y) = 1>(1 - x2 - y2)
over the disk x2 + y2 … 3>4. Does the integral of ƒ(x, y) over the 
disk x2 + y2 … 1 exist? Give reasons for your answer.

44. Area formula in polar coordinates Use the double integral in 
polar coordinates to derive the formula

A =
L

b

a

1
2

r2 du

  for the area of the fan-shaped region between the origin and polar 
curve r = ƒ(u), a … u … b.

45. Average distance to a given point inside a disk Let P0 be a 
point inside a circle of radius a and let h denote the distance from 
P0 to the center of the circle. Let d denote the distance from an 
arbitrary point P to P0 . Find the average value of d2 over the 
region enclosed by the circle. (Hint: Simplify your work by plac-
ing the center of the circle at the origin and P0 on the x-axis.)

46. Area Suppose that the area of a region in the polar coordinate 
plane is

A =
L

3p>4

p>4 L

2 sin u

cscu
r dr du.

  Sketch the region and find its area.

47. Evaluate the integral 4R 2x2 + y2 dA, where R is the region 
inside the upper semicircle of radius 2 centered at the origin, but 
outside the circle x2 + (y - 1)2 = 1.

48. Evaluate the integral 4R
(x2 + y2)-2 dA, where R is the region 

inside the circle x2 + y2 = 2 for x … -1.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to change the Cartesian integrals into 
an equivalent polar integral and evaluate the polar integral. Perform 
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part 
(a) to its polar representation by solving its Cartesian equation 
for r and u.

c. Using the results in part (b), plot the polar region of integra-
tion in the ru@plane.

d. Change the integrand from Cartesian to polar coordinates. 
Determine the limits of integration from your plot in part (c) 
and evaluate the polar integral using the CAS integration utility.

49.
L

1

0 L

1

x

y

x2 + y2 dy dx 50.
L

1

0 L

x>2

0

x
x2 + y2 dy dx

51.
L

1

0 L

y>3

-y>3
y

2x2 + y2
dx dy 52.

L

1

0 L

2-y

y
2x + y dx dy

15.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be han-
dled by single integrals, triple integrals enable us to solve still more general problems. We 
use triple integrals to calculate the volumes of three-dimensional shapes and the average 
value of a function over a three-dimensional region. Triple integrals also arise in the study 
of vector fields and fluid flow in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed bounded region D in space, such as the region 
occupied by a solid ball or a lump of clay, then the integral of F over D may be defined in 
the following way. We partition a rectangular boxlike region containing D into rectangular 
cells by planes parallel to the coordinate axes (Figure 15.30). We number the cells that lie 
completely inside D from 1 to n in some order, the kth cell having dimensions ∆xk by ∆yk

by ∆zk and volume ∆Vk = ∆xk∆yk∆zk . We choose a point (xk , yk , zk) in each cell and 
form the sum

Sn = a

n

k=1
F(xk , yk , zk)∆Vk . (1)

z

y
x

D

(xk, yk, zk)

Δzk

Δxk
Δyk

FIGURE 15.30 Partitioning a solid with 
rectangular cells of volume ∆Vk .
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We are interested in what happens as D is partitioned by smaller and smaller cells, so 
that ∆xk , ∆yk , ∆zk , and the norm of the partition 7P 7 , the largest value among ∆xk ,
∆yk , ∆zk , all approach zero. When a single limiting value is attained, no matter how the 
partitions and points (xk , yk , zk) are chosen, we say that F is integrable over D. As before, 
it can be shown that when F is continuous and the bounding surface of D is formed from 
finitely many smooth surfaces joined together along finitely many smooth curves, then F
is integrable. As 7P 7 S 0 and the number of cells n goes to q, the sums Sn approach 
a limit. We call this limit the triple integral of F over D and write

lim
nSq

Sn =
l
D

F(x, y, z) dV or lim
� �P� �S0

Sn =
l
D

F(x, y, z) dx dy dz.

The regions D over which continuous functions are integrable are those having “reason-
ably smooth” boundaries.

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to

Sn = a F(xk , yk , zk) ∆Vk = a 1 # ∆Vk = a ∆Vk .

As ∆xk , ∆yk , and ∆zk approach zero, the cells ∆Vk become smaller and more numerous 
and fill up more and more of D. We therefore define the volume of D to be the triple integral

lim
nSq a

n

k=1
∆Vk =

l
D

dV.

DEFINITION The volume of a closed, bounded region D in space is

V =
l
D

dV.

This definition is in agreement with our previous definitions of volume, although we omit 
the verification of this fact. As we see in a moment, this integral enables us to calculate the 
volumes of solids enclosed by curved surfaces. These are more general solids than the 
ones encountered before (Chapter 6 and Section 15.2).

Finding Limits of Integration in the Order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem 
(Section 15.2) to evaluate it by three repeated single integrations. As with double integrals, 
there is a geometric procedure for finding the limits of integration for these iterated integrals.

To evaluate

l
D

F(x, y, z) dV

over a region D, integrate first with respect to z, then with respect to y, and finally with 
respect to x. (You might choose a different order of integration, but the procedure is simi-
lar, as we illustrate in Example 2.)

1. Sketch. Sketch the region D along with its “shadow” R (vertical projection) in the 
xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower 
bounding curves of R.
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z

y

x

D

Rb

a

z = f2(x, y)

z = f1(x, y)

y = g2(x)

y = g1(x)

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in 
R parallel to the z-axis. As z increases, M enters D at z = ƒ1(x, y) and leaves at 
z = ƒ2(x, y). These are the z-limits of integration.

z

y

x

D

Rb

a

M

y = g2(x)
(x, y)

y = g1(x)

Leaves at
z = f2(x, y)

Enters at
z = f1(x, y)

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y
increases, L enters R at y = g1(x) and leaves at y = g2(x). These are the y-limits of 
integration.

y

x

D

R
b

a

M

L

x

z

(x, y)

Enters at
y = g1(x)

Leaves at
y = g2(x)



15.5  Triple Integrals in Rectangular Coordinates 909

4. Find the x-limits of integration. Choose x-limits that include all lines through R paral-
lel to the y-axis (x = a and x = b in the preceding figure). These are the x-limits of 
integration. The integral is

L

x=b

x=a L

y=g2(x)

y=g1(x) L

z=ƒ2(x, y)

z=ƒ1(x, y)
F(x, y, z) dz dy dx.

Follow similar procedures if you change the order of integration. The “shadow” of 
region D lies in the plane of the last two variables with respect to which the iterated 
integration takes place.

The preceding procedure applies whenever a solid region D is bounded above and 
below by a surface, and when the “shadow” region R is bounded by a lower and upper curve. 
It does not apply to regions with complicated holes through them, although sometimes such 
regions can be subdivided into simpler regions for which the procedure does apply.

EXAMPLE 1  Find the volume of the region D enclosed by the surfaces z = x2 + 3y2

and z = 8 - x2 - y2.

Solution The volume is

V =
l
D

dz dy dx,

the integral of F(x, y, z) = 1 over D. To find the limits of integration for evaluating the 
integral, we first sketch the region. The surfaces (Figure 15.31) intersect on the elliptical 
cylinder x2 + 3y2 = 8 - x2 - y2 or x2 + 2y2 = 4, z 7 0. The boundary of the region R,
the projection of D onto the xy-plane, is an ellipse with the same equation: x2 + 2y2 = 4.
The “upper” boundary of R is the curve y = 2(4 - x2) >2. The lower boundary is the 

curve y = -2(4 - x2) >2.
Now we find the z-limits of integration. The line M passing through a typical point 

(x, y) in R parallel to the z-axis enters D at z = x2 + 3y2 and leaves at z = 8 - x2 - y2.

Leaves at
z = 8 − x2 − y2

(2, 0, 4)

(2, 0, 0)
x

z

yL

(−2, 0, 0)

R

x

D

(−2, 0, 4)

The curve of intersection

z = 8 − x2 − y2

x2 + 2y2 = 4

Leaves at
y =

"

(4 − x2)�2

z = x2 + 3y2

M

(x, y)

Enters at
z = x2 + 3y2

Enters at
y = −

"

(4 − x2)/2

FIGURE 15.31 The volume of the region enclosed by two paraboloids, 
calculated in Example 1.
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Next we find the y-limits of integration. The line L through (x, y) parallel to the y-axis
enters R at y = -2(4 - x2)>2 and leaves at y = 2(4 - x2)>2.

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies 
from x = -2 at (-2, 0, 0) to x = 2 at (2, 0, 0). The volume of D is

V =
l
D

dz dy dx

=
L

2

-2 L

2(4-x2)>2

-2(4-x2)>2 L

8-x2-y2

x2+3y2

dz dy dx

=
L

2

-2 L

2(4-x2)>2

-2(4-x2)>2
(8 - 2x2 - 4y2) dy dx

=
L

2

-2
c (8 - 2x2)y - 4

3 y3 d y=2(4- x2)>2
y=- 2(4- x2)>2

dx

=
L

2

-2
a2(8 - 2x2)B

4 - x2

2
- 8

3 a4 - x2

2
b3>2b dx

=
L

2

-2
c 8a4 - x2

2
b3>2

- 8
3 a4 - x2

2
b3>2 d dx = 422

3 L

2

-2

(4 - x2)3>2 dx

= 8p22. After integration with the substitution x = 2 sin u

In the next example, we project D onto the xz-plane instead of the xy-plane, to show 
how to use a different order of integration.

EXAMPLE 2  Set up the limits of integration for evaluating the triple integral of a 
function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and 
(0, 1, 1). Use the order of integration dy dz dx.

Solution We sketch D along with its “shadow” R in the xz-plane (Figure 15.32). The 
upper (right-hand) bounding surface of D lies in the plane y = 1. The lower (left-hand) 
bounding surface lies in the plane y = x + z. The upper boundary of R is the line 
z = 1 - x. The lower boundary is the line z = 0.

First we find the y-limits of integration. The line through a typical point (x, z) in R
parallel to the y-axis enters D at y = x + z and leaves at y = 1.

Next we find the z-limits of integration. The line L through (x, z) parallel to the z-axis
enters R at z = 0 and leaves at z = 1 - x.

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies 
from x = 0 to x = 1. The integral is

L

1

0 L

1-x

0 L

1

x+ z
F(x, y, z) dy dz dx.

EXAMPLE 3 Integrate F(x, y, z) = 1 over the tetrahedron D in Example 2 in the 
order dz dy dx, and then integrate in the order dy dz dx.

Solution First we find the z-limits of integration. A line M parallel to the z-axis through 
a typical point (x, y) in the xy-plane “shadow” enters the tetrahedron at z = 0 and exits 
through the upper plane where z = y - x (Figure 15.33).

Next we find the y-limits of integration. On the xy-plane, where z = 0, the sloped side 
of the tetrahedron crosses the plane along the line y = x. A line L through (x, y) parallel to 
the y-axis enters the shadow in the xy-plane at y = x and exits at y = 1 (Figure 15.33).

z

y

x

x

R

D

L

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line
x + z = 1

(0, 1, 1)

y = 1

y = x + z

Leaves at
y = 1Enters at

y = x + z

FIGURE 15.32 Finding the limits of 
integration for evaluating the triple integral 
of a function defined over the tetrahedron 
D (Examples 2 and 3).

z

y

x

x

R

D

M

L

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)
1

(x, y)
y = 1

0

y = x

z = y − x

FIGURE 15.33 The tetrahedron in Exam-
ple 3 showing how the limits of integration 
are found for the order dz dy dx.
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Finally we find the x-limits of integration. As the line L parallel to the y-axis in the 
previous step sweeps out the shadow, the value of x varies from x = 0 to x = 1 at the 
point (1, 1, 0) (see Figure 15.33). The integral is

L

1

0 L

1

x L

y-x

0
F(x, y, z) dz dy dx.

For example, if F(x, y, z) = 1, we would find the volume of the tetrahedron to be

V =
L

1

0 L

1

x L

y-x

0
dz dy dx

=
L

1

0 L

1

x
(y - x) dy dx

=
L

1

0
c 1
2

y2 - xy d
y= x

y=1

dx

=
L

1

0
a1

2
- x + 1

2
x2b dx

= c 1
2

x - 1
2

x2 + 1
6

x3 d
0

1

= 1
6

.

We get the same result by integrating with the order dy dz dx. From Example 2,

V =
L

1

0 L

1-x

0 L

1

x+ z
dy dz dx

=
L

1

0 L

1-x

0
(1 - x - z) dz dx

=
L

1

0
c (1 - x)z - 1

2
z2 d z=1- x

z=0
dx

=
L

1

0
c (1 - x)2 - 1

2
(1 - x)2 d dx

= 1
2 L

1

0
(1 - x)2 dx

= - 1
6

(1 - x)3 d 1
0
= 1

6
.

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

Average value of F over D = 1
volume of Dl

D

F dV. (2)

For example, if F(x, y, z) = 2x2 + y2 + z2, then the average value of F over D is the 
average distance of points in D from the origin. If F(x, y, z) is the temperature at (x, y, z) on 
a solid that occupies a region D in space, then the average value of F over D is the average 
temperature of the solid.
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EXAMPLE 4  Find the average value of F(x, y, z) = xyz throughout the cubical region 
D bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2 in the first 
octant.

Solution We sketch the cube with enough detail to show the limits of integration (Figure 
15.34). We then use Equation (2) to calculate the average value of F over the cube.

The volume of the region D is (2)(2)(2) = 8. The value of the integral of F over the 
cube is

L

2

0 L

2

0 L

2

0
xyz dx dy dz =

L

2

0 L

2

0
c x2

2
yz d

x=0

x=2

dy dz =
L

2

0 L

2

0
2yz dy dz

=
L

2

0
c y2z d

y=0

y=2

dz =
L

2

0
4z dz = c 2z2 d

0

2

= 8.

With these values, Equation (2) gives

Average value of

xyz over the cube
= 1

volumel
cube

xyz dV = a18b (8) = 1.

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible 
orders would have done as well.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply 
replace the double integrals in the four properties given in Section 15.2, page 892, with 
triple integrals.

z

y

D

2

x

2

2

FIGURE 15.34 The region of 
integration in Example 4.

Triple Integrals in Different Iteration Orders
1. Evaluate the integral in Example 2 taking F(x, y, z) = 1 to find 

the volume of the tetrahedron in the order dz dx dy.

2. Volume of rectangular solid Write six different iterated triple 
integrals for the volume of the rectangular solid in the first octant 
bounded by the coordinate planes and the planes x = 1, y = 2,
and z = 3. Evaluate one of the integrals.

3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by 
the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

4. Volume of solid Write six different iterated triple integrals for 
the volume of the region in the first octant enclosed by the cyl-
inder x2 + z2 = 4 and the plane y = 3. Evaluate one of the 
integrals.

5. Volume enclosed by paraboloids Let D be the region bounded 
by the paraboloids z = 8 - x2 - y2 and z = x2 + y2. Write six 
different triple iterated integrals for the volume of D. Evaluate 
one of the integrals.

6. Volume inside paraboloid beneath a plane Let D be the region 
bounded by the paraboloid z = x2 + y2 and the plane z = 2y.
Write triple iterated integrals in the order dz dx dy and dz dy dx
that give the volume of D. Do not evaluate either integral.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

7.
L

1

0 L

1

0 L

1

0

(x2 + y2 + z2) dz dy dx

8.
L

22

0 L

3y

0 L

8-x2-y2

x2+3y2

dz dx dy 9.
L

e

1 L

e2

1 L

e3

1

1
xyz dx dy dz

10.
L

1

0 L

3-3x

0 L

3-3x-y

0
dz dy dx 11.

L

p>6

0 L

1

0 L

3

-2
y sin z dx dy dz

12.
L

1

-1L

1

0 L

2

0
(x + y + z) dy dx dz

13.
L

3

0 L

29-x2

0 L

29-x2

0
dz dy dx 14.

L

2

0 L

24-y2

-24-y2L

2x+y

0
dz dx dy

15.
L

1

0 L

2-x

0 L

2-x-y

0
dz dy dx 16.

L

1

0 L

1-x2

0 L

4-x2-y

3
x dz dy dx

17.
L

p

0 L

p

0 L

p

0
cos (u + y + w) du dy dw (uyw@space)

18.
L

1

0 L

2e

1 L

e

1
ses ln r

(ln t)2

t dt dr ds (rst@space)

Exercises 15.5
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19.
L

p>4

0 L

ln sec y

0 L

2t

-q
ex dx dt dy (tyx@space)

20.
L

7

0 L

2

0 L

24-q2

0

q
r + 1

dp dq dr (pqr@space)

Finding Equivalent Iterated Integrals
21. Here is the region of integration of the integral

L

1

-1L

1

x2 L

1-y

0
dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top: y + z = 1

(−1, 1, 0)

Side:
y = x2

−1

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx  b. dy dx dz 

c. dx dy dz  d. dx dz dy 

e. dz dx dy.

22. Here is the region of integration of the integral

L

1

0 L

0

-1L

y2

0
dz dy dx.

0

z

y

x
1

1

(1, −1, 0)

(1, −1, 1)

(0, −1, 1)

z = y2

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx  b. dy dx dz 

c. dx dy dz  d. dx dz dy 

e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder z = y2 and the xy-plane that is 
bounded by the planes x = 0, x = 1, y = -1, y = 1

z

x

y

24. The region in the first octant bounded by the coordinate planes 
and the planes x + z = 1, y + 2z = 2

z

y

x

25. The region in the first octant bounded by the coordinate planes, 
the plane y + z = 2, and the cylinder x = 4 - y2

z

y

x

26. The wedge cut from the cylinder x2 + y2 = 1 by the planes 
z = -y and z = 0

z

y

x

27. The tetrahedron in the first octant bounded by the coordinate planes 
and the plane passing through (1, 0, 0), (0, 2, 0), and (0, 0, 3)

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

28. The region in the first octant bounded by the coordinate planes, 
the plane y = 1 - x, and the surface z = cos (px>2), 0 … x … 1

z

y

x
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29. The region common to the interiors of the cylinders x2 + y2 = 1
and x2 + z2 = 1, one-eighth of which is shown in the accompa-
nying figure

z

y
x

x2 + z2 = 1

x2 + y2 = 1

30. The region in the first octant bounded by the coordinate planes 
and the surface z = 4 - x2 - y

z

y

x

31. The region in the first octant bounded by the coordinate planes, 
the plane x + y = 4, and the cylinder y2 + 4z2 = 16

z

y

x

32. The region cut from the cylinder x2 + y2 = 4 by the plane z = 0
and the plane x + z = 3

z

y

x

33. The region between the planes x + y + 2z = 2 and 2x + 2y +
z = 4 in the first octant

34. The finite region bounded by the planes z = x, x + z = 8, z = y,
y = 8, and z = 0

35. The region cut from the solid elliptical cylinder x2 + 4y2 … 4 by 
the xy-plane and the plane z = x + 2

36. The region bounded in back by the plane x = 0, on the front and 
sides by the parabolic cylinder x = 1 - y2, on the top by the 
paraboloid z = x2 + y2, and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of F(x, y, z) over the given 
region.

37. F(x, y, z) = x2 + 9 over the cube in the first octant bounded by 
the coordinate planes and the planes x = 2, y = 2, and z = 2

38. F(x, y, z) = x + y - z over the rectangular solid in the first 
octant bounded by the coordinate planes and the planes 
x = 1, y = 1, and z = 2

39. F(x, y, z) = x2 + y2 + z2 over the cube in the first octant 
bounded by the coordinate planes and the planes x = 1, y = 1,
and z = 1

40. F(x, y, z) = xyz over the cube in the first octant bounded by the 
coordinate planes and the planes x = 2, y = 2, and z = 2

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

41.
L

4

0 L

1

0 L

2

2y

4 cos (x2)
22z

dx dy dz

42.
L

1

0 L

1

0 L

1

x2

12xzezy2
dy dx dz

43.
L

1

0 L

1

23 zL

ln3

0

pe2x sin py2

y2 dx dy dz

44.
L

2

0 L

4-x2

0 L

x

0

sin 2z
4 - z

dy dz dx

Theory and Examples

45. Finding an upper limit of an iterated integral Solve for a:

L

1

0 L

4-a-x2

0 L

4-x2-y

a
dz dy dx = 4

15
.

46. Ellipsoid For what value of c is the volume of the ellipsoid 
x2 + (y>2)2 + (z>c)2 = 1 equal to 8p?

47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

l
D

(4x2 + 4y2 + z2 - 4) dV ?

  Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

l
D

(1 - x2 - y2 - z2) dV ?

  Give reasons for your answer.
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COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS integration utility to evaluate the triple 
integral of the given function over the specified solid region.

49. F(x, y, z) = x2y2z over the solid cylinder bounded by 
x2 + y2 = 1 and the planes z = 0 and z = 1

50. F(x, y, z) = � xyz �  over the solid bounded below by the parabo-
loid z = x2 + y2 and above by the plane z = 1

51. F(x, y, z) = z

(x2 + y2 + z2)3>2 over the solid bounded below by

  the cone z = 2x2 + y2 and above by the plane z = 1

52. F(x, y, z) = x4 + y2 + z2 over the solid sphere x2 + y2 +
z2 … 1

15.6 Moments and Centers of Mass

This section shows how to calculate the masses and moments of two- and three-dimensional 
objects in Cartesian coordinates. Section 15.7 gives the calculations for cylindrical and 
spherical coordinates. The definitions and ideas are similar to the single-variable case we 
studied in Section 6.6, but now we can consider more realistic situations.

Masses and First Moments

If d(x, y, z) is the density (mass per unit volume) of an object occupying a region D in space, 
the integral of d over D gives the mass of the object. To see why, imagine partitioning the 
object into n mass elements like the one in Figure 15.35. The object’s mass is the limit

M = lim
nSq a

n

k=1
∆mk = lim

nSq a

n

k=1
d(xk , yk , zk)∆Vk =

l
D

d(x, y, z) dV.

The first moment of a solid region D about a coordinate plane is defined as the triple 
integral over D of the distance from a point (x, y, z) in D to the plane multiplied by the 
density of the solid at that point. For instance, the first moment about the yz-plane is the 
integral

Myz =
l
D

xd(x, y, z) dV.

The center of mass is found from the first moments. For instance, the x-coordinate of 
the center of mass is x = Myz>M .

For a two-dimensional object, such as a thin, flat plate, we calculate first moments 
about the coordinate axes by simply dropping the z-coordinate. So the first moment about 
the y-axis is the double integral over the region R forming the plate of the distance from 
the axis multiplied by the density, or

My =
O

R

xd(x, y) dA.

Table 15.1 summarizes the formulas.

EXAMPLE 1  Find the center of mass of a solid of constant density d bounded below 
by the disk R: x2 + y2 … 4 in the plane z = 0 and above by the paraboloid 
z = 4 - x2 - y2 (Figure 15.36).

x

z

y

D
(xk, yk, zk)

Δmk = d(xk, yk, zk) ΔVk

FIGURE 15.35 To define an object’s 
mass, we first imagine it to be partitioned 
into a finite number of mass elements 
∆mk .

z

y

x

0
R

c.m.

x2 + y2 = 4

z = 4 − x2 − y2

FIGURE 15.36 Finding the center of 
mass of a solid (Example 1).
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Solution By symmetry x = y = 0. To find z, we first calculate

Mxy =
O

R
L

z=4- x2- y2

z=0
z d dz dy dx =

O
R

c z2

2
d

z=0

z=4- x2- y2

d dy dx

= d
2 O

R

(4 - x2 - y2)2 dy dx

= d
2L

2p

0 L

2

0

(4 - r2)2r dr du Polar coordinates simplify the integration.

= d
2L

2p

0
c- 1

6
(4 - r2)3 d

r=0

r=2

du = 16d
3 L

2p

0
du = 32pd

3 .

A similar calculation gives the mass

M =
O

R
L

4- x2- y2

0
d dz dy dx = 8pd.

Therefore z = (Mxy>M) = 4>3 and the center of mass is (x, y, z) = (0, 0, 4>3).

When the density of a solid object or plate is constant (as in Example 1), the center of 
mass is called the centroid of the object. To find a centroid, we set d equal to 1 and pro-
ceed to find x, y, and z as before, by dividing first moments by masses. These calculations 
are also valid for two-dimensional objects.

EXAMPLE 2  Find the centroid of the region in the first quadrant that is bounded 
above by the line y = x and below by the parabola y = x2.

TABLE 15.1 Mass and first moment formulas

THREE-DIMENSIONAL SOLID

Mass: M =
l
D

d dV d = d(x, y, z) is the density at (x, y, z).

First moments about the coordinate planes:

Myz =
l
D

x d dV, Mxz =
l
D

y d dV, Mxy =
l
D

z d dV

Center of mass:

x =
Myz

M , y =
Mxz

M , z =
Mxy

M

TWO-DIMENSIONAL PLATE

Mass: M =
O
R

d dA d = d(x, y) is the density at (x, y).

First moments: My =
O

R

x d dA, Mx =
O

R

y d dA

Center of mass: x =
My

M , y =
Mx

M



15.6  Moments and Centers of Mass 917

Solution We sketch the region and include enough detail to determine the limits of inte-
gration (Figure 15.37). We then set d equal to 1 and evaluate the appropriate formulas 
from Table 15.1:

M =
L

1

0 L

x

x2

1 dy dx =
L

1

0
c y d

y=x2

y=x

dx =
L

1

0
(x - x2) dx = c x2

2
- x3

3 d 0
1

= 1
6

Mx =
L

1

0 L

x

x2

y dy dx =
L

1

0
c y2

2
d

y= x2

y= x

dx

=
L

1

0
ax2

2
- x4

2
b dx = c x3

6
- x5

10
d

0

1

= 1
15

My =
L

1

0 L

x

x2

x dy dx =
L

1

0
c xy d

y=x2

y=x

dx =
L

1

0
(x2 - x3) dx = c x3

3 - x4

4
d

0

1

= 1
12

.

From these values of M, Mx , and My , we find

x =
My

M =
1>12

1>6 = 1
2

and y =
Mx

M =
1>15

1>6 = 2
5

.

The centroid is the point (1 >2, 2 >5).

Moments of Inertia

An object’s first moments (Table 15.1) tell us about balance and about the torque the 
object experiences about different axes in a gravitational field. If the object is a rotating 
shaft, however, we are more likely to be interested in how much energy is stored in the 
shaft or about how much energy is generated by a shaft rotating at a particular angular 
velocity. This is where the second moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass ∆mk and let rk denote the 
distance from the kth block’s center of mass to the axis of rotation (Figure 15.38). If the 
shaft rotates at a constant angular velocity of v = du>dt radians per second, the block’s 
center of mass will trace its orbit at a linear speed of

yk = d
dt

(rku) = rk
du
dt

= rkv.

The block’s kinetic energy will be approximately

1
2
∆mkyk

2 = 1
2
∆mk(rkv)2 = 1

2
v2rk

2 ∆mk .

The kinetic energy of the shaft will be approximately

a
1
2
v2rk

2 ∆mk .

The integral approached by these sums as the shaft is partitioned into smaller and smaller 
blocks gives the shaft’s kinetic energy:

KEshaft =
L

1
2
v2r2 dm = 1

2
v2

L
r2 dm. (1)

The factor

I =
L

r2 dm

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (1) 
that the shaft’s kinetic energy is

KEshaft = 1
2

Iv2.

(1, 1)

0 1

1

x

y

y = x2

y = x

FIGURE 15.37 The centroid of this 
region is found in Example 2.

u

L

yk

Δmk
rku

rk

Axis of rotation

FIGURE 15.38 To find an integral for 
the amount of energy stored in a rotating 
shaft, we first imagine the shaft to be parti-
tioned into small blocks. Each block has its 
own kinetic energy. We add the contribu-
tions of the individual blocks to find the 
kinetic energy of the shaft.
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The moment of inertia of a shaft resembles in some ways the inertial mass of a loco-
motive. To start a locomotive with mass m moving at a linear velocity y, we need to pro-
vide a kinetic energy of KE = (1>2)my2. To stop the locomotive we have to remove this 
amount of energy. To start a shaft with moment of inertia I rotating at an angular velocity 
v, we need to provide a kinetic energy of KE = (1>2)Iv2. To stop the shaft we have to 
take this amount of energy back out. The shaft’s moment of inertia is analogous to the 
locomotive’s mass. What makes the locomotive hard to start or stop is its mass. What 
makes the shaft hard to start or stop is its moment of inertia. The moment of inertia 
depends not only on the mass of the shaft but also on its distribution. Mass that is farther 
away from the axis of rotation contributes more to the moment of inertia.

We now derive a formula for the moment of inertia for a solid in space. If r (x, y, z) is 
the distance from the point (x, y, z) in D to a line L, then the moment of inertia of the mass 
∆mk = d(xk , yk , zk)∆Vk about the line L (as in Figure 15.38) is approximately ∆Ik =
r2(xk , yk , zk)∆mk . The moment of inertia about L of the entire object is

IL = lim
nSq a

n

k=1
∆Ik = lim

nSq a

n

k=1
r2(xk , yk , zk)d(xk , yk , zk)∆Vk =

l
D

r2d dV.

If L is the x-axis, then r2 = y2 + z2 (Figure 15.39) and

Ix =
l
D

(y2 + z2) d(x, y, z) dV.

Similarly, if L is the y-axis or z-axis we have

Iy =
l
D

(x2 + z2) d(x, y, z) dV and Iz =
l
D

(x2 + y2) d(x, y, z) dV.

Table 15.2 summarizes the formulas for these moments of inertia (second moments 
because they invoke the squares of the distances). It shows the definition of the polar
moment about the origin as well.

EXAMPLE 3 Find Ix , Iy , Iz for the rectangular solid of constant density d shown in 
Figure 15.40.

Solution The formula for Ix gives

Ix =
L

c>2

-c>2L

b>2

-b>2L

a>2

-a>2
(y2 + z2) d dx dy dz.

We can avoid some of the work of integration by observing that (y2 + z2)d is an even 
function of x, y, and z since d is constant. The rectangular solid consists of eight symmet-
ric pieces, one in each octant. We can evaluate the integral on one of these pieces and then 
multiply by 8 to get the total value.

Ix = 8
L

c>2

0 L

b>2

0 L

a>2

0

(y2 + z2) d dx dy dz = 4ad
L

c>2

0 L

b>2

0

(y2 + z2) dy dz

= 4ad
L

c>2

0
c y3

3 + z2y d
y=0

y=b>2
dz

= 4ad
L

c>2

0
ab3

24
+ z2b

2
b dz

= 4adab3c
48

+ c3b
48
b = abcd

12
(b2 + c2) = M

12
(b2 + c2). M = abcd

FIGURE 15.39 Distances from dV to the 
coordinate planes and axes.

z

y

x

x

y

x

y

z
x

dV

0

"y2 + z2

"x2 + z2

"x2 + y2

b

a

c

Center of 
block

x

y

z

FIGURE 15.40 Finding Ix , Iy , and Iz for 
the block shown here. The origin lies at the 
center of the block (Example 3).
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TABLE 15.2 Moments of inertia (second moments) formulas

THREE-DIMENSIONAL SOLID 

About the x-axis: Ix =
l

(y2 + z2) d dV d = d(x, y, z)

About the y-axis: Iy =
l

(x2 + z2) d dV

About the z-axis: Iz =
l

(x2 + y2) d dV

About a line L: IL =
l

r2(x, y, z) d dV r (x, y, z) = distance from the 
point (x, y, z) to line L

TWO-DIMENSIONAL PLATE 

About the x-axis: Ix =
O

y2 d dA d = d(x, y)

About the y-axis: Iy =
O

x2 d dA

About a line L: IL =
O

r2(x, y) d dA
r (x, y) = distance from 
(x, y) to L

About the origin I0 =
O

(x2 + y2) d dA = Ix + Iy

(polar moment):

Similarly,

Iy = M
12

(a2 + c2) and Iz = M
12

(a2 + b2).

EXAMPLE 4  A thin plate covers the triangular region bounded by the x-axis and the 
lines x = 1 and y = 2x in the first quadrant. The plate’s density at the point (x, y) is 
d(x, y) = 6x + 6y + 6. Find the plate’s moments of inertia about the coordinate axes and 
the origin.

Solution We sketch the plate and put in enough detail to determine the limits of integra-
tion for the integrals we have to evaluate (Figure 15.41). The moment of inertia about the 
x-axis is

Ix =
L

1

0 L

2x

0
y2d(x, y) dy dx =

L

1

0 L

2x

0

(6xy2 + 6y3 + 6y2) dy dx

=
L

1

0
c 2xy3 + 3

2
y4 + 2y3 d

y=0

y=2x

dx =
L

1

0

(40x4 + 16x3) dx

= c 8x5 + 4x4 d
0

1

= 12.

(1, 2)

0 1

2

x

y

y = 2x

x = 1

FIGURE 15.41 The triangular region 
covered by the plate in Example 4.
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Similarly, the moment of inertia about the y-axis is

Iy =
L

1

0 L

2x

0
x2d(x, y) dy dx = 39

5
.

Notice that we integrate y2 times density in calculating Ix and x2 times density to find Iy.
Since we know Ix and Iy , we do not need to evaluate an integral to find I0; we can use 

the equation I0 = Ix + Iy from Table 15.2 instead:

I0 = 12 + 39
5

= 60 + 39
5

= 99
5

.

The moment of inertia also plays a role in determining how much a horizontal metal 
beam will bend under a load. The stiffness of the beam is a constant times I, the moment 
of inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The 
greater the value of I, the stiffer the beam and the less it will bend under a given load. That 
is why we use I-beams instead of beams whose cross-sections are square. The flanges at 
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal 
axis to increase the value of I (Figure 15.42).

Beam B

Beam A

Axis

Axis

FIGURE 15.42 The greater the polar 
moment of inertia of the cross-section of a 
beam about the beam’s longitudinal axis, the 
stiffer the beam. Beams A and B have the 
same cross-sectional area, but A is stiffer.

Plates of Constant Density
1. Finding a center of mass Find the center of mass of a thin 

plate of density d = 3 bounded by the lines x = 0, y = x, and 
the parabola y = 2 - x2 in the first quadrant.

2. Finding moments of inertia Find the moments of inertia about 
the coordinate axes of a thin rectangular plate of constant density 
d bounded by the lines x = 3 and y = 3 in the first quadrant.

3. Finding a centroid Find the centroid of the region in the first 
quadrant bounded by the x-axis, the parabola y2 = 2x, and the 
line x + y = 4.

4. Finding a centroid Find the centroid of the triangular region 
cut from the first quadrant by the line x + y = 3.

5. Finding a centroid Find the centroid of the region cut from the 
first quadrant by the circle x2 + y2 = a2.

6. Finding a centroid Find the centroid of the region between the 
x-axis and the arch y = sin x, 0 … x … p.

7. Finding moments of inertia Find the moment of inertia about 
the x-axis of a thin plate of density d = 1 bounded by the circle 
x2 + y2 = 4. Then use your result to find Iy and I0 for the plate.

8. Finding a moment of inertia Find the moment of inertia with 
respect to the y-axis of a thin sheet of constant density d = 1
bounded by the curve y = (sin2 x) >x2 and the interval 
p … x … 2p of the x-axis.

9. The centroid of an infinite region Find the centroid of the 
infinite region in the second quadrant enclosed by the coordinate 
axes and the curve y = ex. (Use improper integrals in the mass-
moment formulas.)

10. The first moment of an infinite plate Find the first moment 
about the y-axis of a thin plate of density d(x, y) = 1 covering 

the infinite region under the curve y = e-x2>2 in the first 
quadrant.

Plates with Varying Density
11. Finding a moment of inertia Find the moment of inertia about 

the x-axis of a thin plate bounded by the parabola x = y - y2 and 
the line x + y = 0 if d(x, y) = x + y.

12. Finding mass Find the mass of a thin plate occupying the 
smaller region cut from the ellipse x2 + 4y2 = 12 by the parab-
ola x = 4y2 if d(x, y) = 5x.

13. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines y = x and 
y = 2 - x if d(x, y) = 6x + 3y + 3.

14. Finding a center of mass and moment of inertia Find the 
center of mass and moment of inertia about the x-axis of a thin 
plate bounded by the curves x = y2 and x = 2y - y2 if the den-
sity at the point (x, y) is d(x, y) = y + 1.

15. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin rectangular 
plate cut from the first quadrant by the lines x = 6 and y = 1 if 
d(x, y) = x + y + 1.

16. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin plate bounded 
by the line y = 1 and the parabola y = x2 if the density is 
d(x, y) = y + 1.

17. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin plate bounded 
by the x-axis, the lines x = {1, and the parabola y = x2 if 
d(x, y) = 7y + 1.

Exercises 15.6
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18. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the x-axis of a thin rectangular 
plate bounded by the lines x = 0, x = 20, y = -1, and y = 1 if 
d(x, y) = 1 + (x>20).

19. Center of mass, moments of inertia Find the center of mass, 
the moment of inertia about the coordinate axes, and the polar 
moment of inertia of a thin triangular plate bounded by the lines 
y = x, y = -x, and y = 1 if d(x, y) = y + 1.

20. Center of mass, moments of inertia Repeat Exercise 19 for 
d(x, y) = 3x2 + 1.

Solids with Constant Density
21. Moments of inertia Find the moments of inertia of the rectan-

gular solid shown here with respect to its edges by calculating 
Ix , Iy , and Iz .

z

y

x

c

b

a

22. Moments of inertia The coordinate axes in the figure run 
through the centroid of a solid wedge parallel to the labeled 
edges. Find Ix, Iy, and Iz if a = b = 6 and c = 4.

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

23. Center of mass and moments of inertia A solid “trough” of 
constant density is bounded below by the surface z = 4y2, above 
by the plane z = 4, and on the ends by the planes x = 1 and 
x = -1. Find the center of mass and the moments of inertia with 
respect to the three axes.

24. Center of mass A solid of constant density is bounded below 
by the plane z = 0, on the sides by the elliptical cylinder 
x2 + 4y2 = 4, and above by the plane z = 2 - x (see the 
accompanying figure).

a. Find x and y.

b. Evaluate the integral

Mxy =
L

2

-2L

(1>2)24-x2

-(1>2)24-x2L

2-x

0
z dz dy dx

  using integral tables to carry out the final integration with 
respect to x. Then divide Mxy by M to verify that z = 5>4.

z

y

x

1

2

2

z = 2 − x

x = −2

x 2 + 4y2 = 4

25. a. Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid z = x2 + y2

and above by the plane z = 4.

b. Find the plane z = c that divides the solid into two parts of equal 
volume. This plane does not pass through the center of mass.

26. Moments A solid cube, 2 units on a side, is bounded by the 
planes x = {1, z = {1, y = 3, and y = 5. Find the center of 
mass and the moments of inertia about the coordinate axes.

27. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has a = 4, b = 6, and c = 3. Make a quick sketch to check 
for yourself that the square of the distance from a typical point (x, y, z)
of the wedge to the line L: z = 0, y = 6 is r2 = (y - 6)2 + z2.
Then calculate the moment of inertia of the wedge about L.

28. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has a = 4, b = 6, and c = 3. Make a quick sketch to check 
for yourself that the square of the distance from a typical point (x, y, z)
of the wedge to the line L: x = 4, y = 0 is r2 = (x - 4)2 + y2.
Then calculate the moment of inertia of the wedge about L.

Solids with Varying Density
In Exercises 29 and 30, find

a. the mass of the solid. b. the center of mass.

29. A solid region in the first octant is bounded by the coordinate 
planes and the plane x + y + z = 2. The density of the solid is 
d(x, y, z) = 2x.

30. A solid in the first octant is bounded by the planes y = 0 and z = 0
and by the surfaces z = 4 - x2 and x = y2 (see the accompanying 
figure). Its density function is d(x, y, z) = kxy, k a constant.

z

y

x

2

4

x = y2

(2,
"

2, 0)

z = 4 − x2
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In Exercises 31 and 32, find

a. the mass of the solid.

b. the center of mass.

c. the moments of inertia about the coordinate axes.

31. A solid cube in the first octant is bounded by the coordinate 
planes and by the planes x = 1, y = 1, and z = 1. The density 
of the cube is d(x, y, z) = x + y + z + 1.

32. A wedge like the one in Exercise 22 has dimensions a = 2,
b = 6, and c = 3. The density is d(x, y, z) = x + 1. Notice that 
if the density is constant, the center of mass will be (0, 0, 0).

33. Mass Find the mass of the solid bounded by the planes x + z = 1,
x - z = -1, y = 0, and the surface y = 2z. The density of the 
solid is d(x, y, z) = 2y + 5.

34. Mass Find the mass of the solid region bounded by the para-
bolic surfaces z = 16 - 2x2 - 2y2 and z = 2x2 + 2y2 if the 
density of the solid is d(x, y, z) = 2x2 + y2.

Theory and Examples
The Parallel Axis Theorem Let Lc.m. be a line through the center of 
mass of a body of mass m and let L be a parallel line h units away 
from Lc.m.. The Parallel Axis Theorem says that the moments of iner-
tia Ic.m. and IL of the body about Lc.m. and L satisfy the equation

IL = Ic.m. + mh2. (2)

As in the two-dimensional case, the theorem gives a quick way to cal-
culate one moment when the other moment and the mass are known.

35. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any 
plane through the body’s center of mass is zero. (Hint: Place 
the body’s center of mass at the origin and let the plane be 
the yz-plane. What does the formula x = Myz >M  then tell 
you?)

z

x

y
c.m.

L

D

v = xi + yj

(x, y, z)

Lc.m.

hi

v − hi

(h, 0, 0)

b. To prove the Parallel Axis Theorem, place the body with its 
center of mass at the origin, with the line Lc.m. along the z-axis
and the line L perpendicular to the xy-plane at the point (h, 0, 0). 
Let D be the region of space occupied by the body. Then, in the 
notation of the figure,

IL =
l
D

�v - hi �2 dm.

  Expand the integrand in this integral and complete the proof.

36. The moment of inertia about a diameter of a solid sphere of constant 
density and radius a is (2>5)ma2, where m is the mass of the sphere. 
Find the moment of inertia about a line tangent to the sphere.

37. The moment of inertia of the solid in Exercise 21 about the z-axis is 
Iz = abc(a2 + b2)>3.

a. Use Equation (2) to find the moment of inertia of the solid about 
the line parallel to the z-axis through the solid’s center of mass.

b. Use Equation (2) and the result in part (a) to find the moment 
of inertia of the solid about the line x = 0, y = 2b.

38. If a = b = 6 and c = 4, the moment of inertia of the solid wedge 
in Exercise 22 about the x-axis is Ix = 208. Find the moment of 
inertia of the wedge about the line y = 4, z = -4>3 (the edge of 
the wedge’s narrow end).

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or 
sphere, we can often simplify our work by using cylindrical or spherical coordinates, 
which are introduced in this section. The procedure for transforming to these coordinates 
and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
nates in the plane studied in Section 15.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane 
with the usual z-axis. This assigns to every point in space one or more coordinate triples of 
the form (r, u, z), as shown in Figure 15.43. Here we require r Ú 0.

0

r
x

z

y
y

z

x

P(r, u, z)

u

FIGURE 15.43 The cylindrical coordi-
nates of a point in space are r, u, and z.

DEFINITION Cylindrical coordinates represent a point P in space by ordered 
triples (r, u, z) in which r Ú 0,

1. r and u are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.
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The values of x, y, r, and u in rectangular and cylindrical coordinates are related by 
the usual equations.

Equations Relating Rectangular (x, y, z) and Cylindrical (r, U, z)  Coordinates

x = r cos u, y = r sin u, z = z,

r2 = x2 + y2, tan u = y>x

In cylindrical coordinates, the equation r = a describes not just a circle in the xy-plane 
but an entire cylinder about the z-axis (Figure 15.44). The z-axis is given by r = 0. The 
equation u = u0 describes the plane that contains the z-axis and makes an angle u0 with 
the positive x-axis. And, just as in rectangular coordinates, the equation z = z0 describes a 
plane perpendicular to the z-axis.

Cylindrical coordinates are good for describing cylinders whose axes run along the 
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces 
like these have equations of constant coordinate value:

r = 4 Cylinder, radius 4, axis the z-axis

u = p
3 Plane containing the z-axis

z = 2. Plane perpendicular to the z-axis

When computing triple integrals over a region D in cylindrical coordinates, we parti-
tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the 
kth cylindrical wedge, r, u and z change by ∆rk , ∆uk , and ∆zk , and the largest of these 
numbers among all the cylindrical wedges is called the norm of the partition. We define 
the triple integral as a limit of Riemann sums using these wedges. The volume of such a 
cylindrical wedge ∆Vk is obtained by taking the area ∆Ak of its base in the ru@plane and 
multiplying by the height ∆z (Figure 15.45).

For a point (rk , uk , zk) in the center of the kth wedge, we calculated in polar coordi-
nates that ∆Ak = rk ∆rk ∆uk . So ∆Vk = ∆zk rk ∆rk ∆uk and a Riemann sum for ƒ over D
has the form

Sn = a

n

k=1
ƒ(rk , uk , zk) ∆zk rk ∆rk ∆uk .

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann 
sums with partitions whose norms approach zero:

z

y

x

0

a

r = a,
u and z vary

z = z0,
r and u vary

u = u0,
r and z vary

z0

u0

FIGURE 15.44 Constant-coordinate
equations in cylindrical coordinates yield 
cylinders and planes.

Volume Differential in Cylindrical 
Coordinates

dV = dz r dr du

lim
nSq

Sn =
l
D

ƒ dV =
l
D

ƒ dz r dr du.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the 
following example. Although the definition of cylindrical coordinates makes sense with-
out any restrictions on u, in most situations when integrating, we will need to restrict u to 
an interval of length 2p. So we impose the requirement that a … u … b, where 
0 … b - a … 2p.

Δz

r Δu
r Δr Δu

r

z

Δr

Δu

FIGURE 15.45 In cylindrical coordi-
nates the volume of the wedge is approxi-
mated by the product ∆V = ∆z r∆r∆u.
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The region is sketched in Figure 15.46.
We find the limits of integration, starting with the z-limits. A line M through a typical 

point (r, u) in R parallel to the z-axis enters D at z = 0 and leaves at z = x2 + y2 = r2.
Next we find the r-limits of integration. A ray L through (r, u) from the origin enters 

R at r = 0 and leaves at r = 2 sin u.
Finally we find the u@limits of integration. As L sweeps across R, the angle u it makes 

with the positive x-axis runs from u = 0 to u = p. The integral is

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating a 
function ƒ(r, u, z) over the region D bounded below by the plane z = 0, laterally by the 
circular cylinder x2 + (y - 1)2 = 1, and above by the paraboloid z = x2 + y2.

Solution The base of D is also the region’s projection R on the xy-plane. The boundary 
of R is the circle x2 + (y - 1)2 = 1. Its polar coordinate equation is

x2 + (y - 1)2 = 1

x2 + y2 - 2y + 1 = 1

r2 - 2r sin u = 0

r = 2 sin u.

l
D

ƒ(r, u, z) dV =
L

p

0 L

2 sin u

0 L

r2

0
ƒ(r, u, z) dz r dr du.

Example 1 illustrates a good procedure for finding limits of integration in cylindrical 
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

l
D

ƒ(r, u, z) dV

over a region D in space in cylindrical coordinates, integrating first with respect to z, then 
with respect to r, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces and curves that bound D and R.

y

x
R

r = h2(u)

D

r = h1(u) z = g1(r, u)

z = g2(r, u)

z

x

y

z

M D

2

R L

Cartesian: x2 + ( y − 1)2 = 1
Polar: r = 2 sin u

(r, u)
u

Top
Cartesian: z = x2 + y2

Cylindrical: z = r2

FIGURE 15.46 Finding the limits of 
integration for evaluating an integral in 
cylindrical coordinates (Example 1).
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2. Find the z-limits of integration. Draw a line M through a typical point (r, u) of R  paral-
lel to the z-axis. As z increases, M enters D at z = g1(r, u) and leaves at z = g2(r, u).
These are the z-limits of integration.

y

z = g1(r, u)

x R

r = h2(u)

(r, u)

z = g2(r, u)

D

r = h1(u)

z

M

3. Find the r-limits of integration. Draw a ray L through (r, u) from the origin. The ray 
enters R at r = h1(u) and leaves at r = h2(u). These are the r-limits of integration.

L

u = a u = b

r = h2(u)

y

z = g1(r, u)

z = g2(r, u)

x

r = h1(u)

D

z
M

(r, u)

u

a b

R

4. Find the u@limits of integration. As L sweeps across R, the angle u it makes with the 
positive x-axis runs from u = a to u = b. These are the u@limits of integration. The 
integral is

l
D

ƒ(r, u, z) dV =
L

u=b

u=a L

r=h2(u)

r=h1(u) L

z=g2(r, u)

z=g1(r, u)
ƒ(r, u, z) dz r dr du.

EXAMPLE 2  Find the centroid (d = 1) of the solid enclosed by the cylinder 
x2 + y2 = 4, bounded above by the paraboloid z = x2 + y2, and bounded below by the 
xy-plane.

Solution We sketch the solid, bounded above by the paraboloid z = r2 and below by the 
plane z = 0 (Figure 15.47). Its base R is the disk 0 … r … 2 in the xy-plane.

z

M4

L

x y

x2 + y2 = 4
r = 2

z = x2 + y2

= r2

u

(r, u)

FIGURE 15.47 Example 2 shows how 
to find the centroid of this solid.
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The solid’s centroid (x, y, z) lies on its axis of symmetry, here the z-axis. This makes 
x = y = 0. To find z, we divide the first moment Mxy by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with 
the four basic steps. We completed our initial sketch. The remaining steps give the limits 
of integration.

The z-limits. A line M through a typical point (r, u) in the base parallel to the z-axis
enters the solid at z = 0 and leaves at z = r2.

The r-limits. A ray L through (r, u) from the origin enters R at r = 0 and leaves at 
r = 2.

The u@limits. As L sweeps over the base like a clock hand, the angle u it makes with 
the positive x-axis runs from u = 0 to u = 2p. The value of Mxy is

Mxy =
L

2p

0 L

2

0 L

r2

0
z dz r dr du =

L

2p

0 L

2

0
c z2

2
d

0

r2

r dr du

=
L

2p

0 L

2

0

r5

2
dr du =

L

2p

0
c r6

12
d

0

2

du =
L

2p

0

16
3 du = 32p

3 .

The value of M is

M =
L

2p

0 L

2

0 L

r2

0
dz r dr du =

L

2p

0 L

2

0
c z d

0

r2

r dr du

=
L

2p

0 L

2

0
r3 dr du =

L

2p

0
c r4

4
d

0

2

du =
L

2p

0
4 du = 8p.

Therefore,

z =
Mxy

M = 32p
3

1
8p = 4

3,

and the centroid is (0, 0, 4 >3). Notice that the centroid lies on the z-axis, outside the solid.

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in 
Figure 15.48. The first coordinate, r = � rOP � , is the point’s distance from the origin and 
is never negative. The second coordinate, f, is the angle rOP makes with the positive 
z-axis. It is required to lie in the interval 30, p4 . The third coordinate is the angle u as 
measured in cylindrical coordinates.

DEFINITION Spherical coordinates represent a point P in space by ordered 
triples (r, f, u) in which

1. r is the distance from P to the origin (r Ú 0).

2. f is the angle rOP makes with the positive z-axis (0 … f … p).

3. u is the angle from cylindrical coordinates.

On maps of the earth, u is related to the meridian of a point on the earth and f to its 
latitude, while r is related to elevation above the earth’s surface.

The equation r = a describes the sphere of radius a centered at the origin (Figure 15.49). 
The equation f = f0 describes a single cone whose vertex lies at the origin and whose 
axis lies along the z-axis. (We broaden our interpretation to include the xy-plane as the 
cone f = p>2.) If f0 is greater than p>2, the cone f = f0 opens downward. The equa-
tion u = u0 describes the half-plane that contains the z-axis and makes an angle u0 with 
the positive x-axis.

y

z

0

r

x

x

y

P(r, f, u)

z = r cos f

f

u

r

FIGURE 15.48 The spherical coordinates
r, f, and u and their relation to x, y, z, and r.

r = a,
f and u vary

u = u0,
r and f vary

x

y

P(a, f0, u0)
f0

z

f = f0,
r and u vary

u0

FIGURE 15.49 Constant-coordinate
equations in spherical coordinates yield 
spheres, single cones, and half-planes.
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Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

r = r sin f,  x = r cos u = r sin f cos u,

z = r cos f, y = r sin u = r sin f sin u, (1)

r = 2x2 + y2 + z2 = 2r2 + z2.

EXAMPLE 3  Find a spherical coordinate equation for the sphere x2 + y2 +
(z - 1)2 = 1.

Solution We use Equations (1) to substitute for x, y, and z:

x2 + y2 + (z - 1)2 = 1

r2 sin2 f cos2u + r2 sin2 f sin2u + (r cos f - 1)2 = 1 Eqs. (1)

r2 sin2f(cos2u + sin2u) + r2 cos2f - 2r cos f + 1 = 1
(+++)+++*

1

r2(sin2f + cos2f) = 2r cos f
(+++)+++*

1

r2 = 2r cos f

r = 2 cos f. r 7 0

The angle f varies from 0 at the north pole of the sphere to p>2 at the south pole; the 
angle u does not appear in the expression for r, reflecting the symmetry about the z-axis
(see Figure 15.50).

EXAMPLE 4  Find a spherical coordinate equation for the cone z = 2x2 + y2.

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the 
first quadrant of the yz-plane along the line z = y. The angle between the cone and the 
positive z-axis is therefore p>4 radians. The cone consists of the points whose spherical 
coordinates have f equal to p>4, so its equation is f = p>4. (See Figure 15.51.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain 
the same result:

z = 2x2 + y2

r cos f = 2r2 sin2f Example 3

r cos f = r sin f r 7 0, sinf Ú 0

cosf = sinf

f = p
4

. 0 … f … p

Spherical coordinates are useful for describing spheres centered at the origin, half-planes 
hinged along the z-axis, and cones whose vertices lie at the origin and whose axes lie 
along the z-axis. Surfaces like these have equations of constant coordinate value:

r = 4 Sphere, radius 4, center at origin

f = p
3

Cone opening up from the origin, making an 
angle of p>3 radians with the positive z-axis

u = p
3 . Half-plane, hinged along the z-axis, making an 

angle of p>3 radians with the positive x-axis

When computing triple integrals over a region D in spherical coordinates, we partition 
the region into n spherical wedges. The size of the kth spherical wedge, which contains a 

y

x

z

2

1

r

f

x2 + y2 + (z − 1)2 = 1
r = 2 cos f

FIGURE 15.50 The sphere in Example 3.

y

z

x

p
4

f =

p
4

f =

z = "x2 + y2

FIGURE 15.51 The cone in Example 4.
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point (rk , fk , uk), is given by the changes ∆rk , ∆fk , and ∆uk in r, f, and u. Such a 
spherical wedge has one edge a circular arc of length rk ∆fk , another edge a circular arc 
of length rk sin fk ∆uk, and thickness ∆rk . The spherical wedge closely approximates a 
cube of these dimensions when ∆rk , ∆fk , and ∆uk are all small (Figure 15.52). It can be 
shown that the volume of this spherical wedge ∆Vk is ∆Vk = rk

2 sin fk ∆rk ∆fk ∆uk for 
(rk , fk , uk), a point chosen inside the wedge.

The corresponding Riemann sum for a function ƒ(r, f, u) is

Sn = a

n

k=1
ƒ(rk , fk , uk) rk

2 sin fk ∆rk ∆fk ∆uk .

As the norm of a partition approaches zero, and the spherical wedges get smaller, the 
Riemann sums have a limit when ƒ is continuous:

lim
nSq

Sn =
l
D

ƒ(r, f, u) dV =
l
D

ƒ(r, f, u) r2 sin f dr df du.

To evaluate integrals in spherical coordinates, we usually integrate first with respect 
to r. The procedure for finding the limits of integration is as follows. We restrict our atten-
tion to integrating over domains that are solids of revolution about the z-axis (or portions 
thereof) and for which the limits for u and f are constant. As with cylindrical coordinates, 
we restrict u in the form a … u … b and 0 … b - a … 2p.

How to Integrate in Spherical Coordinates

To evaluate

l
D

ƒ(r, f, u) dV

over a region D in space in spherical coordinates, integrating first with respect to r, then 
with respect to f, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

x

y

z

R

D

L

M

r = g2(f, u)

r = g1(f, u)

u = a
u = b

fmax

fmin
f

u

x

yR

r = g1(f, u)

D

z

r = g2(f, u)

O
r

f

r sin f

r sin f Δu

Δr

u

u + Δu

rΔf

y

z

x

FIGURE 15.52 In spherical coordinates 
we use the volume of a spherical wedge, 
which closely approximates that of a cube.

Volume Differential in Spherical 
Coordinates

dV = r2 sin f dr df du
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2. Find the r@limits of integration. Draw a ray M from the origin through D, making an 
angle f with the positive z-axis. Also draw the projection of M on the xy-plane (call 
the projection L). The ray L makes an angle u with the positive x-axis. As r increases, 
M enters D at r = g1(f, u) and leaves at r = g2(f, u). These are the r@limits of 
integration shown in the above figure.

3. Find the f@limits of integration. For any given u, the angle f that M makes with the 
z-axis runs from f = fmin to f = fmax. These are the f @limits of integration.

4. Find the u@limits of integration. The ray L sweeps over R as u runs from a to b. These 
are the u@limits of integration. The integral is

l
D

ƒ(r, f, u) dV =
L

u=b

u=a L

f=fmax

f=fmin L

r=g2(f, u)

r=g1(f, u)
ƒ(r, f, u) r2 sin f dr df du.

EXAMPLE 5  Find the volume of the “ice cream cone” D cut from the solid sphere 
r … 1 by the cone f = p>3.

Solution The volume is V = 7D r2 sin f dr df du, the integral of ƒ(r, f, u) = 1
over D.

To find the limits of integration for evaluating the integral, we begin by sketching D
and its projection R on the xy-plane (Figure 15.53).

The r@limits of integration. We draw a ray M from the origin through D, making an 
angle f with the positive z-axis. We also draw L, the projection of M on the xy-plane,
along with the angle u that L makes with the positive x-axis. Ray M enters D at r = 0 and 
leaves at r = 1.

The f@limits of integration. The cone f = p>3 makes an angle of p>3 with the 
positive z-axis. For any given u, the angle f can run from f = 0 to f = p>3.

The u@limits of integration. The ray L sweeps over R as u runs from 0 to 2p. The 
volume is

V =
l
D

r2 sin f dr df du =
L

2p

0 L

p>3

0 L

1

0
r2 sin f dr df du

=
L

2p

0 L

p>3

0
cr3

3 d 0
1

sin f df du =
L

2p

0 L

p>3

0

1
3 sin f df du

=
L

2p

0
c- 1

3 cos f d
0

p>3
du =

L

2p

0
a- 1

6
+ 1

3b du = 1
6

(2p) = p
3 .

EXAMPLE 6  A solid of constant density d = 1 occupies the region D in Example 5. 
Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

Iz =
l
D

(x2 + y2) dV.

In spherical coordinates, x2 + y2 = (r sin f cos u)2 + (r sin f sin u)2 = r2 sin2f.
Hence,

Iz =
l
D

(r2 sin2f) r2 sin f dr df du =
l
D

r4 sin3f dr df du.

x y

z

R

L

M

D

u

f
Sphere r = 1

Cone f = p
3

FIGURE 15.53 The ice cream cone in 
Example 5.



930 Chapter 15: Multiple Integrals

For the region D in Example 5, this becomes

Iz =
L

2p

0 L

p>3

0 L

1

0
r4 sin3f dr df du =

L

2p

0 L

p>3

0
cr5

5
d

0

1

sin3f df du

= 1
5L

2p

0 L

p>3

0

(1 - cos2f) sin f df du = 1
5L

2p

0
c-cosf +

cos3f

3 d
0

p>3
du

= 1
5L

2p

0
a- 1

2
+ 1 + 1

24
- 1

3b du = 1
5L

2p

0

5
24

du = 1
24

(2p) = p
12

.

Coordinate Conversion Formulas 

Cylindrical to Spherical to Spherical to
Rectangular Rectangular Cylindrical

x = r cos u x = r sin f cos u r = r sin f

y = r sin u y = r sin f sin u z = r cos f

z = z z = r cos f u = u

Corresponding formulas for dV in triple integrals:

dV = dx dy dz

= dz r dr du

= r2 sin f dr df du

In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1.
L

2p

0 L

1

0 L

22- r2

r
dz r dr du 2.

L

2p

0 L

3

0 L

218- r2

r2>3
dz r dr du

3.
L

2p

0 L

u>2p

0 L

3+24r2

0
dz r dr du 4.

L

p

0 L

u>p

0 L

324- r2

-24- r2

z dz r dr du

5.
L

2p

0 L

1

0 L

1>22- r2

r
3 dz r dr du

6.
L

2p

0 L

1

0 L

1>2

-1>2
(r2 sin2 u + z2) dz r dr du

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred 
orders of integration for cylindrical coordinates, but other orders usu-
ally work well and are occasionally easier to evaluate. Evaluate the 
integrals in Exercises 7–10.

7.
L

2p

0 L

3

0 L

z>3

0
r3 dr dz du 8.

L

1

-1L

2p

0 L

1+cosu

0
4r dr du dz

9.
L

1

0 L

2z

0 L

2p

0

(r2 cos2 u + z2) r du dr dz

10.
L

2

0 L

24- r2

r-2 L

2p

0
(r sin u + 1) r du dz dr

11. Let D be the region bounded below by the plane z = 0, above by 
the sphere x2 + y2 + z2 = 4, and on the sides by the cylinder 
x2 + y2 = 1. Set up the triple integrals in cylindrical coordinates 
that give the volume of D using the following orders of integration.

a. dz dr du b. dr dz du c. du dz dr

12. Let D be the region bounded below by the cone z = 2x2 + y2

and above by the paraboloid z = 2 - x2 - y2. Set up the triple 
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

a. dz dr du b. dr dz du c. du dz dr

Finding Iterated Integrals in Cylindrical Coordinates
13. Give the limits of integration for evaluating the integral

l
ƒ(r, u, z) dz r dr du

Exercises 15.7
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  as an iterated integral over the region that is bounded below by 
the plane z = 0, on the side by the cylinder r = cos u, and on top 
by the paraboloid z = 3r2.

14. Convert the integral

L

1

-1L

21-y2

0 L

x

0

(x2 + y2) dz dx dy

  to an equivalent integral in cylindrical coordinates and evaluate 
the result.

In Exercises 15–20, set up the iterated integral for evaluating 

7D ƒ(r, u, z) dz r dr du over the given region D.

15. D is the right circular cylinder whose base is the circle r = 2 sin u

in the xy-plane and whose top lies in the plane z = 4 - y.

z

y

x

z = 4 − y

r = 2 sin u

16. D is the right circular cylinder whose base is the circle r = 3 cos u
and whose top lies in the plane z = 5 - x.

x

r = 3 cos u

y

z = 5 − x

z

17. D is the solid right cylinder whose base is the region in the xy-
plane that lies inside the cardioid r = 1 + cos u and outside the 
circle r = 1 and whose top lies in the plane z = 4.

z

y

x

4

r = 1 + cos u

r = 1

18. D is the solid right cylinder whose base is the region between the 
circles r = cos u and r = 2 cos u and whose top lies in the plane 
z = 3 - y.

z

y

x

r = 2 cos u

r = cos u

z = 3 − y

19. D is the prism whose base is the triangle in the xy-plane bounded 
by the x-axis and the lines y = x and x = 1 and whose top lies in 
the plane z = 2 - y.

y

z

x

2

1
y = x

z = 2 − y

20. D is the prism whose base is the triangle in the xy-plane bounded 
by the y-axis and the lines y = x and y = 1 and whose top lies in 
the plane z = 2 - x.

y

z

x

2

1

y = x

z = 2 − x

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.
L

p

0 L

p

0 L

2 sin f

0
r2 sin f dr df du

22.
L

2p

0 L

p>4

0 L

2

0
(r cos f) r2 sin f dr df du

23.
L

2p

0 L

p

0 L

(1-cosf)>2

0
r2 sin f dr df du

24.
L

3p>2

0 L

p

0 L

1

0
5r3 sin3f dr df du

25.
L

2p

0 L

p>3

0 L

2

secf
3r2 sin f dr df du
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26.
L

2p

0 L

p>4

0 L

secf

0
(r cos f) r2 sin f dr df du

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value 
and are occasionally easier to evaluate. Evaluate the integrals in Exer-
cises 27–30.

27.
L

2

0 L

0

-pL

p>2

p>4
r3 sin 2f df du dr

28.
L

p>3

p>6 L

2 cscf

cscf L

2p

0
r2 sin f du dr df

29.
L

1

0 L

p

0 L

p>4

0
12r sin3f df du dr

30.
L

p>2

p>6 L

p/2

-p/2 L

2

cscf
5r4 sin3f dr du df

31. Let D be the region in Exercise 11. Set up the triple integrals in 
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

  a. dr df du b. df dr du

32. Let D be the region bounded below by the cone z = 2x2 + y2

and above by the plane z = 1. Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following 
orders of integration.

a. dr df du b. df dr du

Finding Iterated Integrals in Spherical Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the 
integral that calculates the volume of the given solid and then 
(b) evaluate the integral.

33. The solid between the sphere r = cosf and the hemisphere 
r = 2, z Ú 0

yx 2 2

2 r = 2r = cos f

z

34. The solid bounded below by the hemisphere r = 1, z Ú 0, and 
above by the cardioid of revolution r = 1 + cosf

yx

r = 1
r = 1 + cos f

z

35. The solid enclosed by the cardioid of revolution r = 1 - cosf

36. The upper portion cut from the solid in Exercise 35 by the xy-plane

37. The solid bounded below by the sphere r = 2 cos f and above 
by the cone z = 2x2 + y2

yx

r = 2 cos f

z = "x2 + y2z

38. The solid bounded below by the xy-plane, on the sides by the 
sphere r = 2, and above by the cone f = p>3

yx

f =
p
3

r = 2

z

Finding Triple Integrals
39. Set up triple integrals for the volume of the sphere r = 2 in 

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by 
the cone f = p>4 and above by the sphere r = 3. Express the 
volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by 
a plane 1 unit from the center of the sphere. Express the volume 
of D as an iterated triple integral in (a) spherical, (b) cylindrical, 
and (c) rectangular coordinates. Then (d) find the volume by 
evaluating one of the three triple integrals.

42. Express the moment of inertia Iz of the solid hemisphere 
x2 + y2 + z2 … 1, z Ú 0, as an iterated integral in (a) cylindri-
cal and (b) spherical coordinates. Then (c) find Iz .

Volumes
Find the volumes of the solids in Exercises 43–48.

43. 44.

z

yx

z = 4 − 4 (x2 + y2)

z = (x2 + y2)2 −1

z

yx
1

–1

1

z = 1 − r

z = −"1 − r2

–1

45. z

y

x

r = 3 cos u

z =−y
46. z

yx

z = "x2 + y2

r = −3 cos u
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47.  48.
z

y
x

z = "1 − x2 − y2

r = sin u   r = cos u

z = 3"1 − x2 − y2

yx

z

49. Sphere and cones Find the volume of the portion of the solid 
sphere r … a that lies between the cones f = p>3 and 
f = 2p>3.

50. Sphere and half-planes Find the volume of the region cut from 
the solid sphere r … a by the half-planes u = 0 and u = p>6 in 
the first octant.

51. Sphere and plane Find the volume of the smaller region cut 
from the solid sphere r … 2 by the plane z = 1.

52. Cone and planes Find the volume of the solid enclosed by the 
cone z = 2x2 + y2 between the planes z = 1 and z = 2.

53. Cylinder and paraboloid Find the volume of the region 
bounded below by the plane z = 0, laterally by the cylinder 
x2 + y2 = 1, and above by the paraboloid z = x2 + y2.

54. Cylinder and paraboloids Find the volume of the region 
bounded below by the paraboloid z = x2 + y2, laterally by the 
cylinder x2 + y2 = 1, and above by the paraboloid z =
x2 + y2 + 1.

55. Cylinder and cones Find the volume of the solid cut from the 
thick-walled cylinder 1 … x2 + y2 … 2 by the cones z =
{2x2 + y2.

56. Sphere and cylinder Find the volume of the region that lies 
inside the sphere x2 + y2 + z2 = 2 and outside the cylinder 
x2 + y2 = 1.

57. Cylinder and planes Find the volume of the region enclosed 
by the cylinder x2 + y2 = 4 and the planes z = 0 and y + z = 4.

58. Cylinder and planes Find the volume of the region enclosed 
by the cylinder x2 + y2 = 4 and the planes z = 0 and 
x + y + z = 4.

59. Region trapped by paraboloids Find the volume of the region 
bounded above by the paraboloid z = 5 - x2 - y2 and below by 
the paraboloid z = 4x2 + 4y2.

60. Paraboloid and cylinder Find the volume of the region 
bounded above by the paraboloid z = 9 - x2 - y2, below by the 
xy-plane, and lying outside the cylinder x2 + y2 = 1.

61. Cylinder and sphere Find the volume of the region cut from 
the solid cylinder x2 + y2 … 1 by the sphere x2 + y2 + z2 = 4.

62. Sphere and paraboloid Find the volume of the region bounded 
above by the sphere x2 + y2 + z2 = 2 and below by the parabo-
loid z = x2 + y2.

Average Values
63. Find the average value of the function ƒ(r, u, z) = r over the 

region bounded by the cylinder r = 1 between the planes z = -1
and z = 1.

64. Find the average value of the function ƒ(r, u, z) = r over the 
solid ball bounded by the sphere r2 + z2 = 1. (This is the sphere 
x2 + y2 + z2 = 1.)

65. Find the average value of the function ƒ(r, f, u) = r over the 
solid ball r … 1.

66. Find the average value of the function ƒ(r, f, u) = r cos f over 
the solid upper ball r … 1, 0 … f … p>2.

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below 

by the plane z = 0, above by the cone z = r, r Ú 0, and on the 
sides by the cylinder r = 1. Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that is 
bounded above by the cone z = 2x2 + y2, below by the plane 
z = 0, and on the sides by the cylinder x2 + y2 = 4 and the planes 
x = 0 and y = 0.

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the 
sphere r = a and below by the cone f = p>4.

71. Centroid Find the centroid of the region that is bounded above 
by the surface z = 2r, on the sides by the cylinder r = 4, and 
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball 
r2 + z2 … 1 by the half-planes u = -p>3, r Ú 0, and u = p>3,
r Ú 0.

73. Moment of inertia of solid cone Find the moment of inertia of 
a right circular cone of base radius 1 and height 1 about an axis 
through the vertex parallel to the base. (Take d = 1.)

74. Moment of inertia of solid sphere Find the moment of inertia 
of a solid sphere of radius a about a diameter. (Take d = 1.)

75. Moment of inertia of solid cone Find the moment of inertia of 
a right circular cone of base radius a and height h about its axis. 
(Hint: Place the cone with its vertex at the origin and its axis 
along the z-axis.)

76. Variable density A solid is bounded on the top by the parabo-
loid z = r2, on the bottom by the plane z = 0, and on the sides 
by the cylinder r = 1. Find the center of mass and the moment of 
inertia about the z-axis if the density is

a. d(r, u, z) = z b. d(r, u, z) = r.

77. Variable density A solid is bounded below by the cone 
z = 2x2 + y2 and above by the plane z = 1. Find the center of 
mass and the moment of inertia about the z-axis if the density is

a. d(r, u, z) = z b. d(r, u, z) = z2.

78. Variable density A solid ball is bounded by the sphere r = a.
Find the moment of inertia about the z-axis if the density is

a. d(r, f, u) = r2 b. d(r, f, u) = r = r sin f.

79. Centroid of solid semiellipsoid Show that the centroid of the 
solid semiellipsoid of revolution (r2>a2) + (z2>h2) … 1, z Ú 0,
lies on the z-axis three-eighths of the way from the base to the 
top. The special case h = a gives a solid hemisphere. Thus, the 
centroid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

80. Centroid of solid cone Show that the centroid of a solid right 
circular cone is one-fourth of the way from the base to the vertex. 
(In general, the centroid of a solid cone or pyramid is one-fourth 
of the way from the centroid of the base to the vertex.)

81. Density of center of a planet A planet is in the shape of a sphere 
of radius R and total mass M with spherically symmetric density 
distribution that increases linearly as one approaches its center. 
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What is the density at the center of this planet if the density at its 
edge (surface) is taken to be zero?

82. Mass of planet’s atmosphere A spherical planet of radius R has 
an atmosphere whose density is m = m0 e-ch, where h is the alti-
tude above the surface of the planet, m0 is the density at sea level, 
and c is a positive constant. Find the mass of the planet’s atmo-
sphere.

Theory and Examples
83. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations 
of the form r = a sec u in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations 
of the form r = b csc u.

84. (Continuation of Exercise 83.) Find an equation of the form 
r = ƒ(u) in cylindrical coordinates for the plane ax + by = c,
c ≠ 0.

85. Symmetry What symmetry will you find in a surface that has 
an equation of the form r = ƒ(z) in cylindrical coordinates? Give 
reasons for your answer.

86. Symmetry What symmetry will you find in a surface that has 
an equation of the form r = ƒ(f) in spherical coordinates? Give 
reasons for your answer.

15.8 Substitutions in Multiple Integrals

This section introduces the ideas involved in coordinate transformations to evaluate mul-
tiple integrals by substitution. The method replaces complicated integrals by ones that are 
easier to evaluate. Substitutions accomplish this by simplifying the integrand, the limits of 
integration, or both. A thorough discussion of multivariable transformations and substitu-
tions is best left to a more advanced course, but our introduction here shows how the sub-
stitutions just studied reflect the general idea derived for single integral calculus.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.4 is a special case of a more general sub-
stitution method for double integrals, a method that pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the uy-plane is transformed into the region R in the xy-plane 
by equations of the form

x = g(u, y), y = h(u, y),

as suggested in Figure 15.54. We assume the transformation is one-to-one on the interior of G.
We call R the image of G under the transformation, and G the preimage of R. Any function 
ƒ(x, y) defined on R can be thought of as a function ƒ(g(u, y), h(u, y)) defined on G as well. 
How is the integral of ƒ(x, y) over R related to the integral of ƒ(g(u, y), h(u, y)) over G?

To gain some insight into the question, let’s look again at the single variable case. To 
be consistent with how we are using them now, we interchange the variables x and u used in 
the substitution method for single integrals in Chapter 5, so the equation is stated here as

L

g(b)

g(a)
ƒ(x) dx =

L

b

a
 ƒ(g(u)) g′(u) du. x = g(u), dx = g′(u) du

To propose an analogue for substitution in a double integral 4R ƒ(x, y) dx dy, we need a 
derivative factor like g′(u) as a multiplier that transforms the area element du dy in the 
region G to its corresponding area element dx dy in the region R. Let’s denote this factor 
by J. In continuing with our analogy, it is reasonable to assume that J is a function of both 
variables u and y, just as g′ is a function of the single variable u. Moreover, J should reg-
ister instantaneous change, so partial derivatives are going to be involved in its expression. 
Since four partial derivatives are associated with the transforming equations x = g(u, y)
and y = h(u, y), it is also reasonable to assume that the factor J(u, y) we seek includes 
them all. These features are captured in the following definition constructed from the par-
tial derivatives, and named after the German mathematician Carl Jacobi.

y

u
0

0

y

x

G

R

(u, y)

(x, y)

Cartesian uy-plane

x = g(u, y)
y = h(u, y)

Cartesian xy-plane

FIGURE 15.54 The equations 
x = g(u, y) and y = h(u, y) allow us to 
change an integral over a region R in the 
xy-plane into an integral over a region G
in the uy-plane.

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)
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The Jacobian can also be denoted by

J(u, y) =
0(x, y)
0(u, y)

to help us remember how the determinant in Equation (1) is constructed from the partial 
derivatives of x and y. The array of partial derivatives in Equation (1) behaves just like the 
derivative g′ in the single variable situation. The Jacobian measures how much the trans-
formation is expanding or contracting the area around the point (u, y). Effectively, the 
factor � J �  converts the area of the differential rectangle du dy in G to match with its cor-
responding differential area dx dy in R. We note that, in general, the value of the scaling 
factor � J �  depends on the point (u, y) in G. Our examples to follow will show how it 
scales the differential area du dy for specific transformations.

With the definition of the Jacobian determinant, we can now answer our original 
question concerning the relationship of the integral of ƒ(x, y) over the region R to the inte-
gral of ƒ(g(u, y), h(u, y)) over G.

DEFINITION The Jacobian determinant or Jacobian of the coordinate trans-
formation x = g(u, y), y = h(u, y) is

J(u, y) = 4 0x0u 0x
0y

0y
0u

0y
0y

4 =
0x
0u

0y
0y -

0y
0u

0x
0y . (1)

Differential Area Change Substituting 
x = g(u, y), y = h(u, y)

dx dy = ` 0(x, y)
0(u, y)

` du dy

THEOREM 3—Substitution for Double Integrals Suppose that ƒ(x, y) is con-
tinuous over the region R. Let G be the preimage of R under the transformation 
x = g(u, y), y = h(u, y), assumed to be one-to-one on the interior of G. If the 
functions g and h have continuous first partial derivatives within the interior of 
G, then

O
  R

ƒ(x, y) dx dy =
O
  G

ƒ(g(u, y), h(u, y)) ` 0(x, y)
0(u, y)

` du dy. (2)

The derivation of Equation (2) is intricate and properly belongs to a course in advanced 
calculus, so we do not derive it here. We now present examples illustrating the substitution 
method defined by the equation.

EXAMPLE 1  Find the Jacobian for the polar coordinate transformation x = r cos u,
y = r sin u, and use Equation (2) to write the Cartesian integral 4R ƒ(x, y) dx dy as a polar 
integral.

Solution Figure 15.55 shows how the equations x = r cos u, y = r sin u transform the 
rectangle G: 0 … r … 1, 0 … u … p>2, into the quarter circle R bounded by x2 + y2 = 1 
in the first quadrant of the xy-plane.

r
0

0

1

y

x
1

1

R

G

R

Cartesian ru-plane

p
2

p
2

x = r cos u
y = r sin u

u =

u = 0

Cartesian xy-plane

u

FIGURE 15.55 The equations x =
r cos u, y = r sin u transform G into R. The 
Jacobian factor r, calculated in Example 1, 
scales the differential rectangle dr du in G
to match with the differential area element 
dx dy in R.
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For polar coordinates, we have r and u in place of u and y. With x = r cos u and 
y = r sin u, the Jacobian is

J(r, u) = 4 0x0r 0x
0u

0y
0r

0y
0u

4 = ` cosu -r sin u

sinu r cos u
` = r(cos2u + sin2u) = r.

Since we assume r Ú 0 when integrating in polar coordinates, � J(r, u) � = � r � = r, so 
that Equation (2) gives

O
R

ƒ(x, y) dx dy =
O

G

ƒ(r cos u, r sin u) r dr du. (3)

This is the same formula we derived independently using a geometric argument for polar 
area in Section 15.4.

Notice that the integral on the right-hand side of Equation (3) is not the integral of 
ƒ(r cos u, r sin u) over a region in the polar coordinate plane. It is the integral of the prod-
uct of ƒ(r cos u, r sin u) and r over a region G in the Cartesian ru@plane.

Here is an example of a substitution in which the image of a rectangle under the coor-
dinate transformation is a trapezoid. Transformations like this one are called linear trans-
formations and their Jacobians are constant throughout G.

EXAMPLE 2 Evaluate

L

4

0 L

x= (y>2)+1

x=y>2
2x - y

2
dx dy

by applying the transformation

u =
2x - y

2
, y =

y
2

(4)

and integrating over an appropriate region in the uy-plane.

Solution We sketch the region R of integration in the xy-plane and identify its boundar-
ies (Figure 15.56).

y

u
0

y

x
01

2

G

1

4

R

y = 0

y = 2

u = 1u = 0

x = u + y

y = 2y

y = 0

y = 2x − 2

y = 4

y = 2x

FIGURE 15.56 The equations x = u + y and y = 2y transform G
into R. Reversing the transformation by the equations u = (2x - y)>2
and y = y>2 transforms R into G (Example 2).

To apply Equation (2), we need to find the corresponding uy-region G and the Jaco-
bian of the transformation. To find them, we first solve Equations (4) for x and y in terms 
of u and y. From those equations it is easy to find algebraically that

x = u + y, y = 2y. (5)
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We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of R (Figure 15.56).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

x = y>2 u + y = 2y>2 = y u = 0

x = (y>2) + 1 u + y = (2y>2) + 1 = y + 1 u = 1

y = 0 2y = 0 y = 0

y = 4 2y = 4 y = 2

From Equations (5) the Jacobian of the transformation is

J(u, y) = 4 0x0u 0x
0y

0y
0u

0y
0y

4 = 4 00u (u + y)
0
0y (u + y)

0
0u (2y)

0
0y (2y)

4 = ` 1 1

0 2
` = 2.

We now have everything we need to apply Equation (2):

L

4

0 L

x= (y>2)+1

x=y>2
2x - y

2
dx dy =

L

y=2

y=0 L

u=1

u=0
u 0 J(u, y) 0 du dy

=
L

2

0 L

1

0
(u)(2) du dy =

L

2

0
c u2 d

0

1

dy =
L

2

0
dy = 2.

EXAMPLE 3 Evaluate

L

1

0 L

1- x

0
2x + y (y - 2x)2 dy dx.

Solution We sketch the region R of integration in the xy-plane and identify its boundar-
ies (Figure 15.57). The integrand suggests the transformation u = x + y and y = y - 2x.
Routine algebra produces x and y as functions of u and y:

x = u
3 - y

3 , y = 2u
3 + y

3 . (6)

From Equations (6), we can find the boundaries of the uy-region G (Figure 15.57).

y

u
0

y

x
0 1

1

R

1

1G

y= −2u

y = u

u = 1

−2

x + y = 1
x = 0

y = 0

u
3

y
3

x = −

2u
3

y
3

y = +

FIGURE 15.57 The equations x =
(u>3) - (y>3) and y = (2u>3) + (y>3)
transform G into R. Reversing the trans-
formation by the equations u = x + y
and y = y - 2x transforms R into G
(Example 3).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

x + y = 1 au3 - y
3b + a2u

3 + y
3b = 1 u = 1

x = 0
u
3 - y

3 = 0 y = u

y = 0
2u
3 + y

3 = 0 y = -2u
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The Jacobian of the transformation in Equations (6) is

J(u, y) = 4 0x0u 0x
0y

0y
0u

0y
0y

4 = 4 13 - 1
3

2
3

1
3

4 = 1
3.

Applying Equation (2), we evaluate the integral:

L

1

0 L

1-x

0
2x + y (y - 2x)2 dy dx =

L

u=1

u=0 L

y=u

y=-2u
u1>2y2 0 J(u, y) 0 dy du

=
L

1

0 L

u

-2u
u1>2y2 a13b dy du = 1

3L

1

0
u1>2 c 13y3 d

y=-2u

y=u

du

= 1
9L

1

0
u1>2(u3 + 8u3) du =

L

1

0
u7>2 du = 2

9 u9>2 d
0

1

= 2
9.

In the next example we illustrate a nonlinear transformation of coordinates resulting from 
simplifying the form of the integrand. Like the polar coordinates’ transformation, nonlinear 
transformations can map a straight-line boundary of a region into a curved boundary (or vice 
versa with the inverse transformation). In general, nonlinear transformations are more com-
plex to analyze than linear ones, and a complete treatment is left to a more advanced course.

EXAMPLE 4  Evaluate the integral

L

2

1 L

y

1>y A
y
x e2xy dx dy.

Solution The square root terms in the integrand suggest that we might simplify the inte-
gration by substituting u = 2xy and y = 2y>x. Squaring these equations, we readily 
have u2 = xy and y2 = y>x, which imply that u2y2 = y2 and u2>y2 = x2. So we obtain 
the transformation (in the same ordering of the variables as discussed before)

x = u
y and y = uy,

with u 7 0 and y 7 0. Let’s first see what happens to the integrand itself under this 
transformation. The Jacobian of the transformation is not constant and we find

J(u, y) = 4 0x0u 0x
0y

0y
0u

0y
0y

4 = †
1
y

-u
y2

y u
† = 2u

y .

If G is the region of integration in the uy-plane, then by Equation (2) the transformed 
double integral under the substitution is

O
R
A

y
x e2xy dx dy =

O
G

yeu 2u
y du dy =

O
G

2ueu du dy.

The transformed integrand function is easier to integrate than the original one, so we pro-
ceed to determine the limits of integration for the transformed integral.

The region of integration R of the original integral in the xy-plane is shown in Figure 
15.58. From the substitution equations u = 2xy and y = 2y>x, we see that the image of 
the left-hand boundary xy = 1 for R is the vertical line segment u = 1, 2 Ú y Ú 1, in G
(see Figure 15.59). Likewise, the right-hand boundary y = x of R maps to the horizontal 
line segment y = 1, 1 … u … 2, in G. Finally, the horizontal top boundary y = 2 of R

FIGURE 15.58 The region of 
integration R in Example 4.

1 20

1

2

x

y

R

xy = 1

y = x

y = 2

FIGURE 15.59 The boundaries of the 
region G correspond to those of region R
in Figure 15.58. Notice as we move 
counterclockwise around the region R,
we also move counterclockwise around 
the region G. The inverse transformation 
equations u = 2xy, y = 2y>x produce 
the region G from the region R.

1 20

1

2

G

y

u

uy = 2 3 y = 2

y = 1 3 y = x

u = 1 3 xy = 1
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maps to uy = 2, 1 … y … 2, in G. As we move counterclockwise around the boundary of 
the region R, we also move counterclockwise around the boundary of G, as shown in Fig-
ure 15.59. Knowing the region of integration G in the uy-plane, we can now write equiva-
lent iterated integrals:

L

2

1 L

y

1>y A
y
x e2xy dx dy =

L

2

1 L

2>u

1
2ueu dy du. Note the order of integration.

We now evaluate the transformed integral on the right-hand side,

L

2

1 L

2>u

1
2ueu dy du = 2

L

2

1
cyueu d y=2>u

y=1

du

= 2
L

2

1
(2eu - ueu) du

= 2
L

2

1
(2 - u)eu du

= 2 c (2 - u)eu + eu d
u=2

u=1
  Integrate by parts.

= 2(e2 - (e + e)) = 2e(e - 2).

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.7 are special cases of a 
substitution method that pictures changes of variables in triple integrals as transformations 
of three-dimensional regions. The method is like the method for double integrals given by 
Equation (2) except that now we work in three dimensions instead of two.

Suppose that a region G in uyw-space is transformed one-to-one into the region D in 
xyz-space by differentiable equations of the form

x = g(u, y, w), y = h(u, y, w), z = k(u, y, w),

as suggested in Figure 15.60. Then any function F(x, y, z) defined on D can be thought of 
as a function

F(g(u, y, w), h(u, y, w), k(u, y, w)) = H(u, y, w)

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of 
F(x, y, z) over D is related to the integral of H(u, y, w) over G by the equation

l
D

F(x, y, z) dx dy dz =
l
G

H(u, y, w) 0 J(u, y, w) 0 du dy dw. (7)

w

G

u

z

D

x

y

x = g(u, y, w)
y = h(u, y, w)
z = k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

FIGURE 15.60 The equations x = g(u, y, w), y = h(u, y, w), and z = k(u, y, w)
allow us to change an integral over a region D in Cartesian xyz-space into an integral 
over a region G in Cartesian uyw-space using Equation (7).
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The factor J(u, y, w), whose absolute value appears in this equation, is the Jacobian 
determinant

J(u, y, w) = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 =
0(x, y, z)
0(u, y, w)

.

This determinant measures how much the volume near a point in G is being expanded or 
contracted by the transformation from (u, y, w) to (x, y, z) coordinates. As in the two-
dimensional case, the derivation of the change-of-variable formula in Equation (7) is omitted.

For cylindrical coordinates, r, u, and z take the place of u, y, and w. The transforma-
tion from Cartesian ruz@space to Cartesian xyz-space is given by the equations

x = r cos u, y = r sin u, z = z

(Figure 15.61). The Jacobian of the transformation is

J(r, u, z) = 6
0x
0r

0x
0u

0x
0z

0y
0r

0y
0u

0y
0z

0z
0r

0z
0u

0z
0z

6 = 3 cosu -r sin u 0

sinu r cos u 0

0 0 1

3
= r cos2 u + r sin2 u = r.

The corresponding version of Equation (7) is

l
D

F(x, y, z) dx dy dz =
l
G

H(r, u, z) 0 r 0 dr du dz.

We can drop the absolute value signs because r Ú 0.
For spherical coordinates, r, f, and u take the place of u, y, and w. The transforma-

tion from Cartesian rfu@space to Cartesian xyz-space is given by

x = r sin f cos u, y = r sin f sin u, z = r cos f

(Figure 15.62). The Jacobian of the transformation (see Exercise 23) is

J(r, f, u) = 6
0x
0r

0x
0f

0x
0u

0y
0r

0y
0f

0y
0u

0z
0r

0z
0f

0z
0u

6 = r2 sin f.

The corresponding version of Equation (7) is

l
D

F(x, y, z) dx dy dz =
l
G

H(r, f, u) 0 r2 sin f 0 dr df du.

z

D

x

y

Cartesian ruz-space

x = r cos u
y = r sin u

z = z

z = constant

r = constant

u = constant

Cartesian xyz-space

G

r

u

z

Cube with sides
parallel to the
coordinate axes

FIGURE 15.61 The equations 
x = r cos u, y = r sin u, and z = z
transform the cube G into a cylindrical 
wedge D.
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We can drop the absolute value signs because sinf is never negative for 0 … f … p.
Note that this is the same result we obtained in Section 15.7.

Here is an example of another substitution. Although we could evaluate the integral in 
this example directly, we have chosen it to illustrate the substitution method in a simple 
(and fairly intuitive) setting.

EXAMPLE 5 Evaluate

L

3

0 L

4

0 L

x= (y>2)+1

x=y>2
a2x - y

2
+ z

3b dx dy dz

by applying the transformation

u = (2x - y)>2, y = y>2, w = z>3 (8)

and integrating over an appropriate region in uyw-space.

Solution We sketch the region D of integration in xyz-space and identify its boundaries 
(Figure 15.63). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding uyw-region G and the Jaco-
bian of the transformation. To find them, we first solve Equations (8) for x, y, and z in 
terms of u, y, and w. Routine algebra gives

x = u + y, y = 2y, z = 3w. (9)

We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of D:

x

y

Cartesian rfu-space

f

r Cartesian xyz-space

u

G

Cube with sides
parallel to the
coordinate axesu

x = r sin f cos u
y = r sin f sin u

z = r cos f

z

f

u = constant

(x, y, z) D

f = constant

r = constant

r

FIGURE 15.62 The equations x = r sin f cos u, y = r sin f sin u, and 
z = r cos f transform the cube G into the spherical wedge D.

Rear plane:

x = , or y = 2x
y
2

Front plane:

x = + 1, or y = 2x − 2
y
2

1

D

3

y
4

x

z

x = u + y
y = 2y
z = 3w

2
y

u

1

G

w

1

FIGURE 15.63 The equations 
x = u + y, y = 2y, and z = 3w
transform G into D. Reversing the 
transformation by the equations 
u = (2x - y)>2, y = y>2, and w = z>3
transforms D into G (Example 5).

xyz-equations for Corresponding uYw-equations Simplified
the boundary of D for the boundary of G uYw-equations

x = y>2 u + y = 2y>2 = y u = 0

x = (y>2) + 1 u + y = (2y>2) + 1 = y + 1 u = 1

y = 0 2y = 0 y = 0

y = 4 2y = 4 y = 2

z = 0 3w = 0 w = 0

z = 3 3w = 3 w = 1
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The Jacobian of the transformation, again from Equations (9), is

J(u, y, w) = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 = 3 1 1 0

0 2 0

0 0 3

3 = 6.

We now have everything we need to apply Equation (7):

L

3

0 L

4

0 L

x= (y>2)+1

x=y>2
a2x - y

2
+ z

3b dx dy dz

=
L

1

0 L

2

0 L

1

0
(u + w) 0 J(u, y, w) 0 du dy dw

=
L

1

0 L

2

0 L

1

0
(u + w)(6) du dy dw = 6

L

1

0 L

2

0
c u2

2
+ uw d

0

1

dy dw

= 6
L

1

0 L

2

0
a1

2
+ wb dy dw = 6

L

1

0
cy
2

+ yw d
0

2

dw = 6
L

1

0
(1 + 2w) dw

= 6 cw + w2 d
0

1

= 6(2) = 12.

Jacobians and Transformed Regions in the Plane
1. a. Solve the system

u = x - y, y = 2x + y

for x and y in terms of u and y. Then find the value of the 
Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = x - y,
y = 2x + y of the triangular region with vertices (0, 0), 
(1, 1), and (1, -2) in the xy-plane. Sketch the transformed 
region in the uy-plane.

2. a. Solve the system

u = x + 2y, y = x - y

for x and y in terms of u and y. Then find the value of the 
Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = x + 2y,
y = x - y of the triangular region in the xy-plane bounded 
by the lines y = 0, y = x, and x + 2y = 2. Sketch the trans-
formed region in the uy-plane.

3. a. Solve the system

u = 3x + 2y, y = x + 4y

for x and y in terms of u and y. Then find the value of the 
Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = 3x + 2y,
y = x + 4y of the triangular region in the xy-plane bounded 

by the x-axis, the y-axis, and the line x + y = 1. Sketch the 
transformed region in the uy-plane.

4. a. Solve the system

u = 2x - 3y, y = -x + y

for x and y in terms of u and y. Then find the value of the 
Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = 2x - 3y,
y = -x + y of the parallelogram R in the xy-plane with 
boundaries x = -3, x = 0, y = x, and y = x + 1. Sketch 
the transformed region in the uy-plane.

Substitutions in Double Integrals
5. Evaluate the integral

L

4

0 L

x= (y>2)+1

x=y>2
2x - y

2
dx dy

  from Example 1 directly by integration with respect to x and y to 
confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

O
R

(2x2 - xy - y2) dx dy

  for the region R in the first quadrant bounded by the lines 
y = -2x + 4, y = -2x + 7, y = x - 2, and y = x + 1.

Exercises 15.8
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7. Use the transformation in Exercise 3 to evaluate the integral

O
R

(3x2 + 14xy + 8y2) dx dy

for the region R in the first quadrant bounded by the lines 
y = - (3>2)x + 1, y = - (3>2)x + 3, y = - (1>4)x, and y =
- (1>4)x + 1.

8. Use the transformation and parallelogram R in Exercise 4 to 
evaluate the integral

O
R

2(x - y) dx dy.

9. Let R be the region in the first quadrant of the xy-plane bounded 
by the hyperbolas xy = 1, xy = 9 and the lines y = x, y = 4x.
Use the transformation x = u>y, y = uy with u 7 0 and y 7 0
to rewrite

O
R

aA
y
x + 2xyb dx dy

as an integral over an appropriate region G in the uy-plane. Then 
evaluate the uy-integral over G.

10. a. Find the Jacobian of the transformation x = u, y = uy and 

sketch the region G: 1 … u … 2, 1 … uy … 2, in the uy-plane.

b. Then use Equation (2) to transform the integral

L

2

1 L

2

1

y
x dy dx

into an integral over G, and evaluate both integrals.

11. Polar moment of inertia of an elliptical plate A thin plate of 
constant density covers the region bounded by the ellipse 
x2>a2 + y2>b2 = 1, a 7 0, b 7 0, in the xy-plane. Find the first 
moment of the plate about the origin. (Hint: Use the transforma-
tion x = ar cos u, y = br sin u.)

12. The area of an ellipse The area pab of the ellipse 
x2>a2 + y2>b2 = 1 can be found by integrating the function 
ƒ(x, y) = 1 over the region bounded by the ellipse in the xy-
plane. Evaluating the integral directly requires a trigonometric 
substitution. An easier way to evaluate the integral is to use the 
transformation x = au, y = by and evaluate the transformed 
integral over the disk G: u2 + y2 … 1 in the uy-plane. Find the 
area this way.

13. Use the transformation in Exercise 2 to evaluate the integral

L

2>3

0 L

2-2y

y
(x + 2y)e(y-x) dx dy

by first writing it as an integral over a region G in the uy-plane.

14. Use the transformation x = u + (1>2)y, y = y to evaluate the 
integral

L

2

0 L

(y+4)>2

y>2
y3(2x - y)e(2x-y)2

dx dy

by first writing it as an integral over a region G in the uy-plane.

15. Use the transformation x = u>y, y = uy to evaluate the integral 
sum

L

2

1 L

y

1>y
(x2 + y2) dx dy +

L

4

2 L

4>y

y>4
(x2 + y2) dx dy.

16. Use the transformation x = u2 - y2, y = 2uy to evaluate the 
integral

L

1

0 L

221-x

0
2x2 + y2 dy dx.

(Hint: Show that the image of the triangular region G with verti-
ces (0, 0), (1, 0), (1, 1) in the uy-plane is the region of integration 
R in the xy-plane defined by the limits of integration.)

Substitutions in Triple Integrals

17. Evaluate the integral in Example 5 by integrating with respect to 
x, y, and z.

18. Volume of an ellipsoid Find the volume of the ellipsoid

x2

a2 +
y2

b2 + z2

c2 = 1.

(Hint: Let x = au, y = by, and z = cw. Then find the volume of 
an appropriate region in uyw-space.)

19. Evaluate

l
0 xyz 0 dx dy dz

over the solid ellipsoid

x2

a2 +
y2

b2 + z2

c2 … 1.

(Hint: Let x = au, y = by, and z = cw. Then integrate over an 
appropriate region in uyw-space.)

20. Let D be the region in xyz-space defined by the inequalities

1 … x … 2, 0 … xy … 2, 0 … z … 1.

  Evaluate

l
D

(x2y + 3xyz) dx dy dz

by applying the transformation

u = x, y = xy, w = 3z

  and integrating over an appropriate region G in uyw-space.

Theory and Examples
21. Find the Jacobian 0(x, y)>0(u, y) of the transformation

a. x = u cos y, y = u sin y

b. x = u sin y, y = u cos y.

22. Find the Jacobian 0(x, y, z)>0(u, y, w) of the transformation

a. x = u cos y, y = u sin y, z = w

b. x = 2u - 1, y = 3y - 4, z = (1>2)(w - 4).
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23. Evaluate the appropriate determinant to show that the Jacobian of 
the transformation from Cartesian rfu@space to Cartesian xyz-
space is r2 sin f.

24. Substitutions in single integrals How can substitutions in sin-
gle definite integrals be viewed as transformations of regions? 
What is the Jacobian in such a case? Illustrate with an example.

25. Centroid of a solid semiellipsoid Assuming the result that the 
centroid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base toward the top, show, by trans-
forming the appropriate integrals, that the center of mass of a 
solid semiellipsoid (x2>a2) + (y2>b2) + (z2>c2) … 1, z Ú 0,
lies on the z-axis three-eighths of the way from the base toward 
the top. (You can do this without evaluating any of the integrals.)

26. Cylindrical shells In Section 6.2, we learned how to find the 
volume of a solid of revolution using the shell method; namely, if 
the region between the curve y = ƒ(x) and the x-axis from a to b
(0 6 a 6 b) is revolved about the y-axis, the volume of the 
resulting solid is 1

b
a 2pxƒ(x) dx. Prove that finding volumes by 

using triple integrals gives the same result. (Hint: Use cylindrical 
coordinates with the roles of y and z changed.)

27. Inverse transform The equations x = g(u, y), y = h(u, y) in 
Figure 15.54 transform the region G in the uy-plane into the 
region R in the xy-plane. Since the substitution transformation is 
one-to-one with continuous first partial derivatives, it has an 
inverse transformation and there are equations u = a(x, y),
y = b(x, y) with continuous first partial derivatives transforming 
R back into G. Moreover, the Jacobian determinants of the trans-
formations are related reciprocally by

0(x, y)
0(u, y)

= a0(u, y)
0(x, y)

b -1

. (10)

  Equation (10) is proved in advanced calculus. Use it to find the 
area of the region R in the first quadrant of the xy-plane bounded 
by the lines y = 2x, 2y = x, and the curves xy = 2, 2xy = 1 for 
u = xy and y = y/x.

28. (Continuation of Exercise 27.) For the region R described in 
Exercise 27, evaluate the integral 4R y2 dA.

Chapter 15 Questions to Guide Your Review

1. Define the double integral of a function of two variables over a 
bounded region in the coordinate plane.

2. How are double integrals evaluated as iterated integrals? Does the 
order of integration matter? How are the limits of integration 
determined? Give examples.

3. How are double integrals used to calculate areas and average val-
ues. Give examples.

4. How can you change a double integral in rectangular coordinates 
into a double integral in polar coordinates? Why might it be 
worthwhile to do so? Give an example.

5. Define the triple integral of a function ƒ(x, y, z) over a bounded 
region in space.

6. How are triple integrals in rectangular coordinates evaluated? 
How are the limits of integration determined? Give an example.

7. How are double and triple integrals in rectangular coordinates 
used to calculate volumes, average values, masses, moments, and 
centers of mass? Give examples.

8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordi-
nate systems to working in rectangular coordinates?

9. How are triple integrals in cylindrical and spherical coordinates 
evaluated? How are the limits of integration found? Give 
examples.

10. How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation.

11. How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation.

Chapter 15 Practice Exercises

Evaluating Double Iterated Integrals
In Exercises 1–4, sketch the region of integration and evaluate the 
double integral.

1.
L

10

1 L

1>y

0
yexy dx dy 2.

L

1

0 L

x3

0
ey>x dy dx

3.
L

3>2

0 L

29-4t2

-29-4t2
t ds dt 4.

L

1

0 L

2-2y

2y
xy dx dy

In Exercises 5–8, sketch the region of integration and write an equiva-
lent integral with the order of integration reversed. Then evaluate both 
integrals.

5.
L

4

0 L

(y-4)>2

-24-y
dx dy 6.

L

1

0 L

x

x2

2x dy dx

7.
L

3>2

0 L

29-4y2

-29-4y2

y dx dy 8.
L

2

0 L

4-x2

0
2x dy dx



Evaluate the integrals in Exercises 9–12.

9.
L

1

0 L

2

2y
4 cos (x2) dx dy 10.

L

2

0 L

1

y>2
ex2

dx dy

11.
L

8

0 L

2

23 x

dy dx

y4 + 1
12.

L

1

0 L

1

23 y

2p sin px2

x2 dx dy

Areas and Volumes Using Double Integrals
13. Area between line and parabola Find the area of the region 

enclosed by the line y = 2x + 4 and the parabola y = 4 - x2 in 
the xy-plane.

14. Area bounded by lines and parabola Find the area of the “tri-
angular” region in the xy-plane that is bounded on the right by the 
parabola y = x2, on the left by the line x + y = 2, and above by 
the line y = 4.

15. Volume of the region under a paraboloid Find the volume 
under the paraboloid z = x2 + y2 above the triangle enclosed by 
the lines y = x, x = 0, and x + y = 2 in the xy-plane.

16. Volume of the region under a parabolic cylinder Find the vol-
ume under the parabolic cylinder z = x2 above the region enclosed 
by the parabola y = 6 - x2 and the line y = x in the xy-plane.

Average Values
Find the average value of ƒ(x, y) = xy over the regions in Exer-
cises 17 and 18.

17. The square bounded by the lines x = 1, y = 1 in the first quadrant

18. The quarter circle x2 + y2 … 1 in the first quadrant

Polar Coordinates
Evaluate the integrals in Exercises 19 and 20 by changing to polar 
coordinates.

19.
L

1

-1L

21-x2

-21-x2

2 dy dx

(1 + x2 + y2)2

20.
L

1

-1L

21-y2

-21-y2

ln (x2 + y2 + 1) dx dy

21. Integrating over a lemniscate Integrate the function ƒ(x, y) =
1> (1 + x2 + y2)2 over the region enclosed by one loop of the 
lemniscate (x2 + y2)2 - (x2 - y2) = 0.

22. Integrate ƒ(x, y) = 1> (1 + x2 + y2)2 over

a. Triangular region The triangle with vertices (0, 0), (1, 0), 
and 11, 232.

b. First quadrant The first quadrant of the xy-plane.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 23–26.

23.
L

p

0 L

p

0 L

p

0
cos (x + y + z) dx dy dz

24.
L

ln7

ln6 L

ln2

0 L

ln5

ln4
e(x+y+ z) dz dy dx

25.
L

1

0 L

x2

0 L

x+y

0
(2x - y - z) dz dy dx

26.
L

e

1 L

x

1 L

z

0

2y

z3 dy dz dx

Volumes and Average Values Using Triple Integrals
27. Volume Find the volume of the wedge-shaped region enclosed 

on the side by the cylinder x = -cos y, -p>2 … y … p>2, on 
the top by the plane z = -2x, and below by the xy-plane.

z

y
x

p
2

−
2

x = −cos y

z = −2x

p

28. Volume Find the volume of the solid that is bounded above by 
the cylinder z = 4 - x2, on the sides by the cylinder x2 +
y2 = 4, and below by the xy-plane.

x
x2 + y2 = 4

y

z

z = 4 − x2

29. Average value Find the average value of ƒ(x, y, z) =
30xz 2x2 + y over the rectangular solid in the first octant bounded 
by the coordinate planes and the planes x = 1, y = 3, z = 1.

30. Average value Find the average value of r over the solid 
sphere r … a (spherical coordinates).

Cylindrical and Spherical Coordinates
31. Cylindrical to rectangular coordinates Convert

L

2p

0 L

22

0 L

24- r2

r
3 dz r dr du, r Ú 0

  to (a) rectangular coordinates with the order of integration 
dz dx dy and (b) spherical coordinates. Then (c) evaluate one 
of the integrals.

32. Rectangular to cylindrical coordinates (a) Convert to cylin-
drical coordinates. Then (b) evaluate the new integral.

L

1

0 L

21-x2

-21-x2L

(x2+y2)

-(x2+y2)
21xy2 dz dy dx

33. Rectangular to spherical coordinates (a) Convert to spherical 
coordinates. Then (b) evaluate the new integral.

L

1

-1L

21-x2

-21-x2L

1

2x2+y2

dz dy dx

34. Rectangular, cylindrical, and spherical coordinates Write an 
iterated triple integral for the integral of ƒ(x, y, z) = 6 + 4y over 
the region in the first octant bounded by the cone z = 2x2 + y2,
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the cylinder x2 + y2 = 1, and the coordinate planes in (a) rectan-
gular coordinates, (b) cylindrical coordinates, and (c) spherical 
coordinates. Then (d) find the integral of ƒ by evaluating one of 
the triple integrals.

35. Cylindrical to rectangular coordinates Set up an integral in 
rectangular coordinates equivalent to the integral

L

p>2

0 L

23

1 L

24- r2

1
r3(sinu cos u)z2 dz dr du.

  Arrange the order of integration to be z first, then y, then x.

36. Rectangular to cylindrical coordinates The volume of a solid is

L

2

0 L

22x-x2

0 L

24-x2-y2

-24-x2-y2

dz dy dx.

a. Describe the solid by giving equations for the surfaces that 
form its boundary.

b. Convert the integral to cylindrical coordinates but do not 
evaluate the integral.

37. Spherical versus cylindrical coordinates Triple integrals 
involving spherical shapes do not always require spherical coor-
dinates for convenient evaluation. Some calculations may be 
accomplished more easily with cylindrical coordinates. As a case 
in point, find the volume of the region bounded above by the 
sphere x2 + y2 + z2 = 8 and below by the plane z = 2 by using 
(a) cylindrical coordinates and (b) spherical coordinates.

Masses and Moments
38. Finding Iz in spherical coordinates Find the moment of iner-

tia about the z-axis of a solid of constant density d = 1 that is 
bounded above by the sphere r = 2 and below by the cone 
f = p>3 (spherical coordinates).

39. Moment of inertia of a “thick” sphere Find the moment of 
inertia of a solid of constant density d bounded by two concentric 
spheres of radii a and b (a 6 b) about a diameter.

40. Moment of inertia of an apple Find the moment of inertia 
about the z-axis of a solid of density d = 1 enclosed by the 
spherical coordinate surface r = 1 - cosf. The solid is the red 
curve rotated about the z-axis in the accompanying figure.

z

y

x

r = 1 − cos f

41. Centroid Find the centroid of the “triangular” region bounded 
by the lines x = 2, y = 2 and the hyperbola xy = 2 in the 
xy-plane.

42. Centroid Find the centroid of the region between the parabola 
x + y2 - 2y = 0 and the line x + 2y = 0 in the xy-plane.

43. Polar moment Find the polar moment of inertia about the ori-
gin of a thin triangular plate of constant density d = 3 bounded 
by the y-axis and the lines y = 2x and y = 4 in the xy-plane.

44. Polar moment Find the polar moment of inertia about the cen-
ter of a thin rectangular sheet of constant density d = 1 bounded 
by the lines

a. x = {2, y = {1 in the xy-plane

b. x = {a, y = {b in the xy-plane.

  (Hint: Find Ix . Then use the formula for Ix to find Iy , and add the 
two to find I0 .)

45. Inertial moment Find the moment of inertia about the x-axis of 
a thin plate of constant density d covering the triangle with verti-
ces (0, 0), (3, 0), and (3, 2) in the xy-plane.

46. Plate with variable density Find the center of mass and the 
moments of inertia about the coordinate axes of a thin plate 
bounded by the line y = x and the parabola y = x2 in the xy-
plane if the density is d(x, y) = x + 1.

47. Plate with variable density Find the mass and first moments 
about the coordinate axes of a thin square plate bounded by the 
lines x = {1, y = {1 in the xy-plane if the density is d(x, y) =
x2 + y2 + 1>3.

48. Triangles with same inertial moment Find the moment of 
inertia about the x-axis of a thin triangular plate of constant den-
sity d whose base lies along the interval 30, b4  on the x-axis and 
whose vertex lies on the line y = h above the x-axis. As you will 
see, it does not matter where on the line this vertex lies. All such 
triangles have the same moment of inertia about the x-axis.

49. Centroid Find the centroid of the region in the polar coordinate 
plane defined by the inequalities 0 … r … 3, -p>3 … u … p>3.

50. Centroid Find the centroid of the region in the first quadrant 
bounded by the rays u = 0 and u = p>2 and the circles r = 1
and r = 3.

51. a.  Centroid Find the centroid of the region in the polar coor-
dinate plane that lies inside the cardioid r = 1 + cos u and 
outside the circle r = 1.

b. Sketch the region and show the centroid in your sketch.

52. a. Centroid Find the centroid of the plane region defined by 
the polar coordinate inequalities 0 … r … a, -a … u … a

(0 6 a … p). How does the centroid move as a S p-?

b. Sketch the region for a = 5p>6 and show the centroid in 
your sketch.

Substitutions
53. Show that if u = x - y and y = y, then for any continuous ƒ

L

q

0 L

x

0
e-sx ƒ(x - y, y) dy dx =

L

q

0 L

q

0
e-s(u+y) ƒ(u, y) du dy.

54. What relationship must hold between the constants a, b, and c to 
make

L

q

-qL

q

-q
e-(ax2+2bxy+cy2) dx dy = 1?

  (Hint: Let s = ax + by and t = gx + dy, where (ad - bg)2 =
ac - b2. Then ax2 + 2bxy + cy2 = s2 + t2.)
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Volumes
1. Sand pile: double and triple integrals The base of a sand pile 

covers the region in the xy-plane that is bounded by the parabola 
x2 + y = 6 and the line y = x. The height of the sand above the 
point (x, y) is x2. Express the volume of sand as (a) a double inte-
gral, (b) a triple integral. Then (c) find the volume.

2. Water in a hemispherical bowl A hemispherical bowl of 
radius 5 cm is filled with water to within 3 cm of the top. Find the 
volume of water in the bowl.

3. Solid cylindrical region between two planes Find the volume 
of the portion of the solid cylinder x2 + y2 … 1 that lies between 
the planes z = 0 and x + y + z = 2.

