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Preface

he pervasive presence of electronic devices and instrumentation in all aspects of engineering design and

analysis is one of the manifestations of the electronic revolution that has characterized the second half of the

20th century. Every aspect of engineering practice, and even of everyday life, has been affected in some way

or another by electrical and electronic devices and instruments. Computers are perhaps the most obvious
manifestations of this presence. However, many other areas of electrical engineering are also important to the
practicing engineer, from mechanical and industrial engineering, to chemical, nuclear, and materials engineering,
to the aerospace and astronautical disciplines, to civil and the emerging field of biomedical engineering. Engineers
today must be able to communicate effectively within the interdisciplinary teams in which they work.

OBJECTIVES

Engineering education and engineering professional practice have seen some rather profound changes in the past
decade. The integration of electronics and computer technologies in all engineering academic disciplines and
the emergence of digital electronics and microcomputers as a central element of many engineering products and
processes have become a common theme since the conception of this book.

The principal objective of the book is to present the principles of electrical, electronic, and electromechanical
engineering to an audience composed of non—electrical engineering majors, and ranging from sophomore students
in their first required introductory electrical engineering course, to seniors, to first-year graduate students enrolled
in more specialized courses in electronics, electromechanics, and mechatronics.

A second objective is to present these principles by focusing on the important results and applications and
presenting the students with the most appropriate analytical and computational toolsto solve a variety of practical
problems.

Finally, a third objective of the book is to illustrate, by way of concrete, fully worked examples, a number of
relevant applications of electrical engineering principles. These examples are drawn from the author’s industrial
research experience and from ideas contributed by practicing engineers and industrial partners.

ORGANIZATION AND CONTENT

The book is divided into three parts, devoted to circuits, electronics, and electromechanics.

Part I: Circuits

The first part of this book presents a basic introduction to circuit analysis (Chapters 2 through 7). The material
includes over 440 homework problems.

Part: Il Electronics

Part I, on electronics (Chapters 8 through 12), contains a chapter on operational amplifiers, one on diodes, two
chapters on transistors—one each on BJTs and FETSs, and one on digital logic circuits. The material contained in
this section is focused on basic applications of these concepts. The chapters include 320 homework problems.

Part Ill: Electromechanics

Part 111, on electromechanics (Chapters 13 and 14), includes basic material on electromechanical transducers and
the basic operation of DC and AC machines. The two chapters include 126 homework problems.
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FEATURES

Pedagogy

This edition contains the following pedagogical features.

vii

- Learning Objectives offer an overview of key chapter ideas. Each chapter opens with a list of major
objectives, and throughout the chapter the learning objective icon indicates targeted references to each

objective.

- Focus on M ethodology sections summarize important methods and procedures for the solution of
common problems and assist the student in developing a methodical approach to problem solving.

- Clearly Illustrated Examplesillustrate relevant applications of electrical engineering principles. The
examples are fully integrated with the “Focus on Methodology” material, and each one is organized

according to a prescribed set of logical steps.

- Check Your Understanding exercises follow each example in the text and allow students to confirm their

mastery of concepts.

- Makethe Connection sidebars present analogies to students to help them see the connection of electrical

engineering concepts to other engineering disciplines.

- Find It on the Web links included throughout the book give students the opportunity to further explore
practical engineering applications of the devices and systems that are described in the text.

Supplements
The book includes a wealth of supplements available in electronic form. These include

- A website accompanies this text to provide students and instructors with
additional resources for teaching and learning. You can find this site at
www.mhhe.com/rizzoni. Resources on this site include

For Students:

- Device Data Sheets
- Learning Objectives

For Instructors:

- Power Point presentation slides of important figures from the text
- Instructor’s Solutions Manual with complete solutions (for instructors
only)

For Instructors and Students:

- Find It on the Web links, which give students the opportunity to explore, in
greater depth, practical engineering applications of the devices and systems
that are described in the text. In addition, several links to tutorial sites extend
the boundaries of the text to recent research developments, late-breaking
science and technology news, learning resources, and study guides to help
you in your studies and research.

FIND IT

ON THE WEB


http://www.mhhe.com/rizzoni
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GUIDEDTOUR

:) Learning Objectives

Learning Objectives offer

an overview of key chapter ideas. 1. Compute the solution of circuits containing linear resistors and independent and

dependent sources by using node analysis, Sections 3.2 and 3.4.

Ea{_:h Ch&,lp:e_r opens with a list of 2. Compute the solution of circuits containing linear resistors and independent and
major objectives and throughout dependent sources by using mesh analysis. Sections 3.3 and 3 4.

the Chapter- The Ieaming Obje{:ﬁve 3. Apply the principle of superposition o linear circuits contuining independent sources,
icon indicates targeted references Section 3.5.

to each objective. 4. Compute Thévenin and Norton equivalent circuits for networks containing linear

resistors and independent and dependent sources. Secrion 3.6,

5. Use equivalent-circuit ideas to compute the mavimum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified. a set of equations relating these variables

1l h

is constructed, and these equations are solved by of sui techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a

FOCUSONMETHODOLOGY
COMPUTING THE THEVENIN VOLTAGE
1. Remove the load, leaving the load terminals open-circuited.

Focus on Methodology section

2. Define the open-circuit voltage voc across the open load terminals. summarize important methods and
3. Apply any preferred method (e.g., node analysis) to solve for voc. procedures for the solution of
4. The Thévenin voltage is vy = voc. common problems and assist the

student in developing a methodical
approach to problem solving.

The actual computation of the open-circuit voltage is best illustrated by e
ples; there is no substitute for practice in becoming familiar with these computa
To summarize the main points in the computation of open-circuit voltages, cor
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall th
equivalent resistance of this circuit was given by Ry = R; + R || R2. To con
vge. we disconnect the load, as shown in Figure 3.45, and immediately observ:
no current flows through R, since there is no closed-circuit connection at that br
Therefore, voc must be equal to the voltage across R, as illustrated in Figure
Since the only closed circuit is the mesh consisting of vs, R, and R;, the answ
are seeking may be obtained by means of a simple voltage divider:

153
Ry + Ry
It is instructive to review the basic concepts outlined in the example by

sidering the original circuit and its Thévenin equivalent side by side, as sho
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the

Upc = Up2 = Vg




EXAMPLE 3.8 Mesh Analysis
Problem
Write the mesh current equations for the circuit of Figure 3,19,

Clearly lllustrated Examples
illustrate relevant applications of
electrical engineering principles.

Solution
Known Quantities: Source voltages: resistor values.

Find: Mesh current equations.

Circults, and Given Data: V, = 12V, Vo =6 VI Ry = 362

Schematics, Diagrams,

R=8i =6 Ry =40

Analysis: We follow the Focus on Methodology steps.
1. Assume clockwise mesh currents fy, £z, and 5.

2. We e hree ind il i
Tromn mesh 1, we apply KVL 10 obtain
Vi= Riliy = i) = Ratiy —iz) = 0

KVL applied 1o mesh 2 yields

—Raliz =) — Rz — i)+ Va =0
while in mesh 3 we find

=Rty =) = Ryly — Bally — i) =0

since there are no current sources, Starting

The examples are fully integrated
with the "Focus on Methodology"
material, and each one is organized
according to a prescribed set of
common sense steps.

Figure 3.19

Check Your Understanding
exercises follow each example

in the text and allow students to
confirm their mastery of concepts.

Make the Connection sidebars
present analogies to students
to help them see the connection
of electrical engineering
concepts to other engineering
disciplines.

CHECK YOUR UNDERSTANDING

Find the current iy, in the circuit shown on the left, using the node voltage method.

a AAAA AAAA .‘.““.‘.

wae | son In it 09
< < - < <
1amuE  psuE =wov u(:) woTwon
- - - >

Find the voltage v, by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL a1 one or more nodes.

A BI— W LERT'D Saamsuy

equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier;

In a circuit containing n nodes, we can write at most a — | independent

equations.
Now, in applying the node voltage method, the currents £, iz, and i3 are expressed as Thermal Circuit
functions of v, vy, and v, the independent variables. Ohm's law requires that /1, for ~ Model
example, be given by The conduction resistance
. ... 3.5) of tha shalt is described by
e { the following equation:
LA
since it is the potential difference 1, — v, across &) that causes current §; to flow from 9= T‘ﬂf
node a to node ¢, Similarly, AT L
g S
U = U 4 kA
i where A, Is a cross section-
= (3.6) alareaand L is the distance
- My — U frorm the inher cors 1o the
= suriace, The convection re-
sistance is describad by a
Substituting the expression for the three currents in the nodal equations (equations  similar equation, in which
3.2 and 3.3), we obtain the following relationships: convective heat fiow is da-
scribed by the film coaf-
ry By = fickent of heat transter, k.
=2t A =0
L R2 @ g = bAAT
i
& Fol T
i"..-l'n_li_n=0 (35 - Ay
Ry Ry where Az ls the surlace area
Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice. :::::mw':?‘
Note that these equations may be solved for v, and g, assuming that iy, By, Bz, and  pemsl resistance and the
R are known. The same equations may be reformulated as follows: everall cireult mode! of the
cranikshalt quenching
I 1 ( i g PIOCEsS ate shown in the
(E+E)“’+ _R_;] W =1l figures below:
3.9)
( 1 ( 1 " 1 ) 0 " Boms R L
—_— |l =—+= = S—AA—AN—e
R;) Uy g = W s pa— -
4 illuss catis . Thermal resistance
Examples 3.2 through 3.4 further illustrate the application of the method. ~
e —————————— | Recms
4
LO1) EXAMPLE 3.2 Node Analysis ar(® 3 i
Selve for ull unknown currents and voltages in the cireuit of Figure 3.5, :'_




CHAWPTENR

INTRODUCTION TO ELEGTRICAL
ENGINEERING

he aim of this chapter is to introduce electrical engineering. The chapter is

organized to provide the newcomer with a view of the different specialties

making up electrical engineering and to place the intent and organization of

the book into perspective. Perhaps the first question that surfaces in the mind
of the student approaching the subject is, Why electrical engineering? Since this book
is directed at a readership having a mix of engineering backgrounds (including elec-
trical engineering), the question is well justified and deserves some discussion. The
chapter begins by defining the various branches of electrical engineering, showing
some of the interactions among them, and illustrating by means of a practical example
how electrical engineering is intimately connected to many other engineering disci-
plines. Section 1.2 introduces the Engineer-in-Training (EIT) national examination.
In Section 1.3 the fundamental physical quantities and the system of units are defined,
to set the stage for the chapters that follow. Finally, in Section 1.4 the organization of
the book is discussed, to give the student, as well as the teacher, a sense of continuity
in the development of the different subjects covered in Chapters 2 through 14.



2 Chapter 1 Introduction to Electrical Engineering

Table 1.1 Electrical 1.1 ELECTRICAL ENGINEERING

engineering disciplines

Circuit analysis The typical curriculum of an undergraduate electrical engineering student includes

Electromagnetics the subjects listed in Table 1.1. Although the distinction between some of these
Solid-state electronics subjects is not always clear-cut, the table is sufficiently representative to serve our
Electric machines purposes. Figure 1.1 illustrates a possible interconnection between the disciplines
Electric power systems of Table 1.1. The aim of this book is to introduce the non-electrical engineering
Digital logic circuits student to those aspects of electrical engineering that are likely to be most relevant
Computer systems to his or her professional career. Virtually all the topics of Table 1.1 will be
Communication systems touched on in the book, with varying degrees of emphasis. Example 1.1 illustrates

Electro-optics
Instrumentation systems
Control systems

the pervasive presence of electrical, electronic, and electromechanical devices and
systems in a very common application: the automobile. As you read through the
examples, it will be instructive to refer to Figure 1.1 and Table 1.1.

Engineering
applications
Power
/ systems \
Elet.jtric
Mathematical 7| machinery || Physical
foundations / foundations
Network é | [ ,f Andog Electro-
theory electronics \\ magnetics
Logic Digital Solid-state
theory electronics physics
System ™| Ccomputer Optics
=\ e /
\ Control
systems
\ Communication

systems

Instrumentation
systems

Figure 1.1 Electrical engineering disciplines



Chapter 1 Introduction to Electrical Engineering 3

EXAMPLE 1.1 Electrical Systems in a Passenger Automobile

A familiar example illustrates how the seemingly disparate specialties of electrical engineering
actually interact to permit the operation of a very familiar engineering system: the automobile.
Figure 1.2 presents a view of electrical engineering systems in a modern automobile. Even in
older vehicles, the electrical system—in effect, an electric circuit—plays a very important part
in the overall operation. (Chapters 2 and 3 describe the basics of electric circuits.) An inductor
coil generates a sufficiently high voltage to allow a spark to form across the spark plug gap
and to ignite the air-fuel mixture; the coil is supplied by a DC voltage provided by a lead-acid
battery. (Ignition circuits are studied in some detail in Chapter 5.) In addition to providing the
energy for the ignition circuits, the battery supplies power to many other electrical components,
the most obvious of which are the lights, the windshield wipers, and the radio. Electric power
(Chapter 7) is carried from the battery to all these components by means of a wire harness,
which constitutes a rather elaborate electric circuit (see Figure 2.12 for a closer look). In recent
years, the conventional electric ignition system has been supplanted by electronic ignition;
that is, solid-state electronic devices called transistors have replaced the traditional breaker
points. The advantage of transistorized ignition systems over the conventional mechanical ones
is their greater reliability, ease of control, and life span (mechanical breaker points are subject
to wear). You will study transistors and other electronic devices in Chapters 8, 9, and 10.

Other electrical engineering disciplines are fairly obvious in the automobile. The on-board
radio receives electromagnetic waves by means of the antenna, and decodes the communication
signals to reproduce sounds and speech of remote origin; other common communication
systems that exploit electromagnetics are CB radios and the ever more common cellular
phones. But this is not all! The battery is, in effect, a self-contained 12-VDC electric power
system, providing the energy for all the aforementioned functions. In order for the battery to
have a useful lifetime, a charging system, composed of an alternator and of power electronic
devices, is present in every automobile. Electric power systems are covered in Chapter 7
and power electronic devices in Chapter 10. The alternator is an electric machine, as are the
motors that drive the power mirrors, power windows, power seats, and other convenience
features found in luxury cars. Incidentally, the loudspeakers are also electric machines! All
these devices are described in Chapters 13 and 14.

The list does not end here, though. In fact, some of the more interesting applications
of electrical engineering to the automobile have not been discussed yet. Consider computer
systems. Digital circuits are covered in Chapter 12. You are certainly aware that in the last two

Convenience
Climate control
Ergonomics Safety
(seats, steering wheel, mirrors) Air bags and restraints
Navigation Collision warning

Audio/video/ Internet/
\_Wireless communications

Security systems

/ Propulsion
Engine/transmission
Integrated starter/alternator
Electric traction
42-V system
Battery management
\ Traction control

Ride and handling
Active/semiactive suspension
Antilock brakes
Electric power steering
Tire pressure control
Four-wheel steering
Stability control

Figure 1.2 Electrical engineering systems in the automobile



Chapter 1 Introduction to Electrical Engineering

decades, environmental concerns related to exhaust emissions from automobiles have led to
the introduction of sophisticated engine emission control systems. The heart of such control
systems is a type of computer called a microprocessor. The microprocessor receives signals
from devices (called sensors) that measure relevant variables—such as the engine speed, the
concentration of oxygen in the exhaust gases, the position of the throttle valve (i.e., the driver’s
demand for engine power), and the amount of air aspirated by the engine—and subsequently
computes the optimal amount of fuel and the correct timing of the spark to result in the cleanest
combustion possible under the circumstances. As the presence of computers on board becomes
more pervasive—in areas such as antilock braking, electronically controlled suspensions, four-
wheel steering systems, and electronic cruise control—communications among the various
on-board computers will have to occur at faster and faster rates. Someday in the not-so-distant
future, these communications may occur over a fiber-optic network, and electro-optics will
replace the conventional wire harness. Note that electro-optics is already present in some of
the more advanced displays that are part of an automotive instrumentation system.

Finally, today’s vehicles also benefit from the significant advances made in communi-
cation systems. Vehicle navigation systems can include Global Positioning System, or GPS,
technology, as well as a variety of communications and networking technologies, such as wire-
less interfaces (e.g., based on the “Bluetooth” standard) and satellite radio and driver assistance
systems, such as the GM “OnStar” system.

FIND IT

ON THE WEB

1.2 FUNDAMENTALS OF ENGINEERING
EXAM REVIEW

To become a professional engineer it is necessary to satisfy four requirements. The
first is the completion of a B.S. degree in engineering from an accredited college
or university (although it is theoretically possible to be registered without having
completed a degree). The second is the successful completion of the Fundamentals
of Engineering (FE) Examination. This is an eight-hour exam that covers general
undergraduate engineering education. The third requirement is two to four years of
engineering experience after passing the FE exam. Finally, the fourth requirement is
successful completion of the Principles and Practice of Engineering or Professional
Engineer (PE) Examination.

The FE exam is a two-part national examination, administered by the National
Council of Examiners for Engineers and Surveyors (NCEES) and given twice
a year (in April and October). The exam is divided into two four-hour sessions,
consisting of 120 questions in the four-hour morning session, and 60 questions in
the four-hour afternoon session. The morning session covers general background in
12 different areas, one of which is Electricity and Magnetism. The afternoon session
requires the examinee to choose among seven modules—Chemical, Civil, Electrical,
Environmental, Industrial, Mechanical, and Other/General engineering.

One of the aims of this book is to assist you in preparing for the Electricity
and Magnetism part of the morning session. This part of the examination consists of
approximately 9 percent of the morning session, and covers the following topics:

A. Charge, energy, current, voltage, power.

B. Work done in moving a charge in an electric field (relationship between
voltage and work).

C. Force between charges.
. Current and voltage laws (Kirchhoff, Ohm).
E. Equivalent circuits (series, parallel).

O
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F. Capacitance and inductance.
G. Reactance and impedance, susceptance and admittance.
H. AC circuits.

I. Basic complex algebra.

Appendix C (available online) contains review of the electrical circuits portion of the
FE examination, including references to the relevant material in the book. In addition,
Appendix C also contains a collection of sample problems—some including a full
explanation of the solution, some with answers supplied separately. This material has
been derived from the author’s experience in co-teaching the FE exam preparation
course offered to Ohio State University seniors.

1.3 SYSTEM OF UNITS

This book employs the International System of Units (also called Sl, from the French
Systeme International des Unités). Sl units are commonly adhered to by virtually all
engineering professional societies. This section summarizes S| units and will serve
as a useful reference in reading the book.

Sl units are based on six fundamental quantities, listed in Table 1.2. All other
units may be derived in terms of the fundamental units of Table 1.2. Since, in practice,
one often needs to describe quantities that occur in large multiples or small fractions
of a unit, standard prefixes are used to denote powers of 10 of Sl (and derived) units.
These prefixes are listed in Table 1.3. Note that, in general, engineering units are
expressed in powers of 10 that are multiples of 3.

For example, 10~* s would be referred to as 100 x 1076 s, or 100 us (or, less
frequently, 0.1 ms).

Table 1.2 Sl units Table 1.3 Standard prefixes
Quantity Unit Symbol Prefix ~ Symbol  Power
Length Meter m atto a 1018
Mass Kilogram kg femto  f 10-15
Time Second S pico p 10-12
Electric current Ampere A nano n 10-9
Temperature _ Kelvin K micro u 10-6
Luminous intensity ~ Candela cd milli m 10-3

centi c 102
deci d 1071
deka da 10
kilo k 108
mega M 108
giga G 10°
tera T 1012

1.4 SPECIAL FEATURES OF THIS BOOK

This book includes a number of special features designed to make learning easier
and to allow students to explore the subject matter of the book in greater depth, if
so desired, through the use of computer-aided tools and the Internet. The principal
features of the book are described on the next two pages.
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:) Learning Objectives

1. The principal learning objectives are clearly identified at the beginning of each
chapter.

2. The symbol = is used to identify definitions and derivations critical to the accom-
plishment of a specific learning objective.

3. Each example is similarly marked.

EXAMPLES

The examples in the book have also been set aside from the main text, so that they can be
easily identified. All examples are solved by following the same basic methodology: A clear
and simple problem statement is given, followed by a solution. The solution consists of several
parts: All known quantities in the problem are summarized, and the problem statement is
translated into a specific objective (e.g., “Find the equivalent resistance R”).

Next, the given data and assumptions are listed, and finally the analysis is presented. The
analysis method is based on the following principle: All problems are solved symbolically first,
to obtain more general solutions that may guide the student in solving homework problems;
the numerical solution is provided at the very end of the analysis. Each problem closes with
comments summarizing the findings and tying the example to other sections of the book.

The solution methodology used in this book can be used as a general guide to problem-
solving techniques well beyond the material taught in the introductory electrical engineering
courses. The examples in this book are intended to help you develop sound problem-solving
habits for the remainder of your engineering career.

MAKE THE
CONNECTION

This feature is devoted to
helping the student make the
connection between electrical
engineering and other
engineering disciplines.
Analogies to other fields of
engineering will be found in
nearly every chapter.

CHECK YOUR UNDERSTANDING

Each example is accompanied by at least one drill exercise.

"3S19J9Xa aU) MoJaq 1B papiroid s Jamsue sy :Jemsuy

FOCUSONMETHODOLOGY

Each chapter, especially the early ones, includes “boxes” titled “Focus on
Methodology.” The content of these boxes (which are set aside from the main
text) summarizes important methods and procedures for the solution of common
problems. They usually consist of step-by-step instructions, and are designed to
assist you in methodically solving problems.
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Find It on the Web!

The use of the Internet as a resource for knowledge and information is becoming
increasingly common. In recognition of this fact, website references have been
included in this book to give you a starting point in the exploration of the world
of electrical engineering. Typical web references give you information on electrical
engineering companies, products, and methods. Some of the sites contain tutorial
material that may supplement the book’s contents.

FIND IT

ON THE WEB

Website

The list of features would not be complete without a reference to the book’s website:
www.mhhe.com/rizzoni. Create a bookmark for this site now! The site is designed
to provide up-to-date additions, examples, errata, and other important information.

HOMEWORK PROBLEMS

1.1 List five applications of electric motors in the 1.3 Electric power systems provide energy in a variety of
common household. commercial and industrial settings. Make a list of

1.2 By analogy with the discussion of electrical systems systems and devices that receive electric power in
in the automobile, list examples of applications of the a. Alarge office building.

electrical engineering disciplines of Table 1.1 for each

of the following engineering systems: b. A factory floor.

. ¢. Aconstruction site.
a. Aship.

b. A commercial passenger aircraft.
c. Your household.

d. A chemical process control plant.


http://www.mhhe.com/rizzoni
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Chapter 3
Chapter 4
Chapter 5
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Chapter 7
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AC Power
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FUNDAMENTALS OF ELECTRIC
CIRCUITS

hapter 2 presents the fundamental laws that govern the behavior of electric

circuits, and it serves as the foundation to the remainder of this book. The chap-

ter begins with a series of definitions to acquaint the reader with electric circuits;

next, the two fundamental laws of circuit analysis are introduced: Kirchhoff’s
current and voltage laws. With the aid of these tools, the concepts of electric power
and the sign convention and methods for describing circuit elements—resistors in
particular—are presented. Following these preliminary topics, the emphasis moves
to basic analysis techniques—voltage and current dividers, and to some applica-
tion examples related to the engineering use of these concepts. Examples include a
description of strain gauges, circuits for the measurements of force and other related
mechanical variables, and of the study of an automotive throttle position sensor. The
chapter closes with a brief discussion of electric measuring instruments. The following
box outlines the principal learning objectives of the chapter.
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MAKE THE
CONNECTION

Mechanical
(Gravitational)
Analog of Voltage
Sources

The role played by a voltage
source in an electric circuit is
equivalent to that played by
the force of gravity. Raising
a mass with respect to a
reference surface increases
its potential energy. This
potential energy can be
converted to kinetic energy
when the object moves to a
lower position relative to the
reference surface. The
voltage, or potential
difference across a voltage
source plays an analogous
role, raising the electrical
potential of the circuit, so that
current can flow, converting
the potential energy within
the voltage source to electric
power.

:) Learning Objectives

1. Identify the principal elements of electric circuits: nodes, loops, meshes, branches,
and voltage and current sources. Section 2.1.

2. Apply Kirchhoff’s laws to simple electric circuits and derive the basic circuit
equations. Sections 2.2 and 2.3.

3. Apply the passive sign convention and compute the power dissipated by circuit
elements. Calculate the power dissipated by a resistor. Section 2.4.

4. Apply the voltage and current divider laws to calculate unknown variables in simple
series, parallel, and series-parallel circuits. Sections 2.5 and 2.6.

5. Understand the rules for connecting electric measuring instruments to electric
circuits for the measurement of voltage, current, and power. Sections 2.7 and 2.8.

2.1 DEFINITIONS

In this section, we formally define some variables and concepts that are used in the
remainder of the chapter. First, we define voltage and current sources; next, we define
the concepts of branch, node, loop, and mesh, which form the basis of circuit analysis.

Intuitively, an ideal source is a source that can provide an arbitrary amount of
energy. Ideal sources are divided into two types: voltage sources and current sources.
Of these, you are probably more familiar with the first, since dry-cell, alkaline, and
lead-acid batteries are all voltage sources (they are not ideal, of course). You might
have to think harder to come up with a physical example that approximates the
behavior of an ideal current source; however, reasonably good approximations of
ideal current sources also exist. For instance, a voltage source connected in series
with a circuit element that has a large resistance to the flow of current from the source
provides a nearly constant—though small—current and therefore acts very nearly as
an ideal current source. A battery charger is another example of a device that can
operate as a current source.

Ideal Voltage Sources

An ideal voltage source is an electric device that generates a prescribed voltage at
its terminals. The ability of an ideal voltage source to generate its output voltage is
not affected by the current it must supply to the other circuit elements. Another way
to phrase the same idea is as follows:

An ideal voltage source provides a prescribed voltage across its terminals
irrespective of the current flowing through it. The amount of current supplied
by the source is determined by the circuit connected to it.

Figure 2.1 depicts various symbols for voltage sources that are employed
throughout this book. Note that the output voltage of an ideal source can be a function
of time. In general, the following notation is employed in this book, unless otherwise
noted. A generic voltage source is denoted by a lowercase v. If it is necessary to
emphasize that the source produces a time-varying voltage, then the notation v(t) is
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+
+

v (7) v(0) Vo =

Circuit Circuit
General symbol A special case: A special case:
for idedl voltage DC voltage sinusoidal
source. Vs (t) source (ideal voltage source,
may be constant battery) vs(t) =V cos mt

(DC source).

Figure 2.1 ldeal voltage sources

employed. Finally, a constant, or direct current, or DC, voltage source is denoted by
the uppercase character V. Note that by convention the direction of positive current
flow out of a voltage source is out of the positive terminal.

The notion of an ideal voltage source is best appreciated within the context of the
source-load representation of electric circuits. Figure 2.2 depicts the connection of an
energy source with a passive circuit (i.e., acircuit that can absorb and dissipate energy).
Three different representations are shown to illustrate the conceptual, symbolic, and
physical significance of this source-load idea.

i .
oo oo
4 bt
Source \Y Load -
’_\ VS \ R s — ~
- Headlight
i - Car battery
Power flow e
(a) Conceptual (b) Symbolic (circuit) (c) Physica
representation representation representation

Figure 2.2 Various representations of an electrical system

In the analysis of electric circuits, we choose to represent the physical reality
of Figure 2.2(c) by means of the approximation provided by ideal circuit elements,
as depicted in Figure 2.2(b).

is, IS ~
Ideal Current Sources
Anideal current source isadevice that can generate a prescribed currentindependent  is |s<> []
of the circuit to which it is connected. To do so, it must be able to generate an arbitrary Circuit
voltage across its terminals. Figure 2.3 depicts the symbol used to represent ideal

current sources. By analogy with the definition of the ideal voltage source just stated,

we write that Figure 2.3 Symbol for
ideal current source

to it. The voltage generated by the source is determined by the circuit connected

Anideal current source provides a prescribed current to any circuit connected
< LO1
to it.
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MAKE THE
CONNECTION

Hydraulic Analog
of Current
Sources

The role played by a current
source in an electric circuit is
very similar to that of a pump
in a hydraulic circuit. In a
pump, an internal mechanism
(pistons, vanes, or impellers)
forces fluid to be pumped
from a reservoir to a hydraulic
circuit. The volume flow rate
of the fluid g, in cubic meters
per second, in the hydraulic
circuit, is analogous to the
electrical current in the circuit.

Positive Displacement Pump

slip

flow A

Suction
low
pressure

N Zlflow

Discharge
high
pressure

A hydraulic pump

Pump symbols

with two directions
of flow.

Courtesy: Department of
Energy

L eft: Fixed
capacity pump.
Right: Fixed
capacity pump
with two directions
of flow.

L eft: Variable
capacity pump.
Right: Variable
capacity pump

Chapter 2 Fundamentals of Electric Circuits

The same uppercase and lowercase convention used for voltage sources is employed
in denoting current sources.

Dependent (Controlled) Sources

The sources described so far have the capability of generating a prescribed voltage
or current independent of any other element within the circuit. Thus, they are termed
independent sources. There exists another category of sources, however, whose output
(current or voltage) is a function of some other voltage or current in a circuit. These
are called dependent (or controlled) sources. A different symbol, in the shape of
a diamond, is used to represent dependent sources and to distinguish them from
independent sources. The symbols typically used to represent dependent sources are
depicted in Figure 2.4; the table illustrates the relationship between the source voltage
or current and the voltage or current it depends on—uy or iy, respectively—which can
be any voltage or current in the circuit.

Source type | Relationship
Voltage controlled voltage source (VCVS) |  vs= vy
Vs is Current controlled voltage source (CCVS) Vs=riy
Voltage controlled current source (VCCS) is= gv
Current controlled current source (CCCS) is= Bix

Figure 2.4 Symbols for dependent sources

Dependent sources are very useful in describing certain types of electronic
circuits. You will encounter dependent sources again in Chapters 8, 10, and 11, when
electronic amplifiers are discussed.

An electrical network is a collection of elements through which current flows.
The following definitions introduce some important elements of a network.

Branch

Abranch is any portion of a circuit with two terminals connected to it. A branch may
consist of one or more circuit elements (Figure 2.5). In practice, any circuit element
with two terminals connected to it is a branch.

Node

A node is the junction of two or more branches (one often refers to the junction of
only two branches as a trivial node). Figure 2.6 illustrates the concept. In effect,
any connection that can be accomplished by soldering various terminals together is
a node. It is very important to identify nodes properly in the analysis of electrical
networks.

It is sometimes convenient to use the concept of a supernode. A supernode
is obtained by defining a region that encloses more than one node, as shown in the
rightmost circuit of Figure 2.6. Supernodes can be treated in exactly the same way as
nodes.

< LO1

< LO1
< LO1
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a
———O
+ Li
Branch Branch R —
voltage current -
Im
——0
b
A branch Ideal A battery Practical
resistor ammeter
Examples of circuit branches
Figure 2.5 Definition of a branch
Supernode
.., Node a Ry
Node c Node a

. ©

Vs — is
Node VS_l O w
o Node b Rs
Node b

L

Examples of nodesin practical circuits

Figure 2.6 Definitions of node and supernode

Loop

Aloop isany closed connection of branches. Various loop configurations are illustrated LO
in Figure 2.7.

f

Note how two different loops R
in the same circuit may
include some of the same

elements or branches. e
Loop 1 Loop 2 Vs — is Ry R,

1-loop circuit 3-loop circuit
(How many nodesin
this circuit?)

Loop 3

Figure 2.7 Definition of a loop

Mesh

A mesh is a loop that does not contain other loops. Meshes are an important aid to <|_01
certain analysis methods. In Figure 2.7, the circuit with loops 1, 2, and 3 consists of two
meshes: Loops 1 and 2 are meshes, but loop 3 is not a mesh, because it encircles both
loops 1 and 2. The one-loop circuit of Figure 2.7 is also a one-mesh circuit. Figure 2.8
illustrates how meshes are simpler to visualize in complex networks than loops are.

Rs

13
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Charles Coulomb (1736-1806).
Photograph courtesy of French
Embassy, Washington, District of
Columbia.
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AAA3A AAAA
YVVY YVVY
wens
q = ) Mesh
R, S
+ Mesh Mesh =R

How many loops can you -
identify in this four-mesh
circuit? (Answer: 15)

Figure 2.8 Definition of a mesh

Network Analysis

The analysis of an electrical network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables is
constructed, and these are solved by means of suitable techniques.

Before introducing methods for the analysis of electrical networks, we must
formally present some important laws of circuit analysis.

