
1

Pradip Dey

Manas Ghosh

COMPUTER FUNDAMENTALS

AND
PROGRAMMING IN C

Second Edition

 RCC Institute of Information Technology

 RCC Institute of Information Technology

www.ebook3000.com

http://www.ebook3000.org

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2006, 2013

The moral rights of the author/s have been asserted.

First Edition published in 2006
Second Edition published in 2013

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-808456-3
ISBN-10: 0-19-808456-0

Typeset in Times New Roman
by Pee-Gee Graphics, New Delhi

Printed in India by Rajkamal Electric Press, Kundli, Haryana

www.ebook3000.com

http://www.ebook3000.org

Preface to the First Edition

C stands out among general-purpose programming languages
for its unrivaled mix of portability, power, flexibility,
and elegance. The language has block structures, stand-
alone functions, a compact set of keywords, and very few
restrictions. Like any low-level language, C allows the
programmer to manipulate bits, bytes, and memory addresses,
among other features. Like any high-level language, C also
supports various data types to provide a higher level of
abstraction to programmers, thereby making coding easier.
C provides features for writing and separately compiling,
shorter programs that can be linked together to form a large
program. For all these reasons, it is a versatile language
suited for projects of various sizes in both systems as well as
applications programming.

ABOUT THE BOOK
This book is intended for a one-semester introductory course
on computers and programming in C. The first few chapters
of the book impart adequate knowledge of number systems,
Boolean logic, hardware, and software of computer systems
with particular emphasis on the personal computer. The book
assumes no prior programming experience in C or any other
language. Once the readers grasp the preliminary topics, it
then becomes easier for them to delve into the process of
creating algorithms for solving problems and implementing
them using C.

 Throughout the text it has been our endeavor to keep the
level of explanations and definitions as lucid as possible.
Figures have been included in the text to clarify the
discussions on the features of C. Almost all the features of C
have been illustrated with examples. Though every attempt
has been made to avoid and check errors, we will be grateful
to readers if they can point out any that may have crept in
inadvertently.

AcKNOwlEdgEMENTS
We express our gratitude to Dr J. Debroy, Principal,
RCC Institute of Information Technology, Kolkata, for
encouraging us to write this book. We are also grateful to the
staff of Oxford University Press for the cooperation, interest,
and assistance extended to us for this book. We thank our
colleague Mr Manas Sinharoy for assisting us in preparing the
manuscript in time. We are also thankful to Mr Tapas Kumar
Tunga and Mr P.N. Pathak for extending their services to us
during the preparation of the manuscript. We wish to thank
Vijay Kumar R. Zanvar and Jayasimha Ananth for the article
on pointers and arrays as also Thomas Jenkins for the article
on recursion, both of which have served as a guide during the
development of this manuscript.

 Manas Ghosh

PradiP dey

www.ebook3000.com

http://www.ebook3000.org

Preface to the Second Edition

Evolution of ideas is a never-ending process. New technology
and changing needs have a profound influence on computing
requirements, which in turn lead to continuous enhancements
of the power and scope of computers as well as programming
languages.
 One of the latest technologies soon to be launched is the
32-core CPUs from Intel and AMD. Intel has named this 32-
core processor ‘Kelifer’, which is a combination of 32 brains
that can work for the user at one time. These CPUs will be
built around a paradigm that will allow them to have plug-in
and add-on abilities. Then there are other possibilities such as
gesture-based remote controls and smartphone applications
to open car doors.
 Another computing application that has had a profound
impact on every aspect of our lives is the Internet. Today,
more than 2.4 billion people use the Internet, according to
Internet World statistics, and the numbers are still growing.
Some industries, such as music and newspapers, have been
all but destroyed, even as it has created whole new lines of
business, such as search engines and social media. The Boston
Consulting Group estimated recently that if the Internet were
a country, it would rank as the world’s fifth-largest economy.
 Naturally, then, programming languages are also being
updated to keep pace with these technological leaps. C is
one of the most widely used programming languages of all
time. Its modern standard C99 (an informal name for ISO/
IEC 9899:1999) extends the previous version (C90) with new
language and library features, and helps programmers make
better use of available computer hardware and compiler
technology. The new features include inline functions, several
new data types, and new header files. Hence, with the new
features suggested by the C99 committee, C has expanded
its scope and range of applications. With the development
of embedded systems, the frontiers of C have moved further,
to evolve as a very effective programming language for
programming embedded systems.

ABOUT THE BOOK
Computer fundamentals and programming in C is an
introductory course at most universities offering engineering
and science degrees, and aims to introduce the basic
computing and programming concepts to students. The
general course objectives are to enable the student to learn

the major components of a computer system, know the
correct and efficient ways of solving problems, and learn to
program in C.
 This second edition of Computer Fundamentals and
Programming in C, designed as a textbook for students of
engineering (BE/BTech), computer applications (BCA/
MCA), and computer science (BSc), offers an improved
coverage of the fundamental concepts of computing and
programming. It offers several new topics and chapters,
programming updates based on the recommendations
proposed by the C99 committee in relevant chapters, and
many other useful pedagogical features.
 A special effort has been made to simplify existing
treatments and better explain concepts with the help of
improved illustrations and examples containing appropriate
comments. Further, most chapters now include notes, check
your progress sections, key terms with brief definitions,
frequently asked questions with answers, and project
questions. These will aid the reader in understanding the
concepts and their practical implementations.

NEw TO THE SEcONd EdiTiON
		C99 features highlighted wherever relevant in the text
		2 New chapters: Introduction to Software; Internet and

the World Wide Web
		Extensive reorganization of the computer fundamentals

and functions chapters
		Note, Check Your Progress sections, Key Terms, Fre-

quently Asked Questions, and Project Questions in most
of the chapters

		Improved explanation of algorithms and codes, and new
in-text examples

		New sections such as working with complex numbers,
variable length arrays, searching and sorting algorithms,
pointer and const qualifier, and applications of linked
lists

ExTENdEd cHApTEr MATEriAl
Chapter 1 Extensively rewritten sections on classification
of computers, anatomy of a computer, memory revisited,
introduction to operating systems, and operational overview
of a CPU

www.ebook3000.com

http://www.ebook3000.org

iv Preface to the Second Edition

Chapter 8 New sections on
	 •	 Compilation model of a C program
	 •	 Philosophy of main() function
	 •	 The concept of Type qualifiers
	 •	 How integers are stored in memory

Chapter 10 New sections on different forms of loop and
moving out from a nested loop

Chapter 12 News sections on
	 •	 Scope, storage class and linkages
	 •	 Inline function
	 •	 Different sorting and searching methods along with the

analysis of time and space complexity

Chapter 13 New sections on
	 •	 Pointer and const Qualifier
	 •	 Constant parameter
	 •	 Returning pointer from a function

cOvErAgE
Chapter-wise details of content coverage are as follows:

Chapter 1 traces the history of development of computers.
The chapter also identifies the different generations and
the various categories of computers. It briefly describes the
basic hardware units and software modules in a computer,
with particular reference to the personal computer. A brief
description on the start-up process of a personal computer is
also included.

Chapter 2 presents the concept of number systems. The rules
and methods applied in number system conversions are
explained and demonstrated with appropriate examples. It
then deals with arithmetic operations of addition, subtraction,
multiplication, and division of binary numbers with examples.
It also describes the various binary codes used in computers.

Chapter 3 introduces Boolean algebra. It defines Boolean
variables and the various laws and theorems of Boolean
algebra. The formation of Boolean expressions, Boolean
functions, and truth tables along with the methods of
simplifying Boolean expressions are also demonstrated. It
presents the different forms in which Boolean expressions
can be expressed and represented.
 Finally, the chapter discusses logic gates and explains
how these are realized using electronic devices. It also
demonstrates how Boolean expressions can be realized using
logic gates.

Chapter 4 identifies the different types of software and the
various categories of programming languages available.
The roles played by the compiler, linker, and loader in the
development of programs are highlighted.

Chapter 5 explains the concept of programs and programming.
The chapter also defines and explains the key features of
algorithms. The significance of an algorithm in developing a
program for solving a problem has also been explained. The
chapter then discusses some convenient tools and techniques
for building and representing algorithms. It also discusses the
strategy of problem solving.

Chapter 6 begins with the history of evolution of the Internet
and the world wide web. It briefly discusses the nature of
information transported and the protocols used within the
Internet. It introduces the concept of web page, web browser,
web server, IP address, and search engines. The chapter
concludes by describing the different types of Internet
connections followed by the various applications of the
Internet.

Chapter 7 introduces operating systems. It briefly traces the
history of development of operating systems. It explains the
functions of an operating system and identifies the component
of operating systems in general. The chapter discusses the
different types of operating systems that exist. Some popular
operating systems such as UNIX and MSDOS have been
discussed.

Chapter 8 introduces the basic components of C. The
keywords and standard data types available in C and the
type conversion rules have been discussed. The use of
basic operators in C and expressions involving variables
and operators has been explained. The basic structure of a
standard C program has also been explained. Some common
commands used in MSDOS and UNIX to compile and run
programs in C have been discussed in this chapter.

Chapter 9 discusses the input and output statements in C that
are commonly used for the console. It presents the single
character non-formatted input/output functions and the
formatted input/output functions scanf() and printf().

Chapter 10 presents the decision and loop constructs available
in C as also the special constructs that are mostly used with
them. It throws light on the reasons behind the choice of
control constructs for problem solving. Several examples
have been given to illustrate the use of these constructs.

Chapter 11 discusses arrays and strings. It explains how
arrays of different dimensions are initialized, referred to,
used, and printed. The available string arrays and string
library functions have been dealt in detail with an adequate
number of illustrations. The chapter also illustrates how the
input and output functions available in C accept and print
strings and arrays.

Chapter 12 deals with functions in C. It explains the need of
functions in a program. It explains the different components of
a function and the method of passing and returning variables

www.ebook3000.com

http://www.ebook3000.org

Preface to the Second Edition v
in functions. Scope rules and different storage classes have
been discussed with examples.

Chapter 13 deals with the concept of pointers. The various
features of pointers, including the method of passing pointer
variables in functions and other advanced features, have been
explained with examples. Multidimensional array handling
with pointers has also been discussed.

Chapter 14 presents the user-defined data types: structures,
unions, enumerators, and bit fields. These have been
explained in detail with the help of examples.

Chapter 15 discusses the file system used in C. The various
functions involving input to and output from a file have been
discussed with illustrations. Sequential as well as random
access methods adopted in writing to and reading from files
have been explained in detail.

Chapter 16 highlights some of the advanced features of C
such as command-line arguments, bitwise operators, different
memory models, and type qualifiers. These features have
been discussed with several illustrations. Memory models
and special pointers have also been explained.
 The appendices contain case studies where the problem
is first defined and then the algorithm is developed, based on
which the C program is coded. Some sample run results have

been provided for the reader to verify the programs. It also
contains tables for ASCII codes, number system conversions,
escape sequences, operators, data types and data conversion
rules, commonly used conversion characters, and format
tags. In addition, it provides an exhaustive listing of library
functions of C along with programs that depict their use.
There is also a section on common problems encountered
while writing programs in C.

AcKNOwlEdgEMENTS
We are grateful to a host of readers, who have encouraged us
in improving this book by their useful suggestions from time
to time. There are no words to express our gratitude to Oxford
University Press for their continuous support, suggestions,
and assistance while preparing this edition.
 Despite our best endeavour to make this edition error
free, some may have crept in inadvertently. Comments and
suggestions for the improvement of the book are welcome.
Please send them to the publisher by logging on to their
website www.oup.com or to the authors at pdey.mghosh@
gmail.com.

 Manas Ghosh

PradiP dey

www.ebook3000.com

http://www.ebook3000.org

Brief Contents

 Preface to the Second Edition iii
 Preface to the Fisrt Edition vii
 1. Computer Fundamentals ...1
 2. Number Systems and Binary Arithmetic ...18
 3. Boolean Algebra and Logic Gates ...43
 4. Introduction to Software ...59
 5. Basic Concepts of Operating Systems ..70
 6. The Internet ...104
 7. Introduction to Algorithms and Programming Concepts ..114
 8. Basics of C ..136
 9. Input and Output ...183
 10. Control Statements ..202
 11. Arrays and Strings ...246
 12. Functions ...282
 13. Pointers in C ..324
 14. User-defined Data Types and Variables ...394
 15. Files in C ...420
 16. Advanced C ...445
 Bibliography and References 471
 Index ..473

www.ebook3000.com

http://www.ebook3000.org

Contents xiii

Contents

Preface to the Second Edition iii
Preface to the Fisrt Edition vii

1. cOMpUTEr FUNdAMENTAlS 1
 1.1 Introduction—What is a Computer? 1
 1.2 Evolution of Computers—A Brief History 1
 1.3 Generations of Computers 2
 1.4 Classification of Computers 3
 1.5 Anatomy of a Computer 3
 1.5.1 Hardware 3
 1.5.2 Software 9
 1.6 Memory Revisited 10
 1.6.1 Primary Memory 10
 1.6.2 Secondary Memory 12
 1.7 Introduction to Operating Systems 14
 1.7.1 Loading an Operating System 14
 1.8 Operational Overview of a CPU 15

2. NUMBEr SYSTEMS ANd BiNArY
AriTHMETic 18

 2.1 Introduction to Number Systems 18
 2.2 Base of a Number System 19
 2.3 Weighting Factor 19
 2.4 Types of Number Systems 19
 2.4.1 Decimal Number System [Base-10] 19
 2.4.2 Binary Number System [Base-2] 20
 2.4.3 Octal Number System [Base-8] 20
 2.4.4 Hexadecimal Number System [Base-16] 20
 2.4.5 Common Rules of Number Systems 20
 2.5 Number System Conversions 21
 2.5.1 Working with Integer Numbers 21
 2.5.2 Working with Fractional Numbers 25
 2.6 Binary Arithmetic 28
 2.6.1 Addition 28
 2.6.2 Subtraction 29
 2.6.3 Multiplication 33
 2.6.4 Division 34
 2.7 Binary Codes 36
 2.7.1 Numeric Codes 36
 2.7.2 Alphanumeric Codes 37

3. BOOlEAN AlgEBrA ANd lOgic
gATES 43

 3.1 Introduction to Boolean Algebra 43
 3.2 Theorems 44
 3.2.1 Some Applications of Boolean Laws and

Theorems 45
 3.3 Boolean Expression 45
 3.4 Simplification of Boolean Expressions 45
 3.5 Boolean Functions and Truth Tables 47
 3.6 Constructing Boolean Functions from Truth

Tables 47
 3.7 Canonical and Standard Forms 47
 3.8 Numerical Representation of Boolean Functions in

Canonical Form 48
 3.9 Logic Gates 49
 3.9.1 AND Gate 49
 3.9.2 OR Gate 50
 3.9.3 NOT Gate or Inverter 50
 3.9.4 NAND Gate 51
 3.9.5 NOR Gate 51
 3.9.6 Exclusive-OR or XOR Gate 52
 3.9.7 Exclusive-NOR or XNOR Gate 52
 3.10 Describing Logic Circuits Algebraically 53
 3.11 Realization of Logic Circuits from Boolean

Expressions 53
 3.12 Universality of NAND and NOR Gates 54

4. InTroduCTIon To SoFTwAre 59
 4.1 Introduction 59
 4.2 Programming Languages 60
 4.2.1 Generation of Programming Languages 60
 4.2.2 Classification of Programming Languages 62
 4.3 Compiling, Linking, and Loading a Program 64
 4.4 Translator, Loader, and Linker Revisited 65
 4.4.1 Translators 65
 4.4.2 Linker 65
 4.4.3 Loader 65
 4.5 Developing a Program 66
 4.6 Software Development 66
 4.6.1 Steps in Software Development 66

www.ebook3000.com

http://www.ebook3000.org

xiv Contents

5. BASic cONcEpTS OF OpErATiNg
SYSTEMS 70

 5.1 Introduction 70
 5.2 Introduction to Operating System 71
 5.3 Functions of an Operating System 71
 5.4 Components of an Operating System 73
 5.5 Interaction with Operating System 74
 5.6 History of Operating Systems 74
 5.6.1 First Generation (1945–55) 75
 5.6.2 Second Generation (1956–63)—Transistors

and Batch System 75
 5.6.3 Third Generation (1964–80)—Integrated

Chips and Multiprogramming 76
 5.6.4 Fourth Generation (1980–present)—Personal

Computers 77
 5.7 Types of Operating Systems 78
 5.7.1 Batch Process Operating System 78
 5.7.2 Multiprogramming Operating System 78
 5.7.3 Time-sharing Operating Systems 79
 5.7.4 Real-time Operating Systems 80
 5.7.5 Network Operating System 80
 5.7.6 Distributed Operating System 81
 5.8 An Overview of UNIX Operating System 82
 5.8.1 Reasons for Success of UNIX 82
 5.8.2 Components of UNIX 82
 5.8.3 The UNIX File System 83
 5.8.4 Account and Password 87
 5.8.5 Logging In 87
 5.8.6 UNIX Shell Commands 87
 5.8.7 Wildcards: The Characters * and ? 89
 5.9 An Overview of MSDOS 93
 5.9.1 A Brief History 93
 5.9.2 Role of Disk Drive for Loading DOS 94
 5.9.3 Starting DOS 94
 5.9.4 The Command Prompt 94
 5.9.5 Communicating with DOS 95
 5.9.6 DOS Commands 96
 5.9.7 Wildcards in DOS 99
 5.9.8 Redirection 99
 5.9.9 Pipelines 99

6. THE iNTErNET 104
 6.1 Introduction 104
 6.2 Evolution of Internet 105
 6.3 World Wide Web 105
 6.4 Basic Internet Terminology 106
 6.4.1 Web Page 106
 6.4.2 Web Browser 106
 6.4.3 Web Server 107
 6.4.4 Internet Service Provider 107
 6.4.5 Gateway 107

 6.4.6 URL 107
 6.4.7 Search Engines 108
 6.5 Types of Internet Connections 108
 6.5.1 Dial-up Connection 108
 6.5.2 Leased Lines 109
 6.5.3 Digital Subscriber Line (DSL) 109
 6.5.4 Satellite Internet 109
 6.5.5 Broadband Versus Power Line 109
 6.5.6 Cable Modem Broadband 109
 6.5.7 Other Forms of Internet Connectivity 110
 6.6 Uses of Internet 110
 6.6.1 Communication 110
 6.6.2 Information 110
 6.6.3 Entertainment 111
 6.6.4 Services 111
 6.6.5 E-commerce 111
 6.7 Hazards of Internet 111

7. iNTrOdUcTiON TO AlgOriTHMS ANd
prOgrAMMiNg cONcEpTS 114

 7.1 Algorithms 114
 7.1.1 What is an Algorithm? 114
 7.1.2 Different Ways of Stating Algorithms 114
 7.1.3 Key Features of an Algorithm and the

Step-form 115
 7.1.4 What are Variables? 116
 7.1.5 Subroutines 117
 7.1.6 Strategy for Designing Algorithms 128
 7.1.7 Tracing an Algorithm to Depict Logic 129
 7.1.8 Specification for Converting Algorithms

into Programs 129
 7.2 Structured Programming Concept 130
 7.2.1 Top–Down Analysis 131
 7.2.2 Modular Programming 131
 7.2.3 Structured Code 132
 7.2.4 The Process of Programming 132

8. BASicS OF c 136
 8.1 Introduction 136
 8.1.1 Why Learn C? 137
 8.1.2 The Future of C 137
 8.2 Standardizations of C Language 137
 8.3 Developing Programs in C 138
 8.3.1 Writing or Editing 138
 8.3.2 Compiling the Program 139
 8.3.3 Executing the Program 139
 8.4 A Simple C Program 141
 8.5 Parts of C Program Revisited 142
 8.6 Structure of a C Program 144
 8.7 Concept of a Variable 144
 8.8 Data Types in C 145

www.ebook3000.com

http://www.ebook3000.org

Contents xv
 8.9 Program Statement 150
 8.10 Declaration 151
 8.11 How does the Computer Store Data in Memory? 151
 8.11.1 How are Integers Stored? 151
 8.11.2 How are Floats and Doubles Stored? 152
 8.12 Token 154
 8.12.1 Identifier 154
 8.12.2 Keywords 154
 8.12.3 Constant 155
 8.12.4 Assignment 157
 8.12.5 Initialization 157
 8.13 Operators and Expressions 158
 8.13.1 Arithmetic Operators in C 159
 8.13.2 Relational Operators in C 163
 8.13.3 Logical Operators in C 164
 8.13.4 Bitwise Operators in C 164
 8.13.5 Conditional Operator in C 165
 8.13.6 Comma Operator 165
 8.13.7 sizeof Operator 166
 8.13.8 Expression Evaluation—Precedence and

Associativity 166
 8.14 Expressions Revisited 168
 8.15 Lvalues and Rvalues 169
 8.16 Type Conversion in C 169
 8.16.1 Type Conversion in Expressions 169
 8.16.2 Conversion by Assignment 170
 8.16.3 Casting Arithmetic Expressions 172
 8.17 Working with Complex Numbers 177

9. InPuT And ouTPuT 183
 9.1 Introduction 183
 9.2 Basic Screen and Keyboard I/O in C 184
 9.3 Non-formatted Input and Output 184
 9.3.1 Single Character Input and Output 184
 9.3.2 Single Character Input 185
 9.3.3 Single Character Output 185
 9.3.4 Additional Single Character Input and Output

Functions 185
 9.4 Formatted Input and Output Functions 188
 9.4.1 Output Function print f () 188
 9.4.2 Input Function scanf () 193

10. cONTrOl STATEMENTS 202
 10.1 Introduction 202
 10.2 Specifying Test Condition for Selection and

Iteration 203
 10.3 Writing Test Expression 204
 10.3.1 Understanding How True and False is

Represented in C 205
 10.4 Selection 208
 10.4.1 Selection Statements 208

 10.4.2 The Conditional Operator 214
 10.4.3 The switch Statement 215
 10.5 Iteration 219
 10.5.1 while Construct 220
 10.5.2 for Construct 224
 10.5.3 do-while Construct 232
 10.6 Which Loop Should be Used? 233
 10.6.1 Using Sentinel Values 234
 10.6.2 Using Prime Read 234
 10.6.3 Using Counter 235
 10.7 goto Statement 236
 10.8 Special Control Statements 236
 10.9 Nested Loops 238

11. ArrAYS ANd STriNgS 246
 11.1 Introduction 246
 11.2 One-dimensional Array 247
 11.2.1 Declaration of a One-dimensional Array 247
 11.2.2 Initializing Integer Arrays 249
 11.2.3 Accessing Array Elements 250
 11.2.4 Other Allowed Operations 251
 11.2.5 Internal Representation of Arrays in C 252
 11.2.6 Variable Length Arrays and the C99

Changes 253
 11.2.7 Working with One-dimensional Array 253
 11.3 Strings: One-dimensional Character Arrays 257
 11.3.1 Declaration of a String 257
 11.3.2 String Initialization 257
 11.3.3 Printing Strings 258
 11.3.4 String Input 259
 11.3.5 Character Manipulation in the String 264
 11.3.6 String Manipulation 265
 11.4 Multidimensional Arrays 271
 11.4.1 Declaration of a Two-dimensional Array 271
 11.4.2 Declaration of a Three-dimensional

Array 272
 11.4.3 Initialization of a Multidimensional

Array 272
 11.4.4 Unsized Array Initializations 273
 11.4.5 Accessing Multidimensional Arrays 273
 11.4.6 Working with Two-dimensional Arrays 274
 11.5 Array of Strings: Two-dimensional Character

Array 277
 11.5.1 Initialization 277
 11.5.2 Manipulating String Arrays 277

12. FUNcTiONS 282
 12.1 Introduction 282
 12.2 Concept of Function 283
 12.2.1 Why are Functions Needed? 283
 12.3 Using Functions 283

www.ebook3000.com

http://www.ebook3000.org

xvi Contents

 12.3.1 Function Prototype Declaration 284
 12.3.2 Function Definition 284
 12.3.3 Function Calling 287
 12.4 Call by Value Mechanism 288
 12.5 Working with Functions 288
 12.6 Passing Arrays to Functions 290
 12.7 Scope and Extent 293
 12.7.1 Concept of Global and Local Variables 293
 12.7.2 Scope Rules 295
 12.8 Storage Classes 296
 12.8.1 Storage Class Specifiers for Variables 296
 12.8.2 Storage Class Specifiers for Functions 299
 12.8.3 Linkage 299
 12.9 The Inline Function 299
 12.10 Recursion 300
 12.10.1 What is Needed for Implementing

Recursion? 300
 12.10.2 How is Recursion Implemented? 304
 12.10.3 Comparing Recursion and Iteration 305
 12.11 Searching and Sorting 305
 12.11.1 Searching Algorithms 305
 12.11.2 Sorting Algorithms 306
 12.12 Analysis of Algorithms 311
 12.12.1 Asymptotic Notation 313
 12.12.2 Efficiency of Linear Search 314
 12.12.3 Binary Search Analysis 315
 12.12.4 Analysis of Bubble Sort 316
 12.12.5 Analysis of Quick Sort 317
 12.12.6 Disadvantages of Complexity Analysis 317

13. pOiNTErS iN c 324
 13.1 Introduction 324
 13.2 Understanding Memory Addresses 325
 13.3 Address of Operator (&) 326
 13.4 Pointer 327
 13.4.1 Declaring a Pointer 328
 13.4.2 Initializing Pointers 329
 13.4.3 Indirection Operator and Dereferencing 331
 13.5 Void Pointer 332
 13.6 Null Pointer 333
 13.7 Use of Pointers 334
 13.8 Arrays and Pointers 336
 13.8.1 One-dimensional Arrays and Pointers 336
 13.8.2 Passing an Array to a Function 339
 13.8.3 Differences between Array Name and

Pointer 340
 13.9 Pointers and Strings 342
 13.10 Pointer Arithmetic 343
 13.10.1 Assignment 343
 13.10.2 Addition or Subtraction with Integers 344
 13.10.3 Subtraction of Pointers 350
 13.10.4 Comparing Pointers 351

 13.11 Pointers to Pointers 352
 13.12 Array of Pointers 354
 13.13 Pointer to Array 357
 13.14 Two-dimensional Arrays and Pointers 359
 13.14.1 Passing Two-dimensional Array to a

Function 360
 13.14.2 Three-dimensional Arrays 366
 13.14.3 Pointers to Functions 367
 13.14.4 Declaration of a Pointer to a Function 367
 13.14.5 Initialization of Function Pointers 367
 13.14.6 Calling a Function Using a Function

Pointer 367
 13.14.7 Passing a Function to Another Function 368
 13.14.8 How to Return a Function Pointer 369
 13.14.9 Arrays of Function Pointers 370
 13.17 Dynamic Memory Allocation 370
 13.17.1 Dynamic Allocation of Arrays 372
 13.17.2 Freeing Memory 374
 13.17.3 Reallocating Memory Blocks 376
 13.17.4 Implementing Multidimensional Arrays

Using Pointers 377
 13.18 Offsetting a Pointer 380
 13.19 Memory Leak and Memory Corruption 381
 13.20 Pointer and Const Qualifier 382
 13.20.1 Pointer to Constant 382
 13.20.2 Constant Pointers 383
 13.20.3 Constant Parameters 383

14. USEr-dEFiNEd dATA TYpES ANd
VArIAbleS 394

 14.1 Introduction 394
 14.2 Structures 394
 14.2.1 Declaring Structures and Structure

Variables 395
 14.2.2 Accessing the Members of a Structure 397
 14.2.3 Initialization of Structures 398
 14.2.4 Copying and Comparing Structures 401
 14.2.5 Typedef and its Use in Structure

Declarations 403
 14.2.6 Nesting of Structures 404
 14.2.7 Arrays of Structures 405
 14.2.8 Initializing Arrays of Structures 406
 14.2.9 Arrays within the Structure 406
 14.2.10 Structures and Pointers 406
 14.2.11 Structures and Functions 408
 14.3 Union 410
 14.3.1 Declaring a Union and its Members 410
 14.3.2 Accessing and Initializing the Members of a

Union 411
 14.3.3 Structure versus Union 412
 14.4 Enumeration Types 413
 14.5 Bitfields 414

Contents xvii

15. FilES iN c 420
 15.1 Introduction 420
 15.2 Using Files in C 422
 15.2.1 Declaration of File Pointer 422
 15.2.2 Opening a File 422
 15.2.3 Closing and Flushing Files 423
 15.3 Working with Text Files 424
 15.3.1 Character Input and Output 424
 15.3.2 End of File (EOF) 425
 15.3.3 Detecting the End of a File Using the feof()

Function 430
 15.4 Working with Binary Files 430
 15.5 Direct File Input and Output 431
 15.5.1 Sequential Versus Random File Access 432
 15.6 Files of Records 433
 15.6.1 Working with Files of Records 433
 15.7 Random Access to Files of Records 438
 15.8 Other File Management Functions 441
 15.9 Low-Level I/O 442

16. AdvANcEd c 445
 16.1 Introduction 445
 16.2 Bitwise Operator 446
 16.2.1 Bitwise AND 446
 16.2.2 Bitwise OR 448
 16.2.3 Bitwise Exclusive-OR 448
 16.2.4 Bitwise NOT 449
 16.2.5 Bitwise Shift Operator 449
 16.3 Command-line Arguments 451
 16.4 The C Preprocessor 454
 16.4.1 The C Preprocessor Directives 454
 16.4.2 Predefined Macros 457
 16.5 Type Qualifier 459
 16.5.1 const Qualifier 459
 16.5.2 volatile Qualifier 461
 16.5.3 restrict Qualifier 461
 16.6 Variable Length Argument List 462
 16.7 Memory Models and Pointers 463

Bibliography and References 471
Index 473

Computer Fundamentals 1

1.1 IntroductIon—What Is a
computer?

The Oxford Dictionary defines a computer as ‘an automatic
electronic apparatus for making calculations or controlling
operations that are expressible in numerical or logical
terms’.
 The definition clearly categorizes the computer as an
electronic apparatus although the first computers were
mechanical and electro-mechanical apparatuses. The
definition also points towards the two major areas of computer
application: data processing and computer-assisted controls or
operations. Another important conclusion of the definition is
the fact that the computer can perform only those operations
or calculations that can be expressed in logical or numerical
terms.
 A computer is a data processor. It can accept input, which
may be either data or instructions or both. The computer

remembers the input by storing it in memory cells. It then
processes the stored input by performing calculations or
by making logical comparisons or both. It gives out the
result of the arithmetic or logical computations as output
information. The computer accepts input and outputs data in
an alphanumeric form. Internally it converts the input data to
meaningful binary digits, performs the instructed operations
on the binary data, and transforms the data from binary digit
form to understandable alphanumeric form.

1.2 evolutIon of computers—a BrIef
hIstory

Computing in the mechanical era
The concept of calculating machines evolved long before
the invention of electrical and electronic devices. The first
mechanical calculating apparatus was the abacus, which

c
h
A
p
T
e
rComputer Fundamentals

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

1

∑ trace the evolution of computers—generations and
classification of computers

∑ explain the basic units of a computer system

∑ explain the hardware and software of a personal
computer

∑ load an operating system (OS) in a personal computer

2 Computer Fundamentals and Programming in C

was invented in 500 BC in Babylon. It was used extensively
without any improvement until 1642 when Blaise Pascal
designed a calculator that employed gears and wheels.
But it was not until the early 1800s that a practical, geared,
mechanical computing calculator became available. This
machine could calculate facts but was not able to use a
program to compute numerical facts.
 In 1823, Charles Babbage, aided by Augusta Ada Byron,
the Countess of Lovelace, started an ambitious project of
producing a programmable calculating machine for the Royal
Navy of Great Britain. Input to this mechanical machine,
named the Analytical Engine, was given through punched
cards. This engine stored 1,000, 20-digit decimal numbers
and a modifiable program, which could vary the operation of
the machine so that it could execute different computing jobs.
But even after several years of effort, the machine that had
more than 50,000 mechanical parts could not operate reliably
because the parts could not be machined to precision.

Computing in the electrical era
With the availability of electric motors in 1800, a host of
motor-operated calculating machines based on Pascal’s
calculator was developed. A mechanical machine, driven by
a single electric motor, was developed in 1889 by Herman
Hollerith to count, sort, and collate data stored on punched
cards. Hollerith formed the Tabulating Machine Company in
1896. This company soon merged into International Business
Machines (IBM) and the mechanical computing machine
business thrived.
 In 1941, Konrad Zuse developed the first electronic
calculating computer, Z3. It was used by the Germans in World
War II. However, Alan Turing is credited with developing
the first electronic computer in 1943. This computer system,
named the Colossus, was a fixed-program computer; it was
not programmable.
 J.W. Mauchly and S.P. Eckert of the University of
Pennsylvania completed the first general-purpose electronic
digital computer in 1946. It was called the ENIAC, Electronic
Numerical Integrator and Calculator. It used 17,000 vacuum
tubes, over 500 miles of wires, weighed 30 tons, and performed
around 100,000 operations per second. The IAS computer
system, under development till 1952 by John von Neumann
and others at the Princeton Institute, laid the foundation of
the general structure of subsequent general-purpose compu-
ters. In the early 1950s, Sperry-Rand Corporation launched
the UNIvAC I, UNIvAC II, UNIvAC 1103 series while IBM
brought out Mark I and 701 series. All these machines used
vacuum tubes.
 The transistor was invented at Bell Labs in 1948. In
1958, IBM, International Computers Limited (ICL), Digital
Equipment Corporation (DEC), and others brought out
general-purpose computers using transistors that were faster,
smaller in size, weighed less, needed less power, and were
more reliable.

 Meanwhile, at Texas Instruments, Jack Kilby invented the
integrated circuit in 1958 that led to the development of digital
integrated circuits in the 1960s. This led to the development
of IBM 360/370, PDP 8/1, and HP 9810 in 1966. These
computers used medium- and small-scale integrated circuits
(MSI and SSI).
 Thereafter, in 1971, Intel Corporation announced the
development of the single-chip microprocessor 4004, a
very large-scale integrated circuit. In 1972, the 8008 8-bit
microprocessor was introduced. Subsequently, the 8080
and MC 6800 appeared in 1973, which were improved
8-bit microprocessors. The last of the 8-bit microprocessor
family from Intel, 8085, was introduced as a general-purpose
processor in 1974. In 1978, the 8086, and in 1979, the 8088
microprocessors were released.
 Though desktop computers were available from 1975
onwards, none could gain as much popularity as the IBM PC.
In 1981, IBM used the 8088 microprocessor in the personal
computer. The 80286 16-bit microprocessor came in 1983
as an updated version of 8086. The 32-bit microprocessor
80386 arrived in 1986 and the 80486 arrived in 1989. With
the introduction of the Pentium in 1993, a highly improved
personal computer was available at an affordable price.
 With the development of the desktop computers, in the
form of personal computers, and networking, the whole
scenario of computing has undergone a sea change. Now,
portable computers such as the laptop and palmtop are
available, which can execute programs, store data, and output
information at speeds higher than that possible with all the
earlier computers. Efforts are now being made to integrate a
palmtop computer with a mobile phone unit.
 Along with the development of computer hardware,
programming languages were devised and perfected. In the
1950s, Assembly language was developed for UNIvAC
computers. In 1957, IBM developed fortran language. Then
in the years that followed came programming languages such
as algol, cobol, basic, pascal, c/c++, ada, and java.
 Further, with the creation of the operating system (OS),
a supervisor program for managing computer resources and
controlling the CPU to perform various jobs, the computer’s
operational capability touched a new dimension. There are
a variety of operating systems today. Some which gained
popularity are unix for large and mini-computers and msdos
and ms-windows for personal computers. However, with the
availability of linux, a trend to change over to this operating
system is on.

1.3 GeneratIons of computers
What generation a computer belongs to is determined by the
technology it uses. Table 1.1 shows the technology used in the
different generations of computers. With advancement in the
generation, the performance of computers improved not only
due to the implementation of better hardware technology but
also superior operating systems and other software utilities.

Computer Fundamentals 3
 Table 1.1 Technology used in different generations of computers

Generation
number

Technology Operating
system

Year of introduction Specific computers

1 Vacuum Tube None 1945 Mark 1

2 Transistor None 1956 IBM 1401, ICL 1901, B5000, MINSK-2

3 SSI and MSI Yes 1964 IBM S/360/370, UNIVAC 1100,
HP 2100A, HP 9810

4 LSI and VLSI Yes 1971 ICL 2900, HP 9845A, VAX 11/780, ALTAIR 8800, IBM PC

5 HAL Yes Present and beyond –

1.4 ClASSIfICAtIoN of ComputErS

Most designs of computers today are based on concepts de-
veloped by John von Neumann and are referred to as the von
Neumann architecture. Computers can be classified in variety
of ways on the basis of various parameters such as usage,
cost, size, processing power, and so on. The classification of
computers is presented below based on their power and their
use.

Supercomputer
Supercomputer is the most expensive and fastest type of
computer that performs at or near the currently highest
operational rate for computers. A Cray supercomputer is
a typical example. These are employed for specialized
applications that require immense amounts of mathematical
calculations such as weather forecasting, nuclear energy
research, and petroleum exploration etc.

Mainframe
A mainframe computer supports a vast number of users to
work simultaneously and remotely. Apart from providing
multi-user facility, it can process large amounts of data at very
high speeds and support many input, output and auxiliary
storage devices. These computers are very large in size, and
expensive. The main difference between a supercomputer
and a mainframe is that a supercomputer can execute a single
program faster than a mainframe, whereas a mainframe uses
its power to execute many programs concurrently. The IBM
370 and IBM 3090 are examples of mainframe computers.

Minicomputers
A minicomputer is powerful enough to be used by multiple
users (between 10 to 100) but is smaller in size and memory
capacity and cheaper than mainframes. Two classic examples
were the Digital Equipment Corporation vAX and the IBM
AS/400.

Microcomputers
The microcomputer has been intended to meet the personal
computing needs of an individual. It typically consists of a
microprocessor chip, a memory system, interface units and

various I/O ports, typically resided in a motherboard. There
are many types of microcomputers available.

Desktop computer A micro computer sufficient to fit on a desk.

Laptop computer A portable microcomputer with an inte-
grated screen and keyboard.

Palmtop computer/Digital diary/Notebook/PDAs A hand-
sized microcomputer having no keyboard. The screen serves
both as an input and output device.

1.5 anatomy of a computer
A computer can accept input, process or store data, and
produce output according to a set of instructions which
are fed into it. A computer system can be divided into
two components which are responsible for providing the
mechanisms to input and output data, to manipulate and
process data, and to electronically control the various input,
output, and their storage. They are known as hardware and
software. The hardware is the tangible parts of the computer.
Whereas, the software is the intangible set of instructions
that control the hardware and make it perform specific tasks.
Without software, a computer is effectively useless.

1.5.1 hardware
Hardware is the physical components of a computer that
includes all mechanical, electrical, electronic and magnetic
parts attached to it. A computer consists of the following
major hardware components:
∑ Input and output devices
∑ Central processing unit (CPU)
∑ Memory unit and storage devices
∑ Interface unit
 A brief description of the most common hardware found in
a personal computer is given in the next few sections.

Input devices
The data and instructions are typed, submitted, or transmitted
to a computer through input devices. Input devices are
electronic or electro-mechanical equipment that provide

4 Computer Fundamentals and Programming in C

a means of communicating with the computer system for
feeding input data and instructions. Most common input
devices are briefly described below.

Keyboard Keyboard is like a type-writer. A keyboard,
normally, consists of 104 keys. These keys are classified into
different categories which are briefly described below.

Character keys These keys include letters, numbers,
and punctuation marks. On pressing any character key, the
corresponding character is displayed on the screen.

Function keys There are 12 functional keys above the key
board which are used to perform certain functions depending
on the operating system or the software currently being
executed. These keys are placed at the top of the key board
and can easily be identified with the letter F followed by a
number ranging from 1 to 12.

Control keys Alt, Ctrl, Shift, Insert, Delete, Home, End,
PgUp, PgDn, Esc and Arrow keys are control keys.

Navigation keys These include four arrows, Page Up and
Page Down, Home and End. These keys are normally used to
navigate around a document or screen.

Toggle keys Scroll Lock, Num lock, Caps Lock are three
toggle keys. The toggle state is indicated by three LEDs at the
right-top side of the keyboard. For example, on pressing caps
lock, letters typed by the user will appear in upper case. On
pressing again, letters are typed on the screen in lower case.

Miscellaneous keys These keys include Insert, delete,
escape, print Screen etc.
The keys on the keyboard
are placed in a series of rows
and columns called the key
matrix. Each key holds a
position with respect to a
row and column. When a
key is pressed, the key switch in that position closes a circuit,
sending a signal to the circuit board inside the keyboard.
The keyboard controller uses the x and y coordinates of the
matrix position to determine which key was pressed, thereby
determining what code is transmitted to the computer by the
keyboard.

mouse A mouse is the
pointing device attached
to a computer. It is used to
move the cursor around the
screen and to point to an
object (such as icon, menu,
command button etc.) on
the computer video screen
for the purpose of selecting
or activating objects on graphical interface provided by the

operating system or the software currently being executed
and executing various tasks. It has two or three buttons for
clicking. The mouse tracks the motion of the mouse pointer
and senses the clicks and sends them to the computer so it can
respond appropriately.
 The mouse can be connected to the system either through
a USB connector or wirelessly through infrared radiation. A
wireless mouse needs to be powered through batteries.

Scanner A scanner is a device
that captures pictures or documents
so that they can be stored in storage
devices, seen on the video screen,
modified suitably, transported to other
computers, or printed on a printer. A personal computer with
a scanner and printer can function as a photocopier.

Output devices
Output devices mirror the input data, or show the output
results of the operations on the input data or print the data.
The most common output device is monitor or visual display
unit. The printer is used to print the result. A hard copy refers
to a printout showing the information. On the other hand soft
copy means information stored on a storage device.

monitor Computer display devices are commonly known
as visual Display Unit (vDU) or monitor. It operates on a
principle similar to that of a normal television set. various
technologies have been used
for computer monitors. They
are also of different sizes.
CRT (Cathode-ray tube) and
LCD (liquid crystal display)
monitors are the two common
types which are widely used.
 The CRT is composed of
a vacuum glass tube which
is narrower at one end. One
electron gun is placed at this
end which fires electrons. The electron gun is made up of
cathode (negatively charged) and one anode (positively
charged). On the other side it has a wide screen, coded with
phosphor. The beam of electron strikes on the surface of
screen and produces an image by photo luminance process.
There is some vertical and horizontal coil to deflect the
electron beam in any position of the screen. An image is
formed by constantly scanning the screen. To send an image
to the screen, the computer first assembles it in a memory
area called a video buffer. The graphics are stored as an
array of memory locations that represent the colors of the
individual screen dots, or pixels. The video card then sends
this data through a Digital To Analog Converter (DAC),
which converts the data to a series of voltage levels that are
fed to the monitor.

Computer Fundamentals 5
 CRT monitors are too bulky and consume high power.
Apart from these, users are very much concerned about
potentially damaging non-ionizing radiation from CRT
monitor.
 Nowadays, LCD monitors are replacing CRTs and
becoming the de-facto choice to the users because of its
size, display clarity, low radiation emission and power
consumption.
 An LCD display produces an
image by filtering light from a
series of cold cathode fluorescent
lamps (CCFLs).through a layer
of liquid crystal cells. Gradually,
CCFL backlighting technology
is being replaced by low-power
light-emitting diodes (LEDs). A computer screen that uses
this technology is sometimes referred to as an LED display.

printer The printer is a device that prints any data, report,
document, picture, diagrams, etc. Printers are categorized
based on the physical
contact of the print
head with the paper
to produce a text or
an image. An impact
printer is one where
the print head will be
in physical contact
with the paper. In a
non–impact printer,
on the other hand the
print head will have
no physical contact
with the paper. The
Dot matrix printer is considered as an Impact printer and
Laser printer is considered as Non-impact printer.
 In a dot matrix printer, the printer head physically ‘hits’
the paper through the ribbon which makes the speed of
the printer relatively slow. The
printer head consist of some two
dimensional array of dot called
‘dot matrix’. Every time when it
strikes the paper through ribbon
its dots are arranged according to
the character which is going to be
printed. The ink in the ribbon falls
on the surface of the paper and thus
the character get printed. In inkjet
printer, instead of a ribbon one ink
cartridge holds the ink in it. They are placed above the inkjet
head. The printing head takes some ink from the cartridge
and spreads it on the surface of the paper by the jet head. This
ink is electrically charged. An electric field is created near

the paper surface. Thus the small drops of
ink are arranged in the surface according
to the character it prints. These printers are
fast and capable of printing good quality
graphics. The laser printer uses a laser
beam to create the image.

Central processing unit (CPU)
Central Processing Unit or CPU
can be thought of as the brain of the
computer. Most of the processing
takes place in CPU. During
processing, it locates and executes
the program instructions. It also
fetches data from memory and
input/output devices and sends data
back.
 Physically, it is an integrated circuit (IC) silicon chip,
mounted on a small square plastic slab, surrounded by
metal pins. In the world of personal computers, the term
microprocessor and CPU are used interchangeably. It is more
accurate to describe it as a CPU on a chip because it contains
the circuitry that performs processing.
 The CPU itself can be divided into different functional
units which are described below-

registers These are high-speed storage devices. In most
CPUs, some registers are reserved for special purposes.
For example, the Instruction Register (IR) holds the current
instruction being executed. The Program Counter (PC) is
a register that holds the address of the next instruction to
be executed. In addition to such and other special-purpose
registers, it also contains a set of general-purpose registers
that are used for temporary storage of data values as needed
during processing.

Arithmetic logic unit (Alu) It is the part of the CPU
that performs arithmetic operations, such as addition and
subtraction as well as logical operations, such as comparing
two numbers to see if they are the equal or greater or less.

Control unit (Cu) The control unit coordinates the
processing by controlling the transfer of data and instructions
between main memory and the registers in the CPU. It also
coordinates the execution of the arithmetic logic unit (ALU)
to perform operations on data stored in particular registers. It
consists of
∑ an instruction decoding circuit that interprets what action

should be performed.
∑ a control and timing circuit directs all the other parts of the

computer by producing the respective control signals.
 Nowadays, a high-speed memory, called cache memory,
is embedded with the CPU chip. This improves the computer

Wide-carriage dot matrix printer. Courtesy:
Dale Mahalko (This file is licensed under
the Creative Commons Attribution-
Share Alike 3.0 Unported license; http://
creativecommons.org/licenses/by-sa/3.0/
deed.en)

6 Computer Fundamentals and Programming in C

performance by minimizing the processor need to read data
from the slow main memory.
 The CPU’s processing power is measured in terms of
the number of instructions that it can execute per unit time.
Every computer comprises of an internal clock, which emits
electronic pulses at a constant rate. These pulses are used to
control and synchronize the pace of operations. Each pulse is
called a clock cycle which resembles a rectangular wave with
a rising half of the signal and a falling half. In other words,
a full clock cycle is the amount of time that elapses between
pulses of the oscillating signal. Each instruction takes one
or more clock cycles to execute. The higher the clock speed,
the more instructions are executed in a given period of time.
Hertz (Hz) is the basic unit of computer clock frequency
which is equal to one cycle per second. CPU speed has been
improved continuously. It is typically measured in megahertz
(MHz) or gigahertz (GHz). One megahertz is equal to one
million cycles per second, while one gigahertz equals one
billion cycles per second.
Nowadays, multiple processors are embedded together on a
single integrated-circuit chip, known as multi-core processor
e.g. a dual-core processor has two CPUs and a quad core
processor has four CPUs.

note

 ∑ An integrated circuit, or IC, is a matrix of transistors and
other electrical components embedded in a small slice of
silicon.

 ∑ A microprocessor is a digital electronic component with
miniaturized transistors on a single semiconductor
integrated circuit (IC). One or more microprocessors
typically serve as a central processing unit (CPU) in a
computer system or handheld device allocating space to
hold the data object.

Memory unit
Components such as the input device, output device, and
CPU are not sufficient for the working of a computer. A
storage area is needed in a computer to store instructions and
data, either temporarily or permanently, so that subsequent
retrieval of the instructions and data can be possible on
demand. Data are stored in memory as binary digits, called
bits. Data of various types, such as numbers, characters, are
encoded as series of bits and stored in consecutive memory
locations. Each memory location comprises of a single byte
which is equal to eight bits and has a unique address so that
the contents of the desired memory locations can be accessed
independently by referring to its’ address. A single data item
is stored in one or more consecutive bytes of memory. The
address of the first byte is used as the address of the entire
memory location.
 CPU uses registers exclusively to store and manipulate
data and instructions during the processing. Apart from

registers, there are mainly two types of memory that are used
in a computer system. One is called primary memory and the
other secondary memory.

primary memory Primary memory is the area where data
and programs are stored while the program is being executed
along with the data. This memory space, also known as
main memory, forms the working area of the program. This
memory is accessed directly by the processor.
 A memory module consists of a large bank of flip-flops
arranged together with data traffic control circuitry such that
data can be stored or read out on or from a set of flip-flops. A
flip-flop can store a binary digit. These flip-flops are grouped
to form a unit memory of fixed length and each of which
is identified by a sequence number known as a memory
address. These type are called Random Access Memory,
or RAM, where any location can be accessed directly, and
its stored contents get destroyed the moment power to this
module is switched off. Hence, these are volatile in nature.
Primary memory devices are expensive. They are limited in
size, consume very low power, and are faster as compared to
secondary memory devices.
 There is another kind of primary memory increasingly
being used in modern computers. It is called cache memory
(pronounced as “cash”). It is a type of high-speed memory
that allows the processor to access data more rapidly than
from memory located elsewhere on the system. It stores
or caches some of the contents of the main memory that is
currently in use by the processor. It takes a fraction of the
time, compared to main memory, to access cache memory.
The management of data stored in the cache memory ensures
that for 20 per cent of the total time, during which the cache
is searched, the data needed is found to be stored in cache. As
a result the performance of the computer improves in terms
of speed of processing.

Secondary memory Secondary memory provides large,
non-volatile, and inexpensive storage for programs and data.
However, the access time in secondary memory is much
larger than in primary memory. Secondary storage permits
the storage of computer instructions and data for long periods
of time. Moreover, secondary memory, which is also known
as auxiliary memory, stores a huge number of data bytes at a
lesser cost than primary memory devices.

note

 ∑ The memory unit is composed of an ordered sequence of
storage cells, each capable of storing one byte of data.
Each memory cell has a distinct address which is used to
refer while storing data into it or retrieving data from it.

 ∑ Both RAM and cache memory are referred to as primary
memory. Primary memory is comparatively expensive,
and loses all its data when the power is turned off.
Secondary memory provides less expensive storage that
is used to store data and instructions on a permanent
basis.

Computer Fundamentals 7
memory operations There are some operations common
to both primary and secondary memory devices. These are
as follows.

Read During this operation, data is retrieved from memory.

Write In this operation, data is stored in the memory.

 Using read and write operations, many other memory-
related functions such as copy and delete are carried out.

unit of memory The memory’s interface circuit is
designed to logically access a byte or a multiple of a byte
of data from the memory during each access. The smallest
block of memory is considered to be a byte, which comprises
eight bits. The total memory space is measured in terms of
bytes. Thus, the unit of memory is a byte. The capacity of
memory is the maximum amount of information it is capable
of storing. Since the unit of memory is a byte, the memory’s
capacity is expressed in number of bytes. Some units used to
express the memory capacity are as follows:

 ∑ Kilobyte (KB) = 1024 bytes
 ∑ Megabyte (MB) = 1024 Kilobytes
 ∑ Gigabyte (GB) = 1024 Megabytes
 ∑ Terabyte (TB) = 1024 Gigabytes
 ∑ Petabyte (PB) = 1024 Terabytes
 ∑ Exabyte (EB) = 1024 Petabytes
 ∑ Zettabyte (ZB) = 1024 Exabytes
 ∑ Yottabyte (YB) = 1024 Zettabytes

 The size of the register is one of the important considerations
in determining the processing capabilities of the CPU. Word
size refers to the number of bits that a CPU can manipulate
at one time. Word size is based on the size of registers in the
ALU and the capacity of circuits that lead to those registers.
A processor with a 32-bit word size, for example, has 32-
bit registers, processes 32 bits at a time, and is referred to
as a 32-bit processor. Processor’s word size is a factor that
leads to increased computer performance. Today’s personal
computers typically contain 32-bit or 64-bit processors.

memory hierarchy The various types of memory used in
a computer system differ in speed, cost, size, and volatility
(permanence of storage). They can be organized in a
hierarchy. The memory hierarchy in the computer system is
depicted in Fig. 1.1.
 Figure 1.1 shows that on moving down the hierarchy, the
cost per bit of storage decreases but access times increases
(i.e., devices are slow). In other words, from top to bottom,
the speed decreases while the capacity increases and the
prices become much lower.
 Of the various memories specified in the hierarchy, those
above the secondary memory are volatile and the rest are

non-volatile. While designing a computer system, there must
always be a balance on all of the above factors, namely speed,
cost, volatility, etc. at each level in the hierarchy.

Registers

Cache

Main memory

Secondary memory

S
p
e
e
d

C
o
s
t

Fig. 1.1 Memory hierarchy

 The devices in a computer system other than the CPU and
main memory are called peripherals. Popular peripheral
devices include printers, digital cameras, scanners, joysticks,
and speakers.

Interface unit
The interface unit interconnects the CPU with memory
and also with the various input/output (I/O) devices. The
instructions and data move between the CPU and other
hardware components through interface unit.
 It is a set of parallel wires or lines which connects all the
internal computer components to the CPU and main memory.
Depending on the type of data transmitted, a bus can be
classified into the following three types:

Data bus The bus used to carry actual data.

Address bus memory or Input/output device Addresses
travel via the address bus.

Control bus This bus carries control information between
the CPU and other devices within the computer. The control
information entails signals that report the status of various
devices, or ask devices to take specific actions.
 A model of the bus-based computer organization is shown
in Fig. 1.2.
 Most of the computer devices are not directly connected
to the computer’s internal bus. Since every device has its
own particular way of formatting and communicating data,
a device, termed controller, coordinates the activities of
specific peripherals. The processor reads from the input
devices or writes on the output devices with the help of the
device controllers. Each input device or output device has a
specific address. Using these addresses, the processor selects a
particular I/O device through the associated device controller
for either transferring data or any control commands.

8 Computer Fundamentals and Programming in C

System bus

Primary
memory

Input
device

Output
device

Secondary
memory

Address bus

Data bus

Control bus

C
P
U

Fig. 1.2 Bus-based computer organization

Motherboard
All the components in the computer system are mounted and connected together by an electronic circuit board called motherboard
or main board.
 To make all these things work together the motherboard provides some kind of physical connection among them. (See Fig.
1.3).

Mouse and keyboard

USB

Parallel port

CPU socket

AGP slot

PCI slot

ISA slot

CMOS battery

IDE controller
(Hard drive,
CD-ROM)

Memory slot

Floppy controller

CPU fan pluginPower supply plugin

Fig. 1.3 Motherboard

In general, a motherboard consists of the following.

Cpu socket This holds the central processor which is an
integrated chip along with the system clock, cache, cooling
fan, etc.

memory sockets These sockets hold the RAM card that
contains RAMs.

Interface module This is for the hard disk, floppy disk, and
CD-ROM drives.

rom integrated chip This is embedded with the basic
input/output system software.

ports and expansion slots A port is used to connect a
device with the bus. Physical ports include serial and parallel

www.ebook3000.com

http://www.ebook3000.org

Computer Fundamentals 9
ports, to which peripheral devices such as printers, scanners,
and external storage devices can be attached. The slots are
used to attach accessories such as graphics (video) cards,
disk controllers, and network cards. There are two different
standards for expansion slots: ISA (Industry Standard
Architecture) and PCI (Peripheral Component Interconnect).
Most common types of ports and slots are briefly described
below.

ISA slots These are for connecting ISA compatible cards.

PCI slots These are for connecting I/O devices.

Advanced graphics port (AGP) video card is inserted into
this slot.

Parallel port The parallel port is also known as the printer
port, or LPT1. It is capable of sending eight bits of information
at a time.

Serial ports these are sometimes called communication
ports or COM ports. There are two COM ports, COM1 and
COM2. size of COM1 is larger than that of COM2. COM1
has 25 pins and used for connecting Modems. COM2 is 9 pin
port used for interfacing serial mouse. D-type connectors are
used to with there ports.

USB (universal serial bus) This is also a serial port but data
rate is more than the serial port. USB is used as a general-
purpose communication channel in Personal Computers.
Many different devices, such as mouse, keyboards, hard disk
drives, portable CD-ROM/DvD drives, pen-drives, scanners,
cameras, modems and even printers are usually connected to
these ports.

CMOS The CMOS in a Personal Computer stands for
Complementary Metal Oxide Semiconductor memory. It is
a type of RAM that stores the necessary attributes of system
components, such as the size of the hard disk, the amount of
RAM, and the resources used by the serial and parallel ports
etc. Since RAM loses its content when the power is switched
off, a small battery, on the motherboard, powers the CMOS
RAM even when the computer power is switched off thereby
retaining its stored data.

System unit
The System Unit holds all the system
components in it. It is sometimes called
cabinet. The main components like
motherboard, processor, memory unit,
power supply unit, and all the ports to
interface computer’s peripherals. Inside
the unit all the components work together
to give the service that the user needs.
Based on its use, cabinets are of two types.
 (i) AT cabinets (or mini-tower)
 (ii) ATX cabinets

 AT cabinets are smaller and cheaper than ATX cabinets
and are popularly called mini-tower cabinets. They are
used for older processors and smaller motherboards. ATX
cabinets, on the other hand, are marginally larger in size than
AT cabinets and are more expensive as they come with more
features such as powered sliding front panels and extra disk
storage compartments.

note

 ∑ The motherboard is a printed circuit board which contains
the circuitry and connections that allow the various
components of the computer system to communicate
with each other. In most computer systems, the CPU,
memory, and other major components are mounted to
wiring on the motherboard.

 ∑ The input, output, and storage equipment that might be
added to a computer system to enhance its functionality
are known as peripheral devices. Popular peripheral
devices include printers, digital cameras, scanners,
joysticks, and speakers.

1.5.2 software
Software provides the instructions that tell the hardware
exactly what is to be performed and in what order. This set
of instructions is sequenced and organized in a computer
program. Therefore, a program is a series of instructions which
is intended to direct a computer to perform certain functions
and is executed by the processor. In a broader sense, software
can be described as a set of related programs. But software is
more than a collection of programs. It refers to a set of computer
programs, which provide desired functions and performance,
the data which the programs use, data structures that facilitate
the programs to efficiently manipulate data and documents
that describe the operation and use of the programs.
A comparison between computer program and software is
listed below (Table 1.2).

Table 1.2 Comparison between computer program and software

Computer program Software

Programs are developed
by individuals. A single
developer is involved.

A large number of developers are
involved.

Small in size and have
limited functionality

Extremely large in size and has
enormous functionality.

The user interface may
not be very important,
because the programmer
is the sole user.

For a software product, user
interface must be carefully designed
and implemented because
developers of that product and users
of that product are totally different.

 Nowadays, most of the software must be installed
prior to their use. Installation involves copying several
files to computer memory or requires a series of steps and

10 Computer Fundamentals and Programming in C

configurations depending on the operating system and the
software itself so that it can be run or executed when required.
 Software is generally categorized as system software or
application software or utility software.

System software
System software is designed to facilitate and coordinate
the use of the computer by making hardware operational. It
interacts with the computer system at low level. Examples of
such software include language translator, operating system,
loader, linker, etc. However, the most important system
software is the operating system which is a set of programs
designed to control the input and output operations of the
computer, provide communication interface to the user,
and manage the resources of the computer system, such as
memory, processor, input/output devices etc. and schedule
their operations with minimum manual intervention. Other
programs (system and application) rely on facilities provided
by the operating system to gain access to computer system
resources. The loader is the system software which copies
a executable program from secondary storage device into
main memory and prepares this program for execution and
initializes the execution.
 Hardware devices, other than the CPU and main memory,
have to be registered with the operating system by providing a
software, known as device driver, for communication between
the device and other parts of the computer. This type of
system software is used by printers, monitors, graphics cards,
sound cards, network cards, modems, storage devices, mouse,
scanners, etc. Once installed, a device driver automatically
responds when it is needed or may run in the background.
 Modern operating system recognizes almost all connected
hardware devices and immediately begins the installation
process. Such a device, for which the operating system
automatically starts the installation process, is called a plug-
and-play device. However, there are few hardware devices
for which the user has to manually initiate the installation
process.

Application software
Application software is designed to perform specific usages
of the users. Microsoft Word, Microsoft Excel, Microsoft
Power Point, Microsoft Access, Page Maker, Coral Draw,
Photoshop, Tally, AutoCAD, Acrobat, WinAmp, Micro
Media Flash, iLeap, Xing MP3 Player etc. are some of the
examples of application software.
 There are two categories of application software, custom
software and pre-written software packages. Software that is
developed for a specific user or organization in accordance
with the user’s needs is known as custom software.
A pre-written software package is bought off the shelf and
has predefined generic specifications that may or may not
cater to any specific user’s requirements. The most important
categories of software packages available are as follows:

∑ Database management software, e.g. Oracle, DB2,
Microsoft SQL server, etc.

∑ Spreadsheet software, e.g. Microsoft Excel.
∑ Word processing, e.g. Microsoft Word, Corel Wordperfect

and desktop publishing (DTP), e.g. Pagemaker.
∑ Graphics software, e.g. Corel Draw.
∑ Statistical, e.g. SPSS and operation research software, e.g.

Tora.

note

 ∑ Without any software, the computer is called a bare
machine, having the potential to perform many functions
but no ability to do so on its own.

1.6 memory revIsIted
The different types of memories available for a computer are
shown in Fig. 1.4.

1.6.1 primary memory
All modern computers use semiconductor memory as primary
memory. One of the important semiconductor memories used
in desktop computers is Random Access Memory (RAM).
Here “random access” means that any storage location can be
accessed (both read and write) directly. This memory is faster,
cheaper, and provides more storage space in lesser physical
area. These very large-scale integrated semiconductor
memory chips are mounted on pluggable printed circuit boards
(PCBs). Enhancement or replacement of memory with such
PCB memory modules is easy. These characteristics have
made semiconductor memory more popular and attractive.
The only drawback of semiconductor memory is that it is
volatile, i.e., it loses its contents whenever power is switched
off. RAM holds the data and instructions waiting to be
processed by the processor. In addition to data and program’s
instructions, RAM also holds operating system instructions
that control the basic functions of a computer system. These
instructions are loaded into RAM every time the computer is
turned on, and they remain there until the computer is turned
off. There are two types of RAM used in computer systems–
dynamic and static.
 Dynamic RAM (DRAM) is a type of RAM that employs
refresh circuits to retain its content in its logic circuits. Each
memory cell in DRAM consists of a single transistor. The
junction capacitor of the transistor is responsible for holding
the electrical charge that designates a single bit as logical
1. The absence of a charge designates a bit as logical 0.
Capacitors lose their charge over time and therefore need to
be recharged or refreshed at pre-determined intervals by a
refreshing circuitry.

Computer Fundamentals 11
A more expensive and faster type of RAM, Static RAM
(SRAM), does not require such type of refreshing circuitry.
It uses between four to six transistors in a special ‘flip-
flop’ circuit that holds a 1 or 0 while the computer system
is in operation. SRAM in computer systems is usually used
as processor caches and as I/O buffers. Printers and liquid
crystal displays (LCDs) often use SRAM to buffer images.

SRAM is also widely used in networking devices, such as
routers, switches, and cable modems, to buffer transmission
information.
Both dynamic and static RAM are volatile in nature and can
be read or written to. The basic differences between SRAM
and DRAM are listed in Table 1.3.

Fig. 1.4 Types of memory

Table 1.3 Static RAM versus dynamic RAM

Static RAM Dynamic RAM

∑ It does not require
refreshing.

∑ It requires extra electronic
circuitry that ‘‘refreshes’’
memory periodically; otherwise
its content will be lost.

∑ It is more expensive than
dynamic RAM.

∑ It is less expensive than static
RAM.

∑ It is lower in bit density. ∑ It holds more bits of storage in
a single integrated circuit.

∑ It is faster than dynamic
RAM.

∑ It is slower than SRAM, due to
refreshing.

 There are several popular types of dynamic RAM used
in computers. They are SDRAM (Synchronous Dynamic
RAM), RDRAM (Rambus Dynamic RAM) and DDR RAM
(Double Data Rate RAM).
 The SDRAM used to be the most common type of
RAM for personal computers. It was reasonably fast and

inexpensive. It is no more used in the present day for personal
computers as much improved RAMs are available now.
 The RDRAM was developed by Rambus Corporation and
is its proprietary technology. It is also the most expensive
RAM and is used mostly in video interface cards and high-
end computers that require fast computation speed and
data transfer. RDRAMs are preferred for high-performance
personal computers.
 The DDR RAM is a refinement of SDRAM. DDR
stands for Double Data Rate. It gives faster performance
by transmitting data on both the rising and the falling edges
of each clock pulse. DDR 2, DDR3 are other higher-speed
versions of DDR RAM.
 Another type of RAM, termed video RAM (vRAM), is
used to store image data for the visual display monitor. All
types of video RAM are special arrangements of dynamic
RAM (DRAM). Its purpose is to act as a data storage buffer
between the processor and the visual display unit.

Primary memory Secondary memory

Read only
memory

Read/write
memory

Memory

Internal processor
memory

Registers Disk drives

Mask
ROM

PROM EPROM EEPROM

Static
RAM

Dynamic
RAM

Floppy Hard
disk

CD-ROM

Read
only

Read
write

Tape driveCache
memory

Cartridge drive Cassette drive

12 Computer Fundamentals and Programming in C

 There is a persistent mismatch between processor and
main memory speeds. The processor executes an instruction
faster than the time it takes to read from or write to memory.
In order to improve the average memory access speed or
rather to optimize the fetching of instructions or data so
that these can be accessed faster when the CPU needs it,
cache memory is logically positioned between the internal
processor memory (registers) and main memory. The cache
memory holds a subset of instructions and data values that
were recently accessed by the CPU. Whenever the processer
tries to access a location of memory, it first checks with the
cache to determine if it is already present in it. If so, the byte
or word is delivered to the processor. In such a case, the
processor does not need to access the main memory. If the
data is not there in the cache, then the processer has to access
the main memory. The block of main memory containing the
data or instruction is read into the cache and then the byte or
word is delivered to the processor.
 There are two levels of cache.

Level 1 (Primary) cache This type of cache memory is
embedded into the processor itself. This cache is very fast
and its size varies generally from 8 KB to 64 KB.

Level 2 (Secondary) cache Level 2 cache is slightly slower
than L1 cache. It is usually 64 KB to 2 MB in size. Level 2
cache is also sometimes called external cache because it was
external to the processor chip when it first appeared.

Read Only Memory (ROM)
It is another type of memory that retains data and instructions
stored in it even when the power
is turned off. ROM is used in
personal computers for storing
start-up instructions provided
by the manufacturer for
carrying out basic operations
such as bootstrapping in a PC,
and is programmed for specific
purposes during their fabrication. ROMs can be written
only at the time of manufacture. Another similar memory,
Programmable ROM (PROM), is also non-volatile and can
be programmed only once by a special device.
But there are instances where the read operation is performed
several times and the write operation is performed more than
once though less than the number of read operations and the
stored data must be retained even when power is switched
off. This led to the development of EPROMs (Erasable
Programmable Read Only Memories). In the EPROM or
Erasable Programmable Read Only Memory, data can be
written electrically. The write operation, however, is not
simple. It requires the storage cells to be erased by exposing
the chip to ultraviolet light, thus bringing each cell to the same
initial state. This process of erasing is time consuming. Once

all the cells have been brought to the same initial state, the
write operation on the EPROM can be performed electrically.
 There is another type of Erasable PROM known as
Electrically Erasable Programmable Read Only Memory
(EEPROM). Like the EPROM, data can be written onto
the EEPROM by electrical signals and retained even when
power is switched off. The data stored can be erased by
electrical signals. However, in EEPROMs the writing time is
considerably higher than reading time. The biggest advantage
of EEPROM is that it is non-volatile memory and can be
updated easily, while the disadvantages are the high cost and
the write operation takes considerable time.

note

 ∑ RAM holds raw data waiting to be processed as well as
the program instructions for processing that data. It also
stores the results of processing until they can be stored
more permanently on secondary storage media. Most
important point to be noted is that RAM holds operating
system instructions which are loaded at start-up and time
to time as and when required.

 ∑ Dynamic RAM is less expensive, consumes less electrical
power, generates less heat, and can be made smaller,
with more bits of storage in a single integrated circuit.
Static RAM provides faster access with lower bit density
and are more expensive than dynamic RAM.

 ∑ ROM contains a small set of instructions that tell the
computer how to access the hard disk, find the operating
system, and load it into RAM. After the operating system
is loaded, the computer can accept input, display output,
run software, and access data.

 ∑ The programmable read-only memory (PROM) is non-
volatile and can be reprogrammed only once by a special
write device after fabrication. An erasable programmable
ROM (EPROM) can be erased by ultraviolet (UV) light or
by high-voltage pulses.

1.6.2 secondary memory
There are four main types of secondary storage devices
available in a computer system:

∑ Disk drives
∑ CD drives (CD-R, CD-RW, and DvD)
∑ Tape drives
∑ USB flash drives

 Hard disk, floppy disk, compact disk (CD), Digital versatile
Disk (DvD) and magnetic tapes are the most common
secondary storage mediums. Hard disks provide much faster
performance and have larger capacity, but are normally
not removable; that is, a single hard disk is permanently
attached to a disk drive. Floppy disks, on the other hand,
are removable, but their performance is far slower and their

Computer Fundamentals 13
capacity far smaller than those of hard disks. A CD-ROM or
DvD -ROM is another portable secondary memory device.
CD stands for Compact Disc. It is called ROM because
information is stored permanently when the CD is created.
Devices for operating storage mediums are known as drives.
Most of the drives used for secondary memory are based
on electro-mechanical technology. Mechanical components
move much more slowly than do electrical signals. That’s
why access to secondary memory is much slower than access
to main memory.
 The floppy disk is a thin, round piece of plastic material,
coated with a magnetic medium
on which information is
magnetically recorded, just as
music is recorded on the surface
of plastic cassette tapes. The
flexible floppy disk is enclosed
inside a sturdier, plastic jacket
to protect it from damage.
The disks used in personal
computers are usually 3½
inches in diameter and can store 1.44 MB of data. Earlier PCs
sometimes used 5¼ inch disks. The disks store information
and can be used to exchange information between computers.
The floppy disk drive stores data on and retrieves it from the
magnetic material of the disk, which is in the form of a disk.
It has two motors one that rotates the disk media and the other
that moves two read-write heads, each on either surface of
the disk, forward Floppy Disk Drive or backward.
 A hard disk is a permanent memory device mounted inside
the system unit. Physically,
a hard disk consists of one
or more metal (sometimes
aluminum) platters, coated
with a metal oxide that can
be magnetized. The platters
are all mounted on a spindle,
which allows them to spin at
a constant rate. Read/write heads are attached to metal arms
and positioned over each of the platter surfaces. The arms can
move the read/write heads radially inwards and outwards over
the surfaces of the platters (see Fig. 1.5). Data and programs
are stored on the hard disk by causing the write heads to
make magnetic marks on the surfaces of the platters. Read
heads retrieve the data by sensing the magnetic marks on the
platters. The surface of each platter is divided into concentric
rings called tracks. The tracks form concentric circles on the
platter’s surface. Each track is divided into a certain number
of sectors. A sector is capable of generally 512 bytes or
sometimes 1,024 bytes of data. The head is mounted on an
arm, which moves or seeks from track to track. The vertical

group of tracks at the same position on each surface of each
platter is called a cylinder. Cylinders are important, because
all heads move at the same time. Once the heads arrive at
a particular track position, all the sectors on the tracks that
form a cylinder can be read without further arm motion. The
storage capacity of a hard disk is very large and expressed in
terms of gigabytes (GB). The data that is stored on the hard
disk remains there until it is erased or deleted by the user.

Track

Disk arm

Sector

Disk
platters

Fig. 1.5 Hard disk organization

The hard disk drive provides better performance and become
mandatory for computer systems for the following reasons:

∑ Higher capacity of data storage
∑ Faster access time of data
∑ Higher data transfer rates
∑ Better reliability of operation
∑ Less data errors or data loss

 A CD is a portable secondary storage medium. various
types of CDs are
available: CD-R and
CD-RW. CD-RW
drives are used to
create and read both
CD-R and CD-RW
discs. Once created
(i.e. when it has
been “burned”), data
stored on CD-R (CD-
Recordable) disc can’t be changed. On the other hand, a CD-
Rewritable (CD-RW) disc can be erased and reused. This
disk is made of synthetic resin that is coated with a reflective
material, usually aluminum. When information is written
by a CD-writer drive, some microscopic pits are created on
the surface of the CD. The information bit on a CD-ROM
surface is coded in the form of ups and downs (known as
pits and dumps), created by infrared heat. There is one laser
diode on the reading head. The bits are read by shining a
low - intensity laser beam onto the spinning disc. The laser
beam reflects strongly from a smooth area on the disc but
weakly from a pitted area. A sensor receiving the reflection

14 Computer Fundamentals and Programming in C

determines whether each bit is a 1 or a 0 accordingly. CDs
were initially a popular storage media for music; they were
later used as general computer storage media. Most personal
computers are equipped with a CD-Recordable (CD-R) drive.
A CD-Rewritable (CD-RW) disc can be reused because the
pits and flat surfaces of a normal CD are simulated on a CD-
RW by coating the surface of the disc with a material that,
when heated to one temperature becomes amorphous (and
therefore non-reflective) and when heated to a different
temperature becomes crystalline (and therefore reflective).

1.7 IntroductIon to operatInG
systems

A computer system has many resources such as the processor
(CPU), main memory, I/O devices, and files. The operating
system acts as the manager of these resources and allocates
them to specific programs and uses them as and when
necessary for the tasks.
 An operating system may be defined as a system software
which acts as an intermediary between the user and the
hardware, an interface which isolates the user from the
details of the hardware implementation. It consists of a
set of specialized software modules that makes computing
resources (hardware and software) available to users. Thus,
the computer system is easier to use with the operating system
in place than without it. Some of the operating systems used
nowadays are Mac, MS Windows, Linux, Solaris, etc.
 The common functions of an operating system includes –

process(or) management The process abstraction is a
fundamental mechanism implemented by the operating
system for management of the execution of programs. A
process is basically a program in execution. The operating
system decides which process gets to run, for how long and
perhaps at what priority or level of importance.

memory management Operating system is responsible
for keeping track of which parts of the memory are currently
being used and by whom. It organizes and addresses memo-
ry; handle requests to allocate memory, frees up memory no
longer being used, and rearranges memory to maximize the
useful amount. Often several programs may be in memory at
the same time. The operating system selects processes that
are to be placed in memory, where they are to be placed, and
how much memory is to be given to each.

Device management The operating system allocates
the various devices to the processes and initiates the I/O
operation. It also controls and schedules accesses to the
input/output devices among the processes.

file management A file is just a sequence of bytes. Files
are storage areas for programs, source codes, data, documents

etc. The operating system keeps track of every file in the
system, including data files, program files, compilers, and
applications. The file system is an operating system module
that allows users and programs to create, delete, modify,
open, close, and apply other operations to various types of
files. It also allows users to give names to files, to organize
the files hierarchically into directories, to protect files, and to
access those files using the various file operations.
 Apart from these functions, an operating system must
provide the facilities for controlling the access of programs,
processes, memory segments, and other resources.
 The kernel is that part of operating system that interacts
with the hardware directly. The kernel represents only a small
portion of the code of the entire OS but it is intensively used
and so remains in primary storage while other portions may
be transferred in and out of secondary storage as required.
When a computer boots up, it goes through some initialization
functions, such as checking the memory. It then loads the
kernel and switches control to it. The kernel then starts up all
the processes needed to communicate with the user and the
rest of the environment.
 The user interface is the portion of the operating system
that users interact with directly. Operating systems such as
MS-DOS and early versions of UNIX accepted only typed-in
text commands. Now most operating systems provide users a
graphical user interface for their interactions with the system.
Operating systems such as Microsoft Windows, Solaris and
Linux allow the user to interact with the operating system
through icons, menus, keyboard and mouse movements. The
user interface and way of interactions vary widely from one
operating system to another.

1.7.1 loading an operating system
In some digital devices like controllers of small appliances,
hand-held devices and videogame console, the operating
system is relatively simple and small and is stored in ROM
(Read-Only Memory). The operating system is also present
in a ROM for systems such as industrial controllers and
petrol-filling equipment. In such a system, it gains immediate
control of the processor, the moment it is turned on.
 In personal computer, the operating system is usually
stored on hard disk. Because size of the operating system is
large enough, it cannot be placed entirely in RAM. The kernel,
the core part of the operating system, is loaded into RAM at
start-up and is always present in memory. Other parts of the
operating system are loaded into RAM as and when required.
It is to be noted that there is no operating system resident in a
new computer. The operating system is usually sold on a CD
or DvD media and has to be permanently transferred from a
CD or DvD media to the hard disk by expanding compressed
files and initializing the whole system for use.

Computer Fundamentals 15

 Booting is the general term for the process that a computer
or other digital device follows from the instant it is turned on
until the operating system is finally loaded and ready for use.
 The Basic Input Output System (BIOS) is a small set of
instructions stored on a PROM that is executed when the
computer is turned on.
 When the computer is switched on, the ROM circuitry
receives power and begins the boot process. At first, an
address is automatically loaded into the Program Counter
(PC) register. This is done by hardware circuitry. The address
given is the location of the first executable instruction of the
BIOS. The code in the BIOS runs a series of tests called the
POST (Power On Self Test) to make sure that system devices
such as main memory, monitor, keyboard, the input/output
devices are connected and functional. During POST, the BIOS
compares the system configuration data obtained from POST
with the system information stored on a Complementary
Metal-Oxide Semiconductor (CMOS) memory chip located
on the motherboard. The BIOS also sets various parameters
such as the organization of the disk drive, using information
stored in a CMOS chip. This CMOS chip gets updated
whenever new system components are added and contains
the latest information about system components.
 The BIOS then loads only one block of data, called the
Master Boot Record, from a specific and fixed place (the
very first sector at cylinder 0, head 0, and sector 1) of the
bootable device and is placed at a specific and fixed place of
main memory. The master boot record is of 512 bytes in size
and contains machine code instructions, called a bootstrap
loader. Then the boot loader program starts the process of
loading the OS and transfers control to the OS itself which
completes the process.

note

 ∑ Cold boot describes the process of starting the computer
and loading its operating system by turning the power on.
If the computer is running, one can carry out cold boot by
first switching it off and then back on.

 ∑ Warm boot describes the process of restarting the
computer and loading its operating system again without
switching it off after it has already been running.

1.8 operatIonal overvIeW of a cpu
Any processing executed by central processing unit is
directed by the instruction. The processing required for a
single instruction is called an instruction cycle. The four
steps which the CPU carries out for each machine language
instruction are fetch, decode, execute, and store (Fig. 1.6).

 The steps involved in the instruction cycle while executing
a program are described below.
 The Program Counter (PC) is the register that keeps track
of what instruction has to be executed next. At the first step,
the instruction is fetched from main memory and loaded
into Instruction Register (IR), whose address is specified
by PC register. Immediately the PC is incremented so that it
points to the next instruction in the program. Once in IR, the
instruction is decoded to determine the actions needed for
its execution. The control unit then issues the sequence of
control signals that enables execution of the instruction. Data
needed to be processed by the instructions are either fetched
from a register from RAM through an address register. The
result of the instruction is stored (written) to either a register
or a memory location. The next instruction of a program will
follow the same steps. This will continue until there is no
more instruction in the program or the computer is turned off,
some sort of unrecoverable error occurs.

CU
ALU

Main memory

Store

Fetch

Decode

Execute

Fig. 1.6 A simplified view of an instruction cycle

note

 A register is a single, permanent storage location within the
CPU used for a particular, defined purpose. CPU contains
several important registers such as

	 ∑ The program counter(PC) register holds the address of
the current instruction being executed.

	 ∑ The instruction register (IR) holds the actual instruction
being executed currently by the computer.

 To access data in memory, CPU makes use of two internal
registers:

 ∑ The memory address register (MAR) holds the address
of a memory location.

 ∑ The memory data register (MDR), sometimes known as
the memory buffer register, will hold a data value that is
being stored to or retrieved from the memory location
currently addressed by the memory address register.

16 Computer Fundamentals and Programming in C

summary

A computer is defined as ‘an automatic electronic apparatus for making
calculations or controlling operations that are expressible in numerical or
logical terms’.

 Starting from the days of the abacus, the concept of developing a
computing machine has led to the development of the modern electronic
computing machine. There are five generations of computers. Today
computers are available in various forms such as personal computers,
laptop, palmtop, and mainframes. The electronic computer, of all sizes,
perfected through years of development, has become a powerful machine
capable of being employed in a variety of applications. A computer has a
CPU, a fast-access primary memory (RAM), a non-volatile high storage
capacity secondary memory (HDD), an easy-to-use keyboard, a video

color monitor console with a graphic pointer device such as mouse and a
non-impact printer.
 Thus, broadly, the basic computer system consists of a CPU, memory,
and input and output devices. Memory can be classified into primary,
secondary, and internal processor memory. Cache memory is a part of
the primary memory and normally resides near the CPU. The rest of the
primary memory consists of various types of ROMs and RAMs.

 A PC consists of hardware and software. Software can be classified
into system software and application software. The most important system
software is the operating system that manages all resources of the
computer system and acts as an interface between hardware and software.
When the personal computer is switched on, a power on self test (POST) is
executed and the operating system is loaded.

Key terms

ALU The Arithmetic Logic Unit (ALU) performs arithmetic and logical op-
erations on the data.

BIOS Basic Input-Output System (BIOS) is a small set of instructions
stored in ROM which runs every time when the computer is switched on.
BIOS is responsible for Power On Self Test to make sure every immedi-
ately required device is connected and functional and finally loading the
core part of the operating system into RAM.

Cache memory It is a special high-speed memory that allows a micro-
processor to access data more rapidly than from memory located else-
where on the system board.

CMOS The Complementary Metal Oxide Semiconductor (CMOS) chip
in the computer stores information about various attributes of the devices
connected to the computer.

Control unit It interprets each instruction and determines the appropri-
ate course of action.

Computer It is programmable device that can store, retrieve, and pro-
cess data.

CPU It is an Integrated circuit chip which is the ultimate controller of the
computer, as well as the place where all calculations are performed.

Hardware It refers to the physical components of a computer.

RAM Random Access Memory (RAM) is a volatile memory that is used
to store data and instructions temporarily. It holds raw data waiting to be
processed as well as the program instructions for processing that data. It
also holds operating system instructions, which control the basic functions
of a computer system.

ROM Read Only Memory (ROM) is permanent and nonvolatile memory.
It is the place to store the “hard-wired” startup instructions of a computer.
These instructions are a permanent part of the circuitry and remain in place
even when the computer power is turned off.

Software It refers to the set of computer programs and to the data that
the programs use.

frequently asKed questIons

1. What is a microprocessor?
A microprocessor is an integrated circuit chip that contains all of
the essential components for the central processing unit (CPU) of a
microcomputer system.
2. What is a chip?
A chip is a small, thin piece of silicon onto which the transistors making up
the integrated circuits, e.g. microprocessors have been imprinted.
3. What is a chipset?
In personal computers a chipset is a group of integrated circuits that
together perform a particular function.
4. What is booting?
The sequence of events that occurs between the time that a computer is

turned on and the time it is ready for use, is referred to as booting.
5. Where is the operating system stored?
In some digital devices— typically handhelds and videogame consoles—
the entire operating system is small enough to be stored in ROM (read-only
memory). For most other computers, the operating system program is quite
large, so most of it is stored on a hard disk. During the boot process, the
operating system kernel is loaded into RAM. The kernel provides essential
operating system services. Other parts of the operating system are loaded
into RAM as and when they are needed.
6. What is a plug-and-play device?
A device for which the installation process starts automatically by
the operating system and which usually does not require any human
intervention, is called a plug-and-play device.

Computer Fundamentals 17

7. If a computer contains RAM, why does it need ROM too?

Normally, the instructions and data are stored in a secondary storage
devices permanently. In addition to data and program instructions currently
being processed, RAM also holds operating system instructions that
control the basic functions of a computer system. These instructions are
loaded into RAM every time when the computer is booted, and they remain

resident until the computer is turned off. But RAM is a volatile memory i.e.
its content will be lost when the power is turned off. Now ROM plays the
important role. ROM contains a small set of instructions called the BIOS
(Basic Input Output System). These instructions access the hard disk, find
the operating system, and load it into RAM. After the operating system is
loaded, the system is ready to be used.

exercIses

 1. Write full forms of the following:

 ENIAC, ALU, CU, RAM, ROM, EPROM, EEPROM, BIOS, POST,
MIPS, CMOS

 2. Briefly describe the functions of the different components of a conven-
tional digital computer with the help of a suitable block diagram.

 3. What is a CPU? What is its function? Mention its several components.

 4. Explain the different memory units.

 5. Discuss the memory hierarchy within a computer system.

 6. What is cache memory? Why is it necessary?

 7. Give three examples of system software.

 8. Briefly state the role of the operating system in a computer system.

 9. What is BIOS? Describe its functions.

 10. What is meant by POST?

 11. What is the boot sector?

 12. Describe the bootstrap process.

 13. Distinguish between the following:

 (a) Compiler and interpreter

 (b) System software and application software

 (c) RAM and ROM

 (d) Primary memory and secondary memory

 (e) Bit and byte

 (f) Hardware and software

18 Computer Fundamentals and Programming in C

2.1 IntroductIon to number SyStemS
A number system defines a set of values used to represent
quantity. For example, the number of mobile phones kept in
a shop, the number of persons standing in a queue, and the
number of students attending a class.
 There are many ways to represent the same numeric value.
Long ago, humans used sticks to count; they then learned
how to draw pictures of sticks on the ground and eventually
on paper. So, the number 5 was first represented as: | | | | | (for
five sticks).
 Later on, the Romans began using different symbols for

multiple numbers of sticks: | | | still meant three sticks, but
a V meant five sticks, and a X was used to represent ten of
them. Using sticks to count was a great idea at that time.
And using symbols instead of real sticks was much better.
One of the best ways to represent a number today is by using
the modern decimal system. Why? Because it includes the
major breakthrough of using a symbol to represent the idea
of counting nothing. About 1500 years ago, in India, zero (0)
was first used as a number. It was later used in the Middle
East as the Arabic, sifr. It was finally introduced in the West
as the Latin, zephiro. Soon it was seen how valuable the
concept of zero was for all modern number systems.

c
h
a
p
t
e
R

Number Systems and
Binary Arithmetic

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

2

∑ explain the number system used in computers
∑ learn about the digit symbols, base, and representation

forms of various number systems developed and used
∑ explain the method of number system conversions
∑ add and subtract unsigned binary numbers
∑ differentiate signed magnitude, 1’s complement, and

2’s complement representation of binary numbers

∑ subtract signed numbers in 1’s complement and 2’s
complement representation

∑ explain the technique of multiplication and division of
binary numbers

∑ explain binary codes and their classification

Number Systems and Binary Arithmetic 19

2.2 baSe of a number SyStem
The base, or radix, of any number system is determined by
the number of digit symbols in the system. For example,
binary is a base-2 number system since it uses two symbols
and decimal is a base-10 system since it uses ten symbols.
In general, in any number system, a number N can be
represented by any one of the following forms:
 (a) Positional notation form:
 N d d d d d d dn n m= ◊- - - - -1 2 1 0 1 2... ...
 (b) Polynomial form:

N d r d r d r

d r d r d r
n

n
n

n

m
m

= × + ×

+ +

−
−

−
−

−
−

−
−

−
−

1
1

2
2

0
0

1
1

2
2

...

...
 (c) Compact form:

 N d ri
i

i m

n
=

= -

-

Â
1

where
 d = value of the digit symbol,
 r = base or radix,
 n = the number of integral digits to the left of the decimal
point, and
 m = the number of fractional digits or digits to the right of
the decimal point.

2.3 WeIghtIng factor
The numerical value of a number is the sum of the products
obtained by multiplying each digit by the weight of its
respective position. Decimal numbers are represented by
arranging the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. These are
known as decimal digits, in various sequences. The position
of each digit in a sequence has a certain numerical weight,
and each digit is a multiplier of the weight of its position. The
decimal number system is hence an example of a weighted,
positional number system. The weight of each position is a
power of the base number 10.
 Therefore, the weighting factor is the numerical value of
the multiplier for each column (digit) position of the number.
For instance, the decimal number system has a weighting

factor of 10 raised to the power of value equal to the position
of the digit symbol. For each column to the left, the value of
the multiplier increases by 10 over the previous column on
the right.
 Let us consider the number 754 in the decimal number
system.
7 . 10 2 + 5 . 10

1
+ 4 . 10 0 700 50 4 754+ += =

Base
Digit
Position

Important note Any number raised to the power of zero is
1, even zero raised to the power of zero is 1, for example,
 100 = 1, 00 = 1, x0 = 1

2.4 typeS of number SyStemS
There are several types number systems. Table 2.1 shows a
list of number systems with their base and sets of valid digits.

 2.4.1 decimal number System [base-10]
Most people today use decimal representation to count. This
number system uses TEN different symbols to represent
values. In the decimal system there are 10 digit symbols
 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
with 0 having the least value and 9 having the greatest value.
For a number represented in decimal system, the digit on the
extreme left has the greatest value, whereas the digit on the
extreme right has the least value.
∑ Each position to the left increases by a weight of 10.

ExamplE
 (i) 9 + 1 = 10 (nine plus one equals zero, carry one or 10)
 (ii)

Digit position

Decimal number

5 10 =¥ 0 5

7 10 =¥ 1 70

2 10 =¥ 2 200

1 10 =¥ 3 1000

127510

Multiplier (in decimal) Weight (in decimal)

0

5

1

7

2

2

3

1

Table 2.1 Number systems, bases, and symbols

Number system Base Digital symbols
Binary 2 0, 1
Ternary 3 0, 1, 2
Quaternary 4 0, 1, 2, 3
Quinary 5 0, 1, 2, 3, 4
Octal 8 0, 1, 2, 3, 4, 5, 6, 7
Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Duodecimal 12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Vigesimal 20 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J

20 Computer Fundamentals and Programming in C

2.4.2 binary number System [base-2]
The binary number system uses TWO symbols to represent
numerical values. These are 0 and 1 with 0 having the least
value and 1 having the greatest value. Number representation
in the binary system is similar to that in the decimal system,
in which the digit on the extreme left represents the greatest
value and is called the most significant digit (MSD), whereas
the digit on the extreme right is known as the least significant
digit (LSD).
∑ Each position to the left increases by a weight of 2.

ExamplE
 (i) It should be noted that 1 + 1 = 10 (one plus one equals zero, carry

one or 10)

(ii)

Digit position (in decimal)

Binary number

1 2 =0¥ 1

1 2 =¥ 1 2

0 2 =¥ 2 0

1 2 =¥ 3 8

1110

Multiplier
(in binary)

Weight
(in binary)

0

12

1

1

2

0

3

1

 In a computer, a binary digit representing a binary value (0 or 1) is
called a BIT. That is, each digit in a binary number is called a bit, 4 bits form
a NIBBLE, 8 bits form a BYTE, two bytes form a WORD and two words
form a DOUBLE WORD (rarely used).
 An n-bit number can represent 2n different number values, for example,
for an 8-bit number, 28 = 256 different values may be represented.

2.4.3 octal number System [base-8]
The octal number system uses EIGHT digit symbols to
represent numbers. The symbols are
 0, 1, 2, 3, 4, 5, 6, and 7
with 0 having the least value and 7 having the greatest value.
The number representation in the octal system is done in the
same way as in the decimal system, in which the digit on the
extreme left represents the most significant digit.
∑ Each position to the left increases by a weight of 8. Thus,
 (i) 7 + 1 = 10 (seven plus one equals zero, carry one or 10)

(ii)

Digit position (in decimal)

Octal number

5 8 =¥ 0 5

6 8 =¥ 1 48

2 8 =¥ 2 128

1 8 =3¥ 512

69310

Multiplier
(in octal)

Weight
(in octal)

0

58

1

6

2

2

3

1

2.4.4 hexadecimal number System [base-16]
The hexadecimal number system uses SIXTEEN symbols to
represent numbers. The symbols are
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
with 0 having the least value and F having the greatest value.
Number representation in hexadecimal system is done in the
same way as in the decimal system, in which the symbol on
the extreme left represents the most significant digit.
∑ Each position to the left increases by a weight of 16. Thus,
 (i) F + 1 = 10 (F ‘i.e. 15’ plus one equals zero, carry one

or 10)
 (ii)

5122 16 =¥ 2

67810

16010 16 =¥ 1

66 16 =¥ 0

Digit position (in decimal)

Hexadecimal number

2

2

1

A

0

616

 The hexadecimal system is often used to represent values
(data and memory addresses) in computer systems. Table 2.2
shows the representation of decimal numbers ranging from 0
to 15 in binary, octal, and hexadecimal number systems.

Table 2.2 Number systems equivalency table

Decimal
(Base-10)

Binary
(Base-2)

Octal (Base-8) Hexadecimal
(Base-16)

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

2.4.5 common rules of number Systems
All number systems follow the following set of rules:
 Rule 1 The number of digit symbols available in a

number system is equal to the base.
 Examples:
 For the decimal system having base 10, there are 10

digit symbols 0 through 9.
 For the binary system having base 2, there are 2 digit

symbols 0 and 1.

Number Systems and Binary Arithmetic 21
 Rule 2 The value of the largest digit symbol is one less

than the base.
 Examples:
 Decimal system—largest digit = 10 – 1 = 9
 Binary system—largest digit = 2 – 1 = 1

 Rule 3 Each position multiplies the value of the digit
symbol by the base raised to the power of the value
equal to the digit symbol position.

 Examples:
 Decimal system—consider the number
 125 = 1 × 102 + 2 × 101 + 5 × 100

 Rule 4 A carry from one position to the next increases
its weight base times.

 Examples:
 Decimal system—consider the number
 5—5 = 5 × 100 or 5 ones.
 Moving the number, one place, to the left, it becomes—

5 × 101 or 5 tens or 50.
 Binary system—consider the number
 1—1 = 1 × 20 or 1 one.
 Moving the number, one place, to the left, it becomes—

1 × 21 or two 1’s or 10
 To avoid confusion, often a subscript is used with a number
to indicate the number system base. For example,
 162h ‘h’ means hexadecimal
 16216 16 means base-16
 162d ‘d’ means decimal
 16210 10 means base-10
 162o ‘o’ means octal
 1628 8 means base-8
 101b ‘b’ means binary
 1012 2 means base-2

note
 ∑ In all number system representations, the digit on the

extreme left represents the greatest value and is called
the most significant digit (MSD), whereas the digit on
the extreme right is known as the least significant
digit (LSD).

 ∑ The value of the largest digit symbol is one less than
the base.

 ∑ A carry from one position to the next increases its
weight base times.

2.5 number SyStem converSIonS
Till now the different number systems have been discussed.
But what happens when a number in one number system
representation needs to be represented in another form? So
it is necessary to understand how numbers from one form
may be represented in other forms. The following sections

discuss the way conversions from one number system to
other number systems are carried out.

2.5.1 Working with Integer numbers

Conversion of a decimal number to its binary
equivalent
Method 1 Repeated-division-by-2 method
 1. Divide the dividend, that is, the decimal number by two

and obtain the quotient and remainder.
 2. Divide the quotient by two and obtain the new quotient

and remainder.
 3. Repeat step 2 until the quotient is equal to zero (0).
 4. The first remainder produced is the least significant bit

(LSB) in the binary number and the last remainder is
the most significant bit (MSB). Accordingly, the binary
number is then written (from left to right) with the MSB
occurring first (list the remainder values in reverse
order). This is the binary equivalent.

ExamplE
Converting the decimal number 254 into its binary equivalent.

2 254

2 127 0

2 63 1

2 31 1

2 15 1

2 7 1

2 3 1

2 1 1

0 1

LSB

MSB

Remainder

111111102

Divisor Dividend Quotient

 Thus, the binary equivalent is 11111110.

Method 2 Power-of-2-subtraction method
 1. Let D be the number that has to be converted from

decimal to binary.
 2. (a) Find the largest power of two that is less than or

equal to D. Let this equal P.
 (b) If |D| ≥ P, subtract P from D, obtain a result which is

a decimal number. Put 1 in the digit position where
the weighting factor is P.

 (c) Otherwise, if |D| < |P|, put 0 in the corresponding
weighting factor column.

 3. Repeat step 2 with D = remainder decimal number until
D = 0, or |D| < |P|.

ExamplE
 Converting the decimal number 247 into its binary equivalent.
 The largest power of 2 that is less than 247 is 27 = 128. Form the table
with the weighting factor in the columns in the order shown, with 128 being the
most significant weight. Put 1 in the digit position with weighting factor 128.

22 Computer Fundamentals and Programming in C

Weighting factor 128 64 32 16 8 4 2 1

Binary mumber 1

 This leaves a remainder (247 – 128) = 119. For 119, for which the
highest power of 2 is 64, 1 is put in digit position with the weighting factor
64.

128 64 32 16 8 4 2 1

1 1

 This leaves a remainder (119 – 64) = 55. Weight 32 fits; therefore, 1 is
put in the corresponding digit position as follows:

128 64 32 16 8 4 2 1

1 1 1

 This leaves a remainder (55 – 32) = 23. Weight 16 fits; thus 1 is put in
the digit position with weight 16.

128 64 32 16 8 4 2 1

1 1 1 1

 This leaves (23 – 16) = 7 as remainder. This is smaller than the next
digit position weight value 8. So 0 is put under 8. Next, find the weight that
fits; thus, 1 is placed in the digit position with weight 4. Hence, (7 – 4) = 3
is left.

128 64 32 16 8 4 2 1

1 1 1 1 0 1

 Weight 2 fits; thus a 1 is put under the digit position with weight 2.
Therefore, (3 – 2) = 1 is left, which is put in digit position with weight 1, that
is, 20.

128 64 32 16 8 4 2 1

1 1 1 1

Hence, 247 in base 10 is the same as 11110111 in base 2.

Conversion from binary to decimal
To express the value of a given binary number as its decimal
equivalent, sum the binary digits after each digit has been
multiplied by its associated weight.

ExamplE
 Converting (110101)2 to its decimal equivalent.

321 2 =¥ 5

161 2 =¥ 4

00 2 =¥ 3

41 2 =¥ 2

00 2 =1¥

11 2 =¥ 0

5310

Binary number

Digit position0

1

1

0

2

1

3

0

4

1

5

1

WeightMultiplier

Decimal
value

Conversion of a decimal number to its octal
equivalent
To convert from decimal whole numbers to octal, the
systematic approach called the repeated-division-by-8
method is used. This method is explained by the following
example.

ExamplE
 Converting (359)10 to octal.

 (a) Divide the decimal number by eight and obtain a quotient and a
remainder.

 (b) Divide the quotient by eight and obtain a new quotient and a
remainder.

 (c) Repeat step (b) until the quotient is equal to zero (0).

 (d) The first remainder produced is the LSB in the octal number and
the last remainder (R) is the MSB. Accordingly, the octal number
is then written (from left to right) with the MSB occurring first.

58

448

3598

0

4

7

5

5478

(LSB)

(MSB)

Divisor

Decimal
number

Quotient Remainder
(R)

 Therefore, (359)10 = (547)8

Conversion of an octal number to its decimal
equivalent
To express the value of a given octal number as its decimal
equivalent, add the octal digits after each digit has been
multiplied by its associated weight.

ExamplE
Converting (237)8 to decimal form.

Digit position

Octal number

0

7

1

3

2

2

159

1282 8 =2¥

243 8 =¥ 1

77 8 =¥ 0

Decimal number

WeightMultiplier

Conversion of an octal number to its binary
equivalent
Since each octal digit can be represented by a three-bit
binary number (see Table 2.3), it is very easy to convert
from octal to binary. Simply replace each octal digit with
the appropriate three-bit binary number as indicated in the
following example.

Number Systems and Binary Arithmetic 23
 Table 2.3 Binary equivalents for octal digits

Octal digit Equivalent binary number

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

ExamplE
Converting the octal number 236700321 to its equivalent binary number.

 Octal number Equivalent binary number

2 010

3 011

6 110

7 111

0 000

0 000

3 011

2 010

1 001

Conversion of a binary number to its equivalent
octal number
Converting a binary number to an octal number is a simple
process. Break the binary digits into groups of three
starting from the binary point and convert each group into
its appropriate octal digit. For whole numbers, it may be
necessary to add zeros as the MSB, in order to complete a
grouping of three bits. Note that this does not change the
value of the binary number.

ExamplE
Converting (010111)2 to its equivalent octal number.

Binary number 010 111

Equivalent octal number 2 7

Conversion of a decimal number to its hexadecimal
equivalent
The decimal number to be converted is divided by 16 until
the quotient is 0. The hexadecimal number is formed from
the remainders.

ExamplE

Remainder in
hexadecimal form

0

116 51 = 5

11 = 1

2116 11 = B

34716 14 = E

556616 10 = A

8906616

Equivalent hexadecimal
number
15BEA

RemainderQuotient

 Starting with the last remainder, convert the remainders into
hexadecimal numbers:
 1 5 11 14 10 = 15BEA = the hexadecimal number.

Conversion of a hexadecimal number to its
decimal equivalent
To convert a hexadecimal to decimal, begin by multiplying
each of the hexadecimal digits by their positional weight
values as expressed in decimal. Then the resulting values are
added to obtain the value of the decimal number.

ExamplE

Converting the hexadecimal number A4D31 to its equivalent decimal
number.
 The decimal value of each digit in relation to its positional weight value
is evaluated first:

Digit position

Hexadecimal number

655360=A 16 =¥ 4 10 65536¥

16384=4 16 =¥ 3 4 4096¥

3328=D 16 =¥ 2 13 256¥

48=3 16 =¥ 1 3 16¥

1=1 16 =¥ 0 1 1¥

67512110

0

116

1

3

2

D

3

4

4

A

Multiplier in
hexadecimal

Positional
weight value
(in decimal)

Multiplier
in decimal

Final
decimal
value

Conversion of a hexadecimal number to its binary
equivalent
As each hexadecimal digit can be represented by a four-bit
binary number (see Table 2.4), it is very easy to convert from
hexadecimal to binary. Simply replace each hexadecimal
digit with the appropriate four-bit binary number as indicated
in the following examples.

24 Computer Fundamentals and Programming in C

Table 2.4 Number systems equivalency

Decimal
(Base-10)

 Binary (Base-2) Hexadecimal
(Base-16)

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 a
11 1011 B
12 1100 c
13 1101 D
14 1110 e
15 1111 F

ExamplE

Converting 123416 to a binary number.
 Hexadecimal number 1 2 3 4
 Equivalent binary number 0001 0010 0011 0100

ExamplE

Converting 37B16 to a binary number.
 Hexadecimal number 3 7 B
 Equivalent binary number 0011 0111 1011

ExamplE

Converting the hexadecimal number AF376 to its equivalent binary number.
 Hexadecimal number A F 3 7 6
 Equivalent binary number 1010 1111 0011 0111 0110

Conversion of a binary number to its hexadecimal
equivalent
Hexadecimal system works very much like the octal system,
except that each digit needs exactly four bits to represent it.
This means the binary number has to be divided into groups
of four digits, again starting from the digit at the extreme
right. The equivalent hexadecimals for each set of four digits
are then written. For whole numbers, it may be necessary to
add zeroes as the MSB in order to complete a grouping of
four bits. Note that this addition does not change the value of
the binary number.

ExamplE
Converting the binary number 1111011101101011011 to its equivalent
hexadecimal number.
 The conversion is done as follows:
 A leading zero had to be added for the most significant group to have
four bits.
 Binary Numbar 0111 1011 1011 0101 1011
 Equivalent hexadecimal 7 B B 5 B
 numbar

Conversion from hexadecimal to octal, and octal
to hexadecimal
To convert from hexadecimal to octal, each digit of the
hexadecimal number is written as its equivalent four-bit
binary number. The resulting binary number is divided into
groups of three binary digits. Then corresponding octal
numbers for each of these groups are written.

ExamplE
Converting the hexadecimal number AF35D02 to its equivalent octal
number.
 The given number is rewritten by replacing the hexadecimal digits by
their equivalent four-bit binary numbers.

 In groups of three bits
A 1010
F 1111
3 0011
5 0101
d 1101
0 0000
2 0010

 The binary number is regrouped as three-bit binary numbers that are
replaced with octal symbols.

In groups of three bits Octal number
001 1

010 2

111 7

100 4

110 6

101 5

110 6

100 4

000 0

010 2

 Therefore, we see that AF35D0216 = 12746564028

ExamplE
Converting the octal number 1273244 to its equivalent hexadecimal.
 The given number is written by replacing the octal digits with equivalent
three-bit binary numbers.

Number Systems and Binary Arithmetic 25

In groups of 3 bits
1 001

2 010

4 111

7 111

3 011

2 010

4 100

4 100

 The binary number is regrouped as four-bit binary numbers that are
replaced with hexadecimal symbols.

In groups of 4 bits Equivalent hexadecimal

0010 2

1011 B

1111 F

0110 6

1010 A

0100 4

Therefore, we see that 12732448 = 2BF6A416.

 However, there are easier conversion methods. Some ways
to perform conversion between the bases are as follows.

Any base to decimal Use expanded notation. Write down
each digit as a product of a power of the base and add them
all.

Decimal to any base Use the division method. Divide the
decimal number repeatedly with the base, writing down the
remainder at each step. When the quotient becomes zero, the
string of remainders is the number in the new base.

Octal to hexadecimal or vice versa Use binary as an
intermediate form.

2.5.2 Working with fractional numbers
One is familiar with the decimal (base-10) number system.
Each digit within any given decimal number is associated
with a weight. Furthermore, the value of that number is the
sum of the digits after each has been multiplied by its weight.
To illustrate, let us consider Table 2.5 and assume that the
number 654.52, written as (654.52)10 to specify base-10, is
being represented. Note that the digits range from 0 to 9.

Table 2.5 Decimal number system

Hundreds Tens Units One-
tenth

One-
hundredth

Weights 102 101 100 10–1 10–2

Symbols 6 5 4 5 2

Weighted
value

600 50 4 0.5 0.02
Total

654.52

 Just as the decimal system with its ten digits is a base-
10 system, the binary number system with its two digits, 0
and 1, is a base-2 system. Table 2.6 shows the weighting for
the binary number system up to two decimal places after and
three places before the binary point (.) Note the similarity
with the decimal system.

Table 2.6 Binary weights

Weights 22 21 20 2–1 2–2

 The least significant bit (LSB) is the rightmost binary
digit, which has the lowest binary weight of a given number.
The most significant bit (MSB) is the leftmost binary digit,
which has the highest binary weight of a given number.
 Counting in binary is similar to the decimal number system.
The LSB begins with zero (0) and is incremented until the
maximum digit value is reached. The adjacent bit positions
are then filled appropriately as the iterative counting process
continues.

note

 ∑ For conversion from any number base system to
decimal use expanded notation.

 ∑ For conversion from decimal number system to any
base use the division method.

 ∑ While converting octal number to hexadecimal number or
vice versa use binary as an intermediate form.

 ∑ It is important to note that many decimal fractions do not
have an exact representation in binary.

Conversion from decimal fractions to binary
When converting a fractional decimal value to binary, a
slightly different approach is needed. Instead of dividing
by 2, the decimal fraction is multiplied by 2. If the result is
greater than or equal to 1, then 1 is to be put as the quotient.
If the result is less than 1, then 0 is put as the quotient.

ExamplE
Converting (0.375)10 to binary.
 0.375 × 2 = 0.750 0
 0.750 × 2 = 1.500 1
 0.500 × 2 = 1.000 1
 done.

 Note that the last operation is complete when the fraction part equals
zero. It is rarely possible to accurately represent a fractional value in binary.
The answer to this problem is: .011
 It is important to note that many decimal fractions do not have an exact
representation in binary. This is illustrated in the following example.

26 Computer Fundamentals and Programming in C

ExamplE
Converting (0.29)10 to binary.
 0.29 × 2 = 0.58 0
 0.58 × 2 = 1.16 1
 0.16 × 2 = 0.32 0
 0.32 × 2 = 0.64 0
 0.64 × 2 = 1.28 1
 0.28 × 2 = 0.56 0
 0.56 × 2 = 1.12 1
 0.12 × 2 = 0.24 0
 0.24 × 2 = 0.48 0
 0.48 × 2 = 0.96 0
 0.96 × 2 = 1.92 1
 0.92 × 2 = 1.84 1
 0.84 × 2 = 1.68 1
 0.68 × 2 = 1.36 1
 0.36 × 2 = 0.72 0
 0.72 × 2 = 1.44 1

 The decimal point is at the top so the conversion of .29 to binary upto
16-bits of approximation is:

 .0100101000111101

 The whole number is ignored before multiplying again for the next digit.
While using a calculator, just enter the decimal fraction value and multiply
by 2. Writing a computer program to perform these operations is easy using
this technique.

Conversion from binary fraction to decimal
To express the value of a given fractional binary number
in equivalent decimal value, each bit is multiplied by its
associated weight and the summation of these gives the
desired decimal number.

ExamplE
Converting (0.1011)2 to a decimal number.

0.06251 2 =¥ –4

0.1251 2 =¥ –3

00 2 =¥ –2

0.51 2 =¥ –1

0.687510

WeightMultiplier

0 1 110.

Conversion from octal fraction to decimal
Just as the decimal system with its ten digit symbols is a
number system with base 10, the octal number system with
its 8 digit symbols, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’ and ‘7’, has
eight as its base. Table 2.7 shows the weights for an octal
number that has three decimal places before and two digit
places after the octal point (.).

Table 2.7 Octal weights

Weights 82 81 80 8–1 8–2

 To express a given octal number as its decimal equivalent,
each bit is multiplied by its associated weight and the
summation of these gives the decimal number.

ExamplE
Converting (237.04)8 to a decimal number.

2 3 7. 0 4

4 8 =¥ –2 0.0625

0 8 =¥ –1 0

7 8 =¥ 0 7

3 8 =¥ 1 24

2 8 =¥ 2 128

159.062510

WeightMultiplier

Conversion from decimal fractions to octal
The techniques used to convert decimal fractions to octal
are similar to the methods demonstrated previously to
convert decimal fractions to binary numbers. The repeated-
multiplication-by-8 method is used. In the multiplication-
by-8 method, the fraction is repeatedly multiplied by eight,
and the integer number is recorded until the fraction part is
zero. The first integer produced is the MSD, while the last
integer is the LSD. Remember that the octal point precedes
the MSD. To illustrate, consider the following conversion.

ExamplE
Converting (0.3125)10 to an octal number.

0.248

44.00.5 8 =¥

22.50000.3125 8 =¥

 Thus, (0.3125)10 = (0.24)8

Conversion from octal fraction to binary
The primary application of octal numbers is representing
binary numbers, as it is easier to handle large numbers in
octal form than in binary form. Because each octal digit can
be represented by a three-bit binary number (see Table 2.8),
it is very easy to convert from octal to binary. Simply replace
each octal digit with the appropriate three-bit binary number
as indicated in the following examples.

Number Systems and Binary Arithmetic 27
Table 2.8 Octal and binary numbers

Octal digit Binary digit

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

ExamplE
 (a) Converting 138 to equivalent binary number.
 Octal number 1 3
 Binary number 001 011

 (b) Converting 37.128 to equivalent binary number.
 Octal number 3 7 . 1 2
 Binary number 011 111 . 001 010

Conversion from binary fraction to octal
Converting binary to octal is also a simple process. Arrange
the binary number into groups of three bits starting from
the binary point and convert each of these groups into its
appropriate octal digit symbol. For whole numbers, it may
be necessary to add a zero with the MSD in order to form
a grouping of three bits. Note that this does not change the
value of the binary number. Similarly, when representing
fractions, it may be necessary to add a trailing zero in the
LSD in order to form a complete grouping of three bits.

ExamplE
 (a) Converting (010.111)2 to octal

Binary number 0 1 0 1 1 1.

Octal number 2 7.

 Thus, (010.111)2 = (2.7)8

 (b) Converting (0.110101)2 to octal

Binary
number

0 0 0 1 1 0.

Octal
number

0 6.

1 0 1

5

 Thus, (0.110101)2 = (0.65)8

Hexadecimal number conversion
Just like the octal number system, the hexadecimal number
system provides a convenient way to express binary numbers.

Table 2.9 shows the weight for the hexadecimal number
system up to three digit places before and two places after the
hexadecimal point. Based on the trend in previous number
systems, the methods used to convert hexadecimal to decimal
and vice versa should be similar.

Table 2.9 Hexadecimal weights

Weights 162 161 160 16–1 16–2

 Table 2.10 lists the equivalent decimal, binary, and
hexadecimal representations for the decimal numbers ranging
from 0 to 15. Each hexadecimal number can be represented
as a four-digit binary number.

Table 2.10 Number systems equivalency table

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

Conversion from hexadecimal fraction to binary
Because each hexadecimal digit can be represented by
a four-bit binary number, it is very easy to convert from
hexadecimal to binary. Simply replace each hexadecimal
digit with the appropriate four-bit binary number as indicated
in the following example.

ExamplE
Converting (37.12)16 to binary number.
 Hexadecimal number 3 7 . 1 2
 Binary number 0011 0111 . 0001 0010

Conversion from binary fraction to hexadecimal
Converting from binary to hexadecimal is also a simple
process. Arrange the binary digits into groups of four
starting from the binary point and convert each group into its
appropriate hexadecimal digit symbol. For whole numbers,
it may be necessary to add a zero with the MSD in order
to form a grouping of four bits. Note that this addition does
not change the value of the binary number. Similarly, while
representing fractions, it may be necessary to add a trailing
zero in the LSD in order to form a grouping of four bits.

28 Computer Fundamentals and Programming in C

ExamplE
Converting (0.00111111)2 to hexadecimal
 Binary number 0 . 0011 1111
 Hexadecimal number 0 . 3 F

 Thus, (0.00111111)2 = (0.3F)16

Check Your Progress

 1. What is the binary equivalent of the decimal number
368

 (a) 101110000 (c) 110110000
 (c) 111010000 (d) 111100000
Answer: (a)
 2. The decimal equivalent of hex number 1A53 is
 (a) 6793 (b) 6739
 (c) 6973 (d) 6379
Answer: (b)
 3. (734)8 = (?)16

 (a) C 1 D (b) D C 1
 (c) 1 C D (d) 1 D C
Answer: (d)
 4. The hexadecimal number for (95.5)10 is
 (a) (5F.8)16 (b) (9A.B)16

 (c) (2E.F)16 (d) (5A.4)16
Answer: (a)
 5. Determine the binary number represented by 0.6875
Answer: 0.10112

 6. The octal equivalent of (247)10 is
 (a) (252)8 (b) (350)8

 (c) (367)8 (d) (400)8

Answer: (c)

2.6 bInary arIthmetIc
In computers, numbers are represented in binary form. The
arithmetic operations performed by a computer therefore
involves binary numbers. The next few sections describe how
binary arithmetic operations like binary addition, subtraction,
multiplication, and division are performed. In this context,
it may be mentioned that such arithmetic operations are
primarily performed by the ALU within the computer
system.

2.6.1 addition
Four basic rules are needed to perform binary addition. Table
2.11 lists these rules. The first three rules are quite simple
and there is no difference between these binary rules and
the corresponding decimal rules. The fourth rule, however,
is different from the decimal rule. When two 1’s are added
together in binary, a carry gets generated which is placed in

the next column. In the decimal system, because 10-digit
symbols exist, a carry does not get generated until the sum of
two digits is greater than or equal to 10 (e.g., 5 + 7 = 12).

 Table 2.11 Rules for binary addition

Rule 1 Rule 2 Rule 3 Rule 4

0 0 1 1

+ 0 + 1 + 0 + 1

0 1 1 10

 These rules can be used to derive another important rule
for binary arithmetic. Consider what happens when three 1’s
are added together in binary. Let the problem be split into two
addition problems; the answer is obtained by applying the
rule for binary addition.

1. Apply Rule 4 to find the sum of the first two
1’s.

1
+ 1
10

2. Next, take the previous result of 102 and add
the final 1 to it. Notice that Rule 2 (0 + 1 = 1)
is used to find the answer to the first column,
and Rule 3 (1 + 0 = 1) is used to find the
answer to the second column.

10
+ 1
11

3. Hence another rule has been derived for
binary arithmetic. The sum of three 1’s in
binary is 112.

1
+ 1
11

 It is important to remember that in binary addition, two 1’s
always generate a carry to the next column. This happened in
the preceding example. Adding the first two 1’s gives a carry
to the next column and the remaining 1 becomes the value for
the current column.

ExamplE
 Adding 11112(1510) and 01102 (610).
Solution: The binary numbers 11112 and 01102 can be added in the same
way the decimal numbers 1510 and 610 are added.

 1. The numbers in the rightmost column are added. 1
 plus 0 adds up to 1.

0 Carry

 0 1 1 1 1

+ 0 0 1 1 0

1 Result

 2. The next column is added. 1 plus 1 equals 102, so a 1 is carried to
the next column and the 0 is written under this column.

1 0 Carry

 0 1 1 1 1

+ 0 0 1 1 0

0 1 Result

Number Systems and Binary Arithmetic 29
	 3.	 Notice	that	the	third	column	now	contains	three	1’s.	Adding	the	first	

two 1’s gives 102. Adding this sum to the remaining 1 gives a total of
112, so a 1 is carried to the next column and a 1 is written under this
column.

 1 1 0 Carry

 0 1 1 1 1

+ 0 0 1 1 0

1 0 1 Result

 4. The two ones in the fourth column total 102, so a 1 is carried to the
final	column,	and	a	0	is	written	below	this	column.

 1 1 1 0 Carry

 0 1 1 1 1

+ 0 0 1 1 0

0 1 0 1 Result

 5. Finally, the carry from the previous column plus the two 0’s from this
column add to 1.

 1 1 1 0 Carry
 0 1 1 1 1

+ 0 0 1 1 0
1 0 1 0 1 Result

	 6.	 This	gives	a	final	answer	of	101012.
 1 1 1 0 Carry

 0 1 1 1 1
+ 0 0 1 1 0

1 0 1 0 1 Result

2.6.2 Subtraction
For subtraction in the decimal system, normally the borrow
method is used. Consider the example on the right. Here a
10 is borrowed from the tens column in order to complete
the subtraction in the ones column. Moving 10 to the ones
column and subtracting 6 yields 4. The remaining 20 from
the tens column is taken and 2 is written in the tens column
to get the result of 2410.
 The borrow method can also be used to do binary
subtraction. The basic rules for binary subtraction are listed
in Table 3.2.

 Table 2.12 Rules for binary subtraction

Rule 1 Rule 2 Rule 3 Rule 4
0 1 1 0

– 0 – 1 – 0 – 1
0 0 1 1

	 The	first	three	rules	are	similar	to	the	decimal	system	rules.	
The fourth rule, however, needs a little more explanation
since	it	defines	how	borrowing	is	done	from	another	column.	
Let us look at a simple example to see where this rule comes
from. Consider the problem of subtracting 12 from 102.

1.	 To	 compute	 the	 first	 column,	 a	 1	 is	 borrowed	 from	
the next column. Recall that two 1’s generate a carry
in addition. If this process is reversed, a 1 can be
borrowed from the second column and two 1’s in the
first	column	can	be	marked.

Second column First column

10 Minuend

–1 Subtrahend

2. Following a borrow from the
second column, the 1 is crossed out
and a 0 is written above it to show
that this column is now empty.
The 1 from the second column is
now represented by the two 1’s in
the	first	column.

1
01
10
1

¸
˝
˛

-

Borrow

Minuend
Subtrahend

3. Following a borrow from the
second column, the 1 is crossed out
and a 0 is written above it to show
that this column is now empty.
The 1 from the second column is
now represented by the two 1’s in
the	first	column.

1
01
10
1
1

¸
˝
˛

-

Borrow

Minuend
Subtrahend

sultRe

4.	 Note	 that	 the	 first	 column	 of	 the	
answer is identical to Rule 4.
Since a 1 was borrowed from the
next column, the second column
becomes 0.

10
1
1

Minuend
Subtrahend

sult
-

Re

 The rules of subtraction can be applied to solve larger
subtraction problems in binary arithmetic. The example
below demonstrates how to subtract binary number 11102
from 101012.

ExamplE
Subtract	11102 from 101012.
Solution:

1.	 Consider	subtraction	of	the	extreme	right	
column. 1 minus 0 equals 1.

10101 Minuend

01110

1

Subtrahend

Result

-

2.	 In	order	to	subtract	the	second	column,	a	
1	has	to	be	borrowed.	So,	cross	out	 the	
1 in the third column, and represent it as
two 1’s in the second column.

1

01
Borrow

10101Minuend

01110 Subtrahend
1 Result

¸
˝
˛

-

3.	 1	can	now	be	subtracted	from	the	group	
of	two	borrowed	1’s.	This	leaves	a	1,	so	it	
is	written	below	the	second	column.

1

01
Borrow

10101Minuend

01110 Subtrahend
11 Result

¸
˝
˛

-

30 Computer Fundamentals and Programming in C

4.	 Now,	 subtraction	 of	 the	 next	 column	 is	
carried	out.	Since	a	1	was	borrowed	from	
this	 column,	 the	 subtraction	 is	 0	 minus	
1	 and	 a	 borrow	 has	 to	 be	made	 again.	
However,	 there	 is	no	borrow	 in	 the	next	
column.	So	first,	a	borrow	from	the	most	
significant	column	must	be	made.

1 1

0101
Borrow

10101Minuend

01110 Subtrahend
11 Result

¸
˝
˛

-

5.	 Then	borrow	a	1	from	the	fourth	column	to	
the current column.

1

111 Borrow

10101 Minuend

01110 Subtrahend
11 Result

0 10 1

¸

˝
Ô

˛
Ô

-

6.	 Now	 the	 current	 column	 can	 be	
subtracted.	 A	 1	 is	 taken	 away	 from	 the	
group of two 1’s. This leaves a single 1
which	is	written	below	the	column.

1

111 Borrow

1 Minuend

01110 Subtrahend
111 Result

0 10 1

1010

¸

˝
Ô

˛
Ô

-

7.	 In	 the	 fourth	 column,	 a	 1	 is	 subtracted	
from a 1 for a result of 0.

1

111

0101

Borrow

1 Minuend

01110 Subtrahend
0111 Result

¸

˝
Ô

˛
Ô

-

1010

8.	 The	most	 significant	 column	contains	all	
zeros,	so	0	is	written	below	it.	Hence,	the	
result is 001112.

1

111 Borrow

1 Minuend

01110 Subtrahend

00111 Result

0 10 1

1010

¸

˝
Ô

˛
Ô

-

2.6.3 Binary
So far in the study of binary arithmetic, only positive
numbers have been considered. Now, a way is needed to
represent numbers such as –3210. When computations are
done in decimal, a minus sign precedes a number to make it
negative. Since computers can only work with 1’s and 0’s, it
is necessary to modify this approach slightly.
 One solution is to add an extra binary digit to the left of the
binary number to indicate whether the number is positive or
negative. In computer terminology, this digit is called a sign
bit. Remember that a ‘bit’ is simply another name for a binary
digit. When a number is positive, the sign bit is zero, and when
the number is negative, the sign bit is one. This approach is

called the signed magnitude representation. Note that this
is very similar to adding a minus sign in decimal.
 Still one small problem remains with the representation. It
is necessary to specify how many bits are there in a number
to know which bit is representing the sign. Let us convert
the decimal numbers –510 and –110 to binary using signed
magnitude representation. For these numbers, four bits will
be enough to represent both.

1. 5 and 1 are converted to binary. 101

1

(5)

(1)

0101

0001

(5)

(1)

sign bit

1101

1001

(–5)

(–1)

2. Now a positive sign bit is added to each
one. Notice that ‘1’ is padded with zeros
so that it has four bits.

3. To make the binary numbers negative,
simply change the sign bit from 0 to 1.

 One has to be sure not to mistake the number 11012 for
1310. Since a four-bit signed magnitude representation is
used,	the	first	bit	is	the	sign	bit	and	the	remaining	three	bits	
are for the magnitude (absolute value) of the number.
 Therefore, the sign and magnitude of the integer are
represented separately. A negative integer, for example, is
represented by a 1 in the leftmost bit and the absolute value
in the remaining bits. The range of integers that can be stored
in signed magnitude is –2n–1 + 1 to +2n–1 – 1, where n is the
number of bits in the signed magnitude number.
 While representing negative numbers with signed
magnitude is simple, performing arithmetic with signed
magnitude	is	difficult.	Consider	the	subtraction	problem	3010
– 610. This can be converted to an equivalent addition problem
by changing 610 to –610. Now, the problem may be restated as
3010 + (–610) = 2410. Something similar can be done in binary
by representing negative numbers as complements. Two ways
of representing signed numbers using complements will be
discussed: 1’s complement and 2’s complement in the next
section.

note

 ∑ When a single bit number 1 is added with another single
bit number 1 the sum bit is 0 and the carry bit is 1.

 ∑ When a single bit number 1 is subtracted from a single
bit number 0 the difference bit is 1 and the borrow bit is
1.

 ∑ In the signed magnitude representation of binary
numbers, the integer is represented by a sign bit in
the most significant bit position followed by the binary
representation of the magnitude. For a negative integer,
the msb is 1 whereas for a positive integer the msb is 0.

 ∑ Subtraction of integers in signed 2’s complement
representation produces results in true signed magnitude
form.

Number Systems and Binary Arithmetic 31
1’s Complement
A signed number with 1’s complement is represented by
changing all the bits that are 1 to 0 and all the bits that are 0 to 1.
Reversing the digits in this way is also called complementing
a number, as illustrated by the examples below.

ExamplE
 Obtaining the 1’s complement of (i) 10001 and (ii) 101001.
Solution:

Number 1’s Complement

10001 01110

101001 010110

note

 ∑ –0 and +0 are represented differently even though they
are the same algebraically.

 ∑ This causes problems when carrying out tests on
arithmetic results.

 ∑ Hence, 1’s complement is an unpopular choice for integer
representation.

 ∑ Most computers now use a variation of 1’s complement
(called 2’s complement) that eliminates the problem.

2’s Complement
The 2’s complement of a binary number is obtained by adding
1 to the 1’s complement representation as illustrated by the
examples below.

ExamplE
Obtain 2’s complement of (i) 10001 and (ii) 101001.
Solution:

Number 1’s Complement 2’s Complement

10001 01110 01111

101001 010110 010111

Subtraction using signed 1’s complement
representation
In this type of representation, subtraction is carried out by
addition of 1’s complement of the negative number. The sign
bit is treated as a number bit in the subtraction method. For
the sign bit being 0, i.e., positive, the magnitude part of the
result is the true value. For the sign bit being 1, i.e., negative,
the magnitude part of the result is in 1’s complement form.
For subtracting a smaller number from a larger number, the
1’s complement method is implemented as follows.
 1. Determine the 1’s complement of the smaller number.
 2. Add the 1’s complement to the larger number.

 3. Remove the final carry (overflow bit) and add it to the
result, i.e., if the sum exceeds n bits, add the extra bit to
the result. This bit is called the end-around carry.

ExamplE
Subtract 110 from 710 using 1’s complement.
Solution:
Now, 110 = 00012 and 710 = 01112

1. The problem is stated with
the numbers in binary.

sign bit

0111

– 0001

(7)

– (1)

Minuend

Subtrahend

2. Convert 00012 to its
negative equivalent in 1’s
complement. To do this,
change 1’s complement
all 1’s to 0’s and 0’s to 1’s
in 00012 form. Notice that
the most significant digit is
now 1 since the number is
negative.

sign bit 1’s complement

11100001
Subtrahend in
1’s complement
from

3. Add the negative value
11102 to 01112. This gives
the sum 101012.

0101

0110

+ 1
Sum
Overflow bit

(6)

sign bit

4. Notice that the addition
generated an overflow bit.
Whenever an overflow bit
occurs in such a method,
add the bit to the sum to get
the correct answer. If there
is no overflow bit, leave the
sum as it is.

0101

0110

+ 1
Sum
Overflow bit

(6)

sign bit

5. This gives a final answer of
01102 (or 610).

0111

0110

– 0001

(7)

(6)

– (1)
True
magnitude

sign bit

ExamplE
 Subtracting 10012(910) from 11012(1310) using 1’s complement.
Solution:
The subtraction between binary numbers 11012(1310) and 10012(910)
can be carried out by converting 10012 to its negative equivalent in 1’s
complement and adding this value to 11012.

1. The problem is stated in binary
numbers.

01101

– 01001

(13)

– (9)

sign bit

32 Computer Fundamentals and Programming in C

2. Convert 010012 to its negative
equivalent in 1’s complement.
To do this, change all the 1’s
to 0’s and 0’s to 1’s. Notice that
the most significant digit is now
1 since the number is negative.

01101 10110

3. Add the negative value 101102
to 011012. This gives the sum
1000112.

01101

110001

+ 10110

(13)

(?)

+ (–1)
True
magnitude

4. Note that the addition caused
an overflow bit. Whenever an
overflow bit occurs in such
a method, add this bit to the
sum to get the correct answer.
Hence, the result is 001002 (or
410).

00011

00100

+ 1

(4)

sign bit

True
magnitude

 For subtracting a larger number from a smaller number,
the 1’s complement method is as follows:
 1. Determine the 1’s complement of the larger number.
 2. Add the 1’s complement to the smaller number.
 3. There is no carry (overflow). The result has the proper

sign bit but the answer is in 1’s complement of the true
magnitude.

 4. Take the 1’s complement of the result to get the final
result. The sign of the result is obtained from the sign bit
of the result.

ExamplE
 Subtracting 710 from 110 using 1’s complement.
Solution:

1. State the problem with
the numbers in binary.

0001

– 0111

(1)

– (7)

Minuend

Subtrahend

2. Convert negative 01112
to 1’s complement and
add this to 00012. 0001

1001

+ 1000

(1)

(?)

+ (–7)

Minuend
Subtrahend in
1’s complement
from

sign bit

sign bit

3. The result does not cause
an overflow, so the sum
need not be adjusted.
Note that the final result
is a negative number
since the sign bit is 1.
Therefore, the result is in
1’s complement notation;
the correct decimal
value for the result is –610
and not 910. This is
obtained by taking the 1’s
complement of the result.

0001

1001

+ 1000

(1)

(–6)

+ (–7)
Result in signed
1’s complement
from
Magnitude in 1’s
complement

sign bit

sign bit

ExamplE
Subtracting 11012(1310) from 10012(910) using 1’s complement.
Solution:
 1001 – 1101
 Result from Step 1 0010
 Result from Step 2 1011
 Result from Step 3 –0100
 To verify, note that 9 –13 = –4

1. The problem is stated. 01001

– 01101

(9)

– (13)

2. Convert 011012 to its
negative equivalent in 1’s
complement and add to
010012.

01001

11011

+ 10010

(9)

(–13)

Magnitude in 1’s
complement

sign bit

3. The sign bit of the sum
being 1, the resulting
number is negative and the
value is in 1’s complement
form.

11011 (–4)
Result in signed
1’s complement

sign bit

Subtraction using signed 2’s complement
representation
Subtraction for this representation is done by addition of
the 2’s complement of the negative number. The sign bit is
treated as a number bit during subtraction. Thus, the result
is obtained with the sign bit. When the sign bit is 0, i.e.,
positive, the magnitude part of the result is the true value.
But when the sign bit is 1, i.e., negative, the magnitude part
of the result is in 2’s complement form. Therefore, the 2’s
complement of the magnitude part of the result gives the true
value. The carry bit that evolves with the sum is ignored in
the 2’s complement method.
For subtracting a smaller number from a larger number, the
2’s complement method is implemented as follows.
 1. Determine the 2’s complement of the smaller number.
 2. Add the 2’s complement to the larger number.
 3. Discard the final carry (there is always one in this

case).

ExamplE
 Subtracting 110 from 710 using 2’s complement.
Solution:

Now, 110 = 00012 and 710 = 01112.

 sign bit

1. The problem is stated with
numbers in binary.

0111

+ 0001

(7)

+ (–1)

Number Systems and Binary Arithmetic 33
2. Convert 00012 to its negative

equivalent in 2’s complement.
To do this change all the 1’s
to 0’s and 0’s to 1’s and add
one to the number. Notice
that the most significant digit
is now 1 since the number is
negative.

0001 1110

1111

+ 1

2’s complement
form

3. Add the negative value 11112
to 01112. This gives the sum
101102.

0111

10110

+ 1111

(7)

(?)

+ (–1)

sign bit

overflow bit

4. Notice that the addition
caused an overflow bit.
Whenever an overflow bit in
2’s complement occurs, it is
discarded. Hence, the final
result is 01102 (or 610).

0111

0110

– 1111

(7)

(6)

– (1)

sign bit

Result in true
magnitude

ExamplE
 Subtracting the binary number 10012(910) from 11012(1310) by converting
10012 to its negative equivalent in 2’s complement and adding this value
to 11012.
Solution:

1. State the problem.

01101

– 01001

(13)

– (9)
Minuend
Subtrahend

Magnitude part

2. Convert 10012 to its negative
equivalent in 2’s complement.
To do this, change all 1’s to 0’s
and vice versa.

sign bit

01001 10110

1’s complement form

3. Add 1 to the number to obtain
the negative equivalent. Notice
that the most significant digit
is now 1 since the number is
negative.

10110

10111

+ 1 (–9) Subtrahend in
2’s complement

4. Add the negative value 101112
to 011012. This gives the sum
1001002. However, the leftmost
bit, which is the overflow bit, is
discarded.

01101

1 00100

– 10111

(13)

(?)

+ (–9)

Overflow bit sign bit

5. Hence, the final result is 001002
(or 4).

01101

00100

+ 10111

(13)

(4)

+ (–9)

sign bit Ture magnitude

 For subtracting a larger number from a smaller number, the 2’s
complement method is implemented as follows.

 1. Determine the 2’s complement of the larger number.

 2. Add 2’s complement to the smaller number.

 3. There is no carry from the leftmost column. The result is in 2’s
complement form and is negative.

 4. Take the 2’s complement of the result to get the final answer.

ExamplE
Subtracting 11012(1310) from 10012(910) using 2’s complement.
Solution:

1. State the problem. 01001

– 01101

(7)

– (13)

2. Convert 11012 to its negative
equivalent in 2’s complement.

01101 10011

sign bit
2’s complement

3. Next, add 100112 to 010012.
The sign bit being 1, the result is
negative and the magnitude is in
2’s complement.

01001

11100

+ 10011

sign bit

2’s
complement

4. Take the 2’s complement of the
sum to get –01002–01002, i.e.,
–410.

– 0110
2

Points to remember: The steps for subtracting y from x, with an n-bit 1’s
complement representation are as follows.

 1. Negate y using 1’s complement, i.e., reverse all the bits in y to form
–y.

 2. Add –y, in 1’s complement form, and x.

 3. If the sum exceeds n bits, add the extra bit to the result.

 4. If the sum does not exceed n bits, leave the result as it is.
 The steps for subtracting y from x with an n-bit 2’s complement
representation are as follows.

 1. Negate y using 2’s complement, i.e., reverse all the bits in y and add
1 to form –y.

 2. Add –y in 2’s complement form, and x.

 3. If the sum exceeds n bits, discard the extra bit.
 Notice that with 1’s complement, it is necessary to check for an overflow
bit each time subtraction is performed. If the result has an overflow bit, the
extra bit is added to the result to obtain the correct result. However, with 2’s
complement, this extra bit is ignored. No other computations are required
to find the correct result.

2.6.4 multiplication
Binary multiplication uses the same techniques as decimal
multiplication. In fact, binary multiplication is much easier
because each multiplying digit is either zero or one. Consider
the simple example of multiplying 1102 by 102. This example
is used to review some terminology and illustrate the rules for
binary multiplication.

ExamplE
 Multiplying 1102 by 102.

34 Computer Fundamentals and Programming in C

Solution:

1. Note that 1102 is the multiplicand and
102 is the multiplier.

Multiplicand
multiplier

110

¥ 10

2. Begin by multiplying 1102 by the
rightmost digit of the multiplier that is
0. Any number times zero is zero, so
just zeroes are written below.

110

000

¥ 10

3. Multiply the multiplicand by the next
digit of the multiplier, which is 1.
To perform this multiplication, just
copy the multiplicand and shift it
one column to the left as is done in
decimal multiplication.

110

000
110

¥ 10

Partial product
Partial product

4. Add the partial products. Hence, the
product of the multiplication is 11002.

110

000
110

¥ 10

1100 Result

 When performing binary multiplication, remember the following rules.

 1. Copy the multiplicand when the multiplier digit is 1. Otherwise, write
a row of zeros.

 2. Shift the results one column to the left for a new multiplier digit.

 3. Add the results using binary addition to find the product.

ExamplE
 Multiplying 11112 by 10112.
Solution:
 The binary numbers 11112 and 10112 can be multiplied using the same
rules as decimal multiplication.

1. Multiply the multiplicand by the
extreme right digit of the multiplier.

1111

¥ 1011
Multiplicand
multiplier

2. Since this number is 1 and any
number multiplied by 1 equals itself,
simply record the multiplicand below.

1111

1111

¥ 1011 First partial
product

3. Now multiply the multiplicand by the
next digit in the multiplier. Since this is
the second multiplication, the second
partial product obtained would be
placed below the first and shifted one
column to the left.

4. The second digit in the multiplier is 1
so the second partial product, which
is same as the multiplicand, is placed
as shown.

1111

1111
1111

¥ 1011

Second partial
product

5. Next, multiply by the third digit of
the multiplier. Since this is the third
multiplication, the third partial product
is placed below the second partial
product and shifted to the left by one
column with respect to the latter.

1111

1111
1111

¥ 1011

6. Notice that the third digit in the
multiplier is 0. Since any number
multiplied by zero is zero, place a row
of zeroes as the third partial product
as shown.

1111

1111
1111

¥ 1011

0000

Third partial
product

7. Now, multiply with the most significant
digit of the multiplier. Since this is the
fourth multiplication, the fourth partial
product is placed below the third
partial product and shifted by one
column to the left with respect to the
latter.

1111

1111
1111

¥ 1011

0000

8. The most significant digit of
the multiplier is 1, so the fourth
partial product is the same as the
multiplicand. This partial product is
placed as shown.

1111

1111
1111

¥ 1011

0000
1111

Fourth partial
product

9. Now, all the partial products are
added to get the final value of the
multiplication product as 101001012.

1111

1111
1111

¥ 1011

0000
1111

10100101

2.6.5 division
Division of binary numbers uses the same technique as
division in the decimal system. It will be helpful to review
some of the basic terms of division. Consider the example
given below.

ExamplE
 Dividing 3310 by 610.
Solution:

1. In this problem, 6 is the divisor, 33 is the dividend,
5 is the quotient, and 3 is the remainder. The same
terms describe binary division.

33

5

6

3

30

ExamplE
112/102 or 310/210.
Solution:
 Here, 102 is the divisor and 112 is the dividend. The steps that follow
show how to find the quotient—1.12.

1. Find the smallest part of the dividend that is greater
than or equal to the divisor. Since the divisor has
two digits, start by checking the first two digits of the
dividend.

10 11

2. 11 is greater than 10. Thus a 1 is written as the
quotient, the divisor is written below the dividend,
and subtraction is carried out.

11

1

10

1

10

Number Systems and Binary Arithmetic 35

3. Since there are no more digits in the dividend, but
there still is a remainder, therefore the answer must
include a fraction. To complete the computation, it is
necessary to mark the radix point and append a zero
to the dividend.

1.0

1.

10 1

1

10

4. Bring down the extra zero and write it beside the
remainder. Then check to see if this new number is
greater than or equal to the divisor. Notice that the
radix point is ignored in the comparison.

1.0

1.

10 1
10

01

5. 10 equals the divisor 10, so write a 1 in the quotient,
copy the divisor below the dividend, and subtract.
This completes the division because there are no
more digits in the dividend and no remainder.

1.0

1.

10 1
10

0

0

1
10

.

 When doing binary division, some important rules need to be
remembered.

 (a) When the remainder is greater than or equal to the divisor, write
a 1 in the quotient and subtract.

 (b) When the remainder is less than the divisor, write a 0 in the
quotient and add another digit from the dividend.

 (c) If all the digits of the dividend have been considered and there
is still a remainder, mark a radix point in the dividend and
append a zero. Remember that some fractions do not have an
exact representation in binary, so not all division problems will
terminate.

ExamplE
 Dividing 1000012 by 1102 using the same technique used in long division
in the decimal system.
Solution:

1. Find the smallest part of the dividend that is greater
than the divisor 1102. Since the divisor has three
digits, begin by examining the first three digits of
the dividend. 1002 is less than 1102 so another digit
from the dividend must be added.

110 100001

2. Try the first four digits of the dividend. Since 10002 is
greater than 1102, the division is possible.

110 100001

3. 1102 divides 10002 once, so write 1 as the first digit
of the quotient, copy the divisor below the dividend,
and subtract using the borrow method.

1

110
110

000011

10

.

4. Now bring down the next digit of the dividend and
write it beside the remainder. Then check to see
if this new number is greater than or equal to the
divisor.

5. 1002 is less than 1102 so, write a 0 in the quotient
and add another digit from the dividend to the
reminder.

6. 10012 is greater than 1102, so write a 1 in the
quotient and subtract 1102 from 10012. 110 100001

110
1001
110

11

101

7. Note that after considering all the digits of the
dividend a remainder still exists. This means that
the result will include a fraction. To progress with
the division, it is necessary to mark the radix point
and append a zero to the dividend.

110 100001.0
110
1001
110

11

101.

8. Now bring down the extra zero and compare the
remainder with the divisor. Notice that the radix
point is ignored in the comparison. 1102 is equal to
1102 so write another 1 in the quotient and subtract.
This completes the division because no more digits
exist in the dividend and there is no remainder.

110 100001.0
110
1001
110

110

101.1

110
0

note

 ∑ Multiplication and division of binary numbers uses the
same rules as the decimal numbers.

 ∑ Some fractions do not have an exact representation in
binary, so not all division computations will terminate.

Check Your Progress

 1. The 2’s complement of the number 1101101 is
 (a) 0101110 (b) 0111110
 (c) 0110010 (d) 0010011
Answer: (d)
 2. –8 is equal to signed binary number
 (a) 10001000 (b) 00001000
 (c) 10000000 (d) 11000000
Answer: (a)
 3. When signed numbers are used in binary arithmetic,

then which one of the following notations would have
unique representation for zero.

 (a) Sign-magnitude. (b) 1’s complement.
 (c) 2’s complement. (d) 9’s complement
Answer: (a)
 4. The result of adding hexadecimal number A6 to 3A is
 (a) DD (b) E0
 (c) F0 (d) EF
Answer: (b)
 5. Perform 2’s complement subtraction of (7)10 – (11)10

Answer: (4)10 or (11111100) in signed 2’ s complement
form.

 6. Perform the following subtraction using 2’s complement
method: 0011.1001 – 0001.1110

 Answer: 0001.1011 or + 1.68625
 7. Divide (101110)2 by (101)2

 Answer: Quotient = (1001)2 and Remainder = 0012

36 Computer Fundamentals and Programming in C

2.7.1 numeric codes
Numeric codes represent numeric data with a series of 0’s
and 1’s. Decimal numbers 0 to 9 can be represented by four
binary digits. Of the 16 possible combinations of the four
binary digits, only 10 combinations are used to represent the
decimal numbers 0 to 9. Each of these bit combinations that
represent a specific decimal digit is called a code word.
 The numeric codes devised to represent decimal digits are
known as binary coded decimal (BCD) codes. There are
several BCD codes. These are of two kinds: weighted and
non-weighted.

Weighted codes
Weighted codes obey the position weighting principle, where
each bit position is assigned a decimal weight. For such a
code, the sum of the decimal weights of those bits whose
value is ‘1’ is equal to the decimal digit it represents. For
example, in a four-bit weighted code, if w1, w2, w3, and w4 are
the decimal weights of the binary digits and b1, b2, b3, and b4
are the corresponding bit values, then the decimal digit ‘N’
is given by
 N = w4.b4 + w3.b3 + w2.b2 + w1.b1
whose BCD code representation is b4b3b2b1.
 This binary sequence code is the code word for the decimal
number N.
Weighted codes are of two types:
 (a) Positively weighted codes
 (b) Negatively weighted codes

Positively weighted codes are BCD codes in which all
the weights assigned to the bits are positive. There are 17
positively weighted code in a four-bit BCD code. It should be
noted that in every positively weighted code, the first weight
should be 1, the second weight should either be 1 or 2, and
the sum of all the weights should be greater than or equal to
the decimal number 9.

Negatively weighted codes are BCD codes in which some
of the weights assigned to the bits are negative. Table 2.13
depicts some of the weighted codes.

2.7 bInary codeS
For practical reasons, it is very convenient to use the binary
number system in digital systems or computers. Data is
represented by symbols in the form of decimal numbers,
alphabets, and special characters. To facilitate extensive
communication between humans and digital machines, binary
digits 1 and 0 are arranged according to certain defined rules
and designated to represent symbols. The method of forming
the binary representation is known as encoding and the
complete group of binary representations corresponding to
the symbols is known as binary code.
Binary codes may be broadly classified into four categories.
 (a) Numeric codes
 (b) Alphanumeric codes
 (c) Error-detecting codes
 (d) Error-correcting codes
 Numeric codes are further classified as weighted, non-
weighted, self-complementing, sequential, and cyclic codes
as depicted in Fig. 2.1.

Binary codes

Numeric
codes

Alphanumeric
codes

Error-
detecting

codes

Error-
correcting

codes

Weighted
codes

Non-weighted
codes

Negatively
weighted

codes

Positively
weighted

codes

Self-
complementing

codes or
reflective

Sequential
codes

Cyclic
codes

Fig. 2.1 Code classification

Table 2.13 Some weighted binary coded decimals

Decimal digits Positive weights (w4, w3, w2, w1) Negative weights (w3, w2, w1)
8421 5421 5211 2421 8 4 –2 –1 6 4 –2 –3

0 0000 0000 0000 0000 0000 0000

1 0001 0001 0001 0001 0111 0101

2 0010 0010 0011 0010 0110 0010
3 0011 0011 0101 0011 0101 1001
4 0100 0100 0111 0100 0100 0100
5 0101 1000 1000 1011 1011 1011

6 0110 1001 1001 1100 1010 0110
7 0111 1010 1011 1101 1001 1101
8 1000 1011 1101 1110 1000 1010
9 1001 1100 1111 1111 1111 1111

Number Systems and Binary Arithmetic 37
 Self-complementing code A code is called self-comple-
menting if the code word of the 9’s complement of N, i.e.
(9-N), can be obtained from the code word of N by inter-
changing all the 1’s and 0’s. The 9’s complement of 1 is 8. In
the (6, 4, 2, –3) code, decimal 1 is represented by 0101, while
decimal 8 is represented by 1010, which is the 1’s comple-
ment of 0101.The codes (2, 4, 2, 1), (5, 2, 1, 1), (4, 3, 1, 1),
and (3, 3, 2, 1) are the four positively weighted self-com-
plementing codes. There exist 13 negatively and positively
weighted self-complementing codes like (8, 4, –2, –1) and (6,
4, 2, –3). The necessary condition for a weighted code to be
self-complementing is that the sum of the weights should be
equal to nine.

Table 2.14 Excess-3 code

Decimal number 8 4 2 1 code Excess-3 code

 0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

Sequential code A sequential code is one in which each
of its subsequent code words is one binary number greater
than the preceding code word. The BCD code (8, 4, 2, 1) is a
sequential code. In most cases BCD code means the (8, 4, 2,
1) code shown in Table 3.3.

Non-weighted codes
Codes that do not obey the position-weighting principle are
called non-weighted codes. There are many non-weighted
binary codes. Two of these are the Excess-3, or XS-3, and
Gray Code. These are depicted in Tables 2.14 and 2.15.

Table 2.15 Gray code

Decimal number Binary code
 b3, b2, b1, b0

Gray code
g3, g2, g1, g0

0 0000 0000

1 0001 0001

2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111

6 0110 0101
7 0111 0100
8 1000 1100

9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

The Excess-3 code is formed by adding 0011 to each code
word of (8, 4, 2, 1) code or BCD. It is a self-complementing
code.
 The Gray code is a cyclic code. Cyclic code is one in
which successive code words differ in only one digit. Such
codes are also known as unit distance codes.

2.7.2 alphanumeric codes
Digital computers are capable of handling bits. Keyboards
and printers, for example, are devices for transmitting and
receiving data to and from computers, respectively. The user
inputs data in the form of symbols representing alphabets,
numbers, and special characters. These symbols must be
represented by some code formed by a sequence of binary
digits for the digital computer to process. Similarly, a bit code
is sent by the computer to an output device, such as a printer,
which must depict alphabetic, numeric, or special character
information using the symbols.
 There are several alphanumeric codes but two, ASCII and
EBCDIC, are normally used. The ASCII code, known as the
American Standard Code for Information Interchange, is
used widely. This is a seven-bit code and hence it can form
27 (128) bit patterns thereby having an ability to encode 128
symbols. Table 2.16 shows the ASCII code representing
capital letters/lowercase alphabets, decimal numbers,
and special characters. Since the characters are assigned
in ascending binary numbers, it is convenient for digital
computers to convert from and to alphanumeric symbols.
 The standard ASCII code defines 128 character codes
(from 0 to 127), of which the first 32 are control codes
(non-printable) and the other 96 are characters that can be
represented. The above table is organized to easily read the
ASCII code in hexadecimal form: row numbers represent the
lower significant digit and the column numbers represent the
most significant digit. For example, character A is located at
row four column one. Thus the ASCII code for character A is
represented in hexadecimal as 0x41, which in decimal is 65.
 In addition to the 128 standard ASCII codes, there are
other 128 that are known as extended ASCII, and these are
platform-dependent. So, there is more than one extended
ASCII character set.
 The two most used extended ASCII character sets are OEM,
which comes from the default character set incorporated in
the IBM PC, and ANSI extend ASCII, which is used by the
present operating systems.

Number Systems and Binary Arithmetic 39

Symbol It is any graphic character.

Number system It is a set of symbols that represents a set of quantita-
tive values.

Base It represents the number of digit symbols in a number system.

Radix It represents the number of digit symbols in a number system.

Decimal number system It is a number system that has ten symbols
0,1,………..,9 which represents values.

Binary number system It is a number system that uses two symbols 0
and 1 to represent zero and one respectively.

Octal number system It is a number system that has eight symbols
0,1,………..,7 which represents values zero to seven respectively.

Hexadecimal number system a number system that has eight symbols
0,1,………..,F which represents values zero to sixteen respectively.

Bit It is a binary digit.

Carry In a number system, when the result of addition of two single digit
numbers is greater than the largest representable number symbol, a
carry is said to be generated. This carry is placed in the next left column.

Borrow In a number system, when a larger single digit number is sub-
tracted from a smaller single digit, a borrow is generated.

Signed number A binary number in which the most significant bit rep-
resents the sign of the number and the rest the magnitude of the number.

1’s complement A number system that was used in some comput-
ers to represent negative numbers. To form 1s complement of a number,
each bit of the number is inverted which means zeros are replaced with
ones and ones with zero.

2’s complement A number formed by adding 1 to the 1’s compliment
of a number. The 2’s complement representation has become the stan-
dard method of storing signed binary integers. It allows the representation
of an n-bit number in the range – 2n to 2n-1, and has the significant
advantage of only having one encoding for 0.

BCD number Binary Coded Decimal (BCD) number is a number in
which each of the digits of an unsigned decimal number is represented by
the corresponding 4-bit binary equivalents.

ASCII code American Standard Code for Information Interchange is a
7-bit binary code formed to represent decimal numbers 0 to 9, alphabetic
characters a to b(also A TO B), and special characters like ;, :, NUL, etc.
for handling these characters in the digital computer and to also use this
binary code for exchanging data between digital computers connected in
a networked environment.

1. What is a binary number?
Answer:
A binary number is made of 0s and 1s. In the binary number system
only two symbols, 0 and 1, are used to represent numeric values. The
symbol “0“ represents the value “zero” while the symbol “1” represents
the value “one”. Since there are only two symbols in the binary number
system, the value “two” is represented by placing the symbol “1” on
the left–hand side of the symbol “0” resulting in the binary equivalent
“10”. Next, the value “three” is represented by “11” in the binary number
systemby replacing the “ 0 ” in “10” by the next higher value symbol “1”.
A sample table depicting the binary equivalent representation for different
decimal numbers upto nine is shown below.

 Decimal number
(Number value)

Binary equivalent
representation

 0 0
 1 1
 2 10
 3 11
 4 100
 5 101
 6 110
 7 111
 8 1000
 9 1001

Herein, it may be noted that as the number value increases the
digit positions on the left-hand side of the binary equivalent number
increases. Each increase of the digit position to the left signifies an
increase by 2 in the value of the number represented in the binary
number system. Since the number of symbols in the binary number
system is two, the radix of this number system expressed in decimal
is 2.

2. What is meant by ‘bit’?
Answer:
The abbreviated form of “ bi-nary dig-it ” is known as bit. When a “bit” is
mentioned, it means a single binary digit, which may either be a “0” or
“1”, is referred to.
3. Why do digital computers use binary numbers for their
operations?
Answer:
A survey of the history of development of computers would reveal that the
primary objective of computer designers as to construct a computer that
would carry out all types of arithmetical calculations. This was achieved
by initially employing mechanical devices and then improving it with
the addition of electrical devices. But these computing machines were
calculators with no programmable facilities. The need for programmability
was also met using the mechanical and electrical devices. Meanwhile
analog computers were in use for solving not only arithmetical problems but

Key termS

frequently aSKed queStIonS

40 Computer Fundamentals and Programming in C

also mathematical problems which included integro-differential equations,
etc. But with the availability of electronic devices and application of Boolean
logic concepts digital computers were developed that execute jobs at much
high speeds, consume less power, occupy much less space, weigh many
times less, work reliably with very less maintenance effort and are easy to
operate. As a consequence digital computers, that employed electronic
devices and applied Boolean logic concepts, outperformed all earlier
models of computers. And because the digital computers use Boolean
logic concepts, binary numbers are obviously used in digital computers.
4. Where is the octal number representation used?
Answer:
The octal number representation is used to represent large binary numbers
in a shorter form. This simplifies the manual handling of binary numbers
while working with digital computers. For example, a binary number
“1011001110010110 ” in octal number representation is “ 131626 ”, which
contains 6 digits instead of 16 in the binary form.
5. Where is the hexadecimal number representation used?
Answer:
The hexadecimal number representation, like the octal number
representation, is a short-cut way to represent large binary numbers. Hence
a binary number “1011001110010110” becomes B396 in hexadecimal
number representation. From the (above example) it is evident that for the
human computer user it is easier to handle the hexadecimal number than
the big binary number shown.
6. How is the BCD representation useful?
Answer:
Human beings are accustomed to use the decimal number system.
Hence an output from the computer or computer based system, in
decimal number form is more acceptable than in binary or hexadecimal
or octal number form. To achieve this, the Binary Coded Decimal
number representation
has been made.

 7. Where is the Gray Code used?
Answer:
The gray code was primarily developed to prevent spurious output from
electromechanical switches. It is widely used in digital communications
to facilitate error correction. In position encoders, gray codes are used
in preference to straightforward binary encoding.
 8. How important is signed magnitude representation of binary
numbers in digital computers?
Answer:
Normally, a “ – “ symbol is placed before a number to indicate the negative
nature of the number. On the other hand, a positive number is indicated
by putting “ + ” symbol or simply a blank before the number. But in a digital
computer, these graphic symbols, “ – “ and “ + ”, cannot be used directly.
All numbers and symbols are represented by a combination of “ 0s ” and ”
1s ”. Hence, the positive symbol, “ + ”, is represented by a “ 0 ” while the
negative symbol, “ – “ , is represented by a “ 1 ”. The sign bit , a “ 0 ” or a
“ 1 ”, occupies the most significant digit position of a number represented in
binary. Therefore in an eight bit number, the most significant bit is a sign bit
while the rest of the seven bits represent the magnitude or value. Such a
representation is essential for the logic circuits, within the digital computer,
to suitably carry out arithmetic operations.
 9. Why is 2’s complement representation preferred over 1’s
complement representation in binary arithmetic?
Answer:
In 1’s complement representation, the carry, that occurs while adding
the signed magnitude numbers, is added to the least significant bit of the
result to obtain the proper result. This imposes an extra burden on the
computer by way of providing additional logic circuitry to form the final
result. In 2’s compliment representation, the carry that occurs while
adding the signed magnitude numbers, is discarded to obtain the result in
true magnitude form. Therefore, the extra burden of adding the carry bit to
obtain the final result is avoided in 2’s complement representation. Hence,
2’s complement representation is preferred.

exercISeS

 1. Convert the following.

 (i) 01102 = 10

 (ii) 01102 = 8

 (iii) 11012 = 10

 (iv) 1110 = 2

 (v) 1110 = 16

 (vi) 2016 = 2

 (vii) 2016 = 10

 (viii) 25910 = 2

 (ix) 25910 = 16

 (x) 100000002 = 10

 (xi) 100010102 = 16

 (xii) 102410 = 16

 2. Convert the following decimal numbers to equivalent binary numbers.

 (i) 702 (ii) 134

 (iii) 128 (iv) 1024

 (v) 563 (vi) 2047

 (vii) 17.75 (viii) 356.16

 (ix) 127.375 (x) 100.336

 (xi) 61.0625 (xii) 49.0125

 (xiii) 23.6125 (xiv) 36.625

 (xv) 0.0525

 3. Convert the following binary numbers to equivalent decimal numbers.

 (i) 10110.101 (ii) 111001010.1011

 (iii) 110110.1101 (iv) 1011001.101

 (v) 110101.001 (vi) 0.011011

Number Systems and Binary Arithmetic 41
 4. Determine the equivalent octal numbers for the following decimal

numbers.

 (i) 4 (ii) 25

 (iii) 261 (iv) 73

 (v) 385 (vi) 621

 (vii) 10.25 (viii) 25.15

 (ix) 0.44 (x) 131.3

 (xi) 0.046 (xii) 0.5

 5. Perform the following conversions from octal to decimal numbers.

 (i) 11 (ii) 42

 (iii) 507 (iv) 127

 (v) 100 (vi) 63.4

 (vii) 5.6 (viii) 0.1

 (ix) 13.5 (x) 36.05

 6. Convert the following binary numbers to octal numbers.

 (i) 1101 (ii) 101101

 (iii) 1101111 (iv) 111111

 (v) 10100 (vi) 0.11

 (vii) 0.101 (viii) 1001.01101

 (ix) 11.110011 (x) 1100.1101

 7. Find the equivalent binary numbers for the following octal numbers.

 (i) 36 (ii) 14

 (iii) 127 (iv) 251

 (v) 1723 (vi) 4.6

 (vii) 17.5 (viii) 64.05

 (ix) 231.44 (x) 1025.625

 8. Convert the following decimal numbers to equivalent hexadecimal
numbers.

 (i) 4181 (ii) 130

 (iii) 171 (iv) 4095

 (v) 30.10 (vi) 64.5

 (vii) 10.04 (viii) 15.64

 9. Convert the following hexadecimal numbers to equivalent decimal
numbers.

 (i) 4C (ii) 512

 (iii) 100 (iv) BA2

 (v) B.2 (vi) 5.5

 (vii) 4A.25 (viii) F.2

 10. Convert the following hexadecimal numbers to binary numbers.

 (i) A2; (ii) B35;

 (iii) 54E; (iv) DAE;

 (v) FE; (vi) 4A.6;

 (vii) 74.5; (viii) C7.9D;

 (ix) EF.2C; (x) ABC.F

 11. Convert the following binary numbers to hexadecimal numbers.

 (i) 101011

 (ii) 11001011

 (iii) 11110110101

 (iv) 10111111001010

 (v) 1101.01

 (vi) 1011110.1010

 (vii) 10110.0011

 (viii) 1001011.01101001

 12. Perform the following conversions.

 (i) 56710 = 16

 = 8

 (ii) A6C216 = 8

 = 2

 (iii) B.2C16 = 8

 = 10

 (iv) 1011110011111.0112

 = 16

 = 8

 (v) 1010110000112

 = 16

 = 8

 13. Give 1’s complement representation of –710.

 14. Give 2’s complement representation of a number whose 1’s
complement representation is 100112. What is the number in binary
representation?

 15. Find the 1’s complement of

 (i) 1110011002 (ii) 110101112

 (iii) 100111112 (iv) 100000002

 (v) –10102 (vi) –11012

 16. Find the 2’s complement of

 (i) 101102 (ii) 11001112

 (iii) 011012 (iv) 010002

 (v) –11102 (vi) –10012

 17. Add the following numbers

 (i) 10112 + 01012

 (ii) 11112 + 01012

 (iii) 112 + 1112

 (iv) 100111112 + 011010112

 18. Using 2’s complement method, perform the following operations:

 (i) 3110 – 1710 (ii) 5110 – 2710

 (iii) 1210 – 1910 (iv) 2510 – 4910

 (v) –1910 – 1210 (vi) –1010 – 810

 (vii) –1310 + 1010 (viii) –2310 + 4510

 (ix) 10012 + 01002 (x) 10102 – 11012

42 Computer Fundamentals and Programming in C

 19. Perform the following operations. The most significant bit represents
the sign bit and the negative numbers are in 2’s complement form.

 (i) 00011011 + 00001101

 (ii) 00011111 – 11001111

 20. If 2’s complement of a number in four-bits is 10112, give its 2’s
complement representation in eight-bits.

 21. Suppose a computer uses six-bits for base 2 unsigned integer and for
2’s complement signed integers.

 (i) What range of values could be represented as an unsigned
integer?

 (ii) What range of values could be represented as a signed integer?

 22. Convert the following decimal numbers to BCD representation:

 (i) 810 (ii) 2610

 (iii) 3710 (iv) 14510

 23. What are the equivalent Excess-3 code representations for the
following numbers in 8421 code:

 (i) 0011 (ii) 0101

 (iii) 1001 (iv) 1000

 24. Find the decimal numbers represented by the given numbers in gray
code:

 (i) 0011 (ii) 1011

 (iii) 0111 (iv) 1111

Boolean Algebra and Logic Gates 43

3.1 IntroductIon to Boolean algeBra
Boolean algebra deals with logic variables, which may either
be 1, that is TRUE or 0, that is FALSE. It uses logic variables
and logic operations to develop, manipulate, and simplify
logic expressions, following set rules. Boolean algebra,
introduced by George Boole in 1854, differs significantly
from conventional algebra. The rules of Boolean algebra are
simple and straightforward, and can be applied to any logical
expression.

 The rules of Boolean algebra that define three basic logic
operations and some combinations of these, sometimes called
axioms, are:
Boolean multiplication (◊)
 0 ◊ 0 = 0
 1 ◊ 0 = 0
 0 ◊ 1 = 0
 1 ◊ 1 = 1

c
h
A
p
T
E
R

Boolean Algebra and
Logic Gates

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

3

∑ identify a binary logic variable
∑ explain the three basic operations of Boolean algebra
∑ explain some axioms and theorems of Boolean algebra
∑ analyse Boolean expressions and functions and their

simplification methods
∑ explain the different forms of representing a Boolean

function
∑ identify logic ‘ true’ and ‘false’ by high and low voltage

levels

∑ explain the properties of the logic gates AND, OR, NOT,
NAND, NOR, XOR, and XNOR

∑ explain the construction of logic gates using electronic
devices such as diodes and transistors

∑ use Boolean algebra for describing the function of logic
gates

∑ explain how complex logic circuits described by
Boolean expressions are constructed using logic gates

∑ construct AND, OR, and NOT gates using NAND and NOR
gates

44 Computer Fundamentals and Programming in C

Boolean addition (+)
 0 + 0 = 0
 1 + 0 = 1
 0 + 1 = 1
 1 + 1 = 1
Boolean negation
 0– = 1
 1– = 0
 Based on the axioms, the following laws have evolved:
AND law
 A ◊ 0 = 0 (Null law)
 A ◊ 1 = A (Identity law)
 A ◊ A = A (Idempotence law)
 A ◊ A– = A (complement law)
OR law
 A + 0 = A (Null law)
 A + 1 = 1 (Identity law)
 A + A = A (Idempotence law)
 A + A– = 1 (complement law)
Complementation law

 If A = 0 then A– = 1
 If A = 1 then A– = 0
 A = A (Double negation law)
Associative law
 (A ◊ B) ◊ C = A ◊ (B ◊ C) = A ◊ B ◊ C
 (A + B) + C = A + (B + C) = A + B + C
Distributive law
 A ◊ (B + C) = (A ◊ B) + (A ◊ C)
 A + (B ◊ C) = (A + B) ◊ (A + C)
Commutative law
 A ◊ B = B ◊ A
 A + B = B + A
 It should be evident from above that there are three basic
logic operations in Boolean algebra, namely, AND, OR, and
NOT. The common symbols used for each of these operations
are given in Table 3.1.

Table 3.1 Boolean operations and their symbols

Operation Symbol

AND ◊
OR +

NOT – or’

3.2 theorems
From the axioms above, we can derive the following
theorems.

Theorem 1: Idempotent Proof

(a) x + x = x (a) x + x (x + x) ◊ 1 (Identity)
(x + x) ◊ (x + x–) (Complement)
x + xx– (Distributive)
x + 0 (Complement)
x (Null)

(b) x ◊ x = x [Dual of (a)] (b) It is not necessary to provide a
separate proof for (b) which is
the dual of (a) because of the
principle of duality.

Duality
Any algebraic equality derived from the axioms of Boolean
algebra remains true when the operators OR and AND
are interchanged and the identity elements 0 and 1 are
interchanged. This property is called duality. For example,
 x + 1 = 1
 x ◊ 0 = 0 (dual)
 Because of the duality principle, for any given theorem its
dual may be easily obtained.

Theorem 2: Operations
with 0 and 1

Proof

(a) x + 1 = 1
(b) x ◊ 0 = 0 [Dual of (a)]

(a) x + 1
x + x + x– (Complement)
x + x– (Idempotent theorem)
1 (Complement)

Theorem 3: Absorption Proof

(a) y ◊ x + x = 0
(b) (y + x) ◊ x = x [Dual of
(a)]

(a) y ◊ x + x
y ◊ x + x ◊ 1 (Identity)
y ◊ x + 1◊ x (Commutative)
(y + 1) ◊ x (Distributive)
1 ◊ x (Operations with 0 and
1)
x (identity)

Theorem 4: DeMorgan’s
Law

Proof

(a) (x + y) = x ◊ y
(b) (x . y) = x + y
 [Dual of (a)]

The proof for De Morgan’s Law
using the axioms of Boolean
algebra is long. Another method
(that also works for the other
theorems just discussed) is to
prove by the method of perfect
induction, which uses the following
truth tables:

x
0
0
1
1

y
0
1
0
1

x + y (x + y) x– y– x–◊y–
0 1 1 1 1

1 0 1 0 0

1 0 0 1 0

1 0 0 0 0

Boolean Algebra and Logic Gates 45

3.2.1 some applications of Boolean laws and
theorems

ExamplEs
Proving the following:
 1. A + BC = (A + B) (A + C)

Solution
R.H.S = (A + B) (A + C)
 = A ◊ A + A ◊ C + A ◊ B + B ◊ C
 = A + AC + AB + BC
 = A ◊ 1 + A ◊ C + AB + BC
 = A (1 + C) + AB + BC
 = A ◊ 1 + A ◊ B + BC
 = A (1 + B) + BC
 = A ◊ 1 + BC
 = A + BC
Or

L.H.S = A + BC
 = A ◊ (1 + B) + BC
 = A ◊ 1 + AB + BC
 = A (1 + C) + AB + BC
 = A ◊ 1 + AC + AB + BC
 = A + AC + AB + BC
 = A ◊ A + AC + AB + BC
 = A (A + C) + B (A + C)
 = (A + B) (A + C)

 2. Prove A + AB
—

 = A
 L.H.S. = A ◊ 1 + A ◊ B– = A ◊ (1 + B) = A ◊ 1 = A

 3. Prove A + AB
—

= 1
 L.H.S. = A + A

–
 + B

–
 = 1 + B

–
 = 1

 4. Prove A + AB = A
 L.H.S. = A ◊ 1 + A ◊ B = A ◊ (1 + B) = A

 5. Prove A (A
–

 + B) = AB
 L.H.S. = A × A

–
 + AB = 0 + AB = AB

 6. Prove A (A + B) = A
 L.H.S = A ◊ A + A ◊ B = A + A ◊ B
 = A ◊ 1 + A ◊ B = A ◊ (1 + B)
 = A

note

 ∑ Boolean algebra deals with logic variables, which may
either be 1 that is, TRUE or 0 that is, FALSE. It uses logic
variables and logic operations to develop, manipulate,
and simplify logic expressions, following set rules.

 ∑ The property of duality states that any algebraic equality
derived from the axioms of Boolean algebra remains
true when the operators OR and AND are interchanged
and the identity elements binary values, 0 and 1, are
interchanged.

 ∑ The two De Morgan’s theorem are dual of each other.

3.3 Boolean expressIon
A Boolean or logic expression is a logic variable or a number
of logic variables involved with one another through the
logical operations ‘.’, ‘+’, and ‘–’. For logic variables A and
B, the following are some examples of Boolean expressions:
 (a) A
 (b) A–

 (c) B
 (d) A ◊ B
 (e) A + B
 (f) A + AB—

3.4 sImplIfIcatIon of Boolean
expressIons

The simplification of the following functions, using the
theorems and axioms of Boolean algebra, is discussed here.

ExamplEs
Simplifying the following Boolean expresions:

 1. XY + XY
Solution:
It is easy to see the pattern in this example because of the similarity
between the AND operator in Boolean algebra and the multiplication
operator in regular algebra. Because they are both distributive, the pattern
is easy to notice.