4. Sphere and paraboloid Find the volume of the region bounded 
above by the sphere x2 + y2 + z2 = 2 and below by the parabo-
loid z = x2 + y2.

5. Two paraboloids Find the volume of the region bounded above 
by the paraboloid z = 3 - x2 - y2 and below by the paraboloid 
z = 2x2 + 2y2.

6. Spherical coordinates Find the volume of the region enclosed 
by the spherical coordinate surface r = 2 sin f (see accompany-
ing figure).

z

x

y

r = 2 sin f

7. Hole in sphere A circular cylindrical hole is bored through a 
solid sphere, the axis of the hole being a diameter of the sphere. 
The volume of the remaining solid is

V = 2
L

2p

0 L

23

0 L

24- z2

1
r dr dz du.

a. Find the radius of the hole and the radius of the sphere.

b. Evaluate the integral.

8. Sphere and cylinder Find the volume of material cut from the 
solid sphere r2 + z2 … 9 by the cylinder r = 3 sin u.

9. Two paraboloids Find the volume of the region enclosed by 
the surfaces z = x2 + y2 and z = (x2 + y2 + 1)>2.

10. Cylinder and surface z = xy Find the volume of the region in 
the first octant that lies between the cylinders r = 1 and r = 2
and that is bounded below by the xy-plane and above by the sur-
face z = xy.

Changing the Order of Integration
11. Evaluate the integral

L

q

0

e-ax - e-bx

x dx.

  (Hint: Use the relation

e-ax - e-bx

x =
L

b

a
e-xy dy

  to form a double integral and evaluate the integral by changing 
the order of integration.)

12. a. Polar coordinates Show, by changing to polar coordinates, 
that

L

a sin b

0 L

2a2-y2

y cot b
ln (x2 + y2) dx dy = a2b aln a - 1

2
b ,

where a 7 0 and 0 6 b 6 p>2.

b. Rewrite the Cartesian integral with the order of integration 
reversed.

13. Reducing a double to a single integral By changing the order 
of integration, show that the following double integral can be 
reduced to a single integral:

L

x

0 L

u

0
em(x- t) ƒ(t) dt du =

L

x

0
(x - t)em(x- t) ƒ(t) dt.

  Similarly, it can be shown that

L

x

0 L

y

0 L

u

0
em(x- t) ƒ(t) dt du dy =

L

x

0

(x - t)2

2
em(x- t) ƒ(t) dt.

14. Transforming a double integral to obtain constant limits
Sometimes a multiple integral with variable limits can be changed 
into one with constant limits. By changing the order of integra-
tion, show that

L

1

0
ƒ(x)a

L

x

0
g(x - y)ƒ(y) dyb dx

=
L

1

0
ƒ(y)a

L

1

y
g(x - y)ƒ(x) dxb dy

= 1
2L

1

0 L

1

0
g( 0 x - y 0 )ƒ(x)ƒ(y) dx dy.

Masses and Moments
15. Minimizing polar inertia A thin plate of constant density is to 

occupy the triangular region in the first quadrant of the xy-plane
having vertices (0, 0), (a, 0), and (a, 1 >a). What value of a will 
minimize the plate’s polar moment of inertia about the origin?

16. Polar inertia of triangular plate Find the polar moment of 
inertia about the origin of a thin triangular plate of constant 
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  density d = 3 bounded by the y-axis and the lines y = 2x and 
y = 4 in the xy-plane.

17. Mass and polar inertia of a counterweight The counterweight 
of a flywheel of constant density 1 has the form of the smaller 
segment cut from a circle of radius a by a chord at a distance b
from the center (b 6 a). Find the mass of the counterweight and 
its polar moment of inertia about the center of the wheel.

18. Centroid of a boomerang Find the centroid of the boomerang-
shaped region between the parabolas y2 = -4(x - 1) and 
y2 = -2(x - 2) in the xy-plane.

Theory and Examples
19. Evaluate

L

a

0 L

b

0
emax (b2x2, a2y2) dy dx,

  where a and b are positive numbers and

max (b2x2, a2y2) = e b2x2 if b2x2 Ú a2y2

a2y2 if b2x2 6 a2y2.

20. Show that

O

02F(x, y)
0x 0y dx dy

  over the rectangle x0 … x … x1, y0 … y … y1, is

F(x1 , y1) - F(x0 , y1) - F(x1 , y0) + F(x0 , y0).

21. Suppose that ƒ(x, y) can be written as a product ƒ(x, y) = F(x)G(y)
of a function of x and a function of y. Then the integral of ƒ over 
the rectangle R: a … x … b, c … y … d can be evaluated as a 
product as well, by the formula

O
R

ƒ(x, y) dA = a
L

b

a
F(x) dxb a

L

d

c
G(y) dyb . (1)

The argument is that

O
R

ƒ(x, y) dA =
L

d

c
a
L

b

a
F(x)G(y) dxb dy (i)

=
L

d

c
aG(y)

L

b

a
F(x) dxb dy (ii)

=
L

d

c
a
L

b

a
F(x) dxbG(y) dy (iii)

= a
L

b

a
F(x) dxb

L

d

c
G(y) dy. (iv)

a. Give reasons for steps (i) through (iv).

When it applies, Equation (1) can be a time-saver. Use it to eval-
uate the following integrals.

b.
L

ln2

0 L

p>2

0
ex cos y dy dx c.

L

2

1 L

1

-1

x
y2 dx dy

22. Let Duƒ denote the derivative of ƒ(x, y) = (x2 + y2) >2 in the 
direction of the unit vector u = u1i + u2j.

a. Finding average value Find the average value of Duƒ
over the triangular region cut from the first quadrant by the 
line x + y = 1.

b. Average value and centroid Show in general that the 
average value of Duƒ over a region in the xy-plane is the 
value of Duƒ at the centroid of the region.

23. The value of 𝚪(1 ,2) The gamma function,

Γ(x) =
L

q

0
tx-1 e-t dt,

  extends the factorial function from the nonnegative integers to 
other real values. Of particular interest in the theory of differen-
tial equations is the number

Γa1
2
b =

L

q

0
t(1>2)-1 e-t dt =

L

q

0

e-t

2t
dt. (2)

a. If you have not yet done Exercise 41 in Section 15.4, do it 
now to show that

I =
L

q

0
e-y2

dy = 2p

2
.

b. Substitute y = 2t in Equation (2) to show that 
Γ(1>2) = 2I = 2p.

24. Total electrical charge over circular plate The electrical 
charge distribution on a circular plate of radius R meters is 
s(r, u) = kr(1 - sin u) coulomb>m2 (k a constant). Integrate s
over the plate to find the total charge Q.

25. A parabolic rain gauge A bowl is in the shape of the graph of 
z = x2 + y2 from z = 0 to z = 10 in. You plan to calibrate the 
bowl to make it into a rain gauge. What height in the bowl would 
correspond to 1 in. of rain? 3 in. of rain?

26. Water in a satellite dish A parabolic satellite dish is 2 m wide 
and 1 >2 m deep. Its axis of symmetry is tilted 30 degrees from the 
vertical.

a. Set up, but do not evaluate, a triple integral in rectangular coor-
dinates that gives the amount of water the satellite dish will 
hold. (Hint: Put your coordinate system so that the satellite dish 
is in “standard position” and the plane of the water level is 
slanted.) (Caution: The limits of integration are not “nice.”)

b. What would be the smallest tilt of the satellite dish so that it 
holds no water?

27. An infinite half-cylinder Let D be the interior of the infinite 
right circular half-cylinder of radius 1 with its single-end face 
suspended 1 unit above the origin and its axis the ray from (0, 0, 
1) to q. Use cylindrical coordinates to evaluate

l
D

z(r2 + z2)-5>2 dV.

28. Hypervolume We have learned that 1
b

a 1 dx is the length of the 
interval 3a, b4  on the number line (one-dimensional space), 

4R 1 dA is the area of region R in the xy-plane (two-dimensional 
space), and 7D 1 dV  is the volume of the region D in three-
dimensional space (xyz-space). We could continue: If Q is a 
region in 4-space (xyzw-space), then |Q 1 dV  is the “hyper-
volume” of Q. Use your generalizing abilities and a Cartesian 
coordinate system of 4-space to find the hypervolume inside the 
unit 4-dimensional sphere x2 + y2 + z2 + w2 = 1.
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Chapter 15 Technology Application Projects

Mathematica/Maple Modules:

Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three Dimensions
Use the Monte Carlo technique to integrate numerically in three dimensions.

Means and Moments and Exploring New Plotting Techniques, Part II
Use the method of moments in a form that makes use of geometric symmetry as well as multiple integration.
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OVERVIEW In this chapter we extend the theory of integration over coordinate lines and 
planes to general curves and surfaces in space. The resulting theory of line and surface 
integrals gives powerful mathematical tools for science and engineering. Line integrals are 
used to find the work done by a force in moving an object along a path, and to find the 
mass of a curved wire with variable density. Surface integrals are used to find the rate of 
flow of a fluid across a surface. We present the fundamental theorems of vector integral 
calculus, and discuss their mathematical consequences and physical applications. In the 
final analysis, the key theorems are shown as generalized interpretations of the Fundamen-
tal Theorem of Calculus.

16.1 Line Integrals

To calculate the total mass of a wire lying along a curve in space, or to find the work done 
by a variable force acting along such a curve, we need a more general notion of integral 
than was defined in Chapter 5. We need to integrate over a curve C rather than over an 
interval 3a, b4 . These more general integrals are called line integrals (although path
integrals might be more descriptive). We make our definitions for space curves, with 
curves in the xy-plane being the special case with z-coordinate identically zero.

Suppose that ƒ(x, y, z) is a real-valued function we wish to integrate over the curve C
lying within the domain of ƒ and parametrized by r(t) = g(t)i + h(t)j + k(t)k, a … t … b.
The values of ƒ along the curve are given by the composite function ƒ(g(t), h(t), k(t)). We 
are going to integrate this composite with respect to arc length from t = a to t = b. To 
begin, we first partition the curve C into a finite number n of subarcs (Figure 16.1). The 
typical subarc has length ∆sk . In each subarc we choose a point (xk , yk , zk) and form the 
sum

Sn = a

n

k=1
ƒ(xk , yk , zk) ∆sk ,

which is similar to a Riemann sum. Depending on how we partition the curve C and pick 
(xk , yk , zk) in the kth subarc, we may get different values for Sn. If ƒ is continuous and the 
functions g, h, and k have continuous first derivatives, then these sums approach a limit as 
n increases and the lengths ∆sk approach zero. This limit gives the following definition, 
similar to that for a single integral. In the definition, we assume that the partition satisfies 
∆sk S 0 as n S q.

Integrals and Vector 
Fields

16

z

y

x

r(t)

t = b

t = a
(xk, yk, zk)

Δsk

FIGURE 16.1 The curve r(t) partitioned 
into small arcs from t = a to t = b. The 
length of a typical subarc is ∆sk .
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If the curve C is smooth for a … t … b (so v = dr>dt is continuous and never 0) and the 
function ƒ is continuous on C, then the limit in Equation (1) can be shown to exist. We can 
then apply the Fundamental Theorem of Calculus to differentiate the arc length equation,

s(t) =
L

t

a
� v(t) � dt,

Eq. (3) of Section 13.3 
with t0 = a

to express ds in Equation (1) as ds = � v(t) � dt and evaluate the integral of ƒ over C as

LC
ƒ(x, y, z) ds =

L

b

a
ƒ(g(t), h(t), k(t)) � v(t) � dt. (2)

Notice that the integral on the right side of Equation (2) is just an ordinary (single) definite 
integral, as defined in Chapter 5, where we are integrating with respect to the parameter t.
The formula evaluates the line integral on the left side correctly no matter what parametri-
zation is used, as long as the parametrization is smooth. Note that the parameter t defines a 
direction along the path. The starting point on C is the position r(a) and movement along 
the path is in the direction of increasing t (see Figure 16.1).

DEFINITION If ƒ is defined on a curve C given parametrically by r(t) =
g(t)i + h(t)j + k(t)k, a … t … b, then the line integral of ƒ over C is

LC
ƒ(x, y, z) ds = lim

nSq a

n

k=1
ƒ(xk , yk , zk) ∆sk , (1)

provided this limit exists.

How to Evaluate a Line Integral

To integrate a continuous function ƒ(x, y, z) over a curve C:

1. Find a smooth parametrization of C,

r(t) = g(t)i + h(t)j + k(t)k, a … t … b.

2. Evaluate the integral as

LC
ƒ(x, y, z) ds =

L

b

a
ƒ(g(t), h(t), k(t)) 0 v(t) 0 dt.

If ƒ has the constant value 1, then the integral of ƒ over C gives the length of C from 
t = a to t = b in Figure 16.1. We also write ƒ(r(t)) for the evaluation ƒ(g(t), h(t), k(t)) along 
the curve r.

ƒ(r(t)) = ƒ(g(t), h(t), k(t))

EXAMPLE 1  Integrate ƒ(x, y, z) = x - 3y2 + z over the line segment C joining the 
origin to the point (1, 1, 1) (Figure 16.2).

Solution We choose the simplest parametrization we can think of:

r(t) = ti + tj + tk, 0 … t … 1.

ds
dt

= 0 v 0 = B adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

FIGURE 16.2 The integration path in 
Example 1.

z

x

C

(1, 1, 0)

(1, 1, 1)

y
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The components have continuous first derivatives and 0 v(t) 0 = 0 i + j + k 0 =
212 + 12 + 12 = 23 is never 0, so the parametrization is smooth. The integral of ƒ 
over C is

LC
ƒ(x, y, z) ds =

L

1

0
ƒ(t, t, t)1232 dt Eq. (2), ds = 0 v(t) 0 dt = 23 dt

=
L

1

0

(t - 3t2 + t)23 dt

= 23
L

1

0

(2t - 3t2) dt = 23 3 t2 - t34 0
1 = 0.

Additivity

Line integrals have the useful property that if a piecewise smooth curve C is made by join-
ing a finite number of smooth curves C1, C2, . . . , Cn end to end (Section 13.1), then the 
integral of a function over C is the sum of the integrals over the curves that make it up:

LC
ƒ ds =

LC1

ƒ ds +
LC2

ƒ ds + g+
LCn

ƒ ds. (3)

EXAMPLE 2  Figure 16.3 shows another path from the origin to (1, 1, 1), the union of 
line segments C1 and C2. Integrate ƒ(x, y, z) = x - 3y2 + z over C1 ∪ C2.

Solution We choose the simplest parametrizations for C1 and C2 we can find, calculat-
ing the lengths of the velocity vectors as we go along:

C1: r(t) = ti + tj, 0 … t … 1; 0 v 0 = 212 + 12 = 22

C2: r(t) = i + j + tk, 0 … t … 1; 0 v 0 = 202 + 02 + 12 = 1.

With these parametrizations we find that

LC1∪C2

ƒ(x, y, z) ds =
LC1

ƒ(x, y, z) ds +
LC2

ƒ(x, y, z) ds Eq. (3)

=
L

1

0
ƒ(t, t, 0)22 dt +

L

1

0
ƒ(1, 1, t)(1) dt Eq. (2)

=
L

1

0

(t - 3t2 + 0)22 dt +
L

1

0
(1 - 3 + t)(1) dt

= 22 c t2

2
- t3 d

0

1

+ c t2

2
- 2t d

0

1

= - 22
2

- 3
2

.

Notice three things about the integrations in Examples 1 and 2. First, as soon as the 
components of the appropriate curve were substituted into the formula for ƒ, the integra-
tion became a standard integration with respect to t. Second, the integral of ƒ over C1 ∪ C2

was obtained by integrating ƒ over each section of the path and adding the results. Third, 
the integrals of ƒ over C and C1 ∪ C2 had different values. We investigate this third obser-
vation in Section 16.3.

FIGURE 16.3 The path of integration in 
Example 2.

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

C1

C2
y
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EXAMPLE 3  Find the line integral of ƒ(x, y, z) = 2xy + 2z over the helix 
r(t) = cos ti + sin tj + tk, 0 … t … p.

Solution For the helix we find, v(t) = r′(t) = -sin ti + cos tj + k and 0 v(t) 0 =
2(-sin t)2 + ( cos t)2 + 1 = 22. Evaluating the function ƒ along the path, we obtain

ƒ(r(t)) = ƒ(cos t, sin t, t) = 2 cos t sin t + 2t = sin 2t + 2t.

The line integral is given by

LC
ƒ(x, y, z) ds =

L

p

0
1sin 2t + 2t222 dt

= 22 c- 1
2

cos 2t + 2
3 t3>2 d p

0

= 222
3 p3/2 ≈ 5.25.

Mass and Moment Calculations

We treat coil springs and wires as masses distributed along smooth curves in space. The 
distribution is described by a continuous density function d(x, y, z) representing mass per 
unit length. When a curve C is parametrized by r(t) = x(t)i + y(t)j + z(t)k, a … t … b,
then x, y, and z are functions of the parameter t, the density is the function d(x(t), y(t), z(t)),
and the arc length differential is given by

ds = B a
dx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

dt.

(See Section 13.3.) The spring’s or wire’s mass, center of mass, and moments are then 
calculated with the formulas in Table 16.1, with the integrations in terms of the parameter 
t over the interval 3a, b4. For example, the formula for mass becomes

M =
L

b

a
d(x(t), y(t), z(t)) B a

dx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

dt.

These formulas also apply to thin rods, and their derivations are similar to those in 
Section 6.6. Notice how alike the formulas are to those in Tables 15.1 and 15.2 for double 
and triple integrals. The double integrals for planar regions, and the triple integrals for 
solids, become line integrals for coil springs, wires, and thin rods.

Notice that the element of mass dm is equal to dds in the table rather than ddV  as in 
Table 15.1, and that the integrals are taken over the curve C.

EXAMPLE 4  A slender metal arch, denser at the bottom than top, lies along the 
semicircle y2 + z2 = 1, z Ú 0, in the yz-plane (Figure 16.4). Find the center of the arch’s 
mass if the density at the point (x, y, z) on the arch is d(x, y, z) = 2 - z.

Solution We know that x = 0 and y = 0 because the arch lies in the yz-plane with its 
mass distributed symmetrically about the z-axis. To find z, we parametrize the circle as

r(t) = (cos t)j + (sin t)k, 0 … t … p.

The value of the line integral along a path joining two points can change if you 
change the path between them.

z

y
x

1

1

c.m.

y2 + z2 = 1, z ≥ 0

−1

FIGURE 16.4 Example 4 shows how to 
find the center of mass of a circular arch of 
variable density.
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For this parametrization,

0 v(t) 0 = B a
dx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

= 2(0)2 + (-sin t)2 + (cos t)2 = 1,

so ds = 0 v 0 dt = dt.

The formulas in Table 16.1 then give

M =
LC
d ds =

LC
(2 - z) ds =

L

p

0
(2 - sin t) dt = 2p - 2

Mxy =
LC

zd ds =
LC

z(2 - z) ds =
L

p

0
(sin t)(2 - sin t) dt

=
L

p

0
(2 sin t - sin2 t) dt = 8 - p

2

z =
Mxy

M = 8 - p
2

# 1
2p - 2

= 8 - p
4p - 4

≈ 0.57.

With z to the nearest hundredth, the center of mass is (0, 0, 0.57).

Line Integrals in the Plane

There is an interesting geometric interpretation for line integrals in the plane. If C is a 
smooth curve in the xy-plane parametrized by r(t) = x(t)i + y(t)j, a … t … b, we gener-
ate a cylindrical surface by moving a straight line along C orthogonal to the plane, holding 
the line parallel to the z-axis, as in Section 12.6. If z = ƒ(x, y) is a nonnegative continuous 
function over a region in the plane containing the curve C, then the graph of ƒ is a surface 
that lies above the plane. The cylinder cuts through this surface, forming a curve on it that 
lies above the curve C and follows its winding nature. The part of the cylindrical surface 
that lies beneath the surface curve and above the xy-plane is like a “winding wall” or 
“fence” standing on the curve C and orthogonal to the plane. At any point (x, y) along the 
curve, the height of the wall is ƒ(x, y). We show the wall in Figure 16.5, where the “top” of 

Routine integration

TABLE 16.1 Mass and moment formulas for coil springs, wires, and thin rods 

lying along a smooth curve C in space

Mass: M =
LC
d ds d = d(x, y, z) is the density at (x, y, z)

First moments about the coordinate planes:

Myz =
LC

x d ds, Mxz =
LC

y d ds, Mxy =
LC

z d ds

Coordinates of the center of mass:

x = Myz >M, y = Mxz >M, z = Mxy >M
Moments of inertia about axes and other lines:

Ix =
LC

(y2 + z2)d ds, Iy =
LC

(x2 + z2)d ds, Iz =
LC

(x2 + y2)d ds,

IL =
LC

r2d ds r(x, y, z) = distance from the point (x, y, z) to line L

FIGURE 16.5 The line integral 

1C ƒ ds gives the area of the portion of 
the cylindrical surface or “wall” beneath 
z = ƒ(x, y) Ú 0.

z

y

x

t = a

t = b

(x, y)

height f (x, y)

Plane curve C
Δsk
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the wall is the curve lying on the surface z = ƒ(x, y). (We do not display the surface 
formed by the graph of ƒ in the figure, only the curve on it that is cut out by the cylinder.) 
From the definition

LC
ƒ ds = lim

nSq a

n

k=1
ƒ(xk , yk) ∆sk ,

where ∆sk S 0 as n S q, we see that the line integral 1C ƒ ds is the area of the wall 
shown in the figure.

Graphs of Vector Equations
Match the vector equations in Exercises 1–8 with the graphs (a)–(h) 
given here.

a. b.

y

z

x

1

−1

y

z

x

2

1

c. d.

y

z

x

1 1 y

z

x

2

2

(2, 2, 2)

e. f.

y

z

x

1
1

(1, 1, 1)

(1, 1, −1)

y

z

x

2

−2

−1

g. h.

y

z

x

2

2
y

z

x

2

2

−2

1. r(t) = ti + (1 - t)j, 0 … t … 1

2. r(t) = i + j + tk, -1 … t … 1

3. r(t) = (2 cos t)i + (2 sin t)j, 0 … t … 2p

4. r(t) = ti, -1 … t … 1

5. r(t) = ti + tj + tk, 0 … t … 2

6. r(t) = tj + (2 - 2t)k, 0 … t … 1

7. r(t) = (t2 - 1)j + 2tk, -1 … t … 1

8. r(t) = (2 cos t)i + (2 sin t)k, 0 … t … p

Evaluating Line Integrals over Space Curves

9. Evaluate 1C (x + y) ds where C is the straight-line segment 
x = t, y = (1 - t), z = 0, from (0, 1, 0) to (1, 0, 0).

10. Evaluate 1C (x - y + z - 2) ds where C is the straight-line seg-
ment x = t, y = (1 - t), z = 1, from (0, 1, 1) to (1, 0, 1).

11. Evaluate 1C (xy + y + z) ds along the curve r(t) = 2ti +
tj + (2 - 2t)k, 0 … t … 1.

12. Evaluate 1C2x2 + y2 ds along the curve r(t) = (4 cos t)i +
(4 sin t)j + 3tk, -2p … t … 2p.

13. Find the line integral of ƒ(x, y, z) = x + y + z over the straight-
line segment from (1, 2, 3) to (0, -1, 1).

14. Find the line integral of ƒ(x, y, z) = 23> (x2 + y2 + z2)  over 
the curve r(t) = ti + tj + tk, 1 … t … q.

15. Integrate ƒ(x, y, z) = x + 2y - z2 over the path from (0, 0, 0) 
to (1, 1, 1) (see accompanying figure) given by

C1: r(t) = ti + t2j, 0 … t … 1

C2: r(t) = i + j + tk, 0 … t … 1
z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y
x

(b)

(0, 0, 0)
(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

The paths of integration for Exercises 15 and 16.

Exercises 16.1



16. Integrate ƒ(x, y, z) = x + 2y - z2 over the path from (0, 0, 0) 
to (1, 1, 1) (see accompanying figure) given by

C1: r(t) = tk, 0 … t … 1

C2: r(t) = tj + k, 0 … t … 1

C3: r(t) = ti + j + k, 0 … t … 1

17. Integrate ƒ(x, y, z) = (x + y + z)> (x2 + y2 + z2)  over the path 
r(t) = ti + tj + tk, 0 6 a … t … b.

18. Integrate ƒ(x, y, z) = -2x2 + z2 over the circle

r(t) = (a cos t)j + (a sin t)k, 0 … t … 2p.

Line Integrals over Plane Curves
19. Evaluate 1C x ds, where C is

a. the straight-line segment x = t, y = t>2, from (0, 0) to (4, 2).

b. the parabolic curve x = t, y = t2, from (0, 0) to (2, 4).

20. Evaluate 1C2x + 2y ds, where C is

a. the straight-line segment x = t, y = 4t, from (0, 0) to (1, 4).

b. C1 ∪ C2; C1 is the line segment from (0, 0) to (1, 0) and C2 is 
the line segment from (1, 0) to (1, 2).

21. Find the line integral of ƒ(x, y) = yex
2
 along the curve 

r(t) = 4ti - 3tj, -1 … t … 2.

22. Find the line integral of ƒ(x, y) = x - y + 3 along the curve 
r(t) = (cos t)i + (sin t)j, 0 … t … 2p.

23. Evaluate LC
x2

y4>3
ds, where C is the curve x = t2, y = t3, for 

1 … t … 2.

24. Find the line integral of ƒ(x, y) = 2y>x along the curve 
r(t) = t3i + t4j, 1>2 … t … 1.

25. Evaluate 1C1x + 2y2 ds where C is given in the accompanying 
figure.

x

y

y = x2

y = x

(0, 0)

(1, 1)
C

26. Evaluate LC
1

x2 + y2 + 1
ds where C is given in the accompany-

  ing figure.

x

y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

In Exercises 27–30, integrate ƒ over the given curve.

27. ƒ(x, y) = x3>y, C: y = x2>2, 0 … x … 2

28. ƒ(x, y) = (x + y2) >21 + x2, C: y = x2>2 from (1, 1 >2) to 
(0, 0)

29. ƒ(x, y) = x + y, C: x2 + y2 = 4 in the first quadrant from 
(2, 0) to (0, 2)

30. ƒ(x, y) = x2 - y, C: x2 + y2 = 4 in the first quadrant from 
(0, 2) to 122, 222

31. Find the area of one side of the “winding wall” standing orthogo-
nally on the curve y = x2, 0 … x … 2, and beneath the curve on 
the surface ƒ(x, y) = x + 2y.

32. Find the area of one side of the “wall” standing orthogonally on 
the curve 2x + 3y = 6, 0 … x … 6, and beneath the curve on 
the surface ƒ(x, y) = 4 + 3x + 2y.

Masses and Moments
33. Mass of a wire Find the mass of a wire that lies along the curve 

r(t) = (t2 - 1)j + 2tk, 0 … t … 1, if the density is d = (3>2)t.

34. Center of mass of a curved wire A wire of density 
d(x, y, z) = 152y + 2 lies along the curve r(t) = (t2 - 1)j +
2tk, -1 … t … 1. Find its center of mass. Then sketch the curve 
and center of mass together.

35. Mass of wire with variable density Find the mass of a thin 
wire lying along the curve r(t) = 22ti + 22tj + (4 - t2)k,
0 … t … 1, if the density is (a) d = 3t and (b) d = 1.

36. Center of mass of wire with variable density Find the center 
of mass of a thin wire lying along the curve r(t) = ti + 2tj +
(2>3)t3>2k, 0 … t … 2, if the density is d = 325 + t.

37. Moment of inertia of wire hoop A circular wire hoop of con-
stant density d lies along the circle x2 + y2 = a2 in the xy-plane.
Find the hoop’s moment of inertia about the z-axis.

38. Inertia of a slender rod A slender rod of constant density lies 
along the line segment r(t) = tj + (2 - 2t)k, 0 … t … 1, in the 
yz-plane. Find the moments of inertia of the rod about the three 
coordinate axes.

39. Two springs of constant density A spring of constant density 
d lies along the helix

r(t) = (cos t)i + (sin t)j + tk, 0 … t … 2p.

a. Find Iz.

b. Suppose that you have another spring of constant density d
that is twice as long as the spring in part (a) and lies along the 
helix for 0 … t … 4p. Do you expect Iz for the longer spring 
to be the same as that for the shorter one, or should it be dif-
ferent? Check your prediction by calculating Iz for the longer 
spring.

40. Wire of constant density A wire of constant density d = 1
lies along the curve

r(t) = (tcos t)i + (t sin t)j + 1222>32t3>2k, 0 … t … 1.

  Find z and Iz .

41. The arch in Example 4 Find Ix for the arch in Example 4.
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42. Center of mass and moments of inertia for wire with variable 
density Find the center of mass and the moments of inertia 
about the coordinate axes of a thin wire lying along the curve

r(t) = ti + 222
3

t3>2j + t2

2
k, 0 … t … 2,

  if the density is d = 1>(t + 1).

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS to perform the following steps to 
evaluate the line integrals.

a. Find ds = 0 v(t) 0 dt for the path r(t) = g(t)i + h(t)j + k(t)k.

b. Express the integrand ƒ(g(t), h(t), k(t)) 0 v(t) 0  as a function of 
the parameter t.

c. Evaluate 1C ƒ ds using Equation (2) in the text.

43. ƒ(x, y, z) = 21 + 30x2 + 10y ; r(t) = ti + t2j + 3t2k,
0 … t … 2

44. ƒ(x, y, z) = 21 + x3 + 5y3 ; r(t) = ti + 1
3

t2j + 2tk,
0 … t … 2

45. ƒ(x, y, z) = x2y - 3z2; r(t) = (cos 2t)i + (sin 2t)j + 5tk,
0 … t … 2p

46. ƒ(x, y, z) = a1 + 9
4

z1>3b1>4
; r(t) = (cos 2t)i + (sin 2t)j +

t5>2k, 0 … t … 2p

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are repre-
sented by a vector at each point in their domain, producing a vector field. In this section 
we show how to compute the work done in moving an object through such a field by using 
a line integral involving the vector field. We also discuss velocity fields, such as the vector 
field representing the velocity of a flowing fluid in its domain. A line integral can be used 
to find the rate at which the fluid flows along or across a curve within the domain.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid, such as air or 
water. The fluid is made up of a large number of particles, and at any instant of time, a 
particle has a velocity v. At different points of the region at a given (same) time, these 
velocities can vary. We can think of a velocity vector being attached to each point of the 
fluid representing the velocity of a particle at that point. Such a fluid flow is an example of 
a vector field. Figure 16.6 shows a velocity vector field obtained from air flowing around 
an airfoil in a wind tunnel. Figure 16.7 shows a vector field of velocity vectors along the 
streamlines of water moving through a contracting channel. Vector fields are also associ-
ated with forces such as gravitational attraction (Figure 16.8), and with magnetic fields, 
electric fields, and there are also purely mathematical fields.

Generally, a vector field is a function that assigns a vector to each point in its domain. 
A vector field on a three-dimensional domain in space might have a formula like

F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k.

The field is continuous if the component functions M, N, and P are continuous; it is dif-
ferentiable if each of the component functions is differentiable. The formula for a field of 
two-dimensional vectors could look like

F(x, y) = M(x, y)i + N(x, y)j.

We encountered another type of vector field in Chapter 13. The tangent vectors T and 
normal vectors N for a curve in space both form vector fields along the curve. Along a 
curve r(t) they might have a component formula similar to the velocity field expression

v(t) = ƒ(t)i + g(t)j + h(t)k.

If we attach the gradient vector ∇ƒ of a scalar function ƒ(x, y, z) to each point of a 
level surface of the function, we obtain a three-dimensional field on the surface. If we 
attach the velocity vector to each point of a flowing fluid, we have a three-dimensional 

FIGURE 16.7 Streamlines in a 
contracting channel. The water speeds up 
as the channel narrows and the velocity 
vectors increase in length.

FIGURE 16.6 Velocity vectors of a 
flow around an airfoil in a wind tunnel.
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field defined on a region in space. These and other fields are illustrated in Figures 16.6–
16.15. To sketch the fields, we picked a representative selection of domain points and drew 
the vectors attached to them. The arrows are drawn with their tails, not their heads, 
attached to the points where the vector functions are evaluated.

y

z

x

FIGURE 16.8 Vectors in a 
gravitational field point toward 
the center of mass that gives the 
source of the field.

z

x

y

FIGURE 16.9 A surface, like a mesh net or parachute, in a 
vector field representing water or wind flow velocity vectors. The 
arrows show the direction and their lengths indicate speed.

f (x, y, z) = c

FIGURE 16.10 The field 
of gradient vectors ∇ƒ on a 
surface ƒ(x, y, z) = c.

y

x

FIGURE 16.11 The radial field 
F = xi + yj of position vectors of points 
in the plane. Notice the convention that an 
arrow is drawn with its tail, not its head, at 
the point where F is evaluated.

x

y

FIGURE 16.12 A “spin” field of rotat-
ing unit vectors

F = (-yi + xj)> (x2 + y2)1>2

in the plane. The field is not defined at the 
origin.

Gradient Fields

The gradient vector of a differentiable scalar-valued function at a point gives the direction 
of greatest increase of the function. An important type of vector field is formed by all the 
gradient vectors of the function (see Section 14.5). We define the gradient field of a dif-
ferentiable function ƒ(x, y, z) to be the field of gradient vectors

∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k.

At each point (x, y, z), the gradient field gives a vector pointing in the direction of greatest 
increase of ƒ, with magnitude being the value of the directional derivative in that direction. 
The gradient field is not always a force field or a velocity field.

FIGURE 16.13 The flow of fluid 
in a long cylindrical pipe. The vectors 
v = (a2 - r2)k inside the cylinder that 
have their bases in the xy-plane have 
their tips on the paraboloid z = a2 - r2.

z

y

x

x2 + y2 ≤ a2

z = a2 − r2

0
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EXAMPLE 1  Suppose that the temperature T at each point (x, y, z) in a region of 
space is given by

T = 100 - x2 - y2 - z2,

and that F(x, y, z) is defined to be the gradient of T. Find the vector field F.

Solution The gradient field F is the field F = ∇T = -2xi - 2yj - 2zk. At each point 
in space, the vector field F gives the direction for which the increase in temperature is 
greatest.

Line Integrals of Vector Fields

In Section 16.1 we defined the line integral of a scalar function ƒ(x, y, z) over a path C. We 
turn our attention now to the idea of a line integral of a vector field F along the curve C.
Such line integrals have important applications in studying fluid flows, and electrical or 
gravitational fields.

Assume that the vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k has contin-
uous components, and that the curve C has a smooth parametrization r(t) = g(t)i +
h(t)j + k(t)k, a … t … b. As discussed in Section 16.1, the parametrization r(t) defines 
a direction (or orientation) along C which we call the forward direction. At each point 
along the path C, the tangent vector T = dr>ds = v> 0 v 0  is a unit vector tangent to the 
path and pointing in this forward direction. (The vector v = dr>dt  is the velocity vector 
tangent to C at the point, as discussed in Sections 13.1 and 13.3.) Intuitively, the line 

WIND SPEED, M/S

0 2 4 6 8 10 12 14 16+

FIGURE 16.15 NASA’s Seasat used radar to take 350,000 wind measurements 
over the world’s oceans. The arrows show wind direction; their length and the 
color contouring indicate speed. Notice the heavy storm south of Greenland.

y

x
0

FIGURE 16.14 The
velocity vectors v(t) of a 
projectile’s motion make 
a vector field along the 
trajectory.
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integral of the vector field is the line integral of the scalar tangential component of F
along C. This tangential component is given by the dot product

F # T = F # dr
ds

,

so we have the following formal definition, where ƒ = F # T in Equation (1) of Section 16.1.

DEFINITION Let F be a vector field with continuous components defined along 
a smooth curve C parametrized by r(t), a … t … b. Then the line integral of F 
along C is

LC
F # T ds =

LC
aF # dr

ds
b ds =

LC
F # dr.

We evaluate line integrals of vector fields in a way similar to how we evaluate line 
integrals of scalar functions (Section 16.1).

Evaluating the Line Integral of F = M i + N j + Pk Along 
C: r(t ) = g (t )i + h(t )j + k(t )k

1. Express the vector field F in terms of the parametrized curve C as F(r(t)) by 
substituting the components x = g(t), y = h(t), z = k(t) of r into the scalar 
components M(x, y, z), N(x, y, z), P(x, y, z) of F.

2. Find the derivative (velocity) vector dr>dt.

3. Evaluate the line integral with respect to the parameter t, a … t … b, to 
obtain

LC
F # dr =

L

b

a
F(r(t)) # dr

dt
dt.

EXAMPLE 2  Evaluate 1C F # dr, where F(x, y, z) = zi + xyj - y2k along the curve 

C given by r(t) = t2i + tj + 2t k, 0 … t … 1.

Solution We have

F(r(t)) = 2t i + t3j - t2k z = 2t, xy = t3, -y2 = - t2

and

dr
dt

= 2ti + j + 1

22t
k.

Thus,

LC
F # dr =

L

1

0
F(r(t)) # dr

dt
dt

=
L

1

0
a2t3>2 + t3 - 1

2
t3>2b dt

= c a3
2
b a2

5
t5>2b + 1

4
t4 d 1

0
= 17

20
.
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Line Integrals with Respect to dx, dy, or dz

When analyzing forces or flows, it is often useful to consider each component direction 
separately. In such situations we want a line integral of a scalar function with respect to one 
of the coordinates, such as 1C M dx. This integral is not the same as the arc length line 
integral 1C M ds we defined in Section 16.1. To define the integral 1C M dx for the scalar 
function M(x, y, z), we specify a vector field F = M(x, y, z)i having a component only in 
the x-direction, and none in the y- or z-direction. Then, over the curve C parametrized by 
r(t) = g(t)i + h(t)j + k(t)k for a … t … b, we have x = g(t), dx = g′(t) dt, and

F # dr = F # dr
dt

dt = M(x, y, z)g′(t) dt = M(x, y, z) dx.

From the definition of the line integral of F along C, we define

LC
M(x, y, z) dx =

LC
F # dr, where F = M(x, y, z)i.

In the same way, by defining F = N(x, y, z)j with a component only in the y-direction, or 
as F = P(x, y, z)k with a component only in the z-direction, we can obtain the line inte-
grals 1C N dy and 1C P dz. Expressing everything in terms of the parameter t along the 
curve C, we have the following formulas for these three integrals:

LC
M(x, y, z) dx =

L

b

a
M(g(t), h(t), k(t)) g′(t) dt (1)

LC
N(x, y, z) dy =

L

b

a
N(g(t), h(t), k(t)) h′(t) dt (2)

LC
P(x, y, z) dz =

L

b

a
P(g(t), h(t), k(t)) k′(t) dt (3)

It often happens that these line integrals occur in combination, and we abbreviate the nota-
tion by writing

LC
M(x, y, z) dx +

LC
N(x, y, z) dy +

LC
P(x, y, z) dz =

LC
M dx + N dy + P dz.

EXAMPLE 3  Evaluate the line integral 1C -y dx + z dy + 2x dz, where C is the 
helix r(t) = (cos t)i + (sin t)j + tk, 0 … t … 2p.

Solution We express everything in terms of the parameter t, so x = cos t, y = sin t,
z = t, and dx = -sin t dt, dy = cos t dt, dz = dt. Then,

LC
-y dx + z dy + 2x dz =

L

2p

0
3 (-sin t)(-sin t) + t cos t + 2 cos t4 dt

=
L

2p

0
32 cos t + t cos t + sin2 t4 dt

= c 2 sin t + (t sin t + cos t) + a t
2

- sin 2t
4
b d 2p

0

= 30 + (0 + 1) + (p - 0)4 - 30 + (0 + 1) + (0 - 0)4
= p.
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Work Done by a Force over a Curve in Space

Suppose that the vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k represents a force 
throughout a region in space (it might be the force of gravity or an electromagnetic force 
of some kind) and that

r(t) = g(t)i + h(t)j + k(t)k, a … t … b,

is a smooth curve in the region. The formula for the work done by the force in moving an 
object along the curve is motivated by the same kind of reasoning we used in Chapter 6 to 
derive the ordinary single integral for the work done by a continuous force of magnitude 
F(x) directed along an interval of the x-axis. For a curve C in space, we define the work 
done by a continuous force field F to move an object along C from a point A to another 
point B as follows.

We divide C into n subarcs Pk-1Pk with lengths ∆sk , starting at A and ending at B. We 
choose any point (xk , yk , zk) in the subarc Pk-1Pk and let T(xk , yk , zk) be the unit tangent 
vector at the chosen point. The work Wk done to move the object along the subarc Pk-1Pk is 
approximated by the tangential component of the force F(xk , yk , zk) times the arclength 
∆sk approximating the distance the object moves along the subarc (see Figure 16.16). The 
total work done in moving the object from point A to point B is then approximated by 
summing the work done along each of the subarcs, so

W ≈ a

n

k=1
Wk ≈ a

n

k=1
F(xk , yk , zk) # T(xk , yk , zk) ∆sk .

For any subdivision of C into n subarcs, and for any choice of the points (xk , yk , zk) within 
each subarc, as n S q and ∆sk S 0, these sums approach the line integral

LC
F # T ds.

This is just the line integral of F along C, which defines the total work done.

Pk−1

Tk

Fk
. Tk

Fk
Pk

(xk, yk, zk)

FIGURE 16.16 The work done along 
the subarc shown here is approximately 
Fk
# Tk ∆sk , where Fk = F(xk , yk , zk) and 

Tk = T(xk , yk , zk).

DEFINITION Let C be a smooth curve parametrized by r(t), a … t … b, and F
be a continuous force field over a region containing C. Then the work done in 
moving an object from the point A = r(a) to the point B = r(b) along C is

W =
LC

F # T ds =
L

b

a
F(r(t)) # dr

dt
dt. (4)

The sign of the number we calculate with this integral depends on the direction in which 
the curve is traversed. If we reverse the direction of motion, then we reverse the direction 
of T in Figure 16.17 and change the sign of F # T and its integral.

Using the notations we have presented, we can express the work integral in a variety 
of ways, depending upon what seems most suitable or convenient for a particular discus-
sion. Table 16.2 shows five ways we can write the work integral in Equation (4). In the 
table, the field components M, N, and P are functions of the intermediate variables x, y,
and z, which in turn are functions of the independent variable t along the curve C in the 
vector field. So along the curve, x = g (t), y = h (t), and z = k (t) with dx = g′(t) dt,
dy = h′(t) dt, and dz = k′(t) dt.

EXAMPLE 4  Find the work done by the force field F = (y - x2)i + (z - y2)j +
(x - z2)k along the curve r(t) = ti + t2j + t3k, 0 … t … 1, from (0, 0, 0) to (1, 1, 1) 
(Figure 16.18).

y

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

r(t) = ti + t2j + t3k

FIGURE 16.18 The curve in Example 4.

T

F

A

B t = b

t = a

FIGURE 16.17 The work done by a 
force F is the line integral of the scalar 
component F # T over the smooth curve 
from A to B.
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Solution First we evaluate F on the curve r(t):

F = (y - x2)i + (z - y2)j + (x - z2)k

= (t2 - t2)i + (t3 - t4)j + (t - t6)k. Substitute x = t,
y = t2, z = t3.

(+)+*
0

Then we find dr >dt,

dr
dt

= d
dt

(ti + t2j + t3k) = i + 2tj + 3t2k.

Finally, we find F # dr>dt and integrate from t = 0 to t = 1:

F # dr
dt

= 3 (t3 - t4)j + (t - t6)k4 # (i + 2tj + 3t2k)

= (t3 - t4)(2t) + (t - t6)(3t2) = 2t4 - 2t5 + 3t3 - 3t8.

So,

Work =
L

1

0

(2t4 - 2t5 + 3t3 - 3t8) dt

= c 2
5

t5 - 2
6

t6 + 3
4

t4 - 3
9 t9 d

0

1

= 29
60

.

EXAMPLE 5  Find the work done by the force field F = xi + yj + zk in moving 
an object along the curve C parametrized by r(t) = cos (pt)i + t2j + sin (pt)k,
0 … t … 1.

Solution We begin by writing F along C as a function of t,

F(r(t)) = cos (pt)i + t2j + sin (pt)k.

Next we compute dr >dt,

dr
dt

= -p sin (pt)i + 2tj + p cos (pt)k.

TABLE 16.2 Different ways to write the work integral for F = M i + N j + P k
over the curve C : r(t) = g (t)i + h(t)j + k(t)k, a … t … b

W =
LC

F # T ds The definition

=
LC

F # dr Vector differential form

=
L

b

a
F # dr

dt
dt Parametric vector evaluation

=
L

b

a
1Mg′(t) + Nh′(t) + Pk′(t)2dt Parametric scalar evaluation

=
LC

M dx + N dy + P dz Scalar differential form
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We then calculate the dot product,

F(r(t)) # dr
dt

= -p sin (pt) cos (pt) + 2t3 + p sin (pt) cos(pt) = 2t3.

The work done is the line integral

L

b

a
F(r(t)) # dr

dt
dt =

L

1

0
 2t3 dt = t4

2
d 1

0
= 1

2
.

Flow Integrals and Circulation for Velocity Fields

Suppose that F represents the velocity field of a fluid flowing through a region in space (a 
tidal basin or the turbine chamber of a hydroelectric generator, for example). Under these 
circumstances, the integral of F # T along a curve in the region gives the fluid’s flow along, 
or circulation around, the curve. For instance, the vector field in Figure 16.11 gives zero 
circulation around the unit circle in the plane. By contrast, the vector field in Figure 16.12 
gives a nonzero circulation around the unit circle.

DEFINITIONS If r(t) parametrizes a smooth curve C in the domain of a continu-
ous velocity field F, the flow along the curve from A = r(a) to B = r(b) is

Flow =
LC

F # T ds. (5)

The integral is called a flow integral. If the curve starts and ends at the same 
point, so that A = B, the flow is called the circulation around the curve.

The direction we travel along C matters. If we reverse the direction, then T is replaced 
by -T and the sign of the integral changes. We evaluate flow integrals the same way we 
evaluate work integrals.

EXAMPLE 6  A fluid’s velocity field is F = xi + zj + yk. Find the flow along the 
helix r(t) = (cos t)i + (sin t)j + tk, 0 … t … p>2.

Solution We evaluate F on the curve,

F = xi + zj + yk = (cos t)i + tj + (sin t)k Substitute x = cos t, z = t, y = sin t.

and then find dr >dt:

dr
dt

= (-sin t)i + (cos t)j + k.

Then we integrate F # (dr>dt) from t = 0 to t = p
2

:

F # dr
dt

= (cos t)(-sin t) + (t)(cos t) + (sin t)(1)

= -sin t cos t + t cos t + sin t.

So,

 Flow =
L

t=b

t=a
F # dr

dt
dt =

L

p>2

0
(-sin t cos t + t cos t + sin t) dt

= c cos2 t
2

+ t sin t d
0

p>2
= a0 + p

2
b - a1

2
+ 0b = p

2
- 1

2
.
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EXAMPLE 7  Find the circulation of the field F = (x - y)i + xj around the circle 
r(t) = (cos t)i + (sin t)j, 0 … t … 2p (Figure 16.19).

Solution On the circle, F = (x - y)i + xj = (cos t - sin t)i + (cos t)j, and

dr
dt

= (-sin t)i + (cos t)j.

Then

F # dr
dt

= -sin t cos t + sin2 t + cos2 t(++)++*
1

gives

 Circulation =
L

2p

0
F # dr

dt
dt =

L

2p

0
(1 - sin t cos t) dt

= c t - sin2 t
2
d

0

2p

= 2p.

As Figure 16.19 suggests, a fluid with this velocity field is circulating counterclockwise
around the circle, so the circulation is positive.

Flux Across a Simple Closed Plane Curve

A curve in the xy-plane is simple if it does not cross itself (Figure 16.20). When a curve 
starts and ends at the same point, it is a closed curve or loop. To find the rate at which a 
fluid is entering or leaving a region enclosed by a smooth simple closed curve C in the xy-
plane, we calculate the line integral over C of F # n, the scalar component of the fluid’s 
velocity field in the direction of the curve’s outward-pointing normal vector. We use only 
the normal component of F, while ignoring the tangential component, because the normal 
component leads to the flow across C. The value of this integral is the flux of F across C.
Flux is Latin for flow, but many flux calculations involve no motion at all. If F were an 
electric field or a magnetic field, for instance, the integral of F # n is still called the flux of 
the field across C.

x

y

FIGURE 16.19 The vector field F and 
curve r(t) in Example 7.

Simple,
closed

Not simple,
closed

Simple,
not closed

Not simple,
not closed

FIGURE 16.20 Distinguishing curves 
that are simple or closed. Closed curves 
are also called loops.

DEFINITION If C is a smooth simple closed curve in the domain of a continuous 
vector field F = M(x, y)i + N(x, y)j in the plane, and if n is the outward-point-
ing unit normal vector on C, the flux of F across C is

Flux of F across C =
LC

F # n ds. (6)

Notice the difference between flux and circulation. The flux of F across C is the line 
integral with respect to arc length of F # n, the scalar component of F in the direction of 
the outward normal. The circulation of F around C is the line integral with respect to arc 
length of F # T, the scalar component of F in the direction of the unit tangent vector. Flux 
is the integral of the normal component of F; circulation is the integral of the tangential 
component of F. In Section 16.6 we define flux across a surface.

To evaluate the integral for flux in Equation (6), we begin with a smooth parametrization

x = g(t), y = h(t), a … t … b,
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that traces the curve C exactly once as t increases from a to b. We can find the outward 
unit normal vector n by crossing the curve’s unit tangent vector T with the vector k. But 
which order do we choose, T * k or k * T? Which one points outward? It depends on 
which way C is traversed as t increases. If the motion is clockwise, k * T points outward; 
if the motion is counterclockwise, T * k points outward (Figure 16.21). The usual choice 
is n = T * k, the choice that assumes counterclockwise motion. Thus, although the 
value of the integral in Equation (6) does not depend on which way C is traversed, the for-
mulas we are about to derive for computing n and evaluating the integral assume counter-
clockwise motion.

In terms of components,

n = T * k = adx
ds

i +
dy
ds

jb * k =
dy
ds

i - dx
ds

j.

If F = M(x, y)i + N(x, y)j, then

F # n = M(x, y)
dy
ds

- N(x, y)
dx
ds

.

Hence,

LC
F # n ds =

LC
aM dy

ds
- N

dx
ds
b ds =

F
C

M dy - N dx.

We put a directed circle  on the last integral as a reminder that the integration around the 
closed curve C is to be in the counterclockwise direction. To evaluate this integral, we 
express M, dy, N, and dx in terms of the parameter t and integrate from t = a to t = b. We 
do not need to know n or ds explicitly to find the flux.

T

z

y

x
k

C

T

z

y

x
k

C

For clockwise motion,
k × T points outward.

For counterclockwise
motion, T × k points
outward.

k × T

T × k

FIGURE 16.21 To find an outward 
unit normal vector for a smooth simple 
curve C in the xy-plane that is traversed 
counterclockwise as t increases, we take 
n = T * k. For clockwise motion, we 
take n = k * T.

Calculating Flux Across a Smooth Closed Plane Curve

(Flux of F = Mi + Nj across C) =
F
C

M dy - N dx (7)

The integral can be evaluated from any smooth parametrization x = g(t),
y = h(t), a … t … b, that traces C counterclockwise exactly once.

EXAMPLE 8  Find the flux of F = (x - y)i + xj across the circle x2 + y2 = 1 in 
the xy-plane. (The vector field and curve were shown previously in Figure 16.19.)

Solution The parametrization r(t) = (cos t)i + (sin t)j, 0 … t … 2p, traces the circle 
counterclockwise exactly once. We can therefore use this parametrization in Equation (7). 
With

M = x - y = cos t - sin t, dy = d(sin t) = cos t dt

N = x = cos t, dx = d(cos t) = -sin t dt,

we find

Flux =
FC

M dy - N dx =
L

2p

0
(cos2 t - sin t cos t + cos t sin t) dt Eq. (7)

=
L

2p

0
cos2 t dt =

L

2p

0

1 + cos 2t
2

dt = c t
2

+ sin 2t
4
d

0

2p

= p.

The flux of F across the circle is p. Since the answer is positive, the net flow across the 
curve is outward. A net inward flow would have given a negative flux.
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Vector Fields
Find the gradient fields of the functions in Exercises 1–4.

1. ƒ(x, y, z) = (x2 + y2 + z2)-1>2
2. ƒ(x, y, z) = ln2x2 + y2 + z2

3. g(x, y, z) = ez - ln (x2 + y2)

4. g(x, y, z) = xy + yz + xz

5. Give a formula F = M(x, y)i + N(x, y)j for the vector field in the 
plane that has the property that F points toward the origin with 
magnitude inversely proportional to the square of the distance 
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula F = M(x, y)i + N(x, y)j for the vector field in the 
plane that has the properties that F = 0 at (0, 0) and that at any 
other point (a, b), F is tangent to the circle x2 + y2 = a2 + b2

and points in the clockwise direction with magnitude 0F 0 =
2a2 + b2.

Line Integrals of Vector Fields
In Exercises 7–12, find the line integrals of F from (0, 0, 0) to (1, 1, 1) 
over each of the following paths in the accompanying figure.

a. The straight-line path C1: r(t) = ti + tj + tk, 0 … t … 1

b. The curved path C2: r(t) = ti + t2j + t4k, 0 … t … 1

c. The path C3 ∪ C4 consisting of the line segment from (0, 0, 0) 
to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. F = 3yi + 2xj + 4zk 8. F = 31> (x2 + 1) 4j
9. F = 2zi - 2xj + 2yk 10. F = xyi + yzj + xzk

11. F = (3x2 - 3x)i + 3zj + k

12. F = (y + z)i + (z + x)j + (x + y)k

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

Line Integrals with Respect to x, y, and z
In Exercises 13–16, find the line integrals along the given path C.

13.
LC

 (x - y) dx, where C: x = t, y = 2t + 1, for 0 … t … 3

14.
LC

x
y dy, where C: x = t, y = t2, for 1 … t … 2

15.
LC

(x2 + y2) dy, where C is given in the accompanying figure

x

y

C

(0, 0) (3, 0)

(3, 3)

16.
LC
2x + y dx, where C is given in the accompanying figure

x

y

(0, 0)

(0, 3) (1, 3)
C

y = 3x

17. Along the curve r(t) = ti - j + t2k, 0 … t … 1, evaluate each 
of the following integrals.

a.
LC

 (x + y - z) dx b.
LC

 (x + y - z) dy

c.
LC

 (x + y - z) dz

18. Along the curve r(t) = (cos t)i + (sin t)j - (cos t)k, 0 … t … p,
evaluate each of the following integrals.

a.
LC

xz dx b.
LC

xz dy c.
LC

xyz dz

Work
In Exercises 19–22, find the work done by F over the curve in the 
direction of increasing t.

19. F = xyi + yj - yzk

r(t) = ti + t2j + tk, 0 … t … 1

20. F = 2yi + 3xj + (x + y)k

r(t) = (cos t)i + (sin t)j + (t>6)k, 0 … t … 2p

21. F = zi + xj + yk

r(t) = (sin t)i + (cos t)j + tk, 0 … t … 2p

22. F = 6zi + y2j + 12xk

r(t) = (sin t)i + (cos t)j + (t>6)k, 0 … t … 2p

Line Integrals in the Plane

23. Evaluate 1C xy dx + (x + y) dy along the curve y = x2 from 
(-1, 1) to (2, 4).

24. Evaluate 1C (x - y) dx + (x + y) dy counterclockwise around 
the triangle with vertices (0, 0), (1, 0), and (0, 1).

25. Evaluate 1C F # T ds for the vector field F = x2i - yj along 
the curve x = y2 from (4, 2) to (1, -1).

26. Evaluate 1C F # dr for the vector field F = yi - xj counter-
clockwise along the unit circle x2 + y2 = 1 from (1, 0) to (0, 1).

Exercises 16.2
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Work, Circulation, and Flux in the Plane
27. Work Find the work done by the force F = xyi + ( y - x)j

over the straight line from (1, 1) to (2, 3).

28. Work Find the work done by the gradient of ƒ(x, y) = (x + y)2

counterclockwise around the circle x2 + y2 = 4 from (2, 0) to 
itself.

29. Circulation and flux Find the circulation and flux of the fields

F1 = xi + yj and F2 = -yi + xj

  around and across each of the following curves.

a. The circle r(t) = (cos t)i + (sin t)j, 0 … t … 2p

b. The ellipse r(t) = (cos t)i + (4 sin t)j, 0 … t … 2p

30. Flux across a circle Find the flux of the fields

F1 = 2xi - 3yj and F2 = 2xi + (x - y)j

  across the circle

r(t) = (a cos t)i + (a sin t)j, 0 … t … 2p.

In Exercises 31–34, find the circulation and flux of the field F around 
and across the closed semicircular path that consists of the semicircu-
lar arch r1(t) = (a cos t)i + (a sin t)j, 0 … t … p, followed by the 
line segment r2(t) = ti, -a … t … a.

31. F = xi + yj 32. F = x2i + y2j

33. F = -yi + xj 34. F = -y2i + x2j

35. Flow integrals Find the flow of the velocity field F =
(x + y)i - (x2 + y2)j along each of the following paths from 
(1, 0) to (-1, 0) in the xy-plane.

a. The upper half of the circle x2 + y2 = 1

b. The line segment from (1, 0) to (-1, 0)

c. The line segment from (1, 0) to (0, -1) followed by the line 
segment from (0, -1) to (-1, 0)

36. Flux across a triangle Find the flux of the field F in Exercise 
35 outward across the triangle with vertices (1, 0), (0, 1), (-1, 0).

37. Find the flow of the velocity field F = y2i + 2xyj along each of 
the following paths from (0, 0) to (2, 4).

a.

x

y

(0, 0)

(2, 4)

2

y = 2x

b.

x

y

(0, 0)

(2, 4)

2

y = x2

c. Use any path from (0, 0) to (2, 4) different from parts (a) 
and (b).

38. Find the circulation of the field F = yi + (x + 2y)j around each 
of the following closed paths.

a.

x

y
(1, 1)

(1, −1)

(−1, 1)

(−1, −1)

b.

x

y x2 + y2 = 4

c. Use any closed path different from parts (a) and (b).

Vector Fields in the Plane
39. Spin field Draw the spin field

F = -
y

2x2 + y2
i + x

2x2 + y2
j

  (see Figure 16.12) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle 
x2 + y2 = 4.

40. Radial field Draw the radial field

F = xi + yj

  (see Figure 16.11) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle 
x2 + y2 = 1.

41. A field of tangent vectors

a. Find a field G = P(x, y)i + Q(x, y)j in the xy-plane with the 
  property that at any point (a, b) ≠ (0, 0), G is a vector of 

  magnitude 2a2 + b2 tangent to the circle x2 + y2 =
a2 + b2 and pointing in the counterclockwise direction. (The 
field is undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.12?

42. A field of tangent vectors

a. Find a field G = P(x, y)i + Q(x, y)j in the xy-plane with the 
property that at any point (a, b) ≠ (0, 0), G is a unit vector 
tangent to the circle x2 + y2 = a2 + b2 and pointing in the 
clockwise direction.

b. How is G related to the spin field F in Figure 16.12?

43. Unit vectors pointing toward the origin Find a field F =
M(x, y)i + N(x, y)j in the xy-plane with the property that at each 
point (x, y) ≠ (0, 0), F is a unit vector pointing toward the ori-
gin. (The field is undefined at (0, 0).)

44. Two “central” fields Find a field F = M(x, y)i + N(x, y)j in 
the xy-plane with the property that at each point (x, y) ≠ (0, 0), F
points toward the origin and 0F 0  is (a) the distance from (x, y) to 
the origin, (b) inversely proportional to the distance from (x, y) to 
the origin. (The field is undefined at (0, 0).)

45. Work and area Suppose that ƒ(t) is differentiable and positive 
for a … t … b. Let C be the path r(t) = ti + ƒ(t)j, a … t … b,
and F = yi. Is there any relation between the value of the work 
integral

LC
F # dr

  and the area of the region bounded by the t-axis, the graph of ƒ, 
and the lines t = a and t = b? Give reasons for your answer.

46. Work done by a radial force with constant magnitude A
particle moves along the smooth curve y = ƒ(x) from (a, ƒ(a)) to 



16.3  Path Independence, Conservative Fields, and Potential Functions 969

(b, ƒ(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done 
by the force is

LC
F # T ds = k3 (b2 + (ƒ(b))2)1>2 - (a2 + (ƒ(a))2)1>24 .

Flow Integrals in Space
In Exercises 47–50, F is the velocity field of a fluid flowing through a 
region in space. Find the flow along the given curve in the direction of 
increasing t.

47. F = -4xyi + 8yj + 2k

r(t) = ti + t2j + k, 0 … t … 2

48. F = x2i + yzj + y2k

r(t) = 3tj + 4tk, 0 … t … 1

49. F = (x - z)i + xk

r(t) = (cos t)i + (sin t)k, 0 … t … p
50. F = -yi + xj + 2k

r(t) = (-2 cos t)i + (2 sin t)j + 2tk, 0 … t … 2p

51. Circulation Find the circulation of F = 2xi + 2zj + 2yk
around the closed path consisting of the following three curves 
traversed in the direction of increasing t.

C1: r(t) = (cos t)i + (sin t)j + tk, 0 … t … p>2
C2: r(t) = j + (p>2)(1 - t)k, 0 … t … 1

C3: r(t) = ti + (1 - t)j, 0 … t … 1

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1 C2

C3

p
2a b

52. Zero circulation Let C be the ellipse in which the plane 
2x + 3y - z = 0 meets the cylinder x2 + y2 = 12. Show, with-
out evaluating either line integral directly, that the circulation of 
the field F = xi + yj + zk around C in either direction is zero.

53. Flow along a curve The field F = xyi + yj - yzk is the 
velocity field of a flow in space. Find the flow from (0, 0, 0) to 

(1, 1, 1) along the curve of intersection of the cylinder y = x2 and 
the plane z = x. (Hint: Use t = x as the parameter.)

y

z

x

(1, 1, 1)

y = x2

z = x

54. Flow of a gradient field Find the flow of the field F = ∇ (xy2z3):

a. Once around the curve C in Exercise 52, clockwise as viewed 
from above

b. Along the line segment from (1, 1, 1) to (2, 1, -1).

COMPUTER EXPLORATIONS
In Exercises 55–60, use a CAS to perform the following steps for 
finding the work done by force F over the given path:

a. Find dr for the path r(t) = g(t)i + h(t)j + k(t)k.

b. Evaluate the force F along the path.

c. Evaluate
LC

F # dr.

55. F = xy6 i + 3x(xy5 + 2)j; r(t) = (2 cos t)i + (sin t)j,
0 … t … 2p

56. F = 3
1 + x2  i + 2

1 + y2  j; r(t) = (cos t)i + (sin t)j,

0 … t … p
57. F = (y + yz cos xyz)i + (x2 + xz cos xyz)j +

(z + xy cos xyz)k; r(t) = (2 cos t)i + (3 sin t)j + k,
0 … t … 2p

58. F = 2xyi - y2j + zexk; r(t) = - ti + 2tj + 3tk,
1 … t … 4

59. F = (2y + sin x)i + (z2 + (1>3)cos y)j + x4k;
r(t) = (sin t)i + (cos t)j + (sin 2t)k, -p>2 … t … p>2

60. F = (x2y)i + 1
3

x3j + xyk; r(t) = (cos t)i + (sin t)j +

(2 sin2 t - 1)k, 0 … t … 2p

16.3 Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in 
space due to the presence of a massive object. The gravitational force on a body of mass m
placed in the field is given by F = mG. Similarly, an electric field E is a vector field in 
space that represents the effect of electric forces on a charged particle placed within it. The 
force on a body of charge q placed in the field is given by F = qE. In gravitational and 
electric fields, the amount of work it takes to move a mass or charge from one point to 
another depends on the initial and final positions of the object—not on which path is taken 
between these positions. In this section we study vector fields with this property and the 
calculation of work integrals associated with them.
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Path Independence

If A and B are two points in an open region D in space, the line integral of F along C from 
A to B for a field F defined on D usually depends on the path C taken, as we saw in Sec-
tion 16.1. For some special fields, however, the integral’s value is the same for all paths 
from A to B.

DEFINITIONS Let F be a vector field defined on an open region D in space, and 
suppose that for any two points A and B in D the line integral 1C F # dr along a 
path C from A to B in D is the same over all paths from A to B. Then the integral 

1C F # dr is path independent in D and the field F is conservative on D.

The word conservative comes from physics, where it refers to fields in which the principle 
of conservation of energy holds. When a line integral is independent of the path C from 
point A to point B, we sometimes represent the integral by the symbol 1

B
A  rather than the 

usual line integral symbol 1C . This substitution helps us remember the path-independence 
property.

Under differentiability conditions normally met in practice, we will show that a field 
F is conservative if and only if it is the gradient field of a scalar function ƒ—that is, if and 
only if F = ∇ƒ for some ƒ. The function ƒ then has a special name.

DEFINITION If F is a vector field defined on D and F = ∇ƒ for some scalar 
function ƒ on D, then ƒ is called a potential function for F.

A gravitational potential is a scalar function whose gradient field is a gravitational field, 
an electric potential is a scalar function whose gradient field is an electric field, and so on. 
As we will see, once we have found a potential function ƒ for a field F, we can evaluate all 
the line integrals in the domain of F over any path between A and B by

L

B

A
F # dr =

L

B

A
∇ƒ # dr = ƒ(B) - ƒ(A). (1)

If you think of ∇ƒ for functions of several variables as analogous to the derivative ƒ′
for functions of a single variable, then you see that Equation (1) is the vector calculus 
rendition of the Fundamental Theorem of Calculus formula (also called the Net Change 
Theorem)

L

b

a
ƒ′(x) dx = ƒ(b) - ƒ(a).

Conservative fields have other important properties. For example, saying that F is 
conservative on D is equivalent to saying that the integral of F around every closed path in 
D is zero. Certain conditions on the curves, fields, and domains must be satisfied for Equa-
tion (1) to be valid. We discuss these conditions next.

Assumptions on Curves, Vector Fields, and Domains

In order for the computations and results we derive below to be valid, we must assume 
certain properties for the curves, surfaces, domains, and vector fields we consider. We give 
these assumptions in the statements of theorems, and they also apply to the examples and 
exercises unless otherwise stated.

The curves we consider are piecewise smooth. Such curves are made up of finitely 
many smooth pieces connected end to end, as discussed in Section 13.1. We will treat vec-
tor fields F whose components have continuous first partial derivatives.
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The domains D we consider are connected. For an open region, this means that any 
two points in D can be joined by a smooth curve that lies in the region. Some results also 
require D to be simply connected, which means that every loop in D can be contracted to a 
point in D without ever leaving D. The plane with a disk removed is a two-dimensional 
region that is not simply connected; a loop in the plane that goes around the disk cannot be 
contracted to a point without going into the “hole” left by the removed disk (see Figure 
16.22c). Similarly, if we remove a line from space, the remaining region D is not simply 
connected. A curve encircling the line cannot be shrunk to a point while remaining inside D.

Connectivity and simple connectivity are not the same, and neither property implies 
the other. Think of connected regions as being in “one piece” and simply connected 
regions as not having any “loop-catching holes.” All of space itself is both connected and 
simply connected. Figure 16.22 illustrates some of these properties.

Caution Some of the results in this chapter can fail to hold if applied to situations where 
the conditions we’ve imposed do not hold. In particular, the component test for conserva-
tive fields, given later in this section, is not valid on domains that are not simply connected 
(see Example 5). We do not always require that a domain be simply connected, so the 
condition will be stated when needed.

Line Integrals in Conservative Fields

Gradient fields F are obtained by differentiating a scalar function ƒ. A theorem analogous 
to the Fundamental Theorem of Calculus gives a way to evaluate the line integrals of gra-
dient fields.

THEOREM 1—Fundamental Theorem of Line Integrals Let C be a smooth 
curve joining the point A to the point B in the plane or in space and parame-
trized by r(t). Let ƒ be a differentiable function with a continuous gradient vector 
F = ∇ƒ on a domain D containing C. Then

LC
F # dr = ƒ(B) - ƒ(A).

Like the Fundamental Theorem, Theorem 1 gives a way to evaluate line integrals 
without having to take limits of Riemann sums or finding the line integral by the proce-
dure used in Section 16.2. Before proving Theorem 1, we give an example.

EXAMPLE 1  Suppose the force field F = ∇ƒ is the gradient of the function

ƒ(x, y, z) = - 1
x2 + y2 + z2 .

Find the work done by F in moving an object along a smooth curve C joining (1, 0, 0) to 
(0, 0, 2) that does not pass through the origin.

Solution An application of Theorem 1 shows that the work done by F along any smooth 
curve C joining the two points and not passing through the origin is

LC
F # dr = ƒ(0, 0, 2) - ƒ(1, 0, 0) = - 1

4
- (-1) = 3

4
.

The gravitational force due to a planet, and the electric force associated with a 
charged particle, can both be modeled by the field F given in Example 1 up to a constant 
that depends on the units of measurement.

y

x

(a)

Simply connected

(b)

Simply connected

z

y

x

y

x

C1

(c)

Not simply connected

z

y

x

C2

(d)

Not simply connected

FIGURE 16.22 Four connected regions. 
In (a) and (b), the regions are simply 
connected. In (c) and (d), the regions are 
not simply connected because the curves 
C1 and C2 cannot be contracted to a point 
inside the regions containing them.
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Proof of Theorem 1  Suppose that A and B are two points in region D and that 
C: r(t) = g(t)i + h(t)j + k(t)k, a … t … b, is a smooth curve in D joining A to B. In 
Section 14.5 we found that the derivative of a scalar function ƒ along a path C is the dot 
product ∇ƒ(r(t)) # r′(t), so we have

LC
F # dr =

L

B

A
∇ƒ # dr F = ∇ƒ

=
L

t=b

t=a
∇ƒ(r(t)) # r′(t) dt

=
L

b

a

d
dt

 ƒ(r(t)) dt Eq. (7) of Section 14.5

= ƒ(r(b)) - ƒ(r(a)) Net Change Theorem

= ƒ(B) - ƒ(A). r(a) = A, r(b) = B

So we see from Theorem 1 that the line integral of a gradient field F = ∇ƒ is 
straightforward to compute once we know the function ƒ. Many important vector fields 
arising in applications are indeed gradient fields. The next result, which follows from 
Theorem 1, shows that any conservative field is of this type.

THEOREM 2—Conservative Fields are Gradient Fields Let F = Mi + Nj + Pk
be a vector field whose components are continuous throughout an open connected 
region D in space. Then F is conservative if and only if F is a gradient field ∇ƒ for a 
differentiable function ƒ.

Theorem 2 says that F = ∇ƒ if and only if for any two points A and B in the region 
D, the value of line integral 1C F # dr is independent of the path C joining A to B in D.

Proof of Theorem 2 If F is a gradient field, then F = ∇ƒ for a differentiable function 
ƒ, and Theorem 1 shows that 1C F # dr = ƒ(B) - ƒ(A). The value of the line integral does 
not depend on C, but only on its endpoints A and B. So the line integral is path indepen-
dent and F satisfies the definition of a conservative field.

On the other hand, suppose that F is a conservative vector field. We want to find a 
function ƒ on D satisfying ∇ƒ = F. First, pick a point A in D and set ƒ(A) = 0. For any 
other point B in D define ƒ(B) to equal 1C F # dr, where C is any smooth path in D from A
to B. The value of ƒ(B) does not depend on the choice of C, since F is conservative. To 
show that ∇ƒ = F we need to demonstrate that 0ƒ>0x = M, 0ƒ>0y = N , and 0ƒ>0z = P.

Suppose that B has coordinates (x, y, z). By definition, the value of the function ƒ at a 
nearby point B0 located at (x0 , y , z) is 1C0

F # dr, where C0 is any path from A to B0 . We 
take a path C = C0 h L from A to B formed by first traveling along C0 to arrive at B0 and 
then traveling along the line segment L from B0 to B (Figure 16.23). When B0 is close to 
B, the segment L lies in D and, since the value ƒ(B) is independent of the path from A to B,

ƒ(x, y, z) =
LC0

F # dr +
LL

F # dr.

Differentiating, we have

0
0x ƒ(x, y, z) = 0

0x aLC0

F # dr +
LL

F # drb .

z

y

x

B
L

A

D

B0

x0

x

C0
(x0, y, z)

(x, y, z)

FIGURE 16.23 The function ƒ(x, y, z)
in the proof of Theorem 2 is computed by 
a line integral 1C0

F # dr = ƒ(B0) from A
to B0, plus a line integral 1L F # dr along 
a line segment L parallel to the x-axis and 
joining B0 to B located at (x, y, z). The 
value of ƒ at A is ƒ(A) = 0.
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Only the last term on the right depends on x, so

0
0x ƒ(x, y, z) = 0

0x LL
F # dr.

Now parametrize L as r(t) = ti + yj + zk, x0 … t … x. Then dr>dt = i, F # dr>dt = M,
and 1L F # dr = 1

x
x0

M(t, y, z) dt. Differentiating then gives

0
0x ƒ(x, y, z) = 0

0x L

x

x0

M(t, y, z) dt = M(x, y, z)

by the Fundamental Theorem of Calculus. The partial derivatives 0ƒ>0y = N  and 0ƒ>0z = P
follow similarly, showing that F = ∇ƒ.

EXAMPLE 2  Find the work done by the conservative field

F = yzi + xzj + xyk = ∇ƒ, where ƒ(x, y, z) = xyz,

along any smooth curve C joining the point A(-1, 3, 9) to B(1, 6, -4).

Solution With ƒ(x, y, z) = xyz, we have

LC
F # dr =

L

B

A
∇ƒ # dr

F = ∇ƒ and path 
independence

= ƒ(B) - ƒ(A) Theorem 1

= xyz 0 (1,6, -4) - xyz 0 (-1,3,9)

= (1)(6)(-4) - (-1)(3)(9)

= -24 + 27 = 3.

A very useful property of line integrals in conservative fields comes into play when the 
path of integration is a closed curve, or loop. We often use the notation DC  for integration 
around a closed path (discussed with more detail in the next section).

THEOREM 3—Loop Property of Conservative Fields The following statements 
are equivalent.

1. DC F # dr = 0 around every loop (that is, closed curve C) in D.

2. The field F is conservative on D.

Proof that Part 1 k Part 2  We want to show that for any two points A and B in D,
the integral of F # dr has the same value over any two paths C1 and C2 from A to B. We 
reverse the direction on C2 to make a path -C2 from B to A (Figure 16.24). Together, C1

and -C2 make a closed loop C, and by assumption,

LC1

F # dr -
LC2

F # dr =
LC1

F # dr +
L-C2

F # dr =
LC

F # dr = 0.

Thus, the integrals over C1 and C2 give the same value. Note that the definition of F # dr
shows that changing the direction along a curve reverses the sign of the line integral.

A

B

A

B

C1
C1

C2

−C2

FIGURE 16.24 If we have two paths 
from A to B, one of them can be reversed 
to make a loop.
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Proof that Part 2 k  Part 1  We want to show that the integral of F # dr is zero 
over any closed loop C. We pick two points A and B on C and use them to break C into two 
pieces: C1 from A to B followed by C2 from B back to A (Figure 16.25). Then

F
C

F # dr =
LC1

F # dr +
LC2

F # dr =
L

B

A
F # dr -

L

B

A
F # dr = 0.

The following diagram summarizes the results of Theorems 2 and 3.

Theorem 2 Theorem 3

F = ∇ƒ on D 3 F conservative 3
F
C

F # dr = 0
on D

over any loop in D

Two questions arise:

1. How do we know whether a given vector field F is conservative?

2. If F is in fact conservative, how do we find a potential function ƒ (so that F = ∇ƒ)?

Finding Potentials for Conservative Fields

The test for a vector field being conservative involves the equivalence of certain first 
partial derivatives of the field components.

A

B

A

B

C2

C1

−C2

C1

FIGURE 16.25 If A and B lie on a loop, 
we can reverse part of the loop to make 
two paths from A to B.

Component Test for Conservative Fields

Let F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k be a field on an open simply 
connected domain whose component functions have continuous first partial 
derivatives. Then, F is conservative if and only if

0P
0y = 0N

0z ,
0M
0z = 0P

0x , and
0N
0x = 0M

0y . (2)

Proof that Equations (2) hold if F is conservative  There is a potential function ƒ 
such that

F = Mi + Nj + Pk =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k.

Hence,

0P
0y = 0

0y a
0ƒ
0zb =

02ƒ
0y 0z

=
02ƒ
0z 0y

Mixed Derivative Theorem, 
Section 14.3

= 0
0z a

0ƒ
0yb = 0N

0z .

The others in Equations (2) are proved similarly.

The second half of the proof, that Equations (2) imply that F is conservative, is a con-
sequence of Stokes’ Theorem, taken up in Section 16.7, and requires our assumption that 
the domain of F be simply connected.



16.3  Path Independence, Conservative Fields, and Potential Functions 975

Once we know that F is conservative, we usually want to find a potential function for 
F. This requires solving the equation ∇ƒ = F or

0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k = Mi + Nj + Pk

for ƒ. We accomplish this by integrating the three equations

0ƒ
0x = M,

0ƒ
0y = N,

0ƒ
0z = P,

as illustrated in the next example.

EXAMPLE 3  Show that F = (ex cos y + yz)i + (xz - ex sin y)j + (xy + z)k is con-
servative over its natural domain and find a potential function for it.

Solution The natural domain of F is all of space, which is open and simply connected. 
We apply the test in Equations (2) to

M = ex cos y + yz, N = xz - ex sin y, P = xy + z

and calculate

0P
0y = x = 0N

0z ,
0M
0z = y = 0P

0x ,
0N
0x = -ex sin y + z = 0M

0y .

The partial derivatives are continuous, so these equalities tell us that F is conservative, so 
there is a function ƒ with ∇ƒ = F (Theorem 2).

We find ƒ by integrating the equations

0ƒ
0x = ex cos y + yz,

0ƒ
0y = xz - ex sin y,

0ƒ
0z = xy + z. (3)

We integrate the first equation with respect to x, holding y and z fixed, to get

ƒ(x, y, z) = ex cos y + xyz + g(y, z).

We write the constant of integration as a function of y and z because its value may depend 
on y and z, though not on x. We then calculate 0ƒ>0y from this equation and match it with 
the expression for 0ƒ>0y in Equations (3). This gives

-ex sin y + xz +
0g
0y = xz - ex sin y,

so 0g>0y = 0. Therefore, g is a function of z alone, and

ƒ(x, y, z) = ex cos y + xyz + h(z).

We now calculate 0ƒ>0z from this equation and match it to the formula for 0ƒ>0z in Equa-
tions (3). This gives

xy + dh
dz

= xy + z, or
dh
dz

= z,

so

h(z) = z2

2
+ C.
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Hence,

ƒ(x, y, z) = ex cos y + xyz + z2

2
+ C.

We found infinitely many potential functions of F, one for each value of C.

EXAMPLE 4  Show that F = (2x - 3)i - zj + (cos z)k is not conservative.

Solution We apply the Component Test in Equations (2) and find immediately that

0P
0y = 0

0y (cos z) = 0,
0N
0z = 0

0z (-z) = -1.

The two are unequal, so F is not conservative. No further testing is required.

EXAMPLE 5  Show that the vector field

F =
-y

x2 + y2 i + x
x2 + y2 j + 0k

satisfies the equations in the Component Test, but is not conservative over its natural 
domain. Explain why this is possible.

Solution We have M = -y> (x2 + y2), N = x> (x2 + y2), and P = 0. If we apply the 
Component Test, we find

0P
0y = 0 = 0N

0z ,
0P
0x = 0 = 0M

0z , and
0M
0y =

y2 - x2

(x2 + y2)2
= 0N

0x .

So it may appear that the field F passes the Component Test. However, the test assumes 
that the domain of F is simply connected, which is not the case here. Since x2 + y2 cannot 
equal zero, the natural domain is the complement of the z-axis and contains loops that can-
not be contracted to a point. One such loop is the unit circle C in the xy-plane. The circle is 
parametrized by r(t) = (cos t)i + (sin t)j, 0 … t … 2p. This loop wraps around the 
z-axis and cannot be contracted to a point while staying within the complement of the 
z-axis.

To show that F is not conservative, we compute the line integral D
C

F # dr around the 
loop C. First we write the field in terms of the parameter t:

F =
-y

x2 + y2 i + x
x2 + y2 j = -sin t

sin2 t + cos2 t
i + cos t

sin2 t + cos2 t
j = (-sin t)i + (cos t)j.

Next we find dr>dt = (-sin t)i + (cos t)j, and then calculate the line integral as

F
C

F # dr =
F
C

F # dr
dt

dt =
L

2p

0
1sin2 t + cos2 t2 dt = 2p.

Since the line integral of F around the loop C is not zero, the field F is not conservative, by 
Theorem 3. The field F is displayed in Figure 16.28d in the next section.

Example 5 shows that the Component Test does not apply when the domain of the field 
is not simply connected. However, if we change the domain in the example so that it is 
restricted to the ball of radius 1 centered at the point (2, 2, 2), or to any similar ball-shaped 
region which does not contain a piece of the z-axis, then this new domain D is simply con-
nected. Now the partial derivative Equations (2), as well as all the assumptions of the Com-
ponent Test, are satisfied. In this new situation, the field F in Example 5 is conservative on D.



16.3  Path Independence, Conservative Fields, and Potential Functions 977

Just as we must be careful with a function when determining if it satisfies a property 
throughout its domain (like continuity or the Intermediate Value Property), so must we 
also be careful with a vector field in determining the properties it may or may not have 
over its assigned domain.

Exact Differential Forms

It is often convenient to express work and circulation integrals in the differential form

LC
M dx + N dy + P dz

discussed in Section 16.2. Such line integrals are relatively easy to evaluate if 
M dx + N dy + P dz is the total differential of a function ƒ and C is any path joining the 
two points from A to B. For then

LC
M dx + N dy + P dz =

LC

0ƒ
0x dx +

0ƒ
0y dy +

0ƒ
0z dz

=
L

B

A
∇ƒ # dr ∇ƒ is conservative.

= ƒ(B) - ƒ(A). Theorem 1

Thus,

L

B

A
df = ƒ(B) - ƒ(A),

just as with differentiable functions of a single variable.

DEFINITIONS Any expression M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz is a 
differential form. A differential form is exact on a domain D in space if

M dx + N dy + P dz =
0f
0x dx +

0ƒ
0y dy +

0ƒ
0z dz = dƒ

for some scalar function ƒ throughout D.

Component Test for Exactness of M dx + N dy + P dz

The differential form M dx + N dy + P dz is exact on an open simply con-
nected domain if and only if

0P
0y = 0N

0z ,
0M
0z = 0P

0x , and
0N
0x = 0M

0y .

This is equivalent to saying that the field F = Mi + Nj + Pk is conservative.

Notice that if M dx + N dy + P dz = dƒ on D, then F = Mi + Nj + Pk is the gra-
dient field of ƒ on D. Conversely, if F = ∇ƒ, then the form M dx + N dy + P dz is exact. 
The test for the form’s being exact is therefore the same as the test for F being conservative.
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EXAMPLE 6  Show that y dx + x dy + 4 dz is exact and evaluate the integral

L

(2,3, -1)

(1,1,1)
y dx + x dy + 4 dz

over any path from (1, 1, 1) to (2, 3, -1).

Solution We let M = y, N = x, P = 4 and apply the Test for Exactness:

0P
0y = 0 = 0N

0z ,
0M
0z = 0 = 0P

0x ,
0N
0x = 1 = 0M

0y .

These equalities tell us that y dx + x dy + 4 dz is exact, so

y dx + x dy + 4 dz = dƒ

for some function ƒ, and the integral’s value is ƒ(2, 3, -1) - ƒ(1, 1, 1).
We find ƒ up to a constant by integrating the equations

0ƒ
0x = y,

0ƒ
0y = x,

0ƒ
0z = 4. (4)

From the first equation we get

ƒ(x, y, z) = xy + g(y, z).

The second equation tells us that

0ƒ
0y = x +

0g
0y = x, or

0g
0y = 0.

Hence, g is a function of z alone, and

ƒ(x, y, z) = xy + h(z).

The third of Equations (4) tells us that

0ƒ
0z = 0 + dh

dz
= 4, or h(z) = 4z + C.

Therefore,

ƒ(x, y, z) = xy + 4z + C.

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, -1),
and equals

ƒ(2, 3, -1) - ƒ(1, 1, 1) = 2 + C - (5 + C) = -3.

Testing for Conservative Fields
Which fields in Exercises 1–6 are conservative, and which are not?

1. F = yzi + xzj + xyk

2. F = (y sin z)i + (x sin z)j + (xy cos z)k

3. F = yi + (x + z)j - yk

4. F = -yi + xj

5. F = (z + y)i + zj + (y + x)k

6. F = (ex cos y)i - (ex sin y)j + zk

Finding Potential Functions
In Exercises 7–12, find a potential function ƒ for the field F.

7. F = 2xi + 3yj + 4zk

8. F = (y + z)i + (x + z)j + (x + y)k

9. F = ey+2z(i + xj + 2xk)

10. F = (y sin z)i + (x sin z)j + (xy cos z)k

11. F = (ln x + sec2(x + y))i +

asec2(x + y) +
y

y2 + z2bj + z
y2 + z2 k

12. F =
y

1 + x2 y2 i + a x
1 + x2 y2 + z

21 - y2 z2
bj +

a y

21 - y2 z2
+ 1

zbk

Exercises 16.3
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Exact Differential Forms
In Exercises 13–17, show that the differential forms in the integrals 
are exact. Then evaluate the integrals.

13.
L

(2,3, -6)

(0,0,0)
2x dx + 2y dy + 2z dz

14.
L

(3,5,0)

(1,1,2)
yz dx + xz dy + xy dz

15.
L

(1,2,3)

(0,0,0)
2xy dx + (x2 - z2) dy - 2yz dz

16.
L

(3,3,1)

(0,0,0)
2x dx - y2 dy - 4

1 + z2 dz

17.
L

(0,1,1)

(1,0,0)
sin ycos x dx + cos y sin x dy + dz

Finding Potential Functions to Evaluate Line Integrals
Although they are not defined on all of space R3, the fields associated 
with Exercises 18–22 are conservative. Find a potential function for 
each field and evaluate the integrals as in Example 6.

18.
L

(1,p>2,2)

(0,2,1)
2 cos y dx + a1y - 2x sin yb dy + 1

z dz

19.
L

(1,2,3)

(1,1,1)
3x2 dx + z2

y dy + 2z ln y dz

20.
L

(2,1,1)

(1,2,1)
(2x ln y - yz) dx + ax2

y - xzb dy - xy dz

21.
L

(2,2,2)

(1,1,1)

1
y dx + a1z - x

y2b dy -
y

z2 dz

22.
L

(2,2,2)

(-1, -1, -1)

2x dx + 2y dy + 2z dz

x2 + y2 + z2

Applications and Examples
23. Revisiting Example 6 Evaluate the integral

L

(2,3, -1)

(1,1,1)
y dx + x dy + 4 dz

  from Example 6 by finding parametric equations for the line seg-
ment from (1, 1, 1) to (2, 3, -1) and evaluating the line integral 
of F = yi + xj + 4k along the segment. Since F is conservative, 
the integral is independent of the path.

24. Evaluate

LC
x2 dx + yz dy + (y2>2) dz

  along the line segment C joining (0, 0, 0) to (0, 3, 4).

Independence of path Show that the values of the integrals in 
Exercises 25 and 26 do not depend on the path taken from A to B.

25.
L

B

A
z2 dx + 2y dy + 2xz dz 26.

L

B

A

x dx + y dy + z dz

2x2 + y2 + z2

In Exercises 27 and 28, find a potential function for F.

27. F = 2x
y i + a1 - x2

y2 bj, 5(x, y): y 7 06
28. F = (ex ln y)i + aex

y + sin zbj + (ycos z)k

29. Work along different paths Find the work done by F =
(x2 + y)i + (y2 + x)j + zezk  over the following paths from 
(1, 0, 0) to (1, 0, 1).

a. The line segment x = 1, y = 0, 0 … z … 1

b. The helix r(t) = (cos t)i + (sin t)j + (t>2p)k, 0 … t … 2p

c. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola 
z = x2, y = 0 from (0, 0, 0) to (1, 0, 1)

z

y

x

(1, 0, 1)

(0, 0, 0)

1

(1, 0, 0)

z = x2

30. Work along different paths Find the work done by F =
eyzi + (xzeyz + z cos y)j + (xyeyz + sin y)k over the following 
paths from (1, 0, 1) to (1, p>2, 0).

a. The line segment x = 1, y = pt>2, z = 1 - t, 0 … t … 1
z

y

x

(1, 0, 1)

1

p
2

p
2

1,    , 01
Q R

b. The line segment from (1, 0, 1) to the origin followed by the 
line segment from the origin to (1, p>2, 0)

z

y

x

(1, 0, 1)

(0, 0, 0)

1

1

p
2

p
2

1,    , 0
Q R

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the 
x-axis from (1, 0, 0) to the origin, followed by the parabola 
y = px2>2, z = 0 from there to (1, p>2, 0)

z

y

x

(1, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

p
2

1,    , 0

y = x2p
2

Q R
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31. Evaluating a work integral two ways Let F = ∇ (x3y2)  and 
let C be the path in the xy-plane from (-1, 1) to (1, 1) that con-
sists of the line segment from (-1, 1) to (0, 0) followed by the 
line segment from (0, 0) to (1, 1). Evaluate 1C F # dr in two ways.

a. Find parametrizations for the segments that make up C and 
evaluate the integral.

b. Use ƒ(x, y) = x3y2 as a potential function for F.

32. Integral along different paths Evaluate the line integral 

1C 2x cos y dx - x2 sin y dy along the following paths C in the 
xy-plane.

a. The parabola y = (x - 1)2 from (1, 0) to (0, 1)

b. The line segment from (-1, p) to (1, 0)

c. The x-axis from (-1, 0) to (1, 0)

d. The astroid r(t) = (cos3 t)i + (sin3 t)j, 0 … t … 2p, coun-
terclockwise from (1, 0) back to (1, 0)

x

y

(0, 1)

(0, −1)

(1, 0)(−1, 0)

33. a. Exact differential form How are the constants a, b, and c
related if the following differential form is exact?

(ay2 + 2czx) dx + y(bx + cz) dy + (ay2 + cx2) dz

b. Gradient field For what values of b and c will

F = (y2 + 2czx)i + y(bx + cz)j + ( y2 + cx2)k

  be a gradient field?

34. Gradient of a line integral Suppose that F = ∇ƒ is a conser-
vative vector field and

g(x, y, z) =
L

(x,y,z)

(0,0,0)
F # dr.

  Show that ∇g = F.

35. Path of least work You have been asked to find the path along 
which a force field F will perform the least work in moving a 
particle between two locations. A quick calculation on your part 
shows F to be conservative. How should you respond? Give rea-
sons for your answer.

36. A revealing experiment By experiment, you find that a force 
field F performs only half as much work in moving an object 
along path C1 from A to B as it does in moving the object along 
path C2 from A to B. What can you conclude about F? Give rea-
sons for your answer.

37. Work by a constant force Show that the work done by a con-
stant force field F = ai + bj + ck in moving a particle along 
any path from A to B is W = F # rAB.

38. Gravitational field

a. Find a potential function for the gravitational field

F = -GmM
xi + yj + zk

(x2 + y2 + z2)3>2

(G, m, and M are constants).

b. Let P1 and P2 be points at distance s1 and s2 from the origin. 
Show that the work done by the gravitational field in part (a) 
in moving a particle from P1 to P2 is

GmMa 1
s2

- 1
s1
b .

16.4 Green’s Theorem in the Plane

If F is a conservative field, then we know F = ∇ƒ for a differentiable function ƒ, and we 
can calculate the line integral of F over any path C joining point A to B as 

1C F # dr = ƒ(B) - ƒ(A). In this section we derive a method for computing a work or flux 
integral over a closed curve C in the plane when the field F is not conservative. This 
method comes from Green’s Theorem, which allows us to convert the line integral into a 
double integral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or 
a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector 
field, independent of any particular interpretation of the field, provided the assumptions of 
the theorem are satisfied. We introduce two new ideas for Green’s Theorem: circulation 
density around an axis perpendicular to the plane and divergence (or flux density).

Spin Around an Axis: The k-Component of Curl

Suppose that F(x, y) = M(x, y)i + N(x, y)j is the velocity field of a fluid flowing in the 
plane and that the first partial derivatives of M and N are continuous at each point of a 
region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at (x, y)
that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the 
coordinate axes, have lengths of ∆x and ∆y. Assume that the components M and N do not 
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change sign throughout a small region containing the rectangle A. The first idea we use to 
convey Green’s Theorem quantifies the rate at which a floating paddle wheel, with axis 
perpendicular to the plane, spins at a point in a fluid flowing in a plane region. This idea 
gives some sense of how the fluid is circulating around axes located at different points and 
perpendicular to the region. Physicists sometimes refer to this as the circulation density of 
a vector field F at a point. To obtain it, we consider the velocity field

F(x, y) = M(x, y)i + N(x, y)j

and the rectangle A in Figure 16.26 (where we assume both components of F are positive).
The circulation rate of F around the boundary of A is the sum of flow rates along the 

sides in the tangential direction. For the bottom edge, the flow rate is approximately

F(x, y) ~ i ∆x = M(x, y)∆x.

This is the scalar component of the velocity F(x, y) in the tangent direction i times the 
length of the segment. The flow rates may be positive or negative depending on the compo-
nents of F. We approximate the net circulation rate around the rectangular boundary of A by 
summing the flow rates along the four edges as defined by the following dot products.

Top: F(x, y + ∆y) ~ (- i) ∆x = -M(x, y + ∆y)∆x

Bottom: F(x, y) ~ i ∆x = M(x, y)∆x

Right: F(x + ∆x, y) ~ j ∆y = N(x + ∆x, y)∆y

Left: F(x, y) ~ (-j) ∆y = -N(x, y)∆y

We sum opposite pairs to get

Top and bottom: -(M(x, y + ∆y) - M(x, y))∆x ≈ - a0M0y ∆yb∆x

Right and left: (N(x + ∆x, y) - N(x, y))∆y ≈ a0N0x∆xb∆y.

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · i > 0

F · (−i) < 0

F · j > 0

F · (−j) < 0 A

Δx

Δy

FIGURE 16.26 The rate at which a fluid flows along the bottom edge of a 
rectangular region A in the direction i is approximately F(x, y) # i ∆x, which 
is positive for the vector field F shown here. To approximate the rate of 
circulation at the point (x, y), we calculate the (approximate) flow rates along 
each edge in the directions of the red arrows, sum these rates, and then divide 
the sum by the area of A. Taking the limit as ∆x S 0 and ∆y S 0 gives the 
rate of the circulation per unit area.
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Adding these last two equations gives the net circulation rate relative to the counterclock-
wise orientation,

Circulation rate around rectangle ≈ a0N0x - 0M
0y b∆x ∆y.

We now divide by ∆x ∆y to estimate the circulation rate per unit area or circulation den-
sity for the rectangle:

Circulation around rectangle
rectangle area

≈ 0N
0x - 0M

0y .

We let ∆x and ∆y approach zero to define the circulation density of F at the point (x, y).
If we see a counterclockwise rotation looking downward onto the xy-plane from the 

tip of the unit k vector, then the circulation density is positive (Figure 16.27). The value of 
the circulation density is the k-component of a more general circulation vector field we 
define in Section 16.7, called the curl of the vector field F. For Green’s Theorem, we need 
only this k-component, obtained by taking the dot product of curl F with k.

k

k

Vertical axis

Vertical axis

(x0, y0)

(x0, y0)

Curl F (x0, y0) . k > 0
Counterclockwise circulation

Curl F (x0, y0) . k < 0
Clockwise circulation

FIGURE 16.27 In the flow of an 
incompressible fluid over a plane region,
the k-component of the curl measures
the rate of the fluid’s rotation at a point.
The k-component of the curl is positive
at points where the rotation is counter-
clockwise and negative where the rotation 
is clockwise.

DEFINITION The circulation density of a vector field F = Mi + Nj at the 
point (x, y) is the scalar expression

0N
0x - 0M

0y . (1)

This expression is also called the k-component of the curl, denoted by 
(curl F) ~ k.

If water is moving about a region in the xy-plane in a thin layer, then the k-component
of the curl at a point (x0 , y0) gives a way to measure how fast and in what direction a 
small paddle wheel spins if it is put into the water at (x0 , y0) with its axis perpendicular to 
the plane, parallel to k (Figure 16.27). Looking downward onto the xy-plane, it spins 
counterclockwise when (curl F) ~ k is positive and clockwise when the k-component is 
negative.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in 
the xy-plane. Find the circulation density of each vector field and interpret its physical 
meaning Figure 16.28 displays the vector fields.

(a) Uniform expansion or compression: F(x, y) = cxi + cyj

(b) Uniform rotation: F(x, y) = -cyi + cxj

(c) Shearing flow: F(x, y) = yi

(d) Whirlpool effect: F(x, y) =
-y

x2 + y2 i + x
x2 + y2  j

Solution

(a) Uniform expansion: (curl F) ~ k = 0
0k (cy) - 0

0y (cx) = 0. The gas is not circulating 
at very small scales.
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y

x

(a) (b)

y

x

y

x

(c)

y

x

(d)

FIGURE 16.28 Velocity fields of a gas flowing in the plane (Example 1).

(b) Rotation: (curl F) ~ k = 0
0x (cx) - 0

0y (-cy) = 2c. The constant circulation density 

indicates rotation at every point. If c 7 0, the rotation is counterclockwise; if c 6 0,
the rotation is clockwise.

(c) Shear: (curl F) ~ k = - 0
0y ( y) = -1. The circulation density is constant and negative, 

so a paddle wheel floating in water undergoing such a shearing flow spins clockwise. 
The rate of rotation is the same at each point. The average effect of the fluid flow is to 
push fluid clockwise around each of small circles shown in Figure 16.29.

(d) Whirlpool:

(curl F) ~ k = 0
0x a x

x2 + y2b - 0
0y a

-y

x2 + y2b =
y2 - x2

(x2 + y2)2
-

y2 - x2

(x2 + y2)2
= 0.

The circulation density is 0 at every point away from the origin (where the vector field 
is undefined and the whirlpool effect is taking place), and the gas is not circulating at 
any point for which the vector field is defined.

One form of Green’s Theorem tells us how circulation density can be used to calculate 
the line integral for flow in the xy-plane. (The flow integral was defined in Section 16.2.) A 
second form of the theorem tells us how we can calculate the flux integral from flux  
density. We define this idea next, and then we present both versions of the theorem.

Divergence

Consider again the velocity field F(x, y) = M(x, y)i + N(x, y)j in a domain containing the 
rectangle A, as shown in Figure 16.30. As before, we assume the field components do not 
change sign throughout a small region containing the rectangle A. Our interest now is to 
determine the rate at which the fluid leaves A.

y

x

FIGURE 16.29 A shearing flow pushes 
the fluid clockwise around each point 
(Example 1c).
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The rate at which fluid leaves the rectangle across the bottom edge is approximately 
(Figure 16.30)

F(x, y) ~ (-j) ∆x = -N(x, y)∆x.

This is the scalar component of the velocity at (x, y) in the direction of the outward normal 
times the length of the segment. If the velocity is in meters per second, for example, the 
flow rate will be in meters per second times meters or square meters per second. The rates 
at which the fluid crosses the other three sides in the directions of their outward normals 
can be estimated in a similar way. The flow rates may be positive or negative depending on 
the signs of the components of F. We approximate the net flow rate across the rectangular 
boundary of A by summing the flow rates across the four edges as defined by the follow-
ing dot products.

Fluid Flow Rates: Top: F(x, y + ∆y) ~ j ∆x = N(x, y + ∆y)∆x

Bottom: F(x, y) ~ (-j) ∆x = -N(x, y)∆x

Right: F(x + ∆x, y) ~ i ∆y = M(x + ∆x, y)∆y

Left: F(x, y) ~ (- i) ∆y = -M(x, y)∆y

Summing opposite pairs gives

Top and bottom: (N(x, y + ∆y) - N(x, y))∆x ≈ a0N0y∆yb∆x

Right and left: (M(x + ∆x, y) - M(x, y))∆y ≈ a0M0x ∆xb∆y.

Adding these last two equations gives the net effect of the flow rates, or the

Flux across rectangle boundary ≈ a0M0x + 0N
0y b∆x∆y.

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · (−j) < 0

F · j > 0

F · (−i) < 0

F · i > 0

A

Δx

Δy

FIGURE 16.30 The rate at which the fluid leaves the rectangular region A
across the bottom edge in the direction of the outward normal - j is approximately 
F(x, y) # (- j) ∆x, which is negative for the vector field F shown here. To 
approximate the flow rate at the point (x, y), we calculate the (approximate) flow 
rates across each edge in the directions of the red arrows, sum these rates, and 
then divide the sum by the area of A. Taking the limit as ∆x S 0 and ∆y S 0
gives the flow rate per unit area.
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We now divide by ∆x∆y to estimate the total flux per unit area or flux density for the 
rectangle:

Flux across rectangle boundary
rectangle area

≈ a0M0x + 0N
0y b .

Finally, we let ∆x and ∆y approach zero to define the flux density of F at the point (x, y).
In mathematics, we call the flux density the divergence of F. The symbol for it is div F,
pronounced “divergence of F” or “div F.”

DEFINITION The divergence (flux density) of a vector field F = Mi + Nj at 
the point (x, y) is

div F = 0M
0x + 0N

0y . (2)

A gas is compressible, unlike a liquid, and the divergence of its velocity field mea-
sures to what extent it is expanding or compressing at each point. Intuitively, if a gas is 
expanding at the point (x0 , y0), the lines of flow would diverge there (hence the name) and, 
since the gas would be flowing out of a small rectangle about (x0 , y0), the divergence of F
at (x0 , y0) would be positive. If the gas were compressing instead of expanding, the diver-
gence would be negative (Figure 16.31).

Source: div F (x0, y0) > 0

Sink: div F (x0, y0) < 0

A gas expanding
at the point (x0, y0)

A gas compressing
at the point (x0, y0)

FIGURE 16.31 If a gas is expanding at 
a point (x0 , y0), the lines of flow have posi-
tive divergence; if the gas is compressing, 
the divergence is negative. EXAMPLE 2  Find the divergence, and interpret what it means, for each vector field 

in Example 1 representing the velocity of a gas flowing in the xy-plane.

Solution

(a) div F = 0
0x (cx) + 0

0y (cy) = 2c: If c 7 0, the gas is undergoing uniform expansion;

  if c 6 0, it is undergoing uniform compression.

(b) div F = 0
0x (-cy) + 0

0y (cx) = 0: The gas is neither expanding nor compressing.

(c) div F = 0
0x (y) = 0: The gas is neither expanding nor compressing.

(d) div F = 0
0x a

-y

x2 + y2b + 0
0ya x

x2 + y2b =
2xy

(x2 + y2)2
-

2xy

(x2 + y2)2
= 0: Again, the 

divergence is zero at all points in the domain of the velocity field.

Cases (b), (c), and (d) of Figure 16.28 are plausible models for the two-dimensional 
flow of a liquid. In fluid dynamics, when the velocity field of a flowing liquid always has 
divergence equal to zero, as in those cases, the liquid is said to be incompressible.

Two Forms for Green’s Theorem

We introduced the notation 
FC

 in Section 16.3 for integration around a closed curve. We 

elaborate further on the notation here. A simple closed curve C can be traversed in two 
possible directions. (Recall that a curve is simple if it does not cross itself.) The curve is 
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traversed counterclockwise, and said to be positively oriented, if the region it encloses is 
always to the left of an object as it moves along the path. Otherwise it is traversed clock-
wise and negatively oriented. The line integral of a vector field F along C reverses sign if 
we change the orientation. We use the notation

F
C

F(x, y) # dr

for the line integral when the simple closed curve C is traversed counterclockwise, with its 
positive orientation.

In one form, Green’s Theorem says that the counterclockwise circulation of a vector 
field around a simple closed curve is the double integral of the k-component of the curl of 
the field over the region enclosed by the curve. Recall the defining Equation (5) for circu-
lation in Section 16.2.

THEOREM 4—Green’s Theorem (Circulation-Curl or Tangential Form) Let C
be a piecewise smooth, simple closed curve enclosing a region R in the plane. 
Let F = Mi + Nj be a vector field with M and N having continuous first partial 
derivatives in an open region containing R. Then the counterclockwise circula-
tion of F around C equals the double integral of (curl F) # k over R.

F
C

F # T ds =
F
C

M dx + N dy =
O
R

a0N0x - 0M
0y b dx dy (3)

Counterclockwise circulation Curl integral

A second form of Green’s Theorem says that the outward flux of a vector field across a 
simple closed curve in the plane equals the double integral of the divergence of the field 
over the region enclosed by the curve. Recall the formulas for flux in Equations (6) and 
(7) in Section 16.2.

THEOREM 5—Green’s Theorem (Flux-Divergence or Normal Form) Let C
be a piecewise smooth, simple closed curve enclosing a region R in the plane. 
Let F = Mi + Nj be a vector field with M and N having continuous first partial 
derivatives in an open region containing R. Then the outward flux of F across C
equals the double integral of div F over the region R enclosed by C.

F
C

F # n ds =
F
C

M dy - N dx =
O
R

a0M0x + 0N
0y b dx dy (4)

Outward flux Divergence integral

The two forms of Green’s Theorem are equivalent. Applying Equation (3) to the field 
G1 = -Ni + Mj gives Equation (4), and applying Equation (4) to G2 = Ni - Mj gives 
Equation (3).

Both forms of Green’s Theorem can be viewed as two-dimensional generalizations of 
the Net Change Theorem in Section 5.4. The counterclockwise circulation of F around C,
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defined by the line integral on the left-hand side of Equation (3), is the integral of its rate 
of change (circulation density) over the region R enclosed by C, which is the double inte-
gral on the right-hand side of Equation (3). Likewise, the outward flux of F across C,
defined by the line integral on the left-hand side of Equation (4), is the integral of its rate 
of change (flux density) over the region R enclosed by C, which is the double integral on 
the right-hand side of Equation (4).

EXAMPLE 3  Verify both forms of Green’s Theorem for the vector field

F(x, y) = (x - y)i + xj

and the region R bounded by the unit circle

C: r(t) = (cos t)i + (sin t)j, 0 … t … 2p.

Solution Evaluating F(r(t)) and computing the partial derivatives of the components of 
F, we have

M = cos t - sin t, dx = d(cos t) = -sin t dt,

N = cos t, dy = d(sin t) = cos t dt,

0M
0x = 1,

0M
0y = - 1,

0N
0x = 1,

0N
0y = 0.

The two sides of Equation (3) are

F
C

M dx + N dy =
L

t=2p

t=0
(cos t - sin t)(-sin t dt) + (cos t)(cos t dt)

=
L

2p

0
(-sin t cos t + 1) dt = 2p

O
R

a0N0x - 0M
dy
b dx dy =

O
R

(1 - (-1)) dx dy

= 2
O
R

dx dy = 2(area inside the unit circle) = 2p.

Figure 16.32 displays the vector field and circulation around C.
The two sides of Equation (4) are

F
C

M dy - N dx =
L

t=2p

t=0
(cos t - sin t)(cos t dt) - (cos t)(-sin t dt)

=
L

2p

0
cos2 t dt = p

O
R

a0M0x + 0N
0y b dx dy =

O
R

(1 + 0) dx dy

=
O
R

dx dy = p.

y

x

T

T

FIGURE 16.32 The vector field in 
Example 3 has a counterclockwise 
circulation of 2p around the unit circle.
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Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing together a number of different curves end to 
end, the process of evaluating a line integral over C can be lengthy because there are so 
many different integrals to evaluate. If C bounds a region R to which Green’s Theorem 
applies, however, we can use Green’s Theorem to change the line integral around C into 
one double integral over R.

EXAMPLE 4  Evaluate the line integral

F
C

xy dy - y2 dx,

where C is the square cut from the first quadrant by the lines x = 1 and y = 1.

Solution We can use either form of Green’s Theorem to change the line integral into a 
double integral over the square, where C is the square’s boundary and R is its interior.

1. With the Tangential Form Equation (3): Taking M = -y2 and N = xy gives the 
result:

F
C

-y2 dx + xy dy =
O
R

(y - (-2y)) dx dy =
L

1

0 L

1

0
3y dx dy

=
L

1

0
c 3xy d x=1

x=0
dy =

L

1

0
3y dy = 3

2
y2 d 1

0
= 3

2
.

2. With the Normal Form Equation (4): Taking M = xy, N = y2, gives the same result:

F
C

xy dy - y2 dx =
O
R

(y + 2y) dx dy = 3
2

.

EXAMPLE 5  Calculate the outward flux of the vector field F(x, y) = 2exyi + y3j
across the square bounded by the lines x = {1 and y = {1.

Solution Calculating the flux with a line integral would take four integrations, one for 
each side of the square. With Green’s Theorem, we can change the line integral to one 
double integral. With M = 2exy, N = y3, C the square, and R the square’s interior, we 
have

Flux =
F
C

F # n ds =
F
C

M dy - N dx

=
O
R

a0M0x + 0N
0y b dx dy Green’s Theorem, Eq. (4)

=
L

1

-1L

1

-1

(2yexy + 3y2) dx dy =
L

1

-1
c 2exy + 3xy2 d

x=-1

x=1

dy

=
L

1

-1

(2ey + 6y2 - 2e-y) dy = c 2ey + 2y3 + 2e-y d
-1

1

= 4.
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Proof of Green’s Theorem for Special Regions

Let C be a smooth simple closed curve in the xy-plane with the property that lines parallel 
to the axes cut it at no more than two points. Let R be the region enclosed by C and sup-
pose that M, N, and their first partial derivatives are continuous at every point of some 
open region containing C and R. We want to prove the circulation-curl form of Green’s 
Theorem,

F
C

M dx + N dy =
O
R

a0N0x - 0M
0y b dx dy. (5)

Figure 16.33 shows C made up of two directed parts:

C1: y = ƒ1(x), a … x … b, C2: y = ƒ2(x), b Ú x Ú a.

For any x between a and b, we can integrate 0M>0y with respect to y from y = ƒ1(x) to 
y = ƒ2(x) and obtain

L

ƒ2(x)

ƒ1(x)

0M
0y dy = M(x, y) d

y=ƒ1(x)

y=ƒ2(x)

= M(x, ƒ2(x)) - M(x, ƒ1(x)).

We can then integrate this with respect to x from a to b:

L

b

a L

ƒ2(x)

ƒ1(x)

0M
0y dy dx =

L

b

a
3M(x, ƒ2(x)) - M(x, ƒ1(x))4 dx

= -
L

a

b
M(x, ƒ2(x)) dx -

L

b

a
M(x, ƒ1(x)) dx

= -
LC2

M dx -
LC1

M dx

= -
F
C

M dx.

Therefore, reversing the order of the equations, we have

F
C

M dx =
O

R

a- 0M
0y b dx dy. (6)

Equation (6) is half the result we need for Equation (5). We derive the other half by 
integrating 0N>0x first with respect to x and then with respect to y, as suggested by Fig-
ure 16.34. This shows the curve C of Figure 16.33 decomposed into the two directed 
parts C=

1: x = g1(y), d Ú y Ú c and C=
2: x = g2(y), c … y … d. The result of this double 

integration is

F
C

N dy =
O

R

0N
0x dx dy. (7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof.

Green’s Theorem also holds for more general regions, such as those shown in Figure 
16.35, but we will not prove this result here. Notice that the region in Figure 16.35(c) is 
not simply connected. The curves C1 and Ch on its boundary are oriented so that the 

x

y

a0 x b

R

P2(x, f2(x))
C2: y = f2(x)

C1: y = f1(x)
P1(x, f1(x))

FIGURE 16.33 The boundary curve C
is made up of C1, the graph of y = ƒ1(x),
and C2 , the graph of y = ƒ2(x).