2.2 CHARGE, CURRENT, AND KIRCHHOFF’S
CURRENT LAW

The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that static charge on a piece of amber was capable of attracting very light
objects, such as feathers. The word electricity originated about 600 B.C.; it comes from
elektron, which was the ancient Greek word for amber. The true nature of electricity
was not understood until much later, however. Following the work of Alessandro Volta
and his invention of the copper-zinc battery, it was determined that static electricity
and the current that flows in metal wires connected to a battery are due to the same
fundamental mechanism: the atomic structure of matter, consisting of a nucleus—
neutrons and protons—surrounded by electrons. The fundamental electric quantity
is charge, and the smallest amount of charge that exists is the charge carried by an
electron, equal to

ge = —1.602 x 107 C (2.1)

As you can see, the amount of charge associated with an electron is rather small.
This, of course, has to do with the size of the unit we use to measure charge, the
coulomb (C), named after Charles Coulomb. However, the definition of the coulomb
leads to an appropriate unit when we define electric current, since current consists of
the flow of very large numbers of charge particles. The other charge-carrying particle
in an atom, the proton, is assigned a plus sign and the same magnitude. The charge
of a proton is

=+1.602 x 107 C (2.2)
Op

Electrons and protons are often referred to as elementary charges.
Electric current is defined as the time rate of change of charge passing through
a predetermined area. Typically, this area is the cross-sectional area of a metal
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wire; however, we explore later a number of cases in which the current-carrying
material is not a conducting wire. Figure 2.9 depicts a macroscopic view of the
flow of charge in a wire, where we imagine Aq units of charge flowing through
the cross-sectional area A in At units of time. The resulting current i is then

given by
Current i = dg/dt is generated by
the flow of charge through the
. Aq C 93y Crosssectiond areaAina
= E g ( ' ) conductor.

If we consider the effect of the enormous number of elementary charges actually .—._’
flowing, we can write this relationship in differential form:

i = d—q ¢ (2.4) Figure 2.9 Current flow in
dt S an electric conductor

The units of current are called amperes, where 1 ampere (A) = 1 coulomb/second

(C/s). The name of the unit is a tribute to the French scientist André-Marie Ampére.

The electrical engineering convention states that the positive direction of current flow

is that of positive charges. In metallic conductors, however, current is carried by neg-

ative charges; these charges are the free electrons in the conduction band, which are

only weakly attracted to the atomic structure in metallic elements and are therefore

easily displaced in the presence of electric fields.

EXAMPLE 2.1 Charge and Current in a Conductor

Problem

Find the total charge in a cylindrical conductor (solid wire) and compute the current flowing
in the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Total charge of carriers Q; current in the wire I.

Schematics, Diagrams, Circuits, and Given Data:
Conductor length: L = 1 m.
Conductor diameter: 2r = 2 x 103 m.
Charge density: n = 10%° carriers/m°.
Charge of one electron: g = —1.602 x 107,
Charge carrier velocity: u = 19.9 x 10~¢ m/s.

Assumptions: None.

Analysis: To compute the total charge in the conductor, we first determine the volume of the
conductor:

Volume = length x cross-sectional area

2 x107%)?
V:anrzz(lm)|:n<x2) mz}:nxloem3
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Next, we compute the number of carriers (electrons) in the conductor and the total charge:
Number of carriers = volume x carrier density

carriers .
N=Vxn=(r x10°m?’) (102973) =7 x 103 carriers
Charge = number of carriers x charge/carrier

Q=N x g = (7 x 10® carriers)

x (—1.602 x 10*19#) = —-50.33 x 10° C
carrier

To compute the current, we consider the velocity of the charge carriers and the charge density
per unit length of the conductor:

Current = carrier charge density per unit length x carrier velocity

| = (% %) x (u ?) - (-50.33 x 10° %) (19.9 % 1078 ?) = 1A

Comments: Charge carrier density is a function of material properties. Carrier velocity is a
function of the applied electric field.

i = Current flowing
in closed circuit

—

In order for current to flow, there must exist a closed circuit.

Light- Figure 2.10 depicts a simple circuit, composed of a battery (e.g., a dry-cell or

bub alkaline 1.5-V battery) and a lightbulb.
b';t';y E Note that in the circuit of Figure 2.10, the current i flowing from the battery to
= the lightbulb is equal to the current flowing from the lightbulb to the battery. In other

words, no current (and therefore no charge) is “lost” around the closed circuit. This
- principle was observed by the German scientist G. R. Kirchhoff* and is now known as
[ Kirchhoff’s current law (KCL). Kirchhoff’s current law states that because charge

Figure 2.10 A simple cannot be created but must be conserved, the sum of the currents at a node must equal
electric circuit zero. Formally,
N
: ﬂde% > in=0  Kirchhoff’s current law (2.5)
T | n=1
i | iz i i

@ @ @ The significance of Kirchhoff’s current law is illustrated in Figure 2.11, where the
simple circuit of Figure 2.10 has been augmented by the addition of two lightbulbs
(note how the two nodes that exist in this circuit have been emphasized by the shaded
I — areas). In this illustration, we define currents entering a node as being negative and

Node 2

Illustration of KCL at
nodel: - + i;+i,+i3=0

1Gustav Robert Kirchhoff (1824-1887), a German scientist, published the first systematic description of
Figure 2.11 lllustration of the laws of circuit analysis. His contribution—though not original in terms of its scientific
Kirchhoff’s current law content—forms the basis of all circuit analysis.

< LO2
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currents exiting the node as being positive. Thus, the resulting expression for node 1
of the circuit of Figure 2.11 is

—i4+ii+ip+i3=0

Note that if we had assumed that currents entering the node were positive, the result
would not have changed.

Kirchhoff’s current law is one of the fundamental laws of circuit analysis,
making it possible to express currents in a circuit in terms of one another. KCL is
explored further in Examples 2.2 through 2.4.

EXAMPLE 2.2 Kirchhoff’s Current Law Applied to an Automotive
Electrical Harness

Problem

Figure 2.12 shows an automotive battery connected to a variety of circuits in an automobile.
The circuits include headlights, taillights, starter motor, fan, power locks, and dashboard panel.
The battery must supply enough current to independently satisfy the requirements of each of
the “load” circuits. Apply KCL to the automotive circuits. ON THE WEB

Ihead|  lait|  lstart ltan| liocks| s

AAAA
VVVY
AAAA
VVVY
AAAA
VVVY
AAAA
YVvy
AAAA
YVvy

(b)

Figure 2.12 (a) Automotive circuits; (b) equivalent electric circuit
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Solution

Known Quantities: Components of electrical harness: headlights, taillights, starter motor,
fan, power locks, and dashboard panel.

Find: Expression relating battery current to load currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.12.
Assumptions: None.

Analysis: Figure 2.12(b) depicts the equivalent electric circuit, illustrating how the current
supplied by the battery must divide among the various circuits. The application of KCL to the
equivalent circuit of Figure 2.12 requires that

Ibatt — Ihead — ltait — Istart — Ifan — liocks — ldash = 0

EXAMPLE 2.3 Application of KCL

Problem

Determine the unknown currents in the circuit of Figure 2.13.

Figure 2.13 Demonstration
of KCL

Solution
Known Quantities:

Is=5A Ih=2A I, =-3A I3=15A
Find: |y and I,.

Analysis: Two nodes are clearly shown in Figure 2.13 as node a and node b; the third node in the
circuit is the reference (ground) node. In this example we apply KCL at each of the three nodes.

At node a:
lo+lh+1,=0
lg+2—-3=0

lh=1A

Note that the three currents are all defined as flowing away from the node, but one of the
currents has a negative value (i.e., it is actually flowing toward the node).
At node b:

Is—13—1,=0
5-15-1,=0
I, =35A
Note that the current from the battery is defined in a direction opposite to that of the other two
currents (i.e., toward the node instead of away from the node). Thus, in applying KCL, we
have used opposite signs for the first and the latter two currents.
At the reference node: If we use the same convention (positive value for currents entering
the node and negative value for currents exiting the node), we obtain the following equations:
—Is+13+1,=0
—-54+15+1,=0
I, =35A
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Comments: The result obtained at the reference node is exactly the same as we already
calculated at node b. This fact suggests that some redundancy may result when we apply KCL
at each node in a circuit. In Chapter 3 we develop a method called node analysis that ensures
the derivation of the smallest possible set of independent equations.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 2.3whenly = 0.5A, 1, =2A, I3 =7A, and I; = —1 A. Find
Iy and Is.

V9 =S|pueyGgz— =T amsuy

EXAMPLE 2.4 Application of KCL <|_02

Problem

Apply KCL to the circuit of Figure 2.14, using the concept of supernode to determine the source SUPHnode\
current Ig;.

Solution
Known Quantities:
I3 =2A Is=0A

Find: |51.

Analysis: Treating the supernode as a simple node, we apply KCL at the supernode to obtain

ls1—1l3—15=0 Figure 2.14 Application of
KCL with a supernode

Iy =3+ 1s = 2A With a sup

Comments: The value of this analysis will become clear when you complete the drill exercise
below.

CHECK YOUR UNDERSTANDING

Use the result of Example 2.4 and the following data to compute the current I, in the circuit
of Figure 2.14.

I, =3A IbL=1A

VT = 5] [lamsuy
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Gustav Robert Kirchhoff (1824-
1887). Photograph courtesy of
Deutsches Museum, Munich.

Illustration of Kirchhoff’s
voltage law: v1 = vp

Figure 2.15 \oltages

around a circuit
L02>
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2.3 VOLTAGE AND KIRCHHOFF’'S VOLTAGE
LAW

Charge moving in an electric circuit gives rise to a current, as stated in Section 2.2.
Naturally, it must take some work, or energy, for the charge to move between two
points in a circuit, say, from point a to point b. The total work per unit charge
associated with the motion of charge between two points is called voltage. Thus,
the units of voltage are those of energy per unit charge; they have been called volts
in honor of Alessandro \olta:

B joule (J)
1volt (V) = 1me(€) (2.6)

The voltage, or potential difference, between two points in a circuit indicates the
energy required to move charge from one point to the other. The role played by a
voltage source in an electric circuit is equivalent to that played by the force of gravity.
Raising a mass with respect to a reference surface increases its potential energy. This
potential energy can be converted to kinetic energy when the object moves to a lower
position relative to the reference surface. The voltage, or potential difference, across a
voltage source plays an analogous role, raising the electrical potential of the circuit, so
that charge can move in the circuit, converting the potential energy within the voltage
source to electric power. As will be presently shown, the direction, or polarity, of
the voltage is closely tied to whether energy is being dissipated or generated in the
process. The seemingly abstract concept of work being done in moving charges can
be directly applied to the analysis of electric circuits; consider again the simple circuit
consisting of a battery and a lightbulb. The circuit is drawn again for convenience in
Figure 2.15, with nodes defined by the letters a and b. Experimental observations led
Kirchhoff to the formulation of the second of his laws, Kirchhoff’s voltage law, or
KVL. The principle underlying KVL is that no energy is lost or created in an electric
circuit; in circuit terms, the sum of all voltages associated with sources must equal
the sum of the load voltages, so that the net voltage around a closed circuit is zero.
If this were not the case, we would need to find a physical explanation for the excess
(or missing) energy not accounted for in the voltages around a circuit. Kirchhoff’s
voltage law may be stated in a form similar to that used for KCL

v =0 Kirchhoff’s voltage law (2.7)

=
|| p=
AN

where the v, are the individual voltages around the closed circuit. To understand this
concept, we must introduce the concept of reference voltage.

In Figure 2.15, the voltage across the lightbulb is the difference between two
node voltages, v, and v,. In a circuit, any one node may be chosen as the refer-
ence node, such that all node voltages may be referenced to this reference voltage.
In Figure 2.15, we could select the voltage at node b as the reference voltage and
observe that the battery’s positive terminal is 1.5 V above the reference voltage. It is
convenient to assign a value of zero to reference voltages, since this simplifies the
voltage assignments around the circuit. With reference to Figure 2.15, and assuming
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that vy, = 0, we can write
V] = 15V
Vp = Ugp =Va— Vp =0y — 0=,

but v, and vy are the same voltage, that is, the voltage at node a (referenced to
node b). Thus

V1 = V2

One may think of the work done in moving a charge from point a to point b and
the work done moving it back from b to a as corresponding directly to the voltages
across individual circuit elements. Let Q be the total charge that moves around the
circuit per unit time, giving rise to current i. Then the work W done in moving Q
from b to a (i.e., across the battery) is

Wpa = Q x 1.5V (2.8)

Similarly, work is done in moving Q from a to b, that is, across the lightbulb. Note
that the word potential is quite appropriate as a synonym of voltage, in that voltage
represents the potential energy between two points in a circuit: If we remove the
lightbulb from its connections to the battery, there still exists a voltage across the (how
disconnected) terminals b and a. This is illustrated in Figure 2.16.

A moment’s reflection upon the significance of voltage should suggest that it
must be necessary to specify a sign for this quantity. Consider, again, the same dry-
cell or alkaline battery where, by virtue of an electrochemically induced separation
of charge, a 1.5-V potential difference is generated. The potential generated by the
battery may be used to move charge in a circuit. The rate at which charge is moved
once a closed circuit is established (i.e., the current drawn by the circuit connected to
the battery) depends now on the circuit element we choose to connect to the battery.
Thus, while the voltage across the battery represents the potential for providing energy
to a circuit, the voltage across the lightbulb indicates the amount of work done in
dissipating energy. In the first case, energy is generated; in the second, it is consumed
(note that energy may also be stored, by suitable circuit elements yet to be introduced).
This fundamental distinction requires attention in defining the sign (or polarity) of
voltages.

We shall, in general, refer to elements that provide energy as sources and to
elements that dissipate energy as loads. Standard symbols for a generalized source-
and-load circuit are shown in Figure 2.17. Formal definitions are given later.

Ground

The concept of reference voltage finds a practical use in the ground voltage of a circuit.
Ground represents a specific reference voltage that is usually a clearly identified point
in a circuit. For example, the ground reference voltage can be identified with the case
or enclosure of an instrument, or with the earth itself. In residential electric circuits,
the ground reference is a large conductor that is physically connected to the earth. It
is convenient to assign a potential of 0 V to the ground voltage reference.

The choice of the word ground is not arbitrary. This point can be illustrated
by a simple analogy with the physics of fluid motion. Consider a tank of water, as
shown in Figure 2.18, located at a certain height above the ground. The potential
energy due to gravity will cause water to flow out of the pipe at a certain flow
rate. The pressure that forces water out of the pipe is directly related to the head
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The presence of avoltage, vy,
across the open terminalsa and b
indicates the potential energy that
can enable the motion of charge,
once aclosed circuit is established
to allow current to flow.

Figure 2.16 Concept of
voltage as potential difference

A symbolic representation of
the battery—lightbulb circuit
of Figure 2.15.

source(D) [Load]w.

Figure 2.17 Sources and
loads in an electric circuit
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h; — hy in such a way that this pressure is zero when h, = h;. Now the point hs,
corresponding to the ground level, is defined as having zero potential energy. It should
be apparent that the pressure acting on the fluid in the pipe is really caused by the
difference in potential energy (h; — hz) — (h, — hg). It can be seen, then, that it is
not necessary to assign a precise energy level to the height hs; in fact, it would be
extremely cumbersome to do so, since the equations describing the flow of water
would then be different, say, in Denver, Colorado (hs = 1,600 m above sea level),
from those that would apply in Miami, Florida (hs = 0 m above sea level). You see,
then, that it is the relative difference in potential energy that matters in the water tank
problem.

Circuit Circuit
symbol for symbol for

earth ground chassis ground
= 77
Ry

hp » — —

\\\ .

Ve >
Flow of water s _ sziRz

from pipe i 3

h3 W/ zz/zz/Zz7zzzzzZzzz

.||_<

Physical ground

Figure 2.18 Analogy between electrical and earth ground

|_02> EXAMPLE 2.5 Kirchhoff’s Voltage Law—Electric Vehicle Battery
Pack

Problem

Figure 2.19(a) depicts the battery pack in the Smokin’ Buckeye electric race car. In this example
we apply KVL to the series connection of 31 12-V batteries that make up the battery supply
for the electric vehicle.

batt, Vbatt, Vbat, Vbatt2 Vbait,  Vbatty,
L
Rl 20 Y R AFF=lL
.
Power
Vbat, — converter | vy
DC-AC converter o and motor e
(electric drive) -
AC motor
@ (b) ©

Figure 2.19 Electric vehicle battery pack: illustration of KVL (a) Courtesy: David H. Koether Photography.
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Solution
Known Quantities: Nominal characteristics of Optima™ lead-acid batteries. FIND IT

Find: Expression relating battery and electric motor drive voltages.

Schematics, Diagrams, Circuits, and Given Data: Vi = 12 V; Figure 2.19(a), (b), and (c).  [ENRGEE:
Assumptions: None.

Analysis: Figure 2.19(b) depicts the equivalent electric circuit, illustrating how the voltages
supplied by the battery are applied across the electric drive that powers the vehicle’s 150-kW
three-phase induction motor. The application of KV L to the equivalent circuit of Figure 2.19(b)
requires that:

31
Z Vbattn - Vdrive =0

n=1

Thus, the electric drive is nominally supplied by a 31 x 12 = 372-V battery pack. In reality, the
voltage supplied by lead-acid batteries varies depending on the state of charge of the battery.
When fully charged, the battery pack of Figure 2.19(a) is closer to supplying around 400 V
(i.e., around 13V per battery).

EXAMPLE 2.6 Application of KVL <|_02
Problem
Determine the unknown voltage V, by applying KVL to the circuit of Figure 2.20. tV, -
+ Vv - +
Solution \ip A

Known Quantities:

.||_<.

Vs, =12V V=6V V3 =1V
Figure 2.20 Circuit for
Find: V,. Example 2.6

Analysis: Applying KVVL around the simple loop, we write
V52—V1 —V2 —V3 =0
Vo=V —Vi—Vg=12—6—-1=5V

Comments: Note that V, is the voltage across two branches in parallel, and it must be equal
for each of the two elements, since the two elements share the same nodes.

EXAMPLE 2.7 Application of KVL <|_02

Problem

Use KVL to determine the unknown voltages V; and V, in the circuit of Figure 2.21.
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Figure 2.21 Circuit for
Example 2.7
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Solution

Known Quantities:
Vg1 =12V Vsp = —4V V, =2V V=6V Vs =12V
Find: V]_,V4.

Analysis: To determine the unknown voltages, we apply KVL clockwise around each of the
three meshes:

VSl_Vl —V2 —V3 :0
Vo — Vs +Vy =0
V3 —V;—V5=0
Next, we substitute numerical values:

12-V;—-2-6=0

Vi =4V
2—(—4)+Vy=0
Vy=-6V
6—(—6)— Vs =0
Vs =12V

Comments: In Chapter 3 we develop a systematic procedure called mesh analysis to solve
this kind of problem.

CHECK YOUR UNDERSTANDING

Use the outer loop (around the outside perimeter of the circuit) to solve for V;.

9A0Qe Se swes IsMSuy/

2.4 ELECTRIC POWER AND SIGN CONVENTION

The definition of voltage as work per unit charge lends itself very conveniently to
the introduction of power. Recall that power is defined as the work done per unit
time. Thus, the power P either generated or dissipated by a circuit element can be
represented by the following relationship:

work  work charge
time  charge time

Power = = voltage x current (2.9)

Thus,
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The electric power generated by an active element, or that dissipated or stored
by a passive element, is equal to the product of the voltage across the element
and the current flowing through it.

P=VI (2.10)

It is easy to verify that the units of voltage (joules per coulomb) times current
(coulombs per second) are indeed those of power (joules per second, or watts).

It is important to realize that, just like voltage, power is a signed quantity,
and it is necessary to make a distinction between positive and negative power. This
distinction can be understood with reference to Figure 2.22, in which two circuits are
shown side by side. The polarity of the voltage across circuit A and the direction of
the current through it indicate that the circuit is doing work in moving charge from
a lower potential to a higher potential. On the other hand, circuit B is dissipating
energy, because the direction of the current indicates that charge is being displaced
from a higher potential to a lower potential. To avoid confusion with regard to the
sign of power, the electrical engineering community uniformly adopts the passive
sign convention, which simply states that the power dissipated by a load is a positive
quantity (or, conversely, that the power generated by a source is a positive quantity).
Another way of phrasing the same concept is to state that if current flows from a
higher to a lower voltage (plus to minus), the power is dissipated and will be a
positive quantity.

It is important to note also that the actual numerical values of voltages and
currents do not matter: Once the proper reference directions have been established
and the passive sign convention has been applied consistently, the answer will be
correct regardless of the reference direction chosen. Examples 2.8 and 2.9 illustrate
this point.

THE PASSIVE SIGN CONVENTION

1. Choose an arbitrary direction of current flow.
2. Label polarities of all active elements (voltage and current sources).

3. Assign polarities to all passive elements (resistors and other loads); for
passive elements, current always flows into the positive terminal.

4. Compute the power dissipated by each element according to the following
rule: If positive current flows into the positive terminal of an element, then
the power dissipated is positive (i.e., the element absorbs power); if the
current leaves the positive terminal of an element, then the power
dissipated is negative (i.e., the element delivers power).

< LO3

—
+
v Circuit
_ A
Power dissipated =

V(i) = (-v)i =—vi
Power generated = vi

i
—

Circuit \Y
B

Power dissipated = vi
Power generated =
V(=) = (-v)i =—vi

Figure 2.22 The passive

sign convention

< LO3
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LO3 EXAMPLE 2.8 Use of the Passive Sign Convention

|
Load 1
+ ~
VB — -g
=T |
Figure 2.23

vg=12V v1=8V
i=01A v=4V

vg=-12V v1 =-8V
i==01A v,=-4V

(b)
Figure 2.24

Problem

Apply the passive sign convention to the circuit of Figure 2.23.

Solution
Known Quantities: \oltages across each circuit element; current in circuit.
Find: Power dissipated or generated by each element.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.24(a) and (b). The voltage drop
across load 1 is 8 V, that across load 2 is 4 V; the current in the circuit is 0.1 A.

Assumptions: None.

Analysis: Note that the sign convention is independent of the current direction we choose.
We now apply the method twice to the same circuit. Following the passive sign convention,
we first select an arbitrary direction for the current in the circuit; the example will be re-
peated for both possible directions of current flow to demonstrate that the methodology is
sound.

1. Assume clockwise direction of current flow, as shown in Figure 2.24(a).

2. Label polarity of voltage source, as shown in Figure 2.24(a); since the arbitrarily chosen
direction of the current is consistent with the true polarity of the voltage source, the source
voltage will be a positive quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(a).
4. Compute the power dissipated by each element: Since current flows from — to + through
the battery, the power dissipated by this element will be a negative quantity:
PB = —ug X i=-12Vx01A=-12W

that is, the battery generates 1.2 watts (W). The power dissipated by the two loads will
be a positive quantity in both cases, since current flows from plus to minus:

P1:U1X|:8VX01A:08W
P,=v, xi=4Vx01A=04W

Next, we repeat the analysis, assuming counterclockwise current direction.

1. Assume counterclockwise direction of current flow, as shown in Figure 2.24(b).

2. Label polarity of voltage source, as shown in Figure 2.24(b); since the arbitrarily chosen
direction of the current is not consistent with the true polarity of the voltage source, the
source voltage will be a negative quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(b).

4. Compute the power dissipated by each element: Since current flows from plus to minus
through the battery, the power dissipated by this element will be a positive quantity;
however, the source voltage is a negative quantity:

Pe=vg xi=(-12V)(0.1A) = -12W

that is, the battery generates 1.2 W, as in the previous case. The power dissipated by the
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two loads will be a positive quantity in both cases, since current flows from plus to minus:
Pi=v1 xi=8Vx01A=08W
P,=v; xi=4Vx01A=04W
Comments: It should be apparent that the most important step in the example is the correct
assignment of source voltage; passive elements will always result in positive power dissipation.

Note also that energy is conserved, as the sum of the power dissipated by source and loads is
zero. In other words: Power supplied always equals power dissipated.

27

EXAMPLE 2.9

Problem

For the circuit shown in Figure 2.25, determine which components are absorbing power and
which are delivering power. Is conservation of power satisfied? Explain your answer.

Solution
Known Quantities: Current through elements D and E; voltage across elements B, C, E.

Find: Which components are absorbing power, which are supplying power; verify the con-
servation of power.

Analysis: By KCL, the current through element B is 5 A, to the right. By KVL,
—v,—3+10+5=0

Therefore, the voltage across element A is
v, =12V (positive at the top)

A supplies (12 V)(5A) = 60 W

B supplies BV)(5A) =15W

C absorbs (5 V)(5A) =25W

D absorbs (10 V)(3A) =30 W

E absorbs (10 V)(2A) =20 W

Total power supplied =60 W + 15W =75 W

Total power absorbed =25W + 30 W + 20 W =75 W

Total power supplied = Total power absorbed, so conservation of power is satisfied

Comments: The procedure described in this example can be easily conducted experimentally,
by performing simple voltage and current measurements. Measuring devices are introduced in
Section 2.8.

2A

[®] 0v[€]

SV+

‘3A

C

Y

Figure 2.25

CHECK YOUR UNDERSTANDING

Compute the current flowing through each of the headlights of Example 2.2 if each headlight
has a power rating of 50 W. How much power is the battery providing?

Determine which circuit element in the following illustration (left) is supplying power and
which is dissipating power. Also determine the amount of power dissipated and supplied.
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Figure 2.26 Generalized
representation of circuit
elements
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+
22A
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If the battery in the accompanying diagram (above, right) supplies a total of 10 mW to the three
elements shown and i; = 2 mA and i, = 1.5 mA, what is the current i;? If i; = 1 mA and
iz = 1.5 mA, whatis i,?

Ywo=7a
YW T— = & M 8'0¢ seredissip g ‘M 8'0€ sa1ddns v "M\ 00T W 2T7 = 91 = 9] :Slemsuy

2.5 CIRCUIT ELEMENTS AND THEIR i-v
CHARACTERISTICS

The relationship between current and voltage at the terminals of a circuit element
defines the behavior of that element within the circuit. In this section we introduce a
graphical means of representing the terminal characteristics of circuit elements. Figure
2.26 depicts the representation that is employed throughout the chapter to denote a
generalized circuit element: The variable i represents the current flowing through the
element, while v is the potential difference, or voltage, across the element.

Suppose now that a known voltage were imposed across a circuit element. The
current that would flow, as a consequence of this voltage, and the voltage itself form a
unique pair of values. If the voltage applied to the element were varied and the resulting
current measured, it would be possible to construct a functional relationship between
voltage and current known as the i-v characteristic (or volt-ampere characteristic).
Such a relationship defines the circuit element, in the sense that if we impose any
prescribed voltage (or current), the resulting current (or voltage) is directly obtainable
from the i-v characteristic. A direct consequence is that the power dissipated (or
generated) by the element may also be determined from the i-v curve.

Figure 2.27 depicts an experiment for empirically determining the i-v charac-
teristic of a tungsten filament lightbulb. A variable voltage source is used to apply
various voltages, and the current flowing through the element is measured for each
applied voltage.

We could certainly express the i-v characteristic of a circuit element in func-
tional form:

i=f) v=g() (2.11)

In some circumstances, however, the graphical representation is more desirable,
especially if there is no simple functional form relating voltage to current. The sim-
plest form of the i-v characteristic for a circuit element is a straight line, that is,

i = kv (2.12)

with k being a constant.
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Figure 2.27 Volt-ampere characteristic of a tungsten lightbulb

We can also relate the graphical i-v representation of circuit elements to the
power dissipated or generated by a circuit element. For example, the graphical
representation of the lightbulb i-v characteristic of Figure 2.27 illustrates that when
a positive current flows through the bulb, the voltage is positive, and conversely,
a negative current flow corresponds to a negative voltage. In both cases the power
dissipated by the device is a positive quantity, as it should be, on the basis of the
discussion of Section 2.4, since the lightbulb is a passive device. Note that the i-v
characteristic appears in only two of the four possible quadrants in the i-v plane. In
the other two quadrants, the product of voltage and current (i.e., power) is negative,
and an i-v curve with a portion in either of these quadrants therefore corresponds to
power generated. This is not possible for a passive load such as a lightbulb; however,
there are electronic devices that can operate, for example, in three of the four quad-
rants of the i-v characteristic and can therefore act as sources of energy for specific
combinations of voltages and currents. An example of this dual behavior is introduced
in Chapter 9, where it is shown that the photodiode can act either in a passive mode
(as a light sensor) or in an active mode (as a solar cell).

The i-v characteristics of ideal current and voltage sources can also be useful in
visually representing their behavior. An ideal voltage source generates a prescribed
voltage independent of the current drawn from the load; thus, its i-v characteristic
is a straight vertical line with a voltage axis intercept corresponding to the source
voltage. Similarly, the i-v characteristic of an ideal current source is a horizontal line
with a current axis intercept corresponding to the source current. Figure 2.28 depicts
these behaviors.

2.6 RESISTANCE AND OHM’S LAW

When electric current flows through a metal wire or through other circuit elements,
it encounters a certain amount of resistance, the magnitude of which depends on
the electrical properties of the material. Resistance to the flow of current may be
undesired—for example, in the case of lead wires and connection cable—or it may

O FPNWAUITONOWO —
T

I N B
345678 v
v characteristic
of a3-A current source

| |
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i-

O FPNWAUITONOO —
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12345678 v
i-v characteristic

of a6-V voltage source

Figure 2.28 i-v
characteristics of ideal
sources
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MAKE THE
CONNECTION

Electric Circuit
Analogs of
Hydraulic
Systems—Fluid
Resistance

A useful analogy can be
made between the flow of
electric current through
electric components and the
flow of incompressible fluids
(e.g., water, oil) through
hydraulic components. The
analogy starts with the
observation that the volume
flow rate of a fluid in a pipe is
analogous to current flow in a
conductor. Similarly, pressure
drop across the pipe is
analogous to voltage drop
across a resistor. The figure
below depicts this
relationship graphically. The
fluid resistance opposed by
the pipe to the fluid flow is
analogous to an electrical
resistance: The pressure
difference between the two
ends of the pipe causes fluid
flow, much as a potential
difference across a resistor
forces a current flow. This
analogy is explored further in
Chapter 4.

R
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Analogy between
electrical and fluid
resistance

Chapter 2 Fundamentals of Electric Circuits

be exploited in an electric circuit in a useful way. Nevertheless, practically all circuit
elements exhibit some resistance; as a consequence, current flowing through an el-
ement will cause energy to be dissipated in the form of heat. An ideal resistor is a
device that exhibits linear resistance properties according to Ohm’s law, which states
that

V =IR Ohm’s law (2.13)

that is, that the voltage across an element is directly proportional to the current flow
through it. The value of the resistance R is measured in units of ohms (£2), where

1Q=1VA (2.14)

The resistance of a material depends on a property called resistivity, denoted by
the symbol p; the inverse of resistivity is called conductivity and is denoted by the
symbol o. For a cylindrical resistance element (shown in Figure 2.29), the resistance
is proportional to the length of the sample | and inversely proportional to its cross-
sectional area A and conductivity o.

R=—

_ (2.15)

Physical resistors i-v characteristic
with resistance R.
Typical materials are

carbon, metal film.

Circuit symbol

Figure 2.29 The resistance element

It is often convenient to define the conductance of a circuit element as the
inverse of its resistance. The symbol used to denote the conductance of an element is
G, where

1
G = R siemens (S) where 1S=1AN (2.16)
Thus, Ohm’s law can be restated in terms of conductance as
| =GV (2.17)

Ohm’s law is an empirical relationship that finds widespread application in
electrical engineering because of its simplicity. It is, however, only an approximation
of the physics of electrically conducting materials. Typically, the linear relationship
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between voltage and current in electrical conductors does not apply at very high
voltages and currents. Further, not all electrically conducting materials exhibit linear
behavior even for small voltages and currents. Itis usually true, however, that for some
range of voltages and currents, most elements display a linear i-v characteristic. Figure
2.30illustrates how the linear resistance concept may apply to elements with nonlinear
i-v characteristics, by graphically defining the linear portion of the i-v characteristic
of two common electrical devices: the lightbulb, which we have already encountered,
and the semiconductor diode, which we study in greater detail in Chapter 9. Table 2.1
lists the conductivity of many common materials.