 XY + XY

 = (Y +Y)X (Distributive)

 = (1)X (Complement)

 = X (Identity)

 2. (X + Y) ◊ (X + Y)
Solution:
It is not so easy to spot the pattern in this example because one
is not used to the symbol + being distributive. In Boolean algebra, the OR
operator + is distriutive.
 (X + Y) (X + Y)

 = X + (Y◊Y) (Distributive)

 = X + (0) (Complement)

 = X (Null)

 3. YZ + XYZ + XYZ
Solution:
 YZ + XYZ + XYZ

 = YZ + (X + X)YZ (Distributive)

 = YZ + (1)YZ (Complement)

 = YZ + YZ (Identity)

 = Y(Z + Z) (Distributive)

 = Y(1) (Complement)

 (Identity)

46 Computer Fundamentals and Programming in C

 4. (X +Y)(X + Y + Z)(X + Y + Z)
Solution:

 (X + Y) (X + Y + Z) (X + Y + Z)

 = (X + Y) ((X + Y) + Z) ((X + Y) + Z) (Associative)

 = (X + Y) ((X + Y) + (Z ◊ Z)) (Distributive)

 = (X + Y) (X + Y) + (0) (Complement)

 = (X + Y) (X + Y) (Null)

 = (X ◊ X) + Y (Distributive)

 = (0) + Y (Complement)

 = Y (Null)
 There are two instances in this problem that require the use of the
distributive property of ‘+’ to simplify the problem. Another way to solve this
problem is to use the principle of duality:
 (X +Y)(X + Y + Z)(X + Y + Z)

 The dual of the expression above is:
 XY + XYZ + XYZ
 After simplifying this expression and obtaining an answer, the dual
of the answer has to be taken so that the simplified form of the original
expression is obained.
 XY + XYZ + XYZ simplifies to Y
So,
 Dual (X +Y)(X + Y + Z)(X + Y + Z) = Dual (Y)
 The dual of Y is still Y, hence,
 (X +Y)(X + Y + Z)(X + Y + Z) =Y

 5. X + XYZ + XYZ + X ◊ Y + W ◊ X +W ◊ X
Solution:
 This example is long and uses many of the axioms and theorems
discussed. A term has also been duplicated (see ine 9).
 X + XYZ + XYZ + XY + WX + WX

 = X + (X + X)YZ + XY + (W + W)X (Distributive)

 = X + (1)YZ + XY +(1)X (Complement)

 = X + YZ + XY + X (Identity)

 = (X + X) + YZ + XY (Associative)

 = X + YZ + XY (Idempotent)

 = X(1) + YZ + XY (Identity)

 = X(Y + Y) + YZ + XY (Complement)

 = XY + XY + YZ + XY (Distributive)

 = XY + XY + XY + YZ + XY (Idempotent)

 = XY + XY + YZ + XY + XY (Associative)

 = X(Y + Y) + YZ + (X + X)Y (Distributive)

 = X(1) + YZ +(1)Y (Complement)

 = X + YZ + Y (Identity)

 = X + Y(Z + 1) (Distributive)

 = X + Y(1) (Identity)

 = X + Y (Identity)

 6. (X ◊ (XY)) + (Y ◊ (XY))

Solution:

 (X ◊ (XY)) + (Y ◊ (XY))

 = (X ◊ (X + Y)) + (Y ◊ (X+Y)) (De Morgan’s Law)

 = (XX + XY) + (YX + YY) (Distributive)

 = (0 + XY) + (YX + 0) (Complement)

 = (XY) + (YX) (Null)

 7. XY + XZ + YZ

Solution:

Here, the expression needs to be expanded to obtain a simpler solution.

 XY + XZ + YZ

 = XY + XZ + YZ ◊1 (Identity)

 = XY + XZ + YZ ◊ (X + X) (Complement)

 = XY + XZ + YZX + YZX (Distributive)

 = XY + YZX + XZ + YZX (Commutative)

 = XY + XYZ + XZ + XZY (Commutative)

 = XY(1 + Z) + XZ(1+Y) (Distributive)

 = XY(1) + XZ(1) (Identity)

 = XY + XZ (Identity)

 8. X ◊ X
Solution:

This is the dual of the idempotent theorem that was proved; the equality is
true because of the duality principle.
 X ◊ X
 = X ◊ X + 0 (Null)
 = X ◊ X + (X ◊ X) (Complement)
 = X ◊ (X + X) (Distributive)
 = X ◊ (1) (Complement)

 = X (Identity)

Check your Progress

 1. The simplification of the Boolean expression
() + () A B C A B C◊ ◊ ◊ ◊

 (a) 0 (b) 1
 (c) A (d) BC
Answer: (b)
 2. The Boolean expression A ◊ B + A ◊ B + A ◊ B is

equivalent to
 (a) A + B (b) A ◊ B
 (c) A + B (d) A ◊ B
Answer: (a)
 3. When simplified with Boolean Algebra, (x + y)(x + z)

simplifies to
 (a) x (b) x + x(y + z)
 (c) x(1 + yz) (d) x + yz
Answer: (d)
 4. The simplification of (+ +) AB A AB is
 (a) 1 (b) 0
 (c) A (d) AB
Answer: (b)

Boolean Algebra and Logic Gates 47

3.5 Boolean functIons and truth
taBles

A Boolean function of one or more logic variables, also
known as Boolean variable, is a binary variable, the value
of which depends on the values of these logic variables. For
example, independent Boolean variables A and B may have
arbitrarily chosen values while the Boolan function f (A,B)
has values that depend on the values of A and B, hence: F1
= ABC means F1 is 1 (TRUE) when A = 1 (TRUE), B = 1
(TRUE), and C = 0 (FALSE).
 A table depicting the value of a given Boolean function, for
all possible value combinations of its independent variables,
is known as a truth table. consider a Boolean function f (A,B),
of two logic variables A and B, which s given as:

f A B A B A B(), = ◊ + ◊ (3.1)
 The truth table for this function is shown in the Table 3.2.

 Table 3.2 For f (A, B)

A B f(A,B)

0 0 1

0 1 0

1 0 0

1 1 1

 Four possible value combinations of A and B are depicted
in the first two columns of the table. It may be verified whether
the truth table truly represents the function expressed in Eqn
(3.1). For row 1 of the truth table, A = 0, B = 0; therefore,
putting these values in Eqn (3.1), f (A,B) = 0 ◊ 0 + 0– ◊ 0– = 0 +
1 ◊ 1 = 0 + 1 = 1.For row 2 of the truth table, A = 0, B = 1, hence
f(A,B) = 0 ◊ 1 + 0– ◊ 1– = 0 + 1 ◊ 0 = 0 + 0 = 0. Also, for row 3
of the truth table, A = 1, B = 0, thus f(A,B) = 1 ◊ 0 + 1– ◊ 0– = 0
+ 0 ◊ 1 = 0 + 0 = 0. Similarly, for row 4 of the truth table, A =
1, B = 1, f(A,B) = 1 ◊ 1 + 1– ◊ 1– = 1 + 0 ◊ 0 = 1 + 0 = 1.
 All the computed values of f (A, B) agree with the values
shown in the corresponding rows of the truth table. hence,
the truth table of a given Boolean function truly represents
the function.

3.6 constructIng Boolean functIons
from truth taBles

A Boolean function can be built from the value of a given
truth table. considering Table 3.2, the value of f(A,B) is 1
when
 A = 0 and B = 0
 or A = 1 and B = 1
The above conditions may also be written as
 A– = 1 and B = 1
 or A = 1 and B = 1

These conditions may further be rewritten as the following
logical products:

 A– ◊ B = 1 or A ◊ B = 1

It is, therefore, concluded that f (A,B) is 1 when A– ◊ B = 1 or
A ◊ B is 1, thus
 f (A,B) = A ◊ B + A– ◊ B (3.2)
 This function is the same as the function in Eqn (3.1).
hence, given a truth table, the corresponding Boolean
function can be constructed.
 The Boolean function in Eqn (3.2) was constructed from
the truth table (Table 3.2) by considering a combination
of values of variables A and B for which f (A,B) is 1. Now
from the same truth table, another Boolean function f (A,B),
for those combinations of values of A and B for which the
function is 0, can also be built. From Table 3.2, the value of
f (A,B) is 0 when
 A = 0 and B = 1
 or A = 1 and B = 0
The above conditions may be written as
 A = 0 and B = 0
 or A– = 0 and B = 0

The conditions can further be rewritten as the following
logical smmations:
 A + B = 0 or A– + B = 0

hence, it is concluded that f (A,B) is 0 for either of the two
combinations being 0 Therefore,
 f(A,B) = (A + B) ◊ (A– + B) (3.3)
Now,
 f(A,B) = (A + B) ◊ (A– + B)
 = A ◊ A– + A ◊ B + B ◊ A– + B ◊
 = 0 + A ◊ B + A– ◊ B + 0
 = A ◊ B + A– ◊ B,
which is same as Eqn (3.2).
 The function in Eqn (3.2) is a logical sum of logical products
whereas the function in Eqn (3.3) is a logical product of logical
sums. The functions are equal to one another but their forms
are different. hence, a truth table may be represented by at
least two Boolean functions that are equal.

Terms A combination of logic variables forming a group in
a Boolean function is called a term.

Literals Each complemented or uncomplemented variable
in a term is called a literal.

3.7 canonIcal and standard forms
In a Boolean function, if all terms are written as AND
combinations of the Boolean variables, there are 2n such
AND ‘terms’ for n variables. These AND terms are called

48 Computer Fundamentals and Programming in C

minterms. Minterms are designated as m0, m1, ... mn, etc.,
where the subscripts represent the decimal values obtained
from the equivalent binary value of the combined variables.

The minterms are also called standard products. Similarly,
ORing the variables form maxterms. For three variables, the
minterms and maxterms are determined as shown in Table
3.3.

Table 3.3 Summary of canonical and standard forms

Boolean variables Minterm Maxterm

A B C Term Designation Team Designation

0 0 0 A
–

 B
–

 C
–

m0 A + B + C M0

0 0 1 A
–

 B C m1 A + B + C M1

0 1 0 A B C m2 A + B + C M2

0 1 1 A B C m3 A + B + C M3

1 0 0 A B C m4 A + B + C M4

1 0 1 A B C m5 A + B + C M5

1 1 0 A B C m6 A + B + C M6

1 1 1 A B C m7 A + B + C M7

 Since each minterm or the maxterm is formed by the
combination of all the n complemented or uncomplemented
variables, each of these is called a canonical term. Each
minterm is obtained by ANDing the variables, with each
variable having an overbar if its corresponding binary value is
0 and not having an overbar if its binary value is 1. Similarly,
each maxterm is obtained by ORing the variables, with each
variable having an overbar if its corresponding binary value
is 1 and not having an overbar if it is 0. It may be noted
that each maxterm is the complement of its corresponding
minterm and vice versa.
 Any Boolean function may be expressed as an OR
combination of the minterms for which the function is 1.
This form of the function is a ‘sum’ of minterms or standard
‘products’. A Boolean function may also be expressed as
an AND combination of maxterms for which the function
is 0. The function, thus, is the ‘product’ of maxterms. A
Boolean function written as a sum of minterms or product
of maxterms is said to be in canonical form. De Morgan’s
theorem allows conversion between the two canonical forms.
The two canonical forms of Boolean algebra are basic forms.
 Another method of expressing a Boolean function is the
standard form. There are two types of standard forms: sum of
products and product of sums.
 The sum of products is a Boolean expression containing
AND terms, called product terms, formed with one or more
logic variables. The sum denotes the ORing of these terms.
Example: f1(A, B, C) = B– + AB + ABC
 A product of sums is a Boolean expression containing
OR terms called sum terms, comprising one or more logic
variables. The product denotes the ANDing of these terms.
Example: f A B C A B C D2 = ◊ + ◊ + + +() ()

 A Boolean function may be expressed in a non-standard
form also. For example: F AB CD AB CD3 = (+)(+) is
neither in the sum of products nor in product of sums form.
however, it can be transformed to a standard form using the
distributive law, that is, F ABCD ABCD3 = + .

3.8 numerIcal representatIon of
Boolean functIons In canonIcal
form

A Boolean function, with the canonical sum of product terms,
can be expressed in a compact form by listing the decimal
value corresponding to the minterm for which the function
value is 1.
 As an example, the truth table of a three-variable function
is shown below. Three variables, each of which can take the
values 0 or 1, yield eight possible combinations of values for
which the function may be true. These eight combinations are
listed in ascending binary order and the equivalent decimal
value is also shown in Table 3.4.

Table 3.4 Equivalent decimal value for Boolean terms

Decimal value A B C F

0 0 0 0 1

1 0 0 1 0

2 0 1 0 1

3 0 1 1 1

4 1 0 0 0

5 1 0 1 0

6 1 1 0 0

7 1 1 1 1

Boolean Algebra and Logic Gates 49
defined behavior. These operations are implemented by three
basic gates: AND, OR, and NOT. Four other gates NAND,
NOR, XOR, and XNOR, which are derived gates, are also
used to construct logic functions. NAND and NOR gates are
known as universal gates.

3.9.1 AND Gate
The AND gate is an electronic circuit that has two or more
inputs and only one output. It gives a hIGh output (1) only
if all its inputs are hIGh. If A and B are logic inputs to a two
input AND gate, then output Y is equal to A ◊ B. The dot (.)
indicates an AND operation. This dot is usually omitted, as
shown in the output in Fig. 3.1. The AND gate is also called
an all or nothing gate. The truth table for the AND gate is
given in Table 3.5.

Table 3.5 Truth table for a two-input AND gate

Inputs Output

A B Y = AB

0 0 0

0 1 0

1 0 0

1 1 1

Input
voltage

A B

Output
voltage

Y A B= ◊

(a) AND Gate using electrical contacts

Y A B= ◊A

B

(b) AND gate using diodes

R

+V
CC

A

B
AB

(c) Logic symbol for AND gate

D2

D1

Fig. 3.1 Two-input AND gate

 In the AND gate formed by diodes in Fig. 3.1(b), when
the voltage at A is +Vcc volts and the voltage at B is + Vcc
volts, both diodes D1 and D2 do not conduct, which means
the diodes are off. Therefore, no current flows through R.
As a result no voltage is developed across R. This makes the
voltage at Y almost equal to +Vcc volt. But, if the voltage at
A is zero volts or the voltage at B is zero volts or if both A
and B be equal to zero volts, the respective diode D1 or D2
conducts or both the diodes conduct. This makes the voltage

The function has a value 1 for the variable combinations
shown, therefore
 f(A, B, C) = A ◊ B ◊ C ◊ + ABC + ABC + ABC (3.4)
This can also be written as
 f(A, B, C) = (000) + (010) + (011) + (111)
 The summation sign indicates that the terms are ORed
together. The function can be expressed in the compact form
as follows:
 f(A, B, C) = mÂ (0, 2, 3, 7) = + + +0 2 3 7m m m m

Note (a) The position of the digits must not be changed.
 (b) The expression must be in standard sum of products

form.
 Similarly, a Boolean function can be expressed in compact
form by listing the decimal value corresponding to the
maxterms for which the function value is 0.
From Table 3.4, consider the terms for which the function is
0, then
 f (A, B, C) = (A + B + C) ◊ (A + B + C) ◊ (A + B + C)
 ◊ (A + B + C)
 In compact form, this is expressed as
 f (A, B, C) = pM(1, 4, 5, 6) = M1M4M5M6

note

 ∑ A Boolean or logic expression is a Boolean variable or
a number of these variables involved with one another
through the logic operators ‘ ◊ ’ , ‘ + ’, and ‘ – ’.

 ∑ A Boolean function of one or more logic variables, also
known as Boolean variable, is a binary variable, the value
of which depends on the values of these logic variables.

 ∑ A Boolean function may be represented by a truth table or
as sum of product terms or by the product of sum terms.

 ∑ A Boolean function, with the canonical sum of product
terms, can be expressed in a compact form by listing the
decimal value corresponding to the minterm for which
the function value is 1. Likewise, a Boolean function can
also be expressed in compact form by listing the decimal
value corresponding to the maxterms for which the
function value is 0.

3.9 logIc gates
The boolean functions or expressions can be realized by
using electronic gates. It must be understood that the logic
`1 ` and logic `0’, which are fed as input to the gates, are
represented by two distinct voltage levels. Even the output,
which is either logic `1’ or `0’, is represented by distinct
voltage levels. There are three fundamental logical operations
from which all other Boolean functions, no matter how much
complex, can be derived. These operations are named and,
or, and not. Each of these has a specific symbol and a clearly

50 Computer Fundamentals and Programming in C

at Y ª 0.7V, which is the drop across the diodes. In practice,
this is considered to be zero volts. Thus, the output is Y ª 0 V.
The truth table for the gate circuit is given in Table 3.6.

Table 3.6 Truth table for a two-input AND gate (VCC = +5 V)

Inputs Output

A B Y
0 V 0 V 0 V

0 V 5 V 0 V

5 V 0 V 0 V

5 V 5 V 5 V

 Figure 3.1(a) depicts two switches A and B connected
in series. The output voltage is hIGh when A and B are on
and the input is hIGh. But if either A or B is off or both are
off, the output is LOW.
 There is no functional limit to the number of inputs that
may be applied to an AND function. however, for practical
reasons, commercial AND gates are most commonly
manufactured with two, three, or four inputs. A standard
Integrated circuit (Ic) package contains 14 or 16 pins. A 14-
pin Ic package can contain four two-input gates, three three-
input gates, or two four-input gates and still have room for
two pins for power supply connections.

3.9.2 or gate
The OR gate is an electronic circuit that has two or more
inputs and only one output. It gives a hIGh output if one or
more of its inputs are hIGh. For a two-input OR gate, where
A and B are the logic inputs, the output Y is equal to A + B. A
plus (+) indicates an OR operation. The truth table for a two-
input OR gate is given in Table 3.7.

Table 3.7 Truth table for a two-input OR gate

Inputs Output

A B Y = A + B

0 0 0

0 1 1

1 0 1

1 1 1

 In the OR gate in Fig. 3.2(b), when the voltage at A is
zero volts and the voltage at B is zero volts, both diodes
D1 and D2 do not conduct. Since, no current flows through
R, no voltage exists across R. Thus, the voltage at Y is zero
volts. But if either A or B or both are at voltage +VCC, then
the corresponding diode D1 or D2 or both conduct thereby
making the voltage at Y ª +VCC. The truth table of this gate
circuit is given in Table 3.8.

(a) OR gate using electrical contacts

A

Input
voltage

A

Output
voltage

Y A B= +

B

A Y A B= +

R

B

(b) OR gate using diodes

B
A B+

(c) Logic symbol for OR gate

OR

D1

D 2

+V
CC

Fig. 3.2 Two-input OR gate

 Figure 3.2(a) shows two switches A and B connected in
parallel. The output voltage is hIGh, if any switch A or B
or both are on, and the input is hIGh. When both switches
are off, the output is LOW. As with the AND function, the
OR function can have any number of inputs. however,
practical, commercial OR gates are mostly limited to two,
three, and four inputs, as with AND gates.

Table 3.8 Truth table (VCC = +5V) for two-input OR gate

Inputs Output

A B Y

0 V 0 V 0 V

0 V 5 V 5 V

5 V 0 V 5 V

5 V 5 V 5 V

3.9.3 not gate or Inverter
The inverter is a little different from AND and OR gates as
it has only one input and one output. Whatever logic state
is applied to the input, the opposite state will appear at the
output.
The NOT function is denoted by a horizontal bar over the
value to be inverted, as shown in the Fig. 3.3. In some cases,
a prime symbol (¢) may also be used for this purpose: 0¢ is
1 and 1¢ is 0. For greater clarity in logical expressions, the
overbar is used most of the time.
 In the inverter symbol shown in Fig. 3.3, the triangle
actually denotes only an amplifier, which does not change
its logical sense. It is the circle at the output that denotes
the logical inversion. The circle could have been placed at
the input instead, and the logical meaning would still be the
same. The truth table is given in Table 3.9.

Boolean Algebra and Logic Gates 51
 Table 3.9 Truth table for NOT gate

Inputs Output

A Y = A
–

0 1

1 0

The NOT gate in Fig. 3.3(b) uses a transistor. When the
voltage applied to input A is zero volts, the transistor is reverse
biased; so it is off. hence the voltage at Y is +VCC, i.e., hIGh.
But when A is +VCC, the transistor is forward biased thereby
driving the transistor to an on state or saturation. The voltage
at Y ª VCE (sat), which is practically zero volts, i.e., Y is LOW.
The truth table for this circuit is given in Table 3.10.

A Y = A

(a) Logic symbol for NOT gate

R
L

+V
CC

TR
R

B

A

(b) NOT gate circuit using a transistor

Y = A

Fig. 3.3 NOT gate

 Table 3.10 Truth table for a NOT gate (VCC = 5 V)

Inputs Output

A Y = A
–

0 V 5 V

5 V 0 V

3.9.4 nand gate
The NAND gate implements the NAND function, which
means NOT-AND. The inputs are ANDed and then NOTed
to get a single output. The output of NAND gate is hIGh if
any or all of the inputs are LOW. When all inputs are hIGh,
the output is LOW. Table 3.11 depicts the truth table for a
two-input NAND gate.

 Table 3.11 Truth table for a two-input NAND gate

Inputs Output

A B Y = AB

0 0 1

0 1 1

1 0 1

1 1 0

 In Fig. 3.4, the circle at the output of the NAND gate
denotes the logical inversion, just as it did at the output of
the inverter. Note that the output is the overbar of the ANDed
input values. As shown in the figure, the NAND function can
also be performed by a bubbled OR gate.
 As with AND, there is no limit to the number of inputs that
may be applied to a NAND function, so there is no functional
limit to the number of inputs a NAND gate may have.
however, for practical reasons, commercial NAND gates are
most commonly manufactured with two, three, or four inputs
to fit in a 14-pin or 16-pin IC package.

A

B

Y = AB
=

A

B

=
A

B

A

B

Y = + =A B AB

Y = AB

(b) Two-input NAND gate logic symbol

(c) Bubbled OR gate as NAND gate

A

B
Y = AB

NAND

(a) AND gate followed by OR gate

A

B
Y = AB

AB

Fig. 3.4 Two-input NAND gate

3.9.5 nor gate
The NOR gate is an OR gate with inverted output. Whereas
the OR gate allows the output to be hIGh (logic 1) if any one
or more of its inputs are hIGh, the NOR gate inverts this and
forces the output to logic 0 when any input is hIGh, i.e., the
output of a NOR gate is LOW if any of the inputs are hIGh.
The output is hIGh when all inputs are LOW. The truth table
of a two-input NOR gate is given in Table 3.12.
The NOR function uses the plus sign (+) operator with the
output represented by an expression with an overbar to
indicate the OR inversion. In the logic diagram, shown in
Fig. 3.5(b), the symbol designates the NOR gate. This is an
OR gate with a circle to designate the inversion. The NOR
function can also be performed by a bubbled AND gate, as
depicted in Fig. 3.5(c).
 The NOR function can have any number of inputs but only
one output. As with other gates, practical commercial NOR
gates are mostly limited to two, three, and four inputs to fit in
standard Ic packages.

52 Computer Fundamentals and Programming in C

A

B
Y = A + B

A B+

(a) OR gate followed by NOT gate

(b) Two-input NOR gate logic symbol

A

B

Y = A + B

B

(c) Bubbled AND gate as NOR gate

A

B

Y = A + B
=

A

B

=
A

B

A
Y = =A B A + B◊

Y = A + B

Fig. 3.5 Two-input NOR gate

 Table 3.12 Truth table for a two-input NOR gate

Inputs Output
A B Y = A + B
0 0 1
0 1 0
1 0 0

1 1 0

3.9.6 exclusive-or or xor gate
The Exclusive-OR or XOR gate is a two-input circuit that will
give a hIGh output if either, but not both, of the inputs are
hIGh. The truth table of XOR gate is given in Table 3.13.
 The XOR function is an interesting and useful variation of
the basic OR function. Its function can be stated as ‘Either A
or B, but not both’. The XOR gate produces a logic 1 output
only if the two inputs are different. If the inputs are the same,
the output is a logic 0. XOR is also called an anti-coincidence
gate or inequality detector.
 The XOR symbol is a variation of the standard OR symbol,
as can be seen in Fig. 3.6(a). An encircled plus ≈ sign is used
to show the XOR operation.

A

B
Y A B B + A= =≈ ◊A B◊

(a) Logic symbol for XOR gate

(b) XOR gate using AND, OR, and NOT gates

Y A B

A + B

=

=

≈
B A

A

B

AB

AB

A

B

Fig. 3.6 XOR gate

 There are a couple of interesting facts about Exclusive-
OR. One is that if a bit is XORed with itself, the result is zero
regardless of whether the original bit was zero or one. Unlike
standard OR/NOR and AND/NAND functions, the XOR
function always has exactly two inputs and commercially
manufactured XOR gates are the same.
 Generally, an XOR operation of an n-input variable
would result in a logic 1 output if an odd number of the input
variables are logic 1’s. That is, the output of an XOR gate is
hIGh when the number of one inputs is odd. This is useful in
generating parity bits.

 Table 3.13 Truth table for XOR gate

Inputs Output

A B Y = A ≈ B

0 0 0

0 1 1

1 0 1

1 1 0

3.9.7 exclusive-nor or xnor gate
The Exclusive-NOR gate is a XOR gate followed by a NOT
gate. XNOR gate is a two-input and one-output logic gate
circuit. In the gate, the output is hIGh if both inputs are either
LOW or hIGh. The logic symbol for a XNOR is shown in
Fig. 3.7. Table 3.14 gives the truth table for the two-input
XNOR gate.

A

B

A B≈ Y = A B≈ A

B

Y = A B

A B +

=

=

A B

A B

≈
◊ ◊

XOR NOT XNOR

Fig. 3.7 Logic symbol for a two-input XNOR gate

 Table 3.14 Truth table for a two-input XNOR gate

Inputs Output

A B Y = A B

0 0 1

0 1 0

1 0 0

1 1 1

The output Y of the two-input XNOR, where A and B are the
inputs, is given by
 Y A B A B A B= = +≈ ◊ ◊
 = AB AB A B A B◊ = + ◊ +() () De Morgan’s Theorem

Boolean Algebra and Logic Gates 53

 = (A + B) ◊ (A + B)
 = A ◊ A + A ◊ B + A ◊ B + B ◊ B = A ◊ B + A ◊ B = A B
 The XNOR gate output in Fig. 3.7 assumes a hIGh
state whenever the inputs are similar, i.e., when both inputs
are either1 or 0; otherwise the output is LOW. It is, therefore,
called a coincident gate. It can be used as a one-bit comparator
or equality detector.
The symbol for the XNOR operation , is shown in Fig. 3.7.
The XNOR output is 1 if the number of 1’s in its inputs is
even, otherwise if the number is odd; the output is 0. This
property of the XNOR gate is used to form an even-parity
checker.

note

 ∑ The three gates, AND, OR and NOT, can be used
together to implement a Boolean function.

 ∑ If a bit is XOR-ed with itself, the result is zero regardless
of whether the original bit was zero or one.

 ∑ An XOR operation of an n-input variable would result in a
logic 1 output if an odd number of the input variables are
logic 1’s.

 ∑ In an XNOR operation, the output is 1 if the number of 1’s
in its inputs is even.

3.10 descrIBIng logIc cIrcuIts
algeBraIcally

Any logic circuit, no matter how complex, may be completely
described using the Boolean operations because the OR,
AND, and NOT gates are the basic building blocks of digital
systems. The algebraic expression that relates the logic output
of a logic circuit with the binary inputs of the logic circuit,
is called a Boolean expression. Figure 3.8 shows a circuit
diagram using Boolean expression.

(a)

ABA

B

C

Y = AB C+ A B+A

B

C

Y = A + B C+

(b)

Fig. 3.8 A circuit diagram using Boolean expression

If an expression contains both AND and OR operations, the
AND operations are performed first. For example, in Y =
AB + C, AB is performed first, unless there are parentheses
in the expression, in which case the operation inside the
parentheses is performed first. That is, in Y = (A + B) + C, A
+ B is performed first.
 Whenever an inverter is present in a logic-circuit diagram,
its output expression is simply equal to the input expression

with an overbar (—) over it. Figure 3.9 shows a circuit
containing inverters.

1

1B

D

C

A

(+)A D

ABC
1
1

1
A

0

= ()Y BCA A D+
0

1

0

1/(+)A D

0

Fig. 3.9 Circuit using inverters

3.11 realIzatIon of logIc cIrcuIts
from Boolean expressIons

If the operation of a circuit is defined by a Boolean expression,
a logic-circuit diagram can be developed directly from the
expression.
 Suppose a circuit has to be constructed whose ouput is
Y = AC + BC + ABC. This Boolean expression contains
three terms (AC, BC, ABC), which are ORed together. This
implies that a three-input OR gate is required with inputs that
are equal to AC, BC and ABC respectively. Each OR gate
input is an AND product term, which means that an AND
gate with appropriate inputs can be used to generate each of
these terms. Note that the use of inverters to produce the A
and B terms is required in the expression. The logic circuit
development is done in steps. These steps are shown in Figs
3.10 and 3.11 for the Boolean expression mentioned above.

AC

ABC

Y AC B + BC= + C A

XNOR

BC

Fig. 3.10 Step 1 of logic circuit developmnt for
Y = AC + BC + ABC

Y = AC B BC+ +C A

A

C

ABC
A

C

C

B

C

BC

AC

B

A

B

Fig. 3.11 Step 2 of logic circuit development for
 Y = AC + BC + ABC

54 Computer Fundamentals and Programming in C

3.12 unIversalIty of nand and nor
gates

NAND and NOR are called universal gates since the AND,
OR, and NOT gates can be constructed with either of them.
 It is possible to implement any logic expression using only
NAND gates. This is because NAND gates, in the proper
combination, can be used to perform each of the Boolean
operations OR, AND, and NOT. Figure 3.12 shows how
NAND gates are used to implement AND, OR, and NOT
operations. Similarly, Fig. 3.13 depicts how NOR gates are
used to implement AND, OR, and NOT operations.

A Y = =A A A◊

A A B◊

A

NOT

A

AND
A

B

Y AB=

OR

A

B

Y A B= +

B B

A A

A B+

Fig. 3.12 NAND gates performing OR, AND, and NOT
operations

A Y = (=A A A)+

A (A B+)

A

NOT

A

OR
A

B

Y A B= +

AND
A

B

Y AB=

B B

A A

A B◊

A B+

Fig. 3.13 NOR gates performing NOT, OR, and AND
operations

note

 ∑ The NAND and NOR gates can not only be used to
implement the AND, OR and NOT gate functions but can
also implement any complex Boolean function.

Check your Progress

 1. The NAND gate output will be low if the two inputs
are

 (a) 00 (b) 01

 (c) 10 (d) 11

Answer: (d)

 2. When an input signal A = 11001 is applied to a NOT
gate serially, its output signal is

 (a) 00111 (b) 00110

 (c) 10101 (d) 11001

Answer: (b)

 3. Write the expression for Boolean function:
F (A, B, C) = ∑m(1, 4, 5, 6, 7) in standard pOS
form.

Answer: F = (A + B + C) (A + B + C) (A + B + C)

 4. A universal logic gate is one, which can be used to
generate any logic function. Which of the following is a
universal logic gate?

 (a) OR (b) AND

 (c) XOR (d) NAND

Answer: (d)

 5. The “maxterm form” of a Boolean function is

 F(A,B,c,D) = ∑M (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15). The equivalent “minterm form” of this
function is

 (a) Σm(0) (b) ABcD

 (c) ABc (d) ABcD
Answer: (a)

summary

A variable which can either be `true’ or `false’ is a logic variable.
The basic operations of Boolean algebra are AND, OR, and NOT. The
operations like AND, OR, Complementation, Associative, Distributive,
and Commutative have evolved from these. The property of duality and
De Morgan’s theorems has also been derived from the basic boolean
operations. Simplification of Boolean expressions can be performed with
the help of the above laws and theorems. Boolean expressions or functions
can be represented using truth tables, minterms, or maxterms.

 The inputs and outputs of logic gates have two discrete voltage values.
The AND gate is a circuit built with electronic devices which gives a `true’

output only if all inputs are `true’. The OR gate, which is constructed with
electronic devices, gives a ̀ true’ output if any input is ̀ true’. In the NOT gate,
whatever input is applied, the opposite logic state appears at the output,
e.g., for a `true’ input, the output is `false’ and vice versa. The NAND gate is
equivalent to NOT-AND and the NOR gate to NOT- OR. XOR gate is similar
to OR gate with the exception that when both inputs are 1, the output is 0.
The XNOR gate, also known as coincidence gate, gives 1 as output only if
both inputs are 0 or if both inputs are 1. Any boolean expression can be
implemented with logic gates as the building blocks. NAND and NOR are
universal gates as these can be used to construct the basic logic gates.

Boolean Algebra and Logic Gates 55

TRUE In Boolean algebra true means “1”.

FALSE In Boolean algebra false means “0”.

Boolean algebra Boolean algebra is the algebra of propositions. It
deals with two values, 0 and 1 or true and false.

Boolean or logic variable It is a variable that can be assigned any one
of the two values, 0 or 1.

Axiom It is an established statement or proposition.

AND It is an operation in which the output is “ true” only when all the
inputs are true.

OR It is an operation in which the output is true whenever at least one
of the inputs is true.

NOT It is an operation that produces an output which is the complement
of the input.

NAND It is an operation in which the output is formed by AND-ing all
inputs and then complementing it.

NOR It is an operation in which the output is formed by OR-ing all
inputs and then complementing it.

Duality It is the property in which any algebraic equality derived from
the axioms of Boolean algebra remains true when the operators OR and
AND are interchanged and the identity elements 0 and 1 are interchanged.

Literal A literal is a variable or its complement. Example: X, X, Y, Y.

Key terms

Boolean function A Boolean function is a boolean variable that has
a value, 0 or 1, which gets evaluated from logic computations involving
boolean variables and logic operators like ‘ ◊ ’ , ‘ + ’, and ‘ — ’.

Truth Table It is a table that depicts the boolean value, 0 or 1, of
the output boolean function for different sets of boolean values of the
boolean inputs.

Term A term is a collection of boolean variables formed by AND-ing or
OR-ing , e.g. ABC or (a + c + d).

Product term It is a term formed by AND-ing two or more boolean
variables.

Sum term It is a term formed by OR-ing two or more boolean variables.

Minterm It is a special product of literals, in which each input variable
appears exactly once. A function with n input variables has 2n minterms ,
since each variable can appear complemented or un-complemented.

Maxterm It is a sum of literals, in which each input variable appears
exactly once. A function with n variables has 2n maxterms, because each
variable can appear complemented or un-complemented.

Sum of products It is a function formed with the “ sum “ of product
terms.

Product of sums It is a function formed with the “ product “ of sum terms.

Canonical form It is a function formed by minterms or maxterms.

frequently asKed questIons

 1. What is a Boolean variable?

Answer:

A Boolean variable is a quantity which, at any point in time, can hold a
value ‘1’ or ‘0’ in the Boolean algebraic system. The Boolean variable is
denoted by an alphabetic symbol.

 2. What is Boolean algebra?

Answer:

Boolean algebra is the algebra of propositions. It deals with three basic
binary logic operators and Boolean variables that holds either a 0 or a 1.
Based on this, this algebra has several laws and theorems. Any system
where the output is “ true” for different binary value combinations of a set
of input variables, Boolean algebra helps in establishing a relationship
between the output variable and input variables by means of a Boolean
function.

 3. What is a logic gate?

Answer:

It is a circuit that performs Boolean operations, like AND or OR or NOT, on
one or more boolean variable inputs to produce a single Boolean output
variable.

 4. What is “inclusive-OR” gate?

Answer:

It is a gate in which the output is “ true ” even if one input, out of all the
inputs, is “true” otherwise the output is “false”.

 5. What is “coincidence” gate?
Answer:
The XNOR gate is known as “coincidence” gate. Whenever the inputs to
the gate are same, which means all inputs are either “1” or “0”, the output is
“1”. This emphasizes the reason for the gate being called a “coincidence”
gate.

 6. How is a Boolean function constructed from a truth table?
Answer:
A truth table depicts the binary value of a function for all possible binary
values of input variables. The Boolean expression for the function, in SOP
form, can be developed by OR-ing the product terms, formed by the input
variables, only for those values of the function where it is “1”. An alternate
method of building the Boolean expression for the function, in POS form,
is to take the product of sum terms for those values of the function where
it is “0”. Whether the function is in SOP form or POS form, the expression
developed, using either method, is equivalent. An example illustrating this
is given below.

Example: A truth table, shown below, is given. Obtain the function in
SOP and POS forms and show that both forms of expressing the Boolean
function Y are equivalent.

56 Computer Fundamentals and Programming in C

 1. Solve the following.

 (i) A + 1 = ______

 (ii) A + 0 = ______

 (iii) A ◊ 1 = ______

 (iv) A + A = ______

 (v) A + A = ______

 (vi) A ◊ 0 = ______

 (vii) A ◊ A = ______

 (viii) A ◊ A = ______

 2. State De Morgan’s theorem.

Truth table

Input Output

A B C Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

The function Y in SOP form is given as follows:

Y = A B C + A B C + A B C + A B C = A C + A C …(i)

 The function Y in POS form is given as follows:

Y = A B C + A B C + A B C + A B C = A C + A C …(ii)

 Complement of (ii) is given by

Y = (A + B + C) ◊ (A + B + C) ◊ (A + B + C) ◊ (A + B + C)

 Y = (A + C) ◊ (A + C) = A C + A C

 The expression for Y is found to be the same in both SOP and POS
forms.

 7. How is a Boolean function realized using logic gates?

Answer:

A boolean function can be realized or implemented with the help of logic
gates. This is best demonstrated by an example given below.

Consider the function Y = A ◊ C + A ◊ C. Here the first product term has to
be implemented by NOT-ing C and then AND-ing this with A. The second
term is implemented by NOT-ing A and then AND-ing this with C. These
two terms are then OR-ed to yield the function Y. The circuit, using the
gates AND, OR and NOT that realizes this function Y from the inputs A and
C is shown below.

A C
AND

A

NOT

NOT

C

A

C
AND

AC
Y

OR

Output

Input

AC

 8. Why is it necessary to simplify a Boolean function?
Answer:
The expression representing a Boolean function has to be simplified or
reduced for the simple reason of decreasing the number of terms in the
expression. This in turn reduces the requirement of the number of logic
gates for realizing the function. Hence the complexity, hardware and cost
of the logic circuit for implementing a Boolean function can be reduced.

 9. How is the compact form used to represent a Boolean function?
Answer:
A Boolean function, with the canonical sum of product terms, can be
expressed in a compact form by listing the decimal value corresponding
to the minterm for which the function value is 1. For example the following
Boolean function expressed in SOP form can be expressed in compact
form as shown below

Y = A ◊ B ◊ C + A ◊ B ◊ C + A ◊ B ◊ C + A ◊ B ◊ C + A ◊ B ◊ C
 Y = ∑m (1, 3, 4, 6, 7) = m1 + m3 + m4 + m6 + m7

 Similarly, a Boolean function can be expressed in compact form by
listing the decimal value corresponding to the maxterms for which the
function value is 0. Hence the following Boolean function represented in
POS form can be expressed in compact form as shown below

Y = (A + B + C) ◊ (A + B + C) ◊ (A + B + C)

Y = πM(0, 2, 5) = M0M2M5

 10. What is the difference in representing a Boolean function in SOP
form and POS form ?
Answer:
The difference lies in the way the expression representing the Boolean
function is formed. In the SOP form the expression is formed with OR-ing
minterms, while in the POS form the expression is formed by AND-ing the
maxterms. This is very well illustrated in the example given with the answer
for the previous question.

exercIses

Boolean Algebra and Logic Gates 57
 3. Construct truth tables for the following Boolean functions.

 (i) Q = AB + AB
 (ii) Q = A ◊ B
 (iii) Q = A + B
 (iv) Q = A
 (v) Q = A + B
 (vi) Q = A ◊ B
 (vii) Q = A + B ◊ C
 (viii) Q = (A + B) ◊ C
 (ix) Q = A ◊ B + C ◊ D
 (x) Q = X (X + Y) ◊ (X + Z)
 (xi) f = ABC + ABC + ABC
 (xii) f =(A + B + C) (A + B + C)◊(A + B + C)

 4. Simply the following Boolean expressions.
 (i) AA + AB + AC + BC
 (ii) () () () ()A B C D E A B C D E+ + + + + + +
 (iii) XZ Z X XY+ +()
 (iv) () () ()A B C D E A B+ + + + +
 (v) AB ABC ABCD ABCDE ABCDEF+ + + +
 (vi) () () () ()A B C D E A B C D E+ + + + + + +
 (vii) A A C C⋅ + +()
 (viii) () ()A B B A+ ⋅ +
 (ix) a bc a b c abc ab c abc+ + + +
 (x) () ()a a ab abc+ ⋅ +
 (xi) ()()a b c d+ +
 (xii) ab ac b c+ +()
 (xiii) ab ac bc+ +

 (xiv) ()()a b c a b c+ + + +
 5. Find the dual of
 (i) A + 1 = 1
 (ii) X XY X Y+ = +
 (iii) A B B A⋅ = ⋅
 (iv) A A B A()+ =
 (v) A B C AB AC⋅ + = +()

 (vi) ()AB A B= +
 (vii) ()()A C A B AB AC BC+ + = + +

 (viii) A B AB AB AB+ = + +

 (ix) A B C DE A BCDE+ ⋅ + = +()

 (x) A BC A BC A BC+ + = +()

 6. Prove the following.

 (i) () ()X Y X Z X Z X Y YZ+ ⋅ + = ⋅ + ⋅ +
 (ii) ()()()()A D A C B C B D AB CD+ + + + = +

 (iii) ABC AB C BC AC ABC(())+ + =

 (iv) ABC BC AC C+ + =
 (v) AB ABC BC AC BC+ + = +

 (vi) AB A AB+ + = 0

 (vii) ()()A A AB ABC AB+ + =

 (viii) ABC A B C ABC()+ + =

 (ix) ()ABC AB BC AB+ + =
 (x) If XY XY Z+ = then XZ XZ Y+ =
 7. (i) Convert Q = ABCD + ABC into a sum of minterms by algebraic

method.
 (ii) Convert Q = ABC + BCD into a product of maxterms by

algebraic method.

 8. (i) To get into a physics program in University, Jagan needs to have
Physics and either algebra or calculus. Assign Boolean variables
to the conditions and write a Boolean expression for the program
requirements.

 (ii) Aman wants to go go-karting at Kart World. They have
conditions on who can drive their go-karts. You must be either
over sixteen or be over twelve years of age and have parental
permission. Using Boolean variables create an expression for
the karting requirements.

 9. Find the output Y in each of the following when (a) A = 1 and (b)
A = 0.

(i) A

1

Y

(ii) A

0

Y

(iii) A Y

(iv)
A Y

(v) A

1

Y

(vi) A

0

Y

(vii) A Y

(viii)
A Y

 10. Construct the truth tables for each of the following. Find the Boolean
expressions of output Y in each of the circuits. What conclusions can
be drawn?

(i) A

Y

B

(ii) A

Y

B

(iii) A

Y

B

58 Computer Fundamentals and Programming in C

(iv) A

Y

B

 11. Construct the truth table for the given circuits and derive the output
Boolean expressions for each.

(i) YA

(ii) YA

(iii)
Y

A

B

C

(iv)

Y

A

B

(v)

Y

A

C

B

(vi)
Y

A

B

C

(vii)

Y

A

B

C

(viii)

Y

A

B

C

D

(ix)

Y

A

B

C

D

(x)

Y

A

B

C

D

(xi) A

B

C

D

E

F

Y

(xii)

Y

A

B

 12. (a) Construct the circuits for the following Boolean expressions using
AND, OR, and NOT gates without simplifying the expressions.

 (i) Q= AB + AB
 (ii) Q = AA + AB + AC + BC
 (iii) Q = AC + ABC

 (iv) Q B B B A= (+)(+)

 (v) Q A A C C= (+) +
 (vi) Q A B C D= (+) (+)⋅

 (vii) Q A B C A B C A B C= (+)+ + + + ⋅ ⋅()

 (viii) Q A B C A B C= ⋅ ⋅ + +()

 (b) For each of these, create a circuit using AND, OR, and NOT gates
for the Boolean expression after simplification.

 13. For each of the questions, 12a (i) to (viii), create a circuit using NAND
or NOR gates for the Boolean expression after simplification.

 14. With respect to questions 4 and 5, explain why simplifying Boolean
expressions is useful when designing circuits.

Introduction to Software 59

4.1 INTRODUCTION
The basic concepts of software have already been introduced
in Chapter 1. As discussed earlier, there are different catego-
ries of software. Among them, system software controls the
activities of computer resources (such as input/output devic-
es, memory, processor), schedule the execution of multiple
tasks, whereas application software is designed and devel-
oped for a specific or generic type of use which is sold in the
market or for a user or an organization. The term ‘application’
refers to the specific usage such as creating documents, draw-
ing images, playing video games, etc., which is accomplished
by a computer system.
 Nowadays, software is typically composed of several files
among which at least one must be an executable file intended
to be executed by users or automatically launched by the
operating system. Apart from this main executable file, there

are program files to be used in conjunction with the main
executable file and additional data files and configuration
files. Consequently, the installation of software is not just
copying the files in the hard disk. It is typically dependent on
the operating system on which it would execute and whether
the software is a local, Web, or portable application. For local
application software, its files are placed in the appropriate
locations on the computer’s hard disk and may require
additional configurations with the underlying operating
system so that it can be run as and when required. Portable
software is basically designed to run from removable storage,
such as a CD or USB flash drive without installing its program
files or configuration data on the hard disk. Most interesting
fact is that no trace is found when the removable storage
media containing the portable software is removed from
the computer. On the other hand, web application software
is accessed through a Web browser and most of its program

C
h
A
p
T
e
rIntroduction to Software

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

4

∑ identify system programs and application programs
∑ discuss basic concepts of high- and low-level languages

∑ briefly discuss compiler, interpreter, linker, and loader
functions

∑ explain the software development steps

60 Computer Fundamentals and Programming in C

code runs on a remote computer connected to the Internet or
other computer network.

4.2 PROGRAMMING LANGUAGES
A programming language can be defined formally as an
artificial formalism in which algorithms can be expressed. It is
composed of a set of instructions in a language understandable
to the programmer and recognizable by a computer. Computer
languages have been continuing to grow and evolve since the
1940’s. Assembly language was the normal choice for writing
system software like operating systems, etc. But, C has
been used to develop system software since its emergence.
The UNIX operating system and its descendants are mostly
written in C. Application programs are designed for specific
computer applications. Most programming languages are
designed to be good for one category of applications but not
necessarily for the other. For an instance, COBOL is more
suitable for business applications whereas FOrTrAN is
more suitable for scientific applications.
 The development of programming languages has been
governed by a number of factors such as type and performance
of available hardware, applications of computers in different
fields, the development of new programming methodologies
and its implementation etc.

4.2.1 Generation of Programming Languages
Just as hardware is classified into generations based on tech-
nology, computer languages also have a generation classifi-
cation based on the level of interaction with the machine.

First generation language (1GL)—machine
language
The instructions in machine language are written in the
form of binary codes that can immediately be executed by
the processor. A machine language instruction generally has
three parts as shown in Fig. 4.1. The first part is the operation
code that conveys to the computer what function has to be
performed by the instruction. All computers have operation
codes for functions such as adding, subtracting and moving.
The second part “Mode” specifies the type of addressing
used by the instruction to obtain the operand referred by the
instruction. The third part of the instruction either specifies
that the operand contains data on which the operation has to be
performed or it specifies that the operand contains a location,
the contents of which have to be subjected to the operation.

p-bits r-bitsq-bits

n-bits

Operation code Mode Operand

n p q r= + +

Fig. 4.1 General format of machine language instruction

 Machine language is considered to be the first generation
language (1GL). As it is the native language of the computer,
CpU can directly start executing machine language
instructions. But the limitations of using machine language
in writing programs include the following.

Difficult to use and error prone It is difficult to understand
and develop a program using machine language. Because it is
hard to understand and remember the various combinations of
1’s and 0’s representing data and instructions. The programmer
has to remember machine characteristics while preparing a
program. Checking machine instructions to locate errors are
about as tedious as writing the instructions. For anybody
checking such a program, it would be difficult to forecast the
output when it is executed. Nevertheless, computer hardware
recognizes only this type of instruction code. Further,
modifying such a program is highly problematic.

Machine independent As the internal design of the
computer is different across types, which in turn is determined
by the actual design or construction of the ALU, CU, and
size of the word of the memory unit, the machine language
also varies from one type of computer to another. hence,
it is important to note that after becoming proficient in the
machine code of a particular computer, the programmer may
be required to learn a new machine code and would have to
write all the existing programs again in case the computer
system is changed.

Second generation language (2GL)—assembly
language
Assembly language is considered to be a second generation
language (2GL). In this language, an instruction is expressed
using mnemonic codes instead of binary codes. Normally an
assembly language statement consists of a label, an operation
code, and one or more operands. Labels are used to identify
and reference instructions in the program. The operation code
is a symbolic notation that specifies the particular operation to
be performed, such as MOV, ADD, SUB, or CMP etc. The operand
represents the register or the location in main memory where
the data to be processed is located. For example, a typical
statement in assembler to command the processor to move
the hexadecimal number 0x80 into processor register r2
might be:
 MOV R2, 080H

 The following is an example of an assembly language
program for adding two numbers A and B and storing the
result in some memory location.

 LDA, 2000h; Load register A with content of
memory address 2000h

 MOV B, 10h; Load register B with 10th.
 ADD A, B Add contents of A with contents of

B and store result in register A

Introduction to Software 61

 MOV (100), A Save the result in the main memory
location 100 from register A.

 HALT halt process

 An assembly language program cannot be executed by a
machine directly as it is not in a binary machine language
form. An assembler is a translator that produces machine
language code from an assembly language code. It produces
a single machine language instruction from a single assembly
language statement. Therefore, the coding to solve a problem
in assembly language has to be exercised at individual
instruction level. That’s why, along with machine language,
assembly language is also referred to as a low level language.
 Writing a program in assembly language is more convenient
than writing in machine language. Instead of binary sequence,
as in machine language, a program in assembly language is
written in the form of symbolic instructions. This gives the
assembly language program improved readability. It also
offers several disadvantages.
•	 The most eminent disadvantage of assembly language

is that it is machine dependent. Assembly language is
specific to the internal architecture of a particular model of
a processor and the programmer should know all about the
internal architecture of the processor. A program written
in assembly language for one processor will not work on a
different processor if it is architecturally different.

•	 Though mnemonic codes are easier to be remembered than
binary codes, programming with assembly language is still
difficult and time-consuming.

Third generation language (3GL)—high-level
language
high-level languages are called third generation languages
(3GLs). high-level programming languages were developed
to make programming easier and less error-prone. Languages
like C, C++, COBOL, FORTRAN, BASIC, PASCAL etc.,
have instructions that are similar to english language that
makes it easy for a programmer to write programs and
identify and correct errors in them. The program shown
below is written in BASIC to obtain the sum of two numbers.
 10 LET X = 7

 20 LET Y = 10

 30 SUM = X + Y

 40 PRINT SUM

 50 END

 Most third generation languages are procedural in nature.
That is, the programmer must specify the sequential logically
related steps to be followed by the computer in a program.
As computer only understands machine language, a program
written in a high level language must be translated into
the basic machine language instruction set before it can be

executed. This can be performed either by a compiler, or
by interpreter. One statement in a high-level programming
language will be translated into several machine language
instructions.
 Advantages of high-level programming languages are
many fold which are as follows.

Readability programs written in these languages are
more readable than those written in assembly and machine
languages.

Portability high-level programming languages can be run
on different machines with little or no change. It is, therefore,
possible to exchange software, leading to creation of program
libraries.

Easy debugging errors can be easily detected and removed.

Ease in the development of software Since the instructions
or statements of these programming languages are closer to
the english language, software can be developed with ease.
The time and cost of creating machine and assembly language
programs were quite high. This motivated the development
of high-level languages.

Fourth generation languages (4GL)
The Fourth Generation Language (4GL) is a non-procedural
language that allows the user to simply specify what is
wanted without describing the steps that the computer has to
follow to produce the result. This class of languages requires
significantly fewer instructions to accomplish a particular task
than does a third generation language. Thus, a programmer
should be able to write a program faster in 4GL than in a third
generation language.
 The main areas and purviews of 4GLs are: database
queries, report generators, data manipulation, analysis and
reporting, screen painters, etc. An example of a 4GL is the
query language that allows a user to request information from
a database with precisely worded english-like sentences.
A query language is used as a database user interface and
hides the specific details of the database from the user.
The following example shows a query in a common query
language, SQL.
SELECT address FROM EMP WHERE empname = ‘PRADIP DEY’

 With a report generator, the programmer specifies the
headings, detailed data, and other details to produce the
required report using data from a file. 4GLs offer several
advantages which include the following.
•	 Like third generation languages, fourth generation lan-

guages are mostly machine independent. They are primar-
ily used mainly for developing business applications.

•	 Most of the fourth generation languages can be easily
learnt and employed by end-users.

62 Computer Fundamentals and Programming in C

•	 All 4GLs are designed to reduce programming effort, the
time it takes to develop software, and the cost of software
development. Programming productivity is increased when
4GL is used in coding.

Fifth generation language (5GL)
Natural languages represent the next step in the development
of programming languages belonging to Fifth Generation
Language (5GL). Natural language is similar to query
language, with one difference: it eliminates the need for the
user or programmer to learn a specific vocabulary, grammar,
or syntax.
 Actually, 5GL is a programming language based around
solving problems using constraints given to the program,
rather than using an algorithm written by a programmer. Fifth
generation languages are used mainly in artificial intelligence
research. OPSS and Mercury are examples of fifth generation
languages.

note

 ∑ A low-level computer programming language is one
that is closer to the native language of the computer.
Machine and assembly languages are referred to as low-
level languages since the coding for a problem is at the
individual instruction level.

 ∑ Program written in languages other than machine lan-
guage is required to be translated into machine code.

4.2.2 Classification of Programming Languages
Programming languages can be classified in various ways.
According to the extent of translation that is required to gen-
erate the machine instructions from a program, programming
languages can be classified into low-level or high-level lan-

guages. Both assembly language and machine language are
considered as low-level languages. Low-level languages are
closer to the native language of the computer as program
written in machine language does not require translation for
a processor to execute them. Assembly language is also con-
sidered as a low-level language since each assembly language
instruction accomplishes only a single operation and the cod-
ing for a problem is at the individual instruction level. On
the other hand, high-level programming languages provide a
high level of abstraction from the actual machine hardware.
 high-level languages can further be characterized is by
programming paradigm (Fig. 4.2). A programming paradigm
refers to the way of problem solving that includes a set of
methodologies, theories, practices and standards. The high-
level programming languages may also be categorized into
three groups—procedural, non-procedural, and problem
oriented.

Procedural programming languages
In procedural programming, a program is conceived as
a set of logically related instructions to be executed in
order. In procedural programming, each program can be
divided into small self-contained program segment, each
of which performs a particular task and be re-used in the
program as and when required without repeated explicit
coding corresponding to the segment. These sections of
code are known as procedures or subroutines or functions.
It also makes it easier for programmers to understand and
maintain program structure. There are mainly three classes of
procedural programming languages.

Algorithmic Using this type of programming languages,
the programmer must specify the steps the computer has
to follow while executing a program. In these languages,
a complex problem is solved using top-down approach

Procedural Non-procedural Problem-
oriented

Machine
language

Assembly
language

Low-level languageHigh-level language

Programming language

Algorithmic
(

)
COBOL,

FORTRAN, C

Object
oriented
(

)
C++, JAVA,

SMALLTALK

Scripting
()VB, PERL

Functional
()LISP, ML

Logic based
()PROLOG

Numerical
()MATLAB

Symbolic
()MATHEMATICA

Publishing
()LATEX

Fig. 4.2  Programming language classification

Introduction to Software 63
of problem solving in which the problem is divided into
a collection of small problems and each small problem
is realized in terms of subprogram. each subprogram is
implemented using procedure or function. Languages like C,
COBOL, pASCAL and FOrTrAN fall into this category.

Object-oriented language The basic philosophy of ob-
ject-oriented programming is to deal with objects rather than
functions or subroutines as in strictly algorithmic languages.
Instead of procedures, object-oriented programming relies on
software objects as the units of modularity. Data and associ-
ated operations are unified grouping objects with common
properties, operations and semantics. The use of an object
oriented programming language, advocates the reuse of not
only code but also of entire design leading to creation of ap-
plication framework. A program thus becomes a collection
of cooperating objects, rather than a list of instructions. Ob-
jects are self-contained modules that contain data as well as
the functions needed to manipulate the data within the same
module. The most important object-oriented programming
features are

Abstraction Abstraction is a technique of focussing on the
essential and relevant details from a complex problem which
are of interest to the application. It helps to simplify the un-
derstanding and using of any system. With data abstraction,
data structures can be used without having to be concerned
about the exact details of implementation. Object-oriented
programming languages use classes and objects for repre-
senting abstractions. A class defines the specific structure of
a given abstraction. It has a unique name that conveys the
meaning of the abstraction. Class definition provides a soft-
ware design which describes the general properties of some-
thing that the software is modeling. Object is an instance of
class. An object’s properties are exactly those described by
its class.

Encapsulation and data hiding The process, or mecha-
nism, by which the data and functions or methods for ma-
nipulating data into a single unit, is commonly referred to as
encapsulation.

Inheritance Inheritance allows the extension and reuse of
existing code, without having to repeat or rewrite the code
from scratch. Inheritance involves the creation of new class-
es, also called derived classes, from existing classes (base
classes). Object oriented languages are usually accompanied
by a large and comprehensive library of classes. Members of
these classes can either be used directly or reused by employ-
ing inheritance in designing new classes.

Polymorphism The purpose of polymorphism is to let one
name be used to specify a general class of action. An op-
eration may exhibit different behaviors in different instances.

The behaviour depends upon the types of data used in the
operation. polymorphism is a term that describes a situation
where one name may refer to different methods. This means
that a general kind of operations may be accessed in the same
manner even though specific actions associated with each op-
eration may differ.

Reusable code Object oriented programming languages
enable programmer to make parts of program reusable and
extensible by breaking down a program into reusable objects.
These objects can then be grouped together in different ways
to form new programs. By reusing code it is much easier to
write new programs by assembling existing pieces.
 Using the above features, object-oriented programming
languages facilitate to produce reliable and reusable software
in reduced cost and time. C++, JAVA, SMALLTALK, etc. are
examples of object-oriented languages.

Scripting languages Few years back, the scripting languag-
es were not considered as the languages, but rather thought of
as auxiliary tool. A scripting language may be thought of as a
glue language, which sticks a variety of components written
in other languages together. These languages are usually in-
terpreted. One of the earliest scripting languages is the UNIX
shell. Now there are several scripting languages such as VB-
script, python, Tcl and perl etc. Javascript language also be-
longs to this category and defacto standard for the implemen-
tation of client-side Web application.

Non-procedural languages
These functional languages solve a problem by applying a
set of functions to the initial variables in specific ways to
get the result. A program written in a functional language
consists of a series of built-in function evaluation together
with arguments to those functions. LISP, ML, Scheme, etc.
are examples of functional languages.
 Another non-procedural class of languages is called rule
based languages or logic programming languages. A logic
program is expressed as a set of atomic sentences, known
as facts, and horn clauses, such as if-then rules. A query is
then posed. Then the execution of the program begins and
the system tries to find out if the answer to the query is true
or false for the given facts and rules. Such languages include
prOLOG.

Problem-oriented languages
These languages provide readymade procedures or functions
which are pre-programmed. The user has to write the
statements in terms of those pre-written functions. MATLAB
is a very popular language among scientists and engineers to
solve a wide class of problems in digital signal processing,
control systems, modelling of systems described by
differential equations, matrix computations, etc.

64 Computer Fundamentals and Programming in C

This process is known as parsing. Syntax is similar to the
grammar of a language. Syntax rules specify the way in which
valid syntactic elements are combined to form the statements
of the language. Syntax rules are often described using a
notation known as BNF (Backus Naur Form) grammar.

Source
program

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Intermediate
code

generation

Code
generation

Object
program

Library code
object code
from other

compilations

Executable
program Linker

Fig. 4.3 The process of compilation

 As a result of parsing, a data structure, known as parse
tree, is produced.

Semantic analysis The semantics of a statement in a
programming language define what will happen when that
statement is executed. Semantic rules assign meanings to
valid statements of the language. In the semantic analysis
phase, the parsed statements are analysed further to make
sure that the operators and operands do not violate source
language specification.

Intermediate code generation and optimization To
make the target program a bit smaller or faster or both,
many compilers produce an intermediate form of code
for optimization. In most cases, the intermediate code is
generated in assembly language or in a different language at
a level between assembly language and machine language.

Code generation This is the final phase of a standard
compilation which converts every statement of the optimized
intermediate code into target code using predefined target
language template. The target language template depends on
the machine instructions of the processor, addressing modes
and number of registers, etc.

 If a system library containing pre-written subroutines
or functions and/or separately compiled user-defined
subroutines are used in a program a final linking and loading
step is needed to produce the complete machine language
program in an executable form.

 Another class of problem oriented languages is for
symbolic language manipulation. For example, simplifying
a complex algebraic expression or getting the indefinite
integral of a complex expression. MATHEMATICA is a
popular language of this type.
 In the Internet era, a new category of languages has
emerged, the markup languages. Mark-up languages are
not programming languages. For instance, HTML, the
most widely used mark-up language, is used to specify the
layout of information in Web documents. however, some
programming capability has crept into some extensions to
HTML and XML. Among these are the Java Server Pages,
Standard Tag Library (JSTL), and eXtensible Stylesheet
Language Transformations (XSLT).

4.3 COMPILING, LINKING, AND LOADING
A PROGRAM

A program, written in source language, is translated by the
compiler to produce a program in a target language. The
source language is usually a high-level language. The target
language may or not necessarily be machine language. In most
cases, the target language is assembly language, and in which
case, the target program must be translated by an assembler
into an object program. Then the object program is linked with
other object programs to build an executable program, which
is normally saved in a specified location of the secondary
memory. When it is needed to be executed, the executable
file is loaded into main memory before its execution. The
whole process is managed, coordinated and controlled by the
underlying operating system. Sometimes the target language
may be a language other than machine or assembly language,
in which case a translator for that language must be used to
obtain an executable object program.
 Conceptually, the compilation process can be divided into
a number of phases, each of which is handled by different
modules of a compiler, as shown in Fig. 4.3.

Lexical analysis In this phase, the source program is
scanned for lexical units (known as tokens) namely, identifier,
operator delimiter, etc. and classify them according to their
types. A table, called symbol table, is constructed to record
the type and attributes information of each user-defined name
used in the program. This table is accessed in the other phases
of compilation.

Syntax analysis In this phase, tokens are conflated into
syntactic units such as expressions, statements, etc. that must
conform to the syntax rules of the programming language.

Introduction to Software 65

4.4.2 Linker
Most of the high-level languages provide libraries of
subroutines or functions so that certain common operations
may be reused by system-supplied routines without explicit
coding. hence, the machine language program produced by
the translator must normally be combined with other machine
language programs residing within the library to form a
useful execution unit. This process of program combination
is called linking and the software that performs this operation
is variously known as a linker. The features of a programming
language influence the linking requirements of a program. In
languages like FOrTrAN, COBOL, C, all program units
are translated separately. hence, all subprogram calls and
common variable references require linking. Linking makes
the addresses of programs known to each other so that transfer
of control from one subprogram to another or a main program
takes place during execution.

4.4.3 Loader
Loading is the process of bringing a program from secondary
memory into main memory so it can run. The system soft-
ware responsible for it is known as loader. The simplest type
of loader is absolute loader which places the program into
memory at the location prescribed by the assembler. Boot-
strap loader is an absolute loader which is executed when
computer is switched on or restarted to load the operating
system.
 In most of the cases, when a compiler translates a source
code program into object code, it has no idea where the code
will be placed in main memory at the time of its execution.
In fact, each time it is executed, it would likely be assigned
a different area of main memory depending on the avail-
ability of primary storage area at the time of loading. That
is why, compilers create a special type of object code which
can be loaded into any location of the main memory. When
the program is loaded into memory to run, all the addresses
and references are adjusted to reflect the actual location of
the program in memory. This address adjustment is known
as relocation. relocation is performed before or during the
loading of the program into main memory.
 In modern languages, a prewritten subroutine is not loaded
until it is called. All subroutines are kept on disk in a relocat-
able load format. The main program is loaded into memory
and is executed. When a routine needs to call another routine,
the calling routine first checks whether the other routine has
been loaded. If not, the linking loader is called to load the
desired routine into memory and to update the program’s ad-
dress tables to reflect this change. Then, control is passed to
the newly loaded routine.

note
Conceptually, the compilation process can be divided into a

number of phases
 ∑  In  the  first  phase  of  compilation,  termed  as  lexical

analysis, each statement of a program is analyzed and
broken into individual lexical units termed tokens and
constructs a symbol table for each identifier.

 ∑ The second stage of translation is called syntax analysis;
tokens are combined into syntactic units according to the
syntax or grammar of the source language.

 ∑ In the third stage of compilation, the parsed statements
are analysed further to make sure that the operators and
operands do not violate source language specifications.

 ∑  Next, an intermediate representation of the final machine 
language code is produced. Optionally, the intermediate
code is optimized to produce an optimized code.

 ∑ The last phase of translation is code generation whereby
the optimized intermediate code is converted into target
code.

4.4 TRANSLATOR, LOADER, AND LINKER
REVISITED

4.4.1 Translators
There are three types of translators, namely Assembler,
Compiler and Interpreter. Assembler converts one assembly
language statement into a single machine language instruction.
. Depending on its implementation, a high-level language
employs a compiler or an interpreter or both for translation.
One statement in a high-level programming language will
be translated into several machine language instructions.
Both compiler and interpreter translate a program written in
high-level language into machine language but in different
fashion. Compiler translates the entire source program into
object program at once and then the object files are linked
to produce a single executable file. Unlike compiler, an
interpreter translates one line of source code at a time—then
executes it—before translating the next one and it does this
every time the program executes. BASIC is a language that is
usually implemented with an interpreter. Translation using an
interpreter is slower than that using a compiler. The interpreter
translates each line of source code to machine code each
time the program is executed. With respect to debugging, an
interpreted language is better than the compiled language. In
an interpreter, syntax error is brought to the attention of the
programmer immediately so that the programmer can make
necessary corrections during program development. The Java
language uses both a compiler and an interpreter.

66 Computer Fundamentals and Programming in C

note

 ∑  A high-level source program must be translated first into 
a form the machine can execute. This is done by the
system software called the translator.

 ∑ The machine language program produced by the transla-
tor must normally be combined with other machine lan-
guage programs residing within the library to form a useful
execution unit. Linking resolves the symbolic references
between object programs. It makes object programs
known to each other. The system software responsible
for this function is known as linker.

 ∑ Relocation is the process of assigning addresses to the
various parts of the program, adjusting the code and data
in the program to reflect the assigned addresses.

 ∑ A loader is a system software that places executable pro-
gram’s instructions and data from secondary memory into
primary memory and prepares them for execution and ini-
tiates the execution

4.5 DEVELOPING A PROGRAM
We first discuss the step-by-step listing of the procedure
involved in creating a computer program. here we explain the
seven important steps towards creating effective programs:
definition, design, coding, testing, documentation, imple-
mentation, and maintenance.
 1. The first step in developing a program is to define

the problem. This definition must include the needed
output, the available input, and a brief definition of how
one can transform the available input into the needed
output.

 2. The second step is to design the problem solution.
This detailed definition is an algorithm, a step-by-step
procedure for solving a problem.

 3. The third step in developing a program is to code
the program; that is, state the program’s steps in the
language being used. The instructions must follow the
language’s syntax, or rules, just as good English must
follow the rules of grammar in english.

 4. The fourth step is to test the program to make sure
that it will run correctly, no matter what happens. If the
algorithm is wrong or the program does not match the
algorithm, the errors are considered logic errors. errors
in a program are called bugs; the process of finding
the bugs and correcting them is called debugging the
program. To test or debug a program, one must create a
sample-input data that represents every possible way to
enter input.

 5. The fifth step in developing a program is to complete the
documentation of the program. Documentation should
include: user instructions, an explanation of the logic of
the program, and information about the input and output.

Documentation is developed throughout the program
development process. Documentation is extremely
important, yet it is the area in program development that
is most often overlooked or downplayed.

 6. The last step in developing a program is implementation.
Once the program is complete, it needs to be installed on
a computer and made to work properly. If the program
is developed for a specific company, the programming
team may be involved in implementation. If the program
is designed to be sold commercially, the documentation
will have to include directions for the user to install the
program and begin working with it.

 7. Even after completion, a program requires attention.
It needs to be maintained and evaluated for possible
changes.

4.6 SOFTWARE DEVELOPMENT
Programming is an individual’s effort and requires no for-
mal systematic approach. Software development is more than
programming. A large number of people are involved in soft-
ware development and it emphasizes on planned aspect of
development process. programming is one of the activities
in software development. Other activities include require-
ment analysis, design, testing, deployment, maintenance etc.
A software is built according to client’s requirements. It is
driven by cost, schedule and quality. That is, software should
be developed at reasonable cost, handed over in reasonable
time. Below the most basic steps in software development
are explored.

4.6.1 Steps in Software development:
The entire process of software development and
implementation involves a series of steps. each successive
step is dependent on the outcome of the previous step.
Thus, team of software designers, developers and users are
required to interact with each other at each stage of software
development so as to ensure that the end product is as per the
client’s requirements.
 Software development steps are described below.

Feasibility study
The feasibility of developing the software in terms of
resources and cost is ascertained. In order to determine the
feasibility of software developments, the existing system of
the user is analysed properly. The analysis done in this step is
documented in a standard document called feasibility report,
which contains the observations and recommendations related
to the task of software development. Activities involved in
this step include the following.

Determining development alternatives This activity in-
volves searching for the different alternatives that are avail-
able for the development of software.

Introduction to Software 67
Analysing economic feasibility This activity involves de-
termining whether the development of new software will be
financially beneficial or not. This type of feasibility analysis
is performed to determine the overall profit that can be earned
from the development and implementation of the software.
This feasibility analysis activity involves evaluating all the
alternatives available for development and selecting the one
which is most economical.

Accessing technical feasibility It involves analysing vari-
ous factors such as the performance of the technologies,
ease of installation, ease of expansion or reduction in size,
interoperability with other technologies, etc. The technical
feasibility involves the study of the nature of technology as
to how easily it can be learnt and the level of training required
to understand the technology. This type of feasibility assess-
ment greatly helps in selecting the appropriate technologies
to be used for developing the software. The selection should
be made after evaluating the requirement specification of the
software.

Analysing operational feasibility It involves studying the
software on operational and maintenance fronts. The opera-
tional feasibility of any software is done on the basis of sev-
eral factors such as the following.
 (a) Type of tools needed for operating the software
 (b) Skill set required for operating the software
 (c) Documentation and other support required for operating

the software

Requirement analysis
In this step, the requirements related to the software, which is
to be developed, are understood. Analysing the requirements
analysis is an important step in the process of developing
software. If the requirements of the user are not properly
understood, then the software is bound to fall short of end
user’s expectations. Thus, requirements analysis is always
the first step towards development of software.
 The users may not be able to provide the complete set
of requirements pertaining to the desired software during
the requirement analysis stage. There should be continuous
interaction between the software development team and the
end users. The software development team also needs to take
into account the fact that the requirement of the users may
keep changing during the development process. Thus proper
analysis of user requirements is quite essential for developing
the software within a given time frame.
 The customer requirements identified during the
requirements gathering and analysis activity are organized
into a System Requirements Specification Document. The
important components of this document are functional
requirements, the nonfunctional requirements, and the goals
of implementation.

Design
After the feasibility analysis stage, the next step is creating
the architecture and design of the new software. It involves
developing a logical model or basic structure of the new
software. Design of the software is divided into two stages –
system design and detailed software design.
 System design partitions the requirements to hardware or
software systems. It establishes overall system architecture.
The architecture of a software system refers to an abstract
representation of that system. Architecture is concerned with
making sure the software system meets the requirements of
the product, as well as ensuring that future requirements can
be addressed. The architecture step also addresses interfaces
between the software system and other software products, as
well as the underlying hardware or the host operating system.
Detailed design represents the software system functions in
a form that can be transformed into one or more executable
programs. Specification is the task of precisely describing the
software to be written, possibly in a rigorous way.

Implementation
In this step, the code for the different modules of the new
software is developed. The code for the different modules
is developed according to the design specifications of each
module. The programmers in the software development team
use development tools for this purpose. An important, and
often overlooked, task is documenting the internal design
of software for the purpose of future maintenance and
enhancement.

Testing
It is basically performed to detect the prevalence of any
errors in the new software and rectify those errors. One of
the reasons for the occurrence of errors or defects in the
new software is that the requirements of the client were not
properly understood. Another reason for the occurrence of
errors is the common mistakes committed by a programmer
while developing the code. The two important activities that
are performed during testing are verification and validation.
Verification is the process of checking the software based on
some predefined specifications, while validation involves
testing the product to ascertain whether it meets the user
requirements. During validation, the tester inputs different
values to ascertain whether the software is generating the
right output as per the original requirements.

Deployment
The newly developed and fully tested software is installed
in its target environment. Software documentation is handed
over to the users and some initial data are entered in the
software to make it operational. The users are also given
training on the software interface and its other functions.

68 Computer Fundamentals and Programming in C

Maintenance
In this phase, developed software is made operational. Users
will have lots of questions and software problems which lead to
the next phase of software development. Once the software has
been deployed successfully, a continuous support is provided

to it for ensuring its full time availability. The software may
be required to be modified if the environment undergoes a
change. Maintaining and enhancing software to cope with
newly discovered problems or new requirements can take far
more time than the initial development of the software.

SUMMARy
A programming language is an artificial formalism for expressing the
instructions to be executed in a specified sequence. Programming
languages can be classified into low-level and high level languages. Low-
level programming languages include machine language and assembly
language. In fact, assembly languages were so revolutionary that they
became known as second-generation languages, the first generation being
the machine languages themselves. Assembly languages are symbolic
programming languages that use symbolic notation to represent machine-
language instructions.

Most third generation languages are procedural languages. Compilers
convert the program instructions from human understandable form to the
machine understandable form. Interpreters also convert the source program
to machine language instruction but execute each line as it is entered. The
translation of the source program takes place for every run and is slower
than the compiled code. The system software controls the activities of a
computer, application programs, flow of data in and out of memory and disk
storage. Compilation of a source code into target code follows successive

stages. In lexical analysis phase, lexical units or tokens are produced
from the statements. Also symbol table is constructed to record the type
and attributes information of each user-defined name in the program.
Next, syntax analysis takes place. In this phase, tokens are grouped into
syntactic units such as expressions, and statements. that must conform to
the grammatical rules of the source language to form a data structure called
parse tree. In semantic analysis, the parse trees are analysed further to
make sure that the operators and operands do not violate source language
type specification. Then, to produce a more efficient target program, the
intermediate code is generated which is then optimized. In the last phase,
object code in target language is produced. Linking resolves symbolic
references between object programs. A loader is a system program that
accepts object programs and prepares them for execution and initiates the
execution. Programming is an individual’s effort and requires no formal
systematic approach. Software development is more than programming. It
involves a series of steps–feasibility study, requirement analysis, design,
coding, testing, deployment and maintenance.

KEy TERMS
Loader It is a system program that accepts object programs and
prepares these programs for execution by the computer and initialize the
execution.

Linker It takes one or more object files or libraries as input and combines
them to produce a single (usually executable) file.

Compiler It is a system software that translates the entire source
program into machine language.

Interpreter An interpreter is a system software that translates the source
program into machine language line by line.

Syntax It refers to the rules governing the computer operating system,
the language, and the application.

Assembler It is a program that translates an assembly language
program into machine code.

Bug It is a programming error.

Debugging It is the process of eliminating errors from a program.

Semantic It is the meaning of those expressions, statements, and
program units.

FREqUENTLy ASKED qUESTIONS

1. Distinguish between 3GL and 4GL.

3GL 4GL

Meant for use by professional
programmers.

May be used by non-professional
programmers as well as by
professional programmers.

Requires specifications of how to
perform a task.

Requires specifications of what task
to perform. System determines how to
perform the task.

Requires large number of procedural
instructions.

Requires fewer instructions.

Code may be difficult to read,
understand, and maintain by the user.

Code is easy to understand and
maintain.

Typically, file oriented. Typically, database oriented.

2. What are the functions of a loader?

The functions of a loader are as follows:

∑	 Assignment of load-time storage area to the program
∑ Loading of program into assigned area
∑ Relocation of program to execute properly from its load time storage

area
∑ Linking of programs with one another

3. What is a debugger?

The debugger is a program that lets the programmer to trace the flow of
execution or examine the value of variables at various execution points in
the program. For example, GDB, the GNU debugger, is used with GNU

www.ebook3000.com

http://www.ebook3000.org

Introduction to Software 69

ExERCISES

 1. What do you mean by a program?

 2. Distinguish between system software and application software.

 3. State the advantages and disadvantages of machine language and
assembly language.

 4. Compare and contrast assembly language and high-level language.

 5. Differentiate between 3GL and 4GL.

 6. What is a translator?

 7. What are the differences between a compiler and an interpreter?

 8. Briefly explain the compilation and execution of a program written in a
high-level language.

 9. Briefly explain linker and loader. Is there any difference between
them?

 10. Explain linking loader and linkage editor.

 11. Classify the programming languages.

 12. What is a functional language?

 13. What is object-oriented language? Name five object-oriented
programming languages.

 14. What is the difference between linking loader and linkage editor?

 15. What is relocation?

C Compiler. Debugger is always integrated in most of the Integrated
Development Environment.

4. What does syntax and semantics of a programming language
mean?

The syntax of a programming language is the form of its expressions,
statements, and program units. Its semantics is the meaning of those
expressions, statements, and program units.

5. What is a symbol table? What is its function?

The symbol table serves as a database for the compilation process. It
records the type and attributes information of each user-defined name in
the program. This table is used in sytax analysis, semantic analysis as well
as in code generation phases of compilation.

6. Distinguish between a compiler and an interpreter.

Compiler Interpreter

Scans the entire program before
translating it into machine code.

Translates and executes the program
line by line.

Converts the entire program to
machine code and only when all
the syntax errors are removed does
execution take place.

Each time the program is executed,
every line is checked for syntax error
and then converted to the equivalent
machine code.

Not much helpful in debugging. Very helpful in debugging.

Compilation process is faster. Interpretation process is slower.

Gives a list of all errors in the program. Stops at the first error.

70 Computer Fundamentals and Programming in C

c
h
a
p
t
e
r

Basic Concepts of
Operating Systems

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

5

∑ explain the basic role of an operating system in
modern-day computers

∑ explain the general functions and components of
an operating system

∑ discuss the interfacing between the operating
system and application program or the user

∑ trace the history of the development of operating systems
∑ explain the different types of operating systems
∑ get an overview on some operating systems such as unix and

msdos

5.1 IntroductIon
Without software, a computer is basically a useless
equipment. With software, a computer can store, process,
and retrieve information and engage in many other valuable
activities. computer software can be divided roughly into
two parts: system programs, which manage the operation of
the computer itself, and application programs, which perform
the actual work the user wants. the most important system
program is the operating system (OS) that controls all the
computer resources and provides the base upon which the
application program can be written.
 a modern computer system consists of one or more
processors, main memory, disk drives, printers, keyboard,

network interfaces, and other input/output devices. It is a
complex system. Writing programs correctly is an extremely
difficult job. If every programmer had to be concerned with
how the disk drives work, and with all things that could go
wrong when reading a disk, it is unlikely that many programs
would be written at all.
 Some way had to be found to shield programmers from
the complexity of the hardware. the way that has evolved
gradually is to put a layer of software on top of bare hardware
to manage all the parts of the system. this layer of software
is the operating system.
 this is shown in Fig. 5.1. at the bottom lies the hardware. It
is composed of two or more layers. the lowest layer contains
physical devices consisting of integrated circuit chips, wires,

Basic Concepts of Operating Systems 71
power supplies, cathode ray tube (crt) on LcD screen and
similar physical devices.

Banking
system

Airline
reservation

Application
programs

Compilers Editors
Command
interpreter

Operating system

Machine language

Micro-programming

Physical devices

System
software

Hardware

Web
browser

Fig. 5.1 The software–hardware layers in a computer

 Next comes primitive software that directly controls these
devices. this software is called a micro-program and is usually
located in a read only memory. the set of instructions that
the micro-program interprets defines the machine language.
In this layer, input/output devices are controlled by loading
values into special device registers. the layer above is the
operating system. One of the major functions of the operating
system is to hide all this complexity and give the programmer
a more convenient set of instructions to work with. above the
operating system is the rest of the system software consisting
of command interpreter (shell), window system, compilers,
editors, and similar application independent programs.
 Finally, above the system programs come the application
programs. these programs are purchased or written by users
to solve their particular problems or for specific purposes,
for example, word processing, spreadsheets, engineering
calculations, games, etc.

5.2 IntroductIon to operatIng SyStem
an operating system is a collection of programs that acts as
an interface between the user of a computer and the computer
hardware. In fact, it provides an environment in which a user
may execute programs.
 an operating system is an important part of almost every
computer system that comprises three main components:
∑ the hardware (memory, cpU, arithmetic-logic unit,

various storage devices, I/O, peripheral devices, etc.)
∑ Systems programs (operating system, compilers, editors,

loaders, utilities, etc.)
∑ application programs (database systems, business

programs, etc.)
 the basic resources of a computer system are provided by
its hardware, software, and data. the hardware provides the
basic computing resources while the application programs
define the way resources are used to solve the computing

problems with the data. the operating system controls and
coordinates the use of all the hardware among the various
system programs and application programs for the various
users. It, thus, provides an environment within which other
programs can do useful work.
 an operating system can be viewed as a resource allocator.
a computer system has many resources (hardware and
software) that may be required to solve a problem: cpU time,
memory space, files storage space, input/output devices, etc.
 Viewing the operating system as a resource manager, each
manager must do the following:
∑ Keep track of the resources
∑ enforce policy that determines who gets what, when, and

how much
∑ allocate the resources
∑ reclaim the resources

 as the manager of these resources, the operating system
allocates them to specific programs and users as necessary
for their tasks. Since there may be many, possibly conflicting
requests for resources, the operating system must decide
which requests are allocated resources to operate the
computer system fairly and efficiently.
 an operating system is also a control program. It controls
the execution of user programs to prevent errors and
improper use of the computer. Therefore, it may be defined as
follows: an operating system (OS) refers to the software on a
computer that lets it run applications, control peripherals, and
communicate with other computers.

note

 ∑ Without software, a modern-day computer is unusable.
Software comprising operating system, programming
language compilers, etc. are essential to provide an
‘user-friendly’ interface to the user.

 ∑ An operating system is a software that runs applications,
manages all resources like memory and peripherals and
communicates with other computers.

5.3 FunctIonS oF an operatIng SyStem
an operating system has the following functions.

Process management the cpU executes a large number
of programs. a process is a program in execution. In general,
a process will need certain resources such as cpU time,
memory, files, and I/O devices to accomplish its task. These
resources are given to the process when it is created. It must
be noted that a program by itself is not a process; a program
is a passive entity, while a process is an active entity. two
processes may be associated with the same program; they are
nevertheless considered two separate execution sequences.

72 Computer Fundamentals and Programming in C

 therefore, a process is the unit of work in a system. Such
a system consists of a collection of processes, some of which
are operating system processes that execute system code,
with the rest being user processes that execute user code. all
these processes can potentially execute concurrently.
 the operating system is responsible for the following
activities with respect to process management:
∑ the creation and deletion of user and system processes
∑ the suspension and resumption of processes
∑ Keep track of the resources (processors and the status of

processes). allocate the resources to a process by setting
up the necessary hardware

∑ reclaim the resources when the process relinquishes
processor usage, terminates, or exceeds the allowed
amount of usage

∑ the provision of mechanisms for process synchroniza-
tion—decide which process gets the processor, when, and
for how much time

∑ the provision of mechanisms for deadlock handling

Memory management
Primary memory management Memory is central to the
operation of a modern computer system. Memory is a large
array of words or bytes, each with its own address. Interaction
is achieved through a sequence of reads or writes of specific
memory address. the cpU fetches data from and stores it in
memory.
 In order that a program be executed, it must be loaded
into memory. as the program executes, it accesses program
instructions and data from memory by accessing memory
locations.
 In order to improve both the utilization of cpU and the
speed of the computer’s response to its users, several processes
must be kept in the memory. there are many algorithms for
allocation of memory space to different processes active
concurrently and the choice of any particular algorithm
depends on the particular situation. Selection of a memory
management scheme for a specific system depends upon
many factors, especially upon the hardware design of the
system. each algorithm requires its own hardware support.
 the operating system is responsible for the following
activities for fulfilling memory management functions.
∑ Keep track of the different parts of memory currently being

used by various processes
∑ Decide which processes are to be loaded into memory

when memory space becomes available
∑ allocate and de-allocate memory space as needed
Secondary memory management the main purpose of
a computer system is to execute programs. these programs,
together with the data they access, must be in the main
memory during execution. Since the main memory is too

small to permanently accommodate all data and programs,
the computer system must provide a secondary storage that
is capable of providing large storage space to back up the
main memory. Most modern computer systems use disks as
the primary device for online storage of information, both
programs and data. Most programs, such as compilers,
assemblers, sort routines, and editors are stored on the disk
and a copy of any of these is loaded into memory. the disk is
thus used as both a source and destination while processing.
hence, the proper management of disk storage is of prime
importance to a computer system.
 there are few alternatives. Magnetic tape systems are
generally too slow. In addition, they are limited to sequential
access. thus tapes are more suited for storing infrequently
used files, where speed is not a primary concern.
 the operating system is responsible for the following
activities for accomplishing the disk management functions:
∑ Free space management
∑ Storage allocation
∑ Disk scheduling

Device (I/O) management
One of the purposes of an operating system is to hide the
peculiarities of specific hardware devices from the user. For
example, in UNIX, the peculiarities of I/O devices are hidden
from the user by the I/O system. the I/O system consists of:
∑ a buffer memory system
∑ a general device driver program
∑ drivers for specific hardware devices
 Only the device driver program can handle the peculiarities
of a specific device.

File management
File management is one of the most visible services of an
operating system. For convenient use of the computer
system, the operating system provides a uniform logical view
of information storage. the operating system extracts the
physical properties of its storage devices to define a logical
storage unit, the file. Files are mapped by the operating
system onto physical devices.
 A file is a collection of related information defined by its
creator. Commonly, files contain programs (both source and
object forms) and data. Data can be numeric, alphabetic, or
alphanumeric. Files may be of free form, such as text files, or
may be rigidly formatted. In general, a file is a sequence of
bits, bytes, lines, or records whose meaning is defined by its
creator and user.
 the operating system implements the abstract concept of
the file by managing mass storage device, such as tapes and
disks. Also, files are normally organized into directories for
easy use. Finally, when multiple users have access to files,

Basic Concepts of Operating Systems 73
it may be desirable to control the permission to users for
accessing, creating, and amending the files.
 the operating system is responsible for the following
activities for accomplishing the file management functions:

∑ Creation and deletion of files
∑ creation and deletion of directory
∑ Support of primitives for manipulating files and directories
∑ Mapping of files onto disk storage
∑ Backup of files on stable (non-volatile) storage

Protection
protection refers to a mechanism for controlling the access
of programs, processes, or users to the resources defined by a
computer and the controls to be imposed, together with some
means of enforcement. For example, the various processes
in an operating system must be protected from each other’s
activities. the memory address management system ensures
that a process can only execute within its own address space.
the control mechanism ensures that no process can gain
control of the cpU without the latter being relinquished by
another process. Finally, no process is allowed to directly
communicate with any I/O, to protect the integrity of the data
from or to various peripheral devices.
 protection can improve reliability by detecting latent
errors at the interfaces between component subsystems. early
detection of interface errors can often prevent contamination
of a healthy subsystem by one that is malfunctioning. an
unprotected resource cannot defend itself against use or
misuse by an unauthorized or incompetent user.

5.4 componentS oF an operatIng
SyStem

In general there are two main components of an operating
system: command interpreter and kernel.

Command interpreter
command interpreter is one of the most important components
of an operating system. It is the primary interface between
the user and the rest of the system.
 Many commands are given to the operating system by
control statements. a program that reads and interprets
control statements is automatically executed. this program
is variously called (a) the control card interpreter, (b) the
command line interpreter, (c) the shell (in UNIX), and so on.
Its function is quite simple: it gets the command statement
and executes it.
 the command statements deal with process management,
I/O handling, secondary storage management, main memory
management, file system access, protection, and networking.

Kernel
Kernel is a core part of the operating system and is loaded
on the main memory when it starts up. It is the core library
of functions; the operating system ‘knows’. In the kernel,
there are the functions and streams to communicate with the
system’s hardware resources.
 the kernel provides the most basic interface between the
machine and the rest of the operating system. the kernel is
responsible for the management of the central processor. It
includes the dispatcher that allocates the central processor to
a process, determines the cause of an interrupt and initiates
its processing, and makes some provision for communication
among the various systems and user tasks currently active in
the system.
 the main functions of the kernel are as follows:
∑ to provide a mechanism for the creation and deletion of

processes
∑ to provide cpU scheduling, memory management, and

device management for these processes
∑ to provide synchronization tools so that the processes can

synchronize their actions
∑ to provide communication tools so that processes can

communicate with each other

Command interpreter

Hardware

Kernel

Fig. 5.2 Operating system structure

 the kernel-based design is often used for designing the
operating system. the kernel, more appropriately called the
nucleus, is a collection of primitive facilities over which
the rest of the operating system is built and the latter uses
the functions provided by the kernel (see Fig. 5.2). thus, a
kernel provides an environment to build an operating system
in which the designer has considerable flexibility because
policy and optimization decisions are not made at the kernel
level. an operating system is an orderly growth of software
over the kernel, where all decisions regarding process
scheduling, resource allocation, execution environment, file
system, resource protection, etc. are made.
 consequently, a kernel is a fundamental set of primitives
that allows the dynamic creation and control of process as
well as communication among them. thus, the kernel only

74 Computer Fundamentals and Programming in C

supports the notion of processes and does not include the
concept of a resource. however, as operating systems have
matured in functionality and complexity, more functionality
has been related to the kernel. a kernel should contain a
minimal set of functions that is adequate to build an operating
system with a given set of objectives.
 there are two different methodologies for designing a
kernel: monolithic kernels and microkernels.
 the monolithic kernel is the design that is used in operating
systems such as Windows and Linux. In this case, the kernel
is a set of tightly integrated packages that understand and
handle the complete hardware of the machine.
 an error in the monolithic kernel will bring the whole
system crashing down. Since the integration level among
the components of the kernel is very high, it is potentially
difficult to distinguish and manage smaller parts separately.
 a microkernel, on the other hand, takes a different approach.
Microkernels usually provide only minimal services such as
defining memory address spaces, interprocess communication
methods and process, and thread management. all other
features, such as hardware management or I/O locking and
sharing, are implemented as processes running independently
of the microkernel.
 a microkernel does not suffer from the same ailments
as monolithic kernels. If a certain subprocess of the kernel
crashes, it is still possible to save the whole system from a
crash by restarting the service which caused the error.
 It was claimed that microkernels would revolutionize the
way operating systems are designed. But no such thing has
happened. Apparently, the improvements were not significant
enough to force the majority of operating systems to use this
approach. there are only a few operating systems today that
use the microkernel approach, for instance, Mach microkernel
(used in OS X), BeOS, and aIX.

5.5 InteractIon wIth operatIng SyStem
Broadly speaking, there are two ways to interact with an
operating system:
∑ By means of operating system calls in a program
∑ Directly by means of operating system commands

System calls
System calls provide the interface between a running program
and the operating system. these calls are generally available
as assembly language instructions, and are usually listed in
the manuals used by assembly language programmers. Some
systems may allow system calls to be made directly from a
high-level language program, in which case the calls nor-
mally resemble predefined function or subroutine calls. They
may generate a call to a special run-time routine that makes

the system call, or the system call may be generated directly
in-line. the c language allows system calls to be made di-
rectly. Some pascal systems also provide an ability to make
system calls directly from a pascal program to the operating
system. System calls can be roughly grouped into five major
categories: process control, file manipulation, device manip-
ulation, information maintenance, and communications.
 a user program makes good use of the operating system.
all interactions between the program and its environment
must occur as the result of requests from the program to the
operating system.

Operating system commands
apart from system calls, users may interact with the operating
system directly by means of commands. For example, if
the user wants to list files or sub-directories in MsDOs, the
DIR command is invoked. In either case, the operating
system acts as an interface between users and the hardware
of a computer system. the fundamental goal of a computer
system is to solve user problems. the computer hardware is
designed towards this goal. Since the bare hardware alone
is not very easy to use, programs (software) are developed.
these programs require certain common operations, such
as controlling peripheral devices. the command function of
controlling and allocating resources are then brought together
into one piece of software, the operating system.

note

 ∑ The operating system primarily manages processes,
memory, input/output devices, and files and ensures
proper control on all the resources to keep them from
interfering with each other.

 ∑ The command interpreter and the kernel are the two
main components of the operating system.

	 ∑	 The system calls and the operating system commands
are the two ways of interacting with the operating system.

5.6 hIStory oF operatIng SyStemS
to understand what operating systems are and what they do,
consider how they have developed over the last 30 years. By
tracing that evolution, the common elements of operating
systems can be identified as well as how and why they
developed as they are now.
 Operating systems and computer architecture have a great
deal of influence on each other. Operating systems were
developed to facilitate the use of the hardware. as operating
systems were designed and used, it became obvious that
changes in the design of the hardware could simplify it. this
short historical review discusses how the introduction of

Basic Concepts of Operating Systems 75
new hardware features becomes the natural solution to many
operating system problems.
 as the history of computer operating systems run parallel
to that of computer hardware, it can be generally divided
into five distinct time periods, called generations, that are
characterized by hardware component technology, software
development, and mode of delivery of computer services.
 the digital computer was designed by the english
mathematician charles Babbage (1792–1871). It was purely
a mechanical design. after Babbage’s efforts, little progress
was made in constructing digital computers. First generation
computers with vacuum tubes and plug boards evolved
between 1945 and 1955. During this period, an individual
group of people designed, built, programmed, operated,
and maintained each machine. programming was done in
machine language.

5.6.1 First generation (1945–55)
the first generation marked the beginning of commercial
computing, including the introduction of eckert’s and
Mauchly’s Univac I in early 1951, and a little later, the
IBM 701, also known as the Defense Calculator. The first
generation computer was characterized by the vacuum tube
as the active component technology.
 The operation of computers continued without the benefit
of an operating system for a certain period of time. this mode
of computer operation was called ‘closed shop’ and was
marked by the appearance of hired operators who would select
the job to be run, then load the program in the system, run the
program, select another job, and so on. Programs began to be
written in high-level, procedure-oriented languages, and thus
the operator’s job expanded. The operator now selected a job,
ran the translation program to assemble or compile the source
program, combined the translated object program along with
any existing library programs that the program might need
for input to the linking program, and thereafter loaded and
ran the composite linked program. The next job was handled
in a similar fashion.
 application programs were run one at a time. the programs
were translated with absolute computer addresses that bound
them to be loaded and run from these pre-assigned main
memory addresses set by the translator, obtaining their data
from specific physical I/O devices. There was no provision
for moving a program to different locations in main memory
for any reason. Similarly, a program bound to specific devices
could not be run at all, if any of these devices were busy or
broken.
 The inefficiencies inherent in the above methods of
operation led to the development of the monoprogrammed
operating system, which eliminated some of the human
intervention in running a job and provided programmers
with a number of desirable functions. the operating system
consisted of a permanently resident kernel in main storage
and a job scheduler as well as a number of utility programs

kept in secondary storage. User application programs were
preceded by control or specification cards (in those days,
computer programs were submitted on punched cards), which
informed the operating system about the system resources
(software resources such as compilers and loaders; and
hardware resources such as tape drives and printer) needed to
run a particular application. the systems were designed for
operation as a batch processing system.
 these systems continued to operate under the control
of a human operator who initiated operation by mounting
a magnetic tape that contained the operating system’s
executable code onto a ‘boot device’, and then pushing the
IpL (initial program load) or ‘boot’ button to initiate the
bootstrap loading of the operating system. Once the system
was loaded, the operator entered the date and time, and
initiated the operation of the job scheduler program, which
read and interpreted the control statements, secured the needed
resources, executed the first user program, and recorded the
timing and accounting information. the operator, thereafter,
began processing another user program, and continued the
process as long as there were programs waiting in the input
queue to be executed.
 The first generation saw the evolution from ‘hands-on
operation’ to ‘closed shop operation’ to the development of
monoprogrammed operating systems. at the same time, the
development of programming languages was moving away
from basic machine languages, first to assembly language,
and later to procedure-oriented languages, the most significant
being the development of foRtRan by John W. Backus in 1956.
however, several problems remained. the most obvious
was the inefficient use of system resources. This was most
evident when the cpU waited while the relatively slower
mechanical I/O devices were reading or writing program
data. In addition, system protection was a problem because
the operating system kernel was not protected from being
overwritten by an erroneous application program. Moreover,
other user programs in the queue were not protected from
destruction by executing programs.

5.6.2 Second generation (1956–63)—transistors
and Batch System

transistors replaced vacuum tubes as the hardware
component technology in the second generation of computer
hardware. In addition, some very important changes in
hardware and software architectures occurred during this
period. For the most part, computer systems remained
card- and tape-oriented systems. Significant use of random
access devices, that is, disks, did not appear until the end
of the second generation. program processing was, mostly,
provided by large, centralized computers operated under
monoprogrammed batch processing operating systems.
 The most significant innovations addressed the problem
of excessive central processor delay due to waiting for
input/output operations. the programs were executed by

76 Computer Fundamentals and Programming in C

processing the machine instructions in a strictly sequential
order. as a result, the cpU, with its high-speed electronic
components, was often forced to wait for completion of the
I/O operations, which involved mechanical devices (card
readers and tape drives) that were slower on an order of
magnitude. this problem led to the introduction of the data
channel, an integral and special-purpose computer with its
own instruction set, registers, and control unit designed to
process I/O operations separately and asynchronously from
the operation of the computer’s main cpU. this development
took place near the end of the first generation, and was widely
adopted in the second generation.
 the data channel allowed some I/O to be buffered. that is,
a program’s input data could be read ‘ahead’ from data cards
or tape into a special block of memory called a buffer. then,
when the user’s program came to an input statement, the data
could be transferred from the buffer locations at the faster
main memory access speed rather than the slower I/O device
speed. Similarly, a program’s output could be written into
another buffer and later moved from the buffer to the printer,
tape, or card punch. What made this all work was the data
channel’s ability to work asynchronously and concurrently
with the main processor. thus, the slower mechanical I/O
could be working concurrently with the main program
processing. this process was called I/O overlap.
 the data channel was controlled by a channel
program set up by the operating system I/O control routines
and initiated by a special instruction executed by the cpU.
then, the channel independently processed data to or from
the buffer. this provided communication from the cpU to
the data channel to initiate an I/O operation. It remained for
the channel to communicate to the cpU such events as data
errors and the completion of a transmission. At first, this
communication was handled by polling; the cpU stopped
its work periodically and polled the channel to determine if
there was any message.
 Polling was obviously inefficient (imagine stopping work
periodically to go to the post office to see if an expected
letter has arrived) and led to another significant innovation of
the second generation—the interrupt. the data channel was
now able to interrupt the cpU with a message, usually ‘I/O
complete’. In fact, the interrupt idea was later extended from
I/O to allow signalling of a number of exceptional conditions
such as arithmetic overflow, division by zero, and time-run-
out. Of course, interval clocks were added in conjunction
with the latter, and thus the operating system came to have
a way of regaining control from an exceptionally long or
indefinitely looping program.
 these hardware developments led to enhancements of
the operating system. I/O and data channel communication
and control became functions of the operating system, both
to relieve the application programmer from the difficult
details of I/O programming and to protect the integrity of the
system to provide improved service to users by segmenting
jobs and running shorter jobs first (during ‘prime time’) and

relegating longer jobs to lower priority or night time runs.
System libraries became more widely accessible and more
comprehensive as new utilities and application software
components became available to programmers.
 In order to further mitigate the I/O wait problem, systems
were set up to spool the input batch from slower I/O devices
such as the card reader to the much higher speed tape drive
and, similarly, the output from the higher speed tape to the
slower printer. Initially, this was accomplished by means of
one or more physically separate small satellite computers. In
this scenario, the user submitted a job at a window, a batch
of jobs was accumulated and spooled from cards to tape, ‘off
line’, the tape was moved to the main computer, the jobs
were run, and their output collected on another tape that was
later taken to a satellite computer for off line tape-to-printer
output. Users then picked up their output at the submission
windows.
 towards the end of this period, as random access devices
became available, tape-oriented operating systems began to be
replaced by disk-oriented systems. With more sophisticated
disk hardware and the operating system supporting a greater
portion of the programmer’s work, the computer system
that users saw was more and more removed from the actual
hardware—users saw a virtual machine.
 the second generation was a period of intense operating
system development. It was also the period for sequential
batch processing. But the sequential processing of one
job at a time remained a significant limitation. Thus, there
continued to be low CPU utilization for I/O-bound jobs
and low I/O device utilization for CPU-bound jobs. This
was a major concern, since computers were still very large
(room-size) and expensive machines. researchers began to
experiment with multiprogramming and multiprocessing in
their computing services called the time-sharing system. a
noteworthy example is the compatible time Sharing System
(ctSS) developed at MIt during the early 1960s.

5.6.3 third generation (1964–80)—Integrated
chips and multiprogramming

The third generation officially began in April 1964 with
IBM’s announcement of its System/360 family of computers.
hardware technology began to use integrated circuits (Ics),
which yielded significant advantages in both speed and
economy.
 Operating system development continued with the
introduction and widespread adoption of multiprogramming.
This was marked first by the appearance of more sophisticated
I/O buffering in the form of spooling operating systems, such
as the haSp (houston automatic Spooling) system that
accompanied the IBM OS/360 system. these systems worked
by introducing two new systems programs, a system reader
to move input jobs from cards to disk and a system writer
to move job output from disk to printer, tape, or cards. The
operation of the spooling system was, as before, transparent

Basic Concepts of Operating Systems 77
to the computer user who perceived input as coming directly
from the cards and output going directly to the printer.
 the idea of taking fuller advantage of the computer’s
data channel I/O capabilities continued to develop. that is,
designers recognized that I/O needed only to be initiated by
cpU instructions—the actual I/O data transmission could
take place under the control of separate and asynchronously
operating channel programs. thus, by switching control
of the cpU between the currently executing user program,
the system reader program, and the system writer program,
it was possible to keep the slower mechanical I/O device
running and minimize the amount of time the cpU spent
waiting for I/O completion. the net result was an increase in
system throughput and resource utilization, to the benefit of
both users and providers of computer services.
 this concurrent operation of three programs (more
properly, apparent concurrent operation, since systems
had only one CPU, and could, therefore execute just one
instruction at a time) required that additional features and
complexity be added to the operating system. First, the fact
that the input queue was now on disk, a direct access device,
freed the system scheduler from the first-come-first-served
policy so that it could select the ‘best’ next job to enter the
system (looking for either the shortest job or the highest-
priority job in the queue). Second, since the CPU was to be
shared by the user program, system reader, and system writer,
some processor allocation rule or policy was needed. Since
the goal of spooling was to increase resource utilization by
enabling the slower I/O devices to run asynchronously with
user program processing, and since I/O processing required
the cpU only for short periods to initiate data channel
instructions, the cpU was dispatched to the reader, writer,
and program in that order. Moreover, if the writer or the user
program was executing when something became available
to read, the reader program would pre-empt the currently
executing program to regain control of the cpU for its
initiation instruction, and the writer program would pre-empt
the user program for the same purpose. this rule, called the
static priority rule with pre-emption, was implemented in the
operating system as a system dispatcher program.
 the spooling operating system in fact had multiprogram-
ming, since more than one program was resident in the main
storage at the same time. Later, this basic idea of multipro-
gramming was extended to include more than one active user
program in memory at a time. to accommodate this exten-
sion, both the scheduler and the dispatcher were enhanced.
the scheduler became able to manage the diverse resource
needs of the several concurrently active user programs, and
the dispatcher included policies for allocating processor re-
sources among competing user programs. In addition, memo-
ry management became more sophisticated to ensure that the
program code for each job or at least for the part of the code
being executed, was resident in the main storage.

 the advent of large-scale multiprogramming was made
possible by several important hardware innovations. The first
was the widespread availability of large-capacity, high-speed
disk units to accommodate the spooled input streams and
memory overflow, together with the maintenance of several
concurrently active programs in execution. the second was
relocation hardware, which facilitated the moving of blocks
of code within memory without an undue overhead penalty.
the third was the availability of storage protecting hardware
to ensure that user jobs were protected from one another and
that the operating system itself protected from user programs.
Some of these hardware innovations involved extensions to
the interrupt system in order to handle a variety of external
conditions such as program malfunctions, storage protection
violations, and machine checks in addition to I/O interrupts.
In addition, the interrupt system became the technique for the
user program to request services from the operating system
kernel. Finally, the advent of privileged instructions allowed
the operating system to maintain coordination and control
over the multiple activities now going on within the system.
 Successful implementation of multiprogramming opened
the way for the development of a new method of delivering
time shared computing services. In this environment, several
terminals, sometimes up to 200 of them, were attached
(hard wired or via telephone lines) to a central computer.
Users at their terminals ‘logged in’ to the central system and
worked interactively with the system. the system’s apparent
concurrency was enabled by the multiprogramming operating
system. Users shared not only the system’s hardware but also
its software resources and file system disk space.
 the third generation was an exciting period, indeed,
for the development of both computer hardware and the
accompanying operating system. During this period, the topic
of operating systems became, in reality, a major element of
the discipline of computing.

5.6.4 Fourth generation (1980–present)—
personal computers

With the development of LSI (Large Scale Integration)
circuits, chips containing thousands of transistors in a square
centimeter of silicon, the age of personal computers dawned.
personal computers are not that different from minicomputers.
the most powerful personal computers used for business,
universities, and government installations are usually called
workstations (large personal computers). Usually they are
connected together by hardware.
 an interesting development that began during mid-1980s
is the growth of hardware of personal computers, running
operating system, and distributed operating system. In an
operating system, the users are aware of the existence of
multiple computers and can log in to remote machines and
copy files from one machine to another.

78 Computer Fundamentals and Programming in C

5.7 typeS oF operatIng SyStemS
Modern computer operating systems may be classified into
three groups according to the nature of interaction that takes
place between the computer user and user’s program during
its processing. the three groups are called batch process,
time-shared, and real-time operating systems.

5.7.1 Batch process operating System
In a batch process operating system, environment users submit
jobs to a central place where these jobs are collected in batch,
and subsequently placed in an input queue in the computer
where they are run. In this case, the user has no interaction
with the job during its processing, and the computer’s
response time is the turnaround time, that is, the time from
submission of the job until execution is complete and the
results are ready for return to the person who submitted the
job.
 a batch processing environment requires grouping of
similar jobs that consist of programs, data, and system
commands. When batch systems were first developed, they
were defined by the ‘batching’ together of similar jobs. Card-
and tape-based systems allowed only sequential access to
programs and data, so only one application package (for
instance, the fortraN compiler, linker, and loader, or the cobol
equivalents) could be used at a time. as online disk storage
became feasible, it was possible to provide immediate access
to all the application packages. Modern batch systems are no
longer defined by the batching together similar jobs; other
characteristics are used instead.
 a batch operating system normally reads a stream of
separate jobs (for example, from a card reader), each with
its own control cards that predefine what the job does. When
the job is complete, its output is usually printed (for example,
on a line printer). The definitive feature of a batch system is
the lack of interaction between the user and the job while the
job is being executed. The job is prepared and submitted. The
output appears later (perhaps after minutes, hours, or days).
The delay between job submission and job completion,
called the turnaround time, may result from the amount of
computing needed or from delays before the operating system
starts processing the job.
 process scheduling, i.e., allocation strategy for a process
to a processor, memory management, file management, and
I/O management in batch processing are quite simple. Jobs
are typically processed in the order of submission, that is, on
a first-come-first-serve basis.
 a batch operating system generally manages the main
memory by dividing it into two areas. One of them is
permanently fixed for containing operating system routines
and the other part contains only user programs to be executed;
when one program is over, the next program is loaded into
the same area. Since there is only one program in execution

at a time, there is no competition for I/O devices. therefore,
allocation and de-allocation for I/O devices is very trivial.
Access to files is also serial and there is hardly a need
for protection and file access control mechanism.
 this type of processing is suitable in programs with
large computation time, with no need of user interaction
or involvement. Some examples of such programs include
payroll, forecasting, statistical analysis, and large, scientific,
number-crunching programs. Users are not required to wait
while the job is being processed. They can submit their
programs to operators and return later to collect them.
 A batch operating system has two major disadvantages
and they are as follows.

Non-interactive environment There are some difficulties
with a batch system from the point of view of a programmer
or user. Batch operating systems allow little or no interaction
between users and executing programs. the turnaround time
is very high. Users have no control over the intermediate re-
sults of a program. this type of arrangement does not provide
any flexibility in software development.

Offline debugging a programmer cannot correct bugs
the moment they occur. Bugs are detected during program
execution but are removed when not in execution.

5.7.2 multiprogramming operating System
a multiprogramming operating system allows more than one
active user program (or part of user program) to be stored
in the main memory simultaneously. compared to batch
operating systems, multiprogramming operating systems are
fairly sophisticated. To have several jobs ready to run, the
system must keep all of them in memory simultaneously.
having several programs in memory at the same time requires
some form of memory management. In addition, if several
jobs are ready to run at the same time, the system must choose
the order in which each job has to be selected and executed
one after the other. this decision is called cpU scheduling.
Finally, multiple jobs running concurrently require that their
ability to affect one another be limited in all phases of the
operating system, including process scheduling, disk storage,
and memory management.
 Multiprogramming has significant potential for improving
system throughput and resource utilization. Different forms of
multiprogramming operating systems involve multitasking,
multiprocessing, multi-user, or multi-access techniques. the
main features and functions of such systems are discussed
here briefly.

Multitasking operating systems
a program in execution is called a process or task. a
multiprogramming operating system is one, which in addition
to supporting multiple concurrent processes, several processes
in execution states simultaneously, allows the instruction and

Basic Concepts of Operating Systems 79
data from two or more separate processes to reside in primary
memory simultaneously. Note that multiprogramming
implies multiprocessing or multitasking operation, but
multiprocessing operation or multitasking does not imply
multiprogramming. therefore, multitasking operation is one
of the mechanisms that the multiprogramming operating
system employs in managing the totality of computer-related
resources such as cpU, memory, and I/O devices.
 the simplest form of multitasking is called serial
multitasking or context switching. this is nothing more
than stopping one process temporarily to work on another.
If sidekick is used, then serial multitasking is used. While a
program is running, the calculator, for instance, can be used
by clicking it. When the work on the calculator is over, the
program continues running. Some examples of multitasking
operating systems are UnIX, Windows 2000/Xp, etc.

Multi-user operating system
It allows simultaneous access to a computer system through
one or more terminals. although frequently associated with
multiprogramming, a multi-user operating system does
not imply multiprogramming or multitasking. a dedicated
transaction processing system such as railway reservation
system that has hundreds of terminals under the control of
a single program is an example of a multi-user operating
system. On the other hand, general-purpose time-sharing
systems (discussed later in this section) incorporate the
features of both multi-user and multiprogramming operating
systems. Multiprocess operation without multi-user support
can be found in the operating system of some advanced
personal computers and in real systems (discussed later).
 Some examples of multi-user operating systems include
Linux, UnIX, and Windows 2000/Xp.

Multiprocessing system
It is a computer hardware configuration that includes
more than one independent processing unit. the term
multiprocessing is generally used to refer to large computer
hardware complexes found in major scientific or commercial
applications. the words multiprogramming, multiprocessing,
and multitasking are often confusing. there are, of course,
some distinctions between these similar but different terms.
 the term multiprogramming refers to the situation in
which a single cpU divides its time between more than one
job. Time sharing is a special case of multiprogramming,
where a single cpU serves a number of users at interactive
terminals. In multiprocessing, multiple cpUs perform more
than one job at a time. Multiprogramming and multiprocessing
are not mutually exclusive. Some mainframes and super
minicomputers have multiple CPUs each of which can juggle
several jobs.
 the term multitasking is described as any system that
runs or appears to run more than one application program

at any given time. an effective multitasking environment
must provide many services both to the user and to the
application program it runs. the most important of these are
resource management, which divides the computer’s time,
memory, and peripheral devices among competing tasks and
interprocess communication, which helps to coordinate their
activities by exchanging information. Some examples of
multiprocessing operating systems are Linux, UnIX, and
Windows 2000/Xp.
 Multiprocessing operating systems are multitasking
systems by definition because they support simultaneous
execution of multiple processes on different processors.

5.7.3 time-sharing operating Systems
another mode for delivering computing services is provided
by time-sharing operating systems. In this environment a
computer provides computing services to several or many
users concurrently online. here, the various users share the
central processor, memory, and other resources of the computer
system in a manner facilitated, controlled, and monitored by
the operating system. the user in this environment has nearly
full interaction with the program during its execution, and
the computer’s response time may be expected to be no more
than a few seconds.
 a time-sharing operating system operates in an interactive
mode with a quick response time. the user types a request to
the computer through a keyboard. the computer processes
it and a response, if any, is displayed on the user’s terminal.
a time-sharing system allows many users to simultaneously
share the computer resources. Since each action or command
in a time-shared system takes a very small fraction of time,
only a little time of the cpU is needed for each user. as the
cpU switches rapidly from one user to another, users have
the impression that they have their own computer, while it
is actually one computer that is being shared among many
users.
 Most time-sharing systems use time-slice (round robin)
scheduling of cpU. In this approach, programs are executed
with increasing priority in waiting state for an event and drops
after the service is granted. In order to prevent a program
from monopolizing the processor, a program executing
longer than the system-defined time-slice is interrupted by
the operating system and placed at the end of the queue of
waiting programs.
 Memory management in the time-sharing system provides
for the protection and separation of user programs. the I/o
management feature of a time-sharing system must be able to
handle multiple users (terminals). however, the processing
of terminal interrupts are not time critical due to the relatively
slow speed of the terminals and users. as required by most
multi-user environments, allocation and de-allocation of
devices must be performed in a manner that preserves system
integrity and provides for good performance.

80 Computer Fundamentals and Programming in C

 Interactive processes are given a higher priority so that
when I/O is requested (e.g., a key is pressed), the associated
process is quickly given control of the cpU. this is usually
done through the use of an interrupt that causes the computer
to realize that an I/O event has occurred.
 It should be mentioned that there are several different
types of time-sharing systems. One type is represented by
computers such as the vax/vms and UnIX workstations.
In these computers, entire processes are in memory (albeit
virtual memory) and the computer switches between
executing codes in each. In other types of systems, such as
airline reservation systems, a single application may actually
do much of the time sharing between terminals. this way
there is no need to have different running programs associated
with each terminal.
 It is evident that a time-sharing system is a multi-
programming system, but note that a multiprogramming
system is not necessarily a time-sharing system. a batch or
real-time operating system could, and indeed usually does,
have more than one active user program simultaneously in
main storage.

5.7.4 real-time operating Systems
the fourth class of operating systems, real-time operating
systems, are designed to service those applications where
response time is of essence in order to prevent error,
misrepresentation, or even disaster. examples of real-time
operating systems are those that handle airlines reservations,
machine tool control, and monitoring of a nuclear power
station. In these cases, the systems are designed to be
interrupted by external signals that require the immediate
attention of the computer system.
 It is another form of operating system that is used in
environments where a large number of events, mostly external
to computer systems, must be accepted and processed in a
short time or within certain deadlines. examples of such
applications are flight control, real-time simulations, process
control, etc. real-time systems are also frequently used in
military applications.
 The primary objective of a real-time system is to provide
quick response times. User convenience and resource
utilization are of secondary concern here. In a real-time
system, each process is assigned a certain level of priority
according to the relative importance of the event it processes.
the processor is normally allocated to the highest-priority
process among those that are ready to execute. a higher-
priority process usually pre-empts the execution of a lower-
priority process. this form of scheduling, called priority-
based pre-emptive scheduling, is used by the majority of
real-time systems.
Memory management In real-time operating systems
there is a swapping of programs between primary and
secondary memory. Most of the time, processes remain

in primary memory in order to provide quick response.
therefore, memory management in a real-time system is less
demanding compared to other types of multiprogramming
systems. On the other hand, processes in a real-time system
tend to cooperate closely, thus providing for both protection
and sharing of memory.
I/O management time-critical device management is
one of the main characteristics of a real-time system. It also
provides a sophisticated form of interrupt management and
I/O buffering.
File management The primary objective of file manage-
ment in real-time systems is usually the speed of access rather
than efficient utilization of secondary storage. In fact, some
embedded real-time systems do not have secondary memo-
ry. However, where provided, file management of real-time
systems must satisfy the same requirement as those found in
time-sharing and other multiprogramming systems.
Some examples of real-time operating systems are chImera,
lynx, mtos, qnx, rtmx, and rtx.

5.7.5 network operating System
a networked computing system is a collection of physically
interconnected computers. the operating system of each of
the interconnected computers must contain, in addition to
its own stand-alone functionality, provisions for handling
communication and transfer of program and data among the
other computers with which it is connected.
 a network operating system is a collection of software
and associated protocols that allow a set of autonomous
computers interconnected by a computer network to be
used together in a convenient and cost-effective manner.
In a network operating system, the users are aware of the
existence of multiple computers and can login to remote
machines and copy files from one machine to another.
 Some of the typical characteristics of network operating
systems are the following.
∑ each computer has its own private operating system instead

of running as part of a global system-wide operating
system.

∑ Users normally work on their systems; using a different
system requires some kind of remote login instead of having
the operating system dynamically allocate processes to
cpUs.

∑ Users are typically aware of where each of their files are
kept and must move a file from one system to another
with explicit file transfer commands instead of having file
placement managed by the operating system.

 the network operating system offers many capabilities,
including the following:
∑ allowing users to access the various resources of the

network hosts

Basic Concepts of Operating Systems 81

∑ controlling access so that only users with proper
authorization are allowed to access particular resources

∑ Making use of remote resources, which appears to be
identical to the use of local resources

∑ providing up-to-the minute network documentation online

 as was mentioned earlier, the key issue that distinguishes
a network operating system from a distributed one is how
aware the users are of the fact that multiple machines are
being used. This visibility occurs in three primary areas: file
system, protection, and program execution.

 The important issue in file system is related to how a file is
accessed on one system from another in a network. there are
two important approaches to this problem.

Running a special file transfer program When connect-
ing two or more systems together, the first issue that is faced
is how to access the file system available on some other sys-
tem. To deal with this issue, the user runs a special file trans-
fer program that copies the needed remote file to the local
machine, where it can then be accessed normally. Sometimes
remote printing and mail is also handled this way.

Specifying a pathname the second approach in this
direction is for programs on one machine to can open files on
another machine by providing a pathname, thereby indicating
where the file is located.

 Some examples of the network operating systems are:
Linux, Windows 2000 server/2003 server.

5.7.6 distributed operating System
a distributed computing system consists of a number of
computers that are connected and managed so that they
automatically share the job-processing load among the
constituent computers, or separate the job load, as appropriate,
to particularly configured processors. Such a system requires
an operating system that in addition to the typical stand-alone
functionality, provides coordination of the operations and
information flow among the component computers.
 the networked and distributed computing environments
and their respective operating systems are designed with
more complex functional capabilities. In a network operating
system the users are aware of the existence of multiple
computers, and can login to remote machines and copy files
from one machine to another. each machine runs its own
local operating system and has its own user or users.
 a distributed operating system, in contrast, is one that
appears to its users as a traditional uniprocessor system, even
though it is actually composed of multiple processors. In a
true distributed system, users should not be aware of where
their programs are being run or where their files are located;
that should all be handled automatically and efficiently by the
operating system.

 Network operating systems are not fundamentally
different from single processor operating systems. they
obviously need a network interface controller and some low-
level software to drive them, as well as programs to achieve
remote login and remote file access, but these additions do
not change the essential structure of the operating systems.
 true distributed operating systems require more than
just adding a little code to a uniprocessor operating system,
because distributed and centralized systems differ in critical
ways. Distributed systems, for example, often allow a
program to run on several processors at the same time, thus
requiring more complex processor scheduling algorithms in
order to optimize the amount of parallelism achieved.

Advantages of distributed operating systems
though the design and implementation is complex, there are
certain advantages for which the distributed system is used.
Some of these are given below.

Major breakthrough in microprocessor technology With
microprocessors becoming very powerful and cheap
compared to mainframes and minicomputers, it has become
attractive to think about designing large systems consisting
of small processors. these distributed systems clearly have a
price/performance advantage over more traditional systems.

Incremental growth the second advantage is that if there
is a need for 10 per cent more computing power, one should
just add 10 per cent more processors. System architecture is
crucial to the type of system growth. however, it is hard to
increase computing power by 10 per cent for each user.

Reliability reliability and availability can also be a
big advantage. a few parts of the system can be down
without disturbing people using the other parts. One of the
disadvantages may be that unless one is very careful, it is
easy for the communication protocol overhead to become a
major source of inefficiency.
 Now, let us discuss how the file system protection and
program execution are supported in a distributed operating
system.

File system
The distributed operating system supports a single global file
system visible from all machines. When this method is used,
there is one directory for executable programs (in UNIX, it is
the bin directory), one password file, and so on.
 the convenience of having a single global namespace is
obvious. In addition, this approach means that the operating
system is free to move files around machines to keep all the
disks generally full and busy and that the system can maintain
replicated copies of files if it chooses. The user of the program
must specify the machine name as the system cannot decide
on its own to move a file to a new machine. However, the user
visible name, which is used to access the file, would change.

82 Computer Fundamentals and Programming in C

thus in a network operating system, users must manually
control file placement, whereas in a distributed operating
system it can be done automatically by the system itself.

Protection
In a true distributed system, there is a unique UID for every
user. that UID should be valid on all machines without any
mapping. In this way no protection problems arise on remote
access to files; a remote access can be treated like a local
access with the same UID. there is a difference between
network operating system and distributed operating system in
implementing the protection issue. In a networking operating
system, there are various machines, each with its own user to
UID mapping while in a distributed operating system there is
a single system-wide mapping that is valid everywhere.

Program execution
In the most distributed case, the system chooses a cpU by
looking at the processing load of the machine, location of
file to be used, etc. In the least distributed case, the system
always run the process on one specific machine (usually the
machine on which the user is logged in).
 an important difference between network and distributed
operating systems is in the way they are implemented. a
common way to realize a networking operating system is to
put a layer of software on top of the native operating system
of the individual machines. For example, one could write a
special library package that could intercept all the system
calls and decide whether each one was local or remote. Most
system calls can be handled this way without modifying
the kernel, the part of operating system that manages all
the resources of a computer. amoeba is an example of a
distributed operating system.

note

 ∑ Operating systems and computer architecture have a
great deal of influence on each other.

 ∑ From mono-program to multi-program handling, the
operating system established itself as one of the
most essential component of the modern day digital
computer.

	 ∑	 In general, the modern operating systems can be
classified as batch processing, time-shared, or real-time
operating systems.

5.8 an overvIew oF unIX operatIng
SyStem

UNIX is an operating system. It was created in the late 1960s,
in an effort to provide a multi-user, multitasking system for
use by programmers. the philosophy behind the design of
UNIX was to provide simple, yet powerful utilities that could
be pieced together in a flexible manner to perform a wide
variety of tasks.

5.8.1 reasons for Success of unIX
During the past 30 years, UnIX has evolved into a powerful,
flexible, and versatile operating system. It is used on
(a) single user personal computers,
(b) engineering workstations, (c) multi-user microcomputers,
(d) minicomputers, (e) mainframes, and (f) supercomputers.
 the reasons for this are the characteristics of UNIX,
enumerated as follows:
Portability Because the UNIX operating system is written
mostly in c, it is highly portable. It runs on a range of
computers from microprocessors to the largest mainframe,
provided the system has two components: a c compiler, and
a modest amount of machine-dependent coding (machine-
dependent I/O hardware service routines).
Open system It easily adapts to particular requirements.
this openness has led to the introduction of a wide range of
new features and versions customized to meet special needs.
the code for UnIX is straightforward, modular, and compact.
this has fostered the evolution of the UnIX system.

Rich and productive programming environment UnIX
provides users with powerful tools and utilities. Some of
these tools are simple commands that can be used to carry
out specific tasks. Other tools and utilities are really small
programmable languages that may be used to build scripts to
solve problems. More importantly, the tools are intended to
work together, like machine parts or building blocks.

Communication the UnIX system provides an
excellentenvironment for networking. It offers programs and
utilities that provide the services needed to build networked
applications, the basis for distributed network computing.

Multi-user capability More than one user can access the
same data at the same time. a computer system that can
support multiple users is generally less expensive than the
equivalent number of single-user machines.

Multitasking a given user can perform more than one
task at the same time. One could update the client’s database
while printing the monthly sales report. the limit is about 20
simultaneous tasks per user and depending on the computer
system, a system-wide limit of 50 or more tasks can be
performed, which slows the response.

5.8.2 components of unIX
UNIX carries out various functions through three separate,
but closely integrated parts: kernel, command interpreter, and
file system.

Kernel
Known as the base operating system, kernel manages and
allocates resources, interacts with I/O devices, and controls
access to the processor. It controls the computer’s resources.

Basic Concepts of Operating Systems 83
When the user logs on, the kernel runs init and getty to
check if the user is authorized and has the correct password.
the kernel keeps track of all the programs being run, allots
time to each running program, decides when one program
stops and another program starts, assigns storage space for
files, runs the shell program, and handles the transfer of
information between the computer and the peripherals. In
short, it provides the following functions:

∑ process scheduling (process representation—structure,
scheduling, and dispatching)

∑ Memory management

∑ Device management

∑ File management

∑ System call interface

∑ process synchronization and inter-process communication
∑ Operator console interface

 these functions are spread over a number of modules
within the UNIX kernel. the utility programs and UnIX
commands are not considered a part of the UnIX kernel, which
consists of the layers closest to the hardware that are for the
most part protected from the user. the kernel may be viewed
with the help of a functional layer model (Fig. 5.3).
 the kernel communicates directly with the hardware.
When UnIX is adapted to a new machine, only the kernel
has to be modified. The kernel does not deal directly with a
user. It starts up a separate interactive program called a shell
for each user, when the user logs on. the shell acts as an
interface between the user and the system. the kernel serves
as an interface between the shell, UnIX commands, and system
hardware.
 everytime a process is loaded and started up, a chunk
of main memory is allocated for program code and data.
additionally, main memory is required for buffers, system
databases, and stack space. the device management routines
in this layer start and stop devices, check and reset status, and
read and write data from and to devices. Similarly, the disk
management routines access the disk drive, and perform the
basic block, read, and write functions.
 the next layer consists of all kernel services. this layer
provides the mapping between the user-level requests and
device driver-level actions. the user system call is converted
to calls to the kernel service routines that perform requested
services. these services consist of process creation and
termination, I/O services, receive data functions, and file
access and terminal handling services.
 the system call interface layer converts a process
operating in the user mode to a protected kernel mode
process so that the program code can invoke kernel routines
to perform system functions.

 the uppermost layer consists of user processes running
shells, UnIX commands, utility programs, and user application
programs. User programs are protected from inadvertent
writes by other users. they have no direct access to the
UnIX kernel routines and all access is channelled through the
system call interface. additionally, user programs cannot
directly access memory used by the kernel routines.

USER PROCESS

System call interface (Libary routines)

Process
management

I/O
services

File
system

Memory
management

Scheduler
I/O

Buffers
Device
Driver

HARDWARE

Fig. 5.3 Functional layer model of the unix kernel

Command interpreter
this is a utility program and is called the shell. It interacts
with the user and translates the user’s request into actions on
the part of the kernel and the other utility (Fig. 5.4). each user
opens one shell on logging on. Different types of shells are
available such as Bourne shell, c shell, and Korn shell.
∑ protection of file data
∑ the treatment of peripheral devices as files

 the shell translates typed commands into action; therefore,
it is termed as a command interpreter. the shell has a few
built-in commands, but the majority of the commands are
separate programs stored elsewhere in the system. When a
command is typed through the keyboard, it is collected and
delivered to the kernel by the shell.

5.8.3 the unIX File System
The file system is one of the major subsystems of the
operating system. It is responsible for storing information on
disk drives and retrieving and updating this information as
directed by the user or by a program. the UNIX operating
system regards practically every assemblage of information
as a file. The formal definition of a file is a string of characters.
Often, it is desirable to organize UnIX files as a set of lines.
every line is terminated by a new line character.

84 Computer Fundamentals and Programming in C

H/W

Kernel

System s/w

Shell

In
te

rn
e
t
to

o
ls

S
h
e
ll

Shell Shell

S
h
e
ll

U
N

IX
c
o
m

m
a
n
d

Data
base

pack
age

O
ther

application
s/w

UserUser

User

User

User

Fig. 5.4 The kernel–shell relationship

 The files are identified by filenames that are kept in the
file directory. Every user is allocated a personal file directory
when the user’s login name and password are authorized.
 The file system is organized as a tree with a single root
node called root (/). Every non-leaf node of the file system
structure is a directory of files, and files at the leaf nodes of
the tree are either directories, regular files, or special device
files.
 Filenames may contain up to 256 characters. the characters
may include almost any printable character except a blank.
The name of a file is given by a pathname that describes how
to locate the file in the file system hierarchy. The file system
hierarchy allows an entry only through the root.
 the UnIX file system is characterized by the following:
∑ a hierarchical structure
∑ consistent treatment of file data
∑ the ability to create and delete files
∑ dynamic growth of files
 The internal representation of a file is given by a unique
inode. Inode stands for index node. Every file has one inode,
but it may have several names, all of which map into the
same inode. each name is called a link. an inode contains
a description of the disk layout of the file data and other
information such as (a) file owner, (b) access permissions,
(c) access times, (d) file size, and (e) location of file’s data
in the file system. The inode also contains (a) the time of the
last modification of the file contents, (b) the time at which
the file was last accessed, (c) the time at which the inode was
changed (change permission), etc.
 Processes access files by a well-defined set of system calls
and specify a file by a character string that is a pathname.
When a process refers to a file by name, the kernel parses the

filename one component at a time and converts the filename
to a file’s inode. The kernel then checks that the process has
permission to search the directories in the path and eventually
retrieves the inode for the file. The system’s internal name
for the file is its i-number. When the following command is
given:
 $ls -i

(the output obtained shows the i-number and the filename.)
	 i-nmbe	 filename

 Ø Ø
 15768 junk
 15274 recipes

 15852 x

 When a process creates a new file, the kernel assigns it an
unused inode. Inodes are stored in the file system but the kernel
reads them into an in-core inode table when manipulating the
files. The kernel contains two other data structures: file table
(global kernel structure) and user file descriptor table (per
process).

Types of files
the UnIX system has the following types of files:
∑ Ordinary files
∑ Directory files
∑ Special files

Ordinary files These are files that contain information
entered by a user, an application program, or a system utility
program. An ordinary file may contain text information
(string of characters) and binary information (sequence of
words). These files are also called byte streams.
 An ordinary file is a string of bytes, stored on disk or on
some other physical medium. there is no distinction between
program files or data files. If all the bytes in the file represent
printable characters, the file is termed a text file. It is often
convenient to subdivide text files into lines, separated from
each other with the new line character (aScII 012 octal). the
lines do not have fixed lengths.

Directory files These are the files that manage the
cataloging of the file system. A directory is a file that contains
information about a group of files contained in the directory.
a directory can contain sub-directories. Files can be accessed
by selecting the corresponding directory or pathname.
 The directory is defined as a file whose data is a sequence
of entries, each consisting of an inode number and the name
of a file, contained in the directory. A pathname is defined
as a null terminated character string divided into separate
components by the character slash, i.e., ‘/’. every component
in the pathname excepting the last one must be the name of
a directory. the last component may be a directory or a non-
directory file.

Basic Concepts of Operating Systems 85
 UnIX system restricts component names to a maximum of
256 characters, with a two-byte entry for the inode number.
the size of a directory entry is 16 bytes. every directory
contains a ‘.’ indicating the current directory and a ‘..’
indicating the parent directory.
 empty directory entries are indicated by the inode
number 0. Directories are created by the kernel. the ‘read’
permission allows a process to read the directory and the
‘write’ permission allows a process to create new directories.
 the UnIX file directory structure is always in the form of
a tree. every directory is listed exactly in one predecessor
directory, i.e., one directory can have only one predecessor
directory. Normally, the predecessor directory is known as
parent and the successor directories are known as children.

Special files A special file represents a physical device
such as a terminal, disk drive, magnetic tape drive, or
communication link. Devices designated by special device
files occupy node positions in the file system directory
structure. The system reads from and writes to special files in
the same way it does from and to an ordinary file. To the user,
the UnIX system treats devices as if they were files. Programs
access devices with the same syntax they use when accessing
regular files; the semantics for the reading and writing devices
are to a large degree the same as reading and writing regular
files. Devices are protected in the same way as regular files.
 Since device names look like the names of regular files
and because the same operations work for devices and regular

files, most programs do not have to know internally the type
of files they manipulate. However, the system’s read/write
requests do not activate the normal file access mechanism.
Instead they activate the device handler associated with the
file. For example, to print a file the system may be instructed
to copy its content to another file called /dev/lp. this is a
special file and the instruction

 $cat	newfile	>	/dev/lp

does not cause a file to be written on /dev/lp but causes the
printer to be activated. The special file contains the rules
according to which characters are treated by the peripheral
device. thus, there is no distinction between writing characters
into a file, writing to the screen, or writing characters into a
telephone coupler for transmission elsewhere.
Some commands related to file systems and privileged to
be used by the system administrator are: mkfs makes a file
system; fsck,fsdb repairs a file system; mknod builds a special
file; clri removes a file forcefully; mount and umount mounts
and unmounts a file system; and sync writes a disk block
image from memory to disk.

File system structure
the file system in UnIX is organized in a hierarchical tree
structure (Fig. 5.5). each node of the tree consists of a
directory file the branches of which contain other files.
Root directory the directory at the root node is known as
the root directory and is identified by ‘/’. the root directory
acts as the first level of reference for any further reference to

Fig. 5.5 The typical tree structure of the file system in UnIX

UNIX boot dev bin etc lib tmp usr
Sub-directory

under root

con fdd1 tty date cat pswd login

bin mbox list draft letters

Student

dsply tools ot1 tb1 sen

Sub-directory

under bin

Device files

Sub-directory

under user

Sub-directory

under student

Files

Root directory

any particular file in the system. The other levels of reference
are through the paths indicated by the branches and nodes
connecting the file to the root node. Thus, /etc represents the
directory etc which is a direct descendent of the root ‘/’.
 the directory tree of a typical UNIX system contains a
number of directories, each created by the system for specific

use and each housing files and directories containing logically
related matter.
 the root directory contains the files UnIX and boot and the
directories /dev, /bin, /etc, /lib, /tmp, /usr, where each
file and directory has a specific use.

86 Computer Fundamentals and Programming in C

 ‘UnIX’ contains the program for the UNIX kernel and
boot contains the program for booting the system. When the
system starts, boot is first read from the disk and stored in the
main memory. then, the program in boot reads UnIX. each of
these directories contain sub-directories and files.
 /dev contains special files for physical devices such as
the system console, terminals, disk drive, and line printers. /
bin contains the basic programs such as who and ed. the user
community is usually allowed the execute permission for
files in /bin.
 /lib contains libraries of system utilities and subroutines,
c run-time support, system calls, I/O routines, etc. /etc
contains restricted system data and special utility programs
restricted to the system administrator, password file, login,
etc. the general user does not have the execute permission
for files in this directory.
 /tmp stores temporary files. These files are created and used
by the various system utilities such as editors and compilers.
/usr stores the home directories of every authorized user. In
addition, /usr houses directories, such as bin, tmp, and lib,
which houses less-used system utilities of the types housed
under the root directory.

Home directory each user has a home directory allotted by
the system administrator at the time of allocation of the user
code. When the login procedure is successfully completed,
the UnIX system places the user in a specific point in its file
system structure, called the home directory. the name of
this directory is usually the login name assigned to the user.
Every file or directory created by the user will be stamped
by his user code. the home directory or login directory is
a way to organize and separate each user’s work. From the
login directory, each user can create a personal file structure
hierarchy and can categorize the files by using meaningful
sub-directory and filenames.

Current directory It is the directory where the user is
working now. each process has a current directory and all
filenames are implicitly assumed to start with the name of
this directory unless they begin explicitly with a slash.
 If a process creates a child process, the child inherits the
current directory of its parent. thereafter, if need be, the
child may change to a new directory while the parent remains
unaffected. the command pwd, present working directory,
prints the name of the current directory. pwd would give the
user the directory where the user is residing at present.

Full pathname (absolute pathname) Every file and
directory in the UNIX system is identified by a unique
pathname. It is the full and proper name of the file. The
pathname shows the location of the file and the directory
in the structure of the file system. It is the list of directory
tree nodes, which must be traversed to reach the desired file.

Every file is accessed by specifying the path to it through
the directory tree. The successive node specifies the name
of a directory and the pathname is created. to access any
file the user has to use the pathname, giving the address of
the file, depending upon its position within the file system
structure, along with the filename. The absolute pathname
gives directions from the root directory and leads the user
down through a unique sequence of directories. For example,
/usr/btech/letter/memo.
 The following part of the file structure is examined. It
concerns the user you whose home directory is you which is
created directly under usr by the system administrator, when
the user code is created.

usr

you

acct

left memo docu left docu

wp

personal business

the pathname of you is /usr/you

the pathname of acct is /usr/you/acct
 The pathname represents the position of the file within the
file system. The above way of addressing is known as the
absolute pathname. If the user is in acct and wants to reach
lett under wp then the user may specify lett as

 /usr/you/wp/left

Relative pathname It gives directions that start from the
user’s current working directory and lead the user up or down
through a series of directories to a particular file or directory.
 By moving down from the user’s current directory, the
users can access files and directories of their own. By moving
up from the user’s current directory, the user passes through
layers of parent directories to the root. From there the user
can move anywhere in the file system.
 a relative pathname begins with the following:

∑ a directory or filename

∑ a dot (.) for the current directory
∑	 a double dot (..) for the parent directory of the current

directory

From acct
.. is the pathname to you
../.. is the pathname to usr
../wp/docu is the pathname to docu

Basic Concepts of Operating Systems 87

5.8.4 account and password
UnIX is security-conscious and can be used only by those
persons who maintain an account with the computer system.
a user cannot simply sit down at any terminal and start
working as in dos/Windows.
 Users using UnIX workstations must set up their own user
accounts. the system administrator will grant the user that
authority. the user opens an account with a name, known
as login name/user name, and enters a secret code called
password when the system prompts for it.

5.8.5 Logging In
Logging in is a simple procedure that tells the UnIX system
who the user is. the prompt appears as follows:

login:

 the login prompt indicates that the terminal is available
for login (i.e., connect). this message also indicates that the
previous user has ‘logged out’ (disconnected). the procedure
of login is: enter user name or login name and hit the <Enter>
key after the string. the following happens:

$ login: manas

Password:

 the system now requests the user to enter the secret code
(password) given by the administrator. this code should
be known only to the user. When the password is entered,
the terminal does not display it. then the <Enter> key is
pressed.

ExamplE

$ login: anand <Enter>
Password: *******<Enter>

the system crosschecks this password and if it is right, the
system will allow the user to work.

5.8.6 unIX Shell commands
the basic form of a UnIX command is:

 commandname [-options] [arguments]

 the command name is the name of the program the user
wants the shell to execute. the command options, usually
indicated by a dash, allows the user to alter the behavior of the
command. The arguments are the names of files, directories,
or programs that the command needs to access.
 the square brackets ‘[]’ signify the optional parts of the
command that may be omitted.

ExamplE
1. type the command

ls -l /tmp

to get a long listing of the contents of the /tmp directory. In this example,

ls is the command name, –1 is an option that tells ls to create a long,
detailed output, and /tmp is an argument naming the directory that ls is
to list. The meaning of the other characters, and the ways to use them, will
be introduced as the text progresses.

Aborting a shell command Most UnIX systems allow the user
to abort the current command by typing Control-C. To issue a Control-C
abort command, hold the control key down, and press the ‘c’ key.

Special characters in UNIX UnIX recognizes certain special
characters as command directives. The special characters are: /, <, >, !,
$, %, ^, &, *, |, {, }, ~, and ; . When creating files and directories on UNIX,
it would be safe to use only the characters A-Z, a-z, 0-9, the period, dash,
and underscore. The meaning of the other characters, and ways to use
them, will be introduced later.

Printing current working directory The working directory of
a user can be printed out by using the command pwd (present working
directory).
 When users log in to a UnIX system, they are located in their own
directory space. Users are generally located off the /usr directory. The
pwd command displays the pathname of the current directory the user is
in. This is helpful when users want to know exactly where they are.

Creating a directory The UnIX command mkdir is used to create
directories. The basic syntax is

mkdir directoryname

 If the user does not specify the place where the directory should be
created, by giving a path as part of the directory name, the shell assumes
that the user wants the new directory placed within the current working
directory.

ExamplE

2. Using a UNIX command, create a directory temp.
 Solution:

mkdir temp

 This command creates a new directory named temp in the current
directory. This example assumes that the user has the proper permission
to create a new sub-directory in the current working directory.

ExamplE

3. Using UnIX commands, create three sub-directories.
 Solution:

mkdir memos letters email

This command creates three new sub-directories, memos, letters, and
email, in the current directory.

ExamplE

4. Using a UNIX command, create a sub-directory within a directory.
 Solution:

 mkdir /usr/it/tmp

88 Computer Fundamentals and Programming in C

 This command creates a new directory named tmp under the directory
it. tmp is now a sub-directory of it. This example assumes that the user
has the proper permission to create a new directory in /usr/it.

Changing current directory cd stands for change directory. It is the
primary command for moving around the file system.

ExamplE

5. Using a UNIX command, change directory.
 Solution:

cd /usr/rcciit

The command entry moves the choice to the /usr/rcciit directory.

ExamplE

6. Using a UNIX command, return to home directory.
 Solution:

cd .

Issuing the cd command without any arguments moves the choice to the
home directory. This is very useful if the user is lost in the file system.

The directories . and ..
In UNIX, (.) means the current directory, so typing

cd .

means staying in the current directory. While (..) means the parent of
the current directory, so typing

cd ..

will take the user one directory up the hierarchy, that is, back to the
user’s home directory. Note that there is a space between cd and the dot.

Entering
cd/

moves the user to the root directory. / is the root directory.

ExamplE

7. Creating a directory called bar, within the directory called rod, which is
within the home directory.

 Solution: Once the rod directory is created, the user could just type

mkdir ~/rod/bar

Alternately, the user could type

cd ~/rod; mkdir bar

 In the second solution, two UNIX commands are given, separated by a
semicolon. The first part of the command makes rod the current working
directory. The second part of the command creates the bar directory in the
current working directory.

listing the contents of a directory The ls command allows the user
to see the contents of a directory, and to view basic information such as
size, ownership, and access permissions about files and directories. The
ls command has numerous options.

 The syntax for the ls command is:

ls [options] [directorynames]

 The options are:
–a Displays all files including the hidden files
–b Displays non-printing characters in octal
–c Displays files by file timestamp, i.e., by inode modification

time
–C Displays files in a columnar format (default)
–d Displays only directories
–f Interprets each name as a directory, not a file
–f Flags filenames by appending / to directory, * to executable

files, etc.
–g Displays the long format listing, but excludes the owner

name
–i Displays the inode for each file
–l Displays the long format listing
–L Displays the file or directory referenced by a symbolic

link
–m Displays the names as a comma-separated list
–o Displays the long format listing, but excludes group

name
–p Displays directories with /
–q Displays all non-printing characters as ?
–r Displays files in reverse order
–R Displays sub-directories as well as current directory
–t Displays newest files first
–u Displays files by the file access time
–x Displays files as rows across the screen
–l Displays each entry on a line

ExamplE

8. Demonstrating the use of the ls command with different options.
 Solution:
 (i) ls
 This is the basic ls command, with no options. It provides a very

basic listing of the files in the user’s current working directory.
Filenames beginning with a decimal are considered hidden files;
they are not shown.

 (ii) ls –a
 The –a option tells the ls command to report information about

all files, including hidden files.
 (iii) ls –l
 The –l option tells the ls command to provide a long listing of

information about the files and directories it reports. The long listing
will provide important information about file permissions, user and
group ownership, file size, and creation date.

 (iv) ls –la
 This command provides a long listing of information about all

files in the current directory. It combines the functionality of the
–a and –l options. This is probably the most used version of the

Basic Concepts of Operating Systems 89
ls command. Remember that in ls–la file listings, a directory is
identified by a d in the front of the permissions (drwxr-xr-x).

 (v) ls –al /usr
 This command lists long information about all files in the /usr

directory.
 (vi) ls –alR /usr | more
 This command lists long information about all files in the /usr

directory, and all sub-directories of /usr. The –R option tells the
ls command to provide a recursive listing of all files and sub-
directories. more displays the list, one full screen at a time.

 (vii) ls –ld /usr
 Rather than list the files contained in the /usr directory, this

command lists information about the /usr directory itself, without
generating a listing of the contents of /usr. This is very useful
when the user want to check the permissions of the directory, and
not the files the directory contains.

 (viii) Home directories can also be referred to by the tilde (~) character.
It can be used to specify paths starting at the user’s home directory.
So typing

 ls ~/UnIXstuff
 will list the contents of the user’s UnIXstuff directory, no matter

where the user currently is in the file system.

5.8.7 wildcards: the characters * and?
the character * is called a wildcard and will match against one or
more character(s) in a file (or directory) name. For example,
in the user’s UnIXstuff directory, type

ls list*

 This will list all files in the current directory starting with
list. try typing

 % ls *list

 This will list all files in the current directory ending with
list. the character ? will match exactly one character. So
ls ?ouse will match files such as house and mouse, but not
grouse, etc.

Creating a file
To create a file called list1 containing a list of fruits, type

 cat	>	list1

then type in the names of some fruits. press <Return> after
each name.

 pear

 banana

 apple

 ^D (control D to stop)
 What happens is that the cat command reads the standard
input (the keyboard) and the character ‘>’ redirects the output,
which normally goes to the screen, into a file called list1.
Finally, press <Ctrl-d> to signify the end of input to the
system.

Filename conventions
It should be noted that a directory is merely a special type of
file. So the rules and conventions for naming files apply also
to directories.
 In naming files, characters with special meanings such as
/, *, &, and % should be avoided. also, avoid using spaces
within names. The safest way to name a file is to use only
alphanumeric characters, that is, letters and numbers, together
with _ (underscore) and . (dot).
 Filenames conventionally start with a lowercase letter and
may end with a dot followed by a group of letters indicating
the contents of the file. For example, all files consisting
of c code may be named with the ending .c, for example,
prog1.c. Then in order to list all files containing C code in the
user’s home directory, the user need only type ls *.c in that
directory.

note

 ∑ Some applications give the same name to all the output files
they generate. For example, some compilers, unless given
the appropriate option, produce compiled files named a.out.
Should the user forget to use that option, the user is advised
to rename the compiled file immediately, otherwise the next
such file will overwrite it and it will be lost.

Viewing the contents of a file
Text files are intended for direct viewing and other files are
intended for computer interpretation. the UnIX file command
allows the user to determine whether an unknown file is in
text format and suitable for direct viewing.
 To see what kind of file the shell is, type the command

file	/bin/sh

The shell is a shared executable code, indicating that the file
contains binary instructions to be executed by the computer.

Viewing contents of files using cat command
the cat command reads one or more files and prints them
on standard output. the operator ‘>’ can be used to combine
multiple files into one. The operator ‘>>’ can be used to
append to an existing file.
 the syntax for the cat command is:

cat	[options]	filename(s)
or

cat	filename(s)	[-n]	[-b]	[-u]	[-s]	[-v]

where
 filename The name of the file or files that the user wishes

 to look at or perform tasks on
 –u the output is not buffered. the default is buffered

output.
 –s cat is silent about non-existent files.
 –v Non-printing characters (with the exception of

 tabs, new lines and form-feeds) are printed.
 aScII control characters (octal 000–037) are

90 Computer Fundamentals and Programming in C

 printed as ^n, where n is the corresponding aScII
character in the range octal 100–137 (@, a, B,
 c, . . ., X, Y, Z, [, \,], ^, and
_); the DeL character (octal 0177) is printed ^?.
 Other non-printable characters are printed as M-x,
where x is the ASCII character specified by the
 low order seven bits.

 –e a $ character will be printed at the end of each
 line (prior to the new line).

 –t tabs will be printed as ^I’s and form-feeds as ^L’s.
Note that if -v is used, -e and -t will be ignored.

ExamplE

9. Write the command for displaying on screen the content of file abc.
txt, whose absolute path is /usr/rcciit.

 Solution:

cat /usr/rcciit/abc.txt

 This command displays the abc.txt file under /usr/rcciit on the
screen.

ExamplE

10. Write a command that combines three files.
 Solution:

cat	file1	file2	file3	

 This command combines the contents of the first three files one by
one. The drawback of the cat command, when displaying file contents
on the screen, is that the contents of the file may scroll off the screen.
In cases where a file is too large to fit the screen, it is better to use the
more command to display the file. In fact, it is probably easier to use the
more command all the time, and just use the cat command to concatenate
(merge) files.

more command The more command displays a text file, one screen at
a time. The user can scroll forward a line at a time by pressing the return
key, or a screenful at a time by pressing the space bar. The user can quit
at any time by pressing the q key.

ExamplE

11. Type

more	itfile

to the shell. Scroll down by pressing the spacebar. Stop the more command
from displaying the rest of the file by typing q.
 The user can also use one of the following commands.
 space bar: Display next screen of text

<Return>: Display next line of text
q: Exit from more. This can be done at any time
d: Scroll forward about half a screen of text
b: Skip backward one screen of text
h: Display a list of commands (help)

The head and tail commands The head command allows the user to see
the top part of a file. The user may specify the number of lines required; by
default it displays the first ten lines.

ExamplE

12. Type

head -15 /etc/rc

to see the first 15 lines of the /etc/rc file. The tail command works like the
head command, except that it shows the last ten lines of a file by default.

ExamplE

13. Type

tail /etc/rc

to see the last ten lines of the file /etc/rc. Since the user did not specify
the number of lines as an option, the tail command defaulted to ten lines.

less command The command less writes the contents of a file onto the
screen, a page at a time. Type

less science.txt

the user must press the <space bar> to see another page and type q to quit
reading. As can be seen, less is used in preference to cat for long files.

Clearing screen The user may like to clear the terminal window of the
previous commands so that the output of the following commands can be
clearly understood.
 At the prompt, type

clear

this clears all text and leaves the command prompt at the top of the
window.

wc (word count) command A handy little utility is the wc command, short
for word count. This utility displays a count of the number of characters,
words, and lines in a file.

 The syntax of the command is:
 wc	[option]	filename

There are several options for the wc command that simply print out the
information requested. The options for this utility are:

–l print line count
–c print character count
–w print word count

To get a word count on science.txt, type
 wc -w science.txt

To find out how many lines the file has, type
 wc -l science.txt

Copying files and directories The UNIX command to copy a file or
directory is cp.
SYNTAX cp [options] sources target

where options are

Basic Concepts of Operating Systems 91
-i Ask before updating a file or directory that exists in the

destination with the same name.
-r Copy recursively each sub-directory of the directory given

in the command.
To copy the profile file, one must have ‘read permission’ on the file. To

create a new file one must have ‘write permission’ in the directory where
the file will be created.

Make a copy in the current directory
cp	oldfilename	newfilename

e.g.,
cp	file1.html	file2.html

Make a copy in a sub-directory of the current directory

cp	filename	dir-name

e.g.,

cp	file1.html	public_html

This will make a copy of file1.html within the public_html directory
(assuming the directory exists).

Copying (or moving) to the parent directory To move or copy a file to the
parent directory, the following command has to be entered.

cp	filename	..

Copying from the parent directory into the current directory The following
command is used to copy a file from the parent directory into the current
directory:

cp	../filename	.	

The dot at the end of this command stands for the current directory. Note
that there is a space in front of this final dot.

ExamplE
14.
 (i) cp	.profile	.profile.bak
 This command copies the file .profile to a file named .profile.

bak.
 (ii) cp /usr/fred/Chapter1 .
 This command copies the file named Chapter1 in the /usr/

fred directory to the current directory. This example assumes
that the user has write permission in the current directory.

 (iii) cp /usr/fred/Chapter1 /usr/mary
 This command copies the Chapter1 file in /usr/fred to the

directory named/usr/mary. This example assumes that the
user has write permission in the /usr/mary directory.

 (iv) cp /vol/examples/tutorial/science.txt .
 (Note: Do not forget the dot (.) at the end. Remember, in UNIX,

the dot means the current directory).
 The above command means copy the file science.txt to the

current directory, without changing the name.
Moving and renaming file(s) The mv command allows the user to move
and rename files.
SYNTAX mv [-f] [-i] oldname newname\directory

where
–f mv moves the file(s) without prompting, even if it is writing

over an existing target. Note that this is the default if the
standard input is not a terminal.

–i Prompts before overwriting another file
oldname The oldname of the file that is renamed
newname The newname of the file after renaming
filename The name of the file the user wants to move directory. The

directory where you want the file to go

ExamplE
15.
 (i) mv Chapter1 Chapter1.bad
 This command renames the file Chapter1 as Chapter1.bad.
 (ii) mv Chapter1 garbage
 This command renames the file Chapter1 as garbage. Notice

that if garbage is a directory, Chapter1 would be moved into
that directory.

 (iii) mv Chapter1 /tmp
 This command moves the file Chapter1 into the directory named

/tmp.
 (iv) mv tmp tmp.old
 Assuming in this case that tmp is a directory, this example renames

the directory tmp as tmp.old.
 (v) Moving to the parent directory

mv	filename	..

 Note the space before the two dots. The two dots represent the parent
directory.

 (vi) Moving from the parent directory into the current directory. The
user can use the following commands to move a file from the
parent directory into the current directory

mv	../filename	.

The dot at the end of these commands stands for the current directory.
Note that there is a space in front of this final dot.

Deleting file(s) This command deletes a file without confirmation (by
default).
SYNTAX rm	[-f]	[-i]	[-r]	[filenames	|	directory]
where

–f Removes all files, whether write-protected or not, in a
directory without prompting the user. In a write-protected
directory, however, files are never removed, whatever their
permissions are, but no messages are displayed. If the
removal of a write-protected directory is attempted, this
option will not suppress an error message.

–i Interactive. With this option, rm prompts for confirmation
before removing any files. It over rides the –f option and
remains in effect even if the standard input is not a terminal.

–r Recursively removes directories and sub-directories in
the argument list. The directory will be emptied of files and

92 Computer Fundamentals and Programming in C

removed. The user is normally prompted for removal of
any write-protected files the directory contains. The write-
protected files are removed without prompting, however,
if the –f option is used, or if the standard input is not a
terminal and the –i option is not used then the write-
protected files are removed without prompting. Symbolic
links that are encountered with this option will not be
traversed. If the removal of a non-empty, write-protected
directory is attempted, the utility will always fail (even if the
–f option is used), resulting in an error message.

filenames A path of a filename that is to be removed.

ExamplE
16.
 (i) rm Chapter1.bad
 This command deletes the file named Chapter1.bad, assuming

that the user has permission to delete this file.
 (ii) rm	Chapter1	Chapter2	Chapter3	
 This command deletes the files named Chapter1, Chapter2,

and Chapter3.
 (iii) rm	-i	Chapter1	Chapter2	Chapter3	
 This command prompts the user before deleting any of the three

files specified. The –i option stands for inquire. The user must
answer y (for yes) for each file the user wants deleted. This can
be a safer way to delete files.

 (iv) rm *.html
 This command deletes all files in the current directory whose

filenames end with .html.
 (v) rm index*
 This command deletes all files in the current directory whose

filenames begin with index.
 (vi) rm -r newnovel
 This command deletes the directory named newnovel. This

directory, and all its contents including any sub-directories and
files, are erased from the disk.

 (vii) Deleting several files using a wildcard
 The following command uses the asterisk wildcard to stand for

any characters (or no characters).
	 	rm	file1.*

 This deletes the files called file1.txt, file1.html, file1.html,
and so on. The user is asked to confirm deletion of each file in
turn.

 (viii) rm	public_html/*.html
 This deletes all the files with html after the dot, which is in the

sub-directory called public_html under the current directory.

Removing a directory The UNIX rmdir command removes a directory
from the file system tree. The rmdir command does not work unless the
directory to be removed is completely empty.
SYNTAX rmdir [-p] [-s] directory

where
–p Allows users to remove a directory and its parent directories

that become empty. A message is printed for standard error
if all or a part of the path could not be removed.

–s Suppresses the message printed on the standard error
when –p is in effect directory, the name of the directory
that the user wishes to delete

ExamplE

 17. Enter the command
	 	 	 rmdir	newfile

It should be noted that newfile should be empty.

Online manuals There are online manuals that give information about
most commands. The manual pages tell the user which options a particular
command can take, and how each option modifies the behaviour of the
command. Type man to read the manual page for a particular command.

For example, to find out more about the wc (word count) command,
type

man wc

Redirection Most processes initiated by UNIX commands write onto the
standard output (that is, they write onto the terminal screen) and many take
their input from the standard input (that is, they read it from the keyboard).
There is also the standard error, where processes write their error messages,
by default, to the terminal screen.
 It has been already seen that one use of the cat command is to write
the contents of a file to the screen.

Now, type cat without specifying a file to read

cat

Then, type a few words on the keyboard and press the <Return> key.
Finally, hold the <Ctrl> key down and press <d> (written as ^D for short)
to end the input.

What happens is that when the user runs the cat command without
specifying a file to read, it reads the standard input (the keyboard), and on
receiving the ‘end of file’ <^D>, copies it to the standard output (the screen).
In UNIX, the user can redirect both the input and the output of commands.

Redirecting the output The > symbol is used to redirect the output of
a command. For example, to create a file called list1 containing a list of
fruits, type

cat	>	list1

Then type in the names of some fruits. Press <Return> after each name.

pear

banana

apple

^D (Control D to stop)

What happens is that the cat command reads the standard input (the
keyboard) and the > redirects the output, which normally goes to the screen,
into a file called list1.

Basic Concepts of Operating Systems 93
To read the contents of the file, type

cat list1

and type

cat	>	list2

Then type in the names of more fruits

peach

grape

orange

^D (Control D to stop)
To read the contents of the file, type

cat list2

The user should now have two files. Both files contain names of three
fruits. Now the cat command is used to join (concatenate) list1 and
list2 into a new file called biglist. Type

cat	list1	list2	>	biglist

What this does is that it reads the contents of list1 and list2 in turn,
then outputs the text to the file biglist.

To read the contents of the new file, type

cat biglist

Redirecting the input The < symbol is used to redirect the input of a
command. The command sort alphabetically or numerically sorts a list.
Type

 sort

Then type in the names of some fruits. Press <Return> after each
name.

apple

mango

banana

^D (Control D to stop)

The output obtained would be

apple

banana

mango

With the help of < the user can redirect the input to come from a file rather
than the keyboard. For example, to sort the list of fruits, type

sort < biglist

and the sorted list will be output to the screen. To output the sorted list to
a file, type

sort	<	biglist	>	slist	

Use cat to read the contents of the file slist.

Pipes As UNIX is a multi-user operating system, to see who all are using
the system, a user may enter

who

One method to get a sorted list of user names is to type

who	>	names.txt

sort < names.txt

This is a bit slow and the user has to remember to remove the temporary
file called names. What the user really wants to do is to connect the output of
the who command directly to the input of the sort command. This is exactly
what pipes do. The symbol for a pipe is the vertical bar | . For example, typing

who | sort

will give the same result as the earlier commands, and it will be faster and
more effective.

To find out how many users are logged on, type

who | wc –l

note

 ∑ The UNIX operating system can be used in various
types of computers for its portability, openness, effective
programming environment, networking capability, multi-
programming and multi-tasking facilities.

 ∑ UNIX operating system carries out various functions
through three separate, but closely integrated parts ----
kernel, command interpreter, and file system.

5.9 an overvIew oF mSdoS

5.9.1 a Brief history
the origin of MsDOs can be traced back to 1980 when Seattle
computer producers developed a microcomputer operating
system for in-house use. It was called qdos. It was renamed
86-dos in the late 1980 after modifications.
 the rights on 86-dos were bought by Microsoft, which
had a contract with IBM to produce an operating system for
the latter’s new pc. the 86-dos was modified and called pc-
dos 1.0. When pc compatible machines were produced, they
used a similar version of pc-dos called mSDoS.
 Version 1.0 of dos was released in 1981, giving single-
sided disk drive capability. Version 1.1 was released in 1982,
giving double-sided disk drive capability and output to a
serial printer. Version 2.0, released in 1983, gave hard disk
support, sophisticated hierarchical file directory, installable
device drivers, and file handles. Version 3.0, released in
1984, gave improved hard disk and network support. Version
3.3 released in 1987 continued this trend.
 Version 4.0, released in 1988, provided the dosshell,
expanded memory driver, and larger than 32MB hard disk
partitions. Version 5.0, released in 1991, was designed as an
upgrade. this version enabled device drivers to be placed in
upper memory, leaving more conventional memory available
to programs. mSDoS 6.22 was released in 1994.
 the latest version of dos is MsDOs 7, which is provided as
a part of and inside the Windows system.

94 Computer Fundamentals and Programming in C

5.9.2 role of disk drive for Loading doS
a disk drive is a device that either stores data or reads data
from the disk, which may be a floppy or a hard disk. A PC
has floppy drives, hard disk drives, and CD-ROM drives. The
first floppy drive is conventionally called drive A whereas the
second floppy drive is designated as drive B and the first hard
disk drive is designated as drive c.
 Booting is synonymous with starting a computer. When
the computer is switched on, the BIOS program, fused in
the rOM, checks the memory and peripherals. Drive a of a
microcomputer is the primary drive, which a computer first
looks for when switched on. It reads the disk in drive a and
checks for any boot record or system files. If drive A does not
have these, it goes to drive C, skipping drive B. On finding
drive c, the computer starts the process of loading the dos
into the raM of the computer. Once the DoS is loaded, it
is said that the dos has booted the computer and is ready to
accept the user’s orders. the following prompt appears and
awaits orders from the user:

A:>_	or	C:>_	

 The above prompt is displayed along with a flashing
cursor, depending upon whether the system has been booted
from drive a or c. When the booting is from drive a, there
must be a DoS diskette in drive a. When the booting is from
c drive, DoS must have been previously installed in the hard
disk so that the system files are duly loaded into RAM.

5.9.3 Starting doS
When the computer starts working, it does not have an
ordinary program loaded into it. the computer does, however,
have two special built-in programs it can rely on, and it does
know how to do the following:
∑ how to do self-testing to see that things are in working

order
∑ how to start up dos

 this start-up program is usually called a bootstrap
loader, since it pulls dos up by the bootstraps. this bootstrap
operation works in two stages.
 First, the tiny program built into the computer goes to work.
It just knows how to read the beginning of a diskette or the
hard disk, in case the diskette is not used, and runs whatever
it finds there as any other operating system. However, this
program in the computer does not actually know anything
about dos. the simple start-up program is located in the
beginning of a diskette or hard disk. the start-up program,
which is the dos’s own starting routine, knows how to set up
dos in the computer.
 Second, the start-up program checks the memory. then,
it loads the dos system files into the memory. There are three
main system files in dos. these are as follows:

Io.SYS

DoS.SYS
CommanD.Com

 First, the Io.SYS file is loaded into the memory and
checks whether all the input and output devices are correctly
connected to the computer. then the program loads the DoS.
SYS file, which starts the loading of CommanD.Com into primary
memory. CommanD.Com is the command interpreter for dos
commands. It stays in the primary memory as long as the
machine is on. the DoS.SYS also loads another system file
known as HImem.SYS, which is a program that manages the
memory. Then, it sets the configuration of the system by
checking the file ConfIG.SYS. In the end, it checks for the
existence of aUtoeXeC.bat file. If it exists, then it executes the
particular file. Eventually, the system prompt appears and the
system is ready for use.
 to run MsDOs, 640 KB of primary memory is required.
this memory is called the conventional base memory. the
primary memory of the personal computer is subdivided into
three parts.
∑ conventional memory
∑ extended memory
∑ expanded memory
 extended memory requires HImem.SYS to manage it.

5.9.4 the command prompt
When the personal computer is turned on, some cryptic
information flashes by. MsDOs displays this information to let
the user know how it is configuring the computer. This can
be ignored now. When the display stops scrolling past the
information, the following is seen on the screen:

C:\>

 this is called the command prompt or dos prompt. the
flashing underscore next to the command prompt is called the
cursor. the cursor shows the position where the command
typed in would appear.
 any line in dos that begins like this is a command prompt.
the actual character that symbolizes the prompt is the ‘greater
than’ symbol: ‘>’. this line prompt is a way of informing the
users where they are in dos. the characters that appear with
‘>’ in the line prompt indicate the following:
∑ the C: means that the user is working within the file space

(disk storage) on the hard drive, which is designated as c.
c is usually reserved for the internal hard disk of a pc.

∑ the backslash (\) represents a level in the hierarchy of the
file structure. There is always at least one, which represents
the root directory. the root directory represents the very
first level of the file structure on the hard disk.

 Nowadays, while MsDOs is not commonly used, it can still
be accessed from every version of Microsoft Windows by
clicking Start/run and typing command or by typing CmD in
Windows Nt, Windows 2000, or Windows Xp.

Basic Concepts of Operating Systems 95
 If the command prompt does not look like that shown
above, type the following at the command prompt, and then
press <Enter>:

cd \

 Note that the slash leans backwards, not forward. the cd
command will be dealt with, in detail, later. If the command
prompt still does not look like the above example, type the
following at the command prompt and then press <Enter>:

prompt pg

 the command prompt should now look like the example
shown.

5.9.5 communicating with doS
mSDoS is a command-driven operating system. this means
that there is a set of commands that the user gives to the
operating system for the tasks the user wishes it to perform.
these commands are entered following the command prompt
(a, B, or c), at the place the user sees the blinking ‘hyphen’,
which is the cursor. the user can type in commands from the
keyboard. the system is not case-sensitive.

Typing a command
the user can type the command, in either capital letters or
lowercase letters, after the command prompt. the user must
press <Enter> after every command typed.
 the user can correct any typographical mistakes that
may have been made while entering the command before
pressing <Return>. If the user makes a typing mistake,
the <Backspace> or keys can be used to erase the
mistake. the line at which the user enters the command is
called the MsDOs command line. If the user makes a mistake
while typing a dos command, the following message appears:

	 Bad	command	or	file	name

Navigating disks a disk’s storage comprises several
parts of which two are covered here: directories and files.
Directories are dos’ way of organizing the many files that can
be placed on disk. every disk has at least one directory. this
is referred to as the ‘root’ directory. From the root directory
of every disk the user is able to directly or indirectly access
every file on the disk. The root directory can hold directories
or files. Subsequent directories can also hold directories or
files, and so on.

Naming a file While newer versions of dos support longer
filenames, the standard dos filename format remains as
follows: one to eight letters for a name, one dot for a period,
and three letters for the extension. For example,

PRoGRam.eXe

Data.Dat

LetteR.DoC

 The extension to a file’s name allows files of similar type
to be grouped together. That is, all word processor files
might have the extension .DoC, while all picture files might
have the extension .PIC. Since the user can specify these
extensions, many programs have used them to differentiate
between formats. these extensions have gradually become
standardized. For example, a .tXt file is expected to be a file
containing unformatted text, whereas a .bmP file is considered
to be a file in a bit mapped graphics file format.
 To completely specify a file on a computer, the user must
specify its drive, directory path, and filename. However, a file
does not always have to be specified in this complete form.
If it is in the current directory, then the user can just enter its
filename.

Directories, sub-directories, and files
every disk drive has a root directory that can have sub-
directories, which are named in the same format as filenames
though generally without any extension. the sub-directories
can have sub-directories, and so on.
 Directory structures comprise levels of directories with a
parent/child relationship (Fig. 5.6). the root directory has no
parent directory, only child directories.

\Root

Child1

Child3 Child4

Child2

Child5 Child6

(Parent Only)

(Children of)

or

(Parents of [to])

(Children of [,])2

Root

Child 3 6

Child 1

Fig. 5.6 Directory structures in mSDoS

 a directory pathname includes the disk drive and all
sub-directories needed to specify a directory on a disk.
The disk drive is specified by a single letter. The graphical
representation of a file structure below shows how a file can
be stored in different levels on a hard disk.

c:\

DEMO

DOS&WIN
SAMPLE

SAMPLE

 In DoS, the file, SamPLe, is represented as follows:
C:\Demo\DoS&WIn\SamPLeS\SamPLe

 So, what C:\Demo\DoS&WIn\SamPLeS\SamPLe means is that
the file SamPLe is on the internal hard disk, four levels deep,
inside several nested directories. the list of directories, \
Demo\DoS&WIn\SamPLeS\, is referred to as a pathname and
following the path of directories, it is possible to get to the
file. The name of the file itself, SamPLe, is referred to as the
filename. ‘\’ refers to the root directory. For reference to the
parent directory of any given sub-directory, the following
symbol is used: ‘..’.

96 Computer Fundamentals and Programming in C

 a colon follows the drive letter, while directory pathnames
are separated by backward slashes (\), not forward slashes
like Internet addresses. For example, C:\PICtUReS\HoLIDaY\
fRanCe.
 UnIX and dos have an easy-to-use hierarchical file system.
This means that files are organized in groups called directories.
Windows users call them ‘Folders’. each directory may
contain files as well as sub-directories. This provides a good
way of organizing files on disk. This is one of the features
that has made UNIX a popular server operating system.
Any file on disk can also be accessed directly by specifying
a full pathname. the pathname consists of all the names of
the directories that have to be traversed to get to the file,
starting at the top-level directory called the root directory.
each directory in the path is separated by a slash ‘/’ and an
additional slash separates the last directory name from the
filename. Since, the Internet was made of mostly UNIX-
based computers when it was born, the same slash character
was used in Internet UrLs (addresses).
 Unlike mainframes, PCs did not have any type of fixed
(versus removable) permanent storage when dos was
developed. therefore, dos had to be generic enough to
run on a floppy disk-based system without much need for
configuration data. It was decided that any disk devices were
to be assigned generic letters: ‘A’ for the first disk drive and
‘B’ for a second disk drive. the drive letter was then used at
the beginning of a pathname, followed by a colon and the rest
of the pathname. For some odd reason, Microsoft decided to
use a backslash (‘\’) for the directory separation character,
rather than the regular forward slash.
 Let us try to understand this with an example. consider the
following dos pathname:

a:\WIn98\ReaDme.tXt

 this means, on drive a (a:), start at the root directory (\),
go to the WIN98 directory (WIN98\), then access ReaDme.
tXt.

5.9.6 doS commands
there are two types of commands in dos. These are classified
as internal and external. command programs that are in
memory all the time once the dos has been read off the disk
and started up are called internal commands. Such commands
can be easily accessible. Normally the internal commands are
part of the file CommanD.Com.
 commands that require separate executable programs, not
available in CommanD.Com, to perform the particular command
are called external commands. these command programs are
kept on the hard disk until they are needed. When the user
calls for one of these commands, dos loads the command
program into the main memory.

 pressing <Enter> terminates all the commands. Some
internal commands are given below.

CLS clears the screen.
VeR Finds out what version of dos is in use.
Date Shows the system date of that particular

computer and prompts the user to enter a new
date.

time Displays the system’s time. It also prompts the
user to enter the current time.

 When the user types anything at the dos prompt and presses
<Enter>, it means the user is telling the dos to run a program.
It first checks if there is an internal command program with
that name. If it does not find one, then it checks for a file on
the disk with that name.
 If it finds an external file with the extension .Com (command),
or .eXe (executable) corresponding to the command, then the
program is loaded and run. at this point, dos loses control of
the computer until the program has ended. however, parts of
it are still used by the programs as they are running, e.g., to
load and save files.