R

x

y

c

0

y

d

C′2: x = g2(y)

C′1: x = g1(y)

Q2(g2( y), y)
Q1(g1( y), y)

FIGURE 16.34 The boundary curve C
is made up of C1

= , the graph of x = g1(y),
and C2

= , the graph of x = g2(y).
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region R is always on the left-hand side as the curves are traversed in the directions shown, 
and cancelation occurs over common boundary arcs traversed in opposite directions. With 
this convention, Green’s Theorem is valid for regions that are not simply connected.

Verifying Green’s Theorem
In Exercises 1–4, verify the conclusion of Green’s Theorem by evaluat-
ing both sides of Equations (3) and (4) for the field F = Mi + Nj. Take 
the domains of integration in each case to be the disk R: x2 + y2 … a2

and its bounding circle C: r = (a cos t)i + (a sin t)j, 0 … t … 2p.

1. F = -yi + xj 2. F = yi

3. F = 2xi - 3yj 4. F = -x2yi + xy2j

Circulation and Flux
In Exercises 5–14, use Green’s Theorem to find the counterclockwise 
circulation and outward flux for the field F and curve C.

5. F = (x - y)i + (y - x)j

C: The square bounded by x = 0, x = 1, y = 0, y = 1

6. F = (x2 + 4y)i + (x + y2)j

C: The square bounded by x = 0, x = 1, y = 0, y = 1

7. F = (y2 - x2)i + (x2 + y2)j

C: The triangle bounded by y = 0, x = 3, and y = x

8. F = (x + y)i - (x2 + y2)j

C: The triangle bounded by y = 0, x = 1, and y = x

9. F = (xy + y2)i + (x - y)j 10. F = (x + 3y)i + (2x - y)j

x

y

y = x2

x = y2

(0, 0)

(1, 1)

C

      

x

y

x2 + 2y2 = 2C

2−2

−1

1

11. F = x3y2 i + 1
2

x4y j 12. F = x
1 + y2 i + 1tan-1 y2j

x

y

y = x2 − x

y = x

(0, 0)

(2, 2)C

    

C

1−1

−1

x

1

y

x2 + y2 = 1

13. F = (x + ex sin y)i + (x + ex cos y)j

C: The right-hand loop of the lemniscate r2 = cos 2u

14. F = atan-1
y
xb i + ln (x2 + y2)j

C: The boundary of the region defined by the polar coordinate 
inequalities 1 … r … 2, 0 … u … p

15. Find the counterclockwise circulation and outward flux of the 
field F = xyi + y2j around and over the boundary of the region 
enclosed by the curves y = x2 and y = x in the first quadrant.

16. Find the counterclockwise circulation and the outward flux of the 
field F = (-sin y)i + (x cos y)j around and over the square cut 
from the first quadrant by the lines x = p>2 and y = p>2.

17. Find the outward flux of the field

F = a3xy - x
1 + y2b i + (ex + tan-1 y)j

  across the cardioid r = a(1 + cos u), a 7 0.

Exercises 16.4

FIGURE 16.35 Other regions to which Green’s Theorem applies. In (c) the axes convert the region into four simply 
connected regions, and we sum the line integrals along the oriented boundaries.

y

x
0

R

(b)

C

a b

a

b

y

x
0

R

(a)

C

x

y

h 1

R Ch

C1

0

(c)



16.4  Green’s Theorem in the Plane 991

18. Find the counterclockwise circulation of F = (y + ex ln y)i +
(ex>y)j around the boundary of the region that is bounded above 
by the curve y = 3 - x2 and below by the curve y = x4 + 1.

Work
In Exercises 19 and 20, find the work done by F in moving a particle 
once counterclockwise around the given curve.

19. F = 2xy3i + 4x2y2j

C: The boundary of the “triangular” region in the first quadrant 
enclosed by the x-axis, the line x = 1, and the curve y = x3

20. F = (4x - 2y)i + (2x - 4y)j

C: The circle (x - 2)2 + (y - 2)2 = 4

Using Green’s Theorem
Apply Green’s Theorem to evaluate the integrals in Exercises 21–24.

21.
F
C

(y2 dx + x2 dy)

C: The triangle bounded by x = 0, x + y = 1, y = 0

22.
F
C

(3y dx + 2x dy)

C: The boundary of 0 … x … p, 0 … y … sin x

23.
F
C

(6y + x) dx + (y + 2x) dy

C: The circle (x - 2)2 + (y - 3)2 = 4

24.
F
C

(2x + y2) dx + (2xy + 3y) dy

C: Any simple closed curve in the plane for which Green’s Theo-
rem holds

Calculating Area with Green’s Theorem If a simple closed curve 
C in the plane and the region R it encloses satisfy the hypotheses of 
Green’s Theorem, the area of R is given by

27. The astroid r(t) = (cos3 t)i + (sin3 t)j, 0 … t … 2p

28. One arch of the cycloid x = t - sin t, y = 1 - cos t

29. Let C be the boundary of a region on which Green’s Theorem 
holds. Use Green’s Theorem to calculate

a.
F
C

ƒ(x) dx + g(y) dy

b.
F
C

ky dx + hx dy (k and h constants).

30. Integral dependent only on area Show that the value of

F
C

xy2 dx + (x2y + 2x) dy

  around any square depends only on the area of the square and not 
on its location in the plane.

31. Evaluate the integral

F
C

4x3y dx + x4 dy

  for any closed path C.

32. Evaluate the integral

F
C

-y3 dy + x3 dx

  for any closed path C.

33. Area as a line integral Show that if R is a region in the plane 
bounded by a piecewise smooth, simple closed curve C, then

Area of R =
F
C

x dy = -
F
C

y dx.

34. Definite integral as a line integral Suppose that a nonnegative 
function y = ƒ(x) has a continuous first derivative on 3a, b4 . Let 
C be the boundary of the region in the xy-plane that is bounded 
below by the x-axis, above by the graph of ƒ, and on the sides by 
the lines x = a and x = b. Show that

L

b

a
ƒ(x) dx = -

F
C

y dx.

35. Area and the centroid Let A be the area and x the x-coordinate
of the centroid of a region R that is bounded by a piecewise 
smooth, simple closed curve C in the xy-plane. Show that

1
2 F

C

x2 dy = -
F
C

xy dx = 1
3 F

C

x2 dy - xy dx = Ax.

36. Moment of inertia Let Iy be the moment of inertia about the 
y-axis of the region in Exercise 35. Show that

1
3 F

C

x3 dy = -
F
C

x2y dx = 1
4 F

C

x3 dy - x2y dx = Iy .

37. Green’s Theorem and Laplace’s equation Assuming that all 
the necessary derivatives exist and are continuous, show that if 
ƒ(x, y) satisfies the Laplace equation

02ƒ

0x2 +
02ƒ

0y2 = 0,

Green’s Theorem Area Formula

Area of R = 1
2F

C

x dy - y dx

The reason is that by Equation (4), run backward,

Area of R =
O

R

dy dx =
O

R

a1
2

+ 1
2
b dy dx

=
F
C

1
2

x dy - 1
2

y dx.

Use the Green’s Theorem area formula given above to find the areas 
of the regions enclosed by the curves in Exercises 25–28.

25. The circle r(t) = (a cos t)i + (a sin t)j, 0 … t … 2p

26. The ellipse r(t) = (a cos t)i + (b sin t)j, 0 … t … 2p
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  then

F
C

0ƒ
0y dx -

0ƒ
0x dy = 0

  for all closed curves C to which Green’s Theorem applies. (The 
converse is also true: If the line integral is always zero, then ƒ 
satisfies the Laplace equation.)

38. Maximizing work Among all smooth, simple closed curves in 
the plane, oriented counterclockwise, find the one along which 
the work done by

F = a1
4

x2y + 1
3

y3b i + xj

  is greatest. (Hint: Where is (curl F) # k positive?)

39. Regions with many holes Green’s Theorem holds for a region 
R with any finite number of holes as long as the bounding curves 
are smooth, simple, and closed and we integrate over each com-
ponent of the boundary in the direction that keeps R on our imme-
diate left as we go along (see accompanying figure).

a. Let ƒ(x, y) = ln (x2 + y2)  and let C be the circle 
x2 + y2 = a2. Evaluate the flux integral

F
C

∇ƒ # n ds.

b. Let K be an arbitrary smooth, simple closed curve in the plane 
that does not pass through (0, 0). Use Green’s Theorem to 
show that

F
K

∇ƒ # n ds

  has two possible values, depending on whether (0, 0) lies 
inside K or outside K.

40. Bendixson’s criterion The streamlines of a planar fluid flow 
are the smooth curves traced by the fluid’s individual particles. 
The vectors F = M(x, y)i + N(x, y)j of the flow’s velocity field 
are the tangent vectors of the streamlines. Show that if the flow 
takes place over a simply connected region R (no holes or miss-
ing points) and that if Mx + Ny ≠ 0 throughout R, then none of 
the streamlines in R is closed. In other words, no particle of fluid 
ever has a closed trajectory in R. The criterion Mx + Ny ≠ 0
is called Bendixson’s criterion for the nonexistence of closed 
trajectories.

41. Establish Equation (7) to finish the proof of the special case of 
Green’s Theorem.

42. Curl component of conservative fields Can anything be said 
about the curl component of a conservative two-dimensional vec-
tor field? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS and Green’s Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve 
C. Perform the following CAS steps.

a. Plot C in the xy-plane.

b. Determine the integrand (0N>0x) - (0M>0y) for the tangen-
tial form of Green’s Theorem.

c. Determine the (double integral) limits of integration from 
your plot in part (a) and evaluate the curl integral for the 
circulation.

43. F = (2x - y)i + (x + 3y)j, C: The ellipse x2 + 4y2 = 4

44. F = (2x3 - y3)i + (x3 + y3)j, C: The ellipse 
x2

4
+

y2

9
= 1

45. F = x-1ey i + (ey ln x + 2x)j,

C: The boundary of the region defined by y = 1 + x4 (below) and 
y = 2 (above)

46. F = xeyi + (4x2 ln y)j,

C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

16.5 Surfaces and Area

We have defined curves in the plane in three different ways:

Explicit form: y = ƒ(x)

Implicit form: F(x, y) = 0

Parametric vector form: r(t) = ƒ(t)i + g(t)j, a … t … b.

We have analogous definitions of surfaces in space:

Explicit form:  z = ƒ(x, y)

Implicit form:  F(x, y, z) = 0.
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There is also a parametric form for surfaces that gives the position of a point on the surface 
as a vector function of two variables. We discuss this new form in this section and apply 
the form to obtain the area of a surface as a double integral. Double integral formulas for 
areas of surfaces given in implicit and explicit forms are then obtained as special cases of 
the more general parametric formula.

Parametrizations of Surfaces

Suppose

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k (1)

is a continuous vector function that is defined on a region R in the uy-plane and one-to-
one on the interior of R (Figure 16.36). We call the range of r the surface S defined or 
traced by r. Equation (1) together with the domain R constitutes a parametrization of 
the surface. The variables u and y are the parameters, and R is the parameter domain.
To simplify our discussion, we take R to be a rectangle defined by inequalities of the 
form a … u … b, c … y … d. The requirement that r be one-to-one on the interior of R
ensures that S does not cross itself. Notice that Equation (1) is the vector equivalent of 
three parametric equations:

x = ƒ(u, y), y = g(u, y), z = h(u, y).

z

x

y

S P

Curve y = constant

Curve u = constant

r(u, y) = f(u, y)i + g(u, y)j + h(u, y)k,
position vector to surface point

y

0
u

R

Parametrization

u = constant

y = constant
(u, y)

FIGURE 16.36 A parametrized surface 
S expressed as a vector function of two 
variables defined on a region R. EXAMPLE 1  Find a parametrization of the cone

z = 2x2 + y2, 0 … z … 1.

Solution Here, cylindrical coordinates provide a parametrization. A typical point (x, y, z)
on the cone (Figure 16.37) has x = r cos u, y = r sin u, and z = 2x2 + y2 = r, with 
0 … r … 1 and 0 … u … 2p. Taking u = r and y = u in Equation (1) gives the parame-
trization

r(r, u) = (r cos u)i + (r sin u)j + rk, 0 … r … 1, 0 … u … 2p.

The parametrization is one-to-one on the interior of the domain R, though not on the 
boundary tip of its cone where r = 0.

EXAMPLE 2  Find a parametrization of the sphere x2 + y2 + z2 = a2.

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on the 
sphere (Figure 16.38) has x = a sin f cos u, y = a sin f sin u, and z = a cos f,
0 … f … p, 0 … u … 2p. Taking u = f and y = u in Equation (1) gives the parame-
trization

r(f, u) = (a sin f cos u)i + (a sin f sin u)j + (a cos f)k,

0 … f … p, 0 … u … 2p.

Again, the parametrization is one-to-one on the interior of the domain R, though not on its 
boundary “poles” where f = 0 or f = p.

z

x y
r

1

(x, y, z) =
(r cos u, r sin u, r)

u

r(r, u) = (r cos u)i
+ (r sin u)j + rk

Cone:
z = "x2 + y2

  = r

FIGURE 16.37 The cone in Example 1  
can be parametrized using cylindrical 
coordinates.
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EXAMPLE 3  Find a parametrization of the cylinder

x2 + (y - 3)2 = 9, 0 … z … 5.

Solution In cylindrical coordinates, a point (x, y, z) has x = r cos u, y = r sin u, and 
z = z. For points on the cylinder x2 + (y - 3)2 = 9 (Figure 16.39), the equation is the 
same as the polar equation for the cylinder’s base in the xy-plane:

x2 + (y2 - 6y + 9) = 9

r2 - 6r sin u = 0
x2 + y2 = r2,
y = r sin u

or

r = 6 sin u, 0 … u … p.

A typical point on the cylinder therefore has

x = r cos u = 6 sin u cos u = 3 sin 2u

y = r sin u = 6 sin2u

z = z.

Taking u = u and y = z in Equation (1) gives the one-to-one parametrization

r(u, z) = (3 sin 2u)i + (6 sin2u)j + zk, 0 … u … p, 0 … z … 5.

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on 
the parametrization

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k, a … u … b, c … y … d.

We need S to be smooth for the construction we are about to carry out. The definition of 
smoothness involves the partial derivatives of r with respect to u and y:

ru = 0r
0u =

0ƒ
0u  i +

0g
0u  j + 0h

0u  k

ry = 0r
0y =

0ƒ
0y  i +

0g
0y  j + 0h

0y  k.

z

x
y

a a

a

r(f, u)

f

u

(x, y, z) = (a sin f cos u, a sin f sin u, a cos f)

FIGURE 16.38 The sphere in Example 2
can be parametrized using spherical coor-
dinates.

z

x

y

z

r = 6 sin u

r(u, z)

Cylinder: x2 + (y − 3)2 = 9
or
r = 6 sin u

(x, y, z)
=(3 sin 2u, 6 sin2u, z)

FIGURE 16.39 The cylinder in 
Example 3 can be parametrized using 
cylindrical coordinates.

DEFINITION A parametrized surface r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k
is smooth if ru and ry are continuous and ru * ry is never zero on the interior of the 
parameter domain.

The condition that ru * ry is never the zero vector in the definition of smoothness 
means that the two vectors ru and ry are nonzero and never lie along the same line, so they 
always determine a plane tangent to the surface. We relax this condition on the boundary 
of the domain, but this does not affect the area computations.
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Now consider a small rectangle ∆Auy in R with sides on the lines u = u0 ,
u = u0 + ∆u, y = y0 , and y = y0 + ∆y (Figure 16.40). Each side of ∆Auy maps to a 
curve on the surface S, and together these four curves bound a “curved patch element” 
∆suy . In the notation of the figure, the side y = y0 maps to curve C1, the side u = u0

maps to C2 , and their common vertex (u0 , y0) maps to P0 .

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0 u0 + Δu

ΔAuy

y0 + Δy

y0
u = u0 + Δu

y = y0 + ΔyΔsuy

P0C1: y = y0 C2: u = u0

y

FIGURE 16.40 A rectangular area element ∆Auy in the uy-plane maps onto a curved 
patch element ∆suy on S.

Figure 16.41 shows an enlarged view of ∆suy . The partial derivative vector ru(u0 , y0)
is tangent to C1 at P0. Likewise, ry(u0, y0) is tangent to C2 at P0 . The cross product ru * ry
is normal to the surface at P0. (Here is where we begin to use the assumption that S is 
smooth. We want to be sure that ru * ry ≠ 0.)

We next approximate the surface patch element ∆suy by the parallelogram on the 
tangent plane whose sides are determined by the vectors ∆uru and ∆yry (Figure 16.42). 
The area of this parallelogram is

0 ∆uru * ∆yry 0 = 0 ru * ry 0 ∆u ∆y. (2)

A partition of the region R in the uy-plane by rectangular regions ∆Auy induces a partition 
of the surface S into surface patch elements ∆suy . We approximate the area of each sur-
face patch element ∆suy by the parallelogram area in Equation (2) and sum these areas 
together to obtain an approximation of the surface area of S:

a
n
0 ru * ry 0 ∆u ∆y. (3)

As ∆u and ∆y approach zero independently, the number of area elements n tends to q
and the continuity of ru and ry guarantees that the sum in Equation (3) approaches the 

double integral 1
d

c 1
b

a 0 ru * ry 0 du dy. This double integral over the region R defines the 
area of the surface S.

yx

z

ru × ry

ru

ryP0

C1: y = y0

Δsuy

C2: u = u0

FIGURE 16.41 A magnified view of a 
surface patch element ∆suy .

yx

z

Δuru

ΔyryP0

C1 Δsuy

C2

FIGURE 16.42 The area of the paral-
lelogram determined by the vectors ∆uru

and ∆yry approximates the area of the 
surface patch element ∆suy .

DEFINITION The area of the smooth surface

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k, a … u … b, c … y … d

is

A =
O
R

0 ru * ry 0 dA =
L

d

c L

b

a

0 ru * ry 0 du dy. (4)
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We can abbreviate the integral in Equation (4) by writing ds for 0 ru * ry 0 du dy. The 
surface area differential ds is analogous to the arc length differential ds in Section 13.3.

Surface Area Differential for a Parametrized Surface

ds = 0 ru * ry 0 du dy
O

S

ds (5)

Surface area Differential formula
differential for surface area

EXAMPLE 4  Find the surface area of the cone in Example 1 (Figure 16.37).

Solution In Example 1, we found the parametrization

r(r, u) = (r cos u)i + (r sin u)j + rk, 0 … r … 1, 0 … u … 2p.

To apply Equation (4), we first find rr * ru :

rr * ru = 3 i j k
cos u sin u 1

-r sin u r cos u 0

3
= -(r cos u)i - (r sin u)j + (r cos2 u + r sin2 u)k.

(++++)++++*
r

Thus, 0 rr * ru 0 = 2r2 cos2u + r2 sin2u + r2 = 22r2 = 22r. The area of the cone is

A =
L

2p

0 L

1

0

0 rr * ru 0 dr du Eq. (4) with u = r, y = u

=
L

2p

0 L

1

0
22 r dr du =

L

2p

0

22
2

du = 22
2

(2p) = p22 units squared.

EXAMPLE 5  Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

r(f, u) = (a sin f cos u)i + (a sin f sin u)j + (a cos f)k,

0 … f … p, 0 … u … 2p.

For rf * ru , we get

rf * ru = 3 i j k
a cos f cos u a cos f sin u -a sin f

-a sin f sin u a sin f cos u 0

3
= (a2 sin2f cos u)i + (a2 sin2f sin u)j + (a2 sin f cos f)k.

Thus,

0 rf * ru 0 = 2a4 sin4 f cos2 u + a4 sin4 f sin2 u + a4 sin2 f cos2 f

= 2a4 sin4f + a4 sin2f cos2f = 2a4 sin2f(sin2f + cos2f)

= a22sin2f = a2 sin f,
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since sin f Ú 0 for 0 … f … p. Therefore, the area of the sphere is

A =
L

2p

0 L

p

0
a2 sin f df du

=
L

2p

0
c-a2 cos f d

0

p

du =
L

2p

0
2a2 du = 4pa2 units squared.

This agrees with the well-known formula for the surface area of a sphere.

EXAMPLE 6  Let S be the “football” surface formed by rotating the curve x = cos z,
y = 0, -p>2 … z … p>2 around the z-axis (see Figure 16.43). Find a parametrization 
for S and compute its surface area.

Solution Example 2 suggests finding a parametrization of S based on its rotation around 
the z-axis. If we rotate a point (x, 0, z) on the curve x = cos z, y = 0 about the z-axis, we 
obtain a circle at height z above the xy-plane that is centered on the z-axis and has radius 
r = cos z (see Figure 16.43). The point sweeps out the circle through an angle of rotation 
u, 0 … u … 2p. We let (x, y, z) be an arbitrary point on this circle, and define the parame-
ters u = z and y = u. Then we have x = r cos u = cos u cos y, y = r sin u = cos u sin y,
and z = u giving a parametrization for S as

r(u, y) = cos u cos yi + cos u sin yj + uk, - p
2

… u … p
2

, 0 … y … 2p.

Next we use Equation (5) to find the surface area of S. Differentiation of the parame-
trization gives

ru = -sin u cos y i - sin u sin y j + k

and

ry = -cos u sin y i + cos u cos y j.

Computing the cross product we have

ru * ry = 3 i j k
-sin u cos y -sin u sin y 1

-cos u sin y cos u cos y 0

3
= -cos u cos y i - cos u sin y j - (sin u cos u cos2 y + cos u sin u sin2 y)k.

Taking the magnitude of the cross product gives

0 ru * ry 0 = 2cos2 u (cos2 y + sin2 y) + sin2 u cos2 u

= 2cos2 u (1 + sin2 u)

= cos u 21 + sin2 u. cos u Ú 0 for -p
2

… u … p
2

From Equation (4) the surface area is given by the integral

A =
L

2p

0 L

p>2

-p>2
cos u 21 + sin2 u du dy.

(x, y, z)

p
2

p
2

−

y

z

x
11

r = cos z is the
radius of a circle
at height z

x = cos z , y = 0

FIGURE 16.43 The “football” surface 
in Example 6 obtained by rotating the 
curve x = cos z about the z-axis.
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To evaluate the integral, we substitute w = sin u and dw = cos u du, -1 … w … 1.
Since the surface S is symmetric across the xy-plane, we need only integrate with respect 
to w from 0 to 1, and multiply the result by 2. In summary, we have

A = 2
L

2p

0 L

1

0
21 + w2 dw dy

= 2
L

2p

0
cw

2
21 + w2 + 1

2
ln 1w + 21 + w22 d 1

0
dy Integral Table Formula 35

=
L

2p

0
2 c 1

2
22 + 1

2
ln 11 + 222 d dy

= 2p322 + ln 11 + 2224 .

Implicit Surfaces

Surfaces are often presented as level sets of a function, described by an equation such as

F(x, y, z) = c,

for some constant c. Such a level surface does not come with an explicit parametrization, 
and is called an implicitly defined surface. Implicit surfaces arise, for example, as equipo-
tential surfaces in electric or gravitational fields. Figure 16.44 shows a piece of such a 
surface. It may be difficult to find explicit formulas for the functions ƒ, g, and h that 
describe the surface in the form r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k. We now show 
how to compute the surface area differential ds for implicit surfaces.

Figure 16.44 shows a piece of an implicit surface S that lies above its “shadow” region 
R in the plane beneath it. The surface is defined by the equation F(x, y, z) = c and p is a 
unit vector normal to the plane region R. We assume that the surface is smooth (F is dif-
ferentiable and ∇F  is nonzero and continuous on S) and that ∇F # p ≠ 0, so the surface 
never folds back over itself.

Assume that the normal vector p is the unit vector k, so the region R in Figure 16.44 
lies in the xy-plane. By assumption, we then have ∇F # p = ∇F # k = Fz ≠ 0 on S. The 
Implicit Function Theorem (see Section 14.4) implies that S is then the graph of a differen-
tiable function z = h(x, y), although the function h(x, y) is not explicitly known. Define 
the parameters u and y by u = x and y = y. Then z = h(u, y) and

r(u, y) = ui + yj + h(u, y)k (6)

gives a parametrization of the surface S. We use Equation (4) to find the area of S.
Calculating the partial derivatives of r, we find

ru = i + 0h
0u k and ry = j + 0h

0y k.

Applying the Chain Rule for implicit differentiation (see Equation (2) in Section 14.4) to 
F(x, y, z) = c, where x = u, y = y, and z = h(u, y), we obtain the partial derivatives

0h
0u = -

Fx

Fz
and

0h
0y = -

Fy

Fz
.

Substitution of these derivatives into the derivatives of r gives

ru = i -
Fx

Fz
k and ry = j -

Fy

Fz
k.

R

S

The vertical projection
or “shadow” of S on a
coordinate plane

Surface F(x, y, z) = c

p

FIGURE 16.44 As we soon see, the area 
of a surface S in space can be calculated 
by evaluating a related double integral over 
the vertical projection or “shadow” of S
on a coordinate plane. The unit vector p
is normal to the plane.
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From a routine calculation of the cross product we find

ru * ry =
Fx

Fz
i +

Fy

Fz
j + k Fz ≠ 0

= 1
Fz

(Fxi + Fyj + Fzk)

= ∇F
Fz

= ∇F
∇F # k

= ∇F
∇F # p . p = k

Therefore, the surface area differential is given by

ds = 0 ru * ry 0 du dy =
0 ∇F 0
0 ∇F # p 0 dx dy. u = x and y = y

We obtain similar calculations if instead the vector p = j is normal to the xz-plane
when Fy ≠ 0 on S, or if p = i is normal to the yz-plane when Fx ≠ 0 on S. Combining 
these results with Equation (4) then gives the following general formula.

Formula for the Surface Area of an Implicit Surface

The area of the surface F(x, y, z) = c over a closed and bounded plane region R is

Surface area =
O
R

0 ∇F �
0 ∇F # p 0 dA, (7)

where p = i, j, or k is normal to R and ∇F # p ≠ 0.

Thus, the area is the double integral over R of the magnitude of ∇F  divided by the 
magnitude of the scalar component of ∇F  normal to R.

We reached Equation (7) under the assumption that ∇F # p ≠ 0 throughout R and that 
∇F  is continuous. Whenever the integral exists, however, we define its value to be the area 
of the portion of the surface F(x, y, z) = c that lies over R. (Recall that the projection is 
assumed to be one-to-one.)

EXAMPLE 7  Find the area of the surface cut from the bottom of the paraboloid 
x2 + y2 - z = 0 by the plane z = 4.

Solution We sketch the surface S and the region R below it in the xy-plane (Figure 
16.45). The surface S is part of the level surface F(x, y, z) = x2 + y2 - z = 0, and R is 
the disk x2 + y2 … 4 in the xy-plane. To get a unit vector normal to the plane of R, we can 
take p = k.

At any point (x, y, z) on the surface, we have

F(x, y, z) = x2 + y2 - z

∇F = 2xi + 2yj - k

0 ∇F 0 = 2(2x)2 + (2y)2 + (-1)2

= 24x2 + 4y2 + 1

0 ∇F # p 0 = 0 ∇F # k 0 = 0-1 0 = 1.

y

z

x

4

S

R
0

z = x2 + y2

x2 + y2 = 4

FIGURE 16.45 The area of this parabolic 
surface is calculated in Example 7.
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In the region R, dA = dx dy. Therefore,

Surface area =
O

R

0 ∇F 0
0 ∇F # p 0 dA Eq. (7)

=
O

x2+y2…4

24x2 + 4y2 + 1 dx dy

=
L

2p

0 L

2

0
24r2 + 1 r dr du Polar coordinates

=
L

2p

0
c 1
12

(4r2 + 1)3>2 d
0

2

du

=
L

2p

0

1
12

(173>2 - 1) du = p
6
117217 - 12.

Example 7 illustrates how to find the surface area for a function z = ƒ(x, y) over a 
region R in the xy-plane. Actually, the surface area differential can be obtained in two 
ways, and we show this in the next example.

EXAMPLE 8  Derive the surface area differential ds of the surface z = ƒ(x, y) over a 
region R in the xy-plane (a) parametrically using Equation (5), and (b) implicitly, as in 
Equation (7).

Solution

(a) We parametrize the surface by taking x = u, y = y, and z = ƒ(x, y) over R. This gives 
the parametrization

r(u, y) = ui + yj + ƒ(u, y)k.

  Computing the partial derivatives gives ru = i + ƒu k, ry = j + fy k and

ru * ry = -ƒu i - ƒy j + k. 3 i j k
1 0 ƒu

0 1 ƒy

3
  Then 0 ru * ry 0 du dy = 2ƒu

2 + ƒy2 + 1 du dy. Substituting for u and y then gives 
the surface area differential

ds = 2ƒx
2 + ƒy

2 + 1 dx dy.

(b) We define the implicit function F(x, y, z) = ƒ(x, y) - z. Since (x, y) belongs to the 
region R, the unit normal to the plane of R is p = k. Then ∇F = ƒxi + ƒyj - k so 

  that 0 ∇F # p 0 = 0-1 0 = 1, 0 ∇F 0 = 2ƒx
2 + ƒy

2 + 1, and 0 ∇F 0 > 0 ∇F # p 0 = 0 ∇F 0 .
The surface area differential is again given by

ds = 2ƒx
2 + ƒy

2 + 1 dx dy.

The surface area differential derived in Example 8 gives the following formula for calcu-
lating the surface area of the graph of a function defined explicitly as z = ƒ(x, y).

Formula for the Surface Area of a Graph z = ƒ(x, y)

For a graph z = ƒ(x, y) over a region R in the xy-plane, the surface area formula is

A =
O

R

2ƒx
2 + ƒy

2 + 1 dx dy. (8)
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Finding Parametrizations
In Exercises 1–16, find a parametrization of the surface. (There are 
many correct ways to do these, so your answers may not be the same 
as those in the back of the book.)

1. The paraboloid z = x2 + y2, z … 4

2. The paraboloid z = 9 - x2 - y2, z Ú 0

3. Cone frustum The first-octant portion of the cone z =
2x2 + y2>2 between the planes z = 0 and z = 3

4. Cone frustum The portion of the cone z = 22x2 + y2

between the planes z = 2 and z = 4

5. Spherical cap The cap cut from the sphere x2 + y2 + z2 = 9

  by the cone z = 2x2 + y2

6. Spherical cap The portion of the sphere x2 + y2 + z2 = 4 in 

  the first octant between the xy-plane and the cone z = 2x2 + y2

7. Spherical band The portion of the sphere x2 + y2 + z2 = 3
between the planes z = 23>2 and z = -23>2

8. Spherical cap The upper portion cut from the sphere 
x2 + y2 + z2 = 8 by the plane z = -2

9. Parabolic cylinder between planes The surface cut from the 
parabolic cylinder z = 4 - y2 by the planes x = 0, x = 2, and 
z = 0

10. Parabolic cylinder between planes The surface cut from the 
parabolic cylinder y = x2 by the planes z = 0, z = 3, and y = 2

11. Circular cylinder band The portion of the cylinder y2 + z2 = 9
between the planes x = 0 and x = 3

12. Circular cylinder band The portion of the cylinder x2 + z2 = 4
above the xy-plane between the planes y = -2 and y = 2

13. Tilted plane inside cylinder The portion of the plane x + y +
z = 1

a. Inside the cylinder x2 + y2 = 9

b. Inside the cylinder y2 + z2 = 9

14. Tilted plane inside cylinder The portion of the plane 
x - y + 2z = 2

a. Inside the cylinder x2 + z2 = 3

b. Inside the cylinder y2 + z2 = 2

15. Circular cylinder band The portion of the cylinder (x - 2)2 +
z2 = 4 between the planes y = 0 and y = 3

16. Circular cylinder band The portion of the cylinder y2 +
(z - 5)2 = 25 between the planes x = 0 and x = 10

Surface Area of Parametrized Surfaces
In Exercises 17–26, use a parametrization to express the area of the 
surface as a double integral. Then evaluate the integral. (There are 
many correct ways to set up the integrals, so your integrals may not be 
the same as those in the back of the book. They should have the same 
values, however.)

17. Tilted plane inside cylinder The portion of the plane 
y + 2z = 2 inside the cylinder x2 + y2 = 1

18. Plane inside cylinder The portion of the plane z = -x inside 
the cylinder x2 + y2 = 4

19. Cone frustum The portion of the cone z = 22x2 + y2

between the planes z = 2 and z = 6

20. Cone frustum The portion of the cone z = 2x2 + y2>3
between the planes z = 1 and z = 4>3

21. Circular cylinder band The portion of the cylinder 
x2 + y2 = 1 between the planes z = 1 and z = 4

22. Circular cylinder band The portion of the cylinder x2 + z2 =
10 between the planes y = -1 and y = 1

23. Parabolic cap The cap cut from the paraboloid z = 2 - x2 - y2

by the cone z = 2x2 + y2

24. Parabolic band The portion of the paraboloid z = x2 + y2

between the planes z = 1 and z = 4

25. Sawed-off sphere The lower portion cut from the sphere 
x2 + y2 + z2 = 2 by the cone z = 2x2 + y2

26. Spherical band The portion of the sphere x2 + y2 + z2 = 4
between the planes z = -1 and z = 23

Planes Tangent to Parametrized Surfaces
The tangent plane at a point P0(ƒ(u0 , y0) , g(u0 , y0) , h(u0 , y0)) on a 
parametrized surface r(u , y) = ƒ(u , y)i + g(u , y)j + h(u , y)k is the 
plane through P0 normal to the vector ru(u0 , y0) * ry(u0 , y0), the 
cross product of the tangent vectors ru(u0 , y0) and ry(u0 , y0) at P0 . In 
Exercises 27–30, find an equation for the plane tangent to the surface 
at P0 . Then find a Cartesian equation for the surface and sketch the 
surface and tangent plane together.

27. Cone The cone r(r, u) = (r cos u)i + (r sin u)j + rk, r Ú 0,
0 … u … 2p at the point P0122, 22, 22 corresponding to 
(r, u) = (2, p>4)

28. Hemisphere The hemisphere surface r(f, u) = (4 sin fcos u)i
+ (4 sin f sin u)j + (4 cos f)k, 0 … f … p>2, 0 … u … 2p,
at the point P0122, 22, 2232 corresponding to (f, u) =
(p>6, p>4)

29. Circular cylinder The circular cylinder r(u, z) = (3 sin 2u)i +
(6 sin2u)j + zk, 0 … u … p, at the point P01323>2, 9>2, 02
corresponding to (u, z) = (p>3, 0) (See Example 3.)

30. Parabolic cylinder The parabolic cylinder surface r(x, y) =
xi + yj - x2k, -q 6 x 6 q, -q 6 y 6 q, at the point 
P0(1, 2, -1) corresponding to (x, y) = (1, 2)

More Parametrizations of Surfaces
31. a. A torus of revolution (doughnut) is obtained by rotating a circle 

C in the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius r 7 0 and center (R, 0, 0), show 
that a parametrization of the torus is

r(u, y) = ((R + r cos u)cos y)i

+ ((R + r cos u)sin y)j + (r sin u)k,

      where 0 … u … 2p and 0 … y … 2p are the angles in the 
figure.

Exercises 16.5
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b. Show that the surface area of the torus is A = 4p2Rr.

x
0

C

ur

R

u
yx

z

z

y

32. Parametrization of a surface of revolution Suppose that the 
parametrized curve C: (ƒ(u), g(u)) is revolved about the x-axis,
where g(u) 7 0 for a … u … b.

a. Show that

r(u, y) = ƒ(u)i + (g(u)cos y)j + (g(u)sin y)k

  is a parametrization of the resulting surface of revolution, 
where 0 … y … 2p is the angle from the xy-plane to the 
point r(u, y) on the surface. (See the accompanying figure.) 
Notice that ƒ(u) measures distance along the axis of revolu-
tion and g(u) measures distance from the axis of revolution.

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

b. Find a parametrization for the surface obtained by revolving 
the curve x = y2, y Ú 0, about the x-axis.

33. a. Parametrization of an ellipsoid The parametrization 
x = a cos u, y = b sin u, 0 … u … 2p gives the ellipse 
(x2>a2) + (y2>b2) = 1. Using the angles u and f in spheri-
cal coordinates, show that

r(u, f) = (a cos u cos f)i + (b sin u cos f)j + (c sin f)k

is a parametrization of the ellipsoid (x2>a2) + (y2>b2) +
(z2>c2) = 1.

b. Write an integral for the surface area of the ellipsoid, but do 
not evaluate the integral.

34. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet 
x2 + y2 - z2 = 1 in terms of the angle u associated with the 
circle x2 + y2 = r2 and the hyperbolic parameter u associ-
ated with the hyperbolic function r2 - z2 = 1. (Hint:
cosh2 u - sinh2 u = 1.)

b. Generalize the result in part (a) to the hyperboloid 
(x2>a2) + (y2>b2) - (z2>c2) = 1.

35. (Continuation of Exercise 34.) Find a Cartesian equation for the 
plane tangent to the hyperboloid x2 + y2 - z2 = 25 at the point 
(x0, y0, 0), where x0

2 + y0
2 = 25.

36. Hyperboloid of two sheets Find a parametrization of the 
hyperboloid of two sheets (z2>c2) - (x2>a2) - (y2>b2) = 1.

Surface Area for Implicit and Explicit Forms
37. Find the area of the surface cut from the paraboloid x2 + y2 - z =

0 by the plane z = 2.

38. Find the area of the band cut from the paraboloid x2 + y2 - z =
0 by the planes z = 2 and z = 6.

39. Find the area of the region cut from the plane x + 2y + 2z = 5
by the cylinder whose walls are x = y2 and x = 2 - y2.

40. Find the area of the portion of the surface x2 - 2z = 0 that lies 
above the triangle bounded by the lines x = 23, y = 0, and 
y = x in the xy-plane.

41. Find the area of the surface x2 - 2y - 2z = 0 that lies above the 
triangle bounded by the lines x = 2, y = 0, and y = 3x in the 
xy-plane.

42. Find the area of the cap cut from the sphere x2 + y2 + z2 = 2 by 
the cone z = 2x2 + y2.

43. Find the area of the ellipse cut from the plane z = cx (c a con-
stant) by the cylinder x2 + y2 = 1.

44. Find the area of the upper portion of the cylinder x2 + z2 = 1
that lies between the planes x = {1>2 and y = {1>2.

45. Find the area of the portion of the paraboloid x = 4 - y2 - z2

that lies above the ring 1 … y2 + z2 … 4 in the yz-plane.

46. Find the area of the surface cut from the paraboloid x2 + y + z2 =
2 by the plane y = 0.

47. Find the area of the surface x2 - 2 ln x + 215y - z = 0 above 
the square R: 1 … x … 2, 0 … y … 1, in the xy-plane.

48. Find the area of the surface 2x3>2 + 2y3>2 - 3z = 0 above the 
square R: 0 … x … 1, 0 … y … 1, in the xy-plane.

Find the area of the surfaces in Exercises 49–54.

49. The surface cut from the bottom of the paraboloid z = x2 + y2

by the plane z = 3

50. The surface cut from the “nose” of the paraboloid x = 1 -
y2 - z2 by the yz-plane

51. The portion of the cone z = 2x2 + y2 that lies over the region 
between the circle x2 + y2 = 1 and the ellipse 9x2 + 4y2 = 36
in the xy-plane. (Hint: Use formulas from geometry to find the 
area of the region.)

52. The triangle cut from the plane 2x + 6y + 3z = 6 by the bound-
ing planes of the first octant. Calculate the area three ways, using 
different explicit forms.

53. The surface in the first octant cut from the cylinder y = (2>3)z3>2
by the planes x = 1 and y = 16>3
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54. The portion of the plane y + z = 4 that lies above the region cut 
from the first quadrant of the xz-plane by the parabola x = 4 - z2

55. Use the parametrization

r(x, z) = xi + ƒ(x, z)j + zk

  and Equation (5) to derive a formula for ds associated with the 
explicit form y = ƒ(x, z).

56. Let S be the surface obtained by rotating the smooth curve 
y = ƒ(x), a … x … b, about the x-axis, where ƒ(x) Ú 0.

a. Show that the vector function

r(x, u) = xi + ƒ(x) cos uj + ƒ(x) sin uk

  is a parametrization of S, where u is the angle of rotation 
around the x-axis (see the accompanying figure).

y

x

z

0

(x, y, z)

z u

f (x)

b. Use Equation (4) to show that the surface area of this surface 
of revolution is given by

A =
L

b

a
2pƒ(x)21 + 3ƒ′(x)42 dx.

16.6 Surface Integrals

To compute the mass of a surface, the flow of a liquid across a curved membrane, or the 
total electrical charge on a surface, we need to integrate a function over a curved surface in 
space. Such a surface integral is the two-dimensional extension of the line integral con-
cept used to integrate over a one-dimensional curve. Like line integrals, surface integrals 
arise in two forms. One form occurs when we integrate a scalar function over a surface, 
such as integrating a mass density function defined on a surface to find its total mass. This 
form corresponds to line integrals of scalar functions defined in Section 16.1, and we used 
it to find the mass of a thin wire. The second form is for surface integrals of vector fields, 
analogous to the line integrals for vector fields defined in Section 16.2. An example of this 
form occurs when we want to measure the net flow of a fluid across a surface submerged 
in the fluid (just as we previously defined the flux of F across a curve). In this section we 
investigate these ideas and some of their applications.

Surface Integrals

Suppose that the function G(x, y, z) gives the mass density (mass per unit area) at each 
point on a surface S. Then we can calculate the total mass of S as an integral in the follow-
ing way.

Assume, as in Section 16.5, that the surface S is defined parametrically on a region R
in the uy-plane,

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k, (u, y)∊R.

In Figure 16.46, we see how a subdivision of R (considered as a rectangle for simplicity) 
divides the surface S into corresponding curved surface elements, or patches, of area

∆suy ≈ 0 ru * ry 0 du dy.

As we did for the subdivisions when defining double integrals in Section 15.2, we num-
ber the surface element patches in some order with their areas given by ∆s1, ∆s2 , . . . , ∆sn.
To form a Riemann sum over S, we choose a point (xk , yk , zk) in the kth patch, multiply the 
value of the function G at that point by the area ∆sk , and add together the products:

a

n

k=1
G(xk , yk , zk)∆sk .

yx

z

Δuru

ΔyryPk

Δsk = Δsuy

(xk, yk, zk)

FIGURE 16.46 The area of the patch 
∆sk is approximated by the area of the 
tangent parallelogram determined by 
the vectors ∆u ru and ∆y ry . The point 
(xk , yk , zk) lies on the surface patch, 
beneath the parallelogram shown here.



1004 Chapter 16: Integrals and Vector Fields

Depending on how we pick (xk , yk , zk) in the kth patch, we may get different values for this 
Riemann sum. Then we take the limit as the number of surface patches increases, their 
areas shrink to zero, and both ∆u S 0 and ∆yS 0. This limit, whenever it exists inde-
pendent of all choices made, defines the surface integral of G over the surface S as

O
S

G(x , y , z) ds = lim
nSq a

n

k=1
G(xk , yk , zk)∆sk . (1)

Notice the analogy with the definition of the double integral (Section 15.2) and with the 
line integral (Section 16.1). If S is a piecewise smooth surface, and G is continuous over S,
then the surface integral defined by Equation (1) can be shown to exist.

The formula for evaluating the surface integral depends on the manner in which S is 
described, parametrically, implicitly or explicitly, as discussed in Section 16.5.

Formulas for a Surface Integral of a Scalar Function

1. For a smooth surface S defined parametrically as r(u, y) = ƒ(u, y)i +
g(u, y)j + h(u, y)k, (u, y)∊R, and a continuous function G(x, y, z) defined 
on S, the surface integral of G over S is given by the double integral over R,

O
S

G(x, y, z) ds =
O
R

G(ƒ(u, y), g(u, y), h(u, y)) 0 ru * ry 0 du dy. (2)

2. For a surface S given implicitly by F(x, y, z) = c, where F is a continuously 
differentiable function, with S lying above its closed and bounded shadow re-
gion R in the coordinate plane beneath it, the surface integral of the continu-
ous function G over S is given by the double integral over R,

O
S

G(x, y, z) ds =
O
R

G(x, y, z)
0 ∇F 0
0 ∇F # p 0 dA, (3)

where p is a unit vector normal to R and ∇F # p ≠ 0.

3. For a surface S given explicitly as the graph of z = ƒ(x, y), where ƒ is a con-
tinuously differentiable function over a region R in the xy-plane, the surface 
integral of the continuous function G over S is given by the double integral 
over R,

O
S

G(x, y, z) ds =
O
R

G(x, y, ƒ(x, y)) 2ƒx
2 + ƒy

2 + 1 dx dy. (4)

The surface integral in Equation (1) takes on different meanings in different applica-
tions. If G has the constant value 1, the integral gives the area of S. If G gives the mass 
density of a thin shell of material modeled by S, the integral gives the mass of the shell. If 
G gives the charge density of a thin shell, then the integral gives the total charge.
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EXAMPLE 1  Integrate G(x, y, z) = x2 over the cone z = 2x2 + y2, 0 … z … 1.

Solution Using Equation (2) and the calculations from Example 4 in Section 16.5, we 
have 0 rr * ru 0 = 22r and

O
S

x2 ds =
L

2p

0 L

1

0
1r2 cos2u2122r2 dr du x = r cos u

= 22
L

2p

0 L

1

0
r3 cos2u dr du

= 22
4 L

2p

0
cos2u du = 22

4
c u
2

+ 1
4

sin 2u d
0

2p

= p22
4

.

Surface integrals behave like other double integrals, the integral of the sum of two func-
tions being the sum of their integrals and so on. The domain Additivity Property takes the form

O
S

G ds =
O

S1

G ds +
O

S2

G ds + g +
O

Sn

G ds.

When S is partitioned by smooth curves into a finite number of smooth patches with non-
overlapping interiors (i.e., if S is piecewise smooth), then the integral over S is the sum of 
the integrals over the patches. Thus, the integral of a function over the surface of a cube is 
the sum of the integrals over the faces of the cube. We integrate over a turtle shell of 
welded plates by integrating over one plate at a time and adding the results.

EXAMPLE 2  Integrate G(x, y, z) = xyz over the surface of the cube cut from the first 
octant by the planes x = 1, y = 1, and z = 1 (Figure 16.47).

Solution We integrate xyz over each of the six sides and add the results. Since xyz = 0 on 
the sides that lie in the coordinate planes, the integral over the surface of the cube reduces to

O
Cube

surface

xyz ds =
O

Side A

xyz ds +
O

Side B

xyz ds +
O

Side C

xyz ds.

Side A is the surface ƒ(x, y, z) = z = 1 over the square region Rxy: 0 … x … 1,
0 … y … 1, in the xy-plane. For this surface and region,

p = k, ∇ƒ = k, 0 ∇ƒ 0 = 1, 0 ∇ƒ # p 0 = 0 k # k 0 = 1

ds =
0 ∇ƒ 0
0 ∇ƒ # p 0 dA = 1

1
dx dy = dx dy

xyz = xy(1) = xy

and

O
Side A

xyz ds =
O
Rxy

xy dx dy =
L

1

0 L

1

0
xy dx dy =

L

1

0

y
2

dy = 1
4

.

1

1

1

0

z

y

x
Side B

Side C

Side A

FIGURE 16.47 The cube in Example 2.
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Symmetry tells us that the integrals of xyz over sides B and C are also 1 >4. Hence,

O
Cube

surface

xyz ds = 1
4

+ 1
4

+ 1
4

= 3
4

.

EXAMPLE 3  Integrate G(x, y, z) = 21 - x2 - y2 over the “football” surface S
formed by rotating the curve x = cos z, y = 0, -p>2 … z … p>2, around the z-axis.

Solution The surface is displayed in Figure 16.43, and in Example 6 of Section 16.5 we 
found the parametrization

x = cos u cos y, y = cos u sin y, z = u, - p
2

… u … p
2

and 0 … y … 2p,

where y represents the angle of rotation from the xz-plane about the z-axis. Substituting 
this parametrization into the expression for G gives

21 - x2 - y2 = 21 - (cos2 u)(cos2 y + sin2 y) = 21 - cos2 u = 0 sin u 0 .
The surface area differential for the parametrization was found to be (Example 6, 
Section 16.5)

ds = cos u 21 + sin2 u du dy.

These calculations give the surface integral

O
S

21 - x2 - y2 ds =
L

2p

0 L

p>2

-p>2
0 sin u 0 cos u21 + sin2 u du dy

= 2
L

2p

0 L

p>2

0
sin u cos u21 + sin 2u du dy

=
L

2p

0 L

2

1
2w dw dy

w = 1 + sin2 u,
dw = 2 sin u cos u du
When u = 0, w = 1.
When u = p>2, w = 2.

= 2p ~ 2
3 w3>2 d 2

1
= 4p

3 1222 - 12.

EXAMPLE 4  Evaluate 4S 2x(1 + 2z) ds on the portion of the cylinder z = y2>2
over the triangular region R: x Ú 0, y Ú 0, x + y … 1 in the xy-plane (Figure 16.48).

Solution The function G on the surface S is given by

G(x, y, z) = 2x(1 + 2z) = 2x21 + y2.

With z = ƒ(x, y) = y2>2, we use Equation (4) to evaluate the surface integral:

ds = 2fx
2 + fy 2 + 1 dx dy = 20 + y2 + 1 dx dy

0, 1,
1
2

z = y21
2

1

1
y

x

z

x + y = 1

a b

FIGURE 16.48 The surface S in 
Example 4.
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and

O
S

G(x, y, z) ds =
O
R

12x21 + y2221 + y2 dx dy

=
L

1

0 L

1-x

0
2x (1 + y2) dy dx

=
L

1

0
2x c (1 - x) + 1

3 (1 - x)3 d dx Integrate and evaluate.

=
L

1

0
a43 x1>2 - 2x3>2 + x5>2 - 1

3 x7>2b dx Routine algebra

= c 89 x3>2 - 4
5

x5>2 + 2
7 x7>2 - 2

27
x9>2 d 1

0

= 8
9 - 4

5
+ 2

7 - 2
27

= 284
945

≈ 0.30.

Orientation of a Surface

The curve C in a line integral inherits a natural orientation from its parametrization r(t)
because the parameter belongs to an interval a … t … b directed by the real line. The 
unit tangent vector T along C points in this forward direction. For a surface S, the 
parametrization r(u, y) gives a vector ru * ry that is normal to the surface, but if S has 
two “sides,” then at each point the negative -(ru * ry) is also normal to the surface, so 
we need to choose which direction to use. For example, if you look at the sphere in 
Figure 16.38, at any point on the sphere there is a normal vector pointing inward 
toward the center of the sphere and another opposite normal pointing outward. When 
we specify which of these normals we are going to use consistently across the entire 
surface, the surface is given an orientation. A smooth surface S is orientable (or two-
sided) if it is possible to define a field of unit normal vectors n on S which varies con-
tinuously with position. Any patch or subportion of an orientable surface is orientable. 
Spheres and other smooth closed surfaces in space (smooth surfaces that enclose sol-
ids) are orientable. By convention, we usually choose n on a closed surface to point 
outward.

Once n has been chosen, we say that we have oriented the surface, and we call the 
surface together with its normal field an oriented surface. The vector n at any point is 
called the positive direction at that point (Figure 16.49).

The Möbius band in Figure 16.50 is not orientable. No matter where you start to con-
struct a continuous unit normal field (shown as the shaft of a thumbtack in the figure), 
moving the vector continuously around the surface in the manner shown will return it to 
the starting point with a direction opposite to the one it had when it started out. The vector 
at that point cannot point both ways and yet it must if the field is to be continuous. We 
conclude that no such field exists.

Surface Integrals of Vector Fields

In Section 16.2 we defined the line integral of a vector field along a path C as 1C F # T ds,
where T is the unit tangent vector to the path pointing in the forward oriented direction. 
By analogy we now have the following corresponding definition for surface integrals.

n
Positive
direction

FIGURE 16.49 Smooth closed surfaces 
in space are orientable. The outward unit 
normal vector defines the positive direc-
tion at each point.

d c

a b
Start

Finish
d b

ca

FIGURE 16.50 To make a Möbius 
band, take a rectangular strip of paper 
abcd, give the end bc a single twist, and 
paste the ends of the strip together to match 
a with c and b with d. The Möbius band is 
a nonorientable or one-sided surface.
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The surface integral of F is also called the flux of the vector field across the oriented sur-
face S (analogous to the definition of flux of a vector field in the xy-plane across a closed 
curve in the plane, as defined in Section 16.2). The expression F # n ds in the integral (5) 
is also written as F # dS, which corresponds to the notation F # dr used for F # T ds in line 
integrals for vector fields. If F is the velocity field of a three-dimensional fluid flow, then 
the flux of F across S is the net rate at which fluid is crossing S per unit time in the chosen 
positive direction n defined by the orientation of S. Fluid flows are discussed in more 
detail in Section 16.7, so here we focus on several examples calculating surface integrals 
of vector fields.

EXAMPLE 5  Find the flux of F = yzi + xj - z2k through the parabolic cylinder 
y = x2, 0 … x … 1, 0 … z … 4, in the direction n indicated in Figure 16.51.

Solution On the surface we have x = x, y = x2, and z = z, so we automatically have 
the parametrization r(x, z) = xi + x2j + zk, 0 … x … 1, 0 … z … 4. The cross product 
of tangent vectors is

rx * rz = 3 i j k
1 2x 0

0 0 1

3 = 2xi - j.

The unit normal vectors pointing outward from the surface as indicated in Figure 16.51 are

n =
rx * rz

� rx * rz �
=

2xi - j

24x2 + 1
.

On the surface, y = x2, so the vector field there is

F = yzi + xj - z2k = x2zi + xj - z2k.

Thus,

F # n = 1

24x2 + 1
( (x2z)(2x) + (x)(-1) + (-z2)(0))

= 2x3z - x

24x2 + 1
.

DEFINITION Let F be a vector field in three-dimensional space with continuous 
components defined over a smooth surface S having a chosen field of normal 
unit vectors n orienting S. Then the surface integral of F over S is

O
S

F # n ds. (5)

z

x

y

n

1

1

4

(1, 0, 4) y = x2

FIGURE 16.51 Finding the flux 
through the surface of a parabolic 
cylinder (Example 5).
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The flux of F outward through the surface is

O
S

F # n ds =
L

4

0 L

1

0

2x3z - x

24x2 + 1
0 rx * rz 0 dx dz

=
L

4

0 L

1

0

2x3z - x

24x2 + 1
24x2 + 1 dx dz

=
L

4

0 L

1

0

(2x3z - x) dx dz =
L

4

0
c 1
2

x4z - 1
2

x2 d
x=0

x=1

dz

=
L

4

0

1
2

(z - 1) dz = 1
4

(z - 1)2 d
0

4

= 1
4

 (9) - 1
4

 (1) = 2.

There is a simple formula for the flux of F across a parametrized surface r(u, y). Since

ds = 0 ru * ry 0 du dy,

with the orientation

n =
ru * ry0 ru * ry 0

it follows that

O
S

F # n ds =
O

R

F # ru * ry
� ru * ry �

� ru * ry � du dy =
O

R

F # (ru * ry) du dy.

This integral for flux simplifies the computation in Example 5. Since

F # (rx * rz) = (x2z)(2x) + (x)(-1) = 2x3z - x,

we obtain directly

Flux =
O
S

F # n ds =
L

4

0 L

1

0

(2x3z - x) dx dz = 2

in Example 5.
If S is part of a level surface g(x, y, z) = c, then n may be taken to be one of the two 

fields

n = {
∇g

0 ∇g 0 , (6)

depending on which one gives the preferred direction. The corresponding flux is

 Flux =
O

S

F # n ds

=
O
R

aF # {∇g

� ∇g �
b 0 ∇g 0
0 ∇g # p 0 dA Eqs. (6) and (3)

=
O
R

F # {∇g

0 ∇g # p 0 dA. (7)

Flux Across a Parametrized Surface

Flux =
O

R

F # (ru * ry) du dy
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EXAMPLE 6  Find the flux of F = yz j + z2k outward through the surface S cut 
from the cylinder y2 + z2 = 1, z Ú 0, by the planes x = 0 and x = 1.

Solution The outward normal field on S (Figure 16.52) may be calculated from the gradient 
of g(x, y, z) = y2 + z2 to be

n = +
∇g

� ∇g �
=

2yj + 2zk

24y2 + 4z2
=

2yj + 2zk

221
= yj + zk.

With p = k, we also have

ds =
0 ∇g 0

� ∇g # k �
dA = 2

� 2z �
dA = 1

z dA.

We can drop the absolute value bars because z Ú 0 on S.
The value of F # n on the surface is

F # n = (yz j + z2k) # (yj + zk)

= y2z + z3 = z( y2 + z2)
= z . y2 + z2 = 1 on S

The surface projects onto the shadow region Rxy, which is the rectangle in the xy-plane
shown in Figure 16.52. Therefore, the flux of F outward through S is

O
S

F # n ds =
O
Rxy

(z)a1z dAb =
O
Rxy

dA = area(Rxy) = 2.

Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces. Their 
moments and masses are calculated with the formulas in Table 16.3. The derivations are 
similar to those in Section 6.6. The formulas are like those for line integrals in Table 16.1, 
Section 16.1.

(1, 1, 0)
x

y

z

n

1

(1, −1, 0)

Rxy

y2 + z2 = 1

S

FIGURE 16.52 Calculating the flux of 
a vector field outward through the surface 
S. The area of the shadow region Rxy is 2 
(Example 6).

TABLE 16.3 Mass and moment formulas for very thin shells

Mass: M =
O

S

d ds d = d(x, y, z) = density at (x, y, z) as  mass per unit area

First moments about the coordinate planes:

Myz =
O

S

x d ds, Mxz =
O

S

y d ds, Mxy =
O

S

z d ds

Coordinates of center of mass:

x = Myz >M, y = Mxz >M, z = Mxy>M
Moments of inertia about coordinate axes:

Ix =
O

S

(y2 + z2) d ds,  Iy =
O

S

(x2 + z2) d ds, Iz =
O

S

(x2 + y2) d ds,

IL =
O

S

r2d ds r(x, y, z) = distance from point (x, y, z) to line L
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EXAMPLE 7  Find the center of mass of a thin hemispherical shell of radius a and 
constant density d.

Solution We model the shell with the hemisphere

ƒ(x, y, z) = x2 + y2 + z2 = a2, z Ú 0

(Figure 16.53). The symmetry of the surface about the z-axis tells us that x = y = 0. It 
remains only to find z from the formula z = Mxy >M.

The mass of the shell is

M =
O

S

d ds = d
O

S

ds = (d)(area of S) = 2pa2d. d = constant

To evaluate the integral for Mxy , we take p = k and calculate

0 ∇ƒ 0 = 0 2xi + 2yj + 2zk 0 = 22x2 + y2 + z2 = 2a

0 ∇ƒ # p 0 = 0 ∇ƒ # k 0 = 0 2z 0 = 2z

ds =
0 ∇ƒ 0

� ∇ƒ # p �
dA = a

z dA.

Then

Mxy =
O

S

zd ds = d
O
R

z
a
z dA = da

O
R

dA = da(pa2) = dpa3

z =
Mxy

M = pa3d

2pa2d
= a

2
.

The shell’s center of mass is the point (0, 0, a >2).

EXAMPLE 8  Find the center of mass of a thin shell of density d = 1>z2 cut from the 
cone z = 2x2 + y2 by the planes z = 1 and z = 2 (Figure 16.54).

Solution The symmetry of the surface about the z-axis tells us that x = y = 0. We find 
z = Mxy >M. Working as in Example 4 of Section 16.5, we have

r(r, u) = (r cos u)i + (r sin u)j + rk, 1 … r … 2, 0 … u … 2p,

and

0 rr * ru 0 = 22r.

Therefore,

M =
O

S

d ds =
L

2p

0 L

2

1

1
r222r dr du

= 22
L

2p

0
3 ln r4 1

2 du = 22
L

2p

0
 ln 2 du

= 2p22 ln 2,

z
x2 + y2 + z2 = a2

0, 0,
a

y

x2 + y2 = a2

a

x

R
a

2

S

a b

FIGURE 16.53 The center of mass of a 
thin hemispherical shell of constant density 
lies on the axis of symmetry halfway from 
the base to the top (Example 7).

y

z

x

1

2
z = "x2 + y2

FIGURE 16.54 The cone frustum 
formed when the cone z = 2x2 + y2

is cut by the planes z = 1 and z = 2
(Example 8).
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Mxy =
O

S

dz ds =
L

2p

0 L

2

1

1
r2 r22r dr du

= 22
L

2p

0 L

2

1
dr du

= 22
L

2p

0
du = 2p22,

z =
Mxy

M = 2p22

2p22 ln 2
= 1

ln 2
.

The shell’s center of mass is the point (0, 0, 1 > ln 2).

Surface Integrals of Scalar Functions
In Exercises 1–8, integrate the given function over the given surface.

1. Parabolic cylinder G(x, y, z) = x, over the parabolic cylinder 
y = x2, 0 … x … 2, 0 … z … 3

2. Circular cylinder G(x, y, z) = z, over the cylindrical surface 
y2 + z2 = 4, z Ú 0, 1 … x … 4

3. Sphere G(x, y, z) = x2, over the unit sphere x2 + y2 + z2 = 1

4. Hemisphere G(x, y, z) = z2, over the hemisphere x2 + y2 +
z2 = a2, z Ú 0

5. Portion of plane F(x, y, z) = z, over the portion of the plane 
x + y + z = 4 that lies above the square 0 … x … 1,
0 … y … 1, in the xy-plane

6. Cone F(x, y, z) = z - x, over the cone z = 2x2 + y2,
0 … z … 1

7. Parabolic dome H(x, y, z) = x225 - 4z, over the parabolic 
dome z = 1 - x2 - y2, z Ú 0

8. Spherical cap H(x, y, z) = yz, over the part of the sphere 
x2 + y2 + z2 = 4 that lies above the cone z = 2x2 + y2

9. Integrate G(x, y, z) = x + y + z over the surface of the cube cut 
from the first octant by the planes x = a, y = a, z = a.

10. Integrate G(x, y, z) = y + z over the surface of the wedge in the 
first octant bounded by the coordinate planes and the planes 
x = 2 and y + z = 1.

11. Integrate G(x, y, z) = xyz over the surface of the rectangular 
solid cut from the first octant by the planes x = a, y = b, and 
z = c.

12. Integrate G(x, y, z) = xyz over the surface of the rectangular 
solid bounded by the planes x = {a, y = {b, and z = {c.

13. Integrate G(x, y, z) = x + y + z over the portion of the plane 
2x + 2y + z = 2 that lies in the first octant.

14. Integrate G(x, y, z) = x2y2 + 4 over the surface cut from the 
parabolic cylinder y2 + 4z = 16 by the planes x = 0, x = 1,
and z = 0.

15. Integrate G(x, y, z) = z - x over the portion of the graph of 
z = x + y2 above the triangle in the xy-plane having vertices (0, 
0, 0), (1, 1, 0), and (0, 1, 0). (See accompanying figure.)

z

x

y

z = x + y2

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 1, 2)

1

1

1

16. Integrate G(x, y, z) = x over the surface given by

z = x2 + y for 0 … x … 1, -1 … y … 1.

17. Integrate G(x, y, z) = xyz over the triangular surface with verti-
ces (1, 0, 0), (0, 2, 0), and (0, 1, 1).

z

y

x (1, 0, 0)

(0, 1, 1)

(0, 2, 0)

1

18. Integrate G(x, y, z) = x - y - z over the portion of the plane 
x + y = 1 in the first octant between z = 0 and z = 1 (see the 
accompanying figure on the next page).

Exercises 16.6
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z

y

x

(1, 0, 1)

(0, 1, 1)

1

1

1

Finding Flux or Surface Integrals of Vector Fields
In Exercises 19–28, use a parametrization to find the flux 4S F # n ds
across the surface in the specified direction.

19. Parabolic cylinder F = z2i + xj - 3zk outward (normal 
away from the x-axis) through the surface cut from the parabolic 
cylinder z = 4 - y2 by the planes x = 0, x = 1, and z = 0

20. Parabolic cylinder F = x2j - xzk outward (normal away 
from the yz-plane) through the surface cut from the parabolic cyl-
inder y = x2, -1 … x … 1, by the planes z = 0 and z = 2

21. Sphere F = zk across the portion of the sphere x2 + y2 +
z2 = a2 in the first octant in the direction away from the origin

22. Sphere F = xi + yj + zk across the sphere x2 + y2 +
z2 = a2 in the direction away from the origin

23. Plane F = 2xyi + 2yzj + 2xzk upward across the portion of 
the plane x + y + z = 2a that lies above the square 0 … x … a,
0 … y … a, in the xy-plane

24. Cylinder F = xi + yj + zk outward through the portion of 
the cylinder x2 + y2 = 1 cut by the planes z = 0 and z = a

25. Cone F = xyi - zk outward (normal away from the z-axis)
through the cone z = 2x2 + y2, 0 … z … 1

26. Cone F = y2i + xzj - k outward (normal away from the 
z-axis) through the cone z = 22x2 + y2, 0 … z … 2

27. Cone frustum F = -xi - yj + z2k outward (normal away 
from the z-axis) through the portion of the cone z = 2x2 + y2

between the planes z = 1 and z = 2

28. Paraboloid F = 4xi + 4yj + 2k outward (normal away from 
the z-axis) through the surface cut from the bottom of the parabo-
loid z = x2 + y2 by the plane z = 1

In Exercises 29 and 30, find the surface integral of the field F over the 
portion of the given surface in the specified direction.

29. F(x, y, z) = - i + 2j + 3k

S: rectangular surface z = 0, 0 … x … 2, 0 … y … 3,
direction k

30. F(x, y, z) = yx2i - 2j + xzk

S: rectangular surface y = 0, -1 … x … 2, 2 … z … 7,
direction - j

In Exercises 31–36, use Equation (7) to find the surface integral of the 
field F over the portion of the sphere x2 + y2 + z2 = a2 in the first 
octant in the direction away from the origin.

31. F(x, y, z) = zk

32. F(x, y, z) = -yi + xj

33. F(x, y, z) = yi - xj + k

34. F(x, y, z) = zxi + zyj + z2k

35. F(x, y, z) = xi + yj + zk

36. F(x, y, z) =
xi + yj + zk

2x2 + y2 + z2

37. Find the flux of the field F(x, y, z) = z2i + xj - 3zk outward 
through the surface cut from the parabolic cylinder z = 4 - y2

by the planes x = 0, x = 1, and z = 0.

38. Find the flux of the field F(x, y, z) = 4xi + 4yj + 2k outward 
(away from the z-axis) through the surface cut from the bottom of 
the paraboloid z = x2 + y2 by the plane z = 1.

39. Let S be the portion of the cylinder y = ex in the first octant that 
projects parallel to the x-axis onto the rectangle Ryz: 1 … y … 2,
0 … z … 1 in the yz-plane (see the accompanying figure). Let n
be the unit vector normal to S that points away from the yz-plane.
Find the flux of the field F(x, y, z) = -2i + 2yj + zk across S in 
the direction of n.

z

yx

1

1

2
Sy = e x

Ry z

40. Let S be the portion of the cylinder y = ln x in the first octant 
whose projection parallel to the y-axis onto the xz-plane is the 
rectangle Rxz: 1 … x … e, 0 … z … 1. Let n be the unit vector 
normal to S that points away from the xz-plane. Find the flux of 
F = 2yj + zk through S in the direction of n.

41. Find the outward flux of the field F = 2xyi + 2yzj + 2xzk
across the surface of the cube cut from the first octant by the 
planes x = a, y = a, z = a.

42. Find the outward flux of the field F = xzi + yzj + k across the 
surface of the upper cap cut from the solid sphere 
x2 + y2 + z2 … 25 by the plane z = 3.

Moments and Masses
43. Centroid Find the centroid of the portion of the sphere 

x2 + y2 + z2 = a2 that lies in the first octant.

44. Centroid Find the centroid of the surface cut from the cylinder 
y2 + z2 = 9, z Ú 0, by the planes x = 0 and x = 3 (resembles 
the surface in Example 6).

45. Thin shell of constant density Find the center of mass and the 
moment of inertia about the z-axis of a thin shell of constant den-
sity d cut from the cone x2 + y2 - z2 = 0 by the planes z = 1
and z = 2.

46. Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density d cut from 
the cone 4x2 + 4y2 - z2 = 0, z Ú 0, by the circular cylinder 
x2 + y2 = 2x (see the accompanying figure).
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z

y

x 2

4x2 + 4y2 − z2 = 0

z ≥ 0

x2 + y2 = 2x
or

r = 2 cos u

47. Spherical shells

a. Find the moment of inertia about a diameter of a thin spheri-
cal shell of radius a and constant density d. (Work with a 
hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.6) and the result 
in part (a) to find the moment of inertia about a line tangent to 
the shell.

48. Conical Surface Find the centroid of the lateral surface of a 
solid cone of base radius a and height h (cone surface minus the 
base).

16.7 Stokes’ Theorem

To calculate the counterclockwise circulation of a two-dimensional vector field F = Mi + Nj
around a simple closed curve in the plane, Green’s Theorem says we can compute the double 
integral over the region enclosed by the curve of the scalar quantity (0N>0x - 0M>0y). This 
expression is the k-component of a curl vector field, which we define in this section, and it 
measures the rate of rotation of F at each point in the region around an axis parallel to k. For a 
vector field on three-dimensional space, the rotation at each point is around an axis that is 
parallel to the curl vector at that point. When a closed curve C in space is the boundary of an 
oriented surface, we will see that the circulation of F around C is equal to the surface integral 
of the curl vector field. This result extends Green’s Theorem from regions in the plane to gen-
eral surfaces in space having a smooth boundary curve. 

The Curl Vector Field

Suppose that F is the velocity field of a fluid flowing in space. Particles near the point 
(x, y, z) in the fluid tend to rotate around an axis through (x, y, z) that is parallel to a cer-
tain vector we are about to define. This vector points in the direction for which the rotation 
is counterclockwise when viewed looking down onto the plane of the circulation from the 
tip of the arrow representing the vector. This is the direction your right-hand thumb points 
when your fingers curl around the axis of rotation in the way consistent with the rotating 
motion of the particles in the fluid (see Figure 16.55). The length of the vector measures 
the rate of rotation. The vector is called the curl vector, and for the vector field 
F = Mi + Nj + Pk it is defined to be

curl F = a0P0y - 0N
0z b i + a0M0z - 0P

0xb j + a0N0x - 0M
0y bk. (1)

This information is a consequence of Stokes’ Theorem, the generalization to space of the 
circulation-curl form of Green’s Theorem and the subject of this section.

Notice that (curl F) # k = (0N>0x - 0M>0y) is consistent with our definition in Sec-
tion 16.4 when F = M(x, y)i + N(x, y)j. The formula for curl F in Equation (1) is often 
expressed with the symbolic operator

∇ = i 0
0x + j 0

0y + k 0
0z (2)

Curl F

(x, y, z)

FIGURE 16.55 The circulation vector 
at a point (x, y, z) in a plane in a three- 
dimensional fluid flow. Notice its right-
hand relation to the rotating particles in the 
fluid.
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to compute the curl of F as

∇ * F = 4 i j k

0
0x

0
0y

0
0z

M N P

4
= a0P0y - 0N

0z b i + a0M0z - 0P
0xb j + a0N0x - 0M

0y bk.

The symbol ∇  is pronounced “del,” and we often use this cross product notation to write 
the curl symbolically as “del cross F.”

curl F = ∇ * F (3)

EXAMPLE 1  Find the curl of F = (x2 - z)i + xezj + xyk.

Solution We use Equation (3) and the determinant form, so

curl F = ∇ * F

= 4 i j k

0
0x

0
0y

0
0z

x2 - z xez xy

4
= a 0

0y (xy) - 0
0z (xez)b i - a 0

0x (xy) - 0
0z (x2 - z)b j

+ a 0
0x (xez) - 0

0y (x2 - z)bk

= (x - xez)i - (y + 1)j + (ez - 0)k

= x(1 - ez)i - ( y + 1)j + ezk.

As we will see, the operator ∇  has a number of other applications. For instance, when 
applied to a scalar function ƒ(x, y, z), it gives the gradient of ƒ:

∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k.

It is sometimes read as “del ƒ” as well as “grad ƒ.”

Stokes’ Theorem

Stokes’ Theorem generalizes Green’s Theorem to three dimensions. The circulation-curl 
form of Green’s Theorem relates the counterclockwise circulation of a vector field around 
a simple closed curve C in the xy-plane to a double integral over the plane region R
enclosed by C. Stokes’ Theorem relates the circulation of a vector field around the bound-
ary C of an oriented surface S in space (Figure 16.56) to a surface integral over the surface 
S. We require that the surface be piecewise smooth, which means that it is a finite union of 
smooth surfaces joining along smooth curves.

nS

C

FIGURE 16.56 The orientation of the 
bounding curve C gives it a right-handed 
relation to the normal field n. If the thumb 
of a right hand points along n, the fingers 
curl in the direction of C.
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Notice from Equation (4) that if two different oriented surfaces S1 and S2 have the 
same boundary C, their curl integrals are equal:

O
S1

∇ * F # n1 ds =
O

S2

∇ * F # n2 ds.

Both curl integrals equal the counterclockwise circulation integral on the left side of Equa-
tion (4) as long as the unit normal vectors n1 and n2 correctly orient the surfaces. So the 
curl integral is independent of the surface and depends only on circulation along the 
boundary curve. This independence of surface resembles the path independence for 
the flow integral of a conservative velocity field along a curve, where the value of the flow 
integral depends only on the endpoints (that is, the boundary points) of the path. The curl 
field ∇ * F is analogous to the gradient field ∇f  of a scalar function ƒ.

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the 
xy-plane bounded by C, then ds = dx dy and

(∇ * F) # n = (∇ * F) # k = a0N0x - 0M
0y b .

Under these conditions, Stokes’ equation becomes

F
C

F # dr =
O

R

a0N0x - 0M
0y b dx dy,

which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by 
reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for two-
dimensional fields in del notation as

F
C

F # dr =
O

R

∇ * F # k dA. (5)

See Figure 16.57.

EXAMPLE 2  Evaluate Equation (4) for the hemisphere S: x2 + y2 + z2 = 9, z Ú 0,
its bounding circle C: x2 + y2 = 9, z = 0, and the field F = yi - xj.

Solution The hemisphere looks much like the surface in Figure 16.56 with the bounding 
circle C in the xy-plane (see Figure 16.58). We calculate the counterclockwise circulation 

THEOREM 6—Stokes’ Theorem Let S be a piecewise smooth oriented surface 
having a piecewise smooth boundary curve C. Let F = Mi + Nj + Pk be a 
vector field whose components have continuous first partial derivatives on an 
open region containing S. Then the circulation of F around C in the direction 
counterclockwise with respect to the surface’s unit normal vector n equals the 
integral of the curl vector field ∇ * F over S:

F
C

F # dr =
O

S

∇ * F # n ds (4)

Counterclockwise Curl integral
 circulation

Circulation

Curl

Curl

k

n

S

R

Circulation

Green:

Stokes:

FIGURE 16.57 Comparison of Green’s 
Theorem and Stokes’ Theorem.

y

z

x

n
x2 + y2 + z2 = 9

C: x2 + y2 = 9

k
y

z

x

FIGURE 16.58 A hemisphere and a disk,
each with boundary C (Examples 2 and 3).
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around C (as viewed from above) using the parametrization r(u) = (3 cos u)i +
(3 sin u)j, 0 … u … 2p:

dr = (-3 sin u du)i + (3 cos u du)j

F = yi - xj = (3 sin u)i - (3 cos u)j

F # dr = -9 sin2 u du - 9 cos2 u du = -9 du

F
C

F # dr =
L

2p

0
-9 du = -18p.

For the curl integral of F, we have

∇ * F = a0P0y - 0N
0z b i + a0M0z - 0P

0xb j + a0N0x - 0M
0y bk

= (0 - 0)i + (0 - 0)j + (-1 - 1)k = -2k

n =
xi + yj + zk

2x2 + y2 + z2
=

xi + yj + zk
3 Outer unit normal

ds = 3
z dA

Section 16.6, Example 7, 
with a = 3

∇ * F # n ds = - 2z
3

3
z dA = -2 dA

and

O
S

∇ * F # n ds =
O

x2+y2…9

-2 dA = -18p.

The circulation around the circle equals the integral of the curl over the hemisphere, as it 
should from Stokes’ Theorem.

The surface integral in Stokes’ Theorem can be computed using any surface having 
boundary curve C, provided the surface is properly oriented and lies within the domain of 
the field F. The next example illustrates this fact for the circulation around the curve C in 
Example 2.

EXAMPLE 3  Calculate the circulation around the bounding circle C in Example 2 
using the disk of radius 3 centered at the origin in the xy-plane as the surface S (instead of 
the hemisphere). See Figure 16.58.

Solution As in Example 2, ∇ * F = -2k. For the surface being the described disk in 
the xy-plane, we have the normal vector n = k so that

∇ * F # n ds = -2k # k dA = -2 dA

and

O
S

∇ * F # n ds =
O

x2+y2…9

-2 dA = -18p,

a simpler calculation than before.

EXAMPLE 4  Find the circulation of the field F = (x2 - y)i + 4z j + x2k around 
the curve C in which the plane z = 2 meets the cone z = 2x2 + y2, counterclockwise as 
viewed from above (Figure 16.59).

y

z

x

n

S: r(r, u) = (r cos u)i + (r sin u)j + rk

C: x2 + y2 = 4, z = 2

FIGURE 16.59 The curve C and cone S
in Example 4.
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Solution Stokes’ Theorem enables us to find the circulation by integrating over the sur-
face of the cone. Traversing C in the counterclockwise direction viewed from above cor-
responds to taking the inner normal n to the cone, the normal with a positive k-component.

We parametrize the cone as

r(r, u) = (r cos u)i + (r sin u)j + rk, 0 … r … 2, 0 … u … 2p.

We then have

n =
rr * ru
� rr * ru �

=
-(r cos u)i - (r sin u)j + rk

r22
Section 16.5, Example 4

= 1

22
1-(cos u)i - (sin u)j + k2

ds = r22 dr du Section 16.5, Example 4

∇ * F = -4i - 2xj + k Routine calculation

= -4i - 2r cos uj + k. x = r cos u

Accordingly,

∇ * F # n = 1

22
a4 cos u + 2r cos u sin u + 1b

= 1

22
a4 cos u + r sin 2u + 1b

and the circulation is

F
C

F # dr =
O

S

∇ * F # n ds Stokes’ Theorem, Eq. (4)

=
L

2p

0 L

2

0

1

22
14 cos u + r sin 2u + 121r22 dr du2 = 4p.

EXAMPLE 5  The cone used in Example 4 is not the easiest surface to use for calcu-
lating the circulation around the bounding circle C lying in the plane z = 3. If instead we 
use the flat disk of radius 3 centered on the z-axis and lying in the plane z = 3, then the 
normal vector to the surface S is n = k. Just as in the computation for Example 4, we still 
have ∇ * F = -4i - 2xj + k. However, now we get ∇ * F # n = 1, so that

O
S

∇ * F # n ds =
O

x2+y2…4

1 dA = 4p. The shadow is the disk of radius 2 in the xy-plane.

This result agrees with the circulation value found in Example 4.

EXAMPLE 6  Find a parametrization for the surface S formed by the part of the hyper-
bolic paraboloid z = y2 - x2 lying inside the cylinder of radius one around the z-axis and 
for the boundary curve C of S. (See Figure 16.60.) Then verify Stokes’ Theorem for S using 
the normal having positive k-component and the vector field F = yi - xj + x2k.

Solution As the unit circle is traversed counterclockwise in the xy-plane, the z-coordinate 
of the surface with the curve C as boundary is given by y2 - x2. A parametrization of C is 
given by

r(t) = (cos t)i + (sin t)j + (sin2 t - cos2 t)k, 0 … t … 2p

y

x

S

z

C

n

1

1

−1

1

y

x

S

z

C

1

n

FIGURE 16.60 The surface and vector 
field for Example 6.
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with
dr
dt

= (-sin t)i + (cos t)j + (4 sin t cos t)k,  0 … t … 2p.

Along the curve r(t) the formula for the vector field F is

F = (sin t)i - (cos t)j + (cos2 t)k.

The counterclockwise circulation along C is the value of the line integral

L

2p

0
F # dr

dt
dt =

L

2p

0
a-sin2 t - cos2 t + 4 sin t cos3 tb dt

=
L

2p

0
a4 sin t cos3 t - 1b dt

= c-cos4 t - t d 2p
0

= -2p.

We now compute the same quantity by integrating ∇ * F # n over the surface S. We 
use polar coordinates and parametrize S by noting that above the point (r, u) in the plane, 
the z–coordinate of S is y2 - x2 = r2 sin2 u - r2 cos2 u. A parametrization of S is

r(r, u) = (r cos u)i + (r sin u)j + r2(sin2 u - cos2 u)k, 0 … r … 1, 0 … u … 2p.

We next compute ∇ * F # n ds. We have

∇ * F = 4 i j k

0
0x

0
0y

0
0z

y -x x2

4 = -2xj - 2k = -(2r cos u)j - 2k

and

rr = ( cos u)i + ( sin u)j + 2r( sin2 u -  cos2 u)k

ru = (-r sin u)i + (r cos u)j + 4r2( sin u cos u)k

rr * ru = †
i j k

cos u sin u 2r(sin2 u - cos2 u)

-r sin u r cos u 4r2(sin u cos u)

†
= 2r2(2 sin2 u cos u -  sin2 u cos u +  cos3 u)i

-2r2(2 sin u cos2 u +  sin3 u +  sin u cos2 u)j + rk.

We now obtain

O
S

∇ * F # n ds =
L

2p

0 L

1

0
∇ * F # rr * ru0 rr * ru 0 0 rr * ru 0 dr du

=
L

2p

0 L

1

0
∇ * F # (rr * ru) dr du

=
L

2p

0 L

1

0
34r312 sin u cos3 u + sin3 u cos u + sin u cos3 u2 - 2r4 dr du

=
L

2p

0
c r4(3 sin u cos3 u +  sin3 u cos u) - r2 d r=1

r=0 
du Integrate.

=
L

2p

0

(3 sin u cos3 u +  sin3 u cos u - 1) du Evaluate.

= c- 3
4

 cos4 u + 1
4

 sin4 u - u d 2p
0

= a- 3
4

+ 0 - 2p + 3
4

- 0 + 0b = -2p.
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So the surface integral of ∇ * F # n over S equals the counterclockwise circulation of F
along C, as asserted by Stokes’ Theorem.

EXAMPLE 7  Calculate the circulation of the vector field

F = (x2 + z)i + (y2 + 2x)j + (z2 - y)k

along the curve of intersection of the sphere x2 + y2 + z2 = 1 with the cone 
z = 2x2 + y2 traversed in the counterclockwise direction around the z-axis when viewed 
from above.

Solution The sphere and cone intersect when 1 = (x2 + y2) + z2 = z2 + z2 = 2z2, or 
z = 1>22 (see Figure 16.61). We apply Stokes’ Theorem to the curve of intersection 
x2 + y2 = 1>2 considered as the boundary of the enclosed disk in the plane z = 1>22.
The normal vector to the surface is then n = k. We calculate the curl vector as

∇ * F = ∞
i j k

0
0x

0
0y

0
0z

x2 + z y2 + 2x z2 - y

∞ = - i + j + 2k, Routine calculation

so that ∇ * F # k = 2. The circulation around the disk is

F
C

F # dr =
O

S

∇ * F # k ds

  =
O

S

2 ds = 2 # area of disk = 2 # pa 1

22
b2

= p.

Paddle Wheel Interpretation of ∇ : F

Suppose that F is the velocity field of a fluid moving in a region R in space containing the 
closed curve C. Then

F
C

F # dr

is the circulation of the fluid around C. By Stokes’ Theorem, the circulation is equal to the 
flux of ∇ * F through any suitably oriented surface S with boundary C:

F
C

F # dr =
O
S

∇ * F # n ds.

Suppose we fix a point Q in the region R and a direction u at Q. Take C to be a circle of 
radius r, with center at Q, whose plane is normal to u. If ∇ * F is continuous at Q, the 
average value of the u-component of ∇ * F over the circular disk S bounded by C
approaches the u-component of ∇ * F at Q as the radius rS 0:

(∇ * F # u)Q = lim
rS0

1
pr2

O
S

∇ * F # u ds.

y
x

z

1

1

Sphere
x2 + y2 + z2 = 1

Circle C in the
plane z =

Cone
z = "x2 + y2

"

2

1

1

FIGURE 16.61 Circulation curve C in 
Example 7.
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If we apply Stokes’ Theorem and replace the surface integral by a line integral over C, we get

(∇ * F # u)Q = lim
rS0

1
pr2

F
C

F # dr. (6)

The left-hand side of Equation (6) has its maximum value when u is the direction of 
∇ * F. When r is small, the limit on the right-hand side of Equation (6) is approximately

1
pr2

F
C

F # dr,

which is the circulation around C divided by the area of the disk (circulation density). Sup-
pose that a small paddle wheel of radius r is introduced into the fluid at Q, with its axle 
directed along u (Figure 16.62). The circulation of the fluid around C affects the rate of 
spin of the paddle wheel. The wheel spins fastest when the circulation integral is maxi-
mized; therefore it spins fastest when the axle of the paddle wheel points in the direction 
of ∇ * F.

EXAMPLE 8  A fluid of constant density rotates around the z-axis with velocity 
F = v(-yi + xj), where v is a positive constant called the angular velocity of the rota-
tion (Figure 16.63). Find ∇ * F and relate it to the circulation density.

Solution With F = -vyi + vxj, we find the curl

∇ * F = a0P0y - 0N
0z b i + a0M0z - 0P

0xb j + a0N0x - 0M
0y bk

= (0 - 0)i + (0 - 0)j + (v - (-v))k = 2vk.

By Stokes’ Theorem, the circulation of F around a circle C of radius r bounding a disk S
in a plane normal to ∇ * F, say the xy-plane, is

F
C

F # dr =
O
S

∇ * F # n ds =
O

S

2vk # k dx dy = (2v)(pr2).

Thus solving this last equation for 2v, we have

(∇ * F) # k = 2v = 1
pr2

F
C

F # dr,

consistent with Equation (6) when u = k.

EXAMPLE 9  Use Stokes’ Theorem to evaluate 1C F # dr, if F = xzi + xyj + 3xzk
and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, tra-
versed counterclockwise as viewed from above (Figure 16.64).

Solution The plane is the level surface ƒ(x, y, z) = 2 of the function ƒ(x, y, z) = 2x +
y + z. The unit normal vector

n =
∇ƒ

� ∇ƒ �
=

(2i + j + k)

� 2i + j + k �
= 1

26
a2i + j + kb

Q

Curl F

FIGURE 16.62 A small paddle wheel 
in a fluid spins fastest at point Q when its 
axle points in the direction of curl F.

x

y

r

0

z

 P(x, y, z)

v

P(x, y, 0)

F = v(−yi + xj)

FIGURE 16.63 A steady rotational 
flow parallel to the xy-plane, with constant 
angular velocity v in the positive (counter-
clockwise) direction (Example 8).

y

z

x

R(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

n

2x + y + z = 2

y = 2 − 2x

FIGURE 16.64 The planar surface in 
Example 9.



is consistent with the counterclockwise motion around C. To apply Stokes’ Theorem, we find

curl F = ∇ * F = 4 i j k

0
0x

0
0y

0
0z

xz xy 3xz

4 = (x - 3z)j + yk.

On the plane, z equals 2 - 2x - y, so

∇ * F = (x - 3(2 - 2x - y))j + yk = (7x + 3y - 6)j + yk

and

∇ * F # n = 1

26
a7x + 3y - 6 + yb = 1

26
a7x + 4y - 6b .

The surface area element is

ds =
0 ∇ƒ 0

� ∇ƒ # k � dA = 26
1
dxdy.

The circulation is

F
C

F # dr = O
S

∇ * F # n ds Stokes’ Theorem, Eq. (4)

= L
1

0 L
2-2x

0

1

26
a7x + 4y - 6b26 dydx

= L
1

0 L
2-2x

0
(7x + 4y - 6) dydx = -1.

EXAMPLE 10  Let the surface S be the elliptical paraboloid z = x2 + 4y2 lying 
beneath the plane z = 1 (Figure 16.65). We define the orientation of S by taking the inner
normal vector n to the surface, which is the normal having a positive k-component. Find 
the flux of ∇ * F across S in the direction n for the vector field F = yi - xzj + xz2k.

Solution We use Stokes’ Theorem to calculate the curl integral by finding the equivalent 
counterclockwise circulation of F around the curve of intersection C of the paraboloid 
z = x2 + 4y2 and the plane z = 1, as shown in Figure 16.65. Note that the orientation of 
S is consistent with traversing C in a counterclockwise direction around the z-axis. The 
curve C is the ellipse x2 + 4y2 = 1 in the plane z = 1. We can parametrize the ellipse by 
x = cos t, y = 1

2 sin t, z = 1 for 0 … t … 2p, so C is given by

r(t) = (cos t)i + 1
2

(sin t)j + k, 0 … t … 2p.

To compute the circulation integral DCF # dr, we evaluate F along C and find the velocity 
vector dr>dt:

F(r(t)) = 1
2

(sin t)i - (cos t)j + (cos t)k

and

dr
dt

= -(sin t)i + 1
2

(cos t)j.

z

y
x

C: x2 + 4y2 = 1

z= x2 + 4y2

n

FIGURE 16.65 The portion of the 
elliptical paraboloid in Example 10, 
showing its curve of intersection C with 
the plane z = 1 and its inner normal 
orientation by n.
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Then,

F
C

F # dr =
L

2p

0
F(r(t)) # dr

dt
dt

=
L

2p

0
a- 1

2
sin2 t - 1

2
cos2 tb dt

= -1
2 L

2p

0
dt = -p.

Therefore, by Stokes’ Theorem the flux of the curl across S in the direction n for the field 
F is

O
S

∇ * F # n ds = -p.

Proof Outline of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions or faces. (See 
Figure 16.66 for examples.) We apply Green’s Theorem to each separate face of S. There 
are two types of faces:

1. Those that are surrounded on all sides by other faces.

2. Those that have one or more edges that are not adjacent to other faces.

The boundary ∆  of S consists of those edges of the type 2 faces that are not adjacent to 
other faces. In Figure 16.66a, the triangles EAB, BCE, and CDE represent a part of S, with 
ABCD part of the boundary ∆ . Although Green’s Theorem was stated for curves in the xy-
plane, a generalized form applies to plane curves in space, where n is normal to the plane 
(instead of k). In the generalized tangential form, the theorem asserts that the line integral 
of F around the curve enclosing the plane region R normal to n equals the double integral 
of (curl F) # n  over R. Applying this generalized form to the three triangles of 
Figure 16.66a in turn, and adding the results, gives

°
F

EAB

+
F

BCE

+
F

CDE

¢F # dr = °
O

EAB

+
O

BCE

+
O

CDE

¢∇ * F # n ds. (7)

The three line integrals on the left-hand side of Equation (7) combine into a single 
line integral taken around the periphery ABCDE because the integrals along interior seg-
ments cancel in pairs. For example, the integral along segment BE in triangle ABE is oppo-
site in sign to the integral along the same segment in triangle EBC. The same holds for 
segment CE. Hence, Equation (7) reduces to

F
ABCDE

F # dr =
O

ABCDE

∇ * F # n ds.

When we apply the generalized form of Green’s Theorem to all the faces and add the 
results, we get

F
∆

F # dr =
O
S

∇ * F # n ds.

This is Stokes’ Theorem for the polyhedral surface S in Figure 16.66a. More general poly-
hedral surfaces are shown in Figure 16.66b and the proof can be extended to them. Gen-
eral smooth surfaces can be obtained as limits of polyhedral surfaces and a complete proof 
can be found in more advanced texts.

A

B C

D

E

(a)

FIGURE 16.66 (a) Part of a polyhedral 
surface. (b) Other polyhedral surfaces.

(b)
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Stokes’ Theorem for Surfaces with Holes

Stokes’ Theorem holds for an oriented surface S that has one or more holes (Figure 16.67). 
The surface integral over S of the normal component of ∇ * F equals the sum of the line 
integrals around all the boundary curves of the tangential component of F, where the 
curves are to be traced in the direction induced by the orientation of S. For such surfaces 
the theorem is unchanged, but C is considered as a union of simple closed curves.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

curl grad ƒ = 0 or ∇ * ∇ƒ = 0 (8)

Forces arising in the study of electromagnetism and gravity are often associated with a 
potential function ƒ. The identity (8) says that these forces have curl equal to zero. The iden-
tity (8) holds for any function ƒ(x, y, z) whose second partial derivatives are continuous. The 
proof goes like this:

∇ * ∇ƒ = 5 i j k

0
0x

0
0y

0
0z

0ƒ
0x

0ƒ
0y

0ƒ
0z

5 = (ƒzy - ƒyz)i - (ƒzx - ƒxz)j + (ƒyx - ƒxy)k.

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-
ses are equal (Theorem 2, Section 14.3) and the vector is zero.

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F being conservative in an open region D in space is 
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is 
equivalent in simply connected open regions to saying that ∇ * F = 0 (which gives a test 
for determining if F is conservative for such regions).

THEOREM 7—Curl F = 0 Related to the Closed-Loop Property If ∇ * F = 0
at every point of a simply connected open region D in space, then on any piecewise-
smooth closed path C in D,

F
C

F # dr = 0.

Sketch of a Proof Theorem 7 can be proved in two steps. The first step is for simple 
closed curves (loops that do not cross themselves), like the one in Figure 16.68a. A theo-
rem from topology, a branch of advanced mathematics, states that every smooth simple 
closed curve C in a simply connected open region D is the boundary of a smooth two-
sided surface S that also lies in D. Hence, by Stokes’ Theorem,

F
C

F # dr =
O

S

∇ * F # n ds = 0.

(b)

FIGURE 16.68 (a) In a simply connected 
open region in space, a simple closed 
curve C is the boundary of a smooth 
surface S. (b) Smooth curves that cross 
themselves can be divided into loops to 
which Stokes’ Theorem applies.

(a)

S
C

S

n

FIGURE 16.67 Stokes’ Theorem also 
holds for oriented surfaces with holes. 
Consistent with the orientation of S, the 
outer curve is traversed counterclockwise 
around n and the inner curves surrounding 
the holes are traversed clockwise.
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The second step is for curves that cross themselves, like the one in Figure 16.68b. The 
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’ 
Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on con-
nected, simply connected open regions. For such regions, the four statements are equiva-
lent to each other.

Theorem 2,
Section 16.3

Theorem 7
Domain’s simple
connectivity and
Stokes’ Theorem

over any closed
path in D

F = ∇ f on DF conservative on D

∇ × F = 0 throughout D
FC

F ∙ dr = 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 3,
Section 16.3

Using Stokes’ Theorem to Find Line Integrals
In Exercises 1–6, use the surface integral in Stokes’ Theorem to calcu-
late the circulation of the field F around the curve C in the indicated 
direction.

1. F = x2i + 2xj + z2k

C: The ellipse 4x2 + y2 = 4 in the xy-plane, counterclockwise 
when viewed from above

2. F = 2yi + 3xj - z2k

C: The circle x2 + y2 = 9 in the xy-plane, counterclockwise 
when viewed from above

3. F = yi + xzj + x2k

C: The boundary of the triangle cut from the plane x + y + z = 1
by the first octant, counterclockwise when viewed from above

4. F = (y2 + z2)i + (x2 + z2)j + (x2 + y2)k

C: The boundary of the triangle cut from the plane x + y + z = 1
by the first octant, counterclockwise when viewed from above

5. F = (y2 + z2)i + (x2 + y2)j + (x2 + y2)k

C: The square bounded by the lines x = {1 and y = {1 in the 
xy-plane, counterclockwise when viewed from above

6. F = x2y3i + j + zk

C: The intersection of the cylinder x2 + y2 = 4 and the hemisphere 
x2 + y2 + z2 = 16, z Ú 0, counterclockwise when viewed from 
above

Integral of the Curl Vector Field
7. Let n be the outer unit normal of the elliptical shell

S: 4x2 + 9y2 + 36z2 = 36, z Ú 0,

and let

F = yi + x2j + (x2 + y4)3>2 sin e2xyz k.

Find the value of

O
S

∇ * F # n ds.

(Hint: One parametrization of the ellipse at the base of the shell is 
x = 3 cos t, y = 2 sin t, 0 … t … 2p.)

8. Let n be the outer unit normal (normal away from the origin) of 
the parabolic shell

S: 4x2 + y + z2 = 4, y Ú 0,

and let

F = a-z + 1
2 + x

b i + (tan-1 y)j + ax + 1
4 + z

bk.

Find the value of

O
S

∇ * F # n ds.

9. Let S be the cylinder x2 + y2 = a2, 0 … z … h, together with its 
top, x2 + y2 … a2, z = h. Let F = -yi + xj + x2k. Use Stokes’ 
Theorem to find the flux of ∇ * F outward through S.

10. Evaluate

O
S

∇ * (yi) # n ds,

where S is the hemisphere x2 + y2 + z2 = 1, z Ú 0.

Exercises 16.7
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11. Suppose F = ∇ * A, where

A = 1y + 2z2i + exyz j + cos (xz) k.

  Determine the flux of F outward through the hemisphere 
x2 + y2 + z2 = 1, z Ú 0.

12. Repeat Exercise 11 for the flux of F across the entire unit sphere.

Stokes’ Theorem for Parametrized Surfaces
In Exercises 13–18, use the surface integral in Stokes’ Theorem to 
calculate the flux of the curl of the field F across the surface S in the 
direction of the outward unit normal n.

13. F = 2zi + 3xj + 5yk

S: r(r, u) = (r cos u)i + (r sin u)j + (4 - r2)k,
0 … r … 2, 0 … u … 2p

14. F = (y - z)i + (z - x)j + (x + z)k

S: r(r, u) = (r cos u)i + (r sin u)j + (9 - r2)k,
0 … r … 3, 0 … u … 2p

15. F = x2yi + 2y3zj + 3zk

S: r(r, u) = (r cos u)i + (r sin u)j + rk,
0 … r … 1, 0 … u … 2p

16. F = (x - y)i + (y - z)j + (z - x)k

S: r(r, u) = (r cos u)i + (r sin u)j + (5 - r)k,
0 … r … 5, 0 … u … 2p

17. F = 3yi + (5 - 2x)j + (z2 - 2)k

S: r(f, u) = 123 sin fcos u2i + 123 sin f sin u2j +
123 cos f2k, 0 … f … p>2, 0 … u … 2p

18. F = y2i + z2j + xk

S: r(f, u) = (2 sin fcos u)i + (2 sin f sin u)j + (2 cos f)k,
0 … f … p>2, 0 … u … 2p

Theory and Examples

19. Let C be the smooth curve r(t) = (2 cos t)i + (2 sin t)j +
(3 - 2 cos3 t)k, oriented to be traversed counterclockwise around 
the z-axis when viewed from above. Let S be the piecewise 
smooth cylindrical surface x2 + y2 = 4, below the curve for 
z Ú 0, together with the base disk in the xy-plane. Note that C
lies on the cylinder S and above the xy-plane (see the accompany-
ing figure). Verify Equation (4) in Stokes’ Theorem for the vector 
field F = yi - xj + x2k.

y

C

2

z

x

2

20. Verify Stokes’ Theorem for the vector field F = 2xyi + xj +
( y + z)k and surface z = 4 - x2 - y2, z Ú 0, oriented with 
unit normal n pointing upward.

21. Zero circulation Use Equation (8) and Stokes’ Theorem to 
show that the circulations of the following fields around the 
boundary of any smooth orientable surface in space are zero.

a. F = 2xi + 2yj + 2zk b. F = ∇(xy2z3)

c. F = ∇ * (xi + yj + zk) d. F = ∇ƒ

22. Zero circulation Let ƒ(x, y, z) = (x2 + y2 + z2)-1>2. Show 
that the clockwise circulation of the field F = ∇ƒ around the 
circle x2 + y2 = a2 in the xy-plane is zero

a. by taking r = (a cos t)i + (a sin t)j, 0 … t … 2p, and inte-
grating F # dr over the circle.

b. by applying Stokes’ Theorem.

23. Let C be a simple closed smooth curve in the plane 
2x + 2y + z = 2, oriented as shown here. Show that

F
C

2y dx + 3z dy - x dz

y

z

O a

x

C

1

1

2
2x + 2y + z = 2

  depends only on the area of the region enclosed by C and not on 
the position or shape of C.

24. Show that if F = xi + yj + zk, then ∇ * F = 0.

25. Find a vector field with twice-differentiable components whose 
curl is xi + yj + zk or prove that no such field exists.

26. Does Stokes’ Theorem say anything special about circulation in a 
field whose curl is zero? Give reasons for your answer.

27. Let R be a region in the xy-plane that is bounded by a piecewise 
smooth simple closed curve C and suppose that the moments of 
inertia of R about the x- and y-axes are known to be Ix and Iy .
Evaluate the integral

F
C

∇(r4) # n ds,

  where r = 2x2 + y2, in terms of Ix and Iy .

28. Zero curl, yet the field is not conservative Show that the curl of

F =
-y

x2 + y2 i + x
x2 + y2 j + zk

  is zero but that

F
C

F # dr

  is not zero if C is the circle x2 + y2 = 1 in the xy-plane. (Theo-
rem 7 does not apply here because the domain of F is not simply 
connected. The field F is not defined along the z-axis so there is 
no way to contract C to a point without leaving the domain of F.)



16.8  The Divergence Theorem and a Unified Theory 1027

16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a 
vector field across a simple closed curve can be calculated by integrating the divergence of 
the field over the region enclosed by the curve. The corresponding theorem in three 
dimensions, called the Divergence Theorem, states that the net outward flux of a vector 
field across a closed surface in space can be calculated by integrating the divergence of the 
field over the region enclosed by the surface. In this section we prove the Divergence 
Theorem and show how it simplifies the calculation of flux, which is the integral of the 
field over the closed oriented surface. We also derive Gauss’s law for flux in an electric 
field and the continuity equation of hydrodynamics. Finally, we summarize the chapter’s 
vector integral theorems in a single unifying principle generalizing the Fundamental Theo-
rem of Calculus.

Divergence in Three Dimensions

The divergence of a vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k is the scalar 
function

div F = ∇ # F = 0M
0x + 0N

0y + 0P
0z . (1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation ∇ # F is read “del 
dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F
is the velocity field of a flowing gas, the value of div F at a point (x, y, z) is the rate at 
which the gas is compressing or expanding at (x, y, z). The divergence is the flux per unit 
volume or flux density at the point.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in 
space. Find the divergence of each vector field and interpret its physical meaning. Figure 16.69 
displays the vector fields.

(a) Expansion: F(x, y, z) = xi + yj + zk

(b) Compression: F(x, y, z) = -xi - yj - zk

(c) Rotation about the z-axis: F(x, y, z) = -yi + xj

(d) Shearing along parallel horizontal planes: F(x, y, z) = zj

Solution

(a) div F = 0
0x (x) + 0

0y (y) + 0
0z (z) = 3: The gas is undergoing constant uniform 

  expansion at all points.

(b) div F = 0
0x (-x) + 0

0y (-y) + 0
0z (-z) = -3: The gas is undergoing constant uniform

  compression at all points.

(c) div F = 0
0x (-y) + 0

0y (x) = 0: The gas is neither expanding nor compressing at any 

  point.

(d) div F = 0
0y (z) = 0: Again, the divergence is zero at all points in the domain of the 

  velocity field, so the gas is neither expanding nor compressing at any point.
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Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector 
field across a closed surface equals the triple integral of the divergence of the field over the 
three-dimensional region enclosed by the surface.

z

y

(a)

x

z

y

(b)

x

z

y

(c)

x

z

y

(d)

x

FIGURE 16.69 Velocity fields of a gas flowing in space (Example 1).

THEOREM 8—Divergence Theorem Let F be a vector field whose compo-
nents have continuous first partial derivatives, and let S be a piecewise smooth 
oriented closed surface. The flux of F across S in the direction of the surface’s 
outward unit normal field n equals the triple integral of the divergence ∇ # F over 
the region D enclosed by the surface:

O
S

F # n ds =
l
D

∇ # F dV. (2)

Outward Divergence
flux integral

EXAMPLE 2  Evaluate both sides of Equation (2) for the expanding vector field 
F = xi + yj + zk over the sphere x2 + y2 + z2 = a2 (Figure 16.70).

Solution The outer unit normal to S, calculated from the gradient of ƒ(x, y, z) = x2 +
y2 + z2 - a2, is

n =
2(xi + yj + zk)

24(x2 + y2 + z2)
=

xi + yj + zk
a . x2 + y2 + z2 = a2 on S

y

z

x

FIGURE 16.70 A uniformly expanding 
vector field and a sphere (Example 2).
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It follows that

F # n ds =
x2 + y2 + z2

a ds = a2

a ds = a ds.

Therefore, the outward flux is

O
S

F # n ds =
O

S

a ds = a
O

S

ds = a(4pa2) = 4pa3. Area of S is 4pa2.

For the right-hand side of Equation (2), the divergence of F is

∇ # F = 0
0x (x) + 0

0y (y) + 0
0z (z) = 3,

so we obtain the divergence integral,

l
D

∇ # F dV =
l
D

3 dV = 3a43pa3b = 4pa3.

Many vector fields of interest in applied science have zero divergence at each point. A 
common example is the velocity field of a circulating incompressible liquid, since it is neither 
expanding nor contracting. Other examples include constant vector fields F = ai + bj + ck,
and velocity fields for shearing action along a fixed plane (see Example 1d). If F is a vec-
tor field whose divergence is zero at each point in the region D, then the integral on the 
right-hand side of Equation (2) equals 0. So if S is any closed surface for which the Diver-
gence Theorem applies, then the outward flux of F across S is zero. We state this important 
application of the Divergence Theorem.

COROLLARY The outward flux across a piecewise smooth oriented closed sur-
face S is zero for any vector field F having zero divergence at every point of the 
region enclosed by the surface.

EXAMPLE 3  Find the flux of F = xyi + yzj + xzk outward through the surface of 
the cube cut from the first octant by the planes x = 1, y = 1, and z = 1.

Solution Instead of calculating the flux as a sum of six separate integrals, one for each 
face of the cube, we can calculate the flux by integrating the divergence

∇ # F = 0
0x (xy) + 0

0y (yz) + 0
0z (xz) = y + z + x

over the cube’s interior:

Flux =
O

Cube
surface

F # n ds =
l
Cube

interior

∇ # F dV The Divergence Theorem

=
L

1

0 L

1

0 L

1

0
(x + y + z) dx dy dz = 3

2
. Routine integration
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EXAMPLE 4

(a) Calculate the flux of the vector field

F = x2i + 4xyz j + zex k

  out of the box-shaped region D: 0 … x … 3, 0 … y … 2, 0 … z … 1. (See Figure 
16.71.)

(b) Integrate div F over this region and show that the result is the same value as in part 
(a), as asserted by the Divergence Theorem.

Solution
(a) The region D has six sides. We calculate the flux across each side in turn. Consider the 

top side in the plane z = 1, having outward normal n = k. The flux across this side is 
given by F # n = zex. Since z = 1 on this side, the flux at a point (x, y, z) on the top is 
ex. The total outward flux across this side is given by the surface integral

L

2

0 L

3

0
ex dx dy = 2e3 - 2. Routine integration

  The outward flux across the other sides is computed similarly, and the results are 
summarized in the following table.

2
3

z

x

y

1

FIGURE 16.71 The integral of div F
over this region equals the total flux 
across the six sides (Example 4).

Side Unit normal n F # n Flux across side

x = 0 - i -x2 = 0  0

x = 3 i    x2 = 9 18

y = 0 - j -4xyz = 0  0

y = 2 j    4xyz = 8xz 18

z = 0 -k    -zex = 0  0

z = 1 k   zex = ex 2e3 - 2

  The total outward flux is obtained by adding the terms for each of the six sides, giving

18 + 18 + 2e3 - 2 = 34 + 2e3.

(b) We first compute the divergence of F, obtaining

div F = ∇ # F = 2x + 4xz + ex.

  The integral of the divergence of F over D is

l
D

div F dV =
L

1

0 L

2

0 L

3

0
(2x + 4xz + ex) dx dy dz

=
L

1

0 L

2

0

(8 + 18z + e3) dy dz

=
L

1

0

(16 + 36z + 2e3) dz

= 34 + 2e3.

As asserted by the Divergence Theorem, the integral of the divergence over D equals 
the outward flux across the boundary surface of D.
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Divergence and the Curl

If F is a vector field on three-dimensional space, then the curl ∇ * F is also a vector 
field on three-dimensional space. So we can calculate the divergence of ∇ * F using 
Equation (1). The result of this calculation is always 0.

THEOREM 9 If F = Mi + Nj + Pk is a vector field with continuous second 
partial derivatives, then

div (curl F) = ∇ # (∇ * F) = 0.

Proof From the definitions of the divergence and curl, we have

div (curl F) = ∇ # (∇ * F)

= 0
0x a0P0y - 0N

0z b + 0
0y a0M0z - 0P

0xb + 0
0z a0N0x - 0M

0y b
= 02P

0x0y - 02N
0x0z + 02M

0y0z - 02P
0y0x + 02N

0z0x - 02M
0z0y

= 0,

because the mixed second partial derivatives cancel by the Mixed Derivative Theorem in 
Section 14.3.

Theorem 9 has some interesting applications. If a vector field G = curl F, then the 
field G must have divergence 0. Saying this another way, if div G ≠ 0, then G cannot be 
the curl of any vector field F having continuous second partial derivatives. Moreover, if 
G = curl F, then the outward flux of G across any closed surface S is zero by the corol-
lary to the Divergence Theorem, provided the conditions of the theorem are satisfied. So if 
there is a closed surface for which the surface integral of the vector field G is nonzero, we 
can conclude that G is not the curl of some vector field F.

Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we take the components of F to have continuous first 
partial derivatives. We first assume that D is a convex region with no holes or bubbles, 
such as a solid ball, cube, or ellipsoid, and that S is a piecewise smooth surface. In addi-
tion, we assume that any line perpendicular to the xy-plane at an interior point of the 
region Rxy that is the projection of D on the xy-plane intersects the surface S in exactly two 
points, producing surfaces

S1: z = ƒ1(x, y), (x, y) in Rxy

S2: z = ƒ2(x, y), (x, y) in Rxy ,

with ƒ1 … ƒ2. We make similar assumptions about the projection of D onto the other coor-
dinate planes. See Figure 16.72, which illustrates these assumptions.

The components of the unit normal vector n = n1i + n2j + n3k are the cosines of 
the angles a, b, and g that n makes with i, j, and k (Figure 16.73). This is true because all 
the vectors involved are unit vectors, giving the direction cosines

n1 = n # i = 0 n 0 0 i 0 cos a = cos a

n2 = n # j = 0 n 0 0 j 0 cos b = cos b

n3 = n # k = 0 n 0 0 k 0 cos g = cos g.

y

z

x

D

Rxy

S2

S1

RyzRxz

FIGURE 16.72 We prove the 
Divergence Theorem for the kind of 
three-dimensional region shown here.

y

z

x

n

k

j
i

n3

n2n1

a

b

g

(n1, n2, n3)

FIGURE 16.73 The components of n
are the cosines of the angles a, b, and g
that it makes with i, j, and k.
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Thus, the unit normal vector is given by

n = (cos a)i + (cos b)j + (cos g)k

and

F # n = M cos a + N cos b + P cos g.