Table 2.1 Resistivity of common
materials at room temperature

Material Resistivity (£2-m)
Aluminum 2.733 x 1078
Copper 1.725 x 1078
Gold 2.271 x 1078
Iron 9.98 x 108
Nickel 7.20 x 1078
Platinum 10.8 x 1078
Silver 1.629 x 1078
Carbon 35x 1075

The typical construction and the circuit symbol of the resistor are shown in
Figure 2.29. Resistors made of cylindrical sections of carbon (with resistivity
p = 3.5 x 107° Q-m) are very common and are commercially available in a wide
range of values for several power ratings (as explained shortly). Another common
construction technique for resistors employs metal film. A common power rating for
resistors used in electronic circuits (e.g., in most consumer electronic appliances such
as radios and television sets) is % W. Table 2.2 lists the standard values for commonly
used resistors and the color code associated with these values (i.e., the common com-
binations of the digits b;b,b3 as defined in Figure 2.31). For example, if the first three
color bands on a resistor show the colors red (b; = 2), violet (b, = 7), and yellow
(bs = 4), the resistance value can be interpreted as follows:

R = 27 x 10* = 270,000 © = 270 kQ

Table 2.2 Common resistor values (3-, -, 3-, 1-, 2-W rating)

2 Code Q  Multiplier | k& Multiplier | k Multiplier | k€ Multiplier
10 Brn-blk-blk | 100 Brown 1.0 Red 10 Orange 100 Yellow
12 Brn-red-blk | 120 Brown 1.2 Red 12 Orange 120 Yellow
15 Brn-grn-blk | 150 Brown 1.5 Red 15 Orange 150 Yellow
18 Brn-gry-blk | 180 Brown 1.8 Red 18 Orange 180 Yellow
22 Red-red-blk | 220 Brown 2.2 Red 22 Orange 220 Yellow
27 Red-vit-blk 270 Brown 2.7 Red 27 Orange 270 Yellow
33 Org-org-blk | 330 Brown 3.3 Red 33 Orange 330 Yellow
39 Org-wht-blk | 390 Brown 3.9 Red 39 Orange 390 Yellow
47 Ylw-vit-blk | 470 Brown 4.7 Red 47 Orange 470 Yellow
56 Grn-blu-blk | 560 Brown 5.6 Red 56 Orange 560 Yellow
68 Blu-gry-blk | 680 Brown 6.8 Red 68 Orange 680 Yellow
82 Gry-red-blk | 820 Brown 8.2 Red 82 Orange 820 Yellow
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Exponential i-v
characteristic
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Figure 2.30

FIND IT
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Color bands

black 0 blue 6
brown 1 violet 7
red 2 gray 8
orange 3 white 9
yellow 4 silver 10%
green 5 gold 5%

Resistor value = (by bp) x 10%;
by =% tolerancein actud vaue

Figure 2.31 Resistor color
code
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In Table 2.2, the leftmost column represents the complete color code; columns
to the right of it only show the third color, since this is the only one that changes. For
example, a 10-€2 resistor has the code brown-black-black, while a 100-£2 resistor has
the code of brown-black-brown.

In addition to the resistance in ohms, the maximum allowable power dissipation
(or power rating) is typically specified for commercial resistors. Exceeding this
power rating leads to overheating and can cause the resistor to literally burn up. For
a resistor R, the power dissipated can be expressed, with Ohm’s law substituted into
equation 2.10, by

2

P=VI :IZR:\% (2.18)
That is, the power dissipated by a resistor is proportional to the square of the
current flowing through it, as well as the square of the voltage across it. Example
2.10 illustrates how you can make use of the power rating to determine whether a
given resistor will be suitable for a certain application.

FIND IT

ON THE WEB

EXAMPLE 2.10 Using Resistor Power Ratings

Problem

Determine the minimum resistor size that can be connected to a given battery without exceeding
the resistor’s %-W power rating.

Solution
Known Quantities: Resistor power rating = 0.25 W. Battery voltages: 1.5 and 3 V.
Find: The smallest size %-W resistor that can be connected to each battery.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.32, Figure 2.33.

¥ li pd l'
=
+ B Y
15V 5v 2R |
= 3V ?R
Figure 2.32

Figure 2.33

Analysis: We first need to obtain an expression for resistor power dissipation as a function
of its resistance. We know that P = VI and that V = IR. Thus, the power dissipated by any
resistor is

Vv Vv
PR=Vxl=Vx—=—
R R
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Since the maximum allowable power dissipation is 0.25 W, we can write V2/R < 0.25, or
R > V?2/0.25. Thus, fora 1.5-V battery, the minimum size resistor willbe R = 1.52/0.25 = 9 Q.
For a 3-V battery the minimum size resistor will be R = 3%2/0.25 = 36 Q.

Comments: Sizing resistors on the basis of power rating is very important in practice. Note
how the minimum resistor size quadrupled as we doubled the voltage across it. This is because
power increases as the square of the voltage. Remember that exceeding power ratings will
inevitably lead to resistor failure!
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CHECK YOUR UNDERSTANDING

Atypical electronic power supply provides £12 V. What is the size of the smallest %-W resistor
that could be placed across (in parallel with) the power supply? (Hint: You may think of the
supply as a 24-V supply.)

The circuit in the accompanying illustration contains a battery, a resistor, and an unknown
circuit element.

1. If the voltage Vpattery is 1.45 V and i = 5 mA, find power supplied to or by the battery.
2. Repeatpartlifi =—2mA.

The battery in the accompanying circuit supplies power to resistors Ry, R, and Rs. Use KCL
to determine the current ig, and find the power supplied by the battery if Vyaitery = 3 V.

iB
——

Viattery C_) §R1 §R2 §R3

< < <

lip=02mA ||i;=04mA ||iz=12mA
Y Y Y

MW $'G = 8q yw g'T = 9
:(01 panddns) M ¢—0T X 6°¢ = d :(Aq paljddns) M 0T X G2'L = 'd -8 #0E'C ‘SIamsuy

Open and Short Circuits

Two convenient idealizations of the resistance element are provided by the limiting
cases of Ohm’s law as the resistance of a circuit element approaches zero or infinity. A
circuit element with resistance approaching zero is called a short circuit. Intuitively,
we would expect a short circuit to allow for unimpeded flow of current. In fact,
metallic conductors (e.g., short wires of large diameter) approximate the behavior of
a short circuit. Formally, a short circuit is defined as a circuit element across which
the voltage is zero, regardless of the current flowing through it. Figure 2.34 depicts
the circuit symbol for an ideal short circuit.

Physically, any wire or other metallic conductor will exhibit some resistance,
though small. For practical purposes, however, many elements approximate a short
circuit quite accurately under certain conditions. For example, a large-diameter copper
pipe is effectively a short circuit in the context of a residential electric power supply,

Unknown
element

The short circuit:
R=0
v=0foranyi

Figure 2.34 The short

circuit
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\" R—

i=0foranyv

Figure 2.35 The open
circuit

15V

The current i flows through each of
the four series elements. Thus, by
KVL,

15=vi+wn+v3

N series resistors are equivaent to
asingle resistor equal to the sum of
theindividual resistances.

Figure 2.36

i
+ ——
l The open circuit:

Chapter 2 Fundamentals of Electric Circuits

while in a low-power microelectronic circuit (e.g., an FM radio) a short length of
24-gauge wire (refer to Table 2.3 for the resistance of 24-gauge wire) is a more than
adequate short circuit. Table 2.3 summarizes the resistance for a given length of some
commonly used gauges of electrical wire. Additional information on American Wire
Gauge Standards may be found on the Internet.

Table 2.3 Resistance of copper wire

Number of  Diameter per  Resistance per

AWG size  strands strand (in) 1,000 ft (€2)
24 Solid 0.0201 284
24 7 0.0080 28.4
22 Solid 0.0254 18.0
22 7 0.0100 19.0
20 Solid 0.0320 11.3
20 7 0.0126 11.9
18 Solid 0.0403 7.2
18 7 0.0159 7.5
16 Solid 0.0508 45
16 19 0.0113 4.7
14 Solid 0.0641 2.52
12 Solid 0.0808 1.62
10 Solid 0.1019 1.02
8 Solid 0.1285 0.64
6 Solid 0.1620 0.4
4 Solid 0.2043 0.25
2 Solid 0.2576 0.16

Acircuit element whose resistance approaches infinity is called an open circuit.
Intuitively, we would expect no current to flow through an open circuit, since it offers
infinite resistance to any current. In an open circuit, we would expect to see zero
current regardless of the externally applied voltage. Figure 2.35 illustrates this idea.

In practice, it is not too difficult to approximate an open circuit: Any break in
continuity ina conducting path amounts to an open circuit. The idealization of the open
circuit, as defined in Figure 2.35, does not hold, however, for very high voltages. The
insulating material between two insulated terminals will break down at a sufficiently
high voltage. If the insulator is air, ionized particles in the neighborhood of the two
conducting elements may lead to the phenomenon of arcing; in other words, a pulse of
current may be generated that momentarily jumps a gap between conductors (thanks
to this principle, we are able to ignite the air-fuel mixture in a spark-ignition internal
combustion engine by means of spark plugs). The ideal open and short circuits are
useful concepts and find extensive use in circuit analysis.

Series Resistors and the Voltage Divider Rule

Although electric circuits can take rather complicated forms, even the most involved
circuits can be reduced to combinations of circuit elements in parallel and in series.
Thus, it is important that you become acquainted with parallel and series circuits as
early as possible, even before formally approaching the topic of network analysis.
Parallel and series circuits have a direct relationship with Kirchhoff’s laws. The
objective of this section and the next is to illustrate two common circuits based on
series and parallel combinations of resistors: the voltage and current dividers. These
circuits form the basis of all network analysis; it is therefore important to master these
topics as early as possible.

For an example of a series circuit, refer to the circuit of Figure 2.36, where a
battery has been connected to resistors Ry, R,, and R3. The following definition applies:
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Definition

Two or more circuit elements are said to be in series if the current from one
element exclusively flows into the next element. From KCL, it then follows
that all series elements have the same current.

By applying KVL, you can verify that the sum of the voltages across the three resistors
equals the voltage externally provided by the battery

15V =v; 4+ vy + v3

And since, according to Ohm’s law, the separate voltages can be expressed by the
relations

V] = iRl Uy = iR2 U3 = iR3
we can therefore write
15V =i(R; + Ry +Rj3)

This simple result illustrates a very important principle: To the battery, the three series
resistors appear as a single equivalent resistance of value Reg, where

Reg =R1 +R2+R3

The three resistors could thus be replaced by a single resistor of value Rgq without
changing the amount of current required of the battery. From this result we may
extrapolate to the more general relationship defining the equivalent resistance of N
series resistors

N
Req = Z Rn Equivalent series resistance (2.19)
n=1

which is also illustrated in Figure 2.36. A concept very closely tied to series resistors
is that of the voltage divider. This terminology originates from the observation that
the source voltage in the circuit of Figure 2.36 divides among the three resistors
according to KVL. If we now observe that the series current i is given by

15V _ 15V
"~ Reg  Ri+Ry+R;

we can write each of the voltages across the resistors as:

. R
v = iR = R_ElQ(:L5 V)

. R
v = iRy = R_2Q(1.5 V)
E

. Rs3
V3 = |R3 = R_EQ(15 V)

< LO4

35
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That is,
L 04 The voltage across each resistor in a series circuit divides in direct proportion
to the individual series resistances.
An instructive exercise consists of verifying that KVL is still satisfied, by adding the
voltage drops around the circuit and equating their sum to the source voltage:
R R R
A v tuvs= ——1A5V)+ —=15V)+-—>(15V) =15V
REQ REQ REQ
since Reog =R1+R2+R3
Therefore, since KVL is satisfied, we are certain that the voltage divider rule is
consistent with Kirchhoff’s laws. By virtue of the voltage divider rule, then, we can
always determine the proportion in which voltage drops are distributed around a
circuit. This result is useful in reducing complicated circuits to simpler forms. The
general form of the voltage divider rule for a circuit with N series resistors and a
voltage source is
LO4 Rn Voltage divider (2.20)
Uph = v .
"T R tRyt+ - +Rot-+Ry g
LO4> EXAMPLE 2.11 Voltage Divider
Problem
Vs Determine the voltage v3 in the circuit of Figure 2.37.
Rs Vi Solution
+
Known Quantities: Source voltage; resistance values.
+ —
v Find: Unknown voltage vs.
Figure 2.37

Schematics, Diagrams, Circuits, and Given Data: R; =10 Q; R, =6 Q; R; =8 Q;
Vs = 3 V. Figure 2.37.

Analysis: Figure 2.37 indicates a reference direction for the current (dictated by the polarity
of the voltage source). Following the passive sign convention, we label the polarities of the
three resistors, and apply KVL to determine that

Vs—Ul—‘Uz—U3=0
The voltage divider rule tells us that

Rs 8

— =3 x — =1V
R; +R2 +Rs 10+6+8

1)3=V5><
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Comments: Application of the voltage divider rule to a series circuit is very straightforward.
The difficulty usually arises in determining whether a circuit is in fact a series circuit. This
point is explored later in this section, and in Example 2.13.

CHECK YOUR UNDERSTANDING

Repeat Example 2.11 by reversing the reference direction of the current, to show that the same
result is obtained.

Parallel Resistors and the Current Divider Rule

A concept analogous to that of the voltage divider may be developed by applying
Kirchhoff’s current law to a circuit containing only parallel resistances.

Definition

Two or more circuit elements are said to be in parallel if the elements share <|_o4
the same terminals. From KVL, it follows that the elements will have the same
voltage.

Figure 2.38 illustrates the notion of parallel resistors connected to an ideal current
source. Kirchhoff’s current law requires that the sum of the currents into, say, the top
node of the circuit be zero:

is =1i1+i2+1i3

But by virtue of Ohm’s law we may express each current as follows:
i _ v I _ v I _ v
1= R, 2 = R, 3= Rs

since, by definition, the same voltage v appears across each element. Kirchhoff’s
current law may then be restated as follows:

(L L,
STU\R, "R, " R

KCL appii/edatthisnode O [,

.
v [y |y R TR SRy Req
is Ry > R Rs v

N resistorsin parallel are equivalent to a single equivalent
The voltage v appears across each parallel resistor with resistance equal to the inverse of the sum of
element; by KCL, ig=1i1 +ip+i3 the inverse resistances.

AAA

Figure 2.38 Parallel circuits
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Note that this equation can be also written in terms of a single equivalent resistance

i 1
s =Uo—
REQ

1 1 1

where — =—+—+ =
Reo Ri R2 R;3

As illustrated in Figure 2.38, we can generalize this result to an arbitrary number of
resistors connected in parallel by stating that N resistors in parallel act as a single
equivalent resistance Req given by the expression

1 1 1 1
S e T 2.21
REQ Rl R2 RN ( )
1 .
o Reo — eq_uvalent parallel (2.22)
1/Ri+1/Ry+--- 4+ 1/Ry resistance

Very often in the remainder of this book we refer to the parallel combination of two
or more resistors with the notation

Rill Rzl -

where the symbol || signifies “in parallel with.”

From the results shown in equations 2.21 and 2.22, which were obtained directly
from KCL, the current divider rule can be easily derived. Consider, again, the three-
resistor circuit of Figure 2.38. From the expressions already derived from each of the
currents iq, ip, and iz, we can write

i — v i, — v i — v
"R " R, Rs
and since v = Reqis, these currents may be expressed by

Reo. 1/R; . 1/Ry

h=—4"Is= Is = Is
R1 1/Reo 1/R1 +1/Ry + 1/R3

. 1/R, .

I2 = Is
1/R1 +1/R, +1/R3

1/R3

i3 = i

*T1/Ri+1/R, +1/Rs °

We can easily see that the current in a parallel circuit divides in inverse proportion
to the resistances of the individual parallel elements. The general expression for the
current divider for a circuit with N parallel resistors is the following:

B 1/Rn i Current
T 1/Ri+1/Ro+---+1/Ry+---+1/Ry > divider

(2.23)

In

Example 2.12 illustrates the application of the current divider rule.
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EXAMPLE 2.12 Current Divider <|_O4

Problem

Determine the current iy in the circuit of Figure 2.39.

>Ry Is

AAA
V

AAA
W
e

AAA
W
ey

Solution

Known Quantities: Source current; resistance values. Figure 2.39
Find: Unknown current i.

Schematics, Diagrams, Circuits, and Given Data: R, = 10 Q; R, =2 Q; R3 =20 Q;
Is = 4 A. Figure 2.39.

Analysis: Application of the current divider rule yields

1/Rq &
x =4x 1 1 1

ip=ls =0.6154 A

Comments: While application of the current divider rule to a parallel circuit is very straight-
forward, it is sometimes not so obvious whether two or more resistors are actually in parallel.
A method for ensuring that circuit elements are connected in parallel is explored later in this
section, and in Example 2.13.

CHECK YOUR UNDERSTANDING

Verify that KCL is satisfied by the current divider rule and that the source current is divides in
inverse proportion to the parallel resistors Ry, R, and R3 in the circuit of Figure 2.39. (This
should not be a surprise, since we would expect to see more current flow through the smaller
resistance.)

Much of the resistive network analysis that is presented in Chapter 3 is based
on the simple principles of voltage and current dividers introduced in this section.
Unfortunately, practical circuits are rarely composed of only parallel or only series
elements. The following examples and Check Your Understanding exercises illustrate
some simple and slightly more advanced circuits that combine parallel and series
elements.

EXAMPLE 2.13 Series-Parallel Circuit <LO4

Problem

Determine the voltage v in the circuit of Figure 2.40.
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Solution
Known Quantities: Source voltage; resistance values.
Find: Unknown voltage v.

Schematics, Diagrams, Circuits, and Given Data: See Figures 2.40, 2.41.

R -
 MAA Ry Elementsin parallel
vy + MW
+
> < L
Vs ) RV R SRV =R LA
| < < Vs i :; :; <
i Equivalent circuit
Figure 2.40

Figure 2.41

Analysis: The circuit of Figure 2.40 is neither a series nor a parallel circuit because the
following two conditions do not apply:

1. The current through all resistors is the same (series circuit condition).
2. The voltage across all resistors is the same (parallel circuit condition).

The circuit takes a much simpler appearance once it becomes evident that the same voltage
appears across both R, and R; and, therefore, that these elements are in parallel. If these two
resistors are replaced by a single equivalent resistor according to the procedures described in
this section, the circuit of Figure 2.41 is obtained. Note that now the equivalent circuit is a
simple series circuit, and the voltage divider rule can be applied to determine that

v — R2(IR3 vs
Ri +R2[IRs
while the current is found to be
=5
R1 + R2|IR;

Comments: Systematic methods for analyzing arbitrary circuit configurations are explored
in Chapter 3.

CHECK YOUR UNDERSTANDING

Consider the circuit of Figure 2.40, without resistor R3. Calculate the value of the voltage v if
the source voltage isvs =5V and R; = R, = 1 k.

Repeat when resistor R3 is in the circuit and its value is R3 = 1 k2.
Repeat when resistor R3 is in the circuit and its value is R3 = 0.1 k2.

A L9TV0 = A AL9T = a:AQ0GZ = a :SIOMSUY
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EXAMPLE 2.14 The Wheatstone Bridge

Problem

The Wheatstone bridge is a resistive circuit that is frequently encountered in a variety of FIND IT
measurement circuits. The general form of the bridge circuit is shown in Figure 2.42(a), where
R1, Ry, and Rs are known while Ry is an unknown resistance, to be determined. The circuit
may also be redrawn as shown in Figure 2.42(b). The latter circuit is used to demonstrate g
the voltage divider rule in a mixed series-parallel circuit. The objective is to determine the

unknown resistance R.

1. Find the value of the voltage vap, = vag — vpg in terms of the four resistances and the
source voltage vs. Note that since the reference point d is the same for both voltages, we
can also Write vy = vy — vp.

2. IfRi =R, =R3; =1k, vs =12V, and vy = 12 mV, what is the value of R,?

Solution
Known Quantities: Source voltage; resistance values; bridge voltage.
Find: Unknown resistance Ry.

Schematics, Diagrams, Circuits, and Given Data: See Figure 2.42.
R1=R2=R3=1KQ;US =12V, vyp = 12 mV.

Analysis:

1. First we observe that the circuit consists of the parallel combination of three subcircuits:
the voltage source, the series combination of R; and R, and the series combination of R;
and Ry. Since these three subcircuits are in parallel, the same voltage will appear across
each of them, namely, the source voltage vs.

Thus, the source voltage divides between each resistor pair R; — R, and R3 — Ry
according to the voltage divider rule: vy is the fraction of the source voltage appearing
across Ry, while vyq is the voltage appearing across Ry:

RZ Rx

and Vpd = VU
Ri + R, T SRy R,

Figure 2.42 Wheatstone
bridge circuits

Vad = Vs

Finally, the voltage difference between points a and b is given by

(fimmiw)
Uagh = Vad — Upd = V - —
ab ad bd S R1+R2 R3+RX

This result is very useful and quite general.

2. To solve for the unknown resistance, we substitute the numerical values in the preceding
equation to obtain

0.012 =12 (1’000 Re )

2,000 1,000 4 Ry
which may be solved for Ry to yield
Ry =996

Comments: The Wheatstone bridge finds application in many measurement circuits and
instruments.
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CHECK YOUR UNDERSTANDING
Use the results of part 1 of Example 2.14 to find the condition for which the voltage

vap = vy — vp IS equal to zero (this is called the balanced condition for the bridge). Does
this result necessarily require that all four resistors be identical? Why?

€Y%y = XYty uamsuy
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EXAMPLE 2.15 Resistance Strain Gauges

Another common application of the resistance concept to engineering measurements is the
resistance strain gauge. Strain gauges are devices that are bonded to the surface of an object,
and whose resistance varies as a function of the surface strain experienced by the object. Strain
gauges may be used to perform measurements of strain, stress, force, torque, and pressure.
Recall that the resistance of a cylindrical conductor of cross-sectional area A, length L, and
conductivity o is given by the expression
L
T oA

If the conductor is compressed or elongated as a consequence of an external force, its dimen-
sions will change, and with them its resistance. In particular, if the conductor is stretched, its
cross-sectional area decreases and the resistance increases. If the conductor is compressed, its
resistance decreases, since the length L decreases. The relationship between change in resis-
tance and change in length is given by the gauge factor GF, defined by

_ AR/R
T AL/L

And since the strain ¢ is defined as the fractional change in length of an object by the formula

AL
‘=T
the change in resistance due to an applied strain ¢ is given by
AR = RoGFe

where Rg is the resistance of the strain gauge under no strain and is called the zero strain
resistance. The value of GF for resistance strain gauges made of metal foil is usually
about 2.

Figure 2.43 depicts a typical foil strain gauge. The maximum strain that can be measured
by a foil gauge isabout 0.4 to 0.5 percent; thatis, AL/L = 0.004 —0.005. For a 120-2 gauge,this

Thefoil isformed by a photo-
etching process and is less than
0.00002 in thick. Typical resistance
values are 120, 350, and 1,000 Q.
The wide areas are bonding pads
for electrical connections.

Re Circuit symbol for
the strain gauge

Figure 2.43 Metal-foil resistance strain gauge.
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corresponds to a change in resistance on the order of 0.96 to 1.2 2. Although this change in
resistance is very small, it can be detected by means of suitable circuitry. Resistance strain
gauges are usually connected in a circuit called the Wheatstone bridge, which we analyze later
in this chapter.

Comments—Resistance strain gauges find application in many measurement circuits and
instruments. The measurement of force is one such application, shown next.

EXAMPLE 2.16 The Wheatstone Bridge and Force
Measurements

Strain gauges are frequently employed in the measurement of force. One of the simplest ap-
plications of strain gauges is in the measurement of the force applied to a cantilever beam,
as illustrated in Figure 2.44. Four strain gauges are employed in this case, of which two are
bonded to the upper surface of the beam at a distance L from the point where the external force
F is applied and two are bonded on the lower surface, also at a distance L. Under the influence
of the external force, the beam deforms and causes the upper gauges to extend and the lower
gauges to compress. Thus, the resistance of the upper gauges will increase by an amount AR,
and that of the lower gauges will decrease by an equal amount, assuming that the gauges are
symmetrically placed. Let R; and R4 be the upper gauges and R, and R3 the lower gauges.
Thus, under the influence of the external force, we have

Ri=R;=Ro+ AR
R, =R3 =Ro— AR
where Ry is the zero strain resistance of the gauges. It can be shown from elementary statics

that the relationship between the strain € and a force F applied at a distance L for a cantilever
beam is

6LF

€= wh2Y

where h and w are as defined in Figure 2.44 and Y is the beam’s modulus of elasticity.

Ry, Rz bonded
to bottom surface

i

Beam cross section I:I h

<Y T

Figure 2.44 A force-measuring instrument.

In the circuit of Figure 2.44, the currents i, and iy, are given by

T Ri+R;

" Rs+Ry

and i

la
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The bridge output voltage is defined by v, = v, — v, and may be found from the following
expression:

Vo = bRy — ipRy = St VSR

o = IbN4 az—R3+R4 R1—|—R2

_, Ro + AR . Ro — AR

T SRy+AR+Ry— AR °Ry+AR+R;— AR
AR

:vsR—OzvsGFe

where the expression for AR/R, was obtained in Example 2.15. Thus, it is possible to obtain
a relationship between the output voltage of the bridge circuit and the force F as follows:

6LF 6vsGFL
Vo = USGFE = USGFu)}‘TY = WF = kF

where Kk is the calibration constant for this force transducer.

Comments— Strain gauge bridges are commonly used in mechanical, chemical, aerospace,
biomedical, and civil engineering applications (and wherever measurements of
force, pressure, torque, stress, or strain are sought).

CHECK YOUR UNDERSTANDING

Compute the full-scale (i.e., largest) output voltage for the force-measuring apparatus of “Focus
on Measurements: The Wheatstone Bridge and Force Measurements.” Assume that the strain
gauge bridge is to measure forces ranging from 0 to 500 newtons (N), L = 0.3 m, w = 0.05m,
h = 0.01 m, GF = 2, and the modulus of elasticity for the beam is 69 x 10° N/m? (aluminum).
The source voltage is 12 V. What is the calibration constant of this force transducer?

N/AW GZT'0 = X AW 9'29 = (3]3S ||N}) °a 1amsuy

2.7 PRACTICAL VOLTAGE AND CURRENT
SOURCES

The idealized models of voltage and current sources we discussed in Section 2.1
fail to consider the internal resistance of practical voltage and current sources. The
objective of this section is to extend the ideal models to models that are capable of
describing the physical limitations of the voltage and current sources used in practice.
Consider, for example, the model of an ideal voltage source shown in Figure 2.1. As
the load resistance R decreases, the source is required to provide increasing amounts
of current to maintain the voltage vs (t) across its terminals:

vs(t)
R

This circuit suggests that the ideal voltage source is required to provide an infinite
amount of current to the load, in the limit as the load resistance approaches zero.
Naturally, you can see that this is impossible; for example, think about the ratings of
a conventional car battery: 12 V, 450 ampere-hours (A-h). This implies that there is
a limit (albeit a large one) to the amount of current a practical source can deliver to

i(t) =

(2.24)
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a load. Fortunately, it is not necessary to delve too deeply into the physical nature
of each type of source to describe the behavior of a practical voltage source: The
limitations of practical sources can be approximated quite simply by exploiting the
notion of the internal resistance of a source. Although the models described in this
section are only approximations of the actual behavior of energy sources, they will
provide good insight into the limitations of practical voltage and current sources.
Figure 2.45 depicts a model for a practical voltage source, composed of an ideal
voltage source vs in series with a resistance rs. The resistance rs in effect poses a
limit to the maximum current the voltage source can provide:

i max = > (2.25)

rs

Typically, rs is small. Note, however, that its presence affects the voltage across
the load resistance: Now this voltage is no longer equal to the source voltage. Since
the current provided by the source is

. Us
is = 2.26
* T s 4R (2.26)
the load voltage can be determined to be
. RL
v =lsRe = vs "o (2.27)

Thus, in the limit as the source internal resistance rs approaches zero, the load voltage
v, becomes exactly equal to the source voltage. It should be apparent that a desirable
feature of an ideal voltage source is a very small internal resistance, so that the
current requirements of an arbitrary load may be satisfied. Often, the effective internal
resistance of a voltage source is quoted in the technical specifications for the source,
so that the user may take this parameter into account.

A similar modification of the ideal current source model is useful to describe
the behavior of a practical current source. The circuit illustrated in Figure 2.46 depicts
a simple representation of a practical current source, consisting of an ideal source in
parallel with a resistor. Note that as the load resistance approaches infinity (i.e., an
open circuit), the output voltage of the current source approaches its limit

Us max = IsTs (2.28)

A good current source should be able to approximate the behavior of an ideal current
source. Therefore, a desirable characteristic for the internal resistance of a current
source is that it be as large as possible.

2.8 MEASURING DEVICES

In this section, you should gain a basic understanding of the desirable properties
of practical devices for the measurement of electrical parameters. The measure-
ments most often of interest are those of current, voltage, power, and resistance.
In analogy with the models we have just developed to describe the nonideal behav-
ior of voltage and current sources, we similarly present circuit models for practi-
cal measuring instruments suitable for describing the nonideal properties of these
devices.
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source

The maximum (short circuit)
current which can be supplied
by apractical voltage sourceis

i ==
Smax rs

Figure 2.45 Practical
voltage source
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A model for practical current
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Maximum output
voltage for practical
current source with
open-circuit load:

Vsmax = isl's

Figure 2.46 Practical
current source
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The Ohmmeter

The ohmmeter is a device that when connected across a circuit element, can mea-
sure the resistance of the element. Figure 2.47 depicts the circuit connection of an
ohmmeter to a resistor. One important rule needs to be remembered:

Symbol for  Circuit for the

ohmmeter ~ measurement of The resistance of an element can be measured only when the element is discon-
resistance R nected from any other circuit.

Figure 2.47 Ohmmeter and

measurement of resistance

The Ammeter

The ammeter is a device that when connected in series with a circuit element, can
measure the current flowing through the element. Figure 2.48 illustrates this idea.

From Figure 2.48, two requirements are evident for obtaining a correct measurement
of current:

|_o5> 1. The ammeter must be placed in series with the element whose current is
to be measured (e.g., resistor Ry).
2. The ammeter should not restrict the flow of current (i.e., cause a voltage
drop), or else it will not be measuring the true current flowing in the
circuit. An ideal ammeter has zero internal resistance.

Ry
<>
VS O :; Rz
i
Symbol for A series Circuit for the measurement
ideal ammeter circuit of the current i

Figure 2.48 Measurement of current

The Voltmeter

The voltmeter is a device that can measure the voltage across a circuit element.
Since voltage is the difference in potential between two points in a circuit, the volt-
meter needs to be connected across the element whose voltage we wish to measure.
A voltmeter must also fulfill two requirements:

L05> 1. The voltmeter must be placed in parallel with the element whose voltage
it is measuring.

2. The voltmeter should draw no current away from the element whose
voltage it is measuring, or else it will not be measuring the true voltage
across that element. Thus, an ideal voltmeter has infinite internal
resistance.
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Figure 2.49 illustrates these two points.

Ry
A\
+ +
Vs O Vo EE R, Cv) V2
i _ _
A series Ideal Circuit for the measurement
circuit voltmeter of the voltage v,

Figure 2.49 Measurement of voltage

Once again, the definitions just stated for the ideal voltmeter and ammeter need
to be augmented by considering the practical limitations of the devices. A practical
ammeter will contribute some series resistance to the circuit in which it is measuring
current; a practical voltmeter will not act as an ideal open circuit but will always
draw some current from the measured circuit. The homework problems verify that
these practical restrictions do not necessarily pose a limit to the accuracy of the
measurements obtainable with practical measuring devices, as long as the internal
resistance of the measuring devices is known. Figure 2.50 depicts the circuit models
for the practical ammeter and voltmeter.

All the considerations that pertain to practical ammeters and voltmeters can be
applied to the operation of a wattmeter, an instrument that provides a measurement of
the power dissipated by a circuit element, since the wattmeter is in effect made up of a
combination of a voltmeter and an ammeter. Figure 2.51 depicts the typical connection
of a wattmeter in the same series circuit used in the preceding paragraphs. In effect,
the wattmeter measures the current flowing through the load and, simultaneously, the
voltage across it and multiplies the two to provide a reading of the power dissipated
by the load. The internal power consumption of a practical wattmeter is explored in
the homework problems.

W ®
YVVY

\9,

Measurement of the power Internal wattmeter connections
dissipated in the resistor Ry:
Po=vy i

Figure 2.51 Measurement of power

A
\AAAJ

©

rm:

o
Practical
voltmeter

T

fm

5

Practical
ammeter

Figure 2.50 Models for
practical ammeter and voltmeter
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Conclusion

The objective of this chapter was to introduce the background needed in the following chap-
ters for the analysis of linear resistive circuits. The following outlines the principal learning
objectives of the chapter.

1.

Identify the principal elements of electric circuits: nodes, loops, meshes, branches, and
voltage and current sources. These elements will be common to all electric circuits
analyzed in the book.

Apply Ohm’s and Kirchhoff’s laws to simple electric circuits and derive the basic circuit
equations. Mastery of these laws is essential to writing the correct equations for electric
circuits.

Apply the passive sign convention and compute the power dissipated by circuit elements.
The passive sign convention is a fundamental skill needed to derive the correct equations
for an electric circuit.

Apply the voltage and current divider laws to calculate unknown variables in simple
series, parallel, and series-parallel circuits. The chapter includes examples of practical
circuits to demonstrate the application of these principles.

Understand the rules for connecting electric measuring instruments to electric circuits
for the measurement of voltage, current, and power. Practical engineering measurement
systems are introduced in these sections.