Viewing the contents of a directory
the DIR command is used to display a list of files and sub-
directories in a directory. the syntax is

DIR	 [drive:]\[path]\[filename]	 [/P]	 [/W]	 [/A[[:]

attributes]] [/o[[:]sortorder]] [/S] [/b]

[/L] [/V]

[drive:][path][filename] Specifies drive, directory,
and/or files to list

/P pauses after each screen of information
/W Uses wide list format
/a Includes only those files with specified attributes

where attributes include
D = Directories
R = Read only files
H = Hidden files
a = Files ready for archiving
S = System files
– Prefix meaning not
/o List by files in sorted order, where sort order is a

letter indicating one of the following
n = By name (alphabetic)
S = By size (smallest first)
e = By extension (alphabetic)
D = By date and time (earliest first)
G = Group directories first
– Prefix to reverse order
/S Displays files in specified directory and all sub-

directories
/b Uses bare format (no heading information or

summary)

Basic Concepts of Operating Systems 97
/L Uses lowercase

ExamplE

dir Lists all files and directories in the current directory
dir/ad Lists only the directories in the current directory
dir/s Lists the files in the specified directory and all sub-directories

within that directory. If the user is at the root directory, as seen from the
prompt ‘C:\>’, and if the user types this command, then the command will
list every file in the specified directory and all sub-directories that exist.

dir/p If the directory has a lot of files and the user cannot read all the
files at once, this command will display all files one page at a time.

dir/w If the user does not need the date/time and other information on
the files, the user can apply this command to list just the names of the files
and directories by using the horizontal space, thereby taking as little vertical
space as possible on the monitor screen.

dir/s/w/p This lists all the files and directories in the current directory
and the sub- directories within it in a horizontal format one page at a time.

dir/o:n/a:H This displays only hidden files in alphabets call order.

Changing directories CD (Change Directory) is a command used to switch
directories in MsDOs.

The syntax is

CHDIR [drive:]\[path]

CHDIR[..]

CD [drive:]\[path]

CD[..]

ExamplE

cd\ Goes to the highest level directory, i.e., the root directory of the drive
cd.. Goes back one directory, i.e., moves to the parent directory. For

example, the prompt C:\WINDOWS\COMMAND> would change over to C:\
WINDOWS>, if CD.. is entered.

cd windows Takes the computer into the Windows directory. Windows
can be substituted with any other name. It is to be noted that Windows is a
sub-directory under current directory.

To go to a specific directory, use absolute or relative pathname. Suppose,
the computer is at c:\riit\btech directory. To go to the d:\mca\fyear
directory, the command will be CD d:\mca\fyear

Creating a directory The mD command allows the user to create directories
in MsDOs. The syntax is

mKDIR [drive:]path

mD [drive:]path

ExamplE

 md test creates a directory named test in the current directory
 md c:\riit\btech\test creates a directory named test

under c:\riit\btech

Creating a file The command to create a particular file within the current
directory is

C:\>	COPY	CON	<filename>

Here, Con is a special type of device file, which represents the console.
To save the content of that particular file or to specify the end of the file
mark, press ^Z. Pressing the F6 key can also perform the same function.

Copying a file The CoPY command copies one or more files to another
location. The syntax is as follows:

CoPY [/V] [/n] [/Y | /-Y] [/Z] [/a | /b] source

[/a | /b]

 [+ source [/a | /b] [+ ...]] [destination [/a |

/b]]

where
 source Specifies the file or files to be copied
 /a Indicates an ASCII text file
 /b Indicates a binary file
 destination Specifies the directory and/or filename for

the new file(s)
 /n Uses short filename, if available, when

copying a file with a non- 8 do t3 name
 /V Verifies that new files are written correctly
 /Y Suppresses prompting to confirm user’s

desire to overwrite an existing destination
file

 /–Y Prompts to confirm user’s desire to overwrite
an existing destination file

 The switch /Y may be preset in the CoPYCmD environment variable.
This may be over-ridden with /–Y on the command line. The default is to
prompt on overwrites unless the CoPY command is being executed from
within a batch script.
 To append files, specify a single file for destination, but multiple files for
source (using wildcards or file1+file2+file3 format).

ExamplE

 1. copy c:\riit\test.txt. This copies a text file named test.
txt from c:\riit directory to current directory.

 2. copy c:\btech*.dat *.bak /a/V This copies all files with
extension .dat with the same names and extension .bak. dos
honors end-of-file characters in all files, appends an end-of-file
character on each new file it creates and verifies the copies that are
made.

 3. copy a.txt + b.txt c.txt. This combines a.txt and b.txt
into one file c.txt.

Deleting file/files The command DeL is used to delete files from the
computer. The syntax is

DEL	[drive:][path]filename	 	[/P]

or

ERASE	[drive:][path]filename	[/P]

98 Computer Fundamentals and Programming in C

 [drive:][path]filename Specifies the file(s)
 to be deleted. Specify
 multiple files by using
 wildcards.

 /P Prompts for confirmation before deleting each file

ExamplE

 1. del test.tmp Deletes the file test.tmp in the directory that the
user currently is in, if the file exists.

 2. del c:\windows\test.tmp Deletes the file test.tmp in the
windows directory if it exists.

 3. del c:\windows\temp\?est.tmp ? is a single wild character
for one letter. This command would delete any file ending with est.
tmp such as pest.tmp or zest.tmp in the sub-directory ‘temp’.

Removing directory The command RD removes empty directories in
MsDOs. To delete directories with files or directories within them the user
must use the deltree command or if the user is running Microsoft Windows
2000 or Windows XP, the /S option has to be used.

The syntax for this command is:

RmDIR [drive:]\path\directory name

RD [drive:]\path\directory name

Windows 2000 and Windows XP syntax for remove directory
command:

RmDIR [/S] [/Q] [drive:]\path\directory name

RD [/S] [/Q] [drive:]\path\directory name

/S Removes all directories and files in the specified directory
in addition to the directory itself. Used to remove a directory
tree.

/Q Quiet mode; do not ask if okay to remove a directory tree with
/S.

ExamplE

 1. rmdir c:\test This removes the test directory, if empty. If the
user desires to delete directories that are full, the deltree command
must be used.

 2. rmdir c:\test /s Windows 2000 and Windows XP users can use
this option to permanently delete the test directory, all sub-directories
and files with a prompt.

Renaming file/files The command Ren is used to rename files and
directories.

In earlier releases of MsDOs, instead of using ren or rename, the move
command was used to rename the MsDOs directories or files. The syntax
for renaming a file/directory or files/directories is

Rename [drive:]\[path]\[directoryname1\

filename1]		filename2

REN	[drive:]\[path]\[directoryname1\	filename1]		

filename2

Note that the user cannot specify a new drive or path for the destination.

ExamplE

 To rename the directory chope to hope, the syntax is

rename c:\chope hope

Moving files This command allows the user to move files or directories
from one folder to another or from one drive to another.

The syntax for the commands that move files and rename files and
directories are
 (a) To move one or more files:
 MOVE	[/Y	|	/-Y]	[drive:]\[path]\filename1	

destination

 (b) To rename a directory:
 moVe [/Y | /-Y] [drive:]\[path]\dirname1

dirname2

	 	 [drive:]\[path]\filename1

 Specifies the location and name of the file or files the user
wants to move

 destination

 Specifies the new location of the file. Destination can consist
of a drive letter and colon, a directory name, or a combination.
If the user is moving only one file, and desires to rename
the file when it is moved, then the user can also include a
filename

 [drive:]\[path]\dirname1
Specifies the directory the user wants to rename

 dirname2
Specifies the new name of the directory

 /Y
 Suppresses the prompt to confirm that the user wants to
overwrite an existing destination file

 /–Y
 Prompts to confirm the user’s desire to overwrite an existing

destination file

The switch /Y may be present in the CoPYCmD environment variable.
This may be over ridden with /–Y on the command line. The default is to
prompt on overwrites unless the moVe command is being executed from
within a batch script.

ExamplE

 move c:\windows\temp*.* c:\temp This would move the files of
c:\windows\temp to the temp directory in the root, assuming, of course,
that the directory exists.

PROMPT command
this command is used to change the prompt of the computer.

C:\>	PROMPT	<new	prompt>

Basic Concepts of Operating Systems 99
There are several options to indicate a specified prompt.

$P Indicates the path
$G Indicates the greater than sign

5.9.7 wildcards in doS
There is a way to select more than one file at a time through a
mechanism known as wildcards or global filename characters.
Wildcards give the user a way to partly specify a filename so
that several files may match the specification.

either of the wildcard symbols can be in many ways used
in file specification. When a question mark is used in a file
specification, for example:

tHISnam?

then it will match with any letter in that particular position
of the filename. So, tHISnam? would match with any of these
filenames:

tHISname

tHISnam1

tHISnam$

tHISnam

this works as long as all the characters, excepting that in
the last position of the filename, match exactly. Wildcards can
be used in both the filenames and the extension parts of the
complete filename.

the asterisk (*) form of the wildcard is just shorthand for
several question marks. a (?) is a wild card for the single
character position that it occupies in a filename, or the end of
the extension. an (*) acts as if there were as many (?) as there
are position left in the filename or in the extension.
 an (*) in the filename stops at the end of the filename, not
at the end of the extension. If the question mark form is used
then the user can be specific about the following positions in
the name; but not with (*).

 . is same as ????????.???
 These wildcard specifications are mainly used with four
commands, DIR, DeL/eRaSe, Ren, and CoPY.

ExamplE

 1. del c:\windows\temp*.* *.* indicates that the user would
like to delete all files in the c:\windows\temp directory.

 2. The command shown here renames all text files to files with .bak
extension.

 rename *.txt *.bak
 3. The following command renames all files to begin with A_. The

asterisk (*) in this example is an example of a wild card character
because nothing was placed before or after the first asterisk. This
means all files that begin with A_ would be chosen for renaming. It
will rename all files with same filenames and extenstion .bak.

ren	A_*.*		*.bak

5.9.8 redirection
the dos commands direct information to certain predictable
places. For example, when the command DIr is used, the
output is automatically directed to the screen.
 In dos terminology, the information moves from one of its
standard input devices to one of its standard output devices.
the user can break these default settings of dos by using the
redirection operator. there are two redirection operators:
 > output symbol, i.e., send data from here to there
 < input symbol, i.e., send data from there to here

ExamplE

1.

 DIR	>	DIRLIST.	TXT

This means the directory listing is now stored in the file DIRLIST.TXT
instead of being displayed on the screen.

But the redirection operator works only for a limited variety of information.
This means that the user can not redirect file data (that is not screen output).
Likewise for input, the user can only redirect input that would be coming from
the keyboard and is used by the program in a standard way.

ExamplE

2.

DIR	>PRN

In the above command, directory listing is printed on the paper through
a printer. Here PRN stands for printer, which is also a standard output
device.

5.9.9 pipelines
When the user needs the output of one dos command as the
input of another command, dos provides a handy way to
make this simple.
 Suppose there are two commands, one and tWo. one creates
data that is needed by the command tWo. the user can apply
the redirection operator to do this.

ONE	>	WORK

tWo < WoRK

 The first command writes its data into the WoRK file and the
second program reads back from it. this is the basic function
that dos accomplishes with pipelines. A pipeline is just an
automatic way of doing what the user did with WoRK, one, and
tWo.
 To create a pipeline command, just write the program
names on the same command line, separated by a vertical bar
(|) that is the symbol for a pipeline.

100 Computer Fundamentals and Programming in C

one | tWo

 a pipeline can have as many commands in it as the user
wants to. For example, consider

one | tWo | tHRee | foUR | fIVe

 there is an obvious difference between the commands at
the beginning, middle, and end of the pipeline. Unless there is
something unusual going on, the first command in a pipeline
would be generating data. the ones in the middle would work
with the data and pass it on. this kind of command is called
a filter. The last command in a pipeline could be a consumer
of data and a filter. If it is so, then it passes the finished result
to dos’ standard device and the result appears on the screen.

ExamplE

tRee | moRe

DIR | SoRt

tYPe a.tXt | SoRt

ATTRIB command In a dos file, there are normally two attributes to protect it
from illegal users or commands. This command can control the files attribute
settings for read only, archive, and hidden.

ATTRIB				settings				filename

The settings are either +H or –H, +a or –a, or +R or –R to set on or
off the attributes of hidden, archive, and read only. Without any settings
specified, this command will list the files and show how the attributes are
currently set.

PATH command The term path is already known. It means the location
of a particular file or directory. To search for a particular file, it is necessary
to mention the exact path of the file. But in case of programs, path also
describes a list of paths dos should search for command program files.

Normally, the search always begins in the current directory. If the program
file is not found there, it will display an error message. So path is a command
that sets the extended program search paths. That is, if the program file
is not found in the current directory, the search continues where the PatH
command says it should. When the following command is typed in

C:\>			PATH

the current path setting is displayed. The following command is given if the
path settings are to be changed:

C:\>			PATH			=			C:\;	C:\DOS;	C:\FPD26

That is, the command line gives all the directory names where the
program or executable files are present. Every directory name is separated
by a semicolon (;). The following command deactivates and discontinues
the extended program search:

C:\>			PATH;

TREE command A disk can have numerous sub-directories branching
out from the root directory. The TREE command displays a list of all the

branches of the directory tree for any disk, i.e., it shows the connection
between all the branches of the tree. Such a command is written as follows:

C:\>			tRee

SORT command This command is used to sort a particular file with respect
to its column.

C:\> SORT			<filename>

To sort the file in reverse order, use /R after the SoRt command as
follows:

C:\>			SORT/R			<filename>

FIND command fInD is a command that is used to search for a particular
text from a file. This command is as follows:

C:\>			FIND			“string”			<filename>/<option>

The above command displays all the lines that contain the word specified
within the double quotation mark. Most commonly used options are /C and
/I.

ExamplE

 1. fInD “dos” sample.txt/c. This command reports the total
number of lines in sample.txt that contains the string “dos”.

 2. fInD “rcciit” sample.dat/I. This command ignores
lettercase when searching the string “rcciit” in the file sample.
txt.

DISKCOPY command This command is used to read all the formatting
and data from one diskette and copy it to another diskette, making literal
duplicates of the original in the process.

C:\>			DISKCOPY			<source	drive>			<target	drive>

The DISKCoPY command has some major disadvantages. It does not
allow for bad areas on diskettes. If either of the diskettes has unusable
bad areas, DISKCoPY will not work properly. On the other hand, the CoPY
command, the preferred way to copy data, works well in such situations.
Copy can improve the use of space on a diskette, while DISKCoPY cannot.
DISKCoPY will wipe out anything that is on the target diskette, while CoPY
will merge new files with old ones on a diskette.

DOSKEY command This command is used to create a buffer in the memory
to store all the commands that have been given after that command. Such
a command is written as follows:

C:\>			DoSKeY

After the above command, if the following commands are given:

C:\>			CD	1YEAR\XYZ

C:\>			TYPE	ABC.TXT

the computer stores all the commands in the buffer sequentially. To retrieve
the commands that have been given before, just press the up arrow key
continuously until the target is reached.

Basic Concepts of Operating Systems 101
MORE command This command is an external command. It is used to
show the information on the screen page-wise. That is, if the output of a
command is too long with respect to the screen, the moRe command can
break the output page-wise.

ssC:\>			TREE	|		moRe

note

 ∑ The MSDOS operating system has been primarily
designed for Personal Computers.

 ∑ MSDOS is portable and with the Window’s user interface
provides the user with an effective environment for han-
dling the programming needs and the file system.

Summary

The operating system is an important component of the modern computer. It
is viewed as a manager that supervises, allocates, and reclaims resources
according to certain predetermined policies. The two main components of
an operating system are the command interpreter and the kernel. Programs
can communicate with the operating system through system calls while the
user can interact by means of commands directly.

 The history of development of operating systems started with the
need to effectively manage the various hardware and software resources
in a computer with minimum user involvement. Modern computer operating
systems may be classified into three groups: batch, time-shared, and real
time. UnIX, mSDoS, and Windows are three very popular operating
systems. UnIX and Windows are multi-user, multitasking operating
systems. On the other hand, mSDoS is a single user operating system.

 Command summary
UNIX Command DOS Command

Creating a directory mkdir md
Changing current directory cd cd
Removing a directory rmdir rd
Listing the contents of a
directory

ls dir

Creating a file
(without using any editor)

cat	>	filename copy	filename	
con

Opening a file (using any
editor)

vi	filename edit	filename

Displaying the contents of
a file

cat	filename type	filename

Copying a file(s) cp copy
Deleting a file(s) rm del
Moving a file(s) mv move
Renaming a file(s) mv ren

Key termS

Resource In the context of a computer system, it means memory or
any input / output device.

Process It is a program in execution.

File It is a data storage unit that holds information.

System programs These could be operating system, compilers,
editors, loaders, utilities, etc.

Application programs These are database systems, business
programs, etc.

Process management These are jobs related to the unhindered
execution of programs.

Memory management An activity or a set of activities associated with
allocating and de-allocating memory space.

I/O device This refers to a proper activation and de-activation of input /
output device management with appropriate hardware and software.

File management A set of jobs associated with creating, retrieving,
deleting, amending data storage units on storage devices and keeping
track of the same.

Protection It is the mechanism for controlling the access of programs,
in Operating System processes, or users to the resources in the computer.

Command interpreter It a system program, which is an essential
component of the operating system, that accepts, deciphers and executes
the job related to the command statement.

Kernel It is the core library of functions that provides the most basic
interface between the computer machine and the rest of the operating
system.

System calls It provides the interface between a running program and
the operating system.

Operating system commands These are commands through which
the user interacts with the operating system directly.

Batch processing These are jobs that are executed with minimum
user interaction and as and when the computer system is available
following a schedule.

Multiprogramming Multiprogramming refers to the situation in which a
single CPU divides its time between more than one job.

Multitasking Multitasking refers to execution of more than one
application program at any given time.

Time-sharing In the context of a computer, time-sharing means
sharing of the computer resources among many users by allocating them
for a specified time.

102 Computer Fundamentals and Programming in C

Multiprocessing Any simultaneous execution of multiple processes on
different processors.

Real-time In the context of an operating system, it is an operating
system that provides quick and time critical response.

Networked computing A collection of physically interconnected
computers.

Distributed computing This refers to processing of computing jobs
by automatically sharing the job-processing load among the constituent
computers connected to the same network.

FrequentLy aSKed queStIonS

1. What is a file?
A file is a collection of related information defined by its creator. In
general, a file is a sequence of bits, bytes, lines, or records whose
meaning is defined by its creator and user.

2. What is a directory?
Directories are treated as files which keep track of all other files. The
directory contains information about the files such as location and owner
of the file. The directory is itself a file, owned by the operating system and
accessible by various file management routines.

3. What is a kernel?
Kernel refers to that part of the operating system that implements basic
functionality and is always present in memory. This is the core part of the
operating system and is loaded on the main memory when it starts up.

4. What is a microkernel?
A microkernel is a tiny operating system core that provides only minimal
services such as defining memory address spaces, inter-process
communication methods and process, and thread management. All other
features, such as hardware management or I/O locking and sharing, are
implemented as processes running independently of the microkernel.

5. What is a shell?
A shell is an interactive user interface to operating system services that
allows the user to interact with the system by entering commands or
through a graphical user interface. Different types of shells are available
in UNIX such as Bourne shell, C shell, and Korn shell.

6. What are interrupts?
Interrupt is a mechanism to draw the system’s attention to perform some
specific task. They are asynchronous events that result in the interruption
of execution of programs in order to handle the event. Program execution
is resumed (in most cases) after completion of event handling. Interrupt

Service Routine is a program that is part of operating system and
determines the nature of the interrupt and performs whatever actions are
needed.
7. What is a process? How does it differ from a program?
Process is a program in execution. It is considered as a unit of execution
for most operating systems. A process is an active entity as opposed to a
program that is passive.

8. What is spooling?
Spool is an acronym for Simultaneous Peripheral Operation On-Line.
It uses the disk as a large buffer for outputting data to line printers and
other devices (like tape). It can be used for input, but is generally used
for output. It also helps in reducing idle time and overlapped I/O and
CPU. Spooling batch systems were the first and are the simplest of the
multiprogramming systems.

9. What is the difference between spooling and buffering?
Buffering is a general idea which involves using an intermediate entity
between two mismatched interacting components in order to reduce the
effects of the mismatch. Thus, data buffering uses the storage between
two components operating at different speeds to allow both of them to
operate without waiting for each other up to an extent. Buffering is used to
implement spooling.

10. What is multiprogramming?
Multiprogramming means that several (at least two) processes can be
active within the system during any particular time interval.

11. What is multitasking?
Multitasking lets a single user have several programs in operation at the
same time. Therefore, a multitasking operation is one of the mechanisms
that the multiprogramming operating system employs in managing the
totality of computer-related resources such as CPU, memory, and I/O
devices.

eXercISeS

 1. What is an operating system? What are the functions of an operating
system?

 2. What are system calls? Give an example of a system call.
 3. What is a kernel? What is its function? What is a microkernel?
 4. Define the essential differences between spooling and buffering.
 5. Define the essential differences between the following types of

operating systems:
(a) Batch operating system

 (b) Time-sharing operating system

 (c) Real-time operating system
 6. What are the disadvantages of a batch processing system?

 7. Explain the terms: multiprogramming, multitasking, multi-user, and
multiprocessing.

 8. List the main differences between the network operating system and
distributed operating system.

 9. Outline the stages of evaluation of a modern operating system.
 10. Define process. What is the difference between a process and a

program?
 11. Describe the components of the UnIX system.
 12. Briefly explain the file system of UnIX.
 13. What is inode in UnIX?

 14. What is home directory in UnIX?

 15. What are absolute path and relative path? Explain with an example.

Basic Concepts of Operating Systems 103
 16. Write DOS and UnIX commands for the following:

rcciit

btech

cse it

mca

(a) Create the following tree structure under root/home directory.

 (b) Create a file	 result.txt	 under cse sub-directory. The
contents of the file may be anything that is typed in. Save it
properly.

 (c) Display the contents of the file result.txt.

 (d) Make mca as the current directory.

 (e) Copy the result.txt file from the cse sub-directory to the
current directory. Confirm the copying.

 (f) Without changing the current direc- tory, create a file abc.txt
under it.

 (g) Go to the root directory.

 (h) Change the current directory to home directory (for UnIX only).

 (i) List the contents of the root directory. Use several options with
the command and observe the output carefully.

 (j) List the files with .txt extension under the root directory.

 (k) List the files under the root directory that begin with ‘r’.

 (l) Rename the file result.txt as exam.dat under mca sub-
directory without changing the current directory.

 (m) Change the current directory to cse.

 (n) Go to the parent directory using relative path specification.

 (o) Move the file result.txt from cse sub-directory to its sub-
directory.

104 Computer Fundamentals and Programming in C

c
h
a
p
t
e
rThe Internet

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

6

∑ define a computer network and the Internet
∑ trace the evolution of the Internet
∑ explain the various uses and applications of the

Internet

∑ explain the World Wide Web
∑ define basic Internet terminology
∑ differentiate the types of Internet connections
∑ analyse the possible threats posed by the Internet

6.1 IntroductIon
the Internet is best defined as ‘the biggest network of
computer networks on earth’. A computer network is a data
communications system. It comprises hardware and software
for transmitting data between computers. The hardware
part of a computer network includes physical infrastructure
such as wires, cables, fibre optic lines, undersea cables, and
satellites. Software refers to the programs used to operate a
computer network. Computer networks can be connected to
other computer networks. The Internet is one such network
of computer networks. It can be defined as a global network
connecting millions of computers. The Internet makes it
possible for any computer connected to it to send and receive
data from any other computer connected to it. A hypothetical
diagram of the Internet is depicted in the Fig. 6.1. The Internet

can also be referred to as a ‘meta network’, that is, a network of
networks that spans the entire world. It is impossible to give an
exact count of the number of networks or users that comprise
the Internet. Computers on the Internet use the client–server
architecture. The Internet employs a set of standardized
protocols, which allow for the sharing of resources among
different kinds of computers that communicate with each
other on the network. These standards, sometimes referred
to as the Internet Protocol Suite, are the rules that govern
the exchange of data and communication functions for the
Internet. All computers on the Internet communicate with
one another using the Transmission Control Protocol/Internet
Protocol suite, abbreviated as TCP/IP. These protocols are
used to manage communication between computers using
any type of operating system.

The Internet 105

Internet structure

Computer

Fig. 6.1 Hypothetical diagram of the Internet

6.2 EvolutIon of IntErnEt
It was way back in 1957, when the erstwhile Soviet
Union, now known as the Commonwealth of Independent
States (CIS), launched the first man-made satellite, named
Sputnik, in space. This brought immediate concern to USA’s
defence and scientific establishments with visions of Soviet
Union weapons placed in space capable of striking USA.
Hence, USA adopted a strategy of setting up their defence
establishments at different locations. Therefore, the need
for establishing communication links between computers
at different locations arose during that period. In 1959, the
US administration formed the Advanced Research Projects
Agency (ARPA) within the Pentagon to establish an American
lead in military science and technology.
 By the early 1960s the first theories of computer networking
were shaped and in 1965, ARPA sponsored a study on ‘co-
operative network of time-sharing computers’. Lawrence G.
Roberts, of the Massachusetts Institute of Technology (MIT),
formed the first such plan in early 1967. Designs for such a
network were put forward the following year and in 1968, the
Pentagon sent out requests for proposals for ARPANET—a
computer network to unite USA’s military and scientific
establishments.
 Meanwhile, J.C.R. Licklider of MIT had proposed a
global network of interconnected computer networks in
1962. In 1969, the ARPANET connected four universities—
University of California, Los Angeles (UCLA); Stanford
Research Institute; University of California, Santa Barbara
(UCSB); and the University of Utah. They exchanged the
first information over the new computer network. However,
the system crashed several times.
 In 1974, Vint Cerf joined Bob Kahn to present their
‘Protocol for Packet Network Interconnection’ specifying the
detailed design of the Transmission Control Program (TCP)—
the basis of the modern Internet. In 1975, the ARPANET
was handed over to Defense Communication Agency (now

known as The Defense Information Systems Agency), and
subsequently, the US military part of the ARPANET was
hived off into a separate network. Another branch of the US
government, the National Science Foundation (NSF), became
heavily involved in Internet research and started to work on
a successor to the ARPANET. The research resulted in the
development of the Computer Science Network (CSNET) in
1984—the first wide area network specifically designed to
use the TCP/IP to connect to ARPANET. TCP/IP, in simpler
words, is a ‘common universal’ protocol through which the
computers in a network can communicate with each other.
Around this time, the term Internet was coined and adopted
with a general definition as any network that adopts the TCP/
IP technologies.
 By the end of the 1980s, the website of CERN, the
European particle research laboratory in Geneva, was one of
the premier Internet sites in Europe. At that time, CERN was
desperately looking for an optimum method of locating its
files, documents, and other resources.
 Tim Berners-Lee, a young British scientist, working as
a consultant for CERN, had the answer. His ‘world wide
web’ system assigned a common system of written addresses
and hypertext links to all information. Hypertext is the
organization of information units into connections that a user
can make; the association is referred to as a link. In October
1990, Berners-Lee started working on a hypertext graphical
user interface (GUI) browser and editor. In 1991, the first
www files were made available on the Internet for download
using File Transfer Protocol (FTP).
 By 1993, the world was starting to wake up to the World
Wide Web. In October that year, there were around 200
known HTTP servers. By 1996, the load on the first Web
server at CERN was 1,000 times more than what it had been
three years earlier.
 Internet technology is a primitive precursor of the
information superhighway, a theoretical goal of computer
communications to provide schools, libraries, businesses,
and homes universal access to quality information that will
educate, inform, and entertain. In early 1996, the Internet
interconnected more than 25 million computers in over 180
countries and continues to grow at a dramatic rate. Today, the
number of Internet users is nearing the billion mark and is
destined to grow further in the coming years.

6.3 World WIdE WEb
The World Wide Web consists of several servers connected
together to form a unified network which supports hypertext
to access various Internet protocols on a single interface.
It is popularly known as the Web or www. The Web
operation utilizes hypertext as a primary means of accessing
information. Hypertext is a document that holds information

106 Computer Fundamentals and Programming in C

which is utilized to link the user to other documents. Such
information are selected by the user and these are known as
links. Any single hypertext document is capable of containing
links to several documents. An application software, termed
the Web browser, residing on computers are responsible to
interpret and display text, graphics, etc. present in the Web
document. A software, known as Web server, installed at the
remote computer receives the requests for Web documents and
responds by sending them over the Internet to the Web browser
resident on the user’s computer from where the request was
sent by clicking hyperlinks or specifying addresses.
 the World Wide Web was developed by Tim Berners-Lee
of CERN in 1989. Initially, the purpose of World Wide Web
was to provide suitable communication between its members,
spread over various countries, by using networked hypertext.
The following facilities are supported by www:
Multimedia information Includes textual document, pic-
tures, movies, sound, programs, etc.
Hypertext information Refers to information that links to
other information resources.
Graphic user interface Enables users to point and click for
requested information instead of typing in text commands.
 The Hypertext Markup Language (HTML) is used to
develop documents for the Web.
 Using HTML, tags are put within the text to accomplish
document formatting, visual features like font size, bold or
italics, and develop the hypertext links. Graphics may also
be created in an HTML document. Led by web founder Tim
Berners-Lee, the World Wide Web Consortium (W3C) assists
the efforts for standardizing HTML.
 Nearly all protocol type obtainable on the Internet may be
accessible on the Web. Each Internet protocol is a set of rules
that is followed for establishing communication between
machines connected to the Internet. Some of the frequently
used protocols that are available on the web are:
Simple mail transport protocol or SMTP Popularly
known as e-mail, this protocol manages the delivery and
receipt of electronic messages and files between one or more
electronic mail-boxes.
Telnet protocol Known as just “Telnet”, it allows the user
to login to a host computer to execute requested commands.
File transfer protocol Generally termed “FTP”, this
protocol manages the transfer of text or binary files between
an FTP server and client.
Network news transfer protocol or NNTP Also called
“Usenet”, this protocol manages the distribution of news
articles prepared from topical discussions on newsgroups.
Hypertext transfer protocol Better known as “HTTP”,
it is a protocol that is responsible for transmitting hypertext
through the networks and also handle the details needed to
retrieve documents.

 Besides the protocols mentioned above, many more are
available on the Web. One such protocol is the Voice over
Internet Protocol (VoIP) that permits users to make telephone
calls over the Web. As a concluding remark it may be
observed that by furnishing a single interface for accessing
all available protocols, the Web provides a convenient and
user-friendly environment.

note
	 •		The terms Internet and World Wide Web are not syn-

onymous. The Internet is a collection of interconnected
computers. On the other hand, the Web is a collection of
documents and other interconnected resources that are
accessible by means of hyperlink and addresses.

6.4 basIc IntErnEt tErmInology

6.4.1 Web Page
Web page is the basic unit of information available on the
Web. The World Wide Web consists of files, known as
pages or web pages, containing information and links to
resources throughout the Internet. A website is a set of
intimately connected web pages which are inter-linked by
logical pointers called hyperlinks. Generally, a single page is
designed as the website’s home page. This home page is the
entry point comprising of a content list or index for people
to view the request information on this website and may also
provide leads to other websites containing again a set of web
pages that holds the desired subject matter.

6.4.2 Web browser
a Web browser or, in short, a browser is an application
program that makes the content on the Internet viewable. It
interprets the HTML code embedded within the Web page
and converts the data of the Internet in the graphical interface
that one sees on a website and displays and plays all elements
such as images, sounds, motion, and other features of a
website at their designated positions. Web browsers provide
the way to send request for a web page by specifying its
internet address that is processed by the corresponding web
server. The Web server residing at remote computer sends
the desired web page to the browser. There are two types of
browsers—graphical and text.
Graphical browser Text, images, audio, and video are
retrievable through a graphical software program such as
Internet Explorer, Firefox, Netscape, Mozilla, and Opera.
These browsers are available for Windows, Apple, Linux, and
other operating systems. Pointing and clicking with a mouse
on highlighted words and graphics accomplish navigation.
Text browser It is a browser that provides access to the
web only in the text mode. Navigation is accomplished by
highlighting emphasized words in the screen with the arrow

The Internet 107
up and down keys, and then pressing the forward arrow (or
Enter) key to follow the link. One example of such a browser
is the Lynx text mode browser. In this era of graphical
browsers, it may be hard to believe that Lynx was once very
popular.

6.4.3 Web server
A Web server is an application program that runs on the
host computer and manages the web pages stored on the
website’s repository. Its purpose is to provide the information
and services to the Web users. Typically, users can request
an initial web page, known as home page, from the Web
server through the browser that displays the page. Once the
home page is displayed, the user can begin surfing the Web.
The process of looking at different things on the Internet is
known as surfing. Whenever the mouse pointer is clicked on
a hyperlink, a page request is sent by it through the browser,
at the client end, to the Web server of the desired page. In
return, the Web server sends a copy of the requested page to
the client’s browser. The browser, at the client end, receives
the page and then displays it.

6.4.4 Internet service Provider
an Internet Service Provider (ISP) is an establishment that
offers Internet access against monthly or annual subscription
to its customers who might be an individual, organizations,
or smaller ISPs. Some of the major ISPs in India are NICNet,
VSNL, Satyam, and so on.

6.4.5 gateway
A network node that works as an entrance to some other
network is called a gateway. A node or a stopping junction,
in the Internet jargon, may be a host node or a gateway node.
The host node is an end point node. The computers that serve
the pages on the Internet on request and the Internet users
computers are termed as host nodes. On the other hand, the
gateway nodes are computers that regulate the information
traffic within an organization’s network or an Internet Service
Provider’s (ISP) network. Generally, Transmission Control
Protocol/Internet Protocol (TCP/IP) is used by the Internet
to transfer information. To identify individual nodes on the
Internet and also on LANs, a low-level protocol, called IP, is
used. At a given time, each node on the Internet is assigned
a number which is called the IP address. Since it is difficult
for the user to remember an IP address, each node is allotted
a domain name using which a corresponding IP address can
be obtained. In the current scenario, instead of assigning
permanent IP address to a user, the moment the user’s
computer gets connected to the Internet, the computer at the
user’s ISP allocates a temporary IP address from a range of
addresses assigned to that ISP. These are known as dynamic
IPs. On the other-hand, TCP works at a different level over
the IP and provides features like message tracking, error

checking, and retransmitting. Since IP does not have any
error checking feature, TCP is used alongside IP to provide
reliable transmission from sender to receiver.

note

	 •		HTTP is the basic communication protocol for providing
Web services. It ensures that all parts of the web page are
delivered. Web servers and Web browsers communicate
via HTTP. Web users request services through Web
browser. Web servers deliver the information and services
that are requested by Web users. Web browser decides
how these items are displayed. Web document files are
made available on the Internet for download using File
Transfer Protocol (FTP).

6.4.6 url
URL is the abbreviation of Uniform Resource Locator. It
provides a uniform way of identifying resources that are
available at host computer (The computer on which a website
is physically located). It specifies the Internet address of a file
stored on the host computer connected to the Internet. Web
browsers use the URL to retrieve a file from host computer.
The simplest format for a URL is as follows.

protocol://host/path/filename
where

Protocol
Protocol is a mutually agreed set of rules or methods for
transmitting data between two devices. Here the term
‘protocol’ means the HTTP, which designates the Web’s
standard communications protocol through which a client
establishes a TCP connection to the host server for the
resource to be accessed. The double slash (//) indicates that
the protocol uses the format defined by the Common Internet
Scheme Syntax (CISS). Apart from http, other protocols
available include ftp, gopher, and mailto.

Host
It specifies a particular host on the Internet by a unique
numeric identifier, known as an IP address or by a unique
name that can be resolved into the IP address. The domain
is a set of nodes that are administered as a unit. The domain
name is the hierarchical name assigned to a host address
using the Domain Name System (DNS). A domain name
consists of two to four words separated by dots. Starting
from the right is a top-level domain name, such as com for
commercial. The top-level domain names are assigned by
the Internet Corporation for Assigned Names and Numbers
(ICANN). An organization’s domain name is assigned to a
host computer that is linked to the Internet. Every domain
name has a suffix that indicates the purpose for which it
is used. The most widespread domain suffix is ‘.com’ and
even though it stands for commercial, it is used by many

108 Computer Fundamentals and Programming in C

non-commercial websites as well. Also, every country has a
specific suffix. A few examples are as follows
 .com—this identifies a business enterprise (commercial)
 .us—this is intended for use by US websites
 .de—this is intended for use by German websites
 .org—this identifies an organization
 .edu—this identifies an educational organization
 .gov—this identifies a government agency

Path
This is the location of a file or a program (JSP, PHP, Perl,
CGI, etc.) on the server relative to a document root specified
by the Web server. The document root is a directory where
resources are stored.
 Figure 6.2 provides a suitable explanation for the URL.

Host

http: // www.rediffmail.com / index.html

Protocol Top-level
domain name File name

Fig. 6.2 Description of URL

 For physical transmission of a message to the destination
node, its physical Media Access Control (MAC) address
is required. MAC address is a unique built-in number that
permanently identifies a network adapter of a computer.
The Address Resolution Protocol (ARP) translates the Ip
address to a MAC address. The message is then routed to the
destination computer. Internet address translation is depicted
in Fig. 6.3.

Domain name

Domain name
system (DNS)

IP address

Address resolution
protocol (ARP)

MAC address

Fig. 6.3 Internet address translation

6.4.7 search Engines
Search engines are application programs that allow searching
the Web by typing in a topic of interest. Examples of search
engines used are—Google, HotBot, Altavista, etc. These
search engines find exact matches from what has been typed
in the search screen to either documents (files) or subjects
of files on the www. Different search engines have different
ways of categorizing and indexing information. Typing in
the URL of that engine or using a browser’s compilation of
search engines in its Internet search function accesses search
engines.

note

	 •		The webpage is a basic unit of information available on the
web. A website is a set of web pages inter-connected by
hyperlink and URL. A web browser or, in short, a browser
is an application program that makes the content of a web
page viewable. HTTP is the basic communication protocol
through which a browser establishes a TCP connection
to the host server for the resource to be accessed.
Web users request services through web browser. Web
document files can be downloaded using File Transfer
Protocol (FTP).

 •	 An Internet Service Provider (ISP) is a company that offers
Internet access to its customers. Each time the computer
is connected to the Internet, the ISP provides a temporary
IP to the computer. IP is a low-level protocol that is used
to identify each internet node. Internet typically uses
TCP/IP alongside IP to provide reliable transmission on
the internet. Web browsers use the URL to retrieve the
resources from host computer.

6.5 tyPEs of IntErnEt connEctIons

6.5.1 dial-up connection
The most general type of Internet connections, available
from ISPs, are the dial-up connections that use a telephone
line to transmit and receive data. It blocks the telephone
line and is the slowest and the most inexpensive among the
different types of available Internet connections. This type
of connection permits the user to connect to the Internet
through a local server using an analog modem and the
Public Switched Telephone Network. To get connected to the
Internet, the PC literally dials a phone number, provided by
the ISP and connects to the local server. The maximum data
rate with dial-up access is 56 Kbps (56,000 bits per second),
but technologies such as Integrated Services Digital Network
(ISDN), which uses the Public Switched Telephone Network,
provide faster data rates of 128 Kbps.

The Internet 109

6.5.2 leased lines
An alternative way to connect computers to the Internet is
through a leased line, which is a dedicated wire or an optical
fibre cable or a wireless channel that directly connects them
to the Internet using Public Switched Telephone Network.
Leased lines provide faster throughput and better quality
connections, but they are more expensive. These are mostly
used by large business houses and big establishments.
 Another old technology, known as the T-carrier lines,
is also available as leased lines. Under this category the
fractional T1/T3 lines provide data rates between 56 and
1,500 kbit/s. Some types of special termination equipment
are necessary for such lines. These are installed in some
multi-resident dwellings, fractional. T1/T3 lines are typically
underground fibre or copper cables that connect directly
to the service provider, with individual home connections
switched over Ethernet cables.

6.5.3 digital subscriber line (dsl)
This is a connection using a phone line and a special modem.
The modem does not interfere with the normal telephone
operation. Most connections average about 400–650K per
second in download (some are faster), while some average
about 128–256K per second upload speed as well.

6.5.4 satellite Internet
a satellite Internet connection is a system in which a
computer receives(downloads) and sends(uploads) data
streams through a satellite. In such a connection, every user
computer is provided with a transmitter-receiver unit and a
satellite dish antenna. The upstream data transfer rate is much
less than the down-stream rate in these systems.
 In areas where DSL or any other type of wire internet
connections are difficult to reach, the satellite internet
connection is the only option for accessing the Internet. For
people in the rural areas and those living on hilly areas or in

places where the basic utilities are lacking satellite Internet
connection is an effective means of availing the Internet.
However such systems are expensive and are slower than the
land-based systems.

Internet backbone

Teleport

NOC Satellite
hub

Networked
workstations

Customer
location

Satellite modem
and router

Fig. 6.5 Internet via satellite

6.5.5 broadband versus Power line
Broadband over Power Line (BPL) supports Internet
connections over residential power lines. The technology
behind power line BPL works analogous to phone line DSL,
using unused signalling space on the wire to transmit the
Internet traffic. BPL requires specialized (but not expensive)
equipment to connect to a home network.

6.5.6 cable modem broadband
Cable modem broadband is a connection through an ordinary
coax cable through the user’s digital cable provider and is the

Modem

Computer

Internet Service Provider (ISP)

The Internet

Phone line

Internet service

Fig. 6.4 Dial-up connection

110 Computer Fundamentals and Programming in C

easiest and most common way to connect to the Internet at
high speeds. Most connections average about 400K/second
download and 128K upload. A cable’s biggest advantage is its
availability and ability to produce multiple upstream (when
sending). Cable connections are always on; eliminating
long waits to make a connection. Cable connections are not
available in every area; the users will need to contact a cable
company of their choice to ensure that they have coverage.

6.5.7 other forms of Internet connectivity
Cellular Internet Mobile Internet connections can be
made over digital cell phones. Due to high costs, cellular
Internet is usually used in homes only during emergencies.

Wireless Broadband Internet WiMax technology supports
high-speed wireless Internet via base stations such as cellular
networks. The WiFi community or ‘mesh’ networks serve a
similar function using different technologies.

6.6 usEs of IntErnEt
One of the most outstanding innovations in the field
of communication is the Internet. As with every single
innovation, the Internet has its own advantages and
disadvantages. However, its many advantages outweigh its
disadvantages.

6.6.1 communication
Communication has always been the primary target of the
Internet. However, continuous innovations are making it
faster and more reliable. With the advent of the Internet, the
earth has been transformed into a global village. Some of
advantages are as follows.

E-mail Electronic mail or e-mail is an online correspondence
system. It allows computer users to exchange messages
locally and across the world. Each user of e-mail has a
mailbox address to which messages are sent. Messages sent
through e-mail arrive instantly. The e-mail system is based
on the Simple Mail Transfer Protocol (SMTP). Multimedia
Internet Mail Extension (MIME) was originally developed to
help e-mail software handle a variety of binary (non-ASCII)
file attachments. The use of MIME has expanded to the Web.

Chat and Instant messaging Chat programs allow users to
communicate with each other through the Internet by typing
in real time. Sometimes, they are included as a feature of a
website, where users can log into chat rooms to exchange
remarks and information about the topics addressed on the
site. Chat may take many other wide-ranging forms. For
example, America Online is well-known for sponsoring a
number of topical chat rooms. Internet Relay Chat (IRC) is
a service through which participants can communicate with

each other on hundreds of channels. The discussions on these
channels are generally based on specific topics. To access
IRC, a user must use an IRC software program. A variation
of chat is the phenomenon of instant messaging. With instant
messaging, a user on the Web can contact another logged-
in user and start a conversation. One of the most popular
Internet relay chat sites is America Online’s (AOL) instant
messenger. ICQ, MSN, and Yahoo also offer chat programs.

Telnet It is a program which assists the user to get
connected with computers on the Internet and access chat
services, library catalogues, online databases, etc. However,
Telnet sessions use graphics and not text. To get connected
on to a computer using Telnet, the user must know its
address. This can consist of words (judde.ac.in) or numbers
(.140.147.254.3). Some services require the specification of a
specific port on the remote computer. In such a case, the user
has to type the port number after the Internet address. A link
to a Telnet resource may appear like any other link, but it will
launch a Telnet session to provide the connection. In order to
work, a Telnet program must be installed on the user’s local
computer and configured to his or her Web browser. With
the popularity of the Web, Telnet is less frequently used as a
means of access to information on the Internet.

6.6.2 Information
The biggest advantage the Internet offers is probably
information. It is a virtual treasure trove of information. Any
kind of information on any topic is available on the Internet.

Search engines such as Google, Yahoo!, and others help
in retrieving information from the Internet. People can get
almost any type of data on almost any kind of subject that they
are looking for. There is a massive amount of information
available on the Internet on just about every subject known
to man—ranging from government law and services, market
information, technical support, new ideas, trade fairs and
conferences, etc.

Usenet news is a collection of news groups that have nothing
to do with news. Usenets are ongoing discussion groups on
the Internet, among people who share mutual interest. Usenet
News is a global electronic bulletin board system in which
millions of computer users exchange information on a vast
range of topics. The major difference between Usenet News
and e-mail discussion groups is the fact that Usenet messages
are stored on central computers, and users must connect with
these computers to read or download the messages posted
to these groups. This is distinct from email distribution, in
which messages arrive in the electronic mailboxes of each
listed member. Usenet itself is a set of machines that exchange
messages or articles from Usenet discussion forums, known
as newsgroups. Usenet administrators control their own sites,

The Internet 111
and decide which (if any) newsgroups to sponsor and which
remote newsgroups to allow into the system.

Web blog or simply blog is a new form of online update-
able diary that can be created with the help of the Internet.
Many people, groups of people, and organizations post their
information or knowledge or their views, etc. to share. It has
organizational and personal roles. Blogger provides one of
the most popular and oldest web blog services which have
been owned by google since 2003.

 Students and children are among the major users who surf
the Internet for research purposes. Today, it is essential for
students to access the Internet for research and for gathering
resources. Teachers give assignments that require research on
the Internet. Due to the Internet, it has now become possible
to locate information on ever-changing fields such as medical
research. Numerous websites available on the Internet offer
loads of information for people to research about diseases
and discuss health issues with online doctors. During 1998,
over 20 million people were reported to have used online
resources to retrieve information about health issues.

6.6.3 Entertainment
Many people prefer to surf the Internet in search of
entertainment. In fact, the Internet has become quite
successful in providing multifaceted entertainment options.
Some of the uses people have discovered are—downloading
games, visiting chat rooms, or just surfing the Web. There are
lots of games that may be downloaded from the Internet for
free. The online gaming industry has tasted dramatic success
due to the phenomenal interest shown by game lovers. Chat
rooms are popular because users can meet new and interesting
people. News, music, hobbies, and many more areas of
interest can be found and shared on the Internet. Apart from
these, there are plenty of messenger services to facilitate
this. With the help of such services, it has become very easy
to establish global friendship where people can share their
thoughts. Social networking websites such as Facebook, and
MySpace extend the new form of interactions that outspreads
socialization.

6.6.4 services
Many services are now provided on the Internet such as job
seeking, guidance services on a variety of topics, online
banking, online share trading, purchasing tickets for movies,
and hotel reservations. Some of these services may not be
available off-line and can cost less if purchased online.

6.6.5 E-commerce
The concept of any type of commercial activity or business
deal that involves the transfer of information across the globe
through the Internet is known as e-commerce. It has become
a phenomenon that is associated with any type of online

business transaction. E-commerce, with its giant tentacles
engulfing every single product and service, will make almost
all services and products available at one’s doorstep. It covers
an amazing and wide range of products from household needs
to technology and entertainment.

note

	 •		A computer can be connected to the Internet through
modem or another communication channel (DSL or ISDN
or broadband etc.). The Internet Service Provider (ISP)
provides the infrastructure and communication software
for Internet access.

	 •		Services available on the Internet include instant access
to online information, e-mail and chat, remote access
to the computer for file sharing and collaborative work,
leisure activities, online services and voice telephony,
and many more.

6.7 Hazards of IntErnEt
Despite the numerous advantages of the Internet, it also
endures the security and protection hazards, some of which
are discussed as follows:
•	 Virus is a piece of code which on execution disrupts the

normal functioning of computer systems. Computers
attached to the Internet are more susceptible to virus
attacks which can end up with mischievous behaviour or
crashing the system.

•	 Hackers utilize one type of virus called Trojans to gain
access to the computer to intercept personal or secret
information (such as password, credit card number) there
by invading users’ privacy, or use the intended victim’s
computer for their purposes.

•	 Spamming refers to sending unsolicited bulk e-mails,
which provide no purpose and needlessly obstruct the
entire system.

 Such illegal activities can be very frustrating for the users,
and so instead of just ignoring them, they should make an
effort to try and stop these activities so that using the Internet
can become much safer.

Internet addiction is another important menace to the society.
the Internet has established its potential for encompassing
new forms of social interactions and leisure activities.
Websites like Facebook, Orkut, and Myspace have shaped
socialization in such a dimension that people especially
students get addicted to surfing the Internet.

Pornography There are thousands of pornographic sites
on the Internet that can be easily accessed; hence, children
should use the Internet with parental supervision.

112 Computer Fundamentals and Programming in C

Computer network is a data communications system made up of hardware
and software that transmits data from one computer to another. Computer
networks can connect to other computer networks to get an even bigger
computer network. The Internet can be defined as a worldwide network
connecting millions of computers. It employs a set of standardized
protocols, which allow for the sharing of resources among different kinds of
computers that communicate with each other on the network. In 1969, the
ARPANET connected four universities (UCLA, Stanford Research Institute,
UCSB, and the University of Utah) and exchanged the first information over
the new computer network. In 1974, Vint Cerf joined Bob Kahn to present
‘Protocol for Packet Network Interconnection’ specifying the detailed design
of the ‘Transmission Control Program’ (TCP)—the basis of the modern
Internet. All computers on the Internet communicate with one another using
the Transmission Control Protocol/Internet Protocol suite (TCP/IP). Tim
Berners-Lee, a young British scientist at CERN, devised a better way of
locating all the files, documents, and other resources. His World Wide Web
system assigned a common system of written addresses and hypertext
links to all information. In 1991 the first www files were made available on
the Internet for download using File Transfer Protocol (FTP). The Internet
is one of the most outstanding innovations in the field of communication.
It provides a means to communicate between people located at various

places. The biggest advantage the Internet offers is information. Any kind
of information on any topic is available on the Internet. Many people prefer
to surf the Internet in search of entertainment. The Internet also covers
an amazing and wide range of services catering to household needs,
technology, and entertainment. The world wide web (www) is a system
of Internet servers that supports hypertext to access several Internet
protocols on a single interface. The operation of the Web relies primarily
on hypertext as its means of information retrieval. Hypertext is a document
containing words that connect to other documents. Almost every protocol
type available on the Internet is accessible on the Web. Internet protocols
are sets of rules that allow for inter-machine communication on the Internet.
Some of these major protocols accessible on the Web are SMTP, Telnet,
FTP, Usenet, and HTTP. The different types of Internet connections are
Digital Subscriber Link (DSL), Dial-up, Satellite Internet, Broadband over
Power Line (BPL), Cable Modem Broadband, and other forms of Internet
connectivity. There are some drawbacks of the Internet. It is prone to the
spreading of unwanted messages and damaging programs. The unwanted
messages are known as spam, while the damaging programs are known
as viruses. The Internet also contains information unsuitable for children.
However, the Internet is a wonderful and powerful tool for people, who
want to use it for communication and exchange of information.

KEy tErms

Browser It is a program for accessing the Internet.

Domain It is a set of nodes that are administered as a unit.

Download It means transferring of file from the Internet to the local
computer.

Host The computer on which a website is physically located is referred
to as a host.

http Hypertext Transfer Protocol (HTTP) is the protocol of the Web to
handle the details needed to retrieve documents.

hypertext It is the organization of information units into connected
associations that a user can choose to make.

Internet Protocol It is a set of rules that govern the exchange of data
and communication functions for the Internet.

ISP An Internet Service Provider (ISP) is an organization which offers
Internet access against monthly or annual subscription to its customers.

TCP/IP Transmission Control Protocol/Internet Protocol is used to
manage communication between computers using any type of operating
system.

Upload It means transferring files from a local computer to another
remote computer through the Internet.

URL It provides a uniform way of identifying the Internet address of a
resource stored on a host computer connected to the Internet.

VoIP Voice over Internet Protocol (VoIP) allows users to place a
telephone call over the Web.

website It is a collection of viewable ‘www files’ stored on one or more
computers connected to the Internet.

www World Wide Web (www) is a system that assigns a common system
of written addresses and hypertext links to all information.

frEQuEntly asKEd QuEstIons

1. What is browsing?

Viewing information and documents in the Internet is known as browsing.

2. Explain hyperlink, hypertext, and hypermedia.

A website is a set of closely related web pages that are interconnected
by logical pointers known as hyperlink. On clicking a hyperlink (usually
underlined), the linked document can be accessed or displayed on the
browser. It is used as a cross-referencing to other documents on the

Web. This creates a non-linear form of text, known as hypertext. Web
pages can also contain hyperlinked multimedia content that are named
as hypermedia.

3. What is a Web server?
A Web server is a computer in which a software program is running to
provide Web services. The software manages the HTTP whereabouts and
makes the information stored on the Web server accessible through the
Web.

summary

The Internet 113
4. What is a web page?
Web page is a digital document file, created and designed using Hyper
Text Markup Language (HTML) that can be accessed using Web browser.
HTML is the standard language to design a web page. It defines the
way information, pictures, and other elements of the web page would be
displayed regardless of the browser used or the type of computer.

5. What is meant by home page of a website?
A website is composed of several web pages. The first or opening page of
a website is known as the home page. It is similar to the table of contents
in a book.

6. What is an ISP?
ISP stands for Internet Service Provider. ISP is a company that delivers a
point of access to the Internet against monthly or annual subscription to an
individual, organization, and smaller ISPs.
Each ISP maintains a network of routers and communication links for
providing access to the Internet.

7. What is a search engine?
Search engine is a Web server that collects data from other Web servers
into a database. The database is used to provide links to the web pages
containing the information that the user is looking for.

ExErcIsEs

 1. What is the Internet?
 2. What functions does an Internet Service Provider (ISP) perform?
 3. How is a workstation on a local network linked to the Internet?
 4. What is a domain?
 5. What is domain name system (DNS)?
 6. What is an IP address? Explain the significance of each of the

numbers in an IP address.

 7. Explain how the DNS maps a domain name to an IP address.
 8. What is a protocol?
 9. What is Transmission Control Protocol/Internet Protocol (TCP/IP)?
 10. What is a browser? How does a browser work?
 11. What is a Uniform Resource Locator (URL)?
 12. What is a search engine?

114 Computer Fundamentals and Programming in C

7.1 Algorithms
To solve any problem a plan is needed. This plan is a proce-
dure to solve the problem in question. The procedure has to
be based on definite reasoning and logic to obtain a result.
How can such plans be formed? The following sections dis-
cuss the various ways a procedure-wise plan can be made to
solve any problem.

7.1.1 What is an Algorithm?
Computer scientist Niklaus Wirth stated that
 Program = Algorithms + Data
 An algorithm is a part of the plan for the computer pro-
gram. In fact, an algorithm is ‘an effective procedure for
solving a problem in a finite number of steps’.

 It is effective, which means that an answer is found and it
has a finite number of steps. A well-designed algorithm will
always provide an answer; it may not be the desired answer
but there will be an answer. It may be that the answer is that
there is no answer. A well-designed algorithm is also guaran-
teed to terminate.

7.1.2 Different Ways of stating Algorithms
Algorithms may be represented in various ways. There are
four ways of stating algorithms.
These are as follows:
∑ Step-form
∑ Pseudo-code
∑ Flowchart

C
h
A
P
T
e
r

Introduction to Algorithms
and Programming
Concepts

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

7

∑ explain algorithms and the key features of an algorithm—
sequence, decision, and repetition

∑ learn the different ways of stating algorithms—step-form,
flowchart, etc.

∑ define variables, types of variables, and naming
conventions for variables

∑ decide a strategy for designing algorithms

∑ explain the concept of tracing the correctness of an
algorithm

∑ discuss the method of implementing an algorithm in a
program

∑ explain structural programming and the process of
programming

Introduction to Algorithms and Programming Concepts 115

∑ Nassi-Schneiderman
 In the step-form representation, the procedure of solving
a problem is stated with written statements. each statement
solves a part of the problem and these together complete the
solution. The step-form uses just normal language to define
each procedure. Every statement, that defines an action, is
logically related to the preceding statement. This algorithm
has been discussed in the following section with the help of
an example.
 The pseudo-code is a written form representation of the
algorithm. However, it differs from the step form as it uses a
restricted vocabulary to define its action of solving the prob-
lem. One problem with human language is that it can seem
to be imprecise. But the pseudo-code, which is in human lan-
guage, tends toward more precision by using a limited vo-
cabulary.
 Flowchart and Nassi-Schneiderman are graphically orient-
ed representation forms. They use symbols and language to
represent sequence, decision, and repetition actions. Only the
flowchart method of representing the problem solution has
been explained with several examples. The Nassi-Schneider-
man technique is beyond the scope of this book.

note

 ∑ An algorithm is an effective procedure for solving a problem
in a finite number of steps.

 ∑ A program is composed of algorithm and data.
 ∑ The four common ways of representing an algorithm are the

step-form, pseudo-code, flowchart, and Nassi-Schneiderman.

7.1.3 Key Features of an Algorithm and the step-
form

Here is an example of an algorithm, for making a pot of tea.
 1. If the kettle does not contain water, then fill the kettle.
 2. Plug the kettle into the power point and switch it on.
 3. If the teapot is not empty, then empty the teapot.
 4. Place tea leaves in the teapot.
 5. If the water in the kettle is not boiling, then go to step 5.
 6. Switch off the kettle.
 7. Pour water from the kettle into the teapot.

 It can be seen that the algorithm has a number of steps and
that some steps (steps 1, 3, and 5) involve decision-making
and one step (step 5 in this case) involves repetition, in this
case the process of waiting for the kettle to boil.
 From this example, it is evident that algorithms show these
three features:
∑ Sequence (also known as process)
∑ Decision (also known as selection)

∑ repetition (also known as iteration or looping)
 Therefore, an algorithm can be stated using three basic
constructs: sequence, decision, and repetition.

Sequence
Sequence means that each step or process in the algorithm is
executed in the specified order. In the above example, each
process must be in the proper place otherwise the algorithm
will fail.

The decision constructs—if ... then, if ... then ...
else...
In algorithms the outcome of a decision is either true or false;
there is no state in between. The outcome of the decision is
based on some condition that can only result in a true or false
value. For example,
 if today is Friday then collect pay
is a decision and the decision takes the general form:
 if proposition then process
 A proposition, in this sense, is a statement, which can only
be true or false. It is either true that ‘today is Friday’ or it is
false that ‘today is not Friday’. It can not be both true and
false. If the proposition is true, then the process or procedure
that follows the then is executed. The decision can also be
stated as:
 if proposition
 then process1
 else process2
 This is the if … then … else … form of the decision.
This means that if the proposition is true then execute pro-
cess1, else, or otherwise, execute process2.
 The first form of the decision if proposition then process
has a null else, that is, there is no else.

The repetition constructs—repeat and while
Repetition can be implemented using constructs like the re-
peat loop, while loop, and if.. then .. goto .. loop.
 The repeat loop is used to iterate or repeat a process or
sequence of processes until some condition becomes true. It
has the general form:
 repeat
 Process1
 Process2

 ………..
 ProcessN
 Until proposition
here is an example.
 repeat
 Fill water in kettle
 Until kettle is full

116 Computer Fundamentals and Programming in C

 The process is ‘Fill water in kettle,’ the proposition is
‘kettle is full’.
 The Repeat loop does some processing before testing the
state of the proposition.
 What would happen if in the above example the kettle is
already full? If the kettle is already full at the start of the Re-
peat loop, then filling more water will lead to an overflow.
 This is a drawback of the repeat construct.
 In such a case the while loop is more appropriate. The
above example with the while loop is shown as follows:
 while kettle is not full
 fill water in kettle
 Since the decision about the kettle being full or not is
made before filling water, the possibility of an overflow is
eliminated. The while loop finds out whether some condition
is true before repeating a process or a sequence of processes.
 If the condition is false, the process or the sequence of
processes is not executed. The general form of while loop is:
 while proposition
 begin

 Process 1
 Process 2
 ………..
 ………...
 Process N
 end

 The if .. then goto .. is also used to repeat a process or
a sequence of processes until the given proposition is false.
In the kettle example, this construct would be implemented
as follows:
 1. Fill some water in kettle
 2. if kettle not full then goto 1
 So long as the proposition ‘kettle not full’ is true the pro-
cess, ‘fill some water in kettle’ is repeated. The general form
of if .. then goto .. is:
 Process1
 Process2
 ……….
 ……….
 ProcessN
 if proposition then goto Process1

Termination
The definition of algorithm cannot be restricted to proce-
dures that eventually finish. Algorithms might also include
procedures that could run forever without stopping. Such a
procedure has been called a computational method by Knuth
or calculation procedure or algorithm by Kleene. However,
Kleene notes that such a method must eventually exhibit
‘some object.’ Minsky (1967) makes the observation that, if
an algorithm has not terminated, then how can the follow-
ing question be answered: “Will it terminate with the correct
answer?” Thus the answer is: undecidable. It can never be

known, nor can the designer do an analysis beforehand to
find it out. The analysis of algorithms for their likelihood of
termination is called termination analysis.

Correctness
The prepared algorithm needs to be verified for its correct-
ness. Correctness means how easily its logic can be argued to
satisfy the algorithm’s primary goal. This requires the algo-
rithm to be made in such a way that all the elements in it are
traceable to the requirements.
 Correctness requires that all the components like the data
structures, modules, external interfaces, and module inter-
connections are completely specified.
 In other words, correctness is the degree to which an algo-
rithm performs its specified function. The most common mea-
sure of correctness is defects per Kilo Lines of Code (KLOC)
that implements the algorithm, where defect is defined as the
verified lack of conformance to requirements.

note

 ∑ The key features of an algorithm are sequence, selection,
and repetition.

 ∑ The stepwise form has sequence, selection, and repeti-
tion constructs.

 ∑ Termination means the action of closing. A well-designed al-
gorithm has a termination.

 ∑ Correctness of algorithm means how easily its logic can be
argued to meet the algorithm’s primary goal.

7.1.4 What are Variables?
So long, the elements of algorithm have been discussed. But a
program comprises of algorithm and data. Therefore, it is now
necessary to understand the concept of data. It is known that
data is a symbolic representation of value and that programs
set the context that gives data a proper meaning. In programs,
data is transformed into information. The question is, how is
data represented in programs?
 Almost every algorithm contains data and usually the data
is ‘contained’ in what is called a variable. The variable is a
container for a value that may vary during the execution of
the program. For example, in the tea-making algorithm, the
level of water in the kettle is a variable, the temperature of
the water is a variable, and the quantity of tea leaves is also a
variable.
 Each variable in a program is given a name, for example,
∑ Water_Level
∑ Water_Temperature
∑ Tea_Leaves_Quantity
and at any given time the value, which is represented by Wa-
ter_Level, for instance, may be different to its value at some
other time. The statement

Introduction to Algorithms and Programming Concepts 117
 if the kettle does not contain water then fill the kettle
could also be written as
 if Water_Level is 0 then fill the kettle
or
 if Water_Level = 0 then fill the kettle
 At some point Water_Level will be the maximum value,
whatever that is, and the kettle will be full.

Variables and data types
The data used in algorithms can be of different types. The
simplest types of data that an algorithm might use are
∑ numeric data, e.g., 12, 11.45, 901, etc.
∑ alphabetic or character data such as ‘A’, ‘Z’, or ‘This is

alphabetic’
∑ logical data, that is, propositions with true/false values

Naming of variables
One should always try to choose meaningful names for vari-
ables in algorithms to improve the readability of the algo-
rithm or program. This is particularly important in large and
complex programs.
 In the tea-making algorithm, plain English was used. It has
been shown how variable names may be used for some of the
algorithm variables. In Table 7.1, the right-hand column con-
tains variable names which are shorter than the original and
do not hide the meaning of the original phrase. Underscores
have been given to indicate that the words belong together
and represent a variable.

Table 7.1 Algorithm using variable names

Algorithm in plain
English

Algorithm using variable
names

1. If the kettle does not
contain water, then fill the
kettle.

1. If kettle_empty then fill the
kettle.

2. Plug the kettle into the
power point and switch it
on.

2. Plug the kettle into the
power point and switch it
on.

3. If the teapot is not empty,
then empty the teapot.

3. If teapot_not_empty then
empty the teapot.

4. Place tea leaves in the
teapot.

4. Place tea leaves in the
teapot.

5. If the water in the kettle is
not boiling then go to
step 5.

5. If water_not_boiling then
go to step 5.

6. Switch off the kettle. 6. Switch off the kettle.

7. Pour water from the kettle
into the teapot.

7. Pour water from the kettle
into the teapot.

 There are no hard and fast rules about how variables
should be named but there are many conventions. It is a good
idea to adopt a conventional way of naming variables.

 The algorithms and programs can benefit from using nam-
ing conventions for processes too.

note

 ∑ Data is a symbolic representation of value.
 ∑ A variable, which has a name, is a container for a value

that may vary during the execution of the program.

7.1.5 subroutines
A simple program is a combination of statements that are
implemented in a sequential order. A statement block is a
group of statements. Such a program is shown in Fig. 7.1(a).
There might be a specific block of statement, which is also
known as a procedure, that is run several times at different
points in the implementation sequence of the larger program.
This is shown in Fig.7.1(b). Here, this specific block of state-
ment is named ‘procedure X’. In this example program, the
‘procedure X’ is written twice in this example. This enhances
the size of the program. Since this particular procedure is re-
quired to be run at two specific points in the implementa-
tion sequence of the larger program, it may be treated as a
separate entity and not included in the main program. In fact,
this procedure may be called whenever required as shown in
Fig.7.1(c). Such a procedure is known as a subroutine.

Start

Statement
1

Statement
2

Statement
3

Statement
N

Statement
4

End

�

Start

Statement
1

Procedure
X

Statement
2

Statement
N

Procedure
X

End

�

Start

Statement
1

Statement
2

Statement
3

Statement
N

End

�

Procedure
X

Subroutine

Call

Return
(a) A structure

of a simple
program

(b) A structure
of a program
with repeated
procedures

(c) A structure
of a program
using a
subroutine

Statement
4

Fig. 7.1 Program structures

 Therefore, a subroutine, also known as procedure, method
or function, is a portion of instruction that is invoked from
within a larger program to perform a specific task. At the

118 Computer Fundamentals and Programming in C

same time the subroutine is relatively independent of the re-
maining statements of the larger program. The subroutine be-
haves in much the same way as a program that is used as one
step in a larger program. A subroutine is often written so that
it can be started (“called”) several times and/or from several
places during a single execution of the program, including
from other subroutines, and then branch back (return) to the
next instruction after the “call”, once the subroutine’s task is
done. Thus, such subroutines are invoked with a CALL state-
ment with or without passing of parameters from the calling
program. The subroutine works on the parameters if given to
it, otherwise it works out the results and gives out the result
by itself and returns to the calling program or pass the results
to the calling program before returning to it.
 The technique of writing subroutine has some distinct
advantages. The subroutine reduces duplication of block
of statements within a program, enables reuse of the block
of statements that forms the subroutine across multiple pro-
grams, decomposes a complex task into simpler steps, di-
vides a large programming task among various programmers
or various stages of a project and hides implementation de-
tails from users.
 However, there are some disadvantages in using subrou-
tines. The starting or invocation of a subroutine requires some
computational overhead in the call mechanism itself. The sub-
routine requires some well-defined housekeeping techniques at
its entry and exit from it.

note

 ∑ A subroutine is a logical collection of instructions that is in-
voked from within a larger program to perform a specific task.

 ∑ The subroutine is relatively independent of the remain-
ing statements of the program that invokes it.

 ∑ A subroutine can be invoked several times from several
places during a single execution of the invoking program.

 ∑ After completing the specific task, a subroutine returns
to the point of invocation in the larger program.

Some examples on developing algorithms using
step-form
For illustrating the step-form the following conventions are
assumed:
 1. Each algorithm will be logically enclosed by two state-

ments START and STOP.
 2. To accept data from user, the INPUT or READ state-

ments are to be used.
 3. To display any user message or the content in a variable,

PRINT statement will be used. Note that the message
will be enclosed within quotes.

 4. There are several steps in an algorithm. Each step results
in an action. The steps are to be acted upon sequentially
in the order they are arranged or directed.

 4. The arithmetic operators that will be used in the expres-
sions are

 (i) ‘←’ ….Assignment (the left-hand side of ‘←’ should
always be a single variable)

 Example: The expression x ← 6 means that a
value 6 is assigned to the variable x. In terms of
memory storage, it means a value of 6 is stored at
a location in memory which is allocated to the vari-
able x.

 (ii) ‘+’….. Addition
 Example: The expression z ← x + y means the

value contained in variable x and the value con-
tained in variable y is added and the resulting value
obtained is assigned to the variable z.

 (iii) ‘–’….. Subtraction
 Example: The expression z ← x – y means the

value contained in variable y is subtracted from the
value contained in variable x and the resulting value
obtained is assigned to the variable z

 (iv) ‘*’….. Multiplication
 Example: Consider the following expressions writ-

ten in sequence:
 x ← 5
 y ← 6
 z ← x * y
 The result of the multiplication between x and y is

30. This value is therefore assigned to z.
 (v) ‘/’….. Division
 Example: The following expressions written in se-

quence illustrates the meaning of the division opera-
tor :

 x ← 10
 y ← 6
 z ← x/y
 The quotient of the division between x and y is 1

and the remainder is 4. When such an operator is
used the quotient is taken as the result whereas the
remainder is rejected. So here the result obtained
from the expression x/y is 1 and this is assigned to z.

 5. In propositions, the commonly used relational operators
will include

 (i) ‘>’ ….. Greater than
 Example: The expression x > y means if the value

contained in x is larger than that in y then the out-
come of the expression is true, which will be taken
as 1. Otherwise, if the outcome is false then it would
be taken as 0.

 (ii) ‘<=’ …..Less than or equal to
 Example: The expression x <= y implies that if the

value held in x is either less than or equal to the

Introduction to Algorithms and Programming Concepts 119
value held in y then the outcome of the expression
is true and so it will be taken as 1.

 But if the outcome of the relational expression is
false then it is taken as 0.

 (iii) ‘<’ …… Less than
 Example: Here the expression x < y implies that

if the value held in x is less than that held in y then
the relational expression is true, which is taken as 1,
otherwise the expression is false and hence will be
taken as 0.

 (iv) ‘=’ …… Equality
 Example: The expression x = y means that if the

value in x and that in y are same then this relation-
al expression is true and hence the outcome is 1
otherwise the outcome is false or 0.

 (v) ‘>=’ …… Greater than or equal to
 Example: The expression x >= y implies that if

the value in x is larger or equal to that in y then
the outcome of the expression is true or 1, other-
wise it is false or 0.

 (vi) ‘!=’ …… Non- equality
 Example: The expression x != y means that if

the value contained in x is not equal to the value
contained in y then the outcome of the expression
is true or 1, otherwise it is false or 0.

 Note: The ‘equal to (=)’ operator is used both for as-
signment as well as equality specification. When used in
proposition, it specifies equality otherwise assignment. To
differentiate ‘assignment’ from ‘equality’ left arrow (←)
may be used. For example, a ←b is an assignment but a =
b is a proposition for checking the equality.

 6. The most commonly used logical operators will be
AND, OR and NOT. These operators are used to specify
multiple test conditions forming composite proposition.
These are

 (i) ‘AND’…… Conjunction
 The outcome of an expression is true or 1 when both

the propositions AND-ed are true otherwise it is
false or 0.

 Example: Consider the expressions
 x ← 2
 y ← 1
 x = 2 AND y = 0
 In the above expression the proposition ‘x = 2’ is

true because the value in x is 2. Similarly, the propo-
sition ‘y = 0’ is untrue as y holds 1 and therefore
this proposition is false or 0. Thus, the above expres-
sion may be represented as ‘true’ AND ‘false’ the
outcome for which is false or 0.

 (ii) ‘OR’ …… Disjunction
 The outcome of an expression is true or 1 when any-

one of the propositions Or-ed is true otherwise it is
false or 0.

 Example: Consider the expressions
 x ← 2
 y ← 1
 x = 2 OR y = 0
 Here, the proposition ‘x = 2’ is true since x holds 2

while the proposition ‘y = 0’ is untrue or false. Hence
the third expression may be represented as ‘true’ OR
‘false’ the outcome for which is true or 1.

 (iii) ‘NOT’ …… Negation
 If outcome of a proposition is ‘true’, it becomes

‘false’ when negated or NOT-ed.
 Example: Consider the expression
 x ← 2
 NOT x = 2
 The proposition ‘x = 2’ is ‘true’ as x contains the

value 2. But the second expression negates this by
the logical operator NOT which gives an outcome
‘false’.

ExamplEs

1.	 Write	the	algorithm	for	finding	the	sum	of	any	two	numbers.

 Solution	Let	the	two	numbers	be	A	and	B	and	let	their	sum	be		 	
equal	to	C.	Then,	the	desired	algorithm	is	given	as	follows:

 1. START

 2. PRINT “ENTER TWO NUMBERS”

 3. INPUT A, B

 4. C ¨ A + B
Add values assigned
to A and B and as-
sign this value to C

 5. PRINT C

 6. STOP

 Explanation	 The	 first	 step	 is	 the	 starting	 point	 of	 the	 algorithm.The	
next	step	requests	the	programmer	to	enter	the	two	numbers	that	have	
to	be	added.	Step	3	takes	in	the	two	numbers	given	by	the	program-
mer	and	keeps	 them	 in	variables	A	and	B.	The	 fourth	step	adds	 the	
two	numbers	and	assigns	the	resulting	value	to	the	variable	C.	The	fifth	
step	prints	the	result	stored	in	C	on	the	output	device.	The	sixth	step	
terminates	the	procedure.

2.	 Write	the	algorithm	for	determining	the	remainder	of	a	division	opera-
tion	where	the	dividend	and	divisor	are	both	integers.

 Solution Let N	 and	D	 be	 the	dividend	and	divisor,	 respectively.	As-
sume	Q	to	be	the	quotient,	which	is	an	integer,	and	R	to	be	the	remain-
der.	The	algorithm	for	the	given	problem	is	as	follows.

 1. START

 2. PRINT “ENTER DIVIDEND”

 3. INPUT N

 4. PRINT “ENTER DIVISOR”

120 Computer Fundamentals and Programming in C

 5. INPUT D

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q * D

 8. PRINT R

 9. STOP

 Explanation	The	first	step	indicates	the	starting	point	of	the	algorithm.	
The	next	step	asks	 the	programmer	 to	enter	 the	dividend	value.	The	
third	step	keeps	the	dividend	value	in	the	variable	N.	Step	4	asks	for	the	
divisor	value	to	be	entered.	This	is	kept	in	the	variable	D.	In	step	6,	the	
value	in	N	is	divided	by	that	in	D.	Since	both	the	numbers	are	integers,	
the	result	is	an	integer.	This	value	is	assigned	to	Q.	Any	remainder	in	
this	step	is	ignored.	In	step	7,	the	remainder	is	computed	by	subtracting	
the	product	of	the	integer	quotient	and	the	integer	divisor	from	integer	
dividend	N.	The	computed	value	of	the	remainder	is	an	integer	here	and	
obviously	less	than	the	divisor.	The	remainder	value	is	assigned	to		the	
variable	R.	This	value	is	printed	on	an	output	device	in	step	8.	Step	9	
terminates	the	algorithm.

3.	 Construct	 the	 algorithm	 for	 interchanging	 the	 numeric	 values	 of	 two	
variables.

 Solution	Let	 the	two	variables	be	A	and	B.	Consider	C	 to	be	a	third	
variable	that	is	used	to	store	the	value	of	one	of	the	variables	during	the	
process	of	interchanging	the	values.

	 	The	algorithm	for	the	given	problem	is	as	follows.
 1. START
 2. PRINT “ENTER THE VALUE OF A & B”

 3. INPUT A, B

 4. C ¨ A

 5. A ¨ B

A B

C

step 5

step 4 step 6

 6. B ¨ C

 7. PRINT A, B

 8. END

 Explanation Like	 the	previous	examples,	 the	 first	 step	 indicates	 the	
starting	point	of	the	algorithm.	The	second	step	is	an	output	message	
asking	for	the	two	values	to	be	entered.	Step	3	puts	these	values	into	
the	variables	A	and	B.	Now,	the	value	in	variable	A	is	copied	to	variable	
C	in	step	4.	In	fact	the	value	in	A	is	saved	in	C.	In	step	5	the	value	in	
variable	B	is	assigned	to	variable	A.	This	means	a	copy	of	the	value	in	B	
is	put	in	A.	Next,	in	step	6	the	value	in	C,	saved	in	it	in	the	earlier	step	4	
is	copied	into	B.	In	step	7	the	values	in	A	and	B	are	printed	on	an	output	
device.	Step	8	terminates	the	procedure.		

4.	 Write	an	algorithm	 that	 compares	 two	numbers	and	prints	either	 the	
message	 identifying	 the	greater	 number	or	 the	message	stating	 that	
both	numbers	are	equal.

 Solution	This	example	demonstrates	how	the	process	of	selection	or	
decision	making	 is	 implemented	 in	an	algorithm	using	 the	step-form.	
Here,	two	variables,	A	and	B,	are	assumed	to	represent	the	two	num-
bers	that	are	being	compared.	The	algorithm	for	this	problem	is	given	
as	follows.

 1. START
 2. PRINT “ENTER TWO NUMBERS”
 3. INPUT A, B
 4. IF A > B THEN
 PRINT “A IS GREATER THAN B”

Only integer value
is obtained and

remainder ignored

 5. IF B > A THEN
 PRINT “B IS GREATER THAN A”
 6. IF A = B THEN
 PRINT “BOTH ARE EQUAL”

 7. STOP

 Explanation	The	first	step	indicates	the	starting	point	of	the	algorithm.	
The	next	step	prints	a	message	asking	for	 the	entry	of	 the	two	num-
bers.	 In	step	3	 the	numbers	entered	are	kept	 in	 the	variables	A	and	
B.	 In	steps	4,	5	and	6,	 the	values	 in	A,	B	and	C	are	compared	with	
the	 IF	 ...THEN	construct.	The	 relevant	message	 is	printed	whenever	
the	proposition	between	IF	and	THEN	is	found	to	agree	otherwise	the	
next	step	is	acted	upon.	But	in	any	case	one	of	the	message	would	be	
printed	because	at	least	one	of	the	propositions	would	be	true.	Step	7	
terminates	the	procedure.

5.	 Write	an	algorithm	to	check	whether	a	number	given	by	the	user	is	odd	
or	even.

 Solution	Let	the	number	to	be	checked	be	represented	by	N.	The	num-
ber	N	is	divided	by	2	to	give	an	integer	quotient,	denoted	by	Q.	If	the	
remainder,	designated	as	R,	is	zero,	N	is	even;	otherwise	N	is	odd.	This	
logic	has	been	applied	in	the	following	algorithm.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. Q ¨ N/2 (Integer division)
 5. R ¨ N — Q * 2
 6. IF R = 0 THEN
 PRINT “N IS EVEN”
 7. IF R != 0 THEN
 PRINT “N IS ODD”
 8. STOP

 Explanation	The	primary	aim		here	is	to	find	out	whether	the	remainder	
after	the	division	of	the	number	with	2	is	zero	or	not.	If	the	number	is	
even	the	remainder	after	the	division	will	be	zero.	If	it	is	odd,	the	remain-
der	after	the	division	will	not	be	zero.	So	by	testing	the	remainder	it	is	
possible	to	determine	whether	the	number	is	even	or	odd.

	 	 The	first	step	indicates	the	starting	point	of	the	algorithm	while	the	
next	prints	a	message	asking	 for	 the	entry	of	 the	number.	 In	step	3,	
the	number	is	kept	in	the	variable	N.	N	is	divided	by	2	in	step	4.	This	
operation	being	an	integer	division,	the	result	is	an	integer.	This	result	
is	assigned	to	Q.	Any	remainder	that	occurs	is	ignored.	Now	in	step	5,	
the	result	Q	is	multiplied	by	2	which	obviously	produces	an	integer	that	
is	either	less	than	the	value	in	N	or	equal	to	it.	Hence	in	step	5	the	dif-
ference	between	N	and	Q	*	2	gives	the	remainder.	This	remainder	value	
is	then	checked	in	step	6	and	step	7	to	print	out	that	it	is	either	even	or	
odd	respectively.	Step	8	just	terminates	the	procedure.

6.	 Print	the	largest	number	among	three	numbers.

 Solution	Let	the	three	numbers	be	represented	by	A, B,	and	C. There
can	be	three	ways	of	solving	the	problem.	The	three	algorithms,	with	
some	differences,	are	given	below.

 1. START
 2. PRINT “ENTER THREE NUMBERS”
 3. INPUT A, B, C
 4. IF A >= B AND B >= C
 THEN PRINT A

Introduction to Algorithms and Programming Concepts 121
 5. IF B >= C AND C >= A
 THEN PRINT B
 ELSE
 PRINT C
 6. STOP

 Explanation	To	find	the	largest	among	the	three	numbers	A,	B	and	C,	
A	is	compared	with	B	to	determine	whether	A	is	larger	than	or	equal	to	
B.	At	the	same	time	it	 is	also	determined	whether	B	is	 larger	than	or	
equal	to	C.	If	both	these	propositions	are	true	then	the	number	A	is	the	
largest	otherwise	A	is	not	the	largest.	Step	4	applies	this	logic	and	prints	
A.

	 	 If		A	is	not	the	largest	number	as	found	by	the	logic	in	step	4,	then	
the	logic	stated	in	step	5	is	applied.	Here	again,	two	propositions	are	
compared.	In	one,	B	is	compared	with	C	and	in	the	other	C	is	compared	
with	A.	If		both	these	propositions	are	true	then	B	is	printed	as	the	larg-
est	otherwise	C	is	printed	as	the	largest.

	 	 Steps	1,	2,	3	and	6	needs	no	mention	as	it	has	been	used	in	earlier	
examples.	

 Or
	 This	algorithm	uses	a	variable	MAX	to	store	the	largest	number.
 1. START
 2. PRINT “ENTER THREE NUMBERS”
 3. INPUT A, B, C
 4. MAX ¨ A
 5. IF B > MAX THEN MAX ¨ B
 6. IF C > MAX THEN MAX ¨ C
 7. PRINT MAX

 8. STOP

 Explanation	 This	 algorithm	 differs	 from	 the	 previous	 one.	 After	 the	
numbers	are	stored	in	the	variables	A,	B	and	C,	the	value	of	any	one	
of	these	is	assigned	to	a	variable	MAX.	This	is	done	in	step	4.	In	step	
5,	the	value	assigned	to	MAX	is	compared	with	that	assigned	to	B	and	
if	the	value	in	B	is	larger	only	then	it’s	value	is	assigned	to	MAX	oth-
erwise	it	remains	unchanged.	In	step	6,	the	proposition	“	IF		C	>	MAX	
”		is	true	then	the	value	in	C	is	assigned	to	MAX.	On	the	other	hand,		if	
the	proposition	is	false	then	the	value	in	MAX	remains	unchanged.	So	
at	the	end	of	step	6,	the	value	in	MAX	is	the	largest	among	the	three	
numbers.	Step	1	is	the	beginning	step	while	step	8	is	the	terminating	
one	for	this	algorithm.

 Or

	 	Here,	the	algorithm	uses	a	nested if	construct.
 1. START
 2. PRINT “ENTER THREE NUMBERS”
 3. INPUT A, B, C
 4. IF A > B THEN
 IF A > C THEN
 PRINT A
 ELSE
 PRINT C
 ELSE IF B > C THEN
 PRINT B
 ELSE
 PRINT C
 5. STOP

 Explanation	Here,	the	nested	if	construct	is	used.	The	construct	“IF	p1	
THEN	action1	ELSE	action2”	decides	if	the	proposition	“	p1”	is	true	then	

action1	is	implemented	otherwise	if	it	is	false	action2	is	implemented.	
Now,	action1	and	action2	may	be	either	plain	statements	like	PRINT	X	
or	INPUT	X	or	another	“IF	p2	THEN	action3	ELSE	action4”	construct,	
were	p2	is	a	proposition.	This	means	that	a	second	“IF	p1	THEN	ac-
tion1	ELSE	action2”	construct	can	be	interposed	within	the	first	“IF	p1	
THEN	 action1	 ELSE	 action2”	 construct.	 Such	 an	 implementation	 is	
known	as	“nested”	if	construct.

	 	 Step	4	implements	the	nested	if	construct.	First	the	proposition	
“A	>	B	”is	checked	to	find	whether	it	is	true	or	false.	If	true,	the	propo-
sition	“A	>	C	”	is	verified	and	if	this	is	found	to	be	true,	the	value	in	A	
is	printed	otherwise	C	is	printed.	But	if	the	first	proposition	“A	>	B”	is	
found	to	be	false	then	the	next	proposition	that	is	checked	is	“B	>	C”.	
At	this	point	 if	 this	proposition	is	true	then	the	value	in	B	is	printed	
whereas	if	it	is	false	C	is	printed.	

7.	 	Take	three	sides	of	a	triangle	as	input	and	check	whether	the	triangle	
can	 be	 drawn	 or	 not.	 If	 possible,	 classify	 the	 triangle	 as	 equilateral,	
isosceles,	or	scalene.

 Solution	Let	 the	 length	of	 three	sides	of	 the	 triangle	be	represented	
by	A,	B,	and	C.	Two	alternative	algorithms	for	solving	the	problem	are	
given,	with	explanations	after	each	step,	as	follows:

 1. START
 Step	1	starts	the	procedure.
 2. PRINT “ENTER LENGTH OF THREE SIDES OF A
 TRIANGLE”
 Step	2	outputs	a	message	asking	for	the	entry	of	the	lengths		 	
	 							for	each	side	of	the	triangle.	
 3. INPUT A, B, C
 Step	3	reads	the	values	for	the	lengths	that	has	been	entered	and		
	 							assigns	them	to	A,	B	and	C.	
 4. IF A + B > C AND B + C > A AND A + C > B THEN
 PRINT “TRIANGLE CAN BE DRAWN”
 ELSE

 PRINT “TRIANGLE CANNOT BE DRAWN”: GOTO 6

 	It	 is	 well	 known	 that	 in	 a	 triangle,	 the	 summation	 of	 lengths	 of	
any	 two	 sides	 is	 always	 greater	 than	 the	 length	 of	 the	 third	 side.		
This	 is	 checked	 in	 step	 4.	 So	 for	 a	 triangle	 all	 the	 propositions
“A	+	B	>	C	”,		“	B	+	C	>	A	”	and	“	A	+	C	>	B	”		must	be	true.	In	such	a	
case,	with	the	lengths	of	the	three	sides,	that	has	been	entered,	a	trian-
gle	can	be	formed.	Thus,	the	message	“TRIANGLE CAN BE DRAWN”
is	printed	and	the	next	step	5	is	executed.	But	if	any	one	of	the	above	
three	propositions	is	not	true	then		the	message	“TRIANGLE CANNOT
BE DRAWN” is	printed	and	so	no	classification	is	required.	Thus	in	such	
a	case	the	algorithm	is	terminated	in	step	6.

 5. IF A = B AND B = C THEN
 PRINT “EQUILATERAL”
 ELSE

 IF A != B AND B != C AND C !=A THEN
 PRINT “SCALENE”
 ELSE
 PRINT “ISOSCELES”

	 	 After	 it	 has	 been	 found	 in	 step	 4	 that	 a	 triangle	 can	 be	 drawn,	
this	step	 is	executed.	To	find	whether	 the	 triangle	 is	an	“EQUILAT-
ERAL” triangle	the	propositions	“A = B”	and	“B = C”	are	checked.	

122 Computer Fundamentals and Programming in C

If	 both	 of	 these	 are	 true,	 then	 the	 message	 “EQUILATERAL” is	
printed	 which	 means	 that	 the	 triangle	 is	 an	 equilateral	 triangle.	 On	
the	 other	 hand	 if	 any	 or	 both	 the	 propositions	 “A = B”	 and	 “B =
C”	 are	 found	 to	 be	 untrue	 then	 the	 propositions	 “A != B”	 and “B
!= C” and	“C !=A”	are	checked.	 If	none	of	 the	sides	are	equal	 to	
each	 other	 then	 all	 these	 propositions	 are	 found	 to	 be	 true	 and	 so	
the	 message	 “SCALENE”	 will	 be	 printed.	 But	 if	 these	 propositions
“A != B”	and “B != C” and	“C !=A”	are	false	then	the	triangle	is	
obviously	an	isosceles	triangle	and	hence	the	message	“ISOSCELES”
is	printed.

 6. STOP

	 The	procedure	terminates	here.
Or
 This	algorithm	differs	from	the	previous	one	and	applies	an		alternate			
	 way	to	test	whether	a	triangle	can	be	drawn	with	the	given	sides	and			
	 also	identify	its	type.
 1. START
 2. PRINT “ENTER THE LENGTH OF 3 SIDES OF A TRIANGLE”
 3. INPUT A, B, C
 4. IF A + B > C AND B + C > A AND C + A > B
 THEN
 PRINT “TRIANGLE CAN BE DRAWN”
 ELSE
 PRINT “TRIANGLE CANNOT BE DRAWN”
 : GO TO 8
 5. IF A = B AND B = C THEN
 PRINT “EQUILATERAL TRIANGLE”
 : GO TO 8
 6. IF A = B OR B = C OR C = A THEN
 PRINT “ISOSCELES TRIANGLE”
 : GO TO 8
 7. PRINT “SCALENE TRIANGLE”
 8. STOP

	 	Having	followed	the	explanations	given	with	each	of	the	earlier	examples,	
the	reader	has	already	understood	how	the	stepwise	method	represents	
the	algorithm	with	suitable	statements.

	 	 In	a	similar	way	the	following	example	exhibits	the	stepwise	rep-
resentation	 of	 	 algorithms	 for	 various	 problems	 using	 the	 stepwise	
method.

8. In	an	academic	institution,	grades	have	to	be	printed	for	students	who	
appeared	in	the	final	exam.	The	criteria	for	allocating	the	grades	against	
the	percentage	of	total	marks	obtained	are	as	follows.

Marks Grade Marks Grade

91–100 O 61–70 B

81–90 E 51–60 C

71–80 A <=	50 F

	 	The	percentage	of	 total	marks	obtained	by	each	student	 in	 the	 final	
exam	is	to	be	given	as	input	to	get	a	printout	of	the	grade	the	student	is	
awarded.

 Solution	 	 The	 percentage	 of	marks	 obtained	 by	 a	 student	 is	 repre-
sented	by	N.	The	algorithm	for	the	given	problem	is	as	follows.

 1. START
 2. PRINT
 “ENTER THE OBTAINED PERCENTAGE MARKS”

 3. INPUT N
 4. IF N > 0 AND N <= 50 THEN
 PRINT “F”
 5. IF N > 50 AND N <= 60 THEN
 PRINT “C”
 6. IF N > 60 AND N <= 70 THEN
 PRINT “B”
 7. IF N > 70 AND N <= 80 THEN
 PRINT “A”
 8. IF N > 80 AND N <= 90 THEN
 PRINT “E”
 9. IF N > 90 AND N <= 100 THEN
 PRINT “O”

 10. STOP

9. Construct	 an	 algorithm	 for	 incrementing	 the	 value	 of	 a	 variable	 that	
starts	with	an	initial	value	of	1	and	stops	when	the	value	becomes	5.

 Solution	This	problem	illustrates	the	use	of	iteration	or	loop	construct.	
Let	the	variable	be	represented	by	C.	The	algorithm	for	the	said	prob-
lem	is	given	as	follows.

 1. START
 2. C ¨ 1
 3. WHILE C <= 5
 4. BEGIN
 5. PRINT C
 6. C ¨ C + 1
 7. END

 8. STOP

10.		Write	an	algorithm	for	the	addition	of	N	given	numbers.

 Solution	Let	the	sum	of	N	given	numbers	be	represented	by	S.	Each	
time	a	number	is	given	as	input,	let	it	is	assigned	to	the	variable	A. The
algorithm	using	the	loop	construct	‘if	…	then	goto	…’	is	used	as	follows:

 1. START
 2. PRINT “HOW MANY NUMBERS?”
 3. INPUT N
 4. S ¨ 0
 5. C ¨ 1
 6. PRINT “ENTER NUMBER”
 7. INPUT A
 8. S ¨ S + A
 9. C ¨ C + 1
 10. IF C <= N THEN GOTO 6
 11. PRINT S
 12. STOP

11.		Develop	the	algorithm	for	finding	the	sum	of	the	series	1	+	2	+	3	+	4	+	
…	up	to	N	terms.

 Solution	Let	the	sum	of	the	series	be	represented	by	S	and	the	num-
ber	of	 terms	by	N.	The	algorithm	 for	 computing	 the	sum	 is	given	as	
follows.

 1. START
 2. PRINT “HOW MANY TERMS?”
 3. INPUT N
 4. S ¨ 0
 5. C ¨ 1
 6. S ¨ S + C
 7. C ¨ C + 1
 8. IF C <= N THEN GOTO 6

While loop construct
for looping till C is

greater than 5

Introduction to Algorithms and Programming Concepts 123
 9. PRINT S
 10. STOP

12.		Write	an	algorithm	for	determining	the	sum	of	the	series	2	+	4	+	8	+	…	
up	to	N.

 Solution	Let	the	sum	of	the	series	be	represented	by	S	and	the	num-
ber	of	terms	in	the	series	by	N.	The	algorithm	for	this	problem	is	given	
as	follows.

 1. START
 2. PRINT “ENTER THE VALUE OF N”
 3. INPUT N
 4. S ¨ 0
 5. C ¨ 2
 6. S ¨ S + C
 7. C ¨ C * 2
 8. IF C <= N THEN GOTO STEP 6
 9. PRINT S
 10. STOP

13.		Write	an	algorithm	to	find	out	whether	a	given	number	is	a	prime	num-
ber	or	not.

 Solution	 The	 algorithm	 for	 checking	 whether	 a	 given	 number	 is	 a	
prime	number	or	not	is	as	follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. IF N = 2 THEN
 PRINT “CO-PRIME” GOTO STEP 12

 5. D ¨ 2

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q*D
 8. IF R = 0 THEN GOTO STEP 11

 9. D ¨ D + 1
 10. IF D <= N/2 THEN GOTO STEP 6
 11. IF R = 0 THEN
 PRINT “NOT PRIME”
 ELSE
 PRINT “PRIME”
 12. STOP

14.		Write	an	algorithm	for	calculating	the	factorial	of	a	given	number	N.

 Solution	The	algorithm	for	finding	the	factorial	of	number	N	is	as	fol-
lows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. F ¨ 1
 5. C ¨ 1
 6. WHILE C <= N
 7. BEGIN

8. F ¨ F * C

9. C ¨ C + 1

 10. END

 11. PRINT F

 12. STOP

15.	Write	an	algorithm	to	print	the	Fibonacci	series	up	to	N	terms.
 Solution	The	Fibonacci	series	consisting	of	the	following	terms	1,	1,	2,	

3,	5,	8,	13,	…	is	generated	using	the	following	algorithm.

While loop construct
for looping till C is

greater than N

 1. START
 2. PRINT “ENTER THE NUMBER OF TERMS”

 3. INPUT N
 4. C ¨ 1
 5. T ¨ 1
 6. T1 ¨ 0
 7. T2 ¨ 1
 8. PRINT T
 9. T ¨ T1 + T2
 10. C ¨ C + 1
 11. T1 ¨ T2
 12. T2 ¨ T
 13. IF C <= N THEN GOTO 8
 14. STOP

16.		Write	an	algorithm	to	find	the	sum	of	the	series	1	+	x	+	x2	+	x3	+	x4	+	…	
up	to	N	terms.

 Solution
 1. START

 2. PRINT “HOW MANY TERMS”

 3. INPUT N

 4. PRINT “ENTER VALUE OF X”
 5. INPUT X

 6. T ¨ 1

 7. C ¨ 1

 8. S ¨ 0

 9. S ¨ S + T

 10. C ¨ C + 1

 11. T ¨ T * X
 12. IF C <= N THEN GOTO 9
 13. PRINT S
 14. STOP

17. 	Write	the	algorithm	for	computing	the	sum	of	digits	in	a	number.

 Solution
 1. START
 2. PRINT “ENTER THE NUMBER”

 3. INPUT N
 4. S ¨ 0
 5. Q ¨ N/10 (Integer division)
 6. R ¨ N – Q * 10
 7. S ¨ S + R
 8. N ¨ Q
 9. IF N > 0 THEN GOTO 5
 10. PRINT S
 11. STOP

18.		Write	an	algorithm	to	find	the	largest	number	among	a	list	of	numbers.

 Solution	The	 largest	number	can	be	 found	using	 the	 following	algo-
rithm.

 1. START
 2. PRINT “ENTER,
 TOTAL COUNT OF NUMBERS IN LIST”
 3. INPUT N

 4. C ¨ 0
 5. PRINT “ENTER FIRST NUMBER”
 6. INPUT A

 7. C ¨ C + 1

124 Computer Fundamentals and Programming in C

 8. MAX ¨ A
 9. PRINT “ENTER NEXT NUMBER”
 10. INPUT B
 11. C ¨ C + 1
 12. IF B > MAX THEN
 MAX ¨ B
 13. IF C <= N THEN GOTO STEP 9
 14. PRINT MAX
 15. STOP

19.		Write	an	algorithm	to	check	whether	a	given	number	is	an	Armstrong	
number	or	not.	An	Armstrong	number	 is	one	in	which	the	sum	of	the	
cube	of	each	of	the	digits	equals	that	number.

 Solution	 If	a	number	153	is	considered,	the	required	sum	is	(13	+	53	+	
3
3
),	i.e.,	153.	This	shows	that	the	number	is	an	Armstrong	number.	The	

algorithm	to	check	whether	153	is	an	Armstrong	number	or	not,	is	given	
as	follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. M ¨ N
 5. S ¨ 0
 6. Q ¨ N/10 (Integer division)
 7. R ¨ N – Q * 10
 8. S ¨ S + R * R * R
 9. N ¨ Q
 10. IF N > 0 THEN GOTO STEP 6
 11. IF S = M THEN
 PRINT “THE NUMBER IS ARMSTRONG”
 ELSE PRINT “THE NUMBER IS NOT ARMSTRONG”
 12. STOP

20.		Write	an	algorithm	for	computing	 the	sum	of	 the	series	1	+	x	+	x2/2!
+	x3/3!	+	x4/4!	+	…	up	to	N	terms.

 Solution
 1. START
 2. PRINT “ENTER NUMBER OF TERMS”
 3. INPUT N
 4. PRINT “ENTER A NUMBER”
 5. INPUT X
 6. T ¨ 1
 7. S ¨ 0
 8. C ¨ 1
 9. S ¨ S + T
 10. T ¨ T * X/C
 11. C ¨ C + 1
 12. IF C <= N THEN GO TO STEP 9
 13. PRINT S

 14. STOP

Pseudo-code
Like step-form, Pseudo-code is a written statement of an al-
gorithm using a restricted and well-defined vocabulary. It is
similar to a 3GL, and for many programmers and program
designers it is the preferred way to state algorithms and pro-
gram specifications.

 Although there is no standard for pseudo-code, it is gener-
ally quite easy to read and use. For instance, a sample pseu-
do-code is written as follows:
dowhile kettle_empty
 Add_Water_To_Kettle
end dowhile

As can be seen, it is a precise statement of a while loop.

Flowcharts
A flowchart depicts appropriate steps to be followed in order
to arrive at the solution to a problem. It is a program design
tool which is used before writing the actual program. Flow-
charts are generally developed in the early stages of formu-
lating solutions to problems.
 A flowchart comprises a set of standard shaped boxes that
are interconnected by flow lines. Flow lines have arrows to
indicate the direction of the flow of control between the box-
es. The activity to be performed is written within the boxes
in English. In addition, there are connector symbols that are
used to indicate that the flow of control continues elsewhere,
for example, the next page.
 Flowcharts facilitate communication between program-
mers users and business persons. These flowcharts play a vital
role in the programming of a problem and are quite helpful in
understanding the logic of complicated and lengthy problems.
Once the flowchart is drawn, it becomes easy to write the
program in any high-level language. Often flowcharts
are helpful in explaining the program to others. Hence, a
flowchart is a must for better documentation of a complex
program.

Standards for flowcharts The following standards should
be adhered to while drawing flow charts.

∑ Flowcharts must be drawn on white, unlined 8½¢¢ × 11¢¢
paper, on one side only.

∑ Flowcharts start on the top of the page and flow down and
to the right.

∑ Only standard flowcharting symbols should be used.
∑ A template to draw the final version of flowchart should be

used.
∑ The contents of each symbol should be printed legibly.
∑ English should be used in flowcharts, not programming

language.
∑ The flowchart for each subroutine, if any, must appear on

a separate page. Each subroutine begins with a terminal
symbol with the subroutine name and a terminal symbol
labeled return at the end.

∑ Draw arrows between symbols with a straight edge and use
arrowheads to indicate the direction of the logic flow.

Guidelines for drawing a flowchart Flowcharts are usu-
ally drawn using standard symbols; however, some special
symbols can also be developed when required. Some stan-

Introduction to Algorithms and Programming Concepts 125
dard symbols frequently required for flowcharting many
computer programs are shown in Fig.7.2.

Computational steps or processing
function of a program

Start or end of the program or
flowchart

Input entry or output display
operation

A decision-making and branching
operation that has two alternatives

Connects remote parts of the
flowchart on the same page

A magnetic tape

A magnetic disk

Connects remote portions
of the flowchart not on the
same page

Flow lines

Add comments or furnish
clarifications

Display

Fig. 7.2 Flowchart symbols

The following are some guidelines in flowcharting.
∑ In drawing a proper flowchart, all necessary requirements

should be listed out in a logical order.
∑ There should be a logical start and stop to the flowchart.
∑ The flowchart should be clear, neat, and easy to follow.

There should be no ambiguity in understanding the flow-
chart.

∑ The usual direction of the flow of a procedure or system is
from left to right or top to bottom.

∑ Only one flow line should emerge from a process symbol.

or

∑ Only one flow line should enter a decision symbol, but two
or three flow lines, one for each possible answer, can leave
the decision symbol.

false

true

∑ Only one flow line is used in conjunction with a terminal
symbol.

START STOP

∑ The writing within standard symbols should be brief. If
necessary, the annotation symbol can be used to describe
data or computational steps more clearly.

This is a top secret data

∑ If the flowchart becomes complex, connector symbols
should be used to reduce the number of flow lines. The in-
tersection of flow lines should be avoided to make the flow-
chart a more effective and better way of communication.

∑ The validity of the flowchart should be tested by passing
simple test data through it.

∑ A sequence of steps or processes that are executed in a
particular order is shown using process symbols connect-
ed with flow lines. One flow line enters the first process
while one flow line emerges from the last process in the
sequence.

First process in sequence

Last process in sequence

∑ Selection of a process or step is depicted by the decision
making and process symbols. Only one input indicated by
one incoming flow line and one or more output flowing
out of this structure exists. The decision symbol and the
process symbols are connected by flow lines.

process2process1

falsetrue

126 Computer Fundamentals and Programming in C

∑ Iteration or looping is depicted by a combination of pro-
cess and decision symbols placed in proper order. here
flow lines are used to connect the symbols and depict input
and output to this structure.

START

Process 1

Decision
False

True

Process X
Process Y

Advantages of using flowcharts

Communication Flowcharts are a better way of communi-
cating the logic of a system to all concerned.

Effective analysis With the help of flowcharts, problems
can be analysed more effectively.

Proper documentation Program flowcharts serve as a
good program documentation needed for various purposes.

Efficient coding Flowcharts act as a guide or blueprint dur-
ing the systems analysis and program development phase.

Proper debugging Flowcharts help in the debugging pro-
cess.

Efficient program maintenance The maintenance of an
operating program becomes easy with the help of a flowchart.

Limitations of using flowcharts

Complex logic Sometimes, the program logic is quite com-
plicated. In such a case, a flowchart becomes complex and
clumsy.

Alterations and modifications If alterations are required,
the flowchart may need to be redrawn completely.

Reproduction Since the flowchart symbols cannot be
typed in, the reproduction of a flowchart becomes a problem.

Loss of objective The essentials of what has to be done can
easily be lost in the technical details of how it is to be done.

note

 ∑ A flowchart comprises a set of standard shaped boxes that
are interconnected by flow lines to represent an algorithm.

 ∑ There should be a logical start and stop to the flowchart.
 ∑ The usual direction of the flow of a procedure or system

is from left to right or top to bottom.
 ∑ The intersection of flow lines should be avoided.
 ∑ Flowcharts facilitate communication between program-

mers and users.

Flowcharting examples A few examples on flowcharting
are presented for a proper understanding of the technique.
This will help the student in the program development pro-
cess at a later stage.

ExamplEs

21. Draw	a	flowchart	to	find	the	sum	of	the	first	50	natural	numbers.

 Solution

START

STOP

SUM = 0

N = 0

N = N+1

SUM = SUM+N

IS
N = 50?

NO

PRINT SUM

YES

22.		Draw	 a	 flowchart	 to	 find	 the	 largest	 of	 three	 numbers	 A,	 B,
and	C.

 Solution

START

STOP

READ A,B,C

PRINT CPRINT B PRINT A

IS A>B?IS B>C? IS A>C?

Y
E

S

NO

NO NO

YES

Y
E

S

Introduction to Algorithms and Programming Concepts 127
23.		Draw	 a	 flowchart	 for	 computing	 factorial	 N	 (N!)	 where

N!	=	1	×	2	×	3	×	…	×	N.

 Solution

START

END

T=1
F=1

T=T+1
IS

T>N?

NO

PRINT F

READ N

YES

F=F*T

24.		Draw	a	flowchart	for	calculating	the	simple	interest	using	the	formula	
SI	=	(P	*	T	*	R)/100,	where	P	denotes	the	principal	amount,	T	time,	and	
R	rate	of	interest.	Also,	show	the	algorithm	in	step-form.

 Solution

START

STOP

CALCULATE
P*T*R
100

PRINT VALUE FOR I

INPUT
P, T, R

Step 1: START

Step 2: Read P, ,T R

Step 3: Calculate I=P*R*T/100

Step 4: IPRINT

Step 5: STOP

I =

25.		The	XYZ	Construction	Company	plans	to	give	a	5%	year-end	bonus	to	
each	of	its	employees	earning	Rs	5,000	or	more	per	year,	and	a	fixed	
bonus	of	Rs	250	to	all	other	employees.	Draw	a	flowchart	and	write	the	
step-form	algorithm	for	printing	the	bonus	of	any	employee.

 Solution

Step 5: Calculate Bonus = 250

START

STOP

PRINT BONUS

INPUT SALARY
OF AN EMPLOYEE

IS
SALARY>=5000

BONUS = 250
BONUS =

0.05*SALARY

NO YES

Step 1: START

Step 2: Read salary of
an employee

Step 3: salary is greater than
or equal to 5,000
Step 4 Step 5

IF
THEN

ELSE

Step 4: Calculate
Bonus = 0.05 * Salary
Go to Step 6

Step 6: Print Bonus

Step 7: STOP

26.		Prepare	a	flowchart	to	read	the	marks	of	a	student	and	classify	them	
into	different	grades.	If	the	marks	secured	are	greater	than	or	equal	to	
90,	the	student	is	awarded	Grade	A;	if	they	are	greater	than	or	equal	
to	80	but	less	than	90,	Grade	B	is	awarded;	if	they	are	greater	than	or	
equal	to	65	but	less	than	80,	Grade	C	is	awarded;	otherwise	Grade	D	is	
awarded.

 Solution

START

READ MARKS

ARE

MARKS 90≥

ARE

MARKS 80≥

ARE
MARKS 65>

GRADE = A

GRADE = B

GRADE = C GRADE = D

PRINT GRADE

STOP

NOYES

NOYES

NOYES

128 Computer Fundamentals and Programming in C

27.		Draw	a	flowchart	to	find	the	roots	of	a	quadratic	equation.

 Solution

START

D=B*B–4*A*C

READ A,B,C

STOP

NO IS
D>0

IS D = 0
REAL1=(–B+SQRT(D))/(2*A)
REAL2=(–B–SQRT(D))/(2*A)

REAL1= B/2*A–
REAL2=–B/2*A

PRINT
“COMPLEX
ROOTS”

PRINT A,B,C
REAL1,
REAL2

PRINT A,B,C
REAL1,
REAL2

YES

NO YES

28.	Draw	a	flowchart	for	printing	the	sum	of	even	terms	contained	within	the	
numbers	0	to	20.

 Solution

STOP

PRINT SUM

START

SUM=0

COUNT=1

COUNT=COUNT+1

IS COUNT
AN EVEN
NUMBER?

IS
COUNT>20

SUM=SUM+COUNT

NO YES

YES

NO

B

7.1.6 strategy for Designing Algorithms
Now that the meaning of algorithm and data has been un-
derstood, strategies can be devised for designing algorithms.
The following is a useful strategy.

Investigation step
 1. Identify the outputs needed.
 This includes the form in which the outputs have to be

presented. At the same time, it has to be determined at
what intervals and with what precision the output data
needs to be given to the user.

 2. Identify the input variables available.
 This activity considers the specific inputs available

for this problem, the form in which the input variables
would be available, the availability of inputs at different
intervals, the ways in which the input would be fed to
the transforming process.

 3. Identify the major decisions and conditions.
 This activity looks into the conditions imposed by the

need identified and the limitations of the environment in
which the algorithm has to be implemented.

 4. Identify the processes required to transform inputs into
required outputs.

 This activity identifies the various types of procedures
needed to manipulate the inputs, within the bounding
conditions and the limitations mentioned in step 3, to
produce the needed outputs.

 5. Identify the environment available.
 This activity determines the kind of users and the type of

computing machines and software available for imple-
menting the solution through the processes considered
in steps.

Top–down development step
 1. Devise the overall problem solution by identifying the

major components of the system.
 The goal is to divide the problem solution into manage-

able small pieces that can be solved separately.
 2. Verify the feasibility of breaking up the overall problem

solution.
 The basic idea here is to check that though each small

piece of solution procedure are independent, they are
not entirely independent of each other, as they together
form the whole solution to the problem. In fact, the dif-
ferent pieces of solution procedures have to cooperate
and communicate in order to solve the larger problem.

Stepwise refinement
 1. Work out each and every detail for each small piece of

manageable solution procedure.

Introduction to Algorithms and Programming Concepts 129
 every input and output dealt with and the transformation

algorithms implemented in each small piece of solution
procedure, which is also known as process, is detailed.
Even the interfacing details between each small proce-
dure are worked out.

 2. Decompose any solution procedure into further small-
er pieces and iterate until the desired level of detail is
achieved.

 every small piece of solution procedure detailed in step
1 is checked once again. If necessary any of these may
be further broken up into still smaller pieces of solution
procedure till it can no more be divided into meaningful
procedure.

 3. Group processes together which have some commonality.
 Some small processes may have to interface with a com-

mon upper level process. Such processes may be grouped
together if required.

 4. Group variables together which have some appropriate
commonality.

 Certain variables of same type may be dealt as elements
of a group.

 5. Test each small procedure for its detail and correctness
and its interfacing with the other small procedures.

 Walk through each of the small procedures to determine
whether it satisfies the primary requirements and would
deliver the appropriate outputs. Also, suitable tests have
to be carried out to verify the interfacing between vari-
ous procedures. Hence, the top-down approach starts
with a big and hazy goal. It breaks the big goal into
smaller components. These components are themselves
broken down into smaller parts. This strategy continues
until the designer reaches the stage where he or she has
concrete steps that can actually be carried out.

 It has to be noted that the top-down approach does not
actually take into account any existing equipment,
people, or processes. It begins with a “clean slate” and
obtains the optimal solution. The top-down approach is
most appropriate for large and complex projects where
there is no existing equipment to worry about. How-
ever, it may be costly because, sometimes, the existing
equipments may not fit into the new plan and it has to
be replaced. However, if the existing equipments can be
made to fit into the new plan with very less effort, it
would be beneficial to use it and save cost.

note

 ∑ Investigation phase determines the requirements for the
problem solution.

 ∑ The top-down development phase plans out the way the
solution has to be done by breaking it into smaller mod-
ules and establishing a logical connection among them.

 ∑ The step-wise refinement further decomposes the modules,
defines the procedure in it and verifies the correctness of it.

7.1.7 tracing an Algorithm to Depict logic
An algorithm is a collection of some procedural steps that
have some precedence relation between them. Certain pro-
cedures may have to be performed before some others are
performed. Decision procedures may also be involved to
choose whether some procedures arranged one after other are
to be executed in the given order or skipped or implemented
repetitively on fulfillment of conditions arising out of some
preceding manipulations. Hence, an algorithm is a collec-
tion of procedures that results in providing a solution to a
problem. Tracing an algorithm primarily involves tracking
the outcome of every procedure in the order they are placed.
Tracking in turn means verifying every procedure one by one
to determine and confirm the corresponding result that is to
be obtained. This in turn can be traced to offer an overall
output from the implementation of the algorithm as a whole.
Consider Example 26 given in this chapter for the purpose
of tracing the algorithm to correctly depict the logic of the
solution. Here at the start, the “mark obtained by a student
in a subject” is accepted as input to the algorithm. This pro-
cedure is determined to be essential and alright. In the next
step, the marks entered is compared with 90. As given, if the
mark is greater than 90, then the mark obtained is categorized
as Grade A and printed, otherwise it is be further compared.
Well, this part of the algorithm matches with the requirement
and therefore this part of the logic is correct.
 For the case of further comparison, the mark is again com-
pared with 80 and if it is greater, then Grade B is printed. Oth-
erwise, if the mark is less than 80, then further comparison
is carried out. This part of the logic satisfies the requirement
of the problem. In the next step of comparison, the mark is
compared with 65. If the mark is lesser than 65, Grade C is
printed, otherwise Grade D is printed. Here also, the flow-
chart depicts that the correct logic has been implemented.
 The above method shows how the logic of an algorithm,
planned and represented by a tool like the flowchart, can be
verified for its correctness. This technique, also referred to as
deskcheck or dry run, can also be used for algorithms repre-
sented by tools other than the flowchart.

7.1.8  Specification for Converting Algorithms
into Programs

By now, the method of formulating an algorithm has been
understood. Once the algorithm, for solution of a problem, is
formed and represented using any of the tools like step-form
or flowchart or pseudo code, etc., it has to be transformed
into some programming language code. This means that a
program, in a programming language, has to be written to
represent the algorithm that provides a solution to a problem.
 Hence, the general procedure to convert an algorithm into
a program is given as follows:

130 Computer Fundamentals and Programming in C

Code the algorithm into a program—Understand the syntax
and control structures used in the language that has been se-
lected and write the equivalent program instructions based
upon the algorithm that was created. Each statement in an al-
gorithm may require one or more lines of programming code.
Desk-check the program—Check the program code by em-
ploying the desk-check method and make sure that the sam-
ple data selected produces the expected output.
Evaluate and modify, if necessary, the program—Based on
the outcome of desk-checking the program, make program
code changes, if necessary, or make changes to the original
algorithm, if need be.
Do not reinvent the wheel—If the design code already exists,
modify it, do not remake it.

note

 ∑ An algorithm can be traced by verifying every procedure
one by one to determine and confirm the corresponding
result that is to be obtained.

 ∑ The general procedure to convert an algorithm into a pro-
gram is to code the algorithm using a suitable program-
ming language, check the program code by employing
the desk-check method and finally evaluate and modify
the program, if needed.

 Because the reader has not yet been introduced to the ba-
sics of the C language, the reader has to accept the use of
certain instructions like #include <stdio.h>, int main(),
printf(), scanf(), and return without much explanation at
this stage in the example program being demonstrated below.
 However, on a very preliminary level, the general form
of a C program and the use of some of the necessary C
language instructions are explained briefly as follows:
1. All C programs start with:
 #include <stdio.h>
 int main ()
 {

2. In C, all variables must be declared before using them. So
the line next to the two instruction lines and{, given in step 1
above should be any variable declarations that is needed.
 For example, if a variable called “a” is supposed to store
an integer, then it is declared as follows:
 int a;

3. Here, scanf() is used for inputting data to the C program
and printf() is used to output data on the monitor screen.
4. The C program has to be terminated with a statement giv-
en below:
 return 0;
 }

 Here is an example showing how to convert some
 pseudocode statements into C language statements:

Pseudocode C language code
LOOP { while(1) {

EXIT LOOP break;

IF (conditions) { if (conditions) {

ELSE IF (conditions) { else if (conditions) {

ELSE { else

INPUT a scanf(“%d”,&a);

OUTPUT “Value of a:” a printf(“Value of a: %d”,a);

+ - * / % + - * / %

= ==

<— =

!= !=

AND &&

OR ||

NOT !

 To demonstrate the procedure of conversion from an algo-
rithm to a program in C, an example is given below.

Problem statement: Write the algorithm and the correspond-
ing program in C for adding two integer numbers and print-
ing the result.
Solution
Algorithm
1. START
2. PRINT “ENTER TWO NUMBERS”
3. INPUT A, B
4. R = A + B
5. PRINT “RESULT =”
6. PRINT R
7. STOP.

Program in C
 int main()
 {
 int A, B;
 printf(“\n ENTER TWO NUMBERS:”);
 scanf(“%d%d”,&A,&B);
 R = A + B;
 printf(“\n RESULT = ”);
 printf(“%d”,R);

 return 0;

 }

7.2 struCtureD ProgrAmming ConCePt
In 1968, computer scientist Edsger Dijkstra of Netherlands
published a letter to the editor in the journal of the Associa-
tion of Computing Machinery with the title ‘GoTo statement
considered harmful’. goto is a command available in most
programming languages to transfer a control to a particular
statement. For three decades, Dijkstra had been crusading for

Introduction to Algorithms and Programming Concepts 131
a better way of programming—a systematic way to organize
programs—called structured programming.
 Structured programming has been called a revolution in
programming and is considered as one of the most impor-
tant advancements in software in the past two decades. Both
academic and industrial professionals are inclined towards
the philosophy and techniques of structured programming.
Today, it can be safely said that virtually all software devel-
opers acknowledge the merits of the structured programming
approach and use it in software development.
 There is no standard definition of structured programs
available but it is often thought to be programming without
the use of a goto statement. Indeed, structured programming
does discourage the frequent use of goto but there is more to
it than that.
 Structured programming is:

∑ concerned with improving the programming process
through better organization of programs and better pro-
gramming notation to facilitate correct and clear descrip-
tion of data and control structure.

∑ concerned with improved programming languages and or-
ganized programming techniques which should be under-
standable and therefore, more easily modifiable and suit-
able for documentation.

∑ more economical to run because good organization and no-
tation make it easier for an optimizing compiler to under-
stand the program logic.

∑ more correct and therefore more easily debugged, because
general correctness theorems dealing with structures can
be applied to prove the correctness of programs.

 Structured programming can be defined as a
∑ top–down analysis for program solving
∑ modularization for program structure and organization
∑ structured code for individual modules

7.2.1 top–Down Analysis
A program is a collection of instructions in a particular
language that is prepared to solve a specific problem. For
larger programs, developing a solution can be very com-
plicated. From where should it start? Where should it
terminate? Top-down analysis is a method of problem
solving and problem analysis. The essential idea is to sub-
divide a large problem into several smaller tasks or parts for
ease of analysis.
 Top-down analysis, therefore, simplifies or reduces the
complexity of the process of problem solving. It is not lim-
ited by the type of program. Top-down analysis is a general
method for attending to any problem. It provides a strategy
that has to be followed for solving all problems.

 There are two essential ideas in top-down analysis:
∑ subdivision of a problem
∑ hierarchy of tasks
 Subdivision of a problem means breaking a big problem
into two or more smaller problems. Therefore, to solve the
big problem, first these smaller problems have to be solved.
 Top-down analysis does not simply divide a problem into
two or more smaller problems. It goes further than that. Each
of these smaller problems is further subdivided. This process
continues downwards, creating a hierarchy of tasks, from one
level to the next, until no further break up is possible.
 The four basic steps to top-down analysis are as follows:
Step 1: Define the complete scope of the problem to deter-
mine the basic requirement for its solution. Three factors
must be considered in the definition of a programming prob-
lem.

Input What data is required to be processed by the program?

Process What must be done with the input data? What type
of processing is required?

Output What information should the program produce? In
what form should it be presented?
Step 2: Based on the definition of the problem, divide the
problem into two or more separate parts.
Step 3: Carefully define the scope of each of these separate
tasks and subdivide them further, if necessary, into two or
more smaller tasks.
Step 4: repeat step 3. every step at the lowest level de-
scribes a simple task, which cannot be broken further.

7.2.2 modular Programming
Modular programming is a program that is divided into logi-
cally independent smaller sections, which can be written sepa-
rately. These sections, being separate and independent units,
are called modules.

∑ A module consists of a series of program instructions or
statements in some programming language.

∑ A module is clearly terminated by some special markers
required by the syntax of the language. For example, a BA-
SIC language subroutine is terminated by the return state-
ment.

∑ A module as a whole has a unique name.
∑ A module has only one entry point to which control is trans-

ferred from the outside and only one exit point from which
control is returned to the calling module.

 The following are some of the advantages of modular pro-
gramming.

∑ Complex programs may be divided into simpler and more
manageable elements.

132 Computer Fundamentals and Programming in C

∑ Simultaneous coding of different modules by several pro-
grammers is possible.

∑ A library of modules may be created, and these modules
may be used in other programs as and when needed.

∑ The location of program errors may be traced to a particu-
lar module; thus, debugging and maintenance may be sim-
plified.

7.2.3 structured Code
After the top-down analysis and design of the modular struc-
ture, the third and final phase of structured programming in-
volves the use of structured code. Structured programming is
a method of coding, i.e., writing a program that produces a
well-organized module.
 A high-level language supports several control statements,
also called structured control statements or structured code,
to produce a well-organized structured module. These control
statements represent conditional and repetitive type of execu-
tions. Each programming language has different syntax for
these statements.
 In C, the if and case statements are examples of condi-
tional execution whereas for, while, and do...while state-
ments represent repetitive execution. In BASIC, for-next
and while-wend are examples of repetitive execution. Let us
consider the goto statement of BASIC, which is a simple but
not a structured control statement. The goto statement can
break the normal flow of the program and transfer control to
any arbitrary point in a program. A module that does not have
a normal flow control is unorganized and unreadable.
 The following example is a demonstration of a program us-
ing several goto statements. Note that at line numbers 20, 60,
and 80, the normal flow control is broken. For example, from
line number 60, control goes back to line 40 instead of line 70
in case value of (R – G) is less than 0.001.
 10 INPUT X
 20 IF X < 0 THEN GOTO 90
 30 G = X/2
 40 R = X/G
 50 G = (R + G)/2
 60 IF ABS(R - G) < 0.001 THEN GOTO 40
 70 PRINT G
 80 GOTO 100
 90 PRINT “INVALID INPUT”
 100 END

 The structured version of this program using while-wend
statement is given below.
 INPUT X
 IF X > 0
 THEN
 G = X/2
 R = X/G
 WHILE ABS (R – G) < 0.001
 R = X/G
 G = (R + G)/2

 WEND
 PRINT G
 ELSE
 PRINT “INVALID INPUT”
 END

 Now if there is no normal break of control flow, gotos
are inevitable in unstructured languages but they can be and
should be always avoided while using structured programs
except in unavoidable situations.

7.2.4 the Process of Programming
The job of a programmer is not just writing program instruc-
tions. The programmer does several other additional jobs to
create a working program. There are some logical and se-
quential job steps which the programmer has to follow to
make the program operational.
These are as follows:

 1. Understand the problem to be solved
 2. Think and design the solution logic
 3. Write the program in the chosen programming lan-

guage
 4. Translate the program to machine code
 5. Test the program with sample data
 6. Put the program into operation

 The first job of the programmer is to understand the prob-
lem. To do that the requirements of the problem should be
clearly defined. And for this, the programmer may have to in-
teract with the user to know the needs of the user. Thus this
phase of the job determines the ‘what to’ of the task.
 The next job is to develop the logic of solving the prob-
lem. Different solution logics are designed and the order in
which these are to be used in the program are defined. Hence,
this phase of the job specifies the ‘how to’ of the task.
 Once the logics are developed, the third phase of the job is
to write the program using a chosen programming language.
The rules of the programming language have to be observed
while writing the program instructions.
 The computer recognizes and works with 1’s and 0’s.
Hence program instructions have to be converted to 1’s and
0’s for the computer to execute it. Thus, after the program is
written, it is translated to the machine code, which is in 1’s
and 0’s with the help of a translating program.
 Now, the program is tested with dummy data. Errors in
the programming logic are detected during this phase and are
removed by making necessary changes in either the logic or
the program instructions.
 The last phase is to make the program operational. This
means, the program is put to actual use. Errors occurring in
this phase are rectified to finally make the program work to
the user’s satisfaction.

Introduction to Algorithms and Programming Concepts 133

note

 ∑ Structured programming involves top–down analysis for program solving, modularization of program structure and organizing struc-
tured code for individual module.

 ∑ Top-down analysis breaks the whole problem into smaller logical tasks and defines the hierarchical link between the tasks.
 ∑ Modularization of program structure means making the small logical tasks into independent program modules that carries out

the desired tasks.
 ∑ Structured coding is structured programming which consists of writing a program that produces a well-organized module.

summAry

An	algorithm	is	a	statement	about	how	a	problem	will	be	solved	and	almost	
every	algorithm	exhibits	the	same	features.	There	are	many	ways	of	stating	
algorithms;	three	of	them	have	been	mentioned	here.	These	are	step-form,	
pseudo	code,	and	flowchart	method.	Of	these	flowchart	is	a	pictorial	way	of	
representing	the	algorithm.	Here,	the	START	and	STOP	are	represented	
by	an	ellipse-like	figure,	 ,	decision	construct	by	the	rhombus-like	
figure,	 ,	the	processes	by	rectangles,	 	and	input/out-
put	by	parallelograms,	 .	Lines	and	arrows	connect	 these	blocks.	
Every	useful	algorithm	uses	data,	which	might	vary	during	 the	course	of	
the	algorithm.	To	design	algorithms,	it	is	a	good	idea	to	develop	and	use	
a design	strategy.

	 Generally	the	design	strategy	consists	of	three	stages.	The	first	stage	
is	 investigation	activity	 followed	by	 the	 top-down	development	approach	
stage	 and	 eventually	 a	 stepwise	 refinement	 process.	 Once	 the	 design	
strategy	is	decided	the	algorithm	designed	is	traced	to	determine	whether	
it	represents	the	logic.	Eventually,	the	designed	and	checked,	algorithm	is	
transformed	into	a	program.
	 A	program	is	a	sequence	of	 instructions	and	the	process	of	writing	a	
program	is	called	programming.	Nowadays,	structured	programming	tech-
nique	is	used	to	develop	a	program	in	a	high-level	programming	language.

Key terms

Algorithm	 An	algorithm	specifies	a	procedure	for	solving	a	problem	in	a	
finite	number	of	steps.	

Correctness	 Correctness	means	how	easily	its	logic	can	be	argued	to	
meet	the	algorithm’s	primary	goal.

Data	 It	is	a	symbolic	representation	of	value.

Debug It	means to	search	and	remove	errors	in	a	program.

High-level programming language	 A	 language	similar	 to	human	 lan-
guages	that	makes	it	easy	for	a	programmer	to	write	programs	and	identify	
and	correct	errors	in	them.

Investigation step	 It	 is	a	step	 to	determine	 the	 input,	output	and	pro-
cessing	requirements	of	a	problem.

Low-level programming language Closer	to	the	native	language	of	the	
computer,	which	is	1’s	and	0’s.

Machine language	 Machine	 language	 is	a	 language	 that	provides	 in-
structions	in	the	form	of	binary	numbers	consisting	of	1’s	and	0’s	to	which	

the	computer	responds	directly

Portability of language	 A	programming	 language	 that	 is	not	machine	
dependent	and	can	be	used	in	any	computer.

Program	 A	set	of	logically	related instructions	arranged	in	a	sequence	
that	directs	the	computer	in	solving	a	problem.	

Programming language	 A	language	composed	of	a	set	of	instructions	
understandable	by	the	programmer.

Programming It	is	a	process	of	writing	a	program.

Termination It	denotes	closure	of	a	procedure.

Top-down analysis It	means	breaking	up	a	problem	solution	into	small-
er	modules	and	defininig	their	interconnections	to	provide	the	total	solution	
to	a	problem.

Variable	 It	is	a	container	or	storage	location	for	storing	a	value	that	may	
or	may	not	vary	during	the	execution	of	the	program.

Frequently AsKeD questions

1. What is a programming language?
A	programming	language	is	an	artificial	formalism	in	which	algorithms	can	
be	expressed.	More	formally,	a	computer program is	a	sequence	of	instruc-
tions	that	is	used	to	operate	a	computer	to	produce	a	specific	result.
	 	A	programming	language	is	the	communication	bridge	between	a	pro-
grammer	and	computer.	A	programming	language	allows	a	programmer	to	
create	 sets	of	 executable	 instructions	 called	programs	 that	 the	 computer	
can	understand.	This	communication	bridge	is	needed	because	computers	

understand	only	machine	language,	which	is	a	low-level	language	in	which	
data	is	represented	by	binary	digits.

2. What is a token?
A	token	is	any	word	or	symbol	that	has	meaning	in	the	language,	such	as	
a	keyword	(reserved	word)	such	as	if	or	while.	The	tokens	are	parsed or
grouped	according	to	the	rules	of	the	language.

3. What is a variable?

134 Computer Fundamentals and Programming in C

A	variable is	a	name	given	to	the	location	of	computer	memory	that	holds	
the	relevant	data.	Each	variable	has	a	data	type,	which	might	be	number,	
character,	string,	a	collection	of	data	elements	(such	as	an	array),	a	data	
record,	or	some	special	type	defined	by	the	programmer.

4. What is Spaghetti code?
Non-modular	code	is	normally	referred	to	as	spaghetti	code.	It	is	named	so	
because	it	produces	a	disorganized	computer	program	using	many	GOTO	
statements.	

5. What is structured programming?
Structured	programming	is	a	style	of	programming	designed	to	make	pro-
grams	more	comprehensible	and	programming	errors	less	frequent.	This	
technique	of	programming	enforces	a	logical	structure	on	the	program	be-
ing	written	to	make	it	more	efficient	and	easier	to	understand	and	modify.	It	
usually	includes	the	following	characteristics:
Block structure The	statements	in	the	program	must	be	organized	into	
functional	groups.	It	emphasizes	clear	logic.
Avoidance of jumps A	 lot	 of	 GOTO	 statements	 makes	 the	 programs	
more	error-prone.	Structured	programming	uses	less	of	these	statements.	
Therefore	it	is	also	known	as	‘GOTO	less	programming’.
Modularity It	 is	 a	 common	 idea	 that	 structuring	 the	 program	makes	 it	
easier	for	us	to	understand	and	therefore	easier	for	teams	of	developers	to	
work	simultaneously	on	the	same	program.	

6. What are the advantages and disadvantages of structured pro-
gramming?
Structured	programming	provides	options	to	develop	well-organized	codes	
which	can	be	easily	modified	and	documented.	
 Modularity	 is	 closely	 associated	 with	 structured	 programming.	 The	
main	 idea	is	to	structure	the	program	into	functional	groups.	As	a	result,	
it	becomes	easier	for	us	to	understand	and	therefore	easier	for	teams	of	
developers	to	work	simultaneously	on	the	same	program.	
	 Another	advantage	of	structured	programming	 is	 that	 it	 reduces com-
plexity.	Modularity	allows	the	programmer	to	tackle	problems	in	a	 logical	
fashion.	This	improves	the	programming	process	through	better	organiza-
tion	of	programs	and	better	programming	notations	to	facilitate	correct	and	

clear	description	of	data	and	control	structure.
 Structured	programming	also	saves time	as	without	modularity,	the	code	
that	is	used	multiple	times	needs	to	be	written	every	time	it	is	used.	On	the	
other	hand,	modular	programs	need	one	to	call	a	subroutine	(or	function)	
with	that	code	to	get	the	same	result	in	a	structured	program.
	 Structured	 programming	encourages stepwise refinement,	 a	 program	
design	process	described	by	Niklaus	Wirth.	This	is	a	top-down	approach	
in	which	the	stages	of	processing	are	first	described	 in	high-level	 terms,	
and	then	gradually	worked	out	in	their	details,	much	like	the	writing	of	an	
outline	for	a	book.
	 The	disadvantages	of	structured	programming	include	the	following:
	 Firstly,	error	control	may	be	harder	to	manage.	Managing	modifications	
may	also	be	difficult.
	 Secondly,	debugging	efforts	can	be	hindered	because	the	problem	code	
will	look	right	and	even	perform	correctly	in	one	part	of	the	program	but	not	
in	another.

7. What is a pseudocode?
Pseudocode	is	an	informal	description	of	a	sequence	of	steps	for	solving	
a	problem.	It	 is	an	outline	of	a	computer	program,	written	in	a	mixture	of	
a	programming	language	and	English.	Writing	pseudocodes	is	one	of	the	
best	ways	to	plan	a	computer	program.
	 The	 advantage	 of	 having	 pseudocodes	 is	 that	 it	 allows	 the	 program-
mer	to	concentrate	on	how	the	program	works	while	 ignoring	 the	details	
of	the	language.	By	reducing	the	number	of	things	the	programmer	must	
think	about	at	once,	this	technique	effectively	amplifies	the	programmer’s	
intelligence.

8. What is top-down programming?
Top-down	programming	 is	a	 technique	of	programming	 that	first	defines	
the	overall	outlines	of	the	program	and	then	fills	in	the	details.	
	 	This	approach	is	usually	the	best	way	to	write	complicated	programs.	
Detailed	decisions	are	postponed	until	the	requirements	of	the	large	pro-
gram	are	known;	this	is	better	than	making	the	detailed	decisions	early	and	
then	forcing	the	major	program	strategy	to	conform	to	them.	Each	part	of	
the	program	(called	a	module)	can	be	written	and	tested	independently.

exerCises
 1.	 What	do	you	mean	by	structured	programming?	State	the	properties	

of	structured	programming.
 2.	 What	is	top-down	analysis?	Describe	the	steps	involved	in	top-down	

analysis.
 3.	 What	is	a	structured	code?
 4.	 What	is	an	algorithm?
 5.	 Write	down	an	algorithm	that	describes	making	a	telephone	call.	Can	

it	be	done	without	using	control	statements?
 6.	 Write	algorithms	to	do	the	following:

 (a)	 Check	whether	a	year	given	by	the	user	is	a	leap	year	or	not.

 (b)	 Given	an	integer	number	in	seconds	as	input,	print	the	equiva-
lent	time	in	hours,	minutes,	and	seconds	as	output.	The	recom-
mended	output	format	is	something	like:

	 	 7,322	seconds	is	equivalent	to	2	hours	2	minutes	2	seconds.

 (c)	 Print	 the	numbers	 that	do	not	appear	 in	 the	Fibonacci	 series.	

The	number	of	terms	to	be	printed	should	be	given	by	the	user.

 (d)	 Convert	an	integer	number	in	decimal	to	its	binary	equivalent.
 (e)	 Find	the	prime	factors	of	a	number	given	by	the	user.
 (f) Check	whether	a	number	given	by	 the	user	 is	a	Krishnamurty	

number	or	not.	A	Krishnamurty	number	is	one	for	which	the	sum	
of	the	factorials	of	its	digits	equals	the	number.	For	example,	145	
is	a	Krishnamurty	number.

 (g) Print	the	second	largest	number	of	a	list	of	numbers	given	by	the	
user.

 (h)	 Print	the	sum	of	the	following	series:

 (i) 1
2!

+
4!

2 4
- x x 	+		up	to	n	terms	where	n	is	given	by	the	user

 (ii) 1 1
2
+ 1
3

- - ◊◊◊◊◊ 	up	to	n	terms	where	n	is	given	by	the

user

Introduction to Algorithms and Programming Concepts 135

 (iii) 1 1
2!

+ 1
3!

+ + ◊◊◊◊◊ up	to	n	terms	where	n	is	given	by	the	

user
 7.	 By	considering	the	algorithmic	language	that	has	been	taught,	answer	

the	following:
 (a)	 Show	clearly	the	steps	of	evaluating	the	following	expressions:

 (i) x	–	y	+	12	*	 3
6
	+	k	^	x	where	x	=	2,	y	=	6,	k	=	5

 (ii) a	 AND	 b	 OR	 (m	 <	 n)	 where	 a	 =	 true,	 b	 =	 false,	 m	 =	 7,	
n	=	9

 (b)	 State	whether	each	of	the	following	is	correct	or	wrong.	Correct	
the	error(s)	where	applicable.

 (i)	 The	expression	(‘35’	=	‘035’)	is	true.
 (ii)	 x1		x2	*	4	value
 (iii)	 INPUT	K,	Y	–	Z

 8.	 Write	an	algorithm	as	well	as	draw	a	flowchart	for	the	following:
 Input
 ∑	 the	item	ID	number
 ∑	 the	Number	On	Hand
 ∑	 the	Price	per	item
 ∑	 the	Weight	per	item	in	kg
 ∑	 the	Number	Ordered
 ∑	 the	Shipping	Zone	 (1	 letter,	 indicating	 the	distance	 to	 the	

purchaser)
 Processing
	 	 The	program	will	read	each	line	from	the	user	and	calculate	the		
	 	 following:
	 	 Total	Weight	=	Weight	Per	Item	*	Number	Ordered
	 	 Weight	Cost	=	3.40	+	Total	Weight	/	5.0
	 	 Shipping	cost	is	calculated	as	follows:
 If Shipping Zone is ‘A’
 Then Shipping Cost is 3.00

 If Shipping Zone is ‘B’
 Then	Shipping	Cost	=	5.50
 If	Shipping	Zone	is	‘C’
 Then	Shipping	Cost	=	8.75
 Otherwise Shipping Cost is 12.60

	 	 Handling	Charges	=	4.00,	a	constant
	 	 New	Number	On	Hand	=	Number	On	Hand		Number	Ordered
	 	 Discount	is	calculated	as	follows:
 If New Number On Hand < 0
 Then Discount = 5.00

 Else Discount = 0
	 	 Here	the	purchaser	is	being	given	a	discount	if	the	item	has	to			
	 	 be	repeat	ordered.	Total	cost	is	calculated	as	follows:
	 	 Total	Cost
 = Price of Each * Number Ordered +
 Handling Charge + Weight Cost +
 Shipping Cost – Discount
	 For	each	purchase,	print	out	the	information	about	the	purchase	

in	a	format	approximately	like	this:

 Item Number: 345612
 Number Ordered: 1
 Number On Hand: 31
 Price of Each: 19.95
 Weight of Each: 3
 Shipping Zone: A
 Total Cost: 30.95
	 After	all	 the	purchases	are	finished,	print	 two	 lines	stating	 the	

total	number	of	purchases	and	the	total	cost	of	all	purchases.
 9.	 Fill	in	the	blanks.
 (i)	 A	program	flowchart	indicates	the	__________	to	be	
	 	 performed	and	the	__________	in	which	they	occur.
 (ii)	 A	 program	 flowchart	 is	 generally	 read	 from	 __________	 to	

__________.
 (iii)	 Flowcharting	 symbols	 are	 connected	 together	 by	 means	 of	

__________.
 (iv)	 A	decision	symbol	may	be	used	in	determining	the	__________		

or	__________	of	two	data	items.
 (v)	 __________	are	used	to	join	remote	portions	of	a	flowchart.
 (vi)	 __________	connectors	are	used	when	a	flowchart	ends	on	one	

page	and	begins	again	on	another	page.
 (vii)	 A	__________	symbol	 is	 used	at	 the	beginning	and	end	of	 a	

flowchart.
 (viii)	 The	flowchart	 is	one	of	 the	best	ways	of	 	__________	a	pro-

gram.
 (ix)	 To	construct	a	flowchart,	one	must	adhere	 to	prescribed	sym-

bols	provided	by	the	__________.
 (x)	 The	programmer	uses	a	__________	to	aid	him	in	drawing	flow-

chart	symbols.
 10.	 Define	a	flowchart.	What	is	its	use?
 11.	 Are	there	any	limitations	of	a	flowchart?
 12.	 Draw	a	flowchart	to	read	a	number	given	in	units	of	length	and	print	

out	 the	 area	of	 a	 circle	 of	 that	 radius.	Assume	 that	 the	 value	of	 pi	
is	3.14159.	The	output	should	take	the	form:	The	area	of	a	circle	of	
radius		__________	units	is		__________	units.

 13.	 Draw	a	flowchart	to	read	a	number	N	and	print	all	its	divisors.
 14.	 Draw	 a	 flowchart	 for	 computing	 the	 sum	 of	 the	 digits	 of	 any	 given	

number.
 15.	 Draw	a	flowchart	to	find	the	sum	of	N	odd	numbers.
 16.	 Draw	a	flowchart	to	compute	the	sum	of	squares	of	integers	from	1	to	

50.
 17.	 Write	a	program	to	read	two	integers	with	the	following	significance.
	 	 The	first	integer	value	represents	a	time	of	day	on	a	24-hour	clock,	so	

that	1245	represents	quarter	to	one	mid-day.
	 	 The	second	integer	represents	a	time	duration	in	a	similar	way,	so	that	

345	represents	three	hours	and	45	minutes.
	 	 This	duration	is	to	be	added	to	the	first	time	and	the	result	printed	out	

in	the	same	notation,	in	this	case	1630	which	is	the	time	3	hours	and	
45	minutes	after	1245.

	 	 Typical	output	might	be:	start	time	is	1415.	Duration	is	50.	End	time	is	
1505.

136 Computer Fundamentals and Programming in C

8.1 INTRODUCTION
The story started with the Common Programming Language
(CPL), which Martin Richards at the University of Cambridge
turned into Basic Combined Programming Language (BCPL).
This was essentially a type-less language, which allowed the
user direct access to the computer memory. This made it useful
to system programmers.
 Ken Thompson at Bell Labs, USA, wrote his own variant
of this and called it B. In due course, the designers of UNIX
modified it to produce a programming language called C.
Dennis Ritchie, also at Bell Labs, is credited for designing
C in the early 1970s. Subsequently, UNIX was rewritten
entirely in C. In 1983, an ANSI standard for C emerged,
consolidating its international acceptance.

 In UNIX operating system and its descendants, 90 per cent
of the code is written in C. The name C is doubly appropriate
being the successor of B and BCPL. It has often been said,
and with some justification, that C is the FORTRAN of
systems software. Just as FORTRAN compilers liberated
programmers from creating programs for specific machines,
the development of C has freed them to write systems software
without having to worry about the architecture of the target
machine. Where architecture-dependent code, i.e., assembly
code, is necessary, it can usually be invoked from within the
C environment.Today, it is the chosen language for systems
programming for the development of 4GL packages such as
dbase, and also for the creation of user-friendly interfaces for
special applications. But application programmers admire C
for its elegance, brevity, and the versatility of its operators and

C
h
A
P
T
e
RBasics of C

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

8

∑ analyse the basic structure of a C program
∑ discuss the commands used in UNIX/Linux and MS-DOS

for compiling and running a program in C
∑ enumerate the various keywords in C
∑ list the data types, variables, constants, operators, and

expressions in C
∑ discuss the precedence and associativity rules of

operators in C
∑ explain the rules of type conversions in C

Basics of C 137
control structures. C may be termed as a mid-level language,
not as low-level as assembly and not as high-level as BASIC.
 C is a high-level language which also provides the
capabilities that enable the programmers to ‘get close’ with
the hardware and allows them to interact with the computer
on a much lower level.

8.1.1 Why Learn C?
There are a large number of programming languages in the
world today—C++, Java, Ada, BASIC, COBOL, Perl, Pascal,
Smalltalk, FORTRAN, etc. Even so, there are several reasons
to learn C, some of which are stated as follows.

C is a core language In computing, C is a general-purpose,
cross-platform, block structured, procedural, imperative
computer programming language. A number of common and
popular computer languages are based on C. having learnt
C, it will be much easier to learn languages that are largely
or in part based upon C. Such languages include C++, Java,
and Perl.

C is a small language C has only thirty-two keywords and
only about twenty of them are in common use. This makes it
relatively easy to learn compared to bulkier languages.

C is quick We can write codes which run quickly, and the
program can be very ‘close to the hardware’. This implies
that you can access low-level facilities in your computer quite
easily, without the compiler or run-time system stopping you
from doing something potentially dangerous.

C is portable C programs written on one system can be run
with little or no modification on other systems. If modifications
are necessary, they can often be made by simply changing a
few entries in a header file accompanying the main program.
The use of compiler directives to the preprocessor makes it
possible to produce a single version of a program which can
be compiled on several different types of computer. In this
sense, C is said to be very portable. The function libraries
are standard for all versions of C so they can be used on all
systems.

8.1.2 The Future of C
The story about C is not yet over. During the time when
the X3J11 committee moved steadily towards producing
the ANSI C standard, another researcher, Bjarne Stroustrup
of Bell Laboratories began experimenting with an object-
oriented flavour of C that he called C++ (pronounced C plus
plus). C++ extended C, and according to Stroustrup, refined
the language, making C++, in his words, ‘a better C’.
 Apparently, the X3J11 committee agreed, if not completely,
and they adopted some of Stroustrup’s proposals into the
ANSI C standard. Subsequently, a new committee was
formed to investigate a standard for ANSI C++ that is now
ready. Does this new standard mean that ANSI C is destined
to join its ancestors BCPL, B, and K&R C on the heap of
discarded programming languages?

 The answer is a solid no. Frankly, C++ is not for everyone.
When learning C, it is best to stick to the basics, and readers
would be well advised to ignore some of the more advanced
elements found in C++. For example, C++ provides classes
for object-oriented programming, or OOP as it is known.
Until one knows C, one is not ready for OOP.
 On the other hand, because C++ is based on ANSI C, one
may as well use modern next-generation C++ compilers to
write C programs. That way, one can take advantage of both
worlds. After learning C, one is ready to tackle OOP and
other advanced C++ subjects.

8.2 STANDARDIZATIONS OF C LANGUAGE
Both UNIX and C were created at AT&T’s Bell Laboratories
in the late 1960s and early 1970s. During the 1970s the C
programming language became increasingly popular. Many
universities and organizations began creating their own
variations of the language for their own projects.
 During the late 1970s and 1980s, various versions of C
were implemented for a wide variety of mainframe computers,
minicomputers, and microcomputers, including the IBM PC.
In the early 1980s, a need was realized to standardize the
definition of the C language which in turn would help C
become more widespread in commercial programming.
 In 1983, the American National Standards Institute (ANSI)
formed a committee to establish a standard specification of C
known as ‘ANSI C’. This work ended in the creation of the
so-called C89 standard in 1989. Part of the resulting standard
was a set of software libraries called the ANSI C standard
library. This version of the language is often referred to as
ANSI C, Standard C, or sometimes C89. ISO/IEC standard
was thereafter adopted by ANSI and people referred to this
common standard as simply ‘standard’ or simply ‘C89’.
 In 1990, the ANSI C standard (with a few minor
modifications) was made by the International Organization
for Standardization (ISO) as ISO/IEC 9899:1990. This
version is sometimes called C90. Therefore, the terms ‘C89’
and ‘C90’ refer to essentially the same language.

Changes included in C89 are as follows:

∑ The addition of truly standard library
∑ New preprocessor commands and features
∑ Function prototypes which specify the argument types in a

function declaration
∑ Some new keywords const, volatile, and signed
∑ Wide characters, wide strings, and multi-byte characters
∑ Many smaller changes and clarification to conversion rules,

declarations, and type checking
 C89 is supported by current C compilers, and most C code
being written nowadays is based on it. In 1995, amendments
to C89 include

138 Computer Fundamentals and Programming in C

∑ Three new library headers: iso646.h, wctype.h, and wchar.h
∑ Some new formatting codes for the printf and scanf

family of functions
∑ A large number of functions plus some types and constants

for multi-byte and wide characters
 With the evolution of C++, the standardization of C
language began to be revised again. Some amendments and
corrections to C89 standard were made and a new standard
for the C language was created in 1995. In 1999, a more
extensive revision to the C standard began. It was completed
and approved in 1999. This new version is known as ‘ISO/
IEC 9899:1999’ or simply ‘C99’ and has now become the
official standard C. The following features were included:
∑ Support for complex arithmetic
∑ inline functions
∑ several new data types, including long long int, optional

extended integer types, an explicit boolean data type, and a
complex type to represent complex numbers

∑ Variable length arrays
∑ Better support for non-english characters sets
∑ Better support for floating-point types including math

functions for all types
∑ C++ style comments (//)
∑ New header files, such as stdbool.h and inttypes.h
∑ Type-generic math functions (tgmath.h)
∑ Improved support for IEEE floating point
∑ Variable declaration no longer restricted to file scope or the

start of a compound statement
 GCC and other C compilers now support many of the new
features of C99. however, there has been less support from
vendors such as Microsoft and Borland that have mainly
focused on C++, since C++ provides similar functionality
improvement. According to Sun Microsystems, Sun Studio
(which is freely downloadable) now supports the full C99
standard.
 A new standard C 11 has been proposed at the end of 2012
by the C standards committee. The C standards committee
has adopted guidelines that should limit the adoption of new
features that have not been tested by existing implementations.
 Most C implementations are actually C/C++ implemen-
tations giving programmers a choice of which language to
use. It is possible to write C code in the common subset of
the standard C/C++ language compilers so that code can be
compiled either as a C program or a C++ program.

8.3 DEVELOPING PROGRAMS IN C
There are mainly three steps in developing a program in C:
 1. Writing the C program
 2. Compiling the program

 3. executing the program
 For these steps, some software components are required,
namely an operating system, a text editor, the C compiler, as-
sembler, and linker. The editor is used to create and modify
the program code while the compiler transforms the source
program to object code. Operating system is responsible for
the execution of the program. There are several editors which
provide a complete environment for writing, managing, de-
veloping, and testing the C programs. This is sometimes
called an integrated development environment, or IDe.
 The stages of C program development that are followed,
regardless of the operating system or compiler used, are
illustrated in Fig. 8.2. A brief explanation of each of the
processes involved in the compilation model are given in
the following sections.

8.3.1 Writing or Editing
This involves writing a new program code or editing an
existing source program using a text editor or an IDe and
saving it with .c extension.

Programming environment
Most programming language compilers come with a specific
editor that can provide facilities for managing the programs.
Such an editor offers a complete environment for writing,
developing, modifying, deploying, testing, and debugging
the programs. Such software is referred to as an integrat-
ed development environment or IDE. An IDe is typically
dedicated to a specific programming language. It thus incor-
porates features compatible with the particular programming
paradigm.
 Many IDes have a Build option, which compiles and links
a program in one step. This option will usually be found with-
in an IDe in the Compile menu; alternatively, it may have a
menu of its own. In most IDes, an appropriate menu com-
mand allows one to run or execute or debug the compiled
program. In Windows, one can run the .exe file for the corre-
sponding source program like any other executable program.
The processes of editing, compiling, linking, and executing
are essentially the same for developing programs in any en-
vironment and with any compiled language.
 A simple programming environment specially designed
for C and C++ programming on Windows is the Quincy IDe.
Figure 8.1(a) shows a screenshot of the Quincy environment.
Quincy can be freely downloaded from http://www.

codecutter.com.
 There are many other IDes available. DevC++ is one of
the most popular C++ IDes amongst the student community.
DevC++ is a free IDe distributed under the GNU General
Public License for programming in C/C++. It is bundled with
MinGW, a free compiler. It can be downloaded from the URL
http://www.bloodshed.net.

Basics of C 139

Fig. 8.1(a) The screenshot of quincy

Fig. 8.1(b) The screenshot of Dev C++

 In UNIX or Linux, the most common text editor is the
vi editor. Alternatively, one might prefer to use the emacs
editor. The vi editor is simpler, smaller, and faster, and has
limited customization capabilities, whereas emacs has a larger
set of commands and is extensible and customizable. On a
PC, a user can use one of the many freeware and shareware
programming editors available. These will often help in
ensuring the code to be correct with syntax highlighting and
auto-indenting of the code.

8.3.2 Compiling the Program
Compiling involves preprocessing, compilation, assembly,
and linking.

Preprocessing It is the first phase of C compilation. It
processes include-files, conditional compilation instructions,
and macros. The C preprocessor is used to modify the program
according to the preprocessor directives in the source code.
A preprocessor directive is a statement (such as #define) that
gives the preprocessor specific instructions on how to modify
the source code. The preprocessor is invoked as the first part
of the compiler program’s compilation step. It is usually
hidden from the programmer because it is run automatically
by the compiler.

Compilation It is the second step of the compiling process.
It takes the output of the preprocessor and the source code,
and generates assembler source code. The compiler examines

each program statement contained in the source program
and checks it to ensure that it conforms to the syntax and
semantics of the language. If mistakes are discovered by the
compiler during this phase, they are reported to the user. The
errors then have to be corrected in the source program (with
the use of an editor), and the program has to be recompiled.

Assembly It is the third stage of compilation. It takes the
assembly source code and produces an assembly listing with
offsets. The assembler output is stored in an object file. After
the program has been translated into an equivalent assembly
language program, the next step in the compilation process
is to translate the assembly language statements into actual
machine instructions. On most systems, the assembler is
executed automatically as part of the compilation process.
The assembler takes each assembly language statement
and converts it into a binary format known as object code,
which is then written into another file on the system. This file
typically has the same name as the source file under UNIX,
with the last letter an ‘o’ (for object) instead of a ‘c’. Under
Windows, the suffix letters “obj” typically replace the “c” in
the filename.

Linking It is the final stage of compilation. After the
program has been translated into object code, it is ready to be
linked. The purpose of the linking phase is to get the program
into a final form for execution on the computer. The functions
are the part of the standard C library, provided by every C
compiler. The program may use other source programs that
were previously processed by the compiler. These functions
are stored as separate object files which must be linked to the
object file. Linker handles this linking.
 The process of compiling and linking a program is often
called building. The final linked file, which is in an executable
object code format, is stored in another file on the system
ready to be run or executed. Under UNIX, this file is called
a.out by default. Under Windows, the executable file usually
has the same name as the source file, with the .c extension
replaced by an exe extension.

8.3.3 Executing the Program
When the program is executed, each of the statements of the
program is sequentially executed. If the program requests any
data from the user, known as input, the program temporarily
suspends its execution so that the input can be entered. Or,
the program might simply wait for an event, such as a mouse
being clicked, to occur. Results that are displayed by the
program, known as output, appear in a window, sometimes
called the console. Or, the output might be directly written to
a file on the system.

Errors
If all goes well, the program performs its intended task. If the
program does not produce the desired results, it is necessary

140 Computer Fundamentals and Programming in C

to go back and reanalyse the program. Three types of errors
may occur:

Compile errors These are given by the compiler and
prevent the program from running.

Linking errors These are given by the linker or at run time
and ends the program. The linker can also detect and report
errors, for example, if part of the program is missing or a non-
existent library component is referenced.

Run-time errors These are given by the operating system.

Debugging
Removing errors from a program is called debugging.
Any type of error in a program is known as a bug. During
debugging, an attempt is made to remove all the known
problems or bugs from the program. By tracing the program
step-by-step, keeping track of each variable, the programmer
monitors the program state. The program state is simply the
set of values of all the variables at a given point in program
execution. It is a snapshot of the current state of computation.
 A debugger is a program that enables the programmer to
run another program step-by-step and examine the value of
that program’s variables. Debuggers come in various levels of
ease of use and sophistication. The more advanced debuggers
show which line of source code is being executed.

Linker/Link
editor

Loader

Program is stored in secondary
storage such as hard disk as an

executable image

This stage is active while
running/executing

the program

Libraries and
other object

modules

Preprocessor

Assembler

Compiler

Editor/IDE

C source code

Preprocessed code

Assembly code

Object code

Executable code

Storage

Executable code

Fig. 8.2 Typical steps for entering, compiling,
and executing C programs

 In the UNIX/Linux operating system environment, the
program is stored in a file, the name of which ends in ‘.c’.
This means that the extension of the file will be ‘.c’. This
identifies it as a C program. The easiest way to enter text is
by using a text editor such as vi, emacs, or xedit. The editor
is also used to make subsequent changes to the program. To
create or edit a file called ‘first.c’ using vi editor, the user
has to enter vi first.c.
 Most of the Windows-based C compilers have an inbuilt
context-sensitive editor to write C programs. The program
filename should have a ‘.c’ extension.
 To compile a C program in UNIX simply invoke the
command cc. The command must be followed by the name of
the C program that has to be compiled. A number of compiler
options can also be specified. Only some useful and essential
options will be dealt here.
 In the UNIX operating system, to compile a C source
program, where first.c is the name of the file, the
command is

cc first.c

 In the Linux operating system, a C source program,
where first.c is the name of the file, may be compiled by the
command

gcc first.c

The GNU C compiler gcc is popular and available for many
platforms. If there are syntax errors in the program due to
wrong typing, misspelling one of the keywords, or omitting
a semicolon, the compiler detects and reports them. There
may, of course, still be logical errors that the compiler cannot
detect. The program code may be directing the computer to
do the wrong operations.
 When the compiler has successfully translated the program,
the compiled version or the executable program code is stored
in a file called a.out or if the compiler option –o is used, the
executable program code is put in the file listed after the –o
option specified in the compilation command.
 It is more convenient to use –o and file name in the
compilation as shown.

cc –o program first.c

 This puts the compiled program into the file program or
any filename following the –o argument, instead of putting it
in the file a.out.
 PC users may also be familiar with the Borland C compiler.
Borland International has introduced many C compilers such
as Turbo C, Turbo C++, and Borland C++. It should be noted
here that C++ is the superset of C and has the same syntax. A
C program can be compiled by a C++ compiler. In all these
cases, the actual computer program development environment
comes in two forms.
 To run the executable file, the command for both UNIX and
Linux operating systems is

./a.out

Basics of C 141
 To run an executable program in UNIX, simply type the
name of the file that contains it; in this case first instead of—
a.out. This executes the program, displaying the results on
the screen. At this stage there may be run-time errors, such as
division by zero, or it may become evident that the program
has produced incorrect output. If so, the programmer must
return to edit the source program, recompile it, and run it
again.
 For compiling a C program in the Borland C compiler, the
steps are as follows.
 1. Open MS-dOS prompt.
 2. At the prompt

 c:\windows>

 give the following command:
 c:\windows>cd c:\borland\bcc55\bin

 Press <Enter>
 This changes the directory to c:\borland\bcc55\bin and

the following prompt appears:
 c:\borland\bcc55\bin>

 Now, enter
 bcc32 -If:\borland\bcc55\include

 -Lf:\borland\bcc55\Lib c:\cprg\first.c

 3. Press <Enter>
 To run a C program in the Borland environment, the steps
are as follows:
 1. If the MSdOS prompt obtained while compiling has not

been closed, the following prompt would be visible on
the screen:

 c:\borland\bcc55\bin>

 2. enter
 c:\borland\bcc55\bin> cd c:\cprg

 3. Press <Enter>. This changes the directory to one where
the following MSdOS prompt would be seen:

 c:\cprg>

 4. enter first.exe or simply first, and the screen will
display

 c:\cprg>first.exe or c:\cprg>first

 5. Press <Enter> to run the program and its output will be
available.

8.4 A SIMPLE C PROGRAM
The best way to learn C or any programming language is to
begin writing programs in it.
 Let us write the first program named first.c as follows:

/* A Simple C Program */

#include <stdio.h>
int main(void)
{
 printf(“C is Sea\n”);
 return 0;
}

 There are a few important points to note about this program.
These are common to all C programs.

/* A Simple C Program */

 This is a comment line.
In C, the comments can be included in the program. The
comment lines start with /* and terminate with */. These
statements can be put anywhere in the program.The compiler
considers these as non-executable statements.
 The comment lines are included in a program to describe
the variables used and the job performed by a set of program
instructions or an instruction. Comment lines may also be
written to record any other information that may be necessary
for the programmer and relevant to the program.
 According to C99, a comment also begins with // and
extends up to the next line break. So the above comment line
can be written as follows:

// A Simple C Program

// comments were added for C99 due to their utility and
widespread existing practice, especially in dual C and C++
translators.

#include <stdio.h>

 In C, all lines that begin with # are directives for the
preprocessor, which means that all these directives will be
processed before the program is actually compiled. The
#include directive includes the contents of a file during
compilation. In this case, the file stdio.h is added in the
source program before the actual compilation begins. stdio.h
is a header file that comes with the C compiler and contains
information about input and output functions, e.g., printf().
 For now it may be noted that there are two ways in which
the preprocessor directives differ from program statements:
(a) they must begin in the first column and no spaces are
allowed between # and include and (b) they are not terminated
by a semicolon.

int main(void)

 every C program contains a function called main. This is
the starting point of the program. A C program may contain
one or more functions one of which must be main(). Functions
are the building blocks of a C program. For now, the functions
may be recognized by the presence of parentheses after their
names. When a C program is executed, main() is where
the action starts. Then, other functions maybe ‘invoked’ or
called.
 A function is a sub-program that contains instructions or
statements to perform a specific computation or processing.
When its instructions have been executed, the function returns
control to the calling point, to which it may optionally return
the results of its computations. Since main() is also a function
from which control returns to the operating system at program
termination, in ANSI C it is customary, although not required,
to include a statement in main() which explicitly returns control
to the operating environment.

142 Computer Fundamentals and Programming in C

 For the Watcom C/C++, IBM VisualAge C/C++, and
Microsoft Visual C/C++ compilers, the function main can
also be declared to return void. The compilers MetaWare
High C/C++ and EMX C/C++ do not allow main to have a
return type void. For these compilers, the return type of main
has to be declared as int. Borland C/C++, Comeau C/C++,
and digital Mars C/C++ compilers do not explicitly list void
main() as a legal definition of main, but somewhat ironically
there are example codes using this non-conforming definition
on main.

{}

 This is a brace. As the name implies, braces come in packs
of two, i.e., for every open brace there must be a matching
close. Braces allow to lump pieces of program together. Such a
lump of program is often called a block. A block can contain the
declaration of variable used within it, followed by a sequence
of program statements which are executed in order. In this
case, the braces enclose the working parts of the function main.
When the compiler sees the matching close brace at the end, it
knows that it has reached the end of the function and can look
for another (if any).
 By enclosing the program instructions, printf() and
return 0 within the opening brace ‘{’ and the closing brace
‘}’, a block of program instruction is formed. Such a block of
program instructions, within these braces, form the body of
the function main().

printf(“C is Sea\n”);

printf() is a ‘library function’.

 The \n (pronounced backslash n) in the string argument of
the function printf()

“C is Sea\n”

is an example of an escape sequence. It is used to print the
new line character. If the program is executed, the \n does
not appear in the output. each \n in the string argument of
a printf() causes the cursor to be placed at the beginning
of the next line of output. Think of an escape sequence as
a ‘substitute character’ for outputting special characters or
some positional action on the printing point, known as cursor,
when the output device is a visual diaplay unit.
 All escape sequences available in C are given in Table 8.1.
Placing any of these within a string causes either the indicated
action or the related character to be output.

return 0;

 This statement indicates that the value returned by the
function main(), after the program instructions in its body
are executed, to the operating system is 0. Though the value,
recognized by the OS as status, is returned using the return 0
statement, the OS may not always use it.
 The return statement is not mandatory; if it is missing, the
program will still terminate. In C89, the value returned to the
operating system is undefined. In C99, if main() is declared
to return an int, the program returns 0 (zero) to the operating

system or operating environment; otherwise the program
returns an unspecified value.
 Throughout this book, at the end of every function
definition for main(), the return 0 instruction must be written.
Function definition means the sequence of instructions that
form the body of the function which performs the desired
task. Similarly, main() should always be written as int
main(void) in every program given in this book.
 The above discussion is summarized in Fig. 8.3.

Table 8.1 Backslash codes

Code Meaning

\a Ring terminal bell (a is for alert) [ANSI extension]

\? Question mark [ANSI extension]

\b Backspace

\r Carriage return

\f Form feed

\t Horizontal tab

\v Vertical tab

\0 ASCII null character

\\ Backslash

\” Double quote

\’ Single quote

\n New line

\o Octal constant

\x Hexadecimal constant

note

 ∑ C uses a semicolon as a statement terminator; the
semicolon is required as a signal to the compiler to
indicate that a statement is complete.

 ∑ All program instructions, which are also called statements,
have to be written in lower-case characters.

8.5 PARTS OF C PROGRAM REVISITED
Header files
A header file is a file containing C declarations and macro
definitions to be shared among the source files, compiler,
preprocessor, C library, and other header files.
 In C, the usual convention is to give header files names
that end with .h. Functions in the ANSI C library are declared
in a set of standard headers. This set is self-consistent and
is free of name space pollution, when compiling in the pure
ANSI mode. The ISO C standard library consists of 24 header
files which can be included into a programmer’s project with
a single directive. Each header file contains one or more
function declarations, data type definitions, and macros. Later
revisions of the C standard have added several new required
header files to the library:

Basics of C 143

∑ The headers <iso646.h>, <wchar.h>, and <wctype.h> were
added with Normative Addendum 1 (hereafter abbreviated
as NA1), an addition to the C Standard ratified in 1995.

∑ The headers <complex.h>, <fenv.h>, <inttypes.h>,
<stdbool.h>, <stdint.h>, and <tgmath.h> were added with
C99, a revision to the C Standard published in 1999.

The following list contains the set of standard headers:
assert.h
complex.h
ctype.h

inttypes.h
iso646.h
limits.h

signal.h
stdarg.h
stdbool.h

stdlib.h
string.h
tgmath.h

errno.h
fenv.h
float.h

locale.h
math.h
setjmp.h

stddef.h
stdint.h
stdio.h

time.h
wchar.h
wctype.h

 There are two ways of including files in C program. The first
way is to surround the file you want to include with the angled
brackets < and > that is like #include <filename>. This method
of inclusion tells the preprocessor to look for the file in the
predefined default location. This predefined default location
is often an INCLUDe environment variable that denotes the
path to the include files. On UNIX systems, standard include
files reside under /usr/include.
 The second way to include files is to surround the file
that is required to be included with double quotation marks
like #include “filename”. This method of inclusion tells the
preprocessor to look for the file in the current directory first, then
look for it in the predefined locations the programmer set up.
The #include <filename> method of file inclusion is often used
to include standard headers such as stdio.h or stdlib.h. This
is because these headers are rarely (if ever) modified, and
they should always be read from the compiler’s standard
include file directory.
 The #include “file” method of file inclusion is often used
to include nonstandard header files that the programmer creats

for use in the program. This is because these headers are
often modified in the current directory, and the programmer
will want the preprocessor to use the newly modified version
of the header rather than the older, unmodified version.

Philosophy of main()
main() is a user-defined function. main() is the first function
in the program which gets called when the program executes.
The startup code calls main() function. The programmer
cannot change the name of the main() function.
 According to ANSI/ISO/IEC 9899:1990 International
Standard for C, the function called at program startup is
named main. The implementation declares no prototype for
this function. It can be defined with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv,
though any names may be used, as they are local to the
function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

 On many operating systems, the value returned by main()
is used to return an exit status to the environment. On UNIX,
MS-dOS, and Windows systems, the low eight bits of the
value returned by main() are passed to the command shell
or calling program. It is extremely common for a program
to return a result indication to the operating system. Some
operating systems require a result code. And the return
value from main(), or the equivalent value passed in a call
to the exit() function, is translated by the compiler into an
appropriate code.
 There are only three completely standard and portable
values to return from main() or to pass to exit():

∑ The plain old ordinary integer value 0

/* A simple C program */

include <stdio.h>

int main (void)

{

printf (“C is Sea \n);”

return 0;

}

Beginning of comment End of comment

Includes the contents of the
external file into the program

Preprocessor directive

Indicates an integer value is returned
to the operating system from main()

Start of the function main()

The standard header file that provides
input output functions like
which displays information on the screen

printf()

Nothing is passed to main()

A library function declared in
used to print any data on the video monitor
screen. Here ' ' will be displayed.

stdio.h

C is Sea

Returns the value to the operating
system or operating environment to
indicate that the program terminated
normally; a nonzero value would
indicate an abnormal return, which
means, in other words, things were not
as they should be when the program
ended.

0

It is an escape sequence that causes the
cursor to be placed at the beginning of the
next line of output

Statement terminator

End of the function main()

Fig. 8.3 An Illustrated version of first.c

144 Computer Fundamentals and Programming in C

∑ The constant EXIT_SUCCESS defined in stdlib.h
∑ The constant EXIT_FAILURE defined in stdlib.h

 If 0 or EXIT_SUCCESS is used, the compiler’s run-time
library is guaranteed to translate this into a result code which
the operating system considers as successful.
 If EXIT_FAILURE is used, the compiler’s run-time library
is guaranteed to translate this into a result code which the
operating system considers as unsuccessful.

main() is Must
It depends on the environment the program is written for.
If it is a hosted environment, then main function is a must
for any standard C program. hosted environments are those
where the program runs under an operating system. If it is a
freestanding environment, then main function is not required.
Freestanding environments are those where the program
does not depend on any host and can have any other function
designated as startup function. Freestanding implementation
need not support all the standard libraries; usually only a
limited number of I/O libraries will be supported and no
memory management functions will be supported. examples
of freestanding implementations are embedded systems and
the operating system kernel.
 The following will give a linker error in all compilers:

main()
{
 printf(“hello, world\n”);
}

 Along with the user-supplied main() function, all C
programs include something often called the run-time support
package which is actually the code that the operating system
executes when starting up your program. In case, the user has
supplied MAIN() rather than main(), then “MAIN” is a perfectly
valid C function name but it is not “main”. If there is no user-
supplied main(), then the linker cannot finish the installation
of the run-time package.

8.6 STRUCTURE OF A C PROGRAM
The general structure of a C program is depicted in Fig. 8.4.
 Declaration is the program statement that serves to
communicate to the language translator information about
the name and type of the data objects needed during program
execution. As discussed before, preprocessor directives tell
the preprocessor to look for special code libraries, make
substitutions in the code, and in other ways prepare the code
for translation into machine language.
 The basic idea behind the global declaration is that it is
visible to all parts of the program. A more detailed discussion
on global declarations has been included in Chapter 12.

Preprocessor directives

Global declarations

Local definitions

Statements

int main (void)

{

return 0;

}

Fig. 8.4 Structure of a C program

 All functions including main() can be divided into two
sections—local definition and statements. Local definitions
would be at the beginning of the functions which is followed
by statement section. It describes the data that will be used
in the function. data objects in local definitions as opposed
to global declarations are visible only to the function that
contains them. Statement section consists of the instructions
that cause the computer to do something.
 The difference between a declaration and a definition
is important. A declaration announces the properties of
a data object or a function. The main reason for declaring
data objects and functions is type checking. If a variable or
function is declared and later reference is made to it with data
objects that do not match the types in the declaration, the
compiler will complain. The purpose of the complaint is to
catch type errors at compile time rather than waiting until the
program is run, when the results can be more fatal.
 A definition, on the other hand, actually sets aside storage
space (in the case of a data object) or indicates the sequence
of statements to be carried out (in the case of a function).

note

 ∑ Declaration means describing the type of a data object to
the compiler but not allocating any space for it.

 ∑	 Definition	means	 declaration	 of	 a	 data	 object	 and	 also	
allocating space to hold the data object.

8.7 CONCEPT OF A VARIABLE
Programs operate on data. The instructions that make up
the program and the data that it acts upon have to be stored
somewhere while the computer is executing that program.
A programming language must provide a way of storing the
data that is to be processed, otherwise it becomes useless. In
this context, it may be mentioned that a computer provides
a random access memory (RAM) for storing the executable
program code and the data the program manipulates.