In component form, the Divergence Theorem states that

O
S

(M cos a + N cos b + P cos g) ds =
l
D

a0M0x + 0N
0y + 0P

0z b dx dy dz.
(+++++++)+++++++* (+++)+++*

F # n div F

We prove the theorem by establishing the following three equations:

O
S

M cos a ds =
l
D

0M
0x dx dy dz (3)

O
S

N cos b ds =
l
D

0N
0y dx dy dz (4)

O
S

P cos g ds =
l
D

0P
0z dx dy dz (5)

Proof of Equation (5)  We prove Equation (5) by converting the surface integral on 
the left to a double integral over the projection Rxy of D on the xy-plane (Figure 16.74). The 
surface S consists of an upper part S2 whose equation is z = ƒ2(x, y) and a lower part S1

whose equation is z = ƒ1(x, y). On S2, the outer normal n has a positive k-component and

cos g ds = dx dy because ds = dA
� cos g �

=
dx dy
cos g .

See Figure 16.75. On S1 , the outer normal n has a negative k-component and

cos g ds = -dx dy.

Therefore,

O
S

P cos g ds =
O
S2

P cos g ds +
O
S1

P cos g ds

=
O
Rxy

P(x, y, ƒ2(x, y)) dx dy -
O
Rxy

P(x, y, ƒ1(x, y)) dx dy

=
O
Rxy

3P(x, y, ƒ2(x, y)) - P(x, y, ƒ1(x, y))4 dx dy

=
O
Rxy

c
L

ƒ2(x, y)

ƒ1(x, y)

0P
0z dz d dx dy =

l
D

0P
0z dz dx dy.

This proves Equation (5). The proofs for Equations (3) and (4) follow the same pattern; or 
just permute x, y, z; M, N, P; a, b, g, in order, and get those results from Equation (5). 
This proves the Divergence Theorem for these special regions.

y

z

x

O n

ds

ds

n
D z = f2(x, y)

S2

S1

z = f1(x, y)

dA = dx dy

Rxy

FIGURE 16.74 The region D enclosed 
by the surfaces S1 and S2 projects verti-
cally onto Rxy in the xy-plane.

n
k

n

k

Here g is acute, so
ds = dx dy/cos g.

Here g is obtuse, 
so ds = −dx dy/cos g.

g

g

dx
dy

FIGURE 16.75 An enlarged view of the 
area patches in Figure 16.74. The relations 
ds = {dx dy>cos g come from Eq. (7) in 
Section 16.5 with F = F # n.
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Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite 
number of simple regions of the type just discussed and to regions that can be defined as 
limits of simpler regions in certain ways. For an example of one step in such a splitting 
process, suppose that D is the region between two concentric spheres and that F has con-
tinuously differentiable components throughout D and on the bounding surfaces. Split D
by an equatorial plane and apply the Divergence Theorem to each half separately. The bot-
tom half, D1, is shown in Figure 16.76. The surface S1 that bounds D1 consists of an outer 
hemisphere, a plane washer-shaped base, and an inner hemisphere. The Divergence Theo-
rem says that

O
S1

F # n1 ds1 =
l
D1

∇ # F dV1. (6)

The unit normal n1 that points outward from D1 points away from the origin along the 
outer surface, equals k along the flat base, and points toward the origin along the inner 
surface. Next apply the Divergence Theorem to D2 , and its surface S2 (Figure 16.77):

O
S2

F # n2 ds2 =
l
D2

∇ # F dV2. (7)

As we follow n2 over S2 , pointing outward from D2 , we see that n2 equals -k along the 
washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and 
points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-
grals over the flat base cancel because of the opposite signs of n1 and n2 . We thus arrive at 
the result

O
S

F # n ds =
l
D

∇ # F dV,

with D the region between the spheres, S the boundary of D consisting of two spheres, and 
n the unit normal to S directed outward from D.

EXAMPLE 5  Find the net outward flux of the field

F =
xi + yj + zk

r3 , r = 2x2 + y2 + z2 (8)

across the boundary of the region D: 0 6 b2 … x2 + y2 + z2 … a2 (Figure 16.78).

Solution The flux can be calculated by integrating ∇ # F over D. Note that r ≠ 0 in D.
We have

0r
0x = 1

2
(x2 + y2 + z2)-1>2(2x) = x

r

and

0M
0x = 0

0x (xr-3) = r-3 - 3xr-4
0r
0x = 1

r3 - 3x2

r5 .

Similarly,

0N
0y = 1

r3 -
3y2

r5 and
0P
0z = 1

r3 - 3z2

r5 .

Hence,

 div F = 3
r3 - 3

r5
(x2 + y2 + z2) = 3

r3 -
3r2

r5 = 0.

z

x

y

k

O

n1D1

FIGURE 16.76 The lower half of 
the solid region between two concentric 
spheres.

z

x

y

D2

n2

−k

FIGURE 16.77 The upper half of 
the solid region between two concentric 
spheres.

y

z

x

Sa

Sb

FIGURE 16.78 Two concentric spheres
in an expanding vector field. The outer sphere 
is Sa and surrounds the inner sphere Sb.
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So the net outward flux of F across the boundary of D is zero by the corollary to the 
Divergence Theorem. There is more to learn about this vector field F, though. The flux 
leaving D across the inner sphere Sb is the negative of the flux leaving D across the outer 
sphere Sa (because the sum of these fluxes is zero). Hence, the flux of F across Sb in the 
direction away from the origin equals the flux of F across Sa in the direction away from 
the origin. Thus, the flux of F across a sphere centered at the origin is independent of the 
radius of the sphere. What is this flux?

To find it, we evaluate the flux integral directly for an arbitrary sphere Sa . The out-
ward unit normal on the sphere of radius a is

n =
xi + yj + zk

2x2 + y2 + z2
=

xi + yj + zk
a .

Hence, on the sphere,

F # n =
xi + yj + zk

a3
# xi + yj + zk

a =
x2 + y2 + z2

a4 = a2

a4 = 1
a2

and

O
Sa

F # n ds = 1
a2
O

Sa

ds = 1
a2

(4pa2) = 4p.

The outward flux of F in Equation (8) across any sphere centered at the origin is 4p. This 
result does not contradict the Divergence Theorem because F is not continuous at the origin.

Gauss’s Law: One of the Four Great Laws
of Electromagnetic Theory

There is still more to be learned from Example 5. In electromagnetic theory, the electric 
field created by a point charge q located at the origin is

E(x, y, z) = 1
4pP0

q

0 r 0 2 a r0 r 0 b =
q

4pP0

r0 r 0 3 =
q

4pP0

xi + yj + zk

r3 ,

where P0 is a physical constant, r is the position vector of the point (x, y, z), and 
r = 0 r 0 = 2x2 + y2 + z2. From Equation (8),

E =
q

4pP0
F.

The calculations in Example 5 show that the outward flux of E across any sphere cen-
tered at the origin is q>P0, but this result is not confined to spheres. The outward flux of E
across any closed surface S that encloses the origin (and to which the Divergence Theorem 
applies) is also q>P0. To see why, we have only to imagine a large sphere Sa centered at 
the origin and enclosing the surface S (see Figure 16.79). Since

∇ # E = ∇ # q
4pP0

F =
q

4pP0
∇ # F = 0

when r 7 0, the triple integral of ∇ # E over the region D between S and Sa is zero. 
Hence, by the Divergence Theorem,

O
Boundary

of D

E # n ds = 0.

So the flux of E across S in the direction away from the origin must be the same as the flux 
of E across Sa in the direction away from the origin, which is q>P0. This statement, called 
Gauss’s law, also applies to charge distributions that are more general than the one 
assumed here, as shown in nearly any physics text. For any closed surface that encloses the 
origin, we have

Gauss>s law:
O
S

E # n ds =
q
P0

.

z

x

y

Sphere Sa

S

FIGURE 16.79 A sphere Sa surround-
ing another surface S. The tops of the 
surfaces are removed for visualization.



16.8  The Divergence Theorem and a Unified Theory 1035

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v(x, y, z) is the veloc-
ity field of a fluid flowing smoothly through D, d = d(t, x, y, z) is the fluid’s density at 
(x, y, z) at time t, and F = dv, then the continuity equation of hydrodynamics states that

∇ # F + 0d
0t = 0.

If the functions involved have continuous first partial derivatives, the equation evolves 
naturally from the Divergence Theorem, as we now demonstrate.

First, the integral

O
S

F # n ds

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see 
why, consider a patch of area ∆s on the surface (Figure 16.80). In a short time interval 
∆t, the volume ∆V  of fluid that flows across the patch is approximately equal to the vol-
ume of a cylinder with base area ∆s and height (v∆t) # n, where v is a velocity vector 
rooted at a point of the patch:

∆V ≈ v # n ∆s ∆t.

The mass of this volume of fluid is about

∆m ≈ dv # n ∆s ∆t,

so the rate at which mass is flowing out of D across the patch is about

∆m
∆t

≈ dv # n ∆s.

This leads to the approximation

a ∆m

∆t
≈ a dv # n ∆s

as an estimate of the average rate at which mass flows across S. Finally, letting ∆sS 0
and ∆t S 0 gives the instantaneous rate at which mass leaves D across S as

dm
dt

=
O
S

dv # n ds,

which for our particular flow is

dm
dt

=
O
S

F # n ds.

Now let B be a solid sphere centered at a point Q in the flow. The average value of 
∇ # F over B is

1
volume of Bl

B

∇ # F dV.

It is a consequence of the continuity of the divergence that ∇ # F actually takes on this 
value at some point P in B. Thus, by the Divergence Theorem Equation (2),

(∇ # F)P = 1
volume of Bl

B

∇ # F dV =
O
S

F # n ds

volume of B

= rate at which mass leaves B across its surface S
volume of B

. (9)

The last term of the equation describes decrease in mass per unit volume.

n

S

h = (v Δt) . n
v Δt

Δs

FIGURE 16.80 The fluid that flows 
upward through the patch ∆s in a short 
time ∆t fills a “cylinder” whose volume 
is approximately base * height =
v # n ∆s ∆t.



1036 Chapter 16: Integrals and Vector Fields

Now let the radius of B approach zero while the center Q stays fixed. The left side of 
Equation (9) converges to (∇ # F)Q , and the right side converges to (-0d>0t)Q , since
d = m>V. The equality of these two limits is the continuity equation

∇ # F = - 0d
0t .

The continuity equation “explains” ∇ # F: The divergence of F at a point is the rate at 
which the density of the fluid is decreasing there. The Divergence Theorem

O
S

F # n ds =
l
D

∇ # F dV

now says that the net decrease in density of the fluid in region D (divergence integral) is 
accounted for by the mass transported across the surface S (outward flux integral). So, the 
theorem is a statement about conservation of mass (Exercise 31).

Unifying the Integral Theorems

If we think of a two-dimensional field F = M(x, y)i + N(x, y)j as a three-dimensional 
field whose k-component is zero, then ∇ # F = (0M>0x) + (0N>0y) and the normal form 
of Green’s Theorem can be written as

F
C

F # n ds =
O
R

a0M0x + 0N
0y b dx dy =

O
R

∇ # F dA.

Similarly, ∇ * F # k = (0N>0x) - (0M>0y), so the tangential form of Green’s Theorem 
can be written as

F
C

F # T ds =
O
R

a0N0x - 0M
0y b dx dy =

O
R

∇ * F # k dA.

With the equations of Green’s Theorem now in del notation, we can see their relationships 
to the equations in Stokes’ Theorem and the Divergence Theorem, all summarized here.

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem:
F
C

F # T ds =
O
R

∇ * F # k dA

Stokes’ Theorem:
F
C

F # T ds =
O

S

∇ * F # n ds

Normal form of Green’s Theorem:
F
C

F # n ds =
O
R

∇ # F dA

Divergence Theorem:
O

S

F # n ds =
l
D

∇ # F dV

Notice how Stokes’ Theorem generalizes the tangential (curl) form of Green’s Theorem 
from a flat surface in the plane to a surface in three-dimensional space. In each case, the 
surface integral of curl F over the interior of the oriented surface equals the circulation of 
F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s 
Theorem from a two-dimensional region in the plane to a three-dimensional region in 
space. In each case, the integral of ∇ # F over the interior of the region equals the total flux 
of the field across the boundary enclosing the region.
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There is still more to be learned here. All these results can be thought of as forms of a 
single fundamental theorem. Think back to the Fundamental Theorem of Calculus in Sec-
tion 5.4. It says that if ƒ(x) is differentiable on (a, b) and continuous on 3a, b4, then

L

b

a

dƒ
dx

dx = ƒ(b) - ƒ(a).

If we let F = ƒ(x)i throughout 3a, b4, then (dƒ>dx) = ∇ # F. If we define the unit vector 
field n normal to the boundary of 3a, b4  to be i at b and - i at a (Figure 16.81), then

ƒ(b) - ƒ(a) = ƒ(b)i # (i) + ƒ(a)i # (- i)

= F(b) # n + F(a) # n
= total outward flux of F across the boundary of 3a, b4.

The Fundamental Theorem now says that

F(b) # n + F(a) # n =
L3a, b4

∇ # F dx.

The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the 
Divergence Theorem all say that the integral of the differential operator ∇ #  operating on a 
field F over a region equals the sum of the normal field components over the boundary 
enclosing the region. (Here we are interpreting the line integral in Green’s Theorem and 
the surface integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things 
are properly oriented, the surface integral of the differential operator ∇ * operating on a 
field equals the sum of the tangential field components over the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle, 
which we might state as follows.

x
a b

n = −i n = i

FIGURE 16.81 The outward unit 
normals at the boundary of 3a, b4  in one-
dimensional space.

A Unifying Fundamental Theorem of Vector Integral Calculus

The integral of a differential operator acting on a field over a region equals the sum 
of the field components appropriate to the operator over the boundary of the region.

Calculating Divergence
In Exercises 1–4, find the divergence of the field.

1. The spin field in Figure 16.12

2. The radial field in Figure 16.11

3. The gravitational field in Figure 16.8 and Exercise 38a in Section 16.3

4. The velocity field in Figure 16.13

Calculating Flux Using the Divergence Theorem
In Exercises 5–16, use the Divergence Theorem to find the outward 
flux of F across the boundary of the region D.

5. Cube F = (y - x)i + (z - y)j + (y - x)k

D:  The cube bounded by the planes x = {1, y = {1, and 
z = {1

6. F = x2i + y2j + z2k

a. Cube D:  The cube cut from the first octant by the planes 
x = 1, y = 1, and z = 1

  b. Cube D:  The cube bounded by the planes x = {1,
y = {1, and z = {1

c. Cylindrical can D:  The region cut from the solid cylinder 
x2 + y2 … 4 by the planes z = 0 and 
z = 1

7. Cylinder and paraboloid F = yi + xyj - zk

D:  The region inside the solid cylinder x2 + y2 … 4 between 
the plane z = 0 and the paraboloid z = x2 + y2

8. Sphere F = x2i + xzj + 3zk
D: The solid sphere x2 + y2 + z2 … 4

9. Portion of sphere F = x2i - 2xyj + 3xzk

D:  The region cut from the first octant by the sphere x2 + y2 +
z2 = 4

10. Cylindrical can F = (6x2 + 2xy)i + (2y + x2z)j + 4x2y3k

D:  The region cut from the first octant by the cylinder x2 + y2 = 4
and the plane z = 3

Exercises 16.8
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11. Wedge F = 2xzi - xyj - z2k

D:  The wedge cut from the first octant by the plane y + z = 4
and the elliptical cylinder 4x2 + y2 = 16

12. Sphere F = x3i + y3j + z3k

D: The solid sphere x2 + y2 + z2 … a2

13. Thick sphere F = 2x2 + y2 + z2 (xi + yj + zk)

D: The region 1 … x2 + y2 + z2 … 2

14. Thick sphere F = (xi + yj + zk)>2x2 + y2 + z2

D: The region 1 … x2 + y2 + z2 … 4

15. Thick sphere F = (5x3 + 12xy2)i + (y3 + ey sin z)j +
(5z3 + ey cos z)k

D:  The solid region between the spheres x2 + y2 + z2 = 1 and 
x2 + y2 + z2 = 2

16. Thick cylinder F = ln (x2 + y2)i - a2z
x tan-1

y
xbj +

z2x2 + y2 k

D: The thick-walled cylinder 1 … x2 + y2 … 2, -1 … z … 2

Theory and Examples
17. a. Show that the outward flux of the position vector field F =

xi + yj + zk through a smooth closed surface S is three 
times the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector field on S. Show that it 
is not possible for F to be orthogonal to n at every point of S.

18. The base of the closed cubelike surface shown here is the unit 
square in the xy-plane. The four sides lie in the planes x = 0,
x = 1, y = 0, and y = 1. The top is an arbitrary smooth surface 
whose identity is unknown. Let F = xi - 2yj + (z + 3)k and 
suppose the outward flux of F through Side A is 1 and through 
Side B is -3. Can you conclude anything about the outward flux 
through the top? Give reasons for your answer.

z

(1, 1, 0)

Top

Side B
Side A

x

1
y

1

19. Let F = ( y cos 2x)i + ( y2 sin 2x)j + (x2y + z)k. Is there a vec-
tor field A such that F = ∇ * A? Explain your answer.

20. Outward flux of a gradient field Let S be the surface of the 
portion of the solid sphere x2 + y2 + z2 … a2 that lies in the first 

  octant and let ƒ(x, y, z) = ln2x2 + y2 + z2. Calculate

O
S

∇ƒ # n ds.

  (∇ƒ # n is the derivative of ƒ in the direction of outward normal n.)

21. Let F be a field whose components have continuous first partial 
derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S. If 0F 0 … 1, can any 
bound be placed on the size of

l
D

∇ # F dV ?

  Give reasons for your answer.

22. Maximum flux Among all rectangular solids defined by the 
inequalities 0 … x … a, 0 … y … b, 0 … z … 1, find the one for 
which the total flux of F = (-x2 - 4xy)i - 6yzj + 12zk out-
ward through the six sides is greatest. What is the greatest flux?

23. Calculate the net outward flux of the vector field

F = xyi + (sin xz + y2)j + (exy2 + x)k

  over the surface S surrounding the region D bounded by the planes 
y = 0, z = 0, z = 2 - y and the parabolic cylinder z = 1 - x2.

24. Compute the net outward flux of the vector field 
F = (xi + yj + zk)> (x2 + y2 + z2)3>2 across the ellipsoid 
9x2 + 4y2 + 6z2 = 36.

25. Let F be a differentiable vector field and let g(x, y, z) be a differ-
entiable scalar function. Verify the following identities.

a. ∇ # (gF) = g∇ # F + ∇g # F
b. ∇ * (gF) = g∇ * F + ∇g * F

26. Let F1 and F2 be differentiable vector fields and let a and b be 
arbitrary real constants. Verify the following identities.

a. ∇ # (aF1 + bF2) = a∇ # F1 + b∇ # F2

b. ∇ * (aF1 + bF2) = a∇ * F1 + b∇ * F2

c. ∇ # (F1 * F2) = F2
# ∇ * F1 - F1

# ∇ * F2

27. If F = Mi + Nj + Pk is a differentiable vector field, we define 
the notation F # ∇  to mean

M
0
0x + N

0
0y + P

0
0z .

  For differentiable vector fields F1 and F2 , verify the following 
identities.

a. ∇ * (F1 * F2) = (F2
# ∇)F1 - (F1

# ∇)F2 + (∇ # F2)F1 -
(∇ # F1)F2

b. ∇ (F1
# F2) = (F1

# ∇ )F2 + (F2
# ∇ )F1 + F1 * (∇ * F2) +

F2 * (∇ * F1)
28. Harmonic functions A function ƒ(x, y, z) is said to be har-

monic in a region D in space if it satisfies the Laplace equation

∇2ƒ = ∇ # ∇ƒ =
02ƒ

0x2 +
02ƒ

0y2 +
02ƒ

0z2 = 0

  throughout D.

a. Suppose that ƒ is harmonic throughout a bounded region D
enclosed by a smooth surface S and that n is the chosen unit 
normal vector on S. Show that the integral over S of ∇ƒ # n,
the derivative of ƒ in the direction of n, is zero.

b. Show that if ƒ is harmonic on D, then

O
S

ƒ∇ƒ # n ds =
l
D

0 ∇ƒ 0 2 dV.



29. Green’s first formula Suppose that ƒ and g are scalar functions 
with continuous first- and second-order partial derivatives through-
out a region D that is bounded by a closed piecewise smooth sur-
face S. Show that

O
S

ƒ∇g # n ds =
l
D

(ƒ∇2g + ∇ƒ # ∇g) dV. (10)

  Equation (10) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field F = ƒ∇g.)

30. Green’s second formula (Continuation of Exercise 29.) Inter-
change ƒ and g in Equation (10) to obtain a similar formula. Then 
subtract this formula from Equation (10) to show that

O
S

(ƒ∇g - g∇ƒ) # n ds =
l
D

(ƒ∇2g - g∇2ƒ) dV. (11)

  This equation is Green’s second formula.

31. Conservation of mass Let v(t, x, y, z) be a continuously differen-
tiable vector field over the region D in space and let p(t, x, y, z) be a 
continuously differentiable scalar function. The variable t represents 
the time domain. The Law of Conservation of Mass asserts that

d
dtl

D

p(t, x, y, z) dV = -
O
S

pv # n ds,

  where S is the surface enclosing D.

a. Give a physical interpretation of the conservation of mass law 
if v is a velocity flow field and p represents the density of the 
fluid at point (x, y, z) at time t.

b. Use the Divergence Theorem and Leibniz’s Rule,

d
dtl

D

p(t, x, y, z) dV =
l
D

0p
0t dV,

  to show that the Law of Conservation of Mass is equivalent to 
the continuity equation,

∇ # pv +
0p
0t = 0.

  (In the first term ∇ # pv, the variable t is held fixed, and in the 
second term 0p>0t, it is assumed that the point (x, y, z) in D is 
held fixed.)

32. The heat diffusion equation Let T(t, x, y, z) be a function with 
continuous second derivatives giving the temperature at time t at 
the point (x, y, z) of a solid occupying a region D in space. If the 
solid’s heat capacity and mass density are denoted by the con-
stants c and r, respectively, the quantity crT  is called the solid’s 
heat energy per unit volume.

a. Explain why -∇T  points in the direction of heat flow.

b. Let -k∇T  denote the energy flux vector. (Here the constant 
k is called the conductivity.) Assuming the Law of Conserva-
tion of Mass with -k∇T = v and crT = p in Exercise 31, 
derive the diffusion (heat) equation

0T
0t = K∇2T,

where K = k>(cr) 7 0 is the diffusivity constant. (Notice 
that if T(t, x) represents the temperature at time t at position x
in a uniform conducting rod with perfectly insulated sides, 
then ∇2T = 02T>0x2 and the diffusion equation reduces to the 
one-dimensional heat equation in Chapter 14’s Additional 
Exercises.)

Chapter 16 Questions to Guide Your Review

1. What are line integrals of scalar functions? How are they evalu-
ated? Give examples.

2. How can you use line integrals to find the centers of mass of 
springs or wires? Explain.

3. What is a vector field? What is the line integral of a vector field? 
What is a gradient field? Give examples.

4. What is the flow of a vector field along a curve? What is the work 
done by vector field moving an object along a curve? How do you 
calculate the work done? Give examples.

5. What is the Fundamental Theorem of line integrals? Explain how 
it relates to the Fundamental Theorem of Calculus.

6. Specify three properties that are special about conservative fields. 
How can you tell when a field is conservative?

7. What is special about path independent fields?

8. What is a potential function? Show by example how to find a 
potential function for a conservative field.

9. What is a differential form? What does it mean for such a form to 
be exact? How do you test for exactness? Give examples.

10. What is Green’s Theorem? Discuss how the two forms of Green’s 
Theorem extend the Net Change Theorem in Chapter 5.

11. How do you calculate the area of a parametrized surface in space? 
Of an implicitly defined surface F(x, y, z) = 0? Of the surface 
which is the graph of z = ƒ(x, y)? Give examples.

12. How do you integrate a scalar function over a parametrized sur-
face? Of surfaces that are defined implicitly or in explicit form? 
Give examples.

13. What is an oriented surface? What is the surface integral of a 
vector field in three-dimensional space over an oriented sur-
face? How is it related to the net outward flux of the field? Give 
examples.

14. What is the curl of a vector field? How can you interpret it?

15. What is Stokes’ Theorem? Explain how it generalizes Green’s 
Theorem to three dimensions.

16. What is the divergence of a vector field? How can you interpret it?

17. What is the Divergence Theorem? Explain how it generalizes 
Green’s Theorem to three dimensions.

18. How do Green’s Theorem, Stokes’ Theorem, and the Divergence 
Theorem relate to the Fundamental Theorem of Calculus for ordi-
nary single integrals?

Chapter 16  Questions to Guide Your Review 1039
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Chapter 16 Practice Exercises

Evaluating Line Integrals
1. The accompanying figure shows two polygonal paths in space 

joining the origin to the point (1, 1, 1). Integrate ƒ(x, y, z) =
2x - 3y2 - 2z + 3 over each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2

2. The accompanying figure shows three polygonal paths joining 
the origin to the point (1, 1, 1). Integrate ƒ(x, y, z) = x2 + y - z
over each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

(1, 0, 0)

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

z

y

x

(0, 0, 0)
(1, 1, 1)

(0, 1, 1)
(0, 0, 1) C6

C5 C7

C2

C1 C3 C3
C4

3. Integrate ƒ(x, y, z) = 2x2 + z2 over the circle

r(t) = (a cos t)j + (a sin t)k, 0 … t … 2p.

4. Integrate ƒ(x, y, z) = 2x2 + y2 over the involute curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j, 0 … t … 23.

Evaluate the integrals in Exercises 5 and 6.

5.
L

(4,-3,0)

(-1,1,1)

dx + dy + dz

2x + y + z
6.

L

(10,3,3)

(1,1,1)
dx - A

z
y dy - A

y
z dz

7. Integrate F = - (y sin z)i + (x sin z)j + (xy cos z)k around the 
circle cut from the sphere x2 + y2 + z2 = 5 by the plane 
z = -1, clockwise as viewed from above.

8. Integrate F = 3x2yi + (x3 + 1)j + 9z2k around the circle cut 
from the sphere x2 + y2 + z2 = 9 by the plane x = 2.

Evaluate the integrals in Exercises 9 and 10.

9.
LC

8x sin y dx - 8y cos x dy

C is the square cut from the first quadrant by the lines x = p>2
and y = p>2.

10.
LC

y2 dx + x2 dy

C is the circle x2 + y2 = 4.

Finding and Evaluating Surface Integrals
11. Area of an elliptical region Find the area of the elliptical 

region cut from the plane x + y + z = 1 by the cylinder 
x2 + y2 = 1.

12. Area of a parabolic cap Find the area of the cap cut from the 
paraboloid y2 + z2 = 3x by the plane x = 1.

13. Area of a spherical cap Find the area of the cap cut from the 
top of the sphere x2 + y2 + z2 = 1 by the plane z = 22>2.

14. a. Hemisphere cut by cylinder Find the area of the surface cut 
from the hemisphere x2 + y2 + z2 = 4, z Ú 0, by the cylin-
der x2 + y2 = 2x.

b. Find the area of the portion of the cylinder that lies inside the 
hemisphere. (Hint: Project onto the xz-plane. Or evaluate the 
integral 1h ds, where h is the altitude of the cylinder and ds
is the element of arc length on the circle x2 + y2 = 2x in the 
xy-plane.)

z

x

yCylinder r = 2 cos u

Hemisphere

z = "4 − r2

15. Area of a triangle Find the area of the triangle in which the 
plane (x>a) + (y>b) + (z>c) = 1 (a, b, c 7 0) intersects the first 
octant. Check your answer with an appropriate vector calculation.

16. Parabolic cylinder cut by planes Integrate

  a. g(x, y, z) =
yz

24y2 + 1
b. g(x, y, z) = z

24y2 + 1

  over the surface cut from the parabolic cylinder y2 - z = 1 by 
the planes x = 0, x = 3, and z = 0.

17. Circular cylinder cut by planes Integrate g(x, y, z) =
x4y(y2 + z2)  over the portion of the cylinder y2 + z2 = 25 that 
lies in the first octant between the planes x = 0 and x = 1 and 
above the plane z = 3.

18. Area of Wyoming The state of Wyoming is bounded by the 
meridians 111°3′ and 104°3′ west longitude and by the circles 
41° and 45° north latitude. Assuming that Earth is a sphere of 
radius R = 3959 mi, find the area of Wyoming.



Parametrized Surfaces
Find parametrizations for the surfaces in Exercises 19–24. (There are 
many ways to do these, so your answers may not be the same as those 
in the back of the book.)

19. Spherical band The portion of the sphere x2 + y2 + z2 = 36
between the planes z = -3 and z = 323

20. Parabolic cap The portion of the paraboloid z = - (x2 + y2) >2
above the plane z = -2

21. Cone The cone z = 1 + 2x2 + y2, z … 3

22. Plane above square The portion of the plane 4x + 2y + 4z =
12 that lies above the square 0 … x … 2, 0 … y … 2 in the first 
quadrant

23. Portion of paraboloid The portion of the paraboloid y =
2(x2 + z2), y … 2, that lies above the xy-plane

24. Portion of hemisphere The portion of the hemisphere 
x2 + y2 + z2 = 10, y Ú 0, in the first octant

25. Surface area Find the area of the surface

r(u, y) = (u + y)i + (u - y)j + yk,

0 … u … 1, 0 … y … 1.

26. Surface integral Integrate ƒ(x, y, z) = xy - z2 over the sur-
face in Exercise 25.

27. Area of a helicoid Find the surface area of the helicoid 
r(r, u) = (r cos u)i + (r sin u)j + uk, 0 … u … 2p, 0 … r … 1,
in the accompanying figure.

y

z

x

(1, 0, 0)

(1, 0, 2p)

2p

28. Surface integral Evaluate the integral 4S2x2 + y2 + 1 ds,
where S is the helicoid in Exercise 27.

Conservative Fields
Which of the fields in Exercises 29–32 are conservative, and which 
are not?

29. F = xi + yj + zk

30. F = (xi + yj + zk)>(x2 + y2 + z2)3>2
31. F = xeyi + yezj + zexk

32. F = (i + zj + yk)>(x + yz)

Find potential functions for the fields in Exercises 33 and 34.

33. F = 2i + (2y + z)j + (y + 1)k

34. F = (z cos xz)i + eyj + (x cos xz)k

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the 
paths from (0, 0, 0) to (1, 1, 1) in Exercise 1.

35. F = 2xyi + j + x2k 36. F = 2xyi + x2j + k

37. Finding work in two ways Find the work done by

F =
xi + yj

(x2 + y2)3>2

  over the plane curve r(t) = (et cos t)i + (et sin t)j from the point 
(1, 0) to the point (e2p, 0) in two ways:

a. By using the parametrization of the curve to evaluate the work 
integral.

b. By evaluating a potential function for F.

38. Flow along different paths Find the flow of the field F =
∇(x2zey)

  a. once around the ellipse C in which the plane x + y + z = 1
intersects the cylinder x2 + z2 = 25, clockwise as viewed 
from the positive y-axis.

  b. along the curved boundary of the helicoid in Exercise 27 from 
(1, 0, 0) to (1, 0, 2p).

In Exercises 39 and 40, use the curl integral in Stokes’ Theorem to find the 
circulation of the field F around the curve C in the indicated direction.

39. Circulation around an ellipse F = y2i - yj + 3z2k

C: The ellipse in which the plane 2x + 6y - 3z = 6 meets the 
cylinder x2 + y2 = 1, counterclockwise as viewed from above

40. Circulation around a circle F = (x2 + y)i + (x + y)j +
(4y2 - z)k

C: The circle in which the plane z = -y meets the sphere 
x2 + y2 + z2 = 4, counterclockwise as viewed from above

Masses and Moments
41. Wire with different densities Find the mass of a thin wire lying 

along the curve r(t) = 22ti + 22tj + (4 - t2)k, 0 … t … 1,
if the density at t is (a) d = 3t and (b) d = 1.

42. Wire with variable density Find the center of mass of a thin 
wire lying along the curve r(t) = ti + 2tj + (2>3)t3>2k,
0 … t … 2, if the density at t is d = 325 + t.

43. Wire with variable density Find the center of mass and the 
moments of inertia about the coordinate axes of a thin wire lying 
along the curve

r(t) = ti + 222
3

t3>2j + t2

2
k, 0 … t … 2,

  if the density at t is d = 1>(t + 1).

44. Center of mass of an arch A slender metal arch lies along the 
semicircle y = 2a2 - x2 in the xy-plane. The density at the point 
(x, y) on the arch is d(x, y) = 2a - y. Find the center of mass.

45. Wire with constant density A wire of constant density d = 1
lies along the curve r(t) = (et cos t)i + (et sin t)j + etk, 0 …
t … ln 2. Find z and Iz .

46. Helical wire with constant density Find the mass and center 
of mass of a wire of constant density d that lies along the helix 
r(t) = (2 sin t)i + (2 cos t)j + 3tk, 0 … t … 2p.

47. Inertia and center of mass of a shell Find Iz and the center of 
mass of a thin shell of density d(x, y, z) = z cut from the upper 
portion of the sphere x2 + y2 + z2 = 25 by the plane z = 3.

48. Moment of inertia of a cube Find the moment of inertia about 
the z-axis of the surface of the cube cut from the first octant by 
the planes x = 1, y = 1, and z = 1 if the density is d = 1.
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Flux Across a Plane Curve or Surface
Use Green’s Theorem to find the counterclockwise circulation and 
outward flux for the fields and curves in Exercises 49 and 50.

49. Square F = (2xy + x)i + (xy - y)j

C: The square bounded by x = 0, x = 1, y = 0, y = 1

50. Triangle F = (y - 6x2)i + (x + y2)j

C: The triangle made by the lines y = 0, y = x, and x = 1

51. Zero line integral Show that

F
C

ln x sin y dy -
cos y

x dx = 0

  for any closed curve C to which Green’s Theorem applies.

52. a. Outward flux and area Show that the outward flux of the 
position vector field F = xi + yj across any closed curve to 
which Green’s Theorem applies is twice the area of the region 
enclosed by the curve.

  b. Let n be the outward unit normal vector to a closed curve to 
which Green’s Theorem applies. Show that it is not possible 
for F = xi + yj to be orthogonal to n at every point of C.

In Exercises 53–56, find the outward flux of F across the boundary 
of D.

53. Cube F = 2xyi + 2yzj + 2xzk

D: The cube cut from the first octant by the planes x = 1, y = 1,
z = 1

54. Spherical cap F = xzi + yzj + k

D: The entire surface of the upper cap cut from the solid sphere 
x2 + y2 + z2 … 25 by the plane z = 3

55. Spherical cap F = -2xi - 3yj + zk

D: The upper region cut from the solid sphere x2 + y2 + z2 … 2
by the paraboloid z = x2 + y2

56. Cone and cylinder F = (6x + y)i - (x + z)j + 4yzk

D: The region in the first octant bounded by the cone z = 2x2 + y2,
the cylinder x2 + y2 = 1, and the coordinate planes

57. Hemisphere, cylinder, and plane Let S be the surface that is 
bounded on the left by the hemisphere x2 + y2 + z2 = a2, y … 0,
in the middle by the cylinder x2 + z2 = a2, 0 … y … a, and on 
the right by the plane y = a. Find the flux of F = yi + zj + xk
outward across S.

58. Cylinder and planes Find the outward flux of the field 
F = 3xz2i + yj - z3k across the surface of the solid in the first 
octant that is bounded by the cylinder x2 + 4y2 = 16 and the 
planes y = 2z, x = 0, and z = 0.

59. Cylindrical can Use the Divergence Theorem to find the flux of 
F = xy2i + x2yj + yk outward through the surface of the region 
enclosed by the cylinder x2 + y2 = 1 and the planes z = 1 and 
z = -1.

60. Hemisphere Find the flux of F = (3z + 1)k upward across 
the hemisphere x2 + y2 + z2 = a2, z Ú 0 (a) with the Diver-
gence Theorem and (b) by evaluating the flux integral directly.

Chapter 16 Additional and Advanced Exercises

Finding Areas with Green’s Theorem
Use the Green’s Theorem area formula in Exercises 16.4 to find the 
areas of the regions enclosed by the curves in Exercises 1–4.

1. The limaçon x = 2 cos t - cos 2t, y = 2 sin t - sin 2t,
0 … t … 2p y

x
0 1

2. The deltoid x = 2 cos t + cos 2t, y = 2 sin t - sin 2t,
0 … t … 2p y

x
0 3

3. The eight curve x = (1>2) sin 2t, y = sin t, 0 … t … p (one loop)

y

x

1

−1

4. The teardrop x = 2a cos t - a sin 2t, y = b sin t, 0 … t … 2p
y

x
0

b

2a



Theory and Applications
5. a. Give an example of a vector field F (x, y, z) that has value 0 at 

only one point and such that curl F is nonzero everywhere. Be 
sure to identify the point and compute the curl.

  b. Give an example of a vector field F (x, y, z) that has value 0 on 
precisely one line and such that curl F is nonzero everywhere. 
Be sure to identify the line and compute the curl.

c. Give an example of a vector field F (x, y, z) that has value 0 on 
a surface and such that curl F is nonzero everywhere. Be sure 
to identify the surface and compute the curl.

6. Find all points (a, b, c) on the sphere x2 + y2 + z2 = R2 where 
the vector field F = yz2i + xz2j + 2xyzk is normal to the sur-
face and F(a, b, c) ≠ 0.

7. Find the mass of a spherical shell of radius R such that at each 
point (x, y, z) on the surface the mass density d(x, y, z) is its dis-
tance to some fixed point (a, b, c) of the surface.

8. Find the mass of a helicoid

r(r, u) = (r cos u)i + (r sin u)j + uk,

0 … r … 1, 0 … u … 2p, if the density function is d(x, y, z) =
22x2 + y2. See Practice Exercise 27 for a figure.

9. Among all rectangular regions 0 … x … a, 0 … y … b, find the 
one for which the total outward flux of F = (x2 + 4xy)i - 6yj
across the four sides is least. What is the least flux?

10. Find an equation for the plane through the origin such that the 
circulation of the flow field F = zi + xj + yk around the circle 
of intersection of the plane with the sphere x2 + y2 + z2 = 4 is a 
maximum.

11. A string lies along the circle x2 + y2 = 4 from (2, 0) to (0, 2) in 
the first quadrant. The density of the string is r (x, y) = xy.

  a. Partition the string into a finite number of subarcs to show that 
the work done by gravity to move the string straight down to 
the x-axis is given by

Work = lim
nSq a

n

k=1
g xkyk

2∆sk =
LC

g xy2 ds,

     where g is the gravitational constant.

  b. Find the total work done by evaluating the line integral in part (a).

  c. Show that the total work done equals the work required to move 
the string’s center of mass (x, y) straight down to the x-axis.

12. A thin sheet lies along the portion of the plane x + y + z = 1 in 
the first octant. The density of the sheet is d (x, y, z) = xy.

  a. Partition the sheet into a finite number of subpieces to show 
that the work done by gravity to move the sheet straight down 
to the xy-plane is given by

Work = lim
nSq a

n

k=1
g xkykzk ∆sk =

O
S

g xyz ds,

     where g is the gravitational constant.

  b. Find the total work done by evaluating the surface integral in 
part (a).

  c. Show that the total work done equals the work required to 
move the sheet’s center of mass (x, y, z) straight down to the 
xy-plane.

13. Archimedes’ principle If an object such as a ball is placed in a 
liquid, it will either sink to the bottom, float, or sink a certain dis-
tance and remain suspended in the liquid. Suppose a fluid has 
constant weight density w and that the fluid’s surface coincides 
with the plane z = 4. A spherical ball remains suspended in the 
fluid and occupies the region x2 + y2 + (z - 2)2 … 1.

  a. Show that the surface integral giving the magnitude of the 
total force on the ball due to the fluid’s pressure is

Force = lim
nSq a

n

k=1
w(4 - zk) ∆sk =

O
S

w(4 - z) ds.

  b. Since the ball is not moving, it is being held up by the buoyant 
force of the liquid. Show that the magnitude of the buoyant 
force on the sphere is

Buoyant force =
O
S

w(z - 4)k # n ds,

      where n is the outer unit normal at (x, y, z). This illustrates 
Archimedes’ principle that the magnitude of the buoyant force 
on a submerged solid equals the weight of the displaced fluid.

  c. Use the Divergence Theorem to find the magnitude of the 
buoyant force in part (b).

14. Fluid force on a curved surface A cone in the shape of the 
surface z = 2x2 + y2, 0 … z … 2 is filled with a liquid of con-
stant weight density w. Assuming the xy-plane is “ground level,” 
show that the total force on the portion of the cone from z = 1 to 
z = 2 due to liquid pressure is the surface integral

F =
O
S

w(2 - z) ds.

  Evaluate the integral.

15. Faraday’s law If E(t, x, y, z) and B(t, x, y, z) represent the 
electric and magnetic fields at point (x, y, z) at time t, a basic 
principle of electromagnetic theory says that ∇ * E = -0B>0t.
In this expression ∇ * E is computed with t held fixed and 
0B>0t is calculated with (x, y, z) fixed. Use Stokes’ Theorem to 
derive Faraday’s law,

F
C

E # dr = - 0
0t O

S

B # n ds,

  where C represents a wire loop through which current flows 
counterclockwise with respect to the surface’s unit normal n, giv-
ing rise to the voltage

F
C

E # dr

  around C. The surface integral on the right side of the equation is 
called the magnetic flux, and S is any oriented surface with 
boundary C.

16. Let

F = - GmM
0 r 0 3 r

  be the gravitational force field defined for r ≠ 0. Use Gauss’s 
law in Section 16.8 to show that there is no continuously differen-
tiable vector field H satisfying F = ∇ * H.

Chapter 16  Additional and Advanced Exercises 1043
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17. If ƒ(x, y, z) and g(x, y, z) are continuously differentiable scalar 
functions defined over the oriented surface S with boundary curve 
C, prove that

O
S

(∇ƒ * ∇g) # n ds =
F
C

 ƒ ∇g # dr.

18. Suppose that ∇ # F1 = ∇ # F2 and ∇ * F1 = ∇ * F2 over a 
region D enclosed by the oriented surface S with outward unit 
normal n and that F1

# n = F2
# n on S. Prove that F1 = F2

throughout D.

19. Prove or disprove that if ∇ # F = 0 and ∇ * F = 0, then F = 0.

20. Let S be an oriented surface parametrized by r(u, y). Define the 
notation dS = ru du * ry dy so that dS is a vector normal to the 

surface. Also, the magnitude ds = 0 dS 0  is the element of sur-
face area (by Equation 5 in Section 16.5). Derive the identity

ds = (EG - F2)1>2 du dy

where

E = 0 ru 0 2, F = ru
# ry , and G = 0 ry 0 2.

21. Show that the volume V of a region D in space enclosed by the 
oriented surface S with outward normal n satisfies the identity

V = 1
3 O

S

r # n ds,

where r is the position vector of the point (x, y, z) in D.

Chapter 16 Technology Application Projects

Mathematica/Maple Modules:

Work in Conservative and Nonconservative Force Fields
Explore integration over vector fields and experiment with conservative and nonconservative force functions along different paths in the field.

How Can You Visualize Green’s Theorem?
Explore integration over vector fields and use parametrizations to compute line integrals. Both forms of Green’s Theorem are explored.

Visualizing and Interpreting the Divergence Theorem
Verify the Divergence Theorem by formulating and evaluating certain divergence and surface integrals.
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A.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are 
numbers that can be expressed as decimals, such as

- 3
4

= -0.75000 . . .

1
3 = 0.33333 . . .

22 = 1.4142 . . .

The dots . . . in each case indicate that the sequence of decimal digits goes on forever. Every 
conceivable decimal expansion represents a real number, although some numbers have two 
representations. For instance, the infinite decimals .999 . . . and 1.000 . . . represent the 
same real number 1. A similar statement holds for any number with an infinite tail of 9’s.

The real numbers can be represented geometrically as points on a number line called 
the real line.

−2 −1 0 1 2 3p 43
4

1
3− "

2

The symbol � denotes either the real number system or, equivalently, the real line.
The properties of the real number system fall into three categories: algebraic proper-

ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real 
numbers under the usual rules of arithmetic. You can never divide by 0.

The order properties of real numbers are given in Appendix 6. The useful rules at the 
left can be derived from them, where the symbol 1  means “implies.”

Notice the rules for multiplying an inequality by a number. Multiplying by a positive 
number preserves the inequality; multiplying by a negative number reverses the inequality. 
Also, reciprocation reverses the inequality for numbers of the same sign. For example, 
2 6 5 but -2 7 -5 and 1>2 7 1>5.

The completeness property of the real number system is deeper and harder to define 
precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly 
speaking, it says that there are enough real numbers to “complete” the real number line, in 
the sense that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if 
the real number system were not complete. The topic is best saved for a more advanced 

Appendices

RULES FOR INEQUALITIES

If a, b, and c are real numbers, then:
1. a 6 b 1 a + c 6 b + c
2. a 6 b 1 a - c 6 b - c
3. a 6 b and c 7 0 1 ac 6 bc
4. a 6 b and c 6 0 1 bc 6 ac

Special case: a 6 b 1 -b 6 -a

5. a 7 0 1 1
a 7 0

6. If a and b are both positive or both 

    negative, then a 6 b 1 1
b

6 1
a .



AP-2 Appendices

course, but Appendix 6 hints about what is involved and how the real numbers are 
constructed.

We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1, 2, 3, 4, . . .

2. The integers, namely  0, {1, {2, {3, . . .

3. The rational numbers, namely the numbers that can be expressed in the form of a 
fraction m>n, where m and n are integers and n ≠ 0. Examples are

1
3, - 4

9 = -4
9 = 4

-9,
200
13

, and 57 = 57
1

.

The rational numbers are precisely the real numbers with decimal expansions that are 
either

(a) terminating (ending in an infinite string of zeros), for example,

3
4

= 0.75000 . . . = 0.75 or

(b) eventually repeating (ending with a block of digits that repeats over and over), for 
example,

23
11

= 2.090909 . . . = 2.09
The bar indicates the block 
of repeating digits.

A terminating decimal expansion is a special type of repeating decimal, since the ending 
zeros repeat.

The set of rational numbers has all the algebraic and order properties of the real num-
bers but lacks the completeness property. For example, there is no rational number whose 
square is 2; there is a “hole” in the rational line where 22 should be.

Real numbers that are not rational are called irrational numbers. They are character-
ized by having nonterminating and nonrepeating decimal expansions. Examples are 
p, 22, 23 5, and log10 3. Since every decimal expansion represents a real number, it 
should be clear that there are infinitely many irrational numbers. Both rational and irratio-
nal numbers are found arbitrarily close to any point on the real line.

Set notation is very useful for specifying a particular subset of real numbers. A set is a 
collection of objects, and these objects are the elements of the set. If S is a set, the notation 
a∊S means that a is an element of S, and a∉ S means that a is not an element of S. If S
and T are sets, then S ∪ T  is their union and consists of all elements belonging to either S
or T (or to both S and T). The intersection S ¨ T  consists of all elements belonging to 
both S and T. The empty set ∅ is the set that contains no elements. For example, the inter-
section of the rational numbers and the irrational numbers is the empty set.

Some sets can be described by listing their elements in braces. For instance, the set A
consisting of the natural numbers (or positive integers) less than 6 can be expressed as

A = 51, 2, 3, 4, 56 .

The entire set of integers is written as

50, {1, {2, {3, . . .6 .

Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set

A = 5x � x is an integer and 0 6 x 6 66
is the set of positive integers less than 6.



A.1  Real Numbers and the Real Line AP-3

Intervals

A subset of the real line is called an interval if it contains at least two numbers and con-
tains all the real numbers lying between any two of its elements. For example, the set of all 
real numbers x such that x 7 6 is an interval, as is the set of all x such that -2 … x … 5.
The set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to con-
tain every real number between -1 and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along 
with the real line itself. Intervals of numbers corresponding to line segments are finite 
intervals; intervals corresponding to rays and the real line are infinite intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-open if it 
contains one endpoint but not the other, and open if it contains neither endpoint. The end-
points are also called boundary points; they make up the interval’s boundary. The 
remaining points of the interval are interior points and together compose the interval’s 
interior. Infinite intervals are closed if they contain a finite endpoint, and open otherwise. 
The entire real line � is an infinite interval that is both open and closed. Table A.1 sum-
marizes the various types of intervals.

TABLE A.1 Types of intervals

Notation Set description Type Picture

(a, b) 5x � a 6 x 6 b6 Open

3a, b4 5x � a … x … b6 Closed

3a, b) 5x � a … x 6 b6 Half-open

(a, b4 5x � a 6 x … b6 Half-open

(a, q) 5x � x 7 a6 Open

3a, q) 5x � x Ú a6 Closed

(-q, b) 5x � x 6 b6 Open

(-q, b4 5x � x … b6 Closed

(-q, q) � (set of all real Both open 
numbers) and closed

a b

a b

a b

a

a

b

b

b

a

Solving Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality in x is 
called solving the inequality.

EXAMPLE 1  Solve the following inequalities and show their solution sets on the 
real line.

(a) 2x - 1 6 x + 3 (b) - x
3 6 2x + 1 (c)

6
x - 1

Ú 5
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Solution

(a) 2x - 1 6 x + 3

   2x 6 x + 4 Add 1 to both sides.

   x 6 4 Subtract x from both sides.

  The solution set is the open interval (-q, 4) (Figure A.1a).

(b) - x
3 6 2x + 1

   -x 6 6x + 3 Multiply both sides by 3.

   0 6 7x + 3 Add x to both sides.

   -3 6 7x Subtract 3 from both sides.

   - 3
7 6 x Divide by 7.

  The solution set is the open interval (-3>7, q) (Figure A.1b).

(c) The inequality 6>(x - 1) Ú 5 can hold only if x 7 1, because otherwise 6>(x - 1)
is undefined or negative. Therefore, (x - 1) is positive and the inequality will be pre-
served if we multiply both sides by (x - 1), and we have

6
x - 1

Ú 5

6 Ú 5x - 5 Multiply both sides by (x - 1).

11 Ú 5x Add 5 to both sides.

11
5

Ú x. Or x … 11
5

.

  The solution set is the half-open interval (1, 11>54  (Figure A.1c).

Absolute Value

The absolute value of a number x, denoted by 0 x 0 , is defined by the formula

0 x 0 = e x, x Ú 0

-x, x 6 0.

EXAMPLE 2 0 3 0 = 3, 0 0 0 = 0, 0-5 0 = -(-5) = 5, 0- 0 a 0 0 = 0 a 0
Geometrically, the absolute value of x is the distance from x to 0 on the real number 

line. Since distances are always positive or 0, we see that 0 x 0 Ú 0 for every real number x,
and 0 x 0 = 0 if and only if x = 0. Also,

0 x - y 0 = the distance between x and y

on the real line (Figure A.2).
Since the symbol 2a always denotes the nonnegative square root of a, an alternate 

definition of 0 x 0  is
0 x 0 = 2x2.

It is important to remember that 2a2 = 0 a 0 . Do not write 2a2 = a unless you already 
know that a Ú 0.

The absolute value has the following properties. (You are asked to prove these proper-
ties in the exercises.)

0

0

0 1

1

1 4

(a)

−3
7

(b)

11
5

(c)

x

x

x

FIGURE A.1 Solution sets for the in-
equalities in Example 1.

0−5 0 = 5 03 0

04 − 1 0= 01 − 4 0 = 3

−5 0 3

1 4

FIGURE A.2 Absolute values give 
distances between points on the number 
line.
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Note that 0-a 0 ≠ - 0 a 0 . For example, 0-3 0 = 3, whereas - 0 3 0 = -3. If a and b dif-
fer in sign, then 0 a + b 0  is less than 0 a 0 + 0 b 0 . In all other cases, 0 a + b 0  equals 0 a 0 + 0 b 0 . Absolute value bars in expressions like 0-3 + 5 0  work like parentheses: We 
do the arithmetic inside before taking the absolute value.

EXAMPLE 3

0-3 + 5 0 = 0 2 0 = 2 6 0-3 0 + 0 5 0 = 8

0 3 + 5 0 = 0 8 0 = 0 3 0 + 0 5 0
0-3 - 5 0 = 0-8 0 = 8 = 0-3 0 + 0-5 0

The inequality 0 x 0 6 a says that the distance from x to 0 is less than the positive 
number a. This means that x must lie between -a and a, as we can see from Figure A.3.

The statements in the table are all consequences of the definition of absolute value 
and are often helpful when solving equations or inequalities involving absolute values.

The symbol 3  is often used by mathematicians to denote the “if and only if ” logical 
relationship. It also means “implies and is implied by.”

EXAMPLE 4  Solve the equation 0 2x - 3 0 = 7.

Solution By Property 5, 2x - 3 = {7, so there are two possibilities:

2x - 3 = 7 2x - 3 = -7 Equivalent equations without absolute values

2x = 10 2x = -4 Solve as usual.

x = 5 x = -2

The solutions of 0 2x - 3 0 = 7 are x = 5 and x = -2.

EXAMPLE 5  Solve the inequality ` 5 - 2
x ` 6 1.

Solution We have

` 5 - 2
x ` 6 1 3 -1 6 5 - 2

x 6 1 Property 6

3 -6 6 - 2
x 6 -4 Subtract 5.

3 3 7 1
x 7 2 Multiply by - 1

2
.

3 1
3 6 x 6 1

2
. Take reciprocals.

Absolute Value Properties

1. 0-a 0 = 0 a 0 A number and its additive inverse or negative 
have the same absolute value.

2. 0 ab 0 = 0 a 0 0 b 0 The absolute value of a product is the product of 
the absolute values.

3. ` a
b
` = 0 a 00 b 0 The absolute value of a quotient is the quotient of 

the absolute values.

4. 0 a + b 0 … 0 a 0 + 0 b 0   The triangle inequality. The absolute value of 
the sum of two numbers is less than or equal to 
the sum of their absolute values.

−a 0 ax

aa

0 x 0

FIGURE A.3 0 x 0 6 a means x lies 
between -a and a.

ABSOLUTE VALUES AND INTERVALS

If a is any positive number, then
5. 0 x 0 = a 3 x = {a
6. 0 x 0 6 a 3 -a 6 x 6 a
7. 0 x 0 7 a 3 x 7 a or x 6 -a
8. 0 x 0 … a 3 -a … x … a
9. 0 x 0 Ú a 3 x Ú a or x … -a



AP-6 Appendices

Notice how the various rules for inequalities were used here. Multiplying by a negative 
number reverses the inequality. So does taking reciprocals in an inequality in which both 
sides are positive. The original inequality holds if and only if (1>3) 6 x 6 (1>2). The 
solution set is the open interval (1>3, 1>2).

1. Express 1>9 as a repeating decimal, using a bar to indicate the 
repeating digits. What are the decimal representations of 2>9?
3>9? 8>9? 9>9?

2. If 2 6 x 6 6, which of the following statements about x are nec-
essarily true, and which are not necessarily true?

a. 0 6 x 6 4 b. 0 6 x - 2 6 4

c. 1 6 x
2

6 3 d. 1
6

6 1
x 6 1

2

e. 1 6 6
x 6 3 f. 0 x - 4 0 6 2

g. -6 6 -x 6 2 h. -6 6 -x 6 -2

In Exercises 3–6, solve the inequalities and show the solution sets on 
the real line.

3. -2x 7 4 4. 5x - 3 … 7 - 3x

5. 2x - 1
2

Ú 7x + 7
6

6. 4
5

(x - 2) 6 1
3

(x - 6)

Solve the equations in Exercises 7–9.

7. 0 y 0 = 3 8. 0 2t + 5 0 = 4 9. 0 8 - 3s 0 = 9
2

Solve the inequalities in Exercises 10–17, expressing the solution sets 
as intervals or unions of intervals. Also, show each solution set on the 
real line.

10. 0 x 0 6 2 11. 0 t - 1 0 … 3 12. 0 3y - 7 0 6 4

13. ` z
5

- 1 ` … 1 14. ` 3 - 1
x ` 6 1

2
15. 0 2s 0 Ú 4

16. 0 1 - x 0 7 1 17. ` r + 1
2
` Ú 1

Solve the inequalities in Exercises 18–21. Express the solution sets as 
intervals or unions of intervals and show them on the real line. Use the 
result 2a2 = 0 a 0  as appropriate.

18. x2 6 2 19. 4 6 x2 6 9

20. (x - 1)2 6 4 21. x2 - x 6 0

22. Do not fall into the trap of thinking 0-a 0 = a. For what real 
numbers a is this equation true? For what real numbers is it false?

23. Solve the equation 0 x - 1 0 = 1 - x.

24. A proof of the triangle inequality Give the reason justifying 
each of the numbered steps in the following proof of the triangle 
inequality.

0 a + b 0 2 = (a + b)2 (1)

= a2 + 2ab + b2

… a2 + 2 0 a 0 0 b 0 + b2 (2)

= 0 a 0 2 + 2 0 a 0 0 b 0 + 0 b 0 2 (3)

= ( 0 a 0 + 0 b 0 )2

0 a + b 0 … 0 a 0 + 0 b 0 (4)

25. Prove that 0 ab 0 = 0 a 0 0 b 0  for any numbers a and b.

26. If 0 x 0 … 3 and x 7 -1>2, what can you say about x?

27. Graph the inequality 0 x 0 + 0 y 0 … 1.

28. For any number a, prove that 0-a 0 = 0 a 0 .
29. Let a be any positive number. Prove that 0 x 0 7 a if and only if 

x 7 a or x 6 -a.

30. a. If b is any nonzero real number, prove that 0 1>b 0 = 1> 0 b 0 .
b. Prove that ` a

b
` = 0 a 00 b 0 for any numbers a and b ≠ 0.

Exercises A.1

A.2 Mathematical Induction

Many formulas, like

1 + 2 + g + n =
n(n + 1)

2
,

can be shown to hold for every positive integer n by applying an axiom called the mathe-
matical induction principle. A proof that uses this axiom is called a proof by mathematical 
induction or a proof by induction.

The steps in proving a formula by induction are the following:

1. Check that the formula holds for n = 1.

2. Prove that if the formula holds for any positive integer n = k, then it also holds for 
the next integer, n = k + 1.
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The induction axiom says that once these steps are completed, the formula holds for all 
positive integers n. By Step 1 it holds for n = 1. By Step 2 it holds for n = 2, and there-
fore by Step 2 also for n = 3, and by Step 2 again for n = 4, and so on. If the first domino 
falls, and the kth domino always knocks over the (k + 1)st when it falls, all the dominoes 
fall.

From another point of view, suppose we have a sequence of statements S1, S2, . . . , Sn, . . . ,
one for each positive integer. Suppose we can show that assuming any one of the statements 
to be true implies that the next statement in line is true. Suppose that we can also show that 
S1 is true. Then we may conclude that the statements are true from S1 on.

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of 
the first n integers. However, proof by mathematical induction is more general. It can be 
used to find the sums of the squares and cubes of the first n integers (Exercises 9 and 10). 
Here is another example.

EXAMPLE 2  Show by mathematical induction that for all positive integers n,

1
21 + 1

22 + g+ 1
2n = 1 - 1

2n .

Solution We accomplish the proof by carrying out the two steps of mathematical 
induction.

1. The formula holds for n = 1 because

1
21 = 1 - 1

21 .

EXAMPLE 1  Use mathematical induction to prove that for every positive integer n,

1 + 2 + g + n =
n(n + 1)

2
.

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for n = 1 because

1 =
1(1 + 1)

2
.

2. If the formula holds for n = k, does it also hold for n = k + 1? The answer is yes, as 
we now show. If

1 + 2 + g + k =
k(k + 1)

2
,

then

1 + 2 + g + k + (k + 1) =
k(k + 1)

2
+ (k + 1) = k2 + k + 2k + 2

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)
2

.

The last expression in this string of equalities is the expression n(n + 1)>2 for 
n = (k + 1).

The mathematical induction principle now guarantees the original formula for all 
positive integers n.
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2. If

1
21 + 1

22 + g + 1
2k = 1 - 1

2k ,

then

1
21 + 1

22 + g + 1
2k + 1

2k+1 = 1 - 1
2k + 1

2k+1 = 1 - 1 # 2
2k # 2 + 1

2k+1

= 1 - 2
2k+1 + 1

2k+1 = 1 - 1
2k+1 .

Thus, the original formula holds for n = (k + 1) whenever it holds for n = k.

With these steps verified, the mathematical induction principle now guarantees the 
formula for every positive integer n.

Other Starting Integers

Instead of starting at n = 1 some induction arguments start at another integer. The steps 
for such an argument are as follows.

1. Check that the formula holds for n = n1 (the first appropriate integer).

2. Prove that if the formula holds for any integer n = k Ú n1, then it also holds for 
n = (k + 1).

Once these steps are completed, the mathematical induction principle guarantees the for-
mula for all n Ú n1.

EXAMPLE 3 Show that n! 7 3n if n is large enough.

Solution How large is large enough? We experiment:

It looks as if n! 7 3n for n Ú 7. To be sure, we apply mathematical induction. We take 
n1 = 7 in Step 1 and complete Step 2.

Suppose k! 7 3k for some k Ú 7. Then

(k + 1)! = (k + 1)(k!) 7 (k + 1)3k 7 7 # 3k 7 3k+1.

Thus, for k Ú 7,

k! 7 3k implies (k + 1)! 7 3k+1.

The mathematical induction principle now guarantees n! Ú 3n for all n Ú 7.

Proof of the Derivative Sum Rule for Sums of Finitely Many 
Functions

We prove the statement

d
dx

(u1 + u2 + g + un) =
du1

dx
+

du2

dx
+ g +

dun

dx

n 1 2 3 4 5 6 7

n! 1 2 6 24 120 720 5040

3n  3 9 27 81 243 729 2187



A.2  Mathematical Induction AP-9

by mathematical induction. The statement is true for n = 2, as was proved in Section 3.3. 
This is Step 1 of the induction proof.

Step 2 is to show that if the statement is true for any positive integer n = k, where 
k Ú n0 = 2, then it is also true for n = k + 1. So suppose that

d
dx

 (u1 + u2 + g + uk) =
du1

dx
+

du2

dx
+ g +

duk

dx
. (1)

Then

d
dx

 (u1 + u2 + g + uk + uk+1)

= d
dx

 (u1 + u2 + g + uk) +
duk+1

dx
Sum Rule for 

d
dx

(u + y)

=
du1

dx
+

du2

dx
+ g +

duk

dx
+

duk+1

dx
. Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the 
Sum Rule for every integer n Ú 2.

(+++++)+++++*
Call the function

defined by this sum u.

()*
Call this

function y.

1. Assuming that the triangle inequality 0 a + b 0 … 0 a 0 + 0 b 0  holds 
for any two numbers a and b, show that

0 x1 + x2 + g+ xn 0 … 0 x1 0 + 0 x2 0 + g+ 0 xn 0
  for any n numbers.

2. Show that if r ≠ 1, then

1 + r + r2 + g+ rn = 1 - rn+1

1 - r

  for every positive integer n.

3. Use the Product Rule, 
d
dx

(uy) = u
dy
dx

+ ydu
dx

, and the fact that 

d
dx

 (x) = 1 to show that 
d
dx

 (xn) = nxn-1 for every positive inte-

ger n.

4. Suppose that a function ƒ(x) has the property that ƒ(x1x2) =
ƒ(x1) + ƒ(x2) for any two positive numbers x1 and x2 . Show that

ƒ(x1x2 g xn) = ƒ(x1) + ƒ(x2) + g+ ƒ(xn)

  for the product of any n positive numbers x1, x2, . . . , xn .

5. Show that

2
31 + 2

32 + g + 2
3n = 1 - 1

3n

  for all positive integers n.

6. Show that n! 7 n3 if n is large enough.

7. Show that 2n 7 n2 if n is large enough.

8. Show that 2n Ú 1>8 for n Ú -3.

9. Sums of squares Show that the sum of the squares of the first n
positive integers is

nan + 1
2
b(n + 1)

3
.

10. Sums of cubes Show that the sum of the cubes of the first n
positive integers is (n(n + 1)>2)2.

11. Rules for finite sums Show that the following finite sum rules 
hold for every positive integer n. (See Section 5.2.)

a. a

n

k=1
(ak + bk) = a

n

k=1
ak + a

n

k=1
bk

b. a

n

k=1
(ak - bk) = a

n

k=1
ak - a

n

k=1
bk

c. a

n

k=1
cak = c # a

n

k=1
ak (any number c)

d. a

n

k=1
ak = n # c (if ak has the constant value c)

12. Show that 0 xn 0 = 0 x 0 n for every positive integer n and every real 
number x.

Exercises A.2
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A.3 Lines, Circles, and Parabolas

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The 
notion of increment is also discussed.

Cartesian Coordinates in the Plane

In Appendix 1 we identified the points on the line with real numbers by assigning them 
coordinates. Points in the plane can be identified with ordered pairs of real numbers. To 
begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each 
line. These lines are called coordinate axes in the plane. On the horizontal x-axis, num-
bers are denoted by x and increase to the right. On the vertical y-axis, numbers are 
denoted by y and increase upward (Figure A.4). Thus “upward” and “to the right” are 
positive directions, whereas “downward” and “to the left” are considered negative. The 
origin O, also labeled 0, of the coordinate system is the point in the plane where x and y
are both zero.

If P is any point in the plane, it can be located by exactly one ordered pair of real 
numbers in the following way. Draw lines through P perpendicular to the two coordinate 
axes. These lines intersect the axes at points with coordinates a and b (Figure A.4). The 
ordered pair (a, b) is assigned to the point P and is called its coordinate pair. The first 
number a is the x-coordinate (or abscissa) of P; the second number b is the y-coordinate
(or ordinate) of P. The x-coordinate of every point on the y-axis is 0. The y-coordinate of 
every point on the x-axis is 0. The origin is the point (0, 0).

Starting with an ordered pair (a, b), we can reverse the process and arrive at a corre-
sponding point P in the plane. Often we identify P with the ordered pair and write P(a, b).
We sometimes also refer to “the point (a, b)” and it will be clear from the context when 
(a, b) refers to a point in the plane and not to an open interval on the real line. Several 
points labeled by their coordinates are shown in Figure A.5.

This coordinate system is called the rectangular coordinate system or Cartesian
coordinate system (after the sixteenth-century French mathematician René Descartes). 
The coordinate axes of this coordinate or Cartesian plane divide the plane into four regions 
called quadrants, numbered counterclockwise as shown in Figure A.5.

The graph of an equation or inequality in the variables x and y is the set of all points 
P(x, y) in the plane whose coordinates satisfy the equation or inequality. When we plot 
data in the coordinate plane or graph formulas whose variables have different units of mea-
sure, we do not need to use the same scale on the two axes. If we plot time vs. thrust for a 
rocket motor, for example, there is no reason to place the mark that shows 1 sec on the 
time axis the same distance from the origin as the mark that shows 1 lb on the thrust axis.

Usually when we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry and trigo-
nometry, we try to make the scales on the axes identical. A vertical unit of distance then 
looks the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line seg-
ments that are supposed to have the same length will look as if they do and angles that are 
supposed to be congruent will look congruent.

Computer displays and calculator displays are another matter. The vertical and hori-
zontal scales on machine-generated graphs usually differ, and there are corresponding 
distortions in distances, slopes, and angles. Circles may look like ellipses, rectangles may 
look like squares, right angles may appear to be acute or obtuse, and so on. We discuss 
these displays and distortions in greater detail in Section 1.4.

Increments and Straight Lines

When a particle moves from one point in the plane to another, the net changes in its coor-
dinates are called increments. They are calculated by subtracting the coordinates of the 

x

y

Second
quadrant
(−, +)

First
quadrant
(+, +)

Third
quadrant
(−, −)

Fourth
quadrant
(+, −)

10−1−2 2

(0, 0)
(1, 0)

(2, 1)

(1, 3)

(1, −2)

(−2, −1)

(−2, 1)
1

−1

−2

2

3

Positive x-axis
Negative y-axis

Negative x-axis Origin

Positive y-axis

P(a, b)

0 1−1−2−3 2 3a

y

1

−1

−2

−3

2

3

b

x

FIGURE A.4 Cartesian coordinates in 
the plane are based on two perpendicular 
axes intersecting at the origin.

FIGURE A.5 Points labeled in the 
xy-coordinate or Cartesian plane. The points 
on the axes all have coordinate pairs but 
are usually labeled with single real num-
bers, (so (1, 0) on the x-axis is labeled as 
1). Notice the coordinate sign patterns of 
the quadrants.

HISTORICAL BIOGRAPHY

René Descartes
(1596–1650)
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starting point from the coordinates of the ending point. If x changes from x1 to x2 , the 
increment in x is

∆x = x2 - x1 .

EXAMPLE 1  In going from the point A(4, -3) to the point B(2, 5) the increments in 
the x- and y-coordinates are

∆x = 2 - 4 = -2, ∆y = 5 - (-3) = 8.

From C(5, 6) to D(5, 1) the coordinate increments are

∆x = 5 - 5 = 0, ∆y = 1 - 6 = -5.

See Figure A.6.

Given two points P1(x1, y1) and P2(x2 , y2) in the plane, we call the increments 
∆x = x2 - x1 and ∆y = y2 - y1 the run and the rise, respectively, between P1 and P2 .
Two such points always determine a unique straight line (usually called simply a line) 
passing through them both. We call the line P1P2 .

Any nonvertical line in the plane has the property that the ratio

m = rise
run =

∆y
∆x

=
y2 - y1
x2 - x1

has the same value for every choice of the two points P1(x1, y1) and P2(x2 , y2) on the line 
(Figure A.7). This is because the ratios of corresponding sides for similar triangles are 
equal.

Δy = 8

Δx = −2

A(4, −3)
(2, −3)

Δy = −5,
Δx = 0

D(5, 1)

C(5, 6)

B (2, 5)

1 2 3 4 50

1

2

3

4

5

6

−1

−2

−3

y

x

FIGURE A.6 Coordinate increments 
may be positive, negative, or zero 
(Example 1).

The slope tells us the direction (uphill, downhill) and steepness of a line. A line with 
positive slope rises uphill to the right; one with negative slope falls downhill to the right 
(Figure A.8). The greater the absolute value of the slope, the more rapid the rise or fall. 
The slope of a vertical line is undefined. Since the run ∆x is zero for a vertical line, we 
cannot form the slope ratio m.

The direction and steepness of a line can also be measured with an angle. The angle
of inclination of a line that crosses the x-axis is the smallest counterclockwise angle from 
the x-axis to the line (Figure A.9). The inclination of a horizontal line is 0°. The inclination 
of a vertical line is 90°. If f (the Greek letter phi) is the inclination of a line, then 
0 … f 6 180°.

The relationship between the slope m of a nonvertical line and the line’s angle of 
inclination f is shown in Figure A.10:

m = tanf.

Straight lines have relatively simple equations. All points on the vertical line through 
the point a on the x-axis have x-coordinates equal to a. Thus, x = a is an equation for the 
vertical line. Similarly, y = b is an equation for the horizontal line meeting the y-axis at b.
(See Figure A.11.)

We can write an equation for a nonvertical straight line L if we know its slope m and 
the coordinates of one point P1(x1 , y1) on it. If P(x, y) is any other point on L, then we can 

DEFINITION  The constant ratio

m = rise
run =

∆y
∆x

=
y2 - y1
x2 - x1

is the slope of the nonvertical line P1P2 .P1′

P2(x2, y2)

Δx′

Δx
(run)

P1(x1, y1)

Q(x2, y1)

Δy
(rise) Δy′

P2′

0

Q′

L

x

y

FIGURE A.7 Triangles P1QP2 and 
P1′Q′P2′ are similar, so the ratio of their 
sides has the same value for any two 
points on the line. This common value 
is the line’s slope.
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use the two points P1 and P to compute the slope,

m =
y - y1
x - x1

so that

y - y1 = m(x - x1), or y = y1 + m(x - x1).

The equation

y = y1 + m(x - x1)

is the point-slope equation of the line that passes through the point (x1, y1) and 
has slope m.

x

y

P2(4, 2)

P1(0, 5)
P4(3, 6)

P3(0, −2)

10
−1

1

2

3

4

6

2 3 4 5 6

L2

L1

FIGURE A.8 The slope of L1 is 

m =
∆y

∆x
=

6 - (-2)
3 - 0

= 8
3

.

That is, y increases 8 units every time x
increases 3 units. The slope of L2 is 

m =
∆y

∆x
= 2 - 5

4 - 0
= -3

4
.

That is, y decreases 3 units every time x
increases 4 units. this

not this

this

not this

x x

FIGURE A.9 Angles of inclination 
are measured counterclockwise from 
the x-axis.

x

y

P1

P2 L

Δy

Δx

Δy
Δx

m = = tan f

f

FIGURE A.10 The slope of a nonvertical 
line is the tangent of its angle of inclination.

x

y

0

1

2

3

4

5

6

1 2 3 4

Along this line,
x = 2

Along this line,
y = 3

(2, 3)

FIGURE A.11 The standard equa-
tions for the vertical and horizontal lines 
through (2, 3) are x = 2 and y = 3.

EXAMPLE 2  Write an equation for the line through the point (2, 3) with slope -3>2.

Solution We substitute x1 = 2, y1 = 3, and m = -3>2 into the point-slope equation 
and obtain

y = 3 - 3
2

(x - 2), or y = - 3
2

x + 6.

When x = 0, y = 6 so the line intersects the y-axis at y = 6.

EXAMPLE 3  Write an equation for the line through (-2, -1) and (3, 4).

Solution The line’s slope is

m = -1 - 4
-2 - 3

= -5
-5

= 1.

We can use this slope with either of the two given points in the point-slope equation:

With (x1, y1) = (−2, −1) With (x1, y1) = (3, 4)

y = -1 + 1 # (x - (-2)) y = 4 + 1 # (x - 3)

y = -1 + x + 2 y = 4 + x - 3

y = x + 1 y = x + 1
Same result

Either way, y = x + 1 is an equation for the line (Figure A.12).

x

y

4

0−2 1 2 3
−1

(−2, −1)

(3, 4)

y = x + 1

FIGURE A.12 The line in Example 3.
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The y-coordinate of the point where a nonvertical line intersects the y-axis is called 
the y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line is the x-
coordinate of the point where it crosses the x-axis (Figure A.13). A line with slope m and 
y-intercept b passes through the point (0, b), so it has equation

y = b + m(x - 0), or, more simply, y = mx + b.

The equation

y = mx + b

is called the slope-intercept equation of the line with slope m and y-intercept b.

Lines with equations of the form y = mx have y-intercept 0 and so pass through the 
origin. Equations of lines are called linear equations.

The equation

Ax + By = C (A and B not both 0)

is called the general linear equation in x and y because its graph always represents a line 
and every line has an equation in this form (including lines with undefined slope).

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination, so they have the same slope (if they 
are not vertical). Conversely, lines with equal slopes have equal angles of inclination and 
so are parallel.

If two nonvertical lines L1 and L2 are perpendicular, their slopes m1 and m2 satisfy 
m1m2 = -1, so each slope is the negative reciprocal of the other:

m1 = - 1
m2

, m2 = - 1
m1

.

To see this, notice by inspecting similar triangles in Figure A.14 that m1 = a>h, and 
m2 = -h>a. Hence, m1m2 = (a>h)(-h>a) = -1.

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the 
Pythagorean theorem (Figure A.15).

x

y

b

0 a

L

FIGURE A.13 Line L has x-intercept
a and y-intercept b.

x

y

0 A D Ba

Slope m1 Slope m2

C

L2
L1

h
f1

f2
f1

FIGURE A.14 ∆ADC is similar to 
∆CDB. Hence f1 is also the upper angle 
in ∆CDB. From the sides of ∆CDB, we 
read tanf1 = a>h.

@ x2 − x1 @

P(x1, y1)

@ y2 − y1 @

C(x2, y1)

Q(x2, y2)
@ x2 − x1 @

2 + @ y2 − y1 @
2d =

"

(x2 − x1)
2 + (y2 − y1)

2=
"

This distance is

x

y

0 x1

y1

y2

x2

FIGURE A.15 To calculate the distance between 
P(x1, y1) and Q(x2, y2), apply the Pythagorean 
theorem to triangle PCQ.
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EXAMPLE 4

(a) The distance between P(-1, 2) and Q(3, 4) is

2(3 - (-1))2 + (4 - 2)2 = 2(4)2 + (2)2 = 220 = 24 # 5 = 225.

(b) The distance from the origin to P(x, y) is

2(x - 0)2 + (y - 0)2 = 2x2 + y2.

By definition, a circle of radius a is the set of all points P(x, y) whose distance from 
some center C(h, k) equals a (Figure A.16). From the distance formula, P lies on the circle 
if and only if

2(x - h)2 + (y - k)2 = a,

so

Distance Formula for Points in the Plane

The distance between P(x1, y1) and Q(x2, y2) is

d = 2(∆x)2 + (∆y)2 = 2(x2 - x1)2 + (y2 - y1)2.

(x − h)2 + (y − k)2 = a2

C(h, k)

a

P(x, y)

0
x

y

FIGURE A.16 A circle of radius a in the 
xy-plane, with center at (h, k).

(x - h)2 + ( y - k)2 = a2. (1)

Equation (1) is the standard equation of a circle with center (h, k) and radius a. The cir-
cle of radius a = 1 and centered at the origin is the unit circle with equation

x2 + y2 = 1.

EXAMPLE 5

(a) The standard equation for the circle of radius 2 centered at (3, 4) is

(x - 3)2 + (y - 4)2 = 22 = 4.

(b) The circle

(x - 1)2 + (y + 5)2 = 3

  has h = 1, k = -5, and a = 23. The center is the point (h, k) = (1, -5) and the 
radius is a = 23.

If an equation for a circle is not in standard form, we can find the circle’s center and 
radius by first converting the equation to standard form. The algebraic technique for doing 
so is completing the square.

EXAMPLE 6  Find the center and radius of the circle

x2 + y2 + 4x - 6y - 3 = 0.
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Solution We convert the equation to standard form by completing the squares in x and y:

x2 + y2 + 4x - 6y - 3 = 0

(x2 + 4x) + (y2 - 6y) = 3

ax2 + 4x + a4
2
b2b + ay2 - 6y + a-6

2
b2b =

3 + a4
2
b2

+ a-6
2
b2

(x2 + 4x + 4) + (y2 - 6y + 9) = 3 + 4 + 9

(x + 2)2 + (y - 3)2 = 16

The center is (-2, 3) and the radius is a = 4.

The points (x, y) satisfying the inequality

(x - h)2 + (y - k)2 6 a2

make up the interior region of the circle with center (h, k) and radius a (Figure A.17). The 
circle’s exterior consists of the points (x, y) satisfying

(x - h)2 + (y - k)2 7 a2.

Parabolas

The geometric definition and properties of general parabolas are reviewed in Chapter 11. 
Here we look at parabolas arising as the graphs of equations of the form y = ax2 + bx + c.

EXAMPLE 7  Consider the equation y = x2. Some points whose coordinates satisfy 

this equation are (0, 0), (1, 1), a3
2

,
9
4
b , (-1, 1), (2, 4), and (-2, 4). These points (and all 

others satisfying the equation) make up a smooth curve called a parabola (Figure A.18).

The graph of an equation of the form

y = ax2

is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point where 
the parabola and axis cross) lies at the origin. The parabola opens upward if a 7 0 and down-
ward if a 6 0. The larger the value of 0 a 0 , the narrower the parabola (Figure A.19).

Generally, the graph of y = ax2 + bx + c is a shifted and scaled version of the 
parabola y = x2. We discuss shifting and scaling of graphs in more detail in Section 1.2.

Start with the given equation. 
Gather terms. Move the con-
stant to the right-hand side.

Add the square of half the 
coefficient of x to each side of the 
equation. Do the same for y.
The parenthetical expressions on 
the left-hand side are now perfect 
squares.

Write each quadratic as a squared 
linear expression.

Exterior: (x − h)2 + (y − k)2 > a2

Interior: (x − h)2 + (y − k)2 < a2

(h, k)

a

0 h
x

y

k

On: (x − h)2 + (y − k)2 = a2

FIGURE A.17 The interior and exterior 
of the circle (x - h)2 + (y - k)2 = a2.
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(−2, 4)

(−1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a b

FIGURE A.18 The parabola y = x2

(Example 7).

The Graph of y = ax2 + bx + c, a 3 0

The graph of the equation y = ax2 + bx + c, a ≠ 0, is a parabola. The parab-
ola opens upward if a 7 0 and downward if a 6 0. The axis is the line

x = - b
2a

. (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its 
x-coordinate is x = -b>2a; its y-coordinate is found by substituting x = -b>2a
in the parabola’s equation.
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Notice that if a = 0, then we have y = bx + c, which is an equation for a line. The 
axis, given by Equation (2), can be found by completing the square.

EXAMPLE 8  Graph the equation y = - 1
2

x2 - x + 4.

Solution Comparing the equation with y = ax2 + bx + c we see that

a = - 1
2

, b = -1, c = 4.

Since a 6 0, the parabola opens downward. From Equation (2) the axis is the vertical line

x = - b
2a

= -
(-1)

2(-1>2)
= -1.

When x = -1, we have

y = - 1
2

(-1)2 - (-1) + 4 = 9
2

.

The vertex is (-1, 9>2).
The x-intercepts are where y = 0:

- 1
2

x2 - x + 4 = 0

x2 + 2x - 8 = 0

(x - 2)(x + 4) = 0

x = 2, x = -4

We plot some points, sketch the axis, and use the direction of opening to complete the 
graph in Figure A.20.

Ellipses

The geometric definition and properties of general ellipses are reviewed in Chapter 11. 
Here we relate them to circles. Although they are not the graphs of functions, circles can 
be stretched horizontally or vertically in the same way as the graphs of functions. The 
standard equation for a circle of radius r centered at the origin is

x2 + y2 = r2.

A
xi

s 
of

sy
m

m
et

ry

Vertex at
origin

−1

1

−4 −3 −2 2 3 4

y = −x2

y = − x2

6

y = x2

10

y = x2

2

y = 2x2

x

y

FIGURE A.19 Besides determining the 
direction in which the parabola y = ax2

opens, the number a is a scaling factor. 
The parabola widens as a approaches zero 
and narrows as 0 a 0  becomes large.

a b
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x = −4 and x = 2
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with y-intercept
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FIGURE A.20 The parabola in Example 8.
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FIGURE A.21 Horizontal stretching or compression of a circle produces graphs of ellipses.
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Substituting cx for x in the standard equation for a circle (Figure A.21) gives

c2x2 + y2 = r2. (3)

If 0 6 c 6 1, the graph of Equation (3) horizontally stretches the circle; if c 7 1 the 
circle is compressed horizontally. In either case, the graph of Equation (3) is an ellipse 
(Figure A.21). Notice in Figure A.21 that the y-intercepts of all three graphs are always -r
and r. In Figure A.21b, the line segment joining the points ({r>c, 0) is called the major
axis of the ellipse; the minor axis is the line segment joining (0, {r). The axes of the 
ellipse are reversed in Figure A.21c: The major axis is the line segment joining the points 
(0, {r), and the minor axis is the line segment joining the points ({r>c, 0). In both 
cases, the major axis is the longer line segment.

If we divide both sides of Equation (3) by r2, we obtain

x2

a2 +
y2

b2 = 1 (4)

where a = r>c and b = r. If a 7 b, the major axis is horizontal; if a 6 b, the major axis 
is vertical. The center of the ellipse given by Equation (4) is the origin (Figure A.22).

Substituting x - h for x, and y - k for y, in Equation (4) results in

(x - h)2

a2 +
(y - k)2

b2 = 1. (5)

Equation (5) is the standard equation of an ellipse with center at (h, k).

x

y

−a

−b

b

a

Major axis

Center

FIGURE A.22 Graph of the ellipse 
x2

a2 +
y2

b2 = 1, a 7 b, where the major 

axis is horizontal.

Distance, Slopes, and Lines
In Exercises 1 and 2, a particle moves from A to B in the coordinate 
plane. Find the increments ∆x and ∆y in the particle’s coordinates. 
Also find the distance from A to B.

1. A(-3, 2), B(-1, -2) 2. A(-3.2, -2), B(-8.1, -2)

Describe the graphs of the equations in Exercises 3 and 4.

3. x2 + y2 = 1 4. x2 + y2 … 3

Plot the points in Exercises 5 and 6 and find the slope (if any) of the 
line they determine. Also find the common slope (if any) of the lines 
perpendicular to line AB.

5. A(-1, 2), B(-2, -1) 6. A(2, 3), B(-1, 3)

In Exercises 7 and 8, find an equation for (a) the vertical line and (b)
the horizontal line through the given point.

7. (-1, 4>3) 8. 10, -222
In Exercises 9–15, write an equation for each line described.

9. Passes through (-1, 1) with slope -1

10. Passes through (3, 4) and (-2, 5)

11. Has slope -5>4 and y-intercept 6

12. Passes through (-12, -9) and has slope 0

13. Has y-intercept 4 and x-intercept -1

14. Passes through (5, -1) and is parallel to the line 2x + 5y = 15

15. Passes through (4, 10) and is perpendicular to the line 
6x - 3y = 5

In Exercises 16 and 17, find the line’s x- and y-intercepts and use this 
information to graph the line.

16. 3x + 4y = 12 17. 22x - 23y = 26

18. Is there anything special about the relationship between the lines 
Ax + By = C1 and Bx - Ay = C2 (A ≠ 0, B ≠ 0)? Give rea-
sons for your answer.

19. A particle starts at A(-2, 3) and its coordinates change by incre-
ments ∆x = 5, ∆y = -6. Find its new position.

20. The coordinates of a particle change by ∆x = 5 and ∆y = 6 as it 
moves from A(x, y) to B(3, -3). Find x and y.

Circles
In Exercises 21–23, find an equation for the circle with the given 
center C(h, k) and radius a. Then sketch the circle in the xy-plane.
Include the circle’s center in your sketch. Also, label the circle’s x-
and y-intercepts, if any, with their coordinate pairs.

21. C(0, 2), a = 2 22. C(-1, 5), a = 210

23. C1-23, -22, a = 2

Graph the circles whose equations are given in Exercises 24–26. 
Label each circle’s center and intercepts (if any) with their coordinate 
pairs.

24. x2 + y2 + 4x - 4y + 4 = 0

25. x2 + y2 - 3y - 4 = 0 26. x2 + y2 - 4x + 4y = 0

Exercises A.3



AP-18 Appendices

44. Reflected light A ray of light comes in along the line x +
y = 1 from the second quadrant and reflects off the x-axis (see 
the accompanying figure). The angle of incidence is equal to the 
angle of reflection. Write an equation for the line along which the 
departing light travels.

Angle of
incidence

Angle of
reflection

x + y = 1

1

0 1
x

y

  The path of the light ray in Exercise 44. Angles of incidence and 
reflection are measured from the perpendicular.

45. Fahrenheit vs. Celsius In the FC-plane, sketch the graph of the 
equation

C = 5
9

(F - 32)

  linking Fahrenheit and Celsius temperatures. On the same graph 
sketch the line C = F. Is there a temperature at which a Celsius 
thermometer gives the same numerical reading as a Fahrenheit 
thermometer? If so, find it.

46. The Mt. Washington Cog Railway Civil engineers calculate 
the slope of roadbed as the ratio of the distance it rises or falls to 
the distance it runs horizontally. They call this ratio the grade
of the roadbed, usually written as a percentage. Along the coast, 
commercial railroad grades are usually less than 2%. In the 
mountains, they may go as high as 4%. Highway grades are usu-
ally less than 5%.

   The steepest part of the Mt. Washington Cog Railway in 
New Hampshire has an exceptional 37.1% grade. Along this part 
of the track, the seats in the front of the car are 14 ft above those in 
the rear. About how far apart are the front and rear rows of seats?

47. By calculating the lengths of its sides, show that the triangle with 
vertices at the points A(1, 2), B(5, 5), and C(4, -2) is isosceles 
but not equilateral.

48. Show that the triangle with vertices A(0, 0), B11, 232, and C(2, 0) 
is equilateral.

49. Show that the points A(2, -1), B(1, 3), and C(-3, 2) are vertices 
of a square, and find the fourth vertex.

50. Three different parallelograms have vertices at (-1, 1), (2, 0), 
and (2, 3). Sketch them and find the coordinates of the fourth ver-
tex of each.

51. For what value of k is the line 2x + ky = 3 perpendicular to the 
line 4x + y = 1? For what value of k are the lines parallel?

52. Midpoint of a line segment Show that the point with coordi-
nates

ax1 + x2

2
,

y1 + y2

2
b

  is the midpoint of the line segment joining P(x1 , y1) to Q(x2 , y2).

Parabolas
Graph the parabolas in Exercises 27–30. Label the vertex, axis, and 
intercepts in each case.

27. y = x2 - 2x - 3 28. y = -x2 + 4x

29. y = -x2 - 6x - 5 30. y = 1
2

x2 + x + 4

Inequalities
Describe the regions defined by the inequalities and pairs of inequali-
ties in Exercises 31–34.

31. x2 + y2 7 7 32. (x - 1)2 + y2 … 4

33. x2 + y2 7 1, x2 + y2 6 4

34. x2 + y2 + 6y 6 0, y 7 -3

35. Write an inequality that describes the points that lie inside the 

circle with center (-2, 1) and radius 26.

36. Write a pair of inequalities that describe the points that lie inside 
or on the circle with center (0, 0) and radius 22, and on or to the 
right of the vertical line through (1, 0).

Theory and Examples
In Exercises 37–40, graph the two equations and find the points at 
which the graphs intersect.

37. y = 2x, x2 + y2 = 1 38. y - x = 1, y = x2

39. y = -x2, y = 2x2 - 1

40. x2 + y2 = 1, (x - 1)2 + y2 = 1

41. Insulation By measuring slopes in the figure, estimate the tem-
perature change in degrees per inch for (a) the gypsum wallboard; 
(b) the fiberglass insulation; (c) the wood sheathing.

The temperature changes in the wall in Exercises 41 and 42.

Te
m

pe
ra

tu
re

 (
°F

)

0°

10°

20°

30°

40°

50°

60°

70°

80°

Distance through wall (inches)

0 1 2 3 4 5 6 7

Gypsum wallboard
Sheathing

Siding

Air outside
at 0°F

Fiberglass
between studs

Air
inside
room
at 72° F

42. Insulation According to the figure in Exercise 41, which of the 
materials is the best insulator? The poorest? Explain.

43. Pressure under water The pressure p experienced by a diver 
under water is related to the diver’s depth d by an equation of the 
form p = kd + 1 (k a constant). At the surface, the pressure is 1 
atmosphere. The pressure at 100 meters is about 10.94 atmo-
spheres. Find the pressure at 50 meters.
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A.4 Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

lim
xSc

ƒ(x) = L and lim
xSc

g(x) = M, then

1. Sum Rule: lim
xSc

(ƒ(x) + g(x)) = L + M

2. Difference Rule: lim
xSc

(ƒ(x) - g(x)) = L - M

3. Constant Multiple Rule: lim
xSc

(k # ƒ(x)) = k # L
4. Product Rule: lim

xSc
(ƒ(x) # g(x)) = L # M

5. Quotient Rule: lim
xSc

ƒ(x)
g(x)

= L
M , M ≠ 0

6. Power Rule: lim
xSc

[ƒ(x)]n = Ln, n a positive integer

7. Root Rule: lim
xSc
2n ƒ(x) = 2n L = L1/n, n a positive integer

(If n is even, we assume that lim
xSc

ƒ(x) = L 7 0.)

We proved the Sum Rule in Section 2.3, and the Power and Root Rules are proved in 
more advanced texts. We obtain the Difference Rule by replacing g(x) by -g(x) and 
M by -M  in the Sum Rule. The Constant Multiple Rule is the special case g(x) = k of the 
Product Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule  We show that for any P 7 0 there exists a d 7 0
such that for all x in the intersection D of the domains of ƒ and g,

0 6 0 x - c 0 6 d 1 0 ƒ(x)g(x) - LM 0 6 P.

Suppose then that P is a positive number, and write ƒ(x) and g(x) as

ƒ(x) = L + (ƒ(x) - L), g(x) = M + (g(x) - M ).

Multiply these expressions together and subtract LM:

ƒ(x) # g(x) - LM = (L + (ƒ(x) - L))(M + (g(x) - M)) - LM

= LM + L(g(x) - M) + M(ƒ(x) - L)

+ (ƒ(x) - L)(g(x) - M) - LM

= L(g(x) - M ) + M(ƒ(x) - L) + (ƒ(x) - L)(g(x) - M ). (1)

Since ƒ and g have limits L and M as x S c, there exist positive numbers d1, d2, d3, and d4

such that for all x in D

0 6 0 x - c 0 6 d1 1 0 ƒ(x) - L 0 6 2P>3
0 6 0 x - c 0 6 d2 1 0 g(x) - M 0 6 2P>3
0 6 0 x - c 0 6 d3 1 0 ƒ(x) - L 0 6 P>(3(1 + 0M 0 ))
0 6 0 x - c 0 6 d4 1 0 g(x) - M 0 6 P>(3(1 + 0 L 0 )).

(2)
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If we take d to be the smallest numbers d1 through d4, the inequalities on the right-hand 
side of the Implications (2) will hold simultaneously for 0 6 0 x - c 0 6 d. Therefore, for 
all x in D, 0 6 0 x - c 0 6 d implies

0 ƒ(x) # g(x) - LM 0
… 0 L 0 0 g(x) - M 0 + 0M 0 0 ƒ(x) - L 0 + 0 ƒ(x) - L 0 0 g(x) - M 0
… (1 + 0 L 0 ) 0 g(x) - M 0 + (1 + 0M 0 ) 0 ƒ(x) - L 0 + 0 ƒ(x) - L 0 0 g(x) - M 0

6 P
3 + P

3 + A
P
3A

P
3 = P. Values from (2)

This completes the proof of the Limit Product Rule.

Proof of the Limit Quotient Rule  We show that limxSc(1>g(x)) = 1>M. We can 
then conclude that

lim
xSc

ƒ(x)
g(x)

= lim
xSc
aƒ(x) # 1

g(x)
b = lim

xSc
ƒ(x) # lim

xSc

1
g(x)

= L # 1
M = L

M

by the Limit Product Rule.
Let P 7 0 be given. To show that limxSc(1>g(x)) = 1>M, we need to show that there 

exists a d 7 0 such that for all x

0 6 0 x - c 0 6 d 1 ` 1
g(x)

- 1
M ` 6 P.

Since 0M 0 7 0, there exists a positive number d1 such that for all x

0 6 0 x - c 0 6 d1 1 0 g(x) - M 0 6 M
2

. (3)

For any numbers A and B it can be shown that 0A 0 - 0B 0 … 0A - B 0 and 0B 0 - 0A 0 …0A - B 0 , from which it follows that 0 0A 0 - 0B 0 0 … 0 A - B 0 . With A = g(x) and 
B = M, this becomes

0 0 g(x) 0 - 0M 0 0 … 0 g(x) - M 0 ,
which can be combined with the inequality on the right in Implication (3) to get, in turn,

0 0 g(x) 0 - 0 M 0 0 6 0 M 0
2

-
0M 0
2

6 0 g(x) 0 - 0M 0 6 0M 0
2

0M 0
2

6 0 g(x) 0 6 3 0M 0
2

0M 0 6 2 0 g(x) 0 6 3 0M 0
10 g(x) 0 6 20M 0 6 30 g(x) 0 . (4)

Therefore, 0 6 0 x - c 0 6 d1 implies that

` 1
g(x)

- 1
M ` = `

M - g(x)
Mg(x)

` … 10M 0 # 10 g(x) 0 # 0M - g(x) 0

6 10M 0 # 20M 0 # 0M - g(x) 0 . Inequality (4) (5)

Triangle inequality applied
to Eq. (1)
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Since (1>2) 0M 0 2P 7 0, there exists a number d2 7 0 such that for all x

0 6 0 x - c 0 6 d2 1 0M - g(x) 0 6 P
2
0M 0 2. (6)

If we take d to be the smaller of d1 and d2 , the conclusions in (5) and (6) both hold for all 
x such that 0 6 0 x - c 0 6 d. Combining these conclusions gives

0 6 0 x - c 0 6 d 1 ` 1
g(x)

- 1
M ` 6 P.

This concludes the proof of the Limit Quotient Rule.

THEOREM 4—The Sandwich Theorem Suppose that g(x) … ƒ(x) … h(x) for 
all x in some open interval I containing c, except possibly at x = c itself. Sup-
pose also that limxSc g(x) = limxSc h(x) = L. Then limxSc ƒ(x) = L.

Proof for Right-Hand Limits  Suppose limxSc+ g(x) = limxSc+ h(x) = L. Then for 
any P 7 0 there exists a d 7 0 such that for all x the interval c 6 x 6 c + d is con-
tained in I and the inequality implies

L - P 6 g(x) 6 L + P and L - P 6 h(x) 6 L + P.

These inequalities combine with the inequality g(x) … ƒ(x) … h(x) to give

L - P 6 g(x) … ƒ(x) … h(x) 6 L + P,

L - P 6 ƒ(x) 6 L + P,

- P 6 ƒ(x) - L 6 P.

Therefore, for all x, the inequality c 6 x 6 c + d implies 0 ƒ(x) - L 0 6 P.

Proof for Left-Hand Limits  Suppose limxSc- g(x) = limxSc- h(x) = L. Then for 
any P 7 0 there exists a d 7 0 such that for all x the interval c - d 6 x 6 c is con-
tained in I and the inequality implies

L - P 6 g(x) 6 L + P and L - P 6 h(x) 6 L + P.

We conclude as before that for all x, c - d 6 x 6 c implies 0 ƒ(x) - L 0 6 P.

Proof for Two-Sided Limits  If limxSc g(x) = limxSc h(x) = L, then g(x) and h(x)
both approach L as x S c+ and as x S c-; so limxSc+ ƒ(x) = L and limxSc- ƒ(x) = L.
Hence limxSc ƒ(x) exists and equals L.

1. Suppose that functions ƒ1(x), ƒ2(x), and ƒ3(x) have limits L1, L2,
and L3 , respectively, as x S c. Show that their sum has limit 
L1 + L2 + L3 . Use mathematical induction (Appendix 2) to gen-
eralize this result to the sum of any finite number of functions.

2. Use mathematical induction and the Limit Product Rule in Theo-
rem 1 to show that if functions ƒ1(x), ƒ2(x), c, ƒn(x) have limits 
L1 , L2 , c, Ln as x S c, then

lim
xSc

ƒ1(x) # ƒ2(x) # g # ƒn(x) = L1
# L2

# g # Ln .

3. Use the fact that limxSc x = c and the result of Exercise 2 to 
show that limxSc xn = cn for any integer n 7 1.

4. Limits of polynomials Use the fact that limxSc (k) = k for any 
number k together with the results of Exercises 1 and 3 to show 
that limxSc ƒ(x) = ƒ(c) for any polynomial function

ƒ(x) = anxn + an-1xn-1 + g + a1x + a0 .

Exercises A.4
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5. Limits of rational functions Use Theorem 1 and the result of 
Exercise 4 to show that if ƒ(x) and g(x) are polynomial functions 
and g(c) ≠ 0, then

lim
xSc

ƒ(x)
g(x)

=
ƒ(c)
g(c)

.

6. Composites of continuous functions Figure A.23 gives the 
diagram for a proof that the composite of two continuous func-

tions is continuous. Reconstruct the proof from the diagram. The 
statement to be proved is this: If ƒ is continuous at x = c and g is 
continuous at ƒ(c), then g ∘ ƒ is continuous at c.

   Assume that c is an interior point of the domain of ƒ and that 
ƒ(c) is an interior point of the domain of g. This will make the 
limits involved two-sided. (The arguments for the cases that 
involve one-sided limits are similar.)

c f(c) g( f(c))

df df dg dg P P

f g

g ∘ f

FIGURE A.23 The diagram for a proof that the composite of two continuous func-
tions is continuous.

A.5 Commonly Occurring Limits

This appendix verifies limits (4)–(6) in Theorem 5 of Section 10.1.

Limit 4: If ∣ x ∣ * 1, lim
nSH

x n = 0 We need to show that to each P 7 0 there corresponds 

an integer N so large that 0 xn 0 6 P for all n greater than N. Since P1>n S 1, while 0 x 0 6 1,
there exists an integer N for which P1>N 7 0 x 0 . In other words,

0 xN 0 = 0 x 0 N 6 P. (1)

This is the integer we seek because, if 0 x 0 6 1, then

0 xn 0 6 0 xN 0 for all n 7 N. (2)

Combining (1) and (2) produces 0 xn 0 6 P for all n 7 N, concluding the proof.

Limit 5: For any number x, lim
nSH
a1 + x

nb
n
= e x Let

an = a1 + x
nb

n

.

Then

ln an = ln a1 + x
nb

n

= n ln a1 + x
nb S x,

as we can see by the following application of l’Hôpital’s Rule, in which we differentiate 
with respect to n:

lim
nSq

n ln a1 + x
nb = lim

nSq

ln(1 + x>n)
1/n

= lim
nSq

a 1
1 + x>nb # a-

x
n2b

-1/n2 = lim
nSq

x
1 + x/n

= x.

Apply Theorem 3, Section 10.1, with ƒ(x) = ex to conclude that

a1 + x
nb

n

= an = elnan S ex.
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Limit 6: For any number x, lim
nSH

x n
n! = 0 Since

-
0 x 0 n
n!

… xn

n!
…
0 x 0 n
n!

,

all we need to show is that 0 x 0 n>n!S 0. We can then apply the Sandwich Theorem for 
Sequences (Section 10.1, Theorem 2) to conclude that xn>n!S 0.

The first step in showing that 0 x 0 n>n!S 0 is to choose an integer M 7 0 x 0 , so that 
( 0 x 0 >M) 6 1. By Limit 4, just proved, we then have ( 0 x 0 >M)n S 0. We then restrict our 
attention to values of n 7 M. For these values of n, we can write

0 x 0 n
n!

=
0 x 0 n

1 # 2 # g # M # (M + 1) # (M + 2) # g # n
(++++++)++++++*

(n - M) factors

…
0 x 0 n

M!Mn-M =
0 x 0 nMM

M!Mn = MM

M!
a 0 x 0M b

n

.

Thus,

0 …
0 x 0 n
n!

… MM

M!
a 0 x 0M b

n

.

Now, the constant MM>M! does not change as n increases. Thus the Sandwich Theorem 
tells us that 0 x 0 n>n!S 0 because ( 0 x 0 >M)n S 0.

A.6 Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many 
results about functions, derivatives, and integrals would be false if stated for functions 
defined only on the rational numbers. In this appendix we briefly examine some basic con-
cepts of the theory of the reals that hint at what might be learned in a deeper, more theo-
retical study of calculus.

Three types of properties make the real numbers what they are. These are the alge-
braic, order, and completeness properties. The algebraic properties involve addition and 
multiplication, subtraction and division. They apply to rational or complex numbers as 
well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-
tions. The following properties are required of addition and multiplication.

A1 a + (b + c) = (a + b) + c for all a, b, c.

A2 a + b = b + a for all a, b.

A3 There is a number called “0” such that a + 0 = a for all a.

A4 For each number a, there is a b such that a + b = 0.

M1 a(bc) = (ab)c for all a, b, c.

M2 ab = ba for all a, b.

M3 There is a number called “1” such that a # 1 = a for all a.

M4 For each nonzero a, there is a b such that ab = 1.

D a(b + c) = ab + ac for all a, b, c.
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A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are 
identity laws, and D is the distributive law. Sets that have these algebraic properties are 
examples of fields, and are studied in depth in the area of theoretical mathematics called 
abstract algebra.

The order properties allow us to compare the size of any two numbers. The order 
properties are

O1 For any a and b, either a … b or b … a or both.

O2 If a … b and b … a then a = b.

O3 If a … b and b … c then a … c.

O4 If a … b then a + c … b + c.

O5 If a … b and 0 … c then ac … bc.

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.
We can order the reals, the integers, and the rational numbers, but we cannot order the 

complex numbers. There is no reasonable way to decide whether a number like i = 2-1
is bigger or smaller than zero. A field in which the size of any two elements can be com-
pared as above is called an ordered field. Both the rational numbers and the real numbers 
are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The 
completeness property says that the real numbers correspond to all points on the line, 
with no “holes” or “gaps.” The rationals, in contrast, omit points such as 22 and p, and 
the integers even leave out fractions like 1 >2. The reals, having the completeness property, 
omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we 
must give a more precise description of completeness. A number M is an upper bound for 
a set of numbers if all numbers in the set are smaller than or equal to M. M is a least upper 
bound if it is the smallest upper bound. For example, M = 2 is an upper bound for the 
negative numbers. So is M = 1, showing that 2 is not a least upper bound. The least upper 
bound for the set of negative numbers is M = 0. We define a complete ordered field to be 
one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than 22 is 
bounded, but it does not have a rational least upper bound, since any rational upper bound 
M can be replaced by a slightly smaller rational number that is still larger than 22. So the 
rationals are not complete. In the real numbers, a set that is bounded above always has a 
least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example 
occurs when searching for a maximum value for a function on a closed interval 3a, b4 , as 
in Section 4.1. The function y = x - x3 has a maximum value on 30, 14  at the point x
satisfying 1 - 3x2 = 0, or x = 21>3. If we limited our consideration to functions 
defined only on rational numbers, we would have to conclude that the function has no 
maximum, since 21>3 is irrational (Figure A.24). The Extreme Value Theorem (Section 
4.1), which implies that continuous functions on closed intervals 3a, b4  have a maximum 
value, is not true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function ƒ on an interval 3a, b4  with ƒ(a) 6 0 and ƒ(b) 7 0 must be zero somewhere in 3a, b4 . The function 
values cannot jump from negative to positive without there being some point x in 3a, b4
where ƒ(x) = 0. The Intermediate Value Theorem also relies on the completeness of the 
real numbers and is false for continuous functions defined only on the rationals. The func-
tion ƒ(x) = 3x2 - 1 has ƒ(0) = -1 and ƒ(1) = 2, but if we consider ƒ only on the ratio-
nal numbers, it never equals zero. The only value of x for which ƒ(x) = 0 is x = 21>3,
an irrational number.

We have captured the desired properties of the reals by saying that the real numbers 
are a complete ordered field. But we’re not quite finished. Greek mathematicians in the 
school of Pythagoras tried to impose another property on the numbers of the real line, the 
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FIGURE A.24 The maximum value 
of y = x - x3 on 30, 14  occurs at the 
irrational number x = 21>3.
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condition that all numbers are ratios of integers. They learned that their effort was doomed 

when they discovered irrational numbers such as 22. How do we know that our efforts to 
specify the real numbers are not also flawed, for some unseen reason? The artist Escher 
drew optical illusions of spiral staircases that went up and up until they rejoined them-
selves at the bottom. An engineer trying to build such a staircase would find that no struc-
ture realized the plans the architect had drawn. Could it be that our design for the reals 
contains some subtle contradiction, and that no construction of such a number system can 
be made?

We resolve this issue by giving a specific description of the real numbers and verify-
ing that the algebraic, order, and completeness properties are satisfied in this model. This 
is called a construction of the reals, and just as stairs can be built with wood, stone, or 
steel, there are several approaches to constructing the reals. One construction treats the 
reals as all the infinite decimals,

a.d1d2d3d4c

In this approach a real number is an integer a followed by a sequence of decimal digits 
d1, d2, d3 , c, each between 0 and 9. This sequence may stop, or repeat in a periodic pat-
tern, or keep going forever with no pattern. In this form, 2.00, 0.3333333 c and 
3.1415926535898 c represent three familiar real numbers. The real meaning of the dots 
“. . .” following these digits requires development of the theory of sequences and series, as 
in Chapter 10. Each real number is constructed as the limit of a sequence of rational numbers 
given by its finite decimal approximations. An infinite decimal is then the same as a series

a +
d1

10
+

d2

100
+ g.

This decimal construction of the real numbers is not entirely straightforward. It’s easy 
enough to check that it gives numbers that satisfy the completeness and order properties, 
but verifying the algebraic properties is rather involved. Even adding or multiplying two 
numbers requires an infinite number of operations. Making sense of division requires a 
careful argument involving limits of rational approximations to infinite decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-
matician, who gave the first rigorous construction of the real numbers in 1872. Given any 
real number x, we can divide the rational numbers into two sets: those less than or equal to 
x and those greater. Dedekind cleverly reversed this reasoning and defined a real number 
to be a division of the rational numbers into two such sets. This seems like a strange 
approach, but such indirect methods of constructing new structures from old are common 
in theoretical mathematics.

These and other approaches can be used to construct a system of numbers having the 
desired algebraic, order, and completeness properties. A final issue that arises is whether 
all the constructions give the same thing. Is it possible that different constructions result in 
different number systems satisfying all the required properties? If yes, which of these is 
the real numbers? Fortunately, the answer turns out to be no. The reals are the only number 
system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of the numbers and about limits caused considerable con-
troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz, 
and their successors, when looking at what happens to the difference quotient

∆y
∆x

=
ƒ(x + ∆x) - ƒ(x)

∆x

as each of ∆y and ∆x approach zero, talked about the resulting derivative being a quotient 
of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought 
to be some new kind of number, smaller than any fixed number but not zero. Similarly, a 
definite integral was thought of as a sum of an infinite number of infinitesimals

ƒ(x) # dx
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as x varied over a closed interval. While the approximating difference quotients ∆y>∆x
were understood much as today, it was the quotient of infinitesimal quantities, rather than 
a limit, that was thought to encapsulate the meaning of the derivative. This way of thinking 
led to logical difficulties, as attempted definitions and manipulations of infinitesimals ran 
into contradictions and inconsistencies. The more concrete and computable difference 
quotients did not cause such trouble, but they were thought of merely as useful calculation 
tools. Difference quotients were used to work out the numerical value of the derivative and 
to derive general formulas for calculation, but were not considered to be at the heart of the 
question of what the derivative actually was. Today we realize that the logical problems 
associated with infinitesimals can be avoided by defining the derivative to be the limit of 
its approximating difference quotients. The ambiguities of the old approach are no longer 
present, and in the standard theory of calculus, infinitesimals are neither needed nor used.

A.7 Complex Numbers

Complex numbers are expressed in the form a + ib, or a + bi, where a and b are real 
numbers and i is a symbol for 2-1. Unfortunately, the words “real” and “imaginary” 
have connotations that somehow place 2-1 in a less favorable position in our minds than 
22. As a matter of fact, a good deal of imagination, in the sense of inventiveness, has 
been required to construct the real number system, which forms the basis of the calculus 
(see Appendix 6). In this appendix we review the various stages of this invention. The fur-
ther invention of a complex number system is then presented.

The Development of the Real Numbers

The earliest stage of number development was the recognition of the counting numbers
1, 2, 3, c, which we now call the natural numbers or the positive integers. Certain 
simple arithmetical operations, such as addition and multiplication, can be performed with 
these numbers without getting outside the system. By this we mean that if m and n are any 
positive integers, then

m + n = p and mn = q (1)

are also positive integers. Given the two positive integers on the left side of either equation 
in (1), we can find the corresponding positive integer on the right side. More than this, we 
can sometimes specify the positive integers m and p and find a positive integer n such that 
m + n = p. For instance, 3 + n = 7 can be solved when the only numbers we know are 
the positive integers. But the equation 7 + n = 3 cannot be solved unless the number 
system is enlarged.

The number zero and the negative integers were invented to solve equations like 
7 + n = 3. In a civilization that recognizes all the integers

c, -3, -2, -1, 0, 1, 2, 3, c, (2)

an educated person can always find the missing integer that solves the equation m + n = p
when given the other two integers in the equation.