HOMEWORK PROBLEMS

Section 2.1: Definitions

2.1 Anisolated free electron is traveling through an
electric field from some initial point where its

a. The total charge transferred to the battery.
b. The energy transferred to the battery.
Hint: Recall that energy w is the integral of power, or

coulombic potential energy per unit charge (voltage) is P =dw/dt.
17 kJ/C and velocity = 93 Mm/s to some final point

where its coulombic potential energy per unit charge is
6 kJ/C. Determine the change in velocity of the

electron. Neglect gravitational forces. 175V
(0]

2.2 The unit used for voltage is the volt, for current the g 15V
ampere, and for resistance the ohm. Using the Z
definitions of voltage, current, and resistance, express % 125V
each quantity in Sl units. o

1V

2.3 The capacity of a car battery is usually specified in
ampere-hours. A battery rated at, say, 100 A-h should
be able to supply 100 A for 1 h, 50 A for 2 h, 25 A for 0
4 h, 1 Afor 100 h, or any other combination yielding a
product of 100 A-h.

I
I
I
I
I
I
I
I
I
I
i
10h t

&

a. How many coulombs of charge should we be able 3 S0 mA
to draw from a fully charged 100 A-h battery? z oma L
b. How many electrons does your answer to part a 8
|
0 5h 10h 't
2.4 The charge cycle shown in Figure P2.4 is an example Figure P2.4

of a two-rate charge. The current is held constant at
50 mA for 5 h. Then it is switched to 20 mA for the 2.5 Batteries (e.g., lead-acid batteries) store chemical
next 5 h. Find: energy and convert it to electric energy on demand.
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Batteries do not store electric charge or charge carriers. A
Charge carriers (electrons) enter one terminal of the
battery, acquire electrical potential energy, and exit

from the other terminal at a lower voltage. Remember 12
the electron has a negative charge! It is convenient to /
think of positive carriers flowing in the opposite

direction, that is, conventional current, and exiting at a 2 9
higher voltage. All currents in this course, unless z
otherwise stated, are conventional current. (Benjamin T 6
Franklin caused this mess!) For a battery with a rated
voltage = 12 V and a rated capacity = 350 A-h, 3
determine
a. The rated chemical energy stored in the 0 1 2 3 -
battery. t hours
b. The total charge that can be supplied at the rated
voltage. A
2.6 What determines the following? 10
a. How much current is supplied (at a constant
voltage) by an ideal voltage source. 8
1%}
b. How much voltage is supplied (at a constant g
current) by an ideal current source. i 6
2.7 Anautomotive battery is rated at 120 A-h. This h
means that under certain test conditions it can output 4
1 Aat 12 V for 120 h (under other test conditions, the
battery may have other ratings). 2
a. How much total energy is stored in the battery? 0 R 5 3 >
b. If the headlights are left on overnight (8 h), how t hours

much energy will still be stored in the battery in the
morning? (Assume a 150-W total power rating for Figure P2.8
both headlights together.)

2.8 A car hattery kept in storage in the basement needs A

recharging. If the voltage and the current provided by

the charger during a charge cycle are shown in 4

Figure P2.8, B 2

a. Find the total charge transferred to the battery. £ o -

b. Find the total energy transferred to the battery. = , 1 2\3 4 5 6 7 8 9 10
2.9 Suppose the current flowing through a wire is given

by the curve shown in Figure P2.9. -4

a. Find the amount of charge, g, that flows through the Figure P2.9

wire betweent; =0andt, =1s.
b. Repeat partafort; =2,3,4,5,6,7.8,9,and 10ss. maximum of 9V, as shown in Figure P2.10. The battery is
c. Sketchq(t) for0 <t <10s. charged for 6 h. Find:

2.10 The charging scheme used in Figure P2.10 is an a. The total charge delivered to the battery.

example of a constant-voltage charge with current b. The energy transferred to the battery during the
limit. The charger voltage is such that the current into charging cycle.
the battery does not exceed 100 mA, as shown in Hint: Recall that the energy, w, is the integral of power, or

Figure P2.10. The charger’svoltage increases to the P =dw/dt.
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A
‘@ 9V —
E
2 V(t) =6.81+0.19 /082y, 0<t<2h
= V() =9V, t22h
@ 7v
| | | >
2h 4h 6h t
A
100 mA |

i(t)=100mA, 0<t<2h
i(ty=100e (2082 mp t>2h

Battery current

Figure P2.10

2.11 The charging scheme used in Figure P2.11 is an
example of a constant-current charge cycle. The
charger voltage is controlled such that the current into
the battery is held constant at 40 mA, as shown in
Figure P2.11. The battery is charged for 6 h. Find:

a. The total charge delivered to the battery.
b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or

P =dwy/dt.

2.12 The charging scheme used in Figure P2.12 is called
a tapered-current charge cycle. The current starts at
the highest level and then decreases with time for the
entire charge cycle, as shown. The battery is charged
for 12 h. Find:

a. The total charge delivered to the battery.

b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or
P =dw/dt.
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v(t)=15- 0.3e(t-2hrs)/0.4 hrs

Y

15V

1.2V

0.75V \

- v(t) = 1.2 — 0.45e-1041rs

Battery voltage

| | |
2h 4h 6h t

\j

Battery current

40 mA

2h 4h 6h t
Figure P2.11
Sections 2.2, 2.3: KCL, KVL

2.13 Use Kirchhoff’s current law to determine the
unknown currents in the circuit of Figure P2.13.
Assume that Io = —2A, I; = —4A I =8A, and
Vs =12 V.

2.14 Apply KCL to find the current i in the circuit of
Figure P2.14.

2.15 Apply KCL to find the current | in the circuit of
Figure P2.15.

2.16 Apply KVL to find the voltages v; and v, in Figure
P2.16.

2.17 Use Ohm’s law and KCL to determine the current
11 in the circuit of Figure P2.17.

Section 2.4: Electric Power and
Sign Convention

2.18 Inthe circuits of Figure P2.18, the directions of
current and polarities of voltage have already been
defined. Find the actual values of the indicated currents
and voltages.

2.19 Find the power delivered by each source in the
circuits of Figure P2.19.
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Battery voltage

9V

V(1) = 12 — 3e-5t12 s

/

\J

12h t
A
B
3
%. 1A i(t):e—stllzhrsA
&
o
l >
12h t
Figure P2.12
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\AAAJ
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I,
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Figure P2.13

6A

A

2A

Figure P2.14
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i 6A
N 5A
2A
Figure P2.15
+ 3V - - 10V +
\
+ R *
<+>5v § v, 3A v
_ 1
Figure P2.16
lOA(%) 30Q 15Q Ei I

1

Figure P2.17

2.20 Determine which elements in the circuit of Figure
P2.20 are supplying power and which are dissipating
power. Also determine the amount of power dissipated

and supplied.
2.21

In the circuit of Figure P2.21, determine the power

absorbed by the resistor R and the power delivered by
the current source.
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30Q

AAA
\AAAS

Ve R

20Q
Vi

o

'2% Z 200

A

P +~

v1(i> I, + g 200

30Q

-0.5 A*

©
Figure P2.18

2.22

For the circuit shown in Figure P2.22:

a. Determine which components are absorbing power
and which are delivering power.

b. Is conservation of power satisfied? Explain your

answer.

2.23 For the circuit shown in Figure P2.23, determine
which components are supplying power and which are
dissipating power. Also determine the amount of

power dissipated and supplied.

Fundamentals of Electric Circuits

[,
+
10V Load 2A (D
S
@
°
® =
O
4>
4A
(b)
Figure P2.19
+15V
B
25A
4»
+ -
A -12V 27V ©
= +
Figure P2.20
+ 3V - oV +
AAAA MN—m——M8M—
\A/ \J
+ R +
<+>5V ‘;; v, 3A<D vy

Figure P2.21



Figure P2.22

+ 10V_
4A
— B
¥ [A1a HSA
A . .
] 100V 100V | c ov| E

-10V D

Figure P2.23

2.24 For the circuit shown in Figure P2.24, determine
which components are supplying power and which are
dissipating power. Also determine the amount of
power dissipated and supplied.

+ 2V _

4A¢ 6A T4A

Figure P2.24
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2.25 If an electric heater requires 23 Aat 110V,
determine

a. The power it dissipates as heat or other losses.

b. The energy dissipated by the heater in a 24-h
period.

c. The cost of the energy if the power company
charges at the rate 6 cents/kWh.

2.26 A 24-volt automotive battery is connected to two
headlights, such that the two loads are in parallel; each
of the headlights is intended to be a 75-W load,
however, a 100-W headlight is mistakenly installed.
What is the resistance of each headlight, and what is
the total resistance seen by the battery?

2.27 What is the equivalent resistance seen by the
battery of Problem 2.26 if two 15-W taillights are
added (in parallel) to the two 75-W (each)
headlights?

2.28 Refer to Figure P2.28.
a. Find the total power supplied by the ideal source.

b. Find the power dissipated and lost within the
nonideal source.

¢. What is the power supplied by the source to the
circuit as modeled by the load resistance?

d. Plot the terminal voltage and power supplied to the
circuit as a function of current.

Repeat I+ =0, 5, 10, 20, 30 A.

Ve =12V Rs=03Q

AAA
YVVy

Nonideal source

Figure P2.28

2.29 A GE SoftWhite Longlife lightbulb is rated as
follows:

Pr = rated power = 60 W

Por = rated optical power = 820 lumens (Im) (average)
1

1lumen = &5 W

Operating life = 1,500 h (average)

Vg = rated operating voltage = 115V

The resistance of the filament of the bulb, measured
with a standard multimeter, is 16.7 2. When the bulb
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is connected into a circuit and is operating at the rated
values given above, determine

a. The resistance of the filament.
b. The efficiency of the bulb.

2.30 Anincandescent lightbulb rated at 100 W will
dissipate 100 W as heat and light when connected
across a 110-V ideal voltage source. If three of these
bulbs are connected in series across the same source,
determine the power each bulb will dissipate.

2.31 Anincandescent lightbulb rated at 60 W will
dissipate 60 W as heat and light when connected across
a 100-V ideal voltage source. A 100-W bulb will
dissipate 100 W when connected across the same
source. If the bulbs are connected in series across the
same source, determine the power that either one of the
two bulbs will dissipate.

2.32 A220-V electric heater has two heating coils which
can be switched such that either coil can be used
independently or the two can be connected in series or
parallel, yielding a total of four possible configurations.
If the warmest setting corresponds to 2,000-W power
dissipation and the coolest corresponds to 300 W, find

a. The resistance of each of the two coils.
b. The power dissipation for each of the other two
possible arrangements.

Sections 2.5, 2.6: Circuit Elements and
their i-v Characteristics, Resistance
and Ohm’s Law

2.33 For the circuit shown in Figure P2.33, determine
the power absorbed by the 5-<2 resistor.

5Q
——W——

20V C) § 15Q

Figure P2.33

2.34 In the circuit shown in Figure P2.34, determine the
terminal voltage of the source, the power supplied to
the circuit (or load), and the efficiency of the circuit.
Assume that the only loss is due to the internal
resistance of the source. Efficiency is defined as the

Fundamentals of Electric Circuits

ratio of load power to source power.

Vs =12V Rs =5k R. =7k

Nonideal source

Figure P2.34

2.35 For the circuit shown in Figure P2.35, determine
the power absorbed by the variable resistor R, ranging
from 0 to 20 2. Plot the power absorption as a
function of R.

5Q

S
20V R="

AMA

Figure P2.35

2.36 In the circuit of Figure P2.36, if v; = v/4 and the
power delivered by the source is 40 mW, find R, v, vy,
and i. Given: R; =8 k2, R, =10k, Rz = 12 kQ.

Figure P2.36

2.37 For the circuit shown in Figure P2.37, find

a. The equivalent resistance seen by the source.

b. The currenti.

¢. The power delivered by the source.

d. The voltages v; and v,.
e. The minimum power rating required for R;.
Given: v =24V,Rp =8Q,R; =10Q, R, =2 Q.
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Figure P2.37

2.38 For the circuit shown in Figure P2.38, find
a. The currents iy and i,.

b. The power delivered by the 3-A current source and
by the 12-V voltage source.

c. The total power dissipated by the circuit.

LetR; =25Q,R, =10Q2,R3 =5Q,R, =7, and
express i; and i, as functions of v. (Hint: Apply KCL at the
node between R; and R3.)

AAA AAA

3A () ilT 2R, 12v('_j§

YVVY
N

Figure P2.38

2.39 Determine the power delivered by the dependent
source in the circuit of Figure P2.39.

AAA - AAA

YVvy YVvy .
15Q 7Q I
0 o052 24V 250
<

Figure P2.39

2.40 Consider NiMH hobbyist batteries shown in the
circuit of Figure P2.40.

a. IfV; =120V,R; =0.15Qand R, = 2.55 2,
find the load current I_ and the power dissipated by
the load.

b. If we connect a second battery in parallel with
battery 1 that has voltage V, = 12 Vand
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R, = 0.28 2, will the load current I increase or
decrease? Will the power dissipated by the load
increase or decrease? By how much?

ILL
Ry
RZ
— Vi
Load
Battery #1
°]
P} 1y ILL +
R, Ry L
3RV
—V, _—V;
)
Load
Battery #2 Battery #1

Figure P2.40

2.41 With no load attached, the voltage at the terminals
of a particular power supply is 50.8 V. When a 10-W
load is attached, the voltage drops to 49 V.

a. Determine vg and Rs for this nonideal source.

b. What voltage would be measured at the terminals
in the presence of a 15-$2 load resistor?

¢. How much current could be drawn from this power
supply under short-circuit conditions?

2.42 For the circuits of Figure P2.42, determine the
resistor values (including the power rating) necessary
to achieve the indicated voltages. Resistors are
available in Y-, 14-, 14-, and 1-W ratings.

2.43 For the circuit shown in Figure P2.43, find
a. The equivalent resistance seen by the source.

b. The currenti.

c. The power delivered by the source.

d. The voltages vy, vy.

e. The minimum power rating required for R;.

2.44 Find the equivalent resistance seen by the source in
Figure P2.44, and use result to find i, i1, and v.

2.45 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.45.
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.
+ L
9V<-> 9Q 729‘§ v

Figure P2.44

1Q 4Q

AAA
VVVY¥

AAA
\AAAJ

| Vour=225V 90 Q 8Q
3 o O

- 40

4Q

AAAA
VVV¥

AAAA
A\AAA/

Figure P2.45

2.46 Inthe circuit of Figure P2.46, the power absorbed
by the 15-2 resistor is 15 W. Find R.

110V (‘*‘

4Q
Vour=283V R
—AWA—T— W
R, = 2.7kQ
= 6Q 2
©
Figure P2.42 ) 15503 %0 2
25V — < <
20 60
AW AW 1
—— + A 4Q :: 4Q
I <
6V (i) Ri=4Q Vv,

Figure P2.46

2.47 Find the equivalent resistance between terminals a
Figure P2.43 and b in the circuit of Figure P2.47.
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a o AW
6Q
% 120
40
AWV
4Q L 40 B Y
g g 2Q
2Q
b o : MWW

Figure P2.47

2.48 For the circuit shown in Figure P2.48, find the
equivalent resistance seen by the source. How much
power is delivered by the source?

7Q 4Q 2Q
W W
C_’ 14V §GQ § 3Q <%].Q
5Q
MW

Figure P2.48

2.49 For the circuit shown in Figure P2.49, find
the equivalent resistance, where R; =5 2,
R, =1kQ,R;3 =R; =100Q2,Rs =9.1Q
and Rg = 1 k Q.

Rs
—WWW

R1

R, R3 R4

AMA
VVVy
AAMA
\AAAJ
AAA
A\AAAJ
AMA,
VVVy

e

Figure P2.49

2.50 Cheap resistors are fabricated by depositing a thin
layer of carbon onto a nonconducting cylindrical
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substrate (see Figure P2.50). If such a cylinder has
radius a and length d, determine the thickness of the
film required for a resistance R if

a=1mm R =33k
o:izz.gM— d=9mm
P

Neglect the end surfaces of the cylinder and assume
that the thickness is much smaller than the radius.

Figure P2.50

2.51 The resistive elements of fuses, lightbulbs, heaters,

etc., are significantly nonlinear (i.e., the resistance is
dependent on the current through the element).
Assume the resistance of a fuse (Figure P2.51) is given
by the expression R = Ro[1 + A(T — Ty)] with

T —To=kP; Tp = 25°C; A= 0.7[°C]™%;

k = 0.35°C/W; Ry = 0.11 ; and P is the power
dissipated in the resistive element of the fuse.
Determine the rated current at which the circuit will
melt and open, that is, “blow.” (Hint: The fuse blows
when R becomes infinite.)

Fuse

Figure P2.51

2.52 Use Kirchhoff’s current law and Ohm’s law to

determine the current in each of the resistors R4, Rs,
and Rg in the circuit of Figure P2.52. Vs =10V,
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Ri=20Q,R, =40 Q, Ry = 1022, Ry = Rs
—Reg=15Q.

Ry

Figure P2.52

2.53 With reference to Problem 2.13, use Kirchhoff’s
current law and Ohm’s law to find the resistances Ry,
Rz, Rs, Ry, and Rs if Ry = 2 Q. Assume Ry = £R; and
R, = 1Ry

2.54 AssumingR; =2Q, R, =5Q,R; =4Q,
Ri=1Q,Rs=3Q,1,=4A, and Vs =54V in the
circuit of Figure P2.13, use Kirchhoff’s current law
and Ohm’s law to find

a. lg, Iy, I3, and Is. b. Ro.

2.55 AssumingRy=2Q, Ry =1Q,R, =4/3Q,
R3 =6 €, and Vs = 12 V in the circuit of Figure
P2.55, use Kirchhoff’s voltage law and Ohm’s law to
find
a. g, Iy, and ic.

b. The current through each resistance.

AAAA
VVVY
-
(‘”_'/
AAAA
VVVY
Y

.
G'/
e
AAAA
\AAA

Figure P2.55

2.56 AssumingRp=2Q,R;=2Q,R, =5,
R3 =4 A, and Vs = 24V in the circuit of Figure P2.55,
use Kirchhoff’s voltage law and Ohm’s law to find

a. g, Iy, and ic.

b. The voltage across each resistance.
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2.57 Assume that the voltage source in the circuit of
Figure P2.55 is now replaced by a current source, and
R0=l§2,R1=3§2,R2=29,R3=4A,and
Is = 12 A. Use Kirchhoff’s voltage law and Ohm’s law
to determine the voltage across each resistance.

2.58 The voltage divider network of Figure P2.58 is
expected to provide 5 V at the output. The resistors,
however, may not be exactly the same; that is, their
tolerances are such that the resistances may not be
exactly 5 k.

a. If the resistors have 10 percent tolerance, find the
worst-case output voltages.

b. Find these voltages for tolerances of 5 percent.
Given:V =10V, R; =5k, R, =5kQ.

D

AAAA l AAAA

\AAJ

'O

> +
>
>
S Yout

&

Figure P2.58

2.59 Find the equivalent resistance of the circuit of
Figure P2.59 by combining resistors in series and in
parallel. R =4Q, R, =12Q, R, =8Q,R;3 =2 Q,
Ry, =16 Q2,Rs =5 Q.

Ro R
O
Jﬁsl.’ Rl;%iii%%!!!!% R3
O
Ry
Figure P2.59

2.60 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.60. Given:
Vs =12V,Ry=4Q,R, =2 Q,R, =50 Q,
Rs=8Q,R; =102, Rs =12 Q, Rg =6 Q.

Figure P2.60



2.61 Inthe circuit of Figure P2.61, the power absorbed
by the 20-2 resistor is 20 W. Find R. Given:
Vs =50V,R; =20Q2,R, =5Q,R; =2 Q,
R; =8QR,R; =8, Rg =30 2.

Figure P2.61

2.62 Determine the equivalent resistance of the infinite
network of resistors in the circuit of Figure P2.62.

Figure P2.62

2.63 For the circuit shown in Figure P2.63 find
a. The equivalent resistance seen by the source.

b. The current through and the power absorbed by the
90-Q resistance. Given: Vs = 110V, R; = 90 Q,
R, =50Q,R; =40Q,R; =20, Rs =301,
Re = 10 Q, R; = 60 Q, Rg = 80 Q.

Ry

L
SRR

Re

Figure P2.63

2.64 Inthe circuit of Figure P2.64, find the equivalent
resistance looking in at terminals a and b if terminals ¢
and d are open and again if terminals c and d are
shorted together. Also, find the equivalent resistance
looking in at terminals ¢ and d if terminals a and b are
open and if terminals a and b are shorted together.
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Figure P2.64

2.65 At an engineering site which you are supervising, a
1-horsepower motor must be sited a distance d from a
portable generator (Figure P2.65). Assume the
generator can be modeled as an ideal source with the
voltage given. The nameplate on the motor gives the
following rated voltages and the corresponding
full-load current:

Ve =110V
VMmin =105V — |, p. = 7.10A
VMmax =117V — 1, . = 6.37A

If d = 150 m and the motor must deliver its full-rated
power, determine the minimum AWG conductors
which must be used in a rubber-insulated cable.
Assume that the only losses in the circuit occur in the
wires.

Conductors

Ow ] w0

d

i B

Cable
Figure P2.65

2.66 In the bridge circuit in Figure P2.66, if nodes (or
terminals) C and D are shorted and

R1 =2.2kQ R, = 18 kQ
Rs = 4.7 kQ Ry = 3.3kQ

determine the equivalent resistance between the nodes
or terminals A and B.

Figure P2.66
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2.67 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Vs =12V
R; = 11 kQ R; = 6.8 kQ
R, = 220 k2 Ry = 0.22 MQ

Figure P2.67

2.68 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Vs =5V
Ry =22kQ R, =18k
Rs=47kQ Ry =33kQ

2.69 Determine the voltage across R in Figure P2.69.
Vs =12V R =17mQ
R, =3kQ  Ry=10kQ

AAA
VVVy

Ry

O =

AAAA
VVVY
&I
AAAA
VVVY

Figure P2.69

Sections 2.7, 2.8: Practical Voltage and
Current Sources and Measuring
Devices

2.70 Athermistor is a nonlinear device which changes
its terminal resistance value as its surrounding
temperature changes. The resistance and temperature
generally have a relation in the form of

Rin(T) = Roe 7T~

where Ry, = resistance at temperature T,
Ro = resistance at temperature Ty = 298 K,
B = material constant, K~*
T, To = absolute temperature, K

a. IfRy =300 and g8 = —0.01 K1, plot Rn(T) as
a function of the surrounding temperature T for
350 < T < 750.

Fundamentals of Electric Circuits

b. If the thermistor is in parallel with a 250-$2 resistor,
find the expression for the equivalent resistance and
plot Ry, (T) on the same graph for part a.

2.71 A moving-coil meter movement has a meter
resistance ry = 200 €2, and full-scale deflection is
caused by a meter current I, = 10 A. The movement
must be used to indicate pressure measured by the
sensor up to a maximum of 100 kPa. See
Figure P2.71.

a. Draw a circuit required to do this, showing all
appropriate connections between the terminals of
the sensor and meter movement.

b. Determine the value of each component in the
circuit.

c. What is the linear range, that is, the minimum and
maximum pressure that can accurately be

measured?
Rs
+ rM§§
Vs
Sensor Meter
10_.........|........ LI e e e
S ]
E 5F =
= L 4
> C ]
Py Y A I I
0 50 100

P (kPa)
Figure P2.71

2.72 The circuit of Figure P2.72 is used to measure the
internal impedance of a battery. The battery being
tested is a NiMH battery cell.

a. Afresh battery is being tested, and it is found that
the voltage Vout, is 2.28 V with the switch open and
2.27 V with the switch closed. Find the internal
resistance of the battery.

b. The same battery is tested one year later, and Vot is
found to be 2.2 V with the switch open but 0.31 V
with the switch closed. Find the internal resistance
of the battery.



g 10Q
Vout

Battery T { Switch

Figure P2.72

2.73 Consider the practical ammeter, described in
Figure P2.73, consisting of an ideal ammeter in series
with a 1-k€2 resistor. The meter sees a full-scale
deflection when the current through it is 30 A, If we
desire to construct a multirange ammeter reading
full-scale values of 10 mA, 100 mA, and 1 A,
depending on the setting of a rotary switch,
determine appropriate values of Ry, R,

and Rs.
.

o
i Switch
|
|
|
i
|
i R SR =R,
|
R N

o

Figure P2.73

2.74 A circuit that measures the internal resistance of a
practical ammeter is shown in Figure P2.74, where
Rs = 50,000 2, Vs = 12V, and R, is a variable
resistor that can be adjusted at will.

a. Assume that r, <« 50,000 €2. Estimate the current i.

b. If the meter displays a current of 150 ©A when
Ry = 15 , find the internal resistance of the
meter r,.

O

O
29

Figure P2.74
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2.75 Apractical voltmeter has an internal resistance ry,.
What is the value of r,, if the meter reads 11.81 V
when connected as shown in Figure P2.75.

Voltmeter
Rs = 25 kQ
Vs= 12V

Figure P2.75

2.76 Using the circuit of Figure P2.75, find the voltage
that the meter reads if Vs = 24 V and Rs has the
following values:

Rs = 0.2ry,, 0.4ry,, 0.6ry, 1.2ry,, 41y, 61y, and 10r,.
How large (or small) should the internal resistance of
the meter be relative to Rg?

2.77 Avoltmeter is used to determine the voltage across
a resistive element in the circuit of Figure P2.77. The
instrument is modeled by an ideal voltmeter in parallel
with a 120-k€2 resistor, as shown. The meter is placed
to measure the voltage across R4. Assume R; = 8 k2,
R, = 22 k2, Ry = 50 k2, Rs = 125 k€2, and
Is = 120 mA. Find the voltage across R, with and
without the voltmeter in the circuit for the following

values:
a. R, =100 Q
b. Ry =1kQ
c. Ry =10kQ
d. Ry =100 k2
AVAVAVAV
Ry
Rs
'SCD Rs§ R% o 120k
Ry VR,
. o

Figure P2.77

2.78 Anammeter is used as shown in Figure P2.78. The
ammeter model consists of an ideal ammeter in series
with a resistance. The ammeter model is placed in the
branch as shown in the figure. Find the current through
Rs both with and without the ammeter in the circuit for
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the following values, assuming that Rs = 20 €2, Ammeter internal model
Ry = 800 Q,R, =600 2, Ry = 1.2 k2, Ry = 150 €,

and Vs = 24 V. o—® W °

a. Rs = 1kQ
b. Rs = 100
c. Rs=10Q
d Re=1Q

Figure P2.78
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RESISTIVE NETWORK ANALYSIS

hapter 3 illustrates the fundamental techniques for the analysis of resistive

circuits. The chapter begins with the definition of network variables and of

network analysis problems. Next, the two most widely applied methods—node

analysis and mesh analysis—are introduced. These are the most generally
applicable circuit solution techniques used to derive the equations of all electric
circuits; their application to resistive circuits in this chapter is intended to acquaint
you with these methods, which are used throughout the book. The second solution
method presented is based on the principle of superposition, which is applicable only
to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is
explored, which leads to a discussion of maximum power transfer in electric circuits
and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At
the conclusion of the chapter, you should have developed confidence in your ability
to compute numerical solutions for a wide range of resistive circuits. The following
box outlines the principal learning objectives of the chapter.
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:) Learning Objectives

1. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 3.2 and 3.4.

2. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3.4.

3. Applythe principle of superposition to linear circuits containing independent sources.
Section 3.5.

4. Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Section 3.6.

5. Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electrical network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a
specific circuit.

Figure 3.1

EXAMPLE 3.1

Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of Figure 3.1.

Solution

The following node voltages may be identified:

Node voltages Branch voltages

va = vs (source voltage) vs = vg —vg = vg
Up = VR, VRy = Va — Up

Ve = VR, URy, =Up — Ud = Up
vg = 0 (ground) VRy = Up — Uc

URy = VUc — Ud = Uc

Comments: Currents i,, iy, and i are loop currents, but only i, and i, are mesh currents.
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In the example, we have identified a total of 9 variables! It should be clear that
some method is needed to organize the wealth of information that can be generated
simply by applying Ohm’s law at each branch in a circuit. What would be desirable at
this point is a means of reducing the number of equations needed to solve a circuit to the
minimum necessary, that is, a method for obtaining N equations in N unknowns. The
remainder of the chapter is devoted to the development of systematic circuit analysis
methods that will greatly simplify the solution of electrical network problems.

3.2 THE NODE VOLTAGE METHOD

Node voltage analysis is the most general method for the analysis of electric circuits.
Inthissection, itsapplication to linear resistive circuits is illustrated. The node voltage
method is based on defining the voltage at each node as an independent variable. One
of the nodes is selected as a reference node (usually—but not necessarily—ground),
and each of the other node voltages is referenced to this node. Once each node voltage
is defined, Ohm’s law may be applied between any two adjacent nodes to determine
the current flowing in each branch. In the node voltage method, each branch current
is expressed in terms of one or more node voltages; thus, currents do not explicitly
enter into the equations. Figure 3.2 illustrates how to define branch currents in this
method. You may recall a similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

> i=0

Figure 3.3 illustrates this procedure.

(CRY

In the node voltage method, we By KCL: i; —i —i3 = 0. In the node
assign the node voltages v, and vp; voltage method, we express KCL by
the branch current flowing from a Va—Vp Vo=V Vp—Vg _
to b isthen expressed in terms of "R _TZ_TS_O
these node voltages.

_ Va—VW

R

R
VaO—AMWW—O W
—_

i

Figure 3.2 Branch current
formulation in node analysis

Figure 3.3 Use of KCL in
node analysis

The systematic application of this method to a circuit with n nodes leads to
writing n linear equations. However, one of the node voltages is the reference voltage
and is therefore already known, since it is usually assumed to be zero (recall that
the choice of reference voltage is dictated mostly by convenience, as explained in
Chapter 2). Thus, we can write n — 1 independent linear equations in the n — 1 inde-
pendent variables (the node voltages). Node analysis provides the minimum number
of equations required to solve the circuit, since any branch voltage or current may be
determined from knowledge of node voltages.
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Thermal Systems

A useful analogy can be
found between electric
circuits and thermal systems.
The table below illustrates the
correspondence between
electric circuit variables and
thermal system variables,
showing that the difference in
electrical potential is
analogous to the temperature
difference between two
bodies. Whenever there is a
temperature difference
between two bodies,
Newton’s law of cooling
requires that heat flow from
the warmer body to the
cooler one. The flow of heat
is therefore analogous to the
flow of current. Heat flow can
take place based on one of
three mechanisms:

(1) conduction, (2)
convection, and (3) radiation.
In this sidebar we only
consider the first two, for
simplicity.

Electrical Thermal
variable variable
\oltage Temperature
difference difference
v, [V] AT, [°C]
Current Heat flux
i,A a, [W]
Resistance ~ Thermal
R, [Q/m] resistance

Ri [°C/W]
Resistivity ~ Conduction
p, [Q/m] heat-transfer

coefficient

W

[ 2w]
(No exact Convection
electrical heat-transfer
analogy) coefficient, or

film coefficient
of heat transfer

W
[ | a—
=]
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The node analysis method may also be defined as a sequence of steps, as outlined
in the following box:

Thermal
Resistance

To explain thermal resis-
tance, consider a heat treat-
ed engine crankshaft that has
just completed some thermal
treatment. Assume that the
shaft is to be quenched in a
water bath at ambient
temperature (see the figure
below). Heat flows from
within the shaft to the surface
of the shaft, and then from
the shaft surface to the
water. This process
continues until the tempera-
ture of the shaft is equal to
that of the water.

The first mode of heat
transfer in the above descrip-
tion is called conduction, and
it occurs because the thermal
conductivity of steel causes
heat to flow from the higher
temperature inner core to
the lower temperature
surface. The heat-transfer
conduction coefficient k is
analogous to the resistivity p
of an electric conductor.

The second mode of heat
transfer, convection, takes
place at the boundary of
two dissimilar materials (steel
and water here). Heat transfer
between the shaft and water
is dependent on the surface
area of the shaft in contact
with the water A and is de-
termined by the heat transfer
convection coefficient h.

o W

Tenaft Twater

Engine crankshaft
quenched in water bath.

NODE VOLTAGE ANALYSIS METHOD

1. Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes are referenced to this node.

2. Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit is associated with a
dependent variable. If a node is not connected to a voltage source, then its
voltage is treated as an independent variable.

3. Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

4. Solve the linear system of n — 1 — m unknowns.

Following the procedure outlined in the box guarantees that the correct solution to a
given circuit will be found, provided that the nodes are properly identified and KCL
is applied consistently. As an illustration of the method, consider the circuit shown in
Figure 3.4. The circuitis shown in two different forms to illustrate equivalent graphical
representations of the same circuit. The circuit on the right leaves no question where
the nodes are. The direction of current flow is selected arbitrarily (assuming that is is
a positive current). Application of KCL at node a yields

is—ip—ip,=0 (3.2)
whereas at node b
ip—i3=0 (3-3)

It is instructive to verify (at least the first time the method is applied) that it is not
necessary to apply KCL at the reference node. The equation obtained at node c,

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding the

Nodea p  Nodeb

Figure 3.4 lllustration of node analysis

< LO1
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equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n — 1 independent
equations.