Basics of C 145
 A computer memory is made up of registers and cells
which are capable of holding information in the form of
binary digits 0 and 1 (bits). It accesses data as a collection of
bits, typically 8 bits, 16 bits, 32 bits or, 64 bits. Data is stored
in the memory at physical memory locations. These locations
are known as the memory address. Therefore, each byte can
be uniquely identified by its address (see Fig. 8.5).

1211

Byte

1212

Byte

1213

Byte

1214

Byte

1215

Byte

1216

Byte

1217

Byte... ...Memory

1 1 0 1 0 0 0 1

Byte address

Bit

Fig. 8.5 Bits and bytes in memory

 The amount of bits on which it can operate simultane-
ously is known as the word length of the computer. A word is
the natural unit of memory for a given computer design. For
8-bit microcomputers, such as the original Apple comput-
ers, a word is just 1 byte. IBM compatibles using the 80286
processor are 16-bit machines. This means that they have a
word size of 16 bits, which is 2 bytes. Machines like the Pen-
tium-based PCs and the Macintosh PowerPCs have 32-bit
words. More powerful computers can have 64-bit words or
even larger. When we say that Pentium 4 is a 32-bit machine,
it means that it simultaneously operates on 32 bits of data.
 A variable is an identifier for a memory location in which
data can be stored and subsequently recalled. Variables are
used for holding data values so that they can be utilized in
various computations in a program.
 Variables are a way of reserving memory to hold some
data and assign names to them so that we do not have to
remember numbers like 46735; instead we can use the
memory location by simply referring to the variable. every
variable is mapped to a unique memory address. Variables
are used for holding data values so that they can be utilized in
various computations in a program.
 The C compiler generates an executable code which maps
data entities to memory locations. For example, the variable
definition

int salary = 65000;

causes the compiler to allocate a few bytes to represent salary.
The exact number of bytes allocated and the method used for
the binary representation of the integer depends on the specific
C implementation, but let it be said that two bytes contain the
encoded data as a binary number 1111110111101000. The
compiler uses the address of the first byte at which salary

is allocated to refer to it. The above assignment causes the
value 65000 to be stored as a binary number in the two bytes
allocated (see Fig. 8.6).

1211

Byte

1212

Byte

1213

Byte

1214

11111101

1215

11101000

1216

Byte

1217

Byte... ...Memory

Salary

(A 2-byte Integer whose address is 1214)

Fig. 8.6 Representation of an integer in memory

 While the exact binary representation of a data item is
rarely of interest to a programmer, the general organization
of memory and use of addresses for referring to data items is
very important.
All variables have three important attributes.

∑ A data type that is established when the variable is defined,
e.g., integer, real, character. Once defined, the type of a C
variable cannot be changed.

∑ The name of the variable.
∑ A value that can be changed by assigning a new value to the

variable. The kind of values a variable can assume depends
on its type. For example, an integer variable can only take
integer values, e.g., 2, 100, –12.

 The number of characters that you can have in a variable name
will depend upon your compiler. A minimum of 31 characters
must be supported by a compiler that conforms to the C language
standard, so you can always use names up to this length without
any problem. It can be suggested not to make the variable names
longer than this anyway, as they become cumbersome and make
the code harder to follow. Some compilers will truncate names
that are too long.
 Variable names are case sensitive, which means that the
names NUM and num are distinct.
 In C, a variable must be declared before it can be used.
Variables can be declared at the start of any block of code,
but these are mostly found at the start of each function. This
serves two purposes. First, it gives the compiler precise
information about the amount of memory that will be given
over to a variable when a program is finally run and what sort
of arithmetic will be used on it (e.g., only integer or floating
point or none). Second, it provides the compiler with a list of
the variables in a convenient place so that it can cross -check
names and types for any errors.

8.8 DATA TYPES IN C
The type or data type of a variable determines the set of values
that a variable might take and the set of operations that can be
applied to those values. data types can be broadly classified
as shown in Fig. 8.7.

146 Computer Fundamentals and Programming in C

Primitive/

basic

data pety
� char

�

�

�

int

float

double

Derived

data type
�

�

�

a
f
p

rray
unction
ointer

User-defined

data type
�

�

�

structure
union
enumeration

Valueless
� void

Data Type

Fig. 8.7 Classification	of	data	types

C provides a standard, minimal set of basic data types.
Sometimes these are called ‘primitive’ types. More complex
data types can be built up from these basic types. C has five
basic data types (Refer Fig. 8.8) and they are as follows:
∑	 	character—Keyword used is char
∑	 integer—Keyword used is int
∑	 floating-point—Keyword used is float
∑	 double precision floating point—Keyword used is double
∑	 valueless—Keyword used is void

Basic Data Types

char int float double void

Fig. 8.8 Basic data types

Table 8.2(a) lists the sizes and ranges of basic data types in
C for a 16-bit computer and Table 8.2(b) lists the sizes and
ranges of basic data types in C for a 32-bit computer.

Table 8.2(a) Sizes and ranges of basic data types in C for a 16-
bit computer

Data type Size (in bits) Range

char 8 –128 to 127

int 16 –32768 to 32767

float 32 1.17549 × 10–38 to 3.40282 × 1038

double 64 2.22507 × 10–308 to 1.79769 × 10 308

void 8 valueless

Table 8.2(b) Sizes and ranges of basic data types in C for a 32-
bit computer

Data type Size (in bits) Range

char 8 –128 to 127

int 32 –2147483648 to 2147483647

float 32 1.17549 × 10–38 to 3.40282 × 1038

double 64 2.22507 × 10–308 to 1.79769 × 10 308

void 8 valueless

 The C standard does not state how much precision the float
and double types provide, since different computers may store
floating point numbers in different ways. According to IEEE,
the precisions for float and double are 6 and 15, respectively.
 The void type has no values and only one operation,
assignment. The void type specifies an empty set of values.
It is used as the type returned by functions that generate no
value. The void type never refers to an object and therefore,
is not included in any reference to object types. According
to ISO/IEC draft, ‘The void type comprises an empty set of
values; it is an incomplete type that cannot be completed.’
 In addition, C has four type specifiers or modifiers and
three type qualifiers.

The following points should be noted:
 (a) Each of these type of modifiers can be applied to the

base type int.
 (b) The modifiers signed and unsigned can also be applied

to the base type char.
 (c) In addition, long can be applied to double.
 (d) When the base type is omitted from a declaration, int is

assumed.
 (e) The type void does not have these modifiers.
 The specifiers and qualifiers for the data types can be
broadly classified into three types:
∑ Size specifiers—short and long
∑ Sign specifiers—signed and unsigned
∑ Type qualifiers—const, volatile, and restrict
 The size qualifiers alter the size of the basic data types.
There are two such qualifiers that can be used with the data
type int; these are short and long.
 The specifier short, when placed in front of the int
declaration, tells the C compiler that the particular variable
being declared is used to store fairly small integer values.
The motivation for using short variables is primarily of
conserving memory space, which can be an issue in situations
in which the program needs a lot of memory and the amount
of available memory is limited.
 In any ANSI C compiler, the sizes of short int, int, and
long int are restricted by the following rules:
∑	 The minimum size of a short int is two bytes.
∑	 The size of an int must be greater than or equal to that of a

short int.
∑	 The size of a long int must be greater than or equal to that

of an int.
∑	 The minimum size of a long int is four bytes.

 In most of the dOS based compilers that work on 16-bit
computers, the size of a short int and an int is the same,
which is two bytes. In such compilers, a long int occupies
four bytes. On the other hand, in the 32-bit machine compilers

Basics of C 147
such as GNU C(gcc), int and long int take four bytes while
a short int occupies two bytes. For UNIX based compilers,
a short int takes two bytes, while a long int takes four
bytes.
 The long qualifier is also used with the basic data type
double. In older compilers, this qualifier was used with float,
but it is not allowed in the popular compilers of today. As
mentioned earlier, it may be noted here that the sign qualifiers
can be used only with the basic data types int and char.
 Table 8.3 lists the sizes of the short int, int and long int
data types in different machines.

Table 8.3 Sizes in number of bytes of the short int, int and
long int data types in different machines.

16-bit machine 32-bit machine 64-bit machine

short int 2 2 2

int 2 4 4

long int 4 4 8

 C99 provides two additional integer types: long long int
and unsigned long long int. For long long, the C99 standard
specified at least 64 bits to support. Table 8.4 summarizes the
size and range of different variations of long long type.

Table 8.4 Size and range of long long type

Size (in
bytes)

Range

long long int 8 – 9223372036854775808
to

+ 9223372036854775807

unsigned long int
or unsigned long

4 0
to

4294967295

unsigned long long int
or
unsigned long long

8 0
to

+ 18446744073709551615

 The C89 Committee added to C two type qualifiers, const
and volatile; and C99 adds a third, restrict. Type qualifiers
control the way variables may be accessed or modified. They
specify the variables that will never (const) change and those
variables that can change unexpectedly (volatile).
 Both keywords require that an associated data type be
declared for the identifier, for example,

const float pi = 3.14156;

specifies that the variable pi can never be changed by the
program. Any attempt by code within the program to alter the
value of pi will result in a compile time error. The value of a
const variable must be set at the time the variable is declared.
Specifying a variable as const allows the compiler to perform
better optimization on the program because of the data type
being known. Consider the following program:

#include <stdio.h>

int main(void)

{

const int value = 42;

/* constant, initialized integer variable */

value = 100;

/* wrong! − will cause compiler error */

return 0;

}

note

 const does not turn a variable into a constant. A variable
with const	 qualifier	 merely	 means	 the	 variable	 cannot	
be used for assignment. This makes the value read only
through that variable; it does not prevent the value from
being	modified	in	some	other	ways,	e.g.,	through	pointer.

 The volatile keyword indicates that a variable can
unexpectedly change because of events outside the control of
the program. This is usually used when some variable within
the program is linked directly with some hardware component
of the system. The hardware could then directly modify the
value of the variable without the knowledge of the program.
For example, an I/O device might need to write directly into
a program or data space. Meanwhile, the program itself may
never directly access the memory area in question. In such
a case, we would not want the compiler to optimize-out this
data area that never seems to be used by the program, yet
must exist for the program to function correctly in a larger
context. It tells the compiler that the object is subject to
sudden change for reasons which cannot be predicted from
a study of the program itself, and forces every reference to
such an object to be a genuine reference.
 The restrict type qualifier allows programs to be written
so that translators can produce significantly faster executables.
Anyone for whom this is not a concern can safely ignore this
feature of the language.
 Size and range of different combinations of basic data
types and modifiers are listed in Table 8.5.
 Several new types that were added in C89 are listed
below:
∑ void ∑ unsigned short
∑ void* ∑ unsigned long
∑ signed char ∑ long double
∑ unsigned char

 Moreover, new designations for existing types were added
in C89:

∑ signed short for short
∑ signed int for int
∑ signed long for long

148 Computer Fundamentals and Programming in C

C99 also adds new types:
∑ _Bool ∑ double _Imaginary
∑ long long ∑ double _Complex
∑ unsigned long long ∑ long double _Imaginary
∑ float _imaginary ∑ long double _Complex
∑ float _Complex
 C99 also allows extended integer types <inttypes.h>, and
<stdint.h>) and a boolean type <stdbool.h>).
char A character variable occupies a single byte that con-
tains the code for the character. This code is a numeric value
and depends on the character coding system being used, i.e.,
it is machine-dependent. The most common coding system
is ASCII (American Standard Code for Information Inter-
change). For example, the character ‘A’ has the ASCII char-
acter code 65, and the character ‘a’ has the ASCII code 97.
 Since character variables are accommodated in a byte, C re-
gards char as being a sub-range of int (the sub-range that fits in-
side a byte), and each ASCII character is for all purposes equiv-
alent to the decimal integer value of the bit picture that defines
it. Thus ‘A’, of which the ASCII representation is 01000001,
has the arithmetical decimal value of 65. This is the decimal
value of the sequence of bits 01000001, which may be easily
verified. In other words, the memory representation of the char
constant ‘A’ is indistinguishable from that of the int constant,
decimal 65.
 It may be observed that small int values may be stored in
char variables and char values may be stored in int variables.
Character variables are therefore signed quantities restricted
to the value range [–128 to 127]. however, it is a requirement
of the language that the decimal equivalent of each of the
printing characters be non-negative.

 It may thus be concluded that in any C implementation in
which a char is stored in an 8-bit byte, the corresponding int
value will always be a non-negative quantity whatever the
value of the leftmost (sign) bit. Now, identical bit pa terns
within a byte may be treated as a negative quantity by one
machine and as a positive quantity by another. For ensuring
the portability of programs that store non-character data in
char variables, the unsigned char declaration is useful: it
changes the range of chars to [0 to 255].
 The signedness of characters is an important issue because
the standard I/O library routines which may normally return
characters from files, return a negative value when end-of-file
is reached.
Let us now discuss these data types in detail.

Signed integer types
There are four standard integer types — short, int, long,
long long.
 The precise range of values representable by a signed
integer type depends not only on the number of bits used in
the representation, but also on the encoding techniques.
The most common binary encoding technique for integers
is called 2’s complement notation in which a signed integer
represented with n bits will have a range from (–2n–1) through
(2n–1 – 1) encoded in the following fashion:
 1. The highest order(left-most) bit (of the word) is the sign

bit. If the sign bit is 1, the number is negative; otherwise
the number is positive.

 2. To negate an integer, complement all bits in the word
and then add 1 to the result; thus to form the integer –1,
start with 1 (00….0012), complement the bits 11 …..
1102, and add 1 giving 11….1112 = –1.

Table 8.5 Allowed combinations of basic data	types	and	modifiers	in	C	for	a	16-bit	computer

Data type Size (bits) Range Default type

char 8 –128 to 127 signed char

unsigned char 8 0 to 255 None

signed char 8 –128 to 127 char

int 16 –32768 to 32767 signed int

unsigned int 16 0 to 65535 unsigned

signed int 16 –32768 to 32767 int

short int 16 –32768 to 32767 short, signed short, signed short int

unsigned short int 16 0 to 65535 unsigned short

signed short int 16 –32768 to 32767 short, signed short, short int

long int 32 –2147483648 to 2147483647 long, signed long, signed long int

unsigned long int 32 0 to 4294967295 unsigned long

signed long int 32 –2147483648 to 2147483647 long int, signed long, long

float 32 3.4E–38 to 3.4E+38 None

double 64 1.7E–308 to 1.7E+308 None

long double 80 3.4E–4932 to 1.1E+4932 None

Basics of C 149
 3. The maximum negative value, 10…..00002 or –2n–1, has

no positive equivalent; negating this value produces the
same value.

 Other binary integer encoding techniques are 1’s
complement notation, in which negation simply complements
all bits of the word, and sign magnitude notation, in which
negation involves simply complementing the sign bit. These
alternatives have a range from (–2n–1) through (2n–1 – 1); they
have one less value and two representations for zero (positive
and negative). All three notations represent positive integers
identically. All are acceptable in standard C.
 In C89, information about the representation of integer
types is provided in the header file limits.h. In C99, the files
stdint.h and inttypes.h contain additional information.
 The system file limits.h available in ANSI C-compliant
compilers contains the upper and lower limits of integer
types. The user may #include it before main() precisely like
#include <stdio.h>, as shown

#include <limits.h>

and thereby give the program access to the constants defined
in it.
 The permitted minimum and maximum values are shown in
Table 8.6.

Unsigned integer types
For each signed integer types, there is a corresponding
unsigned type that occupies the same amount of storage but
has a different integer encoding.
 All unsigned types use straight binary notation regardless
of whether the signed types use 2’s complement, 1’s
complement, or sign magnitude notation, the sign bit treated
as an ordinary data bit. Therefore, an n-bit word can represent
the integers 0 through 2n – 1. Most computers are easily
able to interpret the value in a word using either signed or

unsigned notation. For example, when the 2’s complement
notation is used, the bit pattern 11 …..11112 (n bits long) can
represent either –1 (using the signed notation) or 2n – 1 (using
the unsigned notation). The integers from 0 through 2n–1 –1
are represented identically in both signed and unsigned
notations. The particular ranges of the unsigned types in a
standard C implementation are documented in the header file
limits.h.

unsigned The declaration of unsigned int variable
‘liberates’ the sign bit and makes the entire word (including
the freed sign bit) available for the storage of non-negative
integers. It should be noted that the sign bit is the leftmost bit
of a memory word. It determines the sign of the contents of the
word: when it is set to 1, the value stored in the remaining bits
is negative. Most computers use 2’s complement arithmetic
in which the sign bit is ‘weighted’, i.e., it has an associated
place value, which is negative. Thus on a 16-bit machine, its
value is –215 or –32,768. So a 16-bit signed number such as
10000000 00111111 would have the value 20 + 21 + 22+ 23
+24 + 25 –215 = –32,705. As an unsigned integer, this string
of bits would have the value 215 + 25 + 24 + 23 + 22 + 21
+ 20 = 32831. On PCs, the unsigned declaration allows for
the int variables a range 0 to 65535 and is useful when one
deals with quantities which are known beforehand to be both
large and non-negative, e.g., memory addresses, a stadium’s
seating capacity, etc.

short The short int declaration may be useful in instances
where an integer variable is known beforehand to be small.
The declaration above ensures that the range of short int
will not exceed that of ints, but on some computers the range
may be shorter (e.g., –128 through 127); short int may be
accommodated in a byte, thus saving memory. In the early
days of computing when main memory was an expensive
resource, programmers tried to optimize core memory usage to

Table 8.6 Constants in limit.h

 Name Meaning Values

 CHAR_BIT Bits in a char 8
 CHAR_MAX Maximum value of char UCHAR-MAX or SCHAR_ MAX
 CHAR_MIN Minimum value of char 0 or SCHAR _ MIN
 INT_MAX Maximum value of int 32767
 INT_MIN Minimum value of int –32767
 LONG_MAX Maximum value of long 2147483647
 LONG_MIN Minimum value of long –2147483647
 SCHAR_MAX Maximum value of signed char 127
 SCHAR_MIN Minimum value of signed char –127
 SHRT_MAX Maximum value of short 32767
 SHRT_MIN Minimum value of short –32767
 UCHAR_MAX Maximum value of unsigned char 255
 UINT_MAX Maximum value of unsigned int 65535
 ULONG_MAX Maximum value of unsigned long 4294967295
 USHRT_MAX Maximum value of unsigned short 65535

150 Computer Fundamentals and Programming in C

the extent possible using such declarations and other methods.
The VAX computer uses two bytes to store short ints, which
is half the amount it uses for ints; but for present-day PCs,
with cheap and plentiful memory, most compiler writers make
no distinction between int and short int.

unsigned short For the unsigned short int variable, the
range of values does not exceed that of the unsigned int; it
may be shorter.

unsigned long The unsigned long variable declaration
transforms the range of long int to the set of 4-byte non-
negative integers with values ranging from 0 to 4294967295.

long On most computers, long int variables are 4-byte
integers with values ranging over the interval [–2147483648
to 2147483647].

float Integer and character data types are incapable of stor-
ing numbers with fractional parts. Depending on the preci-
sion required, C provides two variable types for computation
with floating-point numbers, i.e., numbers with a decimal (in-
ternally a binary) point. floats are stored in four bytes and are
accurate to about seven significant digits.

note
 	 It	must	be	 remembered	 that	 the	floating	point	numbers	

held in a computer’s memory are at best approximations
to real numbers. The	finite	extent	of	the	word	size	of	any	
computer forces a truncation or round-off of the value to
be stored; whether a storage location is two bytes wide,
or four, or even eight, the value stored therein can be
precise only to so many binary digits. In any computation
with	floating	point	numbers,	errors	of	round-off	or	trunca-
tion are necessarily introduced. Therefore, any number
with a long string of digits after the decimal point, given
by a computer as the result of a computation, may not be
quite as accurate as it seems.

double Because the words of memory can store values that
are precise only to a fixed number of figures, any calculation
involving floating-point numbers almost invariably
introduces round-off errors. At the same time, scientific
computations often demand a far greater accuracy than
that provided by single precision arithmetic, i.e., arithmetic
with the four-byte float variables. Thus, where large-scale
scientific or engineering computations are involved, the
double declaration becomes the natural choice for program
variables. The double specification allows the storage of
double precision floating-point numbers (in eight consecutive
bytes) that are held correct to 15 digits and have a much
greater range of definition than floats.

boolean data type _Bool A _Bool variable is defined in the
language to be large enough to store just the values 0 and 1.
The precise amount of memory that is used is unspecified.
_Bool variables are used in programs that need to indicate a

Boolean condition. For example, a variable of this type might
be used to indicate whether all data has been read from a file.
 By convention, 0 is used to indicate a false value and 1
indicates a true value. When assigning a value to a _Bool
variable, a value of 0 is stored as 0 inside the variable,
whereas any nonzero value is stored as 1.
 To make it easier to work with _Bool variables in a pro-
gram, the standard header file stdbool.h defines the values
for bool, as true, and false.

8.9 PROGRAM STATEMENT
A statement is a syntactic construction that performs an
action when a program is executed. All C program statements
are terminated with a semicolon (;). A program statement in
C can be classified as shown in Fig. 8.9.

Declaration is a program statement that serves to
communicate to the language translator information about
the name and type of the data objects needed during program
execution.

Statement

Declaration

Expression

Compound

Labeled

Control

Selection

Iteration

Jump

Fig. 8.9 Different types of program statements available in C

Expression statement is the simplest kind of statement
which is no more than an expression followed by a semicolon.
An expression is a sequence of operators and operands that
specifies computation of a value.

x = 4

is just an expression (which could be part of a larger
expression), but

x = 4;

is a statement.

Compound statement is a sequence of statements that
may be treated as a single statement in the construction of
larger statements.

Labeled statements can be used to mark any statement so
that control may be transferred to the statement by switch
statement.

Control statement is a statement whose execution results
in a choice being made as to which of two or more paths
should be followed. In other words, the control statements
determine the ‘flow of execution’ in a program.

Basics of C 151
 The types of control flow statements supported by different
languages vary, but can be categorized by their effect:
∑ Continuation of program execution from a different

statement
∑ executing a set of statements only if some condition is met
∑ executing a set of statements zero or more times,

until some condition is met
∑ Executing a set of distant statements, after which the flow

of control usually returns
∑ Stopping the program, preventing any further execution

(unconditional halt)

Selection statements allow a program to select a particular
execution path from a set of one or more alternatives. Various
forms of the if..else statement belong to this category.

Iteration statements are used to execute a group of one
or more statements repeatedly. while, for, and do..while
statements falls under this group.

Jump statements cause an unconditional jump to some
other place in the program. goto statement falls in this
group.
 The first four types of program statements shown in the
figure are defined and explained in the next few sections of
this chapter. The program statement control, which is of three
types, is dealt with in Chapter 9.

8.10 DECLARATION
Declaration introduces one or more variables within
a program. Definition, on the other hand, directs the
compiler to actually allocate memory for the variable. A
declaration statement begins with the type, followed by
the name of one or more variables. The general form is

data_type variable_name_1, variable_name_2, ...,
variable_name_n;

 Declaration of multiple variables of the same data types
can be done in one statement. For example,

int a;
int b;

int c;

can be rewritten as
int a, b, c;

 Variables are declared at three basic places. First, when
these are declared inside a function, they are called local
variables. Second, when the variables are declared in the
definition of function parameters, these variables are called
formal parameters. Third, when the variables are declared
outside all functions, they are called global variables.
Variables used in expressions are also referred to as operands.

8.11 HOW DOES THE COMPUTER STORE
DATA IN MEMORY?

It is necessary to understand the word size of your computer.
The word size is the computer’s preferred size for moving
units of information around; technically it is the width of the
processor’s registers, which are the data holding areas the
processor uses to do arithmetic and logical calculations. This
is what they mean when people refer to computers as 32-bit
or 64-bit computers.
 Most computers now have a word size of 64 bits. In the
recent past (early 2000s), many PCs had 32-bit words. The
old 286 machines back, in the 1980s, had a word size of 16
bits. Old-style mainframes often had 36-bit words.
 The computer views the memory as a sequence of words
numbered from zero up to some large value dependent on the
memory size.

8.11.1 How are Integers Stored?
Storing unsigned integers is a straightforward process. The
number is changed to the corresponding binary form and the
binary representation is stored.

0000000000000000 1111111111111111

655350
–• +•

Fig. 8.10(a) Range of an unsigned integer stored in a 16-bit
word

An unsigned integer can be represented with a circle as
shown in Fig. 8.10(b).
0 is placed at the top of the circle and values are placed around
the circle clockwise until the maximum value adjacent to
the value 0. In other words, storing numbers is a modulo
process. The number to be stored is represented as modulus,
the maximum value that can be stored plus one; in this case
it is 65535.

65535 + 1 = 65536 % 65536 = 0.

32768

065535

49152 16384

Fig. 8.10(b) Cyclic view of the range of an unsigned integer stored
in a 16-bit word

152 Computer Fundamentals and Programming in C

 For signed integer types, the bits of the object representation
shall be divided into three groups: value bits, padding bits, and
the sign bit. There need not be any padding bits; there shall
be exactly one sign bit. each bit that is a value bit shall have
the same value as the same bit in the object representation of
the corresponding unsigned type (if there are M value bits in
the signed type and N in the unsigned type, then M ≤ N). If
the sign bit is zero, it shall not affect the resulting value. If
the sign bit is one, the value shall be modified in one of the
following ways:
∑ The corresponding value with sign bit 0 is negated (sign

and magnitude).
∑ The sign bit has the value (2N) (2’s complement).
∑ The sign bit has the value (2N − 1) (1’s complement).
 Which of these applies is implementation-defined, as is
whether the value with sign bit 1 and all bits in magnitude are
zero (for the first two), or with sign bit and all bits in magnitude
are 1 (for ones’ complement), is a representation of a normal
value. In the case of sign and magnitude and ones’ complement,
if this representation is a normal value it is called a negative
zero.

Sign and magnitude
In this method, one bit (the left-most) represents sign bit; 0
for positive and 1 for negative. The leftover bits of the word
represent the absolute value of the number. Therefore, the
maximum positive value is one half of the unsigned value.
There are two zero values, a plus zero and a minus zero. This
method is not used to store values in today’s computers.

–32767 +32767

+0–0
–•

1000000000000000 0000000000000000

01111111111111111111111111111111

+•

Fig. 8.11 Range of a signed integer stored in a 16-bit word in
sign and magnitude form

One’s complement
In this method, negative numbers are stored in their
complemented format. Like sign and magnitude form, the one’s
complement has two zero values (plus zero and minus zero).
Figure 8.12 shows the format of one’s complement values.

1111111111111111 0000000000000000

01111111111111111000000000000000

–32767 +32767

+0–0
-• +•

Fig. 8.12 Range of a signed integer stored in 16-bit word in
one’s complement form

 Like sign and magnitude method, this method is not used
in general purpose computers.

Two’s complement form
All bits change when the sign of the number changes. So the
whole number, not just the most significant bit, takes part in
the negation processes. however, we have only one 0.
 With a little thought, you should recognize that 0 and –1
are complement of each other. Likewise +32767 and – 32768
are the complement of each other. The range of integers in 2’s
complement format is shown Fig. 8.14.

0000000000000000

01111111111111111000000000000000

–16384 +16383

0–1

1111111111111111

–32768 +32767

Fig. 8.13 Range of a signed integer stored in 16-bit word in
two’s complement form

–32768 +32767

–1 0

Negative Positive

Fig. 8.14 Cyclic view of the range of a signed integer stored in
a 16-bit word in two’s complement form

 32767 is at the bottom of the circle. When we add 10, we
move clockwise 10 positions which puts us in the negative
portion of the number range. The value at that position is
–32759. Thus, the geometric depiction of 2’s complement
numbers may help to understand how overflow conditions
can be determined using this representation for negative
numbers. Starting at any point on the circle, you can add
positive k (or subtract negative k) to that number (the starting
point number) by moving k positions clockwise. Similarly,
you can subtract positive k (or add negative k) from that
number by moving k positions counter-clockwise. If an
arithmetic operation results in traversal of the point where
the endpoints are joined, an incorrect answer will result.

8.11.2 How are Floats and Doubles Stored?
Floats and doubles are stored in mantissa and exponent
forms except that instead of the exponent representing the
power of 10, it represents the power of 2, since base 2 is

Basics of C 153
the computer’s natural format. The number of bytes used to
represent a floating-point number depends on the precision
of the variable. float is used to declare single-precision
variables, whereas the type double denotes double-precision
values. The representation of the mantissa and exponent
in these variables is in accordance with the IEEE floating-
point standards. This representation is followed by most
of the C compilers. The IEEE format expresses a floating-
point number in a binary form known as a normalized form.
Normalization involves adjusting the exponent so that the
binary point (the binary analog of the decimal point) in the
mantissa always lies to the right of the most significant non-
zero digit. In binary representation, this means that the most
significant digit of the mantissa is always 1. This property
of the normalized representation is exploited by the Ieee
format when storing the mantissa. Consider an example of
generating the normalized form of a floating-point number.
For instance, the binary equivalent to represent the decimal
number 5.375 can be obtained as shown in the following
example.

ExamplE

Integer part conversion
to binary

Writing the remainders
in reverse order, the
integer part in binary
is 101

Writing the whole numbers
part in the same order in which
they are obtained, the fraction
part in binary is 011

Fraction part conversion
to binary

2 5

2 2

2 1

0

RemainderQuotient

0.375 × 2 = 0.750
0.750 × 2 = 1.500
0.500 × 2 = 1.000

0
1
1

Whole
numbers

1

0

1

 Thus, the binary equivalent of 5.375 would be 101.011.
The normalized form of this binary number is obtained
by adjusting the exponent until the decimal point is to the
right of the most significant 1. In this case, the result is
1.01011 × 22. The IEEE format for floating-point storage uses
a sign bit, a mantissa, and an exponent for representing the
power of 2. The sign bit denotes the sign of the number: 0
represents a positive value and 1 denotes a negative value.
The mantissa is represented in binary. Converting the floating
point number to its normalized form results in a mantissa
whose most significant digit is always 1. The IEEE format
takes advantage of this by not storing this bit at all. The
exponent is an integer stored in unsigned binary format after
adding a positive integer bias. This ensures that the stored
exponent is always positive. The value of the bias is 127 for
floats and 1023 for doubles. Thus, 1.01011 × 22 is represented
as follows:

0 10000001 01011000000000000000000

Sign
bit

Exponent obtained
after adding a bias
127 to exponent 2

Mantissa stored in
normalized form

 Consider another example. Suppose the number –0.25 has
to be represented in IEEE format. On conversion to binary,
this number would become –0.01 and in its normalized form it
would be –1.0 × 2–2. This normalized form when represented
in Ieee format would look like

1 011 1110 1 000 0000 0000 0000 0000 0000

Sign
bit

Exponent-obtained
after adding a bias
127 to exponent –2

Mantissa stored in
normalized form

 Now it is known that converting the floating point number
to its normalized form results in a mantissa whose most
significant digit is always 1. The IEEE format takes advantage
of this by not storing this bit at all. The exponent is an integer
stored in an unsigned binary format after adding a positive
integer bias. This ensures that the stored exponent is always
positive. The value of the bias is 127 for floats and 1023 for
doubles. Figure 8.15 shows how any float and double are
generally represented in the Ieee format.

(a) IEEE representationfloat

S E M

31 0

Single
precision

Double
precision

Sign bit 8-bit biased exponent 23-bit mantissa

(b) IEEE representationdouble

S E M

63 0

Sign bit 11-bit biased exponent 52-bit mantissa

Value = (–1) (2) 1.MS E–127¥ ¥

Value = (–1) (2) 1.MS E–1023¥ ¥

Fig. 8.15 IEEE format for representing float and double

 According to most C literature, the valid range for floats is
10–38 to 1038. But, how is such an odd range used? Well, the
answer lies in the Ieee representation. Since the exponent of
a float in Ieee format is stored with a positive bias of 127, the
smallest positive value that can be stored in a float variable
is 2–127, which is approximately 1.175 × 10–38. The largest
positive value is 2128, which is about 3.4 × 1038. Similarly
for a double variable, the smallest possible value is 2–1023,
which is approximately 2.23 × 10–308. The largest positive
value that can be held in a double variable is 21024, which is
approximately 1.8 × 10308.
 There is one more quirk. After obtaining the Ieee
format for a float, when the time comes to actually store it

154 Computer Fundamentals and Programming in C

in memory, it is stored in the reverse order. That is, if the
user calls the four-byte Ieee form as ABCD, then while
storing in memory, it is stored in the form DCBA. This can
be understood with an example. Suppose the floating-point
number in question is 5.375. Its Ieee representation is
0100000010101100000000000000 0000. expressed in hex,
this is 40 AC 00 00. While storing this in memory, it is stored
as 00 00 AC 40.
 The representation of a long double (10-byte entity)
is also similar. The only difference is that unlike float and
double, the most significant bit of the normalized form is
specifically stored. In a long double, 1 bit is occupied by the
sign, 15 bits by the biased exponent (bias value 16383), and
64 bits by the mantissa.

8.12 TOKEN
Tokens are the basic lexical building blocks of source code. In
other words, tokens are one or more symbols understood by
the compiler that help it interpret the program code. Characters
are combined into tokens according to the rules of the
programming language. The compiler checks the tokens so that
they can be formed into legal strings according to the syntax
of the language. There are five classes of tokens: identifiers,
reserved words, operators, separators, and constants.
Identifier It is a sequence of characters invented by the
programmer to identify or name a specific object, and the name
is formed by a sequence of letters, digits, and underscores.
Keywords These are explicitly reserved words that have
a strict meaning as individual tokens to the compiler. They
cannot be redefined or used in other contexts. Use of variable
names with the same name as any of the keywords will cause
a compiler error.
Operators These are tokens used to indicate an action to
be taken (usually arithmetic operations, logical operations,
bit operations, and assignment operations). Operators can
be simple operators (a single character token) or compound
operators (two or more character tokens).
Separators These are tokens used to separate other tokens.
Two common kinds of separators are indicators of an end of
an instruction and separators used for grouping.
Constant It is an entity that does not change.
Consider the following piece of code

if(x<5)

 x = x + 2;
else
 x = x + 10;

here, the tokens that will be generated are
Keywords : if , else
identifier : x
Constants : 2, 10,5

Operators : +,=
Separator : ;

8.12.1 Identifier
Identifier or name is a sequence of characters created by
the programmer to identify or name a specific object. In C,
variables, arrays, functions, and labels are named. Describing
them may help to learn something about the character of
the language since they are elements that C permits the
programmer to define and manipulate. Some rules must be
kept in mind when naming identifiers. These are stated as
follows:
 1. The first character must be an alphabetic character

(lower-case or capital letters) or an underscore ‘_’.
 2. All characters must be alphabetic characters, digits, or

underscores.
 3. The first 31 characters of the identifier are significant.

Identifiers that share the same first 31 characters may be
indistinguishable from each other.

 4. A keyword cannot be duplicated by an identifier. A
keyword is word which has special meaning in C.

 Some examples of proper identifiers are employee_number,
box_4_weight, monthly_pay, interest_per_annum, job_number,
and tool_4.
 Some examples of incorrect identifiers are 230_item,
#pulse_rate, total~amount, /profit margin, and ~cost_per_
item.

8.12.2 Keywords
Keywords are the vocabulary of C. Because they are special
to C, one cannot use them for variable names.
 There are 32 words defined as keywords in C. These
have predefined uses and cannot be used for any other
purpose in a C program. They are used by the compiler to
compile the program. They are always written in lower-
case letters. A complete list of these keywords is given in
Table 8.7.

Table 8.7 Keywords in C

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Basics of C 155
 Several keywords were added in C89: const, enum, signed,
void, and volatile. The new keywords in C99 are inline,
restrict, _Bool, _Complex, and _Imaginary.

Table 8.8 Full set of keywords upto C99

auto enum restrict unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool

continue if static _Complex

default inline struct _Imaginary

do int switch

double long typedef

else register union

 Note that compiler vendors (like Microsoft and Borland)
provide their own keywords apart from the ones mentioned
above. These include extended keywords such as near,
far, and asm. Though it has been suggested by the ANSI
committee that every such compiler-specific keyword should
be preceded by two underscores (as in __asm), not every
vendor follows this rule.

8.12.3 Constant
A constant is an explicit data value written by the programmer.
Thus, it is a value known to the compiler at compiling time.
The compiler may deal with this value in any of several
ways, depending on the type of constant and its context.
For example, the binary equivalent of the constant may be
inserted directly into the output code stream. The value of the
constant may be stored in a special data area in memory. The
compiler may decide to use the constant’s value for its own
immediate purpose, e.g., to determine how much storage it
should allocate to a data array.
 C permits integer constants, floating-point constants,
character constants, and string constants. Table 8.9 depicts
the types of constants that C allows. An integer constant
consists of a sequence of digits. It is normally interpreted as a
decimal value. Thus, 1, 25, and 23456 are all decimal integer
constants.
 A literal integer (e.g., 1984) is always assumed to be of
type int, unless it has an ‘L’ or ‘l’ suffix, in which case it is
treated as a long. Also, a literal integer can be specified to be
unsigned using the suffix U or u. For example,

1984L 1984l 1984U 1984u 1984LU 1984ul

 Literal integers can be expressed in decimal, octal, and
hexadecimal notations. The decimal notation is the one that
has been used so far. An integer is taken to be octal if it is
preceded by a zero (0), and hexadecimal if it is preceded by a
0x or 0X. For example,

92 /* decimal */
0134 /* equivalent octal */
0x5C /* equivalent hexadecimal */

note

 In ANSI C, a decimal integer constant is treated as an
unsigned long if its magnitude exceeds that of the signed
long. An octal or hexadecimal integer that exceeds the
limit of int is taken to be unsigned; if it exceeds this limit,
it is taken to be long; and if it exceeds this limit, it is treated
as an unsigned long. An integer constant is regarded as
unsigned if its value is followed by the letter ‘u’ or ‘U’, e.g.,
0x9999u; it is regarded as unsigned long if its value is
followed by ‘u’ or ‘U’ and ‘l’ or ‘L’, e.g., OxFFFFFFFFul.

 A floating-point constant consists of an integer part,
a decimal point, a fractional part, and an exponent field
containing an e or E followed by an integer. Both integer and
fractional parts are digit sequences. Certain portions of this
format may be missing as long as the resulting number is
distinguishable from a simple integer. For example, either
the decimal point or the fractional part, but not both, may be
absent. A literal real (e.g., 0.06) is always assumed to be of
type double, unless it has an ‘F’ or ‘f’ suffix, in which case
it is treated as a float, or an ‘L’ or ‘l’ suffix, in which case it
is treated as a long double. The latter uses more bytes than a
double for better accuracy (e.g., 10 bytes on the programmer’s
PC), for example,

0.06F 0.06f 3.141592654L 3.141592654l

 In addition to the decimal notation used so far, literal reals
may also be expressed in scientific notation. For example,
0.002164 may be written in scientific notation as

2.164E-3 or 2.164e-3

 The letter E (or e) stands for exponent. The scientific
notation is interpreted as follows:

2.164E-3 = 2.164 × 10–3

The following are examples of long long:
12345LL
12345ll

The following are examples of unsigned long long:
123456ULL
123456ull

 A character constant normally consists of a single character
enclosed in single quotes. Thus, for example, ‘b’ and ‘$’
are both character constants. each takes on the numeric value
of its character in the machine’s character set. Unless stated
otherwise, it will henceforth be assumed that the ASCII code is
used. This table is provided in Appendix B. Thus, for example,
writing down the character constant ‘A’ is equivalent to
writing down the hex value 41 or the octal value 101. The
‘A’ form is preferable, of course, first, because its meaning
is unmistakable, and second, because it is independent of the
actual character set of the machine.

156 Computer Fundamentals and Programming in C

 In C, certain special characters, in particular, non-printing
control characters are represented by special, so-called
escape character sequences, each of which begins with the
special backslash (\) escape character. Most of these escape
codes are designed to make visible, on paper, any of those
characters whose receipt by a printer or terminal causes a
special, non-printing control action.
 Character constants can also be defined via their octal
ASCII codes. The octal value of the character, which may
be found from the table in Appendix B, is preceded by a
backslash and enclosed in single quotes.

char terminal_bell = ‘\07’;
/* 7 = octal ASCII code for beep */

char backspace = ‘\010’;
/* 10 = octal code for backspace */

 For ANSI C compilers, character constants may be defined
by hex digits instead of octals. hex digits are preceded by x,
unlike 0 in the case of octals. Thus, in ANSI C,

char backspace = ‘\xA’;

is an acceptable alternative declaration to
char backspace = ‘\010’;

 Any number of digits may be written, but the value stored
is undefined if the resulting character value exceeds the limit
of char.
 On an ASCII machine, both ‘\b’ and ‘\010’ are equivalent
representations. each will print the backspace character. But
the latter form, the ASCII octal equivalent of ‘\b’, will not
work on an eBCDIC machine, typically an IBM mainframe,
where the collating sequence of the characters (i.e., their
gradation or numerical ordering) is different. In the interests
of portability, it is therefore preferable to write ‘\b’ for the
backspace character rather than its octal code. Then the
program will work as faultlessly on an eBCDIC machine as it
will on an ASCII.
 Note that the character constant ‘a’ is not the same as the
string “a”. A string is really an array of characters that is a
bunch of characters stored in consecutive memory locations,
the last location containing the null character; so the string
“a” really contains two chars, an ‘a’ immediately followed
by ‘\0’. It is important to realize that the null character is not
the same as the decimal digit 0, the ASCII value of which is
00110000.
 A string constant is a sequence of characters enclosed in
double quotes. Whenever the C compiler encounters a string
constant, it stores the character sequence in an available data
area in memory. It also records the address of the first character
and appends to the stored sequence an additional character,
the null character ‘\0’, to mark the end of the string.
 The length of a character string is the number of characters
in it (again, excluding the surrounding double quotes). Thus,
the string “messagen” has a length of eight. The actual number

of stored characters is one more as a null character is added.
 The characters of a string may be specified using any of
the notations for specifying literal characters. For example,
“Name\tAddress\tTelephone” /* tab-separated words */
“aSCii character 65: \101” /* ‘a’ specified as ‘101’ */

 A long string may extend beyond a single line, in which
case each of the preceding lines should be terminated by a
backslash. For example,

 “Example to show \
 the use of backslash for \
 writing a long string”

 The backslash in this context means that the rest of the
string is continued on the next line. The preceding string is
equivalent to the single-line string.

“Example to show the use of backslash for writing a
long string”

note

 A common programming error results from confusing a
single-character string (e.g., “A”) with a single character
(e.g., ‘A’). These two are not equivalent. The former con-
sists of two bytes (the character ‘A’ followed by the char-
acter ‘\0’), whereas the latter consists of a single byte.

 The shortest possible string is the null string (“ ”). It
simply consists of the null character. Table 8.9 summarizes
the different constants.

Table 8.9	 Specifications	of	different	constants

Type Specification Example

Decimal nil 50

Hexadecimal Preceded by 0x or 0X 0x10

Octal Begins with 0 010

Floating constant Ends with f/F 123.0f

Character Enclosed within single quotes ‘A’ ‘o’

String Enclosed within double quotes “welcome”

Unsigned integer Ends with U/u 37 u

Long Ends with L/l 37 L

Unsigned long Ends with UL/w 37 UL

 C89 added the suffixes U and u to specify unsigned
numbers. C99 adds LL to specify long long.
 More than one \n can be used within a string enabling
multi-line output to be produced with a single use of the
printf() function. here’s an example.

int main()
{
 printf(“This sentence will \n be printed\nin\
 multi-line \n”);
 return 0;

}

Basics of C 157
 When the program was compiled and run, it produced the
following output:

This sentence will
be printed
in multi-line

 However if the string is too long to fit on a single line, then
it is possible to spread a string over several lines by escaping
the actual new-line character at the end of a line by preceding
it with a backslash. The string may then be continued on the
next line as shown in the following program:

int main()

{

 printf(“hello,\

 world\n”);

 return 0;

}

The output is
hello, world

 The indenting spaces at the start of the string continuation
have been taken as part of the string. A better approach is
to use string concatenation which means that two strings
which are only separated by whitespaces are regarded by the
compiler as a single string. Space, newline, tab character, and
comment are collectively known as whitespace. The use of
string concatenation is shown by the following example:

int main()

{

 printf(“hello,” “world\n”);

 return 0;

}

8.12.4 Assignment
The assignment operator is the single equal to sign (=). The
general form of the assignment statement is

variable_name = expression;

Some examples are given below.

 i = 6;

 i = i + 1;

 The assignment operator replaces the content of the
location ‘i’ with the evaluated value of the expression on its
right-hand side. The assignment also acts as an expression that
returns the newly assigned value. Some programmers use the
feature to write statements like the following:

y = (x = 2 * x);

 This statement puts x’s new value in y. The operand to
the left of the assignment operator must be a variable name.
C does not allow any expression, constant, or function to
be placed to the left of the assignment operator. Thus, its left

operand should be a variable and its right operand may be an
arbitrary expression. The latter is evaluated and the outcome
is stored in the location denoted by the variable name. For
example, the mathematical expression x + 2 = 0 does not
become an assignment expression in C by typing x + 2 = 0. It
is wrong in C, as the left-hand side of the ‘equal to’ operator
(assignment operator) must not have an expression, value, or
constant.
 The operand to the left of the assignment operator is an
lvalue that denotes left value. An lvalue is anything that
denotes a memory location in which a value may be stored.
The only kind of lvalue identified so far in this book is a
variable. It will be discussed in detail later in this chapter.
Other types of lvalues, based on pointers and references, will
be described later in the book.

8.12.5 Initialization
When a variable is declared, the C compiler does not assign
any value to the variable, unless it is instructed to do so. Such
declaration is called a tentative declaration. For example,

int i; /* This declaration is tentative */
int x;
x = i + 5;
/* variable i is not assigned any known value, and
therefore the value of x is undefined. This is a bug
*/

 To prevent such pitfalls, always assign a value to the
variable during the declaration of variables. This is known as
initialization. The value of initialization is called the initializer.
The general form of the initialization statement is

data type variable_name=constant;

For example,
int i = 100; /* 100 is an initializer */

int x;

x = i + 5;

/* since i has been given a value during its declaration,
x is evaluated to hold a value 105 */

Check your progress

 1. What will be the output of the following program?
 (a) #include <stdio.h>
 int main()
 {
 int a=010;
 printf(“\n a=%d”,a);
 return 0;
 }

 Output a = 8
 (b) #include <stdio.h>
 int main()
 {
 int a=010;

158 Computer Fundamentals and Programming in C

 printf(“\n a=%o”,a);
 return 0;
 }

 Output a = 10

Explanation: In (a), the integer constant 010 is taken to be
octal as it is preceded by a zero (0). here the variable ‘a’ is
printed with %d specifier. The decimal equivalent of the octal
value 10, which is 8, will be printed. Whereas in (b) the same
variable is printed with %o format specifier, so 10 is printed
on the screen.

 (c) #include <stdio.h>

 int main()

 {

 int a=010;

 printf(“\n a=%x”,a);

 return 0;

 }

 Output a = 8

Explanation: In (c), the octal value 10 is printed with %x
format specifier, i.e., hexadecimal equivalent of 10, which is
8, will be printed.

 (d) #include <stdio.h>

 int main()

 {

 int a=53;

 printf(“\n a=%o”,a);

 return 0;

 }

 Output a = 65

Explanation: In (d), an integer constant 53 is stored in the
variable ‘a’ but is printed with %o. The octal equivalent of 53,
which is 65, will be printed.

 (e) #include <stdio.h>

 int main()

 {

 int a=53;

 printf(“\n a=%X”,a);

 return 0;

 }

 Output a = 35

Explanation: In (e), an integer constant 53 is stored in the
variable ‘a’ but is printed with %X. The hexadecimal equivalent
of 53, which is 35, will be printed.

8.13 OPERATORS AND ExPRESSIONS
An operator is a symbol that specifies the mathematical,
logical, or relational operation to be performed. This section
introduces the built-in C operators for composing expressions

with variables. An expression is any computation that yields
a value. Figure 8.16 gives the classification of operators in C
language. Table 8.10 gives the different types of operators.

Table 8.10 Types of operators

Type of operator Operator symbols with meanings

Arithmetical Unary
 + (Unary)
 – (Unary)
 ++ Increment
 – – Decrement

Binary
 + Addition
 – Subtraction
 * Multiplication
 / Division
 % Modulo

Ternary
 ?: Discussed later

Assignment Simple Assignment
 =

Compound Assignment
 +=, -=, *=, /=, %=, &=, ^=, |=

Expression Assignment
 A= 5+(b=8 + (c=2)) -4

Relational >, <, >=, <=

Equality = = (Equal to)
 != (Not equal to)

Logical && (Logical AND)
 || (Logical OR)
 ! (Logical NOT)

Bitwise & (Bitwise AND)
 | (Bitwise OR)
 ~ (Complement)
 ^ (Exclusive OR)
 >> (Right Shift)
 << (Left Shift)

Others , (Comma)
 * (indirection),
 . (membership operator)
 -> (membership operator)

 When discussing expressions, the term evaluation is often
used. For example, it is said that an expression evaluates to
a certain value. Usually the final value is the only reason
for evaluating the expression. however, in some cases, the
expression may also produce side effects. These are permanent
changes in the program state. In this sense, C expressions are
different from mathematical expressions.
 C provides operators for composing arithmetic, relational,
logical, bitwise, and conditional expressions. It also provides
operators that produce useful side effects, such as assignment,
increment, and decrement. each category of operators will be
discussed in turn. The precedence rules that govern the order
of operator evaluation in a multi-operator expression will
also be discussed.

Decimal value “53”
is stored in “a”.

Basics of C 159

8.13.1 Arithmetic Operators in C
There are three types of arithmetic operators in C: binary,
unary, and ternary.

Binary operators
C provides five basic arithmetic binary operators. These are
summarized in Table 8.11.

 Table 8.11 Arithmetic binary operators

Operator Name Example

+ Addition 12 + 4.9 /* gives 16.9*/

- Subtraction 3.98 – 4 /* gives –0.02 */

* Multiplication 2 * 3.4 /* gives 6.8 */

/ Division 9 / 2.0 /* gives 4.5 */

% Remainder 13 % 3 /* gives 1 */

 except for remainder (%), all other arithmetic operators can
accept a mix of integer and real operands. Generally, if both
operands are integers, the result will be an integer. however,
if one or both of the operands are reals, the result will be a
real (or double to be exact).
 When both operands of the division operator (/) are
integers, the division is performed as an integer division and
not the normal division. Integer division always results in
an integer outcome, i.e., the result is always rounded off by
ignoring the remainder. For example,

9/2 /* gives 4, not 4.5 */

–9/2 /* gives –4, not 4 */

 Unintended integer divisions are a common source of
programming errors. To obtain a real division when both
operands are integers, cast one of the operands to be real,
which means forcing the data type of the variable to real.
Typecasting will be explained in detail later in this chapter.
The following example demonstrates the case of real division.

int cost = 100;

int volume = 80;

double unitPrice;

unitPrice = cost/(double) volume; /* gives 1.25 */

 The remainder operator (%) always expects integers
for both of its operands. It returns the integer part of the
remainder obtained after dividing the operands. For example,
13%3 is calculated by integer division of 13 by 3 to give a
remainder of 1; the result is therefore 1.
 It is possible for the outcome of an arithmetic operation
to be too large for storing in a designated variable. This
situation is called an overflow. The outcome of an overflow
is machine-dependent and therefore undefined. For example,

unsigned char k = 10 * 92; /* overflow: 920 > 255 */

It is not possible to divide a number by zero. This operation
is illegal and results in a run-time division-by-zero exception
that typically causes the program to terminate.
 The effects of attempting to divide by zero are officially
undefined. The ANSI standard does not require compiler
writers to do anything special, so anything might happen. Of
course we tried this by changing the value of a variable to
zero in a program. Turbo C spotted what was going on and
displayed the message

Divide error

 The UNIX systems were slightly less informative
producing the following messages:

Arithmetic exception (core dumped)

Breakpoint - core dumped

A few examples on the use of various arithmetic operators
are given below.

ExamplEs

1. #include <stdio.h>

 int main()

 {

 int a = 100;

 int b = 2;

 int c = 25;

 int d = 4;

 int result;

 result = a-b; /*subtraction */

 printf(“a – b = %d \n”, result);

Operators

Arithmetical

Ternary Expression

AssignmentEquality Relational Logical Bit-wise

Unary Binary Simple Compound

Fig. 8.16	 Classification	of	operators	in	C	language

160 Computer Fundamentals and Programming in C

 result = b * c; /* multiplication */

 printf(“b * c = %d \n”, result);

 result = a / c; /* division */

 printf(“a / c = %d \n”, result);

 result = a + b * c;

 printf(“a + b * c = %d \n”, result);

 printf(“a * b + c * d = %d\n”, a* b+c*d);

 return 0;

 }

Output

a – b = 98

b * c = 50

a / c = 4

a + b * c = 150

a * b + c * d = 300

2. #include <stdio.h>

 int main()

 {

 int a = 25;

 int b = 2;

 int result;

 float c = 25.0;

 float d = 2.0;

 printf(“6 + a / 5 * b = %d \n”, 6 + a / 5 * b);

 printf(“a / b * b = %d\n”, a / b * b);

 printf(“c / d * d = %f\n”, c / d * d);

 printf(“-a = %d\n”,-a);

 return 0;

 }

Output

6 + a / 5 * b = 16

a / b * b = 24

c / d * d = 25.000000

-a = -25

 Note the difference between this and the previous program. When we
evaluate 6 + a / 5 * b, we have not stored its value in any variable, but
it is evaluated in the printf statement itself and printed straight away.

note
op1/op2
op1%op2

For / and %, op2 must be non-zero; op2 = 0 results in an error
(We cannot divide by zero.). When op1 and op2 are integers
and the quotient is not an integer, then the following points
have to be noted:

	 If op1 and op2 have the same sign, op1/op2 is the largest
integer less than the true quotient, then op1%op2 has the
sign of op1.

 If op1 and op2 have opposite signs, op1/op2 is the smallest
integer greater than the true quotient, then op1%op2 has
the sign of op1.

It is to be noted that rounding off is always towards zero.
 % operator returns the remainder of an integer division.

i.e., x%y = x – (x/y) * y, where x and y both are of
integer types. This operator can be applied only to integer
operands and cannot be applied to operands of type float
or double. The following example shows the occurrence
of compiler error when the % operator is applied on a
floating-point	number:

 #include <stdio.h>
 int main()
 {
 float c= 3.14;
 printf(“%f”, c%2);
 return 0;
 }

Check your progress

 1. What will be the output of the following programs?
 (a) #include <stdio.h>

 int main()

 {

 int x = 5, y = 7, z;

 z = x + y;

 printf(“The value of x is: %d\n”, x);

 printf(“The value of y is: %d\n”, y);

 printf(“Their sum, z, is: %d\n”, z);

 return 0;

 }

 Output
 The value of x is: 5

 The value of y is: 7

 Their sum, z, is: 12

 (b) #include <stdio.h>

 int main()

 {

 int a, b, c; /* a, b and c are undefined. */

 c= a + b ;

 printf(“The value of a is: %d\n”, a);

 printf(“The value of b is: %d\n”, b);

 printf(“Their sum, c, is: %d\n”, c);

 return 0;

 }

 Output
 The value of a is: 2146744409

 The value of b is: 2146744417

 Their sum, c, is: –1478470

Basics of C 161
 Now, look at the output of this program. Could it be
possible to predict the values a, b, and c? Never assume
a variable to have a meaningful value, unless a value is
assigned to it.

Unary operators
The unary ‘–’ operator negates the value of its operand
(clearly, a signed number). A numeric constant is assumed
positive unless it is preceded by the negative operator. That
is, there is no unary ‘+’. It is implicit. Remember that -x does
not change the value of x at the location where it permanently
resides in memory.
Apart from this, there is another group of unary operators
available in C that are described next.

Unary increment and decrement operators The unary
‘++’ and ‘--’ operators, respectively, increment or decrement
the value of a variable by 1. There are ‘pre’ and ‘post’
variants for both operators that do slightly different things as
explained below.

var++ increment ‘post’ variant var-- decrement ‘post’
variant
++var increment ‘pre’ variant --var decrement ‘pre’
variant

 The following examples illustrate the use of increment
and decrement operators on a variable not placed in an
expression.

ExamplE

 3. int i = 42;
 i++; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */
 i— —; /* decrement contents of i, same as i = i – 1; */

/* i is now 42 */

++i; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */

– –i; /* decrement contents of i, same as i = i – 1; */
/* i is now 42 */

Basic rules for using ++ and – – operators

 The operand must be a variable but not a constant or an
expression.

 The operator ++ and -- may precede or succeed the
operand.

ExamplEs

4. #include <stdio.h>
 int main()
 {
 int a=5, b=3;
 printf(“\n %d”, ++(a*b+2));
 return 0;
 }

 Output
 Compiler error – Lvalue required

5. #include <stdio.h>
 int main()
 {
 printf(“\n %d”, ++2));
 return 0;
 }

 Output
 Compiler error – Lvalue required

 It is to be noted that i++ executes faster than i = i +

1 because the expression i++ requires a single machine
instruction such as INR to carry out the increment operation
whereas i = i + 1 requires more instructions to carry out this
operation.

Pre- and post-variations of ++ and – – operators The pre-
and post- (++ and --) operators differ in the value used for the
operand n when it is embedded inside expressions.
 If it is a ‘pre’ operator, the value of the operand is
incremented (or decremented) before it is fetched for
computation. The altered value is used for computation of
the expression in which it occurs.
 A few examples are shown here to demonstrate the use of
the increment and decrement operators for postfix and prefix
operations in expressions.

ExamplEs

 6.	 Postfix	operation

(a) x = a++;

a = a + 1

x = a First action: store value of in

memory location for variable .x
a

Second action: increment value

of by and store result in

memory location for variable .

a 1

a

 (b) y = b––;

b = b – 1

y = b First action: put value of in

memory location for variable

b

y.

Second action: decrement value

of by and put result in memory

location for variable .
b

b

1

 7.	 Prefix	operation
(a) x = ++a;

a = a + 1

x = a

First action: increment value of

by and store result in memory

location for variable .

a

1

a

Second action: store value of

in memory location for variable .

a

x

162 Computer Fundamentals and Programming in C

 (b) y = ––b;

b = b – 1

y = b

First action: decrement value of

by and put result in memory

location for variable .

b 1

b

Second action: put value of in

memory location for variable .

b

y

 To clarify, suppose that an int variable a has the value 5.
Consider the assignment

b = ++a;

Pre-incrementation implies
Step 1: increment a; /* a becomes 6 */
Step 2: assign this value to b; /* b becomes 6 */
Result: a is 6, b is 6

 If it is a ‘post’ operator, the value of the operand is altered
after it is fetched for computation. The unaltered value is
used in the computation of the expression in which it occurs.
 Suppose again that a has the value 5 and consider the
assignment

b = a++;

Post-incrementation implies
Step 1: assign the unincremented a to b;
 /* b becomes 5 */
Step 2: increment a; /* a becomes 6 */
Result: a is 6, b is 5

 The placement of the operator before or after the operand
directly affects the value of the operand that is used in the
computation. When the operator is positioned before the
operand, the value of the operand is altered before it is used.
When the operator is placed after the operand, the value of
the operand is changed after it is used. Note in the examples
above that the variable a has been incremented in each case.
 Suppose that the int variable n has the value 5. Now
consider a statement such as

x = n++ / 2;

 The post-incrementation operator, possessing a higher
priority than all other operators in the statement, is evaluated
first. But the value of n that is used in the computation of x
is still 5. Post-incrementation implies using the current value
of n in the computation and incrementing; it immediately
afterwards.
 So x gets the value 5/2 = 2, even though n becomes 6. The
rule is repeated; in an expression in which a post-incremented
or post-decremented operand occurs, the current (unaltered)
value of the operand is used; only then, is it changed.
Accordingly, in the present instance, 5 is the value of n that is
used in the computation. n itself becomes 6.
 Now, consider the following statement.

x = ++n / 2;

where n is initially 5.

 Pre-incrementation or pre-decrementation first alters the
operand n; it is this new value that is used in the evaluation of
x. In the example, n becomes 6, as before; but this new value
is the value used in the computation, not 5. So x gets the value
6/2 = 3.
Now, consider the following program:

int main()

{

 int x=5;

 printf(“Values are %d and %d\n”,x++,++x);

 return 0;

}

 Before revealing the results, let us see if we can work out
what the output of the program will be. here, it is needed to
consider the values passed to the printf () function. The first
part of the expression is “x++”. This is a post-increment(use-
and-increment) expression, so the value of the expression is
5 and as a side effect of evaluating the expression the value
of x is increased to 6. Next, the value of the expression “++x”
is calculated. This is the pre-increment (increment-and-use)
expression, so the value of the expression is clearly 7. Thus
the expected output is

Values are 5 and 7

 Some compilers give this expected output but trying the
same program using the Turbo C as well as GCC based
compiler for example in Quincy 2005 resulted in the output

Values are 6 and 7

 This is rather surprising but it can easily be explained. The
C programming language standard rules quite specifically
allow the parameters to be passed to a function to be evaluated
in any convenient order. Some compilers worked left to right,
which seems more natural, whereas others worked right to
left which may be more efficient in some circumstances.
 This must be remembered when writing programs that
are to be compiled on many different machines. A similar
difficulty arises when considering the output of a program
such as

int main()

{

 int x = 4;

 printf(“Result = %d\n”,x++ + x);

 return 0;

}

 Since the standard allows expressions involving
commutative associative operators such as “+” to be evaluated
in any order, a moment’s thought shows that the value printed
out would be 8 for right-to-left evaluation and 9 for left-to-
right evaluation. On the Quincy 2005, the output was

Basics of C 163
Result = 8

whereas the Turbo C compiler gave the result
Result = 9

Strictly the behaviour of the program is undefined, which
means the C standard fails to define what the result
should be.
The following statements are undefined

i = ++i + 1;
a[i++] = i;

while allowing the following statements
i = i + 1;
a[i] = i;

#include <stdio.h>
int main(void)
{
 int number = 5;
 printf(“the number is: %d\n”, number);
 return 0;
}

 When compiled and executed, this program should display
the following on the screen:

the number is: 5

If the %d specifier is omitted, the value 5 vanishes from the
output.
 The values of several variables of different types are
shown in a single statement in the following example:

#include <stdio.h>
int main(void)
{
 int i = 5;
 char ch= ‘A’;
 float f=12.345;
 printf(“\n i = %d ch = %c f = %f”, i, ch, f);
 return 0;
}

Output
i = 5 ch = a f = 12.345000

 The conversion specifiers are replaced in order by
the values of the variables that appear as the second and
subsequent arguments to the printf() function, so the value
of i corresponds to the first specifier %d, and the value of ch
corresponds to the second one, i.e. %c, and so on.
 One important point to note is that when a variable is
not initialized with some values, then what is printed on the
screen if the following program is compiled and run:

#include <stdio.h>

int main(void)

{

 int number;

 printf(“the number is: %d\n”, number);

 return 0;

}

 The output will be anything, which means that the values
are indeterminate; this means that one cannot make any
assumptions about what values are initially in a location. On
many systems we will find that the initial value is zero but
you must not rely on this.

Abbreviated (compound) assignment expressions It
is frequently necessary in computer programs to make
assignments such as

n = n + 5;

C allows a shorter form for such statements, as shown.
 n += 5;

 Assignment expressions for other arithmetic operations
may be similarly abbreviated as shown.

n –= 5; /* is equivalent to n = n – 5; */

n *=5; /* is equivalent to n = n * 5; */

n /= 5; /* is equivalent to n = n / 5; */

n %= 5; /* is equivalent to n = n % 5; */

 The priority and direction of association of each of the
operators +=, -=, *=, /=, and %= is the same as that of the
assignment operator.

8.13.2 Relational Operators in C
C provides six relational operators for comparing numeric
quantities. These are summarized in Table 8.12. Relational
operators evaluate to 1, representing the true outcome, or 0,
representing the false outcome.
 Note that the <= and >= operators are only supported in the
form shown. In particular, =< and => are both invalid and do
not mean anything.
 The operands of a relational operator must evaluate to
a number. Characters are valid operands since they are
represented by numeric values. For example (assuming
ASCII coding),

‘a’ < ‘F’ /* gives 1 (is like 65 < 70) */

Table 8.12 Relational operators

Operator Action Example

== Equal 5 == 5 /* gives 1 */

!= Not equal 5 != 5 /* gives 0 */

< Less than 5 < 5.5 /* gives 1 */

<= Less than or equal 5 <= 5 /* gives 1 */

> Greater than 5 > 5.5 /* gives 0 */

>= Greater than or equal 6.3 >= 5 /* gives 1 */

 The relational operators should not be used for comparing
strings because this will result in string addresses being
compared, not string contents. For example, the expression

164 Computer Fundamentals and Programming in C

“HELLO” < “BYE”

causes the address of “HELLO” to be compared to the address
of “BYE”. As these addresses are determined by the compiler
(in a machine-dependent manner), the outcome may be 0 or
may be 1, and is therefore undefined.
 C provides library functions (e.g., strcmp) for the
lexicographic comparison of strings. These will be described
later in the book.

8.13.3 Logical Operators in C
C provides three logical operators for forming logical
expressions. These are summarized in Table 8.13. Like the
relational operators, logical operators evaluate to 1 or 0.
 Logical negation is a unary operator that negates
the logical value of its single operand. If its operand is non-
zero, it produces 0, and if it is 0, it produces 1. Logical
AND produces 0 if one or both its operands evaluate to 0.
Otherwise, it produces 1. Logical OR produces 0 if both its
operands evaluate to 0. Otherwise, it produces 1.

Table 8.13 Logical operators

Operator Action Example Result

! Logical Negation !(5 == 5) 0

&& Logical AND 5 < 6 && 6 < 6 0

|| Logical OR 5 < 6 || 6 < 5 1

 Note that here, zero and non-zero operands are mentioned,
not zero and 1. In general, any non-zero value can be used to
represent the logical true, whereas only zero represents the
logical false. The following are, therefore, all valid logical
expressions.

!20 gives 0

10 && 5 gives 1

10 || 5.5 gives 1

10 && 0 gives 0

 C does not have a built-in Boolean type. It is customary to
use the type int for this purpose instead. For example,

int sorted = 0; /* false */

int balanced = 1; /* true */

Exceptions in the evaluation of logical expressions
containing && and || If the left operand yields a false
value, the right operand is not evaluated by a compiler in a
logical expression using &&. If the left operand evaluates true
value, the right operand is not evaluated by the compiler in
a logical expression with the || operator. The operators &&
and || have left to right associativity. hence the left operand
is evaluated first and, depending on the output, the right
operand may or may not be evaluated.

ExamplE

8. #include <stdio.h>
 int main()

 {

 int i=0, j=1;

 printf(“\n %d”, i++ && ++j);

 printf(“\n %d %d”, i,j);

 return 0;

 }

 Output
 0
 1 1

8.13.4 Bitwise Operators in C
C provides six bitwise operators for manipulating the
individual bits in an integer quantity. These are summarized
in Table 8.14.

Table 8.14 Bitwise operators

Operator Action Example

~ Bitwise Negation ~‘\011’
/* gives ‘\066’ */

& Bitwise AND ‘\011’ & ‘\027’
/* gives ‘\001’ */

| Bitwise OR ‘\011’ | ‘\027’
/* gives ‘\037’ */

^ Bitwise Exclusive OR ‘\011’ ^ ‘\027’
/* gives ‘\036’ */

<< Bitwise Left Shift ‘\011’ << 2
/* gives ‘\044’ */

>> Bitwise Right Shift ‘\011’ >> 2
/* gives ‘\002’ */

 Bitwise operators expect their operands to be integer
quantities and treat them as bit sequences. Bitwise
negation is a unary operator that complements the bits in
its operands. Bitwise AND compares the corresponding
bits of its operands and produces a 1 when both bits are 1,
and 0 otherwise. Bitwise OR compares the corresponding
bits of its operands and produces a 0 when both bits are
0, and 1 otherwise. Bitwise exclusive OR compares the
corresponding bits of its operands and produces a 0 when
both bits are 1 or both bits are 0, and 1 otherwise.
 Bitwise left shift operator and bitwise right shift operator
both take a bit sequence as their left operand and a positive
integer quantity n as their right operand. The former produces
a bit sequence equal to the left operand but which has been
shifted n bit positions to the left. The latter produces a bit
sequence equal to the left operand but which has been shifted
n bit positions to the right. Vacated bits at either end are set to
0. The general form of the right shift statement is

Basics of C 165
 variable_name >> number of bit positions;
and that of the left shift statement is
 variable_name << number of bit positions;
Table 8.15 illustrates bit sequences for the sample operands.
To avoid worrying about the sign bit (which is machine
dependent), it is common to declare a bit sequence as an
unsigned quantity.

unsigned char x = ‘\011’;
unsigned char y = ‘\027’;

Table 8.15 Effect of bit-wise operator implementation

Example Octal value Bit sequence

x 011 0 0 0 0 1 0 0 1

y 027 0 0 0 1 0 1 1 1

~x 366 1 1 1 1 0 1 1 0

x & y 001 0 0 0 0 0 0 0 1

x | y 037 0 0 0 1 1 1 1 1

x ^ y 036 0 0 0 1 1 1 1 0

x << 2 044 0 0 1 0 0 1 0 0

x >> 2 002 0 0 0 0 0 0 1 0

8.13.5 Conditional Operator in C
The conditional operator has three expressions. It has the
general form

expression1 ? expression2 : expression3
First, expression1 is evaluated; it is treated as a logical condition.
If the result is non-zero, then expression2 is evaluated and its
value is the final result. Otherwise, expression3 is evaluated and
its value is the final result. For example,

int m = 1, n = 2, min;
min = (m < n ? m : n); /* min is assigned a value 1 */

 In the above example, because m is less than n, m<n
expression evaluates to be true, therefore, min is assigned the
value m, i.e., 1.
 The same code can also be written using the if-else
construct, described in Chapter 10.

 int m=1, n=2, min;

 if(m<n)

 min=m;

 else min=n;

 Note that out of the second and the third expressions of
the conditional operator, only one is evaluated. This may be
significant when one or both contain side effects, that is, their
evaluation causes a change to the value of a variable. For
example, in

min = (m < n ? m++ : n++);

m is incremented because m++ is evaluated but n is not
incremented because n++ is not evaluated.

8.13.6 Comma Operator
The comma operator allows the evaluation of multiple ex-
pressions, separated by the comma, from left to right in order
and the evaluated value of the rightmost expression is ac-
cepted as the final result. The general form of an expression
using a comma operator is

expressionm = (expression1, expression2, …,

 expressionN);

where the expressions are evaluated strictly from left to
right and their values discarded, except for the last one,
whose type and value determine the result of the overall
expression. here, it may be stated that in the preceding
general form, the left hand side expression, expiressonM,
may be omitted. In such a case, the right hand side
expressions exist and the comma operator evaluates these
from left to right. Finally, the value of the last expression
is returned as the outcome. The application of the comma
operator is best explained by the following examples.

ExamplEs

 9. int i = 0;
 int j;

 j = (i += 1, i += 2, i + 3);

 In this example, the comma operator is used with three expressions
on the right hand side of the assignment operator. Hence, the
comma operator takes these three expressions and evaluates them
from left to right and returns the value of the rightmost expression.
Thus, in this example, the operator first evaluates “i += 1” which
increments the value of i. Then the next expression “i += 2”
is evaluated which adds 2 to i, leading to a value of 3. The third
expression is evaluated and its value is returned as the operator’s
result. Thus, j is assigned a value of 6.

 10. int m = 1;
 int n;
 n = (m = m+3, m%3);
 Here, the comma operator takes two expressions. The operator

first evaluates “m = m+3” which assigns a value 4 to m. Then the
expression m%3 is evaluated to 1. Thus n is assigned a value of 1.

 11. int m, n, min;
 int mCount = 0, nCount = 0;

 .
 .
 .
 min = (m < n ? mCount++, nCount++, n);
 Here, when m is less than n, mCount++ is evaluated and the value

of m is stored in min. Otherwise, nCount++ is evaluated and the
value of n is stored in min.

 12. Swapping of two integer variables using the comma operator:
 #include <stdio.h>
 int main()
 {

166 Computer Fundamentals and Programming in C

 int a=2,b=3,c;
 c=a,a=b,b=c; /* comma operator is used */
 printf(“\n a=%d b=%d”,a,b);
 return 0;
 }

 Output a=3 b=2

From these examples, it may be concluded that the comma
operator is used to ensure that parts of an expression are
performed in a left to right sequence. The comma allows
for the use of multiple expressions where normally only
one would be allowed. It is used most often in the for loop
statement where one statement is called for, but several
actually need to be coded.
 The comma operator forces all operations that appear to
the left to be fully completed before proceeding to the right
of the comma. This helps eliminate any inaccuracy in the
evaluation of the expression. For example,

num1 = num2 + 1, num2 = 2;

 The comma operator ensures that num2 will not be changed
to a 2 before num2 has been added to 1 and the result placed in
num1. The other similar operators that are also considered to
be sequence points like the comma operator are as follows:

 &&

 ||

 ?:

 When any of these operators are encountered all activity
associated with any operator to the left is completed before
the new operator begins executing. Both the semicolon and
the comma also perform this service, ensuring that there is
a way to control the order of executions in a program. The
commas that separate the actual arguments in a function call
are punctuation symbols, not sequence points. A punctuation
symbol, in a function, does not guarantee that the arguments
are either evaluated or passed to the function in any particular
order.

8.13.7 sizeof Operator
C provides a useful operator, sizeof, for calculating the size
of any data item or type. It takes a single operand that may be
a type name (e.g., int) or an expression (e.g., 100) and returns
the size of the specified entity in bytes. The outcome is totally
machine-dependent. The following program illustrates the
use of sizeof on the built-in types we have encountered so
far.

#include <stdio.h>

int main()

{

 printf(“char size = %d bytes\n”, sizeof(char));

 printf(“short size = %d bytes\n”, sizeof(short));

 printf(“int size = %d bytes\n”, sizeof(int));

 printf(“long size = %d bytes\n”, sizeof(long));

 printf(“float size = %d bytes\n”, sizeof(float));

 printf(“double size = %d bytes\n”, sizeof(double));

 printf(“1.55 size = %d bytes\n”, sizeof(1.55));

 printf(“1.55L size = %d bytes\n”, sizeof(1.55L));

 printf(“HELLO size = %d bytes\n”, sizeof(“HELLO”));

return 0;

}

 When run, the program will produce the following output
(on the programmer’s PC):

char size = 1 bytes

short size = 2 bytes

int size = 2 bytes

long size = 4 bytes

float size = 4 bytes

double size = 8 bytes

1.55 size = 8 bytes

1.55L size = 10 bytes

HELLO size = 6 bytes

8.13.8 Expression Evaluation—Precedence and
Associativity

evaluation of an expression in C is very important to
understand. Unfortunately there is no ‘BOdMAS’ rule in
C language as found in algebra. Operators have rules of
precedence and associativity that are used to determine how
expressions are evaluated.
 When there is more than one operator in an expression, it
is the relative priorities of the operators with respect to each
other that will determine the order in which the expression
will be evaluated. This priority is known as precedence.
The precedence of operators determines the order in which
different operators are evaluated when they occur in the
same expression. Operators of higher precedence are applied
before operators of lower precedence.
Consider the following expression:

4 + 3 * 2

the operator ‘*’ has higher precedence than ‘+’, causing the
multiplication to be executed first, then the addition. Hence,
the value of the expression is 10. An equivalent expression
is

4 + (3 * 2)

 But what happens when an expression consists of operators
with same precedence. For example

4 / 2 *3

 The associativity of operators determines the order in
which operators of equal precedence are evaluated when they
occur in the same expression. The associativity defines the
direction, left-to-right or right-to-left, in which the operator
acts upon its operands.

Basics of C 167
 Both * and / have the same precedence. Here, division
operation will be executed first followed by multiplication.
The value of the expression is 6.
 Table 8.16 lists the operators in order of decreasing
operator priority and states their direction of grouping.
 Let’s illustrate a statement as written below. Assume that n
is a variable of type int:

n = 5 – 2 * 7 – 9;

 The ‘*’ has a higher precedence than ‘–’ so it is evaluated
first, and the statement is equivalent to:

n = 5 – 14 – 9;

 The minus has left-to-right associativity, so the statement
is equivalent to:

n = –18;

 Also, the ‘=’ has lower precedence than either ‘–’ or ‘*’ or
any other arithmetic, logical, or relational operator, and this
is how C enforces the rule that the expression to the right of
the ‘=’ gets evaluated first and then the resulting value gets
assigned to the variable to the left of the ‘=’. here is another
valid statement in C language:

x = x + 1;

 The expression to the right of the equal sign is evaluated
first, and its value is then assigned to the variable to the left.
So let’s assume the value stored in x is equal to 5. When
this statement is executed, the expression to the right of ‘=’
evaluates to 6, and the value of 6 is assigned back to x.
 It makes sense for the priority of the assignment operator to
be lower than the priorities of all the arithmetic operators, and
for it to group from right to left. Naturally it is very important
for programmers to become familiar with the precedence and
grouping properties of all C operators. But if programmers
are not sure of the order in which operators will be evaluated
in a computation, they may use the parentheses operator, (),
to override default priorities. Yes, even the parenthesis is an
operator in C. The parenthesis operator has a priority higher
than any binary operator, such as that for multiplication; it
groups from left to right. Thus, in the statement

w = x * (y * z);

the product y * z will be computed first; the value obtained
will then be multiplied by x; lastly, the assignment of the
result will be made to w. had the parentheses been absent, the
order of the computation would first be, the multiplication
of x by y, with the result stored as an intermediate quantity;
second, the multiplication of this quantity by z; and third, the
assignment of the result to w.
 The parentheses are an example of a primary operator. C
has in addition three other primary operators: array [], the
dot (.), and arrow (Æ), which will be encountered in later
chapters. All these operators have the same priority, higher
than that of any other operator. They all group from left to
right.

 Aside from the primary operators, C operators are
arranged in priority categories depending on the number of
their operands. Thus, a unary operator has a single operand
and a higher priority than any binary operator, which has
two operands. Binary operators have a higher priority than
the ternary operator, which has three operands. The comma
operator may have any number of operands, and has the
lowest priority of all C operators. Table 8.16 illustrates this
rule.
 One readily available example of a unary operator is
the operator for negation, the (–). It changes the sign of the
quantity stated on it. Since the unary operators have higher
priority than the assignment operator, in the statement

x = –3;

the 3 is first negated, and only then is this value assigned to
x. The negation operator has a priority just below that of the
parentheses operator; it groups from right to left. Right to left
association is a property the operator for negation shares in
common with all unary operators. In the following statement

x = –(3 * 4);

the presence of the parentheses ensures that the expression 3
* 4 is evaluated first. It is then negated. Finally, x is assigned
the value –12.
 A question that might be asked is: does C have a unary
plus operator, +? In other words, can an assignment of the
form a = + 5 be made? Not in compilers conforming to the
K&R standard, though ANSI C does provide a unary plus
operator. See Table 8.16.

Table 8.16 Precedence and associativity of operators

Operators Associativity

() [] . ++ (postfix) –- (postfix) L to R

++ (prefix) –– (prefix) !~ sizeof(type)
+ (unary) – (unary) & (address) *

(indirection)

R to L

* / % L to R

+ – L to R

<< >> L to R

< <= > >= L to R

== != L to R

& L to R

^ L to R

| L to R

&& L to R

|| L to R

?: R to L

= += –= *= /= %= >>= <<= &= ^= |= R to L

, (comma operator) L to R

168 Computer Fundamentals and Programming in C

note

 In the division of one integer by another, the remainder
is discarded. Thus, 7/3 is 2, and 9/11 is 0. The % operator
can only be used with the integer variables. It cannot be
used with the variables of float or double.

 The multiplication, division, and residue-modulo operators
have the same priority. The addition and subtraction
operators also have equal priority, but this is lower than
that of the former three operators, *, /, and %. All these
operators group from left to right. In a C program, is the
value of 3/5 + 2/5 the same as (3 + 2)/5? Is 3 * (7/5) the
same as 3 * 7/5? The answer to both questions is ‘No’.

ExamplEs
In the examples below, let x be an integer variable.

 13. x = 2 * 3 + 4 * 5;

 The products 2 * 3 and 4 * 5 are evaluated first; the sum 6 + 20
is computed next; finally the assignment of 26 is made to x.

 14. x = 2 * (3 + 4) * 5;

 The parentheses guarantee that 3 + 4 be evaluated first. Since
multiplication groups from left to right, the intermediate result 7 will
be multiplied by 2 and then by 5, and the assignment of 70 will finally
be made to x.

 15. x = 7*6 % 15/9;

 Each of the operators above has equal priority; each groups from
left to right. Therefore, the multiplication 7 * 6 (= 42) is done
first, then the residue-modulo with respect to 15 (42 % 15 = 12),
and finally the division (of 12) by 9. Since the division of one integer
by another yields the integer part of the quotient and truncates the
remainder, 12/9 gives the value 1. x is therefore assigned the value
1.

 16. x = 7 * (6 % 15)/9;

 The parentheses ensure that 6 % 15 is evaluated first. The
remainder, when 6 is divided by 15, is 6. In the second step, this
result is multiplied by 7, yielding 42. Integer division of 42 by 9 gives
4 as the quotient, which is the value assigned to x.

 17. x = 7*6 % (15/9);

 Here, 15/9 is performed first and yields 1. The next computation in
order is 7 * 6 % 1, i.e., the remainder, on division of 42 by 1, is 0.
x gets the value 0.

 18. x = 7 * ((6 % 15)/9);

 The innermost parentheses are evaluated first: 6 % 15 is 6. The
outer parentheses are evaluated next—6/9 is 0. x gets the value 7
* 0 = 0.

 19. An example of the use of precedence of operators

 #include <stdio.h>

 int main()

 {

 int a;

 int b = 4;

 int c = 8;

 int d = 2;

 int e = 4;

 int f = 2;

 a = b + c / d + e * f;
/* result without parentheses */

 printf(“The value of a is = %d \n”, a);

 a = (b + c) / d + e * f;
/* result with parentheses */

 printf(“The value of a is = %d \n”, a);

 a = b + c / ((d + e) * f);
/* another result with parentheses */

 printf(“The value of a is = %d \n”, a);

 return 0;

 }

 Output
 The value of a is = 16

 The value of a is = 14

 The value of a is = 4

8.14 ExPRESSIONS REVISITED
An expression in C consists of a syntactically valid
combination of operators and operands that computes to a
value. An expression by itself is not a statement. Remember,
a statement is terminated by a semicolon; an expression is not.
expressions may be thought of as the constituent elements
of a statement, the ‘building blocks’ from which statements
may be constructed. The important thing to note is that every
C expression has a value. The number 7 as we said a while
ago, or any other number by itself, is also an expression, the
value of the number being the value of the expression. For
example,

 3 * 4 % 5

is an expression with value 2.
 x = 3 * 4

is an example of an assignment expression. Note the absence
of the semicolon in the assignment above. The terminating
semicolon would have converted the expression into a statement.
Like any other C expression, an assignment expression also has a
value. Its value is the value of the quantity on the right-hand side
of the assignment operator. Consequently, in the present instance,
the value of the expression (x = 3 * 4) is 12. Consider a C
statement such as

 z = (x = 3 * 4) / 5;

 here, the parentheses ensure that x is assigned the value 12
first. It is also the value of the parenthetical expression (x =
3 * 4), from the property that every expression has a value.
Thus, the entire expression reduces to

 z = 12/5

 Next, in order of evaluation, the integer division of 12 by
5 yields 2. The leftmost assignment operator finally gives the

Basics of C 169
value 2 to z. x continues to have the value 12.
Consider the expression

 x = y = z = 3

 The assignment operator groups from right to left.
Therefore, the rightmost assignment

 z = 3

 is made first. z gets the value 3; this is also the value of
the rightmost assignment expression, z = 3. In the next
assignment towards the left the expression is

 y = z = 3

Since the sub-expression z = 3 has the value 3, so
 y = (z = 3)

i.e., y = 3
 The assignment to y is again of the value 3. equally then
the entire expression

 y = z = 3

gets the value 3. In the final assignment towards the left, x
gets the value of this latter expression

 x = (y = (z = 3))

 each parenthetical expression is 3. Thus x is 3. One
statement that often confuses novice programmers is

 x = x * x;

 For those who have studied algebra, the immediate reaction
may well be, ‘This cannot be right, unless x is 0 or x is 1; and
x is neither 0 nor 1 in the program.’ however, the statement

 x = x * x;

is not an algebraic equation. It is an instruction to the
computer, which in English translates to the following:

 Replace x by x times x.

Or, more colloquially, after its execution

 (new value of x) is (old value of x) * (old value of x)

8.15 LVALUES AND RVALUES
An lvalue is an expression to which a value can be assigned.
An rvalue can be defined as an expression that can be
assigned to an lvalue. The lvalue expression is located on
the left side of an assignment operator, whereas an rvalue is
located on the right side of an assignment operator.
 The address associated with a program variable in C is
called its lvalue; the contents of that location are its rvalue,
the quantity that is supposed to be the value of the variable.
The rvalue of a variable may change as program execution
proceeds; but never its lvalue. The distinction between
lvalues and rvalues becomes sharper if one considers the
assignment operation with variables a and b.

a = b;

b, on the right-hand side of the assignment operator, is the
quantity to be found at the address associated with b, i.e.,

an rvalue. a is assigned the value stored in the address
associated with b. a, on the left-hand side, is the address at
which the contents are altered as a result of the assignment.
a is an lvalue. The assignment operation deposits b’s rvalue
at a’s lvalue.
 An lvalue cannot be a constant. For example, consider the
following statements:

1 = x;
x + y = a + b;
x + b = 5;

 In each of the above cases, the left side of the statement
evaluates to a constant value that cannot be changed because
constants do not represent storable locations in memory.
Therefore, these two assignment statements do not contain
lvalue and will generate compiler errors.
 Unlike an lvalue, an rvalue can be a constant or an
expression, as shown here:

int x, y;
x = 5; /* 5 is an rvalue; x is an lvalue */
y = (x + 1); /* (x + 1) is an rvalue; y is an lvalue
*/

 The difference between lvalue and rvalue is shown in
Table 8.17.

Table 8.17 Lvalue versus rvalue

Lvalue Rvalue

Consider the following assignment statement: a = b;

Refers to the address that ‘a’
represents.

Means the content of the address
that b represents.

is known at compile time. is not known until run time.

Says where to store the value. Tells what is to be stored.

Cannot be an expression or a
constant.

Can be an expression or a
constant.

8.16 TYPE CONVERSION IN C
Though the C compiler performs automatic type conversions,
the programmer should be aware of what is going on so as to
understand how C evaluates expressions.

8.16.1 Type Conversion in Expressions
When a C expression is evaluated, the resulting value has a
particular data type. If all the variables in the expression are
of the same type, the resulting type is of the same type as well.
For example, if x and y are both of int type, the expression x
+ y is of int type as well.
 What if the variables of an expression are of different
types? In that case, the expression has the same data type as
that of the variable with the largest size data type present in

170 Computer Fundamentals and Programming in C

it. The smallest to the largest data types with respect to size
are given as follows:

char
int
long
float
double

Thus, an expression containing an int and a char evaluates to
type int, an expression containing a long and a float evaluates
to type float, and so on. Within expressions, individual
operands are promoted as necessary to match the associated
operands in the expression. Operands are promoted in pairs
for each binary operator in the expression. If both operands
are of the same type, promotion is not needed. If they are not,
promotion follows these rules:

 float operands are converted to double.
 char or short (signed or unsigned) are converted to int

(signed or unsigned).
 If any one operand is double, the other operand is also

converted to double, and that is the type of the result; or
if any one operand is long, the other operand is treated as
long, and that is the type of the result.

 If any one operand is of type unsigned, the other operand is
converted to unsigned, and that is the type of the result; or
the only remaining possibility is that both operands must
be int, and that is also the type of the result.

Figure 8.16 illustrates the rule for data type promotion in an
expression.

long double

double

float

unsigned long int

long int

unsigned int

int

short

char

Fig. 8.16 Rule for data type promotion in an expression

 For example, if x is an int and y is a float, evaluating the
expression x/y causes x to be promoted to float type before
the expression is evaluated. This does not mean that the type
of variable x is changed. It means that a float type copy of x is
created and used in the evaluation of the expression. The value
of the expression is the float type. Likewise, if x is a double
type and y is a float type, y will be promoted to double.
 Figure 8.17 shows how the rule of type promotion is
followed in a typical expression containing variables of
mixed types. The data type of r evaluates to double.

char c;

int j;

float f;

double d, r;

r = (c * j) + (f/j) – (f + d);

int

int

float

float double

doublefloat

float

double

double

double

Fig. 8.17 Conversion of types in a mixed expression

8.16.2 Conversion by Assignment
Promotions also occur with the assignment operator. The
expression on the right side of an assignment statement is
always promoted to the type of the data object on the left
side of the assignment operator. Note that this might cause a
‘demotion’ rather than a promotion. If f is a float type and i
is an int type, i is promoted to float type in this assignment
statement:

 f = i;

In contrast, the assignment statement
 i = f;

causes f to be demoted to type int. Its fractional part is lost
on assignment to i. Remember that f itself is not changed at
all; promotion affects only a copy of the value. Thus, after the
following statements are executed

 float f = 1.23;

 int i;

 i = f;

the variable i has the value 1, and f still has the value 1.23.
As this example illustrates, the fractional part is lost when a
floating point number is converted to an integer type.
 The programmer should be aware that when an integer
type is converted to a floating point type, the resulting floating
point value might not exactly match the integer value. This
is because the floating point format used internally by the
computer cannot accurately represent every possible integer
number.
 In most cases, any loss of accuracy caused by this would
be insignificant. To be sure, however, keep integer values in
int type or long type variables.

Basics of C 171
Conversions of characters and integers
There are six basic methods of converting values from one
type to another. The methods are:

Sign extension This technique is adopted when converting
a signed object to a wider signed object, e.g. converting a
short int to a long int. It preserves the numerical value by
filling the extra leading space with 1’s or 0’s.

Zero extension This is used when converting an unsigned
object to a wider unsigned object. It works by simply prefixing
the value with the relevant number of zeroes.

Preserve low order data-truncate This is used when
converting an object to a narrower form. Significant
information may be lost.

Preserve bit pattern This is used when converting between
signed and unsigned objects of the same width.

Internal conversion This uses special hardware to convert
between floating point types and from integral to floating
point types.

Truncate at decimal point This is used to convert from
floating point types to integral types, and may involve loss of
significant information.

 The basic conversions listed above are those that take
place on assignment.
 Conversion of a shorter integer to a longer integer
preserves the sign. Traditional C uses ‘unsigned preserving
integer promotion’ (unsigned short to unsigned int), while
ANSI C uses ‘value preserving integer promotion’ (unsigned
short to int).
 A longer integer is truncated on the left when converted to
a shorter integer or to a char. excess bits are discarded.
 When an unsigned integer is converted to a longer unsigned
or signed integer, the value of the result is preserved. Thus,
the conversion amounts to padding with zeroes on the left.
 When an unsigned integer is converted to a shorter signed
or unsigned integer, the value is truncated on the left. If the
result is signed, this truncation may produce a negative value.
 Consider the following program which illustrates the
above facts:

#include <stdio.h>
int main()
{
 short int si;
 long int li;
 unsigned short int usi;
 unsigned long int uli;

 si = -10;

 li = si; /* sign extension - li should be -10 */

 printf(“si = %8hd li = %8ld\n”,si,li);

 usi = 40000U; /* unsigned decimal constant */

 uli = usi;
/* zero extension - uli should be 40000 */

 printf(“usi = %8hu uli = %8lu\n”,usi,uli);

 uli = 0xabcdef12; /* sets most bits ! */

 usi = uli;
/* will truncate - discard more

sigficant bits */

 printf(“usi = %8hx uli = %8lx\n”,usi,uli);

 si = usi; /* preserves bit pattern */

 printf(“si = %8hd usi = %8hu\n”,si,usi);

 si = -10;

 usi = si; /* preserves bit pattern */

 printf(“si = %8hd usi = %8hu\n”,si,usi);

 return 0;

}

Output
si = –10 li = –10
usi = 40000 uli = 40000
usi = ef12 uli = abcdef12
si = –4334 usi = 61202
si = –10 usi = 65526

 It may be interesting to note that the difference between
the pairs of values on the last two lines is 65536. Conversions
between signed long and unsigned short are typically
undefined. The next program shows conversions to and from
floating point types.
 There is an extra complication concerning variables of type
char. The conversion rules to be applied depend on whether
the compiler regards char values as signed or unsigned.
Basically the ANSI C standard says that variables of type
char are promoted to type unsigned int or type signed int
depending on whether the type char is signed or unsigned. An
unsigned int may then be further converted to a signed int by
bit pattern preservation. This is implementation dependent.
The following program shows what might happen.

#include <stdio.h>

int main()

{

 int si;

 unsigned int usi;

 char ch = ‘a’;
 // most significant bit will be zero

 si = ch; // will give small +ve integer

 usi = ch;

 printf(“c = %c\n si = %d\n usi = %u\n”, ch,\
 si,usi);

 ch = ‘\377’; /* set all bits to 1 */

 si = ch; /* sign extension makes negative */

 usi = ch;

172 Computer Fundamentals and Programming in C

 printf(“si = %d\n usi = %u\n”,si,usi);

 return 0;

}

Output
 c = a
 si = 97
 usi = 97
 si = -1
 usi = 4294967295

 The Turbo C compiler regarded char as a signed data type
applying sign extension when assigning the signed char c
to the signed int si . The conversion from signed char c to
unsigned int usi is more interesting. This took place in two
stages—the first being sign extension and the second being
bit pattern preservation. On the IBM 6150, char is treated
as an unsigned data type, both assignments using bit pattern
preservation.
 The conversion of the unsigned char to either the signed
int si or the unsigned int usi is by bit pattern preservation.

Conversions of float and double
ANSI C considers all floating point constants to be implicitly
double precision, and operations involving such constants
therefore take place in double precision. To force single
precision arithmetic in ANSI C, use the f or F suffix on
floating point constants. To force long double precision on
constants, use the l or L suffix. For example, 3.14l is long
double precision, 3.14 is double precision, and 3.14f is single
precision in ANSI C.
 What happens if you try to make a float variable exceed
its limits? For example, suppose you multiply 1.0e38f by
1000.0f (overflow) or divide 1.0e-37f by 1.0e8f (underflow)?
The result depends on the system. either could cause the
program to abort and to print a run-time error message. Or
overflows may be replaced by a special value, such as the
largest possible float value; underflows might be replaced by
0. Other systems may not issue warnings or may offer you a
choice of responses. If this matter concerns you, check the
rules for your system. If you cannot find the information, do
not be afraid of a little trial and error.

Conversion of floating and integral types
When a floating value is converted to an integral value, the
rounded value is preserved as long as it does not overflow.
When an integral value is converted to a floating value, the
value is preserved unless a value of more than six significant
digits is being converted to single precision, or fifteen
significant digits is being converted to double precision.
 Whenever a floating-point value is assigned to an integer
variable in C, the decimal portion of the number gets
truncated. Assigning an integer variable to a floating variable
does not cause any change in the value of the number; the
value is simply converted by the system and stored in the

floating variable. The following program shows conversions
to and from floating point types.

#include <stdio.h>

int main()

{

 double x;

 int i;

 i = 1400;

 x = i; /* conversion from int to double */

 printf(“x = %10.6le i = %d\n”,x,i);

 x = 14.999;

 i = x; /* conversion from double to int */

 printf(“x = %10.6le i = %d\n”,x,i);

 x = 1.0e+60; /* a LaRGE number */

 i = x; /* won’t fit - what happens ?? */

 printf(“x = %10.6le i = %d\n”,x,i);

 return 0;

}

Producing the output
x = 1.445000e+03 i = 1445

x = 1.499700e+01 i = 14

x = 1.000000e+60 i = 2147483647

 The loss of significant data, a polite way of saying the
answer is wrong, in the final conversion should be noted.

8.16.3 Casting Arithmetic Expressions
Casting an arithmetic expression tells the compiler to represent
the value of the expression in a certain way. In effect, a cast is
similar to a promotion, which was discussed earlier. however,
a cast is under the programmer’s control, not the compiler’s.
For example, if i is a type int, the expression

 (float)i

casts i to float type. In other words, the program makes an
internal copy of the value of i in floating point format.
When is a typecast used with an arithmetic expression? The
most common use is to avoid losing the fractional part of
the answer in an integer division. Consider the following
example.

ExamplE

 20. When one integer is divided by another, any fractional part of the
answer is lost.

 #include <stdio.h>
 int main()
 {
 int a = 100,b = 40;
 float c;
 …
 …

Basics of C 173
 c = a/b;
 return 0;
 }

 If the value of c is printed, the output will be 2.000000.
The answer displayed by the program is 2.000000, but 100/40
evaluates to 2.5. What happened? The expression a/b contains
two int type variables. Following the rules explained earlier
in this chapter, the value of the expression is int type itself. As
such, it can represent only whole numbers, so the fractional
part of the answer is lost.
 It may be assumed that assigning the result of a/b to a float
type variable promotes it to float type. This is correct, but it is
too late; the fractional part of the answer is already gone.
 To avoid this sort of inaccuracy, one of the int type
variables must be cast to float type. If one of the variables is
cast to type float, the previous rules say that the other variable
is promoted automatically to float type, and the value of the
expression is also float type. The fractional part of the answer
is thus preserved. To demonstrate this, change the statement

 c = a/b;

in the source code so that the assignment statement reads as
follows:

 c = (float)a/b;

The program will then display the correct answer.

Rounding a floating point value to a
whole number
A floating point value can be rounded to an integer simply
by adding 0.5 before storing it in an integer storage location.
Normally, when a floating point value is assigned to an integer
storage location, all fractional values (digits to the right of the
decimal point) are ‘truncated’ (chopped-off). If we declare an
integer variable named N with the statement

int N;

and then attempt to assign a floating point value into it with
the statement

n = 2.8;

the variable N would receive the whole value 2, not the value
2.8 or the rounded value 3. Therefore, to assign the rounded
result of 2.8 into variable N, we would use the simple
expression

n = 2.8 + 0.5;

which would increase the value to 3.3 and then truncate the .3
portion, resulting in the rounded value 3.
 If you had a floating point value stored in a variable named
A and you wanted to round it to a whole number and store that
in an integer variable named B, the statement would be

B = A + 0.5;

If you had a complex formula such as
(X + 8.5) / (Y - 4.2)

that would result in a floating point value and if you want to
round off the result to a whole number and store that in an
integer variable named C, the statement would be

C = (X + 8.5) / (Y - 4.2) + 0.5;

Rounding a floating point value to a specific
decimal precision
A floating point value can be rounded to a specific decimal
precision by following the four major steps described above,
but with special care given to production of the appropriate
data type during each part of the process. Using casting, we
can force a value into an integer data type during calculation.
This would be done just before the step in which we truncate
unwanted digits to the right of the offset decimal point.
Normally, when a floating point value is converted into an
integer, all fractional values (digits to the right of the decimal
point) are ‘truncated’ (chopped-off).
 Consider the following example in which a stored floating
point value is rounded to 2 decimal places, as are the results
of most monetary calculations.
Given the following floating point variables

float F; /* a floating point value that needs to
 be rounded */
float R; /* a floating point value that has been
 rounded */

 If we assign a floating point value into F with the statement
F = 2.468;

the variable F would receive the value 2.468, not the rounded
value of 2.47 which would be appropriate for most monetary
uses. To assign the rounded result of 2.47 into variable R, we
would use the expression

R = (int) (F*100+0.5) / 100.0;

which would offset the decimal point two places by
multiplying F by 100 (resulting in 246.8), then sum the value
to 247.3, and then truncate the .3 portion by casting the value
into integer form, and finally reposition the decimal point by
dividing the result by 100.0. It is essential to write the value
100 in floating point notation (with the .0 attached) to prevent
C from performing integer division which would corrupt the
results.
 When rounding the results of a floating point calculation,
simply substitute that expression in place of F in the
expression above. But pay careful attention to data types and
the order of precedence of operators in the larger expression.
For example, if the expression was

X+Y;

where X and Y were double precision floating point values
(long floats), then the larger expression made by inserting
X+Y in place of F in the rounding formula above would be

R = (long int) ((X+Y)*100+0.5) / 100.0;

 Notice the enclosure of the X+Y inside of parentheses to
force the weak addition operator to be performed before the

174 Computer Fundamentals and Programming in C

stronger multiplication by 100. Notice also the use of the
long int data type in the casting to allow for the high precision
floating point result required by double precision floating
point values.
 If our intention was to round the floating point value F to
three decimal places, then we would use a factor of 1000 (10
raised to the 3rd power) in steps 1 and 4, as in

R = (int) (F*1000+0.5) / 1000.0;

Check your progress
All the programs will have #include <stdio.h> preceding
the main().
 1. Which of the following is an incorrect assignment

statement?
 (a) n = m = 0
 (b) value += 10
 (c) mySize = x < y ? 9 : 11
 (d) testVal = (x > 5 || x < 0)
 (e) none of the above
 Answer: (e)
 2. What will be the output?
 (a) int main()

 {

 float c= 3.14;

 printf(“%f”, c%2);

 return 0;

 }

 Output Compiler error

 Explanation: In example (a), % operator is applied on
a variable of type float. The operands of the % opearator
cannot be of float or double. This is why it causes a
compiler error.

 (b) int main()

 {

 printf(“%d”, ‘A’);

 return 0;

 }

 Output 65
 Explanation: In example (2), ‘A’ is a character constant

and it is printed with format specifier %d. The ASCII
equivalent of the character A is 65. So 65 will be
printed.

 (c) int main()

 {

 double d= 1/2.0 – 1/2;

 printf(“d=%.2lf”, d);

 return 0;

 }

 Output d=0.50

 Explanation: The value of 1 / 2.0 is evaluated as 0.50,
as one of this expression is of type double and the result
would be in double. Whereas in case of 1 / 2, both
operands are of type int. The result of this expression
is 0 as an integer division of 1 / 2 gives 0. So the value
of d is equal to 0.50 – 0, i.e. 0.50. Now, the value of d
is printed with %g format specifier; so, 0.50 will be
printed instead of 0.500000.

 (d) int main()

 {

 unsigned int c= -2;

 printf(“c=%u”, c);

 return 0;

 }

 Output c=65534
 (Considering Turbo C compiler)

 Explanation: An overflow occurs during an operation
on unsigned integers, though the result is defined. A
signed integer constant –2 is assigned to an unsigned
integer variable. Such an operation on numbers is a
modulo process. The number to be stored is represented
as the maximum value that can be stored plus one; in this
case, it is 65535 + 1, i.e. 65536, minus the signed value,
here is –2. (65535 + 1) – 2 = 65534. hence the output.

 (e) int main()

 {

 char c = ‘A’;

 printf(“%c”, c + 10);

 return 0;

 }

 Output K

 Explanation: The chatracter constant ‘A’ is stored in
the variable c. When 10 is added with c, then 10 is added
to the ASCII value of ‘A’ (i.e. 65), the result is 75. As the
result is printed with %c, the character equivalent of 75,
which is ‘K’, is printed on the screen.

 (f) int main()

 {

 int a=5;

 a=printf(“Good”)+ printf(“Boy”);

 printf(“%d”,a);

 return 0;

 }

 Output GoodBoy7
 Explanation: printf() function returns the number of

characters printed on the screen. ‘Good’ and ‘Boy’ will
be printed consecutively. The first printf () returns 4
and the second one returns 3. So 4 + 3 = 7 is stored in
a. When it is printed, 7 would be printed at the end of
‘GoodBoy’.

Basics of C 175

 (g) void int main()

 {

 printf(“Work” “Hard”);

 return 0;

 }

 Output WorkHard

 Explanation: In example (g), adjacent string literals will
automatically be joined together as one at compile time.
So “WorkHard” will be printed on the screen.

 (h) int main()
 {
 int c= – –2;
 printf(“c=%d”, c);
 return 0;
 }

 Output c = 2;
 Explanation: In example (h) unary minus (or negation)

operator is used twice. Here, math-rule ‘minus * minus
= plus’ is to be applied. however, one cannot give
--2 instead of - -2 because the -- operator can only be
applied to variables as a decrement operator (eg., i--). 2
is a constant and not a variable.

 (i) int main()

 {

 int a=5;

 i=!a >10;

 printf(“i=%d”,i);

 return 0;

 }

 Output i = 0
 Explanation: In the expression !a>10, the NOT (!)

operator has more precedence than the ‘>’ symbol. ! is
a unary logical operator. !a (!5) is 0 (NOT of true is
false). 0>10 is false (zero).

 (j) int main()

 {

 printf(“\nab”);

 printf(“\bsi”);

 printf(“\rha”);

 return 0;

 }

 Remember that \n - newline

 \b - backspace

 \r - linefeed

 Output hai
 Explanation: The escape sequences \n, \b and \r stand

for newline, backspace, and line feed respectively.
At first, ‘ab’ is printed on console. The \b deletes the
character ‘b’ of ‘ab’ and appends ‘si’. Therefore, ‘asi’
is printed. Then, \r causes to position the cursor at ‘a’ of

‘asi’ and replace ‘as’ with ‘ha’. As a result, finally ‘hai’
is printed on the screen.

 (k) int main()
 {
 int i=5;
 printf(“%d%d%d”,i++, i, ++i);
 return 0;
 }

 Output 666
 Explanation: The arguments in a function call are

pushed into the stack from left to right. The evaluation
is by popping out from the stack and the evaluation is
from right to left, hence the result.

 (l) int main()
 {
 int i;
 printf(“%d”,scanf(“%d”,&i));
 /* value 10 is given as input here */
 return 0;
 }

 Output 1
 Explanation: scanf returns the number of items

successfully read. here, 10 is given as input that should
have been scanned successfully. So the number of items
read is 1.

 (m) int main()

 {

 char n;

 n=!2;

 printf(“%d”,n);

 return 0;

 }

 Output 0
 Explanation: ! is a logical operator. In C, the value

0 is considered to be FALSE, and any non-zero value
including negative value, is considered to be the Boolean
value TRUe. here, 2 is a non-zero value, so TRUe.
!TRUE is FALSE (0), so it prints 0.

 (n) int main()

 {

 int i=-2;

 printf(“-i = %d \n”,-i,);

 return 0;

 }

 Output -i = 2
 Explanation: –i is executed and this execution does not

affect the value of i. In printf first just print the value
of i. After that the value of the expression -i = -(-2) is
printed.

 (o) int main()

176 Computer Fundamentals and Programming in C

 {

 int x=10,y=15,a,b;

 a=x++;

 b=++y;

 printf(“%d%d\n”,a,b);

 return 0;

 }

 Output 1016
 Explanation: a = x++ is evaluated as a =x then x =

x + 1. So the value of a is 10 and the value of x is 11.
The statement b= ++y, ++y is incremented before it
is assigned to b. Then b = ++y is evaluated as y = y+1
followed by b = y. So the value of b is 16; hence the
output.

 (p) int main()

 {

 int x=10,y=15;

 x=x++;

 y=++y;

 printf(“%d%d\n”,x,y);

 return 0;

 }

 Output 1116

 Explanation: In this example, x = x++ is evaluated as x
= x followed by x = x + 1. That is, value of x will be 11.
Similarly, y is also evaluated.

 (q) int main()

 {

 int x=1,y=5;

 printf(“%d ”,++(x+y));

 return 0;

 }

 Output Compiler error – Lvalue required
 Explanation: The increment operator (++) cannot be

used with expressions. The expression ++(x+y) stands
for (x+y) = (x+y) +1. We cannot write expression in the
left-hand side of the assignment operator (=).

 (r) int main()

 {

 int x=1,y=5;

 printf(“%d ”,++x+y);

 return 0;

 }

 Output 7

 Explanation: In the expression ++x + y, before addition
++x is evaluated first. The ++x yields 2 and the value of y
is 5. The result of x + y is 7; hence the output.

 3. how do we round off numbers?
 Answer: The simplest and most straightforward way is

with a code like (int)(x + 0.5) This technique will not
work properly for negative numbers, though.

 4. Use the following values for the next four questions.
 int a = 8, b = 3, x1, x2, x3, x4
 x1 = a * b x2 = a / b
 x3 = a % b x4 = a && b

 (a) The value of x1 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output (v)

 (b) The value of x2 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output (iii)

 (c) The value of x3 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output (iii)

 (d) The value of x4 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output (ii)
5. Find the output:
 (a) int main()

 {

 int a = 7, b = 2;

 float c;

 c = a/b;

 printf(“\n%f”,c);

 return 0;

 }

 Output 3.000000

Basics of C 177
 (b) int main()

 {

 int c = 1;

 c=c+2*c++;

 printf(“\n%f”,c);

 return 0;

 }

 Output 4.000000

 (c) Is i % 2 == 0
 equivalent to (i % 2) == 0?
 Output Yes,

 == has lower precedence than %

 (d) int main()
 {
 int a=2,b=3, c=3;
 a=b==c;
 printf(“a=%d”, a);
 return 0;

 }

 Output a=1

8.17 WORKING WITH COMPLEx NUMBERS
A complex number is a number with a real part and an
imaginary part. It is of the form a + bi, where i is the square
root of minus one, and a and b are real numbers. here a is the
real part, and bi is the imaginary part of the complex number.
A complex number can also be regarded as an ordered pair of
real numbers (a, b).

According to C99, three complex types are supported:
float complex
double complex
long double complex

C99 implementations support three imaginary types also:
float imaginary

double imaginary

long double imaginary

 To use the complex types, the complex.h header file must
be included. The complex.h header file defines some macros
and several functions that accept complex numbers and return
complex numbers. In particular, the macro I represents the
square root of –1. It enables to do the following:

 double complex c1 = 3.2 + 2.0 * i;

 float imaginary c2= -5.0 * i;

 The following program illustrates the use of complex and
imaginary types:

 #include <stdio.h>

 #include <limits.h>

 #include <complex.h>

 #include <stdio.h>

 int main(void)

 {

 double complex cx = 3.2 + 3.0*I;

 double complex cy = 5.0 - 4.0*I;

 printf(“Working with complex numbers:”);

 printf(“\nStarting values: cx = %g + %gi cy = %g +\
 %gi”,creal(cx), cimag(cx), creal(cy), cimag(cy));\

 double complex sum = cx+cy;

 printf(“\n\nThe sum cx + cy = %g + %gi”,
creal(sum),cimag(sum));

 return 0;

 }

Output
Working with complex numbers:

Starting values: cx = 3.2 + 3i cy = 5 + -4i

The sum cx + cy = 8.2 + -1i

 The creal() function returns the real part of a value of
type that is passed as the argument, and cimag() returns the
imaginary part. For details of the functions that can be applied
on these types, the header file complex.h, which is supplied
with the compiler, may be explored.

SUMMARY
C is a programming language that can be used to solve problems. Each of
the 32 keywords of C has a fixed meaning and forms the building block for
program statements. Variables are given names.

 Variables holds data at memory locations allocated to them. There
are five basic data types in C, namely, char, int, float, double, and
void. Except type void, the basic data types can have various modifiers
such as signed, unsigned, long, and short that precedes them. The
computer and the data type determine the memory space allocated to a
variable. Constants in C have fixed values. There are several operators

in C that can be classified as arithmetic, relational, logical, assignment,
increment and decrement, conditional, bit-wise, and special. Expressions
are formed with variables and operators. Operators in C have certain
precedence and associativity rules that are followed while evaluating
expressions. Automatic type conversion takes place according to set rules
in expressions with mixed types. Forced type conversion is also possible in
C.

 For handling complex numbers the complex, h header file should be
included while writing the program.

178 Computer Fundamentals and Programming in C

ASCII It is a standard code for representing characters as numbers and
is used on most microcomputers, computer terminals, and printers. In
addition to printable characters, the ASCII code includes control characters
to indicate carriage return, backspace, etc.

Assembler	 It creates the object code.

Associativity	 The associativity of operators determines the order in
which operators of equal precedence are evaluated when they occur in
the same expression. Most operators have a left-to-right associativity, but
some have right-to-left associativity.

Compiler	 It is a system software that translates the source code to
assembly code.

Constant	 It is an entity that does not change.

Data	type	 The type or data type of a variable determines a set of values
that the variable might take and a set of operations that can be applied to
those values.

Debugger	 It is a program that enables you to run another program step-
by-step and examine the value of that program’s variables.

IDE An Integrated Development Environment or IDE is an editor which
offers a complete environment for writing, developing, modifying, deploying,
testing, and debugging the programs.

Identifier	 It is a symbolic name used in a program and defined by the
programmer.

Identifier	 An identifier or name is a sequence of characters invented by
the programmer to identify or name a specific object.

Keywords	 These are explicitly reserved words that have a strict meaning

as individual tokens to the compiler. They cannot be redefined or used in
other contexts.

Linker	 If a source file references library functions or functions defined
in other source files, the linker combines these functions to create an
executable file.

Lvalue	 It is an expression to which a value can be assigned.

Precedence The precedence of operators determines the order in which
different operators are evaluated when they occur in the same expression.
Operators of higher precedence are applied before operators of lower
precedence.

Preprocessor	 The C preprocessor is used to modify the source program
before compilation according to the preprocessor directives specified.

Rvalue	 It can be defined as an expression that can be assigned to an
lvalue.

Token	 It is one or more symbols understood by the compiler that help it
interpret the code.

Variable	 It is a named memory location. Every variable has a type, which
defines the possible values that the variable can take, and an identifier,
which is the name by which the variable is referred.
Whitespace	 Space, newline, tab character and comment are
collectively known as whitespace.

Word	 The natural unit of memory for a given computer design. The
word size is the computer’s preferred size for moving units of information
around; technically it is the width of the processor’s registers.

FREqUENTLY ASKED qUESTIONS
1.	 What	is	the	difference	between	compiling	and	linking?
 Compiler converts each source file into an object file. Linker takes all
generated object files, as well as the system libraries that are relevant, and
builds an executable file that is stored on disk.

2.	 What	is	a	bug?
 Any type of error in a program is known as bug. There are three types of
errors that may occur:

Compile errors These are given by the compiler and prevent the program
from running.

Linking errors These are given by the linker or at run time and ends the
program. The linker can also detect and report errors, for example, if part of
the program is missing or a non-existent library component is referenced.

Run time errors These are given by the operating system.

3.	 Why	do	we	need	header	files?
 The header files primarily contain declarations relating to standard library
functions and macros that are available with C. During compilation, the
compilers perform type checking to ensure that the calls to the library and
other user-defined functions are correct. This form of checking helps to
ensure the semantic correctness of the program. The header files, which
usually incorporate data types, function declarations and macros, resolves
this issue. The file with .h extension is called header file, because it is
usually included at the head of a program. Every C compiler that conforms

to the international standard (ISO/IEC 9899) for the language will have a
set of standard header files supplied with it.

4. What	is	a	library?
 A library is a collection of functions. A library file stores each function
individually. When the program uses a function contained in a library, the
linker looks for the function and adds its code to the program. Note the
contents of the entire library are added to the executable file.

5.	 What	is	the	difference	between	declaring	a	variable	and	defining	
a	variable?
 Declaring a variable means informing the compiler about its type without
allocating any space for it. To put it simply, a declaration says to the
compiler, ‘Somewhere in the program there will be a variable with this
name, and this is the kind of data type it is.’ Defining a variable means
declaring it as well as allocating space to hold the variable. Here is a
declaration of a variable and a variable definition:
 extern int x; /* this is a declaration */

 int y; /* this is a definition */

 The following is a definition of a variable with initialization.

 int y=10;

 It is to be noted that a variable can be declared many times, but it must
be defined exactly once. For this reason, definitions do not belong in header
files, function definitions are placed in library files.

KEY TERMS

Basics of C 179
6.	 Why	is	data	type	specified	for	a	variable	declaration?

 The type or data type of a variable determines a set of values that the
variable might take and a set of operations that can be applied to those
values.

7.	 What	are	the	uses	of	void	in	C?

Void has three uses. When it specifies the return type of a function, it
means the function returns no value to the calling function. It is also used
to declare that a function has no parameters. Moreover, it can create a
generic pointer.

8.	 Which	one	is	correct:	main()	or	void main() or	int main()?

 Under C89, main() is acceptable, although it is advisable to use the
C99 standard, under which only int main(void) is acceptable. There
are some compilers where void main() is allowed, but these are on
specialized systems only. If the programmer is not sure of whether he/she
is using one of these specialized systems, then the programmer should
simply avoid using void main().

9. Is main()	must?

 It depends on the environment your program is written for. If it is a hosted
environment, then main function is a must for any standard C program.
Hosted environments are those where the program runs under an
operating system. If it is a freestanding environment, then main function
is not required. Freestanding environments are those where the program
does not depend on any host and can have any other function designated
as start-up function. Freestanding implementation need not support
complete support of the standard libraries; usually only a limited number of
I/O libraries will be supported and no memory management functions will
be supported. Examples of freestanding implementations are embedded
systems and the operating system kernel.

10.	 Can	the	prototype	for	main()	be	included?

 Absolutely; it is legal in C though it is not required.

11.	 Should	main()	always	return	a	value?

 Yes, unless it encounters a call for exit(). When a program runs, it usually
terminates with some indication of success or some error code. The return
statement is not mandatory; if it is missing, the program will still terminate.
In C89, the value returned to the operating system is undefined. In C99, if
main() is declared to return an int, the program returns 0 (zero) to the
operating system or operating environment; otherwise the program returns
an unspecified value.

12.	 How	can	you	check	what	value	is	returned	from	main()?	Is	the	
executed	program	terminated	normally	or	not?

 A “batch file” or “shell script” can be used for this purpose.

 In UNIX, each shell has its own method for testing the status code. In the
Bourne shell, after executing the C program, the variable $? contains the
status of the last program executed. The C shell has similar variable, but
its name is $status.

13.	 What	is	the	need	of	unsigned char?

 The signedness of characters is an important issue because the standard
I/O library functions which normally read characters from files and return
a negative value (-1 or its symbolic constant EOF) when the end of file is
reached.

14.	 In	some	compilers	like	Turbo	C	the	size	occupied	by	an	integer	
variable	is	2	bytes;	again	in	most	of	the	compilers	an	integer	variable	
takes	4	bytes	of	memory.	What	is	the	size	of	an	integer	variable?

 The size of an int is usually the same as the word length of the execution
environment of the program.

15. Both %d	and	%i	can	be	used	to	read	and	print	integers.	What	is	
the	difference	between	%d	and	%i?

 If %d is used in scanf(), it can only match an integer in decimal form.
On the other hand if %i is used with scanf(), it can match an integer
expressed in octal, decimal or hexadecimal form. If the input number is
prefixed with a 0, %i treats it as an octal number; if it is prefixed with 0x or
0X, it will be treated as a hexadecimal number.
 With printf(), there is no such difference between these two format
specifiers. The aforesaid facts are evident from the following program:

 #include <stdio.h>
 int main(void)
 {
 int n;
 printf(“\n Enter an integer: “);
 scanf(“%d”,&n);
 printf(“\n n = %d”, n);
 printf(“\n Enter the same integer again: “);
 scanf(“%i”,&n);
 printf(“\n n = %i”, n);
 return 0;
 }

 Sample run:
 Enter an integer: 023
 n = 23
 Enter the same integer again: 023
 n = 19

16.	 What	is	the	difference	between	%f,	%g,	and	%e	format	specifiers	
when	used	to	display	a	real	value?

 The %f characters are used to display values in a standard manner. Unless
size and width are specified, printf() always displays a float or double
value rounded up to six decimal places.
 The %e characters are used to display the value of a float or double
variable in scientific notation.
 With the %g characters, printf() automatically removes from
displaying any trailing zeroes. If no digits follow the decimal point, it does
not display that either. For illustration consider the following program:

 #include <stdio.h>
 int main()
 {
 float x=12.34;
 printf(“\n %f”, x);
 printf(“\n %g”, x);
 printf(“\n %e”, x);
 return 0;
 }

 Output
 12.340000
 12.34
 1.234000+e001

180 Computer Fundamentals and Programming in C

17.	 What	is	lvalue	and	rvalue?

 An lvalue is an expression to which a value can be assigned. An rvalue
can be defined as an expression that can be assigned to an lvalue. The
lvalue expression is located on the left side of an assignment statement,
whereas an rvalue is located on the right side of an assignment
statement.
 The address associated with a program variable in C is called its lvalue;
the contents of that location are its rvalue, the quantity that is supposed
to be the value of the variable. The rvalue of a variable may change
as program execution proceeds; but never its lvalue. The distinction
between lvalues and rvalues becomes sharper if one considers the
assignment operation with variables a and b.

 a = b;

 b, on the right-hand side of the assignment operator, is the quantity to be
found at the address associated with b, i.e., an rvalue. a is assigned the
value stored in the address associated with b. a, on the left-hand side, is
the address at which the contents are altered as a result of the assignment.
a is an lvalue. The assignment operation stores b’s rvalue at a’s
lvalue.

18.	 What	are	the	differences	between	l-value	and	r-value?

l-value r-value

The l-value expression is located on the
left side of an assignment statement.

An r-value is located on the right side
of an assignment statement.

An l-value means the address that it
represents.

An r-value means the contents of the
address that it represents which is a
value.

An l-value says where to store the
result.

An r-value says what is to be stored.

An l-value is known at compile time. An r-value is not known until run time.

19.	 Why	is	the	statement	a + b = c + d	not	valid	in	C?

The given statement is not valid in C because the left side of the statement
evaluates to a constant value that cannot be changed and do not represent
storable locations in memory. Therefore, this assignment statement do not
contain an lvalue and will generate compiler errors.

20.	 Why	should	we	use	i++	instead	of	i = i + 1?

 Most C compilers produce very fast and efficient object code for increment
and decrement operations. For these reasons, we should use the increment
and decrement operators when we can.

21.	 Can	we	apply	++	and	––	operators	on	floating	point	numbers?

 ++ and –– operators can be applied to floating point numbers as well as
integers.

22.	 What	is	the	difference	between	the	prefix	and	postfix	forms	of	the	
++	operator?	

 The prefix form increments first, and the incremented value goes on
to participate in the surrounding expression (if any). The postfix form
increments later; the previous value goes on to participate in the surrounding
expression.

23.	 The	%	operator	 fails	 to	work	on	float	numbers.	Can	we	get	 the	
remainder	of	a	floating	point	division?

 The % operator cannot be used with floating point values. But if it is required
to get the remainder of floating point division, one may use the function
fmod(). The fmod() function returns the remainder as a floating-point
division. Following program illustrates the use of fmod() function.

 #include <math.h>

 int main()

 {

 printf (“%f”, fmod (7.25, 3.0));

 return 0;

 }

 The above code snippet would give the output as 1.250000.

24.	 What	is	precedence	of	operators?

 Operator precedence determines the sequence in which operators in an
expression are evaluated. In fact, each operator in C has a precedence
associated with it. The operator with the higher precedence is evaluated
first. In the expression

 a + b * c

 the operations of multiplication and division are given precedence over
the operations of addition and subtraction. Therefore, the expression

 a + b * c

 is evaluated as

 (a + (b * c))

 by the C system.

25.	 What	is	associativity?

 The sequence of execution for operators of equal precedence is determined
by their associativity, which determines whether they are selected from left
to right or from right to left.

 In the expression

 a * b / c

 the operations of multiplication and division are of same precedence.
Here associativity breaks the tie. Therefore, the expression

 a * b / c

 is evaluated as

 ((a * b) / c)

 by the C system.

26.	 What	is	short-circuiting	in	C	expressions?

 Short-circuiting in an expression means that the right hand side of the
expression is not evaluated if the left hand side determines the outcome.
This means that if the left hand side is true for || or false for &&, the right
hand side will not be evaluated.

27.	 What	does	the	term	cast	refer	to?	Why	is	it	used?

 Casting is a mechanism built into C language that allows the programmer
to force the conversion of data types. This may be needed because most

Basics of C 181
C functions are very particular about the data types they process. A
programmer may wish to override the default way the C compiler promotes
data types. An example of a type cast which ensures that an expression
evaluates to type float is as follows:

 x = (float) x / 2;

28.	 When	should	a	type	cast	be	used?

 There are two situations in which the type casting may be used.

∑	 To change the type of an operand to an arithmetic operation so that the
operation will be performed properly.

∑ To cast pointer types to and from void * in order to port with functions
that return void pointers, e.g. malloc() has to be casted to the return

type of the pointer to which returned address to be stored.

29.	 When	should	a	type	cast	not	be	used?

 There are two cases where type casting should not be used.

∑	 To override a const or volatile declaration, overriding these type
modifiers can cause the program to fail to run correctly.

∑	 To turn a pointer to one type of structure into another.

30.	 	Why	is	the	output	of	sizeof(‘a’)	2	and	not	1?
Character constants in C are of type int, hence sizeof (‘a’) is
equivalent to sizeof(int), i.e. 2. Hence the output comes out to be
2 bytes.

ExERCISES
 1. What is the purpose of a header file? Is the use of a header file

absolutely necessary?
 2. What is the return type of a program’s main() function?
 3. What is meant by a variable? What is meant by the value of a variable?
 4. Name and describe the basic data types in C.
 5. What is ASCII? How common is its use?
 6. How can values be assigned to variables?
 7. How can the % symbol be printed using a printf() statement?
 8. What is an escape sequence? What is its purpose?
 9. Describe the different types of operators that are included in C.
 10. What are unary operators? State the purpose of each.
 11. Describe two different ways of using the increment and decrement

operators.
 12. What is meant by precedence? Explain with an example.
 13. What is meant by associativity? Explain with an example. What is the

associativity of arithmetic operators?
 14. What is the order of precedence and associativity of arithmetic

operators?
 15. What are bit-wise operators? Explain.
 16. What is the difference between prefix and postfix of –– and ++

operators?
 17. Describe the use of the conditional operator to form a conditional

expression.
 18. Which of the algebraic expressions matches the C expression given

below?

sqrt(x*x + y*y)/sqrt(x*x – 1)

 (a)
x y
x

2 2

2 1
+
+

(b)

x y
x

2 2

2 1
+
-

(c)

x y
x

2 2

2 1
+
-

(d)
x y
x y

2 2

2 2
+
-

 (e) none of the above

 19. Find the value that is assigned to the variables x, y, and z when the
following program is executed.

int main()
 {
 int x, y, z;

 x = 2 + 3 - 4 + 5 - (6 - 7);
 y = 2 * 33 + 4 * (5 - 6);
 z = 2 * 3 * 4 / 15 % 13;
 x = 2 * 3 * 4 / (15 % 13);
 y = 2 * 3 * (4 / 15 % 13);
 z = 2 + 33 % 5 / 4;
 x = 2 + 33 % - 5 /4;
 y = 2 - 33 % - 5 /- 4;
 z =-2*-3/-4%-5;
 x =50 % (5 * (16 % 12 * (17/3)));
 Y=-2*-3%-4 /-5-6+-7;
 z = 8 /4 / 2*2*4*8 %13 % 7 % 3;
 return 0;
 }

 By inserting appropriate calls to printf(), verify the answers
obtained.

 20. Give the output of the following program:

#include <stdio.h>
int main()
 {
 int x = 3,y = 5,z = 7,w;
 w = x % y + y % x - z % x - x % z;
 printf(“%d \n”, w);
 w = x / z + y / z + (x + y) / z;
 printf(“%d\n”, w);
 w = x / z * y / z + x * y / z;
 printf(“%d\n”, w);
 w = x % y % z + z % y % (y % x);
 printf(“%d\n”, w);
 w = z / y / y / x + z / y / (y / x);
 printf(“%d\n”, w);
 return 0;
 }

 21. What does the following program print?

#include <stdio.h>
int main()
 {
 printf(“%d\n”, - 1 + 2 - 12 * -13 / -4);
 printf(“%d\n”, - 1 % - 2 + 12 % -13 % - 4);
 printf(“%d \n”,-4/2 - 12/4 - 13 % -4);
 printf(“%d\n”, (- 1 + 2 - 12) * (- 13 / - 4));

182 Computer Fundamentals and Programming in C

 printf(“%d\n”, (- 1 % - 2 + 12) %(- 13 % - 4));
 printf(“%d\n”, (- 4 /2 - 12) / (4 - 13 % - 4));
 return 0;
 }

 22. Find the outputs of the following programs:

(a) #include <stdio.h>
 int main()
 {
 int x = 3, y = 5, z = 7, w = 9;
 w += x;
 printf(“w = %d\n”, w);
 w -= y;
 printf(“w = %d\n”, w);
 x *= z;
 printf(“x = %d\n”, x);
 w += x + y - (z -= w);
 printf(“w = %d, z = %d\n”, w, z);
 w += x -= y %= z;
 printf(“w = %d, x = %d, y = %d\n”, w, x, y);
 w *= x / (y += (z += y));
 printf(“w = %d, y = %d, z = %d\n”, w, y, z);
 w /= 2 + (w %= (x += y - (z -= -w)));
 printf(“w = %d, x = %d, z = %d\n”, w, x, z);
 return 0;
 }

(b) #include <stdio.h>
 int main()
 {
 int x = 7, y = -7, z = 11,
 w =- 11, S = 9, t = 10;
 x += (y -= (z *= (w /= (s %= t))));
 printf(“x = %d, y = %d, z = %d, w = %d,\
 s = %d, t = %d\n”, x, y, z, w, s, t);
 t += s -= w *= z *= y %= x;
 printf(“x = %d, y %d, z = %d, w = %d,\
 s = %d, t = %d\n”, x, y, z, w, s, t);
 return 0;
 }

(c) #include <stdio.h>
 int main()
 {
 int amount = 7;
 printf(“If I give you”);
 printf(“Rs.%05d\n”, amount);
 printf(“You will owe me”);
 printf(“Rs.%-05d\ n”, amount);
 return 0;
 }

 23. Given that x, y, z, and w are integers with the respective values
100, 20, 300, and 40, find the outputs from the following printf()
statements.

printf(“%d\n%d\n%d\n%d”, x,*y, z, w);
printf(“\t%d\n\t%d\n\t%d\n\t%d”, x, y, z, w);
printf(“%d %d %d %d %d %d %d %d”, x, y,\

 w, z, y, w, z, x);
printf(“%d %d”, x + z - y * y,\
 (y - z % w) * x);

 24. Execute the following program to verify the rules stated above for the
output of floating point variables.

#include <stdio.h>
int main()
 {
 double pi = 3.14159265;
 printf(“%15f\n”, pi);
 printf(“%15.12f\n”, pi);
 printf(“%-15.12f\n”, pi);
 printf(“%15.4f\n”, pi);
 printf(“%15.0f\n”, pi);
 printf(“%15.3g\n”, pi);
 printf(“%15g\n”, pi);
 printf(“%15.4e\n”, pi);
 printf(“%15e\n”, pi);
 return 0;
 }

 25. What does the following program print?

#include <stdio.h>
int main()
 {
 printf(“%-40.24s”, “Left\
 justified printing.\n”);
 printf(“%-40.20s”, “Left\
 justified printing.\n”);
 printf(“%-40.16s”, “Left\
 justified printing.\n”);
 printf(“%-40.12s”, “Left\
 justified printing.\n”);
 printf(“%-40. 8s”, “Left\
 justified printing.\n”);
 printf(“%-40.4s”, “Left\
 justified printing.\n”);
 printf(“%-40.0s”, “Left\
 justified printing.\n”);
 printf(“%40.25s”, “Right\
 justified printing.\n”);
 printf(“%40.20s”, “Right\
 justified printing.\n”);
 printf(“%40.15s”, “Right\
 justified printing.\n”);
 printf(“%40.10s”, “Right\
 justified printing.\n”);
 printf(“%40.5s”, “Right\
 justified printing.\n”);
 printf(“%40.0s”, “Right\
 justified printing.\n”);
 printf(“%40.0s”, “Right\
 justified printing.\n”);
 return 0;
 }

Input and Output 183

9.1 IntroductIon
For carrying out an arithmetic calculation using C, there is
no way other than writing a program, which is equivalent to
using a pocket calculator. Different outcomes are obtained
when different values are assigned to variables involved in
the arithmetic calculation.
 Hence, there is a need to read values into variables as
the program runs. Notice the words here: ‘as the program
runs’. Values can be stored in variables using the assignment
operator. For example, a=100; stores 100 in the variable a
each time the program is run, no matter what the program
does. Without some sort of input command, every program
would produce exactly the same result every time it is run.
This would certainly make debugging easy. But in practice,
of course, the user may need programs to do different jobs

that give different outcomes each time they are run. For this
purpose, C has been provided with some input instructions
that are in fact a set of functions. For the present, it may be
said that a function is a code segment that is complete in
itself and does some particular task as and when it is called.
Functions will be dealt in greater detail in Chapter 12.
 When a program is in execution, each of its statements are
executed one after the other or in a particular order. When
this process of execution reaches an input instruction, also
referred to as an input statement, the most common being the
scanf() function, the program execution pauses to give the
user time to enter something on the keyboard. The execution
of the program continues only after the user enters some data
(or nothing) and presses <Enter> or <Return> to signal that
the procedure of entering input data has been completed. The
program execution then continues with the inputted value

C
H
a
p
T
e
rInput and Output

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

9

∑ discuss what C considers as standard input and output
devices

∑ list the input and output streams that exist in C to carry
out the input and output tasks

∑ understand that C provides a set of input and output
functions

∑ analyse the use of single character unformatted input
and output functions getchar() and putchar()

∑ use the formatted input and output functions scanf()
and printf() for handling multiple inputs and output

184 Computer Fundamentals and Programming in C

stored in the memory location reserved for the variable. In
this way, each time the program is run, users get a chance to
type in different values for the variable and the program also
gets a chance to produce different results.
	 The	final	missing	piece	 in	 the	 jigsaw	 is	using	an	output	
command or statement, the commonly used one being the
printf() function, the one that has already been used in some
example programs in the previous chapter, to print the value
currently stored in a variable.
 In the context of the above example, it should be
understood that the input function, scanf(), is used to read
the data entered through the keyboard. On the other hand, the
printf() function is used to display the data on the screen.
	 The	original	C	specification	did	not	include	commands	for	
input and output. Instead, the compiler writers were supposed
to implement library functions to suit their machines. In
practice, all chose to implement printf() and scanf()
and, after a while, C programmers started to think of these
functions as I/O keywords. It sometimes helps to remember
that they are functions like any other function.
 To make C a more uniform language, it has been provided
with standard libraries of functions that perform common
tasks. Though these libraries are termed standard but until
the aNSI committee actually produced a standard, there
was, and still is, some variation in what the standard libraries
contained and exactly how the functions worked. However,
in practice, the situation is not that bad; most of the functions
that are used frequently are standard on all implementations.
In particular the input and output functions vary very little.
 This chapter will, therefore, primarily consider input
functions that read data from the keyboard and output
functions that display data on the screen.

note

 ∑ The scanf() function does not prompt for an input. It is
a good programming practice to always use a printf()
function before a scanf() function for users of the program
to know what they should enter through the keyboard.

9.2 BasIc screen and KeyBoard I/o In c
C provides several functions that give different levels of
input and output capability. These functions are, in most
cases, implemented as routines that call lower-level input/
output functions.
 The input and output functions in C are built around the
concept of a set of standard data streams being connected
from each executing program to the basic input/output
devices.	 These	 standard	 data	 streams	 or	 files	 are	 opened	
by the operating system and are available to every C and
assembler program for use without having to open or close
the	files.	These	standard	files	or	streams	are	called

	∑	 stdin : connected to the keyboard
	∑	 stdout : connected to the screen
	∑	 stderr : connected to the screen
 The following two data streams are also available on MS-
DOS-based computers, but not on UNIX or other multi-user-
based operating systems.
	∑	 stdaux :	connected	to	the	first	serial	communications	port
	∑	 stdprn :	connected	to	the	first	parallel	printer	port
 a number of functions and macros exist to provide support
for streams of various kinds. The <stdio.h>	 header	 file	
contains the various declarations necessary for the functions,
together with the macros and type declarations needed for the
input and output functions. The input/output functions fall
into two categories: non-formatted read (input) and display
(output) functions and formatted read (input) and display
(output) functions.

note

 ∑ The input and output functions in C are implemented through
a set of standard data streams which connect each executing
program to the basic input/output devices.

 ∑ The input/output functions are of two kinds: non-formatted
and formatted functions.

9.3 non-formatted Input and output
Non-formatted input and output can be carried out by standard
input–output library functions in C. These can handle one
character at a time. For the input functions, it does not require
<Enter> to be pressed after the entry of the character. For
output functions, it prints a single character on the console.

9.3.1 single character Input and output
a number of functions provide for character-oriented input
and output. The declaration formats of two of these are given
as follows:
 int getchar(void);

 //function for character input

 int putchar(int c);

 //function of character output

getchar() is an input function that reads a single character
from the standard input device, normally a keyboard.
putchar() is an output function that writes a single character
on the standard output device, the display screen.
 There are two other functions, gets() and puts(), that are
used to read and write strings from and to the keyboard and
the	display	screen,	respectively.	A	string	may	be	defined	as	
an arranged collection of characters. These two functions will
be dealt with in greater detail in the chapter on arrays and
strings.

Input and Output 185

9.3.2 single character Input
The getchar() input function reads an unsigned char from
the input stream stdin. The character obtained from the input
stream is treated as an unsigned char and is converted to an
int,	which	is	the	return	value.	On	end	of	file,	the	constant	EOF
is	returned	and	the	end-of-file	indicator	is	set	for	the	associated	
stream. On error, the error indicator is set for the stream.
Successive calls will obtain characters sequentially.
 To read a single character from the keyboard, the general
form of the statement used to call the getchar() function is
given as follows:

char_variable = getchar();

where char_variable is the name of a variable of type char.
The getchar() input function receives the character data
entered through the keyboard and places it in the memory
location allotted to the variable char_variable. The code

int ch;

ch = getchar();
places the character read from the keyboard in the lower byte
of the variable named ch.

x
Two bytes are allotted in memory to
the integer variable ‘ch’; but the typed
in character ‘x’ is stored in the lower
order byte while the content of the
higher-order byte has no relevance
when a character is typed in.

15...8 7 . . . 0

 It has to be noted here that getchar() reads a single
character from the input data stream, but does not return
the character to the program until the ‘\n’ (<Return> or
<Enter>) key is pressed.
 There is an important observation that has to be made
about the ch = getchar(); function. Though the data
entered through the keyboard is perceived to be of character
type, the data is actually stored as an integer. Here, this
integer is the variable ch. This is because everytime
ch = getchar(); reads a data from the keyboard, it checks
whether it is a character data or an EOF. The problem is
distinguishing the end of input from valid data. The solution
is that getchar() returns a distinctive value when there is no
more input, a value that cannot be confused with any real
character. This value is called EOF,	i.e.,	end	of	file.	So	ch must
be declared to be of a type big enough to hold any value that
getchar() returns. Therefore, char cannot be used since ch
must be big enough to hold EOF in addition to any possible
char. Therefore, int is used.

9.3.3 single character output
The putchar() function is identical in description to the
getchar() function except the following difference. putchar()

writes a character to the stdout data stream. On success,
putchar() returns the character. On error, putchar() returns
EOF.	There	is	no	equivalent	to	end	of	file	for	an	output	file.	
To write a single character on the screen, the general form of
the statement used to call the putchar() function is given as
follows:

putchar(char_variable);

where char_variable is the name of a variable that is of
type char. The character data stored in the memory location
allotted to the variable char_variable is displayed on the
display screen.
 The following program code displays the character entered
through getchar() on the screen.

Two bytes allocated to
integer variable ‘ch’

15 . . . 8 7 0. . .

15 . . . 8 7 . . . 0

bit numbers

int ch;

ch = getchar ();

putchar (ch);

Character ‘x’ typed
in is stored in lower
order byte of ‘ch’
by getchar ()

Character ‘x’ stored in
lower order byte of ‘ch’
is printed on the monitor
screen by putchar().

x

x

 It has to be noted that the character ‘x’ remains stored in
the lower order byte of ch even after putchar(ch) copies it
and displays it on the monitor screen.

9.3.4 additional single character Input and
output functions

Other than getchar() and putchar(), there are some more
single character input and output functions that are available
in Turbo C only. These are as follows:

getch() This input function reads, without echoing on the
screen, a single character from the keyboard and immediately
returns that character to the program. General statement
form:

ch = getch(); /* ‘ch’ is a character variable */

getche() This input function reads, with echo on the screen,
a single character from the keyboard and immediately returns
that character to the program. General statement form:

ch = getche(); /* ‘ch’ is a character variable */

putch() This output function writes the character directly
to the screen. On success, the function putch() returns the
character printed. On error, it returns EOF. General statement
form:

putch(ch); /* ‘ch’ is a character variable */

 When used in programs, the above functions require the
header	file		conio.h to be included. It should be noted here
that the data held by the variable in all the input and output
functions are in aSCII value.

186 Computer Fundamentals and Programming in C

note

 ∑ getchar(), the single character input function, reads a
one byte character input from the keyboard and stores it
in the lower order byte of an integer variable.

 ∑ putchar(),the single character output function, displays
a one-byte character on the monitor screen.

ExamplEs

 1. Display a given character.

 Solution

 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=‘A’;

 putchar(ch);

 return 0;

 }

 Output A

 Explanation: In this example, the variable ch is declared as an
integer. In the next statement, the character A is assigned to this
variable, which results in the ASCII equivalent of the character A
being stored in the lower order byte of the integer variable ch as
shown below:

ASCII equivalent,
41h, of ‘A’ is placed
in the lower order

byte.

 15 8 7.….........0
ch

upper byte lower byte

01000001

 Next, when the output statement putchar(), actually an output
function, is executed, the ASCII equivalent of A is taken from the
lower order byte of the integer variable ch and displayed on the
monitor screen.

 2. Display a keyed-in character.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=getchar();

 putchar(ch);

 return 0;

 }

 Input A

 Output A

 Explanation: Here, the typed-in character is read and stored in the
lower order byte allocated to the integer ch by the input function
getchar(). This character is then copied on to the monitor screen
by the output function putchar(ch).

 3. Accept a given character and display the next character from the
ASCII table.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=‘A’;

 ch=ch + 1;

 putchar(ch);

 return 0;

 }

 Output B

 Explanation: Here, the character A is assigned to the integer variable
ch. This results in the ASCII equivalent, 41h, of the character A
being stored in the lower order byte of the integer variable ch. As
1 is added to the contents of ch, it becomes 42h, which is the
ASCII representation for the character B. So when putchar(ch)
is executed, the character displayed on the screen is B. The figure
below illustrates the contents of the variable ch as it changes from A
to B.

15.....8 7.....0

empty 01000001

15.....8 7.....0

empty 01000010

41h + 01h 42h

ch + 1 ch

ch = ‘A’

 4. Display the keyed-in character and the next character from the ASCII
table.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=getchar();

 ch=ch++;

 putchar(ch);

 return 0;

 }

 Input a

 Output b

 Explanation: This example is similar to the previous one except
that the integer variable ch is assigned a character read in by
getchar() from the keyboard. Hence, the output obtained after
executing this program is similar to the previous example.

Input and Output 187
 5. Double the output of next two characters from the ASCII table.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=getchar();

	 	 	 putchar(++ch);	/*	first	putchar()	*/

 putchar(ch++); /* second putchar()*/

 putchar(ch); /* third putchar() */

 putchar(ch––); /* fourth putchar()*/

	 	 	 putchar(ch);			/*	fifth	putchar()	*/

 return 0;

 }

 (i) Input a

 Output bbccb

 (ii) Input h

 Output iijji

 Explanation: Here when the program is executed, getchar()
obtains the typed-in character and places its ASCII equivalent in the
integer variable ch. As shown, the typed-in character is chosen to
be a. Next, in the first putchar(), at the beginning, the content
of ch is incremented by 1 to represent b, then this is displayed
on the monitor screen. In the second putchar(), the content
of ch,which is b, is displayed on the monitor screen and then its
content is incremented by 1 to represent c in ASCII. In the third
putchar(), the content of ch, which is c, is displayed on the
monitor screen and the content in ch does not get altered. During the
fourth putchar(), the content in ch, which is c, is first displayed
on the monitor screen and then the content in ch is decremented
to represent b in ASCII. Therefore, during the fifth putchar(), the
content of ch is displayed as b on the monitor screen.

 Similar result is obtained when the program is run for the second
time with h as the input data.

 6. Print a keyed-in character.

 Solution

 #include<stdio.h>

 int main(void)

 {

 int ch;

 putchar(ch=getchar());

 return 0;
 }

 Input x

 Output x

 Explanation: The program in this example is similar to Example 2
except that the statement ch=getchar() is placed as a parameter
of the output function putchar(). So when putchar() is
executed, getchar()gets invoked and it obtains the character

data from the keyboard which is passed to putchar(). Then
putchar() displays the data entered through the keyboard.

 7. Print a keyed-in character.

 Solution

 #include<stdio.h>

 int main(void)

 {

 putchar(getchar());

 return 0;

 }

 Input y

 Output y

 Explanation: This example is almost similar to Example 6. The
only difference is that the integer variable ch has been omitted. But
otherwise this program executes similarly as that in Example 6.

 8. Obtain an ASCII number that is ahead by two positions from the
keyed-in number.

 Solution

 #include<stdio.h>

 int main(void)

 {

 int ch;

Reads a typed in
character in ASCII

representation.

 putchar(ch=(getchar())+2);

 return 0
Content of ‘ch’ is
{ASCII equivalent
of character typed

in} + 2

 }

 Input a

 Output c

 Explanation: Here, the ASCII equivalent of the typed-in character
a, read in by getchar(), is 61h. To this, 2 is added to make it
63h. The alphabetic character represented by 63h is c. Therefore,
putchar() displays this character on the monitor screen.

 9. Compare two numbers.

 Solution
 #include<stdio.h>

 #include<conio.h>

 int main(void)

 {

 int a=2,b=5;

 int t,f,x;

 t=getchar();

	 	 	 fflush(stdin);			/*	the	fflush()	function	clears	*/

 /* the input stream stdin */

188 Computer Fundamentals and Programming in C

 f=getchar();

 x=((a>b)?t:f);

 putchar(x);

 putch(x);

 return 0;

 }

 Input 1

 0

 Output 00

 Explanation: In this example, the character entered in variable
t is 1 while that for f is 0. During evaluation of the expression
x=((a>b)?t:f), the relation a > b is found to be false, so f
is assigned to x. Since f contains 0, thus x is assigned this
character 0. Therefore, putchar(x) displays a 0 on the monitor
screen. Since there is no new-line command following the display
of 0, the cursor positions itself next to this character. Now, when
putch(x) is executed, it displays the value in x at the cursor
positioned next to the earlier display. So the output finally appears
as 00.

 10. Convert alphabets from lower-case letters to capital letters.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch,n;

 ch=getchar();

 n=(ch>=‘a’)&&(ch<=‘z’)?
 putchar(ch+‘A’-‘a’): putchar(ch);

 putchar(n);

 return 0;

 }

 (i) Input m

 Output MM

 (ii) Input b

 Output BB

 (iii) Input $

 Output $$

 Explanation: In this example program, once the typed-in character is
read in by getchar(), its ASCII equivalent is stored in the integer
variable ch. Next, the expression (ch>=‘a’)&&(ch<=‘z’) is
evaluated. The ASCII equivalent value in ch is compared with the
ASCII equivalent value of the beginning (means a) and ending
(means z) characters of the alphabet. In short, this expression checks
to see whether the character entered is among the characters a to z of
the alphabet. If this is true, then the function putchar(ch+‘A’-‘a’) is
executed and its return value is assigned to n; otherwise the function
putchar(ch)is executed. Here, it may be noted that on evaluating
the expression (ch +‘A’-‘a’), an ASCII value representing the upper-
case alphabet corresponding to the lower-case value is obtained. So
putchar(ch+‘A’-‘a’) displays the upper-case alphabet and assigns
this character to n. On the other hand, if the typed-in character is none

among the alphabets a to z, then the typed-in character is displayed. In
any case, the output function putchar(n) displays the character once
again.

 The following two programs depict what happens when getch()
and getche() are used.

 11. Write a program to show the usefulness of getch().

 Solution
 #include <stdio.h>

 int main()

 {

 int ch;

 printf(“\nContinue(Y/N)?”);

 ch = getch();

 putch(ch);

 return 0;

 }

This typed-in character is
read in by getch() and kept

in variable ‘ch’. putch(ch) just
displays ch content.

 Output Continue(Y/N)? Y

 Explanation: Upon pressing the Y or N key, the character is stored
in ch, but the character pressed is not automatically shown on the
screen.

 The functions getch() and putch(ch) are available only with
Turbo C compilers.

 12. Write a program to show the usefulness of getche().

 Solution
 #include <stdio.h>
 int main()
 {

 int ch;

 printf(“\nContinue(Y/N)?”);

 ch = getche();

 return 0;
 }

This typed-in character is
read in by getche() which
keeps it in variable ch and

displays it.
 Output Continue(Y/N)?N

 Explanation: Upon pressing the Y or N key, the character is stored
in ch and is also displayed on the screen without using any output
function like putch(ch). Such input and output functions are
available only with Turbo C compilers.

9.4 formatted Input and output
functIons

When	input	and	output	is	required	in	a	specified	format,	the	
standard library functions scanf() and printf() are used. The
scanf()	function	allows	the	user	to	input	data	in	a	specified	
format. It can accept data of different data types. The printf()
function allows the user to output data of different data types
on	the	console	in	a	specified	format.

9.4.1 output function print f ()
The printf() [and scanf()] functions differ from the kind
of functions that are created by the programmer as they can

Input and Output 189
take a variable number of parameters. In the case of printf(),
the	first	 parameter	 is	 always	 a	control string, for example,
‘Hello World’, but after that the programmer can include any
number of parameters of any type. The general form of a call
to the printf() function is

printf(“control_string”,variable1,variable2,
variable3,...);

where ‘...’ means a list of variables that can be written separated
by commas and this list may be as long as is desired. The
control	string	is	all-important	because	it	specifies	the	type	of	
each variable in the list and how the user wants it printed. The
control string is also called the format string.
 The control string, which is written within “and”, contains
data type with format specifiers indicated by the characters
that follow the % symbol. These are arranged in order so
that they correspond to the respective variables. In between
the %	 symbol	with	 the	 specifiers,	 character	 strings	may	be	
inserted. When the printf() function executes, it scans the
control string from left to right and prints out the character
string as it is while printing the values of the listed variables
according	 to	 the	 information	 specified	 with	 the	 respective	
format	specifiers.	For	example,

printf(“Hello World”);

has a control string only and has no % characters. The above
statement displays Hello World	only.	The	format	specifier %d
means convert the next value to a signed decimal integer, and
hence

printf(“Total = %d”,total);

will print Total = and then the value passed by the variable
named total as a decimal integer.
 The C view of output is at a lower level than one might
expect. The %d	is	known	as	a	format	specifier,	while	it	also	acts	
as a conversion code. It indicates the data type of the variable
to be printed and how that data type should be converted to
the characters that appear on the screen. Thus %d says that
the next value to be printed is a signed integer value, i.e., a
value that would be stored in a standard int variable, which
should be converted into a sequence of characters, where
digits represent the value in decimal. If by some accident
the variable that is to be displayed happens to be a float or a
double, then the user will still see a value displayed but it will
not correspond to the actual value of the float or double.
The reason for this is twofold.
∑	 an int uses two bytes (considering 16-bit machine) to store

its value, while a float	uses four and a double uses eight.
If an effort is made to display a float	or a double using %d,
then	only	the	first	two	bytes	of	the	value	are	actually	used.

∑	 even if there was no size difference, int, float, and double
use a different binary representation and %d expects the bit
pattern to be a simple signed binary integer.

 This is all a bit technical, but that is in the nature of C.
These details can be ignored as long as two important facts
are remembered.

∑	 The conversion code following % indicates the type of
variable to be displayed as well as the format in which that
value should be displayed.

∑	 If the programmer uses a conversion code with the wrong
type of variable, then some strange things will be seen on
the screen and the error often propagates to other items in
the printf() list.

 Though this appears a bit complicated, it should also be
pointed	out	 that	 the	benefit	 lies	 in	being	able	 to	 treat	what	
is	 stored	 in	 a	 variable	 in	 a	 more	 flexible	 way	 than	 other	
languages allow. In fact, the programmer need not know that
the numeric number stored in a variable is in binary form.
But while printing this number using the printf() function, it
would appear to be a decimal number. Of course, whether this
is viewed as an advantage depends on what the programmer
is trying to do. It certainly brings the user closer to the way
the machine works.
 The format string in printf(), enclosed in quotation
marks, has three types of objects:
Ordinary characters These are copied to output.
Conversion specifier field It is denoted by % containing the
codes	 listed	 in	Table	9.1	and	by	optional	modifiers	such	as	
width, precision, flag, and size.
Control code It includes optional control characters such
as \n, \b, and \t.

Table 9.1 Format specifiers for printf()

Conversion
code

Usual variable
type

Display

%c char single character

%d (%i) int signed integer

%e (%E) float	or double exponential format

%f float	or double signed decimal

%g (%G) float	or double use %f or %e, whichever is
shorter

%o int unsigned octal value

%p pointer address stored in pointer

%s array of char sequence of characters (string)

%u int unsigned decimal integer

%x (%X) int unsigned hex value

%% none no corresponding argument is
converted, prints only a %.

%n pointer to int the corresponding argument
is a pointer to an integer
into which the number of
characters displayed is placed.

% format specifiers in printf ()
The %	format	specifiers,	also	termed	here	as	the	conversion	
code, that can be used in aNSI C are given in Table 9.1.

Formatting the output in printf ()
The type conversion code only does what is asked of it. This
means that it converts a given bit pattern into a sequence of

190 Computer Fundamentals and Programming in C

characters that a human can read. If the programmer wants to
format the characters, then more needs to be known about the
printf() function’s control string or format string.
 The format string in printf() has the following general
form:

“<control code><character string><%conversion

specifier	field>	<control	code>”

 The programmer has the option of changing the order
of the objects, such as character string, the % conversion
specifier	field, and the control code within the format string.
except for the %	 conversion	 specifier	 field, the other two
objects, that is, the character string and the control code,
are optional when the list of variables is present in printf().
Figure 9.1 shows the parts of a conversion	specifier	field	for
printf().

% Flag
Minimum

width
Precision Size

Conversion
code

*, –, +,0 d,i,u,o,x,X,c,s,
p,f,e,G,g,E,n

h,l,L

Fig. 9.1 Parts of conversion specifier field for printf()

 The character string is a sequence of ordinary characters
that is to be printed without any alteration. The control
code and conversion	specifier may be embedded within the
character string.	Each	conversion	specifier	field	is	coded	as	
follows:

%<flag(s)><width><precision><size><conversion	code>

 The % and conversion code are required but the other
modifiers	 such	 as	 width and precision are optional. The
width	modifier	specifies	the	total	number	of	characters	used	
to display the value and precision indicates the number of
characters used after the decimal point. The precision option
is only used with floats or strings. Its use with strings will
be discussed in a later chapter; for now, its use with floats
will be considered.
 When used to modify a float, precision indicates how
many digits should be printed after the decimal point. If
the precision option is used, the number of digits must be
preceded by a period. extra digits will be omitted, and zero
digits will be added to the right if necessary. If precision is
not	specified,	the	default	value	of	6	is	assumed.
 So, the width option is used to specify the minimum number
of positions that the output will take. If the output would
normally	 take	 less	 than	 the	 specified	number,	 the	output	 is	
padded, usually with empty spaces to the left of the value.
If	the	output	requires	more	space	than	the	specified	number,	
it is given the space that it needs. For example, %10.3f will
display the float using ten characters with three digits after

the decimal point. Notice that the ten characters include the
decimal point and a ‘–’ sign if there is one.
 Here are some examples.

 printf(“number=%3d\n”, 10);
 printf(“number=%2d\n”, 10);
 printf(“number=%1d\n”, 10);
 printf(“number=%7.2f\n”, 5.4321);
 printf(“number=%.2f\n”, 5.4391);
 printf(“number=%.9f\n”, 5.4321);
 printf(“number=%f\n”, 5.4321);

The	outputs	of	these	five	statements	in	order	are	as	follows:
number = 1 0

number = 1 0

number = 1 0

number = 5 . 4 3

number = 5 . 4 4

number = 5 . 4 3 2 1 0 0 0 0 0

number = 5 . 4 3 2 1 0 0

Output screen

number= 10
number=10
number=10
number= 5.43
number=5.44
number=5.432100000
number=5.432100

	 The	first	example	prints	one	space	to	the	left	of	10 since
a	width	of	3	was	specified.	The	second	case	adds	no	spaces,	
since 10 takes up the entire width of 2. In the third case, the
specified	width	 is	 just	 1,	 but	 the	 value	 of	 10 requires two
spaces so it is given.
	 In	the	fourth	case,	a	precision	of	2	is	specified	for	a	float,
so only two digits are printed after the decimal place, and a
width of 7. So the value, which would normally contain four
characters including the decimal point has three additional
spaces.	In	the	fifth	case,	no	width	is	specified,	so	the	value	of	
width is taken to be exactly what it needs, and a precision of 2
is	specified;	but	this	time,	the	hundredth	digit	is	rounded	up.
	 In	 the	 sixth	 case,	 a	 precision	 of	 9	 is	 specified,	 so	 five	
zeroes	are	added	to	the	end	of	the	value,	and	in	the	final	case,	
a default precision of 6 is used, so two zeroes are added to the
end of the value.
 The flag	option	allows	one	or	more	print	modifications	to	
be	specified.	The	flag	can	be	any	one	of	the	characters	shown	
in Table 9.2.
	 The	specifier	%–10d will display an int	 left	 justified	 in	a	
ten-character	 space.	The	 specifier	 %+5d will display an int
using	the	next	five	character	locations	and	will	add	a	‘+’ or
‘–’ sign to the value.

Input and Output 191
Table 9.2 Flag characters used in printf()

Flag Meaning

–

+

space

0

#

left justify the display

display positive or negative sign of value

display space if there is no sign

pad with leading zeroes

use alternate form of specifier

Here are a couple of examples using the flag	options.

printf(“number=%06.1f\n”, 5.5);

printf(“%-+6.1f=number\n”, 5.5);

The output of these two statements in order is as follows:

number = 0 0 .0 5 5

+ .5 5 = number

	 In	the	first	statement,	a	float is printed with a precision of
1 and width of 6. Because the 0 flag is used, the three extra
positions	that	need	to	be	filled	are	occupied	by	zeroes	instead	
of spaces. In the second statement, the minus sign causes the
value	to	be	left	justified,	spaces	are	added	to	the	right	instead	
of the left, and the positive sign causes the sign of the number
to be printed with the number.

 Similarly, for

 printf(“%-6.3f\n”,17.23478);

the output on the screen will show

 1 . 37 2 5

which	is	left	justified	and	the	total	width	being	6,	only	three	
digits after the decimal point are printed. also, for

 printf(“VAT=17.5%%\n”);

the output on the screen will be

V T 1 5A = .7 %

 Strings will be discussed later but for now it is enough to
remember that if a string is printed using the %s	specifier,	then	
all	of	the	characters	stored	in	the	array	up	to	the	first	null	will	
be	printed.	If	a	width	specifier	is	used,	the	string	will	be	right	
justified	within	the	space.	If	a	precision	specifier	is	included,	
only that number of characters will be printed.
For example, consider the program given as follows:

#include <stdio.h>

int main()

{

	 printf(“%s”,“hello”);		 	 	/*	first	printf()		 */

 printf(“\n%3s”,“hello”); /* second printf() */

 printf(“\n%10s”,“hello”); /* third printf() */

 printf(“\n%-10s”,“hello”); /* fourth printf() */

	 printf(“\n%10.3s”,“hello”);	/*	fifth	printf()	*/

 return 0;

}

 The output for the respective printf() functions would be
as follows:
h l oe l 	output	from	first	printf()
h l oe l output from second printf()

leh l o output from third printf()
h l o e l output from fourth printf()

h e l 	output	from	fifth	printf()

 The third printf() prints 10 characters with hello right
justified,	while	the	fourth	printf() prints 10 characters with
hello	 left	 justified.	 The	 fifth	 printf()	 prints	 only	 the	 first	
three characters considered from the left of hello because the
precision	specifier	has	been	given	as	3. also notice that it is
normal to pass a constant value to printf() as in printf(“%s”,
“hello”).

Output screen

hello
hello

hello
hello

hel

	 Among	the	flags,	the	only	complexity	is	in	the	use	of	the	
#	modifier.	What	this	modifier	does	depends	on	the	type	of	
format	specifier,	that	is,	the	conversion	code	it	is	used	with.
	 Table	9.3	depicts	the	actions	that	take	place	when	this	flag	
is	used	with	the	different	allowed	format	specifiers.

Table 9.3 uses of #	flag with format specifier

flag with format
specifier

Action

%#0
%#x or X

%#f or e
%#g or G

Adds a leading 0 to the octal number printed
Adds a leading 0x or 0X to the hex number
printed
Ensures that the decimal point is printed
displays trailing zeroes in g or G type
conversion and ensures decimal point
is printed in floating-point number, even
though it is a whole number

 The	 effects	 of	 the	 size	 modifiers	 that	 transform	 the	
conversion code are shown in Table 9.4.

Table 9.4 Size modifiers used in printf()

Size modifier Conversion code Converts to

l
h
l
L

d i o u x
d i o u x
e f
e f

long int
short int
double
long double

192 Computer Fundamentals and Programming in C

Examples	of	the	use	of	size	modifiers	are	as	follows:

%hd /* short integer */

%ld /* long integer */

%Lf /* long double */

 adding a l in front of a conversion code will mean a long
form of the variable type and a h will indicate a short form.
For example, %ld means a long integer variable, usually
four bytes, and %hd means a short int. Notice that there is
no distinction between a four-byte	 float and an eight-byte
double. The reason is that a float	 is automatically converted
to a double precision value when passed to printf. Therefore,
the two can be treated in the same way. In pre-aNSI, all floats
were converted to double when passed to a function but this is
no longer true.
 Finally there are the control codes also known as escape
sequences that have already been described and listed in
Chapter 8. Some of the commonly used control codes are
listed in Table 9.5.

Table 9.5 list of commonly used control codes

Control code Action

\b

\f

\n

\r

\t

\‘

\0

backspace

form feed

new line

Carriage return

horizontal tab

Single quote

null

 If any of these are included in the format string, the
corresponding aSCII control code is sent to the screen, or
output device, which should produce the effect listed. In most
cases, the programmer only needs to remember \n for new
line.
	 The	 conversion	 specifier	 field	 is	 used	 to	 format	 printed	
values, often to arrange things nicely in columns. Here
are some illustrations of the use of printf() with brief
explanations.

ExamplEs

 13. printf(“Hello there”);

 Puts Hello there on the screen. The cursor remains at the end of
the text, which is where the next printf() statement will place its
text.

 14. printf(“Goodbye.\n”);

 This prints Goodbye. on the screen. The \n does not show on
the screen; it means ‘new line’; it moves the cursor to the next line
downwards and to the left.

 15. int int_var;

 int_var = 10;

 printf(“Integer is: %d”, int_var);

 Integer variable int_var contains a value of 10. This prints
Integer is: 10 on the screen, as the %d is replaced by the
contents of the int_var variable.

 16. int i1, i2; i1 = 2; i2 = 3;
 printf(“Sum is: %d”, i1 + i2);

 Integer variable i1 contains 2 and i2 contains 3. This prints Sum
is: 5 on the screen.

 The result of i1+i2 is calculated (2+3=5) and this replaces the %d in
the string.

 17. printf(“%3d\n%3d\n%3d\n”, 5, 25, 125);

 This displays three values on the screen, each followed by a new
line. The %3d means ‘replace this with an integer, but ensure it takes
up at least three spaces on the screen’. This is good for lining up
columns of data. There are three of these, so we need three extra
parameters to fill them in (5, 25, and 125). So the output is

 5

 25

 125

 18. float	pi;

 pi = 3.1415926535;

 printf(“Pi is %4.2f to 2dp\n”, pi);

 This example sets a floating-point variable pi to be 3.1415926535.
The %4.2f is replaced by this value, but the 4.2 part indicates that
the number can be maximum four characters wide (including the
decimal point), and has two decimal places (i.e., digits after the
decimal point). This means that only 3.14 will show. Note that if pi
had been 3.146, then 3.15 would have been shown due to rounding
off. In this case, what shows is pi, which is 3.14, followed by a new
line.

 19. char color[11] = “red”;

 printf(“Color is: %s\n”, color);

 The %s is replaced by a character array (or string). In this case,
Color is: red is displayed, followed by a new line.

 Note: After the printf() function is executed, the output is printed
out on the standard device, which is normally the Video Display Unit
(VDU); it returns a number that is equal to the number of characters
printed.

 To illustrate that the printf() function returns a number
that is equal to the number of characters printed, the following
program is used:

#include<stdio.h>

#include<stdlib.h>

Input and Output 193
#define	length	40

int main()

{

 int n;

There are 17 characters,
including one space in this

string of characters that
precedes %n.

 printf(“Oxford University%n Press”, &n);

 printf(“\n n = %d”,n);
Address of the

variable n, where
the character count

17 is stored.

 return 0;

}

Output
Oxford University
n = 17

Run-time adjustment and precision in printf()
The	correct	way	 to	adjust	field	width and precision at run
time is to replace the width and/or precision with a star (*)
and include appropriate integer variables in the parameter
list. The values of these integer variables representing width
and precision will be used before the actual variable to be
converted is taken from the parameter list. Here is a program
showing the described feature in use.

#include <stdio.h>

int main()

{

 double x=1234.567890;

 int i=8,j=2;

	 while(i<12)

 {

 j=2;

	 	 while(j<5)

 {

Total number
of digit positions

provided for
output

Total number of digit
positions provided
for decimal part in

the output

	 	 	 printf(“width	=	%2d	precision	=	%d	display	\

 >>%*.*lf<<\n”,i,j,i,j,x);

 }
. takes the values

assigned to i and j as width
and precision for outputting

the value in x.

 j++;

 }

 return 0;

}

 The program displays the effects of various widths and
precisions for output of a double variable. The following is
the output.

width	=		8	precision	=	2	display	>>	1234.57<<

width	=		8	precision	=	3	display	>>1234.568<<

width	=		8	precision	=	4	display	>>1234.5679<<

width	=		9	precision	=	2	display	>>		1234.57<<

width	=		9	precision	=	3	display	>>	1234.568<<

width	=		9	precision	=	4	display	>>1234.5679<<

width	=	10	precision	=	2	display	>>			1234.57<<

width	=	10	precision	=	3	display	>>		1234.568<<

width	=	10	precision	=	4	display	>>	1234.5679<<

width	=	11	precision	=	2	display	>>				1234.57<<

width	=	11	precision	=	3	display	>>			1234.568<<

width	=	11	precision	=	4	display	>>		1234.5679<<

 The >> and << symbols are used to indicate the limits
of	 the	 output	 field.	Note	 that	 the	 variables	 i and j appear
twice	 in	 the	parameter	 list,	 the	first	 time	 to	give	 the	values	
in the annotation and the second time to actually control the
output.

note

 ∑ A control string, also termed as format string, and variable
names are specified for the printf() output function to
display the values in the variables in the desired form on
the monitor screen.

 ∑ The format string in printf(), enclosed in quotation
marks, has three types of objects: (i) Character string
(ii) Conversion specifier (iii) Control code, with the
programmer’s option of changing the order of these
three objects within the format string.

 ∑ Except for the % conversion specifier field, the other
two objects, that is, the character string and the control
code, are optional when the list of variables is present in
printf().

 ∑ The control code and conversion specifier may be
embedded within the character string.

9.4.2 Input function scanf ()
The scanf() function works in much the same way as the
printf(). It has the general form

scanf(“control_string”,variable1_address, variable2_
address,...);

where the control string, also known as the format string
is a list of format specifiers indicating the format and type
of data to be read from the standard input device, which is
the keyboard, and stored in the corresponding address of
variables.	There	must	be	the	same	number	of	format	specifiers	
and	addresses	as	there	are	input	fields.
 scanf()	 returns	 the	 number	 of	 input	 fields	 successfully	
scanned, converted, and stored. The return value does not
include	scanned	fields	that	were	not	stored.	If	scanf() attempts
to	read	end-of-file,	the	return	value	is	EOF.	If	no	fields	were	
stored, the return value is 0. However, there are a number
of important differences as well as a number of similarities
between scanf() and printf().
 The most obvious is that scanf() has to change the
values stored in parts of the computer’s memory associated
with variables. Until functions are covered in more detail,
understanding this fully has to wait. But, just for now,
understand that to store values in memory locations associated
with variables, the scanf() function should have the addresses
of the variables rather than just their values. This means that
simple variables have to be passed with a preceding &.
 There is no need to use & for strings stored in arrays
because the array name is already a pointer. This issue will

194 Computer Fundamentals and Programming in C

be dealt with in the chapter on arrays and strings. Moreover,
the format string has some extra attributes to cope with the
problems of reading and data writing, which are described
below.	However,	almost		all		of			the	conversion	specifiers,	or	
format	specifiers,	listed	in	connection	with	printf() can be
used with scanf() also.
 as with printf(), the format string in scanf() is enclosed
in a set of quotation marks and it may contain the following:

White space This causes the input stream to be read up to
the next non-white-space character.

Ordinary character string anything except white space
or % characters. The next character in the input stream must
match this character.

Conversion specifier field This is a % character, followed
by an optional * character, which suppresses the conversion,
followed by an optional non-zero decimal integer specifying
the	maximum	field	width,	 an	 optional	h, l, or L to control
the	 length	 of	 the	 conversion,	 and	 finally	 a	 non-optional	
conversion	specifier.	Note	that	the	use	of	h, l, or L will affect
the type of pointer that must be used.

Format specifiers in scanf ()
The format string in scanf() has the following general form:

“<	character	string	><	%	conversion	specifier	field	>”

 Here, character string is optional and has to be used with
care. each conversion specifier field	is	coded	as	follows:

%[*]<width><size><conversion-code>

 each conversion (or format) specifier begins with the per
cent character, %, after which come the following, in the given
order.

 1. an optional assignment-suppression character, *, which
states that the value being read will not be assigned to an
argument, but will be dropped.

 2. an optional width specifier, <width>, which designates
the maximum number of characters to be read that
compose the value for the associated argument.

 encountering white space, before the entire width is
scanned, terminates the input of this value and moves
to the next.

	 3.	 An	 optional	 conversion-code	 modifier,	 <size>, which
modifies	the	conversion	code	to	accept	format	for	a	type	
of

 h = short int,
 l = long int,	 if	 the	 format	 specifiers	 provide	 for	 an	

integer conversion,
 l = double,	if	the	format	specifiers	provide	for	a	floating-

point conversion, and
 L = long double,	which	is	valid	only	with	floating-point	

conversions.

The	format	specifiers	in	scanf() are shown in Fig. 9.2.

% Flag Maximum width Size Conversion code

*

Fig. 9.2 Parts of conversion specifier field for scanf()

	 The	format	specifiers,	or	the	conversion	code,	that	apply	
to scanf() are given in Table 9.6.