Suppose our educated people also know how to multiply any two of the integers in the 
list (2). If, in Equations (1), they are given m and q, they discover that sometimes they can 
find n and sometimes they cannot. Using their imagination, they may be inspired to invent 
still more numbers and introduce fractions, which are just ordered pairs m >n of integers m
and n. The number zero has special properties that may bother them for a while, but they 
ultimately discover that it is handy to have all ratios of integers m >n, excluding only those 
having zero in the denominator. This system, called the set of rational numbers, is now 
rich enough for them to perform the rational operations of arithmetic:
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1. (a) addition
(b) subtraction

2. (a) multiplication
(b) division

on any two numbers in the system, except that they cannot divide by zero because it is 
meaningless.

The geometry of the unit square (Figure A.25) and the Pythagorean theorem showed 
that they could construct a geometric line segment that, in terms of some basic unit of 
length, has length equal to 22. Thus they could solve the equation

x2 = 2

by a geometric construction. But then they discovered that the line segment representing 
22 is an incommensurable quantity. This means that 22 cannot be expressed as the ratio 
of two integer multiples of some unit of length. That is, our educated people could not find 
a rational number solution of the equation x2 = 2.

There is no rational number whose square is 2. To see why, suppose that there were 
such a rational number. Then we could find integers p and q with no common factor other 
than 1, and such that

p2 = 2q2. (3)

Since p and q are integers, p must be even; otherwise its product with itself would be odd. 
In symbols, p = 2p1, where p1 is an integer. This leads to 2p1

2 = q2, which says q must 
be even, say q = 2q1, where q1 is an integer. This makes 2 a factor of both p and q, con-
trary to our choice of p and q as integers with no common factor other than 1. Hence there 
is no rational number whose square is 2.

Although our educated people could not find a rational solution of the equation 
x2 = 2, they could get a sequence of rational numbers

1
1

, 7
5

, 41
29

,
239
169

, c, (4)

whose squares form a sequence

1
1

,
49
25

,
1681
841

,
57,121
28,561

, c, (5)

that converges to 2 as its limit. This time their imagination suggested that they needed the 
concept of a limit of a sequence of rational numbers. If we accept the fact that an increas-
ing sequence that is bounded from above always approaches a limit (Theorem 6, Section 
10.1) and observe that the sequence in (4) has these properties, then we want it to have a 
limit L. This would also mean, from (5), that L2 = 2, and hence L is not one of our rational 
numbers. If to the rational numbers we further add the limits of all bounded increasing 
sequences of rational numbers, we arrive at the system of all “real” numbers. The word 
real is placed in quotes because there is nothing that is either “more real” or “less real” 
about this system than there is about any other mathematical system.

The Complex Numbers

Imagination was called upon at many stages during the development of the real number 
system. In fact, the art of invention was needed at least three times in constructing the sys-
tems we have discussed so far:

1. The first invented system: the set of all integers as constructed from the counting 
numbers.

2. The second invented system: the set of rational numbers m >n as constructed from the 
integers.

3. The third invented system: the set of all real numbers x as constructed from the ratio-
nal numbers.

1

1"

2

FIGURE A.25 With a straightedge and 
compass, it is possible to construct a 
segment of irrational length.
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These invented systems form a hierarchy in which each system contains the previous 
system. Each system is also richer than its predecessor in that it permits additional opera-
tions to be performed without going outside the system:

1. In the system of all integers, we can solve all equations of the form

x + a = 0, (6)

where a can be any integer.

2. In the system of all rational numbers, we can solve all equations of the form

ax + b = 0, (7)

provided a and b are rational numbers and a ≠ 0.

3. In the system of all real numbers, we can solve all of Equations (6) and (7) and, in 
addition, all quadratic equations

ax2 + bx + c = 0 having a ≠ 0 and b2 - 4ac Ú 0. (8)

You are probably familiar with the formula that gives the solutions of Equation (8), 
namely,

x = -b { 2b2 - 4ac
2a

, (9)

and are familiar with the further fact that when the discriminant, b2 - 4ac, is negative, the 
solutions in Equation (9) do not belong to any of the systems discussed above. In fact, the 
very simple quadratic equation

x2 + 1 = 0

is impossible to solve if the only number systems that can be used are the three invented 
systems mentioned so far.

Thus we come to the fourth invented system, the set of all complex numbers a + ib.
We could dispense entirely with the symbol i and use the ordered pair notation (a, b).
Since, under algebraic operations, the numbers a and b are treated somewhat differently, it 
is essential to keep the order straight. We therefore might say that the complex number 
system consists of the set of all ordered pairs of real numbers (a, b), together with the 
rules by which they are to be equated, added, multiplied, and so on, listed below. We will 
use both the (a, b) notation and the notation a + ib in the discussion that follows. We call 
a the real part and b the imaginary part of the complex number (a, b).

We make the following definitions.

Equality  
a + ib = c + id Two complex numbers (a, b)
if and only if and (c, d ) are equal if and only 
a = c and b = d. if a = c and b = d.

Addition  
(a + ib) + (c + id ) The sum of the two complex
= (a + c) + i(b + d )  numbers (a, b) and (c, d ) is the 

complex number (a + c, b + d).

Multiplication  
(a + ib)(c + id) The product of two complex
= (ac - bd ) + i(ad + bc)  numbers (a, b) and (c, d) is the complex 

number (ac - bd, ad + bc).

c(a + ib) = ac + i(bc)  The product of a real number c
and the complex number (a, b) is 
the complex number (ac, bc).
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The set of all complex numbers (a, b) in which the second number b is zero has all the 
properties of the set of real numbers a. For example, addition and multiplication of (a, 0) 
and (c, 0) give

(a, 0) + (c, 0) = (a + c, 0),

(a, 0) # (c, 0) = (ac, 0),

which are numbers of the same type with imaginary part equal to zero. Also, if we multi-
ply a “real number” (a, 0) and the complex number (c, d ), we get

(a, 0) # (c, d ) = (ac, ad ) = a(c, d ).

In particular, the complex number (0, 0) plays the role of zero in the complex number sys-
tem, and the complex number (1, 0) plays the role of unity or one.

The number pair (0, 1), which has real part equal to zero and imaginary part equal to 
one, has the property that its square,

(0, 1)(0, 1) = (-1, 0),

has real part equal to minus one and imaginary part equal to zero. Therefore, in the system 
of complex numbers (a, b) there is a number x = (0, 1) whose square can be added to 
unity = (1, 0) to produce zero = (0, 0), that is,

(0, 1)2 + (1, 0) = (0, 0).

The equation

x2 + 1 = 0

therefore has a solution x = (0, 1) in this new number system.
You are probably more familiar with the a + ib notation than you are with the nota-

tion (a, b). And since the laws of algebra for the ordered pairs enable us to write

(a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1),

while (1, 0) behaves like unity and (0, 1) behaves like a square root of minus one, we need 
not hesitate to write a + ib in place of (a, b). The i associated with b is like a tracer ele-
ment that tags the imaginary part of a + ib. We can pass at will from the realm of ordered 
pairs (a, b) to the realm of expressions a + ib, and conversely. But there is nothing less 
“real” about the symbol (0, 1) = i than there is about the symbol (1, 0) = 1, once we 
have learned the laws of algebra in the complex number system of ordered pairs (a, b).

To reduce any rational combination of complex numbers to a single complex number, 
we apply the laws of elementary algebra, replacing i2 wherever it appears by -1. Of 
course, we cannot divide by the complex number (0, 0) = 0 + i0. But if a + ib ≠ 0,
then we may carry out a division as follows:

c + id
a + ib

=
(c + id)(a - ib)
(a + ib)(a - ib)

=
(ac + bd) + i(ad - bc)

a2 + b2 .

The result is a complex number x + iy with

x = ac + bd
a2 + b2 , y = ad - bc

a2 + b2 ,

and a2 + b2 ≠ 0, since a + ib = (a, b) ≠ (0, 0).
The number a - ib that is used as the multiplier to clear the i from the denominator is 

called the complex conjugate of a + ib. It is customary to use z (read “z bar”) to denote 
the complex conjugate of z; thus

z = a + ib, z = a - ib.

Multiplying the numerator and denominator of the fraction (c + id )>(a + ib) by the com-
plex conjugate of the denominator will always replace the denominator by a real number.
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EXAMPLE 1  We give some illustrations of the arithmetic operations with complex 
numbers.

(a) (2 + 3i) + (6 - 2i) = (2 + 6) + (3 - 2)i = 8 + i

(b) (2 + 3i) - (6 - 2i) = (2 - 6) + (3 - (-2))i = -4 + 5i

(c) (2 + 3i)(6 - 2i) = (2)(6) + (2)(-2i) + (3i)(6) + (3i)(-2i)

= 12 - 4i + 18i - 6i2 = 12 + 14i + 6 = 18 + 14i

(d) 2 + 3i
6 - 2i

= 2 + 3i
6 - 2i

6 + 2i
6 + 2i

= 12 + 4i + 18i + 6i2

36 + 12i - 12i - 4i2

= 6 + 22i
40

= 3
20

+ 11
20

i

Argand Diagrams

There are two geometric representations of the complex number z = x + iy:

1. as the point P(x, y) in the xy-plane

2. as the vector rOP from the origin to P.

In each representation, the x-axis is called the real axis and the y-axis is the imaginary
axis. Both representations are Argand diagrams for x + iy (Figure A.26).

In terms of the polar coordinates of x and y, we have

x = r cos u, y = r sin u,

and

z = x + iy = r(cos u + i sin u). (10)

We define the absolute value of a complex number x + iy to be the length r of a vector 
rOP from the origin to P(x, y). We denote the absolute value by vertical bars; thus,

0 x + iy 0 = 2x2 + y2.

If we always choose the polar coordinates r and u so that r is nonnegative, then

r = 0 x + iy 0 .
The polar angle u is called the argument of z and is written u = arg z. Of course, any 
integer multiple of 2p may be added to u to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its 
conjugate z, and its absolute value 0 z 0 , namely,

z # z = 0 z 0 2.
Euler’s Formula

The identity

eiu = cos u + i sin u,

called Euler’s formula, enables us to rewrite Equation (10) as 

z = reiu.

This formula, in turn, leads to the following rules for calculating products, quotients, pow-
ers, and roots of complex numbers. It also leads to Argand diagrams for eiu. Since 
cos u + i sin u is what we get from Equation (10) by taking r = 1, we can say that eiu is 
represented by a unit vector that makes an angle u with the positive x-axis, as shown in 
Figure A.27.

x

y

O

r
y

x

P(x, y)

u

FIGURE A.26 This Argand diagram 
represents z = x + iy both as a point 
P(x, y) and as a vector rOP.

The notation exp (A) also stands for eA.
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Products

To multiply two complex numbers, we multiply their absolute values and add their angles. 
Let

z1 = r1eiu1, z2 = r2eiu2, (11)

so that

0 z1 0 = r1, arg z1 = u1; 0 z2 0 = r2 , arg z2 = u2 .

Then

z1z2 = r1eiu1 # r2eiu2 = r1r2ei(u1+u2)

and hence

0 z1z2 0 = r1r2 = 0 z1 0 # 0 z2 0
arg (z1z2) = u1 + u2 = arg z1 + arg z2.

(12)

Thus, the product of two complex numbers is represented by a vector whose length is the 
product of the lengths of the two factors and whose argument is the sum of their arguments 
(Figure A.28). In particular, from Equation (12) a vector may be rotated counterclockwise 
through an angle u by multiplying it by eiu. Multiplication by i rotates 90°, by -1 rotates 
180°, by - i rotates 270°, and so on.

EXAMPLE 2 Let z1 = 1 + i, z2 = 23 - i. We plot these complex numbers in an 
Argand diagram (Figure A.29) from which we read off the polar representations

z1 = 22eip>4, z2 = 2e-ip>6.
Then

z1z2 = 222 expaip
4

- ip
6
b = 222 expaip

12
b

= 222 acos
p
12

+ i sin
p
12
b ≈ 2.73 + 0.73i.

Quotients

Suppose r2 ≠ 0 in Equation (11). Then

z1
z2

=
r1eiu1

r2eiu2
=

r1
r2

ei(u1- u2).

x x

y y

uu = arg z
r = 1

O O

eiu = cos u + i sin u eiu = cos u + i sin u

(cos u, sin u)

(a) (b)

FIGURE A.27 Argand diagrams for eiu = cos u + i sin u (a) as a 
vector and (b) as a point.

0

1

−1

x

y

"

2

"

3 − 1

1 +
"

3

2
"

2

2
1

z1z2

z1 = 1 + i

z2 = "

3 − i

p
4 p

12
p
6

−

FIGURE A.29 To multiply two complex 
numbers, multiply their absolute values 
and add their arguments.

x

y

O

u1

u2

u1

z1z2

r1r2

r2 r1

z1

z2

FIGURE A.28 When z1 and z2 are 
multiplied, 0 z1z2 0 = r1

# r2 and 
arg (z1z2) = u1 + u2.
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Hence

2 z1
z2
2 =

r1
r2

=
0 z1 00 z2 0 and argaz1

z2
b = u1 - u2 = arg z1 - arg z2 .

That is, we divide lengths and subtract angles for the quotient of complex numbers.

EXAMPLE 3 Let z1 = 1 + i and z2 = 23 - i, as in Example 2. Then

1 + i

23 - i
= 22eip>4

2e-ip>6 = 22
2

e5pi>12 ≈ 0.707 acos
5p
12

+ i sin
5p
12
b

≈ 0.183 + 0.683i.

Powers

If n is a positive integer, we may apply the product formulas in Equation (12) to find

zn = z # z # g # z . n factors

With z = reiu, we obtain

zn = (reiu)n = rnei(u+u+g+u) n summands

= rneinu. (13)

The length r = 0 z 0  is raised to the nth power and the angle u = arg z is multiplied by n.
If we take r = 1 in Equation (13), we obtain De Moivre’s Theorem.

De Moivre’s Theorem

(cos u + i sin u)n = cos nu + i sin nu. (14)

If we expand the left side of De Moivre’s equation above by the Binomial Theorem 
and reduce it to the form a + ib, we obtain formulas for cos nu and sin nu as polynomials 
of degree n in cos u and sinu.

EXAMPLE 4 If n = 3 in Equation (14), we have

(cos u + i sin u)3 = cos 3u + i sin 3u.

The left side of this equation expands to

cos3u + 3i cos2u sin u - 3 cos u sin2u - i sin3u.

The real part of this must equal cos 3u and the imaginary part must equal sin 3u.
Therefore,

cos 3u = cos3u - 3 cos u sin2u,

sin 3u = 3 cos2u sin u - sin3u.

Roots

If z = reiu is a complex number different from zero and n is a positive integer, then there 
are precisely n different complex numbers w0, w1, c, wn-1, that are nth roots of z. To see 
why, let w = reia be an nth root of z = reiu, so that

wn = z
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or

rneina = reiu.

Then

r = 2n r

is the real, positive nth root of r. For the argument, although we cannot say that na and u
must be equal, we can say that they may differ only by an integer multiple of 2p. That is,

na = u + 2kp, k = 0, {1, {2, c.

Therefore,

a = un + k
2p
n .

Hence, all the nth roots of z = reiu are given by

2n reiu = 2n r exp iaun + k
2p
n b , k = 0, {1, {2, c. (15)

There might appear to be infinitely many different answers corresponding to the infi-
nitely many possible values of k, but k = n + m gives the same answer as k = m in 
Equation (15). Thus, we need only take n consecutive values for k to obtain all the differ-
ent nth roots of z. For convenience, we take

k = 0, 1, 2, c, n - 1.

All the nth roots of reiu lie on a circle centered at the origin and having radius equal to 
the real, positive nth root of r. One of them has argument a = u>n. The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle 
equal to 2p>n. Figure A.30 illustrates the placement of the three cube roots, w0 , w1 , w2 ,
of the complex number z = reiu.

EXAMPLE 5  Find the four fourth roots of -16.

Solution As our first step, we plot the number -16 in an Argand diagram (Figure A.31) 
and determine its polar representation reiu. Here, z = -16, r = +16, and u = p. One of 
the fourth roots of 16eip is 2eip>4. We obtain others by successive additions of 2p>4 = p>2
to the argument of this first one. Hence,

24 16 exp ip = 2 exp iap
4

,
3p
4

,
5p
4

,
7p
4
b ,

and the four roots are

w0 = 2 c cos
p
4

+ i sin
p
4
d = 22(1 + i)

w1 = 2 c cos
3p
4

+ i sin
3p
4
d = 22(-1 + i)

w2 = 2 c cos
5p
4

+ i sin
5p
4
d = 22(-1 - i)

w3 = 2 c cos
7p
4

+ i sin
7p
4
d = 22(1 - i).

x

y

O

r

w2

w1

w0

2p
3

2p
3

2p
3

r1�3

z = reiu

u

u
3

FIGURE A.30 The three cube roots of 
z = reiu.

2

x

y

−16

w0

w3w2

w1

p
4

p
2

p
2

p
2

p
2

FIGURE A.31 The four fourth roots 
of -16.



AP-34 Appendices

The Fundamental Theorem of Algebra

One might say that the invention of 2-1 is all well and good and leads to a number sys-
tem that is richer than the real number system alone; but where will this process end? Are 
we also going to invent still more systems so as to obtain 24 -1, 26 -1, and so on? But it 
turns out this is not necessary. These numbers are already expressible in terms of the com-
plex number system a + ib. In fact, the Fundamental Theorem of Algebra says that with 
the introduction of the complex numbers we now have enough numbers to factor every 
polynomial into a product of linear factors and so enough numbers to solve every possible 
polynomial equation.

The Fundamental Theorem of Algebra

Every polynomial equation of the form

anzn + an-1zn-1 + g + a1z + a0 = 0,

in which the coefficients a0, a1, c, an are any complex numbers, whose degree 
n is greater than or equal to one, and whose leading coefficient an is not zero, has 
exactly n roots in the complex number system, provided each multiple root of 
multiplicity m is counted as m roots.

A proof of this theorem can be found in almost any text on the theory of functions of a 
complex variable.

Operations with Complex Numbers
1. How computers multiply complex numbers Find (a, b) # (c, d)

= (ac - bd, ad + bc).

a. (2, 3) # (4, -2) b. (2, -1) # (-2, 3)

c. (-1, -2) # (2, 1)

  (This is how complex numbers are multiplied by computers.)

2. Solve the following equations for the real numbers, x and y.

a. (3 + 4i)2 - 2(x - iy) = x + iy

b. a1 + i
1 - i

b2

+ 1
x + iy

= 1 + i

c. (3 - 2i)(x + iy) = 2(x - 2iy) + 2i - 1

Graphing and Geometry
3. How may the following complex numbers be obtained from 

z = x + iy geometrically? Sketch.

a. z b. (-z)

c. -z d. 1 > z
4. Show that the distance between the two points z1 and z2 in an 

Argand diagram is 0 z1 - z2 0 .
In Exercises 5–10, graph the points z = x + iy that satisfy the given 
conditions.

5. a. 0 z 0 = 2 b. 0 z 0 6 2 c. 0 z 0 7 2

6. 0 z - 1 0 = 2 7. 0 z + 1 0 = 1

8. 0 z + 1 0 = 0 z - 1 0 9. 0 z + i 0 = 0 z - 1 0
10. 0 z + 1 0 Ú 0 z 0

Express the complex numbers in Exercises 11–14 in the form reiu,
with r Ú 0 and -p 6 u … p. Draw an Argand diagram for each 
calculation.

11. 11 + 2-322 12.
1 + i
1 - i

13.
1 + i23

1 - i23
14. (2 + 3i)(1 - 2i)

Powers and Roots
Use De Moivre’s Theorem to express the trigonometric functions in 
Exercises 15 and 16 in terms of cos u and sinu.

15. cos 4u 16. sin 4u

17. Find the three cube roots of 1.

18. Find the two square roots of i.

19. Find the three cube roots of -8i.

20. Find the six sixth roots of 64.

21. Find the four solutions of the equation z4 - 2z2 + 4 = 0.

22. Find the six solutions of the equation z6 + 2z3 + 2 = 0.

23. Find all solutions of the equation x4 + 4x2 + 16 = 0.

24. Solve the equation x4 + 1 = 0.

Theory and Examples
25. Complex numbers and vectors in the plane Show with an 

Argand diagram that the law for adding complex numbers is the 
same as the parallelogram law for adding vectors.

Exercises A.7
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26. Complex arithmetic with conjugates Show that the conjugate 
of the sum (product, or quotient) of two complex numbers, z1 and 
z2 , is the same as the sum (product, or quotient) of their 
conjugates.

27. Complex roots of polynomials with real coefficients come in 
complex-conjugate pairs

a. Extend the results of Exercise 26 to show that ƒ(z) = ƒ(z) if

ƒ(z) = anzn + an-1zn-1 + g + a1z + a0

  is a polynomial with real coefficients a0, c, an .

b. If z is a root of the equation ƒ(z) = 0, where ƒ(z) is a 
polynomial with real coefficients as in part (a), show that 
the conjugate z is also a root of the equation. (Hint: Let 
ƒ(z) = u + iy = 0; then both u and y are zero. Use the fact 
that ƒ(z) = ƒ(z) = u - iy.)

28. Absolute value of a conjugate Show that 0 z 0 = 0 z 0 .
29. When z = z If z and z are equal, what can you say about the 

location of the point z in the complex plane?

30. Real and imaginary parts Let Re(z) denote the real part of z
and Im(z) the imaginary part. Show that the following relations 
hold for any complex numbers z, z1, and z2.

a. z + z = 2Re(z)

b. z - z = 2iIm(z)

c. 0Re(z) 0 … 0 z 0
d. 0 z1 + z2 0 2 = 0 z1 0 2 + 0 z2 0 2 + 2Re(z1z2)

e. 0 z1 + z2 0 … 0 z1 0 + 0 z2 0

A.8 The Distributive Law for Vector Cross Products

In this appendix we prove the Distributive Law

u * (v + w) = u * v + u * w,

which is Property 2 in Section 12.4.

Proof To derive the Distributive Law, we construct u * v a new way. We draw u and v
from the common point O and construct a plane M perpendicular to u at O (Figure A.32). 
We then project v orthogonally onto M, yielding a vector v′ with length 0 v 0 sinu. We rotate 
v′ 90° about u in the positive sense to produce a vector v″. Finally, we multiply v″ by the 
length of u. The resulting vector 0 u 0 v″ is equal to u * v since v″ has the same direction 
as u * v by its construction (Figure A.32) and

0 u 0 0 v″ 0 = 0 u 0 0 v′ 0 = 0 u 0 0 v 0 sinu = 0 u * v 0 .

M

M′

u

v″

90°

v

v′

O u × v

u

u

FIGURE A.32 As explained in the text, u * v = 0 u 0 v″.
(The primes used here are purely notational and do not denote 
derivatives.)

Now each of these three operations, namely,

1. projection onto M

2. rotation about u through 90°

3. multiplication by the scalar 0 u 0
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when applied to a triangle whose plane is not parallel to u, will produce another triangle. If 
we start with the triangle whose sides are v, w, and v + w (Figure A.33) and apply these 
three steps, we successively obtain the following:

1. A triangle whose sides are v′, w′, and (v + w)′ satisfying the vector equation

v′ + w′ = (v + w)′

2. A triangle whose sides are v″, w″, and (v + w)″ satisfying the vector equation

v″ + w″ = (v + w)″

(The double prime on each vector has the same meaning as in Figure A.32.)

M

uw

v

v′w′

(v + w)′

v + w

FIGURE A.33 The vectors, v, w, v + w, and their projec-
tions onto a plane perpendicular to u.

3. A triangle whose sides are 0 u 0 v″, 0 u 0w″, and 0 u 0 (v + w)″ satisfying the vector equa-
tion

0 u 0 v″ + 0 u 0w″ = 0 u 0 (v + w)″.

Substituting 0 u 0 v″ = u * v, 0 u 0w″ = u * w, and 0 u 0 (v + w)″ = u * (v + w)
from our discussion above into this last equation gives

u * v + u * w = u * (v + w),

which is the law we wanted to establish.

A.9 The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 14.3) and the 
Increment Theorem for Functions of Two Variables (Theorem 3, Section 14.3). Euler first 
published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on hydro-
dynamics.

THEOREM 2—The Mixed Derivative Theorem If ƒ(x, y) and its partial deriv-
atives ƒx , ƒy , ƒxy , and ƒyx are defined throughout an open region containing a 
point (a, b) and are all continuous at (a, b), then

ƒxy(a, b) = ƒyx(a, b).

Proof The equality of ƒxy(a, b) and ƒyx(a, b) can be established by four applications of 
the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point (a, b) lies in 
the interior of a rectangle R in the xy-plane on which ƒ, ƒx , ƒy , ƒxy , and ƒyx are all defined. 
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We let h and k be the numbers such that the point (a + h, b + k) also lies in R, and we 
consider the difference

∆ = F(a + h) - F(a), (1)

where

F(x) = ƒ(x, b + k) - ƒ(x, b). (2)

We apply the Mean Value Theorem to F, which is continuous because it is differentiable. 
Then Equation (1) becomes

∆ = hF′(c1), (3)

where c1 lies between a and a + h. From Equation (2),

F′(x) = ƒx(x, b + k) - ƒx(x, b),

so Equation (3) becomes

∆ = h[ƒx(c1, b + k) - ƒx(c1, b)]. (4)

Now we apply the Mean Value Theorem to the function g(y) = fx(c1, y) and have

g(b + k) - g(b) = kg′(d1),

or

ƒx(c1, b + k) - ƒx(c1, b) = kƒxy(c1, d1)

for some d1 between b and b + k. By substituting this into Equation (4), we get

∆ = hkƒxy(c1, d1) (5)

for some point (c1, d1) in the rectangle R′ whose vertices are the four points (a, b),
(a + h, b), (a + h, b + k), and (a, b + k). (See Figure A.34.)

By substituting from Equation (2) into Equation (1), we may also write

∆ = ƒ(a + h, b + k) - ƒ(a + h, b) - ƒ(a, b + k) + ƒ(a, b)

= 3ƒ(a + h, b + k) - ƒ(a, b + k)4 - 3ƒ(a + h, b) - ƒ(a, b)4
= f(b + k) - f(b), (6)

where

f( y) = ƒ(a + h, y) - ƒ(a, y). (7)

The Mean Value Theorem applied to Equation (6) now gives

∆ = kf′(d2) (8)

for some d2 between b and b + k. By Equation (7),

f′(y) = ƒy(a + h, y) - ƒy(a, y). (9)

Substituting from Equation (9) into Equation (8) gives

∆ = k3ƒy(a + h, d2) - ƒy(a, d2)4 .
Finally, we apply the Mean Value Theorem to the expression in brackets and get

∆ = khƒyx(c2, d2) (10)

for some c2 between a and a + h.
Together, Equations (5) and (10) show that

ƒxy(c1, d1) = ƒyx(c2 , d2), (11)

where (c1, d1) and (c2, d2) both lie in the rectangle R′ (Figure A.34). Equation (11) is not 
quite the result we want, since it says only that ƒxy has the same value at (c1, d1) that ƒyx

has at (c2, d2). The numbers h and k in our discussion, however, may be made as small as 

x

y

R

0

h

k R′

(a, b)

FIGURE A.34 The key to proving 
fxy(a, b) = fyx(a, b) is that no matter how 
small R′ is, fxy and fyx take on equal 
values somewhere inside R′ (although not 
necessarily at the same point).
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we wish. The hypothesis that ƒxy and ƒyx are both continuous at (a, b) means that 
ƒxy(c1, d1) = ƒxy(a, b) + P1 and ƒyx(c2 , d2) = ƒyx(a, b) + P2 , where each of P1 , P2 S 0 as 
both h, k S 0. Hence, if we let h and k S 0, we have ƒxy(a, b) = ƒyx(a, b).

The equality of ƒxy(a, b) and ƒyx(a, b) can be proved with hypotheses weaker than the 
ones we assumed. For example, it is enough for ƒ, ƒx , and ƒy to exist in R and for ƒxy to be 
continuous at (a, b). Then ƒyx will exist at (a, b) and equal ƒxy at that point.

THEOREM 3—The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of ƒ(x, y) are defined throughout an open 
region R containing the point (x0 , y0) and that fx and ƒy are continuous at (x0 , y0).
Then the change

∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0, y0)

in the value of ƒ that results from moving from (x0 , y0) to another point 
(x0 + ∆x, y0 + ∆y) in R satisfies an equation of the form

∆z = ƒx(x0 , y0) ∆x + ƒy(x0 , y0) ∆y + P1∆x + P2∆y

in which each of P1, P2 S 0 as both ∆x, ∆y S 0.

Proof We work within a rectangle T centered at A(x0, y0) and lying within R, and we 
assume that ∆x and ∆y are already so small that the line segment joining A to 
B(x0 + ∆x, y0) and the line segment joining B to C(x0 + ∆x, y0 + ∆y) lie in the interior 
of T (Figure A.35).

We may think of ∆z as the sum ∆z = ∆z1 + ∆z2 of two increments, where

∆z1 = ƒ(x0 + ∆x, y0) - ƒ(x0 , y0)

is the change in the value of ƒ from A to B and

∆z2 = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y0)

is the change in the value of ƒ from B to C (Figure A.36).
On the closed interval of x-values joining x0 to x0 + ∆x, the function F(x) = ƒ(x, y0)

is a differentiable (and hence continuous) function of x, with derivative

F′(x) = fx(x, y0).

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between x0

and x0 + ∆x at which

F(x0 + ∆x) - F(x0) = F′(c) ∆x

or

ƒ(x0 + ∆x, y0) - ƒ(x0 , y0) = fx(c, y0) ∆x

or

∆z1 = ƒx(c, y0) ∆x. (12)

Similarly, G(y) = ƒ(x0 + ∆x, y) is a differentiable (and hence continuous) function 
of y on the closed y-interval joining y0 and y0 + ∆y, with derivative

G′( y) = ƒy(x0 + ∆x, y).

Hence, there is a y-value d between y0 and y0 + ∆y at which

G( y0 + ∆y) - G( y0) = G′(d ) ∆y

T

C(x0 + Δx, y0 + Δy)

B(x0 + Δx, y0)

A(x0, y0)

FIGURE A.35 The rectangular region 
T in the proof of the Increment Theorem. 
The figure is drawn for ∆x and ∆y
positive, but either increment might be 
zero or negative.
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or

ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y) = ƒy(x0 + ∆x, d) ∆y

or

∆z2 = ƒy(x0 + ∆x, d) ∆y. (13)

Now, as both ∆x and ∆y S 0, we know that c S x0 and d S y0 . Therefore, since fx

and fy are continuous at (x0 , y0), the quantities

P1 = ƒx(c, y0) - ƒx(x0 , y0),

P2 = ƒy(x0 + ∆x, d) - ƒy(x0 , y0)
(14)

both approach zero as both ∆x and ∆y S 0.
Finally,

∆z = ∆z1 + ∆z2

= ƒx(c, y0)∆x + ƒy(x0 + ∆x, d )∆y From Eqs.
(12) and (13) 
From Eq. (14)= 3ƒx(x0 , y0) + P14∆x + 3ƒy(x0 , y0) + P24∆y

= ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + P1∆x + P2∆y,

where both P1 and P2 S 0 as both ∆x and ∆y S 0, which is what we set out to prove.

y

z

x

Q

P″

P′

Q′

S

B

0

y0

P0

y0 + Δy

(x0 + Δx, y0) C(x0 + Δx, y0 + Δy)

A(x0, y0)

z = f (x, y)

Δz 1

Δz 2

Δz

FIGURE A.36 Part of the surface z = ƒ(x, y) near P0(x0 , y0 , ƒ(x0 , y0)). The 
points P0, P′, and P″ have the same height z0 = ƒ(x0 , y0) above the xy-plane. The 
change in z is ∆z = P′S. The change 

∆z1 = ƒ(x0 + ∆x, y0) - ƒ(x0 , y0),

shown as P″Q = P′Q′, is caused by changing x from x0 to x0 + ∆x while 
holding y equal to y0 . Then, with x held equal to x0 + ∆x,

∆z2 = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y0)

is the change in z caused by changing y0 from y0 + ∆y, which is represented by 
Q′S. The total change in z is the sum of ∆z1 and ∆z2 .
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Analogous results hold for functions of any finite number of independent variables. 
Suppose that the first partial derivatives of w = ƒ(x, y, z) are defined throughout an open 
region containing the point (x0 , y0 , z0) and that ƒx , ƒy , and ƒz are continuous at (x0 , y0 , z0).
Then

∆w = ƒ(x0 + ∆x, y0 + ∆y, z0 + ∆z) - ƒ(x0 , y0 , z0)

= ƒx∆x + ƒy∆y + ƒz∆z + P1∆x + P2∆y + P3∆z, (15)

where P1, P2, P3 S 0 as ∆x, ∆y, and ∆z S 0.
The partial derivatives ƒx , ƒy , ƒz in Equation (15) are to be evaluated at the point 

(x0 , y0 , z0).
Equation (15) can be proved by treating ∆w as the sum of three increments,

∆w1 = ƒ(x0 + ∆x, y0 , z0) - ƒ(x0 , y0 , z0) (16)

∆w2 = ƒ(x0 + ∆x, y0 + ∆y, z0) - ƒ(x0 + ∆x, y0 , z0) (17)

∆w3 = ƒ(x0 + ∆x, y0 + ∆y, z0 + ∆z) - ƒ(x0 + ∆x, y0 + ∆y, z0), (18)

and applying the Mean Value Theorem to each of these separately. Two coordinates 
remain constant and only one varies in each of these partial increments ∆w1 , ∆w2 , ∆w3 .
In Equation (17), for example, only y varies, since x is held equal to x0 + ∆x and z is held 
equal to z0. Since ƒ(x0 + ∆x, y, z0) is a continuous function of y with a derivative ƒy, it is 
subject to the Mean Value Theorem, and we have

∆w2 = ƒy(x0 + ∆x, y1 , z0) ∆y

for some y1 between y0 and y0 + ∆y.
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17. Period 6 19. Period 2p

1

−1

3 60

y = −sin
3
px

x

y

1

−1

0
x

y

y = cos x −

p
2

p
2

p 2p

a b

(c) D : 30, 24 , R : 30, 24 (d) D : 30, 24 , R : 3-1, 04

1

10

2

2 3

y = 2 f (x)

x

y

1

10 2

−1

x

y

y = −f (x)

(e) D : 3-2, 04 , R : 30, 14 (f) D : 31, 34 , R : 30, 14

1

0

2

y = f (x + 2)

−1−2
x

y

1

10

2

2 3

y = f (x − 1)

x

y

(g) D : 3-2, 04 , R : 30, 14 (h) D : 3-1, 14 , R : 30, 14

1

0

2

−1−2
x

y

y = f (−x)
1

10−1

2

y = −f (x + 1) + 1

x

y

57. y = 3x2 - 3 59. y = 1
2

+ 1
2x2 61. y = 24x + 1

63. y = B4 - x2

4
65. y = 1 - 27x3

67.

−2 −1 1 2 3 4

−4

−3

−2

−1

1

2

x

y

y = −
Í

2x + 1

69.

−3 −2 −1 1 2 3 4 5

1

2

3

4

5

x

y

y = (x − 1)3 + 2

71.

−4 −3 −2 −1 2 3 4
x

y

−4

1

2

3

4

−1

y = − 1 2x
1

73.

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

y = −
Í

x
3
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9. 3-5, 54  by 3-6, 64 11. 3-2, 64  by 3-5, 44

−5−4 −2−1 1 2 3 4 5

−5
−4

1
2
3
4
5

x

y

f (x) = x
Í

9 − x2

−2 −1 1 2 4 5 6
−1

1

2

3

4

x

y

y = 2x − 3x2�3

13. 3-2, 84  by 3-5, 104 15. 3-3, 34  by 30, 104

−2 2 4 6 8

−4

−2

2

8

10

x

y

y = 5x2�5 − 2x

−3 −2 −1 1 2 3

2
3
4
5
6
7
8
9

10

x

y

y = 0 x 2 − 1 0

17. 3-10, 104  by 3-10, 104 19. 3-4, 44  by 30, 34

y = x + 3
x + 2

−10−8−6−4 2 4 6 8 10

−8
−6
−4
−2

4
6
8

x

y

−4 −3 −2 −1 1 2 3 4

0.5

1.0

2.0

2.5

3.0

x

y

f (x) = x2 + 2
x2 + 1

21. 3-10, 104  by 3-6, 64 23. 3-6, 104  by 3-6, 64

−10−8−6−4 2 4 6 8 10

−6
−4
−2

2
4
6

x

y

f (x) = x − 1
x2 − x − 6

−5 5 10

−6
−4
−2

4
6

x

y

f (x) = 6x2 − 15x + 6
4x2 − 10x

25. c- p
125

,
p

125
d  by 27. 3-100p, 100p4  by 

3-1.25, 1.254 3-1.25, 1.254

−0.02 0.02

0.5

1.0

x

y

y = sin 250x

−300 300

−1.0

−0.5

1.0

x

y

y = cos a b

x
50

21. Period 2p 23.  Period p>2, symmetric 
about the origin

1

0

2

x

y

y = sin x − + 1p
4a b

p
4

−
p
4

3p
4

7p
4

1

−1

0

2

−2

s = cot 2t

t

s

p
2

−
p
2

−p p

25. Period 4, symmetric about 
the y-axis

1

−1

2−2−3 −1 31

s = sec

t

s

p t
2

29. D : (-q, q),
R : y = -1, 0, 1

1

−1

y = :sin x; y = sin x

x

y

−p p−2p 2p

39. -cos x 41. -cos x 43.
26 + 22

4
45.

22 + 26
4

47.
2 + 22

4
49.

2 - 23
4

51.
p

3
,

2p
3

,
4p
3

,
5p
3

53.
p

6
,
p

2
,

5p
6

,
3p
2

59. 27 ≈ 2.65 63. a = 1.464

65. A = 2, B = 2p,

C = -p, D = -1

1

−1

−3

y = 2sin (x + p) − 1

x

y

−
p
2

p
2

3p
2

5p
2

67. A = - 2
p, B = 4,

C = 0, D = 1
p

−1 31 5

3
p

2
p

1
p

1
p

1
p

t

y

−

y = − sin +2
pt
a b

Section 1.4, pp. 34–36
1. d  3. d

5. 3-3, 54  by 3-15, 404

−2 −1 1 3 4

−10

10

20

30

40

x

y
f (x) = x4 − 4x3 + 15

7. 3-3, 64  by 3-250, 504

−2 1 2 3 4 5 6

−250

−200

−150

−100

−50

50

x

y
f (x) = x5 − 5x4 + 10



Chapter 1: Answers to Odd-Numbered Exercises A-5

41. (a) & (b) y = 9.7571 # 10-3x - 19.118

−0.2

1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

(c) y = 2.6076 # 10-4x2 - 1.0203x + 997.90

Section 1.5, pp. 40–41
1.   3.

−4 −3 −2 −1 10 2 3 4

1

2

3

4

5

6

x

y

y = 3–x

y = 4x

y = 2x

y = (1�5)x

−4 −3 −2 −1 1 2 3 4

−5
−4
−3
−2
−1

1
2
3
4
5

y = 2–t

y = −2t

t

y

5.   7.

−4 −3 −2 −1 10 2 3 4

1

2

3

4

5

x

y

y = exy =
ex
1

−4 −3 −2 −1 1 2 3 4

−2

1

2

3

4

5

x

y

y = 2–x − 1 y = 2x − 1

9.

−4 −3 −2 −1 1 2 3 4

−5

−4

−3

−2

−1

2

3

x

y

y = 1 − e –x y = 1 − ex

11. 161>4 = 2 13. 41>2 = 2 15. 5  17. 1423 19. 4
21. D: -q 6 x 6 q; R: 0 6 y 6 1>2
23. D: -q 6 t 6 q; R: 1 6 y 6 q
25. x ≈ 2.3219 27. x ≈ -0.6309 29. After 19 years

29. c- p
15

, 
p

15
d  by 3-0.25, 0.254 31.

−0.2 −0.1 0.1 0.2

−0.2

0.1

0.2

x

y y = x +      sin 30x1
10

−4 −2 −1 2

1

2

x

y

(x + 1)2 + (y − 2)2 = 9

33.   35.

−2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

x

y f (x) = −tan 2x

−6 −2 2 4 6

−2.0

0.5

1.0

1.5

2.0

x

y

f (x) = sin 2x + cos 3x

37. (a) & (b) y = 3.0625x - 56.213

120
60 62 64 66 68 70 72 74 76 78

130

140

150

160

170

180

190

(c) Yes, y (79) = 185.7 lbs.

39. (a) & (b) y = 3814x - 7.4988 # 106

0
1970 1980 1990 2000 2010

50,000

100,000

150,000

200,000

250,000

(c)  The price of a home within the “bubble” was inflated, in the 
sense that it exceeded the historical trend.
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41. (a) ln 3 - 2 ln 2 (b) 2 (ln 2 - ln 3) (c) - ln 2

(d) 2
3

ln 3 (e) ln 3 + 1
2

ln 2 (f) 1
2

(3 ln 3 - ln 2)

43. (a) ln 5 (b) ln (x - 3) (c) ln a2t2

b
b

45. (a) 7.2 (b) 1
x2 (c)

x
y

47. (a) 1 (b) 1 (c) -x2 - y2

49. e2t+4 51. e5t + b 53. y = 2xex + 1
55. (a) k = ln 2 (b) k = (1>10) ln 2 (c) k = 1000 ln a

57. (a) t = -10 ln 3 (b) t = - ln 2
k

(c) t = ln .4
ln .2

59. 4(ln x)2

61. (a) 7 (b) 22 (c) 75 (d) 2 (e) 0.5 (f) -1

63. (a) 2x (b) x2 (c) sin x 65. (a)
ln 3
ln 2

(b) 3 (c) 2
67. (a) -p>6 (b) p>4 (c) -p>3
69. (a) p (b) p>2
71. Yes, g(x) is also one-to-one.
73. Yes, ƒ ∘ g is also one-to-one.

75. (a) ƒ -1(x) = log2a x
100 - x

b (b) ƒ -1(x) = log1.1a x
50 - x

b
77. (a) y = ln x - 3 (b) y = ln (x - 1)

(c) y = 3 + ln (x + 1) (d) y = ln (x - 2) - 4
(e) y = ln (-x) (f) y = ex

79. ≈ -0.7667

81. (a) Amount = 8 a1
2
b t>12

(b) 36 hours

83. ≈ 44.081 years

Practice Exercises, pp. 54–56

1. A = pr2, C = 2pr, A = C2

4p
3. x = tan u, y = tan2 u

5. Origin  7. Neither  9. Even  11. Even
13. Odd  15. Neither
17. (a) Even (b) Odd (c) Odd (d) Even (e) Even
19. (a) Domain: all reals (b) Range: 3-2, q)
21. (a) Domain: 3-4, 44 (b) Range: 30, 44
23. (a) Domain: all reals (b) Range: (-3, q)
25. (a) Domain: all reals (b) Range: 3-3, 14
27. (a) Domain: (3, q) (b) Range: all reals
29. (a) Increasing (b) Neither (c) Decreasing (d) Increasing
31. (a) Domain: 3-4, 44 (b) Range: 30, 24
33. ƒ(x) = e1 - x, 0 … x 6 1

2 - x, 1 … x … 2

35. (a) 1 (b) 1

22.5
= A

2
5

(c) x, x ≠ 0

(d) 1

21>1x + 2 + 2

37. (a) (ƒ ∘ g)(x) = -x, x Ú -2, (g ∘ ƒ)(x) = 24 - x2

(b) Domain (ƒ ∘ g): 3-2, q), domain (g ∘ ƒ): 3-2, 24
(c) Range (ƒ ∘ g): (-q, 24 , range (g ∘ ƒ): 30, 24

39.

2

−1

1−2 −1 2−4
x

y

−1

−3 2−4
x

y

31. (a) A(t) = 6.6a1
2
b t>14

(b) About 38 days later

33. ≈11.433 years, or when interest is paid
35. 248 ≈ 2.815 * 1014

Section 1.6, pp. 51–53
1. One-to-one  3. Not one-to-one  5. One-to-one
7. Not one-to-one  9. One-to-one

11. D: (0, 14 R: 30, q) 13. D: 3-1, 14 R: 3-p>2, p>24

y = f (x)

y = x
y = f

–1(x)

1

1
x

y

y = f (x)

y = x
y = f

–1(x)

p
2

p
2

−

p
2

−

p
2

−1

−1

1

1
x

y

15. D: 30, 64 R: 30, 34 17. (a) Symmetric about the line 
y = x

3 6

3

6

x

y

y = f (x)

y = f –1(x)

y = x

x

y

1

0 1

y =
Í

1 − x2

0 ≤ x ≤ 1

19. ƒ -1(x) = 2x - 1 21. ƒ -1(x) = 23 x + 1

23. ƒ-1(x) = 2x - 1

25. ƒ-1(x) = 25 x ; D: -q 6 x 6 q; R: -q 6 y 6 q
27. ƒ-1(x) = 23 x - 1; D: -q 6 x 6 q; R: -q 6 y 6 q

29. ƒ-1(x) = 1

2x
; D: x 7 0; R: y 7 0

31. ƒ -1(x) = 2x + 3
x - 1

; D: -q 6 x 6 q, x ≠ 1;

R: -q 6 y 6 q, y ≠ 2

33. ƒ -1(x) = 1 - 2x + 1; D: -1 … x 6 q; R: -q 6 y … 1

35. ƒ-1(x) = 2x + b
x - 1

;

D: -q 6 x 6 q, x ≠ 1, R: -q 6 y 6 q, y ≠ 2

37. (a) ƒ-1(x) = 1
m x

(b) The graph of ƒ-1 is the line through the origin with slope 1>m.
39. (a) ƒ-1(x) = x - 1

   

x

y

1−1−2 2

−2

−1

1

2

y = x + 1

y = x − 1

y = x

(b) ƒ-1(x) = x - b. The graph of ƒ-1 is a line parallel to the 
graph of ƒ. The graphs of ƒ and ƒ-1 lie on opposite sides of 
the line y = x and are equidistant from that line.

(c) Their graphs will be parallel to one another and lie on oppo-
site sides of the line y = x equidistant from that line.



Chapter 2: Answers to Odd-Numbered Exercises A-7

(ƒ ∘ ƒ)(x) = ln (ln x) and domain: x 7 1;
(g ∘ g)(x) = -x4 + 8x2 - 12 and domain: -q 6 x 6 q.

79. (a) D: (-q, q) R: c-p
2

, 
p

2
d (b) D: 3-1, 14 R: 3-1, 14

81. (a) No (b) Yes
83. (a) ƒ(g(x)) = 123 x 23 = x, g(ƒ(x)) = 23 x3 = x

(b)

x

y

1−1−2 2

1

−1

−2

2 y = x3

y = x1�3

Additional and Advanced Exercises, pp. 57–58
1. Yes. For instance: ƒ(x) = 1>x and g(x) = 1>x, or ƒ(x) = 2x and 

g(x) = x>2, or ƒ(x) = ex and g(x) = ln x.
3. If ƒ(x) is odd, then g(x) = ƒ(x) - 2 is not odd. Nor is g(x)

even, unless ƒ(x) = 0 for all x. If ƒ is even, then 
g(x) = ƒ(x) - 2 is also even.

5.

−1

1

1–
2

0 x 0 + 0 y 0 = 1 + x

x

y

−

19. (a)  Domain: all reals. Range: If a 7 0, then (d, q); if a 6 0,
then (-q, d).

(b) Domain: (c, q), range: all reals
21. (a) y = 100,000 - 10,000x, 0 … x … 10 (b) After 4.5 years

23. After
ln (10>3)

ln 1.08
≈ 15.6439 years. (If the bank only pays interest 

at the end of the year, it will take 16 years.)
25. x = 2, x = 1 27. 1>2

41. Replace the portion for x 6 0 with the mirror image of the por-
tion for x 7 0 to make the new graph symmetric with respect to 
the y-axis.

y

x

y = x

y = x

y = 0 x 0

43. Reflects the portion for y 6 0 across the x-axis
45. Reflects the portion for y 6 0 across the x-axis
47. Adds the mirror image of the portion for x 7 0 to make the new 

graph symmetric with respect to the y-axis

49. (a) y = g (x - 3) + 1
2

(b) y = g ax + 2
3
b - 2

(c) y = g (-x) (d) y = -g (x) (e) y = 5g (x)
(f) y = g (5x)

51.

−2

−1

1

−1 21−2
x

y

y = −
Í 2

x1 +

53.

−1

1

2

−1 2 3 41−2−3−4
x

y

1

2x2
y = + 1

55. Period p 57. Period 2

0

−1

1
y = cos 2x

x

y

p
2

3p
2

p 2p 1

1

−1

2

y = sin px

x

y

59.

−1

1

2

−2

x

y

y = 2cos  x −

−
p
3

p
3

p
6

5p
6

11p
6

4p
3

a b

61. (a) a = 1  b = 23 (b) a = 223>3  c = 423>3
63. (a) a = b

tan B
(b) c = a

sin A

65. ≈16.98 m 67. (b) 4p
69. (a) Domain: -q 6 x 6 q (b) Domain: x 7 0
71. (a) Domain: -3 … x … 3 (b) Domain: 0 … x … 4
73. (ƒ ∘ g)(x) = ln (4 - x2) and domain: -2 6 x 6 2;

(g ∘ ƒ)(x) = 4 - (ln x)2 and domain: x 7 0;

Chapter 2
Section 2.1, pp. 64–66

1. (a) 19 (b) 1

3. (a) - 4
p (b) - 323

p 5. 1

7. (a) 4 (b) y = 4x - 9
9. (a) 2 (b) y = 2x - 7

11. (a) 12 (b) y = 12x - 16
13. (a) -9 (b) y = -9x - 2
15. Your estimates may not completely agree with these.

(a) PQ1 PQ2 PQ3 PQ4

43 46 49 50
The appropriate units are m > sec.

(b) ≈  50 m>sec or 180 km >h
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17. (a)

Pr
of

it 
(1

00
0s

)

11

100

0
12 13 142010

200

Year

x

y

(b) ≈ +56,000/year
(c) ≈ +42,000/year

19. (a) 0.414213, 0.449489, 121 + h - 12>h (b) g(x) = 1x

1 + h 1.1 1.01 1.001 1.0001

21 + h 1.04880 1.004987 1.0004998 1.0000499

121 + h - 12>h 0.4880 0.4987 0.4998 0.499

1.00001 1.000001

1.000005 1.0000005

0.5 0.5

(c) 0.5 (d) 0.5
21. (a) 15 mph, 3.3 mph, 10 mph (b) 10 mph, 0 mph, 4 mph
  (c) 20 mph when t = 3.5 hr

Section 2.2, pp. 74–77
1. (a) Does not exist. As x approaches 1 from the right, g(x)

approaches 0. As x approaches 1 from the left, g(x)
approaches 1. There is no single number L that all the values 
g(x) get arbitrarily close to as x S 1.

(b) 1 (c) 0 (d) 1 >2
3. (a) True (b) True (c) False (d) False

(e) False (f ) True (g) True
5. As x approaches 0 from the left, x> 0 x 0  approaches -1. As x

approaches 0 from the right, x> 0 x 0  approaches 1. There is no 
single number L that the function values all get arbitrarily close 
to as x S 0.

7. Nothing can be said.  9.  No; no; no  11. -4 13. -8
15. 3 17. -25>2 19. 16 21. 3 >2 23.  1 >10
25. -7 27. 3 >2 29. -1>2 31. -1 33. 4 >3
35. 1 >6 37. 4 39. 1 >2 41. 3 >2 43. -1 45. 1
47. 1>3 49. 24 - p
51. (a) Quotient Rule (b) Difference and Power Rules

(c) Sum and Constant Multiple Rules
53. (a) -10 (b) -20 (c) -1 (d) 5 >7
55. (a) 4 (b) -21 (c) -12 (d) -7>3
57. 2 59. 3 61. 1>12272 63. 25
65. (a) The limit is 1.
67. (a) ƒ(x) = (x2 - 9)>(x + 3)

x - 3.1 - 3.01 - 3.001 - 3.0001 - 3.00001 - 3.000001

ƒ(x) - 6.1 - 6.01 - 6.001 - 6.0001 - 6.00001 - 6.000001

x - 2.9 - 2.99 - 2.999 - 2.9999 - 2.99999 - 2.999999

ƒ(x) - 5.9 - 5.99 - 5.999 - 5.9999 - 5.99999 - 5.999999

(c) lim
xS-3

ƒ(x) = -6

69. (a) G(x) = (x + 6)>(x2 + 4x - 12)

x - 5.9 - 5.99 - 5.999 - 5.9999

G(x) - .126582 - .1251564 - .1250156 - .1250015

- 5.99999 - 5.999999
- .1250001 - .1250000

x - 6.1 - 6.01 - 6.001 - 6.0001

G(x) - .123456 - .124843 - .124984 - .124998

- 6.00001 - 6.000001
- .124999 - .124999

(c) lim
xS-6

G(x) = -1>8 = -0.125

71. (a) ƒ(x) = (x2 - 1)>( 0 x 0 - 1)

x - 1.1 - 1.01 - 1.001 - 1.0001 - 1.00001 - 1.000001

ƒ(x) 2.1 2.01 2.001 2.0001 2.00001 2.000001

x - .9 - .99 - .999 - .9999 - .99999 –.999999

ƒ(x) 1.9 1.99 1.999 1.9999 1.99999 1.999999

(c) lim
xS-1

ƒ(x) = 2

73. (a) g(u) = (sin u)>u
u .1 .01 .001 .0001 .00001 .000001

g(u) .998334 .999983 .999999 .999999 .999999 .999999

u - .1 - .01 - .001 - .0001 - .00001 - .000001

g(u) .998334 .999983 .999999 .999999 .999999 .999999

   lim
uS0

g(u) = 1

75. (a) ƒ(x) = x1>(1-x)

x .9 .99 .999 .9999 .99999 .999999

ƒ(x) .348678 .366032 .367695 .367861 .367877 .367879

x 1.1 1.01 1.001 1.0001 1.00001 1.000001

ƒ(x) .385543 .369711 .368063 .367897 .367881   .367878

   lim
xS1

ƒ(x) ≈ 0.36788

77. c = 0, 1, -1; the limit is 0 at c = 0, and 1 at c = 1, -1.
79. 7 81. (a) 5 (b) 5
83. (a) 0 (b) 0

Section 2.3, pp. 83–86
1. d = 2

1 7
( (

5
x

3. d = 1>2 ( ( x
−7�2 −1�2−3

5. d = 1>18 (( x
1�24�9 4�7

7. d = 0.1 9. d = 7>16 11. d = 25 - 2
13. d = 0.36 15. (3.99, 4.01), d = 0.01
17. (-0.19, 0.21), d = 0.19 19. (3, 15), d = 5
21. (10>3, 5), d = 2>3
23. 1-24.5, -23.52, d = 24.5 - 2 ≈ 0.12

25. 1215, 2172, d = 217 - 4 ≈ 0.12

27. a2 - 0.03
m , 2 + 0.03

m b , d = 0.03
m

29. a1
2

- c
m,

c
m + 1

2
b , d = c

m 31. L = -3, d = 0.01

33. L = 4, d = 0.05 35. L = 4, d = 0.75
55. 33.384, 3.3874 . To be safe, the left endpoint was rounded up 

and the right endpoint rounded down.  
59. The limit does not exist as x approaches 3.  
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Section 2.4, pp. 91–93
1. (a) True   (b) True   (c) False (d) True

(e) True     (f ) True    (g) False (h) False
  (i) False ( j) False (k) True    ( l ) False

3. (a) 2, 1  (b) No, lim
xS2 +

 ƒ(x) ≠ lim
xS2-

 ƒ(x)

(c) 3, 3  (d) Yes, 3  
5. (a) No (b) Yes, 0  (c) No

7. (a)

1

−1

1−1

0,

x

y

y =
x3,   x ≠ 1

x = 1

(b) 1, 1  (c) Yes, 1  

9. (a) D : 0 … x … 2, R : 0 6 y … 1 and y = 2
(b) (0, 1) ∪ (1, 2) (c) x = 2 (d) x = 0

   

1

1

2

2

1,

2,

0
x

y

y =
Í

1 – x2  , 0 ≤ x < 1

1 ≤ x < 2

x = 2

11. 23 13. 1 15. 2>25 17. (a) 1 (b) -1
19. (a) 1 (b) 2>3 21. 1 23. 3>4 25. 2 27. 1>2
29. 2 31. 0 33. 1 35. 1 >2 37. 0 39. 3 >8
41. 3 47. d = P2, lim

xS5 +
2x - 5 = 0

51. (a) 400 (b) 399 (c) The limit does not exist.  

Section 2.5, pp. 102–104
1. No; discontinuous at x = 2; not defined at x = 2
3. Continuous 5. (a) Yes (b) Yes (c) Yes (d) Yes
7. (a) No (b) No 9.  0 11.  1, nonremovable; 0, removable  

13. All x except x = 2 15. All x except x = 3, x = 1
17. All x 19. All x except x = 0
21. All x except np>2, n any integer  
23. All x except np>2, n an odd integer  
25. All x Ú -3>2 27. All x 29. All x
31. 0; continuous at x = p 33. 1; continuous at y = 1
35. 22>2; continuous at t = 0 37. 1; continuous at x = 0
39. g(3) = 6 41. ƒ(1) = 3>2 43. a = 4>3 45. a = -2, 3
47. a = 5>2, b = -1>2 71. x ≈ 1.8794, -1.5321, -0.3473
73. x ≈ 1.7549 75. x ≈ 3.5156 77. x ≈ 0.7391

Section 2.6, pp. 115–117
1. (a) 0 (b) -2 (c) 2 (d) Does not exist (e) -1

(f ) q (g) Does not exist (h) 1 (i) 0
3. (a) -3 (b) -3 5. (a) 1 >2 (b) 1 >2 7. (a) -5>3

(b) -5>3 9.  0  11. -1 13. (a) 2 >5 (b) 2 >5
15. (a) 0 (b) 0 17. (a) 7 (b) 7 19. (a) 0 (b) 0
21. (a) q (b) q 23.  2  25. q 27. 0
29. 1 31. q 33. 1 35. 1>2 37. q 39. -q
41. -q 43. q 45. (a) q (b) -q 47. q
49. q 51. -q 53. (a) q (b) -q (c) -q (d) q
55. (a) -q (b) q (c) 0 (d) 3 >2

57. (a) -q (b) 1 >4 (c) 1 >4 (d) 1 >4 (e) It will be -q.
59. (a) -q (b) q 61. (a) q (b) q (c) q (d) q
63. 65.

5

−5

1−1 2 3 4−2

10

−10

x = 1

y = 1
x − 1

x

y

5

1 2

10

0

x = −2

y = 1
2x + 4

x

y

−4 −3 −2 −1

−5

−10

67. 69. Here is one possibility.

0−3

1.5

−2

y = x+ 3
x+ 2

y = 1
x+ 2

x

y

x = −2

y = 1
1 2 3 4

(1, 2)

(0, 0)

−4−3−2−1

(−1, −2)

3
2
1

−2
−3

x

y

71. Here is one possibility. 73. Here is one possibility.

1−1
0

y = f (x)

x

y

1

3

2

1

0 2 3

4

5

4 5
x

y

f (x) = 1
(x − 2)2

75. Here is one possibility. 79. At most one

0

1

−1

h(x) = , x ≠ 0
x
0 x 0

x

y

81. 0 83. -3>4 85. 5>2
93. (a) For every positive real number B there exists a corresponding 

number d 7 0 such that for all x

c - d 6 x 6 c  1   ƒ(x) 7 B.

(b) For every negative real number -B there exists a correspond-
ing number d 7 0 such that for all x

c 6 x 6 c + d  1   ƒ(x) 6 -B.

(c) For every negative real number -B there exists a correspond-
ing number d 7 0 such that for all x

c - d 6 x 6 c  1   ƒ(x) 6 -B.
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9. (a) Does not exist (b) 0 11. 1
2

13. 2x 15. - 1
4

17. 2>3 19. 2>p 21. 1 23. 4 25. -q
27. 0 29. 2 31. 0
35. No in both cases, because lim

xS1
 ƒ(x) does not exist, and lim

xS-1
 ƒ(x)

does not exist.  
37. Yes, ƒ does have a continuous extension, to a = 1 with 

ƒ(1) = 4>3.
39. No 41. 2>5 43. 0 45. -q 47. 0 49. 1
51. 1 53. -p>2 55. (a) x = 3 (b) x = 1 (c) x = -4

Additional and Advanced Exercises, pp. 120–122
3. 0; the left-hand limit was needed because the function is unde-

fined for y 7 c. 5. 65 6 t 6 75; within 5°F  
13. (a) B (b) A (c) A (d) A
21. (a) lim

aS0
r+(a) = 0.5, lim

aS-1 +
r+(a) = 1

(b) lim
aS0

r-(a) does not exist, lim
aS-1 +

r-(a) = 1

25. 0 27. 1 29. 4 31. y = 2x 33. y = x, y = -x

Practice Exercises, pp. 118–120
1. At x = -1: lim

xS-1-
 ƒ(x) = lim

xS-1 +
 ƒ(x) = 1, so 

   lim
xS-1

 ƒ(x) = 1 = ƒ(-1); continuous at x = -1

  At x = 0: lim
xS0-

 ƒ(x) = lim
xS0 +

 ƒ(x) = 0, so lim
xS0

 ƒ(x) = 0.

    However, ƒ(0) ≠ 0, so ƒ is discontinuous at
x = 0. The discontinuity can be removed by  
redefining ƒ(0) to be 0.

At x = 1: lim
xS1-

 ƒ(x) = -1 and lim
xS1 +

 ƒ(x) = 1, so lim
xS1

 ƒ(x)

   does not exist. The function is discontinuous at  
x = 1, and the discontinuity is not removable.

y

x

1

−1

10

y = f(x)

−1

3. (a) -21 (b) 49 (c) 0 (d) 1 (e) 1 (f ) 7

(g) -7 (h) - 1
7

5. 4

7. (a) (-q, +q) (b) 30, q) (c) (-q, 0) and (0, q)
(d) (0, q)

99.

−3 10 2 3 4 5

−2

2

3

4

5

6

x

y

(2, 4)

y = = x + 1 +x2

x − 1
1

x − 1
y = x + 1

101.

−3 1 3 4 5

−2

1

0

2

4

5

6

x

y

y = x + 1

y = = x + 1 −x2 − 4 3
x − 1 x − 1

103.

1

−1

1−1

y = x

y = x2 − 1
x

y = − 1
x

x

y

105.

1

−1

1−1

2

−2

2−2

x = −2

x = 2

x

y

Í

4 − x2
y =

x

107.

1

−1
1−1

2

3

−2

−3

2 3−2−3
x

y

y = x2/3 + 1

x1/3

109. At q: q, at -q: 0

Chapter 3
Section 3.1, pp. 126–127

1. P1: m1 = 1, P2: m2 = 5 3. P1: m1 = 5>2, P2: m2 = -1>2
5. y = 2x + 5 7. y = x + 1

1

1−1 2−2−3

2

3

4

5

0

y = 2x + 5

x

y

y = 4 − x2(−1, 3)

1

1 2 3 4

2

3

4

0

y = 2
Í

x

(1, 2)

y = x + 1

x

y

9. y = 12x + 16

−8

−2

y = x3
y = 12x + 16

(−2, −8)

x

y

11. m = 4, y - 5 = 4(x - 2)
13. m = -2, y - 3 = -2(x - 3)
15. m = 12, y - 8 = 12(t - 2)

17. m = 1
4

, y - 2 = 1
4

(x - 4)

19. m = -1 21. m = -1>4
23. (a)  It is the rate of change of the number of cells when t = 5.

The units are the number of cells per hour.
(b) P′(3) because the slope of the curve is greater there.
(c) 51.72 ≈ 52 cells>h

25. (-2,-5) 27. y = - (x + 1), y = - (x - 3)
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5.
dy
dx

= 4x2 - 1 + 2ex, 
d2y

dx2 = 8x + 2ex

7.
dw
dz

= - 6
z3 + 1

z2 , 
d2w
dz2 = 18

z4 - 2
z3

9.
dy
dx

= 12x - 10 + 10x-3, 
d2y

dx2 = 12 - 30x-4

11.
dr
ds

= -2
3s3 + 5

2s2 , 
d2r
ds2 = 2

s4 - 5
s3

13. y′ = -5x4 + 12x2 - 2x - 3

15. y′ = 3x2 + 10x + 2 - 1
x2 17. y′ = -19

(3x - 2)2

19. g′(x) = x2 + x + 4
(x + 0.5)2 21.

dy
dt

= t2 - 2t - 1
(1 + t2)2

23. ƒ′(s) = 1

2s(2s + 1)2
25. y′ = - 1

x2 + 2x-3>2

27. y′ = -4x3 - 3x2 + 1
(x2 - 1)2(x2 + x + 1)2 29. y′ = -2e-x + 3e3x

31. y′ = 3x2ex + x3ex 33. y′ = 9
4

x5>4 - 2e-2x

35.
ds
dt

= 3t1>2 37. y′ = 2
7x5>7 - exe-1 39.

dr
ds

= ses - es

s2

41. y′ = 2x3 - 3x - 1, y″ = 6x2 - 3, y‴ = 12x, y(4) = 12, 
y(n) = 0 for n Ú 5

43. y′ = 3x2 + 8x + 1, y″ = 6x + 8, y‴ = 6, y(n) = 0 for n Ú 4
45. y′ = 2x - 7x-2, y″ = 2 + 14x-3

47.
dr
du

= 3u-4, 
d2r
du2 = -12u-5 49.

dw
dz

= -z-2 - 1, 
d2w
dz2 = 2z-3

51.
dw
dz

= 6ze2z(1 + z), 
d2w
dz2 = 6e2z(1 + 4z + 2z2)

53. (a) 13 (b) -7 (c) 7>25 (d) 20  

55. (a) y = - x
8

+ 5
4

(b) m = -4 at (0, 1) 

(c) y = 8x - 15, y = 8x + 17
57. y = 4x, y = 2 59. a = 1, b = 1, c = 0
61. (2, 4)  63. (0, 0), (4, 2)  65. (a) y = 2x + 2 (c) (2, 6)  
67. 50  69. a = -3
71. P′(x) = nanxn-1 + (n - 1)an-1xn-2 + g +  2a2x + a1

73. The Product Rule is then the Constant Multiple Rule, so the 
latter is a special case of the Product Rule.  

75. (a)
d
dx

 (uyw) = uyw′ + uy′w + u′yw

(b)
d
dx

 (u1u2u3u4) = u1u2u3u4′ + u1u2u3′u4 + u1u2′u3u4 +

u1′u2u3u4

(c)
d
dx

 (u1gun) = u1u2gun-1un′ + u1u2gun-2un-1′un +

g + u1′u2gun

77.
dP
dV

= - nRT
(V - nb)2 + 2an2

V3

Section 3.4, pp. 153–156
1. (a) -2 m, -1 m > sec

(b) 3 m > sec, 1 m > sec; 2 m>sec2, 2 m>sec2

(c) Changes direction at t = 3>2 sec  
3. (a) -9 m, -3 m>sec

(b) 3 m > sec, 12 m > sec; 6 m>sec2, -12 m>sec2

(c) No change in direction  

31. (a) x = 0, 1, 4
(b)

2

62

3

84

4

1

0
x

y′

f ′ on (−4, 6)

–2–4–6–8

33.

−3

−1

−2

−4

−5

2

1

0
x

y′

6 7 8 9 10 11

35. (a)   i) 1.5 °F>hr ii) 2.9 °F>hr
iii) 0 °F>hr iv) -3.7 °F>hr

(b) 7.3 °F>hr at 12 p.m., -11 °F>hr at 6 p.m.
(c)

420

−9

6 12108

y =
dT––
dt

−3

−6

−12

9

6

3

t (hrs)

Slope

(ºF/hr)

37. Since lim
hS0 +

f(0 + h) - f(0)
h

= 1

while lim
hS0-

ƒ(0 + h) - ƒ(0)
h

= 0,

ƒ′(0) = lim
hS0

ƒ(0 + h) - ƒ(0)
h

 does not exist and ƒ(x) is not

differentiable at x = 0.

39. Since lim
hS0 +

f(1 + h) - f(1)
h

= 2 while 

lim
hS0-

ƒ(1 + h) - ƒ(1)
h

= 1
2

, ƒ′(1) = lim
hS0

ƒ(1 + h) - ƒ(1)
h

does not exist and ƒ(x) is not differentiable at x = 1.
41. Since ƒ(x) is not continuous at x = 0, ƒ(x) is not differentiable at 

x = 0.
43. (a) -3 … x … 2 (b) None (c) None  
45. (a) -3 … x 6 0, 0 6 x … 3 (b) None (c) x = 0
47. (a) -1 … x 6 0, 0 6 x … 2 (b) x = 0 (c) None  

Section 3.3, pp. 144–146

1.
dy
dx

= -2x, 
d2y

dx2 = -2

3.
ds
dt

= 15t2 - 15t4, 
d2s
dt2 = 30t - 60t3

29. 19.6 m > sec 31. 6p 35. Yes  37. Yes  
39. (a) Nowhere  41. (a) At x = 0 43. (a) Nowhere  
45. (a) At x = 1 47. (a) At x = 0

Section 3.2, pp. 133–136

1. -2x, 6, 0, -2 3. - 2
t3 , 2, - 1

4
, - 2

323

5.
3

223u
, 

3

223
, 

1
2

, 
3

222
7. 6x2 9. 1

(2t + 1)2

11.
3
2

q1>2 13. 1 - 9
x2 , 0 15. 3t2 - 2t, 5

17. -4

(x - 2)2x - 2
, y - 4 = - 1

2
(x - 6) 19. 6  

21. 1>8 23. -1
(x + 2)2 25. -1

(x - 1)2 27. (b)  29. (d)
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(a) y = 0 when t = 6.25 sec
(b) y 7 0 when 0 … t 6 6.25 1  the object moves up; y 6 0

when 6.25 6 t … 12.5 1  the object moves down.  
(c) The object changes direction at t = 6.25 sec.
(d) The object speeds up on (6.25, 12.54  and slows down on 
30, 6.25).

(e) The object is moving fastest at the endpoints t = 0 and 
t = 12.5 when it is traveling 200 ft > sec. It’s moving slowest 
at t = 6.25 when the speed is 0.  

(f )  When t = 6.25 the object is s = 625 m from the origin and 
farthest away.  

35.

4

−10

−5

5

10

t

s

ds
dt

= 3t2 − 12t + 7
d2s

dt2
= 6t − 12

s = t3 − 6t2 + 7t

(a) y = 0 when t = 6 { 215
3

sec

(b) y 6 0 when 
6 - 215

3
6 t 6 6 + 215

3
1  the 

object moves left; y 7 0 when 0 … t 6 6 - 215
3

 or 

6 + 215
3

6 t … 4 1 the object moves right.  

(c) The object changes direction at t = 6 { 215
3

sec.

(d) The object speeds up on a6 - 215
3

, 2b ∪ a6 + 215
3

, 4 d
and slows down on c 0,

6 - 215
3

b ∪ a2,
6 + 215

3
b .

(e) The object is moving fastest at t = 0 and t = 4 when it is 

moving 7 units > sec and slowest at t = 6 { 215
3

sec.

(f )  When t = 6 + 215
3

 the object is at position s ≈ -6.303

units and farthest from the origin.  

Section 3.5, pp. 160–162
1. -10 - 3 sin x 3. 2x cos x - x2 sin x

5. -csc x cot x - 2

2x
- 7

ex 7. sin x sec2 x + sin x

9. (e-x sec x)(1 - x + x tan x) 11.
-csc2 x

(1 + cot x)2

13. 4 tan x sec x - csc2 x 15. 0  

17. 3x2 sin x cos x + x3 cos2 x - x3 sin2 x

19. sec2 t + e-t 21.
-2 csc t cot t
(1 - csc t)2 23. -u (u cos u + 2 sin u)

25. sec u csc u (tan u - cot u) = sec2 u - csc2 u 27. sec2 q

29. sec2 q 31.
q3 cos q - q2 sin q - q cos q - sin q

(q2 - 1)2

5. (a) -20 m, -5 m>sec
(b) 45 m > sec, (1>5) m > sec; 140 m>sec2, (4>25) m>sec2

(c) No change in direction  
7. (a) a(1) = -6 m>sec2, a(3) = 6 m>sec2

(b) y(2) = 3 m>sec (c) 6 m  
9. Mars: ≈ 7.5 sec, Jupiter: ≈ 1.2 sec

11. gs = 0.75 m>sec2

13. (a) y = -32t, 0 y 0 = 32t ft>sec, a = -32 ft>sec2

(b) t ≈ 3.3 sec
(c) y ≈ -107.0 ft>sec

15. (a) t = 2, t = 7 (b) 3 … t … 6
(c) (d)

3

t (sec)
20 4 6 8 10

0 y 0  (m�sec)

Speed

31 420 6 75 9 108

a =
dy––
dt

−1
−2
−3
−4

4
3
2
1

t

a

17. (a) 190 ft > sec (b) 2 sec (c) 8 sec, 0 ft > sec
(d) 10.8 sec, 90 ft > sec (e) 2.8 sec  
(f ) Greatest acceleration happens 2 sec after launch  
(g) Constant acceleration between 2 and 10.8 sec, -32 ft>sec2

19. (a) 4
7

sec, 280 cm > sec (b) 560 cm > sec, 980 cm>sec2

(c) 29.75 flashes > sec
21. C = position, A = velocity, B = acceleration
23. (a) $110 >machine (b) $80 (c) $79.90
25. (a) b′(0) = 104 bacteria>h (b) b′(5) = 0 bacteria>h

(c) b′(10) = -104 bacteria>h
27. (a)

dy
dt

= t
12

- 1

(b) The largest value of 
dy
dt

 is 0 m>h when t = 12 and the small-

est value of 
dy
dt

 is -1 m>h when t = 0.

(c)

12
−1

1

2

3

4

5

6

t

y

y = 6 21 − t
12

t
12

dy
dt

= − 1

a b

29. 4.88 ft, 8.66 ft, additional ft to stop car for 1 mph speed increase

31. t = 25 sec, D = 6250
9

m

33.

12

−200

200

400

600

t

s

ds
dt

= 200 − 32t

d2s

dt2
= −32

s = 200t − 16t2
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15. With u = tan x, y = sec u :
dy
dx

=
dy
du

du
dx

=

(sec u tan u)(sec2 x) = sec (tan x) tan (tan x) sec2 x

17. With u = tan x, y = u3 :
dy
dx

=
dy
du

du
dx

= 3u2 sec2 x =

3 tan2 x (sec2 x)

19. y = eu, u = -5x,
dy
dx

= -5e-5x

21. y = eu, u = 5 - 7x,
dy
dx

= -7e(5-7x)

23. - 1

223 - t
25. 4
p (cos 3t - sin 5t) 27.

csc u
cot u + csc u

29. 2x sin4 x + 4x2 sin3 xcos x + cos-2 x + 2xcos-3 x sin x

31. (3x - 2)5 - 1

x3a4 - 1
2x2b

2
33.

(4x + 3)3(4x + 7)

(x + 1)4

35. (1 - x)e-x + 3x2ex3
37. a5

2
x2 - 3x + 3b e5x>2

39. 2x sec2122x2 + tan122x2 41.
x sec x tan x + sec x

227 + x sec x
43.

2 sin u
(1 + cos u)2 45. -2 sin (u2) sin 2u + 2ucos (2u) cos (u2)

47. a t + 2
2(t + 1)3>2b cosa t

2t + 1
b 49. 2ue-u2

sin 1e-u22
51. 2p sin (pt - 2) cos (pt - 2) 53.

8 sin (2t)

(1 + cos 2t)5

55. 10t10 tan9 t sec2 t + 10t9 tan10 t

57.
dy
dt

= -2p sin (pt - 1) # cos (pt - 1) # ecos2 (pt-1)

59.
-3t6 (t2 + 4)

(t3 - 4t)4
61. -2 cos (cos (2t - 5)) (sin (2t - 5))

63. a1 + tan4a t
12
b b2atan3a t

12
bsec2a t

12
b b

65. -
t sin (t2)

21 + cos (t2)
67. 6 tan (sin3 t) sec2 (sin3 t) sin2 t cos t

69. 3(2t2 - 5)3 (18t2 - 5) 71.
6
x3 a1 + 1

xb a1 + 2
xb

73. 2 csc2(3x - 1) cot (3x - 1) 75. 16(2x + 1)2 (5x + 1)

77. 2(2x2 + 1) ex2
  79. 5>2  81. -p>4  83. 0  85. -5

87. (a) 2>3 (b) 2p + 5 (c) 15 - 8p (d) 37>6 (e) -1

  (f ) 22>24 (g) 5>32 (h) -5>132172 89. 5
91. (a) 1 (b) 1 93. y = 1 - 4x
95. (a) y = px + 2 - p (b) p>2
97. It multiplies the velocity, acceleration, and jerk by 2, 4, and 8, 

respectively.

99. y(6) = 2
5

m>sec, a(6) = - 4
125

m>sec2

Section 3.7, pp. 175–176

1.
-2xy - y2

x2 + 2xy
3.

1 - 2y
2x + 2y - 1

5.
-2x3 + 3x2y - xy2 + x

x2y - x3 + y
7. 1

y (x + 1)2 9. cos y cot y

33. (a) 2 csc3 x - csc x (b) 2 sec3 x - sec x
35.

1

−1

x

y

y = x

y = sin x

p/2 p 2p−p/2−p 3p/2−3p/2

y = −x − p

(3p�2, −1)y = −1

37.

1

2

0
x

y
y = sec x

(−p�3, 2)

p�2p�4−p�3−p�2

2
Í

3p
3

y = −2
Í

3x − +2
Í

2p
4

y =
Í

2x − +
Í

2

Í

2 p�4,
Í

2a b

39. Yes, at x = p 41. No  

43. a- p
4

, -1b ; ap
4

, 1b

1

−1

x

y

y = tan x

(p�4, 1)

(−p�4, −1)

p�2p�4−p�4−p�2

2
py = 2x + − 1

2
py = 2x − + 1

45. (a) y = -x + p>2 + 2 (b) y = 4 - 23
47. 0  49. 13>2 51. -1 53. 0  

55. -22 m>sec, 22 m>sec, 22 m>sec2, 22 m>sec3

57. c = 9 59. sin x
61. (a) i) 10 cm ii) 5 cm iii) -522 ≈ -7.1 cm

(b) i) 0 cm > sec ii) -523 ≈ -8.7 cm>sec

   iii) -522 ≈ -7.1 cm>sec

Section 3.6, pp. 168–171

1. 12x3 3. 3 cos (3x + 1) 5.
cos x

2 2sin x
7. 2px sec2 (px2)

9.  With u = (2x + 1), y = u5 :
dy
dx

=
dy
du

du
dx

= 5u4 # 2 =

10(2x + 1)4

11. With u = (1 - (x>7)), y = u-7 :
dy
dx

=
dy
du

du
dx

=

-7u-8 # a- 1
7
b = a1 - x

7
b-8

13. With u = ((x2>8) + x - (1>x)), y = u4 :
dy
dx

=
dy
du

du
dx

=

4u3 # ax
4

+ 1 + 1
x2b = 4ax2

8
+ x - 1

xb
3ax

4
+ 1 + 1

x2b
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5. (b)

x

y

1−1−2 2

1

−1

−2

2 y = x3

y = x1�3

(c)  Slope of ƒ at (1, 1): 3; slope of g at (1, 1): 1 >3; slope of ƒ at 
(-1, -1): 3; slope of g at (-1, -1): 1 >3

(d) y = 0 is tangent to y = x3 at x = 0; x = 0 is tangent to 
y = 23 x at x = 0.

7. 1 >9 9. 3  11. 1
x + 1 13. 2 > t 15. -1>x

17. 1
u + 1

- eu 19. 3 >x 21. 2 (ln t) + (ln t)2

23. x3 ln x 25.
1 - ln t

t2 27. 1
x(1 + ln x)2 29. 1

x ln x

31. 2 cos (ln u) 33. - 3x + 2
2x(x + 1)

35. 2
t (1 - ln t)2

37.
tan (ln u)
u

39.
10x

x2 + 1
+ 1

2(1 - x)

41. a1
2
b2x(x + 1)a1x + 1

x + 1
b = 2x + 1

22x(x + 1)

43. a1
2
bA

t
t + 1

a1t - 1
t + 1

b = 1

22t (t + 1)3>2

45. 2u + 3(sin u)a 1
2(u + 3)

+ cot ub
47. t(t + 1)(t + 2) c 1t + 1

t + 1
+ 1

t + 2
d = 3t2 + 6t + 2

49.
u + 5
u cos u

c 1
u + 5

- 1
u

+ tan u d
51.

x2x2 + 1
(x + 1)2>3 c 1x + x

x2 + 1
- 2

3(x + 1)
d

53. 1
3 B

3 x(x - 2)

x2 + 1
a1x + 1

x - 2
- 2x

x2 + 1
b 55. -2 tan u

57.
1 - t

t 59. 1>(1 + eu) 61. ecos t(1 - t sin t)

63.
yey cos x

1 - yey sin x
65.

dy
dx

=
y2 - xy ln y

x2 - xy ln x
67. 2x ln x

69. a ln 5

22s
b52s 71. px(p-1) 73. 1

u ln 2
75.

3
x ln 4

77.
2(ln r)

r(ln 2)(ln 4)
79. -2

(x + 1)(x - 1)

81. sin (log7 u) + 1
ln 7

cos (log7 u) 83. 1
ln 5

85. 1
t (log2 3)3log2 t 87. 1

t 89. (x + 1)x a x
x + 1

+ ln(x + 1)b
91. 12t2t aln t

2
+ 1

2
b 93. (sin x)x(ln sin x + x cot x)

95. (xln x)aln x2

x b

11.
-cos2(xy) - y

x 13.
-y2

y sina1yb - cosa1yb + xy

15.
2e2x - cos (x + 3y)

3 cos (x + 3y)
17. - 2r

2u 19. -r
u

21. y′ = - x
y , y″ =

-y2 - x2

y3

23.
dy
dx

= xex2 + 1
y ,

d2y

dx2 =
(2x2y2 + y2 - 2x)ex2 - x2e2x2 - 1

y3

25. y′ =
2y

2y + 1
, y″ = 1

212y + 123
27. -2 29. (-2, 1) : m = -1, (-2, -1) : m = 1

31. (a) y = 7
4

x - 1
2

(b) y = - 4
7

x + 29
7

33. (a) y = 3x + 6 (b) y = - 1
3

x + 8
3

35. (a) y = 6
7

x + 6
7

(b) y = - 7
6

x - 7
6

37. (a) y = - p
2

x + p (b) y = 2
px - 2

p + p
2

39. (a) y = 2px - 2p (b) y = - x
2p

+ 1
2p

41. Points: 1-27, 02 and 127, 02, Slope: -2

43. m = -1 at a23
4

,
23
2
b , m = 23 at a23

4
,

1
2
b

45. (-3, 2) : m = - 27
8

; (-3, -2) : m = 27
8

; (3, 2) : m = 27
8

;

(3, -2) : m = - 27
8

47. (3, -1)

53.
dy
dx

= -
y3 + 2xy

x2 + 3xy2 ,
dx
dy

= -
x2 + 3xy2

y3 + 2xy
,

dx
dy

= 1
dy>dx

Section 3.8, pp. 185–186

1. (a) ƒ-1(x) = x
2

- 3
2

(b)

x

y

−3�2 0

3

3

−3�2

y = f
–1(x) =

y = f (x) = 2x + 3

x
2 2

3
−

(c) 2, 1 >2

3. (a) ƒ-1(x) = - x
4

+ 5
4

(b)

x

y

0

5

5
4

5 5
4

y = f
–1(x) = −

y = f (x) = −4x + 5

x
4 4

5
+

(c) -4, -1>4
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29. (a) -1
24p

m>min (b) r = 226y - y2 m

(c)
dr
dt

= - 5
288p

m>min

31. 1 ft >min, 40p ft2>min 33. 11 ft > sec
35. Increasing at 466>1681 L>min2

37. -5 m>sec 39. -1500 ft>sec

41.
5

72p
in.>min,

10
3

in2>min

43. (a) -32>213 ≈ -8.875 ft>sec

(b) du1>dt = 8>65 rad>sec, du2>dt = -8>65 rad>sec

(c) du1>dt = 1>6 rad>sec, du2>dt = -1>6 rad>sec

45. -5.5 deg>min

Section 3.11, pp. 211–214
1. L(x) = 10x - 13 3. L(x) = 2 5. L(x) = x - p

7. 2x 9. -x - 5 11. 1
12

x + 4
3

13. 1 - x

15. ƒ(0) = 1. Also, ƒ′(x) = k (1 + x)k-1, so ƒ′(0) = k. This means 
the linearization at x = 0 is L(x) = 1 + kx.

17. (a) 1.01 (b) 1.003

19. a3x2 - 3

22x
b dx 21.

2 - 2x2

(1 + x2)2
dx

23.
1 - y

32y + x
dx 25.

5

22x
cos152x2 dx

27. (4x2) sec2ax3

3
b dx

29.
3

2x
1csc11 - 22x2cot11 - 22x22 dx

31. 1

22x
# e2x dx 33.

2x
1 + x2 dx 35.

2xex2

1 + e2x2 dx

37. -1

2e-2x - 1
dx

39. (a) 0.41 (b) 0.4 (c) 0.01
41. (a) 0.231 (b) 0.2 (c) 0.031
43. (a) -1>3 (b) -2>5 (c) 1>15

45. dV = 4pr0
2 dr 47. dS = 12x0 dx 49. dV = 2pr0h dr

51. (a) 0.08p m2 (b) 2% 53. dV ≈ 565.5 in3

55. (a) 2% (b) 4% 57. 1
3
, 59. 3%  

61. The ratio equals 37.87, so a change in the acceleration of gravity 
on the moon has about 38 times the effect that a change of the 
same magnitude has on Earth.  

63. Increase V ≈ 40%

65. (a) i) b0 = ƒ(a) ii) b1 = ƒ′(a) iii) b2 =
ƒ″(a)

2

(b) Q(x) = 1 + x + x2 (d) Q(x) = 1 - (x - 1) + (x - 1)2

  (e) Q(x) = 1 + x
2

- x2

8
(f )  The linearization of any differentiable function u(x) at x = a

is L(x) = u(a) + u′(a)(x - a) = b0 + b1(x - a), where b0

and b1 are the coefficients of the constant and linear terms 
of the quadratic approximation. Thus, the linearization for 
ƒ(x) at x = 0 is 1 + x; the linearization for g(x) at x = 1
is 1 - (x - 1) or 2 - x; and the linearization for h(x) at 

x = 0 is 1 + x
2

.

Section 3.9, pp. 192–193
1. (a) p>4 (b) -p>3 (c) p>6
3. (a) -p>6 (b) p>4 (c) -p>3
5. (a) p>3 (b) 3p>4 (c) p>6
7. (a) 3p>4 (b) p>6 (c) 2p>3
9. 1>22 11. -1>23 13. p>2 15. p>2 17. p>2

19. 0  21.
-2x

21 - x4
23.

22

21 - 2t2

25. 1

�2s + 1 �2s2 + s
27.

-2x

(x2 + 1)2x4 + 2x2

29. -1

21 - t2
31. -1

22t (1 + t)
33. 1

(tan-1 x)(1 + x2)

35.
-et

� et �2(et)2 - 1
= -1

2e2t - 1
37.

-2s2

21 - s2
39. 0  

41. sin-1 x
47. (a) Defined; there is an angle whose tangent is 2.  

(b) Not defined; there is no angle whose cosine is 2.  
49. (a) Not defined; no angle has secant 0.  

(b) Not defined; no angle has sine 22.
59. (a)  Domain: all real numbers except those having the form 

p

2
+ kp where k is an integer; range: -p>2 6 y 6 p>2

(b) Domain: -q 6 x 6 q; range: -q 6 y 6 q
61. (a) Domain: -q 6 x 6 q; range: 0 … y … p

(b) Domain: -1 … x … 1; range: -1 … y … 1
63. The graphs are identical.  

Section 3.10, pp. 198–202

1.
dA
dt

= 2pr
dr
dt

3. 10  5. -6 7. -3>2
9. 31>13 11. (a) -180 m2>min (b) -135 m3>min

13. (a)
dV
dt

= pr2 dh
dt

(b)
dV
dt

= 2phr
dr
dt

(c)
dV
dt

= pr2 dh
dt

+ 2phr
dr
dt

15. (a) 1 volt > sec (b) - 1
3

 amp > sec

(c)
dR
dt

= 1
I
adV

dt
- V

I
dI
dt
b

(d) 3>2 ohms > sec, R is increasing.  

17. (a)
ds
dt

= x

2x2 + y2

dx
dt

(b)
ds
dt

= x

2x2 + y2

dx
dt

+
y

2x2 + y2

dy
dt

(c)
dx
dt

= -
y
x

dy
dt

19. (a)
dA
dt

= 1
2

ab cosu
du
dt

(b)
dA
dt

= 1
2

ab cosu
du
dt

+ 1
2

b sinu
da
dt

(c)
dA
dt

= 1
2

ab cosu
du
dt

+ 1
2

b sinu
da
dt

+ 1
2

a sinu
db
dt

21. (a) 14 cm2>sec, increasing (b) 0 cm > sec, constant  
(c) -14>13 cm>sec, decreasing  

23. (a) -12 ft>sec (b) -59.5 ft2>sec (c) -1 rad>sec
25. 20 ft > sec

27. (a)
dh
dt

= 11.19 cm>min (b)
dr
dt

= 14.92 cm>min
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95. (a) y

x
1−1

−1

1

0

x2, −1 ≤ x < 0

−x2,    0 ≤ x < 1
f (x) =

(b) Yes (c) Yes

97. (a)

  

y

1

x
10 2

x,       0 ≤ x ≤ 1
2 − x, 1 < x ≤ 2

y =

(b) Yes (c) No

67. (a) L(x) = x ln 2 + 1 ≈ 0.69x + 1
(b)

−3 −2 −1 0 1 2 3

1

2

3

x

y

y = (ln 2)x + 1

y = 2x

−1 −0.5 0 0.5 1

0.4

1.4

1

0.8

x

y

y = (ln 2)x + 1

y = 2x

Practice Exercises, pp. 215–219
1. 5x4 - 0.25x + 0.25 3. 3x(x - 2)
5. 2(x + 1)(2x2 + 4x + 1)
7. 3(u2 + sec u + 1)2 (2u + sec u tan u)

9. 1

22t11 + 2t22 11. 2 sec2 x tan x

13. 8 cos3(1 - 2t) sin (1 - 2t) 15. 5(sec t) (sec t + tan t)5

17.
ucosu + sinu

22u sinu
19.

cos22u

22u

21. x csc a2xb + csc a2xb cot a2xb
23. 1

2
x1>2 sec (2x)2316 tan (2x)2 - x-24

25. -10x csc2 (x2) 27. 8x3 sin(2x2) cos(2x2) + 2x sin2(2x2)

29.
- (t + 1)

8t3 31.
1 - x

(x + 1)3 33. -1

2x2a1 + 1
xb

1>2

35.
-2 sinu

(cosu - 1)2 37. 322x + 1 39. -9 c 5x + cos 2x
(5x2 + sin 2x)5>2 d   

41. -2e-x>5 43. xe4x 45.
2 sin ucos u

sin2u
= 2 cot u

47. 2
(ln 2)x

49. -8-t(ln 8) 51. 18x2.6

53. (x + 2)x+2(ln(x + 2) + 1) 55. - 1

21 - u2

57. -1

21 - x2 cos-1 x
59. tan-1(t) + t

1 + t2 - 1
2t

61.
1 - z

2z2 - 1
+ sec-1 z 63. -1 65. -

y + 2
x + 3

67.
-3x2 - 4y + 2

4x - 4y1>3 69. -
y
x 71. 1

2y (x + 1)2

73. -1>2 75. y>x 77. - 2e-tan-1x

1 + x2 79.
dp
dq

=
6q - 4p

3p2 + 4q
  

81.
dr
ds

= (2r - 1)(tan 2s)

83. (a)
d2y

dx2 =
-2xy3 - 2x4

y5 (b)
d2y

dx2 =
-2xy2 - 1

x4y3

85. (a) 7 (b) -2 (c) 5>12 (d) 1>4 (e) 12 (f ) 9>2
(g) 3>4

87. 0  89.
322e23>2

4
cos1e23>22 91. - 1

2
93. -2

(2t + 1)2

99. a5
2

,
9
4
b  and a3

2
, - 1

4
b 101. (-1, 27) and (2, 0)  

103. (a) (-2, 16), (3, 11)  (b) (0, 20), (1, 7)  
105. y

1

x

−1 y = − – − 1x −

y = −
8
p

+ 11–
2

1
2

x +

y = tan x

−p�2 −p�4 p�4 p�2

(p�4, 1)

(−p�4, −1)
8
p

107. 1
4

109. 4  

111. Tangent: y = - 1
4

x + 9
4

, normal: y = 4x - 2

113. Tangent: y = 2x - 4, normal: y = - 1
2

x + 7
2

115. Tangent: y = - 5
4

x + 6, normal: y = 4
5

x - 11
5

117. (1, 1): m = - 1
2

; (1, -1): m not defined  

119. B = graph of ƒ, A = graph of ƒ′
121. y

2

x
41−1 6

(6, 1)

(4, 3)3 y = f (x)

(−1, 2)

123. (a) 0, 0  (b) 1700 rabbits, ≈1400 rabbits
125. -1 127. 1>2 129. 4  131. 1  
133. To make g continuous at the origin, define g(0) = 1.

135.
2(x2 + 1)

2cos 2x
c 2x

x2 + 1
+ tan 2x d

137. 5 c (t + 1)(t - 1)
(t - 2)(t + 3)

d 5 c 1
t + 1

+ 1
t - 1

- 1
t - 2

- 1
t + 3

d

139. 1

2u (sin u)2u aln sin u
2

+ u cot ub
141. (a)

dS
dt

= (4pr + 2ph)
dr
dt

(b)
dS
dt

= 2pr
dh
dt

(c)
dS
dt

= (4pr + 2ph)
dr
dt

+ 2pr
dh
dt

(d)
dr
dt

= - r
2r + h

dh
dt
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17. (a) a = 3
4

, b = 9
4

19. ƒ odd 1 ƒ′ is even  

23. h′ is defined but not continuous at x = 0; k′ is defined and
continuous at x = 0.

27. (a) 0.8156 ft  (b) 0.00613 sec  
(c) It will lose about 8.83 min >day.

143. -40 m2>sec 145. 0.02 ohm > sec 147. 2 m > sec

149. (a) r = 2
5

h (b) - 125
144p

 ft>min

151. (a)
3
5

 km>sec or 600 m > sec (b)
18
p  rpm

153. (a) L(x) = 2x + p - 2
2

   

y

1

x

−1

p�4−p�4

y = tan x

(−p�4, −1)

y = 2x + (p − 2)�2

  (b) L(x) = -22x +
22(4 - p)

4

   

y

x
0

y = sec x

Í

2

−p�4 p�2−p�2

−p�4,
Í

2

y = −
Í

2x +
Í

2  4 −p �4
Q    R

155. L(x) = 1.5x + 0.5 157. dS =
prh0

2r2 + h 2
0

dh

159. (a) 4% (b) 8% (c) 12%

Additional and Advanced Exercises, pp. 219–222
1. (a)  sin 2u = 2 sin ucos u; 2 cos 2u = 2 sin u (-sin u) +

cos u (2 cos u); 2 cos 2u = -2 sin2u + 2 cos2u; cos 2u =
cos2u - sin2u

(b) cos 2u = cos2u - sin2u; -2 sin 2u =
2 cos u (-sin u) - 2 sin u (cos u); sin 2u =
cos u sin u + sin ucos u; sin 2u = 2 sin ucos u

3. (a) a = 1, b = 0, c = - 1
2

(b) b = cos a, c = sin a

5. h = -4, k = 9
2

, a = 525
2

7. (a) 0.09y (b) Increasing at 1% per year  
9. Answers will vary. Here is one possibility.

y

0
t

11. (a) 2 sec, 64 ft > sec (b) 12.31 sec, 393.85 ft  

15. (a) m = - b
p (b) m = -1, b = p

19. Absolute maximum at x = p>2; absolute minimum at 
x = 3p>2

3

−3

x

y

pp/2 2p3p/2

21. Absolute maximum: -3;
absolute minimum: -19>3

Chapter 4
Section 4.1, pp. 228–231

1. Absolute minimum at x = c2; absolute maximum at x = b
3. Absolute maximum at x = c; no absolute minimum
5. Absolute minimum at x = a; absolute maximum at x = c
7. No absolute minimum; no absolute maximum
9. Absolute maximum at (0, 5) 11. (c) 13. (d)

15. Absolute minimum at 
x = 0; no absolute
maximum

17. Absolute maximum at 
x = 2; no absolute
minimum

y

2

1

x
−1 1 2

f (x) = 0 x 0
y

1

−1

x
1 2

y = g(x)

23. Absolute maximum: 3; 
absolute minimum: -1

−1
1−1

−2

−3

−4

−5

−6

−7

2 3−2 0
x

y

(−2, −19/3)
Abs
min

Abs
max

(3, −3)

y = x − 52
3

−2 ≤ x ≤ 3

1

1−1

2

3

2
x

y

Abs
max

y = x2 − 1
−1 ≤ x ≤ 2

(2, 3)

(0, −1) Abs
min

25. Absolute maximum: -0.25;
absolute minimum: -4

27. Absolute maximum: 2; 
absolute minimum: -1

−1

10

−2

−3

−4

x

y

(0.5, −4)
Abs min

y = − , 0.5 ≤ x ≤ 21
x2

(2, −0.25)
Abs max

1

−1
1−1 2 3 4 5 6 7 8

2

x

y

(8, 2) 
Abs
max

(−1, −1)
Abs min

y = 
Î

x
−1 ≤ x ≤ 8

3
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29. Absolute maximum: 2; 
absolute minimum: 0

33. Absolute maximum: 2>23;  
absolute minimum: 1

37. Absolute maximum is 
1>e at x = 1; absolute
minimum is -e at
x = -1.

41. Increasing on (0, 8), decreasing on (-1, 0); absolute maximum: 
16 at x = 8; absolute minimum: 0 at x = 0

43. Increasing on (-32, 1); absolute maximum: 1 at u = 1; absolute 
minimum: -8 at u = -32

45. x = 3
47. x = 1, x = 4
49. x = 1
51. x = 0 and x = 4
53. Minimum value is 1 at x = 2.

55. Local maximum at (-2, 17); local minimum at a4
3

, - 41
27
b

57. Minimum value is 0 at x = -1 and x = 1.
59. There is a local minimum at (0, 1).

61. Maximum value is 
1
2

 at x = 1; minimum value is - 1
2

 at 
x = -1.

63. The minimum value is 2 at x = 0.

65. The minimum value is - 1
e  at x = 1

e .

67. The maximum value is 
p

2
 at x = 0; an absolute minimum value 

is 0 at x = 1 and x = -1.

31. Absolute maximum: 1; 
absolute minimum: -1

35. Absolute maximum: 2; 
absolute minimum: -1

39. Absolute maximum value
is (1>4) + ln 4 at x = 4;
absolute minimum value is 
1 at x = 1; local maximum 
at (1>2, 2 - ln 2).

1

−1

u

y

(p�2, 1) Abs max

p/2−p/2 5p/6

y = sin u, −p�2 ≤ u≤ 5p�6
(−p�2, −1)

Abs min

1

−1

1−1 0
x

y

(−2, 0)
Abs
min

y =
Î

4 − x2

−2 ≤ x ≤ 1

(0, 2) Abs max

1.0

0

1.2

0.8
0.6
0.4
0.2

x

y

p�3 p�2 2p�3

y = csc x
p�3≤ x≤ 2p�3

(p�2, 1)
Abs
min

Abs max

p�3, 2�
Î

3

Abs max

 2p�3, 2�
Î

3Q R Q         R

1

−1

1−1 2 30
t

y

(3, −1)

Abs
min

Abs
max

(0, 2)

y = 2 − 0 t 0
−1 ≤ t ≤ 3

−2−3 −1 2 31

−4

−3

−2

−1

2

1

x

y Absolute
maximum

e
11,

(−1, −e)
Absolute
minimum

Q   R

21 53 4

0.25
0.5

0.75

1

1.25

1.5

y

x

Abs min at (1, 1)

Abs max at
4
1

+ ln 4 4,

f(x) = x
1 + ln x

a b

69. Critical point  
or endpoint

Derivative Extremum Value

x = -4
5

0 Local max 12
25

101>3 ≈ 1.034

x = 0 Undefined Local min 0

71. Critical point 
or endpoint

Derivative Extremum Value

x = -2 Undefined Local max 0

x = -22 0 Minimum –2

x = 22 0 Maximum 2

x = 2 Undefined Local min 0

73. Critical point 
or endpoint

Derivative Extremum Value

x = 1 Undefined Minimum 2

75. Critical point 
or endpoint

Derivative Extremum Value

x = -1 0 Maximum 5
x = 1 Undefined Local min 1
x = 3 0 Maximum 5

77. (a) No
(b) The derivative is defined and nonzero for x ≠ 2. Also, 

ƒ(2) = 0 and ƒ(x) 7 0 for all x ≠ 2.
(c) No, because (-q, q) is not a closed interval.
(d) The answers are the same as parts (a) and (b), with 2 

replaced by a.
79. Yes
81. g assumes a local maximum at -c.
83. (a) Maximum value is 144 at x = 2.

(b) The largest volume of the box is 144 cubic units, and it oc-
curs when x = 2.

85.
y0

2

2g
+ s0

87. Maximum value is 11 at x = 5; minimum value is 5 on the inter-
val [-3, 2]; local maximum at (-5, 9).

89. Maximum value is 5 on the interval [3, q); minimum value is 
-5 on the interval (-q, -2].

Section 4.2, pp. 237–239

1. 1>2 3. 1 5. {A1 - 4
p2 ≈ {0.771

7. 1
3
11 + 272 ≈ 1.22, 

1
3
11 - 272 ≈ -0.549

9. Does not; ƒ is not differentiable at the interior domain point 
x = 0.

11. Does 13. Does not; ƒ is not differentiable at x = -1.
17. (a)

  i) x
−2 20

 ii) x
−5 −4 −3

iii) x
−1 0 2

iv)
0 4 9 18 24

x
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29. Yes 31. (a) 4 (b) 3 (c) 3

33. (a)
x2

2
+ C (b)

x3

3
+ C (c)

x4

4
+ C

35. (a) 1
x + C (b) x + 1

x + C (c) 5x - 1
x + C

37. (a) - 1
2

cos 2t + C (b) 2 sin
t
2

+ C

(c) - 1
2

cos 2t + 2 sin
t
2

+ C

39. ƒ(x) = x2 - x 41. ƒ(x) = 1 + e2x

2

43. s = 4.9t2 + 5t + 10 45. s =
1 - cos (pt)

p

47. s = et + 19t + 4 49. s = sin (2t) - 3
51. If T(t) is the temperature of the thermometer at time t, then 

T(0) = -19 °C and T(14) = 100 °C. From the Mean Value 

  Theorem, there exists a 0 6 t0 6 14 such that 
T(14) - T(0)

14 - 0
=

8.5 °C>sec = T′(t0), the rate at which the temperature was 
changing at t = t0 as measured by the rising mercury on the 
thermometer.

53. Because its average speed was approximately 7.667 knots, and 
by the Mean Value Theorem, it must have been going that speed 
at least once during the trip.

57. The conclusion of the Mean Value Theorem yields

1
b

- 1
a

b - a
= - 1

c2 1 c2aa - b
ab
b = a - b 1 c = 1ab.

61. ƒ(x) must be zero at least once between a and b by the Intermediate 
Value Theorem. Now suppose that ƒ(x) is zero twice between a and 
b. Then, by the Mean Value Theorem, ƒ′(x) would have to be zero 
at least once between the two zeros of ƒ(x), but this can’t be true 
since we are given that ƒ′(x) ≠ 0 on this interval. Therefore, ƒ(x)
is zero once and only once between a and b.

71. 1.09999 … ƒ(0.1) … 1.1

Section 4.3, pp. 242–244
1. (a) 0, 1

(b) Increasing on (-q, 0) and (1, q); decreasing on (0, 1)
(c) Local maximum at x = 0; local minimum at x = 1

3. (a) -2, 1
(b) Increasing on (-2, 1) and (1, q); decreasing on (-q, -2)
(c) No local maximum; local minimum at x = -2

5. (a) Critical point at x = 1
(b) Decreasing on (-q, 1), increasing on (1, q)
(c) Local (and absolute) minimum at x = 1

7. (a) 0, 1
(b) Increasing on (-q, -2) and (1, q); decreasing on (-2, 0)

and (0, 1)
(c) Local minimum at x = 1

9. (a) -2, 2
(b) Increasing on (-q, -2) and (2, q); decreasing on (-2, 0)

and (0, 2)
(c) Local maximum at x = -2; local minimum at x = 2

11. (a) -2, 0
(b) Increasing on (-q, -2) and (0, q); decreasing on (-2, 0)
(c) Local maximum at x = -2; local minimum at x = 0

13. (a)
p

2
,

2p
3

,
4p
3

(b) Increasing on a2p
3

,
4p
3
b ; decreasing on a0,

p

2
b , ap

2
,

2p
3
b ,

   and a4p
3

, 2pb
(c) Local maximum at x = 0 and x = 4p

3
; local minimum at 

x = 2p
3

 and x = 2p

15. (a) Increasing on (-2, 0) and (2, 4); decreasing on (-4, -2) and 
(0, 2)

(b) Absolute maximum at (-4, 2); local maximum at (0, 1) and 
(4, -1); absolute minimum at (2, -3); local minimum at 
(-2, 0)

17. (a) Increasing on (-4, -1), (1>2, 2), and (2, 4); decreasing on 
(-1, 1>2)

(b) Absolute maximum at (4, 3); local maximum at (-1, 2) and 
(2, 1); no absolute minimum; local minimum at (-4, -1)
and (1>2, -1)

19. (a) Increasing on (-q, -1.5); decreasing on (-1.5, q)
(b) Local maximum: 5.25 at t = -1.5; absolute maximum: 5.25 

at t = -1.5
21. (a) Decreasing on (-q, 0); increasing on (0, 4>3); decreasing 

on (4>3, q)
(b) Local minimum at x = 0 (0, 0); local maximum at 

x = 4>3 (4>3, 32>27); no absolute extrema
23. (a) Decreasing on (-q, 0); increasing on (0, 1>2); decreasing 

on (1>2, q)
(b) Local minimum at u = 0 (0, 0); local maximum at 
u = 1>2 (1>2, 1>4); no absolute extrema

25. (a) Increasing on (-q, q); never decreasing
(b) No local extrema; no absolute extrema

27. (a) Increasing on (-2, 0) and (2, q); decreasing on (-q, -2)
and (0, 2)

(b) Local maximum: 16 at x = 0; local minimum: 0 at x = {2;
no absolute maximum; absolute minimum: 0 at x = {2

29. (a) Increasing on (-q, -1); decreasing on (-1, 0); increasing 
on (0, 1); decreasing on (1, q)

(b) Local maximum: 0.5 at x = {1; local minimum: 0 at 
x = 0; absolute maximum: 1>2 at x = {1; no absolute 
minimum

31. (a) Increasing on (10, q); decreasing on (1, 10)
(b) Local maximum: 1 at x = 1; local minimum: -8 at x = 10;

absolute minimum: -8 at x = 10
33. (a) Decreasing on 1-222, -22; increasing on (-2, 2); decreas-

ing on 12, 2222
(b) Local minima: g(-2) = -4, g12222 = 0; local maxima: 

g1-2222 = 0, g(2) = 4; absolute maximum: 4 at x = 2;
absolute minimum: -4 at x = -2

35. (a) Increasing on (-q, 1); decreasing when 1 6 x 6 2, de-
creasing when 2 6 x 6 3; discontinuous at x = 2; increas-
ing on (3, q)

(b) Local minimum at x = 3 (3, 6); local maximum at 
x = 1 (1, 2); no absolute extrema

37. (a) Increasing on (-2, 0) and (0, q); decreasing on (-q, -2)
(b) Local minimum: -623 2 at x = -2; no absolute maximum; 

absolute minimum: -623 2 at x = -2
39. (a) Increasing on 1-q, -2>272 and 12>27, q2; decreasing 

   on 1-2>27, 02 and 10, 2>272
(b) Local maximum: 2423 2>77>6 ≈ 3.12 at x = -2>27; local 

minimum: -2423 2>77>6 ≈ -3.12 at x = 2>27; no abso-
lute extrema
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41. (a) Increasing on ((1>3) ln (1>2), q), decreasing on 
(-q, (1>3) ln (1>2))

(b) Local minimum is 
3

22>3 at x = (1>3) ln (1>2); no local 

    maximum; absolute minimum is 
3

22>3 at x = (1>3) ln (1>2);
no absolute maximum

43. (a) Increasing on (e-1, q), decreasing on (0, e-1)
(b) A local minimum is -e-1 at x = e-1, no local maximum; 

absolute minimum is -e-1 at x = e-1, no absolute 
maximum

45. (a) Local maximum: 1 at x = 1; local minimum: 0 at x = 2
(b) Absolute maximum: 1 at x = 1; no absolute minimum

47. (a) Local maximum: 1 at x = 1; local minimum: 0 at x = 2
(b) No absolute maximum; absolute minimum: 0 at x = 2

49. (a) Local maxima: -9 at t = -3 and 16 at t = 2; local mini-
mum: -16 at t = -2

(b) Absolute maximum: 16 at t = 2; no absolute minimum
51. (a) Local minimum: 0 at x = 0

(b) No absolute maximum; absolute minimum: 0 at x = 0
53. (a) Local maximum: 5 at x = 0; local minimum: 0 at x = -5

and x = 5
(b) Absolute maximum: 5 at x = 0; absolute minimum: 0 at 

x = -5 and x = 5
55. (a) Local maximum: 2 at x = 0;

   local minimum: 
23

423 - 6
 at x = 2 - 23

(b) No absolute maximum; an absolute minimum at 
x = 2 - 23

57. (a) Local maximum: 1 at x = p>4;
   local maximum: 0 at x = p;
   local minimum: 0 at x = 0;
   local minimum: -1 at x = 3p>4
59. Local maximum: 2 at x = p>6;
  local maximum: 23 at x = 2p;
  local minimum: -2 at x = 7p>6;
  local minimum: 23 at x = 0
61. (a) Local minimum: (p>3) - 23 at x = 2p>3;
   local maximum: 0 at x = 0;
   local maximum: p at x = 2p
63. (a) Local minimum: 0 at x = p>4
65. Local maximum: 3 at u = 0;
  local minimum: -3 at u = 2p
67.

1

10
x

y

(a)

y = f (x)

1

10
x

y

(b)

y= f (x)
1

10
x

y

(c)

y = f (x)
1

10
x

y

(d)

y = f (x)

69. (a) (b)

2

0 2

y = g(x)

x

y

2

0 2

y = g(x)

x

y

73. a = -2, b = 4
75. (a) Absolute minimum occurs at x = p>3 with 

ƒ(p>3) = - ln 2, and the absolute maximum occurs at 
x = 0 with ƒ(0) = 0.

(b) Absolute minimum occurs at x = 1>2 and x = 2 with 
ƒ(1>2) = ƒ(2) = cos (ln 2), and the absolute maximum oc-
curs at x = 1 with ƒ(1) = 1.