Now, in applying the node voltage method, the currents iy, i, and iz are expressed as
functions of v,, vy, and v, the independent variables. Ohm’s law requires that iy, for
example, be given by
Ua - UC

R1
since it is the potential difference v, — v across R; that causes current iy to flow from
node a to node c. Similarly,

3.5)

ip =

Va — Up

i, =
(3.6)

iy =

Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:

@7

= 38
R Ry (3.8)

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.
Note that these equations may be solved for v, and vy, assuming that is, Ry, R, and
R3 are known. The same equations may be reformulated as follows:

S WA S S
R R, Va R, Up =g
1\, (L 1Y) o
R,) 2 "\R, TRy T

Examples 3.2 through 3.4 further illustrate the application of the method.

(3.9)

EXAMPLE 3.2 Node Analysis

Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.5.

Solution

Known Quantities: Source currents resistor values.
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Thermal Circuit
Model
The conduction resistance of

the shaft is described by the
following equation:

kAq
= —AT
U
AT L
Reond = T == @

where A; is a cross-sectional
area and L is the distance
from the inner core to the
surface. The convection
resistance is described by a
similar equation, in which
convective heat flow is
described by the film coef-
ficient of heat transfer, h:

g =hAAT
AT 1
Rconv = T = m

where A; is the surface area
of the shaft in contact with
the water. The equivalent
thermal resistance and the
overall circuit model of the
crankshaft quenching
process are shown in the
figures below.

R(:ond Rconv
Tehatt —"VWW—AMA—® Tyyater
—_—
q
Thermal resistance

representation of quenching
process

ATC’) \D

Electric circuit representing
the quenching process

Reond

RCOHV
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Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: |, = 10 mA; |, = 50 mA,

Analysis: \We follow the steps outlined in the Focus on Methodology box:

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. The circuit of Figure 3.5 is shown again in Figure 3.6, and two nodes are also shown in
the figure. Thus, there are two independent variables in this circuit: vy, v,.

Rs Node 1 —
AAAA RB
\AAAJ AAAA
TYVVV
> —
AAAA R2
VVVY AAAA
T+,
\
<> <> ? '+
® = O @ rg r:Q
A I l >_ P> o
£ oV
Figure 3.5
— Node 2

AAAA
Yvvy
PAAMS
——
Ry
AAAA

YWY ‘\/
Y

o -

Figure 3.6

3. Applying KCL at nodes 1 and 2, we obtain

1)1—0 V1 — U2 V1 — VU2 0

I, — node 1
TR R, Rs

V1 — V2 V1 — V2 Uz—o
+ - —1,=0 node 2
R, Rs Ra% °
Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.

! + ! + ! + ! ! | node 1
—+—+ v —— —— =
Ri R, Rs)" R, Ry 2
1 1 1 1 1
e — 4+ — + = =—I node 2
( R, R3)vl+<R2+R3+R>v2 2

4. We finally solve the system of equations. With some manipulation, the equations finally
lead to the following form:
1.6v; — 0.6v, =10
—0.6v; + 1.1y, = =50
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These equations may be solved simultaneously to obtain

v, = —13.57V
v, = —52.86 V
Knowing the node voltages, we can determine each of the branch currents and voltages

in the circuit. For example, the current through the 10-kS2 resistor is given by

V1 — V2
10,000 — 3.93mA

lioke =

indicating that the initial (arbitrary) choice of direction for this current was the same as
the actual direction of current flow. As another example, consider the current through the
1-k<2 resistor:

= —13.57 mA

. V1
' = 7 000
In this case, the current is negative, indicating that current actually flows from ground
to node 1, as it should, since the voltage at node 1 is negative with respect to ground.
You may continue the branch-by-branch analysis started in this example to verify that the
solution obtained in the example is indeed correct.

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (we could use the opposite
convention), but we shall use it consistently in this book.
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EXAMPLE 3.3 Node Analysis

Problem

Write the nodal equations and solve for the node voltages in the circuit of Figure 3.7.

Solution

Known Quantities: Source currents; resistor values.

Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: i, = 1 mA; i, = 2 mA; R; = 1kQ;
R, =500 Q; Rz = 2.2 kQ; Ry = 4.7 k.

Analysis: We follow the steps of the Focus on Methodology box.

1.
2.

The reference (ground) node is chosen to be the node at the bottom of the circuit.

See Figure 3.8. Two nodes remain after the selection of the reference node. Let us label
these a and b and define voltages v, and v,. Both nodes are associated with independent
variables.

. We apply KCL at each of nodes a and b:

Va Va — Up

=0 node a
R1 R>

N

A

WW
&L

1

Figure 3.7
Va + R, — Vb
S Wee——
S .
| |
+ ¢ ' L+ +<j ¢
DR rR2@) IR
< =g
ov
Figure 3.8
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and rewrite the equations to obtain a linear system:
1 N 1 N 1 i
—+— v —— )=
Rl Rz a R2 b a

Ly, (L, 1, 1 :
—— v — 4+ — 4+ — =
R,) *"\R, Rs R, " "

4. Substituting the numerical values in these equations, we get

3x10%, —2x10%y, =1 x 103
—2x 10730, +2.67 x 103y, =2 x 1073

or v, — 2, =1
—2v, + 2.67v, =2

The solution v, = 1.667 V, v, = 2 V may then be obtained by solving the system of
equations.

LO1 EXAMPLE 3.4 Solution of Linear System of Equations Using
Cramer’s Rule

Problem

Solve the circuit equations obtained in Example 3.3, using Cramer’s rule (see Appendix A
available online).

Solution
Known Quantities: Linear system of equations.
Find: Node voltages.

Analysis: The system of equations generated in Example 3.3 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as

|2 el =]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables v, and
vp can be written as follows:

- ‘
_ ’ 2 2.67 _ (1)(2.67) — (—2)(2) _E_
- T (367 —(-2)(-2) 4 = Loerv
-2 267
=
o 17221 ®@-20 _8_,,
T 3 2 T (367 - (-2)(-2) 4
-2 2.67

The result is the same as in Example 3.3.

Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the nodal
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equations have been set in the general form presented in equation 3.9, a variety of computer
aids may be employed to compute the solution.
CHECK YOUR UNDERSTANDING
Find the current i_ in the circuit shown on the left, using the node voltage method.
- W+
30Q
) 20032003

Find the voltage vy by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL at one or more nodes.

A\ 8T— 1V /G820 SIamsuy
EXAMPLE 3.5 <LOl
Problem
Use the node voltage analysis to determine the voltage v in the circuit of Figure 3.9. Assume Ry
thatR; =2Q,R, =1Q,R3 =4Q,R; =39, 1, =2A,and I, = 3A. MW

2
v sz Vo O V3
+

Solution REE

Known Quantities: Values of the resistors and the current sources.
Find: \ltage across Rs.
Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.9.
2. Next, we define the three node voltages vy, v,, v, as shown in Figure 3.9.

3. Apply KCL at each of the n — 1 nodes, expressing each current in terms of the adjacent
node voltages.

V3 — VU1 V2 — VU1
-1, =0 node 1
) R, !
V1 — U2 U2
——+4+1,=0 node 2
Ro R3+2
7% % _L,=0  node3
R, R4

4. Solve the linear system of n — 1 — m unknowns. Finally, we write the system of equa-
tions resulting from the application of KCL at the three nodes associated with

Figure 3.9 Circuit for
Example 3.5
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independent variables:
(=1—2)v; +2v, +1vz3 =4 node 1
4vy + (=1 — 4)vy + Ovg = —12 node 2
vy + 0vy + (—2 — 3)113 =18 node 3

The resulting system of three equations in three unknowns can now be solved. Starting
with the node 2 and node 3 equations, we write

4v; + 12
vy = 75
3v; — 18
vz = 75

Substituting each of variables v, and vz into the node 1 equation and solving for v, provides
4v, + 12 1. 3v; — 18 _
5 5
After substituting v, into the node 2 and node 3 equations, we obtain
v, =-04V and v3=-57V
Therefore, we find
v=uv,=-04V

—3u +2- 4 = v =-35V

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (the opposite sign convention
could be used), but we shall use it consistently in this book.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.5 when the direction of the current sources becomes the
opposite. Find v.

A Y0 = a:Jamsuy

Node Analysis with Voltage Sources

In the preceding examples, we considered exclusively circuits containing current
sources. It is natural that one will also encounter circuits containing voltage sources,
in practice. The circuit of Figure 3.10 is used to illustrate how node analysis is applied
to a circuit containing voltage sources. Once again, we follow the steps outlined in
the Focus on Methodology box.

Step 1: Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes will be referenced to this node.

The reference node is denoted by the ground symbol in Figure 3.10.

Step 2: Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit will be associated with a
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dependent variable. If a node is not connected to a voltage source, then its voltage is
treated as an independent variable.

Next, we define the three node voltages vq, vy, ve, as shown in Figure 3.10. We note
that v, is a dependent voltage. We write a simple equation for this dependent voltage,
noting that v, is equal to the source voltage vs: vy = vs.

Step 3: Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

We apply KCL at the two nodes associated with the independent variables vy, and v;:
At node b:

Vg — Up v, — 0 Up — V¢

_ _ -0
Re Re Rs (3.10a)
or Us — VUp Up Ub—vc_o .
R1 R2 Ry
At node c:
Vp — Vg Ve .
_ ic =0 3.10b
Rl Re +is ( )

Step 4: Solve the linear system of n — 1 — m unknowns.

Finally, we write the system of equations resulting from the application of KCL at
the two nodes associated with independent variables:

l+1+1 n 1 1
— — — ]V ——— V¢ = —V
Rl R2 R3 b R3 ¢ Rl ;

1 n 1+l i
R Up Rs Ry Ve = ls

The resulting system of two equations in two unknowns can now be solved.

(3.11)
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Va g V% R, Ve

Figure 3.10 Node analysis
with voltage sources

EXAMPLE 3.6

Problem

Use node analysis to determine the current i flowing through the voltage source in the circuit of
Figure 3.11. Assume thatR; =2 Q,R, =2 Q,R3 =4 Q,R;, =3Q, 1 =2A, andV =3 V.

Solution

Known Quantities: Resistance values; current and voltage source values.

Find: The current i through the voltage source.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.11.

2. We define the three node voltages vy, v,, and vs, as shown in Figure 3.11. We note that
v, and vs are dependent on each other. One way to represent this dependency is to treat v,

<LOl

Ry
AAAA
YVVY
vi Ry, V Vs
AAAA
VAVVV @_-
—

I
AAAA
WW

Py
L AW

Figure 3.11 Circuit for
Example 3.6
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as an independent voltage and to observe that v = v, + 3 V, since the potential at node
3 must be 3 V higher than at node 2 by virtue of the presence of the voltage source. Note
that since we have an expression for the voltage at node 3 in terms of v,, we will only
need to write two nodal equations to solve this three-node circuit.

3. We apply KCL at the two nodes associated with the independent variables v, and v;:
U3 — U1 V2 — 101
R1 Rz

Ul_UZ_E_iZO node 2
R, Rs

—-1=0 node 1

where i=

V3 — VU1 U3
Ry + Ry
Rearranging the node 2 equation by substituting the value of i yields

V1 — U2 U2 V3 — V1 U3
- —-————-—==0 node 2
R, R3 Ry R4

4. Finally, we write the system of equations resulting from the application of KCL at the two
nodes associated with independent variables:
—2vy +1vy +1vs =4 node 1
12v; + (=9 vy + (—10)v3 =0 node 2

Considering that vz = v, + 3V, we write

—2v; +2v, =1

12v; + (—19)v, = 30
The resulting system of the two equations in two unknowns can now be solved. Solving
the two equations for v; and v, gives

vy = —5.64V and v, =514V
This provides

vy=v,+3V=-214V
Therefore, the current through the voltage source i is

_ 2144564 —2.14
st b +ot — 1.04A

i= =
R1 R4 2 3

Comments: Knowing all the three node voltages, we now can compute the current flowing
through each of the resistances as follows: i; = |vs — v1|/Ry (to left), i, = v, — v1]/R; (t0
left), i3 = |vz|/Rs (upward), and iy = |v3|/R4 (upward).

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.6 when the direction of the current source becomes the
opposite. Find the node voltages and i.

VZET =1PUe ‘ATLY = ATLT = ATZG = T lamsuy
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3.3 THE MESH CURRENT METHOD

The second method of circuit analysis discussed in this chapter employs mesh
currents as the independent variables. The idea is to write the appropriate number of
independent equations, using mesh currents as the independent variables. Subsequent
application of Kirchhoff’s voltage law around each mesh provides the desired system
of equations.

In the mesh current method, we observe that a current flowing through a resistor
in a specified direction defines the polarity of the voltage across the resistor, as illus-
trated in Figure 3.12, and that the sum of the voltages around a closed circuit must
equal zero, by KVL. Once a convention is established regarding the direction of cur-
rent flow around a mesh, simple application of KVL provides the desired equation.
Figure 3.13 illustrates this point.

The number of equations one obtains by this technique is equal to the number of
meshes in the circuit. All branch currents and voltages may subsequently be obtained
from the mesh currents, as will presently be shown. Since meshes are easily identified
in a circuit, this method provides a very efficient and systematic procedure for the
analysis of electric circuits. The following box outlines the procedure used in applying
the mesh current method to a linear circuit.

In mesh analysis, it is important to be consistent in choosing the direction of
current flow. To avoid confusion in writing the circuit equations, unknown mesh cur-
rents are defined exclusively clockwise when we are using this method. To illustrate
the mesh current method, consider the simple two-mesh circuit shown in Figure 3.14.
This circuit is used to generate two equations in the two unknowns, the mesh currents
iy and i,. Itis instructive to first consider each mesh by itself. Beginning with mesh 1,
note that the voltages around the mesh have been assigned in Figure 3.15 accord-
ing to the direction of the mesh current i;. Recall that as long as signs are assigned
consistently, an arbitrary direction may be assumed for any current in a circuit; if
the resulting numerical answer for the current is negative, then the chosen reference
direction is opposite to the direction of actual current flow. Thus, one need not be con-
cerned about the actual direction of current flow in mesh analysis, once the directions
of the mesh currents have been assigned. The correct solution will result, eventually.

According to the sign convention, then, the voltages v; and v, are defined as
shown in Figure 3.15. Now, it is important to observe that while mesh current iy is
equal to the current flowing through resistor R; (and is therefore also the branch current
through R;), it is not equal to the current through R,. The branch current through R,
is the difference between the two mesh currents i; — i. Thus, since the polarity of
voltage v, has already been assigned, according to the convention discussed in the
previous paragraph, it follows that the voltage v, is given by

v = (i1 — i2)R2 (3.12)
Finally, the complete expression for mesh 1 is
vs — 1Ry — (i1 —i2)R, =0 (3.13)

The same line of reasoning applies to the second mesh. Figure 3.16 depicts the
voltage assignment around the second mesh, following the clockwise direction of
mesh current i,. The mesh current iy is also the branch current through resistors Rs
and Ry4; however, the current through the resistor that is shared by the two meshes,
denoted by Ry, is now equal to i, — iy; the voltage across this resistor is

vy = (I — iRy (3.14)
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The current i, defined as flowing

from left to right, establishes the

polarity of the voltage across R.
+ VR -

oO——WW—0

‘j"’ R
Figure 3.12 Basic
principle of mesh analysis

Once the direction of current flow
has been selected, KVL requires
that vy — v, —v3 = 0.

+ Vo —
AAAA
VVRVV
+ 2 +
>
Vi () RZ Vs
i T
A mesh

Figure 3.13 Use of KVL
in mesh analysis

Ry Rs
AMA A
VVWVy

Figure 3.14 A two-mesh
circuit

Mesh 1: KVL requires that
Vs—V; —V, =0, wherev; = i;Ry,
Vo = (i1 —i2)Re.
Ry Rs
AAA
AL A e
1

\
+ > e
- . <> . <>
VS<_> :D v :: RZ @ ::R4
< <

Figure 3.15 Assignment of
currents and voltages around
mesh 1
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Mesh 2: KVL requires that

Vo+Vs+Vv,;=0

where

Vo = (i2—11)Ry

V3 =i5Rs

V4= iRy

Ry R;
AAA AAA
YVVv A A

V3

+
> >
+ . <> . <>
Vs()@ RSV ( 12 RiZ V.
— > >

+ —

~

Figure 3.16 Assignment of
currents and voltages around
mesh 2
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and the complete expression for mesh 2 is
(ip — 1Ry +IR3 + bR =0 (3.15)

Why is the expression for v, obtained in equation 3.14 different from equation
3.12? The reason for this apparent discrepancy is that the voltage assignment for each
mesh was dictated by the (clockwise) mesh current. Thus, since the mesh currents
flow through R, in opposing directions, the voltage assignments for v, in the two
meshes are also opposite. This is perhaps a potential source of confusion in applying
the mesh current method; you should be very careful to carry out the assignment of
the voltages around each mesh separately.

Combining the equations for the two meshes, we obtain the following system
of equations:

(R1 + Rp)is — Roip = vg

. : (3.16)
—Rzi1 + (R2 + R3 + Ry)iz =0

These equations may be solved simultaneously to obtain the desired solution, namely,
the mesh currents i; and i,. You should verify that knowledge of the mesh currents
permits determination of all the other voltages and currents in the circuit. Examples
3.7, 3.8, and 3.9 further illustrate some of the details of this method.

MESH CURRENT ANALYSIS METHOD

1. Define each mesh current consistently. Unknown mesh currents will be
always defined in the clockwise direction; known mesh currents (i.e.,
when a current source is present) will always be defined in the direction of
the current source.

2. In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n —m
independent variables.

3. Apply KVL to each mesh containing an unknown mesh current,
expressing each voltage in terms of one or more mesh currents.

4. Solve the linear system of n — m unknowns.

Figure 3.17

EXAMPLE 3.7 Mesh Analysis

Problem

Find the mesh currents in the circuit of Figure 3.17.

Solution
Known Quantities: Source voltages; resistor values.

Find: Mesh currents.
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Schematics, Diagrams, Circuits, and Given Data: V, =10V;V, =9V;V; =1V,
Ri=5Q;R=10Q2;R;3 =5Q; R, =5Q.

Analysis: \We follow the steps outlined in the Focus on Methodology box.

1. Assume clockwise mesh currents i; and is.
2. The circuit of Figure 3.17 will yield two equations in the two unknowns i; and i,.

3. ltisinstructive to consider each mesh separately in writing the mesh equations; to this end,
Figure 3.18 depicts the appropriate voltage assignments around the two meshes, based
on the assumed directions of the mesh currents. From Figure 3.18, we write the mesh
equations:

Vi —Ryis = Vo —Ry(iy —ip) =0
Ra(iy —i2) + V2 — R3ip — V3 — R4i, =0

Rearranging the linear system of the equation, we obtain
15i; — 10i, =1
—10i; + 20i, =8
4. The equations above can be solved to obtain i; and iy:

ii=05A and i =065A

Comments: Note how the voltage v, across resistor R, has different polarity in Figure 3.18, Analysis of mesh 2
depending on whether we are working in mesh 1 or mesh 2. Figure 3.18
EXAMPLE 3.8 Mesh Analysis <|_02

Problem

Write the mesh current equations for the circuit of Figure 3.19.

. R R
Solution AAA AR

\AAAJ \AAAJ
Known Quantities: Source voltages; resistor values. R, A

Vi
O 2
Find: Mesh current equations. = \D =

Schematics, Diagrams, Circuits, and Given Data: V, =12V;V, =6V;R; =3 Q;

Figure 3.19
Analysis: We follow the Focus on Methodology steps.

1. Assume clockwise mesh currents iy, i, and is.

2. We recognize three independent variables, since there are no current sources. Starting
from mesh 1, we apply KVL to obtain

Vi —Ri(iy —i3) = Ra(iy — i) =0
KVL applied to mesh 2 yields

—Ry(i; —i1) = R3(iz —i3) + Vo, =0
while in mesh 3 we find

—R1(iz — i1) — R4iz — Ra(iz —i2) =0
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These equations can be rearranged in standard form to obtain
(3+8)i; — 8i; —3i3 =12
—8iy + (6 + 8)i, — 6i3 =6
—3i; —6i, + (3+6+4)i3=0

You may verify that KVL holds around any one of the meshes, as a test to check that the
answer is indeed correct.

CHECK YOUR UNDERSTANDING

Find the unknown voltage v, by mesh current analysis in the circuit on the left.

60 120 30
AAAA AAA AAAA
Yvvy YVVy Yvvy
50 +
< s + < +
6003 6Q v, 24v<) 6231 ()15v
< P — > =
15V -

Find the unknown current Iy, using the mesh current method in the circuit on the right.

W 2 ‘A G Slamsuy

|_02> EXAMPLE 3.9 Mesh Analysis

Problem

The circuit of Figure 3.20 is a simplified DC circuit model of a three-wire electrical distribution
service to residential and commercial buildings. The two ideal sources and the resistances Ry
and Rs represent the equivalent circuit of the distribution system; R; and R, represent 110-V
lighting and utility loads of 800 and 300 W, respectively. Resistance Rz represents a 220-V
heating load of about 3 kW. Determine the voltages across the three loads.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.20are Vs; = Vs =110V; Ry =Rs =1.3Q; R; =15 Q; R, =40 Q; R3 = 16 Q.

Figure 3.20

Find: v, vy, and vs.
Analysis: We follow the mesh current analysis method.

1. The (three) clockwise unknown mesh currents are shown in Figure 3.20. Next, we write
the mesh equations.

2. No current sources are present; thus we have three independent variables. Applying KVVL
to each mesh containing an unknown mesh current and expressing each voltage in terms
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of one or more mesh currents, we get the following:

Mesh 1:

Vs1 —Raly = Ri(ly — 13) =0
Mesh 2:

Vsa —Ra(l2 —13) = Rsl; =0
Mesh 3:

—Ri(l3 —11) = R3lz —=Ra(I3 — 1) =0
With some rearrangements, we obtain the following system of three equations in three
unknown mesh currents.
—(R1 +R)l +Rylz3 = Vs
—(R2 +Rs)lz + Rzlz = —Vsp
Rili +Ral = (R1 +R2 +R3)lz3 =0

Next, we substitute numerical values for the elements and express the equations in a matrix
form as shown.

-16.3 0 15 Iy ~110
0 —413 40 L | =] —110
15 40 -7 ls 0

which can be expressed as
[RIIIT=[V]

with a solution of
(1= [RIV]

The solution to the matrix problem can then be carried out using manual or numerical
techniques. In this case, we have used MATLAB™ to compute the inverse of the 3 x 3
matrix. Using MATLAB™ to compute the inverse matrix, we obtain

—0.0483 —0.0750 —0.0525

—0.1072 —0.0483 —0.0499
[RI™! =
—0.0499 —0.0525 —0.0542

The value of current in each mesh can now be determined:

—0.1072 —0.0483 —0.0499 —110 17.11
[(1=[RI[V]=| —0.0483 —0.0750 —0.0525 —110 |=| 1357
—0.0499 —0.0525 —0.0542 0 11.26

Therefore, we find
Ip =17.11A I, =1357A I3 =11.26 A
We can now obtain the voltages across the three loads, keeping in mind the ground location:
Vg, =Ri(l1 — 13) =87.75V
Vg, = —Rao(l; — I3) = —92.40 V
Vg, = R3l3 = 180.16 V
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Figure 3.21 Circuit used
to demonstrate mesh analysis
with current sources

Chapter 3 Resistive Network Analysis

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.9, using node voltage analysis instead of the mesh current
analysis.

A9T08T = B\ ‘A 0F'Z6— = A ‘A GL L8 = A [amsuy

Mesh Analysis with Current Sources

In the preceding examples, we considered exclusively circuits containing voltage
sources. It is natural to also encounter circuits containing current sources, in prac-
tice. The circuit of Figure 3.21 illustrates how mesh analysis is applied to a circuit
containing current sources. Once again, we follow the steps outlined in the Focus on
Methodology box.

Step 1: Define each mesh current consistently. Unknown mesh currents are always
defined in the clockwise direction; known mesh currents (i.e., when a current source
is present) are always defined in the direction of the current source.

The mesh currents are shown in Figure 3.21. Note that since a current source defines
the current in mesh 2, this (known) mesh current is in the counterclockwise
direction.

Step 2: In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n — m independent
variables.

In this illustration, the presence of the current source has significantly simplified the
problem: There is only one unknown mesh current, and it is ij.

Step 3: Apply KVL to each mesh containing an unknown mesh current, expressing
each voltage in terms of one or more mesh currents.

We apply KVL around the mesh containing the unknown mesh current:

Vs —Ryit —Rap(i1 +15) =0

. (3.17)
or (R1 4+ Ry)i; = Vs — Ryls
Step 4: Solve the linear system of n — m unknowns.
Vs — Rals
h=—" 3.18
"7 R +R, (3.18)

L02> EXAMPLE 3.10 Mesh Analysis with Current Sources

Problem

Find the mesh currents in the circuit of Figure 3.22.
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= AVAVAVA‘I
Solution
. ia
Known Quantities: Source current and voltage; resistor values. R, 3
AAA AAAA
VVVY \AAA

Find: Mesh currents.

Schematics, Diagrams, Circuits, and Given Data: | =05A;V =6V, R, =3 Q; () Q E§ R, C C_)
I b [P3 T

R, =8 Ry =6Q; Ry = 4.

Analysis: We follow the Focus on Measurements steps.

. . . Figure 3.22
1. Assume clockwise mesh currents iy, i, and is.
2. Starting from mesh 1, we see immediately that the current source forces the mesh current
to be equal to I:
ip=1
3. There is no need to write any further equations around mesh 1, since we already know
the value of the mesh current. Now we turn to meshes 2 and 3 to obtain
—Ra(iz —i1) —Ra(iz —i3) +V =0 mesh 2
—Rl(i3 — |1) — R4i3 — R3(i3 — |2) =0 mesh 3
Rearranging the equations and substituting the known value of i;, we obtain a system of
two equations in two unknowns:
14i, — 6i3 = 10
—6i, + 13i3 = 1.5
4. These can be solved to obtain
i, =095A i3 =055A
As usual, you should verify that the solution is correct by applying KVL.
Comments: Note that the current source has actually simplified the problem by constraining
a mesh current to a fixed value.
CHECK YOUR UNDERSTANDING
Show that the equations given in Example 3.10 are correct, by applying KCL at each node.
EXAMPLE 3.11 Mesh Analysis with Current Sources <|_02

Problem

Find the unknown voltage vy in the circuit of Figure 3.23.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.23: Vs =10V; Is =2A; Ry =5 Q; R, =2 Q; and R; = 4 Q.
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Find: vy.
Analysis: \We observe that the second mesh current must be equal to the current source:
i;=1ls

le
* Thus, the unknown voltage, vy, can be obtained applying KVL to mesh 2:

(iy —i)Rg —i2R; — vy =0
vy = (i1 —i)Rs — iRy = i1R3 — i3 (R2 + Ry)

Figure 3.23 lllustration of
mesh analysis in the presence of
current sources

To find the current i; we apply KVL to mesh 1:
Vs —itRy — (i1 —i2)Rs =0
Vs + 2R3 = i1 (R1 + Rg)

but sincei, = Ig

. Vs+|5R3 10+2X4
I = = =2A
(Ry +R3) 5+4

Comments: Note that the presence of the current source reduces the number of unknown
mesh currents by one. Thus, we were able to find v, without the need to solve simultaneous
equations.

CHECK YOUR UNDERSTANDING

Find the value of the current iy if the value of the current source is changed to 1 A.

V T.'T :Jemsuy

3.4 NODE AND MESH ANALYSIS WITH
CONTROLLED SOURCES

LO1, |_02> The methods just described also apply, with relatively minor modifications, in the
presence of dependent (controlled) sources. Solution methods that allow for the pres-

ence of controlled sources are particularly useful in the study of transistor amplifiers
in Chapters 8 and 9. Recall from the discussion in Section 2.1 that a dependent source
generates a voltage or current that depends on the value of another voltage or current
in the circuit. When a dependent source is present in a circuit to be analyzed by node
or mesh analysis, we can initially treat it as an ideal source and write the node or mesh
equations accordingly. In addition to the equation obtained in this fashion, there is an
equation relating the dependent source to one of the circuit voltages or currents. This
constraint equation can then be substituted in the set of equations obtained by the
techniques of node and mesh analysis, and the equations can subsequently be solved
for the unknowns.

It is important to remark that once the constraint equation has been substi-
tuted in the initial system of equations, the number of unknowns remains unchanged.
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Node 1 Node 2
i~ =] G i)
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Figure 3.24 Circuit with dependent source

Consider, for example, the circuit of Figure 3.24, which is a simplified model of a
bipolar transistor amplifier (transistors are introduced in Chapter 9). In the circuit of
Figure 3.24, two nodes are easily recognized, and therefore node analysis is cho-
sen as the preferred method. Applying KCL at node 1, we obtain the following
equation:

1 1
is = — + — A
Ig U1 (Rg + Rb) (3 9)
KCL applied at the second node yields
Bip + 2 =0 (3.20)
Rc

Next, observe that current i, can be determined by means of a simple current divider:

1/Ry . Rs

=1 =1 321
ST/Ro+ 1/Rs SRy +Rs (3:21)

i

This is the constraint equation, which when inserted in equation 3.20, yields a system
of two equations:

i 1+1
= —_— _—
s 1 Rs TRy

R
—Big———— = 2
Rb+Rs Rc

(3.22)

which can be used to solve for v, and v,. Note that, in this particular case, the two
equations are independent of each other. Example 3.12 illustrates a case in which the
resulting equations are not independent.
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EXAMPLE 3.12 Analysis with Dependent Sources

Problem

Find the node voltages in the circuit of Figure 3.25.

Solution

Known Quantities: Source current; resistor values; dependent voltage source relationship.

< LO1, LO2
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Find: Unknown node voltage v.

Schematics, Diagrams, Circuits, and Given Data: | =05A;R; =5Q;R, =2 Q;
Rs = 4 Q. Dependent source relationship: vy = 2 x vs.

Analysis:

1. Assume the reference node is at the bottom of the circuit. Use node analysis.
2. The two independent variables are v and vs.
3. Applying KCL to node v, we find that

Figure 3.25 Uk — +1 V-t =0

R1 R

Applying KCL to node vs, we find

VUV — U3 U3

R, Ry

If we substitute the dependent source relationship into the first equation, we obtain a
system of equations in the two unknowns v and v3:

4. Substituting numerical values, we obtain
0.7v — 0.9v3 = 0.5
—0.50+0.75v3; =0
Solution of the above equations yields v = 5V; v = 3.33 V.

CHECK YOUR UNDERSTANDING

Solve the same circuit if v, = 2.

W ep I p-
A = A = I8MsuyY

LO1, |_02> EXAMPLE 3.13 Mesh Analysis with Dependent Sources

Problem

Determine the voltage “gain” A, = v,/v; in the circuit of Figure 3.26.
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Vi

Figure 3.26 Circuit containing
dependent source

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.26areR; =1 Q2; R, =05Q; R3 =0.25Q; R4, = 0.25Q; Ry = 0.25 Q.

Find: A, = vy/v;.

Analysis: We note first that the two voltages we seek can be expressed as follows:
v = Ry(iy — ip), and v, = Rsiz. Next, we follow the mesh current analysis method.

1. The mesh currents are defined in Figure 3.26.

2. No current sources are present; thus we have three independent variables, the currents iy,
i2, and i3.

3. Apply KVL at each mesh.

For mesh 1:
vy — Ryip = Ra(iy —i2) =0

or rearranging the equation gives
(R1 4+ R2)i1 + (=R2)iz + (O)iz = vy

For mesh 2:
v — R3i2 — R4(i2 — |3) + 2v=0

Rearranging the equation and substituting the expression v = —R; (i, — i1), we obtain
—Ra(iz — i1) — Raiz = Ra(iz — i3) — 2Ra(iz —i1) = 0
(—=3R2)i1 + (3R2 + Rz + Ry)iz — (Ry)iz =0

For mesh 3:
—2v — R4(i3 - |2) - R5i3 =0

substituting the expression for v = R, (i; — i) and rearranging, we obtain
—2Ry(iy — iz) — Ry(is —i2) —Rsiz =0
2Rzi; — (2Rz2 + Ry)iz + (R4 + Rs)i3 =0

Finally, we can write the system of equations

(R1 +Ry2) (—R2) 0 i vy
(—3R2) (BR2 +Rs +Ry) (—R4) i = 0
(2Ry) —(2R2 +Ry) (R4 + Rs) i3 0

85
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which can be written as
[RI[i] = [v]
with solution
[i1 = [RI"*[v]

4. Solve the linear system of n — m unknowns. The system of equations is

1.5 -0.5 0 il U1
-15 2 -0.25 i | = 0
1 -1.25 0.5 i3 0
Thus, to solve for the unknown mesh currents, we must compute the inverse of the matrix

of resistances R. Using MATLAB™ to compute the inverse, we obtain

0.88 0.32 0.16

Rt = 0.64 0.96 0.48
—0.16 1.76 2.88
i vy 0.88 0.32 0.16 v
i |=[R]™*| 0 |= 0.64 096 0.48 0
is 0 —0.16 1.76 2.88 0

and therefore

i]_ = 0.881)1
iz = 0.641)1
i3 = —0.161)1

Observing that v, = Rsiz, we can compute the desired answer:

Uy = R5i3 = R5(—O‘l6v1) = 025(—0161)1)
vz —0.04v,

A=—2=""1=_004
U1 V1

Comments: The MATLAB™ commands required to obtain the inverse of matrix R are listed
below.