Table 9.6 Format specifiers for scanf()

Conversion
code

Usual variable
type

Action

%c
%d(%i)
%e(%E)
%f
%g(%G)
%o
%p

%s

%u
%x(%X)
%%

%n

[...]

char
int
float	or double
float	or double
float	or double
int
pointer

array of char

int
int
none

pointer to int

array of char

Reads a single character.
Reads a signed decimal integer.
Reads signed decimal.
Reads signed decimal.
Reads signed decimal.
Reads octal value.
Reads in hex address stored in
pointer.
Reads sequence of characters
(string).
Reads unsigned decimal integer.
Reads unsigned hex value.
A single % character in the input
stream is expected. There is no
corresponding argument.
no characters in the input
stream are matched. The
corresponding argument is a
pointer to an integer into which
the number of characters read
is placed.
Reads a string of matching
characters.

Formatted input in scanf ()
Typically, the format string for a scanf() will not contain
constant text. If it does, that means the input must contain
the same text in the same position. For example, consider the
following simple program.

ExamplE

20. #include <stdio.h>

 int main(void)

 {

 int x;

 scanf(“Number=%d”, &x);
 printf(“The value of x is %d.\n”, x);
 return 0;
 }

 If the user wants the value of x to be 25, the user would have to
type Number=25 exactly, or the behaviour of this little program is

Input and Output 195
unpredictable. To avoid this type of problem, it is usually a good idea
not to include constant text in format strings when using scanf().

When reading in integers or floats, the scanf() function skips
leading white space. This means that all spaces, tabs, and
new line characters will be ignored, and scanf() will keep
reading input until it reaches a number. When reading in a
character, scanf() will read exactly one character, which can
be any valid aSCII character or other valid character for the
system. If the user wants to skip a space before a character,
the space has to be explicitly included in the character string.
For example, consider the following code, assuming that a, b,
and c are integers and x is a character.

scanf(“%d%d%d%c”, &a, &b, &c, &x);

 assume that the user wants a, b, c, and x to be 1, 2, 3, and
Z. The user would have to type

1 2 3Z

If, instead, the user types
1 2 3 Z

then the value of x will be a space because Z has been typed
with a space preceding it.
 If the user wants to be able to enter the line this way, the
scanf() needs to be coded as follows:

scanf(“%d%d%d %c”, &a, &b, &c, &x);

	 Using	 spaces	 between	 integer	 field	 specifications	 is	
optional. For example, while reading integers x, y, and z

scanf(“%d%d%d”, &x, &y, &z);

is equivalent to

scanf(“%d %d %d”, &x, &y, &z);

 Normally, when reading a numeric value, scanf() reads
until it sees trailing white space. The rule is that scanf()
processes the format string from left to right and each time it
reaches	a	specifier	it	tries	to	interpret	what	has	been	typed	as	
a value. If multiple values are input, these are assumed to be
separated by white space, i.e., spaces, new line, or tabs. This
means, the user can type

3 4 5
or

3

4

5

and it does not matter how many spaces are included between
items. For example,

scanf(“%d %d”,&i,&j);

will read in two integer values into i and j. The integer values
can be typed on the same line or on different lines as long as
there is at least one white space character between them. The
only exception to this rule is the %c	specifier	that	always	reads	
in the next character typed no matter what it is.

	 If	 a	 width	 modifier	 is	 used,	 it	 specifies	 the	 maximum	
number of characters to be read.
 Then scanf() will read either as many characters as
specified	by	the	width	modifier	or	until	it	sees	white	space,	
whichever	happens	first.	In	this	case,	its	effect	is	to	limit	the	
number of characters accepted to the width. For example,

scanf(“%10d”,&i);

would	use	at	most	the	first	ten	digits	typed	as	the	new	value	
for i. There are two other reasons that can cause scanf() to
stop.	One	is	if	an	end-of-file	character	is	encountered.	When	
reading	 from	 an	 actual	 disk	 file,	 there	 is	 automatically	 an	
end-of-file	character	at	the	end	of	the	file.	When	reading	from	
a	keyboard,	the	user	can	simulate	one	by	pressing	a	specific	
character sequence. On UNIX machines, the user can enter
an	end-of-file	character	by	pressing	<Ctrl-d>.
 The other reason that may cause scanf() to stop is when
it encounters an invalid input. For instance, if scanf() is
expecting to read a numeric value and it comes across a non-
numeric character, this is an error.
 The following are the reasons because of which scanf()
will stop reading a value for a variable.

∑	 a white space character is found after a digit in a numeric
sequence.

∑	 The maximum number of characters has been processed.

∑	 An	end-of-file	character	is	reached.

∑	 an error is detected.
 The scanf() function returns the number of variables
successfully read in. For example, consider the following
program.

ExamplE

21. #include <stdio.h>
 int main(void)
 {
 int a, b, c;
 int num;
 num = scanf(“%d %d %d”, &a, &b, &c);
 printf(“I have read %d values.\n”, num);
 return 0;
 }

When run, the user must type 10 20 30 for the program to output

I have read 3 values.

If the user types 10 20 hello, the program will output

I have read 2 values.

If the user types hello 10 20 30, the program will output

I have read 0 values.

 When reading standard input from the keyboard, the input
is buffered. In other words, the program does not see the text

196 Computer Fundamentals and Programming in C

directly as it is typed in; the characters are being temporarily
stored in a buffer somewhere. When the user hits <Enter>,
the buffer is sent to the program. Until then, the user can edit
the buffer by adding (typing) new characters, or by hitting the
backspace or delete key to remove the last character from the
buffer. The program will never see these deleted characters.
Consider the following simple program.

ExamplE

22. #include <stdio.h>
 int main(void)
 {
 int x;
 scanf(“%d”, &x);
 printf(“You typed %d.\n”, x);
 return 0;
 }

 If an input 45 is given to this program, the printed output will be

You typed 45.

 another thing to note about scanf() is that the format
string should never end with a new line character. This will
always lead to some form of error. For example,

scanf(“%d\n”, &x);

 This code will not work correctly because of the \n at the
end of the scanf() format string. The last thing to remember
about scanf() is that each variable must be preceded by the
& symbol. This symbol is the address operator. It takes the
address in memory of the variable following the symbol. If
the values of the variables are passed to scanf(), it would be
unable to change the values of the variables. By passing the
memory address where these values are stored, the function
is able to write new values into memory.
 at this point it must be clear that both the functions scanf()
and printf() use the stdin and stdout streams, respectively,
and	 require	 the	 header	 file	 stdio.h to be included in the
program when they are used.

note

 ∑ In scanf(), the control string or format string that consists
of a list of format specifiers indicates the format and type
of data to be read in from the standard input device,
which is the keyboard, for storing in the corresponding
address of variables specified.

 ∑ There must be the same number of format specifiers and
addresses as there are input variables.

 ∑ The format string in scanf() is enclosed in a set of
quotation marks and it may contain the following:

 (a) White space
 (b) Ordinary character string
 (c) Conversion specifier field

ExamplEs

 23. Add two integer numbers and print the input numbers and result.

 Solution
 #include <stdio.h>

 int main()

 {

 int a,b,c;

	 	 	 printf(“\nThe	first	number	is	”);

 scanf(“%d”,&a);

 printf(“\nThe second number is ”);

 scanf(“%d”,&b);

 c=a+b;

	 	 	 printf(“The	answer	is	%d	\n”,c);

 return 0;

 }

 Output
	 	 The	first	number	is	5

 The second number is 9

	 	 The	answer	is	14

 24. Print formatted numbers.

 Solution
 #include <stdio.h>
 int main()
 {
 printf(“/%d/\n”,336);
 printf(“/%2d/\n”,336);
 printf(“/%10d/\n”,336);
 printf(“/%-10d/\n”,336);
 return 0;
 }

 Output
 /336/
 /336/
 / 336/

 /336 /

 25. Print formatted floating-point number.

 Solution
 #include <stdio.h>
 int main()
 {
 printf(“/%f/\n”,1234.56);
 printf(“/%e/\n”,1234.56);
 printf(“/%4.f/\n”,1234.56);
 printf(“/%3.1f/\n”,1234.56);
 printf(“/%-10.3f/\n”,1234.56);
 printf(“/%10.3f/\n”,1234.56);
 printf(“/%10.3e/\n”,1234.56);
 return 0;
 }

 Output
 /1234.560000/
 /1.234560e+03/
 /1235/
 /1234.6/

Input and Output 197
 /1234.560 /
 / 1234.560/
 / 1.235e+03/

 26. Print character strings.

 Solution
 #include <stdio.h>
	 	 #define	BLURB	“Outstanding	Program!”
 int main()
 {
	 	 	 printf(“/%2s/\n”,BLURB);
	 	 	 printf(“/%22s/\n”,BLURB);
	 	 	 printf(“/%22.5s/\n”,BLURB);
	 	 	 printf(“/%-22.5s/\n”,BLURB);
 return 0;
 }
 Output
 /Outstanding	Program!/
	 	 /		Outstanding	Program!/
 / Outst/
 /Outst /

 27. Write a program that prints the next character for the corresponding
three characters given to the program.

 Solution
 #include <stdio.h>

 int main()

 {

 char a,b,c;

 scanf(“%c%c%c”,&a,&b,&c);

 a++;

 b++;

 c++;

 printf(“a=%c b=%c c=%c”,a,b,c);

 return 0;

 }
 Input PQR
 Output a=Q	b=R	c=S

 28. Determine how much money is in a piggy bank that contains several
50, 25, 20, 10 , and 5 paise coins. Use the following values to test
the program: five 50 paise coins, three 25 paise coins, two 20 paise
coins, one 10 paise coin, and fifteen 5 paise coins.

 Solution
	 	 /*	To	determine	how	much	money	there	is	in	a	piggy	

bank */

 #include <stdio.h>

 #include <string.h>

 int main(void)

 {

	 	 	 float	coin1=0.50,coin2=0.25,coin3=0.20,
 coin4=0.10, coin5=0.05,total=0.0;

 int ncoins;

	 	 	 printf(“How	many	50	paise	coins	:	”);

 scanf(“%d”,&ncoins);

 total += (ncoins * coin1);

 printf(“** %.2f **”,total);

	 	 	 printf(“\nHow	many	25	paise	coins	:	”);

 scanf(“%d”,&ncoins);

 total += (ncoins * coin2);

 printf(“** %.2f **”,total);

	 	 	 printf(“\nHow	many	20	paise	coins	:	”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin3);
 printf(“** %.2f **”,total);

	 	 	 printf(“\nHow	many	10	paise	coins	:	”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin4);
 printf(“** %.2f **”,total);

	 	 	 printf(“\nHow	many	5	paise	coins	:	”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin5);
 printf(“\n\nThe total amount is

Rs.%.2f”,total);
 return 0;
 }

 Output
	 	 How	many	50	paise	coins	:	5
 ** 2.50 **
	 	 How	many	25	paise	coins	:	3
 ** 3.25 **
	 	 How	many	20	paise	coins	:	2
 ** 3.65 **
	 	 How	many	10	paise	coins	:	1
 ** 3.75 **
	 	 How	many	5	paise	coins	:	15
	 	 The	total	amount	is	Rs	4.50

 29. Modify the program given in Example 28 to accept the total amount
(in rupees) and convert them into paise (vice-versa of Example 28).

 Solution
 #include <stdio.h>
 #include <string.h>
 int main(void)
 {
 int nc1,nc2,nc3,nc4,nc5,temp;
	 	 	 float	total;
 printf(“Enter the amount : ”);
 scanf(“%f”,&total);
 temp = total * 100;
 nc1 = temp / 50;
 temp = temp % 50;

 nc2 = temp / 25;
 temp = temp % 25;

 nc3 = temp / 20;
 temp = temp % 20;

198 Computer Fundamentals and Programming in C

 nc4 = temp / 10;
 temp = temp % 10;

 nc5=temp;

 printf(“\n\nNo. of 50 paise coins = %d”,nc1);
 printf(“\nNo. of 25 paise coins = %d”,nc2);
 printf(“\nNo. of 20 paise coins = %d”,nc3);
 printf(“\nNo. of 10 paise coins = %d”,nc4);
 printf(“\nNo. of 5 paise coins = %d”,nc5);
 return 0;
 }

 Output
 Enter the amount: 7.65
 No. of 50 paise coins = 15
 No. of 25 paise coins = 0
 No. of 20 paise coins = 0
 No. of 10 paise coins = 1

 30. Write a program for computing product cost. The program should
output the computed cost and the delivery date of the product.

 Solution
 #include <stdio.h>

 int main()
 {
 int quantity, day, month, year;
	 	 	 float	cost,	total;
 int prod_code;

 printf(“Enter quantity: ”);
 scanf(“%d”, &quantity);

 printf(“Enter cost: ”);
 scanf(“%f”, &cost);
 total = cost * quantity;

 printf(“Enter product code: ”);
 scanf(“%d”, &prod_code);

 printf(“Enter date in format dd/mm/yyyy: ”);
 scanf(“%d/%d/%d”, &day, &month, &year);

 month+=1;

 if(month > 12)

 {

 month = 1; year++;

 }

	 	 	 printf(“Order	 for	 %d	 should	 be	 with	 you	 by\	

%d/%d/%d at a total cost of %6.2f\n”,prod_\

code, day, month, year, total);

 return 0;

 }

 Result:
 Inputs

Enter quantity: 3

Enter cost: 1.25

Enter product code: 1 2

Enter date in format dd/mm/yy: 17/12/2003

Output
Order	for	1	should	be	with	you	by	17/1/2004	at	a	total	
cost of 3.75

note

 ∑ The scanf() function returns the number of variables
successfully read in.

 ∑ The printf() function returns a number that is equal to
the number of characters printed.

Generally, input and output in C, from and to standard devices, are managed
through standard streams. The standard input and output devices are the
keyboard and the screen. To carry out the input and output, a number
of standard functions such as getchar(), putchar(), scanf(), and
printf() are in-built in C.

summary

Key terms

getchar() and putchar() functions are single-character input and
output functions, respectively.

So, these do not need any formatted inputs or outputs. The functions
scanf() and printf() handle multiple variables of all the allowed data
types in C. These, therefore, require formatted inputs and outputs.

character string It is a chain of characters, placed one after another,
that is dealt as one unit.
control codes There are special characters that specify some positional
action on the printing point, also known as cursor.
conversion specifier It is same as format specifier.
flag modifier It is a character that specifies one or more of the
following:
 • Displays space if no sign symbol precedes the output

 • Inclusion of + or – sign symbol preceding the output

 • Padding the output with leading 0s

 • The positioning of the output to be displayed

 • Use of alternate form of specifier

format specifier It is identifies the data type, along with width, precision,
size, and flag, for the respective variables to be outputted to or read in from
a standard device.

Input and Output 199

frequently asKed questIons
1. How can you print % character using printf()?
 Conversion specifiers always start with a % character so that the printf()
function can recognize them. Because a % in a control string always
indicates the start of a conversion specifier, if one wants to output a %
character you must use the sequence %%.

2. What is the return type of printf() ?
 The return value for printf() is incidental to its main purpose of printing
output, and it usually isn’t used. The return type of printf() function is
int. Under ANSI C, printf() function returns the number of characters
it printed. If there is an output error, printf() returns a negative value.
The following program illustrates the fact:
 #include <stdio.h>
 int main(void)
 {
 int c;
 c=printf(“One”);
 printf(“\nc = %d”,c);
 return 0;
 }
 Output
 One
 c = 3

3. What is the return type of scanf()?
 The scanf() function returns the number of variables that it successfully
reads. If it reads no variables, which happens if you type a non-numeric
string when it expects a number, scanf() returns the value 0. It returns
EOF if it detects end of file. This condition can occur if we press cTRL-z in
Windows or cTRL-d in UNIX/Linux.
 #include <stdio.h>

 int main(void)

 {

 int a,b,c;

 c=scanf(“%d %d”,&a,&b);

 printf(“\nc = %d”,c);

 return 0;

 }

 Output
 Sample run 1:
 2 3
 c = 2

 Sample run 2:
 2 a
 c = 2

 Sample run 3:
 a b
 c = 0

 Sample run 4:
 ^z

 c = -1

4. How do I write printf() so that the width of a field can be
specified at run-time?
 This is shown in the following program:

 int main()

 {

 int w, no;

 printf (“Enter number and the width for the\
	 	 	 	 	 	 number	field:”);

 scanf (“%d%d”, &no, &w);

 printf (“%*d”, w, no);

 return 0;

 }

 Here, * in the format specifier in printf() indicates that an int value
from the argument list should be used for the field width.

5. What is EOf?

 EOF is a special character called the end-of-file character. In fact, the
symbol EOF is defined in <stdio.h> and is usually equivalent to the
value –1. However, this is not necessarily always the case, so one should
use EOF in the programs rather than as an explicit value. EOF generally
indicates that no more data is available from a stream. Incidentally EOF can
be entered manually from the keyboard by pressing cTRL + D on a UNIX/
Linux type machine or by pressing cTRL + Z on a Windows type machine.

format string It is a group of characters that contain ordinary character
string, conversion code, or control characters arranged in order so that
they correspond to the respective control string variables placed next to it
in printf() function.

precision modifier It indicates the number of characters used after the
decimal point in the output displayed. The precision option is used only with
floats or strings.

size modifier It precedes the conversion code and specifies the
kind of data type thereby indicating the number of bytes required for the
corresponding variable.
White space It is the blank space that causes the input stream to be
read up to the next non-white-space character.

Width modifier When used in context with the format string, with modifier
specifies the total number of characters used to display the output or to be
read in.

exercIses
 1. What will be the value of each variable after the following input

command?

 data input: Tom 34678.2 AA4231

 scanf(“%s %3d %f %c %*c %1d”,

 name,&m,&x,&ch,&i,&j);

 (a) name:

200 Computer Fundamentals and Programming in C

 (b) m:
 (c) x:
 (d) ch:
 (e) i:
 (f) j:
 2. What output does each of the following produce?
 (a) putchar(‘a’);
 (b) putchar(‘\007’);
 (c) putchar(‘\n’);
 (d) putchar(‘\t’);
 (e) n = 32; putchar(n);
 (f) putchar(‘\”’);

 3. For the different values of n, what is the output?
 printf(“%x %c %o %d”,n,n,n,n);
 (a) n = 67
 (b) n = 20
 (c) n = 128
 (d) n = 255
 (e) n = 100
 4. What is wrong with each of the following?
 (a) scanf(“%d”,i);
 (b) #include stdio.h
 (c) putchar(‘/n’);
 (d) printf(“\nPhone Number:(%s) %s”, phone);

 (e) getch(ch);
 (f) putch() = ch;

 (g) printf(“\nEnter your name:”, name);

 5. Which numbering system is not handled directly by the printf()
conversion specifiers?

 (a) decimal
 (b) binary
 (c) octal
 (d) hexadecimal

 6. What are formatted input and output statements in C? Give suitable
examples.

 7. What do the getchar() and putchar() functions do?

 8. How can a % character be printed with printf()?

 9. How can printf() use %f for type double if scanf() requires
%lf?

 10. How can a variable field width be implemented with printf()?

 11. How can numbers be printed with commas separating the thousands?

 12. Will the call scanf(“%d”, i) work? Give reasons for your answer.

 13. Explain why the following code is not going to work.
 double d;

scanf(“%f”,&d);

 14. How can a variable width be specified in a scanf() format string?

 15. When numbers are read from the keyboard with scanf “%d\n”, they
seem to hang until one extra line of input is typed. Explain.

 16. Why does everyone advise against using scanf()? What should be
used instead?

 17. On the screen how do you write the following words?

 she sells seashells by the seashore

 (a) all in one line

 (b) in three lines

 18. Write a program that asks interactively the user’s name and age and
responds with

	 	 Hello	name,	next	year	you	will	be	next_age.

 where next_age is age + 1.

 19. Write programs to read the values of the variables and print the results
of the computed expressions given below:

 (a) a = (b+c)*(b–c)

 (b) y = ax2 + bx + c

 (c) I	=	(P*R*T)/100

 (d) C = (F–32)/100

 (e) A	=	–(R1/R2+R3)

 (f) a	=	0.5*float1	+	 0.25*integer1 + integer2/0.4 + integer3

 20. What will be printed by the code given below?

 int value = 5;

	 	 printf(“%s”,	!(value	%	2)	?	“yes”:	“no”);

 21. What will be the output of the following program?
 int main()

 {

 char a,b,c;

 scanf(“%c %c %c”,&a,&b,&c);

 printf(“a=%c b=%c c=%c”,a,b,c);

 return 0;

 }

 [Note: The user input is:ABC DEF GHI]

 (a) a=ABC b=DEF c=GHI
 (b) a=A b=B c=C
 (c) a=A b=D c=G
 (d) None of these

 22. What will be the output of the following program?
 int main()

 {

 int a,b,c;

 scanf(“%1d %2d %3d”,&a,&b,&c);

 printf(“Sum=%d”,a+b+c);

 return 0;
 }

 [Note: The user input is: 123456 44 544]

Input and Output 201
 (a) Sum=480

 (b) Sum=594
 (c) Sum=589
 (d) None of these
 23. What will be the output of the following program?
 int main()

 {

 int x=20,y=35;

 x = y++ + x++;

 y = ++y + ++x;

 printf(“x=%d,y= %d\n”,x,y);

 return 0;
 }

 24. What will be the output of the following program?

 int main()

 {

 int x=5;

 printf(“%d %d %d\n”,x,x<<2,x>>2);

 return 0;
 }

 25. What will be the output of the following program?
 int main()

 {

 int a=2, b=3;

 printf(“ %d ”, a+++b);

 printf(“a=%d,b=%d”,a,b);

 return 0;
 }

 26. What will be the output of the following program?
 int main()

 {

 int a,b;

 printf(“\n enter integer values”);

	 	 printf(“for	a	and	b	within	0”);

 printf(“to 100\n”);

 scanf(“%d%d”,&a,&b);

 b=b^a;

 a=b^a;

 b=b^a;

 printf(“a=%d, b=%d\n”,a,b);

 return 0;
 }

 [Note: The user input is 23 67]

 27. What will be the output of the following program?
 int main(void)

 {

 int var1,var2,var3,minmax;

 var1=5;

 var2=5;

 var3=6;

 minmax=(var1>var2)?(var1>var3)?

 var1:var3:(var2>var3)? var2:var3;
 printf(“%d\n”,minmax);

 return 0;

 }

 28. What will be the output of the following program?
 int main(void)

 {

 int a=19,b=4;

	 	 float	c,d;

 c=a/b;

 d=a%b;

 printf(“/c=%12f/\nd=%);

 printf(“–12.4f/”,c,d);

 return 0;
 }

 29. Pick the correct output of the given program.
 int main(void)

 {

 int i=5;

 printf(“%d %d %d %d %d”,i, i++, i++, i++, ++i);

 return 0;
 }

 (a) Compile-Time Error
 (b) 10 9 8 7 6
 (c) 9 8 7 6 6
 (d) 10 8 7 6 6

Answers to objective type questions and problems
20. no, 21. (b), 22. (a), 23. x=57, y=94,
24. 5 201, 25. 5 a=3, b=3 Explanation: Here
it evaluates as a+++b, 26. a=67, b=23, 27. 6,

28. /c=4.000000/

 /d=4.0000 /

29. (d)

202 Computer Fundamentals and Programming in C

10.1 IntroductIon
So far, every program in this book has executed sequentially
in the order in which they appear, i.e., statements in a program
are normally executed one after another until the last statement
completes. A C application begins executing with the first line
of the main() function and proceeds statement by statement
until it reaches to the end of the main() function.
 In C, any sequence of statements can be grouped together
to function as a syntactically equivalent single statement by
enclosing the sequence in braces. This grouping is known
as statement block or compound statement. Compound
statements were originally designed to make control structures
simpler.
 In C89, one must declare all local variables at the start
of the block prior to any executable statements. However in

C99, local variables can be declared at any point within the
block prior to their first use.
 Consider the following program that illustrates variable
declaration at the beginning of a statement block.

#include <stdio.h>

int main(void)

{

 int a=5;

 printf(“\n a = %d”, a);

 /* A statement block follows */

‘b’ is visible only
within this block.

 {
 int b=10;
 printf(“\n a = %d”, a);
 printf(“\n b = %d”, b);
 }

C
H
a
p
T
e
rControl Statements

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

10

∑ discuss the meaning of a state ment and a statement
block

∑ explain decision type control constructs in C and the way
these are used

∑ explain looping type control constructs in C and the

technique of putting them to use
∑ discuss the use of special control con structs such as

goto, break, continue, and return
∑ describe nested loops and their utility

Control Statements 203
 printf(“\n a = %d”, a);
 return 0;
}

Output
a = 5
a = 5
b = 10
a = 5

 In C99 compliant compiler, the above program can be
written as follows giving the same output:

#include <stdio.h>
int main(void)
{
 int a=5;
 printf(“\n a = %d”, a);
 /* A statement block follows */
 {
 printf(“\n a = %d”, a);
 int b=10;
 printf(“\n b = %d”, b);
 }
 printf(“\n a = %d”, a);
 return 0;
}

 Take a note of the highlighted line. The visibility or
accessibility of the variable ‘b’ is limited to the block in which
it was declared. Consider the modified version of the above
program. Here an attempt is made to access the variable out of
the block. We should definitely get a compilation error.

#include <stdio.h>
int main(void)
{
 int a=5;
 printf(“\n a = %d”, a);
 {
 int b=10;
 printf(“\n b = %d”, b);
 }
 printf(“\n b = %d”, b);
 return 0;
}

 every function has a function body consisting of a set of
one or more statements, i.e., a statement block. For that reason,
every function body including main() is confined within
a set of curly braces and may optionally include variable
declarations after the open curly brace. Inside a function,
execution proceeds from one statement to the next, top to
bottom. However, depending on the requirements of a problem,
it might be required to alter the normal sequence of execution
in a program. The order in which statements are executed in a
running program is called the flow of control. Controlling the
flow of a program is a very important aspect of programming.
Control flow relates to the order in which the operations of a
program are executed.

 Control statements embody the decision logic that tells the
executing program what action to carry out next depending on
the values of certain variables or expression statements. The
control statements include selection, iteration, and jump state-
ments that work together to direct program flow.
 a selection statement is a control statement that allows
choosing between two or more execution paths in a program.
The selection statements in C are the if statement, the if-else
statement, and the switch statement. These statements allow
us to decide which statement to execute next. each decision is
based on a Boolean expression (also called a condition or test
expression), which is an expression that evaluates to either
true or false. The result of the expression determines which
statement is executed next.
 The programming mechanism that executes a series of
statements repeatedly a given number of times, or until a par-
ticular condition is fulfilled, is called a loop. The construct
used for loop is known as iteration statement. C language
offers three language elements to formulate iteration state-
ments: while, do-while, and for.
 Jump statements transfer the control to another point of
the program. Jump statements include goto, break, continue,
and return.
 after a very brief introduction to the different types of
control structures, it is explained how each type can be
used. The subsequent sections will discuss the use of control
statements in C. It is also explained how these statements can
be used to write efficient programs by using the following:

∑ Selection or branching statements
∑	 Iteration or loop statements

∑	 Jump statements

 The various types of program control statements are shown
in Fig. 10.1.

10.2 SpecIfyIng teSt condItIon for
SelectIon and IteratIon

a test condition used for selection and iteration is expressed
as a test expression. If an expression evaluates to true, it is
given the value of 1. If a test expression evaluates to false, it
is given the value of 0. Similarly, if a numeric expression is
used to form a test expression, any non-zero value (including
negative) will be considered as true, while a zero value will
be considered as false.
 Test expression is a Boolean expression that is either true or
false. It is formed in terms of relational expression or logical
expression or both. The expressions used to compare the
operands are called boolean expressions in terms of relational
operators. In addition to using simple relational expressions
as conditions, compound conditions can be formed using the
logical operators.

204 Computer Fundamentals and Programming in C

 Several relational and logical operators are available to
specify the test condition used in the control constructs of
C. relational operators are used to specify individual test
expression. More than one test expression can be connected
through the logical operator. Tables 10.1 and 10.2 list the
several relational, equality, and logical operators used in C.
 When the aND operator, &&, is used between two
relational expressions, the result is true only if each of both
the expressions are true by themselves. When using the Or
operator, ||, the condition is true if either one or both of the
two individual expressions is true.
 The NOT operator, !, is used to change any expression to
its opposite state. That is, if the expression has any nonzero
value (true), !expression produces a zero value (false). If an
expression is false to begin with (has a zero value), !expression
is true and evaluates to 1.

Table 10 .1 Relational operators

To specify Symbol used

less than
greater than
less than or equal to
greater than or equal to

<
>
< =
>=

 among the relational, equality, and logical operators only
the ‘!’ operator is unary; the rest are binary operators.

Table 10.2 Equality and logical operators

To specify Symbol used

Equal to
Not equal to
Logical AND
Logical OR
Negation

==

!=

&&

||

!

10.3 WrItIng teSt expreSSIon
 relational expression can be formed using relational operators.
a relational operator takes two operands and compares them to
each other, resulting in a value of true (1) or false (0). The syntax
for relational expression is as follows:

Variable Variable
OR OR

Relational_Operatorexpression expression
OR OR

Constant Constant

Ï ¸ Ï ¸
Ô Ô Ô Ô
Ô Ô Ô ÔÔ Ô Ô Ô
Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛ Ó ˛

 The relational operators may be used with integer, float,
double, or character operands.

ExamplEs

 1. Some examples of expressions are given below.

 n a>2 n a < b + c n a == 3

 n a! = 0 n a <= b n a >= 2

 A test expression involving relational and/or equality and/or logical
operators, yields either integer 1 or 0 after evaluation. Consider the
following example programs.

 2. (a) #include <stdio.h>
 int main()
 {
 int a=3;
 printf(“\n%d”,a>3);
 return 0;
 }

 Output 0

 (b) #include <stdio.h>
 int main()
 {
 int a=3;
 printf(“\n%d”,a>2);
 return 0;
 }

 Output 1

 The reason for the above output is that in C, false is represented by
the value 0 and true is represented by the value 1 as it is a relational
expression. In C, if such a value is zero, it is interpreted as a logical
value false. If such a value is not zero, it is interpreted as the logical
value true. The value for false may be any zero value, e.g., 0, 0.0, ‘\0’
(null character) or the NULL pointer value, discussed later.

Program Control
Statements/Constructs

Selection/Branching Iteration/Looping

Conditional
Type

for while do-whileUnconditional
Type

if if-else switchif-else-if break continue goto

Fig. 10.1 Program control statements/constructs in C

Control Statements 205
 3. The following declarations and initializations are given.

 int x=1, y=2, z=3;

 Then,

 n The expression x>=y evaluates to 0 (false).

 n The expression x+y evaluates to 3 (true).

 The expression x+y is basically a concise syntax for the
full relational expression (x+y != 0), written for coding
convenience, as it is only a relational expression which can
be used for testing. When x+y evaluates to 3, (x+y !=0)
evaluates to true, as it should be.

 n The expression x=y evaluates to 2 (true).

 The expression x=y would again be translated by the compiler
to a relational expression ((x=y)!= 0). When x=y evaluates
to 2, ((x=y)!= 0) evaluates to true.

 n The expression x==y evaluates to 0 (false).

 n The expression z%2==0 evaluates to 0 (false).

 n The expression x<=y evaluates to non-zero (true), i.e., 1.

10.3.1 understanding How true and false is
represented in c

C does not have predefined true and false values. The value
zero (0) is considered to be false by C. any positive or
negative value is considered to be true. Conventionally, it is
assumed that only positive one is true but C evaluates any
non-zero value to be true.
∑	 The following expressions have the resulting value of true,

assuming that the integer variables a, b, and c have the
values a = 1, b = 2, and c = 3.

 n (a < 2) n (a + 1 == b) n 1==a

 n a + b >=c n c <= (a + b) n (a > 0)

 n (a) n (–a) n (a = 3)

 Note that in the expression (a = 3) where the assignment
operator is sometimes accidentally used instead of the
relational operator ‘==’, C evaluates the expression as
true even if the variable ‘a’ is previously assigned some
value other than zero (0).

 It is better to develop the habit of writing the literal first,
e.g., (3==i). Then, if an equal sign is accidently left out,
the compiler will complain about the assignment, as
lvalue can never be constant.

 The expression (a) where the variable ‘a’ was previ-
ously assigned the value 1 is true since C considers any
expression that evaluates a non-zero value to be true.
even if the value –3 was assigned to the variable ‘a’ the
expression (a) would evaluate to true.

∑ The following expressions evaluate to true where a = 1, b =
2, and c = 3.

 n (b) n (c+a) n (2*b)

 n (c–2*–30) n (0+b) n (c–a+b)

∑	 The following expressions evaluate to false where
a = 1, b = 2, and c = 3.

 n (a - 1) n (!(a)) n (0 * c)
 n (c - a - b)
 Note that the ‘ ! ‘ symbol, the logical NOT operator,

changes a true to a false.
∑ The following expressions have the resulting value of false

assuming that the integer variables a, b, and c have the
values a = 1, b = 2, and c = 3.

 n (a > 1)
 n (b == 1)
 n (a/b + a/b)= = 1
 n (c % 3)
 n (a > 0 + 4)

 Care should be taken when one compares two values
for equality. Due to truncation, or rounding up, some
relational expressions, which are algebraically true, may
return 0 instead of 1.

 For example, look at the relational expression:
(a/b + a/b)==l which is 1/2 + 1/2 == 1.

 This is algebraically true and is supposed to return 1 .
The expression, however, returns 0, which means that the
equal-to relationship does not hold. This is because the
truncation of the integer division 1/2 produces 0, not
0.5. The following program proves this.

 #include <stdio.h>
 int main()
 {

 int a=1,b=2;
 printf(“\n (a/b + a/b) == 1 evaluates %d”,

(a/b + a/b) == 1);
 return 0;
 }

 Output
 (a/b+a/b) == 1 evaluates to 0

 another example is 1.0/3.0, which produces 0.33333....
This is a number with an infinite number of decimal
places. But the computer can only hold a limited num-
ber of decimal places. Therefore, the expression 1.0/3.0
+ 1.0/3.0 + 1.0/3.0 == 1.0 might not return 1 on
some computers, although the expression is theoreti-
cally true.

∑ Consider a relational expression such as a < b. If ‘a’ is
less than ‘b’, then the expression has the integer value 1,
which is true. If ‘a’ is not less than ‘b’, then the expression
has the integer value 0, which is false. Mathematically,
the value of a < b is the same as the value of a – b < 0.
Because the precedence of the relational operators is less
than that of the arithmetic operators, the expression a – b
< 0 is equivalent to (a – b) < 0.

206 Computer Fundamentals and Programming in C

 On many machines, an expression such as a < b is
implemented as a – b < 0. The usual arithmetic
conversions occur in relational expressions.

 Let a and b be the arbitrary arithmetic expressions. Table
10.3 shows how the value of a – b determines the values of
relational expressions.

Table 10.3 Values of relational expressions

a - b a < b a > b a <= b a >= b

Positive 0 1 0 1

Zero 0 0 1 1

Negative 1 0 1 0

 an equality expression like a == b evaluates to either true
or false. an equivalent expression is a – b == 0. If a equals
b, then a – b evaluates to 0 and 0 == 0 is true. In this case
a == b results in the integer value 1 which is true in C. If a is
not equal to b, then the expression yields 0, which might be
thought of as false.

note

 ∑ If an expression, involving the relational operator, is
true, it is given a value of 1. If an expression is false, it
is given a value of 0. Similarly, if a numeric expression is
used as a test expression, any non-zero value (including
negative) will be considered as true, while a zero value
will be considered as false.

 ∑ Space can be given between operand and operator
(relational or logical) but space is not allowed between
any compound operator like <=, >=, ==, !=. If the operators
are reversed, a compiler error would result.

 ∑ a == b and a = b are not similar, as == is a test for equality,
a = b is an assignment operator. Therefore, the equality
operator has to be used carefully.

 ∑ The relational operators have lower precedence than all
arithmetic operators.

 C has three logical operators for combining logical values,
which are listed in Table 10.2. && and || are used to connect
two or more expressions to form a test condition. && means
a conjunction, i.e., all the expressions connected by it must
be true to satisfy the test condition. || means a disjunction,
i.e., either of the expressions connected by it must be true to
satisfy the test condition.
 Like arithmetical operators, the relational, equality, and
logical operators have rules of precedence and associativity
for evaluating expressions involving these operators. Logical
operators may be mixed within relational expressions but one
must abide by their precedence rule which is as follows (see
Table 10.4 for complete list).

NOT operator (!), AND operator (&&), OR operator (||)

 One must remember that the && operation is always
performed before the || operation because && is similar
to multiplication in normal arithmetic while || is similar to
addition.
 The == (equal to) and != (not equal to) operators are
analogous to the relational operators except for their lower
precedence.

Table 10.4 Precedence and associativity of operators

Operators Associativity

() ++ (postfix) – (postfix)
+ (unary) – (unary)

++ (prefix) – (prefix) * / %
+ -

< <= > >=
== !=

&&
||
?:

= + = – = * = / =
, (comma operator)

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

 Given the following declarations and initializations:
int a=3, b=-5, c=0;

consider Table 10.5 which illustrates the use of the logical
operators.

Table 10.5 Illustration of the use of logical operators

Expression Result

a>0 && c>0

a>=0 && c>=0

a && c

a && b

a || c

!a && c

5 && !c

0(false)

1(true)

0(false)

1(true)

1(true)

0(false)

1(true)

 In addition to numerical operands, character data can also
be compared using relational operators.

‘a’ < ‘e’ returns 1(true)
‘9’ > ‘1’ returns 1(true)
‘A’ > ‘a’ returns 0 (false)

as aSCII value of ‘a’ is 65 and that of ‘a’ is 97.
Consider the following declaration:

Char ch = ‘A’;

 To check whether ch contains upper-case letter the
conditional expression can be written as follows:

ch>=‘A’ && ch<=‘Z’

 It is also possible to use the aSCII value corresponding
to a character in relational expression. The above expression
can also be written as

ch >= 65 && ch <= 90

Control Statements 207

∑	 although C does not have an exclusive Or (XOr) logical
operator, outcome of XOr is true if and only if one operand
is true but not both. It can be implemented by the following
expression:
 (a || b) && !(a && b)

Short-circuiting evaluation in C
It is to be noted that in case of && when the first operand is
false, it is evident that the result must be false. So, the other
operand of the expression will not be evaluated. Likewise,
in case of | | , when the first operand is true, there is no
need to evaluate the other operand of the expression, so the
resulting value is set to true immediately. C uses this short-
circuit method which is summarized as follows:

false && (anything) true || (anything)

false true

 Sometimes, it can cause problems when the second
operand contains side effects. For instance, consider the
following example:

 r= a && b++;

 When the first operand is non-zero, that is, if a=2, b=3

then the expression evaluates to give r=1, a=2, and b=4. But
if the first variable is zero, then the second variable will never
be evaluated. That is, if a=0, b=3; then r=0, a=0, and b=3.
Same thing would happen in case of

 r = a || b++;

 If the first operand is non-zero, then the second operand
would never be incremented. It is important to understand the
complement of relational and equality operators. Table 10.6
illustrates the complements.

Table 10.6 Relational operator complement

Operator Complement

>

<

==

< =

>=

! =

 For example, !(a<b) is equivalent to a>=b, !(a>=b) is
equivalent to a<b.
∑	 an expression such as a < b < c is syntactically correct

but often confusing. This is illustrated with an example. In
mathematics,

 3 < j < 5

 indicates that the variable j has the property of being
greater than 3 and less than 5. It can also be considered
as a mathematical statement that, depending on the
value of j, may or may not be true. For example, if j = 4,
then the mathematical statement is true. But if j = 7, then

the mathematical statement is false. Now consider the C
code

 j =7;

 printf(“%d\n”, 3 < j < 5);

 /* 1 gets printed, not 0 */

 By analogy with mathematics, it might be expected that
the expression is false and that 0 is printed. However,
that is not the case because relational operators associate
from left to right.

 3 < j < 5 is equivalent to (3 < j) < 5

 Because the expression 3 < j is true, it has value 1.
Thus,

 (3 < j) < 5 is equivalent to 1 < 5

 which has value 1. In C, the correct way to write an
expression for testing both 3 < j and j < 5 is

 3 < j && j < 5

 Because relational operators have higher precedence
than binary logical operators, this is equivalent to

 (3 < j) && (j < 5)

 and, as will be seen later, this expression is true if and
only if both operands of the && expression are true.

∑	 Like arithmetic operators, the relational and logical
operators have rules of precedence and associativity for
evaluating expressions involving these operators (shown
in Table 10.4).

 The precedence of the relational operators is less than
that of the arithmetic operators, including + and –, and
greater than that of assignment operators. This means, a
> b + 5 means the same as a > (b + 5). The expression
a = b > 5 means a = (b > 5). That is, a is assigned 1
if b is greater than 5 and 0; otherwise a is not assigned
the value of b.

 The relational operators are themselves organized into
two different priorities:

 Higher-priority group: <<= >>=
 Lower-priority group: !=
 Like most other operators, the relational operators

associate from left to right. Therefore,
 expr1 != expr2 == expr3

 is the same as
 (expr1 != expr2) == expr3

 First, C checks to see if expr1 and expr2 are unequal.
Then the resulting value of 1 or 0 (true or false) is
compared to the value of expr3. It is not recommended
to write a relational expression like this but this has been
pointed out for a clearer understanding of the precedence
and associativity of the relational operator.

208 Computer Fundamentals and Programming in C

 Initially, C language did not provide any Boolean data
type. In C99, a new data type _Bool has been provided
which remedied the lack of Boolean type in C language.
In this version of C, a Boolean variable can be declared
as follows:

 _Bool isPrime;

 _Bool is actually an integer type (More precisely an
unsigned integer type). Unlike an ordinary integer
variable, _Bool variable can only be assigned 0 or 1.
When converting any scalar values to type _Bool, all
non-zero values are converted to 1 while zero values are
converted to 0. Consider the following program:

 #include <stdio.h>

 int main(void)

 {

 _Bool isPrime =5;

 printf(“\n isPrime = %d”, isPrime);

 return 0;

 }

 Output isPrime = 1

 Because a relational operator produces a Boolean result,
it is possible to store the result in a variable of type _
Bool. For example

 _Bool result = 5 < 4; /* result will be false */

 In addition to _Bool type, C99 also provides a new header
file stdbool.h for working with Boolean values. This
header file provides a macro bool which is synonymous
with _Bool and defines false and true to be 0 and 1
respectively.

 If stdbool.h is included then the following
declaration can be written:

	 	 	 bool	flag;

 This header file also provides macros like true, false
which stands for 1 and 0, respectively making it possible
to write the following statement:

	 	 flag=true;

10.4 SelectIon
Selection and iteration statements are the basic tools of
thought when designing a logical process. The ability to
control the order in which the statements are executed adds
enormous value to the programming.
 Selection is used to take a decision between one or two or
more alternatives. Decision in a program is concerned with
choosing to execute one set of statement over the others.
Selection is also known as branching. There are different
types of selection that can be employed in a program as
shown in Fig. 10.2.

Selection

Simple Multiple

Multi-wayNestedTwo-wayOne-way

Fig. 10.2 Types of selection constructs

 For one-way selection. if..... without else part is used.
The if...else... construct is used to implement two-way
selection. Nested-if and if...elseif... ladder is used to
implement nested selection construct. For implementing
multi-way selection switch case is used.

10.4.1 Selection Statements
When dealing with selection statements, there are generally
three versions: one-way, two-way, and multi-way. One-way
decision statements do a particular thing or they do not. Two-
way decision statements do one thing or do another. Multi-
way decision statements can do one of many different things
depending on the value of an expression.
One-way decisions using if statement
One-way decisions are handled with an if statement that
either do some particular thing or do nothing at all. The
decision is based on a ‘test expression’ that evaluates to
either true or false. If the test expression evaluates to true, the
corresponding statement is executed; if the test expression
evaluates to false, control goes to the next executable
statement. Figure 10.3 demonstrates this. The form of this
one-way decision statement is as follows:

if(TestExpr)

 stmtT;

TestExpr is the test expression. stmtT can be a simple
statement or a block of statements enclosed by curly braces
{}.

TestExpr
T F

stmtT

Fig. 10.3 Flowchart for if construct
 The if construct can be illustrated with the help of the
following example.

Control Statements 209
ExamplE

 4. Write a program that prints the largest among three numbers.

Algorithm C Program
1. START

2. PRINT “ENTER THREE

 NUMBERS”

3. INPUT A, B, C

4. MAX¨A

5. IF B>MAX THEN MAX¨B

6. IF C>MAX THEN MAX¨C

7. PRINT “LARGEST

 NUMBER IS”, MAX

8. STOP

#include <stdio.h>

int main()

{

int a, b, c, max;

printf(“\nEnter 3 numbers”);

scanf(“%d %d %d”, &a, &b, &c);

max=a;

if(b>max)

 max=b;

if(c>max)

 max=c;

printf(“Largest No is %d”, max);

return 0;

}

if and the comma operator
Normally, the comma operator is used to combine statements.
For example, the statements:

x = 1;

y = 2;

are treated as a single statement when written as:
x = 1, y = 1;

 With simple statements, the comma operator is not very
useful. However it can be used in conjunction with if statement
to provide the programmer with a unique shorthand.

if	(flag)

 x =1, y = 1;

This example is syntactically equivalent to:

if	(flag)

{

 x = 1;

 y = 1;

}

 The problem with the comma operator is that when you
use it, you break the rule of one statement per line, which
obscures the structure of the program. Therefore, do not use
the comma operator when you can use braces instead.

Two-way decisions using if-else statement
Two-way decisions are handled with if-else statements
that either do one particular thing or do another. Similar
to one-way decisions, the decision here is based on a test
expression. The form of a two-way decision is as follows:

if(TestExpr)

 stmtT;

else

 stmtF;

 If the test expression TestExpr is true, stmtT will be
executed; if the expression is false, stmtF will be executed.
stmtT and stmtF can be single or a block of statements.
remember that a block of statements is always enclosed
within curly braces {}. Figure 10.4 depicts the flowchart of
the if-else construct.

TestExpr
T F

stmtT stmtF

Fig. 10.4 Flowchart of if-else construct

 The if-else construct is illustrated with the help of an
example.

ExamplE
 5. Write a C program to check whether a number given by the user is

odd or even.

algorithm C program
1. START

2. PRINT “ENTER THE NUMBER”

3. INPUT N

4. Q¨N/2 (Integer Division)

5. R¨N-Q*2

6. IF R=0 THEN PRINT

 “EVEN” ELSE PRINT “ODD”

7. STOP

#include <stdio.h>

int main()

{

int n,r;

printf(“\nEnter the number”);

scanf(“%d”, &n);

r=n%2;

if(r==0)

 printf(“EVEN”);

else

 printf(“ODD”);

return 0;

}

 an absolutely classic pitfall is to use assignment (=)
instead of comparison (==). This is probably the single
most common error made by beginners in C programming.
The problem is that in such a case the compiler is of no

210 Computer Fundamentals and Programming in C

help—it is unable to distinguish this non-syntax error.
Consider the following example program.

ExamplE

 6. Check whether the two given numbers are equal.

 (a) #include <stdio.h>

 int main()

 {

 int a=2, b=3;

 if(a == b)

 printf(“EQUAL”);

 else

 printf(“UNEQUAL”);

 return 0;

 }

 Output UNEQUAL

 (b) #include <stdio.h>

 int main()

 {

 int a=2, b=3;

 if(a = b)

 printf(“EQUAL”);

 else

 printf(“UNEQUAL”);

 return 0;

 }

 Output EQUAL

 The explanation for the above outputs is that when a
condition is specified with = instead of ==, the C compiler
checks the value of the test expression. If it is non-zero
including negative, it evaluates the test condition as true;
otherwise it evaluates the test condition as false. example
6(a) simply checks the equality and gives the result as
expected. But in example 6(b), the value of b is assigned
to a first. Since the value assigned to a is 3, which is
non-zero, the condition will be true and the program
outputs EQUAL. If the value of b was assigned as zero,
then following the above explanation, the second program
would print UNEQUAL as now a would be zero.
 So the test expression using the equality operator must be
specified carefully. If the value of a variable is assigned a
constant value, the same thing may not occur. The example
statement,

if(x = 3) stmT;

does not test whether x is 3. This sets x to the value 3, and
then returns x to the if construct for testing. Now, 3 is not
0, so it is deduced as true. The actual test expression should

be x==3. Such a problem can be overcome by writing the
expression as 3==x. It is safe to write. If the expression is
written 3=x by mistake, then the compiler will complain
because 3 cannot be a lvalue.
 In case it is desired to test whether variable x has a non-
zero value, one could write

 if(x)

rather than
 if(x != 0)

 However, this can sometimes be confusing. In general,
it is better to write whatever is meant rather than writing
something that has the same effect.
 The following three if() statements are functionally
equivalent.

 if(x)

 printf(“true\n”);

 if(x!=0)

 printf(“true\n”);

 if(!(x==0))

 printf(“true\n”);

 The unsigned preserving approach (K&r C) says that
when an unsigned type mixes with an int or smaller signed
type, the result is an unsigned type. This is the simple rule
independent of hardware but as in the following example,
it does something to force a negative result to lose its sign.
The value preserving approach (aNSI C) says that when
an integral operand type is mixed like this, the result type
is signed or unsigned depending on the relative sizes of the
operand type. Consider the following example.

 #include <stdio.h>
 int main()
 {
 int i=-1;
 unsigned int u=1;
 if(i<u)
 printf(“\n i is less than u”);
 else
 printf(“\n i is not less than u”);
 return 0;
 }

Output i is not less than u (in GCC compiler)

 Depending on whether this program is compiled and
executed under K&r or aNSI C, the expression i<u will
be evaluated differently. The same bit patterns are compared
but interpreted as either a negative number or as an unsigned
(hence positive number).
 If either operand is unsigned, the result is unsigned, and
is defined to be modulo 2n, where n is the word size. If both
operands are signed, the result is undefined.

Control Statements 211
 Suppose, for example, a and b are two integer variables
known to be non-negative, and you want to test whether a+b
might overflow. One obvious way to do it looks something
like this:

 if (a + b < 0)
 printf(“\OVERFLOW”);

 In general, this does not work. The point is that once a +
b has overflowed, all bits in the register holding the result
will be zero. If the operation overflowed, the register would
be in overflow state, and the test would fail. One correct way
of doing this particular test relies on the fact that unsigned
arithmetic is well defined for all values, as are the conversions
between signed and unsigned values:

if ((int) ((unsigned) a + (unsigned) b) < 0)

printf(“\OVERFLOW”);

ExamplEs
 7. Suppose a C code has to be written that will calculate the earnings

by workers who are paid an hourly wage, with weekly hours greater
than 40 being paid ‘time and a half’. Suppose weekly hours and
hourly rate are known in the program. Two options of the code to
handle this situation are as follows.

 Option 1 Using simple statements:

 if(weeklyHours <= 40)
 earnings = hourlyRate * weeklyHours;
 else
 earnings = 40 * hourlyRate + (weeklyHours -

40) *hourlyRate* 1.5;

 Option 2 Using a simple and compound statement:

 if(weeklyHours <= 40)
 earnings = hourlyRate * weeklyHours;
 else
 {
 offHours = weeklyHours - 40;
 regpay = 40 * hourlyRate;
 earnings = regpay + offHours * hourlyRate *

1.5;
 }

 A complete program in C is illustrated as follows.

 8. Write a program that determines if a year is a leap year.

#include<stdio.h>

int main()

{

 int year, rem_4,rem_100,rem_400;

 printf(“Enter the year to be tested:”);

 scanf(“%d”, &year);

 rem_4 = year % 4;

 rem_100 = year % 100;

 rem_400 = year % 400;

 if((rem_4 == 0 && rem_100 != 0) || rem_400 = = 0)

 printf(“It is a leap year.\n”);

 else

 printf(“It is not a leap year.\n”);

 return 0;

}

 Given below are the outputs obtained for different inputs
from the above program executed in a computer.

Test run no. 1
Enter the year to be tested: 1955

It is not a leap year.

Test run no. 2
Enter the year to be tested: 2000

It is a leap year.

Test run no. 3
Enter the year to be tested: 1800

It is not a leap year.

Multi-way decisions
Multi-way decision statements use if-else-if nested
if or switch statements. They are used to evaluate a test
expression that could have several possible values. if-else-
if statements are often used to choose between ranges of
values. Switch statements are discussed in the next section.
 ∑ if-else-if ladder
 The form of a multi-way decision construct using

if-else if statements is as follows:

 if(TestExpr1)

 stmtT1;

 else if(TestExpr2)

 stmtT2;

 else if(TestExpr3)

 stmtT3;

 .

 .

 .

 else if(TestExprN)

 stmtTN;

 else

 stmtF;

 If the first test expression TestExpr1 is evaluated to
true, then stmtT1 is executed. If the second test expression
TestExpr2 is true, then stmtT2 is executed, and so on. If none
of the test expressions are true, then the statement stmtF is
executed. The flowchart of the above construct is shown in
Fig. 10.5.

212 Computer Fundamentals and Programming in C

TestExpr

T

F

stmtT1

TestExpr2

T

F

stmtT2

TestExpr3

T

F

stmtT3

TestExprN

T

F

stmtTN

stmtF

Fig. 10.5 Flowchart of an if-else-if construct

ExamplEs

 9. The following program checks whether a number given by the user is
zero, positive, or negative.

 #include <stdio.h>

 int main()

 {

 int x;

 printf(“\n ENTER THE NUMBER:”);

 scanf(“%d”, &x);

 if(x > 0)

 printf(“x is positive \n”);

 else if(x == 0)

 printf(“x is zero \n”);

 else

 printf(“x is negative \n”);

 return 0;

 }

 10. This program prints the grade according to the score secured by a
student.

 #include <stdio.h>

 int main()

 {

 int score;

 char grade;

 printf(“\n ENTER SCORE : ”);

 scanf(“%d”, &score);

 if(score >= 90)

 grade = ‘A’;

 else if(score >= 80)

 grade = ‘B’;

 else if(score >= 70)

 grade = ‘C’;

 else if(score >= 60)

 grade = ‘D’;

 else

 grade = ‘F’;

 printf(“GRADE IS: %c”, grade);

 return 0;

 }

Nested if
When any if statement is written under another if statement,
this cluster is called a nested if. a simple illustration of a
nested if is given below.
 The if statement that tests for divisibility by 5 is located
inside of the if statement that tests for divisibility by 3;
therefore, it is considered to be a nested if statement.

if (number % 3 == 0)

{

 printf(“number is divisible by 3. \n”);

 if (number % 5 == 0)

 {

 printf(“number is divisible by 3 and 5. \n”);

 }
}

another example is given below.

if(a > b)

 if(a > c)

 printf(“%d”, a);

 Here, a will be printed in case both if conditions are true.
The indentation makes the logic of the statements explicitly
clear. Next, the nested loop is further explained with the
example given below.

if(a > b)

 if(a > c)

 printf(“%d”, a);

 else

 printf(“%d”, c);

 an important fact to be noted here is that an else always
associates itself with the closest (innermost) if. In the above
example, the else part corresponds to the inner if, that is,
if(a > c). If another else is added, the last else corresponds
to if(a > b). The syntax for the nested if is as follows.

Control Statements 213

Construct 1 Construct 2

if(TestExprA)

 if(TestExprB)

 stmtBT;

 else

 stmtBF;

else

 stmtAF;

if(TestExprA)

 if(TestExprB)

 stmtBT;

 else

 stmtBF;

else

 if(TestExprC)

 stmtCT;

 else

 stmtCF;

stmtBT, stmtBF, stmtCT, and stmtCF can be a simple
statement or a block of statements. It is to be remembered
that a block of statements is always enclosed within curly
braces {}.
 In construct 1, stmtBT will be executed if both TestExprA
and TestExprB evaluate to true. stmtBF will be executed if
TestExprA evaluates to true and TestExprB evaluates to false.
stmtAF will be executed if TestExprA is false and does not
check for TestExprB.
 In construct 2, stmtBT will be executed if both TestExprA
and TestExprB evaluate to true. stmtBF will be executed
if TestExprA evaluates to true and TestExprB evaluates to
false. If TestExprA is false, then the test expression TestExprC
will be checked. If it is true, then stmtCT will be executed,
otherwise stmtCF will be executed.
 Finally, a program to find the largest among three numbers
using the nested loop follows. The required flowchart is
shown in Fig. 10.6. The C code is given as follows:

#include <stdio.h>

int main()

{

 int a, b, c;

 printf(“\nEnter the three numbers”);

 scanf(“%d %d %d”, &a, &b, &c);

 if(a > b)

 if(a > c)

 printf(“%d”, a);

 else

 printf(“%d”, c);

 else

 if(b > c)

 printf(“%d”, b);

 else

 printf(“%d”, c);

 return 0;

}

START

END

READ A, B, C

IS

B>C?

IS

A>C?

PRINT B PRINT APRINT C

YES

YES

YES

NO

NO

IS

A>B?

Fig. 10.6 Flowchart for finding the largest of three numbers

Dangling else Problem
This classic problem occurs when there is no matching else
for each if. To avoid this problem, the simple C rule is that
always pair an else to the most recent unpaired if in the
current block. Consider the following illustration.

 if(TestExprA)

 if(TestExprB)
 stmtBT;
 else
 stmtAF;

 If TestExprA is evaluated to true, then the execution moves
to the nested if and evaluates TestExprB. If TestExprB is
evaluated to true, then stmtBT will be executed. If TestExprA
is evaluated to false, then stmtAF is executed. But in the code
above, the else is automatically paired with the closest if.
But, it is needed to associate an else with the outer if also.
The solution is either of the following:
∑	 Use of a null else
∑	 Use of braces to enclose the true action of the second if
each of these has the following form:

 With null else With braces

 if(TestExprA)
 if(TestExprB)

 stmtBT;

 else

 ;

 else

 stmtAF;

 if(TestExprA)

 {
 if(TestExprB)

 stmtBT;

 }

 else

 stmtAF;Z

 Now, in both the solutions, if the expression TestExprA
evaluates to false then the statement stmtAF will be executed.
If it evaluates to true, then it checks for TestExprB. If

214 Computer Fundamentals and Programming in C

TestExprB evaluates to true then statement stmtBT will be
executed. Consider the following C program with a dangling
else problem.

#include <stdio.h>

int main()

{

 int a = 2;

 int b = 2;

 if (a == 1)

 if (b == 2)

 printf(“a was 1 and b was 2\n”);

 else

 printf(“a wasn’t 1\n”);

 return 0;

}

 When compiled and run, this program did not produce any
output. With the program in its original form it is quite likely
that the programmer thought the else statement

else
 printf(“a wasn’t 1\n”);

would be associated with the first if but it was not. an else
always associates with the immediately preceding if as is
clear by the alternative version of the program. The reason
for the complete absence of output is that there is no else
statement associated with the first if.
 In order to achieve the effect that the programmer probably
originally intended, it is necessary to re-arrange the program
in the following form.

int main()
{
 int a = 2;
 int b = 2;
 if (a == 1)
 {
 if (b == 2) printf(“a was 1 and b was 2\n”);
 }
 else printf(“a wasn’t 1\n”);
 return 0;
}

note

	 ∑ Multi-way decision statements are used to evaluate a test
expression that could have several possible values.

	 ∑ An else is always associated with the closest unmatched if.

Check your progress

1. What will be the output of the following programs?
(a) int main()
 {
 printf(“Hi!”);
 if(-1)

 printf(“Bye”);
 return 0;
 }
 Output Hi!Bye

(b) int main()
 {
 printf(“Hi!”);
 if(!1)
 printf(“Bye”);
 return 0;
 }
 Output Hi!

(c) 	 float	x	=	199.9;

 if(x < 100)

 printf(“one ”);

 if(x < 200)

 printf(“two ”);

 if(x < 300)

 printf(“three ”);

 Output two three

(d) int main()

 {

 int i= -1;

 unsigned int j =1;

 if(i<j)

 printf(“Less”);

 else

 printf(“Greater”);

 return 0;

 }

 Output Greater

10.4.2 the conditional operator
Consider the situation in which there are two or more
alternatives for an expression. Such a situation arises
frequently in programming. For example, depending on
existing conditions, there may be two or more alternative
values evaluated from the expression. There may be two or
more alternative expressions, based on existing conditions, for
the value to be returned by a specific function. There may be
two or more alternative expressions, again based on existing
conditions, for the value of a specific argument in a function
call. The conditional operator of C is specifically tailored for
such situations. It has the following simple format:

expr1 ? expr2 : expr3

 It executes by first evaluating expr1, which is normally a
relational expression, and then evaluates either expr2, if the
first result was true, or expr3, if the first result was false.

Control Statements 215
 For instance, if the larger of two integer numbers has
to be printed, the program using conditional operator
will be

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE TWO NUMBERS: ”);

 scanf(“%d %d”, &a, &b);

 c=a>b?a:b;

 printf(“\n LARGER NUMBER IS %d”,c);

 return 0;

 }

 The following is a more refined version of the program.
Here, the conditional operator has to be nested.

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE TWO NUMBERS: ”);

 scanf(“%d %d”, &a, &b);

 c=a>b? a : b>a ? b :-1;

 if(c==-1)

 printf(“\n BOTH NUMBERS ARE EQUAL”);

 else

 printf(“\n LARGER NUMBER IS %d”,c);

 return 0;

 }

 For illustration, let us consider the program that will print
the largest among three integer numbers. If the program is
written using the nested if construct, it will be as follows:

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE THREE NUMBERS: ”);

 scanf(“%d %d %d”, &a, &b, &c);

 if(a>b)

 if(a>c)

 printf(“\n LARGEST NUMBER IS: %d”, a);

 else

 printf(“\n LARGEST NUMBER IS: %d”, c);

 else

 if(b>c)

 printf(“\n LARGEST NUMBER IS: %d”, b);

 else

 printf(“\n LARGEST NUMBER IS: %d”, c);

 return 0;

 }

 Now, the above program is converted into one that uses
the nested conditional operator.

#include <stdio.h>

int main()

{

 int a,b,c, max;

 printf(“\n ENTER THE THREE NUMBERS: ”);

 scanf(“%d %d %d”, &a, &b, &c);

 max=a>b ? a>c ? a : c: b>c? b : c;

 /* This statement is equivalent to
 max= a>b? (a>c? a: c):(b>c? b: c)*/

 printf(“\n LARGEST NUMBER IS: %d”, max);

 return 0;

}

 Similarly, the following program finds the largest number
among four integer numbers.

#include <stdio.h>

int main()

{

 int a, b, c, d, e;

 printf(“\n Enter the four numbers one by one \n”);

 scanf(“%d %d %d %d”, &a, &b, &c, &d);

 e=a>b?(a>c?(a>d?a:d):(c>d?c:d)):(b>c?(b>d?b:d):(c
>d?c:d));

 printf(“\nLargest number is %d\n”, e);

 return 0;

}

 The use of the conditional expression frequently shortens
the amount of source code that must be written. For
example, a lengthy function call which has several argument
expressions, one of which is conditional, needs to be written
only once.
 The conditional expression is not only a shorthand; it may
also result in less object code than would be generated by
other alternative means, e.g., by the use of one or more if
statements.
 Observe that parentheses are normally not needed around
the expressions that are separated by the characters ‘?’ and
because, as the operator precedence table shows, the ‘?:’
operator has a very low precedence, i.e., it is usually applied
last.

10.4.3 the switch Statement
When there are a number of else alternatives as above,
another way of representing this multi-way selection is by the
switch statement (shown in Fig. 10.6). The general format of
a switch statement is

216 Computer Fundamentals and Programming in C

 switch(expr)
 {

 case constant1: stmtList1;

 break;

 case constant2: stmtList2;

 break;

 case constant3: stmtList3;

 break;

 ………………………….

 ………………………….

 default: stmtListn;
 }

 When there is a switch statement, it evaluates the
expression expr and then looks for a matching case label.
If none is found, the default label is used. If no default is
found, the statement does nothing.
 The expanded flowchart of the switch statement is shown
in Fig. 10.7.

expr==constant1

expr==constant2

expr==constant3

T

T

T

F

F

F

StmtList1

StmtList2

StmtList3

StmtListndefault

Fig. 10.7 The C switch construct

 This construct evaluates the expression expr and matches
its evaluated value with the case constants and then the
statements in the corresponding statement list are executed.
Otherwise, if there is a default (which is optional), then
the program branches to its statement list when none of the
case constants match with the evaluated value of expr. The
case constants must be integer or character constants. The
expression must evaluate to an integral type. Single quotes
must be used around char constants specified with each
case.
 Once again, it is emphasized that the default case, if
present, will be selected if none of the prior cases are chosen.
a default case is not required but it is good programming
practice to include one.

 perhaps the biggest defect in the switch statement is that
cases do not break automatically after the execution of the
corresponding statement list for the case label. Once the
statement list under a case is executed, the flow of control
continues down, executing all the following cases until a
break statement is reached.
 The break statement must be used within each case if one
does not want the following cases to execute after one case
is selected. When the break statement is executed within a
switch, C executes the next statement outside the switch
construct. However, sometimes it may be desirable not to use
the break statement in a particular case.

ExamplEs

The following is an example where the control expression is a char
variable ch. Notice the use of single quotes around the character variable
in each case.

 11. switch(ch)
 {

 case ‘A’:

 printf(“You entered an A”);

 break;

 case ‘B’:

 printf(“You entered a B”);

 break;

 default:

 printf(“Illegal entry”);

 break;

 }

 Another example is depicted where the variable Choice is an int
variable. Note that single quotes are not used around the integer
values in each of the case statements.

 12. switch(Choice)

 {

 case 1:

 printf(“You entered menu choice #1”);

 break;

 case 2:

 printf(“You entered menu choice #2”);

 break;

 case 3:

 printf(“You entered menu choice #3”);

 break;

 default:

 printf(“You failed to enter a valid menu choice”);

 break;

 }

 13. switch(donationLevel)
 {

 case 1:

 printf(“You donated over Rs 1,000.”);

Control Statements 217
 case 2:

 printf(“You donated over Rs 500.”);

 case 3:

 printf(“You donated over Rs 250.”);

 case 4:

 printf(“You donated over Rs 100.”);

 break;

 default:

 printf(“Please be a little more generous.”);

 break;

 }

 The break statement causes flow of control to exit from the
entire switch block and resume at the next statement outside the
switch. Technically, the break statement is optional, although
most applications of the switch will use it. If a break statement
is omitted in any case of a switch statement, the compiler will not
issue an error message. The flow of control continues to the next
case label.

 The redundancy in the code can be minimized by placing the cases
next to each other, as in the following example. That is, several case
values can be associated with one group of statements.

 14. switch(number)

 {

 case 1:

 case 3:

 case 5:

 case 7:

 case 9:

 printf(“ %d is an odd number.”, number);

 break;

 case 2:

 case 4:

 case 6:

 case 8:

 printf(“ %d is an even number\n”, number);

 break;

 default:

 printf(“ %d is a value not between or including

1 and 9.”, number);

 break;

 }

note

 ∑ The switch statement enables you to choose one course
of action from a set of possible actions, based on the
result of an integer expression.

 ∑ The case labels can be in any order and must be
constants.

 ∑ No two case labels can have the same value.

 ∑ The default is optional and can be put anywhere in the
switch construct.

 ∑ The case constants must be integer or character con-
stants. The expression must evaluate to an integral
type.

 ∑ The break statement is optional. If a break statement is
omitted in any case of a switch statement, the program
flow is followed through the next case label.

 ∑ C89 specifies that a switch can have at least 257
case statements. C99 requires that at least 1023 case
statements be supported. The case cannot exist by itself,
outside of a switch.

Switch vs nested if
The switch differs from the else-if in that switch can test
only for equality, whereas the if conditional expression can
be a test of an expression involving any type of relational
operators and/or logical operators. a switch statement is
usually more efficient than nested ifs.
 The switch statement can always be replaced with a
series of else-if statements. One may only use switch and
case statements if an expression is required to check against
a finite amount of constant, integral, or character values. If
there are too many values and if any of the values depends
on variables, or if the values are not integers or characters,
one must use a series of else-if statements. even when
one can use switch efficiently, it is just a matter of personal
preference whether one decides to use a switch statement or
else-if statements.

ExamplEs

 15. Write a program using a switch statement to check whether a
number given by the user is odd or even.

 Solution:
 #include <stdio.h>

 int main()

 {

 int n;

 printf(“\n Enter the number:”);

 scanf(“%d”, &n);

 switch(n%2)

 {

 case 0: printf(“\n EVEN”);

218 Computer Fundamentals and Programming in C

 break;

 case 1: printf(“\n ODD”);

 break;

 }

 return 0;

 }

 16. Write a program to carry out the arithmetic operations addition,
subtraction, multiplication, and division between two variables.

 Solution:

 Use the switch construct to choose the operations.

 #include<stdio.h>

 int main()

 {

 int value1, value2;

 char operator;

 printf(“Type in your expression. \n”);

 scanf(“%d %c %d ”,&value1,&operator,&value2);

 switch(operator)

 {

 case ‘+’:

 printf(“%d \n”, value1 + value2);

 break;

 case ‘-’:

 printf(“%d \n”, value1 - value2);

 break;

 case ‘*’:

 printf(“%d \n”, value1 * value2);

 break;

 case ‘/’:

 if(value2 == 0)

 printf(“division by zero. \n”);

 else

 printf(“%d \n”, value1 / value2);

 break;

 default:

 printf(“Unknown Operator \n”);

 break;

 }

 return 0;

 }

 17. Write a program that checks whether a character entered by the user
is a vowel or not.

 Solution:

 #include <stdio.h>

 int main(void)

 {

 char c;

 printf(“Enter a character: “);

 scanf(“%c”, &c);

 switch(c)

 {

 case ‘a’: case ‘A’:

 case ‘e’: case ‘E’:

 case ‘i’: case ‘I’:

 case ‘o’: case ‘O’:

 case ‘u’: case ‘U’:

 printf(“%c is always a vowel!\n”, c);

 break;

 case ‘y’: case ‘Y’:

 printf(“%c is sometimes a vowel!\n”, c);

 break;

 default:

 printf(“%c is not a vowel!\n”, c);

 break;

 }

 return 0;

 }

Check your progress

 1. What will be printed by the code below?
	 float	x	=		123.4;

 if(x < 100)

 printf(“one ”);

 if(x < 200)

 printf(“two ”);

 if(x < 300)

 printf(“three ”);

 Output two three

 2. What will the following switch statement print?
 char c = ‘Y’; switch(c)

 {

 case ‘Y’: printf(“Yes/No”);

 case ‘N’: printf(“No/Yes”); break;

 default: printf(“Other”);

 }

 Output Yes/NoNo/Yes

Control Statements 219
 3. What will the following switch statement print?
 (a) char c = ‘y’;
 switch(c)

 {

 case ‘Y’: printf(“Yes/No”);

 break;

 case ‘N’: printf(“No/Yes”);

 break;

 default: printf(“Other”);

 }

 Output Other

 (b) int main()
 {

 int choice=3;

 switch(choice)

 {

 default:

 printf(“Default”);

 case 1: printf(“Choice1”);

 break;

 case 2: printf(“Choice2”);

 break;

 }

 return 0;

 }

 Output DefaultChoice1

10.5 IteratIon
a loop allows one to execute a statement or block of statements
repeatedly. There are mainly two types of iterations or loops
– unbounded iteration or unbounded loop and bounded
iteration or bounded loop. In bounded iteration, repetition is
implemented by constructs that allow a determinate number
of iterations. That is, bounded loops should be used when we
know, ahead of time, how many times we need to loop. C
provides for construct as bounded loop.
 There are also many occasions when one does not know,
ahead of time, how many iterations may be required. Such
occasions require unbounded loops. C provides two types of
unbounded loops: while loop and do...while loop. These
types of loops are also known as indeterminate or indefinite
loops.
 a loop can either be a pre-test loop or a post-test loop. In
a pre-test loop, the condition is checked before the beginning

of each iteration. If the test expression evaluates to true, the
statements associated with the pre-test loop construct are
executed and the process is repeated till the test expression
becomes false. On the other hand, if the test expression
evaluates to false, the statements associated with the construct
are skipped and the statement next to the loop is executed.
So for such a construct, the statements associated with the
construct may not be executed even once.
 In the post-test loop, the code is always executed once. at
the completion of the loop code, the test expression is tested.
If the test expression evaluates to true, the loop repeats; if the
expression is false the loop terminates. The flowcharts in Fig.
10.8 illustrate these loops.
 C has three loop constructs: while, for, and do-while.
The first two are pre-test loops and do-while is a post-test
loop.

TestExpr

T

F

An action or a
series of actions TestExpr

An action or a
series of actions

F

T

Pre-test loop Post-test loop

Fig. 10.8 Loop variations: pre-test and post-test loops

 In addition to the test expression, two other processes are
associated with almost all loops. These are initialization and
updating. The test expression always involves a variable,
which is known as a loop control variable. Initialization is
the statement that assigns the initial value to the loop control
variable. Now how can the test expression, which controls the
loop, be true for a while and then change to false? The answer
is that something must happen inside the loop so that the test
expression becomes false. The action that changes the test
expression from true to false, so that the loop is terminated,
is the updating statement. This involves updating the value
of the control variable. Updating is done in each iteration.
Comparison between a pre-test and post-test loop is given in
Table 10.7.
 a loop can be characterized as either event controlled
or counter controlled. In an event-controlled loop, an event
changes the test expression of the loop from true to false.
When the number of repetitions is known, then a counter-
controlled loop is used. Here, it is needed to initialize the

220 Computer Fundamentals and Programming in C

counter, test it, and update it. all the loops used in C are
either event controlled or counter controlled.

Table 10.7 Comparison between a pre-test and post-test loop

pre-test loop post-test loop

Initialization

Number of tests

Actions executed

Updating executed

Minimum iteration

once

n+1

n

n

not even once

once

n

n

n

at least once

10.5.1 while construct
while statement is a pre-test loop. It uses a test expression
to control the loop. Since it is a pre-test loop, it evaluates the
test expression before every iteration of the loop. The basic
syntax of the while statement is shown in Fig. 10.9.

No semicolon

No semicolon

Body of
the loop

while(TestExpr)

{

stmT

}

Fig. 10.9 While construct

stmT will be executed repeatedly till the value of TestExpr
becomes 0. stmT may be a single statement or multiple
statements terminated by a semicolon.
 To use the while statement, the test expression should
contain a loop control variable. The initialization of the
loop control variable has to be done before the loop starts
and updating must be included in the body of the loop. The
expanded form of the while statement is given in Fig. 10.10.

TestExpr

T

F

stmT

Intialization

Updating

Statement
block

Initialization

while (TestExpr)

{

stmT

...

...

Updating

Statement
block

}

Body of
the loop

Fig. 10.10 expanded syntax of while and its flowchart
representation

ExamplEs

 18. #include <stdio.h>

 int main()

 {

 int c;

 c=5; // Initialization

 while(c>0)

 { // Test Expression

 printf(“ \n %d”,c);

 c=c-1; // Updating

 }

 return 0;

 }

 This loop contains all the parts of a while loop. When executed in
a program, this loop will output

 5

 4

 3

 2

 1

 The operation of the looping construct in the above example is traced
step by step as follows. First, the loop initialization, with ‘c’ being
assigned the value of 5, is carried out. Then, the instructions within
the while construct are executed repetitively so long as the test
expression, c > 0, is true. The moment the test expression in the
while construct evaluates as false, the program is terminated.

 Now, when the while statement is encountered, the test expression,
similar to an if-test expression, is evaluated. In this case, since
c is 5 and c > 0, the test expression evaluates to true. Hence
the statement body of the loop is executed sequentially. A printf
statement writes the current value of c on the screen. After this, c
is updated by subtracting 1. Thus, c now has the value of 4. On
reaching the end of the loop, the loop condition is checked again. If it
is true, which it is because 4 > 0, the loop is executed once again. In
a similar way, the loop is executed five times.

 At the end of the fifth iteration, c has the value of 0 for which the
condition will fail since 0 is not greater than 0. Thus the term loop
being applied to this repeating control structure can be understood
since all statements inside the while loop construct will be executed
several times until the condition has failed.

 19. Program to print a horizontal row of 50 asterisks

 The program is written using while loop. Here are three versions of
same program. They differ only in the use of test expression and the
initialization of the control variable.

Control Statements 221

Version 1 Version 2

#include <stdio.h>

int main()

{

 int times = 0;

 while (times < 50)

 {

 printf(“*”);

 times++;

 }

 return 0;

}

#include <stdio.h>

int main()

{

 int times = 1;

 while (times <= 50)

 {

 printf(“*”);

 times++;

 }

 return 0;

}

Version 3

#include <stdio.h>

int main()

{

 int times = 50;

 while (times > 0)

 {

 printf(“*”);

 times— —;

 }

 return 0;

}

 Notice the various ways of accomplishing the same task. Run the
above three versions and see the output. If a loop is to be executed
for a specified number of times and the counter variable is used
within the loop, the loop may be written as given in version 3 using
countdown instead of count up. This is called loop inversion.

 The following program takes age as input from user and quits when
a –1 is entered:

 int main()

 {

 int count = 0;

 int age;

 printf(“\n Please enter an age(enter –1 to quit)”);

 scanf(“%d”,&age);

 while(age != –1)

 {

 count++;

 printf(“\n Age # %d is %d”,count, age);

 printf(“\n Enter an age(enter –1 to quit)”);

 scanf(“%d”,&age);

 }

 return 0;

 }

 20. Consider a general while loop that accepts input from the keyboard
and counts the positive integers until a negative number is entered.

 #include <stdio.h>

 int main()

 {

 int x = 1;

 int count = 0;

 printf(“\n Enter the Number:”);

 while(x >= 0)

 {

 scanf(“%d”,&x);

 count += 1;

 }

 return 0;

 }

 The following are some observations on the above while loop.

∑ Variables have been declared and initialized at the same time.

∑ The loop condition logically says, ‘While x is a positive number,
repeat.’

∑ The count variable keeps track of how many numbers are
entered by the user.

∑ This can be a useful loop when accepting input from the keyboard
for a certain number of times.

 21. Consider a more extensive example of a program that asks the user
to enter some numbers and then find their average.

 The program that would be written would either ask the user in
advance how many numbers will be supplied or ask the user to enter
a special value after the last number is entered, e.g., negative for test
scores. This special value is known as sentinel value.

 The algorithm of the C program using the first approach is given as
follows:

 Algorithm

 1. START

 2. PRINT “HOW MANY NUMBERS:”

 3. INPUT N

 4. S = 0

 5. C=1

222 Computer Fundamentals and Programming in C

 6. PRINT “ENTER THE NUMBER”

 7. INPUT A

 8. S ̈ S + A

 9. C ̈ C + 1

 10. IF C<=N THEN GOTO STEP 6

 11. AVG ̈ S/N

 12. PRINT “AVERAGE IS” AVG

 13. STOP

 C Program
#include <stdio.h>

int main()

{

 int n, a, c=1,s=0;

	 float	avg;

 printf(“\n HOW MANY NUMBERS?”);

 scanf(“%d”, &n);

 while(c<=n)

 {

 printf(“\n Enter the number: ”);

 scanf(“%d”, &a);

 s+=a;

 c++;

 }

	 avg=(float)s/n;

 printf(“ \n AVERAGE IS %f ”, avg);

 return 0;

}

 In this example, typecasting is needed as both s and n are integers
and avg is a float.Otherwise the program evaluates avg as an
integer.

 A better way to implement the program in Example 21 is given as
follows.

 22. Algorithm

 1. START

 2. S ̈ 0

 3. N ̈ 0

 4. ANS ̈ ‘Y’

 5. PRINT “ENTER THE NUMBER”

 6. INPUT A

 7. S ̈ S + A

 8. N ̈ N + 1

 9. PRINT “WILL U ADD MORE (Y/N)?”

 10. INPUT ANS

 11. IF ANS=‘Y’ THEN GOTO STEP 5

 12. AVG ̈ S/N

 13. PRINT “AVERAGE IS”, AVG

 14. STOP

 C Program
#include <stdio.h>

int main()

{

 int n=0, a, s=0;

	 float	avg;

 char ans=‘y’;

 while(ans == ‘y’ || ans == ‘Y’)

 {

 printf(“\n Enter the number: ”);

 scanf(“%d”, &a);

 s+=a;

 n++;

 printf(“\n will U add more(y/ n)?”);

 scanf(“%c”,&ans);

 }

	 avg=(float)s/n;

 printf(“ \n AVERAGE IS %f”, avg);

 return 0;

}

 23. Consider the two versions of the same program that prints the sum
of digits of a number.

 Version 1
 #include <stdio.h>
 int main()
 {
 int n, s=0, r;
 printf(“Enter the Number”);
 scanf(“%d”, &n);
 while(n>0)
 {
 r=n%10;
 s=s+r;
 n=n/10;
 }
 printf(“\nSum of digits %d”, s);
 return 0;
 }

 Version 2
 #include <stdio.h>
 int main()
 {
 int n, s=0, r;

Control Statements 223

 printf(“Enter the Number”);
 scanf(“%d”, &n);
 while(n)
 {
 r=n%10;
 s=s+r;
 n=n/10;
 }
 printf(“\nSum of digits %d”, s);
 return 0;
 }

 Notice the conditions specified in the two versions—
in version 1 while(n>0), in version 2 while(n). When
an expression or variable is used instead of a relational
expression, if the result of the expression or the value of
the variable is non-zero (including negative), the statements
within the while loop will be executed. Both versions will
run fine.
 Care must be taken in using expressions in a while loop. It
should be noted that that there is no semicolon after the right
parenthesis ending the expression that ‘while’ is checking. If
there were, it would mean that the program would repeat the
null statement until the condition becomes false.
 Consider the use of the scanf() function in a loop.
Suppose one needs to read and process a list of numbers from
the keyboard. The loop ends when eOF is reached (when
<Ctrl+d> in unix or <Ctrl+z> in DOS is pressed). The loop
logic is shown in the following example:

r=scanf(“%d”,&a);
while(r!=EOF)
{
 ——————-
 ——————-
 r=scanf(“%d”,&a);
}
or
while((r=scanf(“%d”,&a))!=EOF)
{
 —————-
 —————-
}

Developing infinite loop using while construct Consider
the following programs:

#include <stdio.h>
int main()
{
 int c=5;
 while(c)
 {
 printf(“\t %d”,c);
 c–-;

 }
 return 0;
}

Here, the output will be
54321

 Now, the above program is rewritten to print the odd
numbers between 5 and 0.

#include <stdio.h>
int main()
{
 int c=5;
 while(c)
 {
 printf(“\t %d”,c);
 c=c–2;
 }
 return 0;
}

It will print
5 3 1 –1 –3 –5 ...

That is, it leads to an infinite loop. This is so because after
printing 1, the value of ‘c’ will be -1 and while(c) evaluates
true as the value of ‘ c’ is non-zero. as a result, the program
will print -1, -3, -5, and so on.
 An infinite loop can also be built using the following
construct:

 while(1)

 {

 ...

 ...

 }

 The while(1) loop will iterate forever because the while
will exit only when the expression 1 is 0. The only way to exit
this loop is through a break statement.
 It should be noted that any non-zero value including a
negative value may be used instead of 1 in the condition
expression of the while construct.

Some do’s and don’ts for testing floating point
‘equality’

Representation error Consider the following program
fragment that uses C’s floating-point arithmetic.

 double hundred = 100.0;

 double number = 95.0;

 if(number == number / hundred * hundred)

 printf(“Equal\n”);

 else

 printf(“Not equal\n”);

224 Computer Fundamentals and Programming in C

 On some machines, the above fragment prints ‘Not equal’,
because 95.0/100.0 cannot be accurately represented in
binary. It might be 0.94999999999, 0.9500000001, or some
other value, and when multiplied by 100 it does not exactly
equal 95.0.

Compiler optimizations In the case of Borland compilers
used on pCs, the following program fragment, identical to
the above except that the variables have been replaced with
their constant values, prints ‘Equal’.

 if(95.0 == 95.0 / 100.0 * 100.0)

 printf(“Equal\n”);

 else

 printf(“Not equal\n”);

 The best guess is that the compiler ‘optimizes’ the constant
division and multiplication, causing the statement to appear
as “95.0 == 95.0’, which is trivially true.

Testing for floating-point ‘equality’ as the preceding
examples show, floating-point numbers cannot be compared
for exact equality. Here is a second example. Using a
floating-point number as an ‘exact’ terminating condition in
a loop is not a good idea. Since floating-point numbers are
approximations, a test for exact equality will often be wrong.
an example of a program code is given as follows:

	 float	x;

 x = 0.0;

 while(x != 1.1)

 {

 x = x + 0.1;

 printf(“1.1 minus %f equals %.20g\n”, x, 1.1 - x);

 }

 The above loop never terminates on many computers,
because 0.1 cannot be accurately represented using binary
numbers. at each iteration, the error increases and the sum
of eleven ‘tenth’ never becomes 1.1. Do not test floating-
point numbers for exact equality, especially in loops. Since
floating-point numbers are approximations, the correct way to
make the test is to see if the two numbers are ‘approximately
equal’.
 The usual way to test for approximate equality is to
subtract the two floating-point numbers and compare the
absolute value of the difference against a very small number,
epsilon. Such an approach is shown in the following program
code.

#define	EPSILON	1.0e-5			/*	a	very	small	value	*/

double hundred=100.0;

double number=95.0;

double n1, n2;

n1 = 95.0;

n2 = number / hundred * hundred;

if(fabs(n1-n2) < EPSILON)

 printf(“Equal\n”);

else

 printf(“Not equal\n”);

fabs() is the C library function that returns the floating-point
absolute value of its argument.
 epsilon is chosen by the programmer to be small enough
so that the two numbers can be considered ‘equal’. The
larger the numbers being compared, the larger will be the
value of epsilon. For example, if the floating-point numbers
are in the range 1.0e100, epsilon will probably be closer to
1.0e95, which is still a very big number but small compared
to 1.0e100. (1.0e95 is ten-thousandth of 1.0e100.) If two
numbers of magnitudes 1.0e100 and 1.0e95 differ by only
0.0e05, they may be close enough to be considered equal.
 Note that just as adding a very small floating-point value
to a very large floating-point value may not change the
latter, subtracting floating-point numbers of widely differing
magnitudes may have no effect. If the two numbers differ
in magnitude by more than the precision of the data type
used, the addition or the subtraction will not affect the larger
number. For the float	data type on most microcomputers, the
precision is about six to seven decimal digits. an example of
a program code follows:

float	big,	small,	sum;

big = 1.0e20;

small = 1.0;

sum = big - small;

if(sum == big)

 printf(“Equal\n”); /* this prints */

else

 printf(“Not Equal\n”);

 On executing the program code, the computer would print
‘Equal’, as observed earlier.

10.5.2 for construct
a loop formed by using the for statement is generally called
a determinate or definite loop because the programmer
knows exactly how many times it will repeat. The number of
repetitions can be determined mathematically by manually
checking the logic of the loop. The general form of the for
statement is as follows:

 for(initialization; TestExpr; updating)
 stmT;

Control Statements 225
Initialization This part of the loop is the first to be executed.
The statement(s) of this part are executed only once. This
statement involves a loop control variable.

TestExpr TestExpr represents a test expression that must be
true for the loop to continue execution.

 stmT stmT is a single or block of statements.

Updating The statements contained here are executed
every time through the loop before the loop condition is
tested. This statement also involves a loop control variable.

 C allows the updating of a loop control variable to be
written inside the body of the loop. an example of a for loop
is shown as follows:

int main(void)

{

 int i;

 for(i = 0; i < 10; i++)

 printf(“%d”,i);

 return 0’

}

The above for loop operates as follows:

 1. Set i equal to 0.

 2. If i is less than 10, execute the body of the loop, that
is, ‘printf’ and go to step 3; otherwise, go to the next
instruction after the for loop and continue.

 3. Increment i.
 4. Go to step 2.

 The following figure explains the three expressions in the
for loop used in the above program that are separated by
semicolons and that control the operation of the loop.

This expression
executes once when

the loop starts.

This expression
executes at the end
of every loop cycle

(iteration).

 for(i = 0; i < 10; i++)

This expression executes at the beginning of every loop
cycle (iteration). If it evaluates to true, the loop continues
(i.e. the statement printf(“%d”,i); will be executed), and if it

is false, the loop ends.

This loop would produce the following output:
0123456789

 Note that ‘running the loop’ from 0 to 9 executes the body
of the loop 10 times. The flowchart of the for construct is
given in Fig. 10.11.

TestExpr

T

F

stmT

Initialization

Updating

Fig. 10.11 for construct flowchart

 It is to be noted that all four parts of the previous loops
are present in the for loop, although they are compressed
into one line. In general, a for loop can be written as an
equivalent while loop and vice versa.

The equivalence of bounded and unbounded
loops
We should now be able to understand that the for and while
control flow statements are both closely related. To fully
understand this, however, one needs to interpret that the three
‘pieces’ of the for construct, are not always initialization,
condition, and modification.
 In general, a for loop can be written as an equivalent
while loop and vice versa. The for loop

for(initialization; TestExpr; updating)

{

 stmT;

}

is equivalent to the following while construct:
initialization;

while (TestExpr)

{

 stmT;

 updating;

}

The following example illustrates a for loop that prints 1, 2,
3, 4, 5.
 In both cases, TestExpr is expected to produce a Boolean
value, either true or false, as the truth value is needed to
determine whether the loop should keep going on.
Let us illustrate the similarities between ‘while’ and ‘for’
loop constructs using an example which prints 1, 2, 3, 4, and

226 Computer Fundamentals and Programming in C

5. The algorithm for the above problem is given below:

 1. START

 2. C ¨ 1

 3. PRINT C

 4. C ¨ C+1

 5. IF C<=5 THEN GO TO STEP 3

 6. STOP

 The C program corresponding to the problem can use
either while or for construct. The two versions, one using
for construct and another using while construct, and their
equivalence are shown below:

#include <stdio.h>

int main(void)

{

int c;

 for(c=1; c<=5; c++)

 {

 printf(“%d”, c);

 }

 return 0;

}

#include <stdio.h>

int main(void)

{

 int c;

 c=1;

 while(c<=5)

 {

 printf(“%d”, c);

 c++;

 }

 return 0;

}

Initialization
TestExpr

Updating

 To test the understanding of the while and for loops,
conversion of one to the other would be implemented.
Suppose, a while loop, given in the following illustration,
has to be converted to a well-constructed for loop.

	 float	C	=	2.0;

 char chr = ‘F’;

 while(C > 0.01) {

 printf(“%f \n”,C);

 C /= 10;

 }

 To make this an easy conversion, note the four parts of a
loop.

 float	C	=	2.0;		 	 	 	 /*	initialization	*/

 char chr = ‘F’;

 while(C > 0.01) { /* test expression */

 printf(“%f \n”,C); /* body of the loop */

 C /= 10; /* updating */

 }

 Given such information, the transition to the for loop is
made. The for loop is

	 float	C;

 char chr = ‘F’;

 for(C = 2.0; C > 0.01; C /= 10)

 {

 printf(“%f \n”,C);

 }

 There was a small trick in this case. even though two
variables were declared and initialized, only one was used
in the while loop. Therefore, only that specific variable, C, is
initialized in the for loop.
 Now, consider the conversion of the following for loop to
its respective while loop.

int index;

int Total;

for(Total = 0, index = 0; index < 10; index += 1)

{

 if(index > 5)

 Total += index;

 else if(index < 5)

 Total -= index;

}

 again, noting the four parts of the loop, the conversion is
given as follows:

int index = 0;

int Total = 0;

while(index < 10)

{

 if(index > 5) Total += index;

 else if(index < 5)

 Total –= index;

 index += 1;

}

 It must be emphasized that in a for construct, the condition
is tested before the statements contained in body and updating
are executed; it is possible that the body of the loop is never
executed or tested.
 The sequence of events that generate the iteration using
the for loop are as follows.

 1. evaluate the initialization expression.
 2. If the value of the test expression is false, terminate the

loop, which means go to step 6; otherwise go to step 3.
 3. execute the statement or blocks of statements.
 4. evaluate the update expression.
 5. Go to step 2.
 6. execute the next statement.
an execution cycle for a for construct is drawn to help
understand the concept.

 1

2

4

 for(initialization; TestExpr; updating)

 stmT; 3

Control Statements 227
 Here is a program that adds a sequence of integers. assume
that the first integer read with scanf() specifies the number
of input values to be summed. The program should read only
one value each time scanf() is executed. a typical input
sequence might be

5 102 125 352 54 9

where 5 indicates that the subsequent five values are to be
summed.

21 4

3

F T

F = false
T = trueNext

Instruction

#include <stdio.h>

int main()

{

 int sum = 0, number, value, i;

 printf(“Enter no. of values to be processed: \n”);

 scanf(“%d”, &number);

 for(i = 1; i <= number; i++)

 {

 printf(“Enter a value: \n”);

 scanf(“%d”, &value);

 sum += value;

 }

 printf(“Sum of %d values is: %d\n”, number, sum);

 return 0;

 }

 In general, how many times does the body of a for() loop
execute?
 (a) The following loop is executed (n-m)+1 times.

 for(i=m; i<=n; i++)
 ...

 (b) The following loop is executed (n-m) times.
 for(i=m; i<n; i++)
 ...

 (c) The following loop is executed (n-m)/x times.
 for(i=m; i<n; i+=x)
 ...

 Considering the above, the previous program may be
rewritten as follows:

#include <stdio.h>

int main()

{

 int sum = 0, number, value, i;

 printf(“Enter no. of values to be processed: \n”);

 scanf(“%d”, &number);

 for(i = 0; i < number; i++)

 {

 printf(“Enter a value: \n”);

 scanf(“%d”, &value);

 sum += value;

 }

 printf(“Sum of %d values is: %d\n”, number, sum);

 return 0;

 }

 Now, let us calculate the factorial of a number given by
the user. The factorial of a positive integer n, written as n!, is
equal to the product of the positive integers from 1 to n. The
following is an example program that calculates the factorial
of a number.

int main()

{

 int n, c;

 long int f=1;

 printf(“\n Enter the number: ”);

 scanf(“%d”,&n);

 for(c=1;c<=n;++c)

 f*=c;

 printf(“\n Factorial is %ld”,f);

 return 0;

}

 It can be implemented in another way too. Here, the
variable ‘c’ is not required. The alternate program is shown
as follows:

int main()

{

 int n;

 long int f=1;

 printf(“\n Enter the number: ”);

 scanf(“%d”,&n);

 for(;n>0;n–-)

 f*=n;

 printf(“\n Factorial is %ld”,f);

 return 0;

}

 The following program inputs a series of ten integer
numbers and determines and prints the largest of them.

#include <stdio.h>

228 Computer Fundamentals and Programming in C

int main()

{

 int counter = 2, number, max;

 printf(“Enter an integer number\n”);

 scanf(“%d”, &max);

 while(counter <= 10)

 {

 printf(“Enter an integer number\n”);

 scanf(“%d”, &number);

 if(number > max)

 max = number;

 counter++;

 }

 printf(“The maximum number is %d\n”, max);

 return 0;

}

 There must be no semicolon after a for statement or it will
lead to a different output. Consider the following program.

#include <stdio.h>

int main()

{

 int c;

 for(c=1; c<=5; c++);

 printf(“%d”, c);

 return 0;

}

 a semicolon before the printf statement implies that the
loop only increments the value of c. No executable statement
is included in this for loop, i.e., there is no statement in the
statement block. The output will be 6, as the loop continues
up to c=5. When the value of c is 6, the loop terminates as the
test expression evaluates false.

Some variations of for loop
From a syntactic standpoint, all the three expressions
initialization, test expression, and updating need
not be present in a for statement, though semicolon must
be present. However, the criteria and consequences of an
omission should be clearly understood.
 Any initialization statement can be used in the first part
of the for loop. Multiple initializations should be separated
with a comma operator.

ExamplE

 24. Print the sum of the series 1+2+3+4+... up to n terms.
Program 1

 #include <stdio.h>

 int main()

 {

 int c, s=0, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(c=1; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 Program 2 Equivalent to Program 1

 #include <stdio.h>

 int main()

 {

 int c=1, s, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(s=0; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 Program 3
 #include <stdio.h>

 int main()

 {

 int c, s, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(c=1, s=0; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 ∑ If initialization is not required or is done before the
for loop, the initialization statement can be skipped by
giving only a semicolon. This is illustrated using the
previous program.

 #include <stdio.h>
 int main()
 {
 int c=1, s=0, n;
 printf(“\n Enter the No. of terms”);
 scanf(“%d”, &n);
 for(; c<=n; c++)
 s+=c;
 printf(“\n Sum is %d”, s);
 return 0;
 }

Control Statements 229
 ∑ Multiple conditions in the test expression must be

connected using the logical operator && or ||.
 ∑ In the third expression of the for statement, the increment

or decrement statement may contain any expression
which involves unary and/or assignment operator. It is
not true that increment or decrement statements must
be used with ++ or – – only. This is illustrated in the
following example where the sum of digits of a given
number has to be found.

ExamplE
 25. #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;n/=10)

 {

 r=n%10;

 s=s+r;

 }

 Printf(“\n Sum of digits %d”, s);

 return 0;

 }

 ∑ If the increment or decrement is done within the
statement block, then the third part can be skipped. The
following is the equivalent variation of the program in
example 25 (sum of digits of a number).

 #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;)

 {

 r=n%10;

 s=s+r;

 n=n/10;

 }

 printf(“Sum of digits %d”, s);

 return 0;

 }

 ∑ Multiple statements can be written in the third part of
the for statement with the help of the comma operator.
The preceding program can be rewritten as follows:

 #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;s+=r, n=n/10)

 r=n%10;

 printf(“\n Sum of digits %d”, s);

 return 0;

 }

 It is to be noted that comma operator associates from the
left to right. The code

 for(s=0,i=1;i<=n;++i)

 s+=i;

 can be written as

 for(s=0,i=1;i<=n; s+=i, ++i);

 but not as

 for(s=0,i=1;i<=n; ++i, s+=i);

 Because, in the comma expression ++i, s+=i, the
expression ++i is evaluated first and this will cause s to
have a different value.

 ∑ If ++ or – – operators are used in the increment or
decrement part of the for loop, pre-increment or post-
increment and post-decrement or pre-decrement has the
same effect. So, both the following codes yield the same
output 1, 2, 3, 4, 5.

 Version 1
 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5; c++)

 printf(“%d”, c);

 return 0;

 }

 Version 2
 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5; ++c)

 printf(“%d”, c);

 return 0;

 }

230 Computer Fundamentals and Programming in C

 But the post- and pre-operations play a different role when
they are specified in the test_expression.

#include <stdio.h>

int main()

{

 int c;

 for(c=0; c++; c++)

 printf(“%d”, c);

 return 0;

}

Output prints nothing as c has been initialized as zero and
the post-increment of c makes a difference. The condition
is evaluated first, followed by increment. The condition
is evaluated false as c contains zero at that moment. The
printf() statement will not be executed as the condition
becomes false.

#include <stdio.h>

int main()

{

 int c;

 for(c=0;++c; ++c)

 printf(“%d”, c);

return 0;

}

Output This is an infinite loop. As the first pre-increment
takes place, it results in c=1. Then the test expression
evaluates to 1 as c contains a non-zero value. Thus the loop
continues.
 ∑ It is possible to have a variable increase by a value other

than one. For example, the following loop would iterate
four times with the variable num taking on the values 1,
4, 7, and 10. The step expression adds 3 to the value of
num on each iteration.

 for(num = 1; num <= 10; num = num + 3)

 It is a common error for students to use the following
for statement, which causes a compilation error:

 for(num = 1; num <= 9 ; num + 3)

 Consider the following program where the increment
operator is used at a place other than the third part of the
for statement.

 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5;)

 printf(“%d”, c++);

 return 0;

 }

 Output 12345

 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5;)

 printf(“%d”, ++c);

 return 0;

 }

 Output 23456

 ∑ any or all of the three expressions in a for loop can be
omitted, but the two semicolons must remain. When all
three expressions in a for loop are omitted, it acts as a
infinite loop. For example,

 for(;;)

 {

 printf(“hello\n”);

 }

 This loop will run forever. although there are some
programming tasks, such as operating system command
processors, which require an infinite loop, most ‘infinite
loops’ are really just loops with special termination
requirements.

 ∑ Often, the variable that controls a for loop is needed only
for the purposes of the loop and is not used elsewhere.
When this is the case, it is possible to declare the
variable inside the initialization portion of the for loop
in modern compiler. Some compilers, however, do not.
You will need to check this feature in the environment
you are using. Consider the following program which
prints the sum of the following series

 #include <stdio.h>

 int main()

 {

 int s=0, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(int c=1; c<=n; c++)
Here, c is declared
inside the for loop.

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 The variable c is only known throughout the execution
of the for loop (it’s called a local variable) and cannot

Control Statements 231
be accessed outside the loop. The aNSI/ISO Standard
restricts the variable to the scope of the for loop.

note

 ∑ If the test expression is omitted, however, it will be
assumed to have a permanent value of true; thus the
loop will continue indefinitely unless it is terminated by
some other means, such as a break or a return statement
(see Section 10.8).

 ∑ Multiple initializations should be separated with a comma
operator.

 ∑ Multiple relational expressions in the test expression
must be connected using logical operators && or ||.

 ∑ A floating-point variable should not be used as the control
variable because floating-point values are sometimes
approximated and may result in imprecise counter values
and inaccurate test for termination.

Check your progress

 1. Is there any difference between the following for
statements? explain.

 (a) for(x = 1; x < 100; x++)

 (b) for(x = 1; x < 100; ++x)

 (c) for(x = 1; x < 100; x = x + 1)

 (d) for(x = 1; x < 100; x += 1)

 Output There is no difference between these for

statements. This is because x is incremented in the
same manner at the end of the for structure. One may,
equivalently, use the while structure to represent these
for statements.

 x = 1;

 while(x < 100)

 {

 ...

 ++x; /* This can be replaced with x++ or x += 1 or*/

 /* x = x + 1 */

 }

 2. What would be the output from the given program?
 int main()

 {

 int i=9;

 for(i––; i––; i––)

 printf(“%d”, i);

 return 0;

 }

 Output 7 5 3 1

 3. What would be the output from the given program?

 int main()

 {

 int i;

 for(i=5; ++i; i–=3)

 printf(“%d”, i);

 return 0;

 }

 Output 6 4 2

 4. What would be the output from the given program?
 int main()

 {

 for(;printf(“C”););

 return 0;

 }

 Output This is an infinite loop and it will repeatedly
print ‘C’.

 5. examine the given program and predict the output.
 int main()

 {

 int i;

 for(i=5; --i;)

 printf(“%d”,i);

 return 0;

 }

 Output 4321

 6. What output is obtained from the given program?
 int main()

 {

 int i=3;

 for(i--; i<7; i=7)

 printf(“%d”,i++);

 return 0;

 }

 Output 2

 7. read the program code and guess the output.
 int main()

 {

 int i;

 for(i=–10; !i; i++);

 printf(“%d”,–i);

 return 0;

 }

 Output No output

232 Computer Fundamentals and Programming in C

10.5.3 do-while construct
do while construct is another construct that is very closely
related to the while construct.
 The do keyword is placed on a line of code at the top of the
loop. a block of statements follows it with a test expression
after the keyword while, at the bottom of the loop. Figure
10.12 illustrates this. The form of this loop construct is as
follows:

do

{

 stmT; /* body of statements would be placed here*/

}while(TestExpr);

 The test expression TestExpr must evaluate to ‘true’ for
the do-while loop to iterate after the first time. StmT may be a
single statement or a block of statements. The main difference
between the while and do-while loop is the placement of the
test expression. Since the do-while has the test expression at
the end of the loop, it is guaranteed that the body of the loop
will execute at least once.
 In the while loop, it is possible to come upon a condition
that is not satisfied and hence does not enter the loop. What
are the reasons of placing the condition at the end of the loop
in terms of coding? They are few but important. The order of
the statements may have to change to reflect the effect of the
condition being at the end.
 Consider the simple while loop illustrated in example 20.
It can be rewritten as a do-while loop as follows:

 #include <stdio.h>

 int main()

 {

 int x = 1;

 int count = 0;

 do {

 scanf(“%d”, &x);

 if(x >= 0)

 count += 1;

 } while(x >= 0);

 return 0;

 }

Notice that an extra if statement was added to the loop.

TestExpr

T

F

stmT

Initialization

Updating

Fig. 10.12 The C do-while loop

Explanation: Consider the case when the first number entered
is a negative number. Without the if statement, the count
would be 1. Beware of the ramifications of allowing at least
one execution of the loop when using the do-while loop. The
following examples will help understand this loop.

#include <stdio.h>

int main()

{

 int c=5;

 while(c<5)

 {

 printf(“ Hello”);

 c++;

 }

 return 0;

}

Output The program will print nothing. as the condition
c<5 fails, neither the printf() statement nor C++ will be
executed.

#include <stdio.h>

int main()

{

 int c=5;

 do

 {

 printf(“Hello”);

 c++;

 } while(c<5);

 return 0;

}

Output Hello

 Here, the statements within the loop are executed at least
once.
 Suppose, one wants to write a code that reads in a positive
integer only. The following code will serve the purpose.

do

{

 printf(“\n INPUT A POSITIVE INTEGER: ”);

 scanf(“%d”,&n);

 if(error=(n<=0))

 printf(“\n ERROR Do it again\n”);

}while(error);

while and do-while loops
Like a while loop, a do-while loop is considered to be an
indeterminate or unbound loop. The important difference
between the while and do-while loops lies with the question

Control Statements 233
‘When is the loop controlling test expression checked?’.
a do-while loop is considered to be a post-test loop, since
the test expression is located after the body of the loop and
after the while keyword. a do-while loop is guaranteed to
execute at least once even if the test expression evaluates to
false.
 With a while statement, the Boolean expression is
checked before the loop body is executed. If the test
expression evaluates to false, the body is not executed
at all.

note
 ∑ With a do-while statement, the body of the loop is

executed first and the test expression is checked after
the loop body is executed. Thus, the do-while statement
always executes the loop body at least once.

ExamplE

 26. Euler’s number e is used as the base of natural logarithms. It may be
approximated using the following formula:

1 1 1 1 1 1...
0! 1! 2! 3! (1)! !

e
n n

= + + + + + +
-

 where n is sufficiently large. Write a program that approximates e
using a loop that terminates when the difference between the two
successive values of e is less than 0.0000001.

 #include <stdio.h>

 int main()

 {

 double term = 1.0;

 double sum = 1.0;

 int n = 0;

 while (term >= 0.0000001)

 {

 n++;

 term = term/n;

 sum = sum + term;

 }

 printf(“\n Approximate value of e is: %lf ”,sum);

 return 0;

 }

Check your progress

 1. How many times will the following while loop repeat,
i.e., how many x’s are printed?

 int i = 5; while(i–– > 0) printf(“x”);

 Output 5

 2. How many x’s are printed by the following code?
 int i = 5;

 while(i-- > 0)

 printf(“x”);

 printf(“x”);

 Output 6

 3. What does the following do-while loop print?
 int i = 0; char c = ‘0’;

 do {

 putchar(c + i);

 ++i;

 } while(i < 5);

 Output 01234

 4. int main()
 {

	 	 float	s=1.0;

 int a=4;

 while(a<=10)

 {

 s = a*1.2;

 printf(“%f”,s);

 }

 return 0;

 }

 Output It never ends because ‘a’ is always 4, an infinite
loop!

 5. What will be the output of the following program?
	 	 #	define	infiniteloop	while(1)

 int main()

 {

	 	 	 infiniteloop;

 printf(“DONE”);

 return 0;

 }

 Output No output
 Explanation: The infiniteloop	 in main ends with ‘;’.

So the loop will not reach an end; and the ‘no output’ too
will not print.

10.6 WHIcH loop SHould be uSed?
a question that must be asked is why are there while,
do-while, and for loops? Is it a matter of style?
 The while and for constructs are pre-test loops and the
do-while construct is post-test loop. The while and do-while
loops are event-controlled whereas the for loop is counter-
controlled. The for loop is appropriate when one knows in
advance how many times the loop will be executed. The while
and do-while loops are used when it is not known in advance
when the loop should terminate; the while loop is used when
one may not want to execute the loop body even once, and
the do-while loop when one wants to execute the loop body

234 Computer Fundamentals and Programming in C

at least once. These criteria are somewhat arbitrary and there
is no hard-and-fast rule regarding which type of loop should
be used.

note

When using loops, always ask the following:
 ∑ Under what condition(s) will the loop body be executed?
 ∑ Under what condition(s) will the loop terminate?
 ∑ What is the value of the loop control variable(s) when the

loop halts?

Some methods of controlling repetition in a program will be
discussed in the following subsections. There are three ways
of doing this: sentinel values, prime reads, and counters.

10.6.1 using Sentinel Values
a sentinel value is not a legitimate data value for a particular
problem, but is of a proper type, that is used to check for a
‘stopping’ value. It is like a flag or an indicator. There may
be times when users of the program must be allowed to enter
as much information as they want to about something. When
the user has finished entering all the information, the user can
enter a sentinel value that would let the program know that
the user has finished with inputting information.

ExamplEs

 27. [–1] may be used as a sentinel value.
 int main()
 {
 int age;
 printf(“\n Enter an age(–1 to stop):”);
 scanf(“%d”,&age);

 while(age != –1)

 { . . .

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);

 }

 return 0;

 }

 28. [-99] may also be used as a sentinel value. Read a list of text
scores and calculate their average. An input of -99 for a score
denotes end-of-data for the user.

 #include <stdio.h>

 int main()

 {

 int n, sum, score;

	 	 float	average;

 sum = 0;

 n = 0;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 while(score != –99)

 {

 sum += score;

 n++;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”,&score);

 }

	 	 average	=	(float)sum/	n;

 printf(“\n The average is %f”, average);

 return 0;

 }

10.6.2 using prime read
another method of controlling repetition is to use a prime
read. a prime read and sentinel value often go hand in hand.
a prime read is a data input before the loop statement that
allows the first actual data value to be entered so that it can
be checked in the loop statement. The variable that is inputted
by the user and being tested by the expression in the loop is
the prime read; the value of the prime read is what one calls a
sentinel value [see Section 10.6.1].

ExamplEs

 29. [age] is used as a prime read.

 #include <stdio.h>

 int main()

 {

 int age;

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);

 while(age != –1)

 {

 .

 .

 .

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);

 }

 .

 .

 .

 return 0;

 }

Control Statements 235
 30. [score] is used as a prime read. Read a list of text scores and

calculate their average. An input of -99 for a score denotes end-of-
data for the user.

 #include <stdio.h>

 int main()

 {

 int n, sum, score;

	 	 float	average;

 sum = 0;

 n = 0;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 while(score != –99)

 {

 sum += score;

 n++;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 }

	 	 average	=	(float)sum	/	n;

 printf(“\n The average is %f”, average);

 return 0;

 }

 eOF can also be used in prime read. Consider the following
program.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int n, sum, score;

	 float	average;

 sum = 0;

 n = 0;

 printf(“\n Enter test scores one by one(EOF to
quit): ”);

 while(scanf(“%d”, &score) != EOF)

 {

 sum += score;

 n++;

 }

	 average	=	(float)sum	/	n;

 printf(“\n The average is %f”, average);

 return 0;

}

10.6.3 using counter
Yet another method for controlling repetition during the
execution of a program is by using a counter. Using a counter
requires knowledge of the exact number of times something
needs to be repeated. For example, if a user of the program
had to be instructed to input ten numbers, a counter variable
could be set to 0, and then a loop set up to continue cycles
while the value of the counter is less than ten (this loop would
equal ten cycles: 0, 1, 2, ..., 9).

ExamplEs

 31. Write a section of code that would output the numbers from 1 to 10.

 #include <stdio.h>

 int main()

 {

 int count;

 count = 0;

 int numTimesNeeded = 10;

 while(count < numTimesNeeded)

 {

 printf(“\n%d”, (count + 1)) ;

 count++;

 }

 return 0;

 }

 32. Write a section of code that will allow the user to input ten test scores
in order to find the average of the scores.

 #include <stdio.h>

 int main()

 {

 int count, score;

	 	 float	average;

 count = 0;

 int numTimesNeeded = 10;

 int total = 0;

 while(count < numTimesNeeded)

 {

 printf(“\n Enter a test score”);

 scanf(“%d”, &score);

 total += score;

 count++;

 }

	 	 average	=	(float)total/	numTimesNeeded;

 printf(“\n The average is %f” , average);

 return 0;

 }

236 Computer Fundamentals and Programming in C

10.7 goTo Statement
The goto statement is another type of control statement
supported by C. The control is unconditionally transferred to
the statement associated with the label specified in the goto
statement. The form of a goto statement is

goto label_name;

 Because the goto statement can interfere with the normal
sequence of processing, it makes a program more difficult
to read and maintain. Often, a break statement, a continue
statement, or a function call can eliminate the need for a goto
statement.
 a statement label is defined in exactly the same way as a
variable name, which is a sequence of letters and digits, the
first of which must be a letter. The statement label must be
followed by a colon (:) just like a CASE label in a SWITCH. Like
other statements, the goto statement ends with a semicolon.
Some examples of goto statements are in order

ExamplE

 33. The following program is used to find the factorial of a number.

 #include <stdio.h>
 int main()
 {
 int n, c;
 long int f=1;
 printf(“\n Enter the number:”);
 scanf(“%d”,&n);
 if(n<0)
 goto end;
 for(c=1; c<=n; c++)
 f*=c;
 printf(“\n FACTORIAL IS %ld”, f);
 end:
 return 0;
 }

 The goto statement can be used for looping as follows. Here, the
goto statement is used in conjunction with an if statement.

 #include <stdio.h>

 int main()

 {

 int n, c;

 long int f=1;

 printf(“\n Enter the number:”);

 scanf(“%d”,&n);

 if(n<0)

 goto end;

 c=1;

 loop:

 f=f*c;

 c++;

 if(c<=n)

 goto loop;

 printf(“\n FACTORIAL IS %ld”, f);

 end:

 return 0;

 }

 In theory it is always possible to avoid using the goto
statement, but there are one or two instances in which it is
a useful option. But the goto statement is not considered
a good programming statement when overused. Because
the goto statement can interfere with the normal sequence
of processing, it makes a program more difficult to read
and maintain. When too many goto statements are used in
a program then the program branches all over the place,
it becomes very difficult to follow. Some authors call
programs with many goto statements ‘spaghetti code’. So, it
is best to avoid the goto statement as far as possible. Often,
a break statement, a continue statement, or a function call
can eliminate the need for a goto statement.

10.8 SpecIal control StatementS
There are certain control statements which terminate either a
loop or a function. There are three such statements, namely:
return, break, and continue.

return statement The return type is used in the defi-
nition of a function to set its returned value and the re-
turn statement is used to terminate execution of the func-
tion. The return statement has two forms. Functions with
return type void use the following form:

return;

 Functions with non-void return type use the following
form:

return expression;

 Here, expression yields the desired return value. This
value must be convertible to the return type declared for the
function. This will be explained in more detail in the chapter
on functions.

break statement The break statement is used in loop
constructs such as for, while, and do-while, and switch
statement to terminate execution of the loop or switch
statement. The form of a break statement is

break;

 after a break statement is executed within a loop or a case
in a switch construct, execution proceeds to the statement
that follows the loop construct or switch statement. The
following is an example of the use of a break statement.

Control Statements 237
 #include <stdio.h>

 int main()

 {

 int c=1;

 while(c<=5)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

 }

Or
 #include <stdio.h>

 int main()

 {

 int c=1;

 for(;c<=5;c++)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 }

 return 0;

 }

The program will print 1 2 instead of 1 2 3 4 5.
The statement while(1) leads to an infinite loop but by using
the break statement it can be made a finite loop. This is
illustrated in the following example.

ExamplE

 34. Program 1
 #include <stdio.h>
 int main()
 {
 int c=1;
 while(1)
 {
 printf(“\t %d”, c);
 c++;
 }
 return 0;
 }

 It is an infinite loop. It will print
 1 2 3 4...

 Program 2
 #include <stdio.h>

 int main()

 {

 int c=1;

 while(1) Note this

 {

 if(c==5)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

 }

Or
 #include <stdio.h>

 int main()

 {

 int c;

 for(;;) Note this

 {

 if(c==5)

 break;

 printf(“ \t %d”, c);

 c++;

 }

 return 0;

 }

 It is a finite loop. It will print
 1 2 3 4

 A break statement may be used to check whether a number is a prime
number or not. The following program illustrates this.

#include <stdio.h>

int main()

{

 int n, r, d=2;

 printf(“\n Enter the number :”);

 scanf(“%d”, &n);

 r = n%d;

 while(d <= n/2)

 {

 r = 1;

 if(r == 0)

 break;

 d++;

 }

 if(r==0)

 printf(“\n IT IS NOT A PRIME NUMBER”);

238 Computer Fundamentals and Programming in C

 else

 printf(“\n IT IS A PRIME NUMBER”);

 return 0;

}

continue statement The continue statement does not
terminate the loop but goes to the test expression in the
while and do-while statements and then goes to the updating
expression in a for statement. The form of a continue
statement is

continue;

 The jumps by continue in different pre-test and post-test
loops are shown here.

while(testexpr) do

 { {
 ………………………… …………………………..
 ………………………… …………………………..
 continue; continue;

 ………………………….. …………………………..
 ………………………….. …………………………..
 } }while(TestExpr);

 for(initialization; TestExpr; updating)
 {

 …………………………
 …………………………
 continue;
 …………………………..
 …………………………..
 }

 The difference between break and continue statements is
summarized in Table 10.8.

Table 10.8 Break and continue statements

break Continue

It helps to make an early
exit from the block where it
appears.

It helps in avoiding the remaining
statements in a current iteration
of the loop and continues with the
next iteration.

It can be used in all control
statements including switch
construct.

It can be used only in loop
constructs.

 This can be illustrated by the following programs.

Program code with break
#include <stdio.h>

int main()

{

 int c=1;

 while(c<=5)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

}

Output 1 2

Program code with continue
#include <stdio.h>

int main()

{

 int c = 0;

 while(c<=5)

 {

 c++;

 if(c==3)

 continue;

 printf(“\t %d”, c);

 }

 return 0;

}

Output 1 2 4 5 6

10.9 neSted loopS
a nested loop refers to a loop that is contained within another
loop. If the program has to repeat a loop more than once, it is
a good candidate for a nested loop. In nested loops, the inside
loop (or loops) executes completely before the outside loop’s
next iteration. It must be remembered that each inner loop
should be enclosed completely in the outer loop; overlapping
loops are not allowed. Thus, the following is not allowed.

for(count = 1; count < 100; count++)

{

 do

 {

 /* the do...while loop */

 } /* end of for loop */

}while(x != 0);

 If the do-while loop is placed entirely in the for loop,
there is no problem. For example,

Control Statements 239
for(count = 1; count < 100; count++)

{

 do

 {

 /* the do...while loop */

 }while(x != 0);

} /* end of for loop */

 an example of the nested loop is to print the following:
*

* *

* * *

* * * *

 In each row, there are several ‘ *’ to be printed. In row
one, one star has to be printed; in row two, two stars have to
be printed; in row three, three stars have to be printed, and so
on. So an outer loop is required to keep track of the number
of rows to be printed and in each iteration of the outer loop,
an inner loop is required to keep track of the printing of stars
that corresponds to the row. The program will then read as
follows:

#include <stdio.h>

int main()

{

 int row,col;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“* \t”);

 printf(“\n”);

 }

 return 0;

}

If the following output has to be obtained on the screen
1

2 2

3 3 3

4 4 4 4

then the corresponding program will be

#include <stdio.h>

int main()

{

 int row,col;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“%d \t”, row);

 printf(“\n”);

 }

 return 0;

}

The variant of the preceding program is
#include <stdio.h>

int main()

{

 int row,col, k=1;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“%d \t”, k++);

 printf(“\n”);

 }

 return 0;

}

It will print the following on the screen.
1

2 3

4 5 6

7 8 9 10

 When nested loops are used, remember that changes made
in the inner loop might affect the outer loop as well. Note,
however, that the inner loop might be independent of any
variables in the outer loop; in the above examples, they are
not.
 Good indenting style makes a code with nested loops
easier to read. each level of loop should be indented one step
further than the last level. This clearly identifies the code
associated with each loop.
 Let us take a look at a trace of two nested loops. In order to
keep the trace manageable, the number of iterations has been
shortened.

for(num2 = 0; num2 <= 3; num2++)

{

 for(num1 = 0; num1 <= 2; num1++)

 {

 printf(“\n %d %d”,num2,num1);

 }

}

240 Computer Fundamentals and Programming in C

Memory Screen

num 2 num l
0 0

1

2

3 (end)
1 0

1
2

3 (end)
2 0

1

2

3 (end)
3 0

1

2

3 (end)
4 (end)

 0 0

 0 1
 0 2

 1 0
 1 1
 1 2

 2 0

 2 1
 2 2

 3 0
 3 1

 3 2

Remember that, in the memory, for loops will register a value
one beyond (or the step beyond) the requested ending value in
order to disengage the loop.

 Here is an example of nested loops which prints out a
multiplication table.

ExamplE

 35. #include <stdio.h>
 int main ()
 {
 int i,j;
 for (i = 1; i <= 10; i++)
 {
 for (j = 1; j <= 10; j++)
 {
 printf (“%5d”,i * j);
 }
 printf (“\n”);
 }
 return 0;
 }

 Output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

 Note that after the inner for loop (at the end of each
iteration of the outer for loop), a ‘\n’ is used which causes
the next line of the output to be printed in a fresh line.
 If a break statement is encountered in a nested loop, the
control of the program jumps to the first statement after the
innermost loop. For instance, to print the diagonal lower half
of the multiplication table (below the diagonal line from the
top left to the bottom right), for each row(denoted by i here),
once the column (denoted by j) equals the row, the rest of the
inner for loop has to be skipped and the line that prints the
newline character should be executed. Similarly, the next row
has to be printed. The output would be as follows.

 1
 2 4
 3 6 9
 4 8 12 16
 5 10 15 20 25
 6 12 18 24 30 36
 7 14 21 28 35 42 49
 8 16 24 32 40 48 56 64
 9 18 27 36 45 54 63 72 81
 10 20 30 40 50 60 70 80 90 100

 The C program to achieve the preceding output is as
follows.

#include <stdio.h>

int main()

{

 int i,j;

 for (i = 1; i <= 10; i++)

 {

 for (j = 1; j <= 10; j++)

 {

 printf (“%5d”,i * j);

 if(i==j)

 break;

 }

 printf (“\n”);

 }

 return 0;

}

 To put everything together as well as demonstrate the use
of the break statement, here is a program for printing prime
numbers between 1 and 100.

Control Statements 241
#include <stdio.h>

#include <math.h>

int main()

{

int i, j;

printf(“%d\n”, 2);

for(i = 3; i <= 100; ++i)

 {

 for(j = 2; j < i; ++j)

 {

 if(i % j == 0)

 break;

 if(j > sqrt(i))

 {

 printf(“%d\n”, i);

 break;

 }

 }

 }

 return 0;

}

 The outer loop steps the variable ‘i’ through the numbers
from 3 to 100; the code tests to see if each number has
any divisors other than 1 and itself. The trial divisor ‘j’
increments from 2 to ‘i’. ‘j’ is a divisor of ‘i’ if the remainder
of ‘i’ divided by ‘j’ is 0, so the code uses C’s ‘remainder’ or
‘modulus’ operator % to make this test. remember that i % j
gives the remainder when ‘i’ is divided by ‘j’.
 If the program finds a divisor, it uses break to come out of
the inner loop, without printing anything. But if it evaluates
that ‘j’ has risen higher than the square root of ‘i’, without
its having found any divisors, then ‘i’ must not have any
divisors. Therefore, ‘i’ is prime, and its value is printed.
Once it has been determined that ‘i’ is prime by noticing that
j > sqrt(i), there is no need to try the other trial divisors.
Therefore, a second break statement can be used to break
out of the loop in that case, too. The following program is a
simplified form of the previous program.

#include <stdio.h>

#include <math.h>

main()

{

 int i, j,r;

 for(i = 2; i <= 100; ++i)

 {

 r=1;

 for(j = 2; j <= sqrt(i); ++j)

 {

 r=i%j;

 if(r == 0)

 break;

 }

 if(r!=0)

 printf(“%d\n”, i);

 }

}

Nested loops and the goto statement
Occasionally, it is needed to come out of all the nested
loops from the innermost loop and then continue with the
statement following the outermost loop. a break statement
in the innermost loop will only break out of that loop, and
execution will continue with the loop which is the immediate
outer loop. To escape the nested loops completely using break
statements therefore requires quite complicated logic to break
out of each level until you escape the outermost loop. This is
one situation in which the goto can be very useful (as shown
below) because it provides a way to avoid all the complicated
logic.
Consider the following code segment:

for (i = 0; i < n; ++i)

 for (j = 0; j < m; ++j)

 for (k = 0; k < s; ++k)

 {

 scanf(“%d”, &n);

 if (n == 0)

 goto GoOut;

 x= n*(i+j+k)

 … … … … … … … … … … … … … … .

 … … … … … … … … … … … … … … .

 }

GoOut:

a naive attempt is as follows:
for (done = 0, i = 0; !done && i < n; ++i)

 for (j = 0; !done && j < m; ++j)

 for (k = 0; !done && k < s; ++k)

 {

 scanf(“%d”, &n);

 if (n == 0)

 done = 1;

 x= n*(i+j+k)

 … … … … … … … … … … … … … … .

 … … … … … … … … … … … … … … .

 }

 C89 specifies that at least 15 levels of nesting must be
supported by the compiler. C99 raises this limit to 127. In
practice, most compilers allow substantially more levels.
However, nesting beyond a few levels is seldom necessary,
and excessive nesting can quickly confuse the meaning of an
algorithm.

242 Computer Fundamentals and Programming in C

Common programming errors

Writing expressions like a<b<c or a==b==c, etc. These
expressions are legal in C but do not have meaning that
might be expected. For example, in a<b<c, the operator < is
left associative, this expression is equivalent to (a<b) < c.

Using = instead of == a == b and a = b are not similar as
== is a test for equality a = b is an assignment operator. Be
careful when writing the equality operator.

Forgetting to use braces for compound statement If the
number of statements to be executed is more than one, i.e.
compound statements and those statements are to be executed
if the test expression is true for once (if used with if...else)
or repeatedly (if used with while or for or do-while), then the
compound statement must be enclosed within braces.

Dangling else an else is always associated with the
closest unmatched if. If this is not the required branching,
impose the proper association between if and else by means
of braces. One should be careful when framing if-else-if
ladder.

Use of semicolon in loop also, remember not to put a
semicolon after the close parenthesis at the end of the for
loop (this immediately ends the loop). as an illustration, the
following code, segment will print 12345.

 for (int c = 1; c <= 5; ++c)

 printf(“%d”,c);

 But the following code would print 6.

 for (int c = 1; c <= 5; ++c);

 printf(“%d”,c);

 Similar problems can arise with a while loop. Be careful
not to place a semicolon after the closing parenthesis that
encloses the test expression at the start of a while loop. a do-
while loop has just the opposite problem. You must remember
always to end a do-while loop with a semicolon.

Floating point equality Do not use the equality operator
with floating point numbers. When equality of floating point
values is desired, it is better to require that the absolute
value of the difference between operands be less than some
extremely small value. To test for equality of floating point
operands such as a == b, use

 if(fabs(a-b) < 0.000001)

where the value 0.000001 can be altered to any other
acceptably small value. Thus, if the difference between the
two operands is less than 0.000001 (or any other user selected
value), the two operands are considered essentially equal.

Summary
A statement is a syntactic construction that performs an action when a
program is executed. It can alter the value of variables, generate output, or
process input. In C, any sequence of statements can be grouped together
to function as a syntactically equivalent single statement by enclosing the
sequence in braces. These groupings are called statement blocks, which
means a final semicolon after the right brace is not needed.

The program statements in C fall into three general types: assignment,
input/output, and control. C has two types of control structures: selection
(decision) and repetition (loops). The decision control constructs are of
two types: conditional and unconditional. The conditional control constructs
are if, if-else, if-else-if, and switch. The unconditional control
constructs are break, continue, and goto. The loop control constructs
are for, while, and do-while. Relational and logical operators are
used to specify test conditions used in the control constructs of C. The test
conditions give shape to test expressions, which are evaluated to give a
value of zero or non-zero, irrespective of its sign. In C, the zero value is
taken as false and any non-zero value, either positive or negative, is taken
as true.

One-way decisions are handled with an if statement that either does
some particular thing or does nothing at all. The decision is based on a test
expression that either evaluates to true or false. Two-way decisions are
handled with if-else statements that either do one particular thing or

do another. Similar to one-way decisions, the decision is based on a test
expression. Multi-way decision statements use if-else-if, nested
if, or switch statements. They are all used to evaluate a test expression
that can have several possible values selecting different actions.

The while statement is a pre-test loop declaration construct. This is
a top-driven loop. The condition is tested before the execution of the code
in the body of the loop. It is tested before the body is executed the very
first time and if it is false, the body of the loop will not be executed at all.
So the loop may execute zero times. A while loop is considered to be an
indeterminate or indefinite loop because it is usually only at run time that it
can be determined how many times it will iterate.

A loop formed by using the for statement is generally called a
determinate or definite loop because the programmer knows exactly how
many times it will repeat. The number of repetitions can be determined
mathematically by manually checking the logic of the loop.

A do-while loop is considered to be a bottom-checking loop since the
control expression is located after the body of the loop and after the while
keyword. A do-while loop is guaranteed to execute at least once even if
the control expression evaluates to false.

A goto statement causes control to be transferred unconditionally to
the statement associated with the label specified in the statement. There
are some special statements such as break, return, and continue

Control Statements 243

that are used with the control constructs. The break statement is used
in loop constructs, such as for, while, and do-while, and switch
statement to terminate execution of the loop or switch statement.

The return statement has two forms. In one instance, it is used in the
definition of a function to set its returned value and in the other instance it is
used to terminate the execution of the function. The continue statement

is used in while, for, or do-while loops to terminate an iteration of
the loop.

A nested loop refers to a loop that is contained within another loop. It
must be remembered that each inner loop should be enclosed completely
in the outer loop; overlapping loops are not allowed.

Key termS
Block Any sequence of statements can be grouped together to function
as a syntactically equivalent single statement by enclosing the sequence in
braces.

Boolean expression It is an expression that evaluates to either true or false.

Loop It is a programming construct in which a set of statements in a
computer program can be executed repeatedly.

Sentinel It is a value that is not a legitimate data value for a particular
problem, but is of a proper type, that is used to check for a ‘stopping’ value.

Spaghetti code It comprises programs with many goto statements.

frequently aSKed queStIonS
1. Is the relational expression a < b < c legal in C?
 Yes, it is legal but does not have the meaning that might be expected.
Since the operator < is left associative, this expression is equivalent to (a
< b) < c. The result from the evaluation of this expression would either
be 0 or 1 depending on the values of a, b, and c.

2. There is no logical exclusive OR operator in C; can it be simulated
anyway?

 The result of the logical exclusive OR operation on two integers is true if
and only if one operand (but not both) is true. It can be simulated by the
following expression.
 (a||b) && !(a && b)

 where a and b are both of type int.

3. The floating point numbers are seldom equal to required value or
variable; then how can two floating point values or variables be tested
for equality?

 The following code segment may be used.
 float	a,	b;

 if(fabs(a-b) < 0.000001)

 printf(“equal”);

 else

 printf(“\n not equal ”);

4. What is a null statement?

 A null statement is an expression statement consisting solely of the
terminating semicolon. A null statement can appear on its own, or (most
frequently) as the statement body of an iteration statement. “0;”or “1;”

can also be used as null statements. Note that {}(which contains nothing
within braces, i.e., it is empty) is not a null statement. {} is a compound
statement. An empty block (called a null block) is not the same as a null
statement.

5. Which form of loop should you use- while or for or do-while?

 The decision of selecting while or do-while depends on the situation.
It is to be decided whether one needs a pre-test loop or a post-test loop.
In such a situation where either while or do-while can be used, the
computer scientists usually consider a pre-test loop superior. A program is
easier to read if the test for iteration (i.e., loop) is found at the beginning of
the loop. In many uses, it is important that the loop be skipped entirely if the
test is not initially met.
 The choice between a for or a while is partly a matter of taste.

6. What is the difference between a break and continue statement?

 Sometimes when executing a loop, it becomes desirable to leave the loop
as soon as a certain condition occurs. The break statement can be used
for this purpose. Execution of the break statement causes the program to
immediately exit from the loop it is executing, whether it is a for, while,
or do-while loop. Subsequent statements in the loop are skipped, and
execution of the loop is terminated.

 The continue statement causes the next iteration of the enclosing
for, while, or do-while to begin. In the while and do-while, this
means that the test part is executed immediately; in the for, control passes
to the increment step. The continue statement applies only to loops, not
to switch. A continue inside a switch causes the next loop iteration if it is
placed within a loop.

exercISeS
 1. What do you mean by control statements in C?

 2. What is the purpose of the if-else state ment?

 3. Compare the use of the if-else statement with the use of the ‘?:’
operator. In particular, in what way can the ‘?:’ operator be used in

place of an if-else statement?

 4. What is the purpose of the switch statement? What are labels,
i.e., case prefixes? What type of expression must be used to
represent a case label?

244 Computer Fundamentals and Programming in C

 5. What is the purpose of the comma operator? Within which control
statement does the comma operator usually appear?

 6. Why is the use of the goto statement generally discouraged? Under
what conditions might the goto statement be helpful? What types of
usage should be avoided and why?

 7. Differentiate between a for loop and a while loop. Discuss the
usage of each.

 8. Distinguish between the following:
 (a) do-while and while loop
 (b) break and continue

 9. Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year
or not.

 10. The factorial of an integer n is the product of consecutive integers from 1
to n. That is, factorial n = n! = n x (n - 1) x (n - 2) x (n - 3) x ... x 3 x 2
x 1. Write a C program to find the factorial value of n.

 11. Write a C program to print the quotient of an integer number without
using ‘/’.

 12. Write a program to print all the even and odd numbers of a certain
range as indicated by the user.

 13. Write a C program to convert the binary equivalent of an integer
number without using an array.

 14. Write a C program to find the prime factors of a number given by the
user.

 15. Write a C program to check whether a number is a power of 2
or not.

 16. Write a program to find the GCD of two numbers.

 17. Write a program to find the sum of digits of a number given by the
user.

 18. Write a C program to calculate the sum of prime numbers in a range.

 19. Write a C program to print the sum of the following series up to n terms
where n is given by the user.

 1 + x + x2/2! + x3/3! + ... (The value of x is also given by the user.)

 20. Write a C program to print the sum of the following series up to n terms
where n is given by the user.

 x - x3/3! + x5/5! - ... (The value of x is given by the user.)

 21. Write a C program to print the following series: 0 1 1 2 3 5 8 13 The
number of terms to be printed should be given by the user.

 22. Write a C program to print the numbers that do not appear in the
Fibonacci series. The number of such terms to be printed should be
given by the user.

 23. Write a program to convert a decimal number into any base.

 24. Write a program to check whether a number is a Krishnamurty number
or not. A Krishnamurty number is one whose sum of factorial of digits
equals the number.

 25. Write a program to print the second largest number among a list of
numbers without using array.

 26. Write programs to print the sum of the following series (with and
without pow() library function).

 (a) S = 1 + x + x2 + x3 + x4 + ... n terms

 (b) S = –x + x2 + x3 + ... n terms

 (c) S = 1 + x + x2/2! + x3/3! + ... n terms

 (d) S = 1 + (1+2) + (1+2+3) + ... n terms

 (e) S = 1 – x + x2/2! – x3/3! + ... n terms

 (f) S = x – x3/3! + x5/5! + ... n terms

 (g) S = 2 + 22+ 222 + 2222 + ... n terms

 (h) S = 1 + x/4 + x2/8 + ... n terms

 (i) S = x – x2/2! + x3/3! – x4/4! ... n terms

 27. Write a program to print the prime numbers in a range.

 28. Given a number, write a program using while loop to reverse the
digits of the number. For example, the number 12345 should be
written as 54321.

 29. Write a program to print the following triangle.

 (a) *
 * * * * *

 * * * * ... up to nth line

 (b) *
 * *

 * * *

 * * * * * ... up to nth line

 (c) 1
 1 2

 1 2 3

 1 2 3 4 ... up to nth line

 (d) 1
 2 1 2

 3 2 1 2 3 ... up to nth line

 (e) 1
 2 2

 3 3 3

 4 4 4 4

 5 5 5 5 5 ... up to nth line

 30. Write a program to check whether a number is a prime number or not.

 31. Write a program to print all the prime numbers of a certain range given
by the user.

 32. Write a program to print the Floyd’s triangle.

 33. Write a program to add the prime numbers of a certain range given by
the user.

Control Statements 245

 1. Write a C program that prompts the user to enter the date as three
integer values for the month, the day in the month, and the year. The
program should then output the date in the form 31st December 2003
when the user enters, say 12 31 2010. The program has to work out
when superscripts “th”, “nd”, “st”, and “rd” need to be appended to the
day value. The programmer should not forget 1st, 2nd, 3rd, 4th; and
then 11th, 12th, 13th, 14th; and 21st, 22nd, 23rd, and 24th.

 2. This is a well-known game with a number of variants. The following
variant has an interesting winning strategy. Two players alternately
take marbles from a pile. In each move, a player chooses how many
marbles to take. The player must take at least one but at most half
of the marbles. Then the other player takes a turn. The player who
takes the last marble loses. Write a C program in which the computer
plays against a human opponent. Generate a random integer

proJect queStIonS
between 10 and 100 to denote the initial size of the pile. Generate a
random integer between 0 and 1 to decide whether the computer or
the human takes the first turn. Generate a random integer between 0
and 1 to decide whether the computer plays smart or stupid. In stupid
mode the computer simply takes a random legal value (between
1 and n/2, where n is the total number of marbles) from the pile
whenever it has a turn. In smart mode the computer takes off enough
marbles to make the size of the pile a power of two minus 1—that is,
3, 7, 15, 31, or 63. That is always a legal move, except when the size
of the pile is currently one less than a power of two. In that case, the
computer makes a random legal move. It should be noted that the
computer cannot be beaten in smart mode when it has the first move,
unless the pile size happens to be 15, 31, or 63. Of course a human
player who has the first turn and knows the winning strategy can win
against the computer.

246 Computer Fundamentals and Programming in C

11.1 IntroductIon
The variables used so far have all had a common characteristic:
each variable can only be used to store a single value at a
time. For example, each of the variables ch, n, and price
declared in the statements

char ch;
int n;
float price;

are of different data types and each variable can only store
one value of the declared data type. These types of variables
are called scalar variables. A scalar variable is a single

variable whose stored value is an atomic type. This means
that the value cannot be further subdivided or separated into
a legitimate data type.
	 In	 contrast	 to	 atomic	 types,	 such	 as	 integer,	 floating	
point, and double precision data, there are aggregate types.
An aggregate type, which is referred to as both a structured
type and a data structure, is any type whose values can be
decomposed	 and	 are	 related	 by	 some	 defined	 structure.	
Additionally, operations must be available for retrieving
and updating individual values in the data structure. Such a
derived data type is an array.

c
h
a
p
t
e
rArrays and Strings

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

11

∑ define an array
∑ explain one-dimensional arrays, their declaration,

initialization, ways to access individual array elements,
representation of array elements in memory, and other
possible operations

∑ discuss one-dimensional strings and the way they are
declared, initialized, manipulated, inputted, and displayed

∑ explain two-dimensional arrays, initialization of sized
and unsized two-dimensional arrays, accessing
elements in such arrays, and their uses

∑ explain array of strings, their declaration, initialization,
other operations, manipulations, and uses

∑ get a brief idea of three-dimensional arrays or even
larger ones

Arrays and Strings 247

Why array?
Consider a brand-new problem: a program that can print its
input in reverse order. If there are two values, this is easy and
the program is

#include <stdio.h>
int main()
{
 int v1, v2;
 printf(“Enter two values:”);
 scanf(“%i %i”, &v1, &v2);
 printf(“%i\n%i\n”, v2, v1);
 return 0;
}

 If there are three values, this is still relatively easy and the
program is

#include <stdio.h>
int main()
{
 int v1, v2, v3;
 printf(“Enter three values: ”);
 scanf(“%d %d %d”, &v1, &v2, &v3);
 printf(“%d\n %d\n %d \n”, v3, v2, v1);
 return 0;
}

 But what if there are ten or twenty or one hundred values?
Then it is not so easy.
 Besides that, the solutions work only if the number of
inputs exactly matches with those expected by the user.
 Consider another problem: the average of n integer num-
bers given by the user can easily be computed as follows.

#include <stdio.h>
int main()
{
 int count,s=0, n, num;
 float avg;
 printf(“\n How many numbers?”);
 scanf(“%d”, &n);
 for(count=1;count<=n;++count)
 {
 printf(“\n Enter the Number:”);
 scanf(“%d”, &num);
 s+=num;
 }
 avg=(float)s/n;
 printf(“Average is %f”, avg);
 return 0;
}

 Now if the problem is given as ‘Print the numbers that
are greater than the average’, then one solution is to read the
numbers twice, that is,
∑ read in all the numbers and calculate the average.
∑ read in all the numbers again, this time checking each as it

is read against a previously calculated average.
 If input is from the keyboard, then the user has to enter
each number twice and accurately, with no mistakes. This
is not a viable solution. Because, for 25 numbers entered,
the user has to remember all the numbers. But what if there

are 50 or 100 numbers? Then, it is not so easy. To solve this
problem, an array is required. It is a collection of numbered
elements.
 An array is a fundamental data structure that enables the
storing and manipulation of potentially huge quantities of
data. An array stores an ordered sequence of homogeneous
values. Homogeneous means that all the values are of
the same data type. The order of the values are also preserved,
i.e., the integer array {1, 2, 3, 4} is different from {1, 4,

3, 2}.
	 An	array	can	be	defined	as	a	data	structure	consisting	of	an	
ordered set of data values of the homogeneous (same) type.
An array is a collection of individual data elements that are
∑ Ordered—one can count off the elements 0, 1, 2, 3, ...
∑ Fixed in size
∑ Homogeneous—all elements have to be of the same type,
e.g.,	int,	float,	char,	etc.

 In C, each array has two fundamental properties: the data
type	and	the	size.	Individual	array	elements	are	identified	by	
an integer index. In C, the index begins at zero and is always
written inside square brackets.

note

 ∑ A scalar variable is a single variable whose stored value
is an atomic data type.

 ∑ An array is a collection of individual data elements that
are ordered, fixed in size, and homogeneous.

 ∑ An array is considered to be a derived data type.
 ∑ Array enables the storing and manipulation of potentially

huge quantities of data.

11.2 one-dImensIonal array
There are several forms of an array used in C: one-dimensional
or single-dimensional and multidimensional array. In this
section, one-dimensional arrays will be discussed.
 Since the array is one dimensional, there will be a single
subscript or index whose value refers to the individual array
element which ranges from 0 to (n–1), where n is the total
number of elements in the array.

11.2.1 declaration of a one-dimensional array
To use an array variable in a program, it must be declared.
When	defining	an	array	in	a	program,	three	things	need	to	be	
specified.

∑ The type of data it can hold, i.e., int, char, double, float, etc.

∑ The number of values it can hold, i.e., the maximum
number of elements it can hold

∑ A name

248 Computer Fundamentals and Programming in C

 A one-dimensional array declaration is a data type followed
by	an	identifier	with	a	bracketed	constant	integral	expression.	
The value of the expression, which must be positive, is the
size	of	 the	array.	It	specifies	 the	number	of	elements	 in	 the	
array. The array subscripts can range from 0 to (size –1). The
lower bound of the array subscripts is 0 and the upper bound
is (size –1). Thus, the following relationships hold.

int a[size]; /* memory space for a[0],a[1],…, a[size –1]
allocated */

lower bound = 0
upper bound = size –1
size = upper bound + 1

 The syntax for declaration of a one-dimensional array is
data_type array_name [SIZE];

∑ All the array elements hold values of type <data type>.
∑ The size of the array is indicated by <SIZE>, the number of

elements in the array. <SIZE> must be an int constant or a
constant expression.

 For example, to declare an array that can hold up to 10
integers, the following statement has to be written.

int ar[10];

This reserves space for 10 integers. Similarly,
int a[100]; /* an array with 100 int elements */

declares an array ‘a’ that can hold 100 integers. Once declared,
an array element can be referenced as

<array name>[<index>]

where <index> is an integer constant or variable ranging
from 0 to <SIZE> – 1.
 In the above example, the array index starts at 0, so for this
array there are elements named a[0], a[1], ..., a[99]. The
idea is that if there is an array variable named a, its elements
can be accessed with a[0], a[1], ..., a[99]. This means
that a particular element of the array can be accessed by its
‘index’,	a	number	that	specifies	which	element	is	needed.
 In a single-dimensional array of integers, the array is composed
of individual integer values where integers are referred to by
their position in the list. Indexed variables provide the means
of	accessing	and	modifying	the	specific	values	in	the	array.	For	
instance, in an array named ‘number’
 number[0] refers	to	the	first	number	stored	in	the	‘number’	

array
 number[1] refers to the second number stored in the

‘number’ array
 number[2] refers to the third number stored in the

‘number’ array
 number[3] refers to the fourth number stored in the

‘number’ array
 number[4]	 refers	to	the	fifth	number	stored	in	the	‘number’	

array
 Figure 11.1 illustrates the array named ‘number’ in
memory with the correct designation for each array element.

Each individual array element is called an indexed variable
or a subscripted variable, since both a variable name and
an index or a subscript value must be used to reference the
element. Remember that the index or subscript value gives
the position of the element in the array. Internally, unseen
by the programmer, the computer uses the index as an offset
from the array’s starting position.

number[0] number[1] number[2] number[3] number[4]

number array
Fig. 11.1 Identifying individual array elements

 As illustrated in Fig. 11.2, the index indicates how many
elements to skip over, starting from the beginning of the array,
to get the desired element. At the time of declaration, the size
of the array must be given; it is mandatory. Otherwise the
compiler generates an error.

number[0] number[1] number[2] number[3] number[4]

Start
here

Skip over 3 elements to get to
the starting location of Element 3

Element 3

The array name and index number identify
the starting location of the array

Fig. 11.2 Accessing element 3

The following declaration is invalid.
#include <stdio.h>
int main()
{
 double x[], y[];

 ...
 return 0;
}

 C does not allow declaring an array whose number of
elements is unknown at compile time. So the above declaration
statement is not valid. Now, consider the following code:

#include <stdio.h>
int main()
{
 int N;

An integer variable is used as size
of the array. It must be an integer

constant or constant integer variable.

 double x[N], y[N];
 ...
 scanf(“%d”,&N);
 return 0;
}

No size is
specified.

Arrays and Strings 249
Here, the variable size array declaration, e.g.,

double x[N], y[N];

is used where N is an integer variable. This kind of declaration is
illegal in C and results in a compile-time error.
	 It	is	sometimes	convenient	to	define	an	array	size	in	terms	
of	a	symbolic	constant,	rather	than	a	fixed	integer	quantity.	
This makes it easier to modify a program that utilizes an array,
since all references to the maximum array size can be altered
by simply changing the value of the symbolic constant. This
approach is used in many of the sample programs given in
this book. Consider the following sample program, which
uses this approach.

/* Define a symbolic constant for the size of
the array */
#include <stdio.h>

#define N 100

The symbolic
constant N is
assigned the
value 100.

int main()
{
 double x[N], y[N];
 ...

N is replaced with the
assigned value 100.

 return 0;
}

	 It	is	a	good	programming	practice	to	define	the	size	of	an	
array as a symbolic constant.
 Hence, it may be observed that a literal number or a
previously declared #defined symbolic constant must be used
in an array declaration for the size of the array. No variables
are allowed for the size of the array.
 Since the number of array elements can also be given by an
expression, the declarations depicted below can be used.

int x[N+1];
double y[M+5*N];

 However, the C compiler must be able to evaluate the
expression, which implies that all components of the expression
must be available for evaluation of the expression when the
program is compiled—there must be no unknowns. This
means that the expression must be composed of constants. In
the	preceding	examples,	identifiers	consisting	of	capital	letters	
have	been	used,	which	is	the	convention	for	symbols	defined	
with #define directives.
 Thus the following expressions accessing elements of
array arr are valid.

/* Give N a value so that the examples are concrete! */
#define N 20
int i = 1, j = 3, k = 2;
float arr[N];

arr[0]
arr[3]

The evaluated value
of this expression is
the index of arr here.

arr[9]
arr[i*j+k] /* given values of i,j,k evaluates i*j+k to 5 */

arr[N-10]
arr[N-1]

The following array references are not valid.
arr[-1]
arr[N-21]
arr[N+20]
arr[N]

 In the previous example, arr[N-1] is the cause of many
problems for new C programmers. It must be remembered that
C array indices start at 0. Thus for an array with N elements,
the index of the last element is N-1. It may be of help to
think of the array index as an offset from the beginning of the
array,	so	that	the	first	element,	at	offset	0	from	the	beginning,	
is arr[0] and the last, at offset N-1, must be arr[N-1].
 Thus, expressions such as arr[N] are happily accepted
by the compiler. (C compilers usually make the assumption
that programmers know what they are doing.) The results of
running such programs are entirely unpredictable, since the
space at the end of the array may have arbitrary data in it.
The results from a program may even vary from one run to
another, as the memory space in which the compiler assumes
the (N+1)th object to be stored may well have been allocated
to some other object.

note

 ∑ In C, arrays are of two types: one-dimensional and
multidimensional.

 ∑ An array must be declared with three attributes: type of
data it can hold, the number of data it can hold(size), and
an identifier(name) before it is used.

 ∑ The array size must be a positive integer number or an
expression that evaluates to a positive integer number
that must be specified at the time of declaration with the
exception that it may be unspecified while initializing the
array.

 ∑ In C, the array index starts at 0 and ends at (size–1)
and provides the means of accessing and modifying the
specific values in the array.

 ∑ C never checks whether the array index is valid—either
at compile time or when the program is running.

11.2.2 Initializing Integer arrays
Variables can be assigned values during declaration like the
following example.

int x = 7;

Arrays can be initialized in the same manner. However, since
an array has multiple elements, braces are used to denote
the entire array of values and commas are used to separate
the individual values assigned to the elements in the array
initialization statements as shown.
 (a) int A[10] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

250 Computer Fundamentals and Programming in C

9 8 7 6 5 4 3 2 1 0 ¨ values stored in array elements

0 1 2 3 4 5 6 7 8 9 ¨ index values of array elements

 (b) double a[5] = {3.67, 1.21, 5.87, 7.45, 9.12}

Automatic sizing While initializing, the size of a one-
dimensional array can be omitted as shown.

int arr[] = {3,1,5,7,9};

 Here, the C compiler will deduce the size of the array from
the initialization statement.
 From the above initialization statement, the size of the
array is deduced to be 5.

11.2.3 accessing array elements
Single operations, which involve entire arrays, are not
permitted in C. Thus, if x and y are similar arrays (i.e., of the
same data type, dimensionality, and size), then assignment
operations, comparison operations, etc., involving these two
arrays must be carried out on an element-by-element basis.
This is usually accomplished within a loop, or within nested
loops for multidimensional arrays.
 For initializing an individual array element, a particular
array index has to be used. For example, in an array A, for
initializing elements 0 and 3, the following statements are
used,

A[0] = 3;
A[3] = 7;

 Subscripted variables can be used at any place where
scalar variables are valid. Examples using the elements of an
array named ‘numbers’ are shown here:

numbers [0] = 98;
numbers [1] = numbers [0] – 11
numbers [2] = 2 * (numbers [0] – 6);
numbers [3] = 79;
numbers [4] = (numbers [2] + numbers [3] – 3)/2;
total = numbers[0] + numbers[1] + numbers[2] +

numbers[3] + numbers[4];

 One extremely important advantage of using integer
expressions as subscripts is that it allows sequencing through
an array using a for loop. This makes statements such as

total = numbers[0] + numbers[1] + numbers[2] +
numbers[3] + numbers [4];

unnecessary. The subscript value in each of the subscripted
variables in this statement can be replaced by the counter in a
for loop to access each element in the array sequentially.
For example, the C statements,

total = 0; /*initialize total to zero */
for(i = 0; i <5; ++i)
total = total + numbers[i]; /* add in a number */

sequentially retrieve each array element and adds the element
to the total. Here the variable ‘i’ is used both as the counter in
the for loop and as a subscript. As ‘i’ increases by one each
time through the for loop, the next element in the array is

referenced. The procedure for adding the array elements within
the for loop is the same as that used before.

The following code
/* Initialization of all of the elements of the sample
array to 0 */

for(i = 0; i < 5; i++)
{
 a[i] = 0;
}

would cause all the elements of the array to be set to 0.
Consider the following program that would use the above
code segment.

#include <stdio.h>
#define ARRAY_SIZE 10
int main()
{
 int index, a[ARRAY_SIZE];
 for(index = 0; index < ARRAY_SIZE; index++)
 {
 a[index] = 0;
 printf(“a[%d] = %d\n”, index, a[index]);
 }
 printf(“\n”);
 return 0;
}

The output from the above example is as follows:
a[0] = 0
a[1] = 0
a[2] = 0
a[3] = 0
a[4] = 0
a[5] = 0
a[6] = 0
a[7] = 0
a[8] = 0
a[9] = 0

 Arrays are a real convenience for many problems, but
there is not a lot that C can do with them automatically. In
particular, neither can all elements of an array be set at once
nor can one array be assigned to another. Both assignments

a = 0; /* WRONG */

and
int b[10];
b = a; /* WRONG */

are illegal, where a is an array.

 So, for example, to assign values to (i.e., store values into)
an array, ar[10], the following program statements may be
used.

ar[0] = 1;
ar[1] = 3;
ar[2] = 5;

Arrays and Strings 251
...
ar[9] = 19;

Or
for(i = 0; i < 10; i++)
 ar[i] = (i*2) + 1;

 Notice how the variable i, used as a subscript, increments
from 0 to ‘less than’ 10, i.e., from 0 to 9. To access values in
an array, the same subscripted notation has to be utilized as
shown.

printf(“%d”, ar[2]);
thirdOdd = ar[2];
nthOddSquared = ar[n-1] * ar[n-1];

11.2.4 other allowed operations
These operations include the following, for an array named
‘ar’.
 (a) To increment the ith element, the given statements can

be used.
 ar[i]++;
 ar[i] += 1;
 ar[i] = ar[i] + 1;

 (b) To add n to the ith element, the following statements
may be used,

 ar[i] += n;
 ar[i] = ar[i] + n;

 (c) To copy the contents of the ith element to the kth
element, the following statement may be written.

 ar[k] = ar[i];

 (d) To copy the contents of one array ‘ar’ to another array
‘br’, it must again be done one by one.

 int ar[10],br[10];
 for(i = 0; i < 10; i = i + 1)
 br[i] = ar[i];

 (e) To exchange the values in ar[i] and ar[k], a ‘temporary’
variable must be declared to hold one value, and it
should be the same data type as the array elements
being swapped. To perform this task, the following C
statements are written

 int temp;
 temp = ar[i]; /* save a copy of value in ar[i] */
 ar[i] = ar[j]; /* copy value from ar[j] to ar[i] */
 ar[j] = temp; /* copy saved value of ar[i] to ar[j] */

Storing values given by the user in an array Reading the
input into an array is done as shown.

int a[10]; /* an array with 10 “int” elements */

int i;

for(i=0 ; i< 10; i++)
scanf(“%d”, &a[i]);

	 The	idea	is	that	first	a	value	must	be	read	and	copied	into	
a[0], then another value read and copied into a[1], and so on,
until all the input values have been read.
Printing an array The following code segment prints the
elements of an array, a[10].

for(i=0 ; i< 10; i++)
 printf(“%d”, a[i]);

 Now the problem posed earlier can be solved. For printing
of numbers entered by the user in the reverse order, the
program will be as follows:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a[30],n,i;

 /* n = number of array elements and i=index */

 printf(“\n Enter the number n”);

 scanf(“%d”,&n);

 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }
 for(i=0 ; i< n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n Numbers entered in reverse order \n”);
 for(i=n-1 ; i>=0; i--)
 printf(“%d”, a[i]);
 return 0;
}

 A program for printing numbers that are greater than the
average is as follows:

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a[30],n,i,s=0;
 float avg;
 printf(“\n Enter the number of entries”);
 scanf(“%d”,&n);
 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }
 for(i=0 ; i< n; i++)
 {

252 Computer Fundamentals and Programming in C

 scanf(“%d”, &a[i]);
 s+=a[i];
 }
 avg=(float)s/n;
 printf(“\n Numbers greater than the average: \n”);
 for(i=0 ; i< n; i++)
 if(a[i]>avg)
 printf(“%d”,a[i]);
 return 0;
}

11.2.5 Internal representation of arrays in c
Understanding how arrays work in C requires some
understanding of how they are represented in the computer’s
memory. In C, an array is implemented as a single block
of	 memory,	 with	 element	 0	 occupying	 the	 first	 ‘slot’	 in	
that block, that is, arrays are allocated contiguous space in
memory. As a result, C subscripts are closely related to actual
memory addresses and to the notion of ‘pointer’ that will be
discussed in Chapter 13.
 The possible consequences of the misuse of arrays should
motivate one to pay close attention to the array indices.
 For a simple variable (e.g., int, double, etc.) of data type
X, the compiler allocates sizeof(X) bytes to hold it. For an
array of length L and data type X, the compiler allocates L*
sizeof (X) bytes.
 Given an array like int scores[100], the compiler allocates
200 bytes starting at some location, say 64789. Given an
expression like scores[5], the compiler accesses the value
stored at the memory location 64789+(5*2). In general, a[i]
is located at byte: base address of a + i * sizeof (type of
array).

References to elements outside of the array bounds It is
important to realize that there is no array bound checking in
C. If an array x is declared to have 100 elements, the compiler
will reserve 100 contiguous, appropriately sized slots in
computer memory on its behalf. The contents of these slots
can be accessed via expressions of the form x[i], where the
integer i should lie in the range 0 to 99. As seen, the compiler
interprets x[i] as the contents of the memory slot which
is i slots away from the beginning of the array. Obviously,
accessing elements of an array that do not exist will produce
some	sort	of	error.	Exactly	what	sort	of	error	is	very	difficult	
to say—the program may crash, it may produce an absurdly
incorrect output, it may produce plausible but incorrect output,
it may even produce correct output—it all depends on exactly
what information is being stored in the memory locations
surrounding the block of memory reserved for x. This type of
error	can	be	extremely	difficult	to	debug,	since	it	may	not	be	
immediately apparent that something has gone wrong when

the program is executed. It is, therefore, the programmer’s
responsibility to ensure that all references to array elements
lie within the declared bounds of the associated arrays.

A bit of memory allocation It has been seen how
arrays	 can	 be	 defined	 and manipulated. It is important
to learn how to do this because in more advanced C
programs it is necessary to deal with something known
as dynamic memory management. This is where the
memory management of the programs is taken over by the
programmer so that they can do more advanced things.
To understand this, it is important to have a rough idea
of what is going on inside the computer’s memory when
the program runs. Basically, it is given a small area of the
computer’s memory to use. This memory, which is known
as the stack, is used by variables in the program

int a = 10;

float values[100];

 The advantage of this is that the memory allocation is very
simple. When a variable or an array is required, the user can
define	 it.	When	 the	 variable	 or	 array	 goes	 out	 of	 scope,	 it	
is destroyed and the memory is freed up again. A variable
goes out of scope when the program control (the place of the
program in the code) reaches the next closing curly bracket.
This is normally at the end of a function or even at the end of
an if-else/for/while structure.
 This is why it is necessary to be careful when getting
functions	 to	fill	 in	arrays.	If	 the	function	declares	 the	array	
and then returns it, what actually happens is that only the
pointer is kept safe (copied back to the calling function); all
the memory allocated for the array is de-allocated. This is a
disadvantage.
 Another disadvantage is that the size of memory allocated
from	the	stack	must	be	fixed	at	compile	time.	For	example,	it	
is impossible to declare an array using a variable for the size
because at compile time the compiler does not know how big
the array will be. For this reason, the following code will not
work.

int size;

printf(“How big do you want the array?\n”);

scanf(“%d”, &size);

int array[size];

 Therefore, doing things dynamically is a real problem.
Perhaps the biggest problem with using memory from the
stack is that the stack is not very big. It is typically 64k in
size, even on a machine with tens of megabytes of memory.
The rest of this memory is left alone by the compiler but the
user can access it explicitly; it is called the heap.

Arrays and Strings 253

11.2.6 Variable length arrays and the
c99 changes

With the earlier version of C(C89) compilers, the size of an
array must be a constant integral expression so that it can be
calculated at compile time. This has already been mentioned
in earlier sections. But in the C99 compilers, an array size can
be an integral expression and not necessarily a constant. This
allows the programmer to declare a variable-length array
or an array whose size is determined at run time. However,
such arrays can exist within a block or a function thereby
signifying its scope to be limited within a set of instructions
contained within a pair of left ({) and right (}) braces. This
means that storage allocation to such an array is made at run
time and during its existence within the scope of a block or
a function and relinquishes this storage the moment it exits
its scope.
The following program illustrates the concept:

#include <stdio.h>

int main(void)

{

 int n,i;

 printf(“\n enter the value of n: ”);

 scanf(“%d”, &n);

 int a[n];

 printf(“\n enter the values one by one\n”);

 for(i=0;i<n; ++i)

 scanf(“%d”, &a[i]);

 printf(“\n entered numbers are.....\n”);

 for(i=0;i<n;++i)

 printf(“\n %d”,a[i]);

 return 0;

}

 Some changes in initializing an array have been made in
c99. here, the element number of	an	array	can	be	specified	
explicitly by using a format called a specification initializer.
When an array is initialized in C89, each element needs to
be initialized in order from the beginning. In C99, initial
values can be set only for certain elements, with uninitialized
elements being initialized as 0. This is useful when the
elements requiring initialization are limited, or when arrays
have large element counts.

ExamplE

 1. int arr[6] = { [2] =3, [5] = 7 };

 Here, array elements arr[2] and arr[5] are assigned the value
3 and 7 respectively, while all other elements in arr are assigned
the value 0.

11.2.7 Working with one-dimensional array

Printing binary equivalent of a decimal number
using array
Here, the remainders of the integer division of a decimal
number by 2 are stored as consecutive array elements.
 The division procedure is repeated until the number
becomes 0.

#include <stdio.h>

int main()

{

 int a[20],i,m,n,r;

 printf(“\n Enter the decimal Integer”);

 scanf(“%d”,&n);

 m=n;

 for(i=0;n>0;i++)

 {

 r=n%2;

 a[i]=r;

 n=n/2;

 }

 printf(“\n Binary equivalent of %d is \t”,m);

 for(i--;i>=0;i--)

 printf(“%d”,a[i]);

 return 0;

}

Fibonacci series using an array This example will in-
troduce another application of the array. The program prints
out	an	array	of	Fibonacci	numbers.	These	are	defined	by	a	
series in which any element is the sum of the previous two
elements. This program stores the series in an array, and after
calculating the terms, prints the numbers out as a table.

#include <stdio.h>
int main()
{
 int fib[15];
 int i;
 fib[0] = 0;
 fib[1] = 1;
 for(i = 2; i < 15; i++)
 fib[i] = fib[i-1] + fib[i-2];
 for(i = 0; i < 15; i++)
 printf(“%d\n”, fib[i]);
 return 0;

}

Output:
0
1
1
2
3
5
8

254 Computer Fundamentals and Programming in C

13
21
34
55
89
144
233
377

Searching an element within an array
Consider an array of n elements, where each element is a key
(e.g.,	 a	number).	The	 task	 is	 to	find	a	particular	key	 in	 the	
array. The simplest method is a sequential search or linear
search. The idea is to simply search the array, element by
element, from the beginning until the key is found or the end
of the list is reached. If found, the corresponding position
in the array is printed; otherwise, a message will have to be
displayed that the key is not found. Now, the implementation
of the program will be

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a[30],n,i,key, FOUND=0;

 printf(“\n How many numbers”);

 scanf(“%d”,&n);

 if(n>30)

 {

 printf(“\n Too many Numbers”);

 exit(0);

 }

 printf(“\n Enter the array elements \n”);

 for(i=0 ; i<n; i++)

 scanf(“%d”, &a[i]);

 printf(“\n Enter the key to be searched \n”);

 scanf(“%d”,&key);

 for(i=0 ; i<n; i++)

 if(a[i] == key)

 {

 printf(“\n Found at %d”,i);

 FOUND=1;

 }

 if(FOUND = = 0)

 printf(“\n NOT FOUND...”);

 return 0;

}

Sorting an array
Bubble sort A bubble sort compares adjacent array ele-
ments and exchanges their values if they are out of order.
In this way, the smaller values ‘bubble’ to the top of the
array (towards element 0), while the larger values sink to the
bottom of the array. This sort continues until no exchanges

are performed in a pass. If no exchanges are made, then all
pairs	must	be	in	order.	For	this	reason,	a	flag	named	‘sorted’	
is used.
 The way bubble sort works is that it iterates through the
data set comparing two neighbouring items at a time and
swapping	 them	 if	 the	 first	 item	 is	 larger	 than	 the	 second	
item.
 The following example depicts the different stages of
bubble sort.

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

42 42 26 26 26 26

60 26 42 34 28 28

26 55 34 28 34 34

55 34 28 42 42 42

34 28 55 55 55 55

28 60 60 60 60 60

 Now the implementation of the above algorithm will be as
follows:

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a[30],n,i,j,temp, sorted=0;
 printf(“\n How many numbers”);
 scanf(“%d”,&n);
 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }
 printf(“\n Enter the array elements \n”);
 for(i=0 ; i< n; i++)
 scanf(“%d”, &a[i]);
 for(i = 0; i < n-1 && sorted==0; i++)
 {
 sorted=1;
 for(j = 0; j < (n - i) -1; j++)
 if(a[j] > a[j+1])
 {
 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 sorted=0;
 }
 }
 printf(“\n The numbers in sorted order \n”);
 for(i=0 ; i<n; ++i)
 printf(“\n %d”, a[i]);
 return 0;
}

Output
How many numbers 6
Enter the array elements
42

Arrays and Strings 255
60
26
55
34
28
The numbers in sorted order
26
28
34
42
55
60

Binary searching
The drawbacks of sequential search can be eliminated if
it becomes possible to eliminate large portions of the list
from consideration in subsequent iterations. The binary
search method does just that; it halves the size of the list
to search in each iteration.
 Binary search can be explained simply by the analogy of
searching for a page in a book. Suppose a reader is searching
for	page	90	in	a	book	of	150	pages.	The	reader	would	first	
open the book at random towards the latter half of the book.
If the page number is less than 90, the reader would open at
a page to the right; if it is greater than 90, the reader would
open at a page to the left, repeating the process till page 90
was	 found.	As	 can	 be	 seen,	 by	 the	 first	 instinctive	 search,	
the reader dramatically reduced the number of pages to be
searched.
 Binary search requires sorted data to operate on, since the
data may not be contiguous like the pages of a book. It is not
possible to guess in which quarter of the data set the required
item may be. So, the array is divided in the centre each time.
	 Binary	 search	 will	 first	 be	 illustrated	 with	 an	 example	
before going on to formulate the algorithm and analysing it.
 In binary search, implement the following procedure.

∑ Look at the middle element of the list.

∑ If it is the value being searched, then the job is done.

∑ If the value that is being searched is smaller than the middle
element, then continue with the bottom half of the list.

∑ If the value that is being searched is larger than the middle
element, then continue with the top half of the list.

 In effect, binary search splits the array in half and then
repeats the algorithm on the half that must contain the value
that it is searching for, if it is there at all.

ExamplE

 2. Consider the array

 1 2 3 4 5 6 7 8 9

 Construct the binary search algorithm for finding the
Key = 7.

 1st iteration

HIGH = 8, LOW = 0; because the array index begins with
‘0’ and ends with ‘8’
MID = 4, Array[4] = 5, 5<7 : TRUE
LOW = 5
New List = 6 7 8 9

 2nd iteration
HIGH = 8, LOW = 5
MID = 6, Array[6] = 7, 7<7 : FALSE
HIGH = 6
New List = 6 7

 3rd iteration
HIGH = 6, LOW = 5
MID = 5, Array[5] = 6, 6<7 : TRUE
LOW = 6
New List = 7

 4th iteration
HIGH = 6, LOW = 6

MID = 6, Array [MID] = Array [6] = 7 == Key

then Found = TRUE

Tabular illustration Table 11.1 shows an example of the
operation of the binary search algorithm. The rows of the table,
starting from the top, are the array indices, the data stored at
the indexed location, and the index values used for high (H),
low (L), and middle (M) at each iteration of the algorithm. If
the target value is 52, its location is found in the thirrd iteration.
Implementation of binary search algorithm This repre-
sents	the	binary	search	method	to	find	a	required	item	in	a	list	
sorted in increasing order.

Table 11.1 Depiction of binary search algorithm

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data 23 27 29 32 34 41 46 47 49 52 55 68 71 74 77 78

1st iteration L M H

2nd iteration L M H

3rd iteration L M H

256 Computer Fundamentals and Programming in C

ExamplE

 3. Sort an array LIST of size N and find the position of the target value
T.

 Algorithm: The algorithm determines the position of T in the
LIST.

 1. START
 2. PRINT “ENTER THE NO. OF ELEMENTS IN THE ARRAY”
 3. INPUT N
 4. I=0
 5. PRINT “ENTER ARRAY ELEMENT IN ASCENDING ORDER”
 6. INPUT LIST(I)
 7. I=I+1
 8. IF I<N THEN GOTO STEP 5
 9. PRINT “ENTER THE ELEMENT TO SEARCH”
 10. INPUT T
 11. HIGH = N - 1
 12. LOW = 0
 13. FOUND = 0
 14. MID = (HIGH + LOW)/ 2
 15. IF T = LIST [MID]
 FOUND = 1
 ELSE IF T < LIST[MID]
 HIGH = MID-1
 ELSE
 LOW = MID+1
 16. IF (FOUND =0) and (HIGH > = LOW) THEN GOTO STEP

14
 17. IF FOUND =0 THEN PRINT “NOT FOUND”
 18. ELSE PRINT “FOUND AT”, MID.
 19. STOP

The C program for this algorithm is as follows:
#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a[30],n,i,t,low,mid,high,found=0;
 printf(“\n Enter the NO. of elements in the array:”);
 scanf(“%d”,&n);
 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }
 printf(“\n Enter the elements of the array:”);
 for(i=0 ; i< n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n Enter the element to search :”);
 scanf(“%d”,&t);
 low = 0;
 high = n - 1;
 while(high >= low)
 {
 mid = (low + high) / 2;
 if(a[mid] == t)
 {

 found = 1;
 break;
 }
 else if (t < a[mid])
 high = mid - 1;
 else
 low = mid + 1;
 }
 if(found==0)
 printf(“\n NOT FOUND”);
 else
 printf(“\n FOUND AT %d”,mid);
 return 0;
}

Output
Enter the number of elements in the array: 9
Enter the elements of the array:
1
2
3
4
5
6
7
8
9
Enter the element to search: 7
FOUND AT 6
Enter the number of elements in the array 9
Enter the elements of the array:
1
2
3
4
5
6
7
8
9
Enter the element to search: 11
NOT FOUND

 Here is a slightly bigger example on the use of arrays.
Suppose one wants to investigate the behaviour of rolling a
pair of dice. The total roll value can range from 2 to 12, and
how often each roll comes up is to be counted. An array is
to be used to keep track of the counts: a[2] will count how
many times 2 have been rolled, etc.
 The simulation of the roll of a dice is done by calling C’s
random number generation function, rand(). Each time rand()
is called, it returns a different, pseudo-random integer. The
values that rand() returns typically span a large range, so C’s
modulus (or remainder) operator % will be used to produce
random numbers in the required range. The expression rand()
% 6 produces random numbers in the range 0 to 5, and rand()
% 6 + 1 produces random numbers in the range 1 to 6.