77. Minimum of 2 - 2 ln 2 ≈ 0.613706 at x = ln 2; maximum of 
1 at x = 0

79. Absolute maximum value of 1>2e assumed at x = 1>2e

83. Increasing;
dƒ-1

dx
= 1

9
x-2>3

85. Decreasing;
df -1

dx
= -1

3
x-2>3

Section 4.4, pp. 252–255
1. Local maximum: 3>2 at x = -1; local minimum: -3 at x = 2;

point of inflection at (1>2, -3>4); rising on (-q, -1) and 
(2, q); falling on (-1, 2); concave up on (1>2, q); concave 
down on (-q, 1>2)

3. Local maximum: 3 >4 at x = 0; local minimum: 0 at x = {1;

  points of inflection at a-23,
323 4

4
b  and a23,

323 4
4
b ;

  rising on (-1, 0) and (1, q); falling on (-q, -1) and (0, 1);
concave up on 1-q, -232 and 123, q2; concave down on 1-23, 232

5. Local maxima: 
-2p

3
+ 23

2
 at x = -2p>3,

p

3
+ 23

2
 at 

x = p>3; local minima: - p
3

- 23
2

 at x = -p>3,
2p
3

- 23
2

  at x = 2p>3; points of inflection at (-p>2, -p>2), (0, 0), and 
(p>2, p>2); rising on (-p>3, p>3); falling on (-2p>3, -p>3)
and (p>3, 2p>3); concave up on (-p>2, 0) and (p>2, 2p>3);
concave down on (-2p>3, -p>2) and (0, p>2)

7. Local maxima: 1 at x = -p>2 and x = p>2, 0 at x = -2p
and x = 2p; local minima: -1 at x = -3p>2 and x = 3p>2,
0 at x = 0; points of inflection at (-p, 0) and (p, 0); ris-
ing on (-3p>2, -p>2), (0, p>2), and (3p>2, 2p); falling on 
(-2p, -3p>2), (-p>2, 0), and (p>2, 3p>2); concave up on 
(-2p, -p) and (p, 2p); concave down on (-p, 0) and (0, p)

9. 11.

1

−1
1−1 2 3 4−2−3−4

−2

2

3

4

0

y = x2 − 4x + 3

(2, −1)
Abs min

x

y

1

1−1

4

5

2

Loc
max
(−1, 5)

(1, 1)
Loc min

Infl

y = x3 − 3x + 3

x

y
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33. 35.

−1
1−1 4 5

−5

x

y

Cusp, Loc max 
(0, 0)

y = 2x − 3x2�3

(1, −1)
Loc min

1−1

2

3

4

2 3−2
x

y

Infl

Q−1�2, 3/
3
Î

4R

 (1, 3�2) Loc max

y = x2�3 5–
2 − x

(0, 0)
Cusp
Loc min

Q R

37. 39.

1

1−1 2−2

2

3

4

−3

−4

x

y

(0, 0) Infl

Abs max
(2, 4)

Loc max

Q−2
Î

2, 0R

Q2
Î

2, 0R

Loc min

y = xÎ8 − x2

(−2, −4)
Abs min

x

y

y = Î16 − x2

(0, 4)  Abs max

(4, 0)
Abs min

(−4, 0)
Abs min

41. 43.

2

2

−2
4 6 8−4−6−8

−4

−6

−8

4

6

8

(3, 6) Loc min

(1, 2) Loc max

x2 − 3
x − 2

y =

x

y

−1 1 2

1

2

−2

x

y

y =

Q−2
Î

3, −
Î

3R
Infl

Q2
Î

3,
Î

3R
Infl

(−2, −2)
Abs min

(2, 2)
Abs max8x

x2 + 4

(0, 0)
Infl

45. 47.

2−2

2

3

Loc max
(0, 1)

y = x2 − 1

(1, 0)
Abs min

(−1, 0)
Abs min

x

y

1

1−1 2 3 4−2−3−4

2
y =

Î

0 x 0

(0, 0)

Cusp
Abs min

x

y

49. 51.

−3−2−1 1 2 3 4 5 6

−2

−1

1

2

3

4

x

y

(1, e)
Loc min

y = xe1�x

−3 −2 −1 1 2 3

−3

−2

−1

1

2

x

y

−
Î

3
Î

3

y = ln (3 − x2)

(0, ln 3)
Loc max

13.  15.

1

1−1 2−3

2

x

y

(0, −3)
Loc min y = −2x3 + 6x2 − 3

(2, 5) Loc max

Infl
(1, 1)

1

−1

1−1 2 3 4−2

2

3

−2

0

Infl
(2, 1)

y = (x − 2)3 + 1

x

y

17.  19.

1 2−1−2

1

Abs min
(1, −1)

Loc max
(0, 0)

Abs min
(−1, −1)

−1�
Î

3, −5�9
Infl

1�
Î

3, −5�9
Infl

x

y

y = x4 − 2x2

Q R Q R

3

4

9

15

21

27

321

(2, 16)

Abs max
(3, 27)

y = 4x3 − x4

Infl

Infl
(0, 0)

x

y

21.  23.

−100

−200

−300

543210−2
x

y

y = x5 − 5x4Loc max
(0, 0)

(3, −162)
Infl

(4, −256)
Loc min

0

Abs min

Infl

y = x + sin x

Abs max

(p, p)

(2p, 2p)

x

y

2p

p

2pp

25.

10

8

2

4

6

x

y

pp�2 2p3p�20

Q3p�2, 3
Î

3p�2R

Q2p, 2
Î

3p − 2R

Qp�2,
Î

3p�2R
Infl

Abs max

(0, −2)
Abs min y =

Î

3x − 2 cos x

Q4p�3, 4
Î

3p�3 + 1R

Loc max

Q5p�3, 5
Î

3p�3 − 1R
Loc minInfl

27.

1

−1

x

y

p�2p�4 p3p�4(0, 0)
Loc min

Abs max
(p�4, 1�2) Infl

(p�2, 0)
Loc max

(p, 0)

(3p�4, −1�2)
Abs min

y = sin x cos x

29.  31.

−1

1 2 3−1−2−3

1

2

−2

x

y

y = x1�5

(0, 0)
Infl

Vert tan
at x = 0

−2

−1

1

1−1 2 3 4−2−3−4

2

(0, 0) 
Infl

x

y

y = x

Î

x2 + 1
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53. 55.

−1.5−1−0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1.

x

y

y = ex − 2e−x − 3x

(0, −1)
Loc max

(ln 2, 1 − 3 ln 2)
Loc min

y = ln 2,         ln 2

Inflection

1
2

3
2

−
QQ R Q R R

1
2
3

x

y

−4p −2p 2p 4p

y = ln (cos x)

Loc
max

(−4p, 0)

Loc
max

(−2p, 0)

Loc
max

(2p, 0)

Loc
max
(0, 0)

Loc
max

(4p, 0)

57.  59. y″ = 1 - 2x

−3 −2 1 2 3

−1
−0.5

1

x

y

y = 1
1 + e–x

(0, 0.5) Inflection

Loc max

x = 2
Infl

Loc min

x = −1

x = 1
2

61. y″ = 3(x - 3)(x - 1) 63. y″ = 3(x - 2)(x + 2)

Loc min

Infl

Infl

x = 3

x = 1

x = 0

Loc max

x = 0

Infl
x = −2

x = −2
Î

3 x = 2
Î

3

Infl x = 2
Abs minAbs min

65. y″ = 4(4 - x)(5x2 - 16x + 8)

Loc min
x = 0

Loc max
x = 8�5

Infl

x = 4

Infl

x = 8 + 2Î6
5

x = 8 − 2Î6
5

Infl

67. y″ = 2 sec2 x tan x 69. y″ = -1
2

 csc2 u

2
,

0 6 u 6 2p

Infl

x = 0

Abs max

u = p

71. y″ = 2 tan u sec2 u, -p
2

6 u 6 p
2

u= 0
Inf1

4
pu=

Loc min

4
pu= − Loc max

73. y″ = -sin t, 0 … t … 2p

t = 0
Loc min

Abs max

2
pt =

2
t =

t = p
Infl

3p

Abs min

 Loc max
     t = 2p

75. y″ = -2
3

(x + 1)-5>3 77. y″ = 1
3

x-2>3 + 2
3

x-5>3

x = −1
Infl
Vert tan

x = 1
Abs min

Infl
vert tan
x = 0

x = −2
Infl

79. y″ = e-2, x 6 0

2, x 7 0
81.

x = 0

Infl

y

Loc min

y ″ y′

Infl

Loc max

P

x

y

83.

85.    87.

210 3

−2

−1
−1

1

2

4

3

5

x

y

2x2 + x − 1

x2 − 1
y =

1
x − 1

y =

y = 2

x = 1

−1 1

1

2

x

y

x4 + 1

x2
y =

 1
x2

y =

y = x2

89.  91.

1

−1

x

y

x = − 1 x =  1

1

x2 − 1
y =

−1 1
−1 1

−2

−1

y

x = −1

y = −1

x = 1

−
Î

2
Î

2

x2 − 2

x2 − 1
y = −

1

x2 − 1
y =

x

x

y

y ″

y′

InflInfl

Loc
min

P y
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93. 95.

1 2 3−2−3−4

−4

x

y

x2

x + 1
y =

y = x − 1

x = −1

x

y

1
x − 1

y =

x = 1

y = x

x2 − x + 1
x − 1

y =

3

−1

21

97. 99.

−2−6 −4 41

−16

−12

−8

−4

y

x

9
x + 2

y =

(x − 1)3

x2 + x − 2
y =

y = x − 4

x = −2

9
2

0

−1 1

1

0

−1

x

y

x

x2 − 1x = −1

x = 1

y =

101.

103.

0 1

2

x

y

y = 8�(x2 + 4)

Point y′ y″
P - +
Q + 0

R + -
S 0 -
T - -

105.

7

4

1

2 4 60
x

y

(2, 1)

(4, 4)

(6, 7)

107. (a) Towards origin: 0 … t 6 2 and 6 … t … 10; away from 
origin: 2 … t … 6 and 10 … t … 15

(b) t = 2, t = 6, t = 10
(c) t = 5, t = 7, t = 13
(d) Positive: 5 … t … 7, 13 … t … 15; negative: 

0 … t … 5, 7 … t … 13
109. ≈ 60 thousand units
111. Local minimum at x = 2; inflection points at x = 1 and 

x = 5>3
115. b = -3 119. -1, 2
121. a = 1, b = 3, c = 9
123. The zeros of y′ = 0 and y″ = 0 are extrema and points of 

inflection, respectively. Inflection at x = 3, local maximum at 
x = 0, local minimum at x = 4.

0 3

−200

4 5

200

−400

x

y

y′ = 5x3(x − 4)

y = x5 − 5x4 − 240

y″ = 20x2(x − 3)

125. The zeros of y′ = 0 and y″ = 0 are extrema and points of in-
flection, respectively. Inflection at x = -23 2; local maximum 
at x = -2; local minimum at x = 0.

50

2−3

100

3

−50

−100

y′= 4x(x3 + 8)

y″ = 16(x3 + 2)

x

y

y = x5 + 16x2 − 254
5

Section 4.5, pp. 262–263
1. -1>4 3. 5>7 5. 1>2 7. 1>4 9. -23>7

11. 5>7 13. 0 15. -16 17. -2 19. 1>4
21. 2 23. 3 25. -1 27. ln 3 29. 1

ln 2
31. ln 2

33. 1 35. 1>2 37. ln 2  39. -q 41. -1>2
43. -1 45. 1 47. 0 49. 2 51. 1>e 53. 1
55. 1>e 57. e1>2 59. 1 61. e3 63. 0 65. 1
67. 3 69. 1 71. 0 73. q 75. (b) is correct.  

77. (d) is correct.  79. c = 27
10

81. (b) -1
2

83. -1

87. (a) y = 1 (b) y = 0, y = 3
2

89. (a)  We should assign the value 1 to ƒ(x) = (sin x)x to make it 
continuous at x = 0.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

x

y

y = (sin x)x

(c)  The maximum value of ƒ(x) is close to 1 near the point 
x ≈ 1.55 (see the graph in part (a)).

Section 4.6, pp. 270–276
1. 16 in., 4 in. by 4 in.
3. (a) (x, 1 - x) (b) A(x) = 2x(1 - x)

(c) 1
2

 square units, 1 by 
1
2

5. 14
3

* 35
3

* 5
3

in.,
2450
27

in3

7. 80,000 m2; 400 m by 200 m
9. (a) The optimum dimensions of the tank are 10 ft on the base 

edges and 5 ft deep.
(b) Minimizing the surface area of the tank minimizes its weight 

for a given wall thickness. The thickness of the steel walls 
would likely be determined by other considerations such as 
structural requirements.

11. 9 * 18 in. 13.
p

2
15. h : r = 8 :p
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17. (a) V(x) = 2x(24 - 2x)(18 - 2x) (b) Domain: (0, 9)

   

V

x

1600

1200

800

400

2 4 6 8

Maximum
x = 3.3944487 V = 1309.9547

(c) Maximum volume ≈ 1309.95 in3 when x ≈ 3.39 in.
(d) V′(x) = 24x2 - 336x + 864, so the critical point is at 

x = 7 - 213, which confirms the result in part (c).
(e) x = 2 in. or x = 5 in.

19. ≈ 2418.40 cm3

21. (a) h = 24, w = 18
(b)

23. If r is the radius of the hemisphere, h the height of the cylinder, 

  and V the volume, then r = a3V
8p
b1>3

 and h = a3V
p b

1>3
.

25. (b) x = 51
8

(c) L ≈ 11 in.

27. Radius = 22 m, height = 1 m, volume = 2p
3

m3

29. 1 31.
9b

9 + 23p
 m, triangle; 

b23p

9 + 23p
 m, circle

33.
3
2

* 2

35. (a) 16  (b) -1
37. (a) y(0) = 96 ft>sec

(b) 256 ft at t = 3 sec
(c) Velocity when s = 0 is y(7) = -128 ft>sec.

39. ≈ 46.87 ft 41. (a) 6 * 623 in.
43. (a) 423 * 426 in.
45. (a) 10p ≈ 31.42 cm>sec; when t = 0.5 sec, 1.5 sec, 2.5 sec, 

3.5 sec; s = 0, acceleration is 0.
(b) 10 cm from rest position; speed is 0.

47. (a) s = ((12 - 12t)2 + 64t2)1>2
(b) -12 knots, 8 knots
(c) No
(d) 4213. This limit is the square root of the sums of the 

squares of the individual speeds.

49. x = a
2

, y = ka2

4
51.

c
2

+ 50

53. (a) A
2km

h
(b) A

2km
h

57. 4 * 4 * 3 ft, $288  59. M = C
2

65. (a) y = -1

V

V = 54h2 −

h
5

2000

4000

6000

8000

10000

0
10 20 3015 25 35

(24, 10368)
Abs max

h33
2

67. (a) The minimum distance is 
25
2

.

(b) The minimum distance is from the point (3>2, 0) to the point 
(1, 1) on the graph of y = 1x, and this occurs at the value 
x = 1, where D(x), the distance squared, has its minimum 
value.

   

y, D(x) D(x) = x2 − 2x +

x
0.5 1.5 2.51 2

Î

5
2

Dmin=

9–
4

y =
Î

x

0.5

1

1.5

2

2.5

Section 4.7, pp. 279–280

1. x2 = - 5
3

,
13
21

3. x2 = - 51
31

,
5763
4945

5. x2 = 2387
2000

7. x1, and all later approximations will equal x0.
9. y

x
h

y =

−h

Î

x , x ≥ 0

Î

−x, x < 0

11. The points of intersection of y = x3 and y = 3x + 1 or 
y = x3 - 3x and y = 1 have the same x-values as the roots of 
part (i) or the solutions of part (iv).  13. 1.165561185

15. (a) Two (b) 0.35003501505249 and -1.0261731615301
17. {1.3065629648764, {0.5411961001462 19. x ≈ 0.45
21. 0.8192 23. 0, 0.53485  25. The root is 1.17951.
27. (a) For x0 = -2 or x0 = -0.8, xi S -1 as i gets large.

(b) For x0 = -0.5 or x0 = 0.25, xi S 0 as i gets large.
(c) For x0 = 0.8 or x0 = 2, xi S 1 as i gets large.
(d) For x0 = -221>7 or x0 = 221>7, Newton’s method does 

not converge. The values of xi alternate between -221>7
and 221>7 as i increases.

29. Answers will vary with machine speed.

Section 4.8, pp. 287–290

1. (a) x2 (b)
x3

3
(c)

x3

3
- x2 + x

3. (a) x-3 (b) - 1
3

x-3 (c) - 1
3

x-3 + x2 + 3x

5. (a) - 1
x (b) - 5

x (c) 2x + 5
x

7. (a) 2x3 (b) 1x (c)
22x3

3
+ 21x

9. (a) x2>3 (b) x1>3 (c) x-1>3
11. (a) ln x (b) 7 ln x (c) x - 5 ln x

13. (a) cos (px) (b) -3 cos x (c) - 1
pcos (px) + cos (3x)

15. (a) tan x (b) 2 tan ax
3
b (c) - 2

3
tan a3x

2
b
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17. (a) -csc x (b) 1
5

 csc (5x) (c) 2csc apx
2
b

19. (a) 1
3

e3x (b) -e-x (c) 2ex>2

21. (a) 1
ln 3

3x (b) -1
ln 2

2-x (c) 1
ln (5>3)

a5
3
b x

23. (a) 2 sin-1 x (b) 1
2

tan-1 x (c) 1
2

tan-1 2x

25.
x2

2
+ x + C 27. t3 + t2

4
+ C 29.

x4

2
- 5x2

2
+ 7x + C

31. - 1
x - x3

3
- x

3
+ C 33.

3
2

x2>3 + C

35. 2
3

x3>2 + 3
4

x4>3 + C 37. 4y2 - 8
3

y3>4 + C

39. x2 + 2
x + C 41. 22t - 2

2t
+ C 43. -2 sin t + C

45. -21 cos
u

3
+ C 47. 3 cot x + C 49. - 1

2
 csc u + C

51. 1
3

e3x - 5e-x + C 53. -e-x + 4x

ln 4
+ C

55. 4 sec x - 2 tan x + C 57. - 1
2

 cos 2x + cot x + C

59.
t
2

+ sin 4t
8

+ C 61. ln 0 x 0 - 5 tan-1 x + C

63.
3x(23+1)

23 + 1
+ C 65. tan u + C 67. -cot x - x + C

69. -cos u + u + C

83. (a) Wrong:
d
dx

  ax2

2
 sin x + Cb = 2x

2
 sin x + x2

2
 cos x =

x sin x + x2

2
 cos x

(b) Wrong:
d
dx

 (-x cos x + C) = -cos x + x sin x

(c) Right:
d
dx

 (-x cos x + sin x + C) = -cos x + x sin x +

cos x = x sin x

85. (a) Wrong:
d
dx
a(2x + 1)3

3
+ Cb =

3(2x + 1)2(2)
3

=

2(2x + 1)2

(b) Wrong:
d
dx

  ((2x + 1)3 + C) = 3(2x + 1)2(2) =

6(2x + 1)2

(c) Right:
d
dx

  ((2x + 1)3 + C) = 6(2x + 1)2

87. Right 89. (b) 91. y = x2 - 7x + 10

93. y = - 1
x + x2

2
- 1

2
95. y = 9x1>3 + 4

97. s = t + sin t + 4 99. r = cos (pu) - 1

101. y = 1
2

 sec t + 1
2

103. y = 3 sec-1 t - p

105. y = x2 - x3 + 4x + 1 107. r = 1
t + 2t - 2

109. y = x3 - 4x2 + 5 111. y = -sin t + cos t + t3 - 1

113. y = 2x3>2 - 50 115. y = x - x4>3 + 1
2

117. y = -sin x - cos x - 2
119. (a) (i) 33.2 units, (ii) 33.2 units, (iii) 33.2 units  (b) True
121. t = 88>k, k = 16
123. (a) y = 10t3>2 - 6t1>2 (b) s = 4t5>2 - 4t3>2

127. (a) -1x + C (b) x + C (c) 1x + C
(d) -x + C (e) x - 1x + C (f) -x - 1x + C

Practice Exercises, pp. 291–295
1. No 3. No minimum; absolute maximum: ƒ(1) = 16; critical 

points: x = 1 and 11>3
5. Absolute minimum: g(0) = 1; no absolute maximum; critical 

point: x = 0
7. Absolute minimum: 2 - 2 ln 2 at x = 2; absolute maximum: 1 

at x = 1
9. Yes, except at x = 0 11. No 15. (b) one

17. (b) 0.8555 99677 2

23. Global minimum value of 
1
2

 at x = 2

25. (a) t = 0, 6, 12  (b) t = 3, 9  (c) 6 6 t 6 12
(d) 0 6 t 6 6, 12 6 t 6 14

27. 29.

1−1 2 4−2 6

−2

0

1

x

y

15
3

x3

6

8
3

y = x2 −

1 2
−1

1

3

3

4

y = −x3 + 6x2 − 9x + 3

x

y

31. 33.

100

−2 4 6 8−1

200

300

400

500

−100
0 2

(4, 256)

(6, 432)
y = x3(8 − x)

x

y

9 18 27

−4

−3

y = x − 3x2�3

x

y

(8, −4)

35. 37.

−4−3−2−1 10 2 3 4
1
3
5

9
11

x

y

y = (x − 3)2exQ1 −
Î

2, Q6 + 4
Î

2R e1−
Î

2
R

Q1 +
Î

2, Q6 − 4
Î

2R e1+
Î

2
R

(1, 4e)

1

−1

1−1 2 3

2

−2

y = x
Î

3 − x

x

y

39. 41.

−5 −3 2 5 7

−4
−3
−2
−1

1
2
3
4
5

x

y

ln 3

y = ln(x2 − 4x + 3)

−3 −2 −1 1 2 3

−2

−1

1

2

x

y

p
2

p
2−

y = sin−1(1�x)
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43. (a) Local maximum at x = 4, local minimum at x = -4,
inflection point at x = 0

(b)

   x = −4

Loc min

x = 0
Infl

Loc max

x = 4

45. (a) Local maximum at x = 0, local minima at x = -1 and 
x = 2, inflection points at x = 11 { 272>3

(b)

   x = −1 x = 2

Loc minLoc min

Infl

Loc max

1 − 
Î

7
3

x =
1 + 

Î

7
3

x =

Infl

x = 0

47. (a) Local maximum at x = -22, local minimum at x = 22,
inflection points at x = {1 and 0

(b)

   

Infl

x = 0

Infl
x = 1

Loc min

Loc max

Infl
x = −1x = −

Î

2

x = 
Î

2

53. 55.

1

−1

−3

2

5

2 3 4 6
x

y

x + 1
x − 3

4
x − 3

y = = 1 +

1

–1
1−1 2 3 4−2−3−4

−2

−3

−4

2

3

4

5

−5

x

y

(1, 2)

y = x

(−1, −2)

x2 + 1
xy =

1
x= x +

57. 59.

1

−1

1 2 3

−3

2

3

4

0

x3 + 2
2x

x2

2

x2

2

1
x

1
x

y =

y =

y =

= +

x

y

−1
1−1 2 3 4−3−4

−2

−3

2

3

4

0

y = 1

x =
Î

3x = −
Î

3

x

y

x2 − 4

x2 − 3
y =

61. 5 63. 0 65. 1 67. 3>7 69. 0 71. 1
73. ln 10  75. ln 2  77. 5 79. -q 81. 1  83. ebk

85. (a) 0, 36  (b) 18, 18  87. 54 square units
89. height = 2, radius = 22
91. x = 5 - 25 hundred ≈ 276 tires,

y = 215 - 252 hundred ≈ 553 tires
93. Dimensions: base is 6 in. by 12 in., height = 2 in.; maxi-

mum volume = 144 in3

95. x5 = 2.1958 23345 97.
x4

4
+ 5

2
x2 - 7x + C

99. 2t3>2 - 4
t + C 101. - 1

r + 5
+ C 103. (u2 + 1)3>2 + C

105. 1
3

(1 + x4)3>4 + C 107. 10 tan
s

10
+ C

109. - 1

22
csc22u + C 111. 1

2
x - sin

x
2

+ C

113. 3 ln x - x2

2
+ C 115. 1

2
et + e-t + C

117.
u2-p

2 - p + C 119.
3
2

sec-1 � x � + C

121. y = x - 1
x - 1 123. r = 4t5>2 + 4t3>2 - 8t

125. Yes, sin-1(x) and -cos-1(x) differ by the constant p>2.
127. 1>22 units long by 1>2e units high, A = 1>22e ≈

0.43 units2

129. Absolute maximum = 0 at x = e>2, absolute minimum =
-0.5 at x = 0.5

131. x = {1 are the critical points; y = 1 is a horizontal asymp-
tote in both directions; absolute minimum value of the function 
is e-22>2 at x = -1, and absolute maximum value is e22>2 at 
x = 1.

133. (a) Absolute maximum of 2 >e at x = e2, inflection point 
(e8>3, (8>3)e-4>3), concave up on (e8>3, q), concave down 
on (0, e8>3)

(b) Absolute maximum of 1 at x = 0, inflection points 1{1>22, 1>2e2, concave up on 1-q, -1>222∪11>22, q2, concave down on 1-1>22, 1>222
(c) Absolute maximum of 1 at x = 0, inflection point 

(1, 2>e), concave up on (1, q), concave down on (-q, 1)

Additional and Advanced Exercises, pp. 295–298
1. The function is constant on the interval.
3. The extreme points will not be at the end of an open interval.
5. (a) A local minimum at x = -1, points of inflection at x = 0

and x = 2
(b) A local maximum at x = 0 and local minima at x = -1

   and x = 2, points of inflection at x = 1 { 27
3

9. No 11. a = 1, b = 0, c = 1
13. Yes
15. Drill the hole at y = h>2.

17. r = RH
2(H - R)

for H 7 2R, r = R if H … 2R

19. (a)
10
3

(b)
5
3

(c) 1
2

(d) 0 (e) -1
2

(f) 1 (g) 1
2

(h) 3

21. (a)
c - b

2e
(b)

c + b
2

(c)
b2 - 2bc + c2 + 4ae

4e

(d)
c + b + t

2

23. m0 = 1 - 1
q , m1 = 1

q
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25. s = cekt

s

t

400

200

0

1000

800

600

1 2 3 65 74

s = soekt

s = 16t2

27. (a) k = -38.72 (b) 25 ft

29. Yes, y = x + C 31. y0 = 222
3

b3>4

Chapter 5
Section 5.1, pp. 307–309

1. (a) 0.125 (b) 0.21875 (c) 0.625 (d) 0.46875
3. (a) 1.066667 (b) 1.283333 (c) 2.666667 (d) 2.083333
5. 0.3125, 0.328125  7. 1.5, 1.574603  
9. (a) 87 in. (b) 87 in. 11. (a) 3490 ft (b) 3840 ft

13. (a) 74.65 ft > sec (b) 45.28 ft > sec (c) 146.59 ft

15.
31
16

17.  1  

19. (a) Upper = 758 gal, lower = 543 gal
(b) Upper = 2363 gal, lower = 1693 gal
(c) ≈ 31.4 h, ≈ 32.4 h

21. (a) 2 (b) 222 ≈ 2.828

(c) 8 sinap
8
b ≈ 3.061

(d) Each area is less than the area of the circle, p. As n
increases, the polygon area approaches p.

Section 5.2, pp. 315–316

1.
6(1)

1 + 1
+

6(2)
2 + 1

= 7

3. cos(1)p + cos(2)p + cos(3)p + cos(4)p = 0

5. sinp - sin
p

2
+ sin

p

3
= 23 - 2

2
7. All of them  9. b

11. a

6

k=1
k 13. a

4

k=1

1
2k

15. a

5

k=1
(-1)k+1 1

k

17. (a) -15 (b) 1 (c) 1 (d) -11 (e) 16
19. (a) 55 (b) 385 (c) 3025
21. -56 23. -73 25. 240 27.  3376  
29. (a) 21 (b) 3500 (c) 2620
31. (a) 4n (b) cn (c) (n2 - n)>2
33. (a)

x

y

(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Left-hand

c1 = 0 c3 = 1 c4c2 2

3

2

1

−1

(b)

x

y
(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Right-hand

0 c3c1 c4 = 2

3

2

1

−1

c2 = 1

(c)

x

y

(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Midpoint

0 c3c1 c4

3

2

1

−1

c2

35. (a)

f (x) = sin x,
−p ≤ x ≤ p
Left-hand 1

–1

x

y

c4c2 pc3 = 0c1 = −p

(b)

f (x) = sin x,
−p ≤ x ≤ p
Right-hand 1

−1

x

y

c3c1−p c4 = pc2 = 0

(c)

f (x) = sin x,
−p ≤ x ≤ p
Midpoint 1

−1

x

y

c2c1

c3 c4
−p pp�2

−p�2

37. 1.2

39. 2
3

- 1
2n

- 1
6n2 ,

2
3

41. 12 + 27n + 9
2n2 , 12

43.
5
6

+ 6n + 1
6n2 ,

5
6

45. 1
2

+ 1
n + 1

2n2 ,
1
2

Section 5.3, pp. 324–328

1.
L

2

0
x2 dx 3.

L

5

-7

(x2 - 3x) dx 5.
L

3

2

1
1 - x

dx

7.
L

0

-p>4
sec x dx

9. (a) 0 (b) -8 (c) -12 (d) 10 (e) -2 (f ) 16
11. (a) 5 (b) 523 (c) -5 (d) -5
13. (a) 4 (b) -4 15. Area = 21 square units
17. Area = 9p>2 square units 19. Area = 2.5 square units
21. Area = 3 square units 23. b2>4 25. b2 - a2

27. (a) 2p (b) p 29. 1>2 31. 3p2>2 33. 7>3
35. 1>24 37. 3a2>2 39. b>3 41. -14
43. -2 45. -7>4 47.  7  49.  0
51. Using n subintervals of length ∆x = b>n and right-endpoint 

values:

Area =
L

b

0
3x2 dx = b3

53. Using n subintervals of length ∆x = b>n and right-endpoint 
values:

Area =
L

b

0
2x dx = b2

55. av(ƒ) = 0 57. av(ƒ) = -2 59. av(ƒ) = 1
61. (a) av(g) = -1>2 (b) av(g) = 1 (c) av(g) = 1>4



A-28 Chapter 5: Answers to Odd-Numbered Exercises

(g) Right or positive side, because the integral of ƒ from 0 to 9 
is positive, there being more area above the x-axis than 
below.

Section 5.5, pp. 345–346

1. 1
6

(2x + 4)6 + C 3. - 1
3

(x2 + 5)-3 + C

5. 1
10

 (3x2 + 4x)5 + C 7. - 1
3

cos 3x + C

9. 1
2

sec2t + C 11. -6(1 - r3)1>2 + C

13. 1
3

(x3>2 - 1) - 1
6

 sin (2x3>2 - 2) + C

15. (a) - 1
4

(cot2 2u) + C (b) - 1
4

(csc2 2u) + C

17. - 1
3

(3 - 2s)3>2 + C 19. - 2
5

(1 - u2)5>4 + C

21. 1-2>11 + 2x22 + C 23. 1
3

tan (3x + 2) + C

25. 1
2

sin6 ax
3
b + C 27. a r3

18
- 1b6

+ C

29. - 2
3

cos (x3>2 + 1) + C 31. 1
2 cos (2t + 1)

+ C

33. -sin a1t - 1b + C 35. -
sin2(1>u)

2
+ C

37. 2
3

 (1 + x)3>2 - 2(1 + x)1>2 + C 39. 2
3
a2 - 1

xb
3>2

+ C

41. 2
27
a1 - 3

x3b
3>2

+ C 43. 1
12

 (x - 1)12 + 1
11

 (x - 1)11 + C

45. - 1
8

 (1 - x)8 + 4
7

 (1 - x)7 - 2
3

 (1 - x)6 + C

47. 1
5

(x2 + 1)5>2 - 1
3

(x2 + 1)3>2 + C 49. -1
4 (x2 - 4)2 + C

51. esin x + C 53. 2 tan1e2x + 12 + C 55. ln 0 ln x 0 + C

57. z - ln (1 + ez) + C 59.
5
6

tan-1 a2r
3
b + C

61. esin-1 x + C 63. 1
3

(sin-1 x)3 + C 65. ln 0 tan-1 y 0 + C

67. (a) - 6
2 + tan3x

+ C (b) - 6
2 + tan3x

+ C

(c) - 6
2 + tan3x

+ C

69. 1
6

sin23(2r - 1)2 + 6 + C 73. s = 1
2

(3t2 - 1)4 - 5

75. s = 4t - 2 sin a2t + p
6
b + 9

77. s = sin a2t - p
2
b + 100t + 1 79.  6 m

Section 5.6, pp. 353–356
1. (a) 14>3 (b) 2>3 3. (a) 1>2 (b) -1>2
5. (a) 15>16 (b) 0 7. (a) 0 (b) 1>8 9. (a) 4 (b) 0

11. (a) 506>375 (b) 86,744>375 13. (a) 0 (b) 0
15. 223 17. 3>4 19. 35>2 - 1 21. 3 23. p>3
25. e 27. ln 3  29. (ln 2)2 31. 1

ln 4
33. ln 2  

63. c(b - a) 65. b3>3 - a3>3 67. 9  
69. b4>4 - a4>4 71. a = 0 and b = 1 maximize the integral.
73. Upper bound = 1, lower bound = 1>2
75. For example, 

L

1

0
sin (x2) dx …

L

1

0
dx = 1

77.
L

b

a
ƒ(x) dx Ú

L

b

a
0 dx = 0 79. Upper bound = 1>2

Section 5.4, pp. 336–339
1. -10>3 3. 124>125 5. 753>16 7. 1 9. 223

11. 0 13. -p>4 15. 1 - p
4

17.
2 - 12

4
19. -8>3

21. -3>4 23. 22 - 24 8 + 1 25. -1 27. 16

29. 7>3 31. 2p>3 33. 1
p (4p - 2p) 35. 1

2
(e - 1)

37. 226 - 25 39. 1cos2x2 a 1
21x
b 41. 4t5

43. 3x2e-x3
45. 21 + x2 47. - 1

2
x-1>2 sin x 49. 0

51. 1 53. 2xe(1>2)x2
55. 1 57. 28>3 59. 1>2

61. p 63.
22p

2

65. d, since y′ = 1
x  and y(p) =

L

p

p

1
t dt - 3 = -3

67. b, since y′ = sec x and y(0) =
L

0

0
sec t dt + 4 = 4

69. y =
L

x

2
sec t dt + 3 71. 2

3
bh 73. $9.00

75. (a) T(0) = 70°F, T(16) = 76°F,
T(25) = 85°F

(b) av(T) = 75°F
77. 2x - 2 79. -3x + 5
81. (a) True. Since ƒ is continuous, g is differentiable by Part 1 of 

the Fundamental Theorem of Calculus.  
(b) True: g is continuous because it is differentiable.  
(c) True, since g′(1) = ƒ(1) = 0.
(d) False, since g″(1) = ƒ′(1) 7 0.
(e) True, since g′(1) = 0 and g″(1) = ƒ′(1) 7 0.
(f ) False: g″(x) = ƒ′(x) 7 0, so g″ never changes sign.  
(g) True, since g′(1) = ƒ(1) = 0 and g′(x) = ƒ(x) is an

increasing function of x (because ƒ′(x) 7 0).

83. (a) y = ds
dt

= d
dtL

t

0
ƒ(x) dx = ƒ(t) 1 y(5) = ƒ(5) = 2 m>sec

(b) a = df>dt is negative, since the slope of the tangent line at 
t = 5 is negative.  

(c) s =
L

3

0
ƒ(x) dx = 1

2
(3)(3) = 9

2
m, since the integral is the 

   area of the triangle formed by y = ƒ(x), the x-axis, and 
x = 3.

(d) t = 6, since after t = 6 to t = 9, the region lies below the 
x-axis.

(e) At t = 4 and t = 7, since there are horizontal tangents there.
(f )  Toward the origin between t = 6 and t = 9, since the veloc-

ity is negative on this interval. Away from the origin between 
t = 0 and t = 6, since the velocity is positive there.



Chapter 6: Answers to Odd-Numbered Exercises A-29

117. (a)
d
dx

(x ln x - x + C) = x # 1x + ln x - 1 + 0 = ln x

(b) 1
e - 1

119. 25°F 121. 22 + cos3x 123.
-6

3 + x4

125.
dy
dx

= -2
x ecos (2 ln x) 127.

dy
dx

= 1

21 - x221 - 2 (sin-1 x)2

129. Yes 131. -21 + x2

133. Cost ≈ $10,899 using a lower sum estimate

Additional and Advanced Exercises, pp. 361–364
1. (a) Yes (b) No 5. (a) 1>4 (b) 23 12

7. ƒ(x) = x

2x2 + 1
9. y = x3 + 2x - 4

11. 36>5 13. 1
2

- 2
p

y = −4

y = x2�3

−8 −4 3

4

2

−4

0
x

y

t

y

y = sin pt

y = t
1

1 20

−1

15. 13>3

35. ln12 + 232 - 23
2

37. p 39. p>12 41. 2p>3
43. 23 - 1 45. -p>12 47. 16>3 49. 25>2
51. p>2 53. 128>15 55. 4>3 57. 5>6 59. 38>3
61. 49>6 63. 32>3 65. 48>5 67. 8>3 69. 8

71. 5>3 (There are three intersection points.)  73. 18

75. 243>8 77. 8>3 79.  2  81. 104>15 83. 56>15

85. 4 87. 4
3

- 4
p 89. p>2 91. 2 93. 1>2

95. 1 97. ln 16  99. 2 101. 2 ln 5  

103. (a) 1{2c, c2 (b) c = 42>3 (c) c = 42>3
105. 11>3 107. 3>4 109. Neither 111. F(6) - F(2)
113. (a) -3 (b) 3 115. I = a>2
Practice Exercises, pp. 357–360

1. (a) About 680 ft (b)

100

0 2 4 6 8

200
300
400
500
600
700

t (sec)

h (feet)

3. (a) -1>2 (b) 31 (c) 13 (d) 0

5.
L

5

1
(2x - 1)-1>2 dx = 2 7.

L

0

-p
cos

x
2

dx = 2

9. (a) 4 (b) 2 (c) -2 (d) -2p (e) 8>5
11. 8>3 13. 62 15. 1 17. 1>6 19. 18 21. 9>8
23.
p2

32
+ 22

2
- 1 25. 4 27.

822 - 7
6

29. Min: -4, max: 0, area: 27>4 31. 6>5 33. 1  

37. y =
L

x

5
asin t

t b dt - 3 39. y = sin-1 x

41. y = sec-1 x + 2p
3

, x 7 1 43. -4(cos x)1>2 + C

45. u2 + u + sin (2u + 1) + C 47.
t3

3
+ 4

t + C

49. - 1
3

cos (2t3>2) + C 51. tan (ex - 7) + C

53. etan x + C 55.
- ln 7

3
57.  ln (9>25)

59. - 1
2

  (ln x)-2 + C 61. 1
2 ln 3

  13x22 + C

63.
3
2

sin-1 2(r - 1) + C 65.
22
2

tan-1 ax - 1

22
b + C

67. 1
4

sec-1 ` 2x - 1
2
` + C 69. esin-1 2x + C

71. 22tan-1y + C 73. 16 75. 2 77. 1 79. 8

81. 2723>160 83. p>2 85. 23 87. 623 - 2p
89. -1 91. 2 93. 1 95. 15>16 + ln 2 97. e - 1

99. 1 >6 101. 9 >14 103.
9 ln 2

4
105. p

107. p>23 109. p>6 111. p>12

113. (a) b (b) b

y = 2

y = 1 y = 1 − x2

x

y

−2 −1 1 2

2

17. 1>2 19. p>2

21. ln 2 23. 1>6
25.

L

1

0
ƒ(x) dx 27. (b) pr2

29. (a) 0 (b) -1
      (c) -p (d) x = 1  
(e) y = 2x + 2 - p
(f ) x = -1, x = 2
(g) 3-2p, 04

31. 2>x 33.
sin 4y

1y
-

sin y

21y
35. 2x ln 0 x 0 - x ln 

0 x 0
22

37. (sin x)>x 39. x = 1 41. 1
ln 2

,
1

2 ln 2
,  2 : 1

43. 2 >17

Chapter 6
Section 6.1, pp. 373–376

1. 16 3. 16>3 5. (a) 223 (b) 8 7. (a) 60 (b) 36

9. 8p 11. 10 13. (a) s2h (b) s2h 15.
2p
3

17. 4 - p 19.
32p

5
21. 36p 23. p

25.
p

2
a1 - 1

e2b 27.
p

2
 ln 4 29. pap

2
+ 222 - 11

3
b

31. 2p 33. 2p 35. 4p ln 4 37. p2 - 2p 39.
2p
3

41.
117p

5
43. p(p - 2) 45.

4p
3

47. 8p 49.
7p
6

51. (a) 8p (b)
32p

5
(c)

8p
3

(d)
224p

15

53. (a)
16p
15

(b)
56p
15

(c)
64p
15

55. V = 2a2bp2
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Section 6.4, pp. 393–395

1. (a) 2p
L

p>4

0
(tan x) 21 + sec4 x dx (c) S ≈ 3.84

(b)

0.2 0.4 0.6 0.8

0.2

0

0.4

0.6

0.8

1

x

y

y = tan x

3. (a) 2p
L

2

1

1
y21 + y-4 dy (c) S ≈ 5.02

(b)

0.5 0.6 0.7 0.8 0.9 1

1.2

1

1.4

1.6

1.8

2

xy = 1

x

y

5. (a) 2p
L

4

1

(3 - x1>2)221 + (1 - 3x-1>2)2 dx (c) S ≈ 63.37

(b)

1 2 3 4
1

2

3

4

y

x1�2 + y1�2 = 3

x

7. (a) 2p
L

p>3

0
a
L

y

0
tan t dtb secy dy (c) S ≈ 2.08

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

y

x

x = tan t dt
y

L0

9. 4p25 11. 3p25 13. 98p>81 15. 2p

17. p128 - 12>9 19. 35p25>3 21. pa15
16

+ ln 2b
23. 253p>20 27. Order 226.2 liters of each color.  

Section 6.5, pp. 400–404
1. 400 N>m 3. 4 cm, 0.08 J  
5. (a) 7238 lb > in. (b) 905 in.-lb, 2714 in.-lb  
7. 780 J  9. 72,900 ft-lb  11. 160 ft-lb  

57. (a) V =
ph2(3a - h)

3
(b) 1

120p
m>sec

61. V = 3308 cm3 63.
4 - b + a

2

Section 6.2, pp. 381–383
1. 6p 3. 2p 5. 14p>3 7. 8p 9. 5p>6

11.
7p
15

13. (b) 4p 15.
16p
15
1322 + 52

17.
8p
3

19.
4p
3

21.
16p

3
23. (a) 16p (b) 32p (c) 28p

(d) 24p (e) 60p (f ) 48p

25. (a)
27p

2
(b)

27p
2

(c)
72p

5
(d)

108p
5

27. (a)
6p
5

(b)
4p
5

(c) 2p (d) 2p

29. (a) About the x-axis: V = 2p
15

; about the y-axis: V = p
6

(b) About the x-axis: V = 2p
15

; about the y-axis: V = p
6

31. (a)
5p
3

(b)
4p
3

(c) 2p (d)
2p
3

33. (a)
4p
15

(b)
7p
30

35. (a)
24p

5
(b)

48p
5

37. (a)
9p
16

(b)
9p
16

39. Disk: 2 integrals; washer: 2 integrals; shell: 1 integral  

41. (a)
256p

3
(b)

244p
3

47. pa1 - 1
eb

Section 6.3, pp. 388–389

1. 12 3.
53
6

5.
123
32

7.
99
8

9. ln 2 + 3
8

11.
53
6

13. 2

15. (a)
L

2

-1
21 + 4x2 dx (c) ≈ 6.13

17. (a)
L

p

0
21 + cos2 y dy (c) ≈ 3.82

19. (a)
L

3

-1
21 + (y + 1)2 dy (c) ≈ 9.29

21. (a)
L

p>6

0
secx dx (c) ≈ 0.55

23. (a) y = 1x from (1, 1) to (4, 2)  
(b) Only one. We know the derivative of the function and the 

value of the function at one value of x.
25. 1 27. Yes, ƒ(x) = {x + C where C is any real number.

35.
L

x

0
21 + 9t dt,

2
27

(103>2 - 1)



Chapter 7: Answers to Odd-Numbered Exercises A-31

Additional and Advanced Exercises, pp. 417–418

1. ƒ(x) = A
2x - a
p 3. ƒ(x) = 2C2 - 1 x + a, where C Ú 1

5.
p

30 12
7. 28 >3 9.

4h23mh
3

11. x = 0, y = n
2n + 1

, (0, 1>2)

15. (a) x = y = 4(a2 + ab + b2)>(3p(a + b))
(b) (2a>p, 2a>p)

17. ≈  2329.6 lb  

CHAPTER 7
Section 7.1, pp. 428–430

1. lna2
3
b 3. ln � y2 - 25 � + C 5. ln �6 + 3 tan t � + C

7. ln11 + 2x2 + C 9. 1 11. 2(ln 2)4 13. 2

15. 2e2r + C 17. -e-t2 + C 19. -e1>x + C

21. 1
pesecpt + C 23. 1 25. ln (1 + er) + C 27. 1

2 ln 2

29. 1
ln 2

31.
6

ln 7
33. 32760 35. 322+1

37. 1
ln 10

a(ln x)2

2
b + C 39. 2(ln 2)2 41.

3 ln 2
2

  43. ln 10

45. (ln 10) ln � ln x � + C 47. y = 1 - cos (et - 2)
49. y = 2(e-x + x) - 1 51. y = x + ln � x � + 2
53. p ln 16 55. 6 + ln 2 57. (b) 0.00469
69. (a) 1.89279 (b) -0.35621 (c) 0.94575 (d) -2.80735
  (e) 5.29595 (f) 0.97041 (g) -1.03972 (h) -1.61181

Section 7.2, pp. 437–447

9. 2
3

y3>2 - x1>2 = C 11. ey - ex = C

13. -x + 2 tan2y = C 15. e-y + 2e2x = C

17. y = sin (x2 + C) 19. 1
3

 ln � y3 - 2 � = x3 + C

21. 4 ln 11y + 22 = ex2 + C
23. (a) -0.00001 (b) 10,536 years (c) 82%
25. 54.88 g  27. 59.8 ft  29. 2.8147498 * 1014

31. (a) 8 years (b) 32.02 years 33. Yes, y(20) 6 1
35. 15.28 years 37. 56,562 years
41. (a) 17.5 min (b) 13.26 min
43. -3°C 45. About 6693 years 47. 54.62% 49. ≈15,683 years

Section 7.3, pp. 445–447
1. cosh x = 5>4, tanh x = -3>5, coth x = -5>3,

sech x = 4>5, csch x = -4>3
3. sinh x = 8>15, tanh x = 8>17, coth x = 17>8, sech x = 15>17,

csch x = 15>8
5. x + 1

x 7. e5x 9. e4x 13. 2 cosh 
x
3

15. sech2 2t + tanh 2t

2t
17. coth z

19. (ln sech u)(sech u tanh u) 21. tanh3y 23. 2

25. 1

22x(1 + x)
27. 1

1 + u - tanh-1 u

13. (a) 1,497,600 ft-lb (b) 1 hr, 40 min  
(d)  At 62.26 lb>ft3: a) 1,494,240 ft-lb b) 1 hr, 40 min

At 62.59 lb>ft3: a) 1,502,160 ft-lb b) 1 hr, 40.1 min  
15. 37,306 ft-lb  17. 7,238,299.47 ft-lb  
19. 2446.25 ft-lb  21. 15,073,099.75 J  
25. 85.1 ft-lb  27. 98.35 ft-lb  29. 91.32 in.-oz  
31. 5.144 * 1010 J 33. 1684.8 lb  
35. (a) 6364.8 lb (b) 5990.4 lb  37. 1164.8 lb  39. 1309 lb
41. (a) 12,480 lb (b) 8580 lb (c) 9722.3 lb  

43. (a) 93.33 lb (b) 3 ft  45.
wb
2

47. No. The tank will overflow because the movable end will have 
moved only 31

3 ft by the time the tank is full.  

Section 6.6, pp. 413–415
1. x = 0, y = 12>5 3. x = 1, y = -3>5
5. x = 16>105, y = 8>15 7. x = 0, y = p>8
9. x ≈ 1.44, y ≈ 0.36

11. x = ln 4
p , y = 0 13. x = 7, y = ln 16

12
15. x = 3>2, y = 1>2
17. (a)

224p
3

(b) x = 2, y = 0

(c)

(2, 0)
x

y

y =
Î

x

4

y = −
Î

x

4

4

−4

0 1 4

21. x = y = 1>3 23. x = a>3, y = b>3 25. 13d>6
27. x = 0, y = ap

4
29. x = 1>2, y = 4

31. x = 6>5, y = 8>7 35. V = 32p, S = 3222p 37. 4p2

39. x = 0, y = 2a
p 41. x = 0, y = 4b

3p

43. 22pa3(4 + 3p)>6 45. x = a
3

, y = b
3

Practice Exercises, pp. 416–417

1.
9p
280

3. p2 5.
72p
35

7. (a) 2p (b) p (c) 12p>5 (d) 26p>5
9. (a) 8p (b) 1088p>15 (c) 512p>15

11. p1323 - p2>3 13. p 15.
28p

3
 ft3 17.

10
3

19. 3 + 1
8

 ln 2 21. 28p22>3 23. 4p 25. 4640 J

27.
w
2

(2ar - a2) 29. 418,208.81 ft-lb  

31. 22,500p ft@lb, 257 sec 33. x = 0, y = 8>5
35. x = 3>2, y = 12>5 37. x = 9>5, y = 11>10
39. 332.8 lb  41. 2196.48 lb  
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Practice Exercises, pp. 453–454

1. -cos ex + C 3. ln 8  5. 2 ln 2 7. 1
2

(ln (x - 5))2 + C
29. 1

22t
- coth-1 2t 31. -sech-1 x 33. ln 2

B1 + a1
2
b2u

35. � sec x � 41.
cosh 2x

2
+ C

43. 12 sinh ax
2

- ln 3b + C 45. 7 ln � ex>7 + e-x>7 � + C

47. tanh ax - 1
2
b + C 49. -2 sech2t + C 51. ln

5
2

53.
3
32

+ ln 2 55. e - e-1 57. 3 >4 59.
3
8

+ ln 22

61. ln (2 >3) 63.
- ln 3

2
65. ln 3

67. (a) sinh-11232 (b) ln123 + 22
69. (a) coth-1(2) - coth-1(5>4) (b) a1

2
b   ln a1

3
b

71. (a) -sech-1 a12
13
b + sech-1 a4

5
b

  (b) - ln °1 + 21 - (12>13)2

(12>13)
¢ + ln °1 + 21 - (4>5)2

(4>5)
¢

= - ln a3
2
b + ln (2) = ln (4>3)

73. (a) 0 (b) 0

77. (a) A
mg

k
(b) 8025 ≈ 178.89 ft>sec

79. 2p 81.
6
5

Section 7.4, pp. 452–453
1. (a) Slower (b) Slower (c) Slower (d) Faster

(e) Slower (f) Slower (g) Same (h) Slower
3. (a) Same (b) Faster (c) Same (d) Same

(e) Slower (f) Faster (g) Slower (h) Same
5. (a) Same (b) Same (c) Same (d) Faster (e) Faster

(f) Same (g) Slower (h) Faster 7. d, a, c, b
9. (a) False (b) False (c) True (d) True (e) True

(f) True (g) False (h) True
13. When the degree of ƒ is less than or equal to the degree of g.
15. 1, 1
21. (b) ln (e17000000) = 17,000,000 6 (e17*106

)1>106

= e17 ≈ 24,154,952.75
(c) x ≈ 3.4306311 * 1015

  (d) They cross at x ≈ 3.4306311 * 1015.
23. (a) The algorithm that takes O(n log2 n) steps

(b)

20 40 60 80 100

500

1000

1500

2000

2500

n

y

y = n3�2

y = n(log2 n)2

y = nlog2 n

25. It could take one million for a sequential search; at most 20 
steps for a binary search.

9. 3 ln 7  11. 2122 - 12 13. y = ln 2
ln (3>2)

15. y = ln x - ln 3 17. y = 1
1 - ex

19. (a) Same rate (b) Same rate (c) Faster (d) Faster
(e) Same rate (f) Same rate

21. (a) True (b) False (c) False (d) True
(e) True (f) True

23. 1>3 25. 1>e m>sec 27. ln 5x - ln 3x = ln (5>3)

29. 1>2 31. y = atan-1ax + C
2
b b2

33. y2 = sin-1(2 tanx + C)
35. y = -2 + ln (2 - e-x) 37. y = 4x - 42x + 1
39. 19,035 years

Additional and Advanced Exercises, p. 455
1. (a) 1 (b) p>2 (c) p

3. tan-1x + tan-1 11x2 is a constant and the constant is 
p

2
 for 

x 7 0; it is -p
2

 for x 6 0.

−4 −2 2 4

−2

−1

2

1

x

y

y = −
2
p

y =
2
p

y = tan−1 x + tan−1
x
1
Q R

7. x = ln 4
p , y = 0

Chapter 8
Section 8.1, pp. 460–461

1. ln 5  3. 2 tan x - 2 sec x - x + C

5. sin-1 x + 21 - x2 + C 7. e-cot z + C
9. tan-1 (ez) + C 11. p 13. t + cot t + csc t + C

15. 22 17. 1
8

 ln (1 + 4 ln2 y) + C

19. ln 0 1 + sin u 0 + C 21. 2t2 - t + 2 tan-1 a t
2
b + C

23. 2122 - 12 ≈ 0.82843 25. sec-1 (ey) + C

27. sin-1 (2 ln x) + C 29. ln 0 sin x 0 + ln 0 cos x 0 + C

31. 7 + ln 8 33. 1sin-1 y - 21 - y240
-1 = p

2
- 1

35. sec-1 ` x - 1
7
` + C 37.

u3

3
- u

2

2
+ u + 5

2
 ln 0 2u - 5 0 + C

39. x - ln(1 + ex) + C 41. 222 - ln13 + 2222
43. ln12 + 232 45. x = 0, y = 1

ln13 + 2222
47. xex3 + C 49. 1

30
(x4 + 1)3>2 (3x4 - 2) + C
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19. -4 sin x cos3 x + 2 cos x sin x + 2x + C
21. -cos4 2u + C 23. 4 25. 2

27. B
3
2

- 2
3

29. 4
5
a3

2
b5>2

- 18
35

- 2
7
a3

2
b7>2

31. 22

33. 1
2

tan2 x + C 35. 1
3

sec3 x + C 37. 1
3

tan3 x + C

39. 223 + ln 12 + 23 2 41. 2
3

tan u + 1
3

sec2u tan u + C

43. 4 >3 45. 2 tan2 x - 2 ln (1 + tan2 x) + C

47. 1
4

tan4 x - 1
2

tan2 x + ln 0 sec x 0 + C 49. 4
3

- ln23

51. - 1
10

cos 5x - 1
2

cos x + C 53. p

55. 1
2

sin x + 1
14

sin 7x + C

57. 1
6

sin 3u - 1
4

sin u - 1
20

sin 5u + C

59. - 2
5

cos5 u + C 61. 1
4

cos u - 1
20

cos 5u + C

63. sec x - ln 0 csc x + cot x 0 + C 65. cos x + sec x + C

67. 1
4

x2 - 1
4

x sin 2x - 1
8

cos 2x + C 69. ln 11 + 222
71. p2>2 73. x = 4p

3
, y = 8p2 + 3

12p

Section 8.4, pp. 479–480
1. ln 029 + x2 + x 0 + C 3. p>4 5. p>6
7.

25
2

sin-1a t
5
b + t225 - t2

2
+ C

9. 1
2

ln 2 2x
7

+ 24x2 - 49
7

2 + C

11. 7J2y2 - 49
7

- sec-1ay
7
b R + C 13.

2x2 - 1
x + C

15. -29 - x2 + C 17. 1
3

(x2 + 4)3>2 - 42x2 + 4 + C

19.
-224 - w2

w + C 21. sin-1 x - 21 - x2 + C

23. 423 - 4p
3

25. - x

2x2 - 1
+ C

27. - 1
5
a21 - x2

x b5

+ C 29. 2 tan-1 2x + 4x
(4x2 + 1)

+ C

31. 1
2

x2 + 1
2

ln 0 x2 - 1 0 + C 33. 1
3
a y

21 - y2
b3

+ C

35. ln 9 - ln 11 + 2102 37. p>6 39. sec-1 0 x 0 + C  

41. 2x2 - 1 + C 43. 1
2

ln 021 + x4 + x2 0 + C

45. 4 sin-1 2x
2

+ 2x 24 - x + C

47. 1
4

sin-1 2x - 1
4
2x 21 - x (1 - 2x) + C

49. y = 2 J2x2 - 4
2

- sec-1ax
2
b R

51. y = 3
2

tan-1ax
2
b - 3p

8
53. 3p>4

Section 8.2, pp. 467–469
1. -2x cos (x>2) + 4 sin (x>2) + C
3. t2 sin t + 2t cos t - 2 sin t + C

5. ln 4 - 3
4

7. xex - ex + C

9. - (x2 + 2x + 2) e-x + C

11. y tan-1 (y) - ln21 + y2 + C
13. x tan x + ln 0 cos x 0 + C
15. (x3 - 3x2 + 6x - 6)ex + C 17. (x2 - 7x + 7)ex + C
19. (x5 - 5x4 + 20x3 - 60x2 + 120x - 120)ex + C

21. 1
2

(-eu cos u + eu sin u) + C

23.
e2x

13
(3 sin 3x + 2 cos 3x) + C

25. 2
3
123s + 9 e23s+9 - e23s+92 + C

27.
p23

3
- ln (2) - p

2

18

29. 1
2
3-x cos (ln x) + x sin (ln x)4 + C

31. 1
2

ln 0 sec x2 + tan x2 0 + C

33. 1
2

x2 (ln x)2 - 1
2

x2 ln x + 1
4

x2 + C

35. -1
x ln x - 1

x + C 37. 1
4

ex4 + C

39. 1
3

x2 (x2 + 1)3>2 - 2
15

(x2 + 1)5>2 + C

41. - 2
5

sin 3x sin 2x - 3
5

cos 3x cos 2x + C

43. 2
9

x3>2 (3 ln x - 2) + C

45. 22x sin2x + 2 cos 2x + C

47.
p2 - 4

8
49.

5p - 323
9

51. 1
2

(x2 + 1) tan-1 x - x
2

+ C

53. (a) p (b) 3p (c) 5p (d) (2n + 1)p
55. 2p(1 - ln 2) 57. (a) p(p - 2) (b) 2p

59. (a) 1 (b) (e - 2)p (c)
p

2
(e2 + 9)

  (d) x = 1
4

(e2 + 1), y = 1
2

(e - 2)

61. 1
2p

(1 - e-2p) 63. u = xn, dy = cos x dx

65. u = xn, dy = eax dx 71. x sin-1 x + cos (sin-1 x) + C

73. x sec-1 x - ln 0 x + 2x2 - 1 0 + C 75. Yes
77. (a) x sinh-1 x - cosh (sinh-1 x) + C
  (b) x sinh-1 x - (1 + x2)1>2 + C

Section 8.3, pp. 474–475

1. 1
2

sin 2x + C 3. - 1
4

cos4 x + C

5. 1
3

cos3 x - cos x + C

7. -cos x + 2
3

cos3 x - 1
5

cos5 x + C

9. sin x - 1
3

sin3 x + C 11. 1
4

sin4 x - 1
6

sin6 x + C

13. 1
2

x + 1
4

sin 2x + C 15. 16 >35 17. 3p
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Section 8.6, pp. 493–494

1. 2

23
atan-1A

x - 3
3
b + C

3. 2x - 2 a2(x - 2)
3

+ 4b + C 5.
(2x - 3)3>2(x + 1)

5
+ C

7.
-29 - 4x

x - 2
3

ln 2 29 - 4x - 3

29 - 4x + 3
2 + C

9.
(x + 2)(2x - 6)24x - x2

6
+ 4 sin-1 ax - 2

2
b + C

11. - 1

27
ln 2 27 + 27 + x2

x 2 + C

13. 24 - x2 - 2 ln 2 2 + 24 - x2

x 2 + C

15.
e2t

13
(2 cos 3t + 3 sin 3t) + C

17.
x2

2
cos-1x + 1

4
sin-1x - 1

4
x21 - x2 + C

19.
x3

3
tan-1 x - x2

6
+ 1

6
ln (1 + x2) + C

21. - cos 5x
10

- cos x
2

+ C

23. 8 c sin (7t>2)

7
-

sin (9t>2)

9
d + C

25. 6 sin (u>12) + 6
7

sin (7u>12) + C

27. 1
2

ln (x2 + 1) + x
2 (1 + x2)

+ 1
2

tan-1 x + C

29. ax - 1
2
b sin-12x + 1

2
2x - x2 + C

31. sin-12x - 2x - x2 + C

33. 21 - sin2 t - ln 2 1 + 21 - sin2 t
sin t

2 + C

35. ln 0 ln y + 23 + (ln y)2 0 + C

37. ln 0 x + 1 + 2x2 + 2x + 5 0 + C

39.
x + 2

2
25 - 4x - x2 + 9

2
sin-1 ax + 2

3
b + C

41. -sin4 2x cos 2x
10

- 2 sin2 2x cos 2x
15

- 4 cos 2x
15

+ C

43.
sin3 2u cos2 2u

10
+ sin3 2u

15
+ C

45. tan2 2x - 2 ln 0 sec2x 0 + C

47.
(secpx)(tan px)

p + 1
p ln 0 secpx + tan px 0 + C

49.
-csc3 x cot x

4
- 3 csc x cot x

8
- 3

8
ln 0 csc x + cot x 0 + C

51. 1
2
3sec (et - 1) tan (et - 1) +

    ln 0 sec (et - 1) + tan (et - 1) 0 4 + C

53. 22 + ln 122 + 12 55. p>3
57. 2p23 + p22 ln 122 + 232 59. x = 4>3, y = ln22  
61. 7.62 63. p>8 67. p>4

55. (a) 1
12

(p + 623 - 12)

(b) x = 323 - p
41p + 623 - 122 , y = p

2 + 1223p - 72

121p + 623 - 122
57. (a) -1

3
x2 (1 - x2)3>2 - 2

15
(1 - x2)5>2 + C

  (b) - 1
3

(1 - x2)3>2 + 1
5

(1 - x2)5>2 + C

  (c) 1
5

(1 - x2)5>2 - 1
3

(1 - x2)3>2 + C

Section 8.5, pp. 487–488

1. 2
x - 3

+ 3
x - 2

3. 1
x + 1

+ 3
(x + 1)2

5. -2
z + -1

z2 + 2
z - 1

7. 1 + 17
t - 3

+ -12
t - 2

9. 1
2
3 ln 0 1 + x 0 - ln 0 1 - x 0 4 + C

11. 1
7

ln 0 (x + 6)2(x - 1)5 0 + C 13. (ln 15)>2
15. - 1

2
ln 0 t 0 + 1

6
ln 0 t + 2 0 + 1

3
ln 0 t - 1 0 + C 17. 3 ln 2 - 2

19. 1
4

ln 2 x + 1
x - 1

2 - x
2(x2 - 1)

+ C 21. (p + 2 ln 2)>8
23. tan-1 y - 1

y2 + 1
+ C

25. - (s - 1)-2 + (s - 1)-1 + tan-1 s + C

27. 2
3

ln � x - 1 � + 1
6

ln � x2 + x + 1 � - 23 tan-1 a2x + 1

23
b + C

29. 1
4

ln ` x - 1
x + 1

` + 1
2

tan-1 x + C

31. -1
u2 + 2u + 2

+ ln (u2 + 2u + 2) - tan-1(u + 1) + C

33. x2 + ln 2 x - 1
x 2 + C

35. 9x + 2 ln 0 x 0 + 1
x + 7 ln 0 x - 1 0 + C

37.
y2

2
- ln 0 y 0 + 1

2
ln (1 + y2) + C 39. ln aet + 1

et + 2
b + C

41. 1
5

ln 2 sin y - 2
sin y + 3

2 + C

43.
(tan-1 2x)2

4
- 3 ln � x - 2 � + 6

x - 2
+ C

45. ln ` 2x - 1

2x + 1
` + C

47. 221 + x + ln ` 2x + 1 - 1

2x + 1 + 1
` + C

49. 1
4

ln ` x4

x4 + 1
` + C 51. x = ln 0 t - 2 0 - ln 0 t - 1 0 + ln 2

53. x = 6t
t + 2

- 1 55. 3p ln 25 57. 1.10

59. (a) x = 1000e4t

499 + e4t (b) 1.55 days
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21. 1
p , 

1
p atan -12 - p

4
b ≈ 0.10242

25. mean = 8
3
≈ 2.67, median = 28 ≈ 2.83

27. mean = 2, median = 22 ≈ 1.41

29. P1X 6 1
22 ≈ 0.3935

31. (a) ≈ 0.57, so about 57 in every 100 bulbs will fail.  
(b) ≈ 832 hr  

33. ≈ 60 hydra  35. (a) ≈ 0.393 (b) ≈ 0.135 (c) 0
(d) The probability that any customer waits longer than 3 minutes 

is 1 - (0.997521)200 ≈ 0.391 6 1/2. So the most likely 
outcome is that all 200 would be served within 3 minutes.

37. $10, 256  39. ≈ 323, ≈ 262 41. ≈ 0.89435
43. (a) ≈ 16% (b) ≈ 0.23832 45. ≈ 618 females  
47. ≈ 61 adults  49. ≈ 289 shafts  
51. (a) ≈ 0.977 (b) ≈ 0.159 (c) ≈ 0.838
55. (a) 5LLL, LLD, LDL, DLL, LLU, LUL, ULL, LDD, LDU, 

LUD, LUU, DLD, DLU, ULD, ULU, DDL, DUL, UDL, 
UUL, DDD, DDU, DUD, UDD, DUU, UDU, UUD, UUU6

(c) 7>27 ≈ 0.26 (d) 20>27 ≈ 0.74

Practice Exercises, pp. 529–531
1. (x + 1)(ln (x + 1)) - (x + 1) + C

3. x tan-1(3x) - 1
6

  ln (1 + 9x2) + C

5. (x + 1)2ex - 2(x + 1)ex + 2ex + C

7.
2ex sin 2x

5
+ ex cos 2x

5
+ C

9. 2 ln 0 x - 2 0 - ln 0 x - 1 0 + C

11. ln 0 x 0 - ln 0 x + 1 0 + 1
x + 1

+ C

13. - 1
3

 ln 2 cos u - 1
cos u + 2

2 + C

15. 4 ln 0 x 0 - 1
2

 ln (x2 + 1) + 4 tan-1 x + C

17. 1
16

 ln 2 (y - 2)5(y + 2)

y6
2 + C

19. 1
2

 tan-1 t - 23
6

 tan-1 t

23
+ C

21.
x2

2
+ 4

3
 ln 0 x + 2 0 + 2

3
 ln 0 x - 1 0 + C

23.
x2

2
- 9

2
 ln 0 x + 3 0 + 3

2
 ln 0 x + 1 0 + C

25. 1
3

 ln 2 2x + 1 - 1

2x + 1 + 1
2 + C 27. ln 0 1 - e-s 0 + C

29. -216 - y2 + C 31. - 1
2

 ln 0 4 - x2 0 + C

33. ln 
1

29 - x2
+ C 35. 1

6
 ln 2 x + 3

x - 3
2 + C

37. - cos5 x
5

+ cos7 x
7

+ C 39.
tan5 x

5
+ C

41.
cos u

2
- cos 11u

22
+ C 43. 421 - cos (t>2) + C

45. At least 16  47. T = p, S = p 49. 25°F

51. (a) ≈2.42 gal (b) ≈24.83 mi>gal

Section 8.7, pp. 501–504
1. I: (a) 1.5, 0 (b) 1.5, 0 (c) 0%

II: (a) 1.5, 0 (b) 1.5, 0 (c) 0%
3. I: (a) 2.75, 0.08 (b) 2.67, 0.08 (c) 0.0312 ≈ 3,

II: (a) 2.67, 0 (b) 2.67, 0 (c) 0%
5. I: (a) 6.25, 0.5 (b) 6, 0.25 (c) 0.0417 ≈ 4,

II: (a) 6, 0 (b) 6, 0 (c) 0%
7. I: (a) 0.509, 0.03125 (b) 0.5, 0.009 (c) 0.018 ≈ 2,

II: (a) 0.5, 0.002604 (b) 0.5, 0.4794 (c) 0%
9. I: (a) 1.8961, 0.161 (b) 2, 0.1039 (c) 0.052 ≈ 5,

II: (a) 2.0045, 0.0066 (b) 2, 0.00454 (c) 0.2%
11. (a) 1 (b) 2 13. (a) 116 (b) 2
15. (a) 283 (b) 2 17. (a) 71 (b) 10
19. (a) 76 (b) 12 21. (a) 82 (b) 8
23. 15,990 ft3 25. ≈10.63 ft
27. (a) ≈0.00021 (b) ≈1.37079 (c) ≈0.015,
31. (a) ≈5.870 (b) 0ET 0 … 0.0032 33. 21.07 in.  35. 14.4
39. ≈28.7 mg

Section 8.8, pp. 513–515
1. p>2 3. 2 5. 6 7. p>2 9. ln 3  11. ln 4  

13. 0 15. 23 17. p 19. lna1 + p
2
b

21. -1 23. 1 25. -1>4 27. p>2 29. p>3
31. 6 33. ln 2  35. Diverges 37. Diverges
39. Converges 41. Converges 43. Diverges
45. Converges 47. Converges 49. Diverges
51. Converges 53. Converges 55. Diverges
57. Converges 59. Diverges 61. Converges
63. Converges
65. (a) Converges when p 6 1 (b) Converges when p 7 1
67. 1 69. 2p 71. ln 2  
73. (a) p>2 (b) p 75. (b) ≈0.88621
77. (a)

5 10 15 20 250
x

y

Si(x) = sin t
t

dt

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

L0

5 10 15 20 25

−0.2

0.2

0

0.4

0.6

0.8

1

t

y

y = sin t
t

(b) p>2
79. (a)

−3 −2 −1 1 2 3

0.1

0

0.2

0.3

0.4

x

y

(b) ≈0.683, ≈0.954, ≈0.997
85. ≈0.16462

Section 8.9. pp. 526–528
1. No 3. Yes 5. Yes 7. Yes 11. ≈ 0.537

13. ≈ 0.688 15. ≈ 0.0502 17. 221 19. 1
2

ln 2
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25.
12p

5
27. a = 1

2
, - ln 2

4
29. 1

2
6 p … 1

33.
e2x

13
(3 sin 3x + 2 cos 3x) + C

35.
cos x sin 3x - 3 sin x cos 3x

8
+ C

37.
eax

a2 + b2 (a sin bx - b cos bx) + C

39. x ln (ax) - x + C 41. 2
1 - tan (x>2)

+ C 43. 1

45.
23p

9
47. 1

22
ln ` tan (t>2) + 1 - 22

tan (t>2) + 1 + 22
` + C

49. ln ` 1 + tan (u>2)

1 - tan (u>2)
` + C

Chapter 9
Section 9.1, pp. 542–544

1. (d) 3. (a)
5.

x

y

7. y′ = x - y; y(1) = -1 9. y′ = - (1 + y) sin x; y(0) = 2

11. y(exact) = x
2

- 4
x , y1 = -0.25, y2 = 0.3, y3 = 0.75

13. y(exact) = 3ex(x+2), y1 = 4.2, y2 = 6.216, y3 = 9.697
15. y(exact) = ex2 + 1, y1 = 2.0, y2 = 2.0202, y3 = 2.0618
17. y ≈ 2.48832, exact value is e.
19. y ≈ -0.2272, exact value is 1>11 - 2252 ≈ -0.2880.
23.

25. 27.

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

35. Euler’s method gives y ≈ 3.45835; the exact solution is 
y = 1 + e ≈ 3.71828.

37. y ≈ 1.5000; exact value is 1.5275.

53. p>2 55. 6 57. ln 3  59. 2 61. p>6
63. Diverges 65. Diverges 67. Converges

69.
2x3>2

3
- x + 22x - 2 ln 12x + 12 + C

71. 1
2

sin-1 (x - 1) + 1
2

(x - 1)22x - x2 + C

73. -2 cot x - ln 0 csc x + cot x 0 + csc x + C

75. 1
12

ln 2 3 + y
3 - y

2 + 1
6

tan-1 y

3
+ C

77.
u sin (2u + 1)

2
+

cos (2u + 1)
4

+ C 79. 1
4

sec2 u + C

81. 2 £122 - x23
3

- 222 - x≥ + C

83. tan-1(y - 1) + C

85. 1
4

ln � z � - 1
4z

- 1
4
c 1
2

ln (z2 + 4) + 1
2

tan-1 az
2
bd + C

87. -1
4
29 - 4t2 + C 89. lnaet + 1

et + 2
b + C 91. 1>4

93. 2
3

x3>2 + C 95. -1
5

tan-1 (cos 5t) + C

97. 22r - 2 ln 11 + 2r2 + C

99. 1
2

x2 - 1
2

ln (x2 + 1) + C

101. 2
3

ln � x + 1 � + 1
6

ln 0 x2 - x + 1 0 +
1

23
tan-1 a2x - 1

23
b + C

103. 4
7
11 + 2x27>2 - 8

5
11 + 2x25>2 + 4

3
11 + 2x23>2 + C

105. 2 ln 02x + 21 + x 0 + C

107. ln x - ln 0 1 + ln x 0 + C

109. 1
2

xln x + C 111. 1
2

ln ` 1 - 21 - x4

x2 ` + C

113. (b)
p

4
115. x - 1

22
tan-1 122 tan x2 + C

Additional and Advanced Exercises, pp. 531–535
1. x (sin-1 x)2 + 2 (sin-1 x)21 - x2 - 2x + C

3.
x2 sin-1 x

2
+ x21 - x2 - sin-1 x

4
+ C

5. 1
2
aln 1t - 21 - t22 - sin-1 tb + C 7. 0

9. ln (4) - 1 11. 1 13. 32p>35 15. 2π
17. (a) p (b) p(2e - 5)

19. (b) pa8 (ln 2)2

3
-

16 (ln 2)
9

+ 16
27
b

21. ae2 + 1
4

,
e - 2

2
b

23. 21 + e2 - ln a21 + e2

e + 1
eb - 22 + ln11 + 222
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Section 9.4, pp. 562–563
1. y′ = (y + 2)(y - 3)

  (a) y = -2 is a stable equilibrium value and y = 3 is an 
unstable equilibrium.

(b) y″ = 2(y + 2)ay - 1
2
b(y - 3)

y
−4 −2 420

y′ < 0 y′ > 0 y′ > 0 

y″ < 0y ″ < 0 y″ > 0y″ > 0

0.5

  (c) y

2

4

x

−2

−0.5 0.5 1 1.5

y′ > 0, y″ > 0 

y′ < 0, y″ < 0 

y′ < 0, y″ > 0 

y′ > 0, y″ < 0 

y = 1�2

3. y′ = y3 - y = (y + 1)y(y - 1)

  (a) y = -1 and y = 1 are unstable equilibria and y = 0 is a 
stable equilibrium.

(b) y″ = (3y2 - 1)y′
= 3( y + 1)1 y + 1>232y1 y - 1>232 (y - 1)

y
−1.5 1.50.5−0.5

y′ < 0 y′ < 0 y′ > 0y′ > 0

y″ < 0y″ < 0 y″<0 y″ > 0y″ > 0 y″>0

−
1

Ë

3

1

Ë

3

−1 0

  (c)

x

y

−1.5

−0.5

−0.5 0.5 1 1.5 2 2.5

0.5

1.5

y′ > 0, y″ > 0

y′ < 0, y″ < 0

y′ < 0, y″ > 0

y′ > 0, y″ < 0

y′ > 0, y″ > 0

y′ < 0, y″ < 0

5. y′ = 2y, y 7 0
(a) There are no equilibrium values.

(b) y″ = 1
2

0 1 2 3 4

y′ > 0

y″ > 0

y

Section 9.2, pp. 548–550

1. y = ex + C
x , x 7 0 3. y = C - cos x

x3 , x 7 0

5. y = 1
2

- 1
x + C

x2 , x 7 0 7. y = 1
2

xex>2 + Cex>2

9. y = x(ln x)2 + Cx

11. s = t3

3(t - 1)4 - t
(t - 1)4 + C

(t - 1)4

13. r = (csc u)(ln � sec u � + C), 0 6 u 6 p>2
15. y = 3

2
- 1

2
e-2t 17. y = - 1

u
cosu + p

2u

19. y = 6ex 2 - ex 2

x + 1
21. y = y0ek t

23. (b) is correct, but (a) is not. 25. t = L
R

  ln 2 sec

27. (a) i = V
R

- V
R

e-3 = V
R

(1 - e-3) ≈ 0.95
V
R

 amp (b) 86%

29. y = 1
1 + Ce-x 31. y3 = 1 + Cx-3

Section 9.3, pp. 555–556
1. (a) 168.5 m (b) 41.13 sec
3. s(t) = 4.9111 - e-(22.36>39.92)t2
5. x2 + y2 = C 7. ln � y � - 1

2
y2 = 1

2
x2 + C

x

y

x

y

kx2 + y 2 = 1

9. y = {22x + C

x

y

13. (a) 10 lb >min   (b) (100 + t) gal  (c) 4a y
100 + t

b  lb>min

(d)
dy
dt

= 10 -
4y

100 + t
, y(0) = 50,

y = 2(100 + t) - 150

a1 + t
100
b4

  (e) Concentration =
y (25)

amt. brine in tank
= 188.6

125
≈ 1.5 lb>gal

15. y(27.8) ≈ 14.8 lb, t ≈ 27.8 min



A-38 Chapter 9: Answers to Odd-Numbered Exercises

p

t

4

3

2

1

−1

−2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P′ > 0, P″ > 0 

P′ < 0, P″ < 0 

P′ < 0, P″ > 0 

P′ > 0, P″ < 0 

13. Before the catastrophe, the population exhibits logistic growth 
and P(t) increases toward M0 , the stable equilibrium. After 
the catastrophe, the population declines logistically and P(t)
decreases toward M1 , the new stable equilibrium.

P

t

P

t

M1

Pc

M0

tcatastrophe tcatastrophe

Before Catastrophe After Catastrophe

15.
dy
dt

= g - k
my

2, g, k, m 7 0 and y(t) Ú 0

Equilibrium:
dy
dt

= g - k
my

2 = 0 1 y = A
mg

k

Concavity: 
d2y

dt2 = -2a k
myb dy

dt
= -2a k

myb ag - k
my

2b
  (a) (b)

dy
dt

> 0
dy
dt

mg
k

< 0

d2y

dt2
< 0

d2y

dt2
> 0

y

yeq =
Ä

0

y

t

mg
kÄ

  (c) yterminal = A
160

0.005
= 178.9 ft>sec = 122 mph

17. F = Fp - Fr; ma = 50 - 5 0 y 0 ; dy
dt

= 1
m (50 - 5 0 y 0 ) . The 

maximum velocity occurs when 
dy
dt

= 0 or y = 10 ft>sec .

19. Phase line:

di
dt

> 0
di
dt

V
R

< 0

d2i

dt2
< 0

d2i

dt2
> 0

i

ieq =

0

  If the switch is closed at t = 0, then i(0) = 0, and the graph of 
the solution looks like this:

  (c) y

2.5
5

7.5

12.5

17.5

10

15

x
2 4 6−2 8

y′ > 0
y″ > 0

7. y′ = (y - 1)(y - 2)(y - 3)
  (a) y = 1 and y = 3 are unstable equilibria and y = 2 is a 

stable equilibrium.
  (b) y″ = (3y2 - 12y + 11)(y - 1)(y - 2)(y - 3) =

3(y - 1)ay - 6 - 23
3

b(y - 2)ay - 6 + 23
3

b(y - 3)

6 − Ë3

3
< 1.42

y
0 4

y′ < 0 y′ < 0y′ > 0 y′ > 0

y″ > 0y″ < 0 y″ < 0 y″ < 0y″ > 0 y″ > 0
1 2 3

6 + Ë3

3
< 2.58

  (c) y

x
1 2 3−1

0.5
1

1.5

2.5

3.5

2

3

4

y′ > 0, y″ > 0

y′ < 0, y″ < 0

y′ < 0, y″ > 0

y′ > 0, y″ < 0

y′ > 0, y″ > 0

y′ < 0, y″ < 0

9.
dP
dt

= 1 - 2P has a stable equilibrium at P = 1
2

;

d2P
dt2 = -2

dP
dt

= -2(1 - 2P) .

P

t

−0.5

0.5

1.5

1

0.5 10.25 0.75 1.25 1.751.5

P′ > 0, P″ < 0 

P′ < 0, P″ > 0 

11.
dP
dt

= 2P(P - 3) has a stable equilibrium at P = 0 and an 

unstable equilibrium at P = 3;
d2P
dt2 = 2(2P - 3)

dP
dt

=
4P(2P - 3)(P - 3).

P
−1 43210 3.52.50.5−0.5

P′ < 0 P′ > 0 P′ > 0 

P″ < 0P″ < 0 P″ > 0P″ > 0
1.5
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23.i

t

V
R

  As t S q, i(t) S isteady state = V
R

.

Section 9.5, pp. 567–569
1. Seasonal variations, nonconformity of the environments, effects 

of other interactions, unexpected disasters, etc.
3. This model assumes that the number of interactions is propor-

tional to the product of x and y:
dx
dt

= (a - by)x, a 6 0,

dy
dt

= ma1 -
y
M
by - nxy = yam - m

M
y - nxb .

  Rest points are (0, 0), unstable, and (0, M), stable.
5. (a) Logistic growth occurs in the absence of the competitor, and 

involves a simple interaction between the species: Growth 
dominates the competition when either population is small, 
so it is difficult to drive either species to extinction.

  (b) a: per capita growth rate for trout
    m: per capita growth rate for bass
   b: intensity of competition to the trout
   n: intensity of competition to the bass
   k1: environmental carrying capacity for the trout
   k2: environmental carrying capacity for the bass

   
a
b

: growth versus competition or net growth of trout

    
m
n : relative survival of bass

  (c)
dx
dt

= 0 when x = 0 or y = a
b

- a
bk1

x,

dy
dt

= 0 when y = 0 or y = k2 -
k2n
m x.

    By picking a>b 7 k2 and m>n 7 k1, we ensure that an 
equilibrium point exists inside the first quadrant.

Practice Exercises, pp. 569–570

1. y = - lnaC - 2
5

(x - 2)5>2 - 4
3

(x - 2)3>2b
3. tan y = -x sin x - cos x + C 5. (y + 1)e-y = - ln � x � + C

7. y = C
x - 1

x 9. y = x2

4
ex>2 + Cex>2

11. y = x2 - 2x + C
2x2 13. y = e-x + C

1 + ex 15. xy + y3 = C

17. y = 2x3 + 3x2 + 6
6(x + 1)2 19. y = 1

3
(1 - 4e-x3)

21. y = e-x(3x3 - 3x2)

x y
0 0
0.1 0.1000
0.2 0.2095
0.3 0.3285
0.4 0.4568
0.5 0.5946
0.6 0.7418
0.7 0.8986
0.8 1.0649
0.9 1.2411
1.0 1.4273

x y
1.1 1.6241
1.2 1.8319
1.3 2.0513
1.4 2.2832
1.5 2.5285
1.6 2.7884
1.7 3.0643
1.8 3.3579
1.9 3.6709
2.0 4.0057

25. y(3) ≈ 0.9131
27. (a)

[−0.2, 4.5] by [−2.5, 0.5]

  (b) Note that we choose a small interval of x-values because 
the y-values decrease very rapidly and our calculator cannot 
handle the calculations for x … -1. (This occurs because 
the analytic solution is y = -2 + ln (2 - e-x) , which has 
an asymptote at x = - ln 2 ≈ -0.69 . Obviously, the Euler 
approximations are misleading for x … -0.7 .)

[−1, 0.2] by [−10, 2]

29. y(exact) = 1
2

x2 - 3
2

; y(2) ≈ 0.4 ; exact value is 
1
2

.

31. y(exact) = -e(x2-1)>2; y(2) ≈ -3.4192; exact value is 
-e3>2 ≈ -4.4817.

33. (a) y = -1 is stable and y = 1 is unstable.

  (b)
d2y

dx2 = 2y
dy
dx

= 2y(y2 - 1)

dy
dx

> 0
dy
dx

< 0
dydy
dx

< 0
dx

> 0

dx2
> 0

d2y

dx2
> 0

d2y d2y

dx2
< 0

d2y

dx2
< 0

y

y = 1

y = 0

y = −1

  (c) y

2

1

x
1

0
0.5 1.5 2.52

−1

−2
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11. (5 + 1) + a5
2

+ 1
3
b + a5

4
+ 1

9
b + a5

8
+ 1

27
b + g, 

23
2

13. (1 + 1) + a1
2

- 1
5
b + a1

4
+ 1

25
b + a1

8
- 1

125
b + g, 

17
6

15. Converges, 5>3 17. Converges, 1>7 19. 23>99
21. 7>9 23. 1>15 25. 41333>33300 27. Diverges
29. Inconclusive 31. Diverges 33. Diverges

35. sn = 1 - 1
n + 1

; converges, 1 37. sn = ln 2n + 1; diverges

39. sn = p
3

- cos-1 a 1
n + 2

b ; converges, -p
6

41. 1 43. 5 45. 1 47. - 1
ln 2

49. Converges, 2 + 22

51. Converges, 1  53. Diverges 55. Converges, 
e2

e2 - 1
57. Converges, 2 >9 59. Converges, 3 >2 61. Diverges

63. Converges, 4  65. Diverges 67. Converges, 
p
p - e

69. a = 1, r = -x; converges to 1>(1 + x) for � x � 6 1
71. a = 3, r = (x - 1)>2; converges to 6>(3 - x) for x in (-1, 3)

73. � x � 6 1
2

, 
1

1 - 2x
75. -2 6 x 6 0, 

1
2 + x

77. x ≠ (2k + 1)
p

2
, k an integer; 

1
1 - sin x

79. (a) a

q

n=-2

1
(n + 4)(n + 5)

(b) a

q

n=0

1
(n + 2)(n + 3)

(c) a

q

n=5

1
(n - 3)(n - 2)

89. (a) r = 3>5 (b) r = -3>10 91. � r � 6 1, 
1 + 2r
1 - r2

93. (a) 16.84 mg, 17.79 mg (b) 17.84 mg

95. (a) 0, 
1
27

, 
2
27

, 
1
9

, 
2
9

, 
7
27

, 
8
27

, 
1
3

, 
2
3

, 
7
9

, 
8
9

, 1

(b) a

q

n=1

1
2
a2

3
bn-1

= 1

Section 10.3, pp. 598–599
1. Converges 3. Converges 5. Converges 7. Diverges

9. Converges 11. Converges; geometric series, r = 1
10

6 1

13. Diverges; lim
nSq

n
n + 1

= 1 ≠ 0

15. Diverges; p-series, p 6 1

17. Converges; geometric series, r = 1
8

6 1

19. Diverges; Integral Test
21. Converges; geometric series, r = 2>3 6 1
23. Diverges; Integral Test

25. Diverges; lim
nSq

2n

n + 1
≠ 0

27. Diverges; limnSq12n>ln n2 ≠ 0

29. Diverges; geometric series, r = 1
ln 2

7 1

31. Converges; Integral Test  33. Diverges; nth-Term Test
35. Converges; Integral Test  37. Converges; Integral Test

Additional and Advanced Exercises, pp. 570–571
1. (a) y = c + ( y0 - c)e-k (A>V )t

  (b) Steady-state solution: yq = c
5. x2 (x2 + 2y2) = C
7. ln 0 x 0 + e-y>x = C
9. ln 0 x 0 - ln 0 sec (y>x - 1) + tan (y>x - 1) 0 = C

Chapter 10
Section 10.1, pp. 581–584

1. a1 = 0, a2 = -1>4, a3 = -2>9, a4 = -3>16
3. a1 = 1, a2 = -1>3, a3 = 1>5, a4 = -1>7
5. a1 = 1>2, a2 = 1>2, a3 = 1>2, a4 = 1>2
7. 1, 

3
2

, 
7
4

, 
15
8

, 
31
16

, 
63
32

, 
127
64

, 
255
128

, 
511
256

, 
1023
512

9. 2, 1, - 1
2

, - 1
4

, 
1
8

, 
1
16

, - 1
32

, - 1
64

, 
1

128
, 

1
256

11. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
13. an = (-1)n+1, n Ú 1

15. an = (-1)n+1(n)2, n Ú 1 17. an = 2n-1

3(n + 2)
, n Ú 1

19. an = n2 - 1, n Ú 1 21. an = 4n - 3, n Ú 1

23. an = 3n + 2
n!

, n Ú 1 25. an =
1 + (-1)n+1

2
, n Ú 1

27. Converges, 2  29. Converges, -1 31. Converges, -5
33. Diverges  35. Diverges  37. Converges, 1 >2
39. Converges, 0  41. Converges, 22 43. Converges, 1
45. Converges, 0  47. Converges, 0  49. Converges, 0
51. Converges, 1  53. Converges, e7 55. Converges, 1
57. Converges, 1  59. Diverges  61. Converges, 4
63. Converges, 0  65. Diverges  67. Converges, e-1

69. Converges, e2>3 71. Converges, x (x 7 0)
73. Converges, 0  75. Converges, 1  77. Converges, 1 >2
79. Converges, 1  81. Converges, p>2 83. Converges, 0
85. Converges, 0  87. Converges, 1 >2 89. Converges, 0  
91. 8  93. 4  95. 5  97. 1 + 22 99. xn = 2n-2

101. (a) ƒ(x) = x2 - 2, 1.414213562 ≈ 22
  (b) ƒ(x) = tan (x) - 1, 0.7853981635 ≈ p>4
  (c) ƒ(x) = ex, diverges
103. (b) 1  111. Nondecreasing, bounded
113. Not nondecreasing, bounded
115. Converges, nondecreasing sequence theorem
117. Converges, nondecreasing sequence theorem
119. Diverges, definition of divergence  121. Converges
123. Converges 135. (b) 23

Section 10.2, pp. 591–593

1. sn =
2(1 - (1>3)n)

1 - (1>3)
, 3 3. sn =

1 - (-1>2)n

1 - (-1>2)
, 2>3

5. sn = 1
2

- 1
n + 2

, 
1
2

7. 1 - 1
4

+ 1
16

- 1
64

+ g, 
4
5

9. -3
4

+ 9
16

+ 57
64

+ 249
256

+ g, diverges.
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45. Diverges; limit comparison with g(1>n)

47. Converges; 
tan-1 n

n1.1 6
p>2
n1.1

49. Converges; compare with g (1>n2)
51. Diverges; limit comparison with g (1>n)
53. Converges; limit comparison with g (1>n2)
65. Converges 67. Converges 69. Converges

Section 10.5, pp. 609–610
1. Converges 3. Diverges 5. Converges 7. Converges
9. Converges 11. Diverges 13. Converges 15. Converges

17. Converges; Ratio Test  19. Diverges; Ratio Test
21. Converges; Ratio Test
23. Converges; compare with g(3>(1.25)n)

25. Diverges; lim
nSq
a1 - 3

nb
n

= e-3 ≠ 0

27. Converges; compare with g (1>n2)
29. Diverges; compare with g(1>(2n))
31. Diverges; an S> 0 33. Converges; Ratio Test
35. Converges; Ratio Test  37. Converges; Ratio Test
39. Converges; Root Test 41. Converges; compare with g (1>n2)
43. Converges; Ratio Test  45. Converges; Ratio Test
47. Diverges; Ratio Test  49. Converges; Ratio Test

51. Converges; Ratio Test  53. Diverges; an = a1
3
b (1>n!)

S 1

55. Converges; Ratio Test  57. Diverges; Root Test
59. Converges; Root Test  61. Converges; Ratio Test  65. Yes

Section 10.6, pp. 615–616
1. Converges by Alternating Series Test
3. Converges; Alternating Series Test
5. Converges; Alternating Series Test
7. Diverges; an S> 0
9. Diverges; an S> 0

11. Converges; Alternating Series Test
13. Converges by Alternating Series Test
15. Converges absolutely. Series of absolute values is a convergent 

geometric series.

17. Converges conditionally; 1>2n S 0 but g
q
n=1

1

2n
 diverges.

19. Converges absolutely; compare with g
q
n=1(1>n2).

21. Converges conditionally; 1>(n + 3) S 0 but g
q
n=1

1
n + 3

  diverges (compare with g
q
n=1(1>n)).

23. Diverges; 
3 + n
5 + n

S 1

25. Converges conditionally; a 1
n2 + 1

nb S 0 but (1 + n)>n2 7 1>n
27. Converges absolutely; Ratio Test
29. Converges absolutely by Integral Test
31. Diverges; an S> 0 33. Converges absolutely by Ratio Test

35. Converges absolutely, since ` cos np

n2n
` = ` (-1)n+1

n3>2 ` = 1
n3>2

  (convergent p-series)

39. Converges; Integral Test  41. a = 1
43. (a)

   

1

1
1�2 1�n

0 2 3 n n + 1

n + 1

1

1

dx < 1 + + … +

x

y

1
xy =

1
x

1
n

1
2L

L

1

1
1�2 1�n

0 2 3 nn − 1

n

1

1

< 1 + dx1 + + … +

x

y

1
xy =

1
x

1
n

1
2

(b) ≈41.55
45. True 47. (b) n Ú 251,415

49. s8 = a

8

n=1

1
n3 ≈ 1.195 51. 1060

59. (a) 1.20166 … S … 1.20253 (b) S ≈ 1.2021, error 6 0.0005

61. ap2

6
- 1b ≈ 0.64493

Section 10.4, pp. 603–604
1. Converges; compare with g (1>n2)
3. Diverges; compare with g11>2n2
5. Converges; compare with g (1>n3>2)

7. Converges; compare with gB
n + 4n
n4 + 0

= 25 g
1

n3>2
9. Converges 11. Diverges; limit comparison with g(1>n)

13. Diverges; limit comparison with g11>2n2
15. Diverges 17. Diverges; limit comparison with g11>2n2
19. Converges; compare with g(1>2n)
21. Diverges; nth-Term Test
23. Converges; compare with g (1>n2)

25. Converges; a n
3n + 1

bn

6 a n
3n
bn

= a1
3
bn

27. Diverges; direct comparison with g(1>n)
29. Diverges; limit comparison with g(1>n)
31. Diverges; limit comparison with g(1>n)
33. Converges; compare with g (1>n3>2)

35. Converges; 
1

n2n … 1
2n

37. Converges; 
1

3n-1 + 1
6 1

3n-1

39. Converges; comparison with g (1>5n2)
41. Diverges; comparison with g(1>n)

43. Converges; comparison with g
1

n(n - 1)
 or limit comparison 

  with g (1>n2)
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Section 10.8, pp. 630–631
1. P0(x) = 1, P1(x) = 1 + 2x, P2(x) = 1 + 2x + 2x2,

P3(x) = 1 + 2x + 2x2 + 4
3

x3

3. P0(x) = 0, P1(x) = x - 1, P2(x) = (x - 1) - 1
2

 (x - 1)2, 

P3(x) = (x - 1) - 1
2

 (x - 1)2 + 1
3

 (x - 1)3

5. P0(x) = 1
2

, P1(x) = 1
2

- 1
4

 (x - 2), 

P2(x) = 1
2

- 1
4

 (x - 2) + 1
8

 (x - 2)2,

P3(x) = 1
2

- 1
4

 (x - 2) + 1
8

 (x - 2)2 - 1
16

 (x - 2)3

7. P0(x) = 22
2

, P1 (x) = 22
2

+ 22
2
ax - p

4
b ,

P2(x) = 22
2

+ 22
2
ax - p

4
b - 22

4
ax - p

4
b2

,

P3(x) = 22
2

+ 22
2
ax - p

4
b - 22

4
ax - p

4
b2

- 22
12
ax - p

4
b3

9. P0(x) = 2, P1(x) = 2 + 1
4

 (x - 4),

P2(x) = 2 + 1
4

 (x - 4) - 1
64

 (x - 4)2,

P3(x) = 2 + 1
4

 (x - 4) - 1
64

 (x - 4)2 + 1
512

 (x - 4)3

11. a

q

n=0

(-x)n

n!
= 1 - x + x2

2!
- x3

3!
+ x4

4!
- g

13. a

q

n=0
(-1)nxn = 1 - x + x2 - x3 + g

15. a

q

n=0

(-1)n32n+1x2n+1

(2n + 1)!
17. 7a

q

n=0

(-1)nx2n

(2n)!
19. a

q

n=0

x2n

(2n)!

21. x4 - 2x3 - 5x + 4
23. 8 + 10(x - 2) + 6(x - 2)2 + (x - 2)3

25. 21 - 36(x + 2) + 25(x + 2)2 - 8(x + 2)3 + (x + 2)4

27. a

q

n=0
(-1)n(n + 1)(x - 1)n 29. a

q

n=0

e2

n!
 (x - 2)n

31. a

q

n=0
(-1)n+1 22n

(2n)!
ax - p

4
b2n

33. -1 - 2x - 5
2

x2 - g, -1 6 x 6 1

35. x2 - 1
2

x3 + 1
6

x4 + g, -1 6 x 6 1

41. L(x) = 0, Q(x) = -x2>2 43. L(x) = 1, Q(x) = 1 + x2>2
45. L(x) = x, Q(x) = x

Section 10.9, pp. 637–638

1. a

q

n=0

(-5x)n

n!
= 1 - 5x + 52x2

2!
- 53x3

3!
+ g

3. a

q

n=0

5(-1)n(-x)2n+1

(2n + 1)!
= a

q

n=0

5( -1)n+1x2n+1

(2n + 1)!

= -5x + 5x3

3!
- 5x5

5!
+ 5x7

7!
+ g

37. Converges absolutely by Root Test  39. Diverges; an S q
41. Converges conditionally; 2n + 1 - 2n =

1> (2n + 2n + 12S 0, but series of absolute values diverges 1compare with g11>2n2 2.
43. Diverges, an S 1>2 ≠ 0

45. Converges absolutely; sech n = 2
en + e-n = 2en

e2n + 1
6

2en

e2n = 2
en , a term from a convergent geometric series.

47. Converges conditionally; g(-1)n+1 1
2(n + 1)

 converges by 

Alternating Series Test; g
1

2(n + 1)
 diverges by limit compari-

son with g(1>n).

49. �Error � 6 0.2 51. �Error � 6 2 * 10-11

53. n Ú 31 55. n Ú 4 57. 0.54030
59. (a) an Ú an+1 (b) -1>2
Section 10.7, pp. 624–626

1. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none
3. (a) 1>4, -1>2 6 x 6 0 (b) -1>2 6 x 6 0 (c) none
5. (a) 10, -8 6 x 6 12 (b) -8 6 x 6 12 (c) none
7. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none
9. (a) 3, -3 … x … 3 (b) -3 … x … 3 (c) none

11. (a) q, for all x (b) for all x (c) none
13. (a) 1>2, -1>2 6 x 6 1>2 (b) -1>2 6 x 6 1>2 (c) none
15. (a) 1, -1 … x 6 1 (b) -1 6 x 6 1 (c) x = -1
17. (a) 5, -8 6 x 6 2 (b) -8 6 x 6 2 (c) none
19. (a) 3, -3 6 x 6 3 (b) -3 6 x 6 3 (c) none
21. (a) 1, -2 6 x 6 0 (b) -2 6 x 6 0 (c) none
23. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none
25. (a) 0, x = 0 (b) x = 0 (c) none
27. (a) 2, -4 6 x … 0 (b) -4 6 x 6 0 (c) x = 0
29. (a) 1, -1 … x … 1 (b) -1 … x … 1 (c) none
31. (a) 1>4, 1 … x … 3>2 (b) 1 … x … 3>2 (c) none
33. (a) q, for all x (b) for all x (c) none
35. (a) 1, -1 … x 6 1 (b) -1 6 x 6 1 (c) -1
37. 3 39. 8 41. -1>3 6 x 6 1>3, 1>(1 - 3x)
43. -1 6 x 6 3, 4> (3 + 2x - x2)
45. 0 6 x 6 16, 2>14 - 2x2
47. -22 6 x 6 22, 3> (2 - x2)

49. 2
x = a

q

n=0
2(-1)n(x - 1)n, 0 6 x 6 2

51. a

q

n=0
(-1

3)n
(x - 5)n, 2 6 x 6 8

53. 1 6 x 6 5, 2>(x - 1), a

q

n=1
(-1

2)n
n(x - 3)n-1, 

1 6 x 6 5, -2>(x - 1)2

55. (a) cos x = 1 - x2

2!
+ x4

4!
- x6

6!
+ x8

8!
- x10

10!
+ g; converges 

for all x
(b) Same answer as part (c)

(c) 2x - 23x3

3!
+ 25x5

5!
- 27x7

7!
+ 29x9

9!
- 211x11

11!
+ g

57. (a)
x2

2
+ x4

12
+ x6

45
+ 17x8

2520
+ 31x10

14175
, - p

2
6 x 6 p

2

(b) 1 + x2 + 2x4

3
+ 17x6

45
+ 62x8

315
+ g, - p

2
6 x 6 p

2
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27. (a)
x2

2
- x4

12

(b)
x2

2
- x4

3 # 4 + x6

5 # 6 - x8

7 # 8 + g + (-1)15 x32

31 # 32
29. 1>2 31. -1>24 33. 1>3 35. -1 37. 2

39. 3>2 41. e 43. cos 
3
4

45.
23
2

47.
x3

1 - x

49.
x3

1 + x2 51. -1
(1 + x)2 55. 500 terms  57. 4 terms

59. (a) x + x3

6
+ 3x5

40
+ 5x7

112
, radius of convergence = 1

(b)
p

2
- x - x3

6
- 3x5

40
- 5x7

112
61. 1 - 2x + 3x2 - 4x3 + g
67. (a) -1 (b) 11>222(1 + i) (c) - i

71. x + x2 + 1
3

x3 - 1
30

x5 + g, for all x

Practice Exercises, pp. 648–649
1. Converges to 1  3. Converges to -1 5. Diverges
7. Converges to 0  9. Converges to 1  11. Converges to e-5

13. Converges to 3  15. Converges to ln 2  17. Diverges
19. 1 >6 21. 3 >2 23. e>(e - 1) 25. Diverges
27. Converges conditionally  29. Converges conditionally
31. Converges absolutely  33. Converges absolutely
35. Converges absolutely  37. Converges absolutely
39. Converges absolutely
41. (a) 3, -7 … x 6 -1 (b) -7 6 x 6 -1 (c) x = -7
43. (a) 1>3, 0 … x … 2>3 (b) 0 … x … 2>3 (c) None
45. (a) q, for all x (b) For all x (c) None
47. (a) 23, -23 6 x 6 23 (b) -23 6 x 6 23 (c) None
49. (a) e, -e 6 x 6 e (b) -e 6 x 6 e (c) Empty set

51. 1
1 + x

, 
1
4

, 
4
5

53. sin x, p, 0 55. ex, ln 2, 2  57. a

q

n=0
2nxn

59. a

q

n=0

(-1)np2n+1x2n+1

(2n + 1)!
61. a

q

n=0

(-1)nx10n>3
(2n)!

63. a

q

n=0

((px)>2)n

n!

65. 2 -
(x + 1)

2 # 1! +
3(x + 1)2

23 # 2! +
9(x + 1)3

25 # 3! + g

67. 1
4

- 1
42 (x - 3) + 1

43 (x - 3)2 - 1
44 (x - 3)3

69. 0.4849171431 71. 0.4872223583 73. 7 >2 75. 1 >12
77. -2 79. r = -3, s = 9>2 81. 2 >3
83. ln an + 1

2n
b ; the series converges to ln a1

2
b .

85. (a) q (b) a = 1, b = 0 87. It converges.

Additional and Advanced Exercises, pp. 650–652
1. Converges; Comparison Test  3. Diverges; nth-Term Test
5. Converges; Comparison Test  7. Diverges; nth-Term Test

9. With a = p>3, cos x = 1
2

- 23
2

(x - p>3) - 1
4

(x - p>3)2

+ 23
12

(x - p>3)3 + g

11. With a = 0, ex = 1 + x + x2

2!
+ x3

3!
+ g

5. a

q

n=0

(-1)n(5x2)2n

(2n)!
= 1 - 25x4

2!
+ 625x8

4!
- g

7. a

q

n=1
 (-1)n+1 x2n

n = x2 - x4

2
+ x6

3
- x8

4
+ g

9. a

q

n=0
 (-1)n a3

4
bn

x3n = 1 - 3
4

x3 + 32

42 x6 - 33

43 x9 + g

11. a

q

n=0

xn+1

n!
= x + x2 + x3

2!
+ x4

3!
+ x5

4!
+ g

13. a

q

n=2

(-1)nx2n

(2n)!
= x4

4!
- x6

6!
+ x8

8!
- x10

10!
+ g

15. x - p
2x3

2!
+ p

4x5

4!
- p

6x7

6!
+ g = a

q

n=0

(-1)np2nx2n+1

(2n)!

17. 1 + a

q

n=1

(-1)n(2x)2n

2 # (2n)!
=

1 -
(2x)2

2 # 2! +
(2x)4

2 # 4! -
(2x)6

2 # 6! +
(2x)8

2 # 8! - g

19. x2
a

q

n=0
(2x)n = x2 + 2x3 + 4x4 + g

21. a

q

n=1
nxn-1 = 1 + 2x + 3x2 + 4x3 + g

23. a

q

n=1
 (-1)n+1 x4n-1

2n - 1
= x3 - x7

3
+ x11

5
- x15

7
+ g

25. a

q

n=0
a 1

n!
+ (-1)nb xn = 2 + 3

2
x2 - 5

6
x3 + 25

24
x4 - g

27. a

q

n=1

(-1)n-1x2n+1

3n
= x3

3
- x5

6
+ x7

9
- g

29. x + x2 + x3

3
- x5

30
+ g

31. x2 - 2
3

x4 + 23
45

x6 - 44
105

x8 + g

33. 1 + x + 1
2

x2 - 1
8

x4 + g

35. �Error � … 1
104 # 4!

6 4.2 * 10-6

37. � x � 6 (0.06)1>5 6 0.56968

39. �Error � 6 (10-3)3>6 6 1.67 * 10-10, -10-3 6 x 6 0

41. �Error � 6 (30.1)(0.1)3>6 6 1.87 * 10-4

49. (a) Q(x) = 1 + kx +
k(k - 1)

2
x2 (b) 0 … x 6 100-1>3

Section 10.10, pp. 645–647

1. 1 + x
2

- x2

8
+ x3

16
3. 1 + 3x + 6x2 + 10x3

5. 1 - x + 3x2

4
- x3

2
7. 1 - x3

2
+ 3x6

8
- 5x9

16

9. 1 + 1
2x

- 1
8x2 + 1

16x3

11. (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

13. (1 - 2x)3 = 1 - 6x + 12x2 - 8x3

15. 0.0713362 17. 0.4969536 19. 0.0999445 21. 0.10000

23. 1
13 # 6!

≈ 0.00011 25.
x3

3
- x7

7 # 3!
+ x11

11 # 5!
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13.    15.

x

y

0−1 1

t = 0

t = −1

y =
Î

1 − x2

x

y

−2 −1 1 2 3 4

−1

1

2

3

−2

−3

t = 0

0 ≤ t ≤

≤ t < 0

x = y2

p
2

−

p
2

17.

x

y

−1 0

t = 0

x2 − y2 = 1

19. (a) x = a cos t, y = -a sin t, 0 … t … 2p
(b) x = a cos t, y = a sin t, 0 … t … 2p
(c) x = a cos t, y = -a sin t, 0 … t … 4p
(d) x = a cos t, y = a sin t, 0 … t … 4p

21. Possible answer: x = -1 + 5t, y = -3 + 4t, 0 … t … 1
23. Possible answer: x = t2 + 1, y = t, t … 0
25. Possible answer: x = 2 - 3t, y = 3 - 4t, t Ú 0
27. Possible answer: x = 2 cos t, y = 2 � sin t � , 0 … t … 4p

29. Possible answer: x = -at

21 + t2
, y = a

21 + t2
, -q 6 t 6 q

31. Possible answer: x = 4
1 + 2 tan u

, y = 4 tan u
1 + 2 tan u

, 

0 … u 6 p>2 and x = 0, y = 2 if u = p>2
33. Possible answer: x = 2 - cos t, y = sin t, 0 … t … 2p
35. x = 2 cot t, y = 2 sin2 t, 0 6 t 6 p
37. x = a sin2 t tan t, y = a sin2 t, 0 … t 6 p>2 39.  (1, 1)

Section 11.2, pp. 669–671

1. y = -x + 222,
d2 y

dx2 = -22

3. y = - 1
2

x + 222,
d2y

dx2 = - 22
4

5. y = x + 1
4

,
d2y

dx2 = -2 7. y = 2x - 23,
d2y

dx2 = -323

9. y = x - 4,
d2y

dx2 = 1
2

11. y = 23x - p23
3

+ 2,
d2y

dx2 = -4

13. y = 9x - 1,
d2y

dx2 = 108 15. - 3
16

17. -6

19. 1 21. 3a2p 23. 0 ab 0p 25. 4  27. 12

29. p2 31. 8p2 33.
52p

3
35. 3p25

13. With a = 22p, cos x = 1 - 1
2

 (x - 22p)2 + 1
4!

 (x - 22p)4

- 1
6!