R=[1.5 -0.50; -1.52 -0.25; 1 -1.25 0.5];
Ri nv=i nv(R);
The presence of a dependent source did not really affect the solution method. Systematic

application of mesh analysis provided the desired answer. Is mesh analysis the most efficient
solution method? (Hint: See the exercise below.)

CHECK YOUR UNDERSTANDING

Determine the number of independent equations required to solve the circuit of Example 3.13
using node analysis. Which method would you use?

The current source iy is related to the voltage vy in the figure on the left by the relation
Ux
3

Find the voltage across the 8-<2 resistor by node analysis.

Iy =
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+ W - 12Q 3Q
> AAAA ——AAAA AAAA
VVVY \AAA4 VVVY
sos 07 i
ix > < <. RS
8Q< 6Q3 Vx 6Q =iy 15V
> b > —
15V

Find the unknown current iy in the figure on the right, using the mesh current method. The
dependent voltage source is related to current i;, through the 12-Q resistor by vy = 2is,.

V 6ET ‘A ZT ‘OM] :SIaMSUY

Remarks on Node Voltage and Mesh Current Methods

The techniques presented in this section and in Sections 3.2 and 3.3 find use more
generally than just in the analysis of resistive circuits. These methods should be viewed
as general techniques for the analysis of any linear circuit; they provide systematic
and effective means of obtaining the minimum number of equations necessary to
solve a network problem. Since these methods are based on the fundamental laws
of circuit analysis, KVL and KCL, they also apply to electric circuits containing
nonlinear circuit elements, such as those to be introduced later in this chapter.

You should master both methods as early as possible. Proficiency in these circuit
analysis techniques will greatly simplify the learning process for more advanced
concepts.

3.5 THE PRINCIPLE OF SUPERPOSITION

This brief section discusses a concept that is frequently called upon in the analysis
of linear circuits. Rather than a precise analysis technique, like the mesh current and
node voltage methods, the principle of superposition is a conceptual aid that can be
very useful in visualizing the behavior of a circuit containing multiple sources. The
principle of superposition applies to any linear system and for a linear circuit may be
stated as follows:

In a linear circuit containing N sources, each branch voltage and current is the
sum of N voltages and currents, each of which may be computed by setting all
but one source equal to zero and solving the circuit containing that single source.

An elementary illustration of the concept may easily be obtained by simply consid-
ering a circuit with two sources connected in series, as shown in Figure 3.27.
The circuit of Figure 3.27 is more formally analyzed as follows. The current i
flowing in the circuit on the left-hand side of Figure 3.27 may be expressed as
vp1 + U2  UBl | U2

Figure 3.27 also depicts the circuit as being equivalent to the combined effects of

< LO3
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Va2

|
)
AA
YWy
+
)
AA
YWy

The net current through
Risthe sum of the
individual source currents:
i =ig +ig.

Vi1 IB1 IB2

Figure 3.27 The principle of superposition

two circuits, each containing a single source. In each of the two subcircuits, a short
circuit has been substituted for the missing battery. This should appear as a sensible
procedure, since a short circuit, by definition, will always “see” zero voltage across
itself, and therefore this procedure is equivalent to “zeroing” the output of one of the
voltage sources.

If, on the other hand, we wished to cancel the effects of a current source, it
would stand to reason that an open circuit could be substituted for the current source,
since an open circuit is, by definition, a circuit element through which no current can
flow (and which therefore generates zero current). These basic principles are used
frequently in the analysis of circuits and are summarized in Figure 3.28.

LO3 > 1. In order to set a voltage source equal to zero, we replace it with a short circuit.
R; R
. < <
Vs Is =R Is R
<> T <>

A circuit The same circuit with vs=0

2. In order to set a current source equal to zero, we replace it with an open circuit.

R} R
— AAAA
YVVY
V. i s R V. SR
S S :: 2. S T :: 2
A circuit The same circuit withis=0

Figure 3.28 Zeroing voltage and current sources

The principle of superposition can easily be applied to circuits containing mul-
tiple sources and is sometimes an effective solution technique. More often, however,
other methods result in a more efficient solution. Example 3.14 further illustrates
the use of superposition to analyze a simple network. The Check Your Understand-
ing exercises at the end of the section illustrate the fact that superposition is often a
cumbersome solution method.

LO3> EXAMPLE 3.14 Principle of Superposition

Problem

Determine the current i, in the circuit of Figure 3.29(a), using the principle of superposition.
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Solution

Known Quantities: Source voltage and current values; resistor values.
Find: Unknown current i,.

Given Data: Vs =10V; s =2A;Ri =5Q; R, =2Q; R3 =4 Q.
Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Part1: Zerothe currentsource. Once the current source has been set to zero (replaced
by an open circuit), the resulting circuit is a simple series circuit shown in Figure 3.29(b); the
current flowing in this circuit ip_y is the current we seek. Since the total series resistance is
54+2+4 =11, we find thati,_y = 10/11 = 0.909 A.

Part 2: Zero the voltage source. After we zero the voltage source by replacing it with a
short circuit, the resulting circuit consists of three parallel branches shown in Figure 3.29(c):
On the left we have a single 5-2 resistor; in the center we have a —2-A current source (negative
because the source current is shown to flow into the ground node); on the right we have a total
resistance of 2 + 4 = 6 Q. Using the current divider rule, we find that the current flowing in
the right branch i,_, is given by

1

. _ 6 oy
It = 7= 1( 2) = —0.909 A

5 + 6
And, finally, the unknown current i, is found to be

ip =iy +i2.) =0A

Comments: Superposition is not always a very efficient tool. Beginners may find it prefer-
able to rely on more systematic methods, such as node analysis, to solve circuits. Eventually,
experience will suggest the preferred method for any given circuit.

CHECK YOUR UNDERSTANDING

In Example 3.14, verify that the same answer is obtained by mesh or node analysis.
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Figure 3.29 (a) Circuit for
the illustration of the principle
of superposition

Ry Ry

Vs Rs
oR

L

(b)

Figure 3.29 (b) Circuit
with current source set to zero

Figure 3.29 (c)
Circuit with voltage source
set to zero

EXAMPLE 3.15 Principle of Superposition

< LO3

Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.30are lg = 12A; Vg = 12V; Rg =1 Q; Rg = 0.3 Q2; R=0.23 Q.

Find: The voltage across R.

Rg L+
HORE: Ea
3
@

Figure 3.30 (a) Circuit
used to demonstrate the
principle of superposition
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Rg L+
ROX "2V
T

(b)

Figure 3.30 (b) Circuit
obtained by suppressing the

voltage source

©

Figure 3.30 (c) Circuit
obtained by suppressing the

current source

Linear
network

Figure 3.31 One-port

network
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Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage
source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and
apply KCL:

Veot o Vrar o Vea
-1 ——Ft — 4+ —=0
B+ Re + Re + R

_ ls _ 12 — 138V
Rs+1/Re+ /R _ 1/1+1/03+1/023

VR—I

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as
shown in Figure 3.30(c), and apply KCL:

VR—V VR_V - VG VR—V
=0
Rg + Re + R

Ve/Re 12/0.3
Vey = = — 461V
RV = 1/Rs +1/Rs + /R 1/1+1/0.3+1/0.23

Finally, we compute the voltage across R as the sum of its two components:
Vg = Vg +Vr_y =5.99V

Comments: Superposition essentially doubles the work required to solve this problem. The
voltage across R can easily be determined by using a single KCL.

CHECK YOUR UNDERSTANDING

In Example 3.15, verify that the same answer can be obtained by a single application of KCL.
Find the voltages v, and vy, for the circuits of Example 3.7 by superposition.

Solve Example 3.7, using superposition.

Solve Example 3.10, using superposition.

3.6 ONE-PORT NETWORKS AND EQUIVALENT
CIRCUITS

You may recall that, in the discussion of ideal sources in Chapter 2, the flow of
energy from a source to a load was described in a very general form, by showing
the connection of two “black boxes” labeled source and load (see Figure 2.2). In the
same figure, two other descriptions were shown: a symbolic one, depicting an ideal
voltage source and an ideal resistor; and a physical representation, in which the load
was represented by a headlight and the source by an automotive battery. Whatever
the form chosen for source-load representation, each block—source or load—may
be viewed as a two-terminal device, described by an i-v characteristic. This general
circuit representation is shown in Figure 3.31. This configuration is called a one-port
network and is particularly useful for introducing the notion of equivalent circuits.
Note that the network of Figure 3.31 is completely described by its i-v characteristic;
this point is best illustrated by Example 3.16.
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EXAMPLE 3.16 Equivalent Resistance Calculation

Problem

Determine the source (load) current i in the circuit of Figure 3.32, using equivalent resistance
ideas.

< +0l_'

Vs

(N

Source Load

Figure 3.32 lllustration of
equivalent-circuit concept

Solution

Known Quantities: Source voltage; resistor values.

Find: Source current.

Given Data: Figures 3.32 and 3.33.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Insofar as the source is concerned, the three parallel resistors appear identical to a
single equivalent resistance of value

R 1
7 1/R; + 1/R;, + 1/R,

Thus, we can replace the three load resistors with the single equivalent resistor Req, as shown
in Figure 3.33, and calculate
. v
i=—
REQ
Comments: Similarly, insofar as the load is concerned, it would not matter whether the source
consisted, say, of a single 6-V battery or of four 1.5-V batteries connected in series.

< LO4

AAAA
VVVY
P

O
> <
=R sk
>
(e}
Load circuit
Oo—
<>
SReo
o—
Equivalent
load circuit

Figure 3.33 Equivalent
load resistance concept

For the remainder of this section, we focus on developing techniques for com-
puting equivalent representations of linear networks. Such representations are useful
in deriving some simple—yet general—results for linear circuits, as well as analyzing
simple nonlinear circuits.

Thévenin and Norton Equivalent Circuits

This section discusses one of the most important topics in the analysis of electric
circuits: the concept of an equivalent circuit. We show that it is always possible to
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view even a very complicated circuit in terms of much simpler equivalent source and
load circuits, and that the transformations leading to equivalent circuits are easily
managed, with a little practice. In studying node voltage and mesh current analysis,
you may have observed that there is a certain correspondence (called duality) between
current sources and voltage sources, on one hand, and parallel and series circuits, on
the other. This duality appears again very clearly in the analysis of equivalent circuits:
It will shortly be shown that equivalent circuits fall into one of two classes, involving
either voltage or current sources and (respectively) either series or parallel resistors,
reflecting this same principle of duality. The discussion of equivalent circuits begins
with the statement of two very important theorems, summarized in Figures 3.34
and 3.35.

Source Load — = Vr v Load

Ol < +0

Figure 3.34 lllustration of Thévenin theorem

—O——]
Load | — iN@E‘ Load

Figure 3.35 lllustration of Norton theorem

Source

Ol < +0Q

Yvvy
Ol <+

The Thévenin Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal voltage source vt in series with an equivalent resistance
Rr.

The Norton Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal current source iy in parallel with an equivalent resistance
RN

The first obvious question to arise is, How are these equivalent source voltages,
currents, and resistances computed? The next few sections illustrate the computation
of these equivalent circuit parameters, mostly through examples. Asubstantial number
of Check Your Understanding exercises are also provided, with the following caution:
The only way to master the computation of Thévenin and Norton equivalent circuits
is by patient repetition.
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Determination of Norton or Thévenin Equivalent
Resistance

Inthis subsection, we illustrate the calculation of the equivalent resistance of a network
containing only linear resistors and independent sources. The first step in computing
a Thévenin or Norton equivalent circuit consists of finding the equivalent resistance
presented by the circuit at its terminals. This is done by setting all sources in the circuit
equal to zero and computing the effective resistance between terminals. The voltage
and current sources present in the circuit are set to zero by the same technique used
with the principle of superposition: Voltage sources are replaced by short circuits;
current sources, by open circuits. To illustrate the procedure, consider the simple
circuit of Figure 3.36; the objective is to compute the equivalent resistance the load
RL “sees” at port a-b.

To compute the equivalent resistance, we remove the load resistance from the
circuit and replace the voltage source vs by a short circuit. At this point—seen from
the load terminals—the circuit appears as shown in Figure 3.37. You can see that
R; and R, are in parallel, since they are connected between the same two nodes. If
the total resistance between terminals a and b is denoted by Ry, its value can be
determined as follows:

Rr =R3+R1 | Rz (3.24)

An alternative way of viewing Ry is depicted in Figure 3.38, where a hypo-
thetical 1-A current source has been connected to terminals a and b. The voltage
vy appearing across the a-b pair is then numerically equal to Ry (only because is
= 1 Al). With the 1-A source current flowing in the circuit, it should be apparent that
the source current encounters R as a resistor in series with the parallel combination
of Ry and Ry, prior to completing the loop.

Summarizing the procedure, we can produce a set of simple rules as an aid in
the computation of the Thévenin (or Norton) equivalent resistance for a linear resis-
tive circuit that does not contain dependent sources. The case of circuits containing
dependent sources is outlined later in this section.

COMPUTATION OF EQUIVALENT RESISTANCE OF A ONE-PORT
NETWORK THAT DOES NOT CONTAIN DEPENDENT SOURCES
1. Remove the load.
2. Zero all independent voltage and current sources.

3. Compute the total resistance between load terminals, with the load
removed. This resistance is equivalent to that which would be encountered
by a current source connected to the circuit in place of the load.

We note immediately that this procedure yields a result that is independent of
the load. This is a very desirable feature, since once the equivalent resistance has been
identified for a source circuit, the equivalent circuit remains unchanged if we connect
a different load. The following examples further illustrate the procedure.
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Figure 3.36 Computation
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Figure 3.38 An alternative
method of determining the
Thévenin resistance
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|_04> EXAMPLE 3.17 Thévenin Equivalent Resistance

Problem

Find the Thévenin equivalent resistance seen by the load R, in the circuit of Figure 3.39.

Rs Rsa
AAAA AAAA
\AAAJ YVVY
> <> <>
< < <
RS 3R | SR R
< <

Figure 3.39

Solution
Known Quantities: Resistor and current source values.
Find: Thévenin equivalent resistance Rr.

Schematics, Diagrams, Circuits, and Given Data: R, =20Q; R, =20Q;1 =5A;
R; =10Q2; Ry =20Q; Rs = 10 Q2.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Focus on Methodology box introduced in this section, we first set
Rs R a the current source equal to zero, by replacing it with an open circuit. The resulting circuit is

AAAA AAAA
M o depicted in Figure 3.40. Looking into terminal a-b, we recognize that, starting from the left
RS =R < (away from the load) and moving to the right (toward the load), the equivalent resistance is
iz 2T b3 given by the expression
0 Rr = [((Ru]IR2) +R3) [IR4] + Rs
= [((20]|20) + 10) ||20] + 10 = 20 Q2
Figure 3.40

Comments: Note that the reduction of the circuit started at the farthest point away from the
load.

CHECK YOUR UNDERSTANDING

Find the Thévenin equivalent resistance of the circuit below, as seen by the load resistor R,

.5 kQ a
AAA o
VVVy ©
<>
3kQZ 5kQ
> < <>
5kQ = SR
< < <
2kQ :E 5V

b

Find the Thévenin equivalent resistance seen by the load resistor R._ in the following circuit.
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20
AAA
YVVY
6 Q 50Q a
AAA AAAA AAA O
\AAAd YVVY YVVY ~
> 1OV i > >
O.5A<> 403 303 3R
W 100
b
B L= BAGC = 1Y slamsuy
EXAMPLE 3.18 Thévenin Equivalent Resistance <|_04

Problem

Compute the Thévenin equivalent resistance seen by the load in the circuit of Figure 3.41.

Ry Rs a
——AAAA AAAA O
YVVV YVVY had
<> <> <>
\Y =R | =R, =R
< < <
O
O
b
Figure 3.41

Solution
Known Quantities: Resistor values.
Find: Thévenin equivalent resistance Ry.

Schematics, Diagrams, Circuits, and Given Data: V =5V;R; =2Q;R, =2Q;R;3 =1;
I =1A R, =2Q.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin equivalent resistance Focus on Methodology box, we first
set the current source equal to zero, by replacing it with an open circuit, then set the voltage
source equal to zero by replacing it with a short circuit. The resulting circuit is depicted in

Oo

Figure 3.42. Looking into terminal a-b, we recognize that, starting from the left (away from fﬁ
the load) and moving to the right (toward the load), the equivalent resistance is given by the VWYY
expression L L L
RZ 2R B
Rr = ((RulIR2) + Ra) [IR4 T 7 ]

=(@)+DI2=1Q

Comments: Note that the reduction of the circuit started at the farthest point away from the

Figure 3.42
load.

cO
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One-port
network Voc

Figure 3.43 Equiva-
lence of open-circuit and
Thévenin voltage
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CHECK YOUR UNDERSTANDING

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor R, .

kQ 6 kQ 2kQ a
AAA AAAA AN\N_O_
\AA \AAA

<

< > <
1MQZ 20V > 6kQ 3kQ=

] | ]

VVVY
N
=~
©

AAAA

VVVY

AAAA

VVVY
AAAA
VVVY

o O

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor R,

10Q a
AMA O
Wy O

10 L
2100 2003

AAAA
\AAAS

AAAA
VVVY

12V

o O

B90°L = 1Y ‘BN 0Y = LY siemsuy

As a final note, the Thévenin and Norton equivalent resistances are one and the
same quantity:

Rr = Ry (3.25)

Therefore, the preceding discussion holds whether we wish to compute a Norton or
a Thévenin equivalent circuit. From here on, we use the notation Rt exclusively, for
both Thévenin and Norton equivalents.

Computing the Thévenin Voltage

This section describes the computation of the Thévenin equivalent voltage vy for an
arbitrary linear resistive circuit containing independent voltage and current sources
and linear resistors. The Thévenin equivalent voltage is defined as follows:

The equivalent (Thévenin) source voltage is equal to the open-circuit voltage
present at the load terminals (with the load removed).

This states that to compute vy, it is sufficient to remove the load and to compute
the open-circuit voltage at the one-port terminals. Figure 3.43 illustrates that the open-
circuit voltage voc and the Thévenin voltage vt must be the same if the Thévenin
theorem is to hold. This is true because in the circuit consisting of vr and Rr, the
voltage voc must equal v, since no current flows through Ry and therefore the voltage
across Ry is zero. Kirchhoff’s voltage law confirms that

vt = R7(0) + voc = voc (3-26)

< LO4
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COMPUTING THE THEVENIN VOLTAGE

. Remove the load, leaving the load terminals open-circuited.

. Define the open-circuit voltage voc across the open load terminals.
. Apply any preferred method (e.g., node analysis) to solve for voc.
. The Thévenin voltage is vt = voc.

A W DN -

The actual computation of the open-circuit voltage is best illustrated by exam-
ples; there is no substitute for practice in becoming familiar with these computations.
To summarize the main points in the computation of open-circuit voltages, consider
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall that
the equivalent resistance of this circuit was given by Rt = R3 +R; || R2. To compute
voc, We disconnect the load, as shown in Figure 3.45, and immediately observe that
no current flows through R3, since there is no closed-circuit connection at that branch.
Therefore, voc must be equal to the voltage across Ry, as illustrated in Figure 3.46.
Since the only closed circuit is the mesh consisting of vs, Ry, and Ry, the answer we
are seeking may be obtained by means of a simple voltage divider:

Ro
Ri+R

It is instructive to review the basic concepts outlined in the example by con-
sidering the original circuit and its Thévenin equivalent side by side, as shown in
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the
current drawn by the load i is the same in both circuits, that current being given by

Rz 1 _ uT
Ri+Rs (Rs+Ri||[R2)+R. Rr+RL

Voc = VR2 = Vs

i, = s (3.27)

Ry Rq Rs+ R [ R,
it it
V. RS vs _Re
s 23 R SR TR R
9 1 2
A circuit Its Thévenin equivalent

Figure 3.47 A circuit and its Thévenin equivalent

The computation of Thévenin equivalent circuits is further illustrated in
Examples 3.19 and 3.20.
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< LO2

Vs Ry

AAAA
YVYVY
2

Figure 3.44

Ry Rs

Vs

AAAA

Figure 3.45

Figure 3.46

EXAMPLE 3.19 Thévenin Equivalent Voltage
(Open-Circuit Voltage)

Problem

Compute the open-circuit voltage voc in the circuit of Figure 3.48.

< LO4
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Solution
Known Quantities: Source voltage; resistor values.
Find: Open-circuit voltage voc.

Schematics, Diagrams, Circuits, and Given Data: V =12V;R; =1Q; R, =10Q;

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin voltage Focus on Methodology box, first we remove the
load and label the open-circuit voltage voc. Next, we observe that since vy is equal to the
reference voltage (i.e., zero), the node voltage v, will be equal, numerically, to the open-circuit
voltage. If we define the other node voltage to be v, node analysis is the natural technique
for arriving at the solution. Figure 3.48 depicts the original circuit ready for node analysis.
Applying KCL at the two nodes, we obtain the following two equations:

V —v v

vV — U,
R1

Rs

=0

Substituting numerical values gives

12—v v

1 10

V— Vs

=0
10

V—UVa Va
10

~ 5 =

In matrix form we can write

12 v 12
-0.1 v | | O
Solving the above matrix equations yields v =
Voc = Vg — Vp = 7.059 V.

-0.1
0.15

10.588 V and v, = 7.059 V. Thus,

Comments: Note that the determination of the Thévenin voltage is nothing more than the
careful application of the basic circuit analysis methods presented in earlier sections. The only
difference is that we first need to properly identify and define the open-circuit load voltage.

CHECK YOUR UNDERSTANDING

Find the open-circuit voltage voc for the circuit of Figure 3.48 if R; =5 Q.

A 8’1 Jamsuy
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EXAMPLE 3.20 Load Current Calculation by Thévenin LO4
Equivalent Method
Problem
Compute the load current i by the Thévenin equivalent method in the circuit of Figure 3.49. a
w
R, I
Solution | () RZEE R
\Y
Known Quantities: Source voltage, resistor values.
Find: Load currenti. b
Figure 3.49
Schematics, Diagrams, Circuits, and Given Data: V =24V;| =3A;R; =4 Q; 9
a
Assumptions: Assume the reference node is at the bottom of the circuit. O
Analysis: \We first compute the Thévenin equivalent resistance. According to the method pro- RFE R, b3
posed earlier, we zero the two sources by shorting the voltage source and opening the current 3 T
source. The resulting circuit is shown in Figure 3.50. We can clearly see that o
Rr =Ri||IR; = 4(|12 =3 Q. b
Following the Thévenin voltage Focus on Methodology box, first we remove the load ;
Lo - A Figure 3.50
and label the open-circuit voltage voc. The circuit is shown in Figure 3.51. Next, we observe
that since vy is equal to the reference voltage (i.e., zero), the node voltage v, will be equal,
numerically, to the open-circuit voltage. In this circuit, a single nodal equation is required to O\Vy
arrive at the solution: R,
L+
V —v ) >3
SO OJS 2*
R1 R v
Substituting numerical values, we find that v, = voc = vr = 27 V. O Vp
Finally, we assemble the Thévenin equivalent circuit, shown in Figure 3.52, and reconnect =
the load resistor. Now the load current can be easily computed to be Figure 3.51
. 27
=" = L _3A
Rr+R. 3+6 20
Comments: |t may appear that the calculation of load current by the Thévenin equivalent w
method leads to more complex calculations than, say, node voltage analysis (you might wish P 60

to try solving the same circuit by node analysis to verify this). However, there is one major
advantage to equivalent circuit analysis: Should the load change (as is often the case in many
practical engineering situations), the equivalent circuit calculations still hold, and only the
(trivial) last step in the above example needs to be repeated. Thus, knowing the Thévenin
equivalent of a particular circuit can be very useful whenever we need to perform computations Figure 3.52 Thévenin
pertaining to any load quantity. equivalent

CHECK YOUR UNDERSTANDING

With reference to Figure 3.44, find the load current i by mesh analysis if vs = 10V,
R; =R3 =50, R, =100 ©, and R = 150 Q.

Find the Thévenin equivalent circuit seen by the load resistor R for the circuit in the figure on
the left.
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Find the Thévenin equivalent circuit for the circuit in the figure on the right.

One-port || i
network Y

Figure 3.53 lllustration of
Norton equivalent circuit

Short circuit
replacing the load

Figure 3.54 Computation
of Norton current

100 Q 20 Q 24Q a
- AMAM AAAA
YVYY YVVY
< 1 1 < <
50V 00 EA ZA 200 0ez R
b

‘AY0L0 = ta=90Ca
‘BOT =YY ING = 1 ="20a50¢g = 1Y 'V /58200 = I iSIamsuy

Computing the Norton Current

The computation of the Norton equivalent current is very similar in concept to that
of the Thévenin voltage. The following definition serves as a starting point:

Definition

The Norton equivalent current is equal to the short-circuit current that would
flow if the load were replaced by a short circuit.

An explanation for the definition of the Norton current is easily found by considering,
again, an arbitrary one-port network, as shown in Figure 3.53, where the one-port
network is shown together with its Norton equivalent circuit.

It should be clear that the current isc flowing through the short circuit replacing
the load is exactly the Norton current iy, since all the source current in the circuit of
Figure 3.53 must flow through the short circuit. Consider the circuit of Figure 3.54,
shown with a short circuit in place of the load resistance. Any of the techniques
presented in this chapter could be employed to determine the current isc. In this
particular case, mesh analysis is a convenient tool, once it is recognized that the
short-circuit current is a mesh current. Let i; and i, = igc be the mesh currents in the
circuit of Figure 3.54. Then the following mesh equations can be derived and solved
for the short-circuit current:

(R1 + R2)iy — Raisc = vs

—R2i1 + (R2 + R3)isc =0
An alternative formulation would employ node analysis to derive the equation

Us — v v v

Ri R + R3
leading to

R2R3
=
*RiR; + RoRs + RiR;




Part | Circuits

COMPUTING THE NORTON CURRENT

. Replace the load with a short circuit.

. Define the short-circuit current isc to be the Norton equivalent current.
. Apply any preferred method (e.g., node analysis) to solve for igc.

. The Norton current is iy = isc.

A W DN -

Recognizing that isc = v/R3, we can determine the Norton current to be
v _ Us Rz
Rs  RiRs +RyR3 +RiRy

Thus, conceptually, the computation of the Norton current simply requires identifying
the appropriate short-circuit current. Example 3.21 further illustrates this idea.

iN =

101

< LO4

EXAMPLE 3.21 Norton Equivalent Circuit

Problem

Determine the Norton current and the Norton equivalent for the circuit of Figure 3.55.

Solution
Known Quantities: Source voltage and current; resistor values.
Find: Equivalent resistance Rr; Norton current iy = isc.

Schematics, Diagrams, Circuits, and Given Data: V =6V, =2A;R, =6Q;R, =3 Q;
Ry =2 Q.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: We first compute the Thévenin equivalent resistance. We zero the two sources by
shorting the voltage source and opening the current source. The resulting circuit is shown in
Figure 3.56. We can clearly see that Rt = R;||R, + R3 =6(3+2=4 Q.

Next we compute the Norton current. Following the Norton current Focus on Methodology
box, first we replace the load with a short circuit and label the short-circuit current isc. The
circuit is shown in Figure 3.57 ready for node voltage analysis. Note that we have identified two
node voltages v; and v,, and that the voltage source requires that v, — v; = V. The unknown
current flowing through the voltage source is labeled i.

Now we are ready to apply the node analysis method.

1. The reference node is the ground node in Figure 3.57.

2. The two nodes v; and v, are also identified in the figure; note that the voltage source
imposes the constraint v, = v; + V. Thus only one of the two nodes leads to an indepen-
dent equation. The unknown current i provides the second independent variable, as you
will see in the next step.
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3. Applying KCL at nodes 1 and 2, we obtain the following set of equations:

I—ﬂ—i:O node 1

node 2

Next, we eliminate v; by substituting v; = v, — V in the first equation:
Uy — \Y

1

| — —i=0 node 1

and we rewrite the equations in matrix form, recognizing that the unknowns are i and v,.
Note that the short-circuit current is isc = v,/R3; thus we will seek to solve for v,.

1
1 — \Y
Ry [i]: '+ &
1 1 v2
1 4 0
L R2+R3

Substituting numerical values, we obtain

[ 1 0.1667 i | _ |3

| -1 0.8333 v || 0

and we can numerically solve for the two unknowns to find that i = 2.5 Aand v, = 3 V.
Finally, the Norton or short-circuit current is iy = isc = v,/R3 = 1.5 A.

Comments: In this example it was not obvious whether node analysis, mesh analysis, or
superposition might be the quickest method to arrive at the answer. It would be a very good
exercise to try the other two methods and compare the complexity of the three solutions. The
complete Norton equivalent circuit is shown in Figure 3.58.

LO4 >

CHECK YOUR UNDERSTANDING

Repeat Example 3.21, using mesh analysis. Note that in this case one of the three mesh currents
is known, and therefore the complexity of the solution will be unchanged.

Source Transformations

This section illustrates source transformations, a procedure that may be very useful
in the computation of equivalent circuits, permitting, in some circumstances, replace-
ment of current sources with voltage sources and vice versa. The Norton and Thévenin
theorems state that any one-port network can be represented by a voltage source in
series with a resistance, or by a current source in parallel with a resistance, and that
either of these representations is equivalent to the original circuit, as illustrated in
Figure 3.59.

An extension of this result is that any circuit in Thévenin equivalent form may
be replaced by a circuit in Norton equivalent form, provided that we use the following
relationship:

T = RTiN (328)
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One-port

) 2
V- i SR
network T il =7

Thévenin equivalent Norton equivalent

Figure 3.59 Equivalence of Thévenin and Norton representations

Thus, the subcircuit to the left of the dashed line in Figure 3.60 may be replaced by its filA R,
Norton equivalent, as shown in the figure. Then the computation of isc becomes very o o
straightforward, since the three resistors are in parallel with the current source and | vs 2R isc¢
therefore a simple current divider may be used to compute the short-circuit current. 7

Observe that the short-circuit current is the current flowing through R3; therefore,

1/Rs Us vsR2
~ 1/Ry +1/R; +1/R3R;  RyR3 +R;R3 + RiRy
which is the identical result obtained for the same circuit in the preceding section,
as you may easily verify. This source transformation method can be very useful, if v
employed correctly. Figure 3.61 shows how to recognize subcircuits amenable to R
such source transformations. Example 3.22 is a numerical example illustrating the
procedure.

isc = in (3.29)
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Figure 3.61 Subcircuits amenable to source transformation

EXAMPLE 3.22 Source Transformations <LO4

Problem

Compute the Norton equivalent of the circuit of Figure 3.62 using source transformations.

Solution
Known Quantities: Source voltages and current; resistor values.
Find: Equivalent resistance Rr; Norton current iy = isc.

Schematics, Diagrams, Circuits, and Given Data: V, =50V;| =0.5A;V, =5V,
R; =100 ; R, =100 ; R; = 200 ; R4 = 160 .
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Figure 3.62

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: First, we sketch the circuit again, to take advantage of the source transformation
technique; we emphasize the location of the nodes for this purpose, as shown in Figure 3.63.
Nodes a’ and b’ have been purposely separated from nodes a” and b” even though these are the
same pairs of nodes. We can now replace the branch consisting of V; and R;, which appears
between nodes a” and b”, with an equivalent Norton circuit with Norton current source Vy /R
and equivalent resistance R;. Similarly, the series branch between nodes a’ and b’ is replaced
by an equivalent Norton circuit with Norton current source V,/Rs and equivalent resistance
R3. The result of these manipulations is shown in Figure 3.64. The same circuit is now depicted
in Figure 3.65 with numerical values substituted for each component. Note how easy it is to
visualize the equivalent resistance: If each current source is replaced by an open circuit, we find

Rr = Ru|Rz||Rs|| + R4 = 200/|100]|100 + 160 = 200 €2

Ry a’ a Ry a
> R3
@) 3R R
V,
—  — N
b" -l- b' b
Figure 3.63
a al a
PN AAR;‘A
N 7 YVVY
Vi < A\ :i
HOESEENIOF LI O R
—>
b -L b' b
Figure 3.64
160Q a
AAAA
YVVY
L b

Figure 3.65
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The final step consists of adding the three currents (—0.025 A) and combining the three
parallel resistors into a single 40-$2 resistor. A further source transformation from Norton to
Thévenin permits the addition of the 40-<2 resistor to the 160-<2 resistor. Finally, transforming
back to Norton we have the final value of the Norton current to be —0.005 A. The final circuit
is shown in Figure 3.66.

Comments: It is not always possible to reduce a circuit as easily as was shown in this
example by means of source transformations. However, it may be advantageous to use source
transformation as a means of converting parts of a circuit to a different form, perhaps more
naturally suited to a particular solution method (e.g., node analysis).