Arrays and Strings 257
Here is the program.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i;

 int d1, d2;

 int a[13]; /* uses [2..12] */

 for(i = 2; i <= 12; i = i + 1)

 a[i] = 0;

 for(i = 0; i < 100; i = i + 1)

 {

 d1 = rand() % 6 + 1;

 d2 = rand() % 6 + 1;

 a[d1 + d2] = a[d1 + d2] + 1;

 }

 for(i = 2; i <= 12; i = i + 1)

 printf(“%d: %d\n”, i, a[i]);

 return 0;

}

 The header <stdlib.h> has to be included because it
contains the necessary declarations for the rand() function.
The array of size 13 has to be declared so that its highest
element will be a[12]. Space for a[0] and a[1]will be wasted;
this is no great loss. The variables d1 and d2 contain the roll
values of the two individual dice; they are added together to
decide which cell of the array to increment in the line

a[d1 + d2] = a[d1 + d2] + 1;

 After 100 rolls, the array is printed out. Typically, mostly
7’s are seen as output, and relatively few 2’s and 12’s.
However, using the % operator to reduce the range of the
rand() function is not always a good idea.

Check your progress

 1. Given the array declaration
 int myArray[] = {0, 2, 4, 6, 8, 10};

 What is the value of myArray[myArray[2]];?
 Output 8
 2. #include <stdio.h>

 main()
 {
 float a[10];
 printf(“%d”, sizeof(a));
 }

 What is the output of this program?
 Output 40

 3. #include <stdio.h>
 main()
 {

 int a[5],i;
 for(i=0;i<5;++i)
 printf(“%d”,a[i]);
 }

 What is the output of this program?
 Output Garbage
 4. An array has been declared as int a[] = {1, 2, 3, 4,

5, ...};	How	can	you	find	the	number	of	elements	(i.e.,	
size) of the array without manually counting them?

 Output printf(“%d”,sizeof(a)/sizeof(a[0]));

note

 ∑ Single operations, which involve entire arrays, are not
permitted in C.

 ∑ Neither can all elements of an array be set at once nor
can one array be assigned to another.

 ∑ For an array of length L and data type X, the compiler
allocates L* sizeof (X) bytes of contiguous space in
memory.

 ∑ It is not possible to declare an array using a variable for the
size.

11.3 strIngs: one-dImensIonal
character arrays

Strings in C are represented by arrays of characters. The
end of the string is marked with a special character, the null
character, which is a character whose bits are all zero, i.e.,
a NUL (not a NULL). (The null character has no relation
except in name to the null pointer. In the ASCII character
set, the null character is named NUL.) The null or string-
terminating character is represented by another character
escape sequence, \0.
 Although C does not have a string data type, it allows string
constants. For example,‘‘hello students” is a string constant.

11.3.1 declaration of a string
Strings can be declared like one-dimensional arrays. For
example,

char str[30];
char text[80];

illustrates this feature.

11.3.2 string Initialization
Character arrays or strings allow a shorthand initialization,
for example,

char str[9] = “I like C”;

which is the same as
char str[9] = {‘I’,‘ ’,‘l’,‘i’,‘k’,‘e’,‘ ’,‘C’,‘\0’};

 Whenever a string, enclosed in double quotes, is written,
C automatically creates an array of characters containing that

258 Computer Fundamentals and Programming in C

string, terminated by the \0 character. C language allows the
alternative notation

char msg[] = “Hello”;

that is always used in practice. The rules for writing string
constants are exactly the same as those that were discussed
earlier in this book when the use of printf() was introduced.
It should be noted that the size of the aggregate ‘msg’ is six
bytes,	five	for	the	letters	and	one	for	the	terminating	NUL.
 There is one special case where the null character is not
automatically appended to the array. This is when the array
size	 is	 explicitly	 specified	 and	 the	 number	 of	 initializers	
completely	fills		the	array	size.	For	example,

char c[4] = “abcd”;

 Here, the array c	holds	only	the	four	specified	characters,	
a, b, c, and d. No null character terminates the array.

note

 ∑ An array formed by characters is a string in C.
 ∑ The end of the string is marked with a null character.
 ∑ When the character array size is explicitly specified and

the number of initializers completely fills the array size,
the null character is not automatically appended to the
array.

11.3.3 Printing strings
The conversion type ‘s’ may be used for output of strings
using printf().	Width	and	precision	specifications	may	be	
used with the %s	 conversion	 specifier.	The	width	 specifies	
the	 minimum	 output	 field	 width;	 if	 the	 string	 is	 shorter,	
then	space	padding	is	generated.	The	precision	specifies	the	
maximum number of characters to display. If the string is too
long,	it	is	truncated.	A	negative	width	implies	left	justification	
of	short	strings	rather	than	the	default	right	justification.	For	
example,

printf(“%7.3s”,name)

 This	specifies	 that	only	 the	first	 three	characters	have	 to	
be	printed	in	a	total	field	width	of	seven	characters	and	right	
justified	in	the	allocated	width	by	default.	We	can	include	a	
minus	sign	to	make	it	 left	 justified (%-7.3). The following
points should be noted.
∑	 When	the	field	width	is	less	than	the	length	of	the	string,	

the entire string is printed.
∑ The integer value on the right side of the decimal point
specifies	the	number	of	characters	to	be	printed.

∑	 When	the	number	of	characters	to	be	printed	is	specified	as	
zero, nothing is printed.

∑	 The	minus	sign	in	the	specification	causes	the	string	to	be	
printed	as	left	justified.

 The following program illustrates the use of the %s
conversion	specifier.

#include <stdio.h>

int main()

{

 char s[]=“Hello, World”;

 printf(“>>%s<<\n”,s);

 printf(“>>%20s<<\n”,s);

 printf(“>>%-20s<<\n”,s);

 printf(“>>%.4s<<\n”,s);

 printf(“>>%-20.4s<<\n”,s);

 printf(“>>%20.4s<<\n”,s);

 return 0;

}

This program produces the output
>>Hello, World<<

>> Hello, World<<

>>Hello, World <<

>>Hell<<

>>Hell <<

>> Hell<<

 The >> and << symbols are included in this program so
that	 the	 limits	of	 the	output	fields	are	clearly	visible	 in	 the	
output.
 There is another way to print a string. The library function
puts() writes a line of output to the standard output. It
terminates the line with a new line, ‘\n’. It returns an EOF if
an error occurs. It will return a positive number upon success.
The use of puts() is given as follows:

#include <stdio.h>

int main()

{

 char s[]=“Hello, World”;

 puts(s);

 return 0;

}

 The library function sprintf() is similar to printf().
The only difference is that the formatted output is written to
a memory area rather than directly to a standard output. It is
particularly useful when it is necessary to construct formatted
strings in memory for subsequent transmission over a
communications channel or to a special device. Its relationship
with printf() is similar to the relationship between sscanf()
and scanf(). The library function puts() may be used to copy
a string to the standard output, its single parameter is the start
address of the string. puts() writes a new-line character to
standard output after it has written the string.
 The following is a simple example of the use of sprintf()
and puts().

Arrays and Strings 259
#include <stdio.h>
int main()
{
 char buf[128];
 double x = 1.23456;
 int i = 0;
 sprintf(buf,“x = %7.5lf”,x);
 while(i<10)
 puts(buf+i++);
 return 0;
}

The output produced is as follows:
x = 1.23456
= 1.23456
= 1.23456
1.23456
1.23456
.23456
23456
3456
456
56

 If ‘\n’ had been incorporated in the format string of
the sprintf(), the output would have been double-spaced
because the function would have put a new-line character in
the generated string and puts() would then generate a further
new line.

11.3.4 string Input
The following sections will describe the methods of taking
input from the user.

Using %s control string with scanf()
Strings may be read by using the %s conversion with the
function scanf()	 but	 there	 are	 some	 restrictions.	The	 first	
is that scanf() only recognizes a sequence of characters
delimited by white space characters as an external string. The
second is that it is the programmer’s responsibility to ensure
that there is enough space to receive and store the incoming
string along with the terminating null which is automatically
generated and stored by scanf() as part of the %s conversion.
The associated parameter in the value list must be the address
of	the	first	location	in	an	area	of	memory	set	aside	to	store	the	
incoming string.
	 Of	 course,	 a	 field	 width	 may	 be	 specified	 and	 this	 is	
the maximum number of characters that are read in, but
remember that any extra characters are left unconsumed in
the input buffer. A simple use of scanf() with %s conversions
is illustrated in the following program.

int main()
{
 char str[50];
 printf(“Enter a string”);

 scanf(“%s”,str);
 printf(“The string was :%s\n”,str);
 return 0;
}

Output of sample runs:
(a) Enter a string manas
 The string was :manas
(b) Enter a string manas ghosh
 The string was :manas
(c) Enter a string “manas and ghosh”
 The string was : “manas”

	 Dissimilar	 to	 the	 integer,	 float,	 and	 characters,	 the %s
format does not require the ampersand before the variable
str.
 It will also be observed that attempts to quote a string with
internal spaces or to escape the internal spaces (both of which
normally work in the UNIX command environment) did not
work.	C	supports	variable	field	width	or	precision,	e.g.,

printf(“%*.*s”,w,d,str);

prints	the	first d	characters	of	the	string	in	the	field	width	of
w. For example,

int main()
{
 char str[50];
 printf(“\n Enter a string:”);
 scanf(“%s”,str);
 printf(“\n %*.*s\n”,2,3,str);
 return 0;

Specifies that the first
three characters of the
string will be printed.

}

Sample run:
Enter a string:Manas

Man
First three characters of entered string

“Manas” is displayed on the screen.

 As an illustration, the following program converts a
decimal number into its hexadecimal equivalent.

#include <stdio.h>
int main(void)
{
 int n, r, i, a[50];
 char hexdigit[]=“0123456789ABCDEF”;
 printf(“\n Enter the decimal number:\t”);
 scanf(“%d”, &n);
 i=0;
 while(n>0)
 {
 r=n%16;
 a[i]=r;
 i++;
 n=n/16;
 }
 printf(“\n Hexadecimal equivalent is...: \t”);
 for(--i;i>=0;--i)

260 Computer Fundamentals and Programming in C

 printf(“%c”, hexdigit[a[i]]);
 return 0;
}

 Here, at each iteration, remainder of the integer division
of n by 16 is stored as an element of the array variable ‘a’. It
continues until the number ‘n’ becomes 0. After storing the
remainders as elements of the array ‘a’, it is needed to print
the elements in reverse order. When the control comes out of
the while loop the value of ‘i’ would be incremented.
 So it is needed to decrement i by 1 and it has been
performed at the initialization part of the for loop. The
expression hexdigit[a[i]] would print the corresponding
hexadecimal digit at each iteration. If the value stored in a[i]
is 5 then printf(“%c”, hexdigit[5]) would print 5. If the
value stored in a[i] is 13 then printf(“%c”, hexdigit[13])
would print D. The trace of the above program is given below.

n= 28
n=28 i=0 r=12 a[0]=12
n=1 i=1 r=1 a[1]=1
n=0 i=2

 The value of i is 2 when the control is outside the while
loop.	 ‘i’	 becomes	 1	 at	 the	 initialization	 step.	 In	 the	 first	
iteration, hexdigit[1] that is ‘1’ will be printed because the
value stored in a[1] is 1. In the second iteration, hexdigit[0]
that is ‘C’ will be printed because the value stored in a[0]
is 12.
 The above program can be rewritten where the remainders
are stored in the string hexdigit.

#include <stdio.h>
#include <string.h>
int main(void)
{
 int n, r, i;
 char hexdigit[50];
 printf(“\n Enter the decimal number:\t”);
 scanf(“%d”, &n);
 i=0;
 while(n>0)
 {
 r=n%16;
 if(r<10)
 hexdigit[i]=r+48;
 else
 hexdigit[i]=r%10+65;
 i++;
 n=n/16;
 }
 hexdigit[i]=‘\0’;
 printf(“\n Hexadecimal equivalent is...: \t”);
 for(i=strlen(hexdigit)-1;i>=0;--i)
 printf(“%c”, hexdigit[i]);
 return 0;

}

Using scanset
The scanset conversion facility provided by scanf() is a
useful string input method. This conversion facility allows
the programmer to specify the set of characters that are (or
are not) acceptable as part of the string. A scanset conversion
consists of a list of acceptable characters enclosed within
square	brackets.	A	range	of	characters	may	be	specified	using	
notations such as‘a-z’, meaning all characters within this
range. The actual interpretation of a range in this context
is	implementation-specific,	i.e.,	 it	depends	on	the	particular	
character set being used on the host computer. If an actual ‘-’
is	required	in	the	scanset,	it	must	be	the	first	or	last	character	
in	the	set.	If	the	first	character	after	the ‘[’ is a ‘^’ character,
then	the	rest	of	the	scanset	specifies	unacceptable	characters	
rather than acceptable characters.
 The following program shows the use of scansets.

int main()
{
 char str[50];
 printf(“Enter a string in lower case:”);
 scanf(“%[a-z]”,str);
 printf(“The string was : %s\n”,str);
 return 0;
 }

Three sample runs are given below.
(a) Enter a string in lower case: hello world
 The string was: hello world

(b) Enter a string in lower case: hello, world
 The string was: hello

(c) Enter a string in lower case: abcd1234
 The string was : abcd

 In the second case, the character, ‘,’ (comma) is not in
the	 specified	 range.	 Note	 that	 in	 all	 cases,	 conversion	 is	
terminated by the input of something other than a space or
lower-case letter.

Single-line input using scanset with ^
The	circumflex	(^)	plays	an	important	role	while	taking	input.	
For a single-line text input, the user presses the <Return> or
<Enter> key to terminate the string. The maximum number
of characters typed by the user might be 80 because the
screen can print a maximum of 80 characters in a line. All
characters are allowed to be typed as input except ‘\n’. In the
example that follows, the computer takes this (\n) as a clue
indicating that the string has ended.

#include <stdio.h>
int main()
{
 char str[80];
 printf(“Enter a string in lower case”);
 scanf(“%[^\n]”,str);
 printf(“The string was : %s\n”, str);
 return 0;
}

Arrays and Strings 261
Multiline input using scanset
One can use a bracketed string read, %[..] where the square
brackets [] are used to enclose all characters which are
permissible in the input. If any character other than those
listed within the brackets occurs in the input string, further
reading is terminated. Reciprocally, those characters may be
specified	with	the	brackets	which,	if	found	in	the	input,	will	
cause further reading of the string to be terminated. Such input
terminators must be preceded by the caret (^). For example,
if the tilde (~) is used to end a string, the following scanf()
shows how it is coded.

char string [200];

scanf(“%[^~]”, string);

 Then, if the input for string consists of embedded spaces,
no matter what, they will all be accepted by scanf(); and
reading will stop when a tilde (~) is entered. This is illustrated
in the following program and its output.

#include <stdio.h>

int main()

{

 char string [80];

 printf(“Enter a string, terminate with a tilde\

 (~)...”);

 scanf(“%[^~]”, string);

 printf(“%s”, string);

 return 0;

}

Output
Enter a string, terminate with a tilde (~) ... I am

a string. ~

I am a string.

 Though the terminating tilde is not itself included as an
element of the string read, it stays in the ‘read buffer’—the
area of memory designated to store the input—and will be
picked up by the next call to scanf(), even though it is not
required. This is illustrated by the following program and its
output. Here, when the second call to scanf() is executed au-
tomatically, the tilde (~) character is assigned to the character
variables x. The call to putchar() prints the value of x.

#include <stdio.h>
int main()
{
 char string [80];
 char x;
 printf(“Enter a string, terminate with a tilde\
 (~)...”);
 scanf(“%[^~]”, string);

 scanf(“%c”, &x); /* The leftover from the last
scanf is read here. This scanf() does not
wait for the user to enter another char.*/

 printf(“%s”, string);
 putchar(x);
 return 0;
}

Output
Enter a string, terminate with a tilde (~) ... I am a
string. ~
I am a string. ~

 Compile and execute the program. It will be found that
the machine executes the second scanf() without much
fuss. Such dangling characters must be ‘absorbed away’ by
a subsequent call to scanf() with %c, or to getchar() or they
may interfere in unexpected ways with subsequent calls to
scanf() or getchar().

String input using scanf() with conversion specifier
%c
An alternative method for the input of strings is to use
scanf() with the %c conversion which may have a count
associated with it. This conversion does not recognize the
new-line	character	as	special.	The	count	specifies	the	number	
of characters to be read in. Unlike the %s and %[] (scanset)
conversions, the %c conversion does not automatically
generate the string terminating NUL and strange effects will
be noted if the wrong number of characters is supplied. The
following program demonstrates its use.

int main()
{
 char str[10];
 int i;
 while(1)
 {
 printf(“Enter a string of 9 characters:”);
 scanf(“%10c”,str);
 str[9]=‘\0’; /* Make it a string */
 printf(“String was :%s\n”,str);
 if(str[0] == ‘Z’)
 break;
 }
 return 0;
}

The output of the sample runs is given below.
 (a) Enter a string of 9 characters: 123456789
 String was : 123456789
 (b) Enter a string of 9 characters: abcdefghi
 String was : abcdefghi
 (c) Enter a string of 9 characters: abcdefghijklmnopqr
 String was :abcdefghi
 (d) Enter a string of 9 characters: 123456789
 String was :klmnopqr
 (e) Enter a string of 9 characters: ttttttttt
 String was :23456789

262 Computer Fundamentals and Programming in C

 Some	other	points	need	to	be	noted	here.	The	first	is	that,	
contrary to the prompt, 10 characters are being converted.
This is done so that the new-line character at the end of the
input line is also read in; otherwise it would be left in the
input buffer to be read as one of the input characters the
next time round. The effect of providing too many input
characters is that ‘unconsumed’ input characters (including
new-line characters) are left in the input buffer. These will
be ‘consumed’ by the next call to scanf(). If too few input
characters are provided, scanf() hangs (or blocks) until it
gets enough input characters. Both types of behaviour can be
seen in the above example.
 The complexities in using the scanf() function suggest
that it is not really suitable for a reliable, general-purpose
string input.

Using gets()
The best approach to string input is to use a library function
called gets(). This takes the start address of an area of
memory suitable to hold the input as a single parameter. The
complete input line is read in and stored in the memory area
as a null-terminated string. Its use is shown in the program
below.

int main()
{
 char str[150];
 printf(“Enter a string”);
 gets(str);
 printf(“The string was :%s\n”,str);
 return 0;
}

Sample run:
 (a) Enter a string manas
 The string was :manas
 (b) Enter a string manas ghosh
 The string was :manas ghosh

gets() can be implemented using getchar() or scanf() with
%c	conversion	specifier	as	follows:

#include <stdio.h>
int main()
{
 char s[80], ch;
 int i;
 printf(“\n Enter the text:”);
 for(i=0; i<80 ;i++)
 {
 ch=getchar();
 if(ch==‘\n’)
 break;
 s[i]=ch;
 }
 s[i]=‘\0’;
 printf(“\n Entered text is:”);

 puts(s);
 return 0;
}

Be careful not to input more characters than can be stored
in the string variable used because C does not check array
bounds. gets() and puts() functions can be nested. The
following statements can be written in C.

printf(“%s”, gets(s));
puts(gets(s));

sscanf()
There are a variety of library functions for handling input data.
The most useful include sscanf() and the function atoi().
The function sscanf() applies scanf() type conversions to
data held in a program buffer as a single string but not to read
data from standard input. The atoi() function converts a
character string from external decimal form to internal binary
form.
 The use of sscanf() in conjunction with gets() is
illustrated by the following program. The purpose of the
program is to read an integer. Unlike simple uses of scanf(),
input errors are detected and the prompt repeated until a valid
integer is entered.

#include <stdio.h>

int main()

{

 int error;

 char inbuf[256];

 int i;

 char c;

 while(1)

 {

 error = i = 0;

 printf(“Enter an integer”);

 gets(inbuf); /* get complete input line */

 while(inbuf[i] == ‘ ’)

 i++; /* skip spaces */

 if(inbuf[i] == ‘-’ || inbuf[i] == ‘+’)

 i++;

 while((c = inbuf[i++])!=‘\0’)

 /* while string end with NUL */

 {

 if(c>‘9’ || c<‘0’) /* non-digit ? */

 {

 printf(“Non-Numeric Character %c\n”,c);

 error = 1;

 break;

 }

 }

 if(!error) /* was everything OK ? */

 {

Arrays and Strings 263
 int num; /* local variable */

 sscanf(inbuf,“%d”,&num); /* conversion */

 printf(“Number was %d\n”,num);

 break;

 }

 }

 return 0;

}

Sample outputs are shown below:
 (a) Enter an integer a123
 Non-Numeric Character a
 (b) Enter an integer 123a
 Non-Numeric Character a
 (c) Enter an integer 1234.56
 Non-Numeric Character .
 (d) Enter an integer 1234
 Number was 1234
 (e) Enter an integer +43
 Number was 43

 There are some interesting points about this program. The
main	processing	loop	first	skips	any	leading	spaces	pointing	
to	 the	first	 non-blank	character	 in	 the	 input	 text.	An	 initial	
sign is also skipped. After the optional initial sign, all input
characters must be digits until the input string terminating
NUL is encountered. If anything other than a digit, including
trailing blanks, is encountered, the loop is broken and an error
indicator is set. The condition

c = inbuf[i++]

associated with the loop that checks for digits is a typical
piece of C code that does several things in one go. The value
of the expression inbuf[i++] is the next character from the
input buffer inbuf. In the course of shifting of the character,
the variable i is incremented as a side effect. The character
value is assigned to the variable c to be used in the test for
being a digit on the following line, the value of the assignment
expression being, of course, the value assigned. The value of
this expression becomes zero and terminates the loop when
the character in question is the string terminating NUL that is
represented with ‘\0’.
 In practice the code of this program would be incorporated
into	a	user-defined	function	that	might	return	the	value	of	the	
entered integer.
 The function sscanf() is similar to scanf() except that it
has an extra parameter, which is the address of the start of the
memory area that holds the character string to be processed.
The library function atoi() could have been used instead of
sscanf() in this example by changing the appropriate line to
read.

num = atoi(inbuf);

 The function atoi() takes the address of an area of
memory as parameter and converts the string stored at that

location to an integer using the external decimal to internal
binary conversion rules. This may be preferable to sscanf()
since atoi() is a much smaller, simpler, and faster function.
sscanf() can do all possible conversions whereas atoi()

can only do single decimal integer conversions. This type of
function will be discussed in later sections.

String input and output using fscanf() and fprintf()
stdin, stdout, and stderr: Each C program has three I/O
streams.

stdin program stdout

stderr

 The input stream is called standard-input (stdin); the usual
output stream is called standard-output (stdout); and the side
stream of output characters for errors is called standard error
(stderr).	 Internally	 they	occupy	file	descriptors	0,	1,	and	2	
respectively.
 Now, one might think that calls to fprinf() and fscanf()
differ	 significantly	 from	 calls	 to printf() and scanf().
fprintf() sends formatted output to a stream and fscanf()
scans and formats input from a stream. See the following
example.

#include <stdio.h>

int main()

{

 int first, second;

 fprintf(stdout,“Enter two ints in this line: ”);

 fscanf(stdin,“%d %d”, &first, &second);

 fprintf(stdout,“Their sum is: %d.\n”, first + second);

 return 0;

}

	 There	 is	 a	 third	 defined	 stream	 named stderr. This is
associated	with	the	standard	error	file.	In	some	systems	such	
as MSDOS and UNIX, one can redirect the output of the
programs	to	files	by	using	the	redirection	operator.	In	DOS,	
for example, if fl.exe	is	an	executable	file	that	writes	to	the	
monitor,	 then	 it	 can	 be	 redirected	 to	 output	 to	 a	 disk	 file.	
Output that would normally appear on the monitor can thus
be	 sent	 to	 a	file.	Writing	 error	messages	 to stderr can be
done by

fprintf(stderr,“Unable to open for writing”);

 This ensures that normal output will be redirected, but
error messages will still appear on the screen. Observe the
following program.

#include <stdlib.h>

#include <stdio.h>

int main()

264 Computer Fundamentals and Programming in C

{

 int i;

 printf(“Input an integer:”);

 /* read an integer from the standard input stream */

 if(fscanf(stdin,“%d”, &i))

 printf(“The integer read was: %i\n”, i);

 else

 {

 fprintf(stderr,“Error in reading from stdin.\n”);

 exit(1);

 }

 return 0;

}

note

 ∑ One special case, where the null character is not
automatically appended to the array, is when the array
size is explicitly specified and the number of initializers
completely fills the array size.

 ∑ printf() with the width and precision modifiers in the %s
conversion specifier may be used to display a string.

 ∑ The %s format does not require the ampersand before
the string name in scanf().

 ∑ If fewer input characters are provided, scanf() hangs
until it gets enough input characters.

 ∑ scanf() only recognizes a sequence of characters
delimited by white space characters as an external string.

 ∑ While using scanset with scanf(), dangling characters
must be ‘absorbed away’ by a subsequent call to scanf()
with %c or to getchar().

11.3.5 character manipulation in the string
In working with a string, one important point to remember
is that it must be terminated with NUL (\0). The following
program removes all the blank spaces in the character string.

#include <stdio.h>

#include <string.h>

int main()

{

 char a[80],t[80];

 int i,j;

 printf(“\n enter the text\n”);

 gets(a);

 for(i=0,j=0; a[i]!=‘\0’;++i)

 if(a[i]!= ‘ ’)

 t[j++]=a[i];

 t[j]=‘\0’;

 printf(“\n the text without blank spaces\n”);

 puts(t);

 return 0;

}

 Table 11.2 lists the character-handling functions of the
header	file.	Notice	that	except	for	the toupper() and tolower()
functions, all these functions return values indicating true
or false. It may be recalled that in C, true is any non-zero
number and false is zero. The character is seemingly typed
as an integer in these functions. This is because the character
functions are really looking at the ASCII values of the
characters, which are integers.

Table 11.2 Character functions in <ctype.h> where c is the
character argument

Function Description

ialnum(c) Returns a non-zero if c is alphabetic or numeric

isalpha(c) Returns a non-zero if c is alphabetic

scntrl(c) Returns a non-zero if c is a control character

isdigit(c) Returns a non-zero if c is a digit, 0 – 9

isgraph(c) Returns a non-zero if c is a non-blank but printing
character

islower(c) Returns a non-zero if c is a lowercase alphabetic
character, i.e., a – z

isprint(c) Returns a non-zero if c is printable, non-blanks and
white space included

ispunct(c) Returns a non-zero if c is a printable character, but not
alpha, numeric, or blank

isspace(c) Returns a non-zero for blanks and these escape sequences:
‘\f’, ‘\n’, ‘\r’, ‘\t’, and ‘\v’

isupper(c) Returns a non-zero if c is a capital letter, i.e., A – Z

isxdigit(c) Returns a non-zero if c is a hexadecimal character: 0 –
9, a – f, or A – F

tolower(c) Returns the lowercase version if c is a capital letter;
otherwise returns c

toupper(c) Returns the capital letter version if c is a lowercase
character; otherwise returns c

 To see the actual effect of some of these character
manipulation functions, write and run the following program
on the computer. This program counts the number of words
in a string.

#include <stdio.h>
#include <ctype.h>
int main()
{
 char s[30];
 int i=0,count=0;
 printf(“\n enter the string\n”);
 scanf(“%[^\n]”,s);
 while(s[i]!=‘\0’)
 {
 while(isspace(s[i]))

Arrays and Strings 265
 i++;
 if(s[i]!=‘\0’)
 {
 ++count;
 while(!isspace(s[i]) && s[i] != ‘\0’)
 i++;
 }
 }
 printf(“\n NO. of words in the string is %d:”, count);
 return 0;
}

 Here is a short program which illustrates the effect of the
tolower() and toupper() functions. Notice that if a character
is not lower case, the toupper() function does not change the
character; the effect is similar if a character is not a capital
letter. The following program converts a given text into a
capital letter using toupper() function.

#include <stdio.h>

#include <string.h>

int main()

{

 char a[30];

 int i=0;

 printf(“\n enter the string\n”);

 gets(a);

 while(a[i]!=‘\0’)

 {

 a[i]=toupper(a[i]);

 i++;

 }

 a[i]=‘\0’;

 puts(a);

 return 0;

 }

 It should be remembered that there is a difference between
characters and integers. If the character ‘1’ is treated as an
integer, perhaps by writing

int i = ‘1’;

it will probably not get the value 1 in i; it will produce
the value of the character ‘1’ in the machine’s character
set. In ASCII, it is 49. When the numeric value of a digit
character has to be found (or to put it in another way, to
get the digit character with a particular value), it is useful
to remember that in any character set used by C, the values
for the digit characters, whatever they are, are contiguous.
In other words, no matter what values ‘0’ and ‘1’ have,
‘1’ - ‘0’ will be 1 (and, obviously, ‘0’ - ‘0’ will be 0). So, for a
variable c holding some digit character, the expression

c - ‘0’

gives its value. Similarly, for an integer value i, i + ‘0’
gives us the corresponding digit character, as long as 0 <=
i <= 9.

 Just as the character ‘1’ is not the integer 1, the string ‘123’
is not the integer 123. When a string of digits is available, it
can be converted to the corresponding integer by calling the
standard function atoi.

char string[] =“123”;

int i = atoi(string);

int j = atoi(“456”);

11.3.6 string manipulation
C has the weakest character string capability of any general-
purpose programming language. Strictly speaking, there are
no character strings in C, just arrays of single characters that
are really small integers. If s1 and s2 are such ‘strings’, a
program cannot
∑ assign one to the other: s1 = s2;
∑ compare them for collating sequence: s1 < s2
∑ concatenate them to form a single longer string: s1 + s2
∑ return a string as the result of a function
 A set of standard C library functions that are contained
in <string.h>	 provides	 limited	 support	 for	 the	 first	 three.	
By convention, the end of a string is delimited by the non-
printable null character (0 value), but there is no indication
of the amount of memory allocated. Consequently, both user
code and standard library functions can overwrite memory
outside the space allocated for the array of characters.
 The string header, string.h, provides many functions
useful for manipulating strings or character arrays. Some of
these are mentioned in Table 11.3.

Table 11.3 String manipulation functions available in string.h

Function Description

strcpy(s1,s2) Copies s2 into s1

strcat(s1,s2) Concatenates s2 to s1. That is, it appends the
string contained by s2 to the end of the string
pointed to by s1. The terminating null character
of s1 is overwritten. Copying stops once the
terminating null character of s2 is copied.

strncat(s1,s2,n) Appends the string pointed to by s2 to the end
of the string pointed to by s1 up to n characters
long. The terminating null character of s1 is
overwritten. Copying stops once n characters are
copied or the terminating null character of s2
is copied. A terminating null character is always
appended to s1.

strlen(s1) Returns the length of s1. That is, it returns the
number of characters in the string without the
terminating null character.

strcmp(s1,s2) Returns 0 if s1 and s2 are the same.
Returns less than 0 if s1<s2.
Returns greater than 0 if s1>s2.

strchr(s1,ch) Returns pointer to first occurrence ch in s1.

strstr(s1,s2) Returns pointer to first occurrence s2 in s1.

266 Computer Fundamentals and Programming in C

Counting number of characters in a string
The	first	of	these, strlen(), is particularly straightforward.
Its single parameter is the address of the start of the string and
its value is the number of characters in the string excluding
the terminating NUL.
 To demonstrate the use of strlen(), here is a simple
program that reads in a string and prints it out reversed, a
useful thing to do. The repeated operation of this program is
terminated by the user by entering a string of length zero, i.e.,
by hitting the <Return> key immediately after the program
prompt.

#include <stdio.h>
#include <string.h>
int main()
{
 char s[100];
 int len; /* holds length of string */
 while(1)
 {
 printf(“Enter a string”);
 gets(s);
 len = strlen(s); /* find length */
 if(len == 0) break; /* termination condition */
 while(len > 0)
 {
 len--;
 printf(“%c”,s[len]);
 }
 printf(“\n”);
 }
 return 0;
}

 The program operates by printing the characters one
by one, starting with the last non-NUL character of the
string. Notice that ‘len’ will have been decremented before
the output of the character. This is correct since the length
returned by strlen() is the length excluding the NUL but the
actual characters are aggregate members, 0, ..., length–1. The
outputs of this program for different sample runs are

 (a) Enter a string 1234
 4321
 (b) Enter a string manas
 Sanam
 (c) Enter a string abc def ghi
 ihg fed cba

 Look at the following program that reads a line of text,
stores it in a string, and prints its length (excluding the new
line at the end).

#include <stdio.h>
int main()
{
 int n, c;
 char line[100];
 n = 0;
 while((c=getchar()) != ‘\n’)
 {

 if(n < 100)
 line[n] = c;
 n++;
 }
 line[n]=‘\0’;
 printf(“length = %d\n”, n);
 return 0;
}

Lastly, here is another version of strlen().

int mystrlen(char str[])
{
 int i;
 for(i = 0; str[i] != ‘\0’; i++)
 {}
 return 0;
}

	 In	this	case,	all	one	has	to	do	is	find	the \0 that terminates
the string. It turns out that the three control expressions of
the for loop do all the work; there is nothing left to do in
the body. Therefore, an empty pair of braces {} are used as
the loop body. Equivalently, a null statement could be used,
which is simply a semicolon as shown.

for(i = 0; str[i] != ‘\0’; i++);
	 Empty	loop	bodies	can	be	a	bit	startling	at	first,	but	they	
are not unheard of.

Copying a string into another
Since C never lets entire arrays to be assigned, the strcpy()
function can be used to copy one string to another. strcpy()
copies the string pointed to by the second parameter into
the	space	pointed	to	by	the	first	parameter.	The	entire	string,	
including the terminating NUL, is copied and there is no check
that	the	space	indicated	by	the	first	parameter	is	big	enough.	
The given code shows the use of the strcpy() function.

#include <string.h>
int main()
{
 char s1[] =“Hello, world!”;
 char s2[20];
 strcpy(s2, s1);
 puts (s2);
 return 0;
}

 The destination string is strcpy’s	first	argument,	so	that	
a call to strcpy mimics an assignment expression, with the
destination on the left-hand side. Note that string s2 must
be	allocated	sufficient	memory	so	that	it	can	hold	the	string	
that	would	be	copied	to	it.	Also,	at	the	top	of	any	source	file,	
the following line must be included

#include <string.h>

that contains external declarations for these functions.
 Since a string is just an array of characters, all string-
handling functions can be written quite simply, using no
technique more complicated than the ones that are already

Arrays and Strings 267
known. In fact, it is quite instructive to look at how these
functions might be implemented. Here is a version of
strcpy.

#include <stdio.h>
#include <string.h>
int main()
{
 char src[30], dest[30];
 int i = 0;
 printf(“\n Enter the source string: ”);
 scanf(“%[^\n]”,src);
 while(src[i] != ‘\0’)
 {
 dest[i] = src[i];
 i++;
 }
 dest[i] = ‘\0’;
 printf(“\n Source string is :%s\n”, src);
 printf(“\n Destination string is : %s\n”, dest);
 return 0;
}

 Its operation is simple. It looks at characters in the src string
one at a time, and as long as they are not \0, assigns them, one
by one, to the corresponding positions in the dest string. On
completion, it terminates the dest string by appending a \0.
After exiting the while loop, i is guaranteed to have a value
one greater than the subscript of the last character in src. For
comparison, here is a way of writing the same code, using a for
loop instead of while loop.

for(i = 0; src[i] != ‘\0’; i++)
 dest[i] = src[i];
dest[i] = ‘\0’;

The above statements can be rewritten using the following
expression:

for(i=0;(dest[i] = src[i]) != ‘\0’;i++);

This is actually the same type of combined operation.

Comparing strings
Another function, strcmp(), takes the start addresses of two
strings as parameters and returns the value zero if the strings
are equal. If the strings are unequal, it returns a negative or
positive	value.	The	returned	value	is	positive	if	the	first	string	
is	greater	than	the	second	string	and	negative	if	the	first	string	
is lesser than the second string. In this context, the relative
value of strings refers to their relative values as determined
by the host computer character set (or collating sequence).
 It is important to realize that two strings cannot be
compared by simply comparing their start addresses although
this would be syntactically valid. The following program
illustrates the comparison of two strings:

#include <stdio.h>
#include <string.h>
int main()

{
 char x[50],y[]=“a programming example”;
 strcpy(x,“A Programming Example”);

 if(strcmp(x,“A Programming Example”) == 0)
 printf(“Equal \n”);
 else
 printf(“Unequal \n”);
 if(strcmp(y,x) == 0)
 printf(“Equal \n”);
 else
 printf(“Unequal \n”);
 return 0;
}

It produces the following output:
Equal
Unequal

Putting strings together
Arithmetic addition cannot be applied for joining of two or
more strings in the manner

string1 = string2 + string3; or
string1 = string2 +”RAJA”;

 For this, the standard library function, strcat(), that
concatenates strings is needed. It does not concatenate two
strings together and give a third, new string. What it really
does is append one string at the end of another. Here is an
example.

#include <stdio.h>
#include <string.h>
int main()
{
 char s[30] =“Hello,”;
 char str[] =“world!”;

 printf(“%s\n”, s);
 strcat(s, str);

 printf(“%s\n”, s);
 return 0;
}

The	first	call	to	printf prints “Hello,”, and the second one
prints “Hello,world!”, indicating that the contents of str have
been appended to the end of s. Notice that s was declared
with extra space, to make room for the appended characters.
 Note that in arithmetic, char variables can usually be
treated like int variables. Arithmetic on characters is quite
legal, and often makes sense.

c = c + ‘A’ - ‘a’;

converts a single, lower-case ASCII character stored in c
to a capital letter, making use of the fact that corresponding
ASCII	letters	are	a	fixed	distance	apart.	The	rule	governing	
this arithmetic is that all chars are converted to int before
the arithmetic is done. Be aware that conversion may
involve a sign-extension; if the leftmost bit of a character is

268 Computer Fundamentals and Programming in C

1, the resulting integer might be negative.
 Therefore, to convert a text into lower case, the following
program can be used:

#include <stdio.h>
int main()
{
 char c;
 while((c=getchar()) != ‘\n’)
 if(‘A’<=c && c<=‘Z’)
 putchar(c+‘a’-‘A’);

/* equivalent statement in putchar(C+32);*/
 else
 putchar(c);
 return 0;
}

Sample run:
TIMES OF INDIA
times of india

 The following program will demonstrate the strncat()
library function:

#include <string.h>
#include <stdio.h>
int main()
{
 char aString1[80] =“RCC Institute of Information

Technology” ,
 aString2[80] =“Oxford University Press”;

 printf(“\n Before the copy...\n”);
 puts(aString1);
 puts(aString2);

 strncat(aString1, aString2, 6);

 printf(“\n After the copy...\n”);
 puts(aString1);
 puts(aString2);
 return 0;
}

Output
Before the copy...
RCC Institute of Information Technology
Oxford University Press
After the copy...
RCC Institute of Information Technology Oxford

Oxford University Press

note

 ∑ Since C never lets entire arrays to be assigned, the
strcpy() function can be used to copy one string to
another.

 ∑ Strings can be compared with the help of strcmp()
function.

 ∑ The arithmetic addition cannot be applied for joining two
or more strings; this can be done by using the standard
library function, strcat().

Some sample programs
One interesting thing: This program tries to prove that a string
is really an array of characters. Note the explicit placement
of the string terminator at the end of the string. Note the
term &str[2]. Remember that str[2] is the third character,
so &str[2] is the address of the third character. Since str
is	 the	 address	of	 the	first	 character, &str[2] effectively is
str	but	with	the	first	two	characters	removed.	Try	replacing
&str[2] with str+2. Does this work? Lastly, notice the use of
the strcpy (string copy) function from the string.h library.

#include <stdio.h>
#include <string.h>
int main()
{
 char str[30];
 str[0]=‘M’;
 str[1]=‘A’;
 str[2]=‘D’;
 str[3]=‘A’;
 str[4]=‘M’;
 str[5]= ‘\0’; /* terminate string with a null */
 printf(“String is %s\n”,str);
 printf(“Part of string is %s\n”,&str[2]);
 strcpy(str,“SIR”);
 printf(“String is %s\n”,str);
 return(0);
}

Sample run:
String is MADAM
Part of string is DAM
String is SIR

 To make sure that what is going on is understood, consider
the following table:

Code Output

printf(“%s?”, str); MADAM

printf(“%s?”, str[1]); Error

printf(“%s?”, &str[1]); ADAM

printf(“%s?”, &str); MADAM

 Some of the following programs will illustrate the
manipulation of strings. The following program toggles the
case of every character in the input string.

#include <stdio.h>
#include <string.h>
int main()
{
 char istr[128]; /* input buffer */
 char tstr[128]; /* translated string here */
 int i;
 int slen; /* string length */
 while(1)
 {

Arrays and Strings 269
 printf(“Enter a string”);
 gets(istr);
 if((slen=strlen(istr))==0)
 break; /* terminate */
 strcpy(tstr,istr); /* make a copy */
 i = 0;
 while(i < slen) /* translate loop */
 {
 if(tstr[i] >= ‘A’ && tstr[i] <= ‘Z’)
 /* upper case */
 tstr[i] += ‘a’-‘A’;
 else if(tstr[i] >= ‘a’ && tstr[i] <= ‘z’)
 /* lower case */
 tstr[i] += ‘A’-‘a’;
 i++; /* to next character */
 }
 printf(“Original string = %s\n”,istr);
 printf(“Transformed string = %s\n”,tstr);
 }
 return 0;
}

Output
Enter string aBDefgXYZ
Original string = aBDefgXYZ
Transformed string = AbdEFGxyz
Enter string ab CD 123
Original string = ab CD 123
Transformed string = AB cd 123

This program can also be written as follows where ‘\0’
character is used as a tool.

#include <stdio.h>

#include <string.h>

int main()

{

 char istr[128]; /* input buffer */

 char tstr[128]; /* translated string here */

 int i;

 /* string length */

 while(1)

 {

 printf(“Enter a string”);

 gets(istr);

 if(strlen(istr)==0) break; /* terminate */
 strcpy(tstr,istr); /* make a copy */
 i = 0;
 while(tstr[i]!=‘\0’) /* translate loop */
 {
 if(tstr[i] >= ‘A’ && tstr[i] <= ‘Z’)
 /* upper case */
 tstr[i] += ‘a’-‘A’;
 else if(tstr[i] >= ‘a’ && tstr[i] <= ‘z’)
 /* lower case */
 tstr[i] += ‘A’-‘a’;
 i++; /* to next character */
 }

 printf(“Original string = %s\n”,istr);
 printf(“Transformed string = %s\n”,tstr);
 }
 return 0;
}

 The following program checks whether a string given
by	the	user	is	a	palindrome	or	not.	In	this	program,	the	first	
character s[0] and the last character s[n-1] are compared.
Then the second character s[1] and the last but one character
s[n-2] are compared, and so on. This process will be
continued up to half the length of the string. If characters are
found to be different during any comparison, then the string
is not a palindrome. Else it is a palindrome.

#include <stdio.h>
#include <string.h>
int main()
{
 int n,i,j,chk=1;
 char s[30];
 printf(“\n Enter the string:”);
 scanf(“%[^\n]”,s);
 n=strlen(s)-1;
 for(i=0,j=n;i<n/2;i++,j--)
 if(s[i]!=s[j])
 {chk=0;
 break;}
 if(chk==1)
 printf(“String is Palindrome”);
 else
 printf(“String is not Palindrome”);
 return 0;
}

 Here, the variable chk is used to check the result of the
comparison. Alternatively, the preceding program can be
implemented as follows:

#include <stdio.h>

#include <string.h>

int main()

{

 int n,i,j;

 char s[30],t[30];

 printf(“\n Enter the string:”);

 scanf(“%[^\n]”,s);

 n=strlen(s)-1;

 for(i=0,j=n;j>=0;i++,j--)

 t[i]=s[j];

 t[i]=‘\0’;

 if(strcmp(s,t)==0)

 printf(“String is Palindrome”);

 else

 printf(“String is not Palindrome”);

 return 0;

}

270 Computer Fundamentals and Programming in C

 In the above example, the string given by the user is
reversed and is stored in another array. Then using the
strcmp() library function, two strings are compared to test
whether they are equal or not. If the outcome of strcmp() is
0, then the string entered by the user is a palindrome.

Sample runs:
 (a) Enter the string : madam
 String is Palindrome
 (b) Enter the string: india
 String is not Palindrome

 The following program deletes a word of a sentence. Here,
the logic used is that each word is extracted from the sentence
into the string w. The words are separated by a space except
the last word, which is terminated by the NUL character. Each
word is compared with the word to be deleted. If there is a
match, then that word will not be concatenated at the target
string t, else it is.

#include <stdio.h>
#include <string.h>
int main()
{
 char s[50],w[20],t[50],d[20];
 int i,j;
 printf(“\n Enter the sentence: \n”);
 gets(s);
 printf(“\n Enter the word to be deleted:”);
 scanf(“%s”,d);
 i=0;
 while(s[i]!=‘\0’)
 {
 j=0;
 while(1)
 {
 if(s[i]==‘ ’||s[i]==‘\0’)
 break;
 w[j++]=s[i++];
 }
 w[j]=‘\0’;
 if(strcmp(w,d)!=0)
 {
 strcat(t,w);
 strcat(t,“ ”);
 }
 if(s[i]!=‘\0’)
 i++;
 }
 printf(“\n After deletion the sentence is as

follows...\n”);
 puts(t);
 return 0;
}

Sample run:
Enter the sentence: Ram is a good boy
Enter the word to be deleted:good
After deletion the sentence is as follows...
Ram is a boy

 The following program takes the name of a person as input
and	prints	the	first	letters	of	the	first	name	and	middle	name	
(if any), and the title as it is. For example, printing Raj Kumar
Santoshi as R.K. Santoshi.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[50],w[20],d[20];

 int i,j;

 printf(“\n Enter the full name :”);

 gets(s);

 i=0;

 while(s[i]!=‘\0’)

 {

 j=0;

 while(1)

 {

 if(s[i]==‘ ’||s[i]==‘\0’)

 break;

 w[j++]=s[i++];

 }

 w[j]=‘\0’;

 if(s[i]==‘ ’)

 {

 printf(“%c”,w[0]);

 printf(“%c”,‘.’);

 }

 if(s[i]==‘\0’)

 printf(“%s”,w);

 if(s[i]!=‘\0’)

 i++;

 }

 return 0;

}

The logic as applied in the previous program is used here too.
Each	word	is	extracted	and	the	first	letter	of	the	word w[0] is
printed. If ‘\0’ is encountered, that word must be the title and
it is printed as it is.

check your Progress
 1. What is the index of the element ‘A’ in the array below?

 char myArray[] = {‘m’, ‘y’, ‘A’, ‘r’, ‘r’, ‘a’, ‘y’};

 Output 2

 2. What will be the output of the following programs?
 (a) #include <stdio.h>

 int main()
 {
 char s1[]=“Oxford”;
 char s2[]=“University”;

Arrays and Strings 271
 s1=s2;
 printf(“%s”,s1);
 return 0;
 }

 Output There is a compilation error that states “it cannot
be	 a	 modifiable	 ‘lvalue’”	 or	 “Incompatible	 types	 in	
assignment”

 (b) #include <stdio.h>
 #include <string.h>
 int main()
 {
 char p[]=“string”;
 char t;
 int i,j;
 for(i=0,j=strlen(p);i<j;i++)
 {
 t=p[i];
 p[i]=p[j-i];
 p[j-i]=t;
 }
 printf(“%s”,p);
 return 0;
 }

 Output No output

 (c) #include <stdio.h>
 int main()
 {
 char names[5][20]={“pascal”,“ada”,“cobol”,“f

ortran”,“perl”};
 int i;
 char *t;
 t=names[3];
 names[3]=names[4];
 names[4]=t;
 for(i=0;i<=4;i++)
 printf(“%s”,names[i]);
 return 0;
 }

 Output Compiler error:“Lvalue required”
Or

“Incompatible types in assignment”
 (d) #include <stdio.h>

 int main()
 {
 int i;
 char a[]=“\0”;
 if(printf(“%s\n”,a))
 printf(“Ok here \n”);
 else
 printf(“Forget it\n”);
 return 0;
 }

 Output Ok here

 (e) #include <stdio.h>
 int main()
 {
 char p[]=“%d\n”;
 p[1] = ‘c’;
 printf(p,65);
 return 0;
 }

 Output A

 (f) #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str1[] = {‘s’,‘o’,‘m’,‘e’};
 char str2[] = {‘s’,‘o’,‘m’,‘e’,‘\0’};
 while(strcmp(str1,str2))
 printf(“Strings are not equal\n”);
 return 0;
 }

 Output
 “Strings are not equal”
 “Strings are not equal”

...

 (g) #include <stdio.h>
 #include <ctype.h>
 int main()
 {
 char p[]=“The Matrix Reloaded”;
 int i=0;
 while(p[i])
 {
 if(!isupper(p[i]++))
 ++i;
 }
 printf(“%d”, i);
 return 0;
 }

 Output 19

11.4 multIdImensIonal arrays
Arrays with more than one dimension are called
multidimensional arrays. Although humans cannot easily
visualize objects with more than three dimensions,
representing multidimensional arrays presents no problem to
computers.

11.4.1 declaration of a two-dimensional array
An array of two dimensions can be declared as follows:

data_type array_name[size1][size2];

Here, data_type is the name of some type of data, such as
int. Also, size1 and size2 are	the	sizes	of	the	array’s	first	
and second dimensions, respectively.
	 Here	is	an	example	of	defining	an	eight-by-eight	array	of	
integers, similar to a chessboard. Remember, because C arrays

272 Computer Fundamentals and Programming in C

are zero-based, the indices on each side of the chessboard
array run from zero through seven, rather than one through
eight. The effect is the same. However, it is a two-dimensional
array of 64 elements which has the following declaration
statement.

int arr[8][8];

11.4.2 declaration of a three-dimensional array
A three-dimensional array, such as a cube, can be declared
as follows:

data_type array_name[size1][size2][size3]

 Arrays do not have to be shaped like squares and cubes;
each dimension of the array can be given a different size, as
follows:

int non_cube[2][6][8];

Three-dimensional arrays, and higher, are stored in the same
basic way as are two-dimensional ones. They are kept in
computer memory as a linear sequence of variables, and the
last index is always the one that varies the fastest (then the
next-to-last, and so on).

11.4.3 Initialization of a multidimensional array
The number of subscripts determines the dimensionality of
an array. For example, x[i] refers to an element of a one-
dimensional array, x. Similarly, y[i][j] refers to an element
of a two-dimensional array, y, and so on.
 Multidimensional arrays are initialized in the same way as
are single-dimension arrays. For example,

(a) int a[6][2] = {

 1,1,

 2,4,

 3,9,

 4,16,

 5,25,

 6,36

 };

 (b) int b[3][5] = {{1,2,3,4,5},

 {6,7,8,9,10},

 {11,12,13,14,15}

 };

 The same effect is achieved by
int b[3][5]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

 Although the commas in the initialization braces are
always required, the inner braces can be omitted. Thus, the
initialization of an array val may be written as

int val[3][4] = {8, 16, 9, 52,

 3, 15, 27, 6,

 14, 25, 2, 10};

The separation of initial values into rows in the declaration
statement is not necessary since the compiler assigns values
beginning with the [0][0] element and proceeds row by row
to	fill	in	the	remaining	values.	Thus,	the	initialization

int val [3][4] = {8, 16, 9, 52, 3, 15, 27, 6, 14, 25,
2, 10};

is equally valid but does not clearly illustrate to another
programmer where one row ends and another begins.
 As illustrated in Fig. 11.3, the initialization of a two-
dimensional array is done in row order. First the elements in
the	first	row	are	initialized,	then	the	elements	in	the	second	
row are initialized, and so on, until the initializations are
completed. This row ordering is also the same as the ordering
used to store two-dimensional arrays. That is, array element
[0][0]	is	stored	first,	followed	by	element [0][1], followed
by element [0][2],	 and	 so	 on.	 Following	 the	 first	 row’s	
elements is the second row’s elements, and so on for all the
rows in the array.
 Using the following rules, braces can be omitted when
initializing the members of multidimensional arrays.
∑ When initializing arrays, the outermost pair of braces

cannot be omitted.
∑ If the initializer list includes all the initializers for the

object being initialized, the inner braces can be omitted.
Consider the following example.

int x[4][2] = {

 { 1, 2 },

 { 3, 4 },

 { 5, 6 }

 };

Initialization
starts with

this element

val[0][0] = 8

val[1][0] = 3

val[2][0] = 14

val[0][1] = 16

val[1][1] = 15

val[2][1] = 25

val[0][2] = 9

val[1][2] = 27

val[2][2] = 2

val[0][3] = 52

val[1][3] = 6

val[2][3] = 10

Fig. 11.3 Storage and initialization of the val[] array

Arrays and Strings 273
 In this example, 1 and 2	initialize	the	first	row	of	the	array
x, and the following two lines initialize the second and third
rows, respectively. The initialization ends before the fourth
row is initialized, so the members of the fourth row default to
0 or garbage depending on the compiler. Here is the result.

x[0][0] = 1;
x[0][1] = 2;
x[1][0] = 3;
x[1][1] = 4;
x[2][0] = 5;
x[2][1] = 6;
x[3][0] = 0;
x[3][1] = 0;

The following declaration achieves the same result.
int x[4][2] = { 1, 2, 3, 4, 5, 6 };

	 Here,	 the	 compiler	 fills	 the	 array	 row	 by	 row	 with	 the	
available initial values. The compiler places 1 and 2 in the
first	row	(x[0]), 3 and 4 in the second row (x[1]), and 5 and
6 in the third row (x[2]). The remaining members of the array
are initialized to zero or garbage value.

11.4.4 unsized array Initializations
If unsized arrays are declared, the C compiler automatically
creates an array big enough to hold all the initializers. This
is called an unsized array. The following are examples of
declarations with initialization.
 (a) char e1[] =“read error\n”;
 (b) char e2[] =“write error\n”;
 (c) int sgrs[][2] =

 {
 1,1,
 2,4,
 3,9,
 4,16,
 };

11.4.5 accessing multidimensional arrays
The elements of a multidimensional array are stored
contiguously in a block of computer memory. In scanning
this block from its start to its end, the order of storage is such
that the last subscript of the array varies most rapidly whereas
the	first	varies	least	rapidly.	For	instance,	the	elements	of	the	
two-dimensional array x[2][2] are stored in the order: x[0]
[0], x[0][1], x[1][0], x[1][1]. Take a look at the following
code.

#include <stdio.h>
int main()
{
 int i,j;
 int a[3][2] = {{4,7},{1,0},{6,2}};
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 2; j++)
 {
 printf(“%d”, a[i][j]);

 }
 printf(“\n”);
 }
 return 0;
}

Since computer memory is essentially one-dimensional with
memory locations running straight from 0 up through the
highest, a multidimensional array cannot be stored in memory
as a grid. Instead, the array is dissected and stored in rows.
Consider the following two-dimensional array.

Row 0 1 2 3

Row 1 4 5 6

Row 2 7 8 9

 Note that the numbers inside the boxes are not the actual
indices of the array, which is two-dimensional and has two
indices for each element, but only arbitrary placeholders to
enable the reader to see which elements correspond in the
following	example.	The	row	numbers	correspond	to	the	first	
index of the array, so they are numbered from 0 to 2 rather
than 1 to 3.
 In the computer, the above array actually ‘looks’ like this.

1 2 3 4 5 6 7 8 9

row 0 row 1 row 2

 Another way of saying that arrays are stored by rows and
that the second index varies fastest, a two-dimensional array
is always thought of as follows:

array_name[row][column]

Every row stored will contain elements of many columns. The
column index runs from 0 to [size – 1] inside every row in
the one-dimensional representation where size is the number
of columns in the array. So the column index changes faster
than the row index as the one-dimensional representation of
the array inside the computer is traversed.
 To illustrate the use of multidimensional arrays, the
elements of the array a2	might	be	filled	in	or	initialized	using	
this piece of code.

int i, j;
for(i = 0; i < 5; i = i + 1)
{
 for(j = 0; j < 7; j = j + 1)
 a2[i][j] = 10 * i + j;
}

 This pair of nested loops sets a[1][2] to 12, a[4][1] to 41,
etc.	Since	the	first	dimension	of a2 is 5,	the	first	subscripting	
index variable, i, runs from 0 to 4. Similarly, the second
subscript varies from 0 to 6.
 The array a2 could be printed out in a two-dimensional
way suggesting its structure, with a similar pair of nested
loops.

274 Computer Fundamentals and Programming in C

for(i = 0; i < 5; i = i + 1)

{
 for(j = 0; j < 7; j = j + 1)
 printf(“%d\t”, a2[i][j]);
 printf(“\n”);
}

 The character \t in the printf() string is the tab
character, which is itself an escape sequence or control code.
To understand this more clearly, the ‘row’ and ‘column’
subscripts could be made explicit by printing them too. So,
the following code could be used.

for(j = 0; j < 7; j = j + 1)
 printf(“\t%d:”, j);
printf(“\n”);
for(i = 0; i < 5; i = i + 1)
{
 printf(“%d:”, i);
 for(j = 0; j < 7; j = j + 1)
 printf(“\t%d”, a2[i][j]);
 printf(“\n”);
}

This last fragment would print
0: 1: 2: 3: 4: 5: 6:

0: 0 1 2 3 4 5 6

1: 10 11 12 13 14 15 16
2: 20 21 22 23 24 25 26
3: 30 31 32 33 34 35 36
4: 40 41 42 43 44 45 46

	 Finally,	there	is	no	reason	to	loop	over	the	rows	first	and	
the columns second; depending on what the user wanted to
do, the two loops could be interchanged, as follows.

for(j = 0; j < 7; j = j + 1)
{
 for(i = 0; i < 5; i = i + 1)
 printf(“%d\t”, a2[i][j]);
 printf(“\n”);
}

 Notice that i	is	still	the	first	subscript	and	it	still	runs	from

0 to 4, and j is still the second subscript and it still runs from

0 to 6.
 It will be found that the program still runs without any
problems. This is because a multidimensional array is
implemented as a big, single-dimensional array. When an
element of the array is referenced, the two indices used are
modified	into	a	single	index	for	the	array.

11.4.6 Working with two-dimensional arrays
The most important application of the two-dimensional array
is	with	a	matrix.	A	matrix	is	defined	as	an	ordered	rectangular	
array of numbers. They can be used to represent systems of
linear equations.

Transpose of a matrix
The transpose of a matrix is found by exchanging rows for
columns, i.e., for

Matrix A = (aij)
the transpose of A is AT=(aji), where i is the row number and
j is the column number.
 For example, the transpose of a matrix A would be given
by

5 2 3 5 4 8
4 7 1 2 7 9
8 9 9 3 1 9

Ê ˆ Ê ˆ
Á ˜ Á ˜= =Á ˜ Á ˜
Ë ¯ Ë ¯

TA A

 In the case of a square matrix (m = n), the transpose can
be used to check if a matrix is symmetric. For a symmetric
matrix, A = AT.

1 2 1 2
2 3 2 3

Ê ˆ Ê ˆ
= = =Á ˜ Á ˜Ë ¯ Ë ¯

TA A A

The	following	program	finds	the	transpose	of	a	matrix.
#include <stdio.h>

int main()

{

 int row,col;

 int i, j, value;

 int mat[10][10], transp[10][10];

 printf(“\n Input the number of rows:”);

 scanf(“%d”, &row);

 printf(“Input number of cols:”);

 scanf(“%d”, &col);

 for(i = 0 ; i < row; i++)

 for(j = 0 ; j < col; j++)

 {

 printf(“Input Value for : %d: %d:”, i+1,j+1);

 scanf(“%d”, &value);

 mat[i][j] = value;

 }

 printf(“\n Entered Matrix is as follows:\n”);

 for(i = 0; i < row; i++)

 {

 for(j = 0; j < col; j++)

 printf(“%d”, mat[i][j]);

 printf(“\n”);

 }

 for(i = 0; i< row; i++)

 {

 for(j = 0; j < col; j++)

 {

 transp[i][j]= mat[j][i];

Arrays and Strings 275
 }
 }
 printf(“\n Transpose of the matrix is as\

follows:\n”);
 for(i = 0; i < col; i++)
 {
 for(j = 0; j < row; j++)
 {
 printf(“%d”, transp[i][j]);
 }
 printf(“\n”);
 }
 return 0;
}

 In the above example, it should be remembered that the
number of both rows and columns must be less than or equal
to 10.

Matrix addition and subtraction
Two matrices A and B can be added or subtracted if and only
if their dimensions are the same, i.e., both matrices have an
identical amount of rows and columns. Take the matrices,

1 2 3 2 1 2
1 0 2 1 0 3

Ê ˆ Ê ˆ
= =Á ˜ Á ˜Ë ¯ Ë ¯

A B

Addition If A and B above are matrices of the same type,
then their sum is found by adding the corresponding elements
aij + bij.
 Here is an example of adding A and B together.

1 2 3 2 1 2 3 3 5
1 0 2 1 0 3 2 0 5

Ê ˆ Ê ˆ Ê ˆ
+ = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

A B

Subtraction If A and B are matrices of the same type, then
their difference is found by subtracting the corresponding
elements aij – bij.
 Here is an example of subtracting matrices.

1 2 3 2 1 2 1 1 1
1 0 2 1 0 3 0 0 1

-Ê ˆ Ê ˆ Ê ˆ
- = - =Á ˜ Á ˜ Á ˜-Ë ¯ Ë ¯ Ë ¯

A B

The following program pertains to matrix addition.

#include <stdio.h>

#include <stdlib.h>

#define row 10

#define col 10

int main()

{

 int row1, col1;

 int row2, col2;

 int i,j;

 float mat1[row][col];

 float mat2[row][col];

 float mat_res[row][col];

 printf(“\n Input the row of the matrix->1:”);

 scanf(“%d”, &row1);

 printf(“\n Input the col of the matrix->1:”);

 scanf(“%d”, &col1);

 printf(“\n Input data for matrix-> 1\n”);
 for(i = 0; i< row1; i++)
 {
 for(j = 0; j<col1; j++)
 {
 printf(“Input Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat1[i][j]);
 }
 }

 printf(“\n Input the row of the matrix ->2:”);
 scanf(“%d”, &row2);

 printf(“\n Input the col of the matrix->2:”);
 scanf(“%d”, &col2);

 printf(“\n Input data for matrix-> 2\n”);
 for(i = 0; i< row2; i++)
 {
 for(j = 0; j<col2; j++)
 {
 printf(“Input Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat2[i][j]);
 }
 }
 printf(“\n Entered Matrix First is:\n”);
 for(i = 0; i < row1; i++)
 {
 for(j = 0; j < col1; j++)
 {
 printf(“%f”, mat1[i][j]);
 }
 printf(“\n”);
 }
 printf(“\n Entered Matrix Two is:\n”);
 for(i = 0; i < row2; i++)
 {
 for(j = 0; j < col2; j++)
 printf(“%f”, mat2[i][j]);
 printf(“\n”);
 }
 if((row1 == row2) && (col1 == col2))
 {
 printf(“\n Addition is possible and”);
 printf(“the result is: \n”);
 for(i = 0; i<row1; i++)
 for(j = 0; j<col1; j++)
 mat_res[i][j] = mat1[i][j]+mat2[i][j];
 for(i = 0; i < row1; i++)
 {

 for(j = 0; j < col1; j++)

 printf(“%f”, mat_res[i][j]);

276 Computer Fundamentals and Programming in C

 printf(“\n”);
 }
 }
 else

 printf(“\n Addition is not possible”);
 return 0;
}

Matrix subtraction can be implemented in a similar way.

Matrix multiplication
When	the	number	of	columns	of	the	first	matrix	is	the	same	
as the number of rows in the second matrix, then matrix
multiplication can be performed.
 Here is an example of matrix multiplication for two 2 × 2
matrices.

() ()
() ()

a b e f ae bg af bh
c d g h ce dg ef dh

+ +Ê ˆ Ê ˆ Ê ˆ
=Á ˜ Á ˜ Á ˜+ +Ë ¯ Ë ¯ Ë ¯

 Here is an example of matrix multiplication for a 3 × 3
matrix.

() () ()
() () ()
() () ()

Ê ˆ Ê ˆ
Á ˜ Á ˜
Á ˜ Á ˜
Ë ¯ Ë ¯

+ + + + + +Ê ˆ
Á ˜= + + + + + +Á ˜

+ + + + + +Ë ¯

a b c j k l
d e f m n o
g h i p q r

aj bm cp ak bn cq al bo cr
dj em fp dk en fq dl eo fr
gj hm ip gk hn iq gl ho ir

 Now let us look at the n × n matrix case, where A has
dimensions m × n and B has dimensions n × p. The product of
A and B is the matrix C, which has dimensions m × p. The ijth
element of matrix C is found by multiplying the entries of the
ith row of A with the corresponding entries in the jth column
of B and summing the n terms. The elements of matrix C are

c11 = a11b11 + a12b21 + ... + a1nbn1

c12 = a11b12 + a12b22 + ... + a1nbn2

cmp = am1b1p + am2b2 p + ... + amnbnp

Note A × B is not the same as B × A.
#include <stdio.h>

#include <stdlib.h>

#define row 10

#define col 10

int main()

{

 int row1, col1;

 int row2, col2;

 int i,j,k;

 float mat1[row][col];

 float mat2[row][col];

 float mat_res[row][col];

 printf(“\n Input the row of the matrix->1:”);

 scanf(“%d”, &row1);

 printf(“\n Input the col of the matrix->1:”);

 scanf(“%d”, &col1);

 printf(“\n Input data for matrix-> 1\n”);

 for(i = 0 ; i< row1; i++)

 {

 for(j = 0 ; j<col1; j++)

 {

 printf(“Input Value for: %d: %d:”, i+1, j+1);

 scanf(“%f”, &mat1[i][j]);

 }

 }

 printf(“\n Input the row of the matrix->2:”);

 scanf(“%d”, &row2);

 printf(“\n Input the col of the matrix ->2:”);

 scanf(“%d”, &col2);

 printf(“\n Input data for matrix-> 2\n”);

 for(i = 0 ; i< row2; i++)

 {

 for(j = 0 ; j<col2; j++)

 {

 printf(“Input Value for: %d: %d:”, i+1, j+1);

 scanf(“%f”, &mat2[i][j]);

 }

 }

 printf(“\n Entered Matrix First is:\n”);

 for(i = 0; i < row1; i++)

 {

 for(j = 0; j < col1; j++)

 printf(“%f”, mat1[i][j]);

 printf(“\n”);

 }

 printf(“\n Entered Matrix Two is: \n”);

 for(i = 0; i < row2; i++)

 {

 for(j = 0; j < col2; j++)

 printf(“%f”, mat2[i][j]);

 printf(“\n”);

 }

 if(col1 == row2)

 {

 printf(“\n Multiplication is possible and the
Result is as follows\n”);

 for(i=0; i<row1; i++)

 for(j=0; j<col2; j++)

 {

 mat_res[i][j] = 0;

 for(k = 0; k < col1; k++)

 mat_res[i][j] += mat1[i][k] * mat2[k][j];

 }

Arrays and Strings 277
 for(i = 0; i < row1; i++)

 {

 for(j = 0; j < col2; j++)

 printf(“%f”, mat_res[i][j]);

 printf(“\n”);

 }

 }

 else

 printf(“\n Multiplication is not possible”);

 return 0;

}

Finding norm of a matrix
The	norm	of	a	matrix	is	defined	as	the	square	root	of	the	sum	
of the squares of the elements of a matrix.

#include <stdio.h>

#include <math.h>

#define row 10

#define col 10

int main()

{

 float mat[row][col], s;

 int i,j,r,c;

 printf(“\n Input number of rows:”);

 scanf(“%d”, &r);

 printf(“\n Input number of cols:”);

 scanf(“%d”, &c);

 for(i = 0 ; i< r; i++)

 for(j = 0 ;j<c; j++)
 {
 printf(“\nInput Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat[i][j]);
 }
 printf(“\n Entered 2D array is as follows:\n”);
 for(i = 0; i < r; i++)
 {
 for(j = 0; j < c; j++)
 {
 printf(“%f”, mat[i][j]);
 }
 printf(“\n”);
 }
 s = 0.0;
 for(i = 0; i < r; i++)
 {
 for(j = 0; j < c; j++)
 {
 s += mat[i][j] * mat[i][j];
 }
 }
 printf(“\n Norm of above matrix is: %f”, sqrt(s));
 return 0;
}

note

 ∑ Multidimensional arrays are kept in computer memory as
a linear sequence of variables.

 ∑ The elements of a multidimensional array are stored
contiguously in a block of computer memory.

 ∑ The number of subscripts determines the dimensionality
of an array.

 ∑ The separation of initial values into rows in the declaration
statement is not necessary.

 ∑ If unsized arrays are declared, the C compiler automatically
creates an array big enough to hold all the initializers.

11.5 array of strIngs: tWo-
dImensIonal character array

A two-dimensional array of strings can be declared as
follows:

<data_type> <string_array_name>[<row_size>]
 [<columns_size>];

 Consider the following example on declaration of a two-
dimensional array of strings.

char s[5][30];

11.5.1 Initialization
Two-dimensional string arrays can be initialized as shown

char s[5][10] ={“Cow”,”Goat”,”Ram”,”Dog”,”Cat”};

which is equivalent to

s[0] C o w \0

S[1] G o a t \0

S[2] R a m \0

S[3] D o g \0

S[4] C a t \0

 Here every row is a string. This mean that, s[i] is a string.
Note that the following declarations are invalid.

char s[5][] ={“Cow”,“Goat”,“Ram”,”Dog”,“Cat”};

char s[][] ={“Cow”,“Goat”,“Ram”,“Dog”,“Cat”};

11.5.2 manipulating string arrays
The following program demonstrates how an individual
string of an array of strings can be used to take input from the
user. As mentioned before, each row (i.e., s[i], if ‘s’ is the
array of strings) of an array of strings is a string.

#include <stdio.h>
int main()

278 Computer Fundamentals and Programming in C

{

 int i;

 char s[10][30], t[30];

 for(i=0;i<10;i++)

 scanf(“%s”,s[i]);

 for(i=0;i<10;i++)

 printf(“\n%s”,s[i]);

 return 0;

}

 The following codes show how arrays of strings may be
manipulated. This program checks whether a number is odd
or even without using any control statement.

#include <stdio.h>

int main()

{

 char s[2][5]={“EVEN”,“ODD”};

 int n;

 printf(“\n enter the number:”);

 scanf(“%d”,&n);

 printf(“\n The number is %s”,s[n%2]);

 return 0;

}

 The following program accepts one line of text and prints
the words in reverse order. For example, if input is ‘Today is
Tuesday’, then output will be ‘Tuesday is Today’.

#include <stdio.h>

#include <string.h>

int main()

{

 char st[25][30],s[80],w[20],d[20];

 int i,j, k=0;

 printf(“\n Enter the Sentence :”);

 gets(s);

 i=0;

 while(s[i]!=‘\0’)

 {

 j=0;

 while(1)

 {

 if(s[i]==‘ ’||s[i]==‘\0’)

 break;

 w[j++]=s[i++];

 }

 w[j]=‘\0’;

 strcpy(st[k],w);

 k++;

 if(s[i]!=‘\0’)

 i++;

 }

 for(k--;k>=0;k--)

 printf(“%s”,st[k]);

 return 0;

}

 The following program sorts an array of strings using
bubble sort. Note here that strcmp() is used to compare the
string. strcpy() is used for interchanging the strings.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[10][30], t[30];

 int i,j,n;

 printf(“\n how many strings:”);

 scanf(“%d”,&n);

 printf(“\n enter the strings:\n”);

 for(i=0;i<n;i++)

 scanf(“%s”,s[i]);

 printf(“\n **starting comparing and sorting**”);

 for(i=0;i<n-1;i++)

 for(j=i+1; j<n; ++j)

 if(strcmp(s[i],s[j])>0)

 {

 strcpy(t,s[i]);

 strcpy(s[i],s[j]);

 strcpy(s[j],t);

 }

 printf(“\n **sorted array**\n”);

 for(i=0;i<n;i++)

 printf(“\n%s”,s[i]);

 return 0;

}

An array is a collection of individual data elements that are ordered, fixed in
size, and homogeneous. When defining an array in a program, three things
need to be specified: the kind of data it can hold, the number of values it
can hold, and its name.
 A one-dimensional array declaration is a type followed by an array
name with a bracketed constant integral expression. The value of the

expression, which must be positive, is the size of the array. It specifies the
number of elements in the array.
 The array subscripts (index) can range from 0 to (size–1). The lower
bound of the array subscripts is 0 and the upper bound is (size –1). An
element can be referenced by the array name and index. At the time of
declaration, the size of the array has to be given; it is mandatory. Otherwise

summary

Arrays and Strings 279

Key terms
Aggregate data type It is an agglomeration of data, of any data type,
that is identified with a single name and can be decomposed and related
by some defined structure.

Array identifier It is the name assigned to an array.

Array initialization It is the procedure of assigning value to each
element of an array.
Array of strings It is an array that contains strings as its elements.

Array It is a collection of individual data elements that is ordered, fixed
in size, and homogeneous.

Concatenation of strings It is a kind of string manipulation where one
string is appended to another string.

Homogeneous data Data of same kind or same data type is called
homogeneous data.

Index of an array It is an integer constant or variable ranging from 0 to
(size – 1).

library functions Pre-written functions, provided with the C
compiler,which can be attached to user written programs to carry out some
task are called library functions.

multidimensional array It is an array that is represented by a name and
more than one index or subscript.

One-dimensional array It is an array that is represented by a name and

a single index or subscript.

Scalar variable It is a single variable whose stored value is an atomic
data type.

Scanset It is a conversion specifier that allows the programmer to specify
the set of characters that are (or are not) acceptable as part of the string.

Size of array It is the number of elements in an array.

Stderr The side stream of output characters for errors is called standard-
error.

stdin It is standard input stream that is used to receive and hold input
data from standard input device.

Stdout It is standard output stream that is used to hold and transfer
output data to standard output device.

String compare A kind of string manipulation where two strings are
compared to primarily find out whether they are similar or not.

String copy A kind of string manipulation where one string is copied
into another.

String manipulation Carrying out various operations like comparing,
appending, copying, etc. among strings is called string manipulation.

String It is a one-dimensional array of characters that contain a NUL
at the end.

frequently asKed questIons
1. Why is it necessary to give the size of an array in an array
declaration?
 When an array is declared, the compiler allocates contiguous memory for all the
elements of the array. The size must be known to allocate the required space at
compile time. Thus, the size must be specified.

2. Why do array subscripts start at 0 instead of 1?
 It can make array subscripting somewhat faster. Two facts are known
about an array. First, an array name say arr always designates the
base address of the array. Second, address of ith element of arr is given
by &arr[i], which is eventually (arr + i). The base address is the
address of the first element which is the address of the first element
&a[0]. This means that both arr and &a[0] hold the same value which
is the address of the first element of the array. To carry the expression

(arr+i), same equivalence for all the elements of the array, the subscript
of the first element must be 0. Having the subscript to start at 0 simplifies
scaling a bit for the compiler.

3. Why do we have a null character (‘\0’ or NUL) at the end of a string?
 A string is not a data type but a data structure. This means that its
implementation is logical not physical. The physical data structure is the
array in which string is stored. Since string, by definition, is a variable
length structure, it is needed to identify the logical end of the data within the
physical structure.

4. If a string str contains a string literal “Oxford University

Press”, then is it legal to print the string using the statement
printf(str);?
 Yes. It prints Oxford University Press on the screen.

the compiler generates an error. No variables are allowed as the size of the
array.
 C never checks whether the array index is valid—either at compile
time or when the program is running. Array elements are initialized using
the assignment operator, braces, and commas. Single operations, which
involve entire arrays, are not permitted in C.
 Strings are an array of characters terminated by ‘\0’. Character arrays
or strings allow a shorthand initialization. Although C does not have a string

data type, it allows string constants. There are a set of input and output
functions in C suitable for handling strings. The manipulation of strings can
be carried out with the help of several functions provided in the string.h
file. Arrays can also be formed with strings. These are categorized as two-
dimensional arrays.
 Arrays with more than one dimension are called multidimensional
arrays. An array of two dimensions can be declared by specifying the data
type, array name, and the size of the rows and columns.

280 Computer Fundamentals and Programming in C

exercIses

 1. What is an array? What type and range must an array subscript have?

 2. What does the array name signify?

 3. Can array indexes be negative?

 4. Illustrate the initialization of one-dimensional arrays, two-dimensional
arrays, and strings.

 5. Demonstrate the storage of two-dimensional arrays in memory with
the help of a diagram.

 6. Write a program to find the inverse of a square matrix.

 7. Write a program to find the determinant of a matrix.

 8. What is null character?

 9. What is the difference between strcat() and strncat()?

 10. Write the characteristics of array in C.

 11. In what way does an array differ from an ordinary variable?

 12. Take input from the user in a two-dimensional array and print the row-
wise and column-wise sum of numbers stored in a two-dimensional
array.

 13. What is the difference between scanf() with %s and gets()?

 14. What is the difference between character array and string?

 15. Write C programs for the following.

 (a) Store a list of integer numbers in an array and print the following:

 (i) the maximum value

 (ii) the minimum value

 (iii) the range

 Hint: This is computed as maximum-minimum.

 (iv) the average value

 Hint: To compute this, add all the numbers together into Sum
and count them all in Count. The average is Sum/Count.

 (b) Swap the kth and (k+1)th elements in an integer array. k is given
by the user.

 (c) Find the binary equivalent of an integer number using array.

 (d) Find similar elements in an array and compute the number of
times they occur.

 (e) Find the intersection of two sets of numbers.

 (f) Enter n numbers and store in an array and rearrange the array
in the reverse order.

 (g) Sort the numbers stored in an array in descending order.

 (h) Arrange the numbers stored in an array in such a way that the
array will have the odd numbers followed by the even numbers.

 (i) Find the frequency of digits in a set of numbers.

 (j) Remove duplicates from an array.

 (k) Merge two sorted arrays into another array in a sorted order.

 (l) Compare two arrays containing two sets of numbers.

 (m) Rearrange an array in reverse order without using a second
array.

 16. Write a C program to read a text and count all the occurrences of a
particular letter given by the user.

 17. Write a C program that will capitalize all the letters of a string.

 18. Write a C program to check whether a string given by the user is a
palindrome or not.

 19. Write a C program that counts the total numbers of vowels and their
frequency.

 20. Write a C program to remove the white spaces (blank spaces) from a
string.

 21. Write a C program to print a sub-string within a string.

 22. Write a C program that will read a word and rewrite it in alphabetical
order.

 23. Write a C program that deletes a word from a sentence. Note that the
word may appear any number of times.

 24. Write a C program that will analyze a line of text and will print the
number of words, the number of consonants, and the number of
vowels in the text.

 25. Write a C program to find a string within a sentence and replace it with
another string.

 26. Write a C program that will insert a word before a particular word of a
sentence.

 27. Write a C program that takes the name of a person as input and prints
the name in an abbreviated form, e.g., Manas Ghosh as M.G.

 28. Write a C program that reads in a string such as ‘20C’ or ‘15F’ and
outputs the temperature to the nearest degree using the other scale.

 29. Write a C program that takes the name of a person as input and prints
the first letter of the first name and middle name (if any), and the title as
it is, e.g., Raj Kumar Santoshi as R.K. Santoshi.

 30. Write a C program that reads a line of text and counts all occurrences
of a particular word.

 31. Write a program to convert each character of a string into the next
alphabet and print the string.

 32. Write a program that accepts a word from the user and prints it in the
following way.

 For example, if the word is COMPUTER, the program will print
it as

 C

 C O

 C O M

 C O M P

 C O M P U

 C O M P U T

 C O M P U T E

 C O M P U T E R

Arrays and Strings 281

 1. Write a program that performs the following. The user inputs a number
and then enters a series of numbers from 1 to that number. Your
program should determine which number (or numbers) is missing or
duplicated in the series, if any. For example, if the user entered 5
as the initial number and then entered the following sequences, the
results should be as shown.

 Input Sequence Output
 ----------------- ---------------
 1 2 3 4 5 Nothing bad

 However, if 7 were the highest number, the user would see the
results on the right for the following number entries:

 Input Sequence Output
 ----------------- ---------------
 1 3 2 4 5 Missing 6
 Missing 7

Project questIons
 If 10 were the highest number and the user entered the numbers

shown on the left, note the list of missing and duplicate numbers:

 Input Sequence Output

 ---------------------- ---------------

 1 2 4 7 4 4 5 10 8 2 6 Duplicate 2 (2 times)

 Missing 3

 Duplicate 4 (3 times)

 Missing 9

 The program should check the highest number that the user
inputs to ensure that it does not exceed the size of any array you
might be using for storage.

 2. Given an array of integers, find the subarray with the largest sum.

282 Computer Fundamentals and Programming in C

12.1 INTRODUCTION
Software engineering is a discipline that is concerned with
the construction of robust and reliable computer programs.
Just as civil engineers use tried and tested methods for the
construction of buildings, software engineers use accepted
methods for analysing a problem to be solved, a blueprint or
plan for the design of the solution and a construction method
that minimises the risk of error. The discipline has evolved as
the use of computers has spread. In particular, it has tackled
issues that have arisen as a result of some catastrophic failures
of software projects involving teams of programmers writing
thousands of lines of program code. Just as civil engineers
have learnt from their failures, so have software engineers.
 One of the most important barriers to the development
of better computer software is the limited ability of human

beings to understand the programs that they write. To design a
program, we often use some method of software engineering.
Each approach to software engineering divides the required
task into sub-tasks, modules, sub-systems or processes of
various types. Functions are a natural way of implementing
such designs in C.
 A particular method or family of methods that a software
engineer might use to solve a problem is known as method-
ology. During the 1970s and the 80s, the primary software
engineering methodology was structured programming. Di-
jkstra introduced the term structured programming to refer
to a set of principles (e.g. sequence, selection or branching,
iteration or looping etc.) for writing well-organized programs
that could be more easily shown to be correct. Structured
programming is a style of programming designed to make
programs more comprehensible and programming errors less

C
h
A
p
T
E
rFunctions

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

12

∑ discuss a function and how its use benefits a program
∑ explain how a function declaration, function call, and

function definition are constructed
∑ discuss how variables and arrays are passed to functions
∑ explain what scope rules mean in functions and blocks

and learn about global and local variables
∑ discuss about storage class specifiers for variables
∑ highlight the basic concepts of recursion and discuss

the technique of constructing recursive functions

Functions 283
frequent. Other computer scientists added further principles,
such as modularization (breaking down a program into sep-
arate procedures, such as for data input, different stages of
processing, and output or printing). Modularization makes it
easier to figure out which part of a program may be causing a
problem, and to fix part of a problem without affecting other
parts. It enables programmers to break problems into small
and easily understood components that eventually will com-
prise a complete system.
 The structured programming approach to program design
was based on the following methods:
∑ Solving a large problem, by breaking it into several pieces

and working on each piece separately
∑ Solving each piece by treating it as a new problem that can

itself be broken down into smaller problems
∑ repeating the process with each new piece until each can

be solved directly, without further decomposition
 Structured programming also encourages stepwise
refinement, a program design process described by Niklaus
Wirth, creator of pascal. This is a top-down approach in
which the stages of processing are first described in high-
level terms (like pseudocode), and then gradually elaborated
in their details. That is, the planning activities of problem
solving are carried out in the direction from general to specific.
Structured programming refers to the implementation of the
resulting design. It requires planning and organization, but
a good design will often save much time when it comes to
actual implementation, and the resulting code will be more
elegant and readable. Functions form an important part of top-
down design and structured programming. Using functions
removes the need to repeat identical groups of statements
within programs when the same task must be performed
several times. Also, the use of functions allows libraries of
frequently used software to be built up and re-used in different
programs thus allowing the creation of compact and efficient
programs.

12.2 CONCEPT OF FUNCTION
A function is a self-contained block of program statements
that performs a particular task. It is often defined as a section
of a program performing a specific job. In fact, the concept of
functions, which were originally a subset of a concept called
subroutine, came up because of the following deliberation.
 Imagine a program wherein a set of operations has to be
repeated often, though not continuously, n times or so. If they
had to be repeated continuously, loops could be used. Instead
of inserting the program statements for these operations at so
many places, write a separate program segment and compile
it separately. As many times as it is needed, keep ‘calling’
the segment to get the result. The separate program segment

is called a function and the program that calls it is called the
‘main program’.
 C went one step further; it divided the entire concept
of programming to a combination of functions. C has no
procedures, only functions. scanf(), printf(), main(), etc.
that have been used in programs so far, are all functions. C
provides a lot of library functions; in addition, the programmers
can write their own functions and use them. The special
function called main() is where program execution begins.
When a function is called upon, with or without handing over
of some input data, it returns information to the main program
or calling function from where it was called.

12.2.1 Why are Functions Needed?
The use of functions provides several benefits.
∑ First, it makes programs significantly easier to understand

and maintain by breaking up a program into easily
manageable chunks. Even without software engineering,
functions allow the structure of the program to reflect the
structure of its application.

∑ Second, the main program can consist of a series of function
calls rather than countless lines of code. It can be executed
as many times as necessary from different points in the
main program. Without the ability to package a block of
code into a function, programs would end up being much
larger, since one would typically need to replicate the same
code at various points in them.

∑ The third benefit is that well-written functions may be
reused in multiple programs. The C standard library is
an example of the reuse of functions. This enables code
sharing.

∑ Fourth, functions can be used to protect data. This is
related with the concept of local data. Local data is the
data described within a function. They are available only
within a function when the function is being executed.

∑ Fifth, by using functions different programmers working
on one large project can divide the workload by writing
different functions.

12.3 USING FUNCTIONS
referring back to the Introduction, all C programs contain
at least one function, called main() where execution starts.
Returning from this function, the program execution
terminates and the returned value is treated as an indication
of success or failure of program execution.
 When a function is called, the code contained in that function
is executed, and when the function has finished executing,
control returns to the point at which that function was called.
The program steps through the statements in sequence in the
normal way until it comes across a call to a particular function.
At that point, execution moves to the start of that function—

284 Computer Fundamentals and Programming in C

that is, the first statement in the body of the function. Execution
of the program continues through the function statements until
it hits a return statement or reaches the closing brace marking
the end of the function body. This signals that execution should
go back to the point immediately after where the function was
originally called.
 Functions are used by calling them from other functions.
When a function is used, it is referred to as the ‘called
function’. Such functions often use data that is passed to them
from the calling function. parameters provide the means by
which you pass information from the calling function into the
called function. Only after the called function successfully
receives the data, can the data be manipulated to produce a
useful result.

12.3.1 Function Prototype Declaration
All the header files contain declarations for a range of
functions, as well as definitions for various constants. In a C
program, a user-written function should normally be declared
prior to its use to allow the compiler to perform type checking
on the arguments used in its call statement or calling construct.
The general form of this function declaration statement is as
follows:

return_data_type function_name (data_type variable1,
...);

or
return_data_type function_name (data_type_list);

There are three basic parts in this declaration.
function_name This is the name given to the function and it
follows the same naming rules as that for any valid variable
in C.
return_data_type This specifies the type of data given back
to the calling construct by the function after it executes its
specific task.
data_type_list This list specifies the data type of each of the
variables, the values of which are expected to be transmitted
by the calling construct to the function.
 The following are some examples of declaration statements.
 (a) float FtoC(float faren);
 (b) double power(double, int);
 (c) int isPrime(int);
 (d) void printMessage(void);
 (e) void fibo_series(int);

 A function has a name that both identifies it and is used
to call it for execution in a program. The name of a function
is global. Functions which perform different actions should
generally have different names. The names are generally
created to indicate the particular job that the function does, as
is seen in examples (a) to (e).
 There are two ways for prototyping functions. The most
common method is simply to write the function declaration

with the arguments typed, with or without identifiers for
each, such as example (a) can be written as either of the
following:

float FtoC(float);
float FtoC(float faren);

 The ANSI standard does not require variable names for
the prototype declaration parameters. In fact, readability and
understandability are improved if names are used.
 In modern properly written C programs, all functions
must be declared before they are used. This is normally
accomplished using a function prototype. Function prototypes
were not part of the original C language, but were added by
C89. Although prototypes are not technically required, their
use is strongly encouraged.
 If there are no parameters to a function, you can specify
the parameter list as void, as you have been doing in the
case of the main() function. Actually, when a function takes
no parameters, the inclusion of the word void inside the
parentheses is optional, since it is the default. When a function
returns no value, however, it is required to include void as
the function type, since the default is int. If you are writing
a function that returns an int, technically speaking you could
leave out the type and you should always include it.

note

 ∑ The name of a function is global.
 ∑ It should not be forgotten that a semicolon is required at

the end of a function prototype. Without it, the compiler
will give an error message. Moreover, no function can be
defined in another function body.

 ∑ If the number of arguments does not agree with the
number of parameters specified in the prototype, the
behavior is undefined.

 ∑ The function return type cannot be an array or a function
type. These two cases must be handled by returning
pointers to the array or function.

12.3.2 Function Definition
The collection of program statements in C that describes
the specific task done by the function is called a function
definition. It consists of the function header and a function
body, which is a block of code enclosed in parentheses. The
definition creates the actual function in memory. The general
form of the function definition is as follows:

return_data_type function name(data_type variable1,
data_type variable2,……)
{
 /* Function Body */
}

The function header in this definition is
return_data_type function name(data_type variable1,
data_type variable2,……)

Functions 285

and the portion of program code within the braces is the
function body. Notice that the function header is similar to
the function declaration, but does not require the semicolon
at the end. The list of variables in the function header is also
referred to as the formal parameters.
 One point to be noted here is that the names do not need
to be the same in the prototype declaration and the function
definition. If the types are not the same then the compiler
will generate an error. The compiler checks the types in the
prototype statements with the types in the call to ensure that
they are the same or at least compatible.
 A value of the indicated data type is returned to the
calling function when the function is executed. The return
data type can be of any legal type. If the function does not
return a value, the return type is specified by the keyword
void. The keyword void is also used to indicate the absence
of parameters. So, a function that has no parameters and does
not return a value would have the following header.

void function_name(void)

 A function with a return type specified as void should not
be used in an expression in the calling function. Since it does
not return a value, it cannot sensibly be part of an expression.
Therefore, using it in this way will cause the compiler to
generate an error message.
 There is no standard guideline about the number of
parameters that a function can have. Every ANSI C compliant
compiler is required to support at least 31 parameters in a
function. however, it is considered bad programming style
if a function contains an inordinately high (eight or more)
number of parameters. The number of parameters a function
has also directly affects the speed at which it is called—the
more parameters, the slower the function call. Therefore, if
possible, one should minimize the number of parameters to
be used in a function.
 The statements in the function body, following the function
header, perform the desired computation in a function. To
understand this, consider the following examples.

ExamplE

 1. Write a function that computes xn, where x is any valid number and
n an integer value.

 /***/
 /* Function to compute integral powers of any valid

number. First argument is any valid number, second
argument is power index.*/

 /***/

 double power(double x, int n)
/* function header */

 {
/* function body starts here... */

 double result = 1.0;
/* declaration of variable result */

 for(int i = 1; i<=n; i++)

/* computing xn */
 result *= x;

/* : */
 return result;

/* return value in ‘result’ to
calling function*/

 }
/* function body ends here... */

 In Example 1, the first statement in the function body
declares a variable result that is initialized with the value
1.0. The variable result is local to the function, as are all
automatic variables declared within a function body. This
means that the variable result ceases to exist after the
function has completed execution.
 The calculation is performed in the for loop. A loop
control variable i is declared in the for loop which will
assume successive values from 1 to n. The variable result
is multiplied by x once for each loop iteration. Thus, this
occurs n times to generate the required value. If n is 0, the
statement in the loop will not be executed at all because the
loop continuation condition will immediately fail, and so
result will be 1.0.

ExamplE

 2. Function for converting a temperature from Fahrenheit scale to
Celsius scale.

float FtoC(float faren) /*function header */
{ /* function body starts here…….*/
 float factor = 5.0/9.0;
 float freezing = 32.0;
 float celsius;
 celsius = factor ∗(faren - freezing);
 return celsius;
} /* function body ends here……. */

 Again, refer to Example 2. Here, several variables have
been declared within the function FtoC().They are declared
just like any other variable. They are called automatic local
variables, because: first, they are local: their effect is limited
to the function and second, they are automatic since they are
automatically created whenever the function is called. Also,
their value can be accessed only inside the function, not from
any other function; some authors also use “auto” to indicate
that they are automatically created.
 The scope of variables declared within a function is
limited to its use in the function only. Any change made to
these variables, internally in the function, is made only to the
local copies of the variables. Such variables are created at the
point at which they are defined and cease to exist at the end
of the block containing them. There is one type of variables
that is an exception to this—those declared as static. Static
variables will be discussed later in this chapter.

286 Computer Fundamentals and Programming in C

return statement
The general form of the return statement is as follows:

return expression;

or
return(expression);

where expression must evaluate to a value of the type specified
in the function header for the return value. The expression can
be any desired expression as long as it ends up with a value of
the required type. In Example 1, the return statement returns
the value of result to the point where the function was called.
What might strike immediately is that the variable result, as
stated earlier, ceases to exist on completing the execution of
the function. So how is it returned? The answer is that a copy
of the value being returned is made automatically, and this
copy is available to the return point in the program.
 The expression can also include function calls, if those
functions return a numeric value! The following is a valid
calling statement:

x = power(power(2, 5), 2);

 The inner call to power returns 32, which is then used as
an argument for the outer call to power. This call to power
passes 32 and 2, and power will return the value 1024 which
would get assigned to x.
 If a function returns a value, usually it has to be assigned
to some variable since a value is being returned. If there is no
assignment specified, then is it a valid statement in C? The
answer is yes but may fire a warning message. It is allowed
as the returned value is simply discarded. Let us consider the
following example.

ExamplE
3. #include <stdio.h>
 int sum(int, int);
 int main()
 {
 int a=5, b=10;
 sum(a,b);

The statement is
valid but may elicit
warning message.

 return 0;
 }
 int sum(int x, int y)
 {
 return x+y;
 }

 The following statement may be used instead of the
statement sum(a,b) to avoid the warning message.

(void)sum(a,b)

 Thus the returned value is purposely discarded in this
manner.
 If the type of return value has been specified as void, there
must be no expression appearing in the return statement. It
must be written simply as

return;

 For such a case the return statement may be omitted, if
desired. Also, note that when a function does not return a
value, the return statement is not followed by an expression,
just a semicolon right away. Normally, if there is no return
statement at the end of a function, and execution gets to the
end of the function, a return statement is assumed and control
goes back to the caller.
 A function can only return one value. A function with
return type void does not return any value. There may be
more than one return statement in a function, but only one
return statement will be executed per call to the function.
As an illustration, the following function definition checks
whether a given year is a leap year or not. The year is passed
to that function as an argument. It returns 1 if the year is a
leap year, otherwise it returns 0.

ExamplE

 4.	 Function	definition	to	check	whether	a	given	year	is	a	leap	year	or	
not.

 void leap_yr(int yr)
 {
 if((yr%4==0)&&(yr%100!=0)||yr%400 ==0)
 return 1;
 else
 return 0;
 }

note

 ∑ If a program is compiled that contains a function defined
with a void return type and tries to return a value, an
error message will occur.

 ∑ An error message will be fired by the compiler if a bare
return is used in a function, where the return type was
specified to be other than void.

 Standard C permits main to be defined with zero or two
parameters as demonstrated below:
 (a) int main(void)
 {

 return 0;
 }

 (b) int main()
 {

 return 0;
 }

(c) int main(int argc, char *argv[])
 {

 return 0;

 }

Functions 287
 The value returned by the function main(), after the
program instructions in its body are executed, is 0. Prior to
C99, the return type of main was often omitted, defaulting
to int. This is no longer used. In Microsoft based compiler,
C programs use void main(void). Most of the C compilers
like Borland and GCC always recommend main() properly
returning an int.
 According to the newly ratified update to the C standard in
1999, main() should be defined with a return type of int. The
practical reason to return an int from main() is that on many
operating systems, the value returned by main() is used to
return an exit status to the environment. On Unix, MS-DOS,
and Windows systems, the low eight bits of the value returned
by main() is passed to the command shell or calling program.
This is often used to change the course of a program, batch
file, or shell script.

12.3.3 Function Calling
It may be concluded that a function will carry out its expected
action whenever it is invoked (i.e. whenever the function is
called) from some portion of a program. This means that the
program control passes to that of the called function. Once the
function completes its task, the program control is returned
back to the calling function. Generally, a function will
process information passed to it from the calling statement of
a program and return a single value. A function with returned
type void does not return any value. It only returns the control
from called function to calling function. The general form of
the function call statement (or construct) is

function_name(variable1, variable2,…);

or
variable_name = function_name(variable1,

variable2,…);

 If there are no arguments to be passed in the function, i.e.,
the argument is void, then the calling statement would be

function_name();

or
variable_name = function_name();

 Information will be passed to the function via special
identifiers or expression called arguments or actual
parameters and returned via the return statement.

note
 ∑ One thing to notice here is that even when there are no

parameters, you need to include left and right parentheses
after the name of the function when you call it. If you leave
them out, the code will still compile, but the function never
actually gets called. What happens is that C interprets a
function name without parentheses as the memory ad-
dress where the func-tion is stored, and it is actually legal
to have a number by itself as a statement. The statement
is useless, but valid.

 There are certain rules for parameters which must be keep
in mind while writing a C program which uses one or more
functions. These are listed below.

 ∑ The number of parameters in the actual and formal
parameter lists must be consistent.

 ∑ parameter association in C is positional. This means that
the first actual parameter corresponds to the first formal
parameter, the second matches the second, and so on.

 ∑ Actual parameters and formal parameters must be of
compatible data types.

 ∑ Actual (input) parameters may be a variable, constant, or
any expression matching the type of the corresponding
formal parameter.

 Concepts described above have been taken together in the
following complete program.

ExamplE

 5. Write a C program that uses a function to convert temperature from
Fahrenheit scale to Celsius scale.

 #include <stdio.h>

 float FtoC(float); Function prototype
declaration

 int main(void)

 {

 float tempInF;

 float tempInC;

 printf(“\n Temperature in Fahrenheit scale: ”);

 scanf(“%f”, &tempInF);

 tempInC = FtoC(tempInF); Function calling

 printf(“%f Fahrenheit equals %f Celsius \n”,
tempInF,tempInC);

 return 0;

 }

 /* FUNCTION DEFINITION */

 float FtoC(float faren) Function header

 {
 float factor = 5.0/9.0;
 float freezing = 32.0; Function

body

 float celsius;

 celsius = factor ∗(faren - freezing);

 return celsius;

 }

note

 ∑ The values passed to a function are referred to as
arguments. The parameters of the called function can be
thought of as declared local variables that get initialized
with the values of the arguments. Some textbooks use
the terms formal parameters and actual parameters
instead of parameters and arguments.

288 Computer Fundamentals and Programming in C

 Finally, there are some points which are very relevant as
well as crucial here. When function prototypes are used:
∑ The number and types of arguments must match the

declared types, otherwise the program causes an error
message.

∑ The arguments are converted as if by assignment, to the
declared types of the formal parameters. The argument
is converted according to the following default argument
promotions.

∑ Type float is converted to double.
∑ Array and function names are converted to corresponding

pointers.
∑ When using traditional C, types unsigned short and unsig-

ned char are converted to unsigned int, and types signed
short and signed char are converted to signed int.

∑ When using ANSI C, types short and char, whether signed or
unsigned, are converted to int.

12.4 CALL BY VALUE MECHANISM
The technique used to pass data to a function is known as
parameter passing. Data is passed to a function using one of
the two techniques: pass by value or call by value and pass by
reference or call by reference.
 In call by value, a copy of the data is made and the copy
is sent to the function. The copies of the value held by the
arguments are passed by the function call. Since only copies
of values held in the arguments are passed by the function
call to the formal parameters of the called function, the value
in the arguments remains unchanged. In other words, as only
copies of the values held in the arguments are sent to the
formal parameters, the function cannot directly modify the
arguments passed. This can be demonstrated by deliberately
trying to do so in the following example.

ExamplE
6. #include <stdio.h>
 int mul_by_10(int num); /* function prototype */
 int main(void)
 {
 int result,num = 3;
 printf(“\n num = %d before function call.”, num);
 result = mul_by_10(num);
 printf(“\n result = %d after return from\

function”, result);
 printf(“\n num = %d”, num);
 return 0;
 }
 /* function definition follows */
 int mul_by_10(int num)
 {
 num *= 10;
 return num;
 }

Output
 num = 3, before function call.
 result = 30, after return from function.
 num = 3

 The sample result obtained from this program shows that
the attempt to modify the arguments of the function has
failed. This confirms that the original value of num remains
untouched. The multiplication occurred on the copy of num
that was generated, and was eventually discarded on exiting
from the function. Some more examples have been furnished
on function calls and the passing of arguments using the
‘pass by value’ or ‘call by value’ technique.
 The second technique, pass by reference, sends the
address of the data rather than a copy. In this case, the called
function can change the original data in the calling function.
Unfortunately, C does not support pass by reference.
Whenever the data in the calling function has to be changed,
one must pass the variable’s address and use it to change
the value. here, the values are passed by handing over the
addresses of arguments to the called function, it is possible to
change the values held within these arguments by executing
the function. This appears as if multiple values are returned
by the called function. Details on call by reference will be
presented in the chapter on pointers.

note
 ∑ C supports only call by value mechanism which means

the values of the actual arguments are conceptually
copied to the formal parameters. If it is required to alter
the actual arguments in the called function, the addresses
of the arguments must be passed explicitly.

12.5 WORKING WITH FUNCTIONS
Functions can be used in a program in various ways:
 (a) Functions can perform operations on their parameters

and return a value.
 (b) Functions can manipulate information on their param-

eters and return a value that simply indicates the success
or failure of that manipulation.

 (c) Functions can have no return type that is strictly proce-
dural.

Functions that perform operations on their parameters and
return a value Functions in this category can be classified
into two types.
 1. A function with fixed number of parameters.
 2. A function with variable number of parameters such as

printf(). Writing a function with variable arguments
will be discussed in Chapter 11.

 The following example may be cited as an illustration of a
function with fixed number of parameters.

Functions 289
ExamplE

	 7.	 Write	a	 function	 that	uses	a	 function	 to	 find	 the	greatest	 common	
divisor (GCD) of two integers.

	 	 To	 find	 the	GCD	using	a	 function,	 two	 integers	 should	be	passed	
as parameters. Let them be x and y.	It	is	needed	to	check	whether	
k (for k = 2, 3, 4, and so on) is a common divisor for x and y
until k is greater than x or y. The common divisor is to be stored in
a variable named result. Initially result is 1. Whenever a new
common divisor is found, the value of result is updated with the
new common divisor. When all the possible common divisors from
2 up to x or y	are	checked,	the	value	in	the	variable	result is the
greatest common divisor and it is returned to the calling function.
Here is the implementation.

 #include <stdio.h>

 int GCD(int,int);

 int main(void)

 {

 int nOne, nTwo, n;

 printf(“\n Enter two numbers: ”);

 scanf(“%d %d”, &nOne, &nTwo);

 n=GCD(nOne,nTwo);

 printf(“\n GCD of %d and %d is %d \n”,
nOne,nTwo,n);

 return 0;

 }

 int GCD(int x,int y)

 {

 int result=1, k=2;

 while(k<=x && k<=y)

 {

 if(x%k==0 && y%k == 0)

 result=k;

 k++;

 }

 return result;

 }

Functions that manipulate information on their parameters
and return a value that simply indicates the success or fail-
ure of that manipulation For example, using function we
can determine whether a number is a prime number or not.
If it is a prime number then the function returns 1; otherwise
it returns 0. Definition of the function may be implemented
as follows:

int isPrime(int x)
{
 int d;
 for(d=2;d<=x/2;++d)
 if(x%d==0)
 return 0;
 return 1;
}

 In a C99 compliant compiler, the above function can be
rewritten using the standard header file stdbool.h. The return
type of the function is bool.

bool isPrime(int x)
{
 int d;
 for(d=2;d<=x/2;++d)
 if(x%d==0)
 return false;
 return true;
}

 Using the above function, it is possible to solve the
following problem.

ExamplE

 8. Print the prime factors of a given number using a function.

 A number can always be divided by 1 and the number itself. The
logic behind this program is that we have to divide the number
starting from 2 to n/2 where n is the given number. In any case if the
number becomes divisible by any number in the range 2 to n/2, then
that is considered to be a factor of the number. If that factor is a prime
number then the factor is a prime factor. We can use the function
isPrime() to determine whether the factor is a prime factor or not.

 #include <stdio.h>
 #include <stdbool.h>
 bool isPrime(int);
 int main(void)
 {
 int n, d=2;
 printf(“\n Enter the Number: ”);
 scanf(“%d”,&n);
 printf(“\n Prime factors of %d is....\n”,n);
 for(d=2;d<=n/2;++d)
 if(n%d==0 && isPrime(d))
 printf(“%d ”,d);
 return 0;
 }
 bool isPrime(int x)
 {
 int d;
 for(d=2;d<=x/2;++d)
 if(x%d==0)
 return false;
 return true;
 }

 Sample run:
 Enter the Number: 51
 Prime factors of 51 is....
 3 17

 Function having no return type that is strictly procedural
The function may or may not have parameters. Unlike some

290 Computer Fundamentals and Programming in C

other languages, C makes no distinction between subroutines
(procedures) and functions. In C, there is only the function,
which can optionally return a value. A function with void as
return type simulates the procedure in C.
 We have seen that when we pass the value of a typical
variable to a function, a copy of that value gets assigned to
the parameter. Changing the value of the parameter within
the called function does not affect the value of the local
variable in the calling function. Things are different when an
array is passed to a function. What we are actually passing is
the memory address of the array (this may seem more clear
after we learn about pointers), and if the called function
changes specific entries in the array, these entries remain
changed when control gets back to the calling function. So
when arrays or strings are passed to a function, call by value
mechanism is not followed. Thus any modification made
in the array or string parameter within the called function
will be reflected in the original array or string in the calling
function that was passed to the function. This concept will
be understood more clearly in Chapter 13. As a result in
most of the cases, it is not required to return anything. here
is an example:

ExamplE
9. #include <stdio.h>
 void change(int []);

 int main(void)

 {

 int arr[3] = {1, 2, 3};

 change(arr);

 printf(“Elements are %d, %d, and %d.\n”, arr[0],
arr[1], arr[2]);

 return 0;

 }

 void change(int my_array[])

 {

 my_array[0] = 10;

 my_array[2] = 20;

 return;

 }

 This program will print “Elements are 10, 2, and 20.” to
the screen.
 As a further illustration, Example 10 sorts a set of numbers
stored in an array using a function.

ExamplE

 10. Write a C program that uses a function to sort an array of integers
using bubble sort algorithm.

 Sorting an array in ascending order means that rearranging the
values in the array so that the elements progressively increase in

value from the smallest to the largest. By the end of such a sort,
the	minimum	value	 is	 contained	 in	 the	first	 location	of	 the	array,	
whereas the maximum value is found in the last location of the
array, with values that progressively increase in between.

 This example implements the bubble sort algorithm, which has
already been discussed in the previous chapter. A function called
sort,	takes	two	arguments:	the	array	to	be	sorted	and	the	number	of	
elements in the array.

 #include <stdio.h>
 void sort (int [], int);
 int main (void)

 {

 int i;

 int arr[10] = {3,2,7,0,6,4,9,8,1,5};

 printf (“The array before the sort:\n”);

 for (i = 0; i < 10; ++i)

 printf (“%i”, arr[i]);

 sort (array, 10);

 printf (“\n\nThe array after the sort:\n”);

 for (i = 0; i < 10; ++i)

 printf (“%i”, arr[i]);

 return 0;

 }

 void sort (int a[], int n)

 {

 int i, j, temp;

 for(i = 0; i < n-1; ++i)

 for(j = 0; j < n-i-1; ++j)

 if (a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 Output

 The array before the sort:

 3 2 7 0 6 4 9 8 1 5

 The array after the sort:

 0 1 2 3 4 5 6 7 8 9

12.6 PASSING ARRAYS TO FUNCTIONS
Arrays can also be arguments of functions. When an array is
passed to a function, the address of the array is passed and not
the copy of the complete array. Therefore, when a function is
called with the name of the array as the argument, address to
the first element in the array is handed over to the function.
hence when an array is a function argument, only the address
of the array is passed to the function called. This implies that

Functions 291
during its execution the function has the ability to modify
the contents of the array that is specified as the function
argument. Therefore, the array is not passed to a function by
value. This is an exception to the rule of passing the function
arguments by value. Consider the following example.

ExamplE

11. #include <stdio.h>
 void doubleThem(int [], int);

/* declaration of function */

 int main(void)

 {

 int myInts[10] = {1,2,3,4,5,6,7,8,9,10};

 int size=10;

 printf(“\n\n The given numbers are :”);

 for (i = 0; i < size; i++)

 printf(“%d,”,myInts[i]);

 doubleThem(myInts,size); /* function call */

 printf(“\n\n The double numbers are : ”);

 for (i = 0; i < size; i++)

 printf(“%d,”,myInts [i]);

 return 0;

 }

 /******* function definition *******/

 void doubleThem(int a[], int size)

 {

 int i;

 for(i = 0; i < size; i++)

 {

 a[i] = 2 * a[i];

 }

 }

 Output
 The given numbers are :1, 2, 3, 4, 5, 6, 7, 8, 9,

10,
 The double numbers are : 2, 4, 6, 8, 10, 12, 14,

16, 18, 20,

 It is to be noted that the value of the variable is initialized
with 10 as there are 10 values in the array myInts. The value
of the variable can also be determined by the expression
 sizeof(myInts)/sizeof(myInts[0])

That is,
size=sizeof(myInts)/sizeof(myInts [0]);

ExamplEs

 12.	 Write	 a	 program	 that	 uses	 a	 function	 to	 find	 the	 average	 age	 of	
students of a class chosen for a junior quiz competition.

 #include <stdio.h>

 #define SIZE 50

 float avg_age(int [],int);

 int main(void)

 {

 int i,b[SIZE],n;

 float average;

 printf(“\n How many students? \n%”);

 scanf(“%d”,&n);

 printf(“\n Enter the age of students \n”);

 for(i=0;i<n;i++)

 scanf(“%d”,&b[i]);

 average=avg_age(b,n);

 printf(“\n the average age of students =%f”,
average);

 return 0;

 }

 float avg_age(int a[], int n)

 {

 int j;

 float sum=0.0;

 for(j=0;j<n;j++)

 sum=sum+a[j];

 return sum/n;

 }

	 13.	 Write	a	program	that	uses	a	function	to	find	the	maximum	value	in	an	
array.

 Solution
 #include <stdio.h>

 int maximum(int [],int); /* function prototype */

 int main(void)

 {

 int values[5], i, max;

 printf(“Enter 5 numbers\n”);

 for(i = 0; i < 5; ++i)

 scanf(“%d”, &values[i]);

 max = maximum(values,5); /* function call */

 printf(“\nMaximum value is %d\n”, max);

 return 0;

 }

 /**** function definition ****/

 int maximum(int values[], int n)

 {

 int max_value, i;

 max_value = values[0];

 for(i = 1; i < n; ++i)

 if(values[i] > max_value)

 max_value = values[i];

 return max_value;

 }

292 Computer Fundamentals and Programming in C

 Output
 Enter 5 numbers

 11 15 8 21 7

 Maximum value is 21

 When an array is passed to a function, the address of the
first element (called the base address of an array) is passed
which is nothing but passing arguments by address. In general,
when a one-dimensional array is passed to a function, it
degenerates to a pointer. This will be explained in the chapter
on pointers.
 A local variable max_value is set to the first element of
values, and a for loop is executed which cycles through
each element in values and assigns the maximum item to
max_value. This number is then passed back by the return
statement, and assigned to max in the main() function.
 however, it has to be noted that an array name with an
index number as a function argument will only pass that
particular array element’s value, like all other variables, to
the function called.
 Strings are passed to functions in the same way as are one-
dimensional arrays. By implementing string functions, it will
be shown how strings are passed into and out of functions.
Some examples involving strings as function arguments
follow.

ExamplE

 14. Write a program that uses a function to copy one string into another
without using the strcpy() function available in the standard library
of C.

 Solution
 #include <stdio.h>

 void string_copy(char [], char []);

/* function prototype */

 int main()

 {

 char a[100]; /*** source string ***/

 char b[100]; /*** destination string ***/

 printf(“\n Input source string :”);

 scanf(“%[^\n]”,a); /* read input source string */

 string_copy(b,a); /* function call */

 printf(“\n Destination string : %s\n”,b);

 return 0;

 }

 /*** function definition ***/

 void string_copy(char d[], char s[])

 {

 int i = 0;

 printf(“\n Source string : %s\n”,s);

/* copying the string */

 for (i = 0; s[i] != ‘\0’; i++)

 d[i] = s[i]; /* Copy NUL character to
 destination string */

 }

 Multidimensional arrays can also be passed as arguments
to functions. The simplest type of such an array is the two-
dimensional array. It may be recalled here that when a two-
dimensional array is initialized, the number of rows need not
be specified. A similar technique is adopted while specifying
the two-dimensional array as a formal parameter in a function
header. The first dimension value can be omitted when a
multidimensional array is used as a formal parameter in a
function.
 Of course, the function will need some way of knowing
the extent of the first dimension. For example, the function
header could be written as follows:

double yield(double arr[][4], int index);

 here, the second parameter, index, would provide the
necessary information about the first dimension of the array.
The function can operate with a two-dimensional array
with any value for the first dimension, but with the second
dimension fixed at 4.

ExamplE

 15. Write a program that uses a function to perform addition and
subtraction of two matrices having integer numbers.

 The computation that is carried out in the function is simply a nested
for loop with the inner loop summing elements of a single row and
the outer loop repeating this for every row.

 #include <stdio.h>

 #define row 2

 #define col 3

 void mat_arith(int [][col], int [][col]);

/* function prototype */

 int main()

 {

 int a[row][col], b[row][col],i,j;

 printf(“\n Enter elements of the first matrix.\n”);

 for(i=0; i<row; i++)

/** Read first matrix elements **/

 for(j=0; j<col; j++)

 scanf(“%d”,&a[i][j]);

 printf(“\n Enter elements of the second
 matrix.\n”);

 for(i=0; i<row; i++)

/** Read second matrix elements **/

 for(j=0; j<col; j++)

 scanf(“%d”,&b[i][j]);

 mat_arith(a,b); /** function call **/

 }

Functions 293
 void mat_arith(int a[][col], int b[][col])

 {

 int c[row][col],i,j,choice;

 printf(“\n For addition enter: 1 \n”)

 printf(“For subtraction enter: 2\n”);

 printf(“\nEnter your choice:”);

 scanf(“%d”,&choice);

 for(i=0; i<row; i++)

 for(j=0; j<col; j++)

 {

 if(choice==1)

 c[i][j]= a[i][j] + b[i][j];

 else if(choice==2)

 c[i][j]= a[i][j] - b[i][j];

 else

 {

 printf(“\n Invalid choice. Task not done.”);

 return;

 }

 }

 printf(“\n The resulting matrix is:\n”);

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 printf(“%d”, c[i][j]);

 printf(“\n\n”);

 }

 return;

 }

 Output
 Enter elements of the second matrix.

 1 3 5 7 9 11

 For addition enter: 1

 For subtraction enter: 2

 Enter your choice: 1

 The resulting matrix is:

 3 7 11

 14 17 21

 Till now, the function definition was always placed after
the main program. In fact, C allows the function definition
to be placed ahead of the main program. In such a case, the
function prototype is not required.

12.7 SCOPE AND EXTENT
The region of the program over which the declaration of an
identifier is visible is called the scope of the identifier. The
scope relates to the accessibility, the period of existence, and
the boundary of usage of variables declared in a statement
block or a function. These features in turn define whether a
variable is local or global in nature.

12.7.1 Concept of Global and Local Variables
There are two common terms related to the visibility or
accessibility of a variable. They are global and local variables.
Global and local are the terms related with lifetime. Lifetime is
the period during execution of a program in which a variable
or function exists. It will be discussed in detail later in this
section.
 Variables declared within the function body are called
local variables. They have local scope. Local variables are
automatically created at the point of their declaration within
the function body and are usable inside the function body.
These variables exist only inside the specific function that
creates them. They are unknown to other functions and to
the main program. The existence of the local variables ends
when the function completes its specific task and returns to
the calling point. They are recreated each time a function is
executed or called.
 Variables declared outside of all the functions of a
program and accessible by any of these functions are called
global variables. The existence and region of usage of these
variables are not confined to any specific function body.
They are implemented by associating memory locations with
variable names. Global variables are created at the beginning
of program execution and remain in existence all through
the period of execution of the program. These variables are
known to all functions in the program and can be used by
these functions as many times as may be required. They do
not get recreated if the function is recalled. Global variables
do not cease to exist when control is transferred from a
function. Their value is retained and is available to any other
function that accesses them.
 All global variables are declared outside of all the func-
tions. There is no general rule for where outside the func-
tions these should be declared, but declaring them on top of
the code is normally recommended for reasons of scope, as
explained through the given examples. If a variable of the
same name is declared both within a function and outside of
it, the function will use the variable that is declared within it
and ignore the global one. If not initialized, a global variable
is initialized to zero by default. As a matter of style, it is best
to avoid variable names that conceal names in an outer scope;
the potential for confusion and error is too great. Moreover,
the use of global variables should be as few as possible.
Consider the following example.

ExamplE

 16. Write a program that uses a function to swap values stored in two
integer variables to understand the concept of local and global
variables.

 #include <stdio.h>

 void exchange(int, int);

294 Computer Fundamentals and Programming in C

 int main()

 { /* main() program body starts here...*/

 int a, b; /* local variables */

 a = 5;

 b = 7;

 printf(“ In main: a = %d, b = %d\n”, a, b);

 exchange(a, b);

 printf(“\n Back in main:”);

 printf(“a = %d, b = %d\n”, a, b);

 return 0;

 } /* main() program body ends here... */

 void exchange(int a, int b)

 { /* function body starts here...*/

 int temp; /* local variable */

 printf(“\n In function exchange() before\ change:
just received from main... a=%d\ and
b=%d”,a,b);

 temp = a;

 a = b;

 b = temp; /* interchange over */

 printf(“\n In function exchange() after change:”);

 printf(“a = %d, b = %d\n”, a, b);

 } /* function body ends here...*/

 Output
 In main: a = 5, b = 7

 In function exchange() before change: just received
from main... a=5 and b=7

 In function exchange() after change: a = 7, b = 5

 Back in main: a = 5, b = 7

 The results depict that the above program code failed to
exchange the numbers between the variables in the function
main(). This happened because, first, the variables a and
b in main() and that within the function exchange() are not
the same. The variables a and b within exchange() are local
variables and are created when the function is invoked. This
means program control is taken over by the function, and the
variables are killed the moment program control returns to the
main() program. While calling the exchange() function from
main(), copies of the values held by a and b, which are local
to main(), are handed over to separate variables a and b that
are local to the function exchange(). Within this exchange()
function, the task of exchanging the values between its local
variables a and b is carried out successfully, as is evident
from the messages displayed when the program is run. This
in no way affects the values in variables a and b in the main().
Moreover, this exchanged copy of values in the variables is
not passed back from the function exchange() to the variables
in main(). hence, the values in the variables a and b within
main() remained untouched and unchanged. This demonstrates

the difference in the scope of the local variables in main() and
the function exchange(). One way to affect an interchange
could be by declaring the variables that are to be exchanged,
that is a and b, as global variables only. This is demonstrated
by the following example program code.

ExamplE

17. #include <stdio.h>

 void exchange(void);

 int a, b; /* declaration of global variables */

 int main()

 { /* main program starts here...*/

 a = 5;

 b = 7;

 printf(“ In main: a = %d, b = %d\n”, a, b);

 exchange(); /* function call, no parameters are
passed */

 printf(“\n Back in main:”);

 printf(“a = %d, b = %d\n”, a, b);

 return 0;

 } /* main program ends here */

 void exchange(void)

 { /* function body starts here...*/

 int temp; /* decl. of local variable in function*/

 printf(“\n In function exchange() before\ change:
just received from\

 main... a=%d and b=%d”,a,b);

 temp = a;

 a = b;

 b = temp; /* interchange over */

 printf(“\n In function exchange() after change:”);

 printf(“a = %d, b = %d\n”, a, b);

 } /* function body ends here*/

 Output

 In main: a = 5, b = 7

 In function exchange() before change: just received
from main... a=5 and b=7

 In function exchange() after change: a = 7, b = 5

 Back in main: a = 7, b = 5

 The example shows that for global variables the interchange
is possible by following the scope rules. By using pointers in
functions, the same job can be done more effectively and the
function call technique is known as call by reference, more
strictly, call by address. This will be discussed in Chapter 13.

Functions 295

note
 ∑ Rather than passing variables to a function as arguments, it

is possible to make all variables global. But it is not recom-
mended, as global variables break the normal safeguards
provided by functions. Using parameter passing mechanism
and declaring local variables as needed, C offers provision
for making functions independent and insulated from each
other, including the necessity of carefully designating the
type of arguments needed by a function, the variables used
in the function, and the value returned. Using only global
variables can be especially disastrous in larger programs
that have many user-defined functions. Since a global vari-
able can be accessed and changed by any function follow-
ing the global declaration, it is a time-consuming and frus-
trating task to locate the origin of an erroneous value.

 ∑ But it is not the case that use of global variables is always
disadvantageous. There are certain instances where use of
global variables is advocated. Global variables, however,
are extremely useful in creating array of data and constants
that must be shared between many functions. If many func-
tions require access to a group of arrays, global variables
allow the functions to make efficient changes to the same
array without the need for multiple arrays passing.

12.7.2 Scope Rules
The region of the program over which the declaration of an
identifier is accessible is called the scope of the identifier. The
scope relates to the accessibility, the period of existence, and
the boundary of usage of variables declared in a program.
Scopes can be of four types.
∑ block
∑ file
∑ function
∑ function prototype
 The following sections describe the scope associated with
variables.

Block scope
This means that the identifier can only be used in the block in
which it is declared. These variables are created at the point
of their declaration inside the block and cease to exist outside
it. Outside the block, these variables are unknown and non-
existent. For blocks within blocks, termed as nested blocks,
variables declared outside the inner blocks are accessible to
the nested blocks, provided these variables are not redeclared
within the inner block. The redeclaration of variables within
the blocks bearing the same names as those in the outer
block, masks the outer block variables while executing the
inner blocks.
 In general, it is always better to use different names for
variables not common to outer and inner blocks to avoid
unforced errors. The following are some examples illustrating
the scope rules in blocks.

ExamplE

	 18.	 Write	a	program	that	illustrates	the	scope	rules	in	blocks.
 #include <stdio.h>

 int main()

 {

 int x= 3; /* variable declaration in outer
 block */

 printf(“\n in outer block x = %d before\ executing
inner block”, x);

 {

 int x= 45; /* variable declaration in inner
 block */

 printf(“\n in inner block x = %d”, x);

 }

 printf(“\n in outer block x = %d after executing\
inner block”, x);

 return 0;

 }

 Output
 in outer block x = 3 before executing inner block

 in inner block x = 45

 in outer block x = 3 after executing inner block

 This program shows that because the variable x has been
redeclared as 45 in the inner block, a local variable gets
created in the inner block. This variable is only accessible
and known to the inner block.
 Functions are considered as named block. Variables
declared within a function block can be used anywhere within
the function in which they are defined. The variable x declared
in outer block has the block scope. Like blocks, functions
can either be defined in parallel, where they are placed one
after the other and a function can be called from any other
function. But C does not allow functions to be nested, i.e. a
function cannot be defined within another function definition.

Function scope
This applies only to labels. Normally labels are used with goto
statement. It simply means that labels can be used anywhere
within the function in which they are defined. This includes
use before definition.

File scope
This means that the identifier can be used anywhere in the
current file after the declaration of the identifier. This applies
to functions and all variables declared outside functions.
File scope variable is also known as global variable. The
illustration involving global or file scope variables has already
been discussed in Section 12.7.1. File scope identifiers may be
hidden by the block scope declarations having same name.

296 Computer Fundamentals and Programming in C

Function prototype scope
In order to improve readability and understandabilty, function
prototypes are usually written with ‘dummy’ variable names.
For example

double max(double x, double y);

 The identifiers ‘x’ and ‘y’ have function prototype scope,
which terminates at the end of the prototype. This allows any
dummy parameter names appearing in a function prototype to
disappear at the end of the prototype. Consider the following
program:

#include <stdio.h>
int main(void)
{
 void show(int x);
 int x=10;
 show(x);
 return 0;
}
void show(int x)
{
 printf(“\n %d”,x);
}

 The int variable name does not conflict with the parameter
name because the parameter went out of scope at the end of
the prototype. however, the prototype is still in scope.

note

 ∑ In standard C, formal parameters in the function
definition have the same scope as variables declared at
the beginning of the block that forms the function body
and therefore they cannot be hidden or redeclared by
declarations in the body. The following function definition,
if used, will give error message at compile time.

 int sum(int x, int y)
 {
 int x=5;
 return x+y;
 }

 ∑ Compilation error message displayed
 In function ‘sum’:
 error: ‘x’ redeclared as different kind of symbol
 note: previous definition of ‘x’ was here

 How long memory will be associated with identifiers is
known as extent or lifetime of a data object. The storage
duration of the identifier determines its lifetime, either static
duration (global lifetime) or automatic duration (local
lifetime). The duration of an object describes whether its
storage is allocated only once, at program start-up, or is
more transient in its nature, being allocated and freed as
necessary. Static duration means that the object has its storage
allocated permanently, i.e. storage is allocated at or before

the beginning of program execution and the storage remain
allocated until program termination. Automatic duration
means that the storage is allocated and freed as necessary.
 The following rules specify whether an identifier has
global (static) or local (automatic) lifetime:

Global lifetime All functions have global lifetime, as do the
identifiers declared at the top level (that is, outside all blocks
in the program at the same level of function definitions).

Local lifetime An object (unless it is declared as static) is
said to have local lifetime when it is created on entry to a
block or function and destroyed on exit from the block or
function. Formal parameters and variables declared at the
beginning of the block may have local lifetime depending on
the place of declaration.
 The data object created with the use of special library
functions such as malloc() or calloc() have dynamic
duration and the storage remains allocated from the time of
creation at run time until program termination or until a call
to special library function free().

12.8 STORAGE CLASSES

12.8.1 Storage Class Specifiers for Variables
In C, the variables are declared by the type of data they can
hold. The name of a variable is associated with a memory
location within the computer where the value assigned
to the variable is stored in the form of bits. During the
execution of the program, these variables may be stored in
the CpU registers or the primary memory of the computer.
To indicate where the variables would be stored, how long
they would exist, what would be their region of existence,
and what would be the default values, C provides four
storage class specifiers that can be used along with the data
type specifiers in the declaration statement of a variable.
These four storage class specifiers are automatic, external,
register, and static.
 The storage class specifier precedes the declaration
statement for a variable. The general form of the variable
declaration statement that includes the storage class specifier
is given as follows:

storage_class_specifier data_type variable_name;

The storage class – auto
By default, all variables declared within the body of any
function are automatic. The keyword auto is used in the
declaration of a variable to explicitly specify its storage class.
For example, the following declaration statement within a
function body

auto char any_alpha;

specifies that any_alpha is a variable that can hold a character
and its storage class is automatic. Even if the variable

Functions 297
declaration statement in the function body does not include
the keyword auto, such declared variables are implicitly
specified as belonging to the automatic storage class. In
fact, all local variables in a function, by default, belong to
automatic storage class. Their region of use is limited within
the function body and vanishes when the function completes
its specific task and returns to the main program from where
the function was invoked. These variables are stored in the
primary memory of the computer.
 Local variables declared within nested blocks in a function
belong by default to the automatic storage class.

ExamplE

 19. Write a C program that demonstrates the use of the automatic
storage class variable.

 #include <stdio.h>
 int main(void)
 {
 auto int a =5;
 printf(“\n a = %d”,a);
 {
 int a = 10;
 printf(“\n a = %d”,a);
 printf(“\n i = %d”,i);
 }
 printf(“\n a = %d”,a);
 return 0;
 }

 Output
 a = 5
 a = 10
 i = 4199232
 a = 5

 Notice that the variable a in the outer block is declared as
auto but the variable a in the inner block is declared without
auto keyword. The variable a in the inner block also has
auto storage class by default. Since this local variable i is
not initialized within the inner block, the value held by it is
unpredictable and thus garbage. This is printed as 4199232.
When inner block ends, the existence of both the variables a
and i ends. So, outside the inner block, the value of a is printed
as 5. Any attempt to access the variable i outside the inner
block causes a compiler error. This example demonstrates
the accessibility, existence, effect of initialization, and
garbage default value of the automatic storage class or the
local variable.

The storage class – register
Values stored in registers of the CpU are accessed in much
lesser time than those stored in the primary memory. To
allow the fastest access time for variables, the register
storage class specifier is used. The keyword for this storage
class is register. The variables thus specified are stored in

some register of the CpU. In most C compilers, the register
specifier can only be applied to int and char type variables;
however, ANSI C has broadened its scope. Arrays cannot
be stored in a register but they may still receive preferential
treatment by the compiler depending on C compiler and the
operating system under which it is running.
 The existence of the variables with the storage class
specifier register is restricted within the region of a function
or a block where it has been declared and exists as long as the
function or block remains active. The default value within this
variable is unknown, which is interpreted as garbage. Storage
class of a global variable cannot be specified as register.

note

 ∑ Global variables with register storage class are not allowed.
 ∑ In C, it is not possible to obtain the address of a register

variable by using ‘&’ operator.
 ∑ In addition, the only storage class specifier that can be

used in a parameter declaration is register.

The storage class – static
Two types of variables are allowed to be specified as static
variables: local variables and global variables. The local
variables are also referred to as internal static variables
whereas the global variables are also known as external static
variables. The default value of a static variable is zero.
 To specify a local variable as static, the keyword static
precedes its declaration statement.
 A static local variable is allotted a permanent storage
location in the primary memory. This variable is usable within
functions or blocks where it is declared and preserves its
previous value held by it between function calls or between
block re-entries. however, once a function is invoked, the
static local variable retains the value in it and exists as long
as the main program is in execution.
 The external static variables in a program file are declared
like global variables with the keyword static preceding its
declaration statement. These static variables are accessible
by all functions in the program file where these variables
exist and are declared. The external static variables are not
available to functions defined earlier in the same file or not
accessible to functions defined in other files although these
may use the extern keyword. These variables exist throughout
the period of the main program execution. Such variables get
stored in the primary memory.

ExamplE

 20. Write a C program that illustrates the use of local static variables and
functions.

 #include <stdio.h>
 int main()
 {

298 Computer Fundamentals and Programming in C

 void show(void);
 printf(“\n First Call of show()”);
 show();
 printf(“\n Second Call of show()”);
 show();
 printf(“\n Third Call of show()”);
 show();
 return 0;
 }
 void show(void)
 {
 static int i;
 printf(“\n i=%d”,i);
 i++;
 }

 Output
 First Call of show()
 i=0
 Second Call of show()
 i=1
 Third Call of show()
 i=2

The storage class – extern
A program in C, particularly when it is large, can be broken
down into smaller programs. After compiling, each program
file can be joined together to form the large program. These
small program modules that combine together may need
some variables that are used by all of them. In C, such
a provision can be made by specifying these variables,
accessible to all the small program modules, as an external
storage class variable. These variables are global to all the

small program modules that are formed as separate files.
The keyword for declaring such global variables is extern.
Such global variables are declared like any other variable in
one of the program modules while the declaration of these
variables is preceded with the keyword extern in all other
combining program modules. The program modules may also
be a function or a block. These variables remain in existence
as long as the program is in execution and their existence
does not terminate upon the exit of a function or a block or a
program module from its state of execution. These variables
are stored in the primary memory and their default value is
zero. Table 12.1 provides a summary of the salient features
of storage class specifiers. The following programs illustrate
the use of the external storage class variable.

ExamplE

21. /***/

 /* Program file: pgm1.c */

 /***/

 #include <stdio.h>

 #include “pgm2.c” /*** link program pgm2.c ***/

 int i; /*** external/global decl.**/

 void show(void); /*** function prototype ***/

 int main()

 {

 i=10;

 show(); /* call to function in program file
 pgm2.c */

 printf(“\n Value of i in pgm1.c=%d ”,i);

 return 0;

Table 12.1 Summary of salient features of storage class specifiers

Storage class
specifier

Place of storage Scope Lifetime Default value

auto Primary memory Within the block or function where it
is declared.

Exists from the time of entry in the function or
block to its return to the calling function or to
the end of block.

garbage

register Register of CPU Within the block or function where it
is declared.

Exists from the time of entry in the function or
block to its return to the calling function or to
the end of block.

garbage

static Primary memory For local
Within the block or function where
it is declared.

For global
Accessible within the combination
of program modules/files that form
the full program.

For local
Retains the value of the variable from one
entry of the block or function to the next or
next call.

For global
Preserves value in the program file.

0

extern Primary memory Accessible within the combination of
program modules/files that form the
full program.

Exists as long as the program is in execution. 0

Functions 299
 } /****** pgm1.c file ends ***********/

 /***/

 /* Program file: pgm2.c */

 /***/

 extern int i;

 /***** function definition of show()*********/

 void show() /*** function header ***/

 { /*** fn. body starts..**/

 printf(“\n Value of i in pgm2.c=%d”,i);

 } /*** fn. body ends.. **/

 Output

 Value of i in pgm2.c=10

 Value of i in pgm1.c=10

 Here is another example where the global variable i
is assigned a value in the program file in which the basic
declaration statement and main() are absent. There is a minor
difference between this example and the previous one.

ExamplE
22. /***/
 /* Program file: pgm1.c */
 /***/
 #include <stdio.h>
 #include “pgm2.c” /*** link program pgm2.c ***/
 int i; /*** external/global decl.**/
 void show(void); /*** function prototype ***/
 int main()
 {
 show(); /* call to function in program file pgm2.c */
 printf(“\n Value of i in pgm1.c=%d”,i);
 return 0;
 } /******* pgm1.c file ends***********/
 /***/
 /* Program file: pgm2.c */
 /***/
 extern int i;
 /******* function definition of show() ********/
 void show() /*** function header ***/
 { /*** fn. body starts..**/
 i = 20;
 printf(“\n Value of i in pgm2.c=%d”,i);
 } /*** fn. body ends.. **/

 Output
 Value of i in pgm2.c=20
 Value of i in pgm1.c=20

12.8.2 Storage Class Specifiers for Functions
The only storage class specifiers that may be assigned
with functions are extern and static. Extern signifies that

the function can be referenced from other files, that is, the
function name is exported to the linker. Static signifies that
the function cannot be referenced from other files, that is, the
function name is not exported to the linker. If no storage class
appears in a function definition, extern is presumed.

12.8.3 Linkage
An identifier’s linkage determines which of the references
to that identifier refers to the same object. An identifier’s
linkage is determined by whether it appears inside or outside
a function, whether it appears in a declaration of a function
(as opposed to an object), its storage-class specifier, and the
linkage of any previous declarations of the same identifier
that have file scope. C defines three types of linkages – external,
internal, and no linkage. In general,
 ∑ Functions and global variables have external linkage.

This means they are available to all files that constitute a
program.

 ∑ Identifiers with file scope declared as static have internal
linkage. These are known only within the file in which
they are declared.

 ∑ Local identifiers have no linkage and are therefore known
only within their own block.

 Two declarations of the same identifier in a single file that
have the same linkage, either internal or external, refer to the
same object. The same identifier cannot appear in a file with
both internal and external linkage.

note
 ∑ It is not always necessary to specify both the storage class

and the type of identifiers in a declaration. Storage class
specifiers appearing in declarations outside of functions
are assumed to be extern. In a declaration inside a func-
tion, if a type but no storage class is indicated, the identifier
is assumed to be auto. An exception to the latter rule is
made for functions because functions with storage class
auto do not exist; it is implicitly declared to be extern.

12.9 THE INLINE FUNCTION
C99 has added the keyword inline, which applies to functions.
By preceding a function declaration with inline, the compiler
is instructed to optimize calls to the function. Typically, this
means that the function’s code will be expanded in line, rather
than called. Below is a definition of such inline function.

inline int sum(int x, int y)
{
 return x+y;
}

 The inline designation is only a hint to the compiler,
suggesting that calls to the inline function should be as fast
as possible. The name comes from a compiler optimization

300 Computer Fundamentals and Programming in C

called inline expansion, whereby a call to a function is
replaced by a copy of the function body. This eliminates the
overhead of the function call. There is no guarantee in general
that the compiler will take note of a function being declared
as inline. It is free to ignore the request.

12.10 RECURSION
The formal definition is given below.

A recursive function is one that calls itself directly or
indirectly to solve a smaller version of its task until a
final call which does not require a self-call.

 Recursion is like a top–down approach to problem solving;
it divides the problem into pieces or selects one key step,
postponing the rest. On the other hand, iteration is more of a
bottom–up approach; it begins with what is known and then
constructs the solution step by step.

12.10.1 What is needed for implementing
recursion?

∑ The problem should be decomposed into smaller problems
of same type.

∑ recursive calls must diminish problem size.
∑ A base case is needed.
∑ Base case must be reached. A recursive function acts as a

terminating condition. Without an explicitly defined base
case, a recursive function would call itself indefinitely.

∑ It is the building block to the complete solution. In a sense,
a recursive function determines its solution from the base
case(s) it reaches.

note

 ∑ What is a base case? An instance of a problem the solu-
tion of which requires no further recursive calls is known as
a base case. It is a special case whose solution is known.
Every recursive algorithm requires at least one base case
in order to be valid. A base case has two purposes.

 The recursive algorithms will generally consist of an if
statement with the following form:

if(this is a base case) then
 solve it directly
else
 redefine the problem using recursion.

 Four questions can arise for constructing a recursive
solution. They are as follows.

∑ How can the problem be defined in terms of one or more
smaller problems of the same type?

∑ What instance(s) of the problem can serve as the base
case(s)?

∑ As the problem size diminishes, will this/these base case(s)
be reached?

∑ how is/are the solution(s) from the smaller problem(s) used
to build a correct solution to the current larger problem?

 It is not always necessary or even desirable to ask the
above questions in strict order. For example, sometimes the
solution to a problem is easier to imagine if it is first asked
what instance(s) can serve as the base case(s) and then define
the problem in terms of one or more smaller problems of the
same type which are closer to the base case(s).
 The following sections discuss some popular problems
where recursive functions are constructed and used keeping
in mind the above approach.

The Fibonacci sequence
The Fibonacci numbers are a sequence of numbers that have
varied uses. They were originally intended to model the
growth of a rabbit colony. The sequence is as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

 The third term of the sequence is the sum of the first and
second terms. The fourth term is the sum of the second and
third terms, and so on. The problem is to compute the value
of the nth term recursively.
 Let fib(n) denote the nth term of the Fibonacci sequence.
Four questions arise.
∑ How can the problem be defined in terms of one or more

smaller problems of the same type?
 fib(n) = fib(n-2) + fib(n-1) for n>2

 This recursive relation introduces a new point. In some
cases, one solves a problem by solving more than one
smaller problem of the same type.

∑ What instance of the problem can serve as the base case?
 One must be careful when selecting the base case in this

situation. For example, if one simply says that fib(1) is the
base case, what happens if fib(2) is called?
 fib(2) is fib(0) + fib(1) but fib(0) is undefined.

 That makes fib(2) undefined. Therefore, it is necessary to
give fib(2) an explicit definition, i.e., to make it also a base
case.
 fib(1) = 1 for n = 1
 fib(2) = 1 for n = 2

 Two base cases are necessary because there are two smaller
problems.

 ∑ As the problem size diminishes, will one reach these base
cases?

 As n is a non-negative integer and each call to the function
will reduce the parameter n by 1 or 2, the base cases n = 1,
n = 2 will be reached.

 ∑ how are the solutions from the smaller problems used to
build a correct solution to the current larger problem?

Functions 301
 The recursive step adds the results from the two smaller
problems fib(n–2) and fib(n–1) to obtain the solution to the
current fib(n) problem. This function uses what is known as
‘non-linear’ recursion.
 In this context, brief definitions of linear, non-linear, and
mutual recursions are given as follows.
Linear recursion This term is used to describe a recursive
function where at most one recursive call is carried out as
part of the execution of a single recursive process.
Non-linear recursion This term is used to describe a
recursive function where more than one recursion can be
carried out as part of the execution of a single recursive
process.
Mutual recursion In order to check and compile a
function call, a compiler must know the type of the function,
the number of parameters, and so on. In direct recursion the
function header, which contains this information, is seen
before any call within the function body or later. In mutual
recursion, the functions must be defined in some order. This
means that a call of at least one function must be compiled
before its definition is seen. Different programming languages
approach this problem in various ways. Some use separate
forward definitions of function headers to give sufficient
information to compile a call and body definitions to contain
those calls.

 Coming back to the Fibonacci sequence problem, any
number in the sequence can be determined by the following
definition.

1 if n<=2
Fibo(n)=

Fibo(n + 1)+Fibo(n-2) otherwise1
2
3

1
2
3

 Considering the definition, the following code may be
used in a recursive function to generate the numbers in the
Fibonacci sequence.

int fib(int val)
{
 if(val <= 2)
 return 1;
 else
 return(fib(val - 1) + fib(val - 2));
}

 The following example illustrates the use of the preceding
recursive function for generating the Fibonacci numbers.

ExamplE
23. /***/
 /* Program for computing the Fibonacci number
sequence using recursion. */
 /***/
 #include <stdio.h>
 #include <stdlib.h>
 int fib(int); /* function prototype */

 int main()
 {
 int i,j;
 printf(“\n Enter the number of terms: ”);
 scanf(“%d”,&i);
 if(i < 0)
 {
 printf(“\n Error – Number of terms cannot be\

negative\n”);
 exit(1);
 }
 printf(“\n Fibonacci sequence for %d terms is:”,i);
 for(j=1; j<=i; ++j)
 printf(“ %d”,fib(j)); /* function call to return

 jth Fibonacci term*/
 return 0;
 }
 /***/
 /* Recursive function fib() */
 /***/
 int fib(int val)
 {
 if(val <= 2)
 return 1;
 else
 return(fib(val - 1) + fib(val - 2));
 }

 Output
 (a) Enter the number of terms: 6
 Fibonacci sequence for 6 terms is: 1 1 2 3 5 8
 (b) Enter the number of terms: 4
 Fibonacci sequence for 4 terms is: 1 1 2 3

 The non-recursive version of the Fibonacci function
discussed above is as follows.

int fib(int val)

{

 int current = 1;

 int old = 1;

 int older = 1;

 val -=2;

 while(val > 0)

 {

 current = old + older;

 older = old;

 old = current;

 --val;

 }

 return current;

}

Greatest common divisor
The greatest common divisor of two integers is the largest
integer that divides them both. The problem is to calculate the
GCD of two non-negative integers m and n recursively.

302 Computer Fundamentals and Programming in C

 If n divides m, then by the definition of GCD, gcd(m, n)
= n. n divides m if and only if (m % n) = 0. So, the base case
is when (m % n) = 0. If m > n at the start, then gcd(n, m %
n) is a smaller problem than gcd(m, n). If m < n at the start
then (m % n) = m and the first recursive step gcd(n, m mod n)
is equivalent to gcd(n, m). This has the effect of exchanging
the parameter values m and n. So after the first call, it is back
to the situation where the first parameter is greater than the
second.
 In this function, the result from the smaller problem gcd(n,
m % n) is the solution to the current larger problem gcd(m, n).
All the algorithm has to do is find the solution to the base case
and return it unchanged until it reaches the original problem.
 Using the definition given for gcd(), the following code
may be used in a recursive function to find the GCD of two
integers.

ExamplE

 24.	 Write	 a	 C	 program	 to	 find	 the	 Greatest	 Common	 Divisor	 using	
recursion.

 #include <stdio.h>

 int gcd(int, int); /* function prototype */

 int main()

 {

 int i,j;

 printf(“\n Enter the numbers :”);

 scanf(“%d% d”,&i,&j);

 printf(“\n The GCD of %d and %d is\

 %d”,i,j,gcd(i,j)); /* function call */

 return 0;

 }

 /***/

 /* Recursive function gcd() */

 /***/

 int gcd(int a,int b)

 {

 int remainder;

 remainder = a % b;

 if(remainder == 0)

 return b;

 else

 return gcd(b, remainder);

 }

 Output
 Enter the numbers: 48 18

 The GCD of 48 and 18 is 6

The Towers of Hanoi
The Towers of hanoi problem is a classic case study in
recursion. It involves moving a specified number of disks
from one tower to another using a third as an auxiliary

tower. Legend has it that at the time of the creation of the
world, the priests of the Temple of Brahma were given
the problem with 64 disks and told that when they had
completed the task, the world would come to an end.
 Move n disks from peg A to peg C, using peg B as needed.
The following conditions apply.

∑ Only one disk may be moved at a time.
∑ This disk must be the top disk on a peg.
∑ A larger disk can never be placed on top of a smaller disk.

 The solution should be in the form of a printed list of disk
moves. For example, if n = 3, then the pegs would look as
shown in Fig. 12.1.

Original state Move 1

Move 2 Move 3

Move 4 Move 5

Move 6 Move 7

Fig. 12.1 Moving of disks from and to different pegs

 The key to the problem is not to focus on the first step
(which must be to move the disk 1 from A to somewhere)
but on the hardest step, i.e., moving the bottom disk to peg
C. There is no way to reach the bottom disk until the top n–1
disks have moved. Further, they must be moved to peg B to
allow the movement of the bottom disk to peg C. Now n–1
disks are on peg B that must be moved to peg C (using peg
A). There is no reason why the n–1 remaining disks cannot
be moved in the same manner; in fact, it must be done in the
same manner since there is again a bottom disk that must be
moved last. Therefore,

∑ Move n–1 disks from peg A to peg B using peg C.
∑ Move the nth disk from peg A to peg C.
∑ Move n–1 disks from peg B to peg C using peg A.

 Notice that the size of the Towers of Hanoi problem is
determined by the number of disks involved. This implies
that the problem has been redefined in terms of three smaller
problems of the same type.

Functions 303

∑ What instance(s) of the problem can serve as the base
case(s)?

 If n = 1, then the problem consists of moving one disk from
peg A to peg C, which can be clearly solved immediately.

∑ As the problem size diminishes, will the base case be
reached?

 Since each call to the function will reduce the parameter n
by 1, and n is non-negative, the base case n = 1 will always
be reached.

∑ how is the solution from the smaller problem used to build
a correct solution to the current larger problem?

 As seen in the first question, when each of the three smaller
problems are solved, then the solution to the current problem
is completed. The following is a summary of the algorithm
described earlier.

Algorithm
FUNCTION MoveTower(disk, from, to, using):

IF(n is 1) THEN
 move disk 1 from the “from” peg to the “to” peg
ELSE IF(n > 1) THEN
 move n-1 disks from the “from” peg to the “using”

peg using the “to” peg
 move the n’th disk from the “from” peg to the “to”

peg
 move n-1 disks from the “using” peg to the “to” peg

using the “from” peg

ENDIF

 If in the body of a function, a recursive call is placed in such
a way that its execution is never followed by the execution
of another instruction of the function; the call is known as a
tail recursive call. The execution of such a call terminates the
execution of the body of the function. A function may have
more than one tail recursive call.
 A non-tail recursive function can often be converted
to a tail-recursive function by means of an ‘auxiliary’
parameter. This parameter is used to form the result. The idea
is to attempt to incorporate the pending operation into the
auxiliary parameter in such a way that the recursive call no
longer has a pending operation. The technique is usually used
in conjunction with an ‘auxiliary’ function. This is simply
to keep the syntax clean and to hide the fact that auxiliary
parameters are needed.
 For example, a tail-recursive Fibonacci function can
be implemented by using two auxiliary parameters for
accumulating results. It should not be surprising that the
tree-recursive fib function requires two auxiliary parameters
to collect results; there are two recursive calls. To compute
fib(n), call fib_aux(n 1 0)

int fib_aux(int n, int next, int result) {

 if (n == 0)

 return result;

 else

 return fib_aux(n - 1, next + result, next);

}

 A tail recursive call can be eliminated by changing the
values of the calling parameters to those specified in the
recursive call, and repeating the whole function. Consider,
for example, the function used to solve the Towers of Hanoi
problem.

void MoveTower(int n, char from, char to, char using)
{

 if(n == 1)

 printf(“\n Move disk 1 from peg %c to ped %c”,
from, to);

 else if(n > 1) {

 MoveTower(n-1, from, using, to);

 printf(“\n Move disk %d from peg %c to ped %c”,
 n, from, to);

 MoveTower(n-1, using, to, from);

 }

}

 By removing tail recursion, the function can be rewritten
as

void MoveTower(int n, char from, char to, char using)
{

 char temp;

 if(n > 1) {

 MoveTower(n-1, from, using, to);

 printf(“\n Move disk %d from peg %c to ped %c”, n,
from, to);

 n = n - 1;

 temp = from;

 from = using;

 using = temp;

 }

 if(n == 1) then

 printf(“\n Move disk 1 from peg %c to ped %c”,
from, to);

}

 The recursive call, MoveTower(n-1, from, using, to);, is
not a tail recursive call because its execution is followed by
the execution of other instructions in the function, namely a
printf() statement, various assignment statements, and if n
== 1 is true, another printf() statement.
 In general, any recursive call placed within a looping
statement is not tail recursive because when control returns
from the recursive call, there may be one or more cycles of
the loop yet to be executed.

304 Computer Fundamentals and Programming in C

 Elimination of tail recursion is simple and can shorten
the execution time quite considerably. It is not a necessary
stage in the elimination of all recursive calls. In particular,
compilers do not normally deal with removal of tail recursions
separately, and this explains the gain in efficiency mentioned
above.
 A key tool for analyzing recursive algorithms is the
recursion tree, which portrays the life history of a recursive
process (or, equivalently, the life history of the runtime stack).
A recursion tree can be built according to the following
rules.
∑ Every tree must have a main root from which all branches

originate. This principle root will represent the initial call
to the function.

∑ The tree consists of nodes (vertices), each of which
represents a particular call to the recursive function.

∑ A branch of the tree (solid line) represents a call-return
path between any two instances of the function.

Figure 12.2 shows a call tree for MoveTower(3,A,B,C).

12.10.2 How is Recursion Implemented?
The run-time stack For the moment, let it be left to
recursion to consider what steps are needed to call any
function in a single processor computer system.

1st call

1st call

(empty
stack)

(empty
stack)

1st call

2nd call

1st call

2nd call

1st call

2nd call

3rd call

Fig. 12.3 The sequence of events that takes place when a
stack is used with function calls

 Modern languages are usually implemented in a manner
such that storage for program code and storage for data items
are allocated separately. The area of store set aside to hold the
data items used in the call of a function is called its data area
or activation record.
 This data area essentially consists of calling parameters,
local variables, and certain system information such as the
address of the instruction that must be returned to on leaving
the function.
 The storage mechanism that most modern languages use
is called stack storage management. Using this mechanism,
storage for the main program’s data area is allocated at load
time, while storage for a function’s data area is only allocated
when the function is called. On exit from the function, this
storage is de-allocated. This mechanism results in a stack
of data areas called the run-time stack. When a function is
called, space for its data area is allocated and placed on top of
the run-time stack. On exit from the function, its data area is
de-allocated and removed from the top of the run-time stack.
Basically, the principle it follows is Last In First Out (LIFO)
(Fig. 12.3).
 Stack storage management is capable of dealing with
recursive functions. In the recursive case, two recursive calls
are regarded as being different so that the data areas for one
call do not overlap with the other; just like one would not
mix the data areas for different sub-functions, one called from
within the other. This implies that several data areas may exist
simultaneously, one for each recursive call.
 In the stack implementation of recursion, the local variables
of the function will be pushed onto the stack as the recursive
call is initiated. When the recursive call terminates, these
local variables will be popped from the stack and thereby
restored to their former values.
 But doing so is pointless because the recursive call is the
last action of the function and so the function now terminates.
The just-restored local variables are discarded. It is thus point-
less to use the recursion stack, since no local variables need to
be preserved. All that is needed is to set the calling parameters
to their new values and branch to the beginning of the function.

(0, A, C, B)

MoveTower (1, C, A, B) MoveTower (1, A, B, C)

MoveTower (3, A, B, C)

(0, B, A, C)

MoveTower (1, A, B, C) MoveTower (1, B, C, A)

MoveTower (2, A, C, B) MoveTower (2, C, B, A)

(0, C, B, A) (0, C, B, A) (0, A, C, B) (0, C, B, A)(0, B, A, C)(0, A, C, B)

Fig. 12.2 recursion tree for MoveTower (3,a,b,c)

Functions 305

note

 ∑ It may not terminate if the stopping case is not correct or
is incomplete (stack overflow: run-time error)

 ∑ Make sure that each recursive step leads to a situation
that is closer to a stopping case.

12.10.3 Comparing Recursion and Iteration
Recursion is a very powerful tool for solving complex
problems, particularly when the underlying problem or data
to be treated is already defined in recursive terms. For such
problems, recursion can lead to solutions that are much clearer
and easier to modify than their iterative counterparts.
 However, such recursive definitions do not guarantee that
a recursive algorithm is the best way to solve a problem.
Depending on the implementation available and the algorithm
being used, recursion can require a substantial amount of
runtime overhead. Thus, the use of recursion illustrates the
classic trade-off between time spent in constructing and
maintaining a program and the cost in time and memory of
execution of that program.
 The following two factors contribute to the inefficiency of
some recursive solutions.

∑ The overhead associated with function calls
∑ The inefficient utilization of memory
 With most implementations of modern programming
languages, a function call incurs a booking overhead in the
form of a runtime stack. recursive functions magnify this
bookkeeping overhead, because a single initial call to the
function can generate a large number of recursive calls.
 Recursion makes inefficient utilization of memory, as every
time a new recursive call is made a new set of local variables
is allocated to function. Moreover, it also slows down execu-
tion speed, as function calls require jumps, and saving the cur-
rent state of the calling function onto stack before jump.
 recursion is of value when the return values of the
recursive function are used in further processing within the
calling version of the function (rather than being immediately
passed back to an earlier version of the function). In this case
it was worth saving the parameter and local variables on the
stack because they are used later in some useful way.
 If one problem can be solved in both ways (recursive or
iterative), then choosing iterative version is a good idea since
it is faster and does not consume a lot of memory.

note

 ∑ In general, an iterative version of a program will execute
more efficiently in terms of time and space than a recur-
sive version. This is because the overhead involved in en-
tering and exiting a function is avoided in iterative version.
However, a recursive solution can be sometimes the most
natural and logical way of solving a complex problem.

12.11 SEARCHING AND SORTING

12.11.1 Searching Algorithms
Searching an array of integers has already been discussed in
Chapter 11. Among the searching algorithms, only two of
them will be discussed here—sequential search and binary
search.

Sequential or linear search algorithm
The idea behind sequential search is to compare the given
number to each of the numbers in the array. If a number in
the list matches the given key, we can return the index of that
number. If we reach the end of the list, we can indicate that
the key does not exist in the array by returning –1. Here is an
implementation of this simple algorithm:

int Lsearch(int ArrayElement[], int key,
 int ArraySize)

{

 int i ;

 for (i = 0; i < ArraySize; i++)

 if (ArrayElement[i] == Key)

 return (i) ;

 return (-1);

}

The function calling statement will be as follows:
p=Lsearch(a,k,n);

if(p = = -1)

 printf(“\n KEY NOT FOUND”);

else

 printf(“\n KEY FOUND AT POSITION %d”, p);

Binary search algorithm
The precondition of binary search is that it requires sorted
data to operate on. The basic technique is to compare the
search element with the element which is in the middle of
the search space and then to restrict further searching in the
appropriate half of the search space (this can be done because
the search space is sorted). Then at each step, the process is
repeated (cutting the remaining search space in half at each
step) until either the search element is found or we have run
out of elements to compare and the element was not in the
search space.
 To implement binary search, variables beg and end keep
track of the lower bound and upper bound of the array,
respectively. We begin by examining the middle element
of the array. If the key we are searching for is less than the
middle element, then it must reside in the lower half of
the array. Thus, we set end to (mid – 1). If the key we are
searching for is greater than the middle element, then it must
reside in the upper half of the array. Thus, we set beg to (mid
+ 1).This restricts our next iteration through the loop to the
top half of the array. In this way, each iteration halves the size
of the array to be searched. For example, the first iteration

306 Computer Fundamentals and Programming in C

will leave three items to test. After the second iteration, there
will be one item left to test. Therefore, it takes only three
iterations to find any number.
 To illustrate the algorithm, let us consider the following
array:

3 10 15 20 35 40 60

Suppose we want to search the element “15”.
 1. We take beg = 0, end = 6 and compute the location of the

middle element as

() (0 6)mid 3

2 2
beg end+ += = =

 2. We then compare the search key with mid, i.e.
a[mid]==a[3] is not equal to 15. Since beg<end, we have
to start the next iteration.

 3. As a[mid]=20>15, therefore, we take end = mid–1 = 3 –
1 = 2 whereas beg remains the same.. Thus

() (0 2)min 1
2 2

beg end+ += = =

 4. Since a[mid], i.e. a[1]=10<15, therefore, we take
beg=mid+1=1+1=2, while end remains the same.

 5. Now beg=end. Compute the mid element:

() (2 2)min 2

2 2
beg end+ += = =

 Since a[mid], i.e. a[2]=15, the search terminates on
success.The C code for binary search is given below.

 #include <stdio.h>

 int binarysearch(int a[], int n, int key)

 {

 int beg,mid;

 beg=0; end=n-1;

 while(beg<=end)

 {

 mid=(beg+end)/2;

 if(key==a[mid])

 return mid;

 else if(key>a[mid])

 beg=mid+1;

 else

 end=mid-1;

 }

 return -1;

 }

 int main()

 {

 int arr[50], n, key, index;

 printf(“How many elements?”);

 scanf(“%d”, &n);

 puts(“Enter the array elements in ascending\
order”);

 for (index = 0; index < n; index++)

 scanf(“%d”, &arr[index]);

 printf(“Enter the search key: ”);

 scanf(“%d”, &key);

 index = binarysearch(arr, n, key);

 if (index == -1)

 puts(“Sorry, the given key was not found”);

 else

 printf(“The given key was found at index:\
%d\n”, index);

 return 0;

 }

Binary search in a recursive way
Binary search is often written using recursion, instead of
iteration. This is because when the algorithm decides to search
the right or left half of the array, it becomes a simpler version
of the original problem. In the recursive Search function
below, note how the parameters to the recursive calls are
adjusted to specify either the right or left half of the array.
/* Given:x Array of integers.

 Low The low index of the range of integers
to search.

 High The top index of the range of integers
to search.

 k The integer for which to search.

 Task: To do a recursive binary search for k in
the specified range of Array.

 Return: In the function name, return the index
of where k was found or -1 if it was not
found.

*/

int search(int x[], int k, int low, int high)

{

 int mid;

 if(low > high)

 return (-1);

 mid = (low + high) /2;

 return (k= =x[mid] ? mid : k < x[mid] ? search(x,
k, low, mid – 1):search(x, k, mid+1, high));

}

12.11.2 Sorting Algorithms
Arranging elements of an array in a particular order is called
sorting. The order of arrangement may be ascending or
descending in nature. There are several methods of arranging
or sorting arrays. Sorting algorithms are divided into two
categories—internal and external sorts.
Internal sort Any sort algorithm, which uses main memory
exclusively during the sort. This assumes high-speed random
access to all memory.

Functions 307
External sort Any sort algorithm which uses external
memory, such as tape or disk, during the sort.
 A sort algorithm is said to be ‘stable’ if multiple items
which compare as equal will stay in the same order they were
in after a sort.
Some of the sorting methods include:
•	 Bubble sort
•	 Selection sort
•	 Insertion sort
•	 Merge sort
•	 Quick sort
 The method of bubble sort has been explained with
examples in Chapter 11. Hence, the discussion in the
following section begins with selection sort.

Selection sort
Selection sort is a way of arranging the elements, of a
supposedly unsorted array, in an ascending order. It works by
finding the smallest element in the whole array and placing it
at the first element position. It then finds the second smallest
element in the array disregarding the first element and places
it in the second position. Next, it finds the smallest element in
the array disregarding the elements placed in position 1 and
2. This continues until the entire array has been sorted. The
implementation algorithm for selection sort may be stated as
follows:

 1. Examine each element in the array or list to find the
smallest.

 2. Swap the element found in step 1 with the first element
in the array or list.

 3. Repeat steps 1 and 2, each time ignoring the element at
the start of the last sort. Stop when only one element has
to be sorted.

 The selection sort is, therefore, a combination of searching
and sorting. During each pass, the unsorted element with the
smallest (or largest) value is moved to its proper position in the
array. This sort also uses an incremental approach to sorting
the array. The number of times the sort passes through the
array depends on the size of the array. The algorithm makes
one less pass than the number of elements in the array.
 A function for the selection sort can be developed using
two loops. An inner loop passes through the array and finds
the next smallest (or largest) value, and an outer loop that
places that value in its proper position. Selection sort is one of
the easiest sorts to implement, but is among the least efficient.
It provides no way to end a sort early even if it begins with an
already sorted list. A function developed for implementing
the selection sort technique for arranging a list of elements in
ascending order is shown as follows:

void selectsort(int numbers[], int array_size)

{
 int i, j; An array formed

with integers
 int min, temp;

 for (i = 0; i < array_size-1; i++)

 {

 min = i;

 for (j = i+1; j < array_size; j++)

 {

Highlighted for loop
finds the position of
the smallest integer.

 if (numbers[j] < numbers[min])

 min = j;

 }

temp = numbers[i];

numbers[i] = numbers[min];

numbers[min] = temp;

 }
Highlighted statements interchange the
position of the smallest integer with that

at the first position.

}

 For the above algorithm to work, it must ignore elements
that have already been sorted. For instance, once the smallest
element has been placed in its correct position, it must be
ignored for the rest of the sort. In practice this means that to
implement the algorithm, the already sorted elements have
to be skipped, looking only for the smallest element that
is not yet sorted. This can be implemented in the function
void selectsort() by replacing the encircled portion of the
program code with that shown within the box on the right.

void selectsort(int numbers[], int array_size)

{
 int i, j;
 int min, temp;
 for (i = 0; i < array_size-1; i++)
 {
 min = i;
 for (j = i+1; j < array_size; j++)
 {
 if (numbers[j] < numbers[min])
 min = j;
 }

temp = numbers[i];
numbers[i] = numbers[min];
numbers[min] = temp;

 } if(min != i)

 {
 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;

 }

308 Computer Fundamentals and Programming in C

Insertion sort
The primary idea in insertion sort is to pick up a data
element from a list or an array and insert it into its proper
place in the partial data list or array considered so far.
 The process of insertion sort is started by considering the
first element to belong to a sorted sub-array while the remaining
array elements to another sub-array which is considered as
unsorted. The first step then is to compare the first element
of the unsorted array with the sorted array’s element. If the
sorting is for arranging the elements in ascending order, then
the comparison is carried out to find whether the first element
of the unsorted array is smaller than that of the sorted array’s
element. If this is true, then the first element of the unsorted
array is placed at the first position of the sorted array while
the existing element in the sorted array is shifted right by one
position. The sorted sub-array will now contain two sorted
elements while the unsorted sub-array will contain N – 2
elements, where N denotes the size of the whole array. In the
second step, again the first element of the unsorted sub-array
is compared with the elements of the sorted sub-array and
the resulting element is placed at the proper position while
shifting the larger elements by one position to the right in the
sorted sub-array.
 The sorted sub-array now contains three elements arranged
in order, while the rest of the elements form the unsorted
sub-array. In the same way, the next step repeats the same
procedure of comparison and placing the appropriate element
at the proper position. This process continues till the last
element in the array. Thus, in each pass, the first element of
the unsorted portion is picked up, transferred to the sorted
sub-list, and inserted at the appropriate place. A list of N
elements will take at most N–1 passes to sort the data.
Figure 12.4 shows the insertion sort technique. This illustra-
tion demonstrates the sorting of array. Every time the first
element, which is shown highlighted, is compared with the
elements of the sorted sub-array and interposed at the proper
position in sorted sub-array by suitably shifting the larger
value elements.
 A function prepared for implementing the insertion sort
algorithm for sorting an array in ascending order is given
below Fig. 12.4.

68 25 44 7 31 53

Sorted Unsorted

Original list

The highlighted element is

the first one that is compared

and inserted in the sorted

sub-array shown after pass1.

It repeats for each pass.

25 68 44 7 31 53

Sorted Unsorted

After pass 1

25 6844 7 31 53

Sorted Unsorted

After pass 2

25 68447 31 53

Sorted Unsorted

After pass 3

25 68447 31 53

Sorted Unsorted

After pass 4

25 68447 31 53

Fully sorted

After pass 5

68 25 44 7 31 53

Sorted Unsorted

Original list

The highlighted element is

the first one that is compared

and inserted in the sorted

sub-array shown after pass1.

It repeats for each pass.

25 68 44 7 31 53

Sorted Unsorted

After pass 1

25 6844 7 31 53

Sorted Unsorted

After pass 2

25 68447 31 53

Sorted Unsorted

After pass 3

25 68447 31 53

Sorted Unsorted

After pass 4

25 68447 31 53

Fully sorted

After pass 5

Fig. 12.4 Insertion sort

void insertSort(int A[], int arr_size)
{
 int i, j,temp;
 for (i=1; i < arr_size; i++)
 {
 temp = A[i];
 j = i;
 while ((j > 0) && (A[j-1] >temp))
 {
 A[j] = A[j-1];
 j = j - 1;
 }
 A[j] = temp;
 }
 }

 An alternate function that can also do insertion sorting is
shown below.

void insort(int A[], int size)
{
 int i, j, temp;
 for (i = 1 ; i < size; i++)
 {
 temp = A[i];
 for (j = i - 1; j >= 0 && temp < A[j] ; j--)
 A[j + 1] = A[j];
 A[j + 1] = temp;
 }
}

 An advantage of this procedure is that it sorts the array
only when it is really necessary. If the array is already
in order, no moves for sorting are performed. however, it
overlooks the fact that the elements may already be in their
proper positions. When an element has to be inserted, all
elements greater than this have to be shifted. There may be

Functions 309
a large number of redundant shifts, as an element, which is
properly located, may be shifted but later brought back to its
position.
 The best case is when the data is already in order. Only
one comparison is made for each position and the data
movement is 2N – 1, where N is the size of the array. The
worst case is when the data is in reverse order. Each data
element is to be moved to a new position and for that each of
the other elements have to be shifted. When the elements are
in random order, it turns out that both number of comparisons
and movements turn out to be closer to the worst case.

Merge sort
The merge sort splits a data list to be sorted into two equal
halves, and places them in separate arrays. This sorting
method uses the divide-and-conquer paradigm. It separates
the list into two halves and then sorts the two half data sets
recursively. Finally, these are merged to obtain the complete
sorted list.
 To be more specific, the merge sort breaks an array down
into smaller and smaller pieces until the individual pieces are
just one item in size. Since a single item is always considered
to be sorted, two contiguous items can be merged. The merge
sort algorithm therefore breaks the array down into smaller
chunks on the way down the recursion tree. On the way back
up, it merges these smaller pieces of the array into larger
pieces. One could say that the sorting is done on the way
back up the tree.
 Figure 12.5 shows a typical example of the merge sort
algorithm for an unsorted array A of size 8 that contains the
following data elements— 32, 45, 26, 15, 25, 91, 30, 73.

32 45 26 15

32 45

32 45

32 45

26 15

15 26

26 15

15 26 32 45

25 91 30 73

25 91

25 91

25 91

30 73

30 73

30 73

25 30 73 91

15 25 26 30 32 45 73 91

32 45 26 15 25 91 30 73Initial

unsorted list

Fig. 12.5 Merge sort

 In this example, the original array is split continuously in
two halves till it reduces to an array of one element. These are
then merged in the following steps:

 1. Elements 32 and 45 are compared and merged to form
the array [32 45] .

 2. Elements 26 and 15 are compared and merged to form
the array [15 26].

 3. Next, sub-arrays [32 45] and [15 26] are compared and
merged to form the array [15 26 32 45].

 4. Elements 25 and 91 are compared and merged to form
the array [25 91].

 5. Elements 30 and 73 are compared and merged to form
the array [30 73].

 6. Next, sub-arrays [25 91] and [30 73] are compared and
merged to form the array [25 30 73 91].

 7. Finally, the sorted and merged sub-arrays in steps 3 and
6 are sorted and merged to form the array [15 25 26 30
32 45 73 91].