 (x - 22p)6 + g

15. Converges, limit = b 17. p>2 21. b = {
1
5

23. a = 2, L = -7>6 27. (b) Yes

31. (a) a

q

n=1
nxn-1 (b) 6 (c) 1

q

33. (a) Rn = C0e
-kt0(1 - e-nkt0) > (1 - e-kt0), 

R = C0(e-kt0) > (1 - e-kt0) = C0> (ekt0 - 1)
(b) R1 = 1>e ≈ 0.368, 

R10 = R(1 - e-10) ≈ R(0.9999546) ≈ 0.58195; 
R ≈ 0.58198; 0 6 (R - R10) >R 6 0.0001

(c) 7

Chapter 11
Section 11.1, pp. 659–661

1. 3.

x

y

t > 0t < 0

0 1

1

y = x2

−1
−1

−2

−3

−4

1 2 3 4

1

4

x

y

t =

y = 2x + 3

2
5

t =
4
7

5. 7.

x

y

−2 −1 10 2

−1

1

2

−2

t = 0t =

t = p

x2 + y2 = 1

2
p

x

y

0 4

2

t = 0, 2p

y2

4
x2

16
= 1+

9.   11.

x

y

−1

−1

1

1

p
2

t =p
2

t = −

y = 1 − 2x2

x

y

2

(0, 0)

changes
direction
at t = 0

t < 0

y = x2 (x − 2)
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19.

x

y

O

u =
2
p

r ≥ 0

21.

x

y

0 1

r = 1
0 ≤ u ≤ p

23.

x

y

0

1

p

4
3p
4

≤ u ≤

0 ≤ r ≤ 1

25.

x

y

0 1 2

1

2

−1

−2

p

2
p

2
≤ u ≤

1 ≤ r ≤ 2

−

27. x = 2, vertical line through (2, 0) 29. y = 0, the x-axis
31. y = 4, horizontal line through (0, 4)
33. x + y = 1, line, m = -1, b = 1
35. x2 + y2 = 1, circle, C(0, 0), radius 1  
37. y - 2x = 5, line, m = 2, b = 5
39. y2 = x, parabola, vertex (0, 0), opens right  
41. y = ex, graph of natural exponential function  
43. x + y = {1, two straight lines of slope -1, y-intercepts

b = {1
45. (x + 2)2 + y2 = 4, circle, C(-2, 0), radius 2  
47. x2 + (y - 4)2 = 16, circle, C(0, 4), radius 4  
49. (x - 1)2 + (y - 1)2 = 2, circle, C(1, 1), radius 22
51. 23y + x = 4 53. r cos u = 7 55. u = p>4
57. r = 2 or r = -2 59. 4r2 cos2u + 9r2 sin2u = 36
61. r sin2u = 4 cos u 63. r = 4 sin u
65. r2 = 6r cos u - 2r sin u - 6
67. (0, u), where u is any angle

Section 11.4, pp. 678–679
1. x-axis 3. y-axis

x

y

1

2

−1

r = 1 + cos u

x

y

0

−2

1−1

r = 1 − sin u

5. y-axis 7. x-axis, y-axis, origin

x

y

0

1

2

3

−1

−1 1 2−2

r = 2 + sin u

x

y

−1 1

Î

2
2

Î

2
2

−

r = sin (u�2)

37. (x, y) = a12
p - 24

p2,
24
p2 - 2b

39. (x, y) = a1
3

, p - 4
3
b 41. (a) p (b) p

43. (a) x = 1, y = 0,
dy
dx

= 1
2

(b) x = 0, y = 3,
dy
dx

= 0

  (c) x = 23 - 1
2

, y = 3 - 23
2

,
dy
dx

= 223 - 1

23 - 2

45. a22
2

, 1b , y = 2x at t = 0, y = -2x at t = p

47. (a) 8a (b)
64p

3

Section 11.3, pp. 674–675
1. a, e; b, g; c, h; d, f   3.

x

y

2,
p
2

−2,
p
2

(2, 0)(−2, 0)

Q R

Q R

(a) a2,
p

2
+ 2npb  and a-2,

p

2
+ (2n + 1)pb , n an integer  

  (b) (2, 2np) and (-2, (2n + 1)p), n an integer  

  (c) a2,
3p
2

+ 2npb  and a-2,
3p
2

+ (2n + 1)pb , n an integer  

  (d) (2, (2n + 1)p) and (-2, 2np), n an integer

5. (a) (3, 0) (b) (-3, 0) (c) 1-1, 232 (d) 11, 232
  (e) (3, 0) (f ) 11, 232 (g) (-3, 0) (h) 1-1, 232

7. (a) a22,
p

4
b (b) (3, p) (c) a2,

11p
6
b

(d) a5, p - tan-1 4
3
b

9. (a) a-322,
5p
4
b (b) (-1, 0) (c) a-2,

5p
3
b

  (d) a-5, p - tan-1 3
4
b

11.

x

y

0

2

2

r = 2

13.

x

y

0 1

r ≥ 1

15.

x

y

0

0 ≤ u ≤
r ≥ 0

p
6

17.

x

y

0−1

−1

3

2

u =

−1 ≤ r ≤ 3

p
3

p
3
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25.

x

y

r = −1

r = 2

27.

x

y

−4 0

−2

2

0 ≤ r ≤ 2 − 2 cos u

29. Equation (a)

Section 11.5, pp. 682–683

1. 1
6
p3 3. 18p 5.

p

8
7. 2 9.

p

2
- 1

11. 5p - 8 13. 323 - p 15.
p

3
+ 23

2

17.
8p
3

+ 23 19. (a)
3
2

- p
4

21. 19 >3 23. 8

25. 3122 + ln11 + 2222 27.
p

8
+ 3

8
31. (a) a (b) a (c) 2a>p
Section 11.6, pp. 689–692

1. y2 = 8x, F(2, 0), directrix: x = -2

3. x2 = -6y, F(0, -3>2), directrix: y = 3>2
5.

x2

4
-

y2

9
= 1, F1{213, 02, V({2, 0), 

asymptotes: y = {
3
2

x

7.
x2

2
+ y2 = 1, F({1, 0), V1{22, 02

9. 11.

x

y

0

3

−3 F(3, 0)

x = −3
y2 = 12x

x

y

0

2

2

y = 2

x2 = −8y

F(0, −2)

13.   15.

x

y

0 1�4

1
4

y = 4x2

1
16

F  0,

directrix y = − 1
16

a      b

a     b

x

y

x = −3y2

0 1
12

1
12

x =
1
6

1
6

−

1
12

F −    , 0

9. x-axis, y-axis, origin 11. y-axis, x-axis, origin

x

y

−1 1

r2 = cos u

x

y

1

−1

r2 = −sin u

13. x-axis, y-axis, origin  15. Origin
17. The slope at (-1, p>2) is -1, at (-1, -p>2) is 1.

x

y

r = −1 + cos u

−1, −
p

2

−1,
p

2

2

Q      R

Q     R

19. The slope at (1, p>4) is -1, at (-1, -p>4) is 1, at (-1, 3p>4)
is 1, at (1, -3p>4) is -1.

x

y

r = sin 2u

−1, −
p

4

1, −
3p
4

1,
p

4

−1,
3p
4

Q R Q   R

Q R Q     R

21. (a)

x

y

1
2

1
2

−

1
2

1
2

3
2

r = + cos u

(b)

x

y

1
2

1
2

−

1
2

r = + sin u

3
2

23. (a)

x

y

0 5
2

1
2

−

3
2

r = + cos u

3
2

3
2

−

(b)

x

y

1
2

5
2

r = − sin u

3
2

3
2

−

3
2

−
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39. (a) Vertex: (1, -2); focus: (3, -2); directrix: x = -1

  (b)

x

y

0 1 2 3

2

−2

−4

F(3, −2)

V(1, −2)

(y + 2)2 = 8(x − 1)

41. (a) Foci: 14 { 27, 32; vertices: (8, 3) and (0, 3); center: (4, 3)

  (b)

x

y

0

(0, 3) (8, 3)

6

4 8

F1(4 −
Î

7, 3)

F2(4 +
Î

7, 3)

C(4, 3)

(x − 4)2

16

(y − 3)2

9
+ = 1

43. (a) Center: (2, 0); foci: (7, 0) and (-3, 0); vertices: (6, 0) and 

   (-2, 0); asymptotes: y = {
3
4

(x - 2)

(b)

x

y

(7, 0)(–3, 0)

(–2, 0) (6, 0)
20

(x − 2)2

16

y2

9
− = 1

y = (x − 2)
3
4

y = − (x − 2)
3
4

45. (y + 3)2 = 4(x + 2), V(-2, -3), F(-1, -3),
directrix: x = -3

47. (x - 1)2 = 8(y + 7), V(1, -7), F(1, -5), directrix: y = -9

49.
(x + 2)2

6
+

(y + 1)2

9
= 1, F1-2, {23 - 12,

V(-2, {3 - 1), C(-2, -1)

51.
(x - 2)2

3
+

( y - 3)2

2
= 1, F(3, 3) and F(1, 3),

V1{23 + 2, 32, C(2, 3)

53.
(x - 2)2

4
-

(y - 2)2

5
= 1, C(2, 2), F(5, 2) and F(-1, 2),

V(4, 2) and V(0, 2); asymptotes: (y - 2) = {
25
2

(x - 2)

17.   19.

x

y

0

4

−4

3 5−3−5

x2

25

y2

16
+ = 1

F1 F2
x

y

0 1

1

−1

F1

F2

Î

2 y2

2
x2 + = 1

21.   23.

x

y

0

−1

1 F1

F2

Î

2

Î

3 x2

2

y2

3
+ = 1

x

y

0 3

F2F1

Î

3−
Î

3

Î

6
x2

9

y2

6
+ = 1

25.
x2

4
+

y2

2
= 1

27. Asymptotes: y = {x 29. Asymptotes: y = {x

x

y

F2F1

Î

2−
Î

2

x2 − y2 = 1

x

y

F2

F1

2
Î

2

x2

8

y2

8
− = 1

4

−4

31. Asymptotes: y = {2x 33.  Asymptotes: y = {x>2

x

y

F2F1

Î

10

Î

2

−
Î

10

x2

2

y2

8
− = 1

x

y

F2

F1
Î

10

Î

2

−
Î

10

x2

2

y2

8
− = 1

35. y2 - x2 = 1 37.
x2

9
-

y2

16
= 1
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55. (y + 1)2 - (x + 1)2 = 1, C(-1, -1), F1-1, 22 - 12
and F1-1, -22 - 12, V(-1, 0) and V(-1, -2); asymptotes 

(y + 1) = {(x + 1)
57. C(-2, 0), a = 4 59. V(-1, 1), F(-1, 0)

61. Ellipse:
(x + 2)2

5
+ y2 = 1, C(-2, 0), F(0, 0) and 

F(-4, 0), V125 - 2, 02 and V1-25 - 2, 02
63. Ellipse:

(x - 1)2

2
+ (y - 1)2 = 1, C(1, 1), F(2, 1) and 

F(0, 1), V122 + 1, 12 and V1-22 + 1, 12
65. Hyperbola: (x - 1)2 - (y - 2)2 = 1, C(1, 2), 

F11 + 22, 22 and F11 - 22, 22, V(2, 2) and 

V(0, 2); asymptotes: (y - 2) = {(x - 1)

67. Hyperbola:
( y - 3)2

6
- x2

3
= 1, C(0, 3), F(0, 6) 

and F(0, 0), V10, 26 + 32 and V10, -26 + 32;
asymptotes: y = 22x + 3 or y = -22x + 3

69. (b)1 :1  73. Length = 222, width = 22, area = 4
75. 24p
77. x = 0, y = 0: y = -2x; x = 0, y = 2: y = 2x + 2;

x = 4, y = 0: y = 2x - 8

79. x = 0, y = 16
3p

Section 11.7, pp. 697–698

21. e = 25; F1{210, 02;
directrices are x = {

2

210
.

x

y

F1
F2

−2 2 4−4
−
Î

10
Î

10

−10

−5

5

10

y2

8
x2

2
= 1−

−
Î

2
Î

2

23. e = 25; F10, {2102;
directrices are y = {

2

210
.

x

y

F1

F2

x2

8
y2

2
= 1−

−4 −2 2 4

−2

−1

1

2

−
Î

10

−
Î

2

Î

10

Î

2

1. e = 3
5

, F({3, 0); 

directrices are x = {
25
3

.

x

y

F1 F2

y2

16
x2

25
= 1+

3 5

−4

−3−5

4

3. e = 1

22
; F(0, {1); 

directrices are y = {2.

x

y

F1

F2

y2

2
x2 + = 1

−1

−1 1

1

−
Î

2

Î

2

5. e = 1

23
; F(0, {1); 

directrices are y = {3.

x

y

F1

F2

y2

3
x2

2
= 1+

−1

1

Î

3

−
Î

3

−
Î

2
Î

2

7. e = 23
3

; F1{23, 02; 
directrices are x = {323.

x

y

F1 F2

y2

6
x2

9
= 1+

3−3

Î

6

−
Î

6

−
Î

3
Î

3

13.
x2

9
+

y2

4
= 1 15.

x2

64
+

y2

48
= 1

17. e = 22; F1{22, 02; 
directrices are x = {

1

22
.

x

y

F1 F2

−1

1

2

3

–2

−2

−3

–1 1 2 3–3

−
Î

2
Î

2

x2 − y2 = 1

19. e = 22; F(0, {4); 

directrices are y = {2.

x

y

F1

F2

x2

8
y2

8
= 1−

−2

−4

−4 2 4

4

6

−6

−
Î

8

Î

8

−2

2

25. y2 - x2

8
= 1 27. x2 -

y2

8
= 1 29. r = 2

1 + cos u

31. r = 30
1 - 5 sin u

33. r = 1
2 + cos u

35. r = 10
5 - sin u

37.   39.

x

y

1
1 + cos u

r =

−1 1

−1

1

2

−2

−2

x = 1

0

, 0
2
1
a b

x

y

25
10 − 5 cos u

r =

−5

x = −5

0

, 0
3
5

, p
3
5

(5, 0)

a b

a b

41.   43.

x

y

400
16 + 8 sin u

r =

y = 50

0

,
3
50

2
p

,
3
50

50,
2

3p
2

3p
a b

a b

a b

x

y

8
2 − 2 sin u

r =

−2 2

y = −4

0

2,
2

3p
a b

9.
x2

27
+

y2

36
= 1 11.

x2

4851
+

y2

4900
= 1
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69. 71.

x

y

−1−2 1

−1

1

8
4 + cos u

r =
x

y

−1 1

1
1 − sin ur =

73.

x

y

−1 1

1
1 + 2 sin u

r =

11
2

75. (b)

45. y = 2 - x 47. y = 23
3

x + 223

2

2
x + y = 2

x

y

x

y

y = x + 2
Î

3

−6
2

4 3
Î

3

49. r cosau - p
4
b = 3 51. r cosau + p

2
b = 5

53.   55.

x

y

(2, 0)

r = 4 cos u

Radius = 2

x

y

(1, p)
r = −2 cos u

Radius = 1
−2

57. r = 12 cos u 59. r = 10 sin u

x

y

(6, 0)

(x − 6)2 + y2 = 36
r = 12 cos u

x

y

(0, 5)

r = 10 sin u
x2 + (y − 5)2 = 25

61. r = -2 cos u 63. r = -sin u

x

y

(−1, 0)

(x + 1)2 + y2 = 1
r = −2 cos u

x

y

0, −

r = −sin u

2
1

x2 + y + 2 =
2
1

4
1

a    b

a    b

65.   67.

x

y

6

2
Î

3

r = 3 sec u−
p

3a b

x

y

r = 4 sin u4

Planet Perihelion Aphelion

Mercury 0.3075 AU 0.4667 AU
Venus 0.7184 AU 0.7282 AU
Earth 0.9833 AU 1.0167 AU
Mars 1.3817 AU 1.6663 AU
Jupiter 4.9512 AU 5.4548 AU
Saturn 9.0210 AU 10.0570 AU
Uranus 18.2977 AU 20.0623 AU
Neptune 29.8135 AU 30.3065 AU

Practice Exercises, pp. 699–701
1.   3.

1

0
x

y

t = 0

−
2
1

y = 2x + 1

x

y

1

1

0

t = 0
2
1

4y2 − 4x2 = 1

5.

x

y

−1 0 1

1

y = x2

t = 0 t = p

7. x = 3 cos t, y = 4 sin t, 0 … t … 2p

9. y = 23
2

x + 1
4

, 
1
4
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11. (a) y =
{ � x � 3>2

8
- 1 (b) y = {21 - x2

x

13.
10
3

15.
285
8

17. 10 19.
9p
2

21.
76p

3

23. y = 23
3

x - 4 25. x = 2

x

y

−4

x −
Î

3y = 4
Î

3

4
Î

3
x

y

2

x = 2

27. y = -3
2

29. x2 + ( y + 2)2 = 4

x

y

2
3

− 2
3

y = −

x

y

(0, −2)

r = −4 sin u x2 + (y + 2)2 = 4

31. 1x - 2222 + y2 = 2 33. r = -5 sin u

x

y

r = 2
Î

2 cos u

+ y2 = 2
2

x −
Î

2

Q

Î

2 , 0R

a b

x

y

0, −

r = −5 sin u

2
5

x2 + y + 2 =
2
5

4
25

a b

a b

35. r = 3 cos u 37.

x

y

r = 3 cos u

x − 2 + y2 =
2
3

4
9

, 0
2
3
a b

a b

x

y

0 ≤ r ≤ 6 cos u

0 6

39. d 41. l 43. k 45. i 47.
9
2
p 49. 2 + p

4
51. 8 53. p - 3

55. Focus is (0, -1),
directrix is y = 1. 57. Focus is a3

4
, 0b ,

  directrix is x = - 3
4

.

y

x

1

−2 20

y = 1

x2 = −4y

y

x

−2

23
4

x = –

y2 = 3x

0

4
3 , 0
a b

59. e = 3
4

61. e = 2; the asymptotes are 
y = {23 x.

x

y

−4

−3

4

3

0
Î

7

y2

16
x2

7
= 1+

1 2−1−2

y

x

y =
Î

3x

x2 − = 1
3
y2

y = −
Î

3x

63. (x - 2)2 = -12( y - 3), V(2, 3), F(2, 0), directrix is y = 6.

65.
(x + 3)2

9
+

( y + 5)2

25
= 1, C(-3, -5), F(-3, -1) and 

F(-3, -9), V(-3, -10) and V(-3, 0).

67.
1y - 22222

8
-

(x - 2)2

2
= 1, C12, 2222,

F12, 222 { 2102, V12, 4222 and V(2, 0), the asymptotes 

  are y = 2x - 4 + 222 and y = -2x + 4 + 222.

69. Hyperbola: C(2, 0), V(0, 0) and V(4, 0), the foci are 

F12 { 25, 02, and the asymptotes are y = {
x - 2

2
.

71. Parabola: V(-3, 1), F(-7, 1), and the directrix is x = 1.

73. Ellipse: C(-3, 2), F1-3 { 27, 22, V(1, 2) and V(-7, 2)

75. Circle: C(1, 1) and radius = 22
77. V(1, 0) 79. V(2, p) and V(6, p)

x

y

2
1 + cos u

r =

−2

2

0 (1, 0)

      

0

y

x

6
1 − 2 cos u

r =

−3

3

(6, p)

(2, p)
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Chapter 12
Section 12.1, pp. 707–708

1. The line through the point (2, 3, 0) parallel to the z-axis
3. The x-axis
5. The circle x2 + y2 = 4 in the xy-plane
7. The circle x2 + z2 = 4 in the xz-plane
9. The circle y2 + z2 = 1 in the yz-plane

11. The circle x2 + y2 = 16 in the xy-plane
13. The ellipse formed by the intersection of the cylinder

x2 + y2 = 4 and the plane z = y
15. The parabola y = x2 in the xy-plane
17. (a) The first quadrant of the xy-plane

(b) The fourth quadrant of the xy-plane
19. (a) The ball of radius 1 centered at the origin

(b) All points more than 1 unit from the origin
21. (a) The ball of radius 2 centered at the origin with the interior of 

the ball of radius 1 centered at the origin removed
(b) The solid upper hemisphere of radius 1 centered at the origin

23. (a) The region on or inside the parabola y = x2 in the xy-plane 
and all points above this region

(b) The region on or to the left of the parabola x = y2 in the 
xy-plane and all points above it that are 2 units or less away 
from the xy-plane

25. (a) x = 3 (b) y = -1 (c) z = -2
27. (a) z = 1 (b) x = 3 (c) y = -1
29. (a) x2 + (y - 2)2 = 4, z = 0

(b) (y - 2)2 + z2 = 4, x = 0 (c) x2 + z2 = 4, y = 2
31. (a) y = 3, z = -1 (b) x = 1, z = -1

(c) x = 1, y = 3
33. x2 + y2 + z2 = 25, z = 3 35. 0 … z … 1 37. z … 0
39. (a) (x - 1)2 + (y - 1)2 + (z - 1)2 6 1

(b) (x - 1)2 + (y - 1)2 + (z - 1)2 7 1
41. 3 43. 7 45. 223 47. C(-2, 0, 2), a = 222
49. C122, 22, -222, a = 22
51. (x - 1)2 + (y - 2)2 + (z - 3)2 = 14

53. (x + 1)2 + ay - 1
2
b2

+ az + 2
3
b2

= 16
81

55. C(-2, 0, 2), a = 28 57. Ca- 1
4

, - 1
4

, - 1
4
b , a = 523

4

59. (a) 2y2 + z2 (b) 2x2 + z2 (c) 2x2 + y2

61. 217 + 233 + 6 63. y = 1
65. (a) (0, 3, -3) (b) (0, 5, -5)

Section 12.2, pp. 716–718
1. (a) 89, -69 (b) 3213 3. (a) 81, 39 (b) 210

5. (a) 812, -199 (b) 2505

7. (a) h 1
5

, 
14
5
i (b)

2197
5

9. 81, -49
11. 8-2, -39 13. h- 1

2
, 
23
2
i 15. h- 23

2
, - 1

2
i

17. -3i + 2j - k 19. -3i + 16j
21. 3i + 5j - 8k

81. r = 4
1 + 2 cos u

83. r = 2
2 + sin u

85. (a) 24p (b) 16p

Additional and Advanced Exercises, pp. 701–703

1. x - 7
2

=
y2

2

y

x
1 30 F(4, 0) 

y2

2
7
2

x − =

3. 3x2 + 3y2 - 8y + 4 = 0 5. F(0, {1)

7. (a)
(y - 1)2

16
- x2

48
= 1 (b)

ay + 3
4
b2

a25
16
b

- x2

a75
2
b

= 1

11. 13.
y

x

x2 + 4y2 − 4 = 0 x2 − y2 − 1 = 0 

x2 + y2 − 25 = 0 

210

5

1

y

x
0 3

4y2

16
x2

9
≤ 1+

15. y

x
0 2

3
4x2 + 9y2 = 16 

9x2 + 4y2 − 36 = 0

17. (a) r = e2u (b)
25
2

(e4p - 1)

19. r = 4
1 + 2 cos u

21. r = 2
2 + sin u

23. x = (a + b) cos u - b cos aa + b
b
ub , 

y = (a + b) sin u - b sin aa + b
b
ub

27.
p

2
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7. (a) 10 + 217, 226, 221 (b)
10 + 217

2546

(c)
10 + 217

226
(d)

10 + 217
26

(5i + j)

9. 0.75 rad  11.  1.77 rad

13. Angle at A = cos-1 a 1

25
b ≈ 63.435 degrees, angle at 

B = cos-1 a3
5
b ≈ 53.130 degrees, angle at 

C = cos-1 a 1

25
b ≈ 63.435 degrees.

23. Horizontal component: ≈ 1188 ft>sec, vertical component: 
≈ 167 ft>sec

25. (a) Since 0 cos u 0 … 1, we have 0 u # v 0 = 0 u 0 0 v 0 0 cos u 0 …0 u 0 0 v 0 (1) = 0 u 0 0 v 0 .
(b) We have equality precisely when 0 cos u 0 = 1 or when one or 

both of u and v are 0. In the case of nonzero vectors, we 
have equality when u = 0 or p, that is, when the vectors are 
parallel.

27. a

23. The vector v is horizontal and 1 in. long. The vectors u and w are 
11
16

in. long. w is vertical and u makes a 45° angle with the hori-

zontal. All vectors must be drawn to scale.
  (a) v

u u + v

(b)

v

w

u

u + v + w

  (c)

u
u − v

−v   (d)
u

u − w

−w

25. 3a2
3

i + 1
3

j - 2
3

kb 27. 5(k)

29. A
1
2
a 1

23
i - 1

23
j - 1

23
kb

31. (a) 2i (b) -23k (c)
3
10

j + 2
5

k (d) 6i - 2j + 3k

33.
7
13

(12i - 5k)

35. (a)
3

522
i + 4

522
j - 1

22
k (b) (1 >2, 3, 5 >2)

37. (a) - 1

23
i - 1

23
j - 1

23
k (b) a5

2
,

7
2

,
9
2
b

39. A(4, -3, 5) 41. a = 3
2

, b = 1
2

43. ≈ 8-338.095, 725.0469
45. 0F1 0 = 100 cos 45°

sin 75° ≈ 73.205 N,

0F2 0 = 100 cos 30°
sin 75° ≈ 89.658 N,

F1 = 8- 0F1 0 cos 30°, 0F1 0 sin 30°9 ≈ 8-63.397, 36.6039 ,
F2 = 8 0F2 0 cos 45°, 0F2 0 sin 45°9 ≈ 863.397, 63.3979

47. w = 100 sin 75°
cos 40° ≈ 126.093 N,

0F1 0 = w cos 35°
sin 75° ≈ 106.933 N

49. (a) (5 cos 60°, 5 sin 60°) = a5
2

,
523

2
b

(b) (5 cos 60° + 10 cos 315°, 5 sin 60° + 10 sin 315°) =

a5 + 1022
2

,
523 - 1022

2
b

51. (a)
3
2

i + 3
2

j - 3k (b) i + j - 2k (c) (2, 2, 1)

Section 12.3, pp. 724–726
1. (a) -25, 5, 5 (b) -1 (c) -5 (d) -2i + 4j - 25k

3. (a) 25, 15, 5 (b) 1
3

(c)
5
3

(d) 1
9

(10i + 11j - 2k)

5. (a) 2, 234, 23 (b) 2

23234
(c) 2

234

(d) 1
17

(5j - 3k)

33. x + 2y = 4

2

1

i + 2j

0 4
x

y

x + 2y = 4

35. -2x + y = -3

−3

−2

−2i + j

−2x + y = −3

0

1

3
2

x

y

37. x + y = -1

1

−2 1

−1 i − j

P(−2, 1)

x + y = −1

x

y

39. 2x - y = 0

−i − 2j

P(1, 2)

2x − y = 0

x

y

41. 5 J  43. 3464 J 45.
p

4
47.
p

6
49. 0.14

Section 12.4, pp. 730–732

1. 0 u * v 0 = 3, direction is 
2
3

i + 1
3

j + 2
3

k; �v * u � = 3,

  direction is - 2
3

i - 1
3

j - 2
3

k

3. 0 u * v 0 = 0, no direction; 0 v * u 0 = 0, no direction

5. 0 u * v 0 = 6, direction is -k; 0 v * u 0 = 6, direction is k

7. 0 u * v 0 = 625, direction is 
1

25
i - 2

25
k; �v * u � = 625,

direction is - 1

25
i + 2

25
k
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13. x = t, y = t, z = 3
2

t,
0 … t … 1

y

z

x

(0, 0, 0)

1, 1, 3
2a b

11.

13.

y

z

x

i − j + k

i − k

j + k

z

x

y

–2k

i – j
i + j

15. (a) 226 (b) { 1

26
(2i + j + k)

17. (a)
22
2

(b) { 1

22
(i - j)

19. 8 21. 7 23. (a) None (b) u and w
25. 1023 ft@lb
27. (a) True (b) Not always true (c) True (d) True

(e) Not always true (f) True (g) True (h) True

29. (a) projv u = u # v
v # v v (b) { u * v (c) { (u * v) * w

(d) � (u * v) # w � (e) (u * v) * (u * w) (f) �u � v
�v �

31. (a) Yes (b) No (c) Yes (d) No
33. No, v need not equal w. For example, i + j ≠ - i + j, but 

i * (i + j) = i * i + i * j = 0 + k = k and 
i * (- i + j) = - i * i + i * j = 0 + k = k.

35. 2 37. 13 39. 2129 41. 11
2

43.
25
2

45.
3
2

47.
221

2
49. If A = a1i + a2j and B = b1i + b2j, then

A * B = 3 i j k
a1 a2 0

b1 b2 0

3 = 3 a1 a2

b1 b2

3 k
  and the triangle’s area is

1
2
2 A * B 2 = {

1
2
2 a1 a2

b1 b2

2 .
  The applicable sign is (+ ) if the acute angle from A to B runs 

counterclockwise in the xy-plane, and (- ) if it runs clockwise.

Section 12.5, pp. 738–740
1. x = 3 + t, y = -4 + t, z = -1 + t
3. x = -2 + 5t, y = 5t, z = 3 - 5t
5. x = 0, y = 2t, z = t
7. x = 1, y = 1, z = 1 + t
9. x = t, y = -7 + 2t, z = 2t

11. x = t, y = 0, z = 0

15. x = 1, y = 1 + t,
z = 0, -1 … t … 0

y

z

x

(1, 0, 0)
(1, 1, 0)

17. x = 0, y = 1 - 2t,
z = 1, 0 … t … 1

y

z

x

(0, −1, 1) (0, 1, 1)

19. x = 2 - 2t, y = 2t,
z = 2 - 2t, 0 … t … 1

y

z

x

(0, 2, 0)

(2, 0, 2)

21. 3x - 2y - z = -3 23. 7x - 5y - 4z = 6
25. x + 3y + 4z = 34 27. (1, 2, 3), -20x + 12y + z = 7

29. y + z = 3 31. x - y + z = 0 33. 2230 35. 0

37.
9242

7
39. 3 41. 19 >5 43. 5 >3 45. 9>241

47. p>4 49. 1.38 rad  51. 0.82 rad  53. a3
2

, - 3
2

,
1
2
b

55. (1, 1, 0)  57. x = 1 - t, y = 1 + t, z = -1
59. x = 4, y = 3 + 6t, z = 1 + 3t
61. L1 intersects L2; L2 is parallel to L3, 25>3; L1 and L3 are 

skew, 1022>3
63. x = 2 + 2t, y = -4 - t, z = 7 + 3t; x = -2 - t,

y = -2 + (1>2)t, z = 1 - (3>2)t

65. a0, - 1
2

, - 3
2
b , (-1, 0, -3), (1, -1, 0)

69. Many possible answers. One possibility: x + y = 3 and 
2y + z = 7.

71. (x>a) + (y>b) + (z>c) = 1 describes all planes except those 
through the origin or parallel to a coordinate axis.

Section 12.6, pp. 744–745
1. (d), ellipsoid  3. (a), cylinder  5. (l), hyperbolic paraboloid
7. (b), cylinder  9. (k), hyperbolic paraboloid  11. (h), cone

13. z

x

y

−2

2

x2 + y2 = 4

15.

4

2
x2 + 4z2 = 16 

z

x y

9.

y

z

x

i

i × j = k

j
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17.
9x2 + y2 + z2 = 9

3

3

−3

−3
−1

1

z

x

y

21. z

x

y

z = x2 + 4y2

4
1

2

19. 4x2 + 9y2 + 4z2 = 36

−3

−3

3

3

−2

2

z

x

y

23. z

x

y

4

2

1

x = 4 − 4y2 − z2

25. z

x

y

x2 + y2 = z2

27.
z

x

y

x2 + y2 − z2 = 1

−1
−1

1
1

29.

z2 − x2 − y2 = 1

z

x y

2

1

Î

3
Î

3

31. z

x

y2 − x2 = z

y

33.
z

z2 = 1 + y2 − x2

x

y

35. z

x

y

y = −(x2 + z2)

37.
z

x

y

x2 + y2 − z2 = 4 39. z

x2 + z2 = 1

x
y

1

1

45. (a)
2p(9 - c2)

9
(b) 8p (c)

4pabc
3

Practice Exercises, pp. 746–747
1. (a) 8-17, 329 (b) 21313
3. (a) 86, -89 (b) 10

5. h- 23
2

, - 1
2
i  [assuming counterclockwise]

7. h 8

217
, - 2

217
i

9. Length = 2, direction is
1

22
i + 1

22
j.

11. v (p>2) = 2(- i)

13. Length = 7, direction is
2
7

i - 3
7

j + 6
7

k.

15.
8

233
i - 2

233
j + 8

233
k

17. 0 v 0 = 22, 0 u 0 = 3, v # u = u # v = 3, v * u = -2i + 2j - k,

u * v = 2i - 2j + k, �v * u � = 3, u = cos-1 a 1

22
b = p

4
,

�u � cos u = 3

22
, projv u = 3

2
(i + j)

19. 4
3

(2i + j - k)

21. u * v = k
z

x

y

i + j

i × (i + j) = k

i

41. z

x

y

z = −(x2 + y2)

43. z

x

y

4y2 + z2 − 4x2 = 4
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(b) 0F1 0 = 2400
13

≈ 184.615 lb, 0F2 0 = 1000
13

≈ 76.923 lb,

F1 = h-12,000
169

,
28,800

169
i ≈ 8-71.006, 170.4149 ,

    F2 = h 12,000
169

,
5000
169
i ≈ 871.006, 29.5869 ,

   a = tan-1 12
5

, b = tan-1 5
12

9. (a) u = tan-1 22 ≈ 54.74° (b) u = tan-1 222 ≈ 70.53°
13. (b)

6

214
(c) 2x - y + 2z = 8

(d) x - 2y + z = 3 + 526 and x - 2y + z = 3 - 526

15.
32
41

i + 23
41

j - 13
41

k

17. (a) 0, 0 (b) -10i - 2j + 6k, -9i - 2j + 7k
  (c) -4i - 6j + 2k, i - 2j - 4k

(d) -10i - 10k, -12i - 4j - 8k
19. The formula is always true.

Chapter 13
Section 13.1, pp. 757–759

1. y = x2 - 2x, v = i + 2j, a = 2j

3. y = 2
9

x2, v = 3i + 4j, a = 3i + 8j

5. t = p
4

: v = 22
2

i - 22
2

j, a = -22
2

i - 22
2

j;

t = p>2: v = - j, a = - i

x

y

0 p
2

a
p
2

v

p
4

v
p
4

a

1

Q R

Q R

Q R

Q R

23. 227 25. (a) 214 (b) 1 29. 278>3
31. x = 1 - 3t, y = 2, z = 3 + 7t 33. 22

35. 2x + y + z = 5 37. -9x + y + 7z = 4

39. a0, - 1
2

, - 3
2
b , (-1, 0, -3), (1, -1, 0) 41. p>3

43. x = -5 + 5t, y = 3 - t, z = -3t

45. (b) x = -12t, y = 19>12 + 15t, z = 1>6 + 6t

47. Yes; v is parallel to the plane.

49. 3 51. -3j + 3k

53. 2

235
(5i - j - 3k) 55. a11

9
,

26
9

, - 7
9
b

57. (1, -2, -1); x = 1 - 5t, y = -2 + 3t, z = -1 + 4t
59. 2x + 7y + 2z + 10 = 0
61. (a) No (b) No (c) No (d) No (e) Yes

63. 11>2107

65.
z

x

x2 + y2 + z2 = 4

y2

2

−2

−2

2

67.
z

x

4x2 + 4y2 + z2 = 4

y

−1

11

−2

2

69.
z

x

y

z = −(x2 + y2) 71. z

x

x2 + y2 = z2

y

73.
z

x

x2 + y2 − z2 = 4

y

Î

5

−2

−2

2

2

3
3

75.

Î

10

z

x

y2 − x2 − z2 = 1

y

3

−3

−1
3

3

Additional and Advanced Exercises, pp. 748–750
1. (26, 23, -1>3) 3. 0F 0 = 20 lb

5. (a) 0F1 0 = 80 lb, 0F2 0 = 60 lb, F1 = 8-48, 649 ,
   F2 = 848, 369 , a = tan-1 4

3
, b = tan-1 3

4

7. t = p: v = 2i, a = - j; t = 3p
2

: v = i - j, a = − i

x

y

2

1

0 p 2p

3p
2

a

3p
2

3p
2

v

t =

t = p
v(p)

a(p)

r = (t – sin t)i + (1 – cos t)j
Q R

Q R

9. v = i + 2tj + 2k; a = 2j; speed: 3; direction:
1
3

i + 2
3

j + 2
3

k;

v(1) = 3a1
3

i + 2
3

j + 2
3

kb
11. v = (-2 sin t)i + (3 cos t)j + 4k;

a = (-2 cos t)i - (3 sin t)j; speed: 225;

direction: 1-1>252i + 12>252k;

v(p>2) = 22531-1>252i + 12>252k4
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13. v = a 2
t + 1

b i + 2tj + tk; a = a -2
(t + 1)2b i + 2j + k;

speed: 26; direction: 
1

26
  i + 2

26
  j + 1

26
  k;

v(1) = 26¢ 1

26
  i + 2

26
j + 1

26
  k≤

15. p>2 17. p>2
19. x = t, y = -1, z = 1 + t 21. x = t, y = 1

3
t, z = t

23. (a) (i): It has constant speed 1. (ii): Yes
(iii): Counterclockwise (iv): Yes

(b) (i): It has constant speed 2. (ii): Yes
(iii): Counterclockwise (iv): Yes

(c) (i): It has constant speed 1. (ii): Yes
(iii): Counterclockwise
(iv): It starts at (0, -1) instead of (1, 0).

(d) (i): It has constant speed 1. (ii): Yes
(iii): Clockwise (iv): Yes

(e) (i): It has variable speed. (ii): No
(iii): Counterclockwise (iv): Yes

25. v = 225i + 25j

Section 13.2, pp. 765–768

1. (1>4)i + 7j + (3>2)k 3. ¢p + 222
2

≤j + 2k

5. (ln 4)i + (ln 4)j + (ln 2)k

7.
e - 1

2
i + e - 1

e j + k 9. i - j + p
4

k

11. r(t) = a- t2

2
+ 1b i + a- t2

2
+ 2bj + a- t2

2
+ 3bk

13. r(t) = ((t + 1)3>2 - 1)i + (-e-t + 1)j + (ln(t + 1) + 1)k

15. r(t) = 8ti + 8tj + (-16t2 + 100)k

17. r(t) = ¢3
2

  t2 + 6

211
  t + 1≤i - ¢1

2
  t2 + 2

211
  t - 2≤j

+ ¢1
2

  t2 + 2

211
  t + 3≤k = ¢1

2
  t2 + 2t

211
≤(3i - j + k)

+ (i + 2j + 3k)
19. 50 sec
21. (a) 72.2 sec; 25,510 m (b) 4020 m (c) 6378 m
23. (a) y0 ≈ 9.9 m>sec (b) a ≈ 18.4° or 71.6°
25. 39.3° or 50.7°  31. (b) v0 would bisect ∠AOR.
33. (a) (Assuming that “x” is zero at the point of impact) 

r(t) = (x(t))i + (y(t))j, where x(t) = (35 cos 27°)t and 
y(t) = 4 + (35 sin 27°)t - 16t2.

(b) At t ≈ 0.497 sec, it reaches its maximum height of about 
7.945 ft.

(c) Range ≈ 37.45 ft; flight time ≈ 1.201 sec
(d) At t ≈ 0.254 and t ≈ 0.740 sec, when it is ≈  29.532 and 

≈  14.376 ft from where it will land
(e) Yes. It changes things because the ball won’t clear the net.

35. 4.00 ft, 7.80 ft > sec

43. (a) r(t) = (x(t)) i + (y(t)) j; where

x(t) = a 1
0.08
b (1 - e-0.08t)(152 cos 20° - 17.6) and

y(t) = 3 + a 152
0.08
b (1 - e-0.08t) (sin 20°)

      + a 32
0.082b (1 - 0.08t - e-0.08t)

(b) At t ≈ 1.527 sec it reaches a maximum height of about 
41.893 feet.

(c) Range ≈ 351.734 ft; flight time ≈ 3.181 sec
(d) At t ≈ 0.877 and 2.190 sec, when it is about 106.028 and 

251.530 ft from home plate
(e) No

Section 13.3, pp. 771–772

1. T = a- 2
3

 sin tb i + a2
3

 cos tbj + 25
3

  k, 3p

3. T = 1

21 + t
  i + 2t

21 + t
  k, 

52
3

5. T = -cos tj + sin tk, 
3
2

7. T = acos t - t sin t
t + 1

b i + asin t + t cos t
t + 1

b j

   + a22t1>2
t + 1

bk, 
p2

2
+ p

9. (0, 5, 24p)

11. s(t) = 5t, L = 5p
2

13. s(t) = 23et - 23, L = 323
4

15. 22 + ln11 + 222
17. (a) Cylinder is x2 + y2 = 1; plane is x + z = 1.

(b) and (c) z

x y

(0, –1, 1)
(–1, 0, 2)

(0, 1, 1)(1, 0, 0)

(d) L =
L

2p

0
21 + sin2 t dt (e) L ≈ 7.64

Section 13.4, pp. 777–778
1. T = (cos t)i - (sin t)j, N = (-sin t)i - (cos t)j, k = cos t

3. T = 1

21 + t2
  i - t

21 + t2
  j, N = - t

21 + t2
  i - 1

21 + t2
  j,

k = 1

2121 + t223
5. (b) cos x
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7. (b) N = -2e2t

21 + 4e4t
  i + 1

21 + 4e4t
  j

(c) N = - 1
2
124 - t2 i + tj2

9. T = 3 cos t
5

  i - 3 sin t
5

  j + 4
5

  k, N = (-sin t)i - (cos t)j,

k = 3
25

11. T = acos t - sin t

22
≤i + ¢cos t + sin t

22
≤j,

N = ¢-cos t - sin t

22
≤i + ¢-sin t + cos t

22
≤j, k = 1

et22

13. T = t

2t2 + 1
  i + 1

2t2 + 1
  j, N = i

2t2 + 1
-

tj

2t2 + 1
,

k = 1
t(t2 + 1)3>2

15. T = asech  
t
ab i + atanh  

t
abj,

N = a- tanh  
t
ab i + asech  

t
abj,

k = 1
a  sech2  

t
a

19. 1 > (2b)

21. ax - p
2
b2

+ y2 = 1

23. k(x) = 2> (1 + 4x2)3>2
25. k(x) = 0 sin x 0 > (1 + cos2 x)3>2

Section 13.5, pp. 783–784

1. a = 0 a 0N 3. a(1) = 4
3

  T + 225
3

  N 5. a(0) = 2N

7. rap
4
b = 22

2
  i + 22

2
  j - k, Tap

4
b = - 22

2
  i + 22

2
  j,

Nap
4
b = - 22

2
  i - 22

2
  j, Bap

4
b = k; osculating plane: 

z = -1; normal plane: -x + y = 0; rectifying plane: 
x + y = 22

9. B = a4
5

 cos tb i - a4
5

 sin tbj - 3
5

  k, t = - 4
25

11. B = k, t = 0 13. B = -k, t = 0 15. B = k, t = 0
17. Yes. If the car is moving on a curved path (k ≠ 0), then 

aN = k 0 v 0 2 ≠ 0 and a ≠ 0.

23. k = 1
t , r = t

27. Components of v: -1.8701, 0.7089, 1.0000
Components of a: -1.6960, -2.0307, 0
Speed: 2.2361; Components of T: -0.8364, 0.3170, 0.4472
Components of N: -0.4143, -0.8998, -0.1369

  Components of B: 0.3590, -0.2998, 0.8839; Curvature: 0.5060
Torsion: 0.2813; Tangential component of acceleration: 0.7746
Normal component of acceleration: 2.5298

29. Components of v: 2.0000, 0, - 0.1629
Components of a: 0, -1.0000, - 0.0086; Speed: 2.0066
Components of T: 0.9967, 0, - 0.0812
Components of N: -0.0007, -1.0000, - 0.0086
Components of B: - 0.0812, 0.0086, 0.9967;

  Curvature: 0.2484
Torsion: 0.0411; Tangential component of acceleration: 0.0007
Normal component of acceleration: 1.0000

Section 13.6, pp. 787–788
1. v = (3a sin u)ur + 3a(1 - cos u)uu

a = 9a(2 cos u - 1)ur + (18a sin u)uu
3. v = 2aeauur + 2eauuu

a = 4eau(a2 - 1)ur + 8aeauuu
5. v = (-8 sin 4t)ur + (4 cos 4t)uu

a = (-40 cos 4t)ur - (32 sin 4t)uu
11. ≈29.93 * 1010 m 13. ≈2.25 * 109 km2>sec
15. ≈1.876 * 1027 kg

Practice Exercises, pp. 788–790

1.
x2

16
+

y2

2
= 1

x

y

0

–1

1

2

4–4

Î

2 (2
Î

2, 1)

p
4

v

p
4

a

a(0)

v(0)Q R

Q R

At t = 0: aT = 0, aN = 4, k = 2;

At t = p
4

: aT = 7
3

, aN = 422
3

, k = 422
27

3. 0 v 0 max = 1 5. k = 1>5 7. dy>dt = -x; clockwise
11. Shot put is on the ground, about 66 ft 3 in. from the stopboard.

15. Length = p
4B1 + p

2

16
+ ln ¢p

4
+ B1 + p

2

16
≤

17. T(0) = 2
3

  i - 2
3

  j + 1
3

  k; N(0) = 1

22
  i + 1

22
  j;

B(0) = - 1

322
  i + 1

322
  j + 4

322
  k; k = 22

3
; t = 1

6

19. T(ln 2) = 1

217
  i + 4

217
  j; N(ln 2) = - 4

217
  i + 1

217
  j;

B(ln 2) = k; k = 8

17217
; t = 0

21. a(0) = 10T + 6N

23. T = ¢ 1

22
 cos t≤i - (sin t)j + ¢ 1

22
cos t≤k;

N = ¢- 1

22
 sin t≤i - (cos t)j - ¢ 1

22
 sin t≤k;

B = 1

22
  i - 1

22
  k; k = 1

22
; t = 0

25.
p

3
27. x = 1 + t, y = t, z = - t 31. k = 1

a
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Additional and Advanced Exercises, pp. 790–791

1. (a)
du
dt
`
u=2p

= 2A
pgb

a2 + b2

(b) u =
gbt2

2(a2 + b2)
, z =

gb2t2

2(a2 + b2)

(c) v(t) =
gbt

2a2 + b2
T;

   
d2r
dt2 =

bg

2a2 + b2
T + a a bgt

a2 + b2b
2

N

There is no component in the direction of B.

5. (a)
dx
dt

= r
#
cos u - ru

#
sin u,

dy
dt

= r
#
sin u + ru

#
cos u

(b)
dr
dt

= x
#

cos u + y
#

sin u, r
du
dt

= -x
#

sin u + y
#

cos u

7. (a) a(1) = -9ur - 6uu, v(1) = -ur + 3uu (b) 6.5 in.

9. (c) v = r
#
ur + ru

#
uu + z

#
k, a = (r

$ - ru
#
2)ur +

   (ru
$

+ 2r
#
u
#
)uu + z

$
k

Chapter 14
Section 14.1, pp. 799–801

1. (a) 0 (b) 0 (c) 58 (d) 33
3. (a) 4>5 (b) 8>5 (c) 3 (d) 0
5. Domain: all points (x, y) on 

or above line y = x + 2

x

y

y = x + 2

7. Domain: all points (x, y)
not lying on the graph of 
y = x or y = x3

(1, 1)

(–1, –1)

y

x

y = x

y = x3

9. Domain: all points (x, y) satisfying x2 - 1 … y … x2 + 1

–1

1

x

y y = x2 + 1

y = x2 – 1

11. Domain: all points (x, y) for which 
(x - 2)(x + 2)( y - 3)( y + 3) Ú 0

3

–3

y

–2 2
x

y = –3

x = –2 x = 2

y = 3

13.

2

–2

4

42–2

y

x

x + y – 1 = c

c:

–3
–2
–1
0
1
2
3

15.
y

x

xy = c

c = 9
c = 4

c = –1 c = 1
c = –4

c = –9

0 = c
1 = c

4 = c
9 = c

–1= c

–4= c

–9= c

17. (a) All points in the xy-plane (b) All reals
(c) The lines y - x = c (d) No boundary points
(e) Both open and closed (f) Unbounded

19. (a) All points in the xy-plane (b) z Ú 0
(c) For ƒ(x, y) = 0, the origin; for ƒ(x, y) ≠ 0, ellipses with the 

center (0, 0), and major and minor axes along the x- and 
y-axes, respectively

(d) No boundary points (e) Both open and closed
(f) Unbounded

21. (a) All points in the xy-plane (b) All reals
(c) For ƒ(x, y) = 0, the x- and y-axes; for ƒ(x, y) ≠ 0, hyperbo-

las with the x- and y-axes as asymptotes
(d) No boundary points (e) Both open and closed
(f ) Unbounded

23. (a) All (x, y) satisfying x2 + y2 6 16 (b) z Ú 1>4
(c) Circles centered at the origin with radii r 6 4
(d) Boundary is the circle x2 + y2 = 16
(e) Open (f) Bounded

25. (a) (x, y) ≠ (0, 0) (b) All reals
(c) The circles with center (0, 0) and radii r 7 0
(d) Boundary is the single point (0, 0)
(e) Open (f) Unbounded

27. (a) All (x, y) satisfying -1 … y - x … 1
(b) -p>2 … z … p>2
(c) Straight lines of the form y - x = c where -1 … c … 1
(d) Boundary is two straight lines y = 1 + x and y = -1 + x
(e) Closed (f) Unbounded

29. (a) Domain: all points (x, y) outside the circle x2 + y2 = 1
(b) Range: all reals
(c) Circles centered at the origin with radii r 7 1
(d) Boundary: x2 + y2 = 1
(e) Open (f) Unbounded

31. (f) 33. (a) 35. (d)

37. (a)

z = y2

z

x

y

(b)

z = 4
z = 1

z = 1
z = 4

z = 0
x

y
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39. (a)
z = x2 + y2

z

x

y

(b)

z = 4

z = 1

1 2

z = 0

–1–2
x

y

41. (a)
z

z = x2 – y

y

x

(b)

1

0

–1

3

2

–2

–3

y

x

z = –3

z = –2

z = –1

z = 0

z = 1

z = 2

z = 3

43. (a)
z = 4x2 + y2

2
4

16

2
4

1

0

z

x

y

(b)
4

1

2

2

z = 0

z = 16

z = 4

x

y

45. (a)

z = 1 – 0 y 0

(0, 0, 1)

1

z

x

y

(b)

z = 1
1

0

z = 0

z = –1
2

z = 0

z = –1
–1

–2

x

y

47. (a)
z

2

y

x

z = x2 + y2 + 4
Î

(b)
y

x

1

3

4

2

–3 –2 –1

–1

–2

–3

–4

1 42 3–4

z = 2

z  = 
Î

20

z =
Î

13

z =
Î

8

z =
Î

5

57.

1 1

f (x, y, z) = x2 + y2 = 1

z

x

y

49. x2 + y2 = 10
y

xÎ

10

Î

10

–
Î

10

–
Î

10

51. x + y2 = 4

2

–2

y

4
x

53.

f(x, y, z) = x2 + y2 + z2 = 1

1
1

1

z

x

y

55.

f (x, y, z) = x + z = 1

1

1

z

x

y

59.

f(x, y, z) = z – x2 – y2 = 1
or z = x2 + y2 + 1 

2

1
1

1

5

2

z

x y

61. 2x - y - ln z = 2 63. x2 + y2 + z2 = 4
65. Domain: all points (x, y)

satisfying 0 x � 6 � y 0
y = x

y = –x

y

x

level curve: y = 2x

67.  Domain: all points (x, y)
satisfying -1 … x … 1 and 
-1 … y … 1

y

x

1

–1

1–1

level curve: 
sin-1 y - sin-1 x = p

2

Section 14.2, pp. 807–810
1. 5 >2 3. 226 5. 1 7. 1 >2 9. 1

11. 1>4 13. 0 15. -1 17. 2 19. 1 >4
21. 1 23. 3 25. 19>12 27. 2 29. 3
31. (a) All (x, y) (b) All (x, y) except (0, 0)
33. (a) All (x, y) except where x = 0 or y = 0 (b) All (x, y)
35. (a) All (x, y, z)

(b) All (x, y, z) except the interior of the cylinder x2 + y2 = 1
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41.
0ƒ
0x = 1 + y, 

0ƒ
0y = 1 + x, 

02ƒ

0x2 = 0, 
02ƒ

0y2 = 0, 
02ƒ
0y 0x =

02ƒ
0x 0y = 1

43.
0g
0x = 2xy + y cos x, 

0g
0y = x2 - sin y + sin x,

02g

0x2 = 2y - y sin x,  
02g

0y2 = -cos y,

02g
0y 0x =

02g
0x 0y = 2x + cos x

45.
0r
0x = 1

x + y , 
0r
0y = 1

x + y , 
02r
0x2 = -1

(x + y)2 , 
02r
0y2 = -1

(x + y)2 ,

02r
0y 0x = 02r

0x 0y = -1
(x + y)2

47.
0w
0x = x2y sec2 (xy) + 2x tan (xy), 

0w
0y = x3 sec2 (xy),

02w
0y 0x = 02w

0x 0y = 2x3y sec2 (xy) tan (xy) + 3x2 sec2(xy)

02w
0x2 = 4xy sec2 (xy) + 2x2y2 sec2 (xy) tan (xy) + 2 tan (xy)

02w
0y2 = 2x4 sec2 (xy) tan (xy)

49.
0w
0x = sin (x2y) + 2x2y cos (x2y), 

0w
0y = x3 cos (x2y),

02w
0y 0x = 02w

0x 0y = 3x2 cos (x2y) - 2x4y sin (x2y)

02w
0x2 = 6xy cos (x2y) - 4x3y2 sin (x2y)

02w
0y2 = -x5 sin (x2y)

51.
0w
0x = 2

2x + 3y
, 
0w
0y = 3

2x + 3y
, 
02w
0y 0x = 02w

0x 0y = -6
(2x + 3y)2

53.
0w
0x = y2 + 2xy3 + 3x2y4, 

0w
0y = 2xy + 3x2y2 + 4x3y3,

02w
0y 0x = 02w

0x 0y = 2y + 6xy2 + 12x2y3

55. (a) x first (b) y first (c) x first
(d) x first (e) y first (f) y first

57. ƒx(1, 2) = -13, ƒy(1, 2) = -2

59. ƒx (-2, 3) = 1>2, ƒy (-2, 3) = 3>4 61. (a) 3 (b) 2

63. 12 65. -2 67.
0A
0a = a

bc sin A
, 
0A
0b = ccos A - b

bc sin A

69. yx = lny
(ln u)(lny) - 1

71. ƒx (x, y) = 0 for all points (x, y),

ƒy (x, y) = e 3y2, y Ú 0

-2y, y 6 0
,

ƒxy (x, y) = ƒyx (x, y) = 0 for all points (x, y)

89. Yes

Section 14.4, pp. 828–830

1. (a)
dw
dt

= 0, (b)
dw
dt

 (p) = 0

3. (a)
dw
dt

= 1, (b)
dw
dt

 (3) = 1

37. (a) All (x, y, z) with z ≠ 0 (b) All (x, y, z) with x2 + z2 ≠ 1
39. (a) All points (x, y, z) satisfying z 7 x2 + y2 + 1

(b) All points (x, y, z) satisfying z ≠ 2x2 + y2

41. Consider paths along y = x, x 7 0, and along y = x, x 6 0.
43. Consider the paths y = kx2, k a constant.
45. Consider the paths y = mx, m a constant, m ≠ -1.
47. Consider the paths y = kx2, k a constant, k ≠ 0.
49. Consider the paths x = 1 and y = x.
51. (a) 1 (b) 0 (c) Does not exist
55. The limit is 1.  57. The limit is 0.
59. (a) ƒ(x, y) � y=mx = sin 2u where tanu = m 61.  0
63. Does not exist  65. p>2 67. ƒ(0, 0) = ln 3
69. d = 0.1 71. d = 0.005 73. d = 0.04
75. d = 20.015 77. d = 0.005

Section 14.3, pp. 819–821

1.
0ƒ
0x = 4x, 

0ƒ
0y = -3 3.

0ƒ
0x = 2x(y + 2), 

0ƒ
0y = x2 - 1

5.
0ƒ
0x = 2y(xy - 1), 

0ƒ
0y = 2x(xy - 1)

7.
0ƒ
0x = x

2x2 + y2
, 
0ƒ
0y =

y

2x2 + y2

9.
0ƒ
0x = -1

(x + y)2 , 
0ƒ
0y = -1

(x + y)2

11.
0ƒ
0x =

-y2 - 1

(xy - 1)2 , 
0ƒ
0y = -x2 - 1

(xy - 1)2

13.
0ƒ
0x = ex+y+1, 

0ƒ
0y = ex+y+1 15.

0ƒ
0x = 1

x + y , 
0ƒ
0y = 1

x + y

17.
0ƒ
0x = 2 sin (x - 3y) cos (x - 3y), 

0ƒ
0y = -6 sin (x - 3y) cos (x - 3y)

19.
0ƒ
0x = yxy-1, 

0ƒ
0y = xy ln x 21.

0ƒ
0x = -g(x), 

0ƒ
0y = g(y)

23. ƒx = y2, ƒy = 2xy, ƒz = -4z

25. ƒx = 1, ƒy = -y(y2 + z2)-1>2, ƒz = -z(y2 + z2)-1>2

27. ƒx =
yz

21 - x2y2z2
, ƒy = xz

21 - x2y2z2
, ƒz =

xy

21 - x2y2z2

29. ƒx = 1
x + 2y + 3z

, ƒy = 2
x + 2y + 3z

, ƒz = 3
x + 2y + 3z

31. ƒx = -2xe-(x2+y2+ z2), ƒy = -2ye-(x2+y2+ z2), ƒz = -2ze-(x2+y2+ z2)

33. ƒx = sech2(x + 2y + 3z), ƒy = 2 sech2(x + 2y + 3z), 

ƒz = 3 sech2(x + 2y + 3z)

35.
0ƒ
0t = -2p sin (2pt - a),

0ƒ
0a = sin (2pt - a)

37.
0h
0r = sinfcosu, 

0h
0f = rcosfcosu, 

0h
0u = -r sinf sinu

39. WP(P, V, d, y, g) = V, WV(P, V, d, y, g) = P + dy
2

2g
,

Wd(P, V, d, y, g) = Vy2

2g
, Wy(P, V, d, y, g) = Vdy

g ,

Wg(P, V, d, y, g) = - Vdy2

2g2
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21.
0w
0s = dw

du
0u
0s, 

0w
0t = dw

du
0u
0t

w

u

s

w

u

t

du
dw

du
dw

's
'u

't
'u

23.
0w
0r = 0w

0x
0x
0r + 0w

0y
0y
0r = 0w

0x
0x
0r since 

0y
0r = 0,

0w
0s = 0w

0x
0x
0s + 0w

0y
0y
0s = 0w

0y
0y
0s since 

0x
0s = 0

yx

w

r

yx

w

s

'r
'x

'r
'y

'x
'w

'x
'w

'y
'w

'y
'w

= 0 's
'x

's
'y

= 0

25. 4 >3 27. -4>5 29.
0z
0x = 1

4
, 
0z
0y = - 3

4

31.
0z
0x = -1, 

0z
0y = -1 33. 12 35. -7

37.
0z
0u = 2, 

0z
0y = 1 39.

0w
0t = 2t es3+ t2

, 
0w
0s = 3s2 es3+ t2

41. -0.00005 amp>sec

47. (cos 1, sin 1, 1) and (cos(-2), sin(-2), -2)

49. (a) Maximum at ¢- 22
2

, 
22
2

≤  and ¢22
2

, - 22
2

≤; minimum 

at ¢22
2

, 
22
2

≤  and ¢- 22
2

, - 22
2

≤
  (b) Max = 6, min = 2

51. 2x2x8 + x3 +
L

x2

0

3x2

22t4 + x3
  dt

Section 14.5, p. 888
1.

(2, 1)

2

y – x = –1

1

1

2

0
–1

∇f = – i + j

x

y

5. (a)
dw
dt

= 4t tan-1 t + 1, (b)
dw
dt

(1) = p + 1

7. (a)
0z
0u = 4 cos y ln (u sin y) + 4 cos y,

0z
0y = -4u sin y ln (u sin y) + 4u cos2 y

sin y

(b)
0z
0u = 22 (ln 2 + 2), 

0z
0y = -222 (ln 2 - 2)

9. (a)
0w
0u = 2u + 4uy, 

0w
0y = -2y + 2u2

(b)
0w
0u = 3, 

0w
0y = - 3

2

11. (a)
0u
0x = 0, 

0u
0y = z

(z - y)2, 
0u
0z =

-y

(z - y)2

(b)
0u
0x = 0, 

0u
0y = 1, 

0u
0z = -2

13.
dz
dt

= 0z
0x

dx
dt

+ 0z
0y

dy
dt

yx

z

t

dt
dx

dt
dy

'x
'z

'y
'z

15.
0w
0u = 0w

0x
0x
0u + 0w

0y
0y
0u + 0w

0z
0z
0u , 

0w
0y = 0w

0x
0x
0y + 0w

0y
0y
0y + 0w

0z
0z
0y

zx

w

y

y
 

zx

w

u

 

y

'x
'w

'z
'w

'u
'x

'u
'z'u

'y

'y
'w 'x

'w
'z
'w

'y
'x

'y
'z'y

'y

'y
'w

17.
0w
0u = 0w

0x
0x
0u + 0w

0y
0y
0u , 

0w
0y = 0w

0x
0x
0y + 0w

0y
0y
0y .

yx

w

u

yx

w

y

'x
'w

'y
'w

'u
'x

'u
'y

'x
'w

'y
'w

'y
'x

'y
'y

19.
0z
0t = 0z

0x
0x
0t + 0z

0y
0y
0t , 

0z
0s = 0z

0x
0x
0s + 0z

0y
0y
0s

yx

z

t

yx

z

s

'x
'z

'y
'z

't
'x

't
'y

'x
'z

'y
'z

's
'x

's
'y

3. y

(2, –1)
x

2

y2
x =

∇f = i – 4j

5.

4 = 2x + 3y

(–1, 2)

x

y

1
2

∇f = i + 3
4

j

4
3

2
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25. (a) L(x, y) = 1 (b) L(x, y) = 2x + 2y - 1

27. (a) L(x, y) = 3x - 4y + 5

(b) L(x, y) = 3x - 4y + 5

29. (a) L(x, y) = 1 + x (b) L(x, y) = -y + p
2

31. (a) W(20, 25) = 11°F, W(30, -10) = -39°F, W(15, 15) = 0°F
(b) W(10, -40) ≈ -65.5°F, W(50, -40) ≈ -88°F,

   W(60, 30) ≈ 10.2°F
(c) L(y, T) ≈ -0.36 (y - 25) + 1.337(T - 5) - 17.4088

(d) i) L(24, 6) ≈ -15.7°F
   ii) L(27, 2) ≈ -22.1°F

iii) L(5, -10) ≈ -30.2°F
33. L(x, y) = 7 + x - 6y; 0.06 35. L(x, y) = x + y + 1; 0.08

37. L(x, y) = 1 + x; 0.0222

39. (a) L(x, y, z) = 2x + 2y + 2z - 3 (b) L(x, y, z) = y + z

(c) L(x, y, z) = 0

41. (a) L(x, y, z) = x (b) L(x, y, z) = 1

22
x + 1

22
y

(c) L(x, y, z) = 1
3

x + 2
3

y + 2
3

z

43. (a) L(x, y, z) = 2 + x

(b) L(x, y, z) = x - y - z + p
2

+ 1

(c) L(x, y, z) = x - y - z + p
2

+ 1

45. L(x, y, z) = 2x - 6y - 2z + 6, 0.0024
47. L(x, y, z) = x + y - z - 1, 0.00135
49. Maximum error (estimate) …0.31 in magnitude
51. Pay more attention to the smaller of the two dimensions. It will 

generate the larger partial derivative.
53. f is most sensitive to a change in d.

Section 14.7, pp. 855–857
1. ƒ(-3, 3) = -5, local minimum  3. ƒ(-2, 1), saddle point

5. ƒa3, 
3
2
b = 17

2
, local maximum

7. ƒ(2, -1) = -6, local minimum  9.  ƒ(1, 2), saddle point

11. ƒa16
7

, 0b = - 16
7

, local maximum

13.  ƒ(0, 0), saddle point; ƒa- 2
3

, 
2
3
b = 170

27
, local maximum

15. ƒ(0, 0) = 0, local minimum; ƒ(1, -1), saddle point
17. ƒ(0, {25), saddle points; ƒ(-2, -1) = 30, local maximum; 

ƒ(2, 1) = -30, local minimum
19. ƒ(0, 0), saddle point; ƒ(1, 1) = 2, ƒ(-1, -1) = 2, local maxima
21. ƒ(0, 0) = -1, local maximum
23. ƒ(np, 0), saddle points, for every integer n
25. ƒ(2, 0) = e-4, local minimum
27. ƒ(0, 0) = 0, local minimum; ƒ(0, 2), saddle point

29. ƒa1
2

, 1b = lna1
4
b - 3, local maximum

31. Absolute maximum: 1 at (0, 0); absolute minimum: -5 at (1, 2)
33. Absolute maximum: 4 at (0, 2); absolute minimum: 0 at (0, 0)
35. Absolute maximum: 11 at (0, -3); absolute minimum: -10 at 

(4, -2)

7. ∇ƒ = 3i + 2j - 4k 9. ∇ƒ = - 26
27

  i + 23
54

  j - 23
54

  k

11. -4 13. 21 >13 15. 3 17. 2

19. u = - 1

22
  i + 1

22
  j, (Duƒ)P0

= 22; -u = 1

22
  i - 1

22
  j,

 (D−uƒ)P0
= -22

21. u = 1

323
  i - 5

323
  j - 1

323
  k, (Duƒ)P0

= 323;

-u = - 1

323
  i + 5

323
  j + 1

323
  k, (D-uƒ)P0

= -323

23. u = 1

23
 (i + j + k), (Duƒ)P0

= 223;

-u = - 1

23
 (i + j + k), (D-uƒ)P0

= -223

25.

x2 + y2 = 4

2

2

∇f = 2
Î

2i + 2
Î

2j

(
Î

2,
Î

2)

y = –x + 2
Î

2

x

y 27.

y = x – 4
xy = –4

2

–2
(2, –2)

x

y

∇f = –2i + 2j

29. (a) u = 3
5

i - 4
5

j, Du ƒ(1, -1) = 5

(b) u = - 3
5

i + 4
5

j, Du ƒ(1, -1) = -5

(c) u = 4
5

i + 3
5

j, u = - 4
5

i - 3
5

j

(d) u = - j, u = 24
25

i - 7
25

j

(e) u = - i, u = 7
25

i + 24
25

j

31. u = 7

253
  i - 2

253
  j, -u = - 7

253
  i + 2

253
  j

33. No, the maximum rate of change is 2185 6 14.

35. -7>25

Section 14.6, pp. 845–848
1. (a) x + y + z = 3

(b) x = 1 + 2t, y = 1 + 2t, z = 1 + 2t
3. (a) 2x - z - 2 = 0

(b) x = 2 - 4t, y = 0, z = 2 + 2t
5. (a) 2x + 2y + z - 4 = 0

(b) x = 2t, y = 1 + 2t, z = 2 + t
7. (a) x + y + z - 1 = 0 (b) x = t, y = 1 + t, z = t
9. 2x - z - 2 = 0 11. x - y + 2z - 1 = 0

13. x = 1, y = 1 + 2t, z = 1 - 2t

15. x = 1 - 2t, y = 1, z = 1
2

+ 2t

17. x = 1 + 90t, y = 1 - 90t, z = 3

19. dƒ = 9
11,830

≈ 0.0008 21. dg = 0

23. (a)
23
2

sin23 - 1
2

cos23 ≈ 0.935°C>ft
(b) 23 sin23 - cos23 ≈ 1.87°C>sec
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Section 14.9, p. 870

1. Quadratic: x + xy; cubic: x + xy + 1
2

xy2

3. Quadratic: xy; cubic: xy

5. Quadratic: y + 1
2

(2xy - y2);

  cubic: y + 1
2

(2xy - y2) + 1
6

(3x2y - 3xy2 + 2y3)

7. Quadratic:
1
2

(2x2 + 2y2) = x2 + y2; cubic: x2 + y2

9. Quadratic: 1 + (x + y) + (x + y)2;

  cubic: 1 + (x + y) + (x + y)2 + (x + y)3

11. Quadratic: 1 - 1
2

x2 - 1
2

y2; E(x, y) … 0.00134

Section 14.10, pp. 874–875
1. (a) 0 (b) 1 + 2z (c) 1 + 2z

3. (a)
0U
0P + 0U

0T a V
nR
b (b)

0U
0P anR

V
b + 0U

0T

5. (a) 5 (b) 5 7. a0x0rb
u

= cosu a0r0xb y
= x

2x2 + y2

Practice Exercises, pp. 876–879
1. Domain: all points in the xy-plane; range: z Ú 0. Level curves 

are ellipses with major axis along the y-axis and minor axis along 
the x-axis.

1–1

–3

3

z = 9

x

y

3. Domain: all (x, y) such that x ≠ 0 and y ≠ 0; range: z ≠ 0.
Level curves are hyperbolas with the x- and y-axes as asymptotes.

z = 1

x

y

5. Domain: all points in xyz-space; range: all real numbers. Level 
surfaces are paraboloids of revolution with the z-axis as axis.

1

f(x, y, z) = x2 + y2 – z = –1
or
z = x2 + y2 + 1

z

x

y

37. Absolute maximum: 4 at (2, 0); absolute minimum: 
322

2
 at 

a3, - p
4
b , a3,

p

4
b , a1, - p

4
b , and a1,

p

4
b

39. a = -3, b = 2

41. Hottest is 2
1
4
° at a- 1

2
,
23
2
b  and a- 1

2
, - 23

2
b ; coldest is 

- 1
4
° at a1

2
, 0b .

43. (a) ƒ(0, 0), saddle point (b) ƒ(1, 2), local minimum

(c) ƒ(1, -2), local minimum; ƒ(-1, -2), saddle point

49. a1
6

,
1
3

,
355
36
b 51. a9

7
,

6
7

,
3
7
b 53. 3, 3, 3  55. 12

57. 4

23
* 4

23
* 4

23
59. 2 ft * 2 ft * 1 ft

61. (a) On the semicircle, max ƒ = 222 at t = p>4, min ƒ = -2
at t = p. On the quarter circle, max ƒ = 222 at t = p>4,
min ƒ = 2 at t = 0, p>2.

(b) On the semicircle, max g = 2 at t = p>4, min g = -2 at 
t = 3p>4. On the quarter circle, max g = 2 at t = p>4,
min g = 0 at t = 0, p>2.

(c) On the semicircle, max h = 8 at t = 0, p; min h = 4
at t = p>2. On the quarter circle, max h = 8 at t = 0,
min h = 4 at t = p>2.

63. i) min ƒ = -1>2 at t = -1>2; no max
 ii) max ƒ = 0 at t = -1, 0; min ƒ = -1>2 at t = -1>2
iii) max ƒ = 4 at t = 1; min ƒ = 0 at t = 0

67. y = - 20
13

x + 9
13

, y � x=4 = - 71
13

Section 14.8, pp. 864–866

1. ¢{ 1

22
,

1
2
≤, ¢{ 1

22
, - 1

2
≤ 3. 39 5. 13, {3222

7. (a) 8 (b) 64
9. r = 2 cm, h = 4 cm 11. Length = 422, width = 322

13. ƒ(0, 0) = 0 is minimum; ƒ(2, 4) = 20 is maximum.
15. Lowest = 0°, highest = 125°

17. a3
2

, 2,
5
2
b 19. 1 21. (0, 0, 2), (0, 0, -2)

23. ƒ(1, -2, 5) = 30 is maximum; ƒ(-1, 2, -5) = -30 is minimum.

25. 3, 3, 3  27. 2

23
by

2

23
by

2

23
units

29. ({4>3, -4>3, -4>3) 31. ≈24,322 units

33. U(8, 14) = +128 37. ƒ(2>3, 4>3, -4>3) = 4
3

39. (2, 4, 4)  41. Maximum is 1 + 623 at 1{26, 23, 12;
minimum is 1 - 623 at 1{26, -23, 12.

43. Maximum is 4 at (0, 0, {2); minimum is 2 at 1{22, {22, 02.
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45.
x2 + y + z2 = 0

∇f 0 (0, –1, 1) = j + 2k

∇f 0 (0, –1, –1) = j – 2k

∇f 0 (0, 0, 0) = j
1

–1

z

x

y

47. Tangent: 4x - y - 5z = 4; normal line: 
x = 2 + 4t, y = -1 - t, z = 1 - 5t

49. 2y - z - 2 = 0
51. Tangent: x + y = p + 1; normal line: y = x - p + 1

2

2

y = –x + p + 1

y = x – p + 1

y = 1 + sin x

0

1

1
x

y

p

53. x = 1 - 2t, y = 1, z = 1>2 + 2t
55. Answers will depend on the upper bound used for 

�ƒxx � , �ƒxy � , �ƒyy � . With M = 22>2, �E � … 0.0142. With 
M = 1, �E � … 0.02.

57. L(x, y, z) = y - 3z, L(x, y, z) = x + y - z - 1
59. Be more careful with the diameter.
61. dI = 0.038, % change in I = 15.83,, more sensitive to voltage 

change
63. (a) 5% 65. Local minimum of -8 at (-2, -2)
67. Saddle point at (0, 0), ƒ(0, 0) = 0; local maximum of 1 >4 at 

(-1>2, -1>2)
69. Saddle point at (0, 0), ƒ(0, 0) = 0; local minimum of -4 at 

(0, 2); local maximum of 4 at (-2, 0); saddle point at (-2, 2),
ƒ(-2, 2) = 0

71. Absolute maximum: 28 at (0, 4); absolute minimum: -9>4 at 
(3 >2, 0)

73. Absolute maximum: 18 at (2, -2); absolute minimum: -17>4 at 
(-2, 1>2)

75. Absolute maximum: 8 at (-2, 0); absolute minimum: -1 at (1, 0)
77. Absolute maximum: 4 at (1, 0); absolute minimum: -4 at (0, -1)
79. Absolute maximum: 1 at (0, {1) and (1, 0); absolute minimum: 

-1 at (-1, 0)
81. Maximum: 5 at (0, 1); minimum: -1>3 at (0, -1>3)

83. Maximum: 23 at ¢ 1

23
, - 1

23
, 

1

23
≤; minimum: -23 at 

¢- 1

23
, 

1

23
, - 1

23
≤

85. Width = ¢c2V
ab

≤1>3
, depth = ¢b2V

ac ≤1>3
, height = ¢a2V

bc
≤1>3

7. Domain: all (x, y, z) such that (x, y, z) ≠ (0, 0, 0); range: positive 
real numbers. Level surfaces are spheres with center (0, 0, 0) and 
radius r 7 0.

1 1

h(x, y, z) =                     = 1
or
x2 + y2 + z2 = 1

1

1
x2 + y2 + z2z

x y

9. -2 11. 1 >2 13. 1 15. Let y = kx2, k ≠ 1

17. No; lim(x,y)S(0,0) ƒ(x, y) does not exist.

19.
0g
0r = cos u + sin u, 

0g
0u = -r sin u + r cos u

21.
0ƒ
0R1

= - 1
R1

2 , 
0ƒ
0R2

= - 1
R2

2 , 
0ƒ
0R3

= - 1
R3

2

23.
0P
0n = RT

V
, 
0P
0R = nT

V
, 
0P
0T = nR

V
, 
0P
0V = - nRT

V2

25.
02g

0x2 = 0, 
02g

0y2 = 2x
y3 , 

02g
0y 0x =

02g
0x 0y = - 1

y2

27.
02ƒ

0x2 = -30x + 2 - 2x2

(x2 + 1)2
, 
02ƒ

0y2 = 0, 
02ƒ
0y 0x =

02ƒ
0x 0y = 1

29.
dw
dt

2
t=0

= -1

31.
0w
0r

2
(r, s)= (p, 0)

= 2, 
0w
0s

2
(r, s)= (p, 0)

= 2 - p

33.
dƒ
dt

2
t=1

= - (sin 1 + cos 2)(sin 1) + (cos 1 + cos 2)(cos 1)

    - 2(sin 1 + cos 1)(sin 2)

35.
dy
dx

2
(x, y)= (0,1)

= -1

37. Increases most rapidly in the direction u = - 22
2

  i - 22
2

  j; 

decreases most rapidly in the direction -u = 22
2

  i + 22
2

  j;

Duƒ = 22
2

; D-uƒ = - 22
2

; Du1
ƒ = - 7

10
 where u1 = v

�v �

39. Increases most rapidly in the direction u = 2
7

  i + 3
7

  j + 6
7

  k; 

decreases most rapidly in the direction -u = - 2
7

  i - 3
7

  j - 6
7

  k;

Duƒ = 7; D-uƒ = -7; Du1
ƒ = 7 where u1 = v

�v �
41. p>22
43. (a) ƒx(1, 2) = ƒy(1, 2) = 2 (b) 14 >5
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11. (a) 0 … x … 3, x2 … y … 3x

(b) 0 … y … 9, 
y
3

… x … 2y

13. (a) 0 … x … 9, 0 … y … 2x
  (b) 0 … y … 3, y2 … x … 9
15. (a) 0 … x … ln 3, e-x … y … 1

  (b) 1
3

… y … 1, - ln y … x … ln 3

17. (a) 0 … x … 1, x … y … 3 - 2x

  (b) 0 … y … 1, 0 … x … y ∪  1 … y … 3, 0 … x …
3 - y

2

19.
p2

2
+ 2 21. 8 ln 8 - 16 + e

0
x

y

p

p

(p, p)

1

ln ln 8

(ln ln 8, ln 8)

x = ln y

0

ln 8

x

y

23. e - 2

1

1

(1, 1)

x = y2

0
x

y

25.
3
2

ln 2 27. -1>10

29. 8 31. 2p

(2, −2)

y = p

2−2

−2(−2, −2)

y = −p

p

y

2

1

(p�3, 2)(−p�3, 2)
u = sec t

t

u

p
3

p
3

−

33.
L

4

2 L

(4-y)>2

0
dx dy 35.

L

1

0 L

x

x2

dy dx

2

4

1

y = 4 − 2x

0

(1, 2)

x

y

1

1

(1, 1)

y = x

y = x2

0
x

y

87. Maximum:
3
2

 at ¢ 1

22
, 

1

22
, 22≤  and ¢- 1

22
, - 1

22
, -22≤; 

minimum:
1
2

 at ¢- 1

22
, 

1

22
, -22≤  and ¢ 1

22
, - 1

22
, 22≤

89.
0w
0x = cos u

0w
0r - sin u

r   
0w
0u , 

0w
0y = sin u

0w
0r + cosu

r   
0w
0u

95. (t, - t { 4, t), t a real number

101. (a) (2y + x2z)eyz (b) x2eyzay - z
2y
b (c) (1 + x2y)eyz

Additional and Advanced Exercises, pp. 879–881
1. ƒxy(0, 0) = -1, ƒyx(0, 0) = 1

7. (c) r2

2
= 1

2
(x2 + y2 + z2) 13. V = 23abc

2

17. ƒ(x, y) =
y
2

+ 4, g(x, y) = x
2

+ 9
2

19. y = 2 ln � sin x � + ln 2

21. (a) 1

253
 (2i + 7j) (b) -1

229,097
 (98i - 127j + 58k)

23. w = e-c2p2t sinpx

Chapter 15
Section 15.1, pp. 886–887

1. 24  3. 1  5. 16  7. 2 ln 2 - 1 9. (3>2)(5 - e)
11. 3>2 13. ln 2  15. 14  17. 0  19. 1>2
21. 2 ln 2  23. (ln 2)2 25. 8>3 27. 1  29. 22

31. 2>27 33.
3
2

 ln 3 - 1 35. (a) 1>3 (b) 2>3
Section 15.2, pp. 894–896

1. 3.

y = 2x

3

6

y

x

2

−2

y

4
x

x = y2

5. 7.

1

y

y = ex

y = e

e

x

1

y

x = sin−1y

p
2

x

9. (a) 0 … x … 2, x3 … y … 8
  (b) 0 … y … 8, 0 … x … y1>3
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57. 4 >3 59. 625 >12 61. 16  63. 20 65. 2(1 + ln 2)
67.

3

2

y

x

1

z

2

3

y

x

z = 1 − x −1
3

y1
2

69. 1  71. p2 73. - 3
32

75.
2023

9

77.
L

1

0 L

2-x

x

(x2 + y2) dy dx = 4
3

y =
x

y =
 2 −

x
1

2

1
x

y

79. R is the set of points (x, y) such that x2 + 2y2 6 4.
81. No, by Fubini’s Theorem, the two orders of integration must give 

the same result.  
85. 0.603  87. 0.233

Section 15.3, p. 899

1.
L

2

0 L

2-x

0
dy dx = 2  or 3.

L

1

-2L

-y2

y-2
dx dy = 9

2

L

2

0 L

2-y

0
dx dy = 2

y = 2 − x

2

20
x

y

1

0

(−4, −2)

y = x + 2

−2−4

−2

(−1, 1)

x = −y2

x

y

5.
L

ln2

0 L

ex

0
dy dx = 1 7.

L

1

0 L

2y-y2

y2

dx dy = 1
3

1

ln 2

(ln 2, 2)
y = e x

0
x

y

1

1

(1, 1)

x = 2y − y2

x = y2

0
x

y

37.
L

e

1 L

1

lny
dx dy 39.

L

9

0 L

129-y2>2
0

16x dx dy

1

1

(1, 1)

y = ex

0

e (1, e)

x

y

y = 9 − 4x2

9

0
x

y

3
2

41.
L

1

-1L

21-x2

0
3y dy dx 43.

L

1

0 L

e

ey

xy dx dy

x2 + y2 = 1

1−1

1

0
x

y

1

y

y = ln x

e
x

45.
L

e3

1 L

3

ln x
 (x + y) dy dx 47. 2

y

x = eyx = 1

3

e31
x

y = x

0

(p, p)p

p
x

y

49.
e - 2

2
51. 2

0

(1, 1)1

1

x = y

x

y

y = 2x

0
Î

ln 3

2
Î

ln 3 (
Î

ln 3, 2
Î

ln 3)

x

y

53. 1>(80p) 55. -2>3

Q ,   R

0

y = x4

x

y

1
16

1
2

1
16

1
2

x + y = 1−x + y = 1

−x − y = 1 x − y = 1

1

1

−1

−1
x

y
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Section 15.4, pp. 904–906

1.
p

2
… u … 2p, 0 … r … 9 3.

p

4
… u … 3p

4
, 0 … r … csc u

5. 0 … u … p
6

, 1 … r … 223 sec u;

p

6
… u … p

2
, 1 … r … 2 csc u

7. -p
2

… u … p
2

, 0 … r … 2 cos u 9.
p

2
11. 2p 13. 36  15. 2 - 23 17. (1 - ln 2) p

19. (2 ln 2 - 1) (p>2) 21.
2 11 + 222

3

23.

1

1

y

x

y =
Î

1 − x2 or x =
Î

1 − y2

L

1

0 L

21-x2

0
xy dy dx  or  

L

1

0 L

21-y2

0
xy dx dy

25.

2

2

y

x

y = x

x = 2

L

2

0 L

x

0
y2 (x2 + y2) dy dx  or  

L

2

0 L

2

y
y2 (x2 + y2) dx dy

27. 2(p - 2) 29. 12p 31. (3p>8) + 1 33.
2a
3

35.
2a
3

37. 2p12 - 2e2 39. 4
3

+ 5p
8

41. (a)
2p

2
(b) 1 43. p ln 4, no  45. 1

2
(a2 + 2h2)

47.
8
9

 (3p - 4)

Section 15.5, pp. 912–915
1. 1 >6
3.

L

1

0 L

2-2x

0 L

3-3x-3y>2

0
dz dy dx, 

L

2

0 L

1-y>2

0 L

3-3x-3y>2

0
dz dx dy,

L

1

0 L

3-3x

0 L

2-2x-2z>3

0
dy dz dx, 

L

3

0 L

1- z>3

0 L

2-2x-2z>3

0
dy dx dz,

L

2

0 L

3-3y>2

0 L

1-y>2- z>3

0
dx dz dy,

L

3

0 L

2-2z>3

0 L

1-y>2- z>3

0
dx dy dz.

The value of all six integrals is 1.  

9.
L

2

0 L

3y

y
1 dx dy = 4  or

L

2

0 L

x

x>3
1 dy dx +

L

6

2 L

2

x>3
1 dy dx = 4

y = x

y = 2

2 6

2

y

x

y = x1
3

11.
L

1

0 L

2x

x>2
 1 dy dx +

L

2

1 L

3-x

x>2
 1 dy dx = 3

2
or

L

1

0 L

2y

y>2
 1 dx dy +

L

2

1 L

3-y

y>2
 1 dx dy = 3

2

y = 2x or x = y1
2

or x = 2yy = x1
2

y

x

y = 3 − x or x = 3 − y

1

2

3

1 2 3

13. 12   15. 22 - 1

12

6

0

(12, 6)y2 = 3x

y =

NOT TO SCALE

x
2

x

y

y = sin x

y = cos x

(p�4, Î2/2)

0

2
Î2

p
4

x

y

17.
3
2

y = −2x
y = 1 − x

(−1, 2)

(2, −1)

y = −

2

2

(0, 0)

x
2

x

y

19. (a) 0 (b) 4>p2 21. 8 >3 23. p - 2
25. 40,000(1 - e-2) ln (7>2) ≈ 43,329
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Section 15.7, pp. 930–934

1.
4p122 - 12

3
3.

17p
5

5. p1622 - 82 7.
3p
10

9. p>3
11. (a)

L

2p

0 L

1

0 L

24- r2

0
r dz dr du

  (b)
L

2p

0 L

23

0 L

1

0
r dr dz du +

L

2p

0 L

2

23L

24- z2

0
r dr dz du

  (c)
L

1

0 L

24- r2

0 L

2p

0
r du dz dr

13.
L

p>2

-p>2L

cos u

0 L

3r2

0
ƒ(r, u, z) dz r dr du

15.
L

p

0 L

2 sin u

0 L

4- r sin u

0
ƒ(r, u, z) dz r dr du

17.
L

p>2

-p>2L

1+cos u

1 L

4

0
ƒ(r, u, z) dz r dr du

19.
L

p>4

0 L

secu

0 L

2- r sin u

0
ƒ(r, u, z) dz r dr du 21. p2

23. p>3 25. 5p 27. 2p 29. a8 - 522
2

bp

31. (a)
L

2p

0 L

p>6

0 L

2

0
r2 sin f dr df du +

   
L

2p

0 L

p>2

p>6 L

cscf

0
r2 sin f dr df du

  (b)
L

2p

0 L

2

1 L

sin-1(1>r)

p>6
r2 sin f df dr du +

   
L

2p

0 L

2

0 L

p>6

0
r2 sin f df dr du +

   
L

2p

0 L

1

0 L

p>2

p>6
r2 sin f df dr du

33.
L

2p

0 L

p>2

0 L

2

cosf
r2 sin f dr df du = 31p

6

35.
L

2p

0 L

p

0 L

1-cosf

0
r2 sin f dr df du = 8p

3

37.
L

2p

0 L

p>2

p>4 L

2 cos f

0
r2 sin f dr df du = p

3

39. (a) 8
L

p>2

0 L

p>2

0 L

2

0
r2 sin f dr df du

  (b) 8
L

p>2

0 L

2

0 L

24- r2

0
r dz dr du

  (c) 8
L

2

0 L

24-x2

0 L

24-x2-y2

0
dz dy dx

5.
L

2

-2L

24-x2

-24-x2L

8-x2-y2

x2+y2

1 dz dx dy,
L

2

-2L

24-y2

-24-y2L

8-x2-y2

x2+y2

1 dz dx dy,

L

2

-2L

8-y2

4 L

28- z-y2

-28- z-y2

1 dx dz dy +
L

2

-2L

4

y2 L

2z-y2

-2z-y2

1 dx dz dy,

L

8

4 L

28- z

-28- zL

28- z-y2

-28- z-y2

1 dx dy dz +
L

4

0 L

2z

-2zL

2z-y2

-2z-y2

1 dx dy dz,

L

2

-2L

8-x2

4 L

28- z-x2

-28- z-x2

1 dy dz dx +
L

2

-2L

4

x2 L

2z-x2

-2z-x2

1 dy dz dx,

L

8

4 L

28- z

-28- zL

28- z-x2

-28- z-x2

1 dy dx dz +
L

4

0 L

2z

-2zL

2z-x2

-2z-x2

1 dy dx dz.

  The value of all six integrals is 16p.

7. 1  9. 6  11.
512 - 232

4
13. 18  

15. 7 >6 17. 0  19. 1
2

- p
8

21. (a)
L

1

-1L

1-x2

0 L

1- z

x2

dy dz dx (b)
L

1

0 L

21- z

-21- zL

1- z

x2

dy dx dz

  (c)
L

1

0 L

1- z

0 L

2y

-2y
dx dy dz (d)

L

1

0 L

1-y

0 L

2y

-2y
dx dz dy

  (e)
L

1

0 L

2y

-2yL

1-y

0
dz dx dy

23. 2 >3 25. 20 >3 27. 1  29. 16 >3 31. 8p - 32
3

33. 2  35. 4p 37. 31 >3 39. 1  41. 2 sin 4  
43. 4  45. a = 3 or a = 13>3
47. The domain is the set of all points (x, y, z) such that 

4x2 + 4y2 + z2 … 4.

Section 15.6, pp. 920–922
1. x = 5>14, y = 38>35 3. x = 64>35, y = 5>7
5. x = y = 4a>(3p) 7. Ix = Iy = 4p, I0 = 8p
9. x = -1, y = 1>4 11. Ix = 64>105

13. x = 3>8, y = 17>16 15. x = 11>3, y = 14>27, Iy = 432  
17. x = 0, y = 13>31, Iy = 7>5
19. x = 0, y = 7>10; Ix = 9>10, Iy = 3>10, I0 = 6>5
21. Ix = M

3
(b2 + c2), Iy = M

3
(a2 + c2), Iz = M

3
(a2 + b2)

23. x = y = 0, z = 12>5, Ix = 7904>105 ≈ 75.28,
Iy = 4832>63 ≈ 76.70, Iz = 256>45 ≈ 5.69

25. (a) x = y = 0, z = 8>3 (b) c = 222
27. IL = 1386
29. (a) 4 >3 (b) x = 4>5, y = z = 2>5
31. (a) 5 >2 (b) x = y = z = 8>15 (c) Ix = Iy = Iz = 11>6
33. 3  

37. (a) Ic.m. =
abc(a2 + b2)

12
, Rc.m. = A

a2 + b2

12

  (b) IL =
abc(a2 + 7b2)

3
, RL = A

a2 + 7b2

3
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21. (a) ` cosy -u sin y

siny u cos y
` = u cos2 y + u sin2 y = u

  (b) ` siny u cos y

cosy -u sin y
` = -u sin2 y - u cos2 y = -u

27.
3
2

ln 2

Practice Exercises, pp. 944–946
1. 9e - 9 3. 9 >2

10

1

(1, 1)

NOT TO SCALE

(1�10, 10)

1

y =

0
x

y

1
x

s2 + 4t2 = 9

−3 3
s

t

3
2

5.
L

0

-2L

4-x2

2x+4
dy dx = 4

3
7.

L

3

-3L

(1>2)29-x2

0
y dy dx = 9

2

−2

4 y = 2x + 4

x = −
Î

4 − y

x

y

x2 + 4y2 = 9

−3 30
x

y

3
2

9. sin 4  11.
ln 17

4
13. 4 >3 15. 4 >3 17. 1 >4

19. p 21.
p - 2

4
23. 0  25. 8 >35 27. p>2

29.
2(31 - 35>2)

3

31. (a)
L

22

-22L

22-y2

-22-y2L

24-x2-y2

2x2+y2

3 dz dx dy

  (b)
L

2p

0 L

p>4

0 L

2

0
3 r2 sin f dr df du (c) 2p18 - 4222

33.
L

2p

0 L

p>4

0 L

secf

0
r2 sin f dr df du = p

3

35.
L

1

0 L

23-x2

21-x2 L

24-x2-y2

1
z2 xy dz dy dx

+
L

23

1 L

23-x2

0 L

24-x2-y2

1
z2 xy dz dy dx

37. (a)
8p1422 - 52

3
(b)

8p1422 - 52
3

39. Iz =
8pd(b5 - a5)

15

41. x = y = 1
2 - ln 4

43. I0 = 104 45. Ix = 2d

47. M = 4, Mx = 0, My = 0 49. x = 323
p , y = 0

41. (a)
L

2p

0 L

p>3

0 L

2

secf
r2 sin f dr df du

  (b)
L

2p

0 L

23

0 L

24- r2

1
r dz dr du

  (c)
L

23

-23L

23-x2

-23-x2L

24-x2-y2

1
dz dy dx (d) 5p>3

43. 8p>3 45. 9 >4 47.
3p - 4

18
49.

2pa3

3

51. 5p>3 53. p>2 55.
41222 - 12p

3
57. 16p

59. 5p>2 61.
4p18 - 3232

3
63. 2 >3 65. 3 >4

67. x = y = 0, z = 3>8 69. (x, y, z) = (0, 0, 3>8)

71. x = y = 0, z = 5>6 73. Ix = p>4 75.
a4 hp

10

77. (a) (x, y, z) = a0, 0,
4
5
b , Iz = p

12

  (b) (x, y, z) = a0, 0,
5
6
b , Iz = p

14

81.
3M
pR3

85. The surface’s equation r = ƒ(z) tells us that the point (r, u, z) =
(ƒ(z), u, z) will lie on the surface for all u. In particular, 
(ƒ(z), u + p, z) lies on the surface whenever (ƒ(z), u, z) lies on 
the surface, so the surface is symmetric with respect to the z-axis.

( f (z), u, z)

f(z)
f(z)

z
( f(z), u + p, z)

z

x y

u + p

u

Section 15.8, pp. 942–944

1. (a) x = u + y
3

, y = y - 2u
3

;
1
3

  (b) Triangular region with boundaries u = 0, y = 0, and 
u + y = 3

3. (a) x = 1
5

(2u - y), y = 1
10

(3y - u);
1
10

  (b) Triangular region with boundaries 3y = u, y = 2u, and 
3u + y = 10

7. 64 >5 9.
L

2

1 L

3

1
(u + y) 2u

y du dy = 8 + 52
3

ln 2

11.
pab(a2 + b2)

4
13. 1

3
a1 + 3

e2b ≈ 0.4687

15.
225
16

17. 12  19.
a2b2c2

6



A-70 Chapter 16: Answers to Odd-Numbered Exercises

11. (a) 2 (b) 3 >2 (c) 1 >2
13. -15>2 15. 36  17. (a) -5>6 (b) 0 (c) -7>12
19. 1 >2 21. -p 23. 69 >4 25. -39>2 27. 25 >6
29. (a) Circ1 = 0, circ2 = 2p, flux1 = 2p, flux2 = 0
  (b) Circ1 = 0, circ2 = 8p, flux1 = 8p, flux2 = 0
31. Circ = 0, flux = a2p 33. Circ = a2p, flux = 0

35. (a) - p
2

(b) 0 (c) 1 37. (a) 32 (b) 32 (c) 32

39.

x2 + y2 = 4

2

2

0
x

y

41. (a) G = -yi + xj (b) G = 2x2 + y2 F

43. F = -
xi + yj

2x2 + y2
47. 48  49. p 51. 0  53. 1

2

Section 16.3, pp. 978–980
1. Conservative  3. Not conservative  5. Not conservative  

7. ƒ(x, y, z) = x2 +
3y2

2
+ 2z2 + C 9. ƒ(x, y, z) = xey+2z + C

11. ƒ(x, y, z) = x ln x - x + tan (x + y) + 1
2

 ln (y2 + z2) + C

13. 49  15. -16 17. 1  19. 9 ln 2  21. 0  23. -3

27. F = ∇ ax2 - 1
y b 29. (a) 1 (b) 1 (c) 1

31. (a) 2 (b) 2 33. (a) c = b = 2a (b) c = b = 2
35. It does not matter what path you use. The work will be the same 

on any path because the field is conservative.  
37. The force F is conservative because all partial derivatives of M,

N, and P are zero. ƒ(x, y, z) = ax + by + cz + C; A =
(xa, ya, za) and B = (xb, yb, zb). Therefore, 1F # dr =
ƒ(B) - ƒ(A) = a(xb - xa) + b(yb - ya) + c(zb - za) =
F # rAB.

Section 16.4, pp. 990–992
1. Flux = 0, circ = 2pa2 3. Flux = -pa2, circ = 0
5. Flux = 2, circ = 0 7. Flux = -9, circ = 9
9. Flux = -11>60, circ = -7>60

11. Flux = 64>9, circ = 0 13. Flux = 1>2, circ = 1>2
15. Flux = 1>5, circ = -1>12 17. 0  19. 2 >33 21. 0
23. -16p 25. pa2 27. 3p>8
29. (a) 0 if C is traversed counterclockwise  
  (b) (h - k)(area of the region) 39. (a) 0

Section 16.5, pp. 1001–1003
1. r(r, u) = (r cos u)i + (r sin u)j + r2k, 0 … r … 2, 

0 … u … 2p
3. r(r, u) = (r cos u)i + (r sin u)j + (r>2)k, 0 … r … 6,

0 … u … p>2
5. r(r, u) = (r cos u)i + (r sin u)j + 29 - r2 k, 

0 … r … 322>2, 0 … u … 2p; Also: 
r(f, u) = (3 sin f cos u)i + (3 sin f sin u)j +
(3 cos f)k, 0 … f … p>4, 0 … u … 2p

51. (a) x = 15p + 32
6p + 48

, y = 0

(b)

1

r = 1 + cos u

2≈ 1.18

−1

c.m.

1

r = 1

x

y

Additional and Advanced Exercises, pp. 947–948

1. (a)
L

2

-3L

6-x2

x
x2 dy dx (b)

L

2

-3L

6-x2

x L

x2

0
dz dy dx

(c) 125 >4
3. 2p 5. 3p>2
7. (a) Hole radius = 1, sphere radius = 2 (b) 423p

9. p>4 11. ln abab 15. 1>24 3

17. Mass = a2 cos-1 abab - b2a2 - b2,

I0 = a4

2
cos-1 abab - b3

2
2a2 - b2 - b3

6
(a2 - b2)3>2

19. 1
ab

 (ea2b2 - 1) 21. (b) 1 (c) 0

25. h = 220 in., h = 260 in. 27. 2p c 1
3

- a1
3
b 22

2
d

Chapter 16
Section 16.1, pp. 955–957

1. Graph (c)  3. Graph (g)  5. Graph (d)  7. Graph (f )

9. 22 11.
13
2

13. 3214 15. 1
6
1525 + 92

17. 23 ln abab 19. (a) 425 (b) 1
12

(173>2 - 1)

21.
15
32

(e16 - e64) 23. 1
27

 (403>2 - 133>2)

25. 1
6
153>2 + 722 - 12 27.

1025 - 2
3

29. 8  

31. 1
6

(173>2 - 1) 33. 222 - 1

35. (a) 422 - 2 (b) 22 + ln11 + 222 37. Iz = 2pda3

39. (a) Iz = 2p22d (b) Iz = 4p22d 41. Ix = 2p - 2

Section 16.2, pp. 967–969
1. ∇ƒ = - (xi + yj + zk)(x2 + y2 + z2)-3>2

3. ∇g = - a 2x
x2 + y2b i - a 2y

x2 + y2bj + ezk

5. F = - kx
(x2 + y2)3>2 i -

ky

(x2 + y2)3>2 j, any k 7 0

7. (a) 9 >2 (b) 13 >3 (c) 9 >2
9. (a) 1 >3 (b) -1>5 (c) 0



Chapter 16: Answers to Odd-Numbered Exercises A-71

7.
O
S

x225 - 4z ds =
L

1

0 L

2p

0
u2 cos2 y # 24u2 + 1 #

u24u2 + 1 dy du =
L

1

0 L

2p

0
u3(4u2 + 1) cos2 y dy du = 11p

12

9. 9a3 11.
abc
4

(ab + ac + bc) 13. 2  

15. 1
30
122 + 6262 17. 26>30 19. -32 21.

pa3

6
23. 13a4>6 25. 2p>3 27. -73p>6 29. 18  

31.
pa3

6
33.
pa2

4
35.
pa3

2
37. -32 39. -4

41. 3a4 43. aa
2

,
a
2

,
a
2
b

45. (x, y, z) = a0, 0,
14
9
b , Iz = 15p22

2
d

47. (a)
8p
3

a4d (b)
20p

3
a4d

Section 16.7, pp. 1025–1026
1. 4p 3. -5>6 5. 0  7. -6p 9. 2pa2

11. -p 13. 12p 15. -p>4 17. -15p 19. -8p
27. 16Iy + 16Ix

Section 16.8, pp. 1037–1039
1. 0  3. 0  5. -16 7. -8p 9. 3p 11. -40>3

13. 12p 15. 12p1422 - 12 19. No  
21. The integral’s value never exceeds the surface area of S.
23. 184/35

Practice Exercises, pp. 1040–1042
1. Path 1: 223; path 2: 1 + 322 3. 4a2 5. 0  
7. 8p sin (1) 9. 0  11. p23

13. 2pa1 - 1

22
b 15.

abc
2 A

1
a2 + 1

b2 + 1
c2 17. 50  

19. r(f, u) = (6 sin f cos u)i + (6 sin f sin u)j + (6 cos f)k,
p

6
… f … 2p

3
, 0 … u … 2p

21. r(r, u) = (r cos u)i + (r sin u)j + (1 + r)k, 0 … r … 2,
0 … u … 2p

23. r(u, y) = (u cos y)i + 2u2j + (u sin y)k, 0 … u … 1,
0 … y … p

25. 26 27. p322 + ln11 + 2224 29. Conservative  

31. Not conservative  33. ƒ(x, y, z) = y2 + yz + 2x + z

35. Path 1: 2; path 2: 8 >3 37. (a) 1 - e-2p (b) 1 - e-2p

39. 0  41. (a) 422 - 2 (b) 22 + ln 11 + 222
43. (x, y, z) = a1,

16
15

,
2
3
b ; Ix = 232

45
, Iy = 64

15
, Iz = 56

9

45. z = 3
2

, Iz = 723
3

47. (x, y, z) = (0, 0, 49>12), Iz = 640p

49. Flux: 3 >2; circ: -1>2 53. 3  55.
2p
3
17 - 8222

57. 0  59. p

7. r(f, u) = 123 sin f cos u2i + 123 sin f sin u2j +123 cos f2k, p>3 … f … 2p>3, 0 … u … 2p
9. r(x, y) = xi + yj + (4 - y2)k, 0 … x … 2, -2 … y … 2

11. r(u, y) = ui + (3 cos y)j + (3 sin y)k, 0 … u … 3,
0 … y … 2p

13. (a) r(r, u) = (r cos u)i + (r sin u)j + (1 - r cos u - r sin u)k,
0 … r … 3, 0 … u … 2p

  (b) r(u, y) = (1 - u cos y - u sin y)i + (u cos y)j +
(u sin y)k, 0 … u … 3, 0 … y … 2p

15. r(u, y) = (4 cos2 y)i + uj + (4 cos y sin y)k, 0 … u … 3,
- (p>2) … y … (p>2); Another way: r(u, y) = (2 + 2 cos y)i
+ uj + (2 sin y)k, 0 … u … 3, 0 … y … 2p

17.
L

2p

0 L

1

0

25
2

r dr du = p25
2

19.
L

2p

0 L

3

1
r25 dr du = 8p25 21.

L

2p

0 L

4

1
1 du dy = 6p

23.
L

2p

0 L

1

0
u24u2 + 1 du dy =

1525 - 12
6

p

25.
L

2p

0 L

p

p>4
2 sin f df du = 14 + 2222p

27. 29.

(
Î

2,
Î

2, 2) x + y −
Î

2z = 0

z =
Î

x2 + y2
z

x y

√3x + y = 9

6

x2 + (y – 3)2 = 9

, 9/2, 0
2

z

x

y
3√3

33. (b) A =
L

2p

0 L

p

0
3a2b2 sin2f cos2 f + b2c2 cos4 f cos2 u +

   a2c2 cos4 f sin2 u41>2 df du
35. x0x + y0y = 25 37. 13p>3 39. 4  

41. 626 - 222 43. p2c2 + 1

45.
p

6
117217 - 5252 47. 3 + 2 ln 2

49.
p

6
113213 - 12 51. 5p22 53. 2

3
1525 - 12

Section 16.6, pp. 1012–1014

1.
O

S

x ds =
L

3

0 L

2

0
u24u2 + 1 du dy = 17217 - 1

4

3.
O

S

x2 ds =
L

2p

0 L

p

0
sin3 f cos2 u df du = 4p

3

5.
O
S

z ds =
L

1

0 L

1

0
(4 - u - y)23 dy du = 323

  (for x = u, y = y)



A-72 Appendices: Answers to Odd-Numbered Exercises

17. x@intercept = 23, y@intercept = -22

0 1 2

−1

−2

Î

2 x −
Î

3y =
Î

6

x

y

19. (3, -3)
21. x2 + (y - 2)2 = 4 23. 1x + 2322 + (y + 2)2 = 4

(0, 0)

C(0 , 2)

(0, 4)

−2 −1 1 2
x

y

C −
Î

 3, –2

−
Î

3, 0

−4

−4

(0, −1)

(0, −3)

x

y

Q R

Q R

25. x2 + (y - 3>2)2 = 25>4 27.

0

1

1

2

3
4

2 3 4

C(0, 3�2)

(2, 0)

(0, 4)

(−2, 0)

−2 −1

−1
−2

x2 + (y – 3�2)2 = 25�4

(0, −1)

x

y

10 2

A
xi

s:
x

=
1

V(1, −4)

(0, −3)

(−1, 0)
y = x2 − 2x − 3

(3, 0)
x

y

29.

0−3

4

−6

(−5, 0)

(−1, 0)

A
xi

s:
x

=
−

3

y = −x2 − 6x − 5
V(−3, 4)

(−6, −5) (0, −5)

x

y

31. Exterior points of a circle of radius 27, centered at the origin  
33. The washer between the circles x2 + y2 = 1 and x2 + y2 = 4

(points with distance from the origin between 1 and 2)  
35. (x + 2)2 + (y - 1)2 6 6

37. a 1

25
,

2

25
b , a- 1

25
, - 2

25
b

39. a- 1

23
, - 1

3
b , a 1

23
, - 1

3
b

41. (a) ≈ -2.5 degrees > inch (b) ≈ -16.1 degrees > inch
  (c) ≈ -8.3 degrees > inch 43. 5.97 atm  

Additional and Advanced Exercises, pp. 1042–1044
1. 6p 3. 2 >3
5. (a) F(x, y, z) = zi + xj + yk

  (b) F(x, y, z) = zi + yk (c) F(x, y, z) = zi

7.
16pR3

3
9. a = 2, b = 1. The minimum flux is -4.

11. (b)
16
3

g

(c) Work = a
LC

gxy dsb y = g
LC

xy2 ds = 16
3

g

13. (c) 4
3
pw 19. False if F = yi + xj

Appendices
Appendix 1, p. AP-6
1. 0.1, 0.2, 0.3, 0.8, 0.9 or 1  

3. x 6 -2 5. x … - 1
3

−2
x x

−1�3

7. 3, -3 9. 7>6, 25>6
11. -2 … t … 4 13. 0 … z … 10

−2 4
t
  0 10

z

15. (-q, -24 ∪ 32, q) 17. (-q, -34 ∪ 31, q)

s
−2 2

r
−3 1

19. (-3, -2) ∪ (2, 3) 21. (0, 1)  23. (-q, 14
27. The graph of 0 x 0 + 0 y 0 … 1 is the interior and boundary of the 

“diamond-shaped” region.