0.005 A () 22000

Figure 3.66
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R

Experimental Determination of Thévenin and
Norton Equivalents

The idea of equivalent circuits as a means of representing complex and sometimes
unknown networks is useful not only analytically, but in practical engineering appli-
cations as well. It is very useful to have a measure, for example, of the equivalent
internal resistance of an instrument, so as to have an idea of its power requirements
and limitations. Fortunately, Thévenin and Norton equivalent circuits can also be
evaluated experimentally by means of very simple techniques. The basic idea is that
the Thévenin voltage is an open-circuit voltage and the Norton current is a short-
circuit current. It should therefore be possible to conduct appropriate measurements
to determine these quantities. Once vr and iy are known, we can determine the
Thévenin resistance of the circuit being analyzed according to the relationship

Ry = % (3.30)
IN
How are vt and iy measured, then?

Figure 3.67 illustrates the measurement of the open-circuit voltage and short-
circuit current for an arbitrary network connected to any load and also illustrates that
the procedure requires some special attention, because of the nonideal nature of any
practical measuring instrument. The figure clearly illustrates that in the presence of
finite meter resistance ry,, one must take this quantity into account in the computation
of the short-circuit current and open-circuit voltage; voc and isc appear between
quotation marks in the figure specifically to illustrate that the measured “open-circuit
voltage” and “short-circuit current” are in fact affected by the internal resistance of
the measuring instrument and are not the true quantities.

You should verify that the following expressions for the true short-circuit current
and open-circuit voltage apply (see the material on nonideal measuring instruments
in Section 2.8):

. . I'm
s m
N sc < + RT>

“ o Rr
vr = “voc” [ 1+ —
m

where iy is the ideal Norton current, vt is the Thévenin voltage, and Rt is the true
Thévenin resistance. If you recall the earlier discussion of the properties of ideal
ammeters and voltmeters, you will recall that for an ideal ammeter, rp,, should approach
zero, while in an ideal voltmeter, the internal resistance should approach an open

(3.31)
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Figure 3.67 Measurement of open-circuit voltage
and short-circuit current

circuit (infinity); thus, the two expressions just given permit the determination of
the true Thévenin and Norton equivalent sources from an (imperfect) measurement
of the open-circuit voltage and short-circuit current, provided that the internal meter
resistance rp, is known. Note also that, in practice, the internal resistance of voltmeters
is sufficiently high to be considered infinite relative to the equivalent resistance of
most practical circuits; on the other hand, it is impossible to construct an ammeter that
has zero internal resistance. If the internal ammeter resistance is known, however, a
reasonably accurate measurement of short-circuit current may be obtained.

One last comment is in order concerning the practical measurement of the inter-
nal resistance of a network. In most cases, it is not advisable to actually short circuit
a network by inserting a series ammeter as shown in Figure 3.67; permanent damage
to the circuit or to the ammeter may be a consequence. For example, imagine that
you wanted to estimate the internal resistance of an automotive battery; connecting
a laboratory ammeter between the battery terminals would surely result in immedi-
ate loss of the instrument. Most ammeters are not designed to withstand currents of
such magnitude. Thus, the experimenter should pay attention to the capabilities of
the ammeters and voltmeters used in measurements of this type, as well as to the
(approximate) power ratings of any sources present. However, there are established
techniques especially designed to measure large currents.

3.7 MAXIMUM POWER TRANSFER

The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
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load. The Thévenin and Norton models imply that some of the power generated by
the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power
can be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what is the value of the load resistance that will absorb maximum power
from the source? The answer to these questions is contained in the maximum power
transfer theorem, which is the subject of this section.

The model employed in the discussion of power transfer is illustrated in
Figure 3.68, where a practical source is represented by means of its Thévenin equiva-
lent circuit. The maximum power transfer problem is easily formulated if we consider
that the power absorbed by the load P, is given by

PL=i’RL (3.32)

and that the load current is given by the familiar expression

vt

iL= 3.33
- RL+ Rt (3:33)
Combining the two expressions, we can compute the load power as
v}
Pp=——-R 3.34
L= R R (3.34)

To find the value of R that maximizes the expression for P, (assuming that V+ and
Ry are fixed), the simple maximization problem

dP,
—0 3.35
aR. (3.35)

must be solved. Computing the derivative, we obtain the following expression:

dPL  vf(RL4Rr)? — 205R (RL + Ry)

dRe (RL+ Rr)? (539
which leads to the expression

(RL+R71)>=2R (RL+R7) =0 (3.37)
It is easy to verify that the solution of this equation is

RL =Ry (3.38)

Thus, to transfer maximum power to a load, the equivalent source and load resistances
must be matched, that is, equal to each other. Figure 3.69 depicts a plot of the load
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Figure 3.70 Source
loading effects
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power divided by v% versus the ratio of R to Ry. Note that this value is maximum
when R. =Ry.

Graphical representation of maximum power transfer
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Figure 3.69 Graphical representation of maximum power transfer

This analysis shows that to transfer maximum power to a load, given a fixed
equivalent source resistance, the load resistance must match the equivalent source
resistance. What if we reversed the problem statement and required that the load
resistance be fixed? What would then be the value of source resistance that maximizes
the power transfer in this case? The answer to this question can be easily obtained by
solving the Check Your Understanding exercises at the end of the section.

Aproblem related to power transfer is that of source loading. This phenomenon,
which is illustrated in Figure 3.70, may be explained as follows: When a practical
voltage source is connected to a load, the current that flows from the source to the
load will cause a voltage drop across the internal source resistance vj,; as a conse-
guence, the voltage actually seen by the load will be somewhat lower than the open-
circuit voltage of the source. As stated earlier, the open-circuit voltage is equal to the
Thévenin voltage. The extent of the internal voltage drop within the source depends
on the amount of current drawn by the load. With reference to Figure 3.71, this internal
drop is equal to iRy, and therefore the load voltage will be

UV =0U1 — iRT (339)

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
current is denoted by i;, in Figure 3.70. Thus the load will receive only part of the
short-circuit current available from the source (the Norton current):

v

=iy~ (3.40)
T
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Figure 3.71 A simplified model of an audio system

It is therefore desirable to have a very large internal resistance in a practical current
source. You may wish to refer to the discussion of practical sources to verify that the
earlier interpretation of practical sources can be expanded in light of the more recent
discussion of equivalent circuits.
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EXAMPLE 3.23 Maximum Power Transfer

Problem

Use the maximum power transfer theorem to determine the increase in power delivered to a
loudspeaker resulting from matching the speaker load resistance to the amplifier equivalent
source resistance.

Solution

Known Quantities: Source equivalent resistance Ry; unmatched speaker load resistance R y;
matched loudspeaker load resistance Ry .

Find: Difference between power delivered to loudspeaker with unmatched and matched loads,
and corresponding percentage increase.

Schematics, Diagrams, Circuits, and Given Data: Rt =8 Q; Ry =16 Q; R vy =8 Q.

Assumptions: The amplifier can be modeled as a linear resistive circuit, for the purposes of
this analysis.

Analysis: Imagine that we have unknowingly connected an 8- amplifier to a 16-2 speaker.
We can compute the power delivered to the speaker as follows. The load voltage is found by
using the voltage divider rule:

Riu 2

—vur

Ny = ——vr =
H Riu + Ry 73

and the load power is then computed to be

2 4 2
Pu= -t = 2T _ 0027802
Ru  9Rw

< LO5
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Let us now repeat the calculation for the case of a matched 8-<2 speaker resistance R . Let
the new load voltage be v,y and the corresponding load power be P . Then

and

2 2
viv _ 1 g

= > =0.0312502
Rim 4 Rum T

The increase in load power is therefore

_0.03125 —0.0278

AP = 100 = 12.5%
0.0278 x °

Comments: Inpractice, an audio amplifier and a speaker are not well represented by the simple
resistive Thévenin equivalent models used in the present example. Circuits that are appropriate
to model amplifiers and loudspeakers are presented in later chapters. The audiophile can find
further information concerning audio circuits in Chapters 8 and 13.

CHECK YOUR UNDERSTANDING

A practical voltage source has an internal resistance of 1.2 2 and generates a 30-V output under
open-circuit conditions. What is the smallest load resistance we can connect to the source if
we do not wish the load voltage to drop by more than 2 percent with respect to the source
open-circuit voltage?

A practical current source has an internal resistance of 12 k2 and generates a 200-mA output
under short-circuit conditions. What percentage drop in load current will be experienced (with
respect to the short-circuit condition) if a 200-Q2 load is connected to the current source?
Repeat the derivation leading to equation 3.38 for the case where the load resistance is fixed
and the source resistance is variable. That is, differentiate the expression for the load power,
P_ with respect to Rs instead of R_. What is the value of Rs that results in maximum power
transfer to the load?

0= 54 ‘%P9'T ‘T 8'8G Slemsuy

3.8 NONLINEAR CIRCUIT ELEMENTS

Until now the focus of this chapter has been on linear circuits, containing ideal voltage
and currentsources, and linear resistors. In effect, one reason for the simplicity of some
of the techniques illustrated earlier is the ability to utilize Ohm’s law as a simple, linear
description of the i-v characteristic of an ideal resistor. In many practical instances,
however, the engineer is faced with elements exhibiting a nonlinear i-v characteristic.
This section explores two methods for analyzing nonlinear circuit elements.

Description of Nonlinear Elements

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. For example, Figure 3.72
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depicts an element with an exponential i-v characteristic, described by the following
equations:

av

i = lge v>0

3.41
i=—lp v<0 ( )

There exists, in fact, a circuit element (the semiconductor diode) that very nearly
satisfies this simple relationship. The difficulty in the i-v relationship of equation
3.41 is that it is not possible, in general, to obtain a closed-form analytical solution,
even for a very simple circuit.

With the knowledge of equivalent circuits you have just acquired, one approach
to analyzing a circuit containing a nonlinear element might be to treat the nonlinear
element as a load and to compute the Thévenin equivalent of the remaining circuit, as
shown in Figure 3.73. Applying KVL, the following equation may then be obtained:

vt = Rriy + vy (3.42)

To obtain the second equation needed to solve for both the unknown voltage vy
and the unknown current iy, it is necessary to resort to the i-v description of the
nonlinear element, namely, equation 3.41. If, for the moment, only positive voltages
are considered, the circuit is completely described by the following system:

Iy = lge*™ v >0
T * (3.43)
vt = Ryly + vy

The two parts of equation 3.43 represent a system of two equations in two unknowns;
however, one of these equations is nonlinear. If we solve for the load voltage and
current, for example, by substituting the expression for iy in the linear equation, we
obtain the following expression:

v = Ryloe®™ + vy (3.44)
or
Uy = vr — Rylge®™ (345)

Equations 3.44 and 3.45 do not have a closed-form solution; that is, they are tran-
scendental equations. How can vy be found? One possibility is to generate a solution
numerically, by guessing an initial value (for example, v, = 0) and iterating until a
sufficiently precise solution is found. This solution is explored further in the home-
work problems. Another method is based on a graphical analysis of the circuit and is
described in the following section.

Graphical (Load-Line) Analysis of Nonlinear Circuits

The nonlinear system of equations of the previous section may be analyzed in a
different light, by considering the graphical representation of equation 3.42, which
may also be written as

= — vy - (3.46)
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Vr

Figure 3.74 Load line
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X RT X RT
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Figure 3.75 Graphical solution of equations 3.44 and 3.45

We notice, first, that equation 3.46 describes the behavior of any load, linear or
nonlinear, since we have made no assumptions regarding the nature of the load voltage
and current. Second, it is the equation of a line in the iyvy plane, with slope —1/Rt
and iy intercept Vr /Rr. This equation is referred to as the load-line equation; its
graphical interpretation is very useful and is shown in Figure 3.74.

The load-line equation is but one of two i-v characteristics we have available,
the other being the nonlinear-device characteristic of equation 3.41. The intersection
of the two curves yields the solution of our nonlinear system of equations. This result
is depicted in Figure 3.75.

Finally, another important point should be emphasized: The linear network
reduction methods introduced in the preceding sections can always be employed to
reduce any circuit containing a single nonlinear element to the Thévenin equivalent
form, as illustrated in Figure 3.76. The key is to identify the nonlinear element and to
treat it as a load. Thus, the equivalent-circuit solution methods developed earlier can
be very useful in simplifying problems in which a nonlinear load is present. Examples
3.24 and 3.25 further illustrate the load-line analysis method.

Ry
—<>—|\v i L
+ +
Linear v, | Nonlinear vy v, | Nonlinear
network load load

Figure 3.76 Transformation of nonlinear circuit of Thévenin equivalent

EXAMPLE 3.24 Nonlinear Load Power Dissipation

Problem

Alinear generator is connected to a nonlinear load in the configuration of Figure 3.76. Determine
the power dissipated by the load.
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Solution

Known Quantities: Generator Thévenin equivalent circuit; load i-v characteristic and load
line.

Find: Power dissipated by load Py.
Schematics, Diagrams, Circuits, and Given Data: Rt = 30 Q; vy =15 V.
Assumptions: None.

Analysis: \We can model the circuit as shown in Figure 3.76. The objective is to determine the
voltage vy and the current iy, using graphical methods. The load-line equation for the circuit is
given by the expression

i = —ivx +or
Rt Rr
or
ix =———U+ 1_5
30 30

This equation represents a line in the iy vy plane, with iy interceptat 0.5 Aand v, interceptat 15 V.
To determine the operating point of the circuit, we superimpose the load line on the device i-v
characteristic, as shown in Figure 3.77, and determine the solution by finding the intersection
of the load line with the device curve. Inspection of the graph reveals that the intersection point
is given approximately by

ix=014A v =11V
and therefore the power dissipated by the nonlinear load is

P, =014 x 11 =154 W
It is important to observe that the result obtained in this example is, in essence, a description
of experimental procedures, indicating that the analytical concepts developed in this chapter
also apply to practical measurements.
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Figure 3.77
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CHECK YOUR UNDERSTANDING

Example 3.24 demonstrates a graphical solution method. Sometimes it is possible to determine
the solution for a nonlinear load by analytical methods. Imagine that the same generator of
Example 3.24 is now connected to a “square law” load, that is, one for which v, = Bi2, with
B = 0.1. Determine the load current iy. (Hint: Assume that only positive solutions are possible,
given the polarity of the generator.)

YV G0 = I :Jamsuy

Load current, A

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

L06> EXAMPLE 3.25 Load-Line Analysis

Problem

A temperature sensor has a nonlinear i-v characteristic, shown in the figure on the left. The
load is connected to a circuit represented by its Thévenin equivalent circuit. Determine the
current flowing through the temperature sensor. The circuit connection is identical to that of
Figure 3.76.

Solution
Known Quantities: R = 6.67 Q; V1 = 1.67 V. iy = 0.14 — 0.03v2.
Find: iy.

Analysis: The figure on the left depicts the device i-v characteristic. The figure on the right
depicts a plot of both the device i-v characteristic and the load line obtained from

. 1 uT
Iy=——uvy+ — = —0.150, + 0.25
X RT X RT X
Nonlinear load i-v characteristic 02 Graphical solution by load-line analysis
- I I I I I
\\ |— Nonlinearloadi-vcurvel_
0.18 | —— Loadline
0.16
< 014
o 0.12 AN
3
\ -g 0.1
- 0.08
N\
\ 0.06 \ \‘
0.04 A\
0.02
N\
AN
0 02 04 06 08 1 12 14 16 18 2 00 02 04 06 08 1 12 14 16 18 2
Load voltage, V Load voltage, V

@ (b)
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The solution for v, and i, occurs at the intersection of the device and load-line characteristics:
iy ~012A v, ~09V.
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CHECK YOUR UNDERSTANDING

Knowing that the load i-v characteristic is given exactly by the expression iy = 0.14
—0.03v2, determine the load current iy. (Hint: Assume that only positive solutions are possible,
given the polarity of the generator.)

V OTT'0 = "1 ilamsuy

Conclusion

The objective of this chapter is to provide a practical introduction to the analysis of linear
resistive circuits. The emphasis on examples is important at this stage, since we believe that
familiarity with the basic circuit analysis techniques will greatly ease the task of learning more
advanced ideas in circuits and electronics. In particular, your goal at this point should be to
have mastered six analysis methods, summarized as follows:

1.,2. Node voltage and mesh current analysis. These methods are analogous in concept;
the choice of a preferred method depends on the specific circuit. They are generally
applicable to the circuits we analyze in this book and are amenable to solution by
matrix methods.

3. The principle of superposition. This is primarily a conceptual aid that may simplify the
solution of circuits containing multiple sources. It is usually not an efficient method.

4. Thévenin and Norton equivalents. The notion of equivalent circuits is at the heart of
circuit analysis. Complete mastery of the reduction of linear resistive circuits to either
equivalent form is a must.

5. Maximum Power transfer. Equivalent circuits provide a very clear explanation of how
power is transferred from a source to a load.

6. Numerical and graphical analysis. These methods apply in the case of nonlinear
circuit elements. The load-line analysis method is intuitively appealing and is
employed again in this book to analyze electronic devices.

The material covered in this chapter is essential to the development of more advanced
techniques throughout the remainder of the book.

HOMEWORK PROBLEMS

Sections 3.2 through 3.4:
Node Mesh Analysis

N0,

AAA
\A
w
)

3.1 Use node voltage analysis to find the voltages V; and
V, for the circuit of Figure P3.1.

2Q

AAAA

\AAAS

3.2 Using node voltage analysis, find the voltages V; and
V, for the circuit of Figure P3.2.
Figure P3.1

|||—
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20v(®) 200 g 300 300Q

Figure P3.2

3.3 Using node voltage analysis in the circuit of Figure
P3.3, find the voltage v across the 0.25-ohm resistance.

05Q
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.
<>2A v § 0250 0.339<§
Figure P3.3

3.4 Using node voltage analysis in the circuit of Figure
P3.4, find the current i through the voltage source.

05Q
MW
050 3V
A (.\
\AAAZ u
—_—
i
@) 2A $ o250 0B
Figure P3.4

3.5 Inthe circuit shown in Figure P3.5, the mesh
currents are

Iy =5A I, =3A I3=7A

Determine the branch currents through:
a. Ry. b. R,. c. Rs.

Resistive Network Analysis

Figure P3.5

3.6 In the circuit shown in Figure P3.5, the source and
node voltages are

Vs1 = Vs, =110V
Va =103V Vg = —-107V

Determine the voltage across each of the five resistors.

3.7 Using node voltage analysis in the circuit of Figure
P3.7, find the currentsi; and i». Ry =3 Q; R, =1 Q;

R; =6 Q.
Ry
AAAA
YYVY
< <
1A w;;rel w;;Rg 2A
Figure P3.7

3.8 Use the mesh analysis to determine the currents iy
and i, in the circuit of Figure P3.7.

3.9 Using node voltage analysis in the circuit of Figure
P3.9, find the current i through the voltage source. Let
R; =100 2; R, =5 Q; R3 = 200 2; R4 =50 ;
V=50V;I=02A

Ry
—— WW—————
2R; ([ R:%
Figure P3.9

3.10 Using node voltage analysis in the circuit of Figure
P3.10, find the three indicated node voltages. Let



I =0.2A; Ry =200 Q; R, =75 Q; R =25 Q;
Ry =50Q; Rs =100 Q; V =10 V.

Figure P3.10

3.11 Using node voltage analysis in the circuit of Figure
P3.11, find the current i drawn from the independent
voltage source. LetV =3V; Ry = @ R, = 1 ;

Re=1URi=1 QR =1Q;1=05A

Rl Vl Fh V2 Fh V3

Figure P3.11

3.12 Find the power delivered to the load resistor R, for
the circuit of Figure P3.12, using node voltage
analysis, giventhatR; =2 Q,Ry =R, =R, =4 Q,
Vs =4V,andls =05A.

YOREL £ "o

Figure P3.12

3.13

a. For the circuit of Figure P3.13, write the node equations
necessary to find voltages Vi, V,, and V3. Note that

G = 1/R = conductance. From the results, note the
interesting form that the matrices [G] and [I] have taken in
the equation [G] [V] = [I] where
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g1 Q12 Oz - O L

921 Q22 -+ -+ O I,
[G]l=| 9= K and [I]=| :

Ot On2 Onn I,

b. Write the matrix form of the node voltage equations
again, using the following formulas:

gii = y_ conductances connected to node i

gij = —y_ conductances shared by nodes i and j

Ii = ) all source currents into node i

Figure P3.13

3.14 Using mesh current analysis, find the currents iy
and i, for the circuit of Figure P3.14.

1Q 2Q
AAA A
VVWWy VWy

H
<
i
)
AAAA
VVVY

30 @ =2v

Figure P3.14

3.15 Using mesh current analysis, find the currents 1,
and |, and the voltage across the top 10-2 resistor in
the circuit of Figure P3.15.
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20Q

15Q

40Q

10Q

Figure P3.15

3.16 Using mesh current analysis, find the voltage, v,
across the 3- resistor in the circuit of Figure P3.16.

1Q

Resistive Network Analysis

2Q

1Q

3Q

2Q
Figure P3.17
3.18 Using mesh current analysis, find the voltage, v,
across the source in the circuit of Figure P3.18.
2Q 10 30
AW AW AW
L +

2 VCD § 30 v C) 2A 20

Figure P3.18

3.19 a. For the circuit of Figure P3.19, write the mesh
equations in matrix form. Notice the form of the [R]
and [V] matrices in the [R] [I] = [V], where

T2
fa I

[R] = 31
L i 2

3

1n

on

rnn

\'A
Vs

and [V] =

Vi

b. Write the matrix form of the mesh equations again by
using the following formulas:

rii = > resistances around loop i

rij = —_ resistances shared by loops i and j

+

I <

Vi = ) source voltages around loop i

Figure P3.16

3.17 Using mesh current analysis, find the currents 1y,
I,, and I3 in the circuit of Figure P3.17 (assume
polarity according to I,).

Ry

AAAA

\AAAS

)

AAA
\AAAJ

Ri T)

AMA
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ey

2

Figure P3.19



3.20 For the circuit of Figure P3.20, use mesh current
analysis to find the matrices required to solve the
circuit, and solve for the unknown currents. Hint: You
may find source transformations useful.

\A W vV, “‘}v\f}v Vs
40 |
< 3
2a() D 260 D D 80
iy i, av(® E

Figure P3.20

3.21 Inthe circuit in Figure P3.21, assume the source
voltage and source current and all resistances are
known.

a. Write the node equations required to determine the
node voltages.

b. Write the matrix solution for each node voltage in
terms of the known parameters.

Ry
A
|S YVVy

[
Py
AA
YVYVY

Figure P3.21

3.22 For the circuit of Figure P3.22 determine

a. The most efficient way to solve for the voltage
across Rsz. Prove your case.
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b. The voltage across Rs.
V51 = Vs, = 110V

R; = 500 m R, = 167 mS2
R; = 700 mQ
R4 = 200 mQ Rs = 333 mQ

AAAA
VVVY
P

VVVY

Figure P3.22

3.23 In the circuit shown in Figure P3.23, Vs, and R
model a temperature sensor, that is,

Vso = KT k=10V/°C
Vs1 =24V Rs =Ry = 12kQ
R, =3k R; = 10 kQ

Ry = 24 kQ Vrs = —2.524V

The voltage across Rz, which is given, indicates the
temperature. Determine the temperature.

<
R 3
< F%

AAAA
-+ +
V <
(—) = Rs3

VVVY

\AAAJ
*Vrs

VVVY

+)
t

Figure P3.23

3.24 Using KCL, perform node analysis on the circuit
shown in Figure P3.24, and determine the voltage
across R4. Note that one source is a controlled voltage
source! Let Vg =5V; Ay =70; Ry = 2.2 kQ;

R, = 1.8kQ; Ry = 6.8 kQ; Ry =220 Q.
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Figure P3.24

3.25 Using mesh current analysis, find the voltage v
across Ry in the circuit of Figure P3.25. Let
V51 = 12V, Vsz :5V, R1 :509, Rz = R3 :ZOQ,
Ry =10 Q; Rs = 15 Q.

Figure P3.25

3.26 Use mesh current analysis to solve for the voltage
v across the current source in the circuit of Figure
P3.26. LetV =3V; |1 =05A; Ry =20 Q;

R, =30Q; Rz =10 Q2; R4, =30 Q; Rs =20 Q.

<
AMA
W
P2
Py

Figure P3.26

3.27 Use mesh current analysis to find the current i in
the circuit of Figure P3.27. LetV = 5.6 V; Ry =50 ;
R, =1.2kQ2; R3 =330 Q; gn = 0.2S; Ry = 440 Q.

Resistive Network Analysis

Figure P3.27

3.28 Using mesh current analysis, find the current i
through the voltage source in the circuit of Figure P3.9.

3.29 Using mesh current analysis, find the current i in
the circuit of Figure P3.10.

3.30 Using mesh current analysis, find the current i in
the circuit of Figure P3.30.

10

1V4Q 1/3Q

Figure P3.30

3.31 Using mesh current analysis, find the voltage gain
A, = vp/v; in the circuit of Figure P3.31.

Figure P3.31

3.32 In the circuit shown in Figure P3.32:

Vs1 = Vs, =450V

Ry =Rs =0.25Q

R =8Q R, =5Q
R3 =32Q

Determine, using KCL and node analysis, the voltage
across Ry, Ry, and Rs.
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Figure P3.32

3.33 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows” (i.e., it
becomes an open circuit).

Vs1 = Vs, =115V
Ri=R;=5Q
R; = Rg = 200 mQ

R; =10 Q

Normally, the voltages across Ry, R,, and R3 are 106.5,
—106.5, and 213.0 V. If F; now blows, or opens,
determine, using KCL and node analysis, the new
voltages across Ry, Ry, and Rs.

AAAA
\AAAS
P

Figure P3.33

3.34 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, it “blows” and the fuse becomes an open circuit.

Vs; = Vs, = 120V
Ri=R,=2%
R; = Rs = 250 mQ

Rs=8Q

If F; blows, or opens, determine, using KCL and node
analysis, the voltages across Ry, Ry, R3, and F;.

3.35 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
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industrial loads, particularly rotating machines.

Vs = Ve = Vo3 = 170V
Rwi = Rwz =Ry, =0.7 Q
RI=19Q R, =23Q
Ry=11Q

a. Determine the number of unknown node voltages
and mesh currents.

b. Compute the node voltages v}, v;, and vg. With
respect to v;,.

V3 V‘3

Figure P3.35

3.36 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

Vg1 = Vs = V53 =170V

Rwi =Rw2 =Rw3 =0.7Q

Ri=19¢Q R, =23¢Q

Ry =11Q
Node analysis with KCL and a ground at the terminal
common to the three sources gives the only unknown
node voltage Vy = 28.94 V. If the node voltages in a
circuit are known, all other voltages and currents in the

circuit can be determined. Determine the current
through and voltage across R;.

3.37 The circuit shown in Figure P3.35 is a simplified
DC version of a typical three-wire, three-phase AC
Y-Y distribution system. Write the mesh (or loop)
equations and any additional equations required to
determine the current through R; in the circuit shown.

3.38 Determine the branch currents, using KVL and
loop analysis in the circuit of Figure P3.35.

Vso = Vs3 =110V Vs; =90V
Ri=79Q Ry =Rs3=3.7Q
RWl = RWZ = Rw3 =13Q
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3.39 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse blows (i.e., it
becomes an open circuit).

Vs = Vs, =115V
Ri=R,=5Q
Rs = Rs = 200 mQ2

R; =10 Q

Determine, using KVL and a mesh analysis, the
voltages across Ry, Rz, and Rz under normal conditions
(i.e., no blown fuses).

Section 3.5: The Principle of Super-
position

3.40 With reference to Figure P3.40, determine the
current through R; due only to the source Vsj.

Vg, =110V Vs, =90V
Ri=5602 R,=235kQ
R; =810

Figure P3.40

3.41 Determine, using superposition, the voltage across
R in the circuit of Figure P3.41.

lb=12A Rg=1Q
Vo =12V Rg =039
R=023Q
Re
ONEL RS
-< + <
Ve

Figure P3.41

3.42 Using superposition, determine the voltage across
R, in the circuit of Figure P3.42.

Vs1 = Vs, =12V
Ri=R;=R;=1kQ

Resistive Network Analysis

Ow
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Figure P3.42

3.43 With reference to Figure P3.43, using
superposition, determine the component of the current
through R that is due to Vs;.

Vs1 = Vg, =450V
Ri=7Q R, =5Q
R; =10 Q Ri=Rs=1Q

VVVY

Figure P3.43

3.44 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase electrical distribution
system.

Vs1 = Vs = Vg3 =170V
Rwi =Rw2 =Rwz =0.7Q
Ri=19Q R, =23Q
R;=11Q
To prove how cumbersome and inefficient (although

sometimes necessary) the method is, determine, using
superposition, the current through R;.

3.45 Repeat Problem 3.9, using the principle of
superposition.

3.46 Repeat Problem 3.10, using the principle of
superposition.

3.47 Repeat Problem 3.11, using the principle of
superposition.

3.48 Repeat Problem 3.23, using the principle of
superposition.

3.49 Repeat Problem 3.25, using the principle of
superposition.

3.50 Repeat Problem 3.26, using the principle of
superposition.



Section 3.6: One-Port Networks
and Equivalent Circuits

3.51 Find the Thévenin equivalent circuit as seen by the
3-Q resistor for the circuit of Figure P3.51.

5Q 1Q
—WW AW ———o—

vy
A

C) 36V ‘3 40 30 Z

Figure P3.51

3.52 Find the voltage v across the 3- resistor in the
circuit of Figure P3.52 by replacing the remainder of
the circuit with its Thévenin equivalent.

2Q

MWW
20 3V
) R D
—_ O

YVVy

ZAGD 4Q 3Q

AAMA

Figure P3.52

3.53 Find the Norton equivalent of the circuit to the left
of the 2-Q resistor in the Figure P3.53.

1Q 1Q 3Q

2v(*_') 3Q () 2A 20

Figure P3.53
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3.54 Find the Norton equivalent to the left of terminals
a and b of the circuit shown in Figure P3.54.

5Q
AA
A\
1Q 3Q
A ° A o a
<+> 8V 2Q
o b

Figure P3.54

3.55 Find the Thévenin equivalent circuit that the load
sees for the circuit of Figure P3.55.

1kQ 1Q 3Q

10v(® 1kQ (@) 10mA IR

Figure P3.55

3.56 Find the Thévenin equivalent resistance seen by
the load resistor R, in the circuit of Figure P3.56.

50 Q
—— W——————
50 Q 50 Q
+—W— -

@) ® wo T § R

Figure P3.56

3.57 Find the Thévenin equivalent of the circuit
connected to R, in Figure P3.57.
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8Q 2Q 8Q

2v(® 80 30 R

Figure P3.57

3.58 Find the Thévenin equivalent of the circuit
connected to R, in Figure P3.58, where R; = 10 €,
R,=20Q,R;=01Q,andR, =1 2.

Ry R R, a

15V D Ry

YVVY

R, R

AAAA

Ry Ry Ry

Figure P3.58

3.59 The Wheatstone bridge circuit shown in Figure
P3.59 is used in a number of practical applications.
One traditional use is in determining the value of an
unknown resistor Ry.
Find the value of the voltage Va, = V4 — Vy in terms of
R, Ry, and Vs.
IfR=1kQ, Vs =12V and V, = 12 mV, what is the
value of R,?

Figure P3.59

3.60 It is sometimes useful to compute a Thévenin
equivalent circuit for a Wheatstone bridge. For the
circuit of Figure P3.60,

a. Find the Thévenin equivalent resistance seen by the
load resistor Ry.

Resistive Network Analysis

b. |fV3 =12V,R; =R, = R3 =1 kQ, and Ry is the
resistance found in part b of the previous problem,
use the Thévenin equivalent to compute the power
dissipated by R, , if R, = 500 .

c. Find the power dissipated by the Thévenin
equivalent resistance Ry with R. included in the
circuit.

d. Find the power dissipated by the bridge without the
load resistor in the circuit.

Vg — V, AW o Vp

Figure P3.60

3.61 The circuit shown in Figure P3.61 is in the form of
what is known as a differential amplifier. Find the
expression for v in terms of v, and v, using
Thévenin’s or Norton’s theorem. Assume that the
voltage sources v; and v, do not source any current.

i i

— =
AAAA AAAA
YVVY YVVY

2Q 2Q

Figure P3.61

3.62 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.5. Compute the



Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.63 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.10. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.64 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.11. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.65 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.23. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.66 Find the Thévenin equivalent resistance seen by
resistor R4 in the circuit of Figure P3.25. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R, is the load.

3.67 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.26. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.68 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.41. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R is the load.

3.69 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.43. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.70 In the circuit shown in Figure P3.70, Vs models the
voltage produced by the generator in a power plant,
and Rs models the losses in the generator, distribution
wire, and transformers. The three resistances model the
various loads connected to the system by a customer.
How much does the voltage across the total load
change when the customer connects the third load Rz
in parallel with the other two loads?