 A function that implements the merge sort algorithm
discussed above is given as follows:

 void mergesort(int array[], int n)
{
 int j,n1,n2,arr1[n],arr2[n];
 if (n<=1)return;
 n1=n/2;
 n2 = n - n1;
 for(j = 0; j<n1; j++)
 arr1[j]= array[j];
 for(j = 0; j<n2; j++)
 arr2[j]= array[j+n1];
 mergesort(arr1, n1);
 mergesort(arr2, n2);
 merge(array, arr1, n1, arr2, n2);
 }
void merge (int array[], int arr1[], int n1,
 int arr2[], int n2)
{
 int j, p=0, p1=0,p2=0;
 printf(“\n After merging [”);
 for(j=0; j<n1; j++)
 printf(“%d ”,arr1[j]);
 printf(“] [”);
 for(j=0; j<n2; j++)
 printf(“%d”,arr2[j]);
 printf(“]”);
 while (p1 < n1 && p2 < n2)
 {
 if(arr1[p1] < arr2[p2])
 array [p++] = arr1[p1++];
 else
 array[p++] = arr2[p2++];
 }

310 Computer Fundamentals and Programming in C

 while (p1 < n1)
 array [p++] = arr1[p1++];
 while (p2 < n2)
 array[p++] = arr2[p2++];
 printf(“merged array is [”);
 for(j=0; j<n1+n2; j++)
 printf(“%d”, array[j]);
 printf(“]\n”);
 }

Quick sort
Quick sort is a recursively defined procedure for rearranging
the values stored in an array in the ascending or descending
order. Suppose, an array a of 11 integers is given as shown
in Fig.12.6(a).
 The idea is to use a process that separates the list into two
parts, using a distinguished value in the list called a pivot.
At the end of the process, one part will contain only values

(a) Array of 11 elements containing
integers

(c) Choosing the index of the pivot

(e) Swapping of the values in the
a[left_arrow]and a[right_arrow]
elements

(g) Position of left_arrow after a[left_
arrow]>=pivot condition becomes true
as the left_arrow is moved right

(i) Moving right_arrow to the Left till
a[right_arrow]<=pivot

(k) Exchanging pivot with right_arrow
content

(b) Separation of elements with values
less or more than the pivot, 8

 (d) Moving the right_arrow to the left until
‘value <= pivot’

 (f) Position of the right_arrow after a[right_
arrow] <=pivot condition becomes true as
the right_arrow is moved left

(h) Exchanging a[left_arrow] and a[right_
arrow]

(j) Moving left_arrow right till a[left_arrow]>= pivot

(l) The right_arrow is moved left and the
left_arrow is moved right

Fig. 12.6 Step-by-step depiction of how quick sort works

14 3 2 11 5 8 0 2 9 4 20

a[0] a[10]

4 3 2 2 5 0 8 11 9 14 20

a[0] a[10]

14 3 2 11 5 8 0 2 9 4 20

left_arrow right_arrow

pivot

14 3 2 11 5 8 0 2 9 4 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 80 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 80 11 9 14 20

left_arrow
right_arrow

pivot

Functions 311
less than or equal to the pivot, and the other will contain only
values greater than or equal to the pivot. So, if 8 is picked
as the pivot, Fig. 12.6(b) shows the result at the end of the
process.
 The same process can then be reapplied exactly to the left-
hand and right-hand parts separately. This reapplication of
the same procedure leads to a recursive definition. The detail
of the rearranging procedure is as follows. The index of the
pivot value is chosen simply by evaluating

(first + last) / 2

where first and last are the indices of the initial and final
elements in the array representing the list. A left_arrow and
a right_arrow are then identified on the far left and the far
right respectively. This can be seen in Fig. 12.6(c), where
left_arrow and right_arrow initially represent the lowest
and highest indices of the array components. Starting from
the right, the right_arrow is moved left until a value less than
or equal to the pivot is encountered. See Fig. 12.6(d).
 Similarly, the left_arrow is moved right until a value
greater than or equal to the pivot is encountered. Now, the
contents of the two array components are swapped as can be
seen in Fig. 12.6(e).
 Now, continuing the movement of the right_arrow left till
a[right_arrow]<=pivot, the position of the right_arrow is
as shown in Fig. 12.6(f).
 Having reached the status shown in Fig. 12.6(g), the
contents of the a[left_arrow] and a[right_arrow] are
interchanged. After this interchange, the contents of the
elements are shown in Fig. 12.6(h).
 The process of movement of the left_arrow and right_
arrow stops only when the condition left_arrow > right_
arrow becomes true. Since in Fig. 12.6(h), this condition is
still False, move right_arrow left again as shown in Fig.
12.6(i).
 Having reached the status shown in Fig. 12.6(k), the
contents of the a[left_arrow] and a[right_arrow] are inter-
changed. It is acceptable to exchange the pivot because pivot
is the value itself, not the index. As before, the right_arrow
is moved left and the left_arrow is moved right as shown in
Fig. 12.6(l).
 The procedure’s terminating condition left_arrow >

right_arrow is now true, and the first subdivision of the list
(i.e., array) is now complete.
 here, the quick sort procedure is coded as a recursive C
function. This can be shown as follows.

void quick_sort(int list[], int left, int right)
{
 int pivot, left_arrow, right_arrow;
 left_arrow = left;
 right_arrow = right;

 pivot = list[(left + right)/2];
 do
 {
 while(list[right_arrow] > pivot)
 right_arrow--;
 while(list[left_arrow] < pivot)
 left_arrow++;
 if(left_arrow <= right_arrow)
 {
 swap(list[left_arrow], list[right_arrow]);
 left_arrow++;
 right_arrow--;
 }
 }
 while(right_arrow >= left_arrow);
 if(left < right_arrow)
 quick_sort(list, left, right_arrow);
 if(left_arrow < right)
 quick_sort(list, left_arrow, right);
}

12.12 ANALYSIS OF ALGORITHMS
One significant factor considered while designing algorithms
is the algorithm’s efficiency. The efficiency of an algorithm is
determined by the amount of time it takes to run the program
and the memory space the program requires. In analyzing an
algorithm, rather than a piece of code, the number of times
‘the principle activity’ of that algorithm is performed, should
be predicted. For example, if one is analyzing a sorting
algorithm, one might count the number of comparisons
performed, and if it is an algorithm to find an optimal solution,
one might count the number of times it evaluates a solution.
 Complexity of an algorithm is a measure of the amount
of time and/or memory space required by an algorithm for
a given input. It is a function describing the efficiency of
the algorithm in terms of the amount of data the algorithm
must process. Usually, there are natural units for the domain
and range of this function. The factor or parameters or fields
whose values affect the number of operations performed is
called the problem size or the input size. The following are
the two main complexity measures of the efficiency of an
algorithm:
Time complexity It is a function that describes the amount
of time an algorithm takes with respect to the amount of input
provided to the algorithm. ‘Time’ can mean the number of
memory accesses performed, the number of comparisons
between integers, the number of times some inner loop is
executed, or some other natural unit related to the amount of
real time the algorithm will take. It is denoted as T(n) where
n is the size of the input.
Space complexity It is a function that describes the amount
of memory (space) an algorithm takes with respect to the
amount of input provided to the algorithm. Space complexity
is sometimes ignored because the space used is minimal and/

312 Computer Fundamentals and Programming in C

or obvious, but sometimes it becomes as important an issue
as time. It is denoted as S(n), where n is the size of the input.

Complexity analysis
Complexity analysis attempts to characterize the relationship
between the number of data elements and the resource usage
(time or space) with a simple formula approximation. Using
the rAM model of computation, one can count the number
of steps required for an algorithm for executing a program
based on the input provided. however, to really understand
how good or bad an algorithm is, one must know how it
works over all instances. There are three terms to describe
these situations:
∑ The worst-case complexity of the algorithm is the function

defined by the maximum number of steps taken on any
instance of input size n.

∑ The best-case complexity of the algorithm is the function
defined by the minimum number of steps taken on any
instance of input size n.

∑ Finally, the average-case complexity of the algorithm is
the function defined by the average number of steps taken
on any instance of input size n.

 Every input instance can be represented as a point on a
graph, where the x-axis is the size of the problem (for sorting,
the number of items to sort) and the y-axis is the number of
steps taken by the algorithm on this instance. Worst-case com-
plexity is represented by the curve passing through the highest
point of each column. The curve passing through the lowest
point of each column represents the best case complexity.
 The average case is probably the most important, but it
is problematic. One has to make some assumptions about
the probabilities, and the analysis will only be as accurate as
the validity of the assumptions. In simple cases, the average
complexity is established by considering possible inputs to
an algorithm, for each input, adding the number of steps for
all the inputs and dividing by the number of inputs. here, it is
assumed that the possibility of the occurrence of each input is
the same, which will not always be the case. To consider the
probability explicitly, the average complexity is defined as the
average over the number of steps executed when processing
each input weighted by the probability of occurrence of this
input.
 If a function is linear, that is, if it contains no loops, then
its efficiency is a function of the number of instructions it
contains. In this case, its efficiency is dependent on the speed
of the computer. On the other hand, functions that contain
loops will vary widely in their efficiency. The study of
algorithm efficiency is, therefore, largely devoted to the study
of loops. The efficiency of an algorithm can be expressed as a
function of the number of elements or inputs to be processed.
The general format is

 f(n) = efficiency

 Loops can be of various types. Let us discuss these in
detail.
Linear loops Consider the following simple loop.

 for(i=1;i<=n;++i) for(i=0;i<n;++i)
 { {
 stmTs stmTs
 } }

 The body of the loop will be repeated for n times. In the
following loop,

 for(i=1;i<=n; i=i+2)
 {
 stmTs
 }

the body of the loop will be executed n/2 times. In all of the
above cases, the number of iterations is directly proportional
to a factor. The higher the factor, the higher will be the number
of iterations. If either of these loops was plotted, one would
get a straight line. hence such loops are known as linear
loops. Because the efficiency is proportional to the number
of iterations, it is

f(n) = n

Logarithmic loops Now, the following loops are to be
considered in which the controlling variable is multiplied or
divided in each iteration.

 Multiply loop Divide loop
 for(i=1; i<n; i=i*2) for(i=n; i>=1; i=i/2)
 { {
 stmTs stmTs
 } }

Let n = 10; the number of iterations in both cases is 4. The
reason is that in each iteration the value of i doubles for
the multiply loop and is cut in half for the divide loop. The
number of iterations is a function of the multiplier or divisor.
The loop continues till the following condition is true.

 For the multiply loop, 2iteration < n
 For the divide loop, n/2iteration >=1
 Generalizing the analysis, f(n) = [log2 n]

Nested loop For the nested loop, the total number of
iterations would be the product of the number of iterations for
the inner loop and the number of iterations for the outer loop.
There are various types of nested loops, namely quadratic,
dependent quadratic, linear logarithmic, etc.

Quadratic loop here, each of the loops iterates the same
number of times as shown in the following code.

 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 {
 stmTs
 }

Functions 313
 For each iteration of the outer loop, the inner loop will be
executed n times. The outer loop will be executed n times.
Therefore,

 f(n) = n2

Dependent quadratic Consider the following nested loop:
 for(i=1;i<=n;i++)

 for(j=1;j<=i;j++)

 {

 stmTs

 }

 here, the inner loop is dependent on the outer loop for one
of its factors. It is executed only once for the first iteration,
twice for the second iteration, thrice for the third, and so on.
The number of iterations for the inner loop is

 1+2+3+4+………n = n(n+1)/2

 The average of this loop is (n+1)/2. Multiplying the inner
loop by the number of times the outer loop is executed, gives
the following formula for a dependent quadratic loop.

f(n) = n(n+1)/2

Linear logarithmic Consider the following nested
loop in which the outer loop is linear and the inner loop is
logarithmic.

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j=j*2)

 {

 stmTs

 }

 Therefore, the number of iterations in the inner loop is
[log2 n]. The outer loop will be executed n times. So,

 f(n) = [nlog2 n]

 It has been shown that the number of statements executed in
the function for n elements of data is a function of the number
of elements, expressed as f(n). There is a dominant factor in
the equation that determines the ‘order of magnitude’ of the
result. Therefore, it is not needed to determine the complete
measure of efficiency, but only the factor that determines the
magnitude. This factor is the Big-O.

12.12.1 Asymptotic notation
Asymptotic notation is a way of describing functions without
having to deal with distracting details. In many ways,
asymptotic notation can seem very imprecise and intuitive, but
it should be precisely defined; it is also crucial to understand
exactly what it means.

Big-O notation
The most well-known symbol in asymptotic notation is the
big-O (historically, the Greek letter omicron). It is used to
give an upper limit to the asymptotic growth of a function.
order notation, or big-O notation, is a measure of the running
time of an algorithm, as it relates to the size of the input to

that algorithm. It is intended not to measure the performance
of the machine on which the algorithm is run, but rather to
strictly measure the performance of the algorithm itself.
 Big-O notation can be defined as follows:
 If f(n) and g(n) are functions defined for positive
integers, then f(n) = O(g(n)), if there exists a c such that
|f(n)|<=c|g(n)| for all sufficiently large positive integers n.

f(n) = O(g(n)) is true if
lim f(n)/g(n) is a constant.
n Æ a

 It is to be noted that the big-O notation says ‘some
constant multiple of’ without saying what the constant
is. This leaves out some information that is sometimes
important, but it allows specifying time without reference
to the speed of the computer and without measuring exactly
how many instructions are in a certain block of code. The
properties of the big-O notation are as follows.

 1. O(k*f(n)) = O(f(n)), therefore, constants can be
ignored.

 2. O(f(n)*g(n)) = O(f(n)) * O(g(n)), i.e., if a function is
a product then its order is the product of the orders of the
factors.

 3. O(f(n)/g(n)) = O(f(n)) / O(g(n)), i.e., the order is the
same for a function that is a quotient.

 4. O(f(n)) > O(g(n)), if and only if, f dominates g.
 5. O(f(n)+g(n)) = Max[O(f(n)), O(g(n))], i.e., terms of

lower degree can be ignored.
 6. One should be careful with functions that have

subtraction:
 If f(n) = O(h(n)) and g(n) = O(h(n)) then
 f(n)-g(n) is not equal to O(h(n)) – O(h(n)) = 0
 7. Big O is transitive, that is, if f(n) = O(g(n)) and g(n) is

O(h(n)), then f(n) = O(h(n)).
 8. The powers of n are ordered according to the exponent

na = O(nb) iff a <= b.
 9. The order of log n is independent of the base taken loga

n = O(logb n) for all a, b > 1.
 10. Logarithms grow more slowly than any power of n log.

n = O(na) for any a>0 but na != O(log n)
 11. na = O(bn), for all a, b > 1 but bn != O(na) for b > 1 .

 The big-O notation can be derived from f(n) using the
following steps:
 1. In each term, set the coefficient of the term to one.
 2. Keep the largest term in the function and discard the

others. Terms are ranked from lowest to highest as
follows:

 log n, n, nlog n, n2, n3, …, nk, 2n, n!, …

314 Computer Fundamentals and Programming in C

 For example, to calculate the big-O notation for
 f(n) = n(n+1)/2 + 5n3 =n2/2 + n/2 + 5n3

 we first remove the coefficients. This gives us n2 + n + n3.
The largest factor is n3. Therefore, the big-O notation is stated
as

 O(f(n)) = O(n3)

 Certain big-O expressions occur so frequently that they are
given names. An algorithm is

∑ constant, if f(n) is O(1).
∑ logarithmic, if f(n) is O(log n).
∑ linear, if f(n) is O(n).
∑ quadratic, if f(n) is O(n2).
∑ polynomial, if f(n) is O(nk), where k is a constant.
∑ exponential, if f(n) is O(nk), where k is a constant.
Let us now discuss these in detail.

Constant O(1) An algorithm with the running time 0(1) is
said to have a ‘constant’ running time. Basically, this means
that the algorithm always takes the same amount of time,
regardless of the size of the input. To state it technically, if
an algorithm never performs more than a certain number of
steps, no matter how large the input is, then that algorithm is
considered to have a constant running time.

Linear 0(n) An algorithm which runs in O(n) is said to have
a ‘linear’ running time. This means that the amount of time
to run the algorithm is proportional to the size of the input.
Alternatively, an algorithm which never performs more than
a certain number of steps for each element in the input has a
linear running time.

Quadratic 0(n2) This means that whenever one increases
the size of the input by a factor of n, the running time increases
by a factor of n2.

Logarithm 0(log n) This means that as the size of the input
increases by a factor of n, the running time increases by a
factor of the logarithm of n. For example, if one increases
the input size of O(logn) algorithm by a factor of 1024, the
running time will increase by a factor of 10. This running time
is better than O(n), but not as good as O(1). As the input size
becomes larger, however, the behaviour becomes comparable
to O(1) in many circumstances.

Linear logarithmic 0(n log n) An algorithm which when
given an input of size n never performs more than cn log n
steps (for some c which is always the same regardless of the
value of n) has a running time of O(n log n). This running
time is better than O(n2).

Exponential 0(2n) This means that its running time will
double every time you add another element to the input. An
algorithm with this running time is generally considered

to be too slow to be useful for anything but the smallest of
problems.

Lower bounds and tight bounds
Big O only gives an upper bound on a function, i.e., if the
constant factors are ignored and n gets big enough, it is
obvious that some function will never exceed some other
function. But this can give too much freedom. For instance,
the time for selection sort is easily O(n3), because n2 is O(n3).
But we know that O(n2) is a more meaningful upper bound.
What is required is to be able to describe a lower bound, a
function that always grows more slowly than f(n), and a
tight bound, a function that grows at about the same rate as
f(n). There is a symmetrical definition of the lower bound in
the definition of big-W (omega):
 The function f(n) is W (g(n)), if there exist positive
numbers c and N such that f(n) > cg(n) for all n > N. In other
words, cg(n) is a lower bound on the size of f(n) or in the
long run f grows at least at the rate of g.
 There is an interconnection between these two notations
expressed by the equivalence.

f(n) is W (g(n)) iff g(n) is O(f(n)).
 There is a common ground between big-O and big-W
notations indicated by the equalities in the definition of these
notations. Big-O is defined in terms of £ and big-W in terms
of >; = is included in both inequalities. This restriction can
be accomplished by the following definition of q (theta)
notation:
 The function f(n) is q(g(n)), if there exist positive
numbers c1, c2, and N such that c1g(n) < f(n) < c2g(n) for all
n > N.

12.12.2 Efficiency of Linear Search
Linear or sequential search has already been discussed in
the Chapter 11 on arrays and strings. For the linear search
algorithm, the number of steps depends on whether the key
is in the list, and if so, where in the list or array, as well as on
the length of the list (number of elements in the list or array).
 For search algorithms, the main steps are the comparisons
of values of array elements with the key value. Counting
these for data models representing the best case, the worst
case, and the average case produces the following table. For
each case, the number of steps is expressed in terms of n, the
number of elements in the array.

Table 12.2 Number of comparisons in linear search algorithm
in least, worst, and average-case situations

Case Comparisons as a
function of n

Best case (fewest comparisons) 1

Worst case (most comparisons) n

Average-case (average number of
comparisons)

n/2

Functions 315
 The best case for sequential search is that it does only
one comparison. In the worst case, sequential search does n
comparisons, and either matches the last element in the array
or does not match anything.
 The average case is harder to do. It is known that the number
of comparisons depends on the position of the key in the array.
But what is the typical position of the key? One reasonable
assumption is that if the key is in the array, it is equally likely
to be any position. So probability of occurences of position =
1/n. Therefore, average number of comparisons

 1=
Â=
n

i

(1/n)× i

n

i=1

= 1/n i∑
 = n(n+1)/2n

 = (n+1)/2

 But if key is not in the list, the number of comparisons
is always n. Suppose for an array, any permutation of the
list is equally likely. Then, we can average over all possible
permutations. Therefore, average number of comparisons

n!

i = 1

1
= .

n!∑

(position of key in permutation i)

 Â
n

p = 1

1
= .p.

n!
(number of permutations with key in

position p)

n

p = 1

1
= .p.(n-1)!

n!∑

n

p = 1

1
= .p

n!∑

 = (n+1)/2

 hence, this assumption gives the same analysis. A second
point to be made about average case analysis is that sometimes
it makes sense to analyse different cases separately. The above
analysis assumes that the key is always in the array; if the key is
not in the array, it requires n comparisons. One could make up a
probability p that x is in or out of the array and combine the two
numbers above to get a total average number of comparisons
equal to pn + (1-p)(n+1)/2 but it makes more sense to just
mention both numbers separately.
 The best-case analysis on an average has no significance.
If the first element checked happens to be the target, any
algorithm will take only one comparison. The worst- and
average-case analyses give a better indication of algorithm
efficiency.

 Notice that if the array grows in size, the number of
comparisons required to find a key item in both worst and
average cases grows linearly. In general, for an array of
length n, the worst case is n comparisons. The algorithm is
called linear search because its complexity/efficiency can be
expressed as a linear function. The number of comparisons
to find a target increases linearly as the size of the array.
Therefore, T(n) = O(n).

12.12.3 Binary Search Analysis
To evaluate binary search, count the number of comparisons
in the best case and worst case. This analysis omits the
average case, which is a bit more difficult, and ignores
any differences between algorithms in the amount of
computation corresponding to each comparison.
 The best case occurs if the middle item happens to be
the target. Then only one comparison is needed to find it.
As before, the best-case analysis does not reveal much.
When does the worst case occur? If the target is not in the
array, then the process of dividing the list in half continues
until there is only one item left to check. Figure 12.7 shows
a pattern of the number of comparisons done after each
division, given the simplifying assumption of an initial
array length that is an even power of two which gives
an exact division in half on each iteration. Consider an array
in which the following elements are stored: 1, 2, 3, 4, 5, 6, 7,
8, and 9.

5

3 8

42 7 9

109865431

1 2 3 F 4 F 5 F 6 F 8 F 9 F 10 F

1 F 2 F 6 F 7 F

Fig. 12.7 Comparison tree for n=10

 Every search ends at a leaf, whether successful or
unsuccessful, denoted by F. To find the average number of
comparisons for a successful search, one has to find the total
comparisons for successful searches and divide by the number
of searches (=n). That is, it is needed to a count number of
branches leading from root to each leaf that terminates a
successful search. From the comparison tree, the following
observations can be made:

316 Computer Fundamentals and Programming in C

 1. Height of tree = maximum number of key comparisons
possible (height = number of levels below root).

 2. Height of tree is at most one more than the average
number of key comparisons because the levels of leaves
can only differ by one, as size of lists when divided by
algorithm can only differ by zero or one.

 3. The number of leaves in a tree expands by a power of
two (Fig. 12.8).

2 = 1
0

2 = 2
1

2 = 4
2

*

*

* * *

*

*

Fig. 12.8 Number of leaves in a tree expands by a power of
two

 Number of leaves = 2h where h is the height of the tree.
Therefore, if the tree has leaves on the same level then
2h = 2n. If the tree has leaves on two levels, then 2h > 2n
(where h is smallest integer that matches the inequality).
Generally, one can say that 2h >= 2n. Taking logs of both sides
(base 2) (i.e., given ay = x, we get logax = y).
 If 2h >= 2n then h >= 1 + log2n {as log(2*n) becomes
log(2) + log(n) and log22 = 1}.
 As n gets larger, the inequality 2h >= 2n tends to 2h = 2n.
 Therefore, the average number of comparisons for a
binary search is approximately log2(n + 1). The following
table summarizes the analysis of binary search.

Table 12.3 Best and worst-case time complexity of binary
search algorithm

Case Comparisons as a
function of n

Best case (fewest comparisons) 1

Worst case (most comparisons) log2n

 Hence, the worse-case complexity is T(n) = O(log2 n) and
the best-case complexity is T(n) = O(1).

12.12.4 Analysis of Bubble Sort
To analyse bubble sort, it is needed to compare the first and
second elements of an array and exchange, if necessary, so
that the smaller is in the first position. This is repeated for the
second and third pairs, third and fourth pairs, etc. until a pass
through all adjacent pairs has been made. At the end of this
first pass, the last item will be in its proper place (i.e., it will
be the largest).

 A second pass is performed on the first (n-1) items, after
which the last two elements will be in place. (n-1) passes will
be required to sort an array containing n elements. At the end
of the ith pass, the last i elements will be ordered. If the pass
is made in which no exchanges are required, then the array is
in order, even if less than (n-1) passes have been made.
 For a list containing n items, the number of swaps required
for each location in the first half of the array can be shown as
follows:

n/2–1

3

n/2

1

n/2-2

5

..

..

..

..

2

n-3+ + + + + + +

3

n-5

1

n-1

Location

Swaps

 Each swap is experienced by two elements and the
number of swaps is counted, and it is experienced by half the
elements. Every swap always moves the elements towards
their eventual location and the sum of this series will be the
total number of swaps required. Consider the following table.

Table 12.4 Number of comparisons, swaps, and moves in
each pass of bubble sort algorithm

Pass Comparisons Swaps Moves

First (n-1) (n-1)/2 swaps
(average)

3(n-1)/2

Second (n-2) (n-1)/2
swaps(average)

3(n-2)/2

All
passes

= (n-1)+(n-2)...+ 1
= n(n-1)/2
= ~ n2/2

= n(n-1)/4
=~ n2/4
(average)

~3n2/4
moves

Therefore,
 T(n) = n + (n - 1) + (n - 2) + (n - 3) + (n - 4) ...

(2) + (1)

 = n(n(n-1)/2) = n2/2

 Hence, the time complexity of bubble sort is O(n2). The
average case behaviour of the bubble sort algorithm can be
shown to be approximately equal to the worst-case behaviour.
It can be assumed that for the worst-case situation, every
element is approximately half the list away from its eventual
location in the sorted list. This will require each element
to experience a minimum of n/2-1 swaps. It cannot be
assumed that the other element participating in the swap will
benefit from the swap by being moved towards its desired
location. It can be assumed that the swaps in the average-
case situation are only 50 per cent as effective as the swaps
in the worst-case situation. This leads to the conclusion that
each element has to experience approximately n swaps and
as each swap moves two elements, the total number of swaps
is approximately n2/2. This is the same number of swaps as
required in the worst-case situation and will need at least as
many iterations of the inner loop.
 Therefore, the worst-case complexity is T(n) = O(n2) and
the average-case complexity is also T(n) = O(n2).

Functions 317

12.12.5 Analysis of Quick Sort
In quick sort, each recursive call could have a different sized
set of numbers to sort. here are the three analyses that must
be performed:

∑ Best case
∑ Average case
∑ Worst case

 In the best case, a perfect partition is to be set every time.
If we let T(n) be the running time of quick sorting n elements,
then T(n) = 2T(n/2) + O(n), since partition runs in O(n)
time.
 Now, consider how bad quick sort would be if the partition
element was always the greatest value of the one remaining
to be sorted. In this situation, one has to run partition n-1
times, the first time comparing n-1 values, then n-2, followed
by n-3, etc. This points to the sum 1+2+3+...+(n-1) which is
(n-1)n/2. Thus, the worst case running time is O(n2).
 Now, lets us calculate the average-case running time. This is
certainly difficult to ascertain because one cannot get any sort
of partition. It is assumed that each possible partition (0 and n-1,
1 and n-2, 2 and n-3, etc.) is equally likely. One way to work out
the mathematics is as follows. Assume that you run quick sort
n times. In doing so, since there are n possible partitions, each
equally likely, on average, each partition occurs once. So, the
following recurrence relation is found:

 nT(n) = T(0)+T(n-1)+T(1)+T(n-2)+...+T(n-1)+T(0) + n*n

 = 2[T(1)+T(2)+...T(n-1)] + n2 (12.1)

 Now, putting n-1 in Eqn (12.1),

 (n-1)T(n-1) = 2[T(1)+T(2)+...T(n-2)] + (n-1)2 (12.2)

 Subtracting Eqn (12.2) from Eqn (12.1), gives

 nT(n) - (n-1)T(n-1) = 2T(n-1) + 2n - 1 nT(n)

 = (n+1)T(n-1) + (2n - 1)

 T(n) = [(n+1)/n]T(n-1) + (2n - 1)/n (12.3)

 Since it is an approximate analysis, the –1 is dropped at the
end of this equation. Dividing Eqn (12.3) by n+1, yields

 T(n)/(n+1) = T(n-1)/n + 2/(n+1) (12.4)

 Now, substituting different values of n into this recurrence
to form several equations, it evaluates to

 T(n)/(n+1) = T(n-1)/n + 2/(n+1)T(n-1)/(n)

 = T(n-2)/(n-1) + 2/(n)

 T(n-2)/(n-1) = T(n-3)/(n-2) + 2/(n-1)

 ◊
 ◊
 ◊
 T(2)/3 = T(1)/2 + 2/1

 Now, summing up as the equations above reveal many
identical terms on both sides. In fact, after cancelling identical
terms, we are left with

T(n)/(n+1) = T(1)/2 + 2[1/1 + 1/2 + 1/3 + ... + 1/(n+1)]

 The sum on the right hand side of the equation is a harmonic
number. The nth harmonic number (Hn) is defined as
 1 + 1/2 + 1/3 + ... 1/n.
 Through calculus, it can be shown that Hn ~ ln n (ln is the
natural log with the base e; e ~ 2.718282). Now,
 T(n)/(n+1) ~ 1/2 + 2ln n

 T(n) ~ n(ln n) (simplifying a bit)
 Thus, even in the average case for quick sort, it is found
that T(n) = O(n log n).
 Note, in order analysis, any function of the form logbn =
O(logcn), for all positive constants b and c, is greater than 1.
 Let us look at the best-case complexity. The best case
occurs when the pivot is the median value; thus the two
recursive calls are problems with approximately half the size
of the original problem. This recurrence is given by
 T(n) = 2T(n / 2) + O(n) = O(n log n)

Weiss derives the best-case performance figure to be
 c * n * log n + n

where c represents the constant pivot selection time.
 The main consideration is quick sort’s average perfor-
mance. This has been shown (see Kruse et al.) to be 1.39 * n
* log n + c * n.
 For quick sort, best case is T(n)= O(n log n), worse case is
T(n) = O(n2), and average case is T(n)= O(n log n).

12.12.6 Disadvantages of Complexity Analysis
Complexity analysis can be very useful, but there are problems
with it too. The disadvantages of complexity analysis are as
follows.

∑ Many algorithms are simply too hard to analyse
mathematically.

∑ The average case is unknown. There may not be sufficient
information to know what the most important ‘average’
case really is, therefore analysis is impossible.

∑ Big-O analysis only specifies how it grows with the size of
the problem, not how efficient it is.

∑ If there are no large amounts of data, algorithm efficiency
may not be important.

318 Computer Fundamentals and Programming in C

SUMMARY

the	data	type	specifiers	in	the	declaration	statement	of	a	variable.	These	
four storage class specifiers	are	as	follows:

∑ automatic
∑ external
∑ register
∑ static

 Recursion in	 programming	 is	 a	 technique	 for	 defining	 a	 problem	 in	
terms of one or more smaller versions of the same problem. A function
that	calls	itself	directly	or	indirectly	to	solve	a	smaller	version	of	its	task	until	
a	final	call	which	does	not	require	a	self-call	 is	a	recursive	function.	The	
following are necessary for implementing recursion:

∑ The problem should be decomposed into smaller problems of same
type.

∑ Recursive calls must diminish problem size.
∑ A base case is required.

∑ Base case must be reached.

 An instance of the problem whose solution requires no further recursive
calls	is	known	as	a	base	case.	It	is	a	special	case	whose	solution	is	known.	
Every recursive algorithm requires at least one base case in order to be
valid.

 Some popular problems where the recursive functions can be used
have	 been	 discussed	 in	 this	 chapter.	 While	 developing	 user-defined	
functions, the common errors encountered by programmers, ideas on how
to	 choose	 test	data,	and	 the	way	 these	can	be	 tracked	have	also	been	
presented in detail.

A function	 is	 a	 self-contained	block	of	 program	statements	 that	 perform	
some	 particular	 task.	 Programs	 should	 be	 built	 with	 a	 large	 number	 of	
small compact functions rather than with a small number of large functions.
The	use	of	 functions	 in	programs	makes	 it	more	manageable	and	easy	
to understand. They may be called as many times as the main program
needs to use them. Functions are reusable and can therefore be used in
multiple programs.

	 The	 linkage	with	 the	user-made	 functions	and	 the	main()	program	 is	
established through three components associated with the user function.
These three components are

∑ the declaration statement
∑ the function	definition	
∑ the calling statement

 When a function is called, parameters are passed by value. Depending
on	 its	 return	 type	 specified	 by	 its	 declaration,	 a	 function	 either	 does	
not return any value or returns some value of the type mentioned in its
prototype.	Another	method	of	passing	parameters	to	a	function	is	known	
as call by reference more strictly ‘call by address’.

	 Scope	 rules	 related	 to	 statement	 blocks	 and	 functions	 basically	
describe the existence, accessibility, and default values of variables called
local variables, declared within the function body and those called global
variables, declared outside all functions.

 To indicate where the variables would be stored, how long they would
exist, what would be their region of existence, and what would be the default
values, C provides four storage class specifiers	that	can	be	used	along	with	

KEY TERMS
Actual parameters Information is passed to a function via special
identifiers	or	expression	called	arguments or actual parameters.

Average-case complexity The	 average-case	 complexity	 of	 an	
algorithm	is	the	function	defined	by	the	average	number	of	steps	taken	on	
any instance of input size.

Base case It is an instance of a problem the solution of which requires
no further recursive calls.

Best-case complexity The	best-case	complexity	of	an	algorithm	is	the	
function	defined	by	the	minimum	number	of	steps	taken	on	any	instance	
of input size.

Big-O notation It is a measure of the running time of an algorithm, as
it relates to the size of the input to that algorithm. It is intended not to
measure the performance of the machine on which the algorithm is run, but
rather to strictly measure the performance of the algorithm itself.

Call by value It means the values of the actual arguments are
conceptually copied to the formal parameters.

Extent How	long	memory	will	be	associated	with	identifiers	is	known	as	extent.

Formal parameters The list of variables in the function header is also
referred to as the formal parameters.

Recursion It is a technique by which a function calls itself.

Scope The region of the program over which the declaration of an
identifier	is	accessible	is	called	the	scope of	the	identifier.

Space complexity It is a function describing the amount of memory
(space)	an	algorithm	 takes	with	 respect	 to	 the	amount	of	 input	provided	
to the algorithm.

Storage class It	 specifies	 where	 the	 variables	 would	 be	 stored,	 how	
long they would exist, what would be their region of existence, and what
would be the default values.

Structured programming It	refers	to	a	set	of	principles	for	writing	well-
organized programs that could be more easily shown to be correct.

Time complexity It is a function describing the amount of time an
algorithm	 takes	 with	 respect	 to	 the	 amount	 of	 input	 provided	 to	 the	
algorithm.

Worst-case complexity The	 worst-case	 complexity	 of	 the	 algorithm	
is	 the	 function	 defined	 by	 the	maximum	 number	 of	 steps	 taken	 on	 any	
instance of input size.

Functions 319319 Computer Fundamentals and Programming in C

1. Why is a function prototype required?
 A	function	prototype	tells	the	compiler	what	kind	of	arguments	a	function	
receives	 and	what	 kind	 of	 value	 a	 function	 is	 going	 to	 give	 back	 to	 the	
calling function. Function prototype helps the compiler ensure that calls to
a	function	are	made	correctly	and	that	no	erroneous	type	conversions	take	
place.	If	the	compiler	finds	any	difference	between	the	prototype	and	the	
calls	to	the	function	or	the	definition	of	the	function,	an	error	or	a	warning	
may be caused.

2. Why is scope important?
 In structured programming approach, the program is divided into
independent	functions	that	perform	a	specific	task.	The	key	word	here	is	
independent. For true independence, it is necessary for each function’s
variables to be isolated from interference caused by other functions. Only
by	 isolating	 each	 function’s	 data	 can	 you	 make	 sure	 that	 the	 function	
performs	 its	 intended	 task	 without	 affecting	 or	 being	 affected	 by	 some	
other part of the program. It is also true that in some situation complete
data isolation between functions is not always desirable. By specifying the
scope of variables, a programmer may attain control over the degree of
data isolation.

3. If global variables can be used anywhere in the program, why not
make all variables global?
 When the program becomes complex and large, it may be needed to declare
more	and	more	variables.	Variables	declared	as	global	take	up	memory	for	
the entire time during which the program runs; however, local variables do
not.	A	 local	variable	takes	up	memory	only	while	the	function	to	which	 it	
is local is active. Additionally, global variables are subject to unintentional
alteration by other functions. If this occurs, the variables might not contain
the values one expects when they are used in the functions for which they
were created.

4. What is the advantage of using register storage class? What are
the restrictions with register storage class?
 The	register	identifier	is	used	for	the	compiler	to	place	the	data	value	in	a	
CPU register so that the data can be accessed fast. However, the compiler
is free to treat a register declaration as an auto declaration because it is
only a hint and not a directive.
 There are some restrictions with register storage class. They include the
following:
 The variable must be of a type that can be held in the CPU’s register.
This usually means a single value of a size less than or equal to the size
of	an	integer.	Some	machines	have	registers	that	can	hold	floating-point	
numbers as well.
 An array should not be declared with register storage class; doing so is
an	undefined	behaviour.	
	 	Address-of	operator	(&)	cannot	be	applied	to	an	identifier	with	register	
storage class. An attempt to do so would cause an error by the compiler.
 Register storage class can only be applied to local variables and
to the formal parameters in function. Global register variables are not
allowed. That is, the register storage class should not occur in an external
declaration.

5. What is linkage?
 An	identifier’s	linkage	determines	which	of	the	references	to	that	identifier	
refer	to	the	same	object.	An	identifier’s	linkage	is	determined	by	whether	it	
appears inside or outside a function, whether it appears in a declaration of

a	function	(as	opposed	to	an	object),	its	storage-class,	and	the	linkage	of	
any	previous	declarations	of	the	same	identifier	that	have	file	scope.

6. What is the use of linkage?
 Linkage	 is	 used	 to	 determine	 what	 makes	 the	 same	 name	 declared	 in	
different scopes refer to the same thing. An object has one name, but
in	many	 cases	we	would	 like	 to	 refer	 to	 the	 same	 object	 from	 different	
scopes.

7. What are the different types of linkages?
 C	defines	 three	 types	of	 linkages	–	external,	 internal,	and	no	 linkage.	 In	
general,
	 	Functions	and	global	variables	have	external	linkage.	This	means	they	
are	available	to	all	files	that	constitute	a	program.
	 	Identifiers	with	file	scope	declared	as	static	have	internal	linkage.	These	
are	known	only	within	the	file	in	which	they	are	declared.
	 	Local	 identifiers	have	no	 linkage	and	are	 therefore	known	only	within	
their	own	block.
	 	Two	declarations	of	the	same	identifier	in	a	single	file	that	have	the	same	
linkage,	 either	 internal	 or	 external,	 refer	 to	 the	 same	 object.	 The	 same	
identifier	cannot	appear	in	a	file	with	both	internal	and	external	linkages.

8. Differentiate between an internal static and external static variable.
 An	 internal	 static	 variable	 is	 declared	 inside	 a	 block	 with	 static	 storage	
class	whereas	an	external	static	variable	is	declared	outside	all	the	blocks	
in	a	file.	An	internal	static	variable	has	persistent	storage,	block	scope,	and	
no	linkage.	An	external	static	variable	has	permanent	storage,	file	scope,	
and	internal	linkage

9. What does extern mean in a function declaration?
 Using extern in a function declaration means the function can be used
outside	the	file	in	which	it	is	defined.

10. Compare recursion and iteration.
 Recursion	 is	 a	 top-down	 approach	 to	 problem	 solving;	 it	 divides	 the	
problem	into	pieces	or	selects	one	key	step,	postponing	the	rest.	On	the	
other	hand,	iteration	is	more	of	a	bottom-up	approach;	it	begins	with	what	
is	known	and	from	this	constructs	the	solution	step	by	step.	
 Depending on the implementation available and the algorithm being
used, recursion can require a substantial amount of runtime overhead.
Thus,	 the	 use	 of	 recursion	 illustrates	 the	 classic	 trade-off	 between	 time	
spent in constructing and maintaining a program and the cost in time and
memory of execution of that program. For that reason, it is often the case
that	an	iterative	version	of	a	solution	is	considerably	more	efficient	than	a	
recursive one.

11. Can main() be called recursively?
 It is perfectly right to call main() recursively if properly written as follows:

 #include <stdio.h>
 int main()
 {
 static int c=5;
 if(c-->0)
 {
 printf(“\t %d”, c);
 return main();
 }

FREQUENTLY ASKED QUESTIONS

320 Computer Fundamentals and Programming in C

 else
 return 0;
 }

 Output
 4 3 2 1 0
 If the recursive call does not have base case as the following program;
then	 this	will	 go	on	 till	 a	point	where	 runtime	error	occurs	due	 to	 stack.	
overflow.

 #include <stdio.h>
 int main()
 {
 main();
 return 0;
 }

EXERCISES

 1.	 A	function	that	returns	an	integer	value	and	takes	a	single	integer	as	
an argument can be prototyped as

 (a) int myFun();
 (b) void myFun(int);
 (c) int myFun(void);
 (d) int myFun(int);
 2. If called by the statement
 n = myFun(9);
 what value will myFun(9) return for assignment to n?
 int myFun(int val) {
 return(val * (val + 1))/2;
 }

 3. Which among the function prototypes below have no errors?
 (a) void myFun1(int)
 (b) int myFun2(void);
 (c) float myFun3(a, b, c);
 (d) double myFun(void a, int b);
 (e) int myFun5(int var1, int);

 4. A	function	is	defined	that	calculates	and	returns	the	hypotenuse	of	a	
right triangle with sides a and b. The function prototype is

 double hypot(double a, double b);
 Which among the statements below are correct uses of (calls to) this

function (assume x, y, and z are double variables and that x and
x have been initialized properly)?

	 	(a) z = hypot(4.0, 4.5);
	 	(b) z = hypot(double x, double y);
	 	(c) hypot(x, y);
	 	(d) printf(“%f”, hypot(x, y));
	 	(e) z = x + y + hypot(x, y);
 5. A function, sumN,	is	defined	that	takes	an	integer	n as argument and

returns the sum of the integers from 1 through n. What is the value
of the expression shown below?

 sumN(3456) - sumN(3455);

 6. Choose all the correct ways of calling a function with prototype
 int f1(int, double);

 given the variables below and that the math library was included.
 int val1 = 5, retVal;
 double val2 = 9.8;
	 	(a) retVal = f1(4, 3.5);
	 	(b) retVal = f1(int val1, float val2);
	 	(c) retVal = f1(1000, val2);
	 	(d) retVal = f1(2*val1, val2/3.5);
	 	(e) retVal = f1(val1, sqrt(val2));

 7. Given	the	function	definition	shown	for	f1() below, what will be
printed?

 int f1(void);
 int main(void) {
 printf(“%d”, f1());
 printf(“%d”, f1());
 printf(“%d”, f1());
 return 0;
 }
 int f1(void) {
 int val = 1;
 return val++;
 }

 8. Given	the	function	definition	shown	for	f1() below, what will be
printed?

 int f1(void);
 int main(void) {
 printf(“%d”, f1());
 printf(“%d”, f1());
 printf(“%d”, f1());
 return 0;
 }
 int f1(void) {
 static int val = 1;
 return val++;
 }

 9. What will be printed by the following code?
 void f1(void);
 int val = 6;
 int main(void) {
 f1();
 printf(“%d”, val);
 f1();
 printf(“%d”, val);
 return 0;
 }
 void f1(void) {
 ++val;
 }

 10. What will be printed by the following code?
 void f1(int);
 int val = 6;
 int main(void) {
 f1(val);
 printf(“%d”, val);
 f1(val);
 printf(“%d”, val);
 return 0;
 }
 void f1(int val) {
 ++val;
 }

Functions 321
 11. Given the following array declaration and function prototype, choose

all the correct ways of calling the function from main() and giving it
a reference to myarray[].

 void myFun(int a[]);
 int main() {
 int myArray[] =
 {10,20,30,40,50,60,70,80};
 /* function call here */
	 	(a)	myFun(myArray);
	 	(b)	myFun(myArray[]);
	 	(c)	myFun(&myArray[0]);
	 	(d)	myFun(myArray[0]);
	 	(e)	myFun(myArray[8]);

 12. What will be the output of the following program?
 #define swap(a,b) temp=a; a=b; b=temp;
 int main()
 {
 static int a=5,b=6,temp;
 if(a > b)
 swap(a,b);
 printf(“a=%d b=%d”,a,b);
 return 0;
 }
 (a) a=5 b=6 (b) a=6 b=5
 (c) a=6 b=0 (d) None of these

 13. The following code is not well written. What is the output?
 int main()
 {
 int a=1,b=2;
 printf(“%d”,add(a,b));
 return 0;
 }
 int add(int a,int b)
 {
 return(a+b);
 }
	 	 (a)	 Run-time	error	 	 (b)	 Compile-time	error
 (c) 3 (d) None of these

 14. What will be the output of the following program?
 int add(int a,int b)
 {
 int c=a+b;
 }
 int main()
 {
 int a=10,b=20;
 printf(“%d %d %d”,a,b,add(a,b));
 return 0;
 }
 (a) 10 20 0	 	 (b)	 Compile-time	error
 (c) 10 20 30 (d) None of these

 15. What will be the output of the following program?
 int add(int a,int b)
 {
 int c=a+b;
 return;
 }
 int main()
 {
 int a=10,b=20;
 printf(“%d %d %d”,a,b,add(a,b));
 return 0;
 }
 (a) 10 20 0 (b)	 Compile-time	error

 (c) 10 20 30 (d) None of these
 16. What will be the output of the following program?
 int main()
 {
 int add(int,int);
 int a=7,b=13;
 printf(“%d”,add(add(a,b),
 add(a,b)));
 return 0;
 }
 int add(a,b)
 int a,b;
 {
 return(a+b);
 }
	 	 (a)	 Compile-time	error	 	 (b)	 20
 (c) 40 (d) None of these
 17. What will be the output of the following program?
 int add(a,b)
 {
 int c=a+b;
 return c;
 }
 int main()
 {
 int a=10,b=20;
 printf(“%d”,add(a,b));
 return 0;
 }
 (a) 30		 	 	 (b)		Compile-time	error
 (c) 0 (d) None of these
 18. What will be the output of the following program?
 int funct2(int b)
 {
 if(b == 0)
 return b;
 else
 funct1(b––);
 }
 int funct1(int a)
 {
 if(a == 0)
 return a;
 else
 funct2(a––);
 }
 int main()
 {
 int a=7;
 printf(“%d”,funct1(a));
 return 0;
 }
 (a) 0	 	 	 	 (b)	 Compile-time	error
	 	 (c)	 Infinite	loop	 	 	(d)	 7
 19. What will be the output of the following program?
 int funct1(int a)
 {{;}{{;}return a;}}
 int main()
 {
 int a=17;
 printf(“%d”,funct1(a));
 return 0;
 }
 (a) 0	 	 	 	 (b)	 Compile-time	error

322 Computer Fundamentals and Programming in C

 (c) 17 (d) None of these
 20. What will be the output of the following program?
 int funct1(int a)
 {
 if(a)
 return funct1(––a)+a;
 else
 return 0;
 }
 int main()
 {
 int a=7;
 printf(“%d”,funct1(a));
 return 0;
 }
 (a) 7 (b) 21
 (c) 28 (d) None of these
 21. What will be the output of the following program?
 int compute(int a,int b)
 int c;
 {
 c=a+b;
 return c;
 }
 int main()
 {
 int a=7,b=9;
 printf(“%d”,compute(a,b));
 return 0;
 }
	 	 (a)	 Compile-time	error	 	 (b)	 16
 (c) None of these
 22. What will be the output of the following program?
 int a=10;
 void compute(int a)
 {
 a=a;
 }
 int main()
 {
 int a=100;
 printf(“%d”,a);
 compute(a);
 printf(“%d”,a);
 return 0;
 }
 (a) 10 10	 	 (b)		Compile-time	error
 (c) 100 100 (d) 100 10
 23. What will be the output of the following program?
 int funct(char ch)
 {
 ch=ch+1;
 return ch;
 }
 int main()
 {
 int a=127;
 printf(“%d %d”,a,funct(a));
 return 0;
 }
	 	 (a)		Compile-time	error		 	 (b)		127 128

 (c) 127–128 (d) None of these
 24. What will be the output of the following program?
 char funct(int val)
 {
 char ch=val;
 return ch;
 }
 int main()
 {
 float a=256.25;
 printf(“%d”,funct(a));
 return 0;
 }
 (a) 0 (b) 256.25
 (c) 256 (d) None of these
 25. What will be the output of the following program?
 auto int a;
 void changeval(int x)
 {
 a=x;
 }
 int main()
 {
 a=15;
 printf(“%d”,a);
 changeval(75);
 printf(“%d”,a);
 return 0;
 }
	 	 (a)		Compile-time	error	 	 (b)		15 75
 (c) 15 15 (d) None of these
 26. What will be the output of the following program?
 int val;
 static int funct()
 {
 return val*val;
 }
 int main()
 {
 val=5;
 funct();
 val++;
 printf(“%d”,funct());
 return 0;
 }
	 	 (a)	 Compile-time	error					 	 (b)		25
 (c) 36 (d) None of these
 27. What will be the output of the following program?
 static int funct(int val)
 {
 static int sum;
 sum+=val;
 return sum;
 }
 int main()
 {
 int i,n=9;
 for(i=1; i<n—; i++)
 funct(i*2);
 printf(“%d”,funct(0));
 return 0;
 }

 (a) 20 (b) 0
 (c) 30 (d) None of these

Functions 323
 28. What will be the output of the following program?
 void print(int a[],...)
 {
 while(*a != -1)
 printf(“%d”,*a++);
 }
 int main()
 {
 int a[]={1,2,3,4,5,-1};
 print(a,5,6,7,8,9,-1);
 return 0;
 }

 (a) Compile-time	error			 (b)	 Run-time	error
 (c) 12345 (d) 56789
 29. What will be the output of the following program?
 int main()
 {
 int a=19,b=4;
 float c;
 c=a/b;
 printf(“%f”,c);
 return 0;
 }

 (a) 4.75 (b) 4
 (c) 4.750000 (d) 4.000000
 30. What will be the output of the following program?
 int main()
 {
 int _;
 _=70;
 printf(“%d”,_);
 return 0;
 }

 (a) Compile-time	error					 	 (b)	 Run-time	error
 (c) 70 (d) None of these
 31. What will be the output of the following program?
 #define func(x,y) { func(x,y) }
 int main()
 {
 int a=5,b=6;
 c=func(x,y);
 printf(“%d %d %d”,c);
 return 0;
 }
	 	 (a)	 Compile-time	error					 	 (b)	 Linker	error
 (c) 5 6 11				 	 (d)	 Infinite	loop
 32. What will be the output of the following program?
 #define big(a,b) a > b ? a : b
 #define swap(a,b) temp=a; a=b; b=temp;
 int main()
 {

 int a=3,b=5,temp;
 if((3+big(a,b)) > b)
 swap(a,b);
 printf(“%d %d”,a,b);
 return 0;
 }
 (a) 3 0 (b) 5 3
 (c) 3 5 (d) 5 0
 33.	 Write	a	function	to	find	the	sum	of	digits	of	a	given	number.
 34. Write a program that uses a function to search a number within an

array.
	35.	 Write	a	function	that	takes	a	decimal	number	and	base	as	argument	

and returns the equivalent number of the given base.
 36. Write a function that will scan a string that is passed as an argument

and convert all characters to capital letters.
 37. Write a program that uses a function to add a string to the end of

another string without using any library function.
 38. Write a function to sort an array of integers in ascending order.
	39.	 Write	a	function	to	reverse	a	given	string	and	use	it	to	check	whether	

the given string is a palindrome or not.
 40. Write a program to perform addition, subtraction, and multiplication on

two matrices depending upon the user’s choice.
 41. Write a program to print the transpose of that matrix.
 42. Write a program that sorts the words of a sentence in alphabetical

order.
 43. Write a function that will print the longest word written in a line.
 44. Write a program to sort the numbers stored in a matrix.
 45. Read two integers, representing a rate of pay (pence per hour) and

a number of hours. Print out the total pay, with hours up to 40 being
paid	at	basic	rate,	from	40	to	60	at	rate-	and-a-half,	above	60	at	
double-rate.	Print	the	pay	as	pounds	to	two	decimal	places.	

 Hints Construct a loop. Terminate the loop when a zero rate is en-
countered. At the end of the loop, print out the total pay. The code
for computing the pay from the rate and hours is to be written as a
function.

 The recommended output format is
 Pay at 200 pence/hr for 38 hours is 76.00 pounds
 Pay at 220 pence/hr for 48 hours is 114.40 pounds
 Pay at 240 pence/hr for 68 hours is 206.40 pounds
 Pay at 260 pence/hr for 48 hours is 135.20 pounds
 Pay at 280 pence/hr for 68 hours is 240.80 pounds
 Pay at 300 pence/hr for 48 hours is 156.00 pounds
 Total pay is 928.80 pounds

 The	‘program	features’	check	that	explicit	values	such	as	40	and	60	
appear	only	once,	as	a	#define	or	an	initialized	variable	value.	

 46. Write functions to convert feet to inches, convert inches to centi-
metres, and convert centimetres to metres. Write a program that
prompts a user for a measurement in feet and converts and outputs
this value in metres. Facts to use: 1 ft = 12 inches,
1 inch = 2.54 cm, 100 cm = 1 metre

Project Question

	 1.	 Write	a	menu-based	program	in	C	that	uses	a	set	of	functions	to	
perform the following operations

 (a) reading a complex number
 (b) writing a complex number

 (c) addition of two complex numbers
 (d) subtraction of two complex numbers
 (e) multiplication of two complex numbers

324 Computer Fundamentals and Programming in C

13.1 IntroductIon
In programming with C, there are far too many things that can
only be done with pointers. In many cases, C programmers
use pointers because they make the code more efficient. But
at the same time, pointers seem to make the code harder to
understand. However, with increased power, pointers bring
increased responsibility. Pointers allow new and ugly types
of bugs, and pointer bugs can crash in random ways making
them more difficult to debug. Nonetheless, even with their
problems, pointers are a powerful programming construct.

The only peculiarity of C, compared to other languages is its
heavy reliance on pointers and the relatively permissive view
of how they can be used.
 Before going on to discuss the concept of pointers, it is
necessary to understand the use of memory in a C program.

note

 ∑ Pointers allow new and ugly types of bugs.
 ∑ Pointer bugs can crash in random ways, which makes

them more difficult to debug.

C
H
a
P
T
e
rPointers in C

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

13

∑ list memory addresses
∑ discuss the concept of pointers
∑ use pointer variables and understand call-by-value and

call-by-address
∑ analyse the use of dereferencing
∑ study equivalence among arrays and pointers—treating

pointers as arrays
∑ explain pointer arithmetic
∑ explain the concept and construction of array of pointers

and pointer to array

∑ discuss pointers and functions—parameter passing
techniques, pointers as function parameters

∑ discuss pointers to functions—functions as arguments
to another function

∑ explain dynamic memory allocation using pointers
∑ discuss memory leak, memory corruption, and garbage

collection
∑ decipher (long) pointer declarations

Pointers in C 325

13.2 understandIng MeMory
addresses

all computers have primary memory, also known as raM
or random access memory. For example, a computer may
have 16, 32, 64, 128, 256, or 512 MB of RAM installed.
raM holds the programs that the computer is currently
running along with the data they are currently manipulating
(their variables and data structures). all the variables used
in a program (and indeed, the program itself) reside in the
memory when the program is executed. The organization of
the memory is rather straightforward. It is a sequence of a
large number of memory locations (cells), each of which has
an address. each memory location is capable of storing a small
number (0 to 256), which is known as a byte. a char data is
one byte in size and hence needs one memory location of the
memory. Both integer and float need four bytes each, or four
locations in a 32-bit machine. The size needed for a particular
data type varies with the platform in which the program is
run. even if an int/float number is small, it will still occupy
four locations. When a program in C is written and compiled,
the compiler will allocate the memory necessary to run the
program. This is one reason why declaring variables is very
important. For example,

	 int	x;
	 x=1000;

will first convey to the C compiler that x is an integer before
assigning a value of 1000 to it. The declaration statement
informs the compiler to allocate enough memory to store an
integer and assign an address to that space in memory. Since
an integer requires two or four bytes of memory, the compiler
searches for two or four free bytes memory and holds them until
a value is assigned to x. It then puts that value in the memory
location and stores it there until x is redefined as something else.
The same goes for other data types in C. Declaring variables
first always allows the compiler to set aside space in memory
which can then be filled up with useful numbers. Figure 13.1
represents these facts.

MemAddr

0

1

2

3

4

5

.

.

.

27576

27577

27578

0

1

2

3

4

5

.

.

.

27576

27577

27578

One
location

char ‘a’ in

memory

int number

in memory

float

number in
memory

Fig. 13.1 The computer memory (16-bit system)

 Variables can be stored in several places in the memory,
depending on their lifetime. Variables that are defined outside
any function (whether of global or file static scope), and variables
that are defined inside a function as static variables, exist for the
lifetime of the program’s execution. These variables are stored
in the data segment. The data segment is a fixed-size area in
memory set aside for these variables. It is subdivided into two
parts, one for initialized variables and the other for uninitialized
variables.
 There may be several global variables declared in the
program, but they will not be stored contiguously, since
the compiler is not compelled to store them in any order
convenient to the programmer. They are randomly stored
throughout the available global memory even though every
C compiler will probably assign them in some contiguous
manner.
 There are virtual memory, cache memory, registers, and other
types of memory that make the system run a little faster or appear
to have more memory. The blocks returned to the program from
the heap have additional housekeeping memory associated with
them and there are byte alignment considerations for both the
heap and the stack. Global memory also has some byte alignment
considerations. For example, the compiler may require that all
float and double type variables start on an even numbered byte
boundary, or on a byte boundary that is modulo four. This may
require some bytes added as padding to get to the boundary when
one of these is encountered. The compiler/linker will take care of
these details.
 Variables that are defined inside a function as auto
variables (that are not defined with the keyword static)
come into existence when the program begins executing the
block of code (delimited by curly braces {}) containing them,
and they cease to exist when the program leaves that block of
code. Variables that are the arguments to functions exist only
during the call to that function. These variables are stored on
the stack. Stack is an area of memory that starts out small and
grows automatically up to some predefined limit. It has three
major functions:
(i) Stack provides the storage area for local variables

declared within the function.
(ii) It stores housekeeping information involved when

function call is made.
 (iii) It is needed for recursive call.
 Once a variable is stored on the stack, it can be referred
to by the code that puts it on the stack, so that it is a variable
available for use in much the same manner as global variables
are available. However, when the program has finished using
the data on the stack, it can be discarded to allow the stack to be
used for other data when needed. This is probably unclear at this
point, but it will make more sense when one gets to the actual
usage. It is to be noted that stack would not be needed except for
recursive calls. If not, for these a fixed amount of space for local
variables, parameters, and return addresses would be known at
compile time and could be allocated in BSS.

326 Computer Fundamentals and Programming in C

 In DOS and other systems without virtual memory, the
limit is set either when the program is compiled or when it
begins executing. In UNIX and other systems with virtual
memory, the limit is set by the system, and it is usually so
large that the programmer can ignore it.
 The third and final area does not actually store variables,
but can be used to store data pointed to by variables.
 Pointer variables that are assigned to the result of a call to
the malloc() function contain the address of a dynamically
allocated area of memory. This memory is in an area called
the heap. When the program requests a block of data, the
dynamic allocation scheme carves out a block from the
heap and assigns it to the user by returning a pointer to the
beginning of the block. When the system has finished using
the block, it returns the block to the heap where it is returned
to the pool of available memory called the free list. This is
called de-allocation. The heap can share a memory segment
with either the data segment or the stack, or it can have its
own segment. It all depends on the compiler options and
operating system. The heap, like the stack, has a limit on how
much it can grow, and the same rules apply as to how that
limit is determined.
 Since readers are interested only in the logical assignment
of memory, they can ignore all of these extra considerations,
and still write efficient, robust programs. Compiler writers
must keep track of all of these entities in order to make
the programmer’s job easier. C uses pointers in three main
ways.
(i) Pointers in C provide an alternative means of accessing

information stored in arrays, which is especially valuable
when working with strings. There is an intimate link
between arrays and pointers in C.

(ii) C uses pointers to handle variable parameters passed to
functions.

(iii) They are used to create dynamic data structures, that
are built up from blocks of memory allocated from the
heap at run time. This is only visible through the use of
pointers.

 Table 13.1 describes the memory layout of the memory
elements of a C program.

Table 13.1 Memory layout summary

Memory
Section Name

Description

Text (or
the code
segment)

This is the area of memory that contains the machine
instructions corresponding to the compiled program.
This area is READ ONLY and is shared by multiple
instances of a running program.

Data This area in the memory image of a running
program contains storage for initialized global
variables. This area is separate for each running
instance of a program.

BSS This is the memory area that contains storage for
uninitialized global variables. It is also separate for
each running instance of a program.

Stack This region of the memory image of a running
program contains storage for the automatic (local)
variables of the program. It also stores context-
specific information before a function call, e.g., the
value of the instruction pointer (program counter)
register before a function call is made. On most
architectures, the stack grows from higher memory
to lower memory addresses.

Heap This memory region is reserved for dynamically
allocating memory for variables at run time.
Dynamic memory allocation is done by using the
malloc	or calloc functions.

Shared
libraries

This region contains the executable image of shared
libraries being used by the program.

13.3 address of operator (&)
readers might have noticed that when we call certain
functions in C the & sign is used. For example,

scanf(“%d”,	&n);

takes the input from the terminal and stores it in integer format
in the variable named n. The & sign indicates the address in
memory of the integer n, which must be previously declared
using

int	n;

where the function stores the inputted data. Just like a
house address in a town, the memory address is an integer
specifying the location where something resides. scanf needs
to know this in order to redirect the data. If one forgets and
types n instead, the scanf function interprets the actual integer
value of n as an address and tries to send its output there. This
address may not exist, it may be used by the operating system
or otherwise blocked, or it may be impossible to find again.
It is likely to get a

segmentation	fault

error when one compiles, and certainly get nonsense values
if the program runs.
 To recap, the compiler considers n as the value of n (which
will be junk if it has not been assigned yet) and &n as n’s
address. at the moment when the variable is declared, it must
be stored in a concrete location in the succession of cells in
the memory. The programs do not decide where the variable
is to be placed. It is done automatically by the compiler and
the operating system at run time. But once the operating
system has assigned an address there may be cases where
it may be of interest to know the location of the variable. (Contd)

Table 13.1 Contd

Pointers in C 327
This can be done by preceding the variable identifier by an
ampersand (&), which literally means ‘address of’.
 Now, the above ideas are illustrated with some more
details. Consider the declaration,

int	i	=	3;

This declaration tells the C compiler to
 reserve space in memory to hold the integer value
 associate the name i with this memory location
 store the value 3 at this location

i’s location in the memory may be logically represented with
the memory map shown in Fig. 13.2.

i

3

2147478276

Fig. 13.2 Memory map

 The computer has selected memory location 2147478276 as
the place to store the value 3. This location number 2147478276
is not a number to be relied upon, because at some other time
the computer may choose a different location for storing
the value 3. This address can be printed using the following
statement:

printf(“\n	Address	of	i	=	%u”,	&i);	

 The output will be: 2147478276. Look at the printf()
statement carefully. The ‘&’ used in this statement is C’s
address operator. The expression &i returns the address of the
variable i, which in this case happens to be 2147478276.
 The address is printed using %u control string as it is of
type unsigned	int.	%X can also be used. actually %p should
be used because it prints the input argument as a memory
address.
The following statement

printf(“\n	Address	of	i	=	%x”,	&i);	

will print FFDC in hexadecimal as the address of variable ‘i’.

Why an unassigned pointer should not be used?
according to an elementary school verse, “I shot an arrow
into the air, where it lands, I don’t care.” It may rhyme, but
its message is really not appropriate for little ones. However,
when a pointer is declared and then used without first as-
signing it a value, it does the programming equivalent of the
verse.
 The following program declares a pointer and then attempts
to output its value without first assigning it a value.

#include	<stdio.h>
int	main()

{
	 int	*ptr;
	 printf(“\n	The	value	of	ptr	is	%u”,	ptr);
	 return	0;
}

 The result, depending on the compiler and operating system,
may be a compiler error, a run-time error, or a computer that
locks up. regardless, attempting to use a declared pointer
without first assigning it a value is not a good idea.
 It may be recalled from previous chapters that when a
variable is declared and then an attempt is made to output
its value without first assigning it a value, the result is a so-
called garbage value that makes little sense. The reason for
this result is that the computer attempts to interpret whatever
value is left over from previous programs at the address of
the variable.
 When the variable is a pointer, that leftover value is
interpreted as another memory address, which the pointer
then tries to access when we attempt to use it. There are a
number of memory address ranges that are not permitted to
access programmatically, such as those reserved for use by
the operating system. If the leftover value is interpreted as
one of those prohibited addresses, the result is an error.

note

 ∑ After declaring a variable, where the variable is to be
located is decided by the compiler and the operating
system at run time.

 ∑ After declaring a variable, if an attempt is made to output
its value without assigning a value, the result is a garbage
value.

13.4 poInter
a pointer provides a way of accessing a variable without
referring to the variable directly. The mechanism used for
this is the address of the variable. a program statement can
refer to a variable indirectly using the address of the variable.
 a pointer variable holds the memory address of another
variable. Put another way, the pointer does not hold a value in
the traditional sense; instead, it holds the address of another
variable. They are called pointers for the simple reason that
by storing an address, they ‘point’ to a particular point in
memory. a pointer points to that variable by holding a copy
of its address. Because a pointer holds an address rather than
a value, it has two parts. The pointer itself holds the address.
The address points to a value.
Pointers can be used to:
 call by address, thereby facilitating the changes made to

a variable in the called function to become permanently
available in the function from where the function is called

328 Computer Fundamentals and Programming in C

	return more than one value from a function indirectly
 pass arrays and strings more conveniently from one

function to another
 manipulate arrays more easily by moving pointers to

them (or to parts of them) instead of moving the arrays
themselves

 create complex data structures, such as linked lists and
binary trees, where one data structure must contain
references to other data structures

 communicate information about memory, as in the function
malloc() which returns the location of free memory by
using a pointer

 compile faster, more efficient code than other derived data
types such as arrays

 Therefore, a pointer variable is a variable that stores
the address of another variable. In C, there is an additional
restriction on pointers—they are not allowed to store
any memory address, but they can only store addresses of
variables of a given type.

13.4.1 declaring a pointer
Just as any other variable in a program, a pointer has to be
declared; it will have a value, a scope, a lifetime, a name; and
it will occupy a certain number of memory locations. The
pointer operator available in C is ‘*’, called value at address
operator. It returns the value stored at a particular address.
The value at address operator is also called indirection
operator. a pointer variable is declared by preceding its name
with an asterisk. The syntax for declaring a pointer variable is

datatype	*	pointer_variable;

where datatype is the type of data that the pointer is allowed
to hold the address of (that is, the type of data that the pointer
is allowed to point to) and pointer_variable is the pointer
variable name that is used to refer to the address of a variable
of type datatype.
an example of a pointer declaration would be

char	*ptr;

 The above declaration should be evaluated as: ptr is a
pointer to char type data. char is not the data type of ptr. ptr
is an identifier of type pointer and char is a data specifier that
is used to indicate the type of data at the memory address
that ptr is holding. Pointers are variables that hold memory
addresses. at the memory address, which is held in a pointer, a
value is stored; this value may be of primitive or user-defined
data type. In declaring a pointer variable, the programmer is
actually declaring a variable that holds a memory address that
points to a specific type of data value. Consider the following
declaration.

int	*a;

 This declaration indicates that a is a pointer type variable
that points to int type data. That is, the int indicates that the
pointer variable is intended to store the address of an integer
variable. Such a pointer is said to ‘point to’ an integer.

float	*t;

 The above declaration represents the fact that t is a pointer
type variable that points to float type data. Some declarations
are listed in Table 13.2.

Table 13.2 Meaning of some pointer type variable declarations

Declaration What it means

int	p p is an integer

int	*p p is a pointer to an integer

char p p is a character

char	*p p is a pointer to a character

long	p p is a long integer

long	*p p is a pointer to a long integer

unsigned	char	p p is an unsigned character

unsigned	char	*p p is a pointer to an unsigned character

Consider the following program.

#include	<stdio.h>

int	main()

{

	 int	*p;

	 float	*q;

	 double	*r;

	 printf(“\n	 the	 size	 of	 integer	 pointer	 is	 %d”,	

sizeof(p));

	 printf(“\n	 the	 size	 of	 float	 pointer	 is	 %d”,	

sizeof(q));

	 printf(“\n	 the	 size	 of	 double	 pointer	 is	 %d”,	

sizeof(r));

	 printf(“\n	the	size	of	character	pointer	is	%d”,	

sizeof(char	*));

	 return	0;

}

Output
In Turbo C

the	size	of	integer	pointer	is	2

the	size	of	float	pointer	is	2

the	size	of	double	pointer	is	2

the	size	of	character	pointer	is	2

In GCC
the	size	of	integer	pointer	is	4

the	size	of	float	pointer	is	4

the	size	of	double	pointer	is	4

the	size	of	character	pointer	is	4

Pointers in C 329
 The output shows that all the pointer type variables (p,
q, and r) take up the same storage space. Depending upon
the machine architecture, the size of a pointer will range
from being a 16-bit field on the IBM PC class of machines, to
a 64-bit field on a Cray supercomputer.

Why should pointers have data types?
Let it be assumed that an address in a hypothetical machine is
32-bits long. The addressing of a byte or word will, therefore,
require a 32-bit address. This suggests that a pointer (as
pointers store addresses) should be capable of storing at
least, a 32-bit value irrespective of whether it is an integer or
a character. This brings in a question. Why should pointers
have data types when their size is always four bytes (in a 32-
bit machine) irrespective of the target they are pointing to?
 Before discussing why pointers should have data types, it
would be beneficial to understand the following points about
C.

 C has data types of different size, i.e., objects of different
types will have different memory requirements.

 It supports uniformity of arithmetic operations across
different (pointer) types.

 It does not maintain data type information in the object or
executable image.

 When objects of a given data type are stored consecutively
in the memory (that is, an array), each object is placed at a
certain offset from the previous object, if any, depending on
its size. a compiler that generates a code for a pointer, which
accesses these objects using pointer arithmetic, requires
information on generating offset. The data type of the pointer
provides this information. This explains the first point.
 The second point is reasonable enough to suggest that
pointers should have data types. Sizes of various data types
are basically decided by the machine architecture and/or the
implementation. Moreover, if arithmetic operations were not
uniform, then the responsibility of generating proper offset
for accessing array elements would completely rest on the
programmer. This has the following drawbacks.

 a programmer is likely to commit mistakes such as
typographical mistakes and providing wrong offsets.

 Porting the code to other implementations would require
changes, if data type sizes differ. This would lead to
portability issues.

note

 ∑ Pointers have data types but the size of a pointer variable
is always four bytes (in a 32-bit machine) whatever the
data type used in declaring it.

Where is a pointer stored?
a pointer can be stored in any location like any other variable,
but is generally not stored on the heap. It can be defined and
stored globally, or it can be defined local to a function and
stored on the stack. The size of the pointer depends on the
implementation and for 32-bit operating systems, it generally
requires four bytes of storage space. This is, however, not a
requirement. a compiler writer can use any number of bytes
desired to store a pointer.
 Keep in mind, that a pointer is like any other variable in
the sense that it requires storage space somewhere in the
computer’s memory, but it is not like most variables because
it contains no data, only an address. Since it is an address,
it actually contains a number referring to some memory
location. Dynamically allocated arrays can also be expanded
during the execution of the program.

13.4.2 Initializing pointers
It should be noted that, unlike a simple variable that stores a
value, a pointer must be initialized with a specified address
prior to its use. One of the most common causes of errors
in programming by novices and professionals alike is
uninitialized pointers. These errors can be very difficult to
debug because the effect of the errors is often delayed until
later in the program execution. Consider the following
program.

#include	<stdio.h>	
int	main()	
{
	 int	*p;	 	 	 	 	 	 /*	a	pointer	to	an	integer	*/	
	 printf(“%d\n”,*p);	
	 return	0;
}

 This code conveys to the compiler to print the value that p
points to. However, p has not been initialized yet; it contains
the address 0 or some random address. a pointer must not
be used until it is assigned a meaningful address. To use a
pointer that has not been initialized properly will cause
unpredictable results. When a program starts execution,
an uninitialized pointer will have some unknown memory
addresses in it. More precisely, it will have an unknown value
that will be interpreted as memory addresses. To use a pointer
that has not been initialized properly will cause unpredictable
results. In most cases, a segmentation fault (or some other
run-time error) results, which means that the pointer variable
used points to an invalid area of memory. Sometimes the
program will appear to run correctly but when the program
terminates, the message ‘Null Pointer Assignment’ will be
displayed. This message notifies the programmer that the
program is using an uninitialized pointer. In other cases, the
use of an uninitialized pointer will result in a ‘Bus Error’ or

330 Computer Fundamentals and Programming in C

a ‘Memory Fault’ run-time error. No matter what, the use of
an uninitialized pointer is extremely dangerous, especially on
PC type systems, and difficult to track down.

note

 ∑ A pointer should be initialized with another variable’s
memory address, with 0, or with the keyword NULL prior
to its use; otherwise the result may be a compiler error or
a run-time error.

 Now, back to the new pointer variable p declared earlier.
Suppose, p stores the address of the integer variable i that
contains the value 3. To store the address of ‘i’ in ‘p’, the
unary & address operator is to be used. This is shown as
follows:

p	=	&i;

 The & operator retrieves the lvalue (address) of i, even
though i is on the right-hand side of the assignment operator
‘=’, and copies that onto the contents of the pointer ptr. Now,
ptr is said to ‘point to’ i. The & operator applies only to objects
in memory, that is, variables and array elements. It cannot be
applied to expressions, constants, or register variables.
 The following program shows how to use the address
operator to assign the address of a variable to a pointer. This
program also demonstrates that the value of a pointer is the
same as the address to which the pointer points.

#include	<stdio.h>

int	main()

{

	 int	i	=	5;

	 int	*ptr	=	&i;

	 printf(“\nThe	address	of	i	using	&num	is	%p”,	&i);

	 printf(“\nThe	address	of	i	using	Ptr	is	%p”,	ptr);

	 return	0;

}

 The output (the following addresses might be different on
different computers) is

The	address	of	i	using	&num	is	0012FED4

The	address	of	i	using	Ptr	is	0012FED4

 Figure 13.3 shows how the pointer points to the integer
variable.

i p

0012FED45

0012FED4 0012FEE4

Fig. 13.3 Pointer pointing to an integer variable

 another point to remember is that a pointer variable is
always bound to a specific data type (except void pointer).
This means that the type of the pointer and the variable whose
address is contained in the pointer must be of the same type.
The following pointer initializations are invalid.

int	a=3,	*ip;

float	*p;

char	ch=’A’;

p=&a;	——————————	INVALID

ip=&ch;	——————————	INVALID

 any number of pointers can point to the same address. For
example, we could declare p, q, and r as integer pointers and
set all of them to point to i as shown here.

int	i=3;
int	*p,	*q,	*r;
p	=	&i;
q	=	&i;
r	=	p;

 Note that in this code, r points to the same address that p
points to, which is the address of i. We can assign pointers
to one another, and the address is copied from the right-
hand side to the left-hand side during the assignment. The
pictorial representation is given in Fig. 13.4.

p

q3

r

i

Fig. 13.4 Three pointers pointing to the same variable

 The variable i can be accessed through i, *p, *q, and *r.
There is no limit on the number of pointers that can hold, and
therefore point to the same address.

note

 ∑ A pointer is bound to a specific data type (except pointer
to void). A pointer to an int cannot hold the address of a
character variable in which case a compiler error would
result.

Printing pointer value
a pointer variable contains a memory address that points
to another variable. To print the memory address stored in
pointers and non-pointer variables using the %p conversion
specifier and to learn the use of the %p conversion specifier,
study the following program.

#include	<stdio.h>
int	main(void)

Pointers in C 331
{
	 int	a=10,	*p;
	 p=&a;
	 printf(“\n	p	=	%p”,	p);
	 return	0;
}

Output
p	=	0022FF2C

 On most systems %p produces a hexadecimal number. On
ANSI C systems, the %p is preferred. Instead of	 %p, %x can
be used giving the same output. If %u is used, the address
will be printed in decimal form. Compare the output with the
previous program.

#include	<stdio.h>

int	main(void)

{

	 int	a=10,	*p;

	 p=&a;

	 printf(“\n	p	=	%u”,	p);

	 return	0;

}

Output
p	=	2293548

note

 ∑ Addresses must always be printed using %u or %p or %x.
If %p is used, the address will be printed in hexadecimal
form. If %u is used, the address will be printed in decimal
form.

Is it possible to assign a constant to a pointer variable?
Consider the following code:

int	*pi;
pi=	(int*)1000;
*pi	=	5;

 Location 1000 might contain the program. Since it is a
read only, the operating system will throw up a segmentation
fault.
 What about *pi	 =	 5? again, it will most likely cause a
segmentation fault because lower memory addresses are
typically used for program code. This area is only read.
It should be known in advance where this constant is located
in the memory. This construction is useful when writing an
operating system or device driver that communicates with the
device using memory.
 For example, in older PCs, the screen could be updated by
directly accessing an array in memory (the address probably
started at 0x10000). The array was of integers that were two
bytes. The first byte held the ASCII character code and the
second byte stored the character attributes. Once again, if one
did not know what one were doing, the computer could crash.

13.4.3 Indirection operator and dereferencing
The primary use of a pointer is to access and if appropriate,
change the value of the variable that the pointer is pointing
to. The other pointer operator available in C is ‘*’, called the
‘value at address’ operator. It returns the value stored at a
particular address. The value at address operator is also called
indirection operator or dereference operator.
 In the following program, the value of the integer variable
num is changed twice.

#include	<stdio.h>
int	main()
{
	 int	num	=	5;
	 int	*iPtr	=	#
	 printf(“\n	The	value	of	num	is	%d”,	num);
	 num	=	10;
	 printf(“\n	The	value	of	num	after	num	=	10	is\	%d”,	

num);
	 *iPtr	=	15;

printf(“\n	The	value	of	num	after	*iPtr	=	15	is\	
%d”,	num);

	 return	0;
}

Output
The	value	of	num	is	5
The	value	of	num	after	num	=	10	is	10
The	value	of	num	after	*iPtr	=	15	is	15

 The second change should be familiar by the direct
assignment of a value to num, such as num	=	10. However, the
third change is accomplished in a new way, by using the
indirection operator.

*iPtr	=	15;

 The indirection operator is an asterisk, the same asterisk
that is used to declare the pointer or to perform multiplication.
However, in this statement the asterisk is not being used in
a declaration or to perform multiplication. Therefore, in this
context it is being used as an indirection operator. Observe
the following statements carefully.

int	i=5;
int	*p;
p	=	&i;
printf(“\nValue	of	i	=	%d”,	i);

note

 ∑ A pointer is a variable that holds the address of a
memory location that is, pointers are variables that point
to memory locations.

 ∑ In C, pointers are not allowed to store any arbitrary
memory address, but they can only store addresses of
variables of a given type.

332 Computer Fundamentals and Programming in C

 printf(“\nValue	of	*	(&i)	=	%d”,	*(&i));

Output
 value	of	i	=	5

	 value	of	*	(&i)	=	5

 Note that printing the value of *(&i) is same as printing
the value of i. * always implies value at address. *(&i) is
identical to i. The unary operators & and * bind more tightly
than arithmetic operators; they associate right to left, hence
*&i is equivalent to *(&i).
 The placement of the indirection operator before a pointer
is said to dereference the pointer. The value of a dereferenced
pointer is not an address, but rather the value at that address—
that is, the value of the variable that the pointer points to.
 For example, in the preceding program, iPtr’s value is the
address of num. However, the value of iPtr dereferenced is
the value of num. Thus, the following two statements have the
same effect, both changing the value of num.

num	=	25;
*iPtr	=	25;

 Similarly, a dereferenced pointer can be used in arithmetic
expressions in the same fashion as the variable to which it
points. Thus, the following two statements have the same
effect.

num	*=	2;
*iPtr	*=	2;

 In these examples, changing a variable’s value using the
indirection operator rather than through a straightforward
assignment seems like an unnecessary complication.
However, there are instances (discussed later in this chapter),
such as looping through an array using a pointer, or using
dynamic memory allocation, in which using the indirection
operator is helpful or even necessary.

note

 ∑ Address of operator (&): It is used as a variable prefix and
can be translated as ‘address of’. Thus, &variable can be
read as .address of variable.

 ∑ Dereference operator (*): It can be translated by .value
pointed by or ‘value at address’. *ptr can be read as ‘value
pointed by ptr’. It indicates that what has to be evaluated
is the content pointed by the expression considered as an
address.

 The following example shows how pointers can be used
to add numbers given by the user through the use of pointers
without using the variable directly.

#include	<stdio.h>
int	main()
{
	 int	a,b,c;
	 int	*pa,*pb,*pc;
	 pa=&a;
	 pb=&b;

	 pc=&c;
	 printf(“\n	ENTER	THE	FIRST	NUMBER:”);
	 scanf(“%d”,pa);
	 printf(“\n	ENTER	THE	SECOND	NUMBER:”);
	 scanf(“%d”,pb);
	 *pc=*pa+*pb;
	 printf(“\n	SUM	IS	%d”,*pc);
	 return	0;
}

Output
ENTER	THE	FIRST	NUMBER	5
ENTER	THE	SECOND	NUMBER	 6
SUM	IS	11

The following statements are also valid.
*ptr	=	*ptr	+	10;

increments *ptr by 10. The unary operators * and & bind more
tightly than arithmetic operators, so the assignment

y	=	*ptr	+	1

takes whatever ptr points at, adds 1, and assigns the result to
y, while

*ip	+=	1

increments what ptr points to. a pointer variable does not
always points to a particular variable throughout the program.
It can point to any variable; the only precondition is that its
type must be same because the pointer variable is bound to
specific data type. The following program illustrates this
fact.

#include	<stdio.h>
int	main()
{
	 int	a=5,	b=10;
	 int	*p;
	 p	=	&a;
	 printf(“\na=%d	b=%d	*p=%d”,	a,	b,*p);
	 p=&b;
	 printf(“\na=%d	b=%d	*p=%d”,	a,	b,*p);
	 return	0;
}

Output
a=5	b=10	*p=5
a=5	b=10	*p=10

13.5 voId poInter
a void pointer is a special type of pointer. It can point to
any data type, from an integer value or a float to a string of
characters. Its sole limitation is that the pointed data cannot
be referenced directly (the asterisk * operator cannot be used
on them) since its length is always undetermined. Therefore,
type casting or assignment must be used to turn the void
pointer to a pointer of a concrete data type to which we can
refer. Take a look at the following example.

#include	<stdio.h>

int	main()

Pointers in C 333
{

	 int	a=5,

	 double	b=3.1415;

	 void	*vp;

	 vp=&a;

	 printf(“\n	a=	%d”,	*((int	*)vp));

	 vp=&b;

	 printf(“\n	a=	%d”,	*((double	*)vp));

	 return	0;

}

Output
a=	5
b=	3.141500

note

 ∑ Void pointer can point to a variable of any data type, from
an integer value or a float to a string of characters.

 ∑ The type casting or assignment must be used to turn the
void pointer to a pointer of a concrete data type to which
we can refer.

13.6 null poInter
Suppose a variable, e.g., a, is declared without initialization.

int	a;

 If this is made outside of any function, ANSI-compliant
compilers will initialize it to zero. Similarly, an uninitialized
pointer variable is initialized to a value guaranteed in such a
way that it is certain not to point to any C object or function.
a pointer initialized in this manner is called a null pointer.
 a null pointer is a special pointer that points nowhere.
This means that no other valid pointer to any other variable
or array cell or anything else will ever be equal to a null
pointer.
 The most straightforward way to get a null pointer
in the program is by using the predefined constant NULL,
which is defined by several standard header files, including
<stdio.h>, <stdlib.h>, and <string.h>. To initialize a pointer to
a null pointer, code such as the following can be used.

#include	<stdio.h>
int	*ip	=	NULL;

 To test it for a null pointer before inspecting the value
pointed to, code such as the following can be used.

if(ip	!=	NULL)
	 printf(“%d\n”,	*ip);

 It is also possible to refer to the null pointer using a constant
0, and to set null pointers by simply saying

int	*ip	=	0;

 If it is too early in the code to know which address to assign
to the pointer, then the pointer can be assigned to NULL,

which is a constant with a value of zero defined in several
standard libraries, including stdio.h. The following program
does so.

#include	<stdio.h>

int	main()

{

	 int	*p;

	 p	=	NULL;

	 printf(“\n	The	value	of	p	is	%u”,	p);

	 return	0;

}

Output
The	value	of	p	is	0

 On most operating systems, programs are not permitted to
access memory at address 0 because that memory is reserved
by the operating system. It is not the case that the pointer points
to a memory address that is reserved by the operating system.
However, the memory address 0 has special significance; it
signals that the pointer is not intended to point to an accessible
memory location. Thus, if it is too early in the code to know
which address to assign to a pointer, the pointer should first
be assigned to NULL, which then makes it safe to access the
value of a pointer before it is assigned a ‘real’ value such as
the address of another variable or constant.
 Furthermore, since the definition of ‘true’ in C is a value
that is not equal to 0, the following statement tests for non-
null pointers with abbreviated code such as

if(ip)
	 printf(“%d\n”,	*ip);

 This has the same meaning as our previous example;
if(ip) is equivalent to if(ip	!=	0) and to if(ip	!=	NULL).
The value 0 can be used to represent a null pointer in
 assignment and initialization
 comparison
 all of these uses are correct, although the use of the
constant NULL is recommended for clarity.

note

 ∑ NULL is a constant that is defined in the standard library
and is the equivalent of zero for a pointer. NULL is a value
that is guaranteed not to point to any location in memory.

Consider the following code segment:
#include	<stdio.h>

int	main(void)

{

	 char	*p=NULL;

	 printf(“%s”,p);

	 return	0;

}

334 Computer Fundamentals and Programming in C

 The C standard lays down that the argument for a %s specifier
shall be a pointer to an array of characters. Since NULL is
not an array of characters, the statement “printf(“%s”,p);”	
shows an undefined behaviour resulting in unpredictable or
compiler defined output.

13.7 use of poInters
Call by address
One of the typical applications of pointers is to support call
by reference. However, C does not support call by reference
as do other programming languages such as pascal and
fortran. Typically, a function call is made to communicate
some arguments to the function. C makes use of only one
mechanism to communicate arguments to a function: call
by value. This means that when a function is called, a copy
of the values of the arguments is created and given to the
function. For example,

#include	<stdio.h>

void	swap(int	a,	int	b)

{

	 int	temp;

	 temp=a;

	 a=b;

	 b=temp;

}

int	main()

{

	 int	x=5,y=10;

	 void	swap(int,int);

	 printf(“%d	%d\n”,x,y);

	 swap(x,y);

	 printf(“%d	%d\n”,x,y);

	 return	0;

}

Output
5	10
5	10

 No swapping takes place. Now when the function swap is
called, the system automatically creates two new variables
(called a and b in this case). These will contain a copy of the
values that are specified in the function call (i.e., the value
of x and the value of y). all the operations performed by the
function operate on the copies of the values (a, b), and will
not affect the original values (x, y).
 Of course, in this particular example, the function will
probably not accomplish what is needed. The function swap
is used to exchange the content of two variables, but when
the call is made, the function will receive and operate on
the copies of the variables, leaving the original variables
(x, y) untouched. So at the end of the function the effect of
the changes done by swap is lost (the copies created when

the function is called are destroyed when the function is
completed).
 This is a common situation in C. each function always
receives copies of values and the function does not have any
way of modifying the value of variables that exist outside the
function (e.g., x, y in the example).
 The way to obtain the desired effect is call by reference.
This means that when the function is called, we do not create
copies of values but the function is allowed to access the
original values. This also means that if the function modifies
such values, then the modification will affect the original value
and will persist once the function execution is finished.
 Call by reference does not exist in C, but it can be
simulated through the use of pointers. To make a function
be able to modify a certain variable, the function must be
provided with information about the location of the variable
in memory (i.e., its address). If the function knows where
the variable is in memory, it will be able to access that area
of memory by using pointers and change its content. This is
known as call by address.
 The way to obtain the desired effect is for the calling
program to pass pointers to the values to be changed. For
example,

swap(&x,	&y);

 Since the operator & produces the address of a variable, &x
is a pointer to x. In swap itself, this will arrive to the function
in the form of a pointer. That is, the parameters are declared
as pointers, and the operands are accessed indirectly through
them. Now, the preceding program is rewritten using call by
address.

#include	<stdio.h>

void	swap(int	*a,	int	*b)

{

	 int	temp;

	 temp	=	*a;

	 *a	=	*b;

	 *b	=	temp;

}

int	main()

{

	 int	x=5,y=10;	

	 void	swap(int	*,int	*);

	 printf(“%d	%d\n”,x,y);

	 swap(&x,	&y);

	 printf(“%d	%d\n”,x,y);

	 return	0;

}

Output
5	10

10	5

Pointers in C 335
 The values have been exchanged by the function swap().
Within the main() function, the & operator causes the address
of arguments x and y to be passed in the call to swap(). In the
swap() function header, the addresses being passed from the
calling function are received in pointer type variables (int	
*a, int	*b). Within the swap() function body, the * operator
is used to retrieve values held at the addresses that were
passed. The following example attempts to demonstrate how
identifiers or variables are assigned locations in memory and
how values are stored in those locations. all addressing in the
following example is assumed arbitrarily.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 Variable	Memory	 Value

	 	 	 	 	 	 	 	 	 	 	 	 	 	 name	 address
int	main()	
{
void	swap(int	*,	int	*);
int
	 x	=	5,	 	 	 	 	 	 	 	 	 	 x	 2000	 5
	 y	=	10	 	 	 	 	 	 	 	 	 	 y	 2002	 10
	 ;
	 /*	pass	addresses	*/
	 swap(&x,	&y);	
	 return	0;
}
void	
swap(int	*a,	int	*b)		 	 	 a	 3000	 2000
	 	 	 	 	 	 	 	 	 	 	 	 	 	 b	 3002	 2002
{
	 int	temp;		 	 	 	 	 	 	 	 temp	 4000	 0/garbage
	 temp	=	*a;		 	 	 	 	 	 	 temp	 4000	 5
	 *a	=	*b;		 	 	 	 	 	 	 	 *a	 2000	 10
	 *b	=	temp;		 	 	 	 	 	 	 *b	 2002	 5
}

 In the above code, the addresses of x and y are passed to
the function swap(). The parameters of the swap() function,
int	 *a and int	 *b are pointers to integer type data. These
pointers receive the addresses of x and y respectively that are
passed in the call to swap(). Within the function swap(), a
local variable temp is declared. The pointer a is dereferenced,
meaning that the value at the address held in a is retrieved.
This value is stored into temp. Then the value at the address
held in b is retrieved and assigned to the value at the address
held in a, thus exchanging values. The final statement in the
function completes the exchange of values. Notice that the
function does not return a value because of the void return
type. Figure 13.5 presents this diagrammatically.

In main In swap

x ay b

5 10

Fig. 13.5 Call by address

 Suppose one accidentally forgets the & when the swap
function is called, and that the swap line accidentally looks
like this:

swap(x,	y);

 This causes a segmentation fault. When the value of a is
passed instead of its address, a points to an invalid location in
memory and the system crashes when *a is used.

note

 ∑ C supports only call by value. C does not support call by
reference in true sense, but it can be simulated through
the use of pointers known as call by address.

Returning more than one value from a function
Functions usually return only one value and when arguments
are passed by value, the called function cannot alter the
values passed and have those changes reflected in the calling
function. Pointers allow the programmer to ‘return’ more
than one value by allowing the arguments to be passed by
address, which allows the function to alter the values pointed
to, and thus ‘return’ more than one value from a function.

ExamplE
1. #include	<stdio.h>
	 int	main()

 {

	 	 float	r,	area,	perimeter;

	 	 float	compute(float,	float	*);

	 	 printf(“\n	enter	the	radius	of	the	circle:”);

	 	 scanf(“%f”,&r);

	 	 area=compute(r,	&perimeter);

	 	 printf(“\n	AREA	=	%f”,	area);

	 	 printf(“\n	PERIMETER	=	%f”,	perimeter);

	 	 return	0;

 }

	 float	compute(float	r,	float	*p)

 {

	 	 float	a;

	 	 a=(float)3.1415	*	r	*	r;

	 	 *p=(float)3.1415	*	2	*	r;

	 	 return	a;

 }

 It must keep the value available until execution reaches
a sequence point, which in this case means the end of the
statement. When the system is notified to assign the value
to area, a copy of it is saved. Following that, the compiler
writer may delete the memory used to return the value. If it
was returned on the stack, it is imperative to remove it from
the stack in preparation for the next operation. But that can
be done because the value is stored in area and can be used in
any way.

336 Computer Fundamentals and Programming in C

Returning pointer from a function
It is also possible to return a pointer from a function. When
a pointer is returned from a function, it must point to data in
the calling function or in the global variable. Consider the
following program. In this program, a pointer would point
an integer variable whichever is larger between two variables
through a function which returns the address of the larger
variable.

#include	<stdio.h>
int	*pointMax(int	*,	int	*);
int	main(void)
{
	 int	a,b,*p;
	 printf(“\n	a	=	?”);
	 scanf(“%d”,&a);
	 printf(“\n	b	=	?”);
	 scanf(“%d”,&b);
	 p=pointMax(&a,&b);
	 printf(“\n*p	=	%d”,	*p);
	 return	0;
}
int	*pointMax(int	*x,	int	*y)
{
	 if(*x>*y)
	 	 return	x;
 else
	 	 return	y;
}

Output
a	=	?5
b	=	?7
*p	=	7

 When the function pointMax() is called, the addresses of
two integer variables are passed to it. In the function, the
pointers x and y point to a and b respectively. If a is greater
than b, then the function pointMax()returns the address of
a; otherwise, it returns the address of b. When the control
returns to the main(), p points either to a or b.
 returning a pointer to a local variable in the called function
is not effectual as illustrated in the following code segment.
Because when the function terminates the address of the local
variable becomes invalid. Some compilers issue a warning
that ‘function returns address of local variable’.

int	*pointMax(void)
{
	 int	a,b;

 if(a>b)
 return a;

WRONG!
Never return a pointer to

an automatic local variable.
In C99, a warning will be

issued.
 else
 return b;
}

 But it is correct to write a function that returns a pointer
to an external variable or to a static variable that has been
declared static.

include	<stdio.h>
int	*pointMax(void);
int	main(void)
{
	 int	*p;
	 p=pointMax();
	 printf(“*p	=	%d”,	*p);
	 return	0;
}
int	*pointMax(void)
{
	 static	int	a=5,	b=10;
	 if(a>b)
	 	 return	&a;
 else
	 	 return	&b;
}

 When an array is passed as argument to a function,
sometimes it may be useful to return a pointer to one of the
elements of the array as shown in the following function.

int	*findMiddle(int	x[],	int	n)
{
	 return	&x[n/2];
}

13.8 arrays and poInters
Pointers and arrays are inseparably related, but they are not
synonymous.

13.8.1 one-dimensional arrays and pointers
an array is a non-empty set of sequentially indexed elements
having the same type of data. each element of an array has a
unique identifying index number. Changes made to one ele-
ment of an array does not affect the other elements. an array
occupies a contiguous block of memory. The array a is laid
out in memory as a contiguous block, as shown in Fig. 13.6.

int	a[]={10,	20,	30,	40,	50};

a[0] a[1] a[2] a[3] a[4]

10 20 30 40 50

2147478270 2147478274 2147478278 2147478282 2147478286

Fig. 13.6 Memory layout for an integer array

 elements of array are stored in the successive increasing
locations of memory. For example, if the array starts at
memory location 2147478270 (considering a 32-bit machine),
then with the assumed size of an integer as four bytes, the
first element is stored at location 2147478270, the second
element at location 2147478274, and so on. Here, the locations
are taken as arbitrary.
 array notation is a form of pointer notation. The name of
an array is the beginning address of the array, called the base

Pointers in C 337
address of the array., that is, the base address of an array is
the address of the zeroth element of the array. The array name
is referred to as an address constant. Mentioning the name
of the array fetches its base address. Consider the following
program.

ExamplE
2. (a) #include	<stdio.h>

	 int	main()
 {
	 	 int	array[]={10,	20,	30,	40,	50};
	 	 printf(“%u	%u”,	array,	&array[0]);	
	 	 return	0;
 }

 Output
	 2147478270	2147478270

 Again, consider the following program.

 (b) #include	<stdio.h>
	 int	main()
 {
	 	 int	array[]={10,	20,	30,	40,	50};
	 	 printf(“%u	%u”,	array,	&array);	
	 	 return	0;
 }

 Output
	 2147478270	2147478270

 Both array and &array would give the base address of
the array. Though both array	and &array give the same
address, there is a small difference between them. Under
ANSI/ISO Standard C, &array yields a pointer, of type
pointer-to-array-of-T, where T is the data type to the
entire array. Under pre-ANSI C, the & in &array generally
elicited a warning, and was generally ignored. Under all
C compilers, an unadorned reference to an array yields a
pointer, of type pointer-to-T, to the array’s first element.

note

 ∑ Array name is a pointer constant. It cannot be used as
lvalue, that, is array names cannot be used as variables
on the left of an assignment operator.

 ∑ Both array and &array would give the base address
of the array, but the only difference is under ANSI/ISO
Standard C, &array yields a pointer, of type pointer-to-
array of-the data type to the entire array.

 an array can be subscripted to get to individual cells of
data. With the name of the array actually being a constant that
represents a memory address, the name of the array can be
used as a pointer and an integer value can be used to represent
an offset from the base address. This alternate method can be
used to get to individual cells of an array. an element of the

array a is addressed as a[i] and the address of the ith element
of the array a is given by &a[i]=	a	+	i* size of the type pointed
to by a.
 The expression a	+	i (with integer i) means the address
of the ith element beyond the one a points to. This is not
measured in number of bytes, but in number of sizeof(type)
bytes. This is known as scaling.
 The compiler automatically scales a subscript to the size
of the object pointed at. The compiler takes care of scaling
before adding to the base address. This is the reason why
pointers are always type-constrained to point to objects for
only one type, so that the compiler knows how many bytes to
retrieve on pointer dereference and it knows by how much to
scale a subscript.
 as indirection operator ‘*’ implies value at address, a[i]
is equivalent to *(a+i). Consider the following two versions
of the same program.

EExamplEE

 3.(a) #include	<stdio.h>
	 int	main()
 {
	 	 int	a[]={10,	20,	30,	40,	50};
	 	 int	i;
	 	 for(i=0;i<5;++i)
	 	 	 printf(“\n%d”,	a[i]);	
	 	 return	0;		
 }

 Output
	 	 	 10
	 	 	 20
	 	 	 30
	 	 	 40
	 	 	 50

 (b) #include	<stdio.h>
	 int	main()
 {
	 	 int	a[]={10,	20,	30,	40,	50};
	 	 int	i;
	 	 for(i=0;i<5;++i)
	 	 	 printf(“\n%d”,	*(a+i));	
	 	 return	0;
 }

 Output
	 	 	 10
	 	 	 20
	 	 	 30
	 	 	 40
	 	 	 50

 The integer identifier i is added to the base address of the
array. The C compiler computes the resulting address that will
be accessed by taking the value held in i multiplied by the
size in bytes of the type of array a and adds the proper offset

338 Computer Fundamentals and Programming in C

to a to give the correct memory address. Subscript notation is
converted by the compiler into the pointer notation. Hence,
pointer notation would work faster since conversion time can
be saved by using it.
 all the following four expressions are the same when their
addresses are considered.

a[i]
*(a	+	i)
*(i	+	a)
i[a]

 In the expression a[i], i must be an integer. The other may
either be an array name or a pointer. For any one-dimensional
array a and integer i, the following relationships are always
true.
 1. &a[0]	==	a	
 The address of the first element of the array a is the value

of a itself. In other words, a is a pointer; it points to the
first element in the array.

 2. &a[i]	==	a	+	i
 The address of the ith element of a is the value of a

+ i. This is one of the great truths (and a defining
characteristic) of C. The first relationship is a special
case of this more general relationship.

 3. a[i]	==	*(a	+	i)
 This is basically the same as the previous relationship but

this relationship still holds if both sides of the equality
operator are dereferenced.

 4. (&a[i]	-	&a[j])	==	(i	-	j)
 This relationship defines the subtraction of pointers. The

subtraction of two pointers of type t is the number of
elements of type t that would fit between them.

 a pointer variable (of the appropriate type) can also be
used to initialize or point to the first element of the array.
Then it can also be used as above.

#include	<stdio.h>
int	main()
{
	 int	a[]={10,	20,	30,	40,	50};
	 int	i,	*p;
	 p=a;	/*	it	can	also	be	written	as	p=&a[0];	*/
	 for(i=0;i<5;++i)
	 	 printf(“\n%d”,	p[i]);	

printf	(“\n%d”,	*(p+i));
OR

printf	(“\n%d”,	*(i+p));
OR

printf	(“\n%d”,	i[p]);

	 return	0;
}

Output
10
20
30
40
50

 One can define a pointer of the same type as the elements
of the array and can assign it the address of any element of the
array and use it to access the array elements. In fact, one may
add an integer value to it. Such a statement in the program
uses the formula given earlier to do the assignment; so it
also adjusts the count for the size of the element. Pointers
and arrays are so closely related that their notation can be
interchanged such that the following terms are identical if p
contains the value of a.

a[i]
*(a	+	i)
*(p	+	i)
p[i]
where	i=0,1,2,...(N–1).	N	is	the	size	of	the	array.

 The similarities between arrays and pointers end up being
quite useful, and in fact C builds on the similarities, leading
to what is called ‘the equivalence of arrays and pointers in C’.
This equivalence does not mean that arrays and pointers are
the same (they are, in fact, quite different) but that they can
be used in related ways, and that certain operations may be
used between them. These operations are as follows.
 The first such operation is that it is possible to (apparently)

assign an array to a pointer.
	 	 	 int	a[10];

	 	 	 int	*p;

	 	 	 p	=	a;

 C defines the result of this assignment to be that p
receives a pointer to the first element of a. In other
words,

	 	 	 p	=	&a[0];

 The second aspect of the equivalence is that the array
subscripting notation [i] can be applied on pointers, too.
p[3] can be written as *(p	+	3).

 So, a pointer that points to an array or a part of an array
can be treated ‘as if’ it was an array, using the convenient [i]
notation. In other words, at the beginning of this discussion,
the expressions *p,	 *(p+1),	 *(p+2), and in general *(p+i),
could have been written as p[0],	p[1],	p[2], and p[i]. This
can be quite useful (or at least convenient).
 The pointer to an array does not always point to the first
element of the array. It can point to any element of the array.
For example,

 int	a[]={10,20,30,40,50};

	 	 	 int	*p;

	 	 	 p	=	a	+	3;

 can also be written as follows
	 	 	 p	=	&a[0]	+	3;

 which, in turn, gives the same result as
	 	 	 p	=	&a[3];

Pointers in C 339
 Figure 13.7 depicts the equivalence among array notation
and pointer notation.

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

p = a

p = &a[0]

p = a+2

p = &a[2]

p = a+4

p = &a[4]

Fig. 13.7 Pointer notation of array elements

Is it possible to treat an array as if it were a 1-based array?
although this technique is attractive (and was used in old
editions of the book Numerical Recipes in C), it does not
conform to the C standards. Pointer arithmetic is defined
only as long as the pointer points within the same allocated
block of memory, or to the imaginary ‘terminating’ element
one past it; otherwise, the behaviour is undefined even if the
pointer is not dereferenced. The preceding code could fail if,
while subtracting the offset, an illegal address was generated
(perhaps because the address tried to ‘wrap around’ past the
beginning of some memory segment). Here is a neat trick, the
details of which will be discussed in Section 13.18.

int	arr[10];
int	*a	=	&arr[-1];

note

For any one-dimensional array a and integer i, the following
relationships are always true.

 ∑ a[i]	≡	*(a+i)	≡	*(i+a)	≡	i[a].

13.8.2 passing an array to a function
an array may be passed to a function, and the elements of
that array may be modified without having to worry about
referencing and dereferencing. Since arrays may transform
immediately into pointers, all the difficult stuff gets done
automatically. a function that expects to be passed with
an array can declare that formal parameter in one of the
two ways.

int	a[]	or	int	*a

 When passing an array name as argument to a function,
the address of the zeroth element of the array is copied to
the local pointer variable in the function. The values of the
elements are not copied. The corresponding local variable
is considered as a pointer variable, having all the properties
of pointer arithmetic and dereferencing. It is not an address
constant. This is illustrated with an example. The relevant
function calls in main() and the corresponding function
headers are shown as follows for easy reference.

#define	MAX	50
int	main()
{
	 int	arr[MAX],n;

	 ...
	 n	=	getdata(arr,	MAX);
	 show(arr,	n);
	 return	0;
}
int	getdata(int	a[],	int	n)
{
	 ...
}
void	show(int	a[],	int	n)
{
	 ...
}

 When a formal parameter is declared in a function header
as an array, it is interpreted as a pointer variable, not an
array. Even if a size was specified in the formal parameter
declaration, only a pointer cell is allocated for the variable,
not the entire array. The type of the pointer variable is
the specified type. In the preceding example, the formal
parameter, a, is an integer pointer. It is initialized to the
pointer value passed as an argument in the function call. The
value passed from main() is arr, a pointer to the first element
of the array, arr[].
 Within the function, getdata(), it is now possible to
access all the elements of the array indirectly. Since the
variable a in getdata() points to the first element of the array
arr[], it accesses the first element of the array. In addition,
a	+	1 points to the next element of the array, so it accesses
the next element, i.e., arr[1]. In general, *(a	+	i) accesses
the element arr[i]. To access elements of the array, we can
either write *(a	 +	 i) or a[i], because dereferenced array
pointers and indexed array elements are identical ways of
writing expressions for array access.
 The functions, getdata() and show() can be used to read
objects into any integer array and to print element values of
any integer array, respectively. The calling function must
simply pass an appropriate array pointer and maximum
number of elements as arguments. These functions may also
be written explicitly in terms of indirect access. Such an
example is as follows:

ExamplE
4. #include	<stdio.h>
	 #define	MAX	50
	 int	main()
 {
	 	 int	arr[MAX],n;
	 	 int	getdata(int	*,	int);
	 	 void	show(int	*,	int);
	 	 n	=	getdata(arr,	MAX);
	 	 show(arr,	n);
	 	 return	0;
 }
	 /*	Function	reads	scores	in	an	array.	*/
	 int	getdata(int	*a,	int	n)
 {
	 	 int	x,	i	=	0;

340 Computer Fundamentals and Programming in C

	 	 printf(“\n	Enter	the	array	elements	one	by	one\n”);
	 	 while(i	<	n)	
 {
	 	 	 scanf(“%d”,	&x)
	 	 	 *(a	+	i)	=	x;
	 	 	 i++;
 }
	 	 return	i;
 }
	 void	show(int	*a,	int	n)
 {
	 	 int	i;
	 	 for(i=0;i<n;++i)
	 	 	 printf(“\n	%d”,	*(a+i));
 }

 Figure 13.8 illustrates the connection between the calling
function main(), and the called functions.

int main()

{ int arr[MAX],n;

...

n = getdata(arr, MAX);

show(arr, n);

return 0;

}

a=arr;

a=arr;

int getdata(int *a, int n)

{

...

}

void show(int *a, int n)

{

...

}

Fig. 13.8 Passing array to a function

 When an array is passed to a function, the C language
allows the programmer to refer the formal parameter as either
an array or as a pointer. The compiler knows that whenever a
formal parameter is declared as an array, inside the function
it will in fact always be dealing with a pointer to the first
element of the array of unknown size. That is why the calling
function must simply pass an appropriate array pointer and
maximum number of elements as arguments.
 Parts of an array, called a sub-array, may also be passed to
a function. a pointer to a sub-array is also an array pointer;
it simply specifies the base of the sub-array. In fact, as far
as C is concerned, there is no difference between an entire
array and any of its sub-arrays. For example, a function call
can be made to print a sub-array by specifying the starting
pointer of the sub-array and its size. Suppose we need to print
the sub-array starting at arr[3] containing five elements; the
expression, &arr[3] is a pointer to an array starting at arr[3].
The function call is,

show(&arr[3],	5);

 alternately, since arr	 +	 3 points to arr[3], the function
call can be

show(arr	+	3,	5);

note

 ∑ When an array is passed to a function, it degenerates to a
pointer. All array names that are function parameters are
always converted into pointers by the compiler. Because
when passing an array to a function, the address of the
zero-th element of the array is copied to the pointer
variable which is the formal parameter of the function.
However, arrays and pointers are processed differently
by the compiler, represented differently at run time.

13.8.3 differences between array name and
pointer

From the above discussion it seems that array name and
pointer which points to the base address of the array, are
equivalent. But it is not true. There are several differences
between them. They are as follows.
 When memory is allocated for the array, the starting

address is fixed, i.e., it cannot be changed during program
execution. Therefore, array name is an address constant;
the value contained in it should not be changed. To ensure
that this pointer is not changed, in C, array names may not
be used as variables on the left of an assignment statement,
i.e., they may not be used as an lvalue. Instead, if necessary,
separate pointer variables of the appropriate type may be
declared and used as Ivalues. Here is an example of a
common error when an attempt to use an array as an Ivalue
is made.
	 	 #include	<stdio.h>
	 	 int	main()
 {
	 	 	 int	i;
	 	 	 float	a[5];
	 	 	 for(i	=	0;	i	<	5;	i++)
 {
	 	 	 	 *a	=	0.0;
	 	 	 	 a++;	/*	BUG:	a	=	a	+	1;	*/
 }
	 	 	 return	0;
 }

 In this example, a is fixed and cannot be used as an
lvalue; the compiler will generate an error stating that
an lvalue is	 required for the ++ operator. However,
a pointer variable can be declared, which can point to
the same type as the type of the array, and initialize it
with the base address of array. This pointer variable
can be used as an lvalue and no error message will be
displayed. Here is the difference.

	 	 #include	<stdio.h>
	 	 int	main()

Pointers in C 341
 {

	 	 	 int	i;

	 	 	 float	*ptr,	a[5];

	 	 	 ptr	=	a;	

	 	 	 for(i	=	0;	i	<	5;	i++)	

 {

	 	 	 	 ptr	=	0.0;	/	*ptr	accesses	a[i]	*/

	 	 	 	 ptr++;

 }

	 	 	 return	0;

 }

 Observe that the pointer variable, ptr, is type float	*,
because the array is of type float. It is initialized to the
value of the fixed pointer, a (i.e., the initial value of ptr
is set to the same as that of a, namely &a[0]), and may
subsequently be modified in the loop to traverse the
array. The first time through the loop, *ptr which points
to (a[0]) is set to zero and ptr is incremented by one
so that it points to the next element in the array. The
process repeats and each element of the array is set to
0.0.

 Following the same concept, an array cannot be assigned
to another. The following code

	 	 	 int	a[5]={1,2,3,4,5};

	 	 	 int	b[5];

	 	 	 b	=	a;		 	 	 /*	WRONG	*/

 is incorrect. To copy a into b, something like the
following has to be entered.

	 	 	 for(i=0;	i<5;	i++)
	 	 	 	 b[i]=a[i];	

 Or, to put it more succinctly,
	 	 	 for(i=0;	i<5;	b[i]=a[i],	i++);

 But two pointer variables can be assigned.
 	 int	*p1,	*p2;

	 	 	 int	a[5]={1,2,3,4,5};

	 	 	 p1	=	&a[0];

	 	 	 p2	=	p1;

 Pointer assignment is straightforward; the pointer on the
left is simply made to point wherever the pointer on the
right does. The statement p1=p2 does not copy the data
pointed to (there is still just one copy in the same place);
it just makes two pointers point to the same location.

 The & (address of) operator normally returns the address
of the operand. However, arrays are an exception. When
applied to an array (which is an address), it has the same
value as the array reference without the operator. This is not
true of the equivalent pointers, which have an independent
address. The following example shows this.

ExamplE
 5. (a) #include	<stdio.h>

	 int	main()

 {

	 	 int	a[]={10,	20,	30,	40,	50};

	 	 printf(“%u	%u	%u”,	a,	&a[0],&a);	

	 	 return	0;

 }

 Output
	 	 	 65506	65506	65506

 (b) #include	<stdio.h>
	 int	main()

 {

	 	 int	a[]={10,	20,	30,	40,	50};

	 	 int	*ptr;

	 	 ptr=a;

	 	 printf(“%u	%u”,	&a[0],ptr,&ptr);

	 	 return	0;

 }

 Output
	 	 	 65506	65506	65526

 The sizeof operator returns the size of the allocated space
for arrays. In case of a pointer, the sizeof operator returns
two or four or more bytes of storage (machine dependent).

ExamplE
6. (a) #include	<stdio.h>

	 int	main()

 {

	 	 int	a[]={10,	20,	30,	40,	50};

	 	 printf(“%d”,	sizeof	(a));	

	 	 return	0;

 }

 Output
 In Turbo C

	 	 	 10

 In GCC
	 	 	 20

 (b) #include	<stdio.h>
	 int	main()

 {

	 	 int	a[]={10,	20,	30,	40,	50};

	 	 int	*ptr;

	 	 ptr=a;

	 	 printf(“%d”,	sizeof	(ptr));

	 	 return	0;

 }

 Output

 In Turbo C

342 Computer Fundamentals and Programming in C

 2

 In GCC
	 	 	 4

 Table 13.3 lists the differences between pointers and
arrays.

Table 13.3 Differences between pointers and arrays

Arrays Pointers

 It is a variable that
can hold a set of
homogeneous values.

 It is a variable which holds an
address of another variable.

 It cannot be resized. It can be resized using
realloc().

 It cannot be reassigned. It can be reassigned.

 sizeof(arrayname) gives
the number of bytes
occupied by the array.

 sizeof(p) returns the number
of bytes used to store the pointer
variable p.

13.9 poInters and strIngs
Strings are one-dimensional arrays of type char. By conven-
tion, a string in C is terminated by the end-of-string sentinel
\0, or null character. The null character is a byte with all bits
off; hence, its decimal value is zero. It is useful to think of
strings as having a variable length, delimited by \0, but with
the maximum length determined by the size of the string.
The size of a string must include the storage needed for the
end-of-string sentinel. as with all arrays, it is the job of the
programmer to make sure that string bounds are not overrun.
 String constants are written between double quotes. For
example, “abc” is a character array of size 4, with the last
element being the null character \0. Note that string constants
are different from character constants. For example, “a” and
‘a’ are not the same. The array “a” has two elements, the first
with value ‘a’ and the second with value ‘\0’.
 a string constant, like an array name by itself, is treated
by the compiler as a pointer. Its value is the base address
of the string. Like the numeric array, individual characters
contained in a string can be printed.

#include	<stdio.h>
int	main()

{

	 char	s[]=“Oxford”;	

	 for(i=0;s[i]!=‘\0’;++i)

	 putchar(s[i]);

	 return	0;

}

 a string in C is a pointer itself. The following program
proves the fact.

#include	<stdio.h>
int	main()

{
	 for(i=0;*(“I	am	a	pointer”	+	i)!=‘\0’;++i)
	 	 printf(“%c”,*(“I	am	a	pointer”	+	i));
	 return	0;
}

Output
	 I	am	a	pointer

 But this is not true for a numeric array. The following
program gives an error.

#include	<stdio.h>
int	main()
{
	 for(i=0;*({1,2,3,4,5}	+	i)!=‘\0’;++i)
	 putchar(*({1,2,3,4,5}	+	i));
	 return	0;
}

Consider the following code.
char	*p	=	“abc”;
printf(“%s	%s	\n”,	p,	p	+	1);		 /*	abc	bc	is	printed	*/

 The variable p is assigned the base address of the character
array “abc”. When a pointer to char is printed in the format
of a string, the pointed-at character and successive characters
are printed until the end-of-string sentinel (that is, ‘\0’) is
reached. Thus, in the printf() statement, the expression p
causes abc to be printed, and the expression p	 +	 1, which
points to the letter b in the string “abc”, causes bc to be
printed. Because a string constant such as “abc” is treated as
a pointer, expressions such as

“abc”[1]	and	*(“abc”	+	2)

are possible. Such expressions are not used in serious code,
but they help to emphasize that string constants are treated
as pointers. It should be noted that arrays and pointers have
similar uses. They also have differences. Let us consider two
declarations

char	*p	=	“abcde”;	
char	s[]	=	“abcde”;

 In the first declaration, the compiler allocates space in the
memory for p, puts the string constant “abcde” in memory
somewhere else, and initializes p with the base address of the
string constant. Now think of p as pointing to the string. The
second declaration is equivalent to

char	s[]	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘\0’};

 Because the brackets are empty, the complier allocates six
bytes of memory for the array s. The first byte is initialized
with ‘a’, the second byte is initialized with ‘b’, and so on.
Here is how these objects are stored in memory. (Fig. 13.9)

a b c d e \0 a b c d e \0

s

p

Fig. 13.9 Logical memory picture for p × s

Error

Pointers in C 343
 a char is always stored in one byte, and on most machines
a pointer is stored in a word. Thus, on the machine, p is
stored in four bytes, and s is stored in six bytes of storage.
For technical reasons, it is better not to print null characters.
However, the printing of null strings is perfectly acceptable.
 One question may arise—when an array is passed, how
does the function know how many elements the array has?
 For a string, the number of elements it has need not be
passed because it has the terminating null character. For other
types of arrays, the number of elements must be passed as
well.

note

 ∑ A string constant is treated by the compiler as a pointer.
 ∑ For a string, the number of elements it has need not be

passed to a function because it has the terminating null
character.

13.10 poInter arIthMetIc
If p is declared as a pointer variable of any type and it has
been initialized properly, then, just like a simple variable, any
operation can be performed with *p. Because * implies value
at address, working with *p means working with the variable
whose address is currently held by p. any expression,
whether relational, arithmetic, or logical, can be written,
which is valid for a simple value variable. But with only p,
operations are restricted as in each case address arithmetic
has to be performed. The only valid operations on pointers
are as follows.
 assignment of pointers to the same type of pointers: the

assignment of pointers is done symbolically. Hence, no
integer constant except 0 can be assigned to a pointer.

 adding or subtracting a pointer and an integer.
 Subtracting or comparing two pointers (within array limits)

that point to the elements of an array.
 Incrementing or decrementing the pointers (within array

limits) that point to the elements of an array. When a
pointer to an integer is incremented by one, the address is
incremented by two (as two bytes are used for int). Such
scaling factors necessary for the pointer arithmetic are
taken care of automatically by the compiler.

 assigning the value 0 to the pointer variable and comparing
0 with the pointer. The pointer with address 0 points to
nowhere at all.

 These valid address arithmetic are discussed below in
detail. The following arithmetic operations on pointers are
not feasible.
 addition of two pointers
	Multiplying a pointer with a number
 Dividing a pointer with a number

13.10.1 assignment
Pointers with the assignment operators can be used if the
following conditions are met.

 The left-hand operand is a pointer and the right-hand
operand is a null pointer constant.

 One operand is a pointer to an object of incompatible type
and the other is a pointer to void.

 Both the operands are pointers to compatible types.

 Some of the pointer assignment statements were discussed
earlier. For the notion of incompatible types, including the
use of void	*, some complicated cases may be considered.
 Pointers to void can be freely converted back and forth
with pointers to any object or incomplete type. Converting a
pointer to an object or an incomplete type to void	* and then
back gives a value which is equal to the original one.

ExamplE
7. #include	<stdio.h>
	 int	main()

 {

	 	 int	i;

	 	 int	*ip;

	 	 void	*vp;

	 	 ip	=	&i;

	 	 vp	=	ip;

	 	 ip	=	vp;

	 	 if(ip	!=	&i)

	 	 	 printf(“\n	Compiler	error\n”);

 else

	 	 	 printf(“\n	No	Compiler	error\n”);

	 	 return	0;

 }

 Output
	 	 No	Compiler	error	

 Now, consider the revised version of the program in
example 7.

#include	<stdio.h>

int	main()

{

	 int	i=5;

	 int	*ip;

	 void	*vp;

	 ip	=	&i;

	 vp	=	ip;

	 //printf(“\n	*vp=	%d”,*vp);

	 ip	=	vp;

	 printf(“\n	*ip=	%d”,*ip);

	 return	0;

}

ERROR

344 Computer Fundamentals and Programming in C

 This program gives an error in the first printf statement
stating ‘not an allowed type’ because no type is associated
with a void pointer. The void pointer can store the address of
a variable of any type. But while using the void pointer, the
right type has to be specified through type casting. The right
version of this program is as follows.

#include	<stdio.h>
int	main()
{
	 int	i=5;
	 int	*ip;
	 void	*vp;
	 ip	=	&i;
	 vp	=	ip;
	 printf(“\n	*vp=	%d”,*((int	*)vp));
	 ip	=	vp;
	 printf(“\n	*ip=	%d”,*ip);
	 return	0;
}

Output
*vp=5
*ip=5

 The predefined constant NULL, which is defined by several
standard header files, including <stdio.h>,	<stdlib.h>, and
<string.h> can be assigned.

int	*p;
p	=	NULL;

 It is also possible to refer to the null pointer by using a
constant 0 by simply writing

	 int	*ip	=	0;

 In fact, NULL is a preprocessor macro that typically has the
value, 0.
 The only values that can be assigned to pointers apart from
0 are the values of other pointers of the same type. However,
one reason that makes C a useful replacement for assembly
language is that it allows one to carryout operations that most
other languages do not. Try this.

int	*ip;
ip	=	(int	*)6;
*ip	=	0xFF;

 Here, the pointer has been initialized to the value 6 (notice
the type casting to turn an integer 6 into a pointer). This is a
highly machine-specific operation, and the bit pattern that ends
up in the pointer is quite possibly nothing like the machine
representation of 6. after the initialization, a hexadecimal FF
is written into wherever the pointer is pointing. The int at
location 6 has had 0xFF written into it—subject to whatever
‘location 6’ means on this particular machine.
 It may or may not make sense to do that sort of thing; C
gives you the power to express it, it is up to the programmer
to get it right. as always, it is possible to do things like this
by accident, too, and to be very surprised by the output.

13.10.2 addition or subtraction with Integers
In a closely related piece of syntax, a ‘+’ between a pointer
and an integer does the same offset computation as explained
earlier, but leaves the result as a pointer. The square bracket
syntax gives the nth element while the ‘+’ syntax gives a
pointer to the nth element. So the expression (arr	 +	 3) is
a pointer to the integer arr[3].(arr	+	3) is of type (int	*)
while arr[3] is of type int. The two expressions only differ in
whether the pointer is dereferenced or not. So the expression
(arr	 +	 3) is equivalent to the expression (&(arr[3])). In
fact those two probably compile to exactly the same code.
They both represent a pointer to the element at index 3. any
[] expression can be written with the + syntax instead. It just
needs the pointer dereference to be added in. So arr[3] is
equivalent to *(arr	+	3). For most purposes, the []	syntax is
the easiest to use and the most readable as well. every once
in a while the + is convenient if one needs a pointer to the
element instead of the element itself.
 Therefore, expressions can add (or subtract, which is
equivalent to adding negative values) integral values to the
value of a pointer to any object type. The result has the type
of the pointer and if n is added, then the result points n array
elements away from the pointer. The most common use is to
repeatedly add 1 to a pointer to step it from the start to the end
of an array, but addition or subtraction of values other than 1
is possible. Consider the following two versions of the same
program.

ExamplE

 8. (a) #include	<stdio.h>
	 int	main(void)	
 {
	 	 int	a[]	=	{10,	12,	6,	7,	2};		
	 	 int	i;	
	 	 int	sum	=	0;	
	 	 for(i=0;	i<5;	i++)
 {
	 	 	 sum	+=	a[i];	 	
 }
	 	 printf(“%d\n”,	sum);		
	 	 return	0;		
 }

 (b) #include	<stdio.h>
	 int	main(void)
 {
	 	 int	a[]	=	{10,	12,	6,	7,	2};
	 	 int	i;
	 	 int	sum	=	0;
	 	 for(i=0;	i<5;	i++)
 {
	 	 	 sum	+=	*(a	+	i);
 }
	 	 printf(“%d\n”,	sum);

	 	 return	0;

 }

Pointers in C 345
 Note that if the pointer resulting from the addition points
in front of the array or past the non-existent element just after
the last element of the array, then it results in overflow or
underflow and the result is undefined.
 This is a typical string-processing function. Pointer
arithmetic and dereferencing are used to search for various
characters or patterns. Often, a character pointer is used to
march along a string while parsing it or interpreting it in
some way.

Table 13.4 Illustration of strlen(), strcpr() and strcat() functions

Declaration and initializations
char	s1[]	=	“India	is	a	beautiful	country”;

s2[]	=	“C	is	sea”;

Expression Value
strlen(s1) 28

strlen(s2	+	5) 3
Statements What gets printed

printf(“%s”,	s1	+	10);
strcpy(s1	+	10,	s2	+	8)
strcat(s1,	“great	country”);	

printf(“%s”,	s1);

beautiful	country

India	is	a	great	country

 If p is a pointer to an element in an array, then (p+1) points
to the next element in the array. The statement p++ can be used
to step a pointer over the elements in an array. The program in
example 8 can be rewritten as follows.

#include	<stdio.h>
int	main(void)
{
	 int	a[]	=	{10,	12,	6,	7,	2};
	 int	i;
	 int	sum	=	0;
	 int	*p;
	 p	=	a;
	 for(i=0;	i<5;	i++)
 {
	 	 sum	+=	*p;
	 	 p++;
 }
	 printf(“%d\n”,	sum);
	 return	0;
}

 Similarly, since ++p and p++ are both equivalent to
p=p	+	1, incrementing a pointer using the unary ++ operator,
either pre- or post-, increments the address it stores by the
amount sizeof(type) where ‘type’ is the type of the object
pointed to (i.e., 4 for an integer in a 32-bit machine).
 example 9 shows that pointers may be incremented and
decremented. In either case, if the original pointer points to
an object of a specific type, the new pointer points to the next
or the previous object of the same type. Thus, pointers are
incremented or decremented in steps of the object size that

the pointer points to. Hence, it is possible to traverse an array
starting from a pointer to any element in the array. Consider
the following program.

ExamplE
9. #include	<stdio.h>
	 #define	N	5
	 int	main()
 {
	 	 float	arr[N],	*ptr;
	 	 int	*iptr,	a[N],	i;
	 	 /*	initialize	*/
	 	 for(i	=	0;	i	<	N;	i++)
 {
	 	 	 arr[i]	=	0.3;
	 	 	 a[i]	=	1;
 }
	 	 /*	initialize	ptr	to	point	to	element	arr[3]	*/
	 	 ptr	=	&arr[3];
	 	 ptr	=	1.0;		 	 	 	 /	arr[3]	=	1.0	*/
	 	 (ptr	-	1)	=	0.9;		/	arr[2]	=	.9	*/
	 	 (ptr	+	1)	=	1.1;		/	arr[4]	=	1.1	*/
	 	 /*	initialize	iptr	in	the	same	way	*/
	 	 iptr	=	&a[3];
	 	 *iptr	=	0;
	 	 *(iptr	-	1)	=	-1;
	 	 *(iptr	+	1)	=	2;
	 	 for(i	=	0;	i	<	N;	i++)
 {
	 	 	 printf(“arr[%d]	=	%f”,	i,	*(arr	+	1));
	 	 	 printf(“a[%d]	=	%d\n”,	i,	a[i]);
	 	 	 return	0;
 }
 }

 The program is straightforward. It declares a float array
of size 5, and an integer array of the same size. The float
array elements are all initialized to 0.3, and the integer array
elements to 1. The program also declares two pointer variables,
one a float pointer and the other an integer pointer. each
pointer variable is initialized to point to the array element with
index 3; for example, ptr is initialized to point to the float array
element, arr[3]. Therefore, ptr	–	1 points to arr[2], and ptr	
+	1 points to arr[4]. The value of *ptr is then modified, as is
the value of *(ptr	–	1) and *(ptr	+	1). Similar changes are
made in the integer array. Finally, the arrays are printed. Here
is the output of the program.

arr[0]	=	0.300000	a[0]	=	1	
arr[1]	=	0.300000	a[1]	=	1	
arr[2]	=	0.900000	a[2]	=	-1	
arr[3]	=	1.000000	a[3]	=	0	
arr[4]	=	1.100000	a[4]	=	2	

Consider the following program.
int	b[]={10,20,30,40,50};

346 Computer Fundamentals and Programming in C

int	i,*p;
	 p=&b[4]-4;
for(i=0;i<5;++i)
 {
	 	 printf(“%d”,*p);
	 	 p++;
 }

 The expression &b[4] gives the address of b[4]. Let the
address of b[4] be 65540. Then the expression p	=	&b[4]–4
may give either 65536 or 65532 (considering a 16-bit machine).
To explain this, consider the following statements assuming
the previous array.

int	*p;
p=&b[4]
p=p-4;

 The statement p–4 gives the address of 65532 as p–4
evaluates as p–4*	 sizeof(int) i.e., 65540	 –	 8 (considering
a 16-bit machine), that is, p points to the address of b[0] or
&b[0]. The rest of the code is executed as usual.
 Consider the following program where the elements of the
array a are initialized, and then all elements in array a are
copied into b, so that a and b are identical.

ExamplE
10. #define	MAX	10	
	 int	main()	

 {

	 	int	a[MAX];

	 	int	b[MAX];

	 	int	i;	

	 	for(i=0;	i<MAX;	i++)	

	 			 	 a[i]=i;	

	 	b=a;	

	 	return	0;

 }

 If it is compiled, there will be an error. Arrays in C are unusual in that
variables a and b are not, technically, arrays themselves but permanent
pointers to arrays. Thus, they point to blocks of memory that hold the
arrays. They hold the addresses of the actual arrays, but since they are
pointer constant or address constant, their addresses cannot be changed.
The statement b=a;, therefore, does not work.

 To copy array a into another array b, something like the
following has to be entered.

for(i=0;	i<MAX;	i++)
	 a[i]=b[i];

Or, to put it more succinctly,
	 for(i=0;	i<MAX;	a[i]=b[i],	i++);	

 In the statement p++; if p points to an array, the compiler
knows that p points to an integer. So this statement increments
p by the appropriate number of bytes to move it to the next

Error

element of the array. The array a can be copied into b using
pointers as well. The following code can replace (for	i=0;	
i<MAX;	a[i]=b[i],	i++); :

	 int	*p	*q;
	 p=a;
	 q=b;
	 for(i=0;	i<MAX;	i++)
 {
	 	 *q	=	*p;	
	 	 q++;	
	 	 p++;	
 }

This code can be abbreviated as follows.
 p=a;
	 q=b;
	 for(i=0;	i<MAX;	i++)
	 	 *q++	=	*p++;

Further abbreviation leads to
	 for(p=a,q=b,i=0;	i<MAX;	*q++	=	*p++,	i++);	

 It is important to note that the unary operators ++ and --
have the same priority as *. all unary operators bind from
right to left. Therefore, ++*p is equivalent to ++(*p);
Notice the difference as shown in Table 13.5.

Table 13.5 Difference between (* ip) ++ and *ip++

 Equivalent:
	 (*ip)++;	 	 int	temp;

	 	 	 (temp	=	*ip,	*ip	=	*ip	+	1)

 Equivalent:
	 *ip++;	 	 *(ip++);

	 	 	 int*	temp;

	 	 	 (temp	=	ip,	ip	=	ip	+	1)

 Since * and ++ have the same precedence and associate
from right to left, this is equivalent to *(ip++); the value of
ip++ is ip, so this pointer will be dereferenced. after that the
pointer ip is incremented by 1. Like always, it is recommended
to use parentheses () in order to avoid unexpected results.
Since ++ and -- are either prefix or postfix operators,
other combinations of * and ++ and -- occur, although less
frequently. For example,

	 *––p

decrements p before fetching the variable that p points to.
example 11 will clear these facts.

ExamplE
11. #include	<stdio.h>

int	main()

{

	 int	A[]	=	{10,	20,	30,	40,	50};

	 int	*p,	i;

	 p	=	A;

Pointers in C 347
	 printf(“*p	:	%i\n\n”,	*p);

	 i	=	*(p++);

	 printf(“i	is:	%i\n”,	i);

	 printf(“*p	is:	%i\n\n”,	*p);

	 i	=	(*p)++;

	 printf(“i	is:	%i\n”,	i);

	 printf(“*p	is:	%i\n\n”,	*p);

	 i	=	*(++p);

	 printf(“i	is:	%i\n”,	i);

	 printf(“*p	is:	%i\n\n”,	*p);

	 i	=	++(*p);

	 printf(“i	is:	%i\n”,	i);

	 printf(“*p	is:	%i\n\n”,	*p);

	 return	0;

}

Output
*p	:	10

i	is:	10

*p	is:	20

i	is:	20

*p	is:	21

i	is:	30

*p	is:	30

i	is:	31

*p	is:	31

 an integer can also be subtracted. This is illustrated in
example 12.

ExamplE
12. #include	<stdio.h>

int	main(void)

{

	 int	a[]	=	{10,	20,	30,	40,	50};

	 int	i,	*p;

	 p=a+4;

	 for(i=4;	i>=0;	i––)

	 printf(“%d\n”,	*(p-i));

	 return	0;

}

Output
	 10
	 20
	 30
	 40
	 50

The above code may be replaced by the following code.
#include	<stdio.h>

int	main(void)

{

	 int	a[]	=	{10,	12,	6,	7,	2};

	 int	i,	*p;

	 p=a+4;

	 for(i=4;	i>=0;	i––)

	 	 	 	 	printf(“%d\n”,	p[-i]);

	 return	0;

}

p[–i] is equivalent to *(p–i). Initially p points to the
last element. at the beginning, i=		4, p-i evaluates as
p–i*sizeof(int)=	p–16 (in a 32-bit machine) or =p–8(in a 16-
bit machine). Now p-i gives the address of the first element
of the array. p[–i], which is equivalent to, *(p–i), prints the
first element of the array. Then i	 =	 3, so p[–i] prints the
second element, and so on. Look at Fig. 13.8.

a[0]

10

65004

a[1]

20

65006

a[2]

30

65008

a[3]

40

65010

a[4]

50

65012

Fig. 13.8 Subscripted notation value and address of elements
of an array

 Here a 16-bit machine is assumed. Initially p=65012,	i=4.
Therefore,
 p[–i]=*(p–i)= value at address p–i*sizeof(int)

= value at address (p–8)
 = value at address (65012–8) = value at address 65004	=	

10.
When i=3,	p[–i]=*(p–6)=*(65012–6)= value at address 65006	
=	20 and so on. If i iterates from 0 to 4, then this code will
print the elements of array in reverse order.

ExamplE
13. #include	<stdio.h>

int	main(void)

{

	 int	a[]	=	{10,	12,	6,	7,	2};

	 int	i,	*p;

	 p=a+4;

	 	 for(i=0;	i<5;	i++)

	 	 	 	 	 	printf(“%d\n”,	p[-i]);

	 return	0;

}

Output
	 50

	 40

	 30

	 20

	 10

 The reason is very simple. Apply the same calculation as before. The
study of strings is useful to further tie in the relationship between pointers

348 Computer Fundamentals and Programming in C

and arrays. This discussion is also applicable to strings as strings are
arrays of characters. Consider the following program that uses a pointer to
shift to the next character of the string.

14. #include	<stdio.h>
int	main()
{
	 char	a[15]	=	“test	string”;
	 char	*pa;
	 pa	=	a;
	 while(*pa)
 {
	 	 putchar(*pa);
	 	 pa++;
 }
	 printf(“\n”);
	 return	0;
}

Output
	 test	string

 The while loop is equivalent to while(*pa!=’\0’). More aspects
of pointers and strings are illustrated here by studying versions of some
useful functions adapted from the standard library string.h. The first
function is strcpy(t,s), which copies the string s to the string t. It would
be nice just to write t	=	s but this copies the pointer, not the characters. To
copy the characters, a loop is needed. The array version is as follows.

15. #include	<stdio.h>
int	main()
{
	 char	a[50],	b[50];
	 void	scopy(char	*,	char	*);
	 printf(“\n	Enter	the	string:	”);
	 gets(a);
	 scopy(b,a);
	 printf(“\n	%s”,b);
	 return	0;
}
/*	scopy:	copy	s	to	t;	array	subscript	version	*/
void	scopy(char	*t,	char	*s)
{
	 int	i;
	 i	=	0;
	 while(s[i]!=	‘\0’)
 {
	 	 t[i]	=	s[i];
	 	 i++;
 }
	 t[i]=‘\0’;
}

an equivalent version of scopy() is given as follows.
void	scopy(char	*t,	char	*s)
{
	 int	i;
	 i	=	0;
	 while((t[i]	=	s[i])	!=	‘\0’)
	 	 	 	 	 i++;
}

For contrast, here is a version of scopy() with pointers.
/*	scopy:	copy	s	to	t;	pointer	version	*/

void	scopy(char	*t,	char	*s)

{

	 int	i;

	 i	=	0;

	 while((*t	=	*s)	!=	‘\0’)	

 {

	 	 s++;

	 	 t++;

 }

}

 Because arguments are passed by value, scopy can use the
parameters b and a. Here they are conveniently initialized
pointers, marching along the arrays one character at a time,
until the ‘\0’ that terminates s has been copied into t.
experienced C programmers would prefer the following
version.

/*	scopy:	copy	s	to	t;	pointer	version	2	*/
void	scopy(char	*s,	char	*t)
{
	 while((*t++	=	*s++)	!=	‘\0’)
	 ;
}

 This moves the increment of s and t into the test part of the
loop. The value of *s++ is the character that s pointed to before
t was incremented; the postfix ++ does not change s until after
this character has been fetched. In the same way, the character
is stored into the old t position before t is incremented. This
character is also the value that is compared against ‘\0’ to
control the loop. The net effect is that characters are copied
from s to t, up and including the terminating ‘\0’.
 The C99 standards state that the strcpy() function must
return a copy of its destination parameter. In both cases, we
return a copy of the destination parameter—that is, we return
a pointer as the function’s value. Thus, the strcpy()	 in the
standard library (<string.h>) returns the target string as its
function value. It might look like

char	*strcopy(char	*destination,	char	*source)
{
	 char	*p	=	destination;
	 while(*source	!=	‘\0’)
 {
	 	 	 *p++	=	*source++;
 }
	 *p	=	‘\0’;
	 return	destination;
}

 The following is the array subscript version of the strlen
library function.

int	strlen(char	s[])
{

Pointers in C 349

	 int	x;	
	 x=0;	
	 while(s[x]	!=	‘\0’)	
	 	 x=x+1;	
	 return(x);	
}

 Using a pointer-based approach, this function can be
rewritten as follows.

int	strlen(char	*s)
{
	 int	c=0;	
	 while(*s	!=	‘\0’)	
 {
	 	 c++;	
	 	 s++;	
 }
	 return(c);
}

This code can be abbreviated as follows.
int	strlen(char	*s)	
{
	 int	c=0;	
	 while(*s++)
	 	 c++;
	 return(x);
}

 Now examine strcmp(s,t), which compares the character
strings s and t, and returns negative, zero, or positive if s is
lexicographically less than, equal to, or greater than t. The
value is obtained by subtracting the characters at the first
position where s and t disagree.

int	stcmp(char	*s,	char	*t)
{
	 int	i;
	 for(i	=	0;	s[i]	==	t[i];	i++)
	 	 if(s[i]	==	‘\0’)
	 	 	 return	0;
	 return	s[i]	-	t[i];
}

The pointer version of stcmp is as follows:

int	stcmp(char	*s,	char	*t)
{
	 for(;	*s	==	*t;	s++,	t++)
	 if(*s	==	‘\0’)
	 	 return	0;
	 return	*s	-	*t;
}

 To illustrate string processing, a function is written that
counts the number of words in a string. It is assumed that
words in the string are separated by white space. Here
function will use the macro isspace(), which is defined in

the standard header file ctype.h. This macro is used to test
whether a character is a blank, tab, new line, or some other
white-space character. If the argument is a white-space
character, then a non-zero (true) value is returned; otherwise,
zero (false) is returned.

ExamplE
16. /*	Count	the	number	of	words	in	a	string.	*/

#include	<stdio.h>
#include	<ctype.h>
int	word_cnt(char	*s)
{
	 int	cnt	=	0;
	 while(*s	!=	‘\0’)	
 {
	 	 while(isspace(*s))		 	 	 		/*skip	white	space	*/
	 	 	++	s;
	 	 if(*s	!=	‘\0’)
	 	 {		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		/*found	a	word	*/
	 	 	 ++cnt;
	 	 	 while(!isspace(*s)	&&	*s	!	=	‘\0’)

/*	skip	the	word	*/
	 	 	 	++s;
 }
 }
	 return	cnt;
}
int	main()
{
	 char	str	[80]
	 printf(“\n	ENTER	THE	SENTENCE”);
	 scanf(“%[^\n]”,	str);
	 printf(“\n	NO	OF	WORDS	=%	d”,	word_cnt(str));
	 return	0;
}

 As an example, try to write a function that looks for one string within
another, returning a pointer to the string if it can, or a null pointer if it cannot.
Here is the function (using the obvious brute-force algorithm): at every
character of the input string, the code checks for a match to the pattern
string.

17. #include	<stddef.h>
	 #include	<stdio.h>

	 int	main()

 {

	 char	a[50],	b[30];

	 char	*mystrstr(char	*,	char	*);

	 printf(“\n	Enter	the	string:”);

	 	 gets(a);
	 printf(“\n	Enter	the	substring	to	search:”);

	 	 gets(b);

	 if(mystrstr(a,b)	==	NULL)

	 	 	 printf(“NOT	FOUND\n”);

350 Computer Fundamentals and Programming in C

 else

	 	 	 printf(“FOUND\n”);

	 	 return	0;

 }

	 char	*mystrstr(char	*input,	char	*pat)

 {

	 	 char	*start,	*p1,	*p2;

	 	 for(start	=	&input[0];	*start	!=	‘\0’;	start++)

	 	 {		 /*	for	each	position	in	input	string...	*/

	 	 	 p1	=	pat;		/*	prepare	to	check	for	pattern		 	
		 	 	 	 	 	 	 string	there	*/

	 	 	 p2	=	start;

	 	 	 while(*p1	!=	‘\0’)

 {

	 	 	 	 	 if(*p1	!=	*p2)	 	 /*	characters	differ	*/

	 	 	 	 	 	 break;

	 	 	 	 	 p1++;

	 	 	 	 	 p2++;

 }

	 	 	 if(*p1	==	‘\0’)		 	 	 	 	 	 	 /*	match	found*/

	 	 	 return	start;

 }

	 	 return	NULL;

 }

 The start pointer steps over each character position in the
input string. at each character, the inner while loop checks for
a match thereby using p1 to step over the pattern string (pat)
and p2 to step over the input string (starting at start). The
successive characters are compared until either the end of the
pattern string (i.e. *p1	==	‘\0’) is reached or two characters
differ. When the end of the pattern string (i.e. *p1	==	‘\0’)
is reached it means that all preceding characters matched and
a complete match is found for the pattern starting at start,
so start is returned. Otherwise, the outer loop is executed
again, to try another starting position. It no match is found, a
null pointer is returned. Notice that the function is declared as
returning (and does in fact return) a pointer-to-char.
	 mystrstr (or its standard library counterpart strstr) can
be used to determine whether one string contains another.
Hence, the code is as follows:

	 if(mystrstr(a,b)	==	NULL)
	 	 printf(“NOT	FOUND\n”);
	 else	printf(“FOUND\n”);

 In general, C does not initialize pointers to NULL, and it
never tests pointers to see if they are null before using them.
If one of the pointers in the programs points somewhere some
of the time but not all the time, an excellent convention to use
is to set it to a null pointer when it does not point to any valid
location, and test to see if it is a null pointer before using it.
But an explicit code must be used to set it to NULL, and to
test it against NULL. (In other words, just setting an unused
pointer variable to NULL does not guarantee safety; one also

has to check for the null value before using the pointer.) On
the other hand, if it is known that a particular pointer variable
is always valid, it is not required to test for NULL before
using it.

13.10.3 subtraction of pointers
as has been seen, an integer can be added to a pointer to get
a new pointer, pointing somewhere beyond the original (as
long as it is in the same array). For example, one might write

p2	=	p1	+	3;

applying a little algebra,
p2	-	p1	=	3

 Here, both p1 and p2 are pointers pointing to the elements
of the same array. From this it can be concluded that the two
pointers are subtracted, as long as they point in the same
array. The result is the number of elements separating them.
One may also ask (again, as long as they point into the same
array) whether one pointer is greater or less than another; one
pointer is ‘greater than’ another if it points beyond where the
other one points.
 Therefore, pointer subtraction is also valid: Given two
pointers p and q of the same type, the difference p – q is an
integer k such that adding k to q yields p. The result is portable
and useful only if the pointers to the elements of the same
array. The difference k is the difference in the subscripts of
the elements pointed by them. The following code illustrates
this.

#include	<stdio.h>

int	main()

{

	 double	a[2],*p,*q;

	 p=a;
	 q=p+1;
	 printf(“%d\n”,q	–	p);
	 return	0;
}

Output
	 1

 To print the number of bytes resulting from q-p, each
pointer may be typecast.

#include	<stdio.h>
int	main()
{
	 double	a[2],*p,*q;
	 p=a;
	 q=p+1;
	 printf(“%d\n”,(int)q-(int)p);
	 return	0;
}

Output
	 8

Pointers in C 351
 It has been seen that two pointers to compatible types may
be subtracted. actually, the result is stored in the variable
type ptrdiff_t, which is defined in the header file <stddef.
h>. Both pointers must point into the same array, or one past
the end of the array, otherwise the behavior is undefined.
The value of the result is the number of array elements that
separate the two pointers.

ExamplE
18. #include	<stdio.h>

int	main()

{

int	x[100];

int	*pi,	*cpi	=	&x[99];	/*	cpi	points	to	the	last		 	
		 	element	of	x	*/

pi	=	x;

if((cpi	-	pi)	!=	99)

	 printf(“Error\n”);

pi	=	cpi;

pi++;			 	 	 	 	 	 	/*	increment	past	end	of	x	*/

if((pi	-	cpi)	!=	1)

	 printf(“Error\n”);

return	0;

}

 The execution of the above program prints nothing.
Consider another version of the standard library function
strlen.

int	stlen(char	*s)
{
	 char	*p	=	s;
	 while(*p	!=	‘\0’)
	 p++;
	 return	p	-	s;
}

 In its declaration, p is initialized to s, that is, to point to the
first character of the string. In the while loop, each character
in turn is examined until the ‘\0’ at the end is seen. Because
p points to characters, p++ advances p to the next character
each time, and p-s gives the number of characters advanced
over, that is, the string length. The number of characters in
the string could be too large to store in an int. The header
<stddef.h> defines a variable type ptrdiff_t that is large
enough to hold the signed difference of two pointer values.
If we were being cautious, however, we would use size_t
for the return value of strlen to match the standard library
version. size_t is the unsigned integer type returned by the
sizeof operator.

note

 ∑ The += and –= operators can involve pointers as long as
the left-hand side is a pointer to an object and the right-
hand side is an integral expression.

13.10.4 comparing pointers
C allows pointers to be compared with each other. If two
pointers compare equal to each other, then they point to
the same thing, whether it is an object or the non-existent
element of the end of an array (see arithmetic above). If two
pointers point to the same thing, then they compare equal to
each other. The relational operators such as >, <=, and so on,
give the result that would be expected if the pointers point
to the same array: if one pointer compares less than another,
then it points nearer to the front of the array. Consider the
following program.

ExamplE
19. #include	<stdio.h>

int	main(void)
{
	 int	a[]	=	{10,	20,	30,	40,	50};
	 int	i,	*p;
	 for(p=a;	p<=a+4;	p++)
	 	 	 	 	printf(“%d\n”,	*p);
	 return	0;
}

Output
	 10
	 20
	 30
	 40
	 50

 Here, each time p is compared with the base address of the
array.
 One common use of pointer comparisons is for copying
arrays using pointers. Here is a code fragment which copies
10 elements from array1 to array2, using pointers. It uses
an end pointer, ep, to keep track of when it should stop
copying.

int	array1[10],	array2[10];
int	*ip1,	*ip2	=	&array2[0];
int	*ep	=	&array1[10];
for(ip1	=	&array1[0];	ip1	<	ep;	ip1++)
	 *ip2++	=	*ip1;

 as mentioned earlier, there is no element array2[10], but
it is legal to compute a pointer to this (non-existent) element
as long as it is only used in pointer comparisons like this (that
is, it is legal as long as no attempt is made to fetch or store the
value that it points to).
 The following program will print the line in reverse order.
The program uses two pointers pointing to elements of the
same array, illustrating the pointer comparison.

ExamplE
20. #include	<stdio.h>

#include	<string.h>

352 Computer Fundamentals and Programming in C

int	main()
{
	 char	a[50];
	 void	reverse(char	*);
	 printf(“\n	Enter	the	string:”);
	 gets(a);
	 reverse(a);
	 printf(“\nAfter	reversing	the	string	is	:\n”);
	 puts(a);
	 return	0;
}
void	reverse(char	*string)
{
	 	 char	*lp	=	string;		 	 	 					/*	left	pointer	*/
	 	 char	*rp	=	&string[strlen(string)-1];	

/*	right	pointer	*/
	 	 char	tmp;
	 	 while(lp	<	rp)
 {
	 	 	 	 tmp	=	*lp;
	 	 	 	 *lp	=	*rp;
	 	 	 	 *rp	=	tmp;
	 	 	 	 lp++;
	 	 	 	 rp––;
 }
}

Output
Enter	the	string:manas
After	reversing	the	string	is:
sanam

 a null pointer constant can be assigned to a pointer; that
pointer will then compare equal to the null pointer constant. a
null pointer constant or a null pointer will not compare equal
to a pointer that points to anything which actually exists. This
has already been discussed and illustrated earlier. a pointer
arithmetic summary is given in Table 13.6.

13.11 poInters to poInters
So far we have discussed about pointers that point directly to
a variable that holds values. C allows the use of pointers that
point to pointers, and these, in turn, point to data. For pointers
to do that, we only need to add an asterisk (*) for each level
of reference. Consider the following declaration.

	 int	a=5;
	 int	*p;	¨	pointer	to	an	integer
	 int	**q;	¨	pointer	to	a	pointer	to	an	integer
	 p=&a;		 	 	 	
	 q=&p;

 To refer to a using pointer p, dereference it once, that is,
*p.

 To refer to a using q, dereference it twice because there are
two levels of indirection involved.

 If q is dereferenced once, actually p is referenced which is a
pointer to an integer. It may be represented diagrammatically
as follows.

5

pa q

 So, *p and **q print 5 if they are printed with a printf
statement.

#include	<stdio.h>
int	main()
{
	 int	a=5;
	 int	*p,**q;
	 p=&a;
	 q=&p;
	 printf(“\n	*p=%d”,*p);
	 printf(“\n	**q=%d”,**q);
	 return	0;
}

Table 13.6 Pointer arithmetic summary

Operation Condition Example Result

Assignment Pointers must be of
same type

int	*p,*q
...

p points to whatever q
points to.

Addition of an
integer

p	=	q;
int	k,*p;
...
p	+	k

Address of the kth object
after the one p points to.

Subtraction of an
integer

int	k,*p;
...
p	–	k

Address of the kth object
before the one p points to.

Comparison of
pointers

Pointers pointing to
the members of the
same array

int	*p,*q;
...
q	<	p

Returns true (1) if q	points
to an earlier element of the
array than p does. Return
type is int

Subtraction of
pointers

Pointers to members
of the same array
and q < p

int	*p,*q;
...
p	–	q

Number of elements
between p & q;

Pointers in C 353
Output

*p=5
**q=5

qpa

65550655405

655586555065540

 In the preceding figure, the cells contain the content of
the variable and its location is given below the cells. In this
example, variable q can be described in three different ways;
each one of them would correspond to a different value.

q	 is	 a	 variable	 of	 type	 (int	 **)	 with	 a	 value	 of	
65550

*q	 is	 a	 variable	 of	 type	 (int	 *)	 with	 a	 value	 of	
65540

**q	is	a	variable	of	type	(int)	with	a	value	of	5

Consider the following declarations.
int	a;		 	 /*integer	variable	*/

int	*p;		 	 /*pointer	to	integer	*/

int	**q;		 /*pointer	to	pointer	to	integer	*/	

a	=	5;		 	 /*assign	value	to	a	*/

p	=	&a;		 	 /*address	of	a	is	stored	in	p	*/	

q	=	&p;		 	 /*address	of	pa	is	stored	in	q	*/

Memory picture

Variable Address Value

a 65540 5

p 65550 65540

q 65558 65550

 Consider introducing the following expression in the
preceding memory picture.

*p	=	7;	

Variable Address Value

a 65540 5	7

p 65550 65540

q 65558 65550

 as p is the address of int	a, *p changes the value of a to
7. Now consider introducing the following expression in the
same example.

**q	=	10;	

Variable Address Value

a 65540 5 7	10

p 65550 65540

q 65558 65550

 Now, **q also refers to int	a; it changes the value of a to
10. It is also possible to change the value of p using q because
q points to p. Consider the following table.

Variable Address Value

a 65540 10

p 65550 65540

q 65558 65550

b 65512

 Now, *q	=	&b modifies the place where q is pointing, i.e.,
p. So we get the following table.

Variable Address Value

a 65540 10

p 65550 65512

q 65558 65550

b 65512

 The call by value and call by address mechanisms are also
applicable to pointers. Consider the following program:

#include	<stdio.h>
void	change(int	*);
int	a,b;
int	main(void)
{
	 int	*p;
	 a=5;
	 b=10;
	 p=&a;
	 change(p);
	 printf(“\n	*p	=	%d”,	*p);
	 return	0;
}
void	change(int	*q)
{
	 q=&b;
}

Output
*p	=	5

 Both a and b are global variables. They can be accessible
from all the functions of the program. The address of the
variable a is assigned in the pointer p. Then, p is passed to
the function change(). What is intended to be done here
is that the address of the variable b is to be assigned to p
through the function change(). But the output shows that
though pointer is passed to a function, still it follows call by
value mechanism. The address contained in p is passed to the
function and stored in q through parameter passing. When the
address of b is assigned to q,	p still points to a because of call
by value mechanism. Pointer is not an exception, it should be
passed by address as in the following program.

#include	<stdio.h>
void	change(int	**);
int	a,b;
int	main(void)
{

354 Computer Fundamentals and Programming in C

	 int	*p;
	 a=5;
	 b=10;
	 p=&a;
	 change(&p);
	 printf(“\n	*p	=	%d”,	*p);
	 return	0;
}
void	change(int	**q)
{
	 *q=&b;
}

Output
*p	=	10

 as address of p is passed to a function, it follows call by
address mechanism. The statement *q	=	&b is equivalent to p
=	&b; hence the value at address held by p is print 10.
 The following program explores how pointer to a pointer
to an integer and pointer to pointer to pointer can be used to
read the value of the same variable.

ExamplE
21. #include	<stdio.h>

int	main()
{
	 int	a;
	 int	*p;
	 int	**dp;
	 int	***tp;
	 p=&a;
	 dp=&p;
	 tp=&dp;
	 printf(“\n	ENTER	THE	VALUE	OF	a”);
	 scanf(“%d”,&a);
	 printf(“\n	a=%d”,a);
	 printf(“\n	ENTER	THE	VALUE	OF	a”);
	 scanf(“%d”,p);
	 printf(“\n	a=%d”,a);
	 printf(“\n	ENTER	THE	VALUE	OF	a”);
	 scanf(“%d”,*dp);
	 printf(“\n	a=%d”,a);
	 printf(“\n	ENTER	THE	VALUE	OF	a”);
	 scanf(“%d”,**tp);
	 printf(“\n	a=%d”,a);
	 return	0;

}

Output
ENTER	THE	VALUE	OF	a	5
a=5
ENTER	THE	VALUE	OF	a	10
a=10
ENTER	THE	VALUE	OF	a	20
a=20
ENTER	THE	VALUE	OF	a	25
a=25

 Now, how many levels of indirection can be used in a
single declaration?
 According to the ANSI C standard, all compilers must
handle at least 12 levels. Generally, it depends on the
compiler; some compilers might support more.

13.12 array of poInters
an array of pointers can be declared very easily. It is done
thus.

int	*p[10];

 This declares an array of 10 pointers, each of which points
to an integer. The first pointer is called p[0], the second is
p[1], and so on up to p[9]. These start off as uninitialized—
they point to some unknown point in memory. We could
make them point to integer variables in memory as follows.

int*	p[10];
int	a	=	10,	b	=	20,	c	=	30;
p[0]	=	&a;
p[1]	=	&b;
p[2]	=	&c;

 It can be seen from the diagram (Fig. 13.10) that there is
no way of knowing in advance where the compiler will place
these numbers in memory. They may not even be stored in
order.

p

10 20 30

Fig. 13.10 Logical memory picture for array of pointers

 The obvious thing to do is to sort the numbers in memory,
not by moving the numbers themselves around but by altering
the order of the pointers to them.

ExamplE
22. #include	<stdio.h>

/*	the	array	of	pointers	is	declared	here	so	that	the	
function	display	can	access	them	*/

int	*p[10];

void	display()

{			int	i;

	 /*	Displaying	what	each	pointer	in	the	array	points	
to.	*/

	 for(i	=	0;	i	<	10;	i++)

	 	 printf(“%d	\n”,*p[i]);

}

int	main()

	 {	int	a	=	46,	b	=	109,	c	=	51,	d	=	66,	e	=	82,	f	=	47,

	 	 g	=	40,	h	=	36,	k	=	70,	l	=	79;

	 	 int*	temp;

Pointers in C 355
	 	 int	i,j;
	 	 p[0]	=	&a;
	 	 p[1]	=	&b;
	 	 p[2]	=	&c;
	 	 p[3]	=	&d;
	 	 p[4]	=	&e;
	 	 p[5]	=	&f;
	 	 p[6]	=	&g;
	 	 p[7]	=	&h;
	 	 p[8]	=	&k;
	 	 p[9]	=	&l;
	 	 display();	/*	Displaying	the	values	before		 	 	
	 	 	 sorting	*/
	 	 for(i	=	0;	i	<	10;	i++)
	 	 	 for(j	=	0;	j	<	9-i;	j++)
	 	 	 	 if(*p[j]	>	*p[j+1])
 {
	 	 	 	 	 	 temp	=	p[j];
	 	 	 	 	 	 p[j]	=	p[j+1];
	 	 	 	 	 	 p[j+1]	=	temp;
 }
	 	 display();			/*	Displaying	after	sorting	*/
	 return	0;
}

 This program is very clumsy. It can be rewritten. In the
following program, an array of pointers contains the base
address of three one-dimensional arrays.

{

	 int	a[]={1,2,3,4,5};

	 int	b[]={10,20,30,40,50};

	 int	c[]={100,200,300,400,500};

	 int	*ap[3]={a,b,c};

	 int	i;

	 for(i=0;i<3;++i)

	 	 printf(“%d”,*ap[i]);

}

 In the for loop, printf() prints the values at the addresses
stored in ap[0],	ap[1], and ap[2], which are 1, 10, and 100.
 The above for loop can also be replaced by the following
to get the same output.

{
.
.
.
.

int	*p;	p=ap;

	 for(i=0;i<3;++i)

 {

	 	 printf(“%d”,**p);

	 	 p++;

 }

}

another illustration is as follows.
int	main()
{
	 int	a[3][3]={1,2,3,4,5,6,7,8,9};
	 int	*ptr[3]={a[0],a[1],a[2]};
	 int	i;
	 for(i=0;i<3;++i)
	 	 printf(“%d”,*ptr[i]);
	 	 printf(“\n”);
	 for(i=0;i<3;++i)
	 	 printf(“%d”,*a[i]);
	 	 return	0;
}

Output
	 1	4	7
	 1	4	7

 In the second for loop, the values of the base address
stored in the array a[] are printed, which are again 1	4	7.
 an array of character pointers that is pointed to the strings
is declared as follows.

char	*nameptr[MAX];

 The array, nameptr[], is an array of size MAX, and each
element of the array is a character pointer. It is then possible
to assign character pointer values to the elements of the array.
For example,

nameptr[i]	=	“Oxford”;

 The string “Oxford” is placed somewhere in memory by
the compiler and the pointer to the string constant is then
assigned to nameptr[i]. It is also possible to assign the value
of any string pointer to nameptr[i]. For example, if s is a
string, then it is possible to assign the pointer value s to
nameptr[i].

nameptr[i]	=	s;

again, for example,
char	*name[]	=	{“Manas”,“Pradip”,“Altaf”};	

/*	Creates	and	initializes	an	array	of	3	strings	

name[0]	is	Manas,	name[1]	is	Pradip	and	name[2]	is	
Altaf*/

 Beginners are often confused about the difference between
this example and a multidimensional array.

char	name[3][10]	=	{“Manas”,“Pradip”,“Altaf”};	

 Both of these will behave the same way in most
circumstances. The difference can only be seen if we look at
the memory locations.

name[0]

name[1]

name[2]

M

P

A

a

r

l

n

a

t

a

d

a

s

i

f

\0

p

\0

\0

Fig. 13.11 (a) Logical memory mapping for array of pointers to
char (Array of strings)

356 Computer Fundamentals and Programming in C

 This figure shows the first declaration char	*name[];name
contains an array of three pointers to char. The pointers
to char are initialized to point to locations which may
be anywhere in memory containing the strings “Manas”,
“Pradip” and “Altaf” (all correctly \0 terminated).

M a n a s\0 ? p r a d i p\0 ? A l t a f\0 ?? ? ? ?? ?? ?

Fig. 13.11 (b) Physical memory mapping for arrary of pointers
to char

 This represents the second case—the \0 characters
terminate the strings. The ? represents memory locations
which are not initialized. char	 *a[] represents an array of
pointers to char. This can be used to contain a number of
strings.
 Look at the following program, that uses an array of
pointers.

EExamplEs E
23. char	*rainbow[]	=	{“red”,	“orange”,	“yellow”,	“green”,	

“blue”,	“indigo”,	“violet”	};
int	main()
{
	 int	color;	
	 for(color	=	0;	color	<=	6;	color++)
 {
	 	 printf(“%s”,	rainbow[color]);
 }
	 printf(“\n”);
	 return	0;
}

 Output
red
orange	
yellow	
green
blue	
indigo
violet

 The following program would clear the above facts.

24. #include	<stdio.h>
char	*getday(int);

int	main()

{

	 int	iday;

	 char	*dayofWeek;

	 printf(“Enter	a	number	from	1	to	7	for	the	day\
	 of	the	week:”);

	 scanf(“%d”,&iday);

	 dayofWeek=getday(iday);

	 if(dayofWeek!=NULL)

	 	 printf(“\n\nThat	day	of	the	week	is	%s”,	dayofWeek);

 else

	 	 printf(“Invalid	entry	for	day!”);

	 return	0;

}

char	*getday(int	iNo)

{

	 char	*days[7];

	 days[0]=“Sunday”;

	 days[1]=“Monday”;

	 days[2]=“Tuesday”;

	 days[3]=“Wednesday”;

	 days[4]=“Thursday”;

	 days[5]=“Friday”;

	 days[6]=“Saturday”;

	 if(iNo	>=1	&&	iNo<=7)

	 	 return	days[iNo-1];

 else

	 	 return	NULL;

}

 In general, an array of pointers can be used to point to
an array of data items, with each element of the pointer
array pointing to an element of the data array. Data items
can be accessed either directly in the data array, or indirectly
by dereferencing the elements of the pointer array. The
advantage of an array of pointers is that the pointers can
be reordered in any manner without moving the data items.
For example, the pointer array can be reordered so that the
successive elements of the pointer array point to data items
in a sorted order without moving the data items. reordering
pointers is relatively fast compared to reordering large data
items such as data records or strings. This approach saves a
lot of time, with the additional advantage that the data items
remain available in the original order. The implementation of
such a scheme is discussed here.
 Sorting an array of strings requires swapping the strings;
this can require copying a lot of data. For the sake of efficiency,
it is better to avoid actual swapping of data whenever a data
item is large, such as a string or an entire database record.
In addition, arrays may be needed in more than one order;
for example, an array of exam scores sorted by ID numbers
and by weighted scores; or strings may be needed in both
unsorted form and sorted form. In either of these cases, either
two copies of the data, each sorted differently, must be kept,
or a more efficient way to store the data structure must be
found. The solution is to use pointers to elements of the array
and swap pointers. Consider some examples.

int	data1,	data2,	*ptr1,	*ptr2,	*save;
	 data1	=	100;	data2	=	200;
	 ptr1	=	&data1;	ptr2	=	&data2;

 The values of the data can be swapped and the swapped
values stored in data1 and data2. Or the values of the pointers
can be exchanged.

Pointers in C 357
temp	=	ptr1;
	 ptr1	=	ptr2;
	 ptr2	=	save;

 Here, the values in data1 and data2 have not changed;
but ptr1 now accesses data2 and ptr2 accesses data1. The
pointer values have been swapped, so they point to objects in
a different order. The same idea can be applied to strings.

char	name1[]	=	“Oxford”;
char	name2[]	=	“University”;
char	*p1,	*p2;
	 p1	=	name1;
	 p2	=	name2;

 Pointers p1 and p2 point to strings name1 and name2. Now
the pointer values can be swapped so that p1 and p2 point
to name2 and name1, respectively. Given an array of strings,
the following program uses pointers to order the strings in a
sorted form, leaving the array unchanged.

E ExamplE
25. #include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#define	COLS	50

void	sort_words(char	*a[],	int	n)

{

	 int	i,j;

	 char	*temp;

	 for(i=0;i<n-1;++i)

	 	 for(j=i+1;j<n;++j)

	 	 	 if(strcmpi(a[i],a[j])>0)

 {

	 	 	 	 temp=a[i];

	 	 	 	 a[i]=a[j];

	 	 	 	 a[j]=temp;

 }

}

int	main()

{

char	w[10][COLS];

char	*wdptr[10];

int	i;

for(i=0;	i<10;	++i)

{
gets(w[i]);
wdptr[i]=w[i];
}
printf(“\n	Before	sorting	the	strings\			 	 	

are.4......\n”);
for(i=0;	i<10;	++i)
puts(w[i]);

sort_words(wdptr,10);

printf(“\n	After	sorting	the	strings	are....\n”);

for(i=0;	i<10;	++i)

puts(wdptr[i]);
return	0;
}

 When an array of pointers to strings is used, the strings can
be initialized at the point where the array is declared, but the
strings entered by the user cannot be received using scanf().
Consider the following program.

int	main()

{

	 char	*name[5];

	 int	i;

	 for(i=0;i<5;++i)

 {

	 	 printf(“\n	ENTER	NAME”);

	 	 scanf(“%[^\n]”,name[i]);

 }

	 	 return	0;

}

 The program may not work because when an array is
declared it contains garbage value, and it would be wrong to
send the garbage value to scanf() as address where the string
received from the keyboard should be kept.

13.13 poInter to array
Suppose we have an array of unsigned long values called v.
We can declare a pointer to a simple integer value and make
it point to the array as is done normally.

	 int	v[5]	=	{1004,	2201,	3000,	432,	500};

	 int	*p	=	v;

	 printf(“%d	\n”,	*p);

 This piece of code displays the number, which the pointer p
points to, that is, the first number in the array, namely 1004.

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

p

 C tends to treat arrays almost as though they were pointers,
which is why we can set a pointer to an array straight rather
than using the address of operator. The instruction p		=		v makes
the pointer point to the address of the array. The number at this
address is the first element of the array; so that is the value
produced when we access *p.
p++ gives some extra arithmetic instructions that let us use the
pointer to the array more flexibly.

	 p++

358 Computer Fundamentals and Programming in C

 This instruction increases the pointer so that it points to the
next element of the array. If it is followed by the instruction
printf(“%d	 \n”,	 *p); then it would display the number
2201, which is the content of element v[1] (i.e., the second
element).
 Similarly, we can use instructions such as += and -= to
refer to different elements in the array.

1004

2201

3000

432

500

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

v[0]

v[1]

v[2]

v[3]

v[4]

p

p

p+=2;

p--;

 reference can be made to the different array elements
without having to alter the value of p. We have already used
*p to refer to the first element of the array (or subsequent
elements if p has been updated with += or -=), but *(p+1) can
be used to refer to the next element after *p,	*(p+2) to refer
to the one after that, etc.

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

p

*(P–1)

*(P+1)

*(P+2)

*(P+3)

 Now it is time to turn to the problem of the two-dimensional
array. as stated in Chapter 12, C interprets a two-dimensional
array as an array of one-dimensional arrays. That being the
case, the first element of a two-dimensional array of integers
is a one-dimensional array of integers. Moreover, a pointer to
a two-dimensional array of integers must be a pointer to that
data type. One way of accomplishing this is through the use
of the keyword ‘typedef’. typedef assigns a new name to a
specified data type.
For example,

	typedef	unsigned	char	byte;

causes the name byte to mean type unsigned	char. Hence,

byte	b[10];

would be an array of unsigned characters.
 Note that in the typedef declaration, the word byte has
replaced what would normally be the name of unsigned	char,
that is, the rule for using typedef is that the new name for the
data type is the name used in the definition of the data type.
Thus, in

typedef	int	Array[10];

 array becomes a data type for an array of 10 integers. This
means that, “Array	my_arr”; declares my_arr as an array of
10 integers and Array	arr2d[5]; makes arr2d an array of five
arrays of 10 integers each.
 also note that Array	*ptr2arr; makes ptr2arr a pointer to
an array of 10 integers. Because *ptr2arr points to the same
type as arr2d, assigning the address of the two-dimensional
array arr2d to ptr2arr, the pointer to a one-dimensional array
of 10 integers is acceptable. Thus, ptr2arr	=	&arr2d[0]; or
ptr2arr	=	arr2d; are both correct.
 Since the data type of the pointer is an array of 10 integers,
it is expected that incrementing ptr2arr by one would
change its value by 10*sizeof(int), which it does. Hence,
sizeof(*ptr2arr) is 20. It can be proved by writing and
running a simple short program.
 Now, using typedef need not necessarily make things
clearer for the reader and easier on the programmer. What
is needed is a way of declaring a pointer such as ptr2arr
without using the typedef keyword. It turns out that this can
be done and that

int(*ptr2arr)[10];

is the proper declaration, i.e., ptr2arr here is a pointer to an
array of 10 integers just as it was under the declaration using
the array type. Note that this is different from

int	*ptr2arr[10];

which would make ptr2arr the name of an array of 10
pointers to type int.
 The elements of a two-dimensional array can be printed
using a pointer to an array. The following program illustrates
this.

ExamplE

26. int	main()
{
	 int	a[2][3]={{3,4,5},{6,7,8}};
	 int	i;	int(*pa)[3];
	 pa=a;
	 for(i=0;i<3;++i)
	 	 printf(“%d\t”,(*pa)[i]);
	 printf(“\n”);
	 pa++;
	 	 for(i=0;i<3;++i)
	 	 	 printf(“%d\t”,(*pa)[i]);
	 	 return	0;
}

Output
3	4	5

6	7	8

Pointers in C 359
 Table 13.7 summarizes the differences between array of
pointer and pointer to an array.

Table 13.7 Difference between an array of pointers and a pointer
to an array

Array of Pointer Pointer to an Array

Declaration Declaration

data_type	*array_
name[SIZE];

data_type(*array_name)[SIZE];

Size represents the
number of rows

Size represents the number of
columns

The space for columns
may be allotted

The space for rows may be
dynamically allotted

13.14 two-dIMensIonal arrays and
poInters

a two-dimensional array in C is treated as a one-dimensional
array whose elements are one-dimensional arrays (the
rows). For example, a 4 × 3 array of T (where ‘T’ is any data
type supported by C) may be declared by ‘T	 a[4][3]’, and
described by the following scheme.
 Figure 13.12 is the logical layout of a two-dimensional
array in memory, but it does not give a good picture of
what is happening internally. The ‘internal pseudo-memory
map’ works just to display what the two-dimensional array
looks like within the system, and can be used to illustrate
how it is actually implemented. Figure 13.13 is the graphical
representation of a two-dimensional array. Keep in mind that
this may not be an accurate picture of what is actually stored
in memory, but it is accurate in terms of the concept of a two-
dimensional array.

a[0]

a[1]

a[2]

a[3]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

Fig. 13.12 Logical representation of a two-dimensional array

 The first thing to be noticed is that there is still a single
pointer that is the name of the entire array, but in this case
it is a constant pointer to a constant pointer. It points to an
array of pointers, each of which points somewhere inside of
the array. Finally, there is the actual storage for the elements
of the array. According to the definition of C, all elements
of the array must be contiguous. The elements are drawn in
the manner shown to emphasize this fact. One may guess,
and properly so, that none of the pointers are necessarily real
pointers, but are somehow bound up in the addressing logic
of the code, or they may be stored in registers. On the other
hand, they could actually all be pointers if the implementers
decided to do so. There are no assumptions made about the
underlying implementation.
 The address arithmetic for the a[n] array of pointers can
be used as done earlier, but it is a slightly different case this
time. The following formula is used with size being the
number of bytes used to store a pointer.

byte_address	=	a	+	i	*	size	

 It will, however, be correct to think of these pointers
existing somewhere in memory conceptually in order to
understand how a two-dimensional array is stored in the
computer memory.
 Pointer arithmetic can be performed within each row as
is done with the one-dimensional array. The constant pointer
named a[0] can be considered to be a constant pointer to the
first element in the first row and the formula mentioned earlier
can be used for pointer arithmetic just as if it were referring
to a one-dimensional array. Therefore, the following two
expressions,

*(a[0]	+	3)

and

a[0][3]	

are identical as far as the compiler is concerned.
 It is possible to keep the first array index set to zero and
vary the second array index from zero to eleven, thereby
accessing all twelve elements by varying a single subscript.
This is considered bad practice in some programming circles

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3][1] a[3][2]

a[0] a[1] a[2] a[3]

a

Fig. 13.13 Physical representation of a two-dimensional array

360 Computer Fundamentals and Programming in C

and its use is not encouraged, but it does illustrate how the
elements are actually stored.

	 for(i	=	0;	i	<	12;	i++)
	 	 a[0][i]	=	i;	

 This trick is possible because C does not do run-time range
checking of array subscripts. The following code is also valid
for the two-dimensional array a[4][3] of integer type

	 for(i	=	0;	i	<	12;	++i)
	 	 scanf(“%d”,	&a[0][i]);	

 readers may have noticed that in C the rightmost subscript
of a two-dimensional array varies faster than the leftmost (in
fact, there are no multidimensional arrays in C, but array of
arrays). This fact suggests that the array is stored in a ‘row
major addressing’ format. So the array equation for element
‘a[m][n]’ of type T is as follows:

	 Address	of	(a[i][j])	=	address	of	a[0][0]	+	(i	*	n	
+	j)

 The array equation is important. In C, it is hidden from the
programmer; the compiler automatically computes the neces-
sary code whenever an array reference is made. The obvious
advantage is that the number of rows is not required in the array
equation, the address of an element does not have to be com-
puted. That is why, when a two-dimensional array is passed
to a function, it is not always necessary to specify the first di-
mension of the corresponding formal parameter in the function
header of the function definition. But for higher-dimensional
arrays, the equation gets more and more complicated.
 Brian Kernighan and Dennis Ritchie tried to create a
unified treatment of arrays and pointers, one that would
expose rather than hide the array equation in the compiler’s
code. It has been already discussed that a[i]	 =	 *(a	 +	 i).
Therefore, following the same concept, a two-dimensional
array can be expressed as follows:

	 a[i][j]	=	*(a[i]+	j)	=	(*(a	+	i))[j]	=	*(*(a	+	i)	+	j)

 The array equation discussed above is a consequence of
the aforesaid notations in the case of a two-dimensional array.
The following program illustrates the facts just discussed.