−1 1

−1

1

x

y

0 x 0 + 0 y 0 ≤ 1

Appendix 3, pp. AP-17–AP-18
1. 2, -4; 225 3. Unit circle  

5. m# = - 1
3

y

x

Slope = 3

y = 3x + 5
A(−1, 2)

B(−2, −1) −1

−1 0−2

1

2

7. (a) x = -1 (b) y = 4>3 9. y = -x

11. y = - 5
4

x + 6 13. y = 4x + 4 15. y = - x
2

+ 12



Appendices: Answers to Odd-Numbered Exercises A-73

45. Yes: C = F = -40°

C = F

C = (F − 32)5
9

(−40, −40)

F

C

−40 32

−40

51. k = -8, k = 1>2
Appendix 7, pp. AP-34–AP-35

1. (a) (14, 8) (b) (-1, 8) (c) (0, -5)
3. (a) By reflecting z across the real axis  

  (b) By reflecting z across the imaginary axis  
  (c) By reflecting z across the real axis and then multiplying the 

length of the vector by 1> � z �2
5. (a) Points on the circle x2 + y2 = 4

  (b) Points inside the circle x2 + y2 = 4
  (c) Points outside the circle x2 + y2 = 4

7. Points on a circle of radius 1, center (-1, 0)
9. Points on the line y = -x 11. 4e2pi>3 13. 1e2pi>3

15. cos4u - 6 cos2u sin2u + sin4u

17. 1, - 1
2
{
23
2

i 19. 2i, -23 - i, 23 - i

21.
26
2
{
22
2

i, - 26
2
{
22
2

i 23. 1 { 23i, -1 { 23i
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I-1

Index

a, logarithms with base, 426–427
Abscissa, AP-10
Absolute change, 210
Absolute convergence, 604–605
Absolute Convergence Test, 605
Absolute extrema, finding, 227–228
Absolute (global) maximum, 223–225, 852–854
Absolute (global) minimum, 223–225, 852–854
Absolute value

definition of, AP-4–AP-6, AP-30
properties of, AP-5

Absolute value function
derivative of, 167
as piecewise-defined function, 5

Acceleration
definition of, 148
derivative of (jerk), 148, 149
as derivative of velocity, 148, 149–150
in free fall, 150
free fall and, 149
normal component of, 778–783
in polar coordinates, 784–787
in space, 755
tangential component of, 778–783
velocity and position from, 235

Addition
of functions, 14–15
of vectors, 711–712

Addition formulas, trigonometric, 25
Additivity

double integrals and, 892
line integrals and, 952–953

Additivity Rule, for definite integrals, 320
Albert of Saxony, 600
Algebra, Fundamental Theorem of, AP-34
Algebra operations, vector, 711–713
Algebra rules

for finite sums, 311
for gradients, 836
for natural logarithm, 45

Algebra systems, computer. See Computer 
algebra systems (CAS)

Algebraic functions, 10
Alternating series

definition of, 610–611
harmonic, 610–612, 624

Alternating Series Estimation Theorem, 612, 635
Alternating Series Test, 611
Angle convention, 22

Angle of elevation, 762
Angle of inclination, AP-11
Angles

direction, 724
between planes, 738
in standard position, 22
in trigonometric functions, 21–22
between vectors, 718–720

Angular velocity of rotation, 1021
Antiderivative linearity rules, 283
Antiderivatives

definition of, 281
difference rule, 283
finding, 281–283
and indefinite integrals, 285–286
motion and, 284–285
of vector function, 759

Antidifferentiation, 281
Applied optimization

of area of rectangle, 266
examples from economics, 268–270
examples from mathematics and physics, 

266–268
solving problems, 264
using least material, 265–266
volume of can, 265

Approximations
differential, error in, 208–209
by differentials, 203
error analysis of, 498–501
linear, error formula for, 843, 868
Newton’s Method for roots, 276–278
for roots and powers, 205
by Simpson’s Rule, 498–501
standard linear, 203, 842
tangent line, 203, 842
by Taylor polynomials, 628
trapezoidal, 495–496
by Trapezoidal Rule, 498–501
using parabolas, 496–498

Arbitrary constant, 281
Arc length

along curve in space, 768–770
differential formula for, 387–388
discontinuities in dy/dx, 386–387
of a function, 387, 770
length of a curve y = ƒ(x), 384–386
and line integrals, 950–951

Arc length differential, 557–558

Arc length formula, 386–387, 664, 769
Arc length parameter, 769
Arccosine function

defining, 48–50
identities involving, 50–51

Archimedes’ area formula, 337
Arcsecant, 187
Arcsine function

defining, 48–50
identities involving, 50–51

Arctangent, 187–188, 641–642
Area

of bounded regions in plane, 896–898
cross-sectional, 365, 366
under curve or graph, 322
between curves, 349–351
as definite integral, 299
definition of, 323
by double integration, 896–899
enclosed by astroid, 662–663
and estimating with finite sums, 299–307
finite approximations for, 301
under graph of nonnegative function, 306
by Green’s Theorem, 991
infinite, 505
of parallelogram, 727, 995
in polar coordinates, 902
of smooth surface, 995
surfaces and, 391, 668–669, 992–1000
of surfaces of revolution, 390–393, 668–669
total, 300, 334–336

Area differential, 680
Argand diagrams, AP-30
Argument, AP-30
Arithmetic mean, 238, 429, 866
Arrow diagram for a function, 2
Associative laws, AP-24
Astroid

area enclosed by, 662–663
centroid and, 667
length of, 665

Asymptotes
of graphs, 104–115
in graphs of rational functions, 9
horizontal, 104, 106–109, 112–113
of hyperbolas, 688
oblique or slant, 109
vertical, 104, 112–113
vertical, integrands with, 507–509



I-2 Index

Average rates of change, 61, 63
Average speed

definition of, 59
moving bodies and, 59–61
over short time intervals, 60

Average value
of continuous functions, 323–324
of multivariable functions, 898–899, 911–912
of nonnegative continuous functions, 

305–306
Average velocity, 147
ax

definition of, 37, 425
derivative of, 140, 180–182, 427–428
integral of, 427–428
inverse equations for, 427
laws of exponents, 425

Axis(es)
coordinate, AP-10
of ellipse, 685
moments of inertia about, 954, 1010
of parabola, 684, AP-15
slicing and rotation about, volumes by, 

365–372
spin around, 980–983

Base, a
of cylinder, 365
of exponential function, 36, 140, 425–426
logarithms with, 181–182, 426–427

Base a
logarithmic functions with, 44–45

Bernoulli, Daniel, 224
Bernoulli, Johann, 166, 255
Binomial series, 638–640
Binormal vector, 783
Birkhoff, George David, 342
Bolzano, Bernard, 148
Boundary points

finding absolute maximum and minimum 
values, 852

for regions in plane, 795
for regions in space, 797

Bounded functions, 121–122
Bounded intervals, 6
Bounded regions

absolute maxima and minima on, 852–854
areas of, in plane, 896–898
definition of, 795

Bounded sequences, 579–581
Box product, 729–730
Brachistochrones, 657–658
Branch diagram(s), for multivariable Chain 

rules, 823, 824, 825, 826
Branching of blood vessels, 298

Cable, hanging, 11, 446–447
Calculators

to estimate limits, 71–72
graphing with, 29–34

Cantor set, 593
Carbon-14 decay, 435
Cardiac index, 878
Cardioid

definition of, 677
graphing of, 680
length of, 681–682
in polar coordinates, area enclosed by, 680

Cartesian coordinate systems, 704–707
Cartesian coordinates

conversion to/from polar coordinates, 
902–904

in plane, AP-10
related to cylindrical and spherical coordi-

nates, 927
related to cylindrical coordinates, 923
related to polar coordinates, 671–674
three-dimensional. See Three–dimensional 

coordinate systems
triple integrals in, 906–912

Cartesian integrals, changing into polar inte-
grals, 902–904

CAS. See Computer algebra systems
CAST rule, 23
Catenary, 11, 447
Cauchy, Augustin-Louis, 260
Cauchy’s Mean Value Theorem, 260–261
Cavalieri, Bonaventura, 367
Cavalieri’s principle, 367
Center of curvature, for plane curves, 775
Center of linear approximation, 203
Center of mass

centroid, 410–411
coordinates of, 406, 954, 1010
definition of, 405
moments and, 404–413, 915–920
of solid, 916
of thin flat plate, 406–409
of thin shell, 1011–1012
of wire or spring, 954

Centroids, 410–411, 916–917
Chain Rule

and curvature function, 774
derivation of Second Derivative Test and, 

867
derivatives of composite function, 163–168
derivatives of exponential functions, 181, 

182, 425, 426
derivatives of inverse functions, 179
derivatives of inverse trigonometric functions, 

189
for differentiable parametrized curves, 661
and directional derivatives, 833
for functions of three variables, 824–825
for functions of two variables, 821–823
for implicit differentiation, 826, 998
for inverse hyperbolic functions, 444
and motion in polar coordinates, 785
“outside-inside” rule and, 165, 837
for partial derivatives, 821–828
for paths, 837
with powers of function, 166–168
proof of, 164–165, 209
related rates equations, 194, 195
repeated use of, 165–166
Substitution Rule and, 339–345
for two independent variables and three 

intermediate variables, 824–825
for vector functions, 756, 757

Change
of base in a logarithm, 181, 426–427
estimating, in special direction, 841–842
exponential, 430–431
rates of, 59–64, 124–125, 146–152
sensitivity to, 152, 210–211

Charge, electrical, 1034

Circle of curvature, for plane curves, 775–776
Circles

length of, 664
osculating, 775
in plane, AP-13–AP-15
polar equation for, 697
standard Cartesian equation for, AP-14

Circulation, flux versus, 965
Circulation density, 980–983
Circulation for velocity fields, 964–965
Cissoid of Diocles, 175
Clairaut, Alexis, 816
Clairaut’s Theorem, 816
Closed curve, 965
Closed region, 795, 797
Cobb-Douglas production function, 865
Coefficients

binomial, 639
determination for partial fractions, 486–487
of polynomial, 8–9
of power series, 617
undetermined, 487

Combining functions, 14–21
Combining series, 589–590
Common functions, 7–11
Common logarithm function, 45
Commutativity laws, AP-24
Comparison tests

for convergence of improper integrals, 
510–512

for convergence of series, 600–603
Complete ordered field, AP-24
Completeness property of real numbers, 38, 

AP-23
Completing the square, AP-14–AP-15
Complex conjugate, AP-29
Complex numbers

definition of, AP-26
development of, AP-26–AP-30
division of, AP-31–32
Euler’s formula and, AP-30–AP-31
Fundamental Theorem of Algebra and, 

AP-34
imaginary part of, AP-26
multiplication of, AP-31
operations on, AP-31–AP-33
powers of, AP-32
real part of, AP-26
roots of, AP-32–AP-33

Component equation, for plane, 735
Component form of vectors, 709–711
Component functions, 751, 957
Component (scalar) of u in direction of v, 722
Component test

for conservative fields, 974, 976
for exact differential form, 977

Composite functions
continuity of, 97–99, 807
definition of, 15
derivative of, 163–168, 756

Compressing a graph, 16
Compression of a gas, uniform, 982–983
Computational formulas, for torsion, 780
Computer algebra systems (CAS)

in evaluation of improper integrals, 509–510
integral tables and, 489–490
integrate command, 591
integration with, 491–492
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Computer graphing
of functions, 29–34
of functions of two variables, 798

Computers, to estimate limits, 71–72
Concave down graph, 244
Concave up graph, 244, 245
Concavity

curve sketching and, 244–252
second derivative test for, 245

Conditional convergence, 613
Cones

elliptical, 741, 743
parametrization of, 993
surface area of, 996

Conics
in Cartesian coordinates, 683–689
defined, 683, 684, 685, 687
eccentricity of, 692–694
in polar coordinates, 692–697
polar equations of, 694–696

Connected region, 971
Connectedness, 99
Conservation

of angular momentum, 791
of mass, 1039

Conservative fields
component test for, 974, 976
finding potentials for, 974–977
as gradient fields, 972
line integrals in, 976
loop property of, 973
and Stokes’ theorem, 1024–1025

Constant
arbitrary, 281
nonzero, 283
rate, 431
spring, 396

Constant force, work done by, 395, 723
Constant Function Rule, 756
Constant functions

definition of, 7, 67
derivative of, 136

Constant Multiple Rules
for antiderivatives, 283, 286
for combining series, 589
for derivatives, 137–138
for finite sums, 311
for gradients, 836
for integrals, 320, 892
for limits, 69
for limits of functions of two variables, 803
for limits of sequences, 576

Constant Value Rule for finite sums, 311
Constrained maximum, 857–860
Constrained minimum, 857–860
Construction of reals, AP-25–AP-26
Continuity. See also Discontinuity

On (over) an interval, 96
of composites, 807
differentiability and, 132, 818
of function at a point, 93–96
at interior point, 94
of inverse functions, 97
at left endpoint, 94
limits and, 59–122
for multivariable functions, 805–807
partial derivatives and, 815
of vector functions, 752–753

Continuity equation of hydrodynamics, 
1035–1036

Continuity Test, 95
Continuous extension, 101–102
Continuous function theorem for sequences, 577
Continuous functions

absolute extrema of, 227–228, 807
average value of, 323–324, 898–899, 911
composite of, 97–99
definition of, 96–97, 753
differentiability and, 132
extreme values of, on closed bounded sets, 

224, 807
integrability of, 318
Intermediate Value Theorem for, 99–100, 

267–268
limits of, 93–96, 98
nonnegative, average value of, 305–306
at a point, 805
properties of, 96

Continuous vector field, 957
Contour curve, 796
Convergence

absolute, 604–605
conditional, 613
definition of, 317
of improper integrals, 505, 507
interval of, 621
of power series, 617–620
radius of, 620–621
of Riemann sums, 317
of sequence, 573–575
of series

geometric, 586
Integral Test, 593–598
power, 617–620

of Taylor Series, 631–637
tests for, 510–512, 614

Convergence Theorem for Power Series, 619
Coordinate axes

definition of, AP-10
moments of inertia about, 954, 1010

Coordinate conversion formulas, 930
Coordinate frame

left-handed, 704
right-handed, 704

Coordinate pair, AP-10
Coordinate planes

definition of, 704
first moments about, 954, 1010

Coordinate systems, three-dimensional. See
Three–dimensional coordinate systems

Coordinates
of center of mass, 406, 954, 1010
polar, integrals in, 900–901
xyz, line integrals and, 961

Coplanar vectors, 713
Corner, 131
Cosecant, 22
Cosecant function

extended definition of, 22
integral of, 344
inverse of, 49, 187, 191

Cosine(s)
direction, 724
extended definition of, 22
integrals of products of, 473–474
integrals of products of powers of, 470–471

law of, 25–26, 719
of angle between vectors, 718
values of, 23

Cosine function
derivative of, 157–158
graph of, 10
integral of, 470
inverse of, 49, 191

Costs
fixed, 151
marginal, 151, 268
variable, 151

Cot x
derivative of, 159
integral of, 344
inverse of, 187–188

Cotangent function
extended definition of, 22
integral of, 344
inverse of, 49, 187, 191

Courant, Richard, 137
Critical point, 227, 249, 849, 854
Cross product

with determinants, 727–729
proof of distributive law for, 

AP-35–AP-36
properties of, 726–727
right-hand rule for, 726
of two vectors in space, 726–727

Cross Product Rule for derivatives of vector 
functions, 756–757

Cross-sections
horizontal, limits of integration and, 

891–892
vertical, limits of integration and, 891
volumes using, 365–372

Csc x
derivative of, 159
integral of, 344
inverse of, 187–188

Cube, integral over surface of, 1005–1006
Cube root function, 8
Cubic functions, 9
Curl, k-component of, 980–983
Curl vector, 1014–1015
Curvature

calculation of, 773, 783
center of, 775
of plane curves, 772–775
radius of, 775
in space, 776

Curved patch element, 995
Curves

area between, 347–353
area under, 322, 505
assumptions for vector integral calculus, 

970–971
closed, 965
contour, 796
generating for cylinder surface, 740
graphing of, 349–351
initial point of, 653
level, 835–836
negatively oriented, 986
parametric, 653–654
parametrically defined, length of, 

663–666
parametrized, 654, 668–669
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evaluation of, by parts, 465
existence of, 316–318
Mean Value Theorem for, 328–331
nonnegative functions and, 322–323
notation for, 317
properties of, 319–321
shift property for, 356
substitution in, 347–349
of symmetric functions, 348–349
of vector function, 760

Definite integration by parts, 465
Definite integration by substitution, 347, 935
Degree, of polynomial, 9
“Del ƒ,” 833, 894–896
Density

circulation, 980–983
as continuous function, 407
flux, 985

Dependent variable of function, 1, 793
Derivative product rule, 141–142, 242
Derivative quotient rule, 142–143, 159–160, 612
Derivative rule for inverses, 178
Derivative sum rule, 138–139, AP-8–AP-9
Derivative tests, for local extreme values, 

225–226, 679–681, 848–852
Derivatives

of absolute value function, 167
alternate formula for, 128
applications of, 223–298
calculation from definition, 128
of composite function, 163–168, 756
of constant function, 136
constant multiple rule for, 137–138
of cosine function, 157–158
Cross Product Rule, 756
definition of, 128
difference rule for, 138–139
directional. See Directional derivatives
Dot Product Rule, 756
in economics, 151–152
of exponential functions, 140–141, 424–425
as function, 123, 128–132
functions from, graphical behavior of, 

251–252
General Power Rule for, 137, 183–184, 

425–426
graphing of, 130
higher-order, 143–144, 173
of hyperbolic functions, 440–441
of integral, 334
of inverse functions, 177–185
of inverse hyperbolic functions, 443–445
of inverse trigonometric functions, 47–48, 

191
involving loga x, 182, 427–428
left-handed, 130–131
Leibniz’s Rule, 363
of logarithms, 177–185
notations for, 129–130
nth, 144
one-sided, 130–131
partial. See Partial derivatives
at a point, 123–125, 131–132
of power series, 622
as rate of change, 146–152
of reciprocal function, 128
right-handed, 130–131
second-order, 143–144

Curves (continued )
piecewise smooth, 754
plane

curvature of, 772–775
flux across, 965–966
lengths of, 384–388, 663–666
parametizations of, 653–658, 751

plates bounded by two, 409–410
points of inflection of, 245–247, 250
polar

graphing of, 668–669
length of, 681–682

positively oriented, 986
secant to, 61
sketching, 244–252
slope of

definition of, 61–63, 123
finding, 62, 123, 676

smooth, 3–4, 384–386, 663–664
curvature of, 772–775
length of, 768
speed on, 770
torsion of, 781

in space, 751–757
arc length along, 768–770
binormals to, 779
formulas for, 783
normals to, 774
parametric equations for, 751
vector equations for. See Vector functions

tangent line to, 123
tangents to, 59–64, 770, 835–836
terminal point of, 653
work done by force over, 962–964
y = ƒ(x), length of, 385

Cusp, 131
Cycloids, 657
Cylinder(s)

base of, 365
parabolic, flux through, 1008
parametrization of, 994
quadric surfaces and, 740–743
slicing with, 376–378
volume of, 365

Cylindrical coordinates
definition of, 922
integration with, 924–926
motion in, 784–785
parametrization by, 994
to rectangular coordinates, 923, 930
from spherical coordinates, 930
triple integrals in, 922–930
volume differential in, 923

Cylindrical shells, volumes using, 376–381
Cylindrical solid, volume of, 365–367
Cylindrical surface, 390

De Moivre’s Theorem, AP-32
Decay, exponential, 40, 431
Decay rate, radioactive, 40, 431
Decreasing function, 6, 239–240
Dedekind, Richard, 351, 590, AP-25
Definite integrals

and antiderivatives, 285–286
applications of, 365–419
average value of continuous functions and, 

323–324
definition of, 299, 316–318, 339

of sine function, 156–160
of square root function, 129
symbols for, 144
of tangent vector, 773
third, 144
of trigonometric functions, 156–160
of vector function, 753–755
as velocity, 147, 755

Descartes, RenÁ, AP-10
Determinant(s)

calculating the cross product, 730
Jacobian, 935, 937, 938, 940

Difference quotient
definition of, 124
forms for, 128
limit of, 124

Difference Rules
for antiderivatives, 283, 286
for combining series, 589
for derivatives, 138–139
for derivatives of constant functions, 136
for exponential functions, 140–141
for finite sums, 311
of geometric series, 589
for gradient, 836
for higher-order derivatives, 143–144
for integrals, 320
for limits, 69
for limits of functions with two variables, 

803
for limits of sequences, 576
for products and quotients, 141–143
for vector functions, 756

Differentiability, 130–132, 810, 815, 817–819
Differentiable functions

constant multiple rule of, 137
continuity and, 818
continuous, 132, 663
definition of, 128
graph of, 206
on interval, 130–131
parametric curves and, 661
partial derivatives, 810–812
rules for, 137–144, 164–166, 756
Taylor’s formula for, 628

Differential approximation, error in, 208–209
Differential equations

initial value problems and, 283–284
linear first order, 544–546
particular solution, 284
separable, 431–433

Differential forms, 977–978
Differential formula, short form of arc length, 

387–388
Differentials

definition of, 205
estimating with, 206–208
linearization and, 202–211
surface area, for parametrized surface, 996
tangent planes and, 843–845
total, 844

Differentiation
Chain Rule and, 163–168
derivative as a function, 128–132
derivative as a rate of change, 146–152
derivatives of trigonometric functions, 

156–160
implicit, 171–174, 826–828
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and integration, as inverse processes, 334
inverse trigonometric functions and, 187–191
linearization and, 202–211
related rates, 193–198
tangents and derivative at a point, 123–125
term-by-term for power series, 622
of vector functions, rules for, 755–757

Differentiation rules, 136–144
Direct Comparison Test, 510
Directed line segments, 709
Direction

along a path, 653–654, 950–951
estimating change in, 841–842
of vectors, 713

Direction cosines, 724
Directional derivatives

calculation of, 832–834
definition of, 831
as dot product, 833
estimating change with, 841–842
gradient vectors and, 830–837
and gradients, 833
interpretation of, 832
in plane, 830–832
properties of, 834

Directrix (directrices)
of ellipse, 693
of hyperbola, 693
of parabola, 693, 695

Dirichlet, Lejeune, 506
Dirichlet ruler function, 121
Discontinuity

in dy/dx, 386–387
infinite, 95
jump, 95
oscillating, 95
point of, 95
removable, 95

Discriminant (Hessian) of function, 850
Disk method, 368–370
Displacement

definition of, 147, 304
versus distance traveled, 304–305, 333

Display window, 29–32
Distance

in plane, AP-13–AP-15
and spheres in space, 706–707
in three-dimensional Cartesian coordinates

point to line, 734–735
point to plane, 735–736, 737–738
point to point, 706

Distance formula, 706, AP-14
Distance traveled

calculating, 301–303
versus displacement, 304–305, 333
total, 304, 333

Distributive Law
definition of, AP-24
proof of, AP-35–AP-36
for vector cross products, 727

Divergence
of improper integrals, 505

limits and, 505
nth-term test for, 588–589

of sequence, 573–575
to infinity, 575
to negative infinity, 575

of series, 585

tests for, 510–512, 614
of vector field, 983–985, 1027–1028

Divergence Theorem
for other regions, 1033–1034
for special regions, 1031–1032
statement of, 1028–1030

Domain
connected, 971
of function, 1–3, 793, 794
natural, 2
simply connected, 971
of vector field, 957, 971

Dominant terms, 113–114
Domination, double integrals and, 892
Domination Rule for definite integrals, 320
Dot product

angle between vectors, 718–720
definition of, 719
directional derivative as, 833
orthogonal vectors and, 720–721
properties of, 721–723

Dot Product Rule for vector functions, 756
Double integrals

over bounded nonrectangular regions, 
887–888

Fubini’s theorem for calculating, 884–886
in polar form, 900–904
properties of, 892–893
over rectangles, 882–886
substitutions in, 934–939
as volumes, 883–884

Double integration, area by, 896–899
Double-angle formulas, trigonometric, 25
Dummy variable in integrals, 318

e
definition of number, 140–141, 421
as limit, 184–185
natural exponential and, 38–39, 140–141, 

423–424
as series, 632–633

Eccentricity
of ellipse, 693
of hyperbola, 693
of parabola, 693
in polar coordinates, 692–694
polar equation for conic with, 694

Economics
derivatives in, 151–152
Cobb-Douglas production function, 865
examples of applied optimization from, 

268–270
Einstein’s mass correction, 210
Electric field, 969
Electromagnetic theory (Gauss’ Law), 1034
Elements of set, AP-2
Ellipse Law (Kepler’s First Law), 786
Ellipses

center of, 685, AP-17
center-to-focus distance of, 686
eccentricity of, 693
focal axis of, 685
major axis of, 686, AP-17
minor axis of, 686, AP-17
perimeter of, 665–666
polar equations of, 694–696
standard-form equations for, 687
vertices of, 685

Ellipsoids
definition of, 741
graphs of, 743
of revolution, 742

Elliptic integral
of first kind, 646
of second kind, 666

Elliptical cones, 741, 743
Elliptical paraboloids, 743
Empty set, AP-2
Endpoint extreme values, 225
Endpoint values of function, 94, 227
Equal Area Law (Kepler’s Second Law), 786–787
Equations

for circles, AP-16
differential. See Differential equations
for ellipses, 687, 696, AP-16–AP-17
Euler’s identity, 643–644
focus-directrix, 693
for hyperbolas, 687–689
ideal projectile motion and, 762
inverse, 427
linear, AP-13
parametric. See Parametric equations
for plane in space, 735–736
point-slope, AP-12
polar for circles, 695
polar for lines, 696
related rates, 194–198
relating polar and Cartesian coordinates, 673
relating rectangular and cylindrical 

coordinates, 923
relating spherical coordinates to Cartesian 

and cylindrical coordinates, 927
Error analysis

for linear approximation, 843
for numerical integration, 498–501
in standard linear approximation, 208–209, 

843
Error estimation, for integral test, 596–598
Error formula, for linear approximations, 

208–209, 843, 868
Error term, in Taylor’s formula, 632
Euler, Leonhard, AP-36
Euler’s formula, AP-30–AP-31
Euler’s identity, 643–644
Euler’s method, 539
Evaluation Theorem (Fundamental Theorem, 

Part 2), 331–333
Even functions, 6–7
ex

derivative of, 140–141, 424–425
integral of, 424–425
inverse equation for, 423–424
laws of exponents for, 236, 425

Exact differential forms, 977–978
Expansion, uniform, for a gas, 982–983
Expected value (mean), 520
Exponential change (growth or decay), 430–431
Exponential functions

with base a, 36, 46, 425–426
behavior of, 36–38
derivatives of, 140–141, 180–182, 424–425
description of, 10, 36
general, 37–38, 46, 425–426
growth and decay, 39–40
integral of, 424–425
natural, 38–39, 424
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continuity of, 94, 753, 805
continuous. See Continuous functions
continuous at endpoint, 94
continuous at point, 101–102, 753, 805
continuous extension of, 101–102
continuous over a closed interval, 96
continuously differentiable, 384, 392, 

663–664
cosine, 22, 156–158
critical point of, 227, 849
cube root, 8
cubic, 9
decreasing, 6, 239–240
defined by formulas, 14
defined on surfaces, 824–826
definition of, 1
dependent variable of, 1, 793
derivative as, 123, 128–132
derivative of, 124, 128, 131–132, 754
from derivatives, graphical behavior of, 

251–252
differentiable. See Differentiable functions
discontinuity of, 95–96, 805
domain of, 1–3, 14, 793, 794
even, 6–7
exponential. See Exponential functions
extreme values of, 223–228, 848–854, 

860, 863
gradient of, 833
graphing with software, 29–34
graphs of, 1–11, 14–21, 796
greatest integer, 5
Hessian of function of two variables, 850
hyperbolic. See Hyperbolic functions
identity, 24–25, 67–68, 1024
implicitly defined, 171–173, 826
increasing, 6, 239–240
independent variable of, 1, 793
input variable of, 1, 793
integer ceiling, 5
integer floor, 5
integrable, 318–321, 760, 883, 907
inverse. See Inverse functions
least integer, 5
left-continuous, 94
limit of, 66–73, 802
linear, 7
linearization of, 202–205, 842–843
logarithmic. See Logarithmic functions
machine diagram of, 2
of many variables, 828
marginal cost, 151
maximum and minimum values of, 223, 

225–226, 242, 852–854
monotonic, 239–242
of more than two variables, 807, 814–815, 

845
multiplication of, 14
natural exponential, definition of, 38–39, 424
natural logarithm, 45, 179–182, 420–421
nondifferentiable, 131–132
nonintegrable, 318
nonnegative

area under graph of, 322–323
continuous, 305–306

numerical representation of, 4
odd, 6
one-to-one, 41–42

Exponential growth, 39, 431, 433–434
Exponents

irrational, 183–184
Laws of, 236, 425
rules for, 38

Extrema
finding of, 226–228
global (absolute), 223–225, 227
local (relative), 225–226, 240–242, 247–251, 

848
Extreme Value Theorem, 224–225, 807, AP-24
Extreme values

constrained, and Lagrange multipliers, 860
at endpoints, 225
of functions, 223–228, 848–852
local (relative)

derivative tests, 226, 240–242
for several variables, 848, 850
for single variable functions, 225–226

Factorial approximation, 535
Factorial notation, 579
Fan-shaped region in polar coordinates, 

area of, 680
Fermat, Pierre de, 62
Fermat’s principle in optics, 267
Fibonacci numbers, 579
Fields

conservative, 970, 971–974, 1024–1025
electric, 969
gradient, 972
gravitational, 969
number, AP-24
ordered, AP-24
vector, 959–960

Finite (bounded) intervals, 6, AP-3
Finite limits, 104–115
Finite sums

algebra rules for, 311
estimating with, 299–307
limits of, 312–313
and sigma notation, 309–312

Firing angle, 762
First Derivative Test, 239–242, 849, 858
First derivative theorem for local extreme 

values, 226–227, 240–242
First moments

about coordinate axes, 916
about coordinate planes, 916, 1010
masses and, 915–917

First-order differential equations
applications of, 550–555
autonomous differential equations, 557, 564
Bernoulli differential equation, 550
carrying capacity, 561
competitive-hunter model, 564–566
curve, sigmoid shape, 562
equilibria, 557, 564
equilibrium values, 557, 559, 564
Euler’s method, 539
exponential population growth model, 551
falling body, encountering resistance, 560
first-order linear equations, 544
graphical solutions of autonomous differen-

tial equations, 556–559
initial value problems, 537
integrating factor, 545
Law of Exponential Change, 551, 561

limit cycle, 566
limiting population, 561
logistic population growth, 561
mixture problems, 553
motion with resistance proportional to 

velocity, 550
Newton’s law of cooling, 559
Newton’s second law of motion, 560
numerical method and solution, 539
orthogonal trajectories, 552
phase lines and phase planes, 557, 564
predator-prey model, 568
resistance proportional to velocity, 550
rest points, 564
RL circuits, 548
slope fields, 538
solution curves, 538
solution of first-order equations, 546
standard form of linear equations, 544
steady-state value, 548
systems of differential equations, 563
terminal velocity, 561

Flat plate, center of mass of, 406–409, 916
Flight time, 763
Flow integrals, 964–965
Fluid flow rates, 984
Fluid force against a vertical plate, 400
Fluid forces, work and, 964
Fluid forces and centroids, 411
Fluid pressure, 398–400
Flux

across plane curve, 965–966
across rectangle boundary, 984–985
calculation of, 986, 1007–1010
versus circulation, 965
definition of, 965, 1008
surface integral for, 1007–1010

Flux density (divergence), of vector field, 985, 
1027–1028

Foci, 683–689
Forces

addition of, 711–712
constant, 395
field of, 962
variable along line, 395–396
work done by

over curve in space, 962–964
through displacement, 723

Free fall, Galileo’s law for, 59, 148–149
Frenet, Jean-FrÁdÁric, 779
Frenet frame

computational formulas, 781
definition of, 779
torsion in, 780–781

Fubini, Guido, 885
Fubini’s theorem for double integrals, 884–886, 

889–891, 901, 907
Functions

absolute value, 5
addition of, 14–15
algebraic, 10
arcsine and arccosine, 48–50
arrow diagram of, 2, 794
combining of, 14–21
common, 7–11
component, 751
composite. See Composite functions
constant, 7, 67–68, 136, 305–306
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output variable of, 1, 793
piecewise-continuous, 318
piecewise-defined, 5
piecewise-smooth, 970
polynomial, 8
position, 5
positive, area under graph of, 306
potential, 970
power, 7–8, 183–184
quadratic, 9
range of, 1–3, 793, 794
rational. See Rational functions
real-valued, 2, 751, 793
reciprocal, derivative of, 128
representation as power series, 626–630
right-continuous, 94
scalar, 751
scaling of, 16–18
scatterplot of, 4
of several variables, 793–798
shift formulas for, 16
sine, 22, 156–158
in space, average value of, 911–912
square root, 8

derivative of, 129
symmetric, 6–7, 348–349, 675
of three variables, 796–798, 823–824, 

836–837
total area under graph of, 335
total cost, 151
transcendental, 11, 428
trigonometric. See Trigonometric functions
of two variables, 794–795, 798, 818

Chain Rule(s) for, 821–823
Increment Theorem of, 818
limits for, 801–805
linearization of, 842–843
partial derivatives of, 793–798, 810–812

unit step, 68
value of, 2
vector. See Vector functions
velocity, 304, 755
vertical line test for, 4–5

Fundamental Theorem of Algebra, AP-34
Fundamental Theorem of Calculus

arc length differential and, 667
continuous functions and, 420
description of, 328–336, 1036–1037
evaluating definite integrals, 456
for line integrals, 951
Part 1 (derivative of integral), 329–331, 422

proof of, 331
Part 2 (Evaluation Theorem), 331–333

Net Change Theorem, 333
proof of, 331–333

path independence and, 970
Fundamental Theorem of Line Integrals, 971

Gabriel’s horn, 514
Galileo Galilei

free-fall formula, 59, 148–149
law of, 59

Gamma function, 534, 948
Gauss, Carl Friedrich, 311, 710
Gauss’s Law, 1034
General linear equation, AP-13
General Power Rule for derivatives, 137, 

183–184, 425–426

General sine function, 27
General solution of differential equation, 284, 431
Genetic data, and sensitivity to change, 152
Geometric mean, 238, 429, 866
Geometric series

convergence of, 586
definition of, 586–588

Geometry in space, 704–750
Gibbs, Josiah Willard, 770
Global (absolute) maximum, 223, 852–854
Global (absolute) minimum, 223, 852–854
Gradient Theorem, Orthogonal, for constrained 

extrema, 860
Gradient vector fields

conservative fields as, 972
definition of, 958–959

Gradient vectors
algebra rules for, 836
curl of, 1024
definition of, 833
directional derivatives and, 830–837
to level curves, 835–836

Graphing, with software, 29–34
Graphing windows, 29–32
Graphs

asymptotes of, 104–115
of common functions, 7–11
connectedness and, 99
of derivatives, 130
of equation, AP-10
of functions, 3–4, 14–21, 796
of functions with several variables, 793–798
of functions with three variables, 796–798
of functions with two variables, 795–796
of parametric equations, 678
in polar coordinates, 672, 675–678
of polar curves, 678
of sequence, 574
surface area of, 1000
symmetric about origin, 6, 675
symmetric about x-axis, 6, 675
symmetric about y-axis, 6, 675
symmetry tests for, 675
technique for, 678
trigonometric, transformations of, 26–27
of trigonometric functions, 24, 31–32
of y = ƒ(x), strategy for, 249–251

Grassmann, Hermann, 713
Gravitation, Newton’s Law of, 785
Gravitational constant, 785
Gravitational field

definition of, 969
vectors in, 958

Greatest integer function
definition of, 5
as piecewise-defined function, 5

Green’s formulas, 1039
Green’s Theorem

area by, 991
circulation curl or tangential form, 986, 

988–866, 1016, 1036
comparison with Divergence Theorem, 1027, 

1036
comparison with Stokes’ Theorem, 1015, 

1036
divergence or normal form of, 986, 1027, 

1036
to evaluate line integrals, 988–866

forms for, 985–987
generalization in three dimensions, 1036
and the Net Change Theorem, 986
in plane, 980–990
proof of, for special regions, 989–990

Growth
exponential, 431

Growth rates
of functions, 431

Half-angle formulas, trigonometric, 25
Half-life, 40, 47, 435
Halley, Edmund, 240
Harmonic functions, 1038
Harmonic motion, simple, 158–159
Harmonic series

alternating, 610–612
definition of, 594

Heat equation, 821, 881, 1039
Heat transfer, 435–436
Heaviside integration method, 485
Height, maximum in projectile motion, 763
Helix, 752
Hessian of function, 850
Higher-order derivatives, 143–144, 173, 817
Hooke’s law of springs, 396–397
Horizontal asymptotes, 104, 106–109, 112–113
Horizontal scaling and reflecting 

formulas, 17
Horizontal shift of function, 16
Horizontal strips, 407–408
Huygens, Christian, 656, 657
Hydrodynamics, continuity equation of, 

1035–1036
Hyperbolas

branches of, 687
center of, 687
definition of, 687
directrices, 693
eccentricity of, 693
equation of, in Cartesian coordinates, 

693–694
focal axis of, 687
foci of, 687
polar equation of, 694
standard-form equations for, 687–689
vertices of, 687

Hyperbolic functions
definitions of, 439–440
derivatives of, 440–441, 443–445
graphs of, 442
identities for, 439–440, 443
integrals of, 440–441
inverse, 441–442
six basic, 440

Hyperbolic paraboloid, 742, 743
Hyperboloids, 741, 743

i-component of vector, 713
Identity function, 7, 67–68, 1024
Image, 934
Implicit differentiation

Chain Rule and, 826–828
formula for, 826
technique for, 171–174

Implicit Function Theorem, 827, 998
Implicit surfaces, 998–1000
Implicitly defined functions, 171–173
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Interest, compounded continuously, 39–40
Interior point

continuity at, 94
finding absolute maximum and minimum 

values, 852
for regions in plane, 795
for regions in space, 797

Intermediate Value Property, 99
Intermediate Value Theorem

continuous functions and, 99–100, 267–268, 
421, AP-24

monotonic functions and, 239
Intermediate variable, 823
Intersection, lines of, 736–737
Intersection of sets, AP-2
Interval of convergence, 621
Intervals

definition of, AP-3
differentiable on, 130–131
parameter, 653–654
types of, AP-3

Inverse equations, 427
Inverse function-inverse cofunction 

identities, 191
Inverse functions

definition of, 42–43
derivative rule for, 178
and derivatives, 177–185
of exponential functions, 11, 41
finding, 178–179
hyperbolic, 441–442, 466, 467
and integrating, 469
and logarithms, 41–51
trigonometric. See Inverse trigonometric 

functions
Inverse trigonometric functions

cofunction identities, 191
definition of, 48, 187, 191
derivatives of, 47–48, 191
study of, 187–191

Inverses
finding of, 43–44
integration and differentiation operations, 334
of ln x and number e, 423–424
for one-to-one functions, 42–43
of tan x, cot x, sec x, and csc x, 187–191

Irrational numbers
definition of, AP-2
as exponents, 37, 183–184

Irreducible quadratic polynomial, 481
Iterated integral, 884

Jacobi, Carl Gustav Jacob, 934
Jacobian determinant, 935, 937, 938, 940
j-component of vector, 713
Jerk, 148, 149
Joule, James Prescott, 395
Joules, 395
Jump discontinuity, 95

k-component of curl, 980–983
k-component of vector, 713
Kepler, Johannes, 787
Kepler’s First Law (Ellipse Law), 786
Kepler’s Second Law (Equal Area Law), 786–787
Kepler’s Third Law (Time-Distance Law), 787
Kinetic energy and work, 402
Kovalevsky, Sonya, 444
kth subinterval of partition, 313, 317

Integral test
for convergence of series, 593–598
error estimation, 596–598
remainder in, 597–598

Integral theorems, for vector fields, 1036–1037
Integrals

approximation of
by lower sums, 301
by midpoint rule, 301
by Riemann sum, 313–315
by Simpson’s Rule, 496–498
by Trapezoidal Rule, 495–496
by upper sums, 300

Brief Table of, 457
definite. See Definite integrals
double. See Double integrals
exponential change and, 430–436
of hyperbolic functions, 439–445
improper, 504–512

approximations to, 512
of Type I, 505
of Type II, 507

indefinite, 285–286, 339–345
involving log, 427–428
iterated, 884
line. See Line integrals
logarithm defined as, 420–428
multiple, 882–949
nonelementary, 492–493, 640–641
polar, changing Cartesian integrals into, 

902–904
in polar coordinates, 900–901
of powers of tan x and sec x, 472–473
of a rate, 333–334, 987
repeated, 884
substitution in, 338–345, 347, 934–942
surface, 1003–1012, 1017
table of, 489–490
trigonometric, 469–474
triple. See Triple integrals
of vector fields, 959–960, 1008
of vector functions, 759–761
work, 395–396, 962–964

Integrands
definition of, 285
with vertical asymptotes, 507–509

Integrate command (CAS), 591
Integration

basic formulas, 457
with CAS, 491–492
in cylindrical coordinates, 922–930
and differentiation, relationship between, 334
of inverse functions, 469
limits of. See Limits of integration
numerical, 494–501
by parts, 461–467
by parts formula, 462
of rational functions by partial fractions, 

480–487
with respect to y, area between curves, 

352–353
in spherical coordinates, 928–930
with substitution, 340, 347
techniques of, 456–535
term-by-term for power series, 623–624
by trigonometric substitution, 475–478
variable of, 285, 317
in vector fields, 950–1044
of vector function, 760–761

Improper integrals
approximations to, 512
calculating as limits, 504–512
with a CAS, 509–510
convergence of, 505, 507
of Type I, 505
of Type II, 507

Increasing function, 6, 239–240
Increment Theorem for Functions of Two 

variables, 818, AP-38–AP-40
Increments, AP-10–AP-13
Indefinite integrals. See also Antiderivatives

definition of, 285–286, 339
evaluation with substitution rule, 

339–345
Independent variable of function, 1, 793
Indeterminate form 0/0, 255–259
Indeterminate forms of limits, 255–261, 

642–643
Indeterminate powers, 259–260
Index of sequence, 573
Index of summation, 309
Induction, mathematical, AP-6–AP-9
Inequalities

rules for, AP-1
solving of, AP-3–AP-4

Inertia, moments of, 917–920
Infinite discontinuities, 95
Infinite (unbounded) intervals, 6, AP-3
Infinite limits

definition of, precise, 111–112
description and examples, 109–111
of integration, 504–507

Infinite sequence, 572–581. See also Sequences
Infinite series, 584–591
Infinitesimals, AP-25
Infinity

divergence of sequence to, 575
limits at, 104–115
and rational functions, 106

Inflection, point of, 227, 245–247, 250
Initial point

of parametric curve, 653
of vector, 709

Initial ray in polar coordinates, 671
Initial speed in projectile motion, 762
Initial value problems

definition of, 284
and differential equations, 283–284, 537
separable differential equations and, 433

Inner products. See Dot product
Input variable of function, 1, 793
Instantaneous rates of change

derivative as, 146–147
tangent lines and, 63–64

Instantaneous speed, 59–61
Instantaneous velocity, 147–148
Integer ceiling function (Least integer function), 

5
Integer floor function (Greatest integer 

function), 5
Integers

description of, AP-26
positive, power rule for, 136–137
starting, AP-8

Integrable functions, 318–321, 883, 907
Integral form, product rule in, 461–465
Integral sign, 285
Integral tables, 489–490
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motion along, 147–151
normal, 174
normal, tangent planes and, 839–841
parallel, AP-13
parametric equations for, 732–733
perpendicular, AP-13
and planes, in space, 732–738
polar equation for, 696
secant, 61
skew, 747
straight equation lines, 732
tangent, 63–64, 123
vector equations for, 732–734
vertical, shell formula for revolution 

about, 379
work done by variable force along, 395–396

Liquids
incompressible, 985
pumping from containers, 397–398

ln bx, 45, 235–236
ln x

and change of base, 46
derivative of, 179–180, 422
graph and range of, 45, 422–423
integral of, 463
inverse equation for, 45, 424
inverse of, 423–424
and number e, 45, 423–424
properties of, 45, 422

ln xr, 45, 236
Local extrema

first derivative test for, 240–242
first derivative theorem for, 226
second derivative test for, 247–251

Local extreme values
definition of, 225–226, 848
derivative tests for, 226–227, 

848–852, 850
first derivative theorem for, 226–227, 849

Local (relative) maximum, 225–226, 848, 854
Local (relative) minimum, 225–226, 848, 854
loga u, derivative of, 180–182, 427–428
loga x,

derivatives and integrals involving, 427–428
inverse equations for, 46, 427

Logarithmic differentiation, 182–183
Logarithmic functions

with base a, 44–45, 426–427
change of base formula and, 46
common, 45
description of, 11
natural, 45, 420–421

Logarithms
algebraic properties of, 45, 427–428
applications of, 46–47
with base a, 44–45, 426–427
defined as integral, 420–428
derivatives of, 177–185
integral of, 463
inverse functions and, 41–51, 423–424
inverse properties of, 46, 427
laws of, proofs of, 45, 235–236
natural, 45, 420–421
properties of, 45–46

Logistic population growth, 561
Loop, 965
Lorentz contraction, 120
Lower bound, 312
Lower sums, 301

deltas, finding algebraically, 80–82
of difference quotient, 124
e (the number) as, 184–185
estimation of, calculators and computers for, 

71–72
finite, 104–115
of finite sums, 312–313
of function values, 66–73
for functions of two variables, 801–805
indeterminate forms of, 255–261
infinite, 109–111

precise definitions of, 111–112
at infinity, 104–115
of integration

for cylindrical coordinates, 924–926
for definite integrals, 347–350
finding of, for multiple integrals, 891–892, 

901–902, 907–911, 924–926, 929
infinite, 504–507
for polar coordinates, 901–902
for rectangular coordinates, 907–912
for spherical coordinates, 929

left-hand. See Left–hand limits
nonexistence of, two-path test for functions 

of two variables, 806
one-sided. See One–sided limits
of polynomials, 70
power rule for, 69
of rational functions, 70, 106
of Riemann sums, 316–318
right-hand. See Right–hand limits
root rule for, 69
Sandwich Theorem, 72–73
of sequences, 574, 576–577
two-sided, 86
of vector-valued functions, 752–753

f-limits of integration, finding of, 929
r-limits of integration, finding of, 929
Line integrals

additivity and, 952–953
definition for scalar functions, 951
evaluation of, 951, 960

by Green’s Theorem, 988–866
fundamental theorem of, 971
integration in vector fields, 950–955
interpretation of, 954–955
mass and moment calculations and, 

953–954
in plane, 954–955
of vector fields, 957–966
xyz coordinates and, 961

Line segments
directed, 709
midpoint of, finding with vectors, 714
in space, 732–738

Linear approximations
error formula for, 843, 868
standard, 203, 842–843

Linear equations
general, AP-13

Linear functions, 7
Linear transformations, 935–936
Linearization

definition of, 203, 842
differentials and, 202–211
of functions of two variables, 842–843, 844

Lines
of intersection, for planes, 736–737
masses along, 404–405

Lagrange, Joseph-Louis, 232, 857
Lagrange multipliers

method of, 860–863
partial derivatives and, 857–864
solving extreme value problems, 853
with two constraints, 863–864

Laplace, Pierre-Simon, 816
Laplace equation, 820–821
Launch angle, 762
Law of cooling, Newton’s, 435–436
Law of cosines, 25–26, 719
Law of refraction, 268
Laws of exponents, 236, 425
Laws of logarithms

proofs of, 235–236
properties summarized, 45

Least integer function, 5
Least upper bound, 579, AP-24
Left-continuous functions, 94
Left-hand derivatives, 130–131
Left-hand limits

definition of, 87–88
informal, 86–88
precise, 77–83, 88

Left-handed coordinate frame, 704
Leibniz, Gottfried, 340, AP-25
Leibniz’s formula, 642
Leibniz’s notation, 130, 165, 202, 205, 317, 664
Leibniz’s Rule, 363

for derivative of an integral, 363
for products, 221

Length
along curve in space, 768–770
constant, vector functions of, 757
of curves, 384–386, 663–666
of parametrically defined curve, 663–666
of polar coordinate curve, 681–682
of vector (magnitude), 710, 711–712

Lenses, light entering, 174
Level curves, of functions of two variables, 796
Level surface, of functions of three variables, 

796
L’Hôpital, Guillaume de, 255
L’Hôpital’s Rule

finding limits of sequences by, 577–578
indeterminate forms and, 255–261
proof of, 260–261

Limit Comparison Test, 510, 511, 601–603
Limit Laws

for functions with two variables, 803
limit of a function and, 66–73
theorem, 69, 105

Limit Power Rule, 69
Limit Product Rule, proof of, AP-19–AP-20
Limit Quotient Rule, proof of, AP-20–AP-21
Limit Root Rule, 69
Limit theorems, proofs of, AP-19–AP-21
Limits

of (sin u)/u, 89–91
commonly occurring, 578–579, 

AP-22–AP-23
continuity and, 59–122
of continuous functions, 93–96, 98
for cylindrical coordinates, 924–926
definition of

informal, 66–68
precise, 77–83
proving theorems with, 82–83
testing of, 78–80
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One-sided limits. See also Left–hand limits; 
Right–hand limits

definition of
informal, 86–88
precise, 88

derivatives at endpoints, 130–131
involving (sin u)/u, 89–91

One-to-one functions, 41–42
Open region, 795, 797
Optics

Fermat’s principle in, 267
Snell’s Law of, 268

Optimization, applied. See Applied optimization
Orbital period, 786
Order of Integration Rule, 320
Ordered field, AP-24
Oresme, Nicole, 574
Orientable surface, 1007
Origin

of coordinate system, AP-10
moment of system about, 405
in polar coordinates, 671

Orthogonal gradient theorem, 860
Orthogonal trajectories, 552
Orthogonal vectors, 720–721
Oscillating discontinuities, 95
Osculating circle, 775
Osculating plane, 781
Output variable of function, 793
Outside-Inside interpretation of chain rule, 165, 837

Paddle wheel, 1020–1023
Parabola(s)

approximations by, 496–498
Archimedes’ formula, 337
axis of, 684, AP-15
definition of, 683
directrix of, 683, 685, 695
eccentricity of, 693
focal length of, 684
focus of, 683, 685
as graphs of equations, AP-15–AP-16
parametrization of, 654–655
semicubical, 176
vertex of, 684, AP-15

Paraboloids
definition of, 741
elliptical, 743
hyperbolic, 742, 743
volume of region enclosed by, 909–910

Parallel axis theorem, 922
Parallel lines, 736, AP-13
Parallel planes

lines of intersection, 736
slicing by, 366–367

Parallel vectors, cross product of, 726
Parallelogram

area of, 727
law of addition, 711–712, 719

Parameter domain, 653, 993
Parameter interval, 653–654
Parameters, 653, 993
Parametric curve

arc length of, 663–666, 768–770
calculus with, 661–669
definition of, 653
differentiable, 661
graphing, 654–655, 678

Motion
along curve in space, 753–755, 779
along line, 147–151
antiderivatives and, 284–285
direction of, 755
in polar and cylindrical coordinates, 784–785
with resistance, 550
simple harmonic, 158–159
vector functions and, 751, 753–755

Multiple integrals. See Double integrals; Triple 
integrals

Multiplication
of complex numbers, AP-31
of functions, 14
of power series, 621–622
scalar, of vectors, 711–712

Multiplier (Lagrange), 853, 857–864

Napier, John, 45
Napier’s inequality, 364
Natural domain of function, 2
Natural exponential function

definition of, 38–39, 424
derivative of, 140–141, 424–425
graph of, 38–39, 141, 424
power series for, 632

Natural logarithm function
algebraic properties of, 45, 422
definition of, 45, 420–421
derivative of, 179–182, 422
power series for, 624

Natural logarithms, 45, 420–421
Natural numbers, AP-2
Negative rule, for antiderivatives, 283
Net Change Theorem

and Green’s Theorem, 986
statement of, 333

Newton, Sir Isaac, 328, AP-25
Newton-Raphson method, 276–279
Newton’s law of cooling, 435–436, 559
Newton’s law of gravitation, 785
Newton’s method

applying, 277–278
convergence of approximations, 278–279
procedure for, 276–277

Newton’s second law, 560
Nondecreasing partial sums, 585
Nondecreasing sequences, 580
Nondifferentiable function, 131–132
Nonelementary integrals, 492–493, 640–641
Nonintegrable functions, 318–321
Norm of partition, 314, 883, 923
Normal component of acceleration, 778–783
Normal distribution, 523

standard form of, 525
Normal line, 174, 839
Normal plane, 781
Normal vector, 776–777
Notations, for derivative, 129–130, 811–812
nth partial sum, 584–585
nth-term test for divergence, 588–589
Numerical integration, 494–501
Numerical representation of functions, 4

Oblique (slant) asymptote, 109
Octants, 704
Odd functions, 6–7
One-sided derivatives, 130–131

Machine diagram of function, 2
Maclaurin, Colin, 627
Maclaurin series, 627–628, 629
Magnitude (length) of vector, 710, 711–712
Marginal cost, 151, 268
Marginal profit, 268
Marginal revenue, 268
Marginals, 151
Mass. See also Center of mass

along line, 404–405
distributed over plane region, 405–406
formulas for, 406, 408–409, 916, 954
by line integral, 954
and moment calculations

line integrals and, 953–954
multiple integrals and, 916, 919

moments of, 406
of thin shells, 1010–1012
of wire or thin rod, 953–954

Mass to energy equation, 211
Mathematical induction, AP-6–AP-9
Maximum

absolute (global), 223, 852–854
constrained, 857–860
local (relative), 225–226, 848, 854

Max-Min Inequality Rule for definite integrals, 
320, 328–329

Max-Min Tests, 240–241, 247, 849, 850, 854
Mean. See Expected value
Mean value. See Average value
Mean Value Theorems, 234–235, 239, 242, 422

arbitrary constants, 281
Cauchy’s, 260–261
corollary 1, 234
corollary 2, 234–235, 422
corollary 3, 239
for definite integrals, 328–331
for derivatives, 232
interpretation of, 233, 328
laws of logarithms, proofs of, 235–236
mathematical consequences of, 234–235
for parametrically defined curves, 663
proof of, 235–236

Mendel, Gregor Johann, 152
Mesh size, 495
Midpoint of line segment in space, finding with 

vectors, 714
Midpoint rule, 301, 302
Minimum

absolute (global), 223, 852–854
constrained, 857–860
local (relative), 225–226, 848, 854

Mixed Derivative Theorem, 816, AP-36
MÖbius band, 1007
Moments

and centers of mass, 404–413, 915–920, 954, 
1010

first, 915–917, 1010
of inertia, 917–920, 1010
and mass calculations, line integrals and, 

953–954
of solids and plates, 919
of system about origin, 405
of thin shells, 1010–1012
of wires or thin rods, 953–954

Monotonic functions, 239–242
Monotonic Sequence Theorem, 580–581, 593
Monotonic sequences, 579–581
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Polar equations
of circles, 697
of conic sections, 694–696
graphing of, 672
of lines, 696

Polyhedral surfaces, 1023
Polynomial functions, definition of, 8
Polynomials

coefficients of, 8–9
degree of, 9
derivative of, 140
limits of, 70
quadratic irreducible, 481
Taylor, 628–630, 635, 636

Population growth
logistic, 561
unlimited, 433–434

Position, of particle in space over time, 751
Position function, acceleration and, 235
Position vector, 709
Positive integers

definition of, AP-26
derivative power rule for, 136–137

Potential function, 970
Potentials, for conservative fields, 974–977
Power Chain Rule, 166–168, 172
Power functions, 7–8, 183–184
Power Rule

for derivatives, general version of, 137, 
183–184, 425–426

for limits, 69
for limits of functions of two variables, 803
natural logarithms, 45, 427
for positive integers, 136–137
proof of, 183–184

Power series
convergence of, 617–620

radius of, 620–621
testing of, 620–621

multiplication of, 621–622
operations on, 621–624
reciprocal, 617
term-by-term differentiation of, 622
term-by-term integration of, 623–624

Powers
binomial series for, 639–640
of complex numbers, AP-32
indeterminate, 259–260
of sines and cosines, products of, 470–471

Preimage, 934
Pressure depth equation, 398
Principal unit normal vector, 776, 783
Probability

of a continuous random variable, 517
mean, 520
median, 521
standard deviation, 522
variance, 522

density function, 517
distributions

exponentially decreasing, 518, 521
normal, 523
uniform, 523

Product Rule
for derivatives, 141–142, 242
for gradient, 836
in integral form, integration by parts, 

461–465

Piecewise-defined functions, 5
Piecewise-smooth curves, 754, 970
Piecewise-smooth surface, 1004, 1015
Pinching Theorem. See Sandwich Theorem
Plane areas for polar coordinates, 679–681
Plane curves

circle of curvature for, 775–776
lengths of, 384–388
parametrizations of, 653–658

Plane regions
boundary point, 795
bounded, 795
interior point, 795
masses distributed over, 405–406

Plane tangent to surface, 839, 840
Planes

angles between, 738
Cartesian coordinates in, AP-10
directional derivatives in, 830–832
distance and circles in, AP-13–AP-15
equation for, 735
Green’s Theorem in, 980–990
horizontal tangent to surface, 848
line integrals in, 954–955
lines of intersection for, 736–737
motion of planets in, 785–786
normal, 781
osculating, 781
parallel, 736
rectifying, 781
in space, 732–738

Planetary motion
Kepler’s First Law (Ellipse Law) of, 786
Kepler’s Second Law (Equal Area Law) of, 

786–787
Kepler’s Third Law (Time-Distance Law) 

of, 787
as planar, 785–786

Plate(s)
bounded by two curves, 409–410
thin flat, center of mass of, 406–409
two-dimensional, 916, 919

Points
boundary, 797
of discontinuity, definition of, 94
of inflection, 227, 245–247
interior, 797
in three-dimensional Cartesian coordinate 

system, distance to plane, 737–738
Point-slope equation, AP-12
Poiseuille’s formula for blood flow, 213
Poisson, SimÁon-Denis, 848
Polar coordinate pair, 671
Polar coordinates

area in, 902
area of polar region, 680
Cartesian coordinates related to, 671–674
conics in, 683, 692–697
definition of, 671
graphing in, 672, 675–678

symmetry tests for, 675
initial ray of, 671
integrals in, 900–901
length of polar curve, 681–682
motion in, 784–785
pole in, 671
slope of polar curve, 676–677
velocity and acceleration in, 784–787

Parametric equations
of circle, 654, 664–665
for curves in space, 751
of cycloid, 657
definition of, 653–654
of ellipse, 665
graphing, 654–656
of hyperbola, 656, 661–662
of lines, 732–734
for projectile motion, 761–763

Parametric formulas, for derivatives, 661
Parametrization

of cone, 993
of curves, 653–658, 751
of cylinder, 994
of line, 732–733
of sphere, 993
and surface area, 994–998
of surfaces, 992–998

Partial derivatives
calculations of, 812–814
Chain Rule for, 821–828
with constrained variables, 870
and continuity, 801–807
continuous, identity for function with, 1024
definitions of, 811
equivalent notations for, 811
extreme values and saddle points, 848–854
of function of several variables, 793–798
of function of two variables, 810–812
functions of several variables, 793–798
gradient vectors and, 830–837
higher-order, 817
Lagrange multipliers, 857–864
second-order, 815–816
tangent planes and, 839–845

Partial fractions
definition of, 487
integration of rational functions by, 

480–487
method of, 481–484

Partial sums
nondecreasing, 593–594
nth of series, 584–585
sequence of, 585

Particular solution, of differential equation, 284
Partitions

definition of, 882–883
kth subinterval of, 313
norm of, 314, 883
for Riemann sums, 314–315

Parts, integration by, 461–467
Pascal, Blaise, 585
Path independence, 970
Path integrals. See Line integrals
Path of particle, 751
Pendulum clock, 657
Percentage change, 210
Period of a pendulum, 170, 221
Periodicity, of trigonometric functions, 24
Perpendicular lines, AP-13
Perpendicular (orthogonal) vectors, 720–721
Physics, examples of applied optimization from, 

266–268
Pi (p)

recursive sequence for, 583
series sum and, 598, 623, 642

Piecewise-continuous functions, 318, 361–362
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Shell formula for, 379
solids of

disk method, 368–370
washer method, 371–372

surface of, 390
about y-axis, 392–393

Riemann, Georg Friedrich Bernhard, 313
Riemann sums

concept overview, 313–315
convergence of, 317
forming, 317
for integrals, 406
limits of, 316–318
line integrals and, 950
slicing with cylinders, 377
for surface integrals, 1003
total area of rectangle, 334
for triple integrals, 923, 928
volumes using cross-sections, 366
volumes using cylindrical shells, 379
work and, 396

Right-continuous functions, 94
Right-hand limits

definition of, 87–88
proof of, AP-21

Right-handed coordinate frame, 704
Right-handed derivatives, 130–131
Rise, AP-11
r-limits of integration, 901, 925
Rolle, Michel, 231
Rolle’s Theorem, 231–232
Root finding, 100
Root rule

for limits, 69
for limits of functions of two variables, 

803
Root Test, 607–609, 621
Roots

binomial series for, 639–640
of complex numbers, AP-32–AP-33
finding by Newton’s Method, 277–278
and Intermediate Value Theorem, 

99–100
Rotation

disk method, 368–370
uniform, 985

Run, AP-11

Saddle points, 742, 849–850, 850, 854
Sandwich Theorem

limits at infinity, 108
limits involving (sin u)/u, 89
proof of, AP-21
for sequences, 576
statement of, 72–73

Savings account growth, 36–37
Scalar functions, 751
Scalar Multiple Rules for vector functions,

756
Scalar multiplication of vectors, 711–712
Scalar products. See Dot product
Scalars, definition of, 710
Scaling, of function graph, 16–18
Scatterplot, 4
Schwarz’s inequality, 298, 725
Sec x

derivative of, 159
integral of, 472–473
inverse of, 187–188

limits of, 70
at infinity, 106

Rational numbers, AP-2, AP-26
Real numbers

construction of reals and, AP-25–AP-26
development of, AP-26–AP-27
properties of

algebraic, AP-1, AP-23
completeness, 38, AP-1, AP-23
order, AP-1, AP-23

and real line, AP-1
theory of, AP-23–AP-26

Real-valued functions, 2, 751, 793
Rearrangement theorem, for absolutely 

convergent series, 613
Reciprocal function, derivative of, 128
Reciprocal Rule for natural logarithms, 45, 427
Rectangles

approximating area with, 299–301
defining Riemann sums, 314–315
double integrals over, 882–886
optimizing area of, inside circle, 266–267

Rectangular coordinates. See Cartesian 
coordinates

Rectifying plane, 781
Recursion formula, 579
Recursive definitions, 579
Reduction formula, 465, 490
Reflection of graph, 16–18
Refraction, Law of, 268
Regions

bounded, 795
closed, 795, 797
connected, 971
general, double integrals over, 887–893
open, 795, 797, 1024–1025
plane

interior point, 795
masses distributed over, 404

simply connected, 971
solid, volume of, 888–891
in space

interior point, 797
volume of, 907

special
divergence theorem for, 1031–1032
Green’s Theorem for, 989–990

unbounded, 795
Regression analysis, 33

least squares, 33, 856
Reindexing infinite series, 590–591
Related rates, 193–198
Relative change, 210
Relative (local) extrema, 225–226, 848
Remainder

estimating of, in Taylor’s Theorem, 632, 
633–634

in integral test, 597–598
of order n, definition for Taylor’s formula, 

632
Remainder Estimation Theorem, 633, 635
Removable discontinuities, 95
Representation of function, power series, 

616–624
Resultant vector, 711–712
Revenue, marginal, 268
Revolution

areas of surfaces of, 390–393, 668–669
ellipsoid of, 742

Product Rule (continued )
for limits, 69

of functions with two variables, 803
proof of, 142

for natural logarithms, 45, 427
for power series, 621–622
for sequences, 576

Products
of complex numbers, AP-31
of powers of sines and cosines, 470–471
and quotients, derivatives of, 141–143
of sines and cosines, 473–474

Profit, marginal, 268
Projectile motion, vector and parametric 

equations for, 761–763
Projection, of vectors, 721–723
Proportionality relationship, 7
p-series, 595–596
Pumping liquids from containers, 397–398
Pyramid, volume of, 366–367
Pythagorean theorem, 24, 26, AP-13, AP-27
Pythagorean triples, 583

Quadrants, of coordinate system, AP-10
Quadratic approximations, 631
Quadratic polynomial, irreducible, 481
Quadric surfaces, 741–743
Quotient Rule

for derivatives, 142–143, 159–160, 612
for gradient, 836
for limits, 69

of functions with two variables, 803
proof of, AP-20–AP-21

for natural logarithms, 45, 427
for sequences, 576

Quotients
for complex numbers, AP-31–32
products and, derivatives of, 141–143

Radian measure and derivatives, 167–168
Radians, 21–22, 23
Radioactive decay, 40, 434–435
Radioactive elements, half-life of, 47, 435
Radioactivity, 434–435
Radius

of circle, AP-14
of convergence, 621
of convergence of power series, 620–621
of curvature, for plane curves, 775–776

Radius units, 21
Random variable, 516
Range

of function, 1–3, 793, 794
in projectile motion, 763

Rate(s)
average, 61
of change, 59–64

circulation density, 982, 1016
flux density, 985, 1027

instantaneous, derivative as, 63–64
integral of, 333–334

Rate constant, exponential change, 431
Ratio, in geometric series, 586
Ratio Test, 606–607, 618–619, 621, 639
Rational exponents, 37
Rational functions

definition of, 9
domain of, 9
integration of, by partial fractions, 480–487
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Slicing
with cylinders, 376–378
by parallel planes, 366–367
volume by, 366–367

Slope
of curve, 61–63
fields, 538
of nonvertical line, AP-11
of parametrized curves, 655–656
of polar coordinate curve, 676–677
tangent line and, 123–124

Smooth curves, 3–4, 384–386, 754
Smooth surface, 994–995, 998
Snell van Royen, Willebrord, 267
Snell’s Law, 268
Software

graphing with, 29–34
Solids

Cavalieri’s principle of, 367
cross-section of, 365
three-dimensional, masses and moments, 

916, 919
volume

calculation of, 366
by disk method, 368–370
by double integrals, 883–884, 888–891
by method of slicing, 365–372
by triple integrals, 906–907
by washer method, 371–372

Solids of revolution
by disk method, 368–370
by washer method, 371–372

Solution
of differential equation, 431
particular, 284

Speed
along smooth curve, 770
average, 59–61
definition of, 148
instantaneous, 59–61
of particle in space, 755
related rates equations, 196–198
over short time intervals, 60

Spheres
concentric, in vector field, 1033–1034
parametrization of, 993
in space, distance and, 706–707
standard equation for, 706
surface area of, 996–997

Spherical coordinates
definition of, 926
triple integrals in, 926–930

Spin around axis, 980–983
Spring constant, 396, 397
Springs

Hooke’s law for, 396–397
mass of, 953–954
work to stretch, 397

Square root function
definition of, 8
derivative of, 129

Square roots, elimination of, in integrals, 472
Squeeze Theorem. See Sandwich Theorem
St. Vincent, Gregory, 666
Standard deviation, 522
Standard linear approximation, 203, 842
Standard unit vectors, 713
Step size, 495
Stirling’s formula, 534

Series
absolutely convergent, 604–605
adding or deleting terms, 590
alternating, 610–614

harmonic, 610–612
binomial, 638–640
combining, 589–590
conditionally convergent, 613
convergence of, comparison tests for, 

600–603
convergent, 585
divergent, 585, 588–589
error estimation, 596–598
geometric, 586–588
harmonic, 594, 610–612
infinite, 584–591
integral test, 593–598
Maclaurin, 627–628
p-, 595–596
partial sum of, 584–585
power, 616–624
rearrangement of, 613–614
reindexing, 590–591
representations, of functions of power, 

616–624
sum of, 584–585
Taylor, 627–628, 631–637, 634–635
tests

for absolute convergence, 605
alternating, 610–613
Cauchy condensation, 599
comparison, 600
convergence, 600–603
integral, 593–598
limit comparison, 601–603
Raabe’s, 650
ratio, 606–607
root, 607–609
summary of, 614

Set, AP-2
Shearing flow, 982
Shell formula for revolution, 379
Shell method, 378–381
Shells, thin, masses and moments of, 1010–1012
Shift formulas for functions, 16
Shifting, of function graph, 16
Short differential formula, arc length, 387–388
SI units, 395
Sigma notation, 309–315
Simple harmonic motion, 158–159
Simply connected region, 971
Simpson, Thomas, 497
Simpson’s Rule

approximations by, 496–498, 498–501
error analysis and, 498–501

Sine(s)
extended definition of, 22
integrals of products of, 473–474
integrals of products of powers of, 470–471
values of, 23

Sine function
derivative of, 156–158
graph of, 10
integral of, 470
inverse of, 49, 188–189

Sine-integral function, 514
Sinusoid formula, 27
Skew lines, 747
Slant (oblique) asymptote, 109

Secant, trigonometric function, 22
integral of, 344

Secant function
extended definition of, 22
integral of, 344
inverse of, 49, 187, 191

Secant lines, 61
Secant slope, 62
Second derivative test

for concavity, 245
derivation of, two-variable function, 866–868
for local extrema, 247–251
summary of, 854

Second moments, 917–920, 1010
Second-order differential equation topics 

covered online
applications of second-order equations
auxiliary equation
boundary value problems
complementary equation
damped vibrations

critical damping
overdamping
underdamping

electric circuits
Euler equation
Euler’s method
existence of second-order solutions
forced vibrations
form of second-order solutions
general solution for linear equations
homogeneous equations
linear combination
linearity
linearly independent solutions
method of undetermined coefficients
nonhomogeneous equations
power-series solutions
second-order differential equations
second-order initial value problems
second-order linear equations
second-order series solutions
simple harmonic motion
solution of constant-coefficient second-order 

linear equations
superposition principle
theorem on general solution form
uniqueness of second-order solutions
variation of parameters

Second-order partial derivatives, 815–816
Separable differential equations, 431–433
Sequences

bounded, 579–581
calculation of, 576–577
convergence of, 573–575
divergence of, 573–575
index of, 573
infinite, 572–581
to infinity, 575
limits of, 574, 576–577

by Continuous Function Theorem, 577
by l’HÓpital’s Rule, 577–578
by Sandwich Theorem, 576

monotonic, 580
to negative infinity, 575
of partial sums, 585

nondecreasing, 580
recursively defined, 579
zipper theorem for, 583
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Term of a sequence, 573
Term of a series, 585
Term-by-term differentiation, 622
Term-by-term integration, 623–624
Terminal point

of a parametric curve, 653
of vector, 709

Theorem(s)
Absolute Convergence Test, 605
Algebraic Properties of Natural Logarithm, 

45, 422
Alternating Series Estimation, 612, 635
angle between two vectors, 718
Cauchy’s Mean Value, 260–261
Chain Rule, 165

for functions of three variables, 823–824
for functions of two variables, 821–822
for two independent variables and three 

intermediate variables, 824
Comparison Test, 600
conservative fields are gradient fields, 972
Continuous function for sequences, 577
Convergence, for Power Series, 619
curl F = 0 related to loop property, 

1024–1025
De Moivre’s, AP-32
Derivative Rule for Inverses, 178
Differentiability implies continuity, 132, 818
Direct Comparison Test, 601
Divergence, 1028–1030
Divergence of curl, 1031
Evaluation, 331–333
Exactness of differential forms, 977
Extreme Value, AP-24, 224–225
First derivative test for local extreme values, 

226–227, 849
Formula for Implicit Differentiation, 826
Fubini’s, 885, 889–891
Fundamental, 328–336

of Algebra, AP-34
of Calculus, Part 1, 329–331
of Calculus, Part 2, 331–333
of Line Integrals, 971

Green’s, 986
Implicit Function, 827, 998
Increment, for Functions of Two Variables, 

AP-38–AP-40, 818
integrability of continuous functions, 318
Integral Test, 594
Intermediate value, 99–100
Laws of Exponents for ex, 425
l’HÓpital’s Rule, 255–261, 577–578
Limit, proofs of, AP-19–AP-21
Limit Comparison Test, 601–603
Limit Laws, 69, 105
Loop property of conservative fields, 973
Mean Value, AP-36–AP-40, 231–236, 

234–235, 239, 281, 384–386, 663
corollary 1, 234
corollary 2, 234–235, 422
for definite integrals, 328–331

Mixed Derivatives, AP-36, 816
Monotonic Sequence, 580–581, 593
Multiplication of power series, 621
Net Change, 333
Nondecreasing Sequence, 580
number e as limit, 184
Orthogonal gradient, 860
Pappus’, 411–413

Surfaces
and area, 668–669, 992–1000
functions defined on, 824–826
with holes, 1024
implicit, 998–1000
level, 796
orientable, 1007
parametrization of, 992–998
piecewise smooth, 1004, 1015
plane tangent to, 839–841
quadric, 741–743
smooth, 994–995, 998
two-sided, 1007
of two-variable functions, 796

Symmetric functions
definite integrals of, 348–349
graphs of, 6–7
properties of, 6

Symmetry tests, for graphs in polar coordinates, 
675

u-limits of integration, finding of, 901–902, 
929

System torque, systems of masses, 404–405

Table of integrals, 457, 489–490
Tabular integration by parts, 466, 533
Tan x

derivative of, 159
integral of, 472–473
inverse of, 187–188

Tangent(s)
to curves, 59–64, 770, 835–836
of curves in space, 751–757
extended definition of, 22
to graph of function, 123–124
to level curves, 835–836
and normals, 174
at point, 123–125
slope of, 61
values of, 23
vertical, 132

Tangent function
extended definition of, 22
inverse of, 49, 187, 191

Tangent line approximation, 203, 842
Tangent lines

to curve, 123
instantaneous rates of change and, 63–64

Tangent plane approximation, 842
Tangent planes

horizontal, 849
and normal lines, 839–841
to a parametric surface, 994

Tangent vector, 754
Tangential component of acceleration, 778–783
Tautochrones, 657–658
Taylor, Brook, 627
Taylor polynomials, 628–630, 635, 636
Taylor series

applying of, 634–635, 640–644
convergence of, 631–637
definition of, 627–628
frequently used, 644

Taylor’s Formula
definition of, 631, 632
for functions of two variables, 866–870

Taylor’s Theorem
definition of, 631
proof of, 636–637

Stokes’ Theorem
comparison with Green’s Theorem, 1014, 

1015, 1016, 1036, 1037
conservative fields and, 974, 1024–1025
integration in vector fields, 1014–1025
for polyhedral surfaces, 1023
surface integral in, 1017
for surfaces with holes, 1024

Stretching a graph, 17
Substitution

and area between curves, 347–353
in double integrals, 934–939

rectangular to polar coordinates, 901
indefinite integrals and, 339–345
in multiple integrals, 934–942
trigonometric, 475–478
in triple integrals, 939–942

rectangular to cylindrical coordinates, 
923

rectangular to spherical coordinates, 927
Substitution formula for definite integrals, 

347–349
Substitution Rule

in definite integrals, 347
definition of, 340
for double integrals, 935
evaluation of indefinite integrals with, 

339–345
in triple integrals, 939

Subtraction, of vectors, 712
Sum Rule

for antiderivatives, 283, 286
for combining series, 589
for definite integrals, 320
derivative, 138–139
for finite sums, 311
of functions of two variables, 803
of geometric series, 589
for gradients, 836
for limits, 69, 82
of sequences, 576
for vector functions, 756

Sums
and difference, of double integrals, 892
finite, 613
finite, estimation with, 299–307
limits of, 312–313
lower, 301
partial, sequence of, 585
Riemann. See Riemann sums
upper, 300

Surface area
defining of, 390–392, 994–998
differential for parametrized surface, 996
of explicit surface, 1004
of graph, 1000
of implicit surface, 999–1000, 1004
parametrization of, 994–998
for revolution about y-axis, 392–393
for sphere, 996–997

Surface integrals
computation of, 1004–1007
for flux, 1007–1010
formulas for, 1004
integration in vector fields, 1003–1012
of scalar functions, 1004
in Stoke’s Theorem, 1017
of vector fields, 1008

Surface of revolution, 390
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Vector fields
conservative, 970, 971–974
continuous, 957
curl of, 1014–1015
definition of, 957–958
differentiable, 957
divergence of, 982–983
electric, 969
flux density of, 985
gradient, 958–959, 971–972
gravitational, 969
integration in, 950–1044
and line integrals, 957–966
line integrals of, definition of, 959–960
potential function for, 970
surface integrals of, definition of, 1008

Vector functions
antiderivatives of, 759
of constant length, 757
continuity of, 752–753
curves in space and, 751–757
definite integral of, 760–761
derivatives of, definition of, 754
differentiable, 754
differentiation rules for, 755–757
indefinite integral of, 759–761
integrals of, 759–764
limits of, 752–753

Vector product. See Cross product
Vectors

acceleration, 755, 779
addition of, 711–712, 719
algebra operations with, 711–713
angle between, 718–720
applications of, 715–716
binormal, of curve, 779
component form of, 709–711
coplanar, 713
cross product

as area of parallelogram, 727
in component form, 727–729
definition of, 726
as determinant, 727–729
right-hand rule for, 726
of two vectors in space, 726–727

curl, 1014–1015
definition of, 709
direction of, 713
dot product, definition of, 718
equality of, 709
and geometry in space, 704–750
gradient, 833
in gravitational field, 958
i-component of, 713
initial point of, 709
j-component of, 713
k-component of, 713
length (magnitude) of, 710, 711–712
midpoint of line segments, 714
in navigation, 715
normal, of curve, 776–777
notation for, 709
parallel, 726
perpendicular (orthogonal), 720–721
in physics and engineering, 715–716
position, standard, 709–710
principal unit normal, 774, 783
projection of, 721–723
resultant, 711–712

Tuning fork data, 4
Two-dimensional vectors, component form of, 

710
Two-path test for nonexistence of limit, 806
Two-sided limits

definition of, 86
proof of, AP-21

Two-sided surface, 1007

Unbounded functions, 21
Unbounded intervals, 6
Unbounded region, 795
Unbounded sequence, 579
Undetermined coefficients, 487
Unified theory of vector field integrals, 1036–1037
Uniform distribution, 523
Uniformly continuous, 327
Union of sets, AP-2
Unit binormal vector, 779
Unit circle, AP-14
Unit normal vector, 774
Unit step functions, limits and, 68
Unit tangent vector, 770–771, 783
Unit vectors

definition of, 713
writing vectors in terms of, 713–714

Universal gravitational constant, 785
Upper bound, AP-24, 312
Upper sums, 300

Value(s)
absolute, AP-4–AP-6, AP-30
average, 323–324
extreme, 223–228, 848–854
of function, 2–3, 911–912
of improper integral, 504–505, 508
local maximum, 225–226, 848
local minimum, 225–226, 848

Variable force
along curve, 962–964
along line, 395–396

Variable of integration, 285, 318
Variables

dependent, 1
dummy, 318
functions of several, 793–798, 807, 814–815, 

828
independent, 1, 822, 823–824
input, 793
intermediate, 823
output, 793
proportional, 7
thickness, 379–380
three, functions of, 796–798, 836–837

Chain Rule for, 823–824
two, functions of, 794–795, 798, 818

Chain Rule for, 821–823
independent, and three intermediate, 

824–825
limits for, 801–805
linearization of, 842–843, 844
partial derivatives of, 810–812
Taylor’s formula for, 866–870

Variance, 522
Vector equations

for curves in space, 751
for lines, 732, 733–734
of plane, 735
for projectile motion, 761–763

Properties of continuous functions, 96
Properties of limits of functions of two 

variables, 803
Ratio Test, 606
Rearrangement, for Absolutely Convergent 

Series, 613
Remainder Estimation, 633, 635
Rolle’s, 231–232
Root Test, 608
Sandwich, AP-21, 72–73, 89, 108, 576
Second derivative test for local extrema, 

247, 850
Stokes’, 1016
Substitution in definite integrals, 347
Substitution Rule, 341
Taylor’s, 631, 636–637
Term-by-Term Differentiation, 622
Term-by-Term Integration, 623–624

Thickness variable, 379
Thin shells, moments and masses of, 1010–1012
Three-dimensional coordinate systems

Cartesian, 704–707
coordinate planes, 704
cylindrical, 924–926
right- and left-handed, 704
spherical, 928–930

Three-dimensional solid, 916, 919
Three-dimensional vectors, component form 

of, 710
Time-Distance Law (Kepler’s Third Law), 787
TNB frame, 779
Torque, 404–405, 729
Torsion, 780–781, 783
Torus, 1001–1002

surface area of’, 413
volume of, 412

Total differential, 844
Trace curve, 817
Trachea contraction, 275
Transcendental functions, 11, 428
Transcendental numbers, 428
Transformations

Jacobian of, 937, 938
linear, 935–936
of trigonometric graphs, 26–27

Transitivity law for real numbers, AP-24
Trapezoid, area of, 323
Trapezoidal Rule

approximations by, 495–496, 498–501
error analysis and, 498–501

Triangle inequality, AP-5
Trigonometric functions

angles, 21–22
derivatives of, 156–160
graphs of, 10, 24, 31–32

transformations of, 27, 49
integrals of, 469–474
inverse, 47–48, 187–191
periodicity of, 24
six basic, 22–23

Trigonometric identities, 24–25
Trigonometric substitutions, 475–478
Triple integrals

in cylindrical coordinates, 922–930
properties of, 906–907, 912
in rectangular coordinates, 906–912
in spherical coordinates, 926–930
substitutions in, 939–942

Triple scalar product (box product), 729–730
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Work
by constant force, 395
by force over curve in space, 962–964
by force through displacement, 723
and kinetic energy, 402
kinetic energy and, 402
pumping liquids from containers, 397–398
by variable force along curve, 962
by variable force along line, 395–396

Work done by the heart, 212–213

x-coordinate, AP-10
x-intercept, AP-13
x-limits of integration, 909, 911
xy-plane

definition of, 704
xz-plane, 704

y = ƒ(x)
graphing of, 249–251
length of, 384–386, 666–667

y, integration with respect to, 352–353
y-axis, revolution about, 392–393
y-coordinate, AP-10
y-intercept, AP-13
y-limits of integration, 908, 910
yz-plane, 704

Zero denominators, algebraic elimination of, 
70–71

Zero vector, 710
Zero Width Interval Rule, 320, 421
z-limits of integration, 908, 909, 910, 925

Vertical asymptotes. See also Asymptotes
definition of, 112–113
limits and, 104

Vertical line test, 4–5
Vertical scaling and reflecting formulas, 17
Vertical shift of function, 16
Vertical strip, 376, 407
Vertical tangents, 132
Viewing windows, 29–32
Volume

of cylinder, 365
differential

in cylindrical coordinates, 923
in spherical coordinates, 928

by disks for rotation about axis, 368
double integrals as, 883–884
by iterated integrals, 888–891
of pyramid, 366–367
of region in space, 907
by slicing, 366–367
of solid region, 888–891
of solid with known cross-section, 366
triple integrals as, 907
using cross-sections, 365–372
using cylindrical shells, 376–381
by washers for rotation about axis, 371

von Koch, Helga, 593

Washer method, 371–372, 381
Wave equation, 821
Weierstrass, Karl, 511
Weierstrass function, 136
Whirlpool effect, 982
Windows, graphing, 29–32

Vectors (continued )
scalar multiplication of, 711–712
standard position, for a point, 709–710
standard unit, 713
subtraction (difference) of, 712
tangent, of curve, 754
terminal point of, 709
three-dimensional, 710
torque, 729
Triple scalar product of, 729–730
two-dimensional, 710, 720
unit

definition of, 713–714
derivative in direction of, 831
writing vectors in terms of, 713–714

unit binormal, 779
unit normal, 776
unit tangent, 770–771
velocity, 709, 755
zero vector, 710

Vector-valued functions. See Vector functions
Velocity

along space curve, 755
angular, of rotation, 1021
average, 147
definition of, 147
free fall and, 149
instantaneous, 147–148
in polar coordinates, 784–787
and position, from acceleration, 235

Velocity fields
circulation for, 964–965
flow integral, 964–965

Velocity function
acceleration and, 235, 755
speed and, 304
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T-1

Basic Forms

1.
L
k dx = kx + C (any number k) 2.

L
xn dx = xn+1

n + 1
+ C (n ≠ -1)

3.
L

dx
x = ln 0 x 0 + C 4.

L
ex dx = ex + C

5.
L
ax dx = ax

ln a
+ C (a 7 0, a ≠ 1) 6.

L
sin x dx = -cos x + C

7.
L

cos x dx = sin x + C 8.
L

sec2 x dx = tan x + C

9.
L

csc2 x dx = -cot x + C 10.
L

sec x tan x dx = sec x + C

11.
L

csc x cot x dx = -csc x + C 12.
L

tan x dx = ln 0 sec x 0 + C

13.
L

cot x dx = ln 0 sin x 0 + C 14.
L

sinh x dx = cosh x + C

15.
L

cosh x dx = sinh x + C 16.
L

dx

2a2 - x2
= sin-1 x

a + C

17.
L

dx
a2 + x2 = 1

a tan-1 x
a + C 18.

L

dx

x2x2 - a2
= 1
a sec-1 2 xa 2 + C

19.
L

dx

2a2 + x2
= sinh-1 x

a + C (a 7 0) 20.
L

dx

2x2 - a2
= cosh-1 x

a + C (x 7 a 7 0)

Forms Involving ax + b

21.
L

(ax + b)n dx =
(ax + b)n+1

a(n + 1)
+ C, n ≠ -1

22.
L
x(ax + b)n dx =

(ax + b)n+1

a2 c ax + b
n + 2

- b
n + 1

d + C, n ≠ -1, -2

23.
L

(ax + b)-1 dx = 1
a ln 0 ax + b 0 + C 24.

L
x(ax + b)-1 dx = x

a - b
a2 ln � ax + b � + C

25.
L
x(ax + b)-2 dx = 1

a2 c ln 0 ax + b 0 + b
ax + b

d + C 26.
L

dx
x(ax + b)

= 1
b

ln 2 x
ax + b

2 + C

27.
L
12ax + b2n dx = 2

a
12ax + b2n+2

n + 2
+ C, n ≠ -2 28.

L

2ax + b
x dx = 22ax + b + b

L

dx

x2ax + b

A Brief Table of Integrals
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29. (a)
L

dx

x2ax + b
= 1

2b ln ` 2ax + b - 2b
2ax + b + 2b ` + C (b)

L

dx

x2ax - b
= 2

2b tan-1A
ax - b
b

+ C

30.
L

2ax + b
x2 dx = - 2ax + b

x
+ a

2L

dx

x2ax + b
+ C 31.

L

dx

x22ax + b
= - 2ax + b

bx
- a

2bL

dx

x2ax + b
+ C

Forms Involving a2 + x 2

32.
L

dx
a2 + x2 = 1

a tan-1 x
a + C 33.

L

dx
(a2 + x2)2

= x
2a2(a2 + x2)

+ 1
2a3 tan-1 x

a + C

34.
L

dx

2a2 + x2
= sinh-1 x

a + C = ln 1x + 2a2 + x22 + C

35.
L
2a2 + x2 dx = x

2
2a2 + x2 + a2

2
ln 1x + 2a2 + x22 + C

36.
L
x22a2 + x2 dx = x

8
(a2 + 2x2)2a2 + x2 - a4

8 ln 1x + 2a2 + x22 + C

37.
L

2a2 + x2

x dx = 2a2 + x2 - a ln ` a + 2a2 + x2

x ` + C

38.
L

2a2 + x2

x2 dx = ln 1x + 2a2 + x22 - 2a2 + x2

x + C

39.
L

x2

2a2 + x2
dx = - a

2

2
ln 1x + 2a2 + x22 + x2a2 + x2

2
+ C

40.
L

dx

x2a2 + x2
= - 1

a ln ` a + 2a2 + x2

x ` + C 41.
L

dx

x22a2 + x2
= - 2a2 + x2

a2x
+ C

Forms Involving a2 − x 2

42.
L

dx
a2 - x2 = 1

2a
ln 2 x + a

x - a 2 + C 43.
L

dx
(a2 - x2)2

= x
2a2(a2 - x2)

+ 1
4a3 ln 2 x + a

x - a 2 + C

44.
L

dx

2a2 - x2
= sin-1 x

a + C 45.
L
2a2 - x2 dx = x

2
2a2 - x2 + a2

2
sin-1 x

a + C

46.
L
x22a2 - x2 dx = a4

8 sin-1 x
a - 1

8 x2a2 - x2 (a2 - 2x2) + C

47.
L

2a2 - x2

x dx = 2a2 - x2 - a ln ` a + 2a2 - x2

x ` + C 48.
L

2a2 - x2

x2 dx = -sin-1 x
a - 2a2 - x2

x + C

49.
L

x2

2a2 - x2
dx = a2

2
sin-1 x

a - 1
2
x2a2 - x2 + C 50.

L

dx

x2a2 - x2
= - 1

a ln ` a + 2a2 - x2

x ` + C

51.
L

dx

x22a2 - x2
= - 2a2 - x2

a2x
+ C

Forms Involving x 2 − a2

52.
L

dx

2x2 - a2
= ln 0 x + 2x2 - a2 0 + C

53.
L
2x2 - a2 dx = x

2
2x2 - a2 - a2

2
ln 0 x + 2x2 - a2 0 + C
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54.
L
12x2 - a22n dx =

x12x2 - a22n
n + 1

- na2

n + 1L
12x2 - a22n-2 dx, n ≠ -1

55.
L

dx12x2 - a22n =
x12x2 - a222-n

(2 - n)a2 - n - 3
(n - 2)a2

L

dx12x2 - a22n-2 , n ≠ 2

56.
L
x12x2 - a22n dx =

12x2 - a22n+2

n + 2
+ C, n ≠ -2

57.
L
x22x2 - a2 dx = x

8
(2x2 - a2)2x2 - a2 - a4

8 ln 0 x + 2x2 - a2 0 + C

58.
L

2x2 - a2

x dx = 2x2 - a2 - a sec-1 ` xa ` + C

59.
L

2x2 - a2

x2 dx = ln 0 x + 2x2 - a2 0 - 2x2 - a2

x + C

60.
L

x2

2x2 - a2
dx = a2

2
ln 0 x + 2x2 - a2 0 + x

2
2x2 - a2 + C

61.
L

dx

x2x2 - a2
= 1
a sec-1 ` xa ` + C = 1

a cos-1 ` ax ` + C 62.
L

dx

x22x2 - a2
= 2x2 - a2

a2x
+ C

Trigonometric Forms

63.
L

sin ax dx = - 1
a cos ax + C 64.

L
cos ax dx = 1

a sin ax + C

65.
L

sin2 ax dx = x
2

- sin 2ax
4a

+ C 66.
L

cos2 ax dx = x
2

+ sin 2ax
4a

+ C

67.
L

sinn ax dx = - sinn-1 ax cos ax
na + n - 1

n
L

sinn-2 ax dx

68.
L

cosn ax dx = cosn-1 ax sin ax
na + n - 1

n
L

cosn-2 ax dx

69. (a)
L

sin ax cos bx dx = -
cos(a + b)x

2(a + b)
-

cos(a - b)x
2(a - b)

+ C, a2 ≠ b2

(b)
L

sin ax sin bx dx =
sin(a - b)x

2(a - b)
-

sin(a + b)x
2(a + b)

+ C, a2 ≠ b2

(c)
L

cos ax cos bx dx =
sin(a - b)x

2(a - b)
+

sin(a + b)x
2(a + b)

+ C, a2 ≠ b2

70.
L

sin ax cos ax dx = - cos 2ax
4a

+ C 71.
L

sinn ax cos ax dx = sinn+1 ax
(n + 1)a

+ C, n ≠ -1

72.
L

cos ax
sin ax

dx = 1
a ln � sin ax � + C 73.

L
cosn ax sin ax dx = - cosn+1 ax

(n + 1)a
+ C, n ≠ -1

74.
L

sin ax
cos ax dx = - 1

a ln � cos ax � + C

75.
L

sinn ax cosm ax dx = - sinn-1 ax cosm+1 ax
a(m + n)

+ n - 1
m + nL

sinn-2 ax cosm ax dx, n ≠ -m (reduces sinn ax)

76.
L

sinn ax cosm ax dx = sinn+1 ax cosm-1 ax
a(m + n)

+ m - 1
m + nL

sinn ax cosm-2 ax dx, m ≠ -n (reduces cosm ax)
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77.
L

dx
b + c sin ax

= -2

a2b2 - c2
tan-1 cA

b - c
b + c

tanap
4

- ax
2
b d + C, b2 7 c2

78.
L

dx
b + c sin ax

= -1

a2c2 - b2
ln ` c + b sin ax + 2c2 - b2 cos ax

b + c sin ax
` + C, b2 6 c2

79.
L

dx
1 + sin ax

= - 1
a tan ap

4
- ax

2
b + C 80.

L

dx
1 - sin ax

= 1
a tan ap

4
+ ax

2
b + C

81.
L

dx
b + c cos ax

= 2

a2b2 - c2
tan-1 cA

b - c
b + c

tan
ax
2
d + C, b2 7 c2

82.
L

dx
b + c cos ax

= 1

a2c2 - b2
ln ` c + b cos ax + 2c2 - b2 sin ax

b + c cos ax
` + C, b2 6 c2

83.
L

dx
1 + cos ax

= 1
a tan

ax
2

+ C 84.
L

dx
1 - cos ax

= - 1
a cot

ax
2

+ C

85.
L
x sin ax dx = 1

a2 sin ax - x
a cos ax + C 86.

L
x cos ax dx = 1

a2 cos ax + x
a sin ax + C

87.
L
xn sin ax dx = - x

n

a cos ax + n
a
L
xn-1 cos ax dx 88.

L
xn cos ax dx = xn

a sin ax - n
a
L
xn-1 sin ax dx

89.
L

tan ax dx = 1
a ln 0 sec ax 0 + C 90.

L
cot ax dx = 1

a ln 0 sin ax 0 + C

91.
L

tan2 ax dx = 1
a tan ax - x + C 92.

L
cot2 ax dx = - 1

a cot ax - x + C

93.
L

tann ax dx = tann-1 ax
a(n - 1)

-
L

tann-2 ax dx, n ≠ 1 94.
L

cotn ax dx = - cotn-1 ax
a(n - 1)

-
L

cotn-2 ax dx, n ≠ 1

95.
L

sec ax dx = 1
a ln 0 sec ax + tan ax 0 + C 96.

L
csc ax dx = - 1

a ln 0 csc ax + cot ax 0 + C

97.
L

sec2 ax dx = 1
a tan ax + C 98.

L
csc2 ax dx = - 1

a cot ax + C

99.
L

secn ax dx = secn-2 ax tan ax
a(n - 1)

+ n - 2
n - 1L

secn-2 ax dx, n ≠ 1

100.
L

cscn ax dx = - cscn-2 ax cot ax
a(n - 1)

+ n - 2
n - 1L

cscn-2 ax dx, n ≠ 1

101.
L

secn ax tan ax dx = secn ax
na + C, n ≠ 0 102.

L
cscn ax cot ax dx = - cscn ax

na + C, n ≠ 0

Inverse Trigonometric Forms

103.
L

sin-1 ax dx = x sin-1 ax + 1
a21 - a2x2 + C 104.

L
cos-1 ax dx = x cos-1 ax - 1

a21 - a2x2 + C

105.
L

tan-1 ax dx = x tan-1 ax - 1
2a

ln (1 + a2x2) + C

106.
L
xn sin-1 ax dx = xn+1

n + 1
sin-1 ax - a

n + 1 L

xn+1 dx

21 - a2x2
, n ≠ -1

107.
L
xn cos-1 ax dx = xn+1

n + 1
cos-1 ax + a

n + 1 L

xn+1 dx

21 - a2x2
, n ≠ -1

108.
L
xn tan-1 ax dx = xn+1

n + 1
tan-1 ax - a

n + 1 L

xn+1 dx
1 + a2x2 , n ≠ -1
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Exponential and Logarithmic Forms

109.
L
eax dx = 1

a e
ax + C 110.

L
bax dx = 1

a
bax

ln b
+ C, b 7 0, b ≠ 1

111.
L
xeax dx = eax

a2 (ax - 1) + C 112.
L
xneax dx = 1

a x
neax - n

a
L
xn-1eax dx

113.
L
xnbax dx = xnbax

a ln b
- n
a ln bL

xn-1bax dx, b 7 0, b ≠ 1

114.
L
eax sin bx dx = eax

a2 + b2 (a sin bx - b cos bx) + C

115.
L
eax cos bx dx = eax

a2 + b2 (a cos bx + b sin bx) + C 116.
L

ln ax dx = x ln ax - x + C

117.
L
xn(ln ax)m dx =

xn+1(ln ax)m

n + 1
- m
n + 1 L

xn(ln ax)m-1 dx, n ≠ -1

118.
L
x-1(ln ax)m dx =

(ln ax)m+1

m + 1
+ C, m ≠ -1 119.

L

dx
x ln ax

= ln 0 ln ax 0 + C

Forms Involving 22ax − x 2, a + 0

120.
L

dx

22ax - x2
= sin-1 ax - a

a b + C

121.
L
22ax - x2 dx = x - a

2
22ax - x2 + a2

2
sin-1 ax - a

a b + C

122.
L
122ax - x22n dx =

(x - a)122ax - x22n
n + 1

+ na2

n + 1L
122ax - x22n-2 dx

123.
L

dx122ax - x22n =
(x - a)122ax - x222-n

(n - 2)a2 + n - 3
(n - 2)a2

L

dx122ax - x22n-2

124.
L
x22ax - x2 dx =

(x + a)(2x - 3a)22ax - x2

6
+ a3

2
sin-1 ax - a

a b + C

125.
L

22ax - x2

x dx = 22ax - x2 + a sin-1 ax - a
a b + C

126.
L

22ax - x2

x2 dx = -2 A
2a - x

x - sin-1 ax - a
a b + C

127.
L

x dx

22ax - x2
= a sin-1 ax - a

a b - 22ax - x2 + C 128.
L

dx

x22ax - x2
= - 1

a A
2a - x

x + C

Hyperbolic Forms

129.
L

sinh ax dx = 1
a cosh ax + C 130.

L
cosh ax dx = 1

a sinh ax + C

131.
L

sinh2 ax dx = sinh 2ax
4a

- x
2

+ C 132.
L

cosh2 ax dx = sinh 2ax
4a

+ x
2

+ C

133.
L

sinhn ax dx = sinhn-1 ax cosh ax
na - n - 1

n
L

sinhn-2 ax dx, n ≠ 0
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134.
L

coshn ax dx = coshn-1 ax sinh ax
na + n - 1

n
L

coshn-2 ax dx, n ≠ 0

135.
L
x sinh ax dx = x

a cosh ax - 1
a2 sinh ax + C 136.

L
x cosh ax dx = x

a sinh ax - 1
a2 cosh ax + C

137.
L
xn sinh ax dx = xn

a cosh ax - n
a
L
xn-1 cosh ax dx 138.

L
xn cosh ax dx = xn

a sinh ax - n
a
L
xn-1 sinh ax dx

139.
L

tanh ax dx = 1
a ln (cosh ax) + C 140.

L
coth ax dx = 1

a ln � sinh ax � + C

141.
L

tanh2 ax dx = x - 1
a tanh ax + C 142.

L
coth2 ax dx = x - 1

a coth ax + C

143.
L

tanhn ax dx = - tanhn-1 ax
(n - 1)a

+
L

tanhn-2 ax dx, n ≠ 1

144.
L

cothn ax dx = - cothn-1 ax
(n - 1)a

+
L

cothn-2 ax dx, n ≠ 1

145.
L

sech ax dx = 1
a sin-1 (tanh ax) + C 146.

L
csch ax dx = 1

a ln 2 tanh
ax
2
2 + C

147.
L

sech2 ax dx = 1
a tanh ax + C 148.

L
csch2 ax dx = - 1

a coth ax + C

149.
L

sechn ax dx = sechn-2 ax tanh ax
(n - 1)a

+ n - 2
n - 1 L

sechn-2 ax dx, n ≠ 1

150.
L

cschn ax dx = - cschn-2 ax coth ax
(n - 1)a

- n - 2
n - 1 L

cschn-2 ax dx, n ≠ 1

151.
L

sechn ax tanh ax dx = - sechn ax
na + C, n ≠ 0 152.

L
cschn ax coth ax dx = - cschn ax

na + C, n ≠ 0

153.
L
eax sinh bx dx = eax

2
c ebx

a + b
- e-bx

a - b
d + C, a2 ≠ b2

154.
L
eax cosh bx dx = eax

2
c ebx

a + b
+ e-bx

a - b
d + C, a2 ≠ b2

Some Definite Integrals

155.
L

q

0
xn-1e-x dx = Γ(n) = (n - 1)!, n 7 0 156.

L

q

0
e-ax

2
dx = 1

2A
p
a , a 7 0

157.
L

p>2

0
sinn x dx =

L

p>2

0
cosn x dx = d 1 # 3 # 5 # g # (n - 1)

2 # 4 # 6 # g # n # p
2

, if n is an even integer Ú2

2 # 4 # 6 # g # (n - 1)
3 # 5 # 7 # g # n , if n is an odd integer Ú3



Trigonometry Formulas

Definitions and Fundamental Identities

Sine: sin u =
y
r = 1

csc u

Cosine: cos u = x
r = 1

sec u

Tangent: tan u =
y
x = 1

cot u

Identities

sin (-u) = -sin u, cos (-u) = cos u

sin2 u + cos2 u = 1, sec2 u = 1 + tan2 u, csc2 u = 1 + cot2 u

sin 2u = 2 sin u cos u, cos 2u = cos2 u - sin2 u

cos2 u = 1 + cos 2u
2

, sin2 u = 1 - cos 2u
2

sin (A + B) = sin A cos B + cos A sin B

sin (A - B) = sin A cos B - cos A sin B

cos (A + B) = cos A cos B - sin A sin B

cos (A - B) = cos A cos B + sin A sin B

r

0 x

y
u

P(x, y)

y

x

tan (A + B) = tan A + tan B
1 - tan A tan B

tan (A - B) = tan A - tan B
1 + tan A tan B

sin aA - p
2
b = -cos A, cos aA - p

2
b = sin A

sin aA + p
2
b = cos A, cos aA + p

2
b = -sin A

sin A sin B = 1
2

cos (A - B) - 1
2

cos (A + B)

cos A cos B = 1
2

cos (A - B) + 1
2

cos (A + B)

sin A cos B = 1
2

sin (A - B) + 1
2

sin (A + B)

sin A + sin B = 2 sin 1
2

(A + B) cos 1
2

(A - B)

sin A - sin B = 2 cos 1
2

(A + B) sin 1
2

(A - B)

cos A + cos B = 2 cos 1
2

(A + B) cos 1
2

(A - B)

cos A - cos B = -2 sin 1
2

(A + B) sin 1
2

(A - B)

Trigonometric Functions

Radian Measure

s

r

1

Circle of radius r

U nit circle

u

s
r = u

1
= u or u = s

r ,

180° = p radians.

The angles of two common triangles, in 
degrees and radians.

"

2

45

45 90
1

1

1

1 1

1

p
2

p
4

p
3

p
2

p
6

p
4

2 2

30

9060

Degrees Radians

"

2

"

3
"

3

x

y

y = cos x

Domain: (−∞, ∞)
Range: [−1, 1]

0–p p 2p–p
2

p
2

3p
2

x

y

0–p p 2p–p
2

p
2

3p
2

y = sin x

Domain: (−∞, ∞)
Range: [−1, 1]

y

x

y = tan x

3p
2

– –p –p
2

0 p
2
p 3p

2

Domain: All real numbers except odd
               integer multiples of p�2

Domain: All real numbers except odd
               integer multiples of p�2

Range: (−∞, ∞)

x

y
y = csc x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range: (−∞, −1] ´ [1, ∞)

y

x

y = cot x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range: (−∞, ∞)

x

y
y = sec x

3p
2

– –p –p
2

0

1

p
2
p 3p

2

Range: (−∞, −1] ´ [1, ∞)



SERIES

Tests for Convergence of Infinite Series

1. The nth-Term Test: Unless an S 0, the series diverges.

2. Geometric series: garn converges if � r � 6 1; otherwise it 
diverges.

3. p-series: g1>np converges if p 7 1; otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio 
Test, or Root Test. Try comparing to a known series with the 
Comparison Test or the Limit Comparison Test.

5. Series with some negative terms: Does g � an �  converge? 
If yes, so does gan since absolute convergence implies con-
vergence.

6. Alternating series: gan converges if the series satisfies the 
conditions of the Alternating Series Test.

Taylor Series
1

1 - x
= 1 + x + x2 + g + xn + g = a

q

n=0
xn, 0 x 0 6 1

1
1 + x

= 1 - x + x2 - g + (-x)n + g = a

q

n=0
(-1)nxn, 0 x 0 6 1

ex = 1 + x + x2

2!
+ g + xn

n!
+ g = a

q

n=0

xn

n!
, 0 x 0 6 q

sin x = x - x3

3!
+ x5

5!
- g + (-1)n

x2n+1

(2n + 1)!
+ g = a

q

n=0

(-1)nx2n+1

(2n + 1)!
, 0 x 0 6 q

cos x = 1 - x2

2!
+ x4

4!
- g + (-1)n

x2n

(2n)!
+ g = a

q

n=0

(-1)nx2n

(2n)!
, 0 x 0 6 q

ln (1 + x) = x - x2

2
+ x3

3 - g + (-1)n-1 x
n

n + g = a

q

n=1

(-1)n-1xn

n , -1 6 x … 1

ln
1 + x
1 - x

= 2 tanh-1 x = 2ax + x3

3 + x5

5
+ g + x2n+1

2n + 1
+ gb = 2a

q

n=0

x2n+1

2n + 1
, 0 x 0 6 1

tan-1 x = x - x3

3 + x5

5
- g + (-1)n

x2n+1

2n + 1
+ g = a

q

n=0

(-1)nx2n+1

2n + 1
, 0 x 0 … 1

Binomial Series

(1 + x)m = 1 + mx +
m(m - 1)x2

2!
+
m(m - 1)(m - 2)x3

3!
+ g +

m(m - 1)(m - 2)g(m - k + 1)xk

k!
+ g

= 1 + a

q

k=1
am
k
bxk, 0 x 0 6 1,

where

am
1
b = m, am

2
b =

m(m - 1)
2!

, am
k
b =

m(m - 1)g(m - k + 1)
k!

for k Ú 3.



VECTOR OPERATOR FORMULAS (CARTESIAN FORM)

Formulas for Grad, Div, Curl, and the Laplacian

  Cartesian (x, y, z)
i, j, and k are unit vectors 

in the directions of 

increasing x, y, and z.

M, N, and P are the 

scalar components of 

F(x, y, z) in these 

directions.

Gradient ∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k

Divergence ∇ # F = 0M
0x + 0N

0y + 0P
0z

Curl ∇ * F = 4 i j k

0
0x

0
0y

0
0z

M N P

4
Laplacian ∇2ƒ =

02ƒ

0x2 +
02ƒ

0y2 +
02ƒ

0z2

Vector Triple Products

(u * v) # w = (v * w) # u = (w * u) # v
u * (v * w) = (u # w)v - (u # v)w

Vector Identities
In the identities here, ƒ and g are differentiable scalar functions, F, F1, and F2 are differentiable vector fields, and a and b are real 
constants.

∇ * (∇ƒ) = 0

∇(ƒg) = ƒ∇g + g∇ƒ

∇ # (gF) = g∇ # F + ∇g # F
∇ * (gF) = g∇ * F + ∇g * F

∇ # (aF1 + bF2) = a∇ # F1 + b∇ # F2

∇ * (aF1 + bF2) = a∇ * F1 + b∇ * F2

∇(F1
# F2) = (F1

# ∇ )F2 + (F2
# ∇ )F1 +

F1 * (∇ * F2) + F2 * (∇ * F1)

∇ # (F1 * F2) = F2
# ∇ * F1 - F1

# ∇ * F2

∇ * (F1 * F2) = (F2
# ∇ )F1 - (F1

# ∇ )F2 +
(∇ # F2)F1 - (∇ # F1)F2

∇ * (∇ * F) = ∇(∇ # F) - (∇ # ∇ )F = ∇(∇ # F) - ∇2F

(∇ * F) * F = (F # ∇ )F - 1
2
∇(F # F)

The Fundamental Theorem of Line Integrals

Part 1 Let F = Mi + Nj + Pk be a vector field whose components 
are continuous throughout an open connected region D in space. 
Then there exists a differentiable function ƒ such that

F = ∇ƒ =
0ƒ
0x i +

0ƒ
0y j +

0ƒ
0z k

if and only if for all points A and B in D the value of 1
B
A F # dr is 

independent of the path joining A to B in D.

Part 2 If the integral is independent of the path from A to B, its value is

L

B

A
F # dr = ƒ(B) - ƒ(A).

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem: 
F
C

F # T ds =
O
R

∇ * F # k dA

Stokes’ Theorem:
F
C

F # T ds =
O
S

∇ * F # n ds

Normal form of Green’s Theorem:
F
C

F # n ds =
O
R

∇ # F dA

Divergence Theorem:
O
S

F # n ds =
l
D

∇ # F dV
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BASIC ALGEBRA FORMULAS

Arithmetic Operations

a(b + c) = ab + ac,
a
b
# c
d

= ac
bd

a
b

+ c
d

= ad + bc
bd

,
a>b
c>d = a

b
# d
c

Laws of Signs

-(-a) = a,
-a
b

= - a
b

= a
-b

Zero Division by zero is not defined.

If a ≠ 0:
0
a = 0, a0 = 1, 0a = 0

For any number a: a # 0 = 0 # a = 0

Laws of Exponents

aman = am+n, (ab)m = ambm, (am)n = amn, am>n = 2n am = 12n a2m
If a ≠ 0,

am

an = am-n, a0 = 1, a-m = 1
am .

The Binomial Theorem For any positive integer n,

(a + b)n = an + nan-1b +
n(n - 1)

1 # 2 an-2b2

+
n(n - 1)(n - 2)

1 # 2 # 3 an-3b3 + g + nabn-1 + bn.

For instance,

(a + b)2 = a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3, (a - b)3 = a3 - 3a2b + 3ab2 - b3.

Factoring the Difference of Like Integer Powers, n + 1

an - bn = (a - b)(an-1 + an-2b + an-3b2 + g + abn-2 + bn-1)

For instance,

a2 - b2 = (a - b)(a + b),

a3 - b3 = (a - b)(a2 + ab + b2),

a4 - b4 = (a - b)(a3 + a2b + ab2 + b3).

Completing the Square If a ≠ 0,

ax2 + bx + c = au2 + C au = x + (b>2a), C = c - b2

4a
b

The Quadratic Formula If a ≠ 0 and ax2 + bx + c = 0, then

x = -b { 2b2 - 4ac
2a

.



GEOMETRY FORMULAS

A = area, B = area of base, C = circumference, S = lateral area or surface area, V = volume

Triangle Similar Triangles Pythagorean Theorem

b

h

A =    bh1
2

b

b′

c′ a′ ac

a′
a
= b′

b
= c′

c

c
b

a

a2 + b2 = c2

h

b

A = bh

h

a

b

A = (a + b)h1
2

r A = pr2,
C = 2pr

Parallelogram Trapezoid Circle

h

B

h

B

V = Bh

h

r

V = pr2h
S = 2prh = Area of side

Any Cylinder or Prism with Parallel Bases Right Circular Cylinder

V = Bh
3
1

h

B

h

B

V = pr2h1
3

S = prs = Area of side

V = pr3, S = 4pr24
3

Any Cone or Pyramid Right Circular Cone Sphere



LIMITS

General Laws

If L, M, c, and k are real numbers and

lim
xSc

ƒ(x) = L and lim
xSc

g(x) = M, then

Sum Rule: lim
xSc

(ƒ(x) + g(x)) = L + M

Difference Rule: lim
xSc

(ƒ(x) - g(x)) = L - M

Product Rule: lim
xSc

(ƒ(x) # g(x)) = L # M
Constant Multiple Rule: lim

xSc
(k # ƒ(x)) = k # L

Quotient Rule: lim
xSc

ƒ(x)
g(x)

= L
M , M ≠ 0

The Sandwich Theorem

If g(x) … ƒ(x) … h(x) in an open interval containing c, except 
possibly at x = c, and if

lim
xSc

g(x) = lim
xSc

h(x) = L,

then limxSc ƒ(x) = L.

Inequalities

If ƒ(x) … g(x) in an open interval containing c, except possibly 
at x = c, and both limits exist, then

lim
xSc

ƒ(x) … lim
xSc

g(x).

Continuity

If g is continuous at L and limxSc ƒ(x) = L, then

lim
xSc

g(ƒ(x)) = g(L).

Specific Formulas

If P(x) = anxn + an-1xn-1 + g + a0, then

lim
xSc

P(x) = P(c) = ancn + an-1cn-1 + g + a0.

If P(x) and Q(x) are polynomials and Q(c) ≠ 0, then

lim
xSc

P(x)
Q(x)

=
P(c)
Q(c)

.

If ƒ(x) is continuous at x = c, then

lim
xSc

ƒ(x) = ƒ(c).

lim
xS0

sin x
x = 1 and lim

xS0

1 - cos x
x = 0

L’Hôpital’s Rule

If ƒ(a) = g(a) = 0, both ƒ′ and g′ exist in an open interval I
containing a, and g′(x) ≠ 0 on I if x ≠ a, then

lim
xSa

ƒ(x)
g(x)

= lim
xSa

ƒ′(x)
g′(x)

,

assuming the limit on the right side exists.



DIFFERENTIATION RULES

General Formulas

Assume u and y are differentiable functions of x.

Constant:
d
dx

(c) = 0

Sum:
d
dx

(u + y) = du
dx

+ dy
dx

Difference:
d
dx

(u - y) = du
dx

- dy
dx

Constant Multiple:
d
dx

(cu) = c
du
dx

Product:
d
dx

(uy) = u
dy
dx

+ ydu
dx

Quotient:
d
dx
au
yb =

y
du
dx

- u
dy
dx

y2

Power:
d
dx

xn = nxn-1

Chain Rule:
d
dx

(ƒ(g(x)) = ƒ′(g(x)) # g′(x)

Trigonometric Functions

d
dx

(sin x) = cos x
d
dx

(cos x) = -sin x

d
dx

(tan x) = sec2 x
d
dx

(sec x) = sec x tan x

d
dx

(cot x) = -csc2 x
d
dx

(csc x) = -csc x cot x

Exponential and Logarithmic Functions

d
dx

ex = ex d
dx

ln x = 1
x

d
dx

ax = ax ln a
d
dx

(loga x) = 1
x ln a

Inverse Trigonometric Functions
d
dx

(sin-1 x) = 1

21 - x2

d
dx

(cos-1 x) = - 1

21 - x2

d
dx

(tan-1 x) = 1
1 + x2

d
dx

(sec-1 x) = 1
0 x 02x2 - 1

d
dx

(cot-1 x) = - 1
1 + x2

d
dx

(csc-1 x) = - 1
0 x 02x2 - 1

Hyperbolic Functions
d
dx

(sinh x) = cosh x
d
dx

(cosh x) = sinh x

d
dx

(tanh x) = sech2 x
d
dx

(sech x) = -sech x tanh x

d
dx

(coth x) = -csch2 x
d
dx

(csch x) = -csch x coth x

Inverse Hyperbolic Functions

d
dx

(sinh-1 x) = 1

21 + x2

d
dx

(cosh-1 x) = 1

2x2 - 1

d
dx

(tanh-1 x) = 1
1 - x2

d
dx

(sech-1 x) = - 1

x21 - x2

d
dx

(coth-1 x) = 1
1 - x2

d
dx

(csch-1 x) = - 1
0 x 021 + x2

Parametric Equations

If x = ƒ(t) and y = g(t) are differentiable, then

y′ =
dy
dx

=
dy>dt

dx>dt
and

d2y

dx2 =
dy′>dt

dx>dt
.



INTEGRATION RULES

General Formulas

Zero:
L

a

a
ƒ(x) dx = 0

Order of Integration:
L

a

b
ƒ(x) dx = -

L

b

a
ƒ(x) dx

Constant Multiples:
L

b

a
kƒ(x) dx = k

L

b

a
ƒ(x) dx (Any number k)

L

b

a
-ƒ(x) dx = -

L

b

a
ƒ(x) dx (k = -1)

Sums and Differences:
L

b

a
(ƒ(x) { g(x)) dx =

L

b

a
ƒ(x) dx {

L

b

a
g(x) dx

Additivity:
L

b

a
ƒ(x) dx +

L

c

b
ƒ(x) dx =

L

c

a
ƒ(x) dx

Max-Min Inequality: If max ƒ and min ƒ are the maximum and minimum values of ƒ on 3a, b4 , then

min ƒ # (b - a) …
L

b

a
ƒ(x) dx … max ƒ # (b - a).

Domination: ƒ(x) Ú g(x) on 3a, b4 implies
L

b

a
ƒ(x) dx Ú

L

b

a
g(x) dx

ƒ(x) Ú 0 on 3a, b4 implies
L

b

a
ƒ(x) dx Ú 0

The Fundamental Theorem of Calculus

Part 1 If ƒ is continuous on 3a, b4 , then F(x) = 1
x

a ƒ(t) dt is continuous on 

3a, b4  and differentiable on (a, b) and its derivative is ƒ(x):

F′(x) = d
dxL

x

a
ƒ(t) dt = ƒ(x).

Part 2 If ƒ is continuous at every point of 3a, b4  and F is any antiderivative of 
ƒ on 3a, b4 , then

L

b

a
ƒ(x) dx = F(b) - F(a).

Substitution in Definite Integrals

L

b

a
ƒ(g(x)) # g′(x) dx =

L

g(b)

g(a)
ƒ(u) du

Integration by Parts

L

b

a
ƒ(x)g′(x) dx = ƒ(x)g(x) d

a

b

-
L

b

a
ƒ′(x)g(x) dx
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