Vg =110V Rs =19 mQ
R; =R, =930 mQ R; = 100 mQ
Rs
2R 3R 3R
+ <> <> <>
Vs
Power Customer
plant

Figure P3.70
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3.71 Inthe circuit shown in Figure P3.71, Vs models the
voltage produced by the generator in a power plant,
and Rs models the losses in the generator, distribution
wire, and transformers. Resistances R, R,, and R3
model the various loads connected by a customer. How
much does the voltage across the total load change
when the customer closes switch Sz and connects the
third load R; in parallel with the other two loads?

Vs =450V Rs =19 mQ
T Rs |
H WW—
] i JK%
: !
1 + !
:( % iZR 3R 3R
A
: !
i :
' :
A Power system

Figure P3.71

3.72 Anonideal voltage source is modeled in Figure
P3.72 as an ideal source in series with a resistance that
models the internal losses, that is, dissipates the same
power as the internal losses. In the circuit shown in
Figure P3.72, with the load resistor removed so that
the current is zero (i.e., no load), the terminal voltage
of the source is measured and is 20 V. Then, with
R = 2.7 k2, the terminal voltage is again measured
and is now 18 V. Determine the internal resistance and
the voltage of the ideal source.

Nonideal source

Figure P3.72

Section 3.7: Maximum Power Transfer

3.73 The equivalent circuit of Figure P3.73 has
Vr =12V Rr=8Q

If the conditions for maximum power transfer exist,
determine
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a. The value of R,.
b. The power developed in R, .

c. The efficiency of the circuit, that is, the ratio of
power absorbed by the load to power supplied by
the source.

Vi R

Figure P3.73

3.74 The equivalent circuit of Figure P3.73 has
Vi =35V Rr =600 @

If the conditions for maximum power transfer exist,
determine

a. The value of R,.
b. The power developed in R,.
c. The efficiency of the circuit.

3.75 Anonideal voltage source can be modeled as an
ideal voltage source in series with a resistance
representing the internal losses of the source, as shown

in Figure P3.75. A load is connected across the
terminals of the nonideal source.

Vs =12V Rs =0.3Q
a. Plot the power dissipated in the load as a function

of the load resistance. What can you conclude from
your plot?

b. Prove, analytically, that your conclusion is valid in
all cases.

Figure P3.75

Section 3.8: Nonlinear Circuit Elements

3.76 \Write the node voltage equations in terms of v; and
v, for the circuit of Figure P3.76. The two nonlinear
resistors are characterized by

ia = ng

ipb = Ug + 10vy

Resistive Network Analysis

Do not solve the resulting equations.

!
1A<> §§1Q Rb|:|:b C)ZGA

Figure P3.76

3.77 We have seen that some devices do not have a
linear current—voltage characteristic for all i and v;
that is, R is not constant for all values of current and
voltage. For many devices, however, we can estimate
the characteristics by piecewise linear approximation.
For a portion of the characteristic curve around an
operating point, the slope of the curve is relatively
constant. The inverse of this slope at the operating
point is defined as incremental resistance Rinc:

v

AV
Rinc = a ~

[Vo.lo] Al [Vo,lol

where [V, lo] is the operating point of the circuit.

a. For the circuit of Figure P3.77, find the operating
point of the element that has the characteristic
curve shown.

b. Find the incremental resistance of the nonlinear
element at the operating point of part a.

c. If V7 isincreased to 20V, find the new operating
point and the new incremental resistance.

Ry

\ () Nonlinear
= element

Vr=15V Rr =200 Q

| =0.0025V 2

Figure P3.77



3.78 The device in the circuit in Figure P3.78 is an
induction motor with the nonlinear i-v characteristic
shown. Determine the current through and the voltage
across the nonlinear device.

Vg =450V R=9Q
607\\\\\\\\\ TT T T T T T 17T TTT1 1T 11 T11]
B STALL ]
40— B -
< | 1
- f 1
— 20 —]
E “E
150 300 450
Vo (V) ——
(€) (b)

Figure P3.78

3.79 The nonlinear device in the circuit shown in Figure

P3.79 has the i-v characteristic given.
Vs =Viy =15V R=Rg=60Q

Determine the voltage across and the current through
the nonlinear device.

@
30:\\\\\\\\\\\\\HH\HHHH:
I |
E ! :
< 1op E

0.5 1.0
Vp (V) ——

(b)

=
&)

Figure P3.79
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3.80 The resistance of the nonlinear device in the circuit
in Figure P3.80 is a nonlinear function of pressure. The
i-v characteristic of the device is shown as a family of
curves for various pressures. Construct the DC load
line. Plot the voltage across the device as a function of
pressure. Determine the current through the device
when P = 30 psig.

Vs =V =25V R=Reg =125Q

@

o

20

N
o
L

ib (MA)—»

10

1.0 2.0
Vp (V) —=

(b)

w
o

Figure P3.80

3.81 The nonlinear device in the circuit shown in Figure
P3.81 has the i-v characteristic

ip = |OevD/VT

lb=10%A Vi =26mV
Vs =Vmy =15V
R =Re =60 Q

Determine an expression for the DC load line. Then
use an iterative technique to determine the voltage
across and current through the nonlinear device.

Figure P3.81
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3.82 The resistance of the nonlinear device in the where, at room temperature,
circuits shown in Figure P3.82 is a nonlinear function
of pressure. The i-v characteristic of the device is lsar = 10°22 A

shown as a family of curves for various pressures. K _ 0.0259 V
Construct the DC load line and determine the current @
through the device when P = 40 psig. a. Given the circuit of Figure P3.83, use graphical
analysis to find the diode current and diode voltage
Vg =Viy =25V R=Re =125Q .
s=Vm=25 « =125 ifRr =22 QandVy =12V,

b. Write a computer program in MATLAB™ (or in
any other programming language) that will find the
diode voltage and current using the flowchart
shown in Figure P3.83.

@ Start

V- _
30 VD1=_2TvVD2_VT

N
o
Ll

1.0 2.0 30
Vp (V) —=
(b)
Figure P3.82
3.83 The voltage-current (ip — vp) relationship of a A °
semiconductor diode may be approximated by the va : v
expression D o

. V|
ip = lsar (EXp { kT[;q} - 1) Figure P3.83
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AC NETWORK ANALYSIS

hapter 4 is dedicated to two main ideas: energy storage (dynamic) circuit

elements and the analysis of AC circuits excited by sinusoidal voltages and

currents. First, dynamic circuit elements, that is, capacitors and inductors, are

defined. These are circuit elements that are described by an i-v characteristic
of differential or integral form. Next, time-dependent signal sources and the concepts
of average and root-mean-square (rms) values are introduced. Special emphasis is
placed on sinusoidal signals, as this class of signals is especially important in the
analysis of electric circuits (think, e.g., of the fact that all electric power for residential
and industrial uses comes in sinusoidal form). Once these basic elements have been
presented, the focus shifts to how to write circuit equations when time-dependent
sourcesanddynamicelementsare present. Theequationsthatresult fromtheapplication
of KVL and KCL take the form of differential equations. The general solution of
these differential equations is covered in Chapter 5. The remainder of the chapter
discusses one particular case: the solution of circuit differential equations when the
excitation is a sinusoidal voltage or current; a very powerful method, phasor anal-
ysis, is introduced along with the related concept of impedance. This methodology
effectively converts the circuit differential equations to algebraic equations in which
complex algebranotation is used to arrive at the solution. Phasor analysis is then used to

129
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Capacitance

We continue the analogy
between electrical and
hydraulic circuits. If a vessel
has some elasticity, energy is
stored in the expansion and
contraction of the vessel
walls (this should remind you
of a mechanical spring). This
phenomenon gives rise to a
fluid capacitance effect very
similar to electrical
capacitance. The energy
stored in the compression
and expansion of the gas is
of the potential energytype.
Figure 4.1 depicts a gas-
bag accumulator: a two-
chamber arrangement that
permits fluid to displace a
membrane separating the
incompressible fluid from a
compressible fluid (e.g., air).
The analogy shown in

Figure 4.1 assumes that the
reference pressure pog is zero
(“ground” or reference
pressure), and that v is
ground. The analog equa-
tions are given below.

dAp dp
=0 — =G =
s s i
. dAv dvy
=Cw TCa
T o
I %
Y
+ +
P
(3 AV Cs Ap
Ot ———
Vo Po

Figure 4.1 Analogy
between electrical and fluid
capacitance

Chapter 4 AC Network Analysis

demonstrate that all the network analysis techniques of Chapter 3 are applicable to the
analysis of dynamic circuits with sinusoidal excitations, and a number of examples are
presented.

:) Learning Objectives

1. Compute currents, voltages, and energy stored in capacitors and inductors.

Section 1.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Section 2.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Section 3.

4.  Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. Section 4.

4.1 ENERGY STORAGE (DYNAMIC) CIRCUIT

ELEMENTS

The ideal resistor was introduced through Ohm’s law in Chapter 2 as a useful
idealization of many practical electrical devices. However, in addition to resistance
to the flow of electric current, which is purely a dissipative (i.e., an energy loss)
phenomenon, electric devices may exhibit energy storage properties, much in the same
way as a spring or a flywheel can store mechanical energy. Two distinct mechanisms
for energy storage exist in electric circuits: capacitance and inductance, both of
which lead to the storage of energy in an electromagnetic field. For the purpose
of this discussion, it will not be necessary to enter into a detailed electromagnetic
analysis of these devices. Rather, two ideal circuit elements will be introduced to
represent the ideal properties of capacitive and inductive energy storage: the ideal
capacitor and the ideal inductor. It should be stated clearly that ideal capacitors
and inductors do not exist, strictly speaking; however, just like the ideal resistor,
these “ideal” elements are very useful for understanding the behavior of physical
circuits. In practice, any component of an electric circuit will exhibit some resistance,
some inductance, and some capacitance—that is, some energy dissipation and some
energy storage. The sidebar on hydraulic analogs of electric circuits illustrates that
the concept of capacitance does not just apply to electric circuits.

The Ideal Capacitor

Aphysical capacitor is a device that can store energy in the form of a charge separation
when appropriately polarized by an electric field (i.e., a voltage). The simplest
capacitor configuration consists of two parallel conducting plates of cross-sectional
area A, separated by air (or another dielectrict material, such as mica or Teflon).
Figure 4.2 depicts a typical configuration and the circuit symbol for a capacitor.

1A dielectric material is a material that is not an electrical conductor but contains a large number of
electric dipoles, which become polarized in the presence of an electric field.
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The presence of an insulating material between the conducting plates does not
allow for the flow of DC current; thus, a capacitor acts as an open circuit in the
presence of DC current. However, if the voltage present at the capacitor terminals
changes as a function of time, so will the charge that has accumulated at the two
capacitor plates, since the degree of polarization is a function of the applied electric
field, which is time-varying. In a capacitor, the charge separation caused by the polar-
ization of the dielectric is proportional to the external voltage, that is, to the applied
electric field

Q=CcCv 4.1

where the parameter C is called the capacitance of the element and is a measure of
the ability of the device to accumulate, or store, charge. The unit of capacitance is
coulomb per volt and is called the farad (F). The farad is an unpractically large
unit for many common electronic circuit applications; therefore it is common to
use microfarads (1 uF = 1078 F) or picofarads (1 pF = 102 F). From equa-
tion 4.1 it becomes apparent that if the external voltage applied to the capacitor
plates changes in time, so will the charge that is internally stored by the capaci-
tor:

q(t) = Co(t) (4.2)

Thus, although no current can flow through a capacitor if the voltage across it is
constant, a time-varying voltage will cause charge to vary in time.

The change with time in the stored charge is analogous to a current. You can
easily see this by recalling the definition of current given in Chapter 2, where it was
stated that

- dq
it) = %) 4.3)

that is, electric current corresponds to the time rate of change of charge. Differentiating
equation 4.2, one can obtain a relationship between the current and voltage in a
capacitor:

do(t)
dt

ity =C i-v relation for capacitor (4.9

Equation 4.4 is the defining circuit law for a capacitor. If the differential equation that
defines the i-v relationship for a capacitor is integrated, one can obtain the following
relationship for the voltage across a capacitor:

t
vc (t) = é/ iC (t/)dt, (45)
Equation 4.5 indicates that the capacitor voltage depends on the past current through
the capacitor, up until the present time t. Of course, one does not usually have precise
information regarding the flow of capacitor current for all past time, and so it is useful
to define the initial voltage (or initial condition) for the capacitor according to the
following, where ty is an arbitrary initial time:

to

1 H / /
Vo=vct=1) = 6 / ic(t) dt (46)

—00
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A

o—

Parallel-plate capacitor with air
gap d (air isthe dielectric)

€ = permittivity of air

_ » F
=8.854x 1012 1o

Circuit
symbol

Figure 4.2 Structure of
parallel-plate capacitor
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Figure 4.3 Combining
capacitors in a circuit

Chapter 4 AC Network Analysis

The capacitor voltage is now given by the expression

t
ve(t) = é / ict)dt'+Vy t>1 4.7)
to

The significance of the initial voltage Vg is simply that at time ty some charge is stored
in the capacitor, giving rise to a voltage v¢ (tg), according to the relationship Q = CV.
Knowledge of this initial condition is sufficient to account for the entire history of
the capacitor current.

Capacitors connected in series and parallel can be combined to yield a single
equivalent capacitance. The rule of thumb, which is illustrated in Figure 4.3, is the
following:

Capacitors in parallel add. Capacitors in series combine according to the same
rules used for resistors connected in parallel.

It is very easy to prove that capacitors in series combine as shown in
Figure 4.3, using the definition of equation 4.5. Consider the three capacitors in
series in the circuit of Figure 4.3. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

v(t) = v1(D) + vi(t) + vi(D)
1 ‘ Y / 1 ‘ Y / 1 ‘ Y /
za,/;wl(t)dt+€2,/;wl(t)dt+€3,/;wl(t)dt (4.8)

(it /t i(t) dt’
“\C1 G Ci)) o

Thus, the voltage across the three series capacitors is the same as would be seen
across a single equivalent capacitor C.q with 1/C,q = 1/Cy + 1/C, 4+ 1/C3, as
illustrated in Figure 4.3. You can easily use the same method to prove that the
three parallel capacitors in the bottom half of Figure 4.3 combine as do resistors
in series.

FIND IT

ON THE WEB

EXAMPLE 4.1 Charge Separation in Ultracapacitors

Problem

Ultracapacitors are finding application in a variety of fields, including as a replacement or
supplement for batteries in hybrid-electric vehicles. In this example you will make your first
acquaintance with these devices.

An ultracapacitor, or “supercapacitor,” stores energy electrostatically by polarizing an
electrolytic solution. Although itisan electrochemical device (also known as an electrochemical
double-layercapacitor), thereare nochemical reactionsinvolvedinitsenergy storage mechanism.
This mechanism is highly reversible, allowing the ultracapacitor to be charged and discharged
hundreds of thousands of times. An ultracapacitor can be viewed as two nonreactive porous

< LO1
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plates suspended within an electrolyte, with a voltage applied across the plates. The applied
potential on the positive plate attracts the negative ions in the electrolyte, while the potential
on the negative plate attracts the positive ions. This effectively creates two layers of capacitive
storage, one where the charges are separated at the positive plate and another at the negative
plate.

Recall that capacitors store energy in the form of separated electric charge. The greater
the area for storing charge and the closer the separated charges, the greater the capacitance.
A conventional capacitor gets its area from plates of a flat, conductive material. To achieve high
capacitance, this material can be wound in great lengths, and sometimes a texture is imprinted
on it to increase its surface area. A conventional capacitor separates its charged plates with a
dielectric material, sometimes a plastic or paper film, or a ceramic. These dielectrics can be
made only as thin as the available films or applied materials.

An ultracapacitor gets its area from a porous carbon-based electrode material, as shown
in Figure 4.4. The porous structure of this material allows its surface area to approach 2,000
square meters per gram (m?/g), much greater than can be accomplished using flat or tex-
tured films and plates. An ultracapacitor’s charge separation distance is determined by the
size of the ions in the electrolyte, which are attracted to the charged electrode. This charge
separation [less than 10 angstroms (A)] is much smaller than can be achieved using conven-
tional dielectric materials. The combination of enormous surface area and extremely small
charge separation gives the ultracapacitor its outstanding capacitance relative to conventional
capacitors.

Use the data provided to calculate the charge stored in an ultracapacitor, and calculate
how long it will take to discharge the capacitor at the maximum current rate.

Solution

Known Quantities: Technical specifications are as follows:

Capacitance 100 F (—10%/ + 30%)

Series resistance DC 15 mQ (+£25%)
1kHz 7 mQ (£25%)

\oltage Continuous 2.5V, Peak 2.7V

Rated current 25A

Find: Charge separation at nominal voltage and time to complete discharge at maximum
current rate.

Analysis: Based on the definition of charge storage in a capacitor, we calculate
Q=CV=100Fx25V=250C

To calculate how long it would take to discharge the ultracapacitor, we approximate the defining
differential equation (4.4) as follows:
i dg _ Aqg

—_— A —

Tdt At

Since we know that the discharge current is 25 A and the available charge separation is 250 F,
we can calculate the time to complete discharge, assuming a constant 25-A discharge:
_Aq_250C _

At =

— =1
i 25A 0s

Comments: We shall continue our exploration of ultracapacitors in Chapter 5. In particular,
we shall look more closely at the charging and discharging behavior of these devices, taking
into consideration their internal resistance.
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Electrolyte
m——_ Separator

Figure 4.4 Ultracapacitor
structure
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CHECK YOUR UNDERSTANDING
Compare the charge separation achieved in this ultracapacitor with a (similarly sized)

electrolytic capacitor used in power electronics applications, by calculating the charge sep-
aration for a 2,000-u.F electrolytic capacitor rated at 400 V.

D 80 :Jamsuy

EXAMPLE 4.2 Calculating Capacitor Current from Voltage

Problem

Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution

Known Quantities: Capacitor terminal voltage; capacitance value.
Find: Capacitor current.

Assumptions: The initial current through the capacitor is zero.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 5(1 — e~/9°) volts; t > O's;
C = 0.1 uF. The terminal voltage is plotted in Figure 4.5.

Assumptions: The capacitor is initially discharged: v(t = 0) = 0.

Analysis: Using the defining differential relationship for the capacitor, we may obtain the
current by differentiating the voltage:

du(t) — 107 5

0= 10

(") =05 A tz0

A plot of the capacitor current is shown in Figure 4.6. Note how the current jumps to 0.5 A
instantaneously as the voltage rises exponentially: The ability of a capacitor’s current to change
instantaneously is an important property of capacitors.

Comments: As the voltage approaches the constant value 5 V, the capacitor reaches its
maximum charge storage capability for that voltage (since Q = CV) and no more cur-
rent flows through the capacitor. The total charge stored is Q = 0.5 x 108 C. This is a
fairly small amount of charge, but it can produce a substantial amount of current for a brief
time. For example, the fully charged capacitor could provide 100 mA of current for a time
equal to 5 us:

_AQ  05x10°

| 2
At 5x 106

=0.1A

There are many useful applications of this energy storage property of capacitors in practical
circuits.
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CHECK YOUR UNDERSTANDING

The voltage waveform shown below appears across a 1,000-,F capacitor. Plot the capacitor

current ic (t).

v(t) (V)

15
0|
57

t (ms)
61
(0)% Z 0
0
T
e 3
e 2
14
Z'v9|dwex3 Jo} Jua.ind Joyidede) g Jlamsuy

EXAMPLE 4.3 Calculating Capacitor Voltage from Current and

Problem

Calculate the voltage across a capacitor from knowledge of its current and initial state of charge.

Initial Conditions

<LOl
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Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.
Find: Capacitor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 t<0s
icHh=1{ 10mA 0<t<l1s
0 t>1s

wet=0=2V  C=1,000uF

The capacitor current is plotted in Figure 4.7(a).

10 12
9 11
8 10
< 7 9
6 > 8
Es =7
< 4 ¥ 6
3 5
2 4
1 3
0 2
-02 0 02 04 06 08 1 12 -02 0 02 04 06 08 1 12
Time () Time ()
@ (b)

Figure 4.7
Assumptions: The capacitor is initially charged such that vc(t =ty =0) =2 V.

Analysis: Using the defining integral relationship for the capacitor, we may obtain the voltage
by integrating the current:

1 [t
ve() = < / ic(t") dt'+vc (to) t>1
C to

1t |

—/ ldt' + Vo= =t+Vy=10t+2V 0<t<ls
CJ C

12V t>1s

Comments: Once the current stops, at t = 1 s, the capacitor voltage cannot develop any
further but remains at the maximum value it reached att = 1s: vc(t = 1) = 12 V. The
final value of the capacitor voltage after the current source has stopped charging the capacitor
depends on two factors: (1) the initial value of the capacitor voltage and (2) the history of the
capacitor current. Figure 4.7(a) and (b) depict the two waveforms.

CHECK YOUR UNDERSTANDING

Find the maximum current through the capacitor of Example 4.3 if the capacitor voltage is
described by vc(t) =5t +3VforO <t <5s.

YW G :lamsuy
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Physical capacitors are rarely constructed of two parallel plates separated by
air, because this configuration yields very low values of capacitance, unless one is
willing to tolerate very large plate areas. To increase the capacitance (i.e., the abil-
ity to store energy), physical capacitors are often made of tightly rolled sheets of
metal film, with a dielectric (paper or Mylar) sandwiched in between. Table 4.1
illustrates typical values, materials, maximum voltage ratings, and useful frequency
ranges for various types of capacitors. The voltage rating is particularly impor-
tant, because any insulator will break down if a sufficiently high voltage is applied
across it.

Table 4.1 Capacitors

Capacitance Maximum voltage  Frequency range
Material range V) (H2)
Mica 1pFto0.1 uF 100-600 103-1010
Ceramic 10pFto 1 uF 50-1,000 10%-10%
Mylar 0.001 uF to 10 uF 50-500 10%-108
Paper 1,000 pF to 50 uF  100-105 102-108
Electrolytic 0.1 uFt0 0.2 F 3-600 10-10*

Energy Storage in Capacitors

You may recall that the capacitor was described earlier in this section as an
energy storage element. An expression for the energy stored in the capacitor W¢ (t)
may be derived easily if we recall that energy is the integral of power, and that the
instantaneous power in a circuit element is equal to the product of voltage and
current:

We () = / Pc(t) dt’
= /Uc(t,)ic(t/) dt/ (49)

dvc (1)
= t"hC dt’
/ we)e =

1
We(t) = ECvé ®) Energy stored in a capacitor (J)

Example 4.4 illustrates the calculation of the energy stored in a capacitor.

FIND IT

ON THE WEB

<LOl
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EXAMPLE 4.4 Energy Storage in Ultracapacitors

Problem

Determine the energy stored in the ultracapacitor of Example 4.1.
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Solution
Known Quantities: See Example 4.1.
Find: Energy stored in capacitor.

Analysis: To calculate the energy, we use equation 4.9:

1 1
We = ECUE = 5(100P)25 V)2 = 3125

FIND IT

ON THE WEB

CHECK YOUR UNDERSTANDING

Compare the energy stored in this ultracapacitor with a (similarly sized) electrolytic capacitor
used in power electronics applications, by calculating the charge separation for a 2,000-uF
electrolytic capacitor rated at 400 V.

£ 09T :Jamsuy

The Ideal Inductor

The ideal inductor is an element that has the ability to store energy in a magnetic field.
Inductors are typically made by winding a coil of wire around a core, which can be an
insulator or a ferromagnetic material, as shown in Figure 4.8. When a current flows
through the coil, a magnetic field is established, as you may recall from early physics
experiments with electromagnets. Just as we found an analogy between electric and
fluid circuits for the capacitor, we can describe a phenomenon similar to inductance in
hydraulic circuits, as explained in the sidebar. In an ideal inductor, the resistance of the
wire is zero so that a constant current through the inductor will flow freely without
causing a voltage drop. In other words, the ideal inductor acts as a short circuit
in the presence of DC. If a time-varying voltage is established across the inductor,
a corresponding current will result, according to the following relationship:

) =L

d';(t) i-v relation for inductor (4.10)

where L is called the inductance of the coil and is measured in henrys (H), where
1H=1V-s/A (4.12)

Henrys are reasonable units for practical inductors; millihenrys (mH) and micro-
henrys (uH) are also used.

Itis instructive to compare equation 4.10, which defines the behavior of an ideal
inductor, with the expression relating capacitor current and voltage:

duc(t)

Ic(t) =C dt

(4.12)
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Figure 4.8 Inductance and practical inductors

We note that the roles of voltage and current are reversed in the two elements, but that
both are described by a differential equation of the same form. This duality between
inductors and capacitors can be exploited to derive the same basic results for the
inductor that we already have for the capacitor, simply by replacing the capacitance
parameter C with the inductance L and voltage with current (and vice versa) in

Table 4.2 Analogy between electric and fluid circuits

Electrical element
Property or equation Hydraulic analogy
Potential variable \oltage or potential difference | Pressure difference
Flow variable Current flow Fluid volume flow rate
Resistance Resistor R Fluid resistor Ry
Capacitance Capacitor C Fluid capacitor Cs
Inductance Inductor L Fluid inertor I¢
Power dissipation P =i%R Pr = g?Rs
Potential energy storage | W, = 3Cv? Wp = 1Cip?
Kinetic energy storage | Wy = %Li? Wy = 3l g?
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Inertance

The fluid inertance
parameter is analogous to
inductance in the electric
circuit. Fluid inertance, as the
name suggests, is caused by
the inertial properties, i.e., the
mass, of the fluid in motion.
As you know from physics, a
particle in motion has kinetic
energy associated with it;
fluid in motion consists of a
collection of particles, and it
also therefore must have
kinetic energy storage
properties. (Think of water
flowing out of a fire hose!)
The equations that define the
analogy are given below

dgy
Ap=p1 —po = lf —
p=p1—p2 ot
di
Av:vl—vzzLa

Figure 4.9 depicts the
analogy between electrical
inductance and fluid
inertance. These analogies
and the energy equations
that apply to electrical and
fluid circuit elements are
summarized in Table 4.2.

i —
V1 O_rm\_l-ovz

+ Av —
|
?pz f P1
+ Ap -

Figure 4.9 Analogy
between fluid inertance and
electrical inductance
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the equations we derived for the capacitor. Thus, the inductor current is found by
integrating the voltage across the inductor:

. 1 [t
i) = [/ \UL(t/) dt’

[e¢]

(4.13)

If the current flowing through the inductor at time t = tg is known to be lg, with

1 o
|0 = iL(t = to) = [ / v|_(t') dt’ (414)
then the inductor current can be found according to the equation
1 t
iL(t) = [ / UL('[/) dt’ + g t>1 (415)
to

Series and parallel combinations of inductors behave as resistors, as illustrated in
Figure 4.10, and stated as follows:

Inductors in series add. Inductors in parallel combine according to the same
rules used for resistors connected in parallel.

V(t) LEQ =L+ Lo+ L3

— V2 +

L3
Inductances in series add

Inductances in parallel combine
likeresistorsin parallel

Figure 4.10 Combining inductors in a circuit

Itis very easy to prove that inductors in series combine as shown in Figure 4.10,
using the definition of equation 4.10. Consider the three inductors in series in the
circuit on the left of Figure 4.10. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

di(t) ‘L di(t) L di(t)

v(®) = va(t) +v2() +vs(t) = Lo — dt dt

. (4.16)
di(t)
Z(L1+L2+L3)F

Thus, the voltage across the three series inductors is the same that would be seen
across a single equivalent inductor Lo, with Ly = L1 + Ly + Ls, as illustrated in
Figure 4.10. You can easily use the same method to prove that the three parallel
inductors on the right half of Figure 4.10 combine as resistors in parallel do.

LOl>

EXAMPLE 4.5 Calculating Inductor Voltage from Current

Problem

Calculate the voltage across the inductor from knowledge of its current.
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Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0mA t<1ms
01 0.1
—— 4+ —t mA 1<t<5ms
4 4
i={ 0.1mA 5<t<9ms
0.1 01
13x — — —t mA 9<t<13ms
4 4
0mA t > 13ms
L=10H

The inductor current is plotted in Figure 4.11.
Assumptions: i (t =0) <0.

Analysis: Using the defining differential relationship for the inductor, we may obtain the
voltage by differentiating the current:

dig (1)
dt
Piecewise differentiating the expression for the inductor current, we obtain

w(t) =L

ov t<1ms
0.25V l<t<b5ms
v (t) = ov 5<t<9ms
—-0.25V 9<t<13ms

ov t> 13 ms

The inductor voltage is plotted in Figure 4.12.

Comments: Note how the inductor voltage has the ability to change instantaneously!

0.1 T 0.3
008l | 0.2} 8
. o1t .
é 0.06 | 1 > 0
€ 004} & 01t ,
= Z 02t 1
0.02 03l |
0 ‘ . 04 : ‘
0 5 10 15 0 5 10
Time (ms) Time (ms)

Figure 4.11 Figure 4.12
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CHECK YOUR UNDERSTANDING

The current waveform shown below flows through a 50-mH inductor. Plot the inductor
voltage v (t).

i(t) (mA)
15

10
5

0 12345678
t (ms)

0] 8
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|_O]_> EXAMPLE 4.6 cCalculating Inductor Current from Voltage

Problem

Calculate the current through the inductor from knowledge of the terminal voltage and of the
initial current.

Solution
Known Quantities: Inductor voltage; initial condition (current at t = 0); inductance value.
Find: Inductor current.

Schematics, Diagrams, Circuits, and Given Data:

ov t<O0s
v(t) =41 —-10mV 0<t<l1s
ov t>1s
L =10 mH; iLlt=0=Ilp=0A

The terminal voltage is plotted in Figure 4.13(a).
Assumptions: i (t=0)=1p,=0.

Analysis: Using the defining integral relationship for the inductor, we may obtain the voltage
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by integrating the current:
1 t
i = —/ v(t) dt’ + i, (to) t>1
L Js

-2

1/(( 10 x 1073y dt'+ | —10 t+0=—tA O0<t<ls
2 (210 - -
_l ik °7 102 ==

-1A t>1s

The inductor current is plotted in Figure 4.13(b).

Comments: Note how the inductor voltage has the ability to change instantaneously!
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CHECK YOUR UNDERSTANDING

Find the maximum voltage across the inductor of Example 4.6 if the inductor current is
described by i (t) = 2t amperes for0 <t < 2s.

AW 07 Jamsuy

Energy Storage in Inductors

The magnetic energy stored inan ideal inductor may be found from a power calculation
by following the same procedure employed for the ideal capacitor. The instantaneous
power in the inductor is given by

. . dip (t d[1 .
PL®) =it () =i(HL (th( ) =@ [ZL'E(U} (4.17)

Integrating the power, we obtain the total energy stored in the inductor, as shown in
the following equation:

/ ! d 1 H / /
W, (t) :/PL(t)dt :/@ [Zuf(t )] dt (4.18)



144

LO1 >

Chapter 4 AC Network Analysis

1
W (1) = éLif(t) Energy stored in an inductor (J)

Note, once again, the duality with the expression for the energy stored in a capacitor,
in equation 4.9.

LOl>

EXAMPLE 4.7 Energy Storage in an Ignition Coil

Problem

Determine the energy stored in an automotive ignition coil.

Solution
Known Quantities: Inductor current initial condition (current at t = 0); inductance value.
Find: Energy stored in inductor.
Schematics, Diagrams, Circuits, and Given Data: L =10 mH;i_ = 1o = 8A.
Analysis:

1

L, 1
W|_=§L|E=§><10‘2><64=32><10‘2=320mJ

Comments: A more detailed analysis of an automotive ignition coil is presented in Chapter 5
to accompany the discussion of transient voltages and currents.

CHECK YOUR UNDERSTANDING

Calculate and plot the inductor energy and power for a 50-mH inductor subject to the current
waveform shown below. What is the energy stored at t = 3 ms? Assume i(—oco) = 0.

i(t) (mA)

15
10
5

RN
0 12345678
t (ms)

(76g=(Swg=1m

} = (nd

asIMIBYI0 0
sw9>1>¢ (M G21'0—)(35'2 — ¢ 0T X 02)

swo9 <1 9-0T X G290
sw9>1>¢ 60T +3(-0T X G2) —Z95T0 ¢ = (Hm
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4.2 TIME-DEPENDENT SIGNAL SOURCES

In Chapter 2, the general concept of an ideal energy source was introduced. In this
chapter, it will be useful to specifically consider sources that generate time-varying
voltages and currents and, in particular, sinusoidal sources. Figure 4.14 illustrates the
convention that will be employed to denote time-dependent signal sources.

—0

D

—O
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Figure 4.14 Time-dependent signal sources

One of the most important classes of time-dependent signals is that of periodic
signals. These signals appear frequently in practical applications and are a useful
approximation of many physical phenomena. A periodic signal x(t) is a signal that
satisfies the equation

Xt =xt+nT) n=123,... (4.19)

where T is the period of x(t). Figure 4.15 illustrates a number of periodic waveforms
that are typically encountered in the study of electric circuits. Waveforms such as the
sine, triangle, square, pulse, and sawtooth waves are provided in the form of volt-
ages (or, less frequently, currents) by commercially available signal (or wavefor m)
generators. Such instr