ExamplE
27. #include	<stdio.h>

int	main()
{
	 int	a[2][3]={10,20,30,	40,50,60};
	 int	i,j;
	 for(i=0;i<2;++i)
 {
	 	 printf(“\n”);
	 	 for(j=0;j<3;++j)
	 	 	 printf(“%d\t”,*(*(a+i)+j));
 }
	 return	0;

}

Output
10	20	30

40	50	60

The same output will result if the statement
	 printf(“%d\t”,*(*(a+i)+j));

is replaced by the following equivalent statements.
 printf(“%d\t”,*(a[i]+j));

	 printf(“%d\t”,(*(a+i))[j]);

	 printf(“%d\t”,*(&a[0][0]+i*3+j));

 Thus, to evaluate either expression, a total of five values
must be known.
 The address of the first element of the array, which is

returned by the expression a, i.e., the name of the array
 The size of the type of the elements of the array, in this case

sizeof(int)

 The second dimension of the array
 The specific index value for the first dimension, 2 in this

case
 The specific index value for the second dimension, 3 in this

case

13.14.1 passing two-dimensional array to a
function

The following are several alternative ways in C to handle an
array passed to a function. They differ in the formal parameter.
For illustration, the following C statements are considered.

#define	MAX_ROWS		 10
#define	MAX_COLS		 10
int	A[MAX_ROWS][MAX_COLS];	

When data is accessed in our matrix using the notation

A[i][j]

the location for this data is computed using
&A[0][0]	+	MAX_COLS	*	i	+	j

Some interesting information about a two-dimensional array
A[10][10] is as follows.

 &A[0][0] is the base address.
 A[0] is the base address.
 A is the base address.
 &A[0] is the base address.

But these are not interchangeable. For instance,
 &A[0][0]	+1 points to A[0][1].
 A[0]	+	1	 points to A[0][1].
 A	+	1 points to A[1][0].

(A	+	1 is the same as A[1] and points to row 1.)
 &A[0]	+	1 points to A[1][0].

Pointers in C 361
 This means that, C stores a matrix linearly in rows. The
values for the matrix elements are referenced as

A[i][j]	=	(*(A+i))[j]	=	*((*(A+i))+j)	=	*(A[i]+j)

Therefore,
A[0][0]	=	(*(A))[0]	=	*((*A)+0)	=	*(A[0]+0)
A[0][2]	=	(*(A))[2]	=	*((*A)+2)	=	*(A[0]+2)
A[1][2]	=	(*(A+1))[2]	=	*((*(A+1))+2)	=	*(A[1]+2)

Thus, address equalities will be
&A[i][j]	=	(A+i)[j]	=	*(A+i)+j	=	A[i]+j

So,
&A[0][0]	=	(A)[0]	=	*A+0	=	A[0]+0	
&A[0][2]	=	(A)[2]	=	*A+2	=	A[0]+2	
&A[1][2]	=	(A+1)[2]	=	(*A+1)+2	=	A[1]+2

The following program illustrates the above facts.
#include	<stdio.h>
int	main()
{
int	A[2][3]	=	{	{1,	2,	3},{4,	5,	6}	};
printf(“\nThe	value	of	element	A[0][0]	is	\n”);
printf(“%d	 %d	 %d	 %d	 \n”,	 A[0][0],	 (*(A+0))[0],	

*((*A)+0),	*(A[0]+0));
printf(“\nThe	address	of	element	A[0][0]	is	\n”);
printf(“%x	 %x	 %x	 %x\n”,&A[0][0],(A)[0],(*A+0),	

(A[0]+0));
return	0;
}

 Traditional method which uses array notation as a formal
parameter—an array with an empty first dimension

#include	<stdio.h>

int	main()

{

	 int	a[2][3]={10,20,30,		40,50,60};

	 void	show(int	[][3]);

	 show(a);

	 return	0;

}

void	show(int	b[][3])

{

	 int	i,j;

	 for(i=0;i<2;++i)

 {

	 	 	 	printf(“\n”);

	 	 	 	for(j=0;j<3;++j)

	 	 	 	 	printf(“%d\t”,*(*(b+i)+j));

 }

}

Pointer to an array as a formal parameter
Here the second dimension is explicitly specified. A pointer
to the array of 10 integers can be declared as follows.

	 int(*ptr)[10]	=	&a;	

 The following program shows the use of a pointer to an
array as a formal parameter.

#include	<stdio.h>
int	main()
{
	 int	a[2][3]={10,20,30,40,50,60};
	 void	show(int(*)[3]);
	 show(a);
	 return	0;
}
void	show(int(*b)[3])
{
	 int	i,j;
	 for(i=0;i<2;++i)
 {
	 	 printf(“\n”);
	 	 for(j=0;j<3;++j)
	 	 printf(“%d\t”,*(*(b+i)+j));
 }
}

 a double pointer cannot be used directly as a formal
parameter for a two-dimensional array. Consider the following
program.

ExamplE
28. #include	<stdio.h>

int	main()

{

	 int	a[2][3]={10,20,30,	40,50,60};

	 void	show(int	**);

	 show(a);

	 return	0;

}

void	show(int	**b)

{

	 int	i,j;

	 for(i=0;i<2;++i)

 {

	 	 printf(“\n”);

	 	 for(j=0;j<3;++j)

	 	 printf(“%d\t”,b[i][j]);

 }

}

 It gives the wrong output instead of printing 10,20,30,
40,50,60. The reason is as follows.
 although the compiler may not complain, it is wrong to
declare int	 **b and then use b as a two-dimensional array.
These are two very different data types and by using them
you access different locations in memory.
 The array decays into pointer when it is passed to a
function. The famous decay convention is that an array is

362 Computer Fundamentals and Programming in C

treated as a pointer that points to the first element of the array.
This mistake is common because it is easy to forget that the
decay convention must not be applied recursively (more
than once) to the same array, so a two-dimensional array is
not equivalent to a double pointer. a ‘pointer to pointer of
T’ cannot serve as a ‘two-dimensional array of T’. The two-
dimensional array is equivalent to a ‘pointer to row of T’, and
this is very different from ‘pointer to pointer of T’.
 When a double pointer that points to the first element of
an array is used with subscript notation ‘ptr[0][0]’, it is fully
dereferenced two times. after two full de-referencings, the
resulting object will have an address equal to whatever value
was found inside the first element of the array. Since the
first element contains the data, we would have wild memory
accesses.
 The extra dereferencing could be taken care of by having
an intermediary ‘pointer to T’.

type	a[m][n],	*ptr1,	**ptr2;

ptr2	=	&ptr1;

ptr1	=	(type	*)a;

 But that would not work either; the information on the
array ‘width’ (n) is lost. a possible solution to make a double
pointer work with a two-dimensional array notation is to have
an auxiliary array of pointers, each of them pointing to a row
of the original two-dimensional array.

type	a[m][n],	*aux[m],	**ptr2;

ptr2	=	(type	**)aux;

for(i	=	0;	i	<	m;	i++)

	 aux[i]	=	(type	*)a	+	i	*	n;

Of course, the auxiliary array could be dynamic.

note

 ∑ C does not do run-time range checking of array subscripts.
 ∑ In C, the rightmost subscript of a two-dimensional array

varies faster than the leftmost.
 ∑ Multidimensional array is stored in a ‘row major

addressing’ format.
 ∑ The following expressions are equivalent for a two-

dimensional array
 a[i][j]=	*(a[i]+	j)
	 		 =	(*(a	+	i))[j]	=	*(*(a	+	i)	+	j)

A single pointer as a formal parameter

With this method general-purpose functions can be created.
The dimensions do not appear in any declaration, so they
can be added to the formal argument list. The manual array
indexing will probably slow down the execution.

#include	<stdio.h>

int	main()

{

	 int	a[2][3]={10,20,30,40,50,60};

	 void	show(int	*);		

	 show(&a[0][0]);	
Can be replaced by

show(*a);

	 return	0;	

}

void	show(int	*b)

{

	 int	i,j;

	 for(i=0;i<2;++i)

 {

	 	 	 printf(“\n”);

	 	 	 for(j=0;j<3;++j)

	 	 	 printf(“%5.2d”,	*(b	+	3*i	+	j));

 }

}

 Passing matrices to a function can be tricky. For more
clarity, here are some examples of passing a 3 × 4 matrix to
functions. Notice each and every program carefully.

ExamplEs
29. #include	<stdio.h>

#define	ROWS	3

#define	COLS	4

int	main()

{

	 int	i,	j;

	 int	mat[ROWS][COLS];

	 int	*ptr;

	 void	show(int	[][COLS],	int,	int);	

	 printf(“\nThe	matrix	is	%d	x	%d	\n”,ROWS,COLS);

	 printf(“The	original	values	using	array	indices	\n”);

	 for(i=0;	i	<	ROWS;	i++)

 {

	 	 printf(“%p”,mat[i]);

	 	 for(j=0;	j	<	COLS;	j++)

 {

	 	 	 	 	mat[i][j]	=	i+j;

	 	 	 	 	printf(“%d”,	mat[i][j]);

 }

	 	 printf(“\n”);

 }

	 printf(“\n	The	first	call	to	show	\n”);

	 show(mat,	ROWS,	COLS);	

	 printf(“\n	The	second	call	to	show	\n”);

	 show(&mat[0],	ROWS,	COLS);

Pointers in C 363

	 printf(“\nThe	original	values	using	a	pointer.	\n”);

	 ptr	=	&mat[0][0];

	 for(i=0;	i	<	ROWS;	i++)

 {

	 printf(“%p”,ptr);

	 for(j=0;	j	<	COLS;	j++)

 {

	 	 *ptr	=	i+j;

	 	 printf(“%d”,	*(ptr++));

 }

	 printf(“\n”);

 }

	 printf(“\n	The	first	call	to	show\n”);

	 show(mat,	ROWS,	COLS);

	 printf(“\n	The	second	call	to	show\n”);

	 show(&mat[0],	ROWS,	COLS);

	 return	0;

}

void	show(int	array[][COLS],	int	rows,	int	cols)

 {

	 	 int	i,j;

	 	 for(i=0;	i	<	rows;	i++)

 {

	 	 	 	 	 printf(“%p”,array[i]);

	 	 	 	 	 for(j=0;	j	<	cols;	j++)

	 	 	 	 	 printf(“%d”,	array[i][j]);

	 	 	 	 	 printf(“\n”);

 }

}

Output
 The	matrix	is	3	x	4	

	 The	original	values	using	array	indices	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	show	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	show	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	original	values	using	a	pointer	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	show

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	show

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

 In the first call to show() function, the base address is passed implicitly
in function.
 In the second call, the base address of the element in the first row is
passed explicitly. This will run faster because there is no need to compute
the location using &mat[0][0]	+	4*i	+	j. A two-dimensional array is
actually a one-dimensional array that maps to the storage map for mat;
that is why we do not need the first index size.
 In the following illustration, the function display() takes pointer to
array of four integers. Here a pointer to an array of integers is used and
only one index is used.
30. #include	<stdio.h>

	 #define	ROWS	3

	 #define	COLS	4

	 int	main()

 {

	 	 int	i,	j;

	 	 int	mat[ROWS][COLS];

	 	 int	*	ptr;

	 	 void	display(int(*)[COLS],	int,	int);	

	 	 printf(“\nThe	matrix	is	%d	x	%d	\n”,ROWS,	COLS);

	 	 printf(“The	original	values	for	mat	and	display	\n”);

	 	 for(i=0;	i	<	ROWS;	i++)

 {

	 	 	 	 	 	 printf(“%p”,mat[i]);

	 	 	 	 	 	 for(j=0;	j	<	COLS;	j++)

 {

	 	 	 	 	 	 	 mat[i][j]	=	i+j;

	 	 	 	 	 	 	 printf(“%d”,	mat[i][j]);

 }

	 	 	 	 	 	 printf(“\n”);

 }

	 	 printf(“\n	The	first	call	to	display\n”);

	 	 display(mat,	ROWS,	COLS);	

	 	 printf(“\n	The	second	call	to	display\n”);

	 	 display(&mat[0],	ROWS,	COLS);	

	 	 printf(“\nThe	original	values	using	a	pointer.	\n”);

	 	 ptr	=	&mat[0][0];

	 	 for(i=0;	i	<	ROWS;	i++)

 {

	 	 	 printf(“%p”,ptr);

	 	 	 for(j=0;	j	<	COLS;	j++)

 {

364 Computer Fundamentals and Programming in C

 	 *ptr	=	i+j;

	 	 	 printf(“%d”,	*(ptr++));

 }

	 	 	 printf(“\n”);

 }

	 	 printf(“\n	The	first	call	to	display\n”);

	 	 display(mat,	ROWS,	COLS);

	 	 printf(“\n	The	second	call	to	display\n”);

	 	 display(&mat[0],	ROWS,	COLS);

	 	 return	0;

 }

	 void	display(int	(*array)[COLS],	int	rows,	int	cols)

 {

	 	 int	i,j;

	 	 for(i=0;	i	<	rows;	i++)

 {

	 	 	 printf(“%p”,	array);

	 	 	 for(j=0;	j	<	cols;	j++)

	 	 	 printf(“%d”,(*array)[j]);

	 	 	 array++;

	 	 	 printf(“\n”);

 }

 }

Output
	 Our	matrix	is	3	x	4	

	 The	original	values	for	mat	and	display	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	display

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	display

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	original	values	using	a	pointer	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	display

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	display

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

 Now let us pass these values to print_mat() function. This will
run faster than show and display. pt-array is a pointer that points to
the elements in the matrix. This is convenient because C stores two-
dimensional arrays in rows.

31. #include	<stdio.h>
#define	ROWS	3

#define	COLS	4

int	main()

{

	 int	i,	j;

	 int	mat[ROWS][COLS];	

	 int	*ptr;

	 void	print_mat(int	*,	int,	int);

	 printf(“\n	The	matrix	is	%d	x	%d	\n”,ROWS,	COLS);

	 printf(“The	original	values	for	the	matrix	\n”);

	 for(i=0;	i	<	ROWS;	i++)

 {

	 	 printf(“%p”,mat[i]);

	 	 for(j=0;	j	<	COLS;	j++)

 {

	 	 	 mat[i][j]	=	i+j;	

	 	 	 printf(“%d”,	mat[i][j]);

 }

	 	 printf(“\n”);

 }

	 printf(“\n	The	first	call	to	print_mat\n”);

	 print_mat(mat[0],	ROWS,	COLS);

	 printf(“\n	The	second	call	to	print_mat\n”);

	 print_mat(&mat[0][0],	ROWS,	COLS);

	 printf(“\n	The	third	call	to	print_mat\n”);

	 print_mat(*mat,	ROWS,	COLS);

/*	This	will	run	faster	as	will	print_mat.*/

	 printf(“\nThe	original	values	for	print_mat	\n”);

	 ptr	=	&mat[0][0];

	 for(i=0;	i	<	ROWS;	i++)

 {

	 	 printf(“%p”,ptr);

	 	 for(j=0;	j	<	COLS;	j++)

 {

	 	 	 *ptr	=	i+j;	

	 	 	 printf(“%d”,	*(ptr++));

 }

	 printf(“\n”);

}

	 printf(“\n	The	first	call	to	print_mat\n”);

	 print_mat(mat[0],	ROWS,	COLS);	

	 printf(“\n	The	second	call	to	print_mat\n”);

	 print_mat(&mat[0][0],	ROWS,	COLS);

	 printf(“\n	The	third	call	to	print_mat\n”);

	 print_mat(*mat,	ROWS,	COLS);

	 return	0;

 }

Pointers in C 365
	 void	print_mat(int	*pt_array,	int	rows,	int	cols)
 {
	 	 	 int	i,j;
	 	 	 for(i=0;	i	<	rows;	i++)
 {
	 	 	 	 printf(“%p”,pt_array);	
	 	 	 	 for(j=0;	j	<	cols;	j++)
	 	 	 	 	 printf(“	%d”,	*(pt_array++));	
	 	 	 	 printf(“\n”);
 }
 }

Output
 The	matrix	is	3	x	4	

	 The	original	values	for	the	matrix	

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	third	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	original	values	for	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	first	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	second	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5	

	 The	third	call	to	print_mat

	 FFDC	0	1	2	3	

	 FFE4	1	2	3	4	

	 FFEC	2	3	4	5

 In the above illustrations, the address of the corresponding
rows is printed on the first column.
 Consider the problem of date conversion, from day of the
month to day of the year and vice versa. For example, March
1st is the 60th day of a non-leap year, and the 61st day of a
leap year. Let us define two functions to do the conversions.

day_of_year converts the month and day into the day of the
year and month_day converts the day of the year into the month
and day. Since this latter function computes two values, the
month and day arguments will be pointers.
month_day(1988,	60,	&m,	&d)	sets m to 2 and d to 29 (February
29th).
 Both these functions need the same information, a table
of the number of days in each month. Since the number of
days per month differs for leap years and non-leap years, it is
easier to separate them into two rows of a two-dimensional
array than to keep track of what happens to February during
computation. The array and the functions for performing the
transformations are as follows.

	 static	char	daytab[2][13]	=	{

	 	 {0,	31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31},

	 	 {0,	31,	29,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31}

	 };

	 /*	day_of_year:	set	day	of	year	from	month	&	day	*/

	 int	day_of_year(int	year,	int	month,	int	day)

 {

	 	 int	i,	leap;

	 	 leap	=	year%4	==	0	&&	year%100	!=	0
	 	 	 	 	 	 	 	 ||	year%400	==	0;

	 	 for(i	=	1;	i	<	month;	i++)

	 	 	 day	+=	daytab[leap][i];

	 	 return	day;

 }

	 	 /*	month_day:	set	month,	day	from	day	of	year	*/

	 	 void	month_day(int	year,	int	yearday,
	 	 int	*pmonth,	int	*pday)

 {

	 	 int	i,	leap;

	 	 leap	=	year%4	==	0	&&	year%100	!=	0
	 	 	 	 	 	 	 	 ||	year%400	==	0;

	 	 for(i	=	1;	yearday	>	daytab[leap][i];	i++)

	 	 	 yearday	-=	daytab[leap][i];

	 	 *pmonth	=	i;

	 	 *pday	=	yearday;

 }

 recall that the arithmetic value of a logical expression,
such as the one for leap, is either zero (false) or one (true),
so it can be used as a subscript of the array daytab. The array
daytab has to be external to both day_of_year and month_
day, so they can both use it. It is made as char to illustrate a
legitimate use of char for storing small non-character integers.
 In C, a two-dimensional array is really a one-dimensional
array, each of whose elements is an array. Hence, subscripts
are written as

	 daytab[i][j]

and elements are stored by rows. So the rightmost subscript,
or column, varies fastest as elements are accessed in storage
order.

366 Computer Fundamentals and Programming in C

that a[0][14] is a valid expression, but that p[0]	[14] is not.
The expression p[0][14] overruns the bounds of the string
pointed to by p[0]. Of course, a[0][14] overruns the string
currently stored in a[0], but it does not overrun the array
a[0]. Hence, the expression a[0][14] is acceptable.
 another difference is that the strings pointed to by p[0]
and p[1] are constant strings, and hence, cannot be changed.
In contrast to this, the strings pointed to by a[0] and a[1] are
modifiable.
 an array of pointers whose elements are used to point to
arrays of varying sizes is called a ragged array. Because, in the
preceding program, the rows of p have different lengths, it is an
example of a ragged array. If we think of the elements p[i][j]
arranged as a ‘rectangular’ collection of elements in rows and
columns, the disparate row lengths give the ‘rectangle’ a ragged
look. Hence, the name ragged array.
 The following is a depiction of a ragged array.

a b c \0

a i s f o r a p p l e \0

Fig. 13.14 Representation of a ragged array

13.15 three-dIMensIonal arrays
arrays of dimension higher than two work in a similar
fashion. Let us describe how three-dimensional arrays work.
If the following is declared

	 int	a[7][9][2];

then a compiler such as a[i][j][k] is used in a program. The
compiler uses the storage-mapping function to generate the
object code to access the correct array element in memory.
Initialization Consider the following initialization.

	 int	a[2][2][3]	=	{
	 	 {{1,	1,	0},	{2,	0,	0}},
	 	 {{3,	0,	0},	{4,	4,	0}}
	 	 };

 C uses two implementations of arrays depending on
the declaration. They are the same for one dimension, but
different for more dimensions. For example, if an array is
declared as

	 int	array[10][20][30];	

then there are exactly 6000 ints of storage allocated, and a
reference of the form array[i][j][k] will be translated to

	 *(array	+	i*20*30	+	j*30	+	k)	

which calculates the correct offset from the pointer ‘array’,
and then does an indirection on it. To pass an array of this
type to a function, the formal parameter must be declared as

	 int	arg[][20][30];

 Here, the array daytab is started with a column of zero, so
that month numbers can run from the natural 1 to 12 instead
of 0 to 11. Since space is not at a premium here, this is clearer
than adjusting the indices.

Ragged arrays

It is required to contrast a two-dimensional array of type char
with a one-dimensional array of pointers to char. Similarities
and differences exist between these two constructs.

ExamplE
32.	#include<stdio.h>

	int	main(void)
 {
		char	a[2][15]=	{“abc:”,	“a	is	for	apple”};
		char	*p[2]=	{“abc:”,	“a	is	for	apple”};
		printf(“%c	%c	%c	%s	%s	\n”,	a[0][0],a[0][1],
a[0][2],	a[0],	a[1]);
		printf(“%c	%c	%c	%s	%s	\n”,	p[0][0],p[0][1],p[0]
[2],p[0],p[1]);
		return	0;
 }

Output
	 abc	abc:	a	is	for	apple
	 abc	abc:	a	is	for	apple

 The program and its output illustrate similarities in how the
two constructs are used. The identifier a is a two-dimensional
array, and its declaration causes 30 chars to be allocated. The
two-dimensional initializer is equivalent to

{{‘a’,	‘b’,	‘c’,	‘:’,	‘\0’},	{‘a’,	‘	’,	‘i’,	‘s’,	...}}

 The identifier a is an array, each of whose elements is an
array of 15 chars. Thus, a[0] and a[1] are arrays of 15 chars.
Because arrays of characters are strings, a[0] and a[1] are
strings. The array a[0] is initialized to

	 {‘a’,	‘b’,	‘c’,	‘:’,	‘\0’}

and because only five elements are specified, the rest are
initialized to zero (the null character). even though not all
elements are used in this program, space has been allocated
for them. The compiler uses a storage mapping function to
access a[i][j]. each access requires one multiplication and
one addition.
 The identifier p is a one-dimensional array of pointers
to char. Its declaration causes space for two pointers to be
allocated (four bytes for each pointer on the 32-bit machine).
The element p[0] is initialized to point at “abc:”, a string that
requires space for five chars. The element p[1] is initialized
to point at “a	 is	 ...”, a string that requires space for 15
chars, including the null character \0 at the end of the string.
Thus, p works in less space than a. Moreover, the compiler
does not generate code for a storage mapping function to
access p[i][j], which means that p works faster than a. Note

Pointers in C 367
 Here is a function that will sum the elements of the array.
Note carefully that all the sizes except the first must be
specified.

	 int	sum(int	a[][9][2])

 {

	 	 int	i,	j,	k,	sum	=	0;

	 	 for(i	=	0;	i	<	7;	++i)

	 	 	 for(j	=	0;	j	<	9;	++j)

	 	 	 	 for(k	=	0;	k	<	2;	++k)

	 	 	 	 	 sum	+	=	a[i][j][k];

	 	 return	sum;

 }

 In the header of the function definition, the following three
declarations are equivalent.

	 int	a[][9][2]	 int	a[7][9][2]	 int(*a)[9][2]

 In the second declaration, the constant 7 acts as a reminder
to human readers of the code, but the compiler disregards
it. The other two constants are needed by the compiler to
generate the correct storage-mapping function.

note
 ∑ In case of multidimensional arrays all sizes except the

first must be specified.

Caution These three declarations are equivalent only in a
header to a function definition.
 If a three-dimensional array is declared as

	 	 	 int	***array;

(and it is assumed for the moment that it has been allocated
space for a 10*20*30 array), then there is an array of 10
pointers to pointers to ints, 10 arrays of 20 pointers to ints,
and 6000 ints. The 200 elements of the 10 arrays each point
to a block of 30 ints, and the 10 elements of the one array
each point to one of the 10 arrays. The array variable points
to the head of the array with 10 elements.
 In short, array points to a pointer to a pointer to an integer,
*array points to a pointer to an integer, ‘**array’ points to an
integer, and ‘***array’ is an integer.
 In this case, an expression of the form array[i][j][k] is
equivalent to the expression of the form

	 	 ((*(array+i)	+	j)	+	k)	

 This means take a pointer to the main array, add i to
offset to the pointer to the correct second dimension array,
and indirect to it. Now, there is a pointer to one of the arrays
of 20 pointers, and j is added to get the offset to the next
dimension, and an indirection is done on that. Now, a pointer
to an array of 30 integers is obtained, and k is added to get
a pointer to the desired integer, and an indirection is done to
have the integer.

13.16 poInters to functIons
One of the power features of C is to define pointers to
functions. Function pointers are pointers, i.e., variables,
which point to the address of a function. a running program is
allocated a certain space in the main memory. The executable
compiled program code and the used variables are both put
inside this memory. Thus a function in the program code has
an address. Like other pointer variables, function pointers
can be declared, assigned values, and then used to access the
functions they point to.

13.16.1 declaration of a pointer to a function
Function pointers are declared as follows:

Return_type(*function_pointer_name
(argument_type1,	argument_type2,	...);

 In the following example, a function pointer named fp is
declared. It points to functions that take one float	 and two
char and return an int.

int(*fp)(float,	char,	char);

Some examples include the following.
int(*fp)();
	 double(*fptr)();

 Here, fp is declared as a pointer to a function that returns
int type, and fptr is a pointer to a function that returns double.
The interpretation is as follows for the first declaration: the
dereferenced value of fp, i.e., (*fp) followed by () indicates
a function that returns integer type. The parentheses are
essential in the declarations. The declaration without the
parentheses

int	*fp();

declares a function fp that returns an integer pointer.

13.16.2 Initialization of function pointers
Like other pointer variables, function pointers must be
initialized prior to use. It is quite easy to assign the address
of a function to a function pointer. One simply uses the name
of a function. It is optional to use the address operator & in
front of the function’s name. For example, if add() and sub()
are declared as follows

int	add(int,	int);

and
int	sub(int,	int);

 The names of these functions, add and sum, are pointers to
those functions. These can be assigned to pointer variables.

fpointer	=	add;
fpointer	=	sub;

13.16.3 calling a function using a function
pointer

In C, there are two ways of calling a function using a function
pointer: use the name of the function pointer instead of the
name of the function or explicitly dereference it.

368 Computer Fundamentals and Programming in C

	 result1	=	fpointer(4,	5);

	 result2	=	fpointer(6,	2);

The following program illustrates the above facts.

ExamplEE
33. int(*fpointer)(int,	int);

/*	Define	a	pointer	to	a	function	*/

	 int	add(int,	int);		 					/*	Define	a	few	functions.	*/

	 int	sub(int,	int);

	 int	main()

 {

	 	fpointer	=	add;

/*	Put	the	address	of	‘add’	in	‘fpointer’	*/

	 printf(“%d	\n”,	fpointer(4,	5));

/*	Execute	‘add’	and	print	results	*/

	 fpointer	=	sub;	 	 	 	 	 	 		/*	Repeat	for	‘sub’	*/

	 printf(“%d	\n”,	fpointer(6,	2));

	 return	0;

 }

	 int	add(int	a,	int	b)

 {

	 	return(a	+	b);

 }

	 int	sub(int	a,	int	b)

 {

	 	return(a	-	b);

 }

13.16.4 passing a function to another function
a function pointer can be passed as a function’s calling
argument. The following code shows how to pass a pointer
to a function, which returns a double and takes two double
arguments. Suppose, a computation can be performed with
different functions. Consider

()
n

k m

f K
=
Â f (K)

where, in one instance f(K)	=	xK/K! and in another instance
f(K)	=	1/xK.
f(K)	=	xK/K! can be implemented as follows.

double	exp_term(double	b,	double	x)
{
	 return(pow(x,b)/fact(b));
}
double	fact(double	a)
 {
	 	 double	f=1.0;
	 	 for(;a>0;a––)
	 	 	 f*=a;
	 	 return	f;
 }

f(K)	=	1/xK can be implemented as follows.
double	by_term(double	b,	double	x)

{
	 return(1/pow(x,b));
}

 Now, the summation function can be implemented as
follows.

double	sum(double	f(double,double),	int	m,	int	n)
{

May be treated as
pointer to a function

	 int	K;
	 double	s	=	0.0;
	 double	x;
	 printf(“\n	ENTER	THE	VALUE	OF	x”);
	 scanf(“%lf”,&x);
	 for(K=m;	K<=n;++K)
	 	 s+=f(K,x);
	 return	s;
}

 When a function appears as an argument, the compiler
interprets it as a pointer. The following is an equivalent
header to the function.

double	sum(double(*f)(double),	int	m,	int	n)
{
	 ...	same	as	above
}

 Here, double(*f)(double) is a pointer to a function that
takes an argument of type double and returns a value of type
double.
 Parentheses are very important as () bind more tightly
than *. If the argument is written as double	f(double) instead
of double(f)(double), then it implies that f is a function that
takes an argument of type double and returns a pointer to a
double.
In the body of the sum function, the statement

	 s+	=	f(K)			

can be replaced by
	 s+	=	(*f)(K)

where the pointer to the function is explicitly dereferenced.
Here,
 f implies the pointer to a function.
 *f implies the function itself.
 (*f)(K) is the call to the function.
 Figure 13.15 depicts the meaning of each part in a function
pointer notation.

()()Kf
*

The function
itself

the pointer to a function

call to the
function

Fig. 13.15 Meaning of function pointer notation

Pointers in C 369

 Now, what should be the prototype of the functions? The
prototypes of the corresponding functions used here are given
by

double	by_term(double);	 	 	 	 	 	 	 	 	 	 	 	 	 (i)
double	exp_term(double);		 	 	 	 	 	 	 	 	 	 	 	 (ii)
double	fact(double);		 	 	 	 	 	 	 	 	 	 	 	 	 	(iii)
double	sum(double(*f)(double),	int,	int);		 	 (iv)

 There are several equivalent prototype declarations for
the function prototype (iv) that shows a function as a formal
parameter.

	 double	sum(double(*)(double),	int,	int);

	 double	sum(doublef(double),	int,	int);

	 double	sum(doublef(double	x),	int	m,	int	n);

 Now, consider the calling statement of the sum()	function.
int	main()

{

printf(“\n	SUM	OF	COMPUTATION	1:	%lf:”,	
sum(exp_term,0,3));

printf(“\n	SUM	OF	COMPUTATION	2:	%lf”,	
sum(by_term,0,4));

return	0;

}

sum(exp_term,	 0,	 4) computes the sum of the following
series.

0 1 2 3 4

2 3 4
0! 1! 2! 3! 4!

1
2! 3! 4!

x x x x xs

x x xx

= + + + +

= + + + +

sum(by_term,	 0,	 4) computes the sum of the following
series.

0 1 2 3 4

2 3 4

1 1 1 1 1

1 1 1 11

s
x x x x x

x x x x

= + + + +

= + + + +

The following is the complete program.

ExamplE
34.	#include	<stdio.h>
	 #include	<math.h>
	 double	fact(double	a)
 {
	 		 double	f=1.0;
	 		 for(;a>0;a––)
	 		 	 f*=a;
	 		 return	f;
 }
	 double	exp_term(double	b,	double	x)
 {
	 	return(pow(x,b)/fact(b));
 }

	 double	by_term(double	b,	double	x)
 {
	 return(1/pow(x,b));
 }
	 double	sum(double	f(double,double),	int	m,	int	n)
 {
	 int	K;
	 double	s	=	0.0;
	 double	x;
	 printf(“\n	ENTER	THE	VALUE	OF	x	”);
	 scanf(“%lf”,&x);
	 for(K=m;	K<=n;++K)
	 s+=f(K,x);
	 return	s;
 }
	 int	main()
 {
	 		 printf(“\n	SUM	OF	COMPUTATION	1:	%lf:”,			 	 	 	

		 	 	 	 	 	 	 	 	 sum(exp_term,0,3));
	 		 printf(“\n	SUM	OF	COMPUTATION	2:	%lf”,

		 	 	 	 	 	 	 	 	 	 	 sum(by_term,0,4));
	 		 return	0;
 }

Output

ENTER	THE	VALUE	OF	x	2
SUM	OF	COMPUTATION	1:6.333333
ENTER	THE	VALUE	OF	x	2
SUM	OF	COMPUTATION	2:1.937500

13.16.5 how to return a function pointer
To return a function pointer is a little bit tricky but a function
pointer can be a function’s return value. In the following
example, there are two solutions of how to return a pointer
to a function that takes two float arguments and returns a
float. If anyone wants to return a pointer to a function, all that
needs to be done is to change the definitions/declarations of
all function pointers.

	 float	Add(float	a,	float	b)	{	return	a+b;	}

	 float	Sub(float	a,	float	b)	{	return	a-b;	}

	 Add and Sub have been defined. They return a float and
take two float values. The function takes a char and returns a
pointer to a function that takes two floats and returns a float.
<opCode> specifies which function to return.

float(*GetPtr1(char	opCode))(float,	float)

{

	 if(opCode	==	‘+’)	return	&Add;

	 if(opCode	==	‘-’)	return	⋐

}

 a solution using a typedef defines a pointer to a function
that takes two float values and returns a float.

typedef	float(*ptr2Func)(float,	float);

370 Computer Fundamentals and Programming in C

 The function takes a char and returns a function pointer
that is defined as a type above. <opCode> specifies which
function to return.

ptr2Func	GetPtr2(char	opCode)
{
	 if(opCode	==	‘+’)	return	&Add;
	 if(opCode	==	‘-’)	return	⋐
}
void	Return_A_Function_Pointer()
{
	 printf(“Executing	Return_A_Function_Pointer\n”);
	 float(*fptr)(float,	float);

/*	define	a	function	pointer*/
	 fptr=GetPtr1(‘+’);/*	 get	 function	 pointer	 from	

function	‘GetPtr1’	*/
	 printf(“%f	\n”,fptr(2,	4));

/*	call	function	using	the	pointer	*/
	 fptr=GetPtr2(‘-’);/*get	 function	 pointer	 from	

function	‘GetPtr2’*/
	 printf(“%f	\n”,fptr(2,	4));

/*	call	function	using	the	pointer	*/
}

13.16.6 arrays of function pointers
as has been seen, there are arrays of pointers to an int,
float, string, and structure. Similarly, an array of pointers
to a function can also be used. Operating with arrays of
function pointers is very interesting. It offers the possibility
of selecting a function using an index. It is illustrated in the
following program.

ExamplE
35. #include	<stdio.h>	int	main()

{
	 void(*p[3])(int,	int);	
	 int	i;	
	 void	Add(int,	int);	
	 void	Sub(int,	int);	
	 void	Mul(int,	int);	
	 p[0]	=	Add;	
	 p[1]	=	Sub;	
	 p[2]	=	Mul;	
	 for(i	=	0;	i	<=	2;	i++)	
	 (*p[i])(10,	5);	
	 return	0;
}
void	Add(int	a,	int	b)
{
printf(“\n	Result	of	Addition	=	%d”,a+b);
}
void	Sub(int	a,	int	b)
{
	 printf(“\n	Result	of	Subtraction	=	%d”,a-b);
}
void	Mul(int	a,	int	b)
{
	 printf(“\n	Result	of	Multiplication	=	%d”,a*b);
}

13.17 dynaMIc MeMory allocatIon
a problem with many simple programs, such as those written
so far is that they tend to use fixed-size arrays, which may or
may not be big enough. There are more problems of using
arrays. First there is the possibility of overflow since C does
not check array bounds. Second there is wastage of space—if
an array of 100 elements is declared and a few are used, it
leads to wastage of memory space.
 How can the restrictions of fixed-size arrays be avoided?
The answer is dynamic memory allocation. It is the required
memory that is allocated at run time (at the time of execution).
Where fixed arrays are used, static memory allocation, or
memory allocated at compile time, is used. Dynamic memory
allocation is a way to defer the decision of how much memory
is necessary until the program is actually running, or give
back memory that the program no longer needs.
 The area from where the application gets dynamic memory
is called heap. The heap starts at the end of the data segment
and grows against the bottom of the stack. If both meet, the
program is in trouble and will be terminated by the operating
system. Thus, C gives programmers the standard sort of
facilities to allocate and de-allocate dynamic heap memory.
These will be discussed here.
Static memory allocation The compiler allocates the required
memory space for a declared variable. By using the address of
operator, the reserved address is obtained that may be assigned
to a pointer variable. Since most declared variables have static
memory, this way of assigning pointer value to a pointer variable
is known as static memory allocation.
Dynamic memory allocation a dynamic memory alloca-
tion uses functions such as malloc() or calloc() to get mem-
ory dynamically. If these functions are used to get memory
dynamically and the values returned by these functions are
assigned to pointer variables, such assignments are known
as dynamic memory allocation. Memory is assigned during
run-time.
 C provides access to the heap features through library
functions that any C code can call. The prototypes for these
functions are in the file <stdlib.h>. So any code, which wants
to call these, must #include that header file. The four functions
of interest are as follows:
(i) void*	 malloc(size_t	 size) request a contiguous block

of memory of the given size in the heap. malloc() returns
a pointer to the heap block or NULL if the request is not
satisfied. The type size_t is essentially an unsigned	long
that indicates how large a block the caller would like
measured in bytes. Because the block pointer returned
by malloc() is a void	* (i.e., it makes no claim about the
type of its pointer), a cast will probably be required when
storing the void pointer into a regular typed pointer.

Pointers in C 371
(ii) calloc() Works like malloc, but initializes the memory to

zero if possible. The prototype is
 void * calloc(size_t count, size_t eltsize)
 This function allocates a block long enough to contain an

array of count elements, each of size eltsize. Its contents
are cleared to zero before calloc returns.

(iii) void	free(void*	block) free() takes a pointer to a heap
block earlier allocated by malloc() and returns that block
to the heap for reuse. after the free(), the client should
not access any part of the block or assume that the block
is valid memory. The block should not be freed a second
time.

(iv) void*	 realloc(void*	 block,	 size_t	 size) Takes an
existing heap block and tries to reallocate it to a heap block
of the given size which may be larger or smaller than the
original size of the block. It returns a pointer to the new
block, or NULL if the reallocation was unsuccessful. re-
member to catch and examine the return value of real-
loc(). It is a common error to continue to use the old block
pointer. realloc() takes care of moving the bytes from the
old block to the new block. realloc() exists because it can
be implemented using low-level features that make it more
efficient than the C code a programmer could write.

 To use these functions, either stdlib.h or alloc.h must be
included as these functions are declared in these header files.

note
 ∑ All of a program’s memory is de-allocated automatically

when it exits. So, a program only needs to use free()
during execution if it is important for the program to
recycle its memory while it runs, typically because it uses
a lot of memory or because it runs for a long time. The
pointer passed to free() must be the same pointer that
was originally returned by malloc() or realloc(), not
just a pointer into somewhere within the heap block.

 Let us discuss the functions and their use in detail. Note
that if sufficient memory is not available, the malloc returns
a NULL. Because malloc can return NULL instead of a usable
pointer, the code should always check the return value of
malloc to see whether it was successful. If it was not, and the
program dereferences the resulting NULL pointer, the program
will crash. a call to malloc, with an error check, typically
looks something like this.

int	*ip;
*ip	=(int	*)	malloc(sizeof(int));
if(ip	==	NULL)
{
	 printf(“out	of	memory\n”);
	 exit(0);			 	 	 	 	 	 	 /*	‘return’	may	be	used*/
}

About exit() In the previous example, there was a case in
which we could not allocate memory. In such cases, it is often
best to write an error message, and exit the program. The

exit() function will stop the program, clean up any memory
used, and will close any files that were open at the time.

#include	<stdlib.h>
void	exit(int	status);

 Note that we need to include stdlib.h to use this
function.
 When memory is allocated, the allocating function (such
as malloc() and calloc()) returns a pointer. The type of this
pointer depends on whether one uses an older K&r compiler
or the newer ANSI type compiler. With the older compiler, the
type of the returned pointer is char; with the ANSI compiler it
is void.
	 malloc() returns a void pointer (because it does not matter
to malloc what type this memory will be used for) that needs
to be cast to one of the appropriate types. The expression
(int*) in front of malloc is called a ‘cast expression’.
Although this is not mandatory in ANSI/ISO C, but it is
recommended for portability of the code. Because many
compilers are yet to be fully compliant with the standard. The
following program illustrates malloc()	in action.

ExamplE
36. #include	<stdlib.h>
	 #include	<stdio.h>
	 int	main()
 {
	 	int	*	ip;
	 	double	*	dp;
	 	float	*	fp1;
	 	float	*	fp2;
	 	ip	=	(int	*)	malloc(sizeof(int));
	 	if(ip	==	NULL)
 {
	 		 printf(“out	of	memory\n”);
	 		 exit(-1);
 }
	 	dp	=(double	*)	malloc(sizeof(double));
	 	if(dp	==	NULL)
 {
	 		 printf(“out	of	memory\n”);
	 		 exit(-1);
 }
	 	fp1	=(float	*)	malloc(sizeof(float));
	 	if(fp1	==	NULL)
 {
	 		 printf(“out	of	memory\n”);
	 		 exit(-1);
 }
	 	fp2	=	(float	*)	malloc(sizeof(float));
	 	if(fp2	==	NULL)
 {
	 		 printf(“out	of	memory\n”);
	 		 exit(-1);
 }

372 Computer Fundamentals and Programming in C

	 	*ip	=	42;
	 	*dp	=	3.1415926;
	 	*fp1	=	-1.2;
	 	*fp2	=	0.34;
	 	printf(“ip:	address	%d;	contents	%d\n”,	(int)ip,	*ip);
	 	printf(“dp:	address	%d;	contents	%f\n”,	(int)dp,	*dp);
	 	printf(“fp1:	address	%d;	contents	%f\n”,	(int)fp1,	

*fp1);
	 	printf(“fp2:	address	%d;	contents	%f\n”,	(int	fp2,	

*fp2);
	 	return	0;
 }

Output
ip:	address	133792;	contents	42

dp:	address	133808;	contents	3.141593

fp1:	address	133824;	contents	-1.200000

fp2:	address	133840;	contents	0.340000

 This program declares a number of pointer variables, calls
malloc to allocate memory for their contents, stores values
into them, and then prints out the addresses that were allocated
and the values that were stored there. The size of the memory
to be allocated must be specified in bytes as an argument to
malloc(). Since the memory required for different objects is
implementation-dependent, the best way to specify the size
is to use the sizeof operator. recall that the sizeof operator
returns the size of the operand in bytes.
 The above example is useless because in each case enough
memory is allocated for exactly one object with each call to
malloc(). Dynamic memory allocation is really needed when
the amount of memory to be allocated will not be known until
the program is run. For example, it will be determined on the
basis of responses from a user of the program.
 malloc() has one potential error. If malloc() is called with
zero size, the result is unpredictable. It may return a NULL
pointer or it may return some other implementationdependent
value. We should never call malloc()	with zero size.

note
 ∑ In dynamic memory allocation, memory is allocated at

run time from heap.

 ∑ According to ANSI compiler, the block pointer returned
by allocating function is a void pointer.

 ∑ If sufficient memory is not available, the malloc()and
calloc() returns a NULL.

 ∑ According to ANSI compiler, a cast on the void pointer
returned by malloc() is not required.

 ∑	calloc() initializes all the bits in the allocated space set
to zero, whereas malloc() does not do this. A call to
calloc() is equivalent to a call to malloc() followed by
one to memset().	calloc(m,	n) is essentially equivalent to
p	=	malloc(m	*	n);	memset(p,	0,	m	*	n);

 ∑ When dynamically allocated, arrays are no longer
needed, it is recommended to free them immediately.

13.17.1 dynamic allocation of arrays
To allocate a one-dimensional array of length N of some
particular type where N is given by the user, simply use
malloc() to allocate enough memory to hold N elements of
the particular type, and then use the resulting pointer as if it
were an array. The following program will create an array of
N elements, where the value of N is given by the user, and then
print the sum of all the elements of the array.

ExamplE

37. #include	<stdio.h>
	 #include	<stdlib.h>
	 int	main()
 {
	 	int	N,*a,i,s=0;

	 printf(“\n	enter	no.	of	elements	of	the	array:”);
	 scanf(“%d”,&N);
	 a=(int	*)malloc(N*sizeof(int));
	 if(a==NULL)
 {
	 	 printf(“\n	memory	allocation	unsuccessful...”);
	 	 exit(0);
 }
	 printf(“\n	enter	the	array	elements	one	by	one”);
	 for(i=0;	i<N;++i)
 {
	 	 scanf(“%d”,&a[i]));	/*	equivalent	statement			 	

		 	scanf(“%d”,(a+i));*/
	 	 s+=a[i];
 }
	 printf(“\n	sum	is	%d	”,s);
	 return	0;
}

 Here is a function that allocates memory and then prints out
the values that happen to be stored there without initializing
them.

void	show()
{
	 float	*fp;
	 int	i;
	 fp	=	(float	*)	malloc(10	*	sizeof(float));
	 if(fp	==	NULL)	
 {
	 	 printf(“\nout	of	memory\n”);
	 	 exit(0);
 }
	 for(i	=	0;	i	<	10;	i++)	
	 printf(“%f\n”,	fp[i]);
}

 Upon being run, this program gives different results at
different times depending on who else is using the computer
and how much memory is being used. Usually it just prints
out all zeroes, but every once in a while it prints something
like the following.

Pointers in C 373
4334128524874197894168576.000000

0.000000

184955782229502459904.000000

17882566491775977254553649152.000000

76823376945293474156251822686208.000000

757781365851288653266944.000000

73563871150448510975409030955008.000000

75653519981391330952584626176.000000

71220705399418838035166396416.000000

4258569508226778963902464.000000

 What happened was that there were non-zero values in the
memory that were allocated, and the printf function tried
to interpret those values as floating point numbers. Maybe
they were floating point numbers, but they could have been
characters, integers, pointers, or anything else.
 It is a good idea to initialize the memory returned by
malloc(). The reason is that the memory may not be ‘clean’—
it may have been recently used by some other program, and
the values stored there might or might not make sense if
interpreted as the type of object we expect to be there (in this
case, as floating point numbers). Sometimes, there will be
zeroes. Sometimes, odd values. Sometimes, the values will
be so weird that the processor will detect what is called a
‘bus error’, and will dump core. If the memory is initialized
to contain legitimate values of the appropriate type, this will
not happen.
 Here is a useful program that creates an array that can hold
floating point numbers.

float	*	make_float_array(int	size)

{

	 int	i;

	 float	*fa;

	 fa	=	(float	*)	malloc(size	*	sizeof(float));

	 if(fa	==	NULL)

 {

	 	 printf(“out	of	memory\n”);

	 	 	exit(0);

 }

	 for(i	=	0;	i	<	size;	i++)	

	 fa[i]	=	0.0;

	 return(fa);

}

 another way is to use calloc() that allocates memory and
clears it to zero. It is declared in stdlib.h.

	 void	*	calloc(size_t	count,	size_t	eltsize)

 This function allocates a block long enough to contain a
vector of count elements, each of size eltsize. Its contents
are cleared to zero before calloc returns. The sum of all N
elements of an array that uses dynamic memory allocation
through malloc() function can be written as follows.

ExamplE
38. #include	<stdlib.h>	
	 #include	<stdlib.h>

	 int	main()

 {

	 int	N,*a,i,s=0;

	 printf(“\n	 enter	 the	 number	 of	 elements	 of	 the	
array:”);

	 scanf(“%d”,&N);

	 a=(int	*)calloc(N,sizeof(int));

	 if(a==NULL)

 {

	 	 printf(“\n	memory	allocation	unsuccessful...”);

	 	 exit(0);

 }

	 printf(“\n	enter	the	array	elements	one	by	one”);

	 for(i=0;	i<N;++i)

 {

	 	 	 scanf(“%d”,(a+i));

	 	 	 s+=a[i];

 }

	 printf(“\n	sum	is	%d	”,s);

	 return	0;

}

calloc() can be defined using malloc() as follows.
void	*	calloc(size_t	count,	size_t	eltsize)

{

	 size_t	size	=	count	*	eltsize;

	 void	*value	=	malloc(size);

	 if(value	!=	0)

	 	 memset(value,	0,	size);

	 return	value;

}

 But in general, it is not necessary that calloc() calls
malloc() internally. memset sets n bytes of s to byte c where
its prototype is given by

	 void	*memset(void	*s,	int	c,	size_t	n);

memset also sets the first n bytes of the array s to the character
c. The following program illustrates the use of the memset
function.

ExamplE
39. #include	<string.h>
	 #include	<stdio.h>

	 #include	<mem.h>

	 int	main(void)

 {

	 char	b[]	=	“Hello	world\n”;

	 printf(“b	before	memset:	%s\n”,	b);

	 memset(b,	‘*’,	strlen(b)	-	1);

374 Computer Fundamentals and Programming in C

	 printf(“b	after	memset:	%s\n”,	b);

	 return	0;

}

Output
	 b	before	memset:	Hello	world
	 b	after	memset:	***********

 The	malloc() function has one potential error. If malloc()
is called with a zero size, the results are unpredictable. It
may return some other pointer or it may return some other
implementation-dependent value. It is recommended that
malloc() never be called with a size zero.
 Some programmers like to replace malloc() as follows.

#include	<stdlib.h>
void	*safe_malloc(size_t,	char	*);

Now, the function definition would be as follows.
/*	Error	checking	malloc	function*/

void	*safe_malloc(size_t	size,	char	*location)

{

	 void	*ptr;

	 ptr=	malloc(size);

	 if(ptr	==	NULL)	{

	fprintf(stderr,“Out	of	memory	at	function:\	
%s\n”,location);

	 exit(-1);

 }

	 return	ptr;

}

 This function can then be called like a normal malloc()
but will automatically check memory as follows.

void	get_n_ints(int	n)
{
	 int	*array;
	 array=	 (int	 *)	 safe_malloc	 (n	 *	 sizeof(int),

	“get_n_ints()”);	 .	 .	 .
}

note
	 ∑	 Regarding size_t	 type in the declaration of safe_

malloc, it is a type declared in stdlib.h that holds
memory sizes used by memory allocation functions. It is
the type returned by the sizeof	operation.

 A final point worth mentioning related to safe_malloc() is
the special variables __LINE__	and __FILE__ that are used to
indicate a line number and a file name. They are put in by the
pre-processor and are replaced by, respectively, an int that is
the line number where the __LINE__ tag occurs and a string
which is the name of the file. A commonly used version is as
follows.

#include	<stdlib.h>
void	*safe_malloc(size_t);
/*	Error	trapping	malloc	wrapper	*/
void	*safe_malloc(size_t	size)
/*	Allocate	memory	or	print	an	error	and	exit	*/
{
	 void	*ptr;
	 ptr=	malloc(size);
	 if(ptr	==	NULL)	{
	 fprintf(stderr,	“Out	of	memory	at	line	%d	file\

%s\n”,	__LINE__,	__FILE__);
	 exit(-1);
 }
	 return	ptr;
}

note

 ∑ malloc() requires two parameters, the first for the
number of elements to be allocated and the second for
the size of each element, whereas calloc() requires
one parameter.

 ∑ calloc()	 initializes all the bits in the allocated space
set to zero whereas malloc() does not do this. A call to
calloc() is equivalent to a call to malloc() followed by
one to memset().

 ∑ calloc(m,	n) is essentially equivalent to p	=	malloc(m	
*	n); memset(p,	0,	m	*	n);

 ∑ If malloc() is called with a zero size, the results are
unpredictable. It may return some other pointer or it may
return some other implementation-dependent value.

 How much amount of memory that the compiler’s
implementation of malloc() can allocate at one time? The
argument to malloc() is of type size_t so the integer type
that corresponds to size_t will limit the number of bytes
you can specify. If size_t corresponds to a 4-byte unsigned
integer, you will be able to allocate up to 4,294,967,295 bytes
at one time.

13.17.2 freeing Memory
Memory allocated with malloc() does not automatically get
de-allocated when a function returns, as automatic-duration
variables do, but it does not have to remain for the entire
duration of the program, either.
 In fact, many programs such as the preceding one use
memory on a transient basis. They allocate some memory,
use it for a while, but then reach a point where they do not
need that particular piece any more (when function or main()
finishes). Because memory is not inexhaustible, it is a good
idea to de-allocate (that is, release or free) memory that is no
longer being used.
 Dynamically allocated memory is de-allocated with the
free function. If p contains a pointer previously returned by
malloc(), a call such as

free(p);

Pointers in C 375
will ‘give the memory back’ to the stock of memory (sometimes
called the ‘arena’ or ‘pool’) from which malloc requests are
satisfied. When the allocated memory is de-allocated with the
free() function, it returns the memory block to the ‘free list’
within the heap.
 When thinking about malloc, free, and dynamically-
allocated memory in general, remember again the distinction
between a pointer and what it points to. If we call malloc()
to allocate some memory, and store the pointer which malloc
gives us in a local pointer variable, what happens when the
function containing the local pointer variable returns? If
the local pointer variable has automatic duration (which is
the default, unless the variable is declared static), it will
disappear when the function returns. But for the pointer
variable to disappear says nothing about the memory pointed
to. That memory still exists and, as far as malloc() and
free() are concerned, is still allocated. The only thing that
has disappeared is the pointer variable we had which pointed
at the allocated memory. Furthermore, if it contained the only
copy of the pointer we had, once it disappears, we will have
no way of freeing the memory, and no way of using it, either.
Using memory and freeing memory both require that we have
at least one pointer to the memory.
 Look at the following program that is similar to the
programs written earlier, but differs only in the use of
free().

#include	<stdio.h>
#include	<stdlib.h>
int	main(void)
{
	 int	*array;
	 int	size	=	1;
	 int	i;
	 printf(“Enter	the	number	of	values:”);
	 scanf(“%d”,	&size);
	 array	=	(int	*)calloc(size,	sizeof(int));
	 for(i=0;	i<size;	i++)	{
	 printf(“Please	enter	value	#%d:	”,	i+1);
	 scanf(“%d”,	array+i);
 }
for(i=0;	i<size;	i++)	{
	 	 	 printf(“Value	#%d	is:	%d\n”,	i+1,	array[i]);
 }
free(array);
return	0;
}

 Naturally, once some memory has been freed, it must not
be used any more. after calling

free(p);

it is probably the case that p still points at the same memory.
However, since it has been given back, it is now available,
and a later call to malloc() might give that memory to some
other part of the program. If the variable p is a global variable

or will otherwise stick around for a while, one good way to
record the fact that it is not to be used any more would be to
set it to a null pointer.

free(p);
p	=	NULL;

 Now, why should NULL	 be assigned to the pointer after
freeing it? This has to be dealt in this manner based on long
experience. after a pointer has been freed, the pointed-to data
can no longer be used. The pointer is said to be a dangling
pointer; it does not point at anything useful. If a pointer is ‘NULL
out’ or ‘zero out’ immediately after freeing it, the program can
no longer get in trouble by using that pointer. also, there still
might be copies of the pointer that refer to the memory that has
been de-allocated; that is the nature of C. Zeroing out pointers
after freeing them will not solve all problems.
	 malloc() and calloc() can also be used in a similar way
with strings.

include	<stdio.h>
#include	<alloc.h>
#include	<string.h>
int	main(void)
{
	 char	*str	=	NULL;
	 /*	allocate	memory	for	string	*/
	 str	=	(char	*)calloc(10,	sizeof(char));
	 /*	copy	“Hello”	into	string	*/
	 strcpy(str,	“Hello”);
	 /*	display	string	*/
	 printf(“String	is	%s\n”,	str);
	 /*	free	memory	*/
	 free(str);
	 str=NULL;
	 return	0;
}

How malloc() and free() work Some steps from a typical
malloc() call will show how much work is performed here.
 a program requests memory from the heap with
	 	 	 int*	ptr	=	(int*)	malloc(1024	*	sizeof(int));

 It expects a pointer back that points to a newly allocated
area on the heap that is at least big enough to hold 1024
integer values, no matter how big an integer on this
platform is. If the program would ask for (1024 * 2) bytes,
it would assume 16-bit integer values and would not be
portable to other hardware.

 The malloc() function is part of the C run-time library. It
will now check the current status of free memory on the
heap. It needs to find a piece of memory big enough for
1024 integers. Once it finds it, it will be returned to the
application. What could be simpler?

 The reason for malloc() being a very expensive call has
many facets. First, finding the proper area needs a clever
memory organization by malloc() so that it will find those

376 Computer Fundamentals and Programming in C

pieces fast. remember, malloc() does not know how much
memory will be requested. The next problem appears when
the current heap size becomes too small.The operating
system allocates physical memory and maps it into the
process address space that belongs to the heap. Frequent
allocations are expensive if done in small sizes, but how
should malloc() know? Moreover, when the memory is
returned, malloc() has to try to reduce fragmentation of
memory space. Otherwise, it will not find a piece of memory
big enough to satisfy a request even though enough small
pieces would be available.

13.17.3 reallocating Memory Blocks

Sometimes, it is not known at first how much memory
is needed. For example, if a series of items entered by the
user has to be stored, the only way to know how many they
are totally depends on the user input. Here, malloc() will
not work. It is the realloc() function that is required. For
example, to point ip variable from an earlier example in
Section 13.17 at 200 ints instead of 100, try calling

ip	=	realloc(ip,	200	*	sizeof(int));

 Since each block of dynamically allocated memory needs
to be contiguous (so that one can treat it as if it were an array),
it may be a case where realloc cannot make the old block of
memory bigger ‘in place’, but has to reallocate it elsewhere
to find enough contiguous space for the new requested size.
realloc() does this by returning a new pointer. If realloc()
was able to make the old block of memory bigger, it returns
the same pointer. If realloc() has to go elsewhere to get
enough contiguous memory, it returns a pointer to the new
memory after copying the old data there. (In this case, after it
makes the copy, it frees the old block.) Finally, if realloc()
cannot find enough memory to satisfy the new request at all,
it returns a NULL. Therefore, usually the old pointer is not
overwritten with realloc()’s return value until it has been
tested to make sure it is not a null pointer.

int	*np;

np	=	(int	*)realloc(ip,	200	*	sizeof(int));

if(np	!=	NULL)

	 ip	=	np;

else {

	 printf(“out	of	memory\n”);

	 exit(0);

 }

 If realloc() returns something other than a null pointer,
then memory reallocation has succeeded and ip might be
set to what it returned. If realloc() returns a null pointer;
however, the old pointer ip still points at the original 100
values.

 Putting all this together, here is a program that reads a
series of numbers from the user and stores each integer in a
dynamically allocated array and prints the sum.

ExamplE
40. #include	<stdio.h>
	 #include	<stdlib.h>

	 int	main()

 {

	 	int	N,*a,*np,i,s=0;

	 char	ans=‘Y’;

	 printf(“\n	Enter	no.	of	elements	of	the	array:”);

	 scanf(“%d”,&N);

	 a=(int	*)malloc(N*sizeof(int));

	 if(a==NULL)

 {

	 	 printf(“\n	memory	allocation	unsuccessful”);

	 	 exit(0);

 }

	 i=0;

	 while(toupper(ans)==‘Y’)

 {

	 if(i	>=	N)

	 	 {		 /*	increase	allocation	*/

	 	 N	*=2;

	 	 np	=(int	*)realloc(a,N*sizeof(int));

	 	 if(np	==	NULL)

 {

	 	 	 printf(“out	of	memory\n”);

	 	 	 exit(1);

 }

	 	 a	=	np;

 }

	 	 printf(“\n	Enter	the	number	...”);

	 	 scanf(“%d”,&a[i]);

	 	 s+=a[i];

	 	 i++;

	 printf(“\n	Do	U	12	Continue(y/n)?...”);

	 fflush(stdin);

	 scanf(“%c”,	&ans)

 }

	 N=i;

	 printf(“\n	THE	NUMBERS	ARE:...\n”);

	 for(i=0;i<N;++i)

	 	 printf(“\n%d”,a[i]);

	 printf(“\n	Sum	is	%d”,s);

	 return	0;

}

Pointers in C 377
 Two different variables are used here to keep track of
the ‘array’ pointed to by a. N represents how many elements
have been allocated, and i how many of them are in use.
Whenever another item is about to be stored in the array, if
i>=N, the old array is full, and it is time to call realloc() to
make it bigger.

13.17.4 Implementing Multidimensional arrays
using pointers

It is usually best to allocate an array of pointers, and then
initialize each pointer to a dynamically allocated ‘row’. Here
is an example.

ExamplE
41. #include	<stdlib.h>
	 #include	<stdio.h>
	 #define	ROW	5
	 #define	COL	5
	 int	main()
 {

	 int	**arr,i,j;
	 arr=(int	**)malloc(ROW*sizeof(int	*));
	 if(!arr)

 {
	 	 	 	 printf(“out	of	memory\n”);
	 	 	 	 exit(EXIT_FAILURE);

 }
	 for(i=0;i<ROW;i++)
 {
	 	 arr[i]=(int	*)malloc(sizeof(int)*COL);
	 	 if(!arr[i])
 {
	 	 	 printf(“out	of	memory\n”);
	 	 	 exit(EXIT_FAILURE);
 }
 }
	 printf(“\n	Enter	the	Elements	of	the	matrix\n”);
	 for(i=0;i<ROW;++i)
	 	 for(j=0;j<COL;++j)
	 	 scanf(“%d”,&arr[i][j]);
	 printf(“\n	The	matrix	Is	as	follows...\n”);
	 for(i=0;i<ROW;++i)
 {
	 	 printf(“\n”);
	 	 for(j=0;j<COL;++j)
	 	 	 printf(“%d\t”,arr[i][j]);
 }

	 return	0;

}

 With exit(), status is provided for the calling process as
the exit status of the process.
 Typically, a value of 0 indicates a normal exit and a non-
zero value indicates some error.
 The following exit status shown in Tanle 13.8 can be used.

Table 13.8 exit() status

Status Indicates

EXIT_SUCCESS Normal program termination.

EXIT_FAILURE Abnormal program termination. Signal to
operating system that program has terminated
with an error.

arr is a pointer-to-pointer-to-int. At the first level, it points to
a block of pointers, one for each row. The first-level pointer
is the first one that is allocated; it has row elements, with each
element big enough to hold a pointer-to-int, or int	*. If it is
successfully allocated, then the pointers (all row of them) are
filled in with a pointer (obtained from malloc) to col number
of ints, the storage for that row of the array. If this is not
quite making sense the figure 13.16 should make everything
clear:

arr

Fig. 13.16 Two-dimentional array implementation using malloc()

 If the double indirection implied by the above schemes is
for some reason unacceptable, a two-dimensional array with
a single, dynamically allocated one-dimensional array can be
simulated.

int	*arr	=	(int	*)malloc(nrows	*	ncolumns	*	sizeof(int));

 An appropriate block of memory is first allocated for the
two-dimensional array size desired. Since array storage in
C is in row major form, the block is treated as a sequence
of rows with the desired number of columns. The pointer to
the allocated block is a pointer to the base type of the array;
therefore, it must be incremented to access the next column
in a given row. It must also be incremented to move from the
last column of a row to the first column of the next row.
 The following program asks the user to specify the number
of rows and columns for a two-dimensional array. It then
dynamically allocates a block of memory to accommodate
the array. The block is then treated as a two-dimensional
array with the specified rows and columns. Data is read into
the array, and then the array is printed.

ExamplE
42. #include	<stdlib.h>	
	 #include	<stdio.h>

	 void	getdata(int	*,int,	int);

	 void	showdata(int	*,int,int);

378 Computer Fundamentals and Programming in C

	 int	main()

 {

	 int	row,	col;

	 int	*a;

	 printf(“\n	ENTER	THE	NUMBER	OF	ROWS:”);

	 scanf(“%d”,&row);

	 printf(“\n	ENTER	THE	NUMBER	OF	COLUMNS:”);

	 scanf(“%d”,&col);

	 a=(int	*)malloc(row*col*sizeof(int));

	 getdata(a,row,col);

	 showdata(a,row,col);

	 free(a);

	 a=NULL:

	 return	0;

 }

	 void	getdata(int	*p,int	r,	int	c)

 {

	int	i,j;

	printf(“\n	Enter	the	Numbers	one	by	one....\n”);

	for(i=0;i<r;++i)

	for(j=0;j<c;++j)

 {

	scanf(“%d”,p);

	p++;

 }

 }

	void	showdata(int	*p,int	r,int	c)

 {

	int	i,j;

	printf(“\n	the	MATRIX	is	as	follows....\n”);

	for(i=0;i<r;++i)

 {

	printf(“\n”);

	for(j=0;j<c;++j)

 {

	printf(“\t	%d”,*p);

	p++;

 }

 }

 }

 The array’s contents can be kept contiguous with the
explicit pointer arithmetic.

int	**arr	=	(int	**)malloc(nrows	*	sizeof(int	*));

arr[0]	=	(int	*)malloc(nrows	*	ncolumns	*	sizeof(int));

for(i	=	1;	i	<	nrows;	i++)

	 arr[i]	=	arr[0]	+	i	*	ncolumns;

 In either case, the elements of the dynamic array can be
accessed with normal-looking array subscripts: arr[i][j]
(for 0 <=	 i	 <	 nrows and 0 <=	 j	 <	 ncolumns). Here is the

program.

ExamplE
43. #include	<stdlib.h>	
	 #include	<stdio.h>
	 #define	ROW	5
	 #define	COL	5
	 	int	main()

 {
	 	 int	**arr;
	 	 arr=	(int	**)	malloc(ROW	*	sizeof(int	*));
	 	 if(!arr)
 {
	 	 printf(“out	of	memory\n”);
	 	 exit(EXIT_FAILURE);
 }
	 	 arr[0]	=	(int	*)malloc(ROW	*COL*	sizeof(int));
	 	 if(!arr[0])	
 {
	 	 printf(“out	of	memory\n”);
	 	 exit(EXIT_FAILURE);
 }
	 	 for(int	i=1;	i	<	ROW;	i++)
	 	 arr[i]	=	arr[0]	+	i	*	COL;
	 	 return	0;
}

 One way of dealing with the problem is through the use of
the typedef keyword. Consider the following program.

#include	<stdio.h>
#include	<stdlib.h>
#define	COLS	5
typedef	int	RowArray[COLS];
RowArray	*rptr;
int	main(void)
{
	 int	nrows	=	10;
	 int	r,	c;
	 rptr	=	malloc(nrows	*	COLS	*	sizeof(int));
	 for(r	=	0;	r	<	nrows;	r++)
 {
	 for(c	=	0;	c	<	COLS;	c++)
 {
	 rptr[r][c]	=	0;
 }
 }
	 return	0;
}

 Here, it has been assumed that an ANSI compiler has been
used, so a cast on the void pointer returned by malloc() is not
required. If an older K&r compiler is being used, it will have
to cast using

rptr	=	(RowArray	*)malloc(...);

Pointers in C 379
 Using this approach, rptr has all the characteristics of
an array name, (except that rptr is modifiable), and array
notation may be used throughout the rest of the program.
This also means that a function has to be written to modify
the array contents, COLS must be used as a part of the formal
parameter in that function, as was done when discussing the
passing of two-dimensional arrays to a function.
 In the above method, rptr turned out to be a pointer to
type ‘one-dimensional array of COLS integers’. It turns out
that there is a syntax that can be used for this type without the
need of typedef. If the following is written

int(*ptr)[COLS];

the variable ptr will have the same characteristics as the
variable rptr in the method above, and it is not necessary
to use the typedef keyword. Here, ptr is a pointer to an
array of integers and the size of that array is given by the
#defined	COLS. The parentheses placement makes the pointer
notation predominate, even though the array notation has
higher precedence. Thus, if it is written as

int	*ptr[COLS];

it implies that ptr is an array of pointers holding the number
of pointers equal to that #defined by COLS. That is not the same
thing at all. However, arrays of pointers have their use in
the dynamic allocation of two-dimensional arrays. Consider
the following program, which creates an array of strings
through dynamic memory allocation and sorts the strings
alphabetically and also uses pointer to a pointer in swapping
by the bubble sort method. Here, instead of swapping the
strings, their base addresses are exchanged.

ExamplE
44. #include	<stdio.h>
	 #include	<stdlib.h>
	 #define	COLS	25
	 int	main()
 {
	 char	word[50];
	 char	*w[cols];
	 for(i=0;	i<COLS;	++i)
 {
	 scanf(“%s”,word);
	 w[i]=(char	*)calloc(strlen(word)+1,	sizeof(char));
	 strcpy(w[i],word);
 }
	 n=i;

	 sort_words(w,n);

 return	0;

 }

 void	sort_words(char	*a[],	int	n)

 {

	 	int	i,j;

	 	for(i=0;i<n-1;++i)

	 		 for(j=i+1;j<n;++j)

	 		 	 if(strcmpi(a[i],a[j])>0)

	 		 	 	 swap(&a[i],&a[j]);

 }

 void	swap(char	**p,	char**q)

 {

	 	char	*tmp;

	 	tmp=*p;

	 	*p=*q;

	 	*q=tmp;
}

 In the swap() function, the formal parameters are pointer,
to a pointer. So, it is called with addresses of the successive
strings.
 With all of these techniques, it is necessary to remember
to free the arrays which may take several steps as follows;
when they are no longer needed, and one cannot necessarily
intermix dynamically allocated arrays with conventional,
statically allocated ones, it is recommended to free them
immediately.

	 int	i,	**a;

	 	 for(i=m;i>=0;++i)

	 	 	 free(a[i]);

	 free(a);

 Here, m is the number of rows of the dynamically allocated
two-dimensional array.
 all of the above techniques can also be extended to three
or more dimensions. as before, it is assumed that the variable
is defined as

	 int	***array;	

and we want the dimensions to be 10*20*30. all of the
following subscripts could be done for an arbitrary i,j,k,
which is closer to what is needed.
 First, we need an array of 10 int **s, so we use the
following.

array	=	(int	***)	malloc(10	*	sizeof(int	**));	

 The sizeof function returns an integer indicating how
many bytes are needed by something of type int**, and we
need 10 of them. The (int	***) is a cast which changes the
pointer type from char	* to int	*** to keep the types correct.
Do not forget that after this call to malloc, one should check
to see if array==NULL.
 Now that there are 10 pointers, the next level of pointers
can be obtained with the following code:

for(i	=	0;	i	<	10;	++i)	{
	 array[i]	=	(int	**)	malloc(20	*	sizeof(int	*));
}

 Finally, each of these pointers can be filled with an array

380 Computer Fundamentals and Programming in C

of 30 integers.
for(i	=	0;	i	<	10;	++i)	{
	 for(j	=	0;	j	<	20;	++j)	{
	 	 array[i][j]	=	(int	*)	malloc(30	*	sizeof(int));
}
}

 again, remember that each call to malloc() must check
the result. also note that the preceding two steps can be
put together, filling each set of 20 pointers. It is much more
efficient to combine all similar allocations and divide the
memory after getting it.
 arrays of buffers can also be allocated from the heap. This
allows for a dynamically allocated two-dimensional array.

ExamplE
45. #include	<stdio.h>
	 #include	<stdlib.h>
	 int	main()
 {
	 char	**buf;
	 int	height,	width,	i,	j;

	 printf(“\nEnter	number	of	lines:”);
	 scanf(“%d”,	&height);
	 fflush(stdin);
	 printf(“\nEnter	width	of	lines:”);
	 scanf(“%d”,	&width);
	 fflush(stdin);
	 buf	=	(char	**)malloc(height	*	sizeof(char	*));
	 if(buf	==	(char	**)NULL)
 {
	 fprintf(stderr,	“\nCannot	Allocate	a	Space\n”);
	 return	1;
 }
	 for(i	=	0;	i	<	height;	++i)
 {

 buf[i]	=	(char	*)malloc(width);

	 	 if(buf[i]	==	(char	*)NULL)

 {

	 	 fprintf(stderr,“\nCannot	allocate	text	space.\n”);

	 	 ––i;

	 	 while(i	>=	0)

 {

	 	 	 free(buf[i]);

	 	 	 ––i;

 }

	 	 free(buf);

	 	 return	1;

 }

 }

	 for(i	=	0;	i	<	height;	++i)

 {

	 	 printf(“\nEnter	text:”);

	 	 gets(buf[i]);

 }

	 printf(“\n\n\n\n\n”);

	 for(i	=	0;	i	<	height;	++i)

	 	 printf(“%s\n”,buf[i]);

	 for(i	=	0;	i	<	height;	++i)

	 free(buf[i]);

	 	 free(buf);

	 return	0;

}

13.18 offsettIng a poInter
In mathematics, the subscript for vectors and matrices starts
at 1 instead of 0. There are several ways to achieve it.
 In vector (one-dimensional array), the following may be
done.

double	*allot_space(int	n)
{
	 double	*v;
	 v=(double	*)(n,	sizeof(double));
	 return(v-1);
}
main()
{
	 int	n;
	 double	*a;
	 a=allot_space(n);
	 ...
	 ...
	 ...
}

 actually, what is done here is that the following code
segment replaces the function allot_space().

v=(double*)calloc(n,	sizeof(double));
—	—		v;

 The following memory diagram may clarify the preceding
program statements.

. . .

0 1 2

 Here, a[0] should not be accessed, neither written to nor
read. For de-allocating the memory space, the following
statement should be used.

	 free(a+1);

For matrix, i.e., a two-dimensional array,
double	**get_matrix_space(int	m,	int	n)

{

	 int	i;

	 double	**a;

	 a=(double	**)calloc(m,	sizeof(double*));

Pointers in C 381
	 ––a;

	 for(i=1;i<=m;++i)

 {

	 	 	 a[i]=(double	*)calloc(n,	sizeof(double));

	 	 	 ––a[i];

 }

	 return	a;

}

The main() function will be as follows.
int	main()

{

	 int	**v;

	 int	r,c;

	 ...

	 ...

	 ...

	 v=get_matrix_space(r,c);

	 ...

	 ...

	 ...

	 release_space(v,r);

	 return	0;

}

 De-allocating of memory space for the above matrix
should be through the release_space() function that takes
one parameter number of rows.

void	release_space(double	**a,	int	m)

{

	 int	i;

	 	 for(i=1;i<=m;++i)

	 	 	 free(a[i]+1);

	 free(a+1);

}

 There is another way to achieve the above by allocating all
the memory at once. Here, the pointer that is used to allocate
memory would have to be offset. The get_matrix_space()
function can be rewritten as follows.

double	**get_matrix_space(int	m,	int	n)

{

	 int	i;

	 double	*p;

	 double	**a;

	 	 p=(double	*)malloc(m*n*sizeof(double));

	 	 a=(double	**)malloc(m*sizeof(double	*));

	 	 	 ––a;		 	 	 	 	 	 	 	 	 		/*offset	the	pointer*/

}

void	release_space(double	**a)
{
	 double	*p;
	 p=(double	*)a[1]+1;
	 	 free(p);
}

13.19 MeMory leak and MeMory
corruptIon

a memory leak occurs when a dynamically allocated area of
memory is not released or when no longer needed. In C, there
are two common coding errors that can cause memory leaks.
 First, an area can be allocated, but under certain
circumstances, the control path bypasses the code that frees
the area. This is particularly likely to occur if the allocation
and release are handled in different functions or even in
different source files.
 Second, the address of an area can be stored in a variable (of
pointer data type) and then the address of another area stored
in the same variable without releasing the area referred to
the first time. The original address has now been overwritten
and is completely lost. In a reasonably well-structured
program, the second type is usually the harder to find. In
some programming languages and environments, special
facilities known as garbage collectors are available to track
down and release unreferenced dynamically allocated blocks.
But it should be noted that automatic garbage collection is
not available in C. It is the programmer’s responsibility to
deallocate the memory that was allocated through the use of
malloc() or calloc(). The following sample codes will cause
memory leak.

...
char	*oldString	=	“Old	String”;
char	newString;
strcpy(newString,	oldString);
...
free(newString);

 Memory leaks are another undesirable result when a
function is written as follows.

void	my_function(void)
{
	 int	*a;
	 a=(int	*)malloc(100*sizeof(int));
	 /*	Do	something	with	a*/
	 /*	forgot	to	free	a	*/
}

 This function is tested and it will do everything it is
meant to. The only problem is that every time this function
is called, it allocates a small bit of memory and never gives
it back. If this function is called a few times, all will be fine
and the difference will not be noticed. On the other hand,
if it is called often, then it will gradually use all the memory

382 Computer Fundamentals and Programming in C

in the computer. even if this routine is only called rarely but
the program runs for a long time, it will eventually crash the
computer. This can also be an extremely frustrating problem
to debug.

Dangling pointer In C, a pointer may be used to hold the
address of dynamically allocated memory. after this memory
is freed with the free() function (in C), the pointer itself will
still contain the address of the released block. This is referred
to as a dangling pointer. Using the pointer in this state is a
serious programming error. Pointers should be assigned 0, or
NULL in C after freeing memory to avoid this bug.
 If the pointer is reassigned a new value before being freed,
it will lead to a ‘dangling pointer’ and memory leak. Consider
the following example.

char	*a	=	malloc(128*sizeof(char));

char	*b	=	malloc(128*sizeof(char));

b	=	a;

free(a);

free(b);		 	 			/*	will	not	free	the	pointer	to	the		 	
	 	 	 	 	 	 original	allocated	memory.*/

 In a programming language such as C, which is weakly
typed, garbage collection is not a serious option and the
programmer must avoid leaks or take the consequences.
Debugging leaky code can be tricky without some assistance.
This assistance usually takes the form of variants of the
memory allocation and release functions that keep a record
of where they were called from (source file name and line
number) and maintain a list of all allocated blocks. This list
can be inspected or displayed periodically and usually gives
a pretty good indication of the data area that is causing the
difficulty.
 a solution was found using the C pre-processor with
declarations such as

#ifdef	DEBUG
#define	malloc(a)	mymalloc((a),__LINE__,__FILE__)
#endif

 The explanation of this code needs some expertise. This
will be clear after reading Chapter 11.
Memory corruption Memory when altered without an
explicit assignment due to the inadvertent and unexpected
altering of data held in memory or the altering of a pointer to
a specific place in memory is known as memory corruption.
 The following are some examples of the causes of memory
corruption that may happen.
Buffer overflow A case of overflow: Overwrite beyond
allocated length

char	*a	=	malloc(128*sizeof(char));

memcpy(a,	data,	dataLen);					/*	Error	if	dataLen	is		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			too	long.	*/

 a case of index of array out of bounds: (array index
overflow—index too large/underflow—negative index)

Char	*s=”Oxford	University”;

ptr	=	(char	*)	malloc(strlen(s));

/*	Should	be	(s	+	1)	to	account	*/

	 	 	 	 	 	 	 	 	 	 	 	 	 /*	for	null	termination.*/
strcpy(ptr,	s);

/*	Copies	memory	from	string	s	which	is	one	byte	
longer	than	its	destination	ptr.*/

Overflow by one byte

Using an address before memory is allocated and set
	 int	*ptr;
	 ptr=5;

In this case, the memory location is NULL or random.

Using a pointer which is already freed
char	*a	=	(char	*)malloc(128*sizeof(char));
...
...
free(a);
puts(a);	/*	This	will	probably	work	but	dangerous.	*/

Freeing memory that has already been freed
Freeing a pointer twice:

char	*a	=	malloc(128*sizeof(char));

free(a);

...	Do	Something	...

free(a);
/*	 A	 check	 for	 NULL	 would	 indicate	 nothing.	 This	
memory	 space	 may	 be	 reallocated	 and	 thus	 one	 may	
be	 freeing	 memory.	 It	 does	 not	 intend	 to	 free	 or	
portions	of	another	block	of	memory.	The	size	of	the	
block	of	memory	allocated	is	often	held	just	before	
the	memory	block	itself..*/

Freeing memory which was not dynamically allocated
double	a=6.12345,	*ptr;
ptr	=	&a;
...
free(ptr);

13.20 poInter and const QualIfIer
a declaration involving a pointer and const has several
possible orderings.

13.20.1 pointer to constant
The const keyword can be used in the declaration of the
pointer when a pointer is declared to indicate that the value
pointed to must not be changed. If a pointer is declared as
follows

int	n	=	10;

const	int	*ptr=&n;

Pointers in C 383
 The second declaration makes the object that it points at
read-only and of course, both the object and what it points
at might be constant. Because we have declared the value
pointed to by ptr to be const, the compiler will check for
any statements that attempt to modify the value pointed to
by ptr and flag such statements as error. For example, the
following statement will now result in an error message from
the compiler:

p	=	100;	/	ERROR	*/

 as the declaration asserted that what ptr points to must
not be changed. But the following assignment is valid.

n	=	50;

 The value pointed to has changed but here it was not tried
to use the pointer to make the change. Of course, the pointer
itself is not constant, so it is always possible to change what
it points to:

int	v	=	100;

ptr	=	&v;		/*	OK	-	changing	the	address	in	ptr	*/

 This will change the address stored in ptr to point to the
variable v.
 It is to be noted that the following declarations are
equivalent.

const	int	*ptr=&n;

int	const	*ptr=&n;

13.20.2 constant pointers
Constant pointers ensure that the address stored in a pointer
cannot be changed. Consider the following statements:

int	n	=	10;
int	*const	ptr	=	&n;	/*	Defines	a	constant	*/

 Here is how one could ensure that a pointer always
points to the same object; the second statement declares and
initializes ptr and indicates that the address stored must not
be changed.
 any attempt to change what the pointer points to elsewhere
in the program will result in an error message when you
compile:

int	v	=	5;
ptr	=	&v;	/*	Error	-	attempt	to	change	a	constant

pointer	*/

 It is still legitimate to change the value that ptr points to
using ptr though:

ptr	=	100;	 	 	 /	OK	-	changes	the	value	of	v	*/

 This statement alters the value stored in v through the
pointer and changes its value to 100.
 You can create a constant pointer that points to a value that
is also constant:

int	n	=	25;
const	int	*const	ptr	=	&n;

ptr is a constant pointer to a constant so everything is fixed. It
is not legal to change the address stored in ptr as well as ptr
cannot be used to modify what it points to.

13.20.3 constant parameters
recall that arrays are passed to functions by address and
it is also known that function implementations can alter
the original array’s contents. To prevent an array argument
from being altered in a function, use the const qualifier as
demonstrated in the following programs.

Version 1
#include	<stdio.h>

void	change(char	*);

int	main(void)

{

	 char	s[]=“Siva”;

	 change(s);

	 printf(“\n	The	string	after	calling	change():\	
%s”,	s);

	 return	0;

}

void	change(char	*t)

{

	 *t=	‘V’;

}

Output
The	string	after	calling	change():Viva

Version 2
#include	<stdio.h>

void	change(const	char	*);

int	main(void)

{

	 char	s[]=“Oxford	University”;

	 change(s);

	 printf(“\n	The	string	after	calling	change():\	
%s”,	s);

	 return	0;	

}

Note the constant
parameter

void	change(const char *t)

{

	 *t=‘V’;

}

Output
Compiler	error:	Assignment	of	read-only	location

 The same error will occur when the following program is
compiled.

#include	<stdio.h>

void	change(const	int	[],	int);

384 Computer Fundamentals and Programming in C

int	main(void)

{

	 int	a[]={1,2,3,4,5};

	 int	n,i;													

The expression
sizeof(a)/sizeof(a[0]) yields 5
as sizeof(a) returns 20 and

sizeof(a[0]) returns 4.

	 n=sizeof(a)/sizeof(a[0]);

	 change(a,n);

	printf(“\n	The	array	elements	after	calling	
change()\n”);

	 for(i=0;i<n;++i)

	 	 printf(“\t%d”,a[i]);

	 return	0;

}

void	change(const	int	b[],int	n)

{

	 int	i;

	 for(i=0;i<n;++i)

	 	 b[i]+=10;

}

 In the above program, use of constant parameter protects
the elements of the array from being modified within the
function change()	 though arrays passed as arguments are
passed by address automatically.

check your progress
What will be the output of the following program?
 1. int	main()

 {

	 	 int	val	=	5;

	 	 int	*ptr	=	&val;

	 	 printf(“%d	%d”,	++val,	*ptr);

	 	 return	0;

 }

 Output 6	5
 2. int	main()

 {

	 	 int	val	=	5;

	 	 int	*ptr	=	&val;

	 	 printf(“%d	%d”,	val,	*ptr++);

	 	 return	0;

 }

 Output 5	5
 3. int	main()

 {

	 	 int	val	=	5;

	 	 int	*ptr	=	&val;

	 	 printf(“%d	%d”,	val,	++*ptr);

	 	 return	0;

 }

 Output 6	6

 4. int	main()
 {
	 	 int	a[]	=	{1,2,3,4,5,6};
	 	 int	*ptr	=	a	+	2;
	 	 printf(“%d	%d”,	*++a,	––*ptr);
	 	 return	0;
 }

 Output Error:	Lvalue	required
 5. int	main()

 {
	 	 int	a[]	=	{1,2,3,4,5,6};
	 	 int	*ptr	=	a	+	2;
	 	 printf(“%d	%d”,	––*ptr+1,1+*—	—ptr);
	 	 return	0;
 }

 Output 2	3
 6. int	main()

 {
	 	 char	myArray[5],	*p	=	myArray;
	 	 int	i;
	 	 for(i	=	4;	i	>	0;	i––){
	 	 	 *p++	=	i	*	i;	p++;}
	 	 	 for	(i	=	4;	i	>=	0;	i––)
	 	 	 printf(“%d”,	myArray[i]);
	 	 	 return	0;
 }

 Output 0	1	4	9	16
 7. int	main()

 {
	 	 int	a	=	555,	*ptr	=	&a,	b	=	*ptr;
	 	 printf(“%d	%d	%d”,	++a,	––b,	*ptr++);
	 	 return	0;
 }

 Output 556	554	555
 8. int	main()

 {
	 	 int	val	=	5;
	 	 int	*ptr	=	&val;
	 	 printf(“%d	%d”,	val,(*ptr)++);
	 	 return	0;
 }

 Output 6	5
 9. int	main()

 {
	 	 int	a[100];
	 	 int	sum	=	0;
	 	 for(k	=	0;	k	<	100;	k++)
	 	 	 *(a+k)	=	k;
	 	 printf(“%d”,	a[––k]);
	 	 return	0;
 }

 Output 99

Pointers in C 385
 10. int	main()

 {
	 	 void	F(int	*a,	int	n);
	 	 int	arr[5]	=	{5,4,3,2,1};
	 	 F(arr,5);
	 	 return	0;
 }
	 void	F(int	*a,	int	n)
 {
	 	 int	i;
	 	 for(i	=	0;	i	<	n;	i++)
	 	 printf(“&d”,	*(a++)+i);
 }

 Output 55555
 11. int	main(void)

 {
	 	 int	a[10];
	 	 printf(“%d”,	((a	+	9)	+	(a	+	1)));
	 	 return	0;
 }

 Output Error
 12. int	main()

 {
	 	 char	A[]	=	{‘a’,‘b’,‘c’,‘d’,‘e’,‘f’,‘g’,‘h’};
	 	 char	*p	=	A;
	 	 ++p;
	 	 while(*p	!=	‘e’)
	 	 printf(“%c”,	*p++);
	 	 return	0;
 }

 Output bcd
 13. int	main()

 {
	 	 char	*p1	=	“Name”;
	 	 char	*p2;
	 	 p2	=	(char	*)	malloc(20);
	 	 while(*p2++	=	*p1++);
	 	 	 printf(“%s\n”,	p2);
	 	 	 return	0;
 }

 Output An	empty	string
 14.	int	main()

 {
	 	 int	a	=	2,	b	=	3;
	 	 printf(“%d”,	a+++b);
	 	 return	0;
 }

 Output 5
 15. int	main()

 {
	 	 int	a[]	=	{1,2,3,4,5,6,7};
	 	 char	c[]	=	{‘a’,‘x’,‘h’,‘o’,‘k’};

	 	 printf(“%d\t	%d”,	(&a[3]-&a[0]),(&c[3]-&c[0]));
	 	 return	0;
 }

 Output 3	0
 16. #include#<stdio.h>

	 int	main()
 {
	 	 char	s1[]	=	“Manas”;
	 	 char	s2[]	=	“Ghosh”;
	 	 s1	=	s2;
	 	 printf(“%s”,	s1);
	 	 return	0;
 }

 Output Error
 17.	int	main()

 {
	 	 char	*ptr	=	“Mira	Sen”;
	 	 (*ptr)++;
	 	 printf(“%s\n”,	ptr);
	 	 ptr++;
	 	 printf(“%s\n”,	ptr);
	 	 return	0;
 }

 Output Nira	Sen
	 	 	 	 	 	ira	Sen

 18. int	main()
 {
	 	 char	*p	=	“The	Matrix	Reloaded”;
	 	 int	i	=	0;
	 	 while(*p)
 {
	 	 	 if(!isupper(*p++))
	 	 	 	 ++i;
 }
	 	 printf(“%d”,	i);
	 	 return	0;
 }

 Output 16
 19.	int	main()

 {
	 	 char	str[]	=	“Test”;
	 	 if((printf(“%s”,	str))	==	4)
	 	 	 printf(“Success”);
 else
	 	 	 printf(“Failure”);
	 	 	 return	0;
 }

 Output Test	Success
 20. int	main()

 {
	 	 printf(“Hi	Friends”+3);

386 Computer Fundamentals and Programming in C

	 	 return	0;
 }

 Output Friends
 21. int	main()

 {
	 	 int	a[]	=	{1,2,3,4,5,6};
	 	 int	*ptr	=	a	+	2;
	 	 printf(“%d”,	*––ptr);
	 	 return	0;
 }

 Output 2
 22. int	main()

 {
	 	 int	i	=	100,	j	=	20;
	 	 i++	=	j;
	 	 i*	=	j;
	 	 printf(“%d\t	%d\n”,	i,j);
	 	 return	0;
 }

 Output Error	lvalue	required
 23. int	main()

 {
	 	 int	a[5],	*p;
	 	 for(p	=	a;	p	<	&a[5];	P++)
 {
	 	 	 *p	=	p-a;
	 	 	 printf(“%d”,	*p);
 }
	 	 return	0;
 }

 Output 2
 24. int	main()

 {
	 	 putchar(5[“manas”]);
	 	 return	0;
 }

 Output Nothing	will	be	printed
 25.	int	main()

 {
	 	 int	a[]	=	{1,2,3,4,5};
	 	 int	i,	s	=	0;
	 	 for(i	=	0;	i	<	5;	++i)
	 	 	 if((a[i]%2)	==	0)
	 	 	 	 s+	=	a[i];
	 	 printf(“%d”,	s);
	 	 return	0;
 }

 Output 6
 26. int	main()

 {

	 	 int	i;

	 	 char	s[]	=	“Oxford	University	Press”;

	 	 for(i	=	0;	s[i]!=	‘\0’;	++i)

	 	 	 if((i%2)	==	0)

	 	 	 	 printf(“%c	%c”,	s[i],	s[i]);

	 	 	 	 return	0;

 }

 Output O	Of	fr	r	n	nv	vr	ri	iy	yP	Pe	es	s
 27.	int	main()

 {

	 	 int	i;

	 	 char	s[]	=	“Oxford	University	Press”;

	 	 for(i	=	0;	s[i]!=	‘\0’;	++i)

	 	 	 if((i%2)	==	0)

	 	 	 	 putchar(s[i]);

	 	 return	0;

 }

 Output Ofr	nvriyPes
 28.	int	main()

 {

	 char	s[3][6]	=	{“ZERO”,	ONE”,	TWO”};

	 	 printf(“%s”,	s[2]);

	 	 printf(“%c”,	s[2][0]);

	 	 return	0;

 }

 Output TWOT
 29.	int	main()

 {

	 	 int	a[][3]	=	{0,1,2,3,4,5};

	 	 printf(“%d”,	sizeof(a));

	 	 return	0;

 }

 Output 12
 30. int	main()

 {

	 	 int	a[2][3]	=	{0,1,2,3,4,5};

	 	 printf(“%d”,	sizeof(a[2]));

	 	 return	0;

 }

 Output 6	OR	12
 31.	int	main()

 {
	 	 char	*str	=	“This	is	my	string”;
	 	 	 str[3]	=	‘B’;
	 	 	 puts(str);
	 	 	 return	0;
 }

 Output ThiB	is	my	string

Pointers in C 387
 32. int	main()

 {
	 int	a[5]={1,3,6,7,0};
	 int	*b;
	 b=&a[2];
	 printf(“%d”,	b[–1]);
	 return	0;
 }

 Output 3
 33. int	main()

 {
	 register	int	x=5,	*p;
	 p=&x
	 printf(“%d”,*p);	
	 return	0;
 }

 Output Error

 34. int	main()
 {
	 void	x(void);
	 x();
	 return	0;
 }
	 void	x(void)
 {
	 char	a[]=“HELLO”;
	 char	*b=“HELLO”;
	 char	c[10]=“HELLO”;
	 printf(“%s	%s	%s\n”,	a,	b,	c);
	 printf(“%d	%d	%d\n”,sizeof(a),	sizeof(b),	sizeof(c));
 }

 Output HELLO	 HELLO	 HELLO
	 	 	 	 	 	 6	4	10

sizeof(b) gives the bytes required for storing the pointer b.
The other two are the array sizes.

Think of memory as an array of cells. Each memory cell has a location/
address/lvalue and contains a value/rvalue. There is a difference between
the address and the contents of a memory cell. A pointer is a variable that
contains the address in the memory of another variable. There can be a
pointer to any variable type. The unary or monadic operator ‘&’ gives
the ‘address of a variable’. The indirection or dereference operator ‘*’
gives the ‘contents of an object pointed to by a pointer’. A pointer to any
variable type is an address in memory, which is an integer address. A
pointer is definitely not an integer. When a pointer is declared, it does not
point anywhere. It must be set to point somewhere before it can be used.
Thus, an address must be assigned to the pointer by using an assignment
statement or a function call prior to its use. A pointer is bound to a particular
data type (void pointer is an exception). For instance, the address of a
short	int cannot be assigned to a long	int. There is a special pointer
which is defined to be zero. It is called the NULL pointer.

 There are many cases when a passed argument in the function may
need to be altered and the new value received back once the function has
finished. Other languages do this. C uses pointers explicitly to do this. Other
languages mask the fact that pointers also underpin the implementation of
this. Pointers provide the solution: Pass the address of the variables to the
functions and access address of function.

 Pointers and arrays are very closely linked in C. When subscript
notation is used, the C compiler generates an executable code that does
the following.

 Determines the size of the elements in the array. Let us call that
elemSize.

	Multiplies elemSize by the subscript value. Let us call that offset.

 Adds offset to the address that represents the beginning of the array.
This is the address of the element that we want to access.

suMMary

 The address of ARRAY[i] is calculated each time by the compiler as
follows.

	 	 address	of	ARRAY[i]	=	ARRAY+i*sizeof(int);

 The equivalence of arrays and pointers must be understood. Assume
that a is an array and i is an integer.

	 	 a[i]	==	*(a	+	i)	==	*(i	+	a)	==	i[a]

 Although these are equivalent, it is recommended that i[a] never be
written instead of a[i]. However, pointers and arrays are different.

 A pointer is a variable. We can do
	 	 pa	=	a	and	pa++	

 An array is not a variable. a	=	pa and a++ are illegal.
 When an array is passed to a function what is actually passed is its ini-
tial element’s location in memory. Array decays into pointers when passed
into function.

 The following ‘meaningful’ arithmetic operations are allowed on
pointers.

 Add or subtract integers to/from a pointer. The result is a pointer.

 Subtract two pointers to the same type. The result is an int.
 Assigning NULL or any pointer of same datatype.

 Multiplying, adding two pointers, etc. does not make sense.

 It is also possible to have arrays of pointers since pointers are vari-
ables. Arrays of pointers are a data representation that will cope efficiently
and conveniently with variable length text lines. This eliminates

 complicated storage management

 high overheads of moving lines

 Pointers, of course, can be ‘pointed at’ any type of data object, including
arrays.

388 Computer Fundamentals and Programming in C

	 	 int(*p)[10];

is the proper declaration, i.e., p here is a pointer to an array of 10 integers
just as it was under the declaration using the array type. Note that this is
different from

 	 int	*p[10];

which would make p the name of an array of 10 pointers to type int.

 A two-dimensional array is really a one-dimensional array, each of
whose elements is itself an array. Array elements are stored row by row.
When a two-dimensional array is passed to a function, the number of
columns must be specified; the number of rows is irrelevant. The reason
for this is pointers again. C needs to know the number of columns in order
to jump from row to row in memory.

 Consider int	a[5][10] to be passed in a function.

 It is possible to say

 	 f(int	a[][10])	{.....}

or even

 	 f(int(*a)[10])	{.....}

It needs a parenthesis (*a) since [] have a higher precedence than *.

So,

 	 int(*a)[10]; declares a pointer to an array of 10 ints.

 	 int	*a[10]; declares an array of 10 pointers to ints.

 Dynamic memory allocation is a way to defer the decision of how
much memory is necessary until the program is actually running, get more
if it runs out, or give back memory that the program no longer needs it.
When memory is allocated, the allocating function (such as malloc()
and calloc()) returns a pointer. The type of this pointer depends on the
type of compiler, whether it is an older K&R compiler or the newer ANSI
type compiler. With the older compiler the type of the returned pointer is
char; with the ANSI compiler it is void. When the program finishes using
whatever memory it dynamically allocates, it can use the free function to
indicate to the system that the memory is available again.

 The rules to be followed for deciphering pointer declarations are as
follows. These are particularly important for function pointers.

 Start with the name that will identify the pointer, known as the identifier.

 Move to the right until you encounter a right-parenthesis ‘)’ or reach
the end. Do not stop if the () brackets are used to pass parameters to
a function. Also do not stop on encountering brackets used with arrays:
[].

 Now go left of the identifier to continue deciphering the declaration.
Keep going left until you find a left-parenthesis ‘(’ or reach the end. Do
not stop if the brackets are used to pass parameters to a function.

 The whole interpretation should be a single long sentence.

key terMs

Call by address It facilitates the changes made to a variable in the
called function to become permanently available in the function from where
the function is called.

Call-by-value A particular way of implementing a function call, in which
the arguments are passed by their value (i.e., their copies).

Dangling pointer A pointer pointing to a previously meaningful location
that is no longer meaningful; usually a result of a pointer pointing to an
object that is deallocated without resetting the value of the pointer.

Dynamic data structures Those that are built up from blocks of memory
allocated from the heap at run time.

Dynamic memory allocation It is the process of requesting and obtaining
additional memory segments during the execution of a program.

Function pointer A function has a physical location in memory that can
be assigned to a pointer. Thus, it is called function pointer. This address is
the entry point of the function and it is the address used when the function
is called.

Garbage collection If only implicit dynamic allocation is allowed then
deallocation must also be done by implicit means, which is often called
garbage collection.

Heap This memory region is reserved for dynamically allocating memory

for variables at run time. Dynamic memory allocation is done by using the
malloc() or calloc() functions.

Memory leak A commonly used term indicating that a program is
dynamically allocating memory but not properly deallocating it, which
results in a gradual accumulation of unused memory by the program to the
detriment of other programs, the operating system, and itself.

NULL A special C constant, defined as macro in stdio.h as or 0, or
(void*) that can be used as the null value for pointers.

Null pointer A null pointer is a special pointer value that points nowhere.
It is initialized with value 0 or NULL.

Pointer A value or a variable with two attributes: (i) an address and (ii) a
data type of what should be found at that address.

Ragged array It is an array of pointers whose elements are used to point
to arrays of varying sizes.

Stack A data structure resembling a deck of cards; a new item can only
be put on top of the deck (the push operation) or removed from the top of
the deck (the pop operation).

Static memory allocation It is memory layout for static data prepared
by the compiler.

Void pointer It is a special type of pointer that can point to any data type.

Pointers in C 389

1. What are the uses of pointers in C?

 C uses pointers in three different ways:

(i) Pointers allow different sections of code to share information easily.
One can get the same effect by copying information back and forth, but
pointers solve the problem better.

(ii) In some cases, C programmers also use pointers because they make
the code slightly more efficient. Pointers allow the creation of complex
dynamic data structures like linked lists and binary trees.

(iii) Pointers in C provide an alternative way to access information stored
in arrays. Pointer techniques are especially valuable while working with
strings. There is an intimate link between arrays and pointers in C.

 Apart from these, C uses pointers to handle variable parameters passed
to functions.

2. Why should pointers have data types when their size is always
4 bytes (in a 32-bit machine), irrespective of the variable they are
pointing to?

 Sizes of various data types are basically decided by the machine
architecture and/or the implementation. Considering a 32-bit machine, the
addressing of a byte or word will, therefore, require a 32-bit address. This
suggests that a pointer (as pointers store addresses) should be capable
enough to store, at least, a 32-bit value; no matter if it points to an integer
or a character.

 For an array, consecutive memory is allocated. Each element is placed at
a certain offset from the previous element, if any, depending on its size. The
compiler that generates code for a pointer, which accesses these elements
using the pointer arithmetic, requires the number of bytes to retrieve on
pointer dereference and it knows how much to scale a subscript. The data
type of the pointer provides this information. The compiler automatically
scales a subscript to the size of the variable pointed at. The compiler takes
care of scaling before adding the base address.

3. What is wrong with the following code segment?
 	int	*p;

	 	*p=10;

 The pointer p is an uninitialized pointer which may have some unknown
memory address in it. More precisely, it may have an unknown value that
will be interpreted as a memory location. Most likely, the value will not be
valid for the computer system that is using or if it is, will not be valid for the
memory that has been allocated. If the address does not exist, one may get
immediate run time errors.

4. Does C have ‘pass by reference’ feature?
 Not really. Strictly speaking, C always uses pass by value. One can simulate
pass by reference by defining functions which accept pointers as formal
parameters and then using the & operator when calling the function. The
compiler will essentially simulate it when an array to a function is passed
(by passing a pointer instead). But truly C has no equivalent to the formal
pass by reference feature as C++ provides.

5. What is wild pointer in C?
 A pointer in C which has not been initialized, is known as wild pointer.

6. Is a null pointer same as an uninitialized pointer?
 A null pointer is conceptually different from an uninitialized pointer. An
uninitialized pointer may point to anywhere, whereas a null pointer does not
point to any object or function. Null pointer points to the base address of a
segment while wild pointer does not point to any specific memory location.

7. What are the uses of null pointer?
 The null pointer is used for three purposes:
∑	 To stop indirection
∑	 As an error value
∑	 As a sentinel value

8. Is NULL always defined as 0?
 NULL is defined as either 0 or (void*)0. These values are almost
identical; either a literal zero or a void pointer is converted automatically to
any kind of pointer, as necessary, whenever a pointer is needed (although
the compiler cannot always tell when a pointer is needed).

9. What is the difference between NULL and NUL?
 NULL is a macro defined in <stddef.h> for the null pointer. NUL is the
name of the first character in the ASCII character set. It corresponds to a
zero value. NULL can be defined as ((void*)0), whereas NUL	 is ‘\0’.
Both can also be defined simply as 0.

10. Since 0 is used to represent the null pointer, can it be thought of
as an address with all zero bits?
 Each compiler interprets the null pointers differently and not all compilers
use a zero address. For example, some compilers use a non-existent
memory address for the null pointer; that way, attempting to access
memory through a null pointer can be detected by the hardware. When
NULL is assigned to a pointer, then 0 is converted to the proper internal
form by the compiler.

11. What is the difference between arr and &arr where arr is an
array name, though both display the base address of the array?
 The array name arr is a pointer to the first element in the array whereas
the &arr is a pointer to the array as a whole. Numerically, the values they
display are same; however, their interpretation is not same.

12. When would you use a pointer to a function?
 Pointers to functions are typically used when it is required to pass them
to other functions. The called function takes function pointers as formal
parameters. This is known as a ‘callback’. It is frequently used in graphical-
user interface libraries.

13. What are the uses of dynamic memory allocations?

 Typical uses of dynamic memory allocation are:
 ∑ Creation of dynamic arrays – arrays whose sizes are chosen at run

time;
 ∑ Creation of dynamic data structures – data collections that grow and

shrink with the changing data storage needs of a program or module.

14. Why is it required to cast the values returned by malloc() to the
pointer type being allocated?

freQuently asked QuestIons

390 Computer Fundamentals and Programming in C

 Before ANSI/ISO Standard C introduced the void	* generic pointer type,
these casts were typically required to avoid warnings about assignment
between incompatible pointer types. Under ANSI/ISO Standard C, these
casts are no more required.

15. What happens if malloc(0) is called?
 If malloc() is called with zero size, the result is unpredictable. Each
compiler is free to define the behaviour of malloc()when the size is 0. It
may either return NULL or it may return other implementation dependent
value.

16. What is the difference between calloc() and malloc() ?
	malloc() takes one argument, whereas calloc() takes two.
 calloc() initializes all the bits in the allocated space set to zero, whereas
malloc() does not do this.
 A call to calloc() is equivalent to a call to malloc() followed by one to
memset().
						calloc(m,	n)	

is essentially equivalent to
						p	=	malloc(m	*	n);	

						memset(p,	0,	m	*	n);

17. What is a dangling pointer?
 A dangling pointer arises when you use the address of an object after its
lifetime is over. This may occur in situations like returning addresses of the
automatic variables from a function or using the address of the memory
block after it is freed.

18. Why should NULL be assigned to the pointer after freeing it?
 After a pointer has been freed, the pointer can no longer be used. After
this memory is freed with the free() function, the pointer itself will still
contain the address of the released block. Such a pointer is referred to as
a dangling pointer; it does not point at anything useful. If the pointer is used
without reinitializing it, it may or may not run; it merely produces a bug.
Such a pointer must be assigned NULL after freeing memory to avoid this
bug. The program can no longer get in trouble by using that pointer.

19. Is it correct to return a pointer to a local variable in the called
function?
 Absolutely not; it is an error to return a pointer to a local variable in the
called function, because when the function terminates, its memory gets
inaccessible.

20. What is memory leak?
 When memory is allocated dynamically, it is the responsibility of the
programmer to deallocate the dynamically allocated memory by calling
free(). Freeing the memory returns it to the system, where it can be
reassigned to another application when needed. When an application
dynamically allocates memory, and does not free that memory when it
has finished using it, that chunk of memory is still in use to the operating
system. The memory is not being used by the application anymore, but
it cannot be used by the system or any other program either. This is
known as memory leak. Memory leaks add up over time, and if they are
not cleaned up, the system eventually runs out of memory.

exercIses
 1. What are pointers? Why are they important?

 2. Explain the features of pointers.

 3. Explain the pointer of any data type that requires four bytes.

 4. Explain the use of (*) indirection operator.

 5. What is a NULL pointer? Is it the same as an uninitialized pointer?

 6. What is a NULL macro? What is the difference between a NULL
pointer and a NULL macro?

 7. What does the error ‘Null Pointer Assignment’ mean and what causes
this error?

 8. Explain the effect of ++ and – – operators with pointer of all types.

 9. What is an array of pointer? How is it declared?

 10. Explain the relation between an array and a pointer.

 11. Why is the addition of two pointers impossible?

 12. Which arithmetic operations are possible with pointers?

 13. Explain the comparison of two pointers.

 14. How does one pointer point to another pointer?

 15. How will you recognize pointer to pointer? What does the number of
‘*’s indicate?

 16. How are strings stored in the pointer variables? Is it essential to
declare length?

 17. What is base address? How is it accessed differently for one-
dimensional and two-dimensional arrays?

 18. Distinguish between the address stored in the pointer and the value at
that address.

 19. Why does the element counting of arrays always start from ‘0’?

 20. Write a program to read and display a two-dimensional array of 5 by
2 numbers. Reduce the base address of an array by one and start
element counting from one.

 21. How is a pointer initialized?

 22. Explain the effects of the following statements.

 (a) int	a,	*b=&a;
 (b) int	p,	*p;
 (c) char	*s;
 (d) a	=	(float*)	&x;
 (e) double(*f)();

 23. Predict the output of each of the following programs (draw the memory
diagram so that it will be easy to answer) where memory addresses
are to be described. You can assume any six-digit number. Assume
numbers starting from 333333.

 (a) int	a;
	 	int	*integer_pointer;

	 	a=222;

	 	integer_pointer=&a;

	 	printf(“The	value	of	a	is		%d\n”,	a);

	 	printf(“The	address	of	a	is	%d\n”,&a);

Pointers in C 391
 printf(“The	address	of\

	 			integer_pointer	%d\n”,		&integer_pointer);

	 	printf(“Star	integer_pointer\

	 			%d\n”,	*integer_pointer);

 (b)	char	a;
	 	char	*char_pointer;

	 	a=‘b’;

	 	char_pointer=&a;

	 	printf(“The	value	of	a	%d\n”,	a);

	 	printf(“The	address	of	a	%d\n”,	&a);

	 	printf(“The	address	of\

	 			 char_pointer	%d\n”,		&char_pointer);

	 	printf(“Star	char_pointer	%d\n”,		*char_pointer);

 (c)	for	float
	 	float	a;

	 	float	*float_pointer;

	 	a=22.25;

	 	float_pointer=&a;

	 	printf(“The	value	of	a	%d\n”,		a);

	 	printf(“The	address	of	a	%d\n”,		&a);

	 	printf(“The	address	of\

	 	 float_pointer	%d\n”,		&float_pointer);

	 	printf(“Star	float_pointer			%d\n”,	*float_	

	 pointer);

 (d) int	a,	b

	 	int	*ip1,	*ip2;

	 	a=5;

	 	b=6;

	 	ip1=&a;

	 	ip2=ip1;

	 	printf(“The	value	of	a	is	%d\n”,	a);

	 	printf(“The	value	of	b	is	%d\n”,		b);

	 	printf(“The	address	of	a	is			%d\n”,&a);

	 	printf(“The	address	of	b	is	%d			\n”&b);

	 	printf(“The	address	of	ip1	is			%d\n”,	&ip1);

	 	printf(“The	address	of	ip2	is			%d\n”,	&ip2);

	 	printf(“The	value	of	ip1	is		%d\n”,ip1);

	 	printf(“The	value	of	ip2	is			%d\n”,	ip2);

	 	printf(“ip1	dereferenced			%d\n”,*ip1);

	 	printf(“ip2	dereferenced	%d\n”,		*ip2);

 (e)	int	i,	j,	*ip;

	 	i=1;

	 	ip=&i;

	 	j=*ip;

	 	*ip=0;

	 	printf(“The	value	of	i	%d\n”,		i);

	 	printf(“The	value	of	j	%d\n”,			j);

 (f)	int	x,	y;

	 	int	*ip1,	*ip2;

	 	y=1;

	 	ip2=&y;

	 	ip1=ip2;

	 	x=*ip1+y;

	 	printf(“The	value	of	x	%d\n”,		x);

	 	printf(“The	value	of	y	%d\n”,y);

 24. Distinguish between (*m)[5] and *m[5].

 25. Explain the difference between ‘call by reference’ and ‘call by value’.

 26. Write a program using pointers to read an array of integers and print
its elements in reverse order.

 27. We know that the roots of a quadratic equation of the form

 ax2 + bx + c = 0

 are given by the following equations:

+=

=

2

1

2

2

()

()

– squareroot – 4
2

– – squareroot – 4
2

b b acx
a

b b acx
a

 Write a function to calculate the roots. The function must use two
pointer parameters, one to receive the coefficients a, b, and c, and
the other to send the roots to the calling function.

 28. Does mentioning the array name give the base address in all contexts?

 29. Write a C program to read through an array of any type using pointers.
Write a C program to scan through this array to find a particular value.

 30. Write a function using pointers to add two matrices and to return the
resultant matrix to the calling function.

 31. Using pointers, write a function that receives a character string and a
character as argument and deletes all occurrences of this character
in the string. The function should return the corrected string with no
holes.

 32. Write a function day_name that receives a number n and returns a
pointer to a character string containing the name of the corresponding
day. The day names should be kept in a static table of character
strings local to the function.

 33. Write a program to find the number of times that a given word (i.e., a
short string) occurs in a sentence (i.e., a long string).

 Read data from standard input. The first line is a single word,
which is followed by general text on the second line. Read both up to
a new-line character, and insert a terminating null before processing.
Typical output should be:

 The	word	is	“the”.

	 		 The	sentence	is	“the	cat		sat	on	the	mat”.

	 		 The	word	occurs	2	times.

 34. Write a program to read in an array of names and to sort them in
alphabetical order. Use sort function that receives pointers to the

392 Computer Fundamentals and Programming in C

functions strcmp, and swap.sort in turn should call these functions
via the pointers.

 35. Given an array of sorted list of integer numbers, write a function to
search for a particular item using the method of binary search. Also
show how this function may be used in a program. Use pointers and
pointer arithmetic.

 Hint In binary search, the target value is compared with the array’s
middle element. Since the table is sorted, if the required value is
smaller, we know that all values greater than the middle element can
be ignored. That is, in one attempt, we eliminate one half of the list.
This search can be applied recursively till the target value is found.

 36. Differentiate between p and *p.

 37. What is the equivalent pointer notation to the subscript notation pt	
[0][2]?

 38. What is the difference between *p++ and p++?

 39. What is the result of adding an integer to a pointer?

 40. What are the advantages of using pointers?

 41. How do pointers differ from variables in C?

 42. Explain the following declaration.

 int(*pf)	(char	*a,	int	*b);

 43. What is the purpose of the realloc() function?

 44. Differentiate between calloc() and malloc() functions in C.

 45. For the version of C available on your computer, how many memory
cells are required to store a single character–an integer quantity, a
long integer, a floating-point quantity, a double-precisions quantity?

 46. What is meant by the address of a memory cell? How are addresses
usually numbered?

 47. How is a variable’s address determined?

 48. What kind of information does a pointer variable represent?

 49. What is the relationship between the address of a variable v and the
corresponding pointer variable pv?

 50. What is the purpose of the indirection operator? To what type of
operand must the indirection operator be applied?

 51. What is the relationship between the data item represented by a
variable v and the corresponding pointer variable pv?

 52. What precedence is assigned to the unary operators compared with
the multiplication, division, and module operators? In what order are
the unary operators evaluated?

 53. Can the address operator act upon an arithmetic expression such as
2*	(u	+	v)? Explain your answer.

 54. Can an expression involving the indirection operator appear on the left
side of an assignment statement? Explain.

 55. What kinds of objects can be associated with pointer variables?

 56. How is a pointer variable declared? What is the purpose of the data
type included in the declaration?

 57. In what way can the assignment of an initial value be included in the
declaration of a pointer variable?

 58. Are integer values ever assigned to pointer variables? Explain.

 59. Why is it sometimes desirable to pass a pointer to a function as an
argument?

 60. Suppose a function receives a pointer as an argument. Explain how
this function is declared within its calling function. In particular, explain
how the data type of the pointer argument is represented.

 61. Suppose a function receives a pointer as an argument. Explain how
the pointer argument is declared within the function definition.

 62. What is the relationship between an array name and a pointer? How
is an array name interpreted when it appears as an argument to a
function?

 63. Suppose a formal argument within a function definition is an array.
How can the array be declared within the function?

 64. How can a portion of an array be passed to a function?

 65. How can a function return a pointer to its calling routine?

 66. Describe two different ways to specify the address of an array element.

 67. Why is the value of an array subscript sometimes referred to as an
offset when the subscript is a part of an expression indicating the
address of an array element?

 68. Describe two different ways to access an array element. Compare
your answer to that of Question 62.

 69. Can an address be assigned to an array name or an array element?
Can an address be assigned to a pointer variable whose object is an
array?

 70. How is the library function malloc used to associate a block of
memory with a pointer variable? How is the size of the memory block
specified? What kind of information does the malloc function return?

 71. Suppose a numerical array is defined in terms of a pointer variable.
Can the individual array elements be initialized?

 72. Suppose a character-type array is defined in terms of a pointer
variable. Can the individual array elements be initialized? Compare
your answer with that of the previous question.

 73. Suppose an integer quantity is added to or subtracted from a pointer
variable. How will this difference be interpreted?

 74. Under what conditions can one pointer variable be subtracted from
another? How will this difference be interpreted?

 75. Under what conditions can two pointer variables be compared? Under
what conditions are such comparisons useful?

 76. How is a multidimensional array defined in terms of a pointer to a
collection of contiguous array of lower dimensionality?

 77. How can the indirection operator be used to access a multidimensional
array element?

 78. How is a multidimensional array defined in terms of an array of
pointers? What does each pointer represent? How does this definition

Pointers in C 393
differ from a pointer to a collection of contiguous array of lower
dimensionality?

 79. How can a one-dimensional array of pointers be used to represent a
collection of strings?

 80. If several strings are stored within a one-dimensional array of pointers,
how can an individual string be accessed?

 81. If several strings are stored within a one-dimensional array of pointers,
what happens if the strings are reordered? Are the strings actually
moved to different locations within the array?

 82. Under what conditions can the elements of a multidimensional array
be initialized if the array is defined in terms of an array of pointers?

 83. What is the relationship between a function name and a pointer?

 84. Suppose a formal argument within a function definition is a pointer
to another function. How is the formal argument declared? Within

the formal argument declaration, what does the data type refer to—
deficient or abundant?

 85. Define an integer pointer array of 10 integers. Initialize them to any
integer values from the keyboard. Find the sum, average, minimum,
and maximum of these 10 integers. Sort the 10 integers in descending
order.

 86. Write a program to display the starting day and ending day of the
week for a project. The user is asked which day (0 to 6) is preferable
to begin the project and the expected duration in number of days (a
decimal number, e.g., 6.5 refers to 6.5 days) to complete the project.
It then displays the starting and ending days as:

 Project starts on Monday and ends on Wednesday—duration is
10.5 days (if the start day number is 1 and duration = 10.5 days).
The program allows the user to continue until the start day number is
entered as 9 to exit the program.

proJect QuestIon
Write a program that reads in up to 10 strings or to EOF by pressing
Control +z, whichever comes first. The program should offer the user a
menu with five choices: print the original list of strings, print the strings in
alphabetical order, print the strings in order of increasing length, print the

strings in order of the length of the first word in the string, and quit. The
menu should recycle until the user enters the quit request. The program, of
course, should actually perform the promised tasks.

394 Computer Fundamentals and Programming in C

14.1 IntroductIon
So far, fundamental data types have been used in the programs
illustrated. However, C provides facilities to construct user-
defined data types from the fundamental data types.
 A user-defined data type may also be called a derived data
type. The array type is a derived data type that contains only
one kind of fundamental data type defined in C. This means
that the array elements, represented by a single name, contain
homogeneous data.
 But what happens if the different elements in this cluster,
known as array, are to be of different data types? Such non-
homogeneous data cannot be grouped to form an array. To
tackle this problem suitably, C provides features to pack
heterogeneous data in one group, bearing a user-defined data
type name, and forming a conglomerate data type. So, C

provides facilities for the user to create a new data type called
the ‘structure’ that can hold data of existing type.

14.2 StructureS
Array is an example of a data structure. It takes basic data
types such as int, char, or double and organizes them into
a linear array of elements of the same data type. The array
serves most, but not all of the needs of the typical C program.
The restriction is that an array is composed of the same type
of elements.
 At first, this seems perfectly reasonable. After all, why
would one want an array to be composed of twenty characters
and two integers? Well, this sort of mixture of data types
working together is one of the most familiar characteristics
of data structures. Consider a record card which stores name,

C
H
A
p
T
e
r

User-defined Data Types
and Variables

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

14

∑ learn about the user-defined data type called structure
and its tag, members, and variables

∑ access, initialize, and copy structures and their members
∑ explain nesting of structures
∑ create and initialize arrays of structures

∑ discuss pointer to structures
∑ use structures as function arguments and return values
∑ learn about union data types
∑ list enumeration data types
∑ explain bitfields

User-defined Data Types and Variables 395
age, and salary. The name would have to be stored as a string,
i.e., an array of characters terminated with an ASCII null
character, and the age and salary would be integers. Hence,
the only way one can work with this collection of data is
as separate variables. This is not as convenient as a single
data structure using a single name. Therefore, C provides
a keyword struct, which is used to form a user-defined
data type that can hold a collection of elements of different
fundamental data types. This conglomerate of user-defined
data type, is called a structure. At first, it is easier to think
of this as a record, although it is a little more versatile than
what it appears to be.
 A structure is a collection of variables under a single name.
These variables can be of different types, and each has a
name which is used to select it from the structure. Therefore,
a structure is a convenient way of grouping together several
pieces of related information.
 Thus, a structure can be defined as a new named type, thus
extending the number of available data types. It can use other
structures, arrays, or pointers as some of its members, though
this can get complicated unless one is careful.
 A structure provides a means of grouping variables under
a single name for easier handling and identification. Complex
hierarchies can be created by nesting structures.
 Structures may be copied to and assigned. They are
also useful in passing groups of logically related data into
functions.

14.2.1 declaring Structures and Structure
Variables

A structure is declared by using the keyword struct followed
by an optional structure tag followed by the body of the
structure. The variables or members of the structure are
declared within the body.
 The general format of declaring a simple structure is given
as follows.

struct <structure_tag_name >{

<data_type member_name1>; Basic
data type<data_type member_name2>;

 . . .

} <structure_variable1>,<structure_variable2>,...;

Keyword

 The structure_tag_name is the name of the structure. The
structure_variables are the list of variable names separated
by commas. each of these structure_variable names is
a structure of type structure_tag_name. The structure_
variable is also known as an instance variable of the
structure. each member_name declared within the braces is
called a member or structure element.

 Like all data types, structures must be declared and defined.
There are three different ways to declare and/or define a
structure. These are:
∑ Variable structure
∑ Tagged structure
∑ Type-defined structure

 A variable structure may be defined as follows.
struct

{

member_list

}variable_identifier;

 As an example the following statement is a definition of a
variable structure:

struct
No tag

name exists

{
 int x;

1
2
3 Members

 int y;

}a;
Variable
identifier

 It does not offer any advantage over other declaration
formats. A tagged structure has been described earlier. It has
the following format:

struct tag_name
{
 member_list
}variable_identifier;

 The preceding structure declaration may be expressed as a
tagged structure as follows:

struct coordinate Tag name

{
 int x;
 int y;
}a;

 This creates a structure variable named ‘a’ and has a
separate instance of all members (x and y) in the structure
coordinate. If one concludes the structure with a semicolon
after the closing brace, no variable is defined. In this case, the
structure is simply a type template with no associate storage.
Once one has declared a tagged structure type, then the
structure variable can be defined by specifying the following
statement.

struct tag_name variable1, variable2, …;

 Type-defined structures have been discussed later on (see
Section 14.2.5).
 The proper place for structure declarations is in the global
area of the program before main(). This puts them within the
scope of the entire program and is mandatory if the structure

396 Computer Fundamentals and Programming in C

is to be shared by functions. If a declaration is placed inside a
function, then its tag can be used only inside that function.
 Here is an example of a structure that would be useful
in representing the Cartesian coordinates of a point on a
computer screen, that is, the pixel position.

struct point
{
 int x;
 int y;
};

 The struct declaration is a user-defined data type. Here,
the name of the structure is point. Variables of type point
may be declared in the way variables of a built-in type are
declared. For example,

struct point
{
 int x;
 int y;
 } upper_right;

 As mentioned earlier, the structure tag name provides a
shorthand for declaring structures.
This is shown as follows.

struct point
{
 int x;
 int y;
};
struct point upper_left,lower_right;
struct point origin;

 Here, upper_left, lower_right, and origin are the names
of three structures of type point. The following are some
examples of declaration of structures and structure variables.

ExamplE
 1. struct personal_data
 {
 char name[100];
 char address[200];
 int year_of_birth;
 int month_of_birth;
 int day_of_birth;
 };
 struct personal_data monish, venkat, naresh;

	 The	above	statement	 is	 for	defining	a	 type	of	 variable	 that	holds	a	
string	 of	 100	 characters	 called	name,	 a	 string	 of	 200	 characters	 called	
address,	 and	 three	 integers	 called	 year_of_birth, month_of_
birth, and day_of_birth.	Any	variable	declared	to	be	of	type	struct
personal_data	 will	 contain	 these	 components,	 which	 are	 called	
members.

 Different structures can have members with the same
name, but the values of members of different structures are

independent of one another. The name for a member same as
for an ordinary variable in that program can also be used, but
the computer will recognize them as different entities, with
different values. This is similar to the naming convention for
humans, where two different men may share the name ‘Jogi
Sharma’, but are recognized as being different people.
 In Fig. 14.1, the three structure variables declared are
monish, venkat, and naresh. Each contains the member fields
declared within the structure personal_data.

Naresh

name

address

yr of birth

mth of birth

day of birth

VenkatMonish

name

address

yr of birth

mth of birth

day of birth

name

address

yr of birth

mth of birth

day of birth

Name

Address

yr of birth

mth of birth

day of birth

Naresh

Name

Address

yr of birth

mth of birth

day of birth

Venkat

Name

Address

yr of birth

mth of birth

day of birth

Monish

(a)

(b)

Fig. 14.1 Structure variables

ExamplEs
	 2. struct country
 {

 char name[30];

 int population;

 char language[15];

 }Country;

 Here,	 a	 structure	 variable	 Country	 has	 been	 declared	 to	 be	 of	
structure	type	country.	This	structure	variable	holds	a	string	called	name
having	30	characters,	an	integer	variable	population	and	a	string	called	
language	with	15	characters.

	 3. struct country
 {

 char name[30];

 int population;

 char language[15];

 }India, Japan, Indonesia;

 This	structure	named	country	has	three	structure	variables	India,
Japan, Indonesia.	All	 three	structure	variables	hold	 the	same	 type	of	
member	elements,	though	with	different	values.	

User-defined Data Types and Variables 397
 4. struct date /* the tag */

 { /* start of struct date template */

 int day; /* a member */

 int month; /* a member */

 int year; /* a member */

	 		 float	sensex;	 /*	a	member	*/

 }dates, today, next; /* instances */

	 This	 declaration	 has	 three	 structure	 variables	 dates, today, and
next.	These	are	also	called	instances	and	hold	similar	kind	and	number	of	
variables,	which	may	contain	different	values.

 It has been seen that instances of structures can be declared
at the same time the structure is defined. For example,

struct myStruct {

 int a;

 int b;

 int c;

 } s1, s2;

would generate two instances of myStruct. s1, holding the
first 12 bytes of the file (four bytes for each of the three
integers) and myStruct. s2, holding the next 12 bytes of the
file, considering a 32-bit machine. So, from the declaration
of members, the compiler can determine the memory space
needed and identify the different members in the structure.
 Observe that the structure declaration construct is a
template that conveys to the C compiler how the structure is
mapped in memory and gives details of the member names.
A (tagged) template does not reserve any instances of the
structure; it only conveys to the compiler what it means. This
is explained with the help of the following example.

 struct date {

 int month;

 int day;

 int year;

 };

 This declares a new data type called date. The date
structure consists of three basic data elements, all of type
integer. It does not create any storage space and cannot be
used as a variable. In essence, it is a new data type keyword,
like int and char, and can now be used to create variables.
Other data structures may be defined as consisting of the
same composition as the date structure.
 Structure type and variable declarations can be either
local or global, depending on their placement in the code,
just as any other declaration can be. Structures may be
assigned, used as formal function parameters, and returned
as functional values. Such operations cause the compiler
to generate sequences of load and store instructions that
might pose efficiency problems. C programmers particularly
concerned about program speed will avoid such things and
work exclusively with pointers to functions.

 There are few actual operations that can be performed on
structures as distinct from their members. The only operators
that can be rightly associated with structures are ‘=’ (simple
assignment) and ‘&’ (refers to the address). It is not possible
to compare structures for equality using ‘==’, nor is it possible
to perform arithmetic on structures. Such operations need to
be explicitly coded in terms of operations on the members of
the structure.
 Declaration of structure member conform to the same
syntax as ordinary variable declarations. Structure member
names should conform to the same syntax as ordinary
variable names. However the same name can be used for
a structure tag, an instance of the structure, and a member
of the structure. Each structure defines a separate memory
space as far as naming structure members is concerned.
 The following rather bizarre and confusing codes are
perfectly valid.

(a) struct a (b) struct b

 { {

 int a; char b;

 int b; char a;

 } b; }a;

 Structure members can be any valid data type, including
other structures, aggregates, and pointers, including pointers
to structures and pointers to functions. A structure may not,
for obvious reasons, contain instances of itself but may
contain pointers to instances of itself.

note
 ∑ A structure can be defined as a user-defined data type

that is capable of holding heterogeneous data of basic
data type.

 ∑ The structure is simply a type template with no associate
storage.

 ∑ The proper place for structure declaration is in the global
area of the program before main().

 ∑ It is not possible to compare structures for equality using
‘==’, nor is it possible to perform arithmetic on structures.

14.2.2 Accessing the Members of a Structure
The members of a structure can be accessed in three ways.
One of the ways consists of using the ‘.’, which is known
as the ‘dot operator’. The members are accessed by relating
them to the structure variable with a dot operator. The general
form of the statement for accessing a member of a structure
is as follows.

< structure_variable >.< member_name > ;

 The . (dot) operator selects a particular member from a
structure. It has the same precedence as () and [], which is
higher than that of any unary or binary operator. Like () and

398 Computer Fundamentals and Programming in C

[], it associates from left to right. For example, in

s1.b

s1.cs1.a

s2.b

s2.cs2.a

Conceptual view of memory allocated
for instances s1 & s2

 struct myStruct

 {
 int a;
 int b;
 int c;
 } s1, s2;

the first member can be accessed by the construct
 s1.a

 For any other member of the structure, the construct for
accessing it will be similar. Therefore, for assigning a value
of 12, say, to the member b of the structure identified by the
variable s2, the following statement is written

 s2.b = 12;

 To print this value assigned to the member on the screen,
the following code is written.

 printf(“%d”, s2.b);

 Similarly, in the preceding example, member b of structure
s2 will behave just like a normal variable of type int, although
it is referred to as

 s2.b

 Now, consider the structure given as follows.
 struct personal_data
 {
 char name[100];
 char address[200];
 int year_of_birth;
 int month_of_birth;
 int day_of_birth;
 };

and the declaration statement for the structure variables
monish, venkat, and naresh is given by

 struct personal_data monish, venkat, naresh;

 To input the address of monish, the following code is used.
 scanf(“%s”, monish.address);

 The member address of structure personal_data will
behave just like a normal array of char. However, it is referred
to as monish.address.
 In the following example, the year 1982 is assigned to the
year_of_birth member of the structure variable monish, of
type struct personal_data. Similarly, the month 5 is assigned
to the month_of_birth member, and day 4 is assigned to the
day_of_birth member. The following statements show the

assignment of the values to the member variables belonging
to the structure variable monish.

 monish.year_of_birth = 1982;
 monish.month_of_birth = 5;
 monish.day_of_birth = 4;

 Hence, each member of a structure can be used just like a
normal variable, but its name will be a bit longer. Therefore,
the ‘dot’ is an operator that selects a member from a structure.
This is just one of the ways of accessing any member in a
structure. The other two ways will be described in the ensuing
sections.

14.2.3 Initialization of Structures
A structure can be initialized in much the same way as any
other data type. This consists of assigning some constants to
the members of the structure. Structures that are not explicitly
initialized by the programmer are, by default, initialized by
the system. For integer and float data type members, the
default value is zero. For char and string type members, the
default value is ‘\0’.
 The general construct for initializing a structure can be
any of the two forms given as follows:

struct <structure_tag_name>

{

 <data_type member_name1>;

 <data_type member_name2>;

}<structure_variable1> = {constant1,constant2, . .};

or
struct <structure_tag_name> <structure_variable>

 = {constant1,constant2,..};

 The following are some examples using both the forms for
initialization.

ExamplE
	 5.	 Initialization	of	structure	using	the	first	construct.

Members

 #include <stdio.h>

 struct tablets Tag name

 {

 int count;

	 	 float	average_weight;

 int m_date, m_month, m_year;

 int ex_date, ex_month, ex_year;

 }batch1={2000,25.3,07,11,2004};

Structure
variable

Initialization
constants

 int main()

 {

User-defined Data Types and Variables 399
 printf(“\n count=%d, av_wt=%f”,batch1.count,\
 batch1.average_weight);

 printf(“\n mfg-date=%d/%d/%d”, batch1.m_date,\
 batch1.m_month batch1.m_year);
 printf(“\n exp-date=%d/%d/%d”, batch1.ex_date,\
 batch1.ex_month, batch1.ex_year);
 return 0;
 }

output
 count=2000, av_wt=25.299999
 mfg-date=7/11/2004
 exp-date= 0/0/0

 In the preceding example, observe that after the ‘=’
operator, the number of constants within the braces, that
is, { and }, are not equal to the total number of members
within the structure tablets. There are eight members in this
structure whereas there are five initializing constants. Hence,
the first five members are assigned the given constants and
the remaining members are assigned the default value of zero.
This is a case of partial initialization where always, the first
few members are initialized and the remaining uninitialized
members are assigned default values. Therefore, it is obvious
that the partial initialization feature is supported in C.
 It may, therefore, be stated that the initialization of all
members in a structure is possible if the number of initializing
constants placed within the braces is equal to the number of
members. Otherwise, partial initialization will be done and
the rule of assigning the default values to the rest of the
members will be followed.

ExamplE
	 6.	 Initialization	of	structure	using	the	second	construct.
 #include <stdio.h>
 struct tablets
 {
 int count;
	 	float	average_weight;
 int m_date, m_month, m_year;
 int ex_date, ex_month, ex_year;
 };
 struct tablets batch1={2000,25.3,07,11,2004,06,10,2\

 007};
 int main()
 {
 printf(“\n count=%d, av_wt=%f mg.”,batch1.count,\

 batch1.average_weight);
 printf(“\n mfg-date= %d/%d/%d”,batch1.m_date,\

 batch1.m_month, batch1.m_year);
 printf(“\n exp-date= %d/%d/%d”,batch1.ex_date,\

 batch1.ex_month, batch1.ex_year);
 return 0;
 }

output
 count=2000, av_wt=25.299999 mg.
 mfg-date= 7/11/2004
 exp-date= 6/10/2007

 It must be noted that within the structure construct, no
member is permitted to be initialized individually, which
means the following initialization construct is wrong.
 struct games_ticket
 {
 int value = 500;

/* wrong procedure of initialization */
 int seat_num = 52;

/* wrong procedure of initialization */
 int date, month, year;
 }fan1;

The initialization statements
 int value = 500;

and int seat_num = 52;

placed within the struct construct are not permitted in C.
The structure tag, games_ticket; is not a variable name. It
is just a name given to the template of a structure. Thus, the
statement, games_ticket.value=500 will cause the compiler
to generate an error. Note that games_ticket is a just a data
type like int and not a variable. Just as int=10 is invalid,
games_ticket.value=500; is also invalid. The correct code
allowed by C will be

struct games_ticket /* structure tag */

{

 int value; /* member */

 int seat_num; /* member */

 int date, month, year; /* members */

} fan1={500, 52}; /* structure variable and */

 /* initializing values */

 Here, the members value and seat_num are initialized with
the values 500 and 52 respectively.
 The rules described upto this point, for the initialization of
structures, is valid for the old C compilers that do not comply
with C99 standards. The compilers that follow C99 standard
allow the initialization of individual members of a structure.
This method of initialization was forbidden in old compilers
that are not C99 compliant. To demonstrate this kind of named
initialization of a structure, look at the following examples.

ExamplEs
 7. struct {
	 	float	p,	q,
 int r;

	 	}	k	=	{	.p	=	3.0,	.q	=	7.9,	.r	=	5};	

400 Computer Fundamentals and Programming in C

	 	 The	 instance	 “k”	 of	 the	 above	 defined	 structure	 is	 initialized	 by	
assigning	value	to	individual	named	members.	Here,	a	“dot”	is	used	
with	the	member’s	name	for	assigning	a	value.	

 8. struct employee
 {
 int emp_num;
 char designation[40];
 char kind_of_leave_applied[30];
 int number_of _days;
 int begin_date;
 };
 struct employee mangal_singh = {.kind_of_leave_

applied = “Medical leave”, .begin_date =
230910, .emp_num = 0691};

	 	 The	 “struct employee”	 defines	 a	 template	 of	 a	 structure	 with	
tagname	“employee”.	An	instance	of	the	structure	is	created	by	the	
statement	“struct employee mangal_singh”.	This	instance	is	
initialized.	But,	it	may	be	noted	that	only	some	of	the	members	are	
initialized.	In	the	C	compilers	not	complying	to	C99,	such	initialization	
is	not	allowed.	For	such	compilers,	while	 initializing	an	 instance	of	
a	 structure,	 the	members	 of	 the	 structure	 have	 to	 be	 assigned	 a	
value	or	a	character,	whichever	is	appropriate,	in	the	order	of	their	
definition	and	members	not	assigned	are	given	default	value	of	0	or	
\0,	which	has	been	mentioned	earlier.	But,	C99	allows	the	members	
of	a	structure	to	be	initialized	by	name,	which	is	shown	in	the	above	
example.	

	 	 	 Further,	 note	 that	 the	 order	 of	 the	 initialization	 is	 different	 from	
that	of	the	definition	of	the	members	in	the	structure.	The	member	
“kind_of_leave_applied”	 is	placed	first,	 the	member	“begin_
date”	is	placed	second	and	the	member	“emp_num”	is	placed	third,	
while	 the	 other	 remaining	 members	 are	 not	 assigned	 anything.	
Members	 uninitialized	 are	 filled	 up	 with	 the	 default	 value	 of	 0.	 It	
may	 be	 observed	 that	 this	 not	 only	 decouples	 the	 order	 of	 the	
definition	from	the	order	of	the	initialization,	but	it	is	more	readable.	
This	means,	 the	programmer	only	needs	 to	 fill	 out	 the	portions	of	
the	structure	that	are	presently	relevant	and	is	able	to	initialize	the	
elements	of	the	structure	using	the	set	notation	without	feeling	the	
need	to	remember	the	order	of	the	elements	of	the	structure.	Also,	if	
new	elements	to	the	structure	are	added	in	later	versions,	they	get	
initialized	to	a	known	value.

	 	 	 Some	examples	using	named	initialization	in	structures	are	given	
below	for	getting	more	familiar	with	its	applications.						

 9. Demonstration of named	initialization	in	a	structure.
 #include<stdio.h>
 struct
 {
	 	float	x,	y,	z;
 } s = { .y = 0.6, .x = 2.7, .z = 14.6};
 int main()
 {
	 	 	float	p,q,r;
 p= s.x + s.y + s.z;
	 	 	q=	s.z*s.x;
 r= s.z/s.x;
 printf(“\n p = %5.2f”,p);

	 	 	printf(“\n	q	=	%5.2f”,q);
 printf(“\n r = %5.2f”,r);
 return 0;
 }

 output
 p = 17.90
	 	 q	=	39.42

 r = 5.41

 10.	 Another	demonstration	of	named	initialization	in	a	structure.

 #include<stdio.h>

 struct test

 {

	 	float	x,	y,	z;

 }s;

 int main()

 {

	 	 	float	p,q,r;
 struct test s= { .y = 1.24, .x = 3.8, .z = 11.7};

 p= s.x + s.y + s.z;

	 	 	q=	s.z*s.x;

 r= s.z/s.x;

 printf(“\n p = %5.2f”,p);

	 	 	printf(“\n	q	=	%5.2f”,q);

 printf(“\n r = %5.2f”,r);

 return 0;

 }

 output
 p = 16.74
	 	 	 q	=	44.46
 r = 3.08

 11.	 One	more	demonstration	of	named	initialization	in	a	structure.

 #include<stdio.h>

 struct test

 {

	 	float	x,	y,	z;

 }s;

 int main()

 {

	 	 	float	p,q,r;

 struct test s;

 s.y= 5.94;

 s.z= 19.45;

 s.x= 23.17;

 p= s.x + s.y + s.z;

	 	 	q=	s.z*s.x;

 r= s.z/s.x;

 printf(“\n p = %7.2f”,p);

	 	 	printf(“\n	q	=	%7.2f”,q);

User-defined Data Types and Variables 401
 printf(“\n r = %7.2f”,r);

 return 0;

 }

 output

 p = 48.56
	 	 	q	=	450.66

 r = 0

	 12.	 A	railway	ticket	generation	program	that	uses	named	initialization	in	
a	structure.

 #include<stdio.h>

 struct traveler

 {

 int class;

 char train_num[40];

 char coach_num[6];

 int seat_num;

 char from[30];

 char to[30];

 char gender[10];

 int age;

 int dep_date[10];

 char name[80];

 };

 struct traveler passenger8 =

 {

 .name = “JIT SINHA”,

 .to = “Jaipur”,

 .from = “Raigarh”,

 .train_num = “superfast 154”,

 .dep_date[0] = 30,

 .dep_date[1] = 8,

 .dep_date[2] = 2010,

 .gender = “M”,

 .age = 28,

 .class = 1

 };

 int main()

 {

 printf(“\n enter coach number:”);

 scanf(“%s”,&passenger8.coach_num);

 printf(“\n enter seat number:”);

 scanf(“%d”, &passenger8.seat_num);

 printf(“\nxxxxxxxxx Ticket xxxxxxxxx”);

 printf(“\n\n\n Name of Ticket holder : %s”,\

passenger8.name);

 printf(“\n\n Train : %s:”,passenger8.train_num);

 printf(“\n\n From : %s, Date of Departure:”,\

passenger8.from);
 for(int i=0;i<3;i++)

 printf(“: %d :”,passenger8.dep_date[i]);

 printf(“\n\n To: %s”, passenger8.to);

 printf(“\n\n Coach No.: %s Seat No.:%d”,passenger8.\
coach_num,passenger8.seat_num);

 printf(“\n\n\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”);

 return 0;

 }

 output
 enter coach number: S6

 enter seat number: 41

 xxxxxxxxxxxxxxxxxxx Ticket xxxxxxxxxxxxxxxxxxxx

 Name of Ticket holder : JIT SINHA

 Train : Superfast 154:

 From : Raigarh, Date of Departure : : 30 :: 8 :: 2010 :

 To: Jaipur

 Coach No.: S6 Seat No.: 41

14.2.4 copying and comparing Structures
A structure can be assigned to another structure of the
same type. Here is an example of assigning one structure to
another.

ExamplE

 13.	 Copying	one	structure	to	another	of	the	same	type.
 #include <stdio.h>
 struct employee
 {
 char grade;
 int basic;
	 	 float	allowance;
 };
 int main()
 {
 struct employee ramesh={‘b’, 6500, 812.5};
 /* member of employee */
 struct employee vivek;

/* member of employee */
 vivek = ramesh; /* copy respective members of
 ramesh to vivek */
 printf(“\n vivek’s grade is %c, basic is Rs %d, \

 allowance is Rs %f”, vivek.grade,vivek.basic,\
 vivek.allowance);

 return 0;
 }

 output

 vivek’s grade is b, basic is Rs 6500, allowance
is Rs 812.500000

402 Computer Fundamentals and Programming in C

 This example illustrates that it is possible to copy the
corresponding members of one structure variable to those of
another structure variable provided they belong to the same
structure type. It was mentioned earlier that the operator ‘=’
can only be used on structure variables, as demonstrated
in this example. The operator ‘&’ can also be used on the
structure variable. No other operators—arithmetic, logical,
or relational—can be used with the structure variables.
 Comparing one structure variable with another is not
allowed in C. The components of a structure are stored in
memory in the order they are declared. The first component
has the same address as the entire structure. padding is
introduced between components to satisfy the alignment
requirements of individual components. This can be explained
in terms of slack bytes. Sometimes hardware requires that
certain data such as integers and floating point members,
be aligned on a word boundary in memory. When data in
a structure are grouped, the arrangement of the data may
require that slack bytes be inserted to maintain these boundary
requirements. For example, consider the following structure.

struct test
{
 char c[25];
 long int l;
 char ch;
 int I;
};

 On a byte-addressed machine, short of size two might be
placed at even addresses and long int of size four at addresses
that are multiples of four. In this structure, it is assumed that a
long int is stored in a word that requires four bytes and must
be on an address evenly divisible by four such as 20, 24, 28,
or 32. It is also assumed that integers are stored in a two-byte
word that requires an address evenly divisible by four. The
25-bytes string at the beginning of the structure forces slack
bytes between the string and the long (see Fig. 14.2). Then,
the character after the long forces slack byte to align with the
integer at the end of the structure.

c slack slackl ch I

Word boundary
divisible by 4

Word boundary
divisible by 2

0 24 25 27 28 31 32 33 35 36 39

Fig. 14.2 Slack bytes in a structure

 Since these extra bytes are beyond the control of the
program, one cannot guarantee what their values will be. The
gcc compiler aligns the structure fields on 4-byte boundaries.
Considering the above structure, sizeof(test)will print 40
(25 bytes for char + 3 bytes padding + 4 bytes for long + 1
byte for char + 3 bytes padding + 4 bytes for int. Therefore,
if two structures are compared and their first components are

equal, the inserted slack bytes could cause an erroneous result.
C prevents this problem by not allowing selection statements
with structures. Generally, it is good to group structure fields
of the same type together to minimize the extra padding. Of
course, when comparing two structures, one should compare
the individual fields in the structure. To determine byte offset
of a member within a structure, ANSI C defines offsetof
macro in stdef.h. This can also be implemented as follows.

#define	 offsetof	 (type,	 mem)	 ((size_t)	 ((char	 *)	

&((type *)0)–>mem –\(char *) (type *)0))

 To avoid wastage of space and to minimize the effects
of padding, the members of a structure should be placed
according to their sizes from the largest to the smallest.
However, members of one structure can be compared with
members of another on an individual basis. In fact, the
members involved in the comparison will behave like any
other variable. An example illustrating this feature is as
follows.

ExamplE
	 14.	 Comparison	of	individual	members	of	structures.

 #include <stdio.h>
 struct employee
 {
 char grade;
 int basic;
	 	 	 float	allowance;
 };
 int main()
 {
 struct employee ramesh = {‘b’, 5750, 818.75};
 struct employee vivek = {‘b’, 6500, 812.5};
 if(ramesh.grade!= vivek.grade)

 printf(“Ramesh and Vivek are employed on\
 different grades”);

 else if((ramesh.basic+ramesh.allowance)>(vivek.\
basic+vivek.allowance))

 printf(“Ramesh is senior and his total\
remuneration is Rs%f”,\

 (ramesh.basic+ramesh. allowance));
 else if((ramesh.basic+ramesh.allowance)==(vivek.\

basic+vivek.allowance))
 printf(“Ramesh and Vivek get the same total\

 remuneration of Rs%f”,\
 (ramesh.basic+ramesh.allowance));
 else

 printf(“Vivek is senior and his total\
 remuneration is Rs%f”,\

 (vivek.basic+vivek.allowance));

 return 0;

 }

output
 Vivek is senior and his total remuneration is
Rs 7312.500000

User-defined Data Types and Variables 403

note

 ∑ Any member in a structure can be accessed by relating
them to the structure variable with a dot operator.

 ∑ Structures that are not explicitly initialized by the
programmer are, by default, initialized by the system.
In most of the C compilers, for integer and float	 data
type members, the default value is zero and for char and
string type members, the default value is ‘\0’.

 ∑ Comparing one structure variable with another is not
allowed in C. However, when comparing two structures,
one can compare the individual fields in the structure.

14.2.5 typedef and its use in Structure
declarations

The typedef keyword allows the programmer to create a new
data type name for an existing data type. No new data type
is produced but an alternate name is given to a known data
type. The general form of the declaration statement using the
typedef keyword is given as follows.

typedef <existing data type> <new data type ,….>;

 The typedef statement does not occupy storage; it simply
defines a new type. typedef statements can be placed
anywhere in a C program as long as they come prior to their
first use in the code.
 The following examples show the use of typedef.

typedef int id_number;

typedef	float	weight;

typedef char lower_case;

 In the preceding example, id_number is the new data type
name given to data type int, while weight is the new data type
name given to data type float and lower_case is the new data
type name given to data type char. Therefore, the following
statements

id_number vinay, komal, jaspal;
weight apples, pears, mangoes;
lower_case a,b,c;

mean that vinay, komal, and jaspal are variable names that
are declared to hold int data type. The new data type, id_
number, suggests that the data content of the variable names
vinay, komal, and jaspal are integers and that it gives their
identification number. The two other examples shown also
carry similar meanings. Therefore, by the typedef keyword,
the suggested use of the type names can be understood easily.
This is one of the benefits of using the typedef keyword.
Moreover, typedef makes the code more portable.
 Complex data type like structure can use the typedef
keyword. For example,

typedef struct point

 {
 int x;
 int y;
 } Dot;
Dot left,right;

shows that left and right are the structure variables of struc-
ture type point.
 When typedef is used to name a structure, the structure
tag name is not necessary. Such an example follows.

typedef struct /* no structure tag name used */
 {
	 	 float	real;
	 	 float	imaginary;
 } complex; /* means complex number */
 complex u,v;

 The preceding example declares u and v as complex
numbers having a real part and an imaginary part. The
following are some examples involving structures and
typedef.

ExamplEs

 15.	 Write	a	program	that	prints	the	weight	of	various	sizes	of	fruits.

 #include <stdio.h>
 typedef struct fruits
 {
	 	 float	big;
	 	 float	medium;
	 	 float	small;
 }weight;
 int main()
 {
 weight apples={200.75,145.5,100.25};
 weight pears={150.50,125,50};
 weight mangoes={1000, 567.25, 360.25};\

printf(“\n\n apples: big %7.2fkg, medium\
%7.2fkg,small %7.2fkg”,apples.big,apples.\
medium, apples.small);

printf(“\n\n pears: big %7.2fkg, medium %7.2fkg,\
small %7.2fkg”,pears.big,pears.medium,\
pears.small);

printf(“\n\n mangoes: big %7.2fkg, medium %7.2fkg,\
small %7.2fkg”, mangoes.big, mangoes.\
medium, mangoes.small);

 return 0;
 }

output
 apples: big 200.75kg, medium 145.50kg, small 100.25kg
 pears: big 150.50kg, medium 125.00kg, small 50.00kg
 mangoes: big 1000kg, medium 567.25kg, small 360.25kg

	 16.	 Write	a	program	that	prints	the	x–y	coordinates	of	the	two	ends	of	a	
line.

 #include <stdio.h>
 typedef struct /* no tag */

404 Computer Fundamentals and Programming in C

 {
 int x;
 int y;
 }Dot; /* a new type name */
 Dot left,right;
 /* declaring structures “left”

and “right” */
 int main()
 {
 printf(“\n Enter x & y coordinates of left and\

 right:”);
 scanf(“%d %d %d %d”,&left.x,&left.y,&right.x,\
 &right.y);
 printf(“\n left: x=%d, y=%d, right: x=%d, y=%d”,\

 left.x, left.y, right.x,right.y);
 return 0;
 }

 output
 Enter x & y coordinates of left and right:4 20 30 20
 left: x=4, y=20, right: x=30, y=20

14.2.6 nesting of Structures
A structure can be placed within another structure. In other
words, structures can contain other structures as members.
A structure within a structure means nesting of structures. In
such cases, the dot operator in conjunction with the structure
variables are used to access the members of the innermost as
well as the outermost structures.

ExamplE
	 17.	 Write	a	program	to	demonstrate	nesting	of	structures	and	accessing	

structure	members.
 #include <stdio.h>
 struct outer /* declaration of outer structure */
 {
 int out1; /* member of outer structure */
	 	 float	out2;		 	 				/*	member	of	outer	structure	*/
 struct inner /* declaration of inner structure */
 {

 int in1; /* member of inner structure */

	 	 float	in2;		 	 				/*	member	of	inner	structure	*/

 }invar;

/* structure_variable of inner structure*/

 };

 int main()

 {

 struct outer outvar;

/* declaring structure_variable of outer */

 outvar.out1= 2; /* assigning values to member */

 outvar.out2= 10.57;

 /* assigning values to member */

 outvar.invar.in1= 2* outvar.out1;

 outvar.invar.in2= outvar.out2 + 3.65;

 printf(“ out1=%d, out2=%6.2f, in1=%d, in2=%6.2f”,\
outvar.out1, outvar.out2,outvar.invar.in1,\
outvar.invar.in2);

 return 0;
 }

 output
 out1=2, out2= 10.57, in1=4, in2= 14.22

 It must be noted that an innermost member in a nested
structure can be accessed by chaining all the concerned
structure variables, from outermost to innermost, with the
member using the dot operator. This technique has been used
in the previous example, where the innermost members in1
and in2, belonging to the structure inner, are assigned values.
 What happens when the first structure type is declared
outside and before the second structure type and is
incorporated as a member of the second structure type? The
following example depicts what happens in such a case. The
structure members are accessed in the same way as was done
in the earlier example.

ExamplE
 18. Write a	 program	 to	 demonstrate	 nesting	 of	 structures,	 accessing	

structure	 members,	 and	 using	 structure	 type	 declaration	 different	
from	that	in	the	previous	example.

 #include <stdio.h>

	 	struct	first		 	/*	declaration	of	first	structure	*/

 {

	 		 int	in1;	 	 	 /*	member	of	first	*/

	 		 float	in2;		 	 /*	member	of	first	*/

 };

 struct second /* declaration of second structure */
 {
 int out1; /* member of second */
	 		 float	out2;	 	 /*	member	of	second	*/
	 		 struct	first	inf;	 /*	structure_variable	of	first			

 structure */
 };
 int main()
 {
 struct second outs; /* structure_variable of

 second structure */
 outs.out1= 2; /* assigning values to

 members */
 outs.out2= 10.57; /* assigning values to

 members */
 outs.inf.in1= 2* outs.out1;
 outs.inf.in2= outs.out2 + 3.65;
 printf(“ out1=%d, out2=%6.2f, in1=%d, in2=%6.2f”,\

outs.out1, outs.out2, outs.inf.in1,\
outs.inf.in2);

 return 0;
 }

User-defined Data Types and Variables 405
 output

 out1=2, out2= 10.57, in1=4, in2= 14.22

 It must be understood that, in principle, structures can
be nested indefinitely. Statements like the following are
syntactically acceptable, but are bad style.

 Outer_struct_variable.member1.member2.member3.
member4.member5 = 3;

 However, one may be curious to know what happens if a
structure contains an instance of its own type. The following
example may be examined in this context.

struct compute

{

 int int_member;

 struct compute self_member;

};

 For the computer to compile a statement of this type, it
would theoretically need an infinite amount of memory. In
practice, however, the programmer will simply receive an
error message along the following lines.

 In function ‘main’:

	 field	self_member	has	incomplete	type

 The compiler conveys to the programmer that ‘self_
member’ has been declared before its data type ‘compute’ has
been fully declared. Since the programmer declares ‘self_
member’ in the middle of declaring its own data type, this is
quite natural.

14.2.7 Arrays of Structures
Just as there can be arrays of basic types such as integers and
floats, so also there can be arrays of structures. This means
that the structure variable would be an array of objects, each
of which contains the member elements declared within the
structure construct. The general construct for declaration of
an array of structure is given as follows.

struct <structure_tag_name >

{

 <data_type member_name1>;

 <data_type member_name2>;
 . . .

 }<structure_variable>[index];

or
struct <structure_tag_name> <structure_variable>[index];

 Figure 14.3 depicts the arrays formed for the array objects
declared to be of type structure_tag_name having structure_
variable as its name. Here, the term ‘index’ specifies the

number of array objects.
member1;

member2;

memberN;

.

.

.

<structure_variable>[0]

. . .

member1;

member2;

memberN;

.

.

.

member1;

member2;

memberN;

.

.

.

<structure_variable>[1] <structure_variable>[N]

Fig. 14.3 Array of structures

ExamplE

 19.	 Write	a	program	to	illustrate the	use	of	array	of	structures.
 #include <stdio.h>

 struct test1

 {

 char a;

 int i;

	 		 float	u;

 }m[3];

 int main()

 {

 int n;

 for(n=0;n<=2;++n)

 {

	 		 	 printf(“\n	Enter	ch,	in,	fl:”);

	 		 	 fflush(stdin);		 	/*	clear	stdin	stream	*/

 /* input the values of array
of structures */

 scanf(“%c %d %f”,&(m[n].a),&(m[n].i),&(m[n].u));

	 		 	 fflush(stdout);		 /*	clear	stdout	stream	*/

 /* output the values of array
of structures */

 printf(“\n a=%c, i=%d, u=%f”, m[n].a, m[n].i, m[n].u);

 }

 return 0;

 }

 output

 Enter	ch,	in,	fl:g	45	678.1956

 a=g, i=45, u=678.195618

	 		 Enter	ch,	in,	fl:j	76	345.5674

 a=j, i=76, u=345.567413

	 		 Enter	ch,	in,	fl:k	69	123.333547

 a=k, i=69, u=123.333549

406 Computer Fundamentals and Programming in C

14.2.8 Initializing Arrays of Structures
Initializing arrays of structures is carried out in much
the same way as arrays of standard data types. A typical
construct for initializing an array of structures would appear
as follows.

struct <structure_tag_name >
/* structure declaration */

 {
 <data_type member_name_1>;
 <data_type member_name_2>;
 .
 .
 <data_type member_name_n>;
 };
 /* declaration of structure array and initialization */
 struct <structure_tag_name> <structure_variable>[N]=

{
 {constant01,constant02,……………………….constant0n},
 {constant11,constant12,……………………….constant1n},
 .
 .
 {constantN1,constantN2,…constantNn}};

 The following example shows how the initialization
technique referred to above is implemented.

ExamplE

	 20.	 Write	a	program	to	print	the	tickets	of	the	boarders	of	a	boat	using	
array	of	structures	with	initialization	in	the	program.

 #include <stdio.h>
 struct boat /** declaration of structure **/
 {
 char name[20];
 int seatnum;
	 		 float	fare;
 };
 int main()
 {
 int n;
 struct boat ticket[4]= {{“Vikram”, 1,15.50},\

{“Krishna”, 2,15.50}, {“Ramu”, 3,25.50},\
{“Gouri”, 4,25.50}};

 /** initialization **/
 printf(“\n Boarder Ticket num. Fare”);
 for(n=0;n<=3;n++)
 printf(“\n %s %d %f”,ticket[n].name,ticket[n].\

seatnum,ticket[n].fare);
 return 0;
 }

 output
 Boarder Ticket num. Fare
 Vikram 1 15.500000
 Krishna 2 15.500000
 Ramu 3 25.500000
 Gouri 4 25.500000

14.2.9 Arrays within the Structure
There can be arrays within a structure. In other words, any
member within a structure can be an array. When arrays are
used in a structure, they are accessed and initialized in a way
similar to that illustrated in example 20. In this example,
name[20] is an array within the structure boat. Initialization
of the structure means initialization of members: name[20],
seatnum, and fare. The printf() statement within the for
loop uses the dot operator to access the member name[20],
an array, within the structure boat. Therefore, this example
demonstrates how an array is used within a structure and also
shows the way to initialize it.

note
 ∑ By using typedef, no new data type is produced but an

alternate name is given to a known data type.

 ∑ typedef statements can be placed anywhere in a C pro-
gram as long as they come prior to their first use in the
code.

 ∑ An innermost member in a nested structure can be ac-
cessed by chaining all the concerned structure variables,
from outermost to innermost, with the member using the
dot operator.

14.2.10 Structures and Pointers
At times, it is useful to assign pointers to structures. A pointer
to a structure is not itself a structure, but merely a variable
that holds the address of a structure. This pointer variable
takes four bytes of memory just like any other pointer in a
32-bit machine. Declaring pointers to structures is basically
the same as declaring a normal pointer. A typical construct
for declaring a pointer to a structure will appear as follows.

struct <structure_tag_name >
/* structure declaration */

 {
 <data_type member_name_1>;
 <data_type member_name_2>;
 .
 .
 <data_type member_name_n>;
 }*ptr;

or
struct <structure_tag_name>
 {
 <data_type member_name_1>;
 <data_type member_name_2>;
 .
 .
 <data_type member_name_n>;
 };
struct <structure_tag_name> *ptr;

User-defined Data Types and Variables 407
 This pointer, *ptr, can be assigned to any other pointer
of the same type, and can be used to access the members of
its structure. To access the members within the structure, the
dot operator is used with the pointer variable. For example,
to enable the pointer variable to access the member member_
name_1, the following construct is used.

(*ptr).member_name_1

 The bracket is needed to avoid confusion about the ‘*’
and ‘.’ operators. If the bracket around *ptr is done away
with, the code will not compile because the ‘.’ operator has a
higher precedence than the ‘*’ operator. It gets tedious to type
so many brackets when working with pointers to structures.
Hence, C includes a shorthand notation that does exactly the
same thing.

ptr-> member_name_1

 This is less confusing and a better way to access a member
in a structure through its pointer. The -> operator, an arrow
made out of a minus sign and a greater than symbol, enables
the programmer to access the members of a structure directly
via its pointer. This statement means the same as the last line
of the previous code example, but is considerably clearer.
The -> operator will come in very handy when manipulating
complex data structures.
 For initializing the structure members through a pointer to
the structure, any one of the following constructs is used.

(*ptr).member_name_x = constant;

or
ptr-> member_name_x = constant;

where x is 1 to N, and N is the total number of members in the
structure. The following example uses pointer to structure.

ExamplE

 21.	 Write	 a	 program	 using	 a	 pointer	 to	 structure	 illustrating	 the	
initialization	of	the	members	in	the	structure.

 #include <stdio.h>

 #include <conio.h>

 struct test1

 /* declaration of structure “test” */

 {

 char a;

 int i;

	 	 float	f;

 };

 int main()

 {

 struct test1 *pt; /* declaring pointer to the

structure */

 clrscr();

 pt->a=‘K’; /* initializing char a */

 pt->i=15; /* initializing int i */

	 	 pt->f=27.89;		 /*	initializing	float	f	*/

 printf(“\n a=%c, i=%d, f=%f”,pt->a,pt->i,pt->f);

	 	 printf(“\n	Enter	new	char,	int,	float:”);

 scanf(“%c %d %f”,&pt->a,&pt->i,&pt->f);

/* input for members */

 printf(“\n a=%c, i=%d, f=%f”,pt->a,pt->i,pt->f);

 return 0;

 }

	 	 /*	function	to	link-in	floating
point emulator */

	 void	linkfloat()

 {

	 	 float	a,*x;

 x=&a;

 a=*x;

 }

 output
 a=k, i=15, f=27.889999
	 Enter	new	char,	int,	float:	d	45	67.53
 a=d, i=45, f=67.529999

 The function linkfloat() needs to be explained. If this
function is not included, the following error is generated.

	 scanf:	floating	point	format	not	linked
 Abnormal program termination

 A similar message saying “floating	point	not	loaded” is
printed by the Microsoft C run-time system when the software
needs a numeric coprocessor but the computer does not have
one installed. One may fix it by returning the program using
the floating-point emulation library.
 A floating-point emulator is used to manipulate floating
point numbers in run-time library functions such as scanf()
and atof(). When compiling the source program if the
compiler encounters a reference to the address of a float, it sets
a flag to have the linker link in the floating-point emulator. In
some cases in which reference to float seems to guess wrongly
when the program uses floating point formats in scanf() but
does not call any other floating point routines. The function
linkfloat() forces linking of the floating point emulator into
an application. There is no need to call this function. Just
include it anywhere in the program. This provides a solid
clue to the Borland PC linker that the floating-point library is
needed.
 Another workaround is to define a function in a module
that will be included in the link. The function is as follows:

static void forcefloat	(float	*p)
{
	 float	f=*p;
	 forcefloat(&f);
}

408 Computer Fundamentals and Programming in C

 The problem can also be solved by including the following
code in the program instead of the functions such as linkfloat()
or forcefloat().

#include <math.h>
double dummy = sin(0.0);

 This code forces the compiler to load the floating-point
version of scanf().

ExamplEs

 22.	 Write	a	program	using	a	pointer	to	structure	illustrating	the	initialization	
of	the	members	in	the	structure	using	a	different	technique	to	avoid	
the	floating	point	error	problem.

 #include <stdio.h>
 struct test1
 {
 char a;
 int i;
	 	 float	f;
 };
 int main()
 {
	 	 float	x;
	 	 struct	test1	*q,p;
 clrscr();
	 	 printf(“\n	Enter	char,	int,	float:”);
 scanf(“%c %d”,&p.a,&p.i);
 scanf(“%f”,&x);
 p.f=x;
	 	 q=&p;
	 	 printf(“\n	a=%c,	i=%d,	f=%f”,q->a,q->i,q->f);
	 	 q=NULL;
 return 0;
 }

 output
	 Enter	char,	int,	float:g	32	87.64
 a=g, i=32, f=87.639999

	 23.	 Write	a	program	using	a	pointer	to	structure	illustrating	the	initialization	
of	the	members	in	the	structure	using	malloc().

 #include <stdio.h>
 struct A
 {
 char ch;
 int in;
	 float	f;
 };
 int main()
 {
 struct A *sp;
 int n,i;
 printf(“\n How many members:”);
 scanf(“%d”,&n);
 sp=(struct A *)malloc(n*sizeof(struct A));

	 	 if(sp==NULL)
 {
 printf(“\n Memory allocation unsuccessful”);
 exit(0);
 }
 for(i=0;i<n;++i)
 {
 printf(“\n Enter ch, in and f:”);
	 	 fflush(stdin);
 scanf(“%c %d %f”,&sp[i].ch,&sp[i].in,&sp[i].f);
 }
 for(i=0;i<n;++i)
 printf(“\n ch=%c in=%d f=%f”,sp[i].ch,\
 sp[i].in, sp[i].f);
 return 0;
 }
	 	 void	linkfloat()
 {
	 	 float	a=0.0,*x;
 x=&a;
 a=*x;
 }

 output
 How many members:2
 Enter ch, in and f: g 31 76.56
 Enter ch, in and f: k 32 78.34
 ch=g in=31 f=76.559998
 ch=k in=32 f=78.339996

 There are many reasons for using a pointer to a struct.
One of them is to make two-way communication possible
within functions. This aspect is explained with examples in
the following section.

14.2.11 Structures and Functions
An entire structure can be passed as a function argument
just like any other variable. When a structure is passed as an
argument, each member of the structure is copied. In fact,
each member is passed by value. In case the member is an
array, a copy of this array is also passed. This can prove
to be inefficient where structures are large or functions are
called frequently. passing and working with pointers to large
structures may be more efficient in such cases. The general
construct for passing a structure to a function and returning
a structure is

struct structure_tag function_name(struct structure_
tag structure_variable);

 Several variations in this construct are made while using
this construct. In some cases, the function may receive a
structure but may return void or some other data type. In
another implementation, no parameters may be passed to a
function but it may return a structure. Another option may
be to pass a pointer to a structure and return any data type,

User-defined Data Types and Variables 409
including a user-defined structure. Hence, the preceding
construct is formed based on the requirement. It must be noted
that in any case the structure declaration and the definition
of the structure variable should precede the function call
construct stated above. The following are some examples
involving structures with functions.

ExamplEs
	 24.	 Write	a	program	where	a	structure	 is	passed	 to	a	 function	while	 it	

returns	nothing.

 #include <stdio.h>
 struct A
 {
 char ch;
 int in;
	 	 float	f;
 };
 void show(struct A);
 int main()
 {
 struct A a;
 printf(“\n Enter ch, in and f:”);
	 	 fflush(stdin);
 scanf(“%c %d %f”,&a.ch,&a.in,&a.f);
 show(a);
 return 0;
 }
 /*** function show() ***/
 void show(struct A b)
 {
 printf(“\n ch=%c, in=%d, f=%f”,b.ch,b.in,b.f);
 }
	 /***	function	linkfloat()	***/
	 void	linkfloat()
 {
	 	 float	a=0.0,*x;
 x=&a;
 a=*x;
 }

output
 Enter ch, in and f:v 34 78.95
 ch=v, in=34, f=78.949997

	 25.	 Write	 a	 program	 that	 passes	 a	 pointer	 to	 a	 structure	 and	 returns	
nothing.

 #include <stdio.h>
 struct A
 {
 char ch;
 int in;
	 	 float	f;
 };

 void read(struct A *);
 /* function prototype with pointer to structure

as a parameter and void as return */
 void show(struct A);
 /* function prototype with structure as

a parameter and void as return */

 int main()

 {

 struct A a;

/* declaring “a” as structure variable */

 read(&a); /* call to function read() */

 show(a);
 /* call to function show() */

 return 0;

 }

 /*** function read() ***/

 void read(struct A *p)

 {

 printf(“\n Enter ch, in and f:”);

	 	 	 	 /*	request	for	values	to	members	*/

	 	 fflush(stdin);	 /*	clear	input	stream	*/

 scanf(“%c %d %f”,&p->ch,&p->in,&p->f);

 /* input values to members */

 }

 /*** function show() ***/

 void show(struct A b)

 {

 printf(“\n ch=%c in=%d f=%f”,b.ch,b.in,b.f);

 }

	 /***	function	linkfloat()	***/

	 void	linkfloat()

 {

	 	 float	a=0.0,*x;

 x=&a;

 a=*x;

 }
output

 Enter ch, in and f:m 31 89.75
 ch=m, in=31, f=89.75

	 26.	 Write	a	program	using	a	function	that	does	not	require	any	parameter	
to	be	passed	and	returns	a	structure.

 #include <stdio.h>

 struct A

 {

 char ch;

 int in;

	 	 float	f;

 };

 struct A read(void);

 void show(struct A);

 int main()

410 Computer Fundamentals and Programming in C

 {

 struct A a;

 a=read();

 show(a);

 return 0;

 }

 struct A read(void)

 {

 struct A p;

 printf(“\n Enter ch, in and f:”);

	 	 fflush(stdin);

 scanf(“%c %d %f”,&p.ch,&p.in,&p.f);

 return p;

 }

 /*** function show() ***/

 void show(struct A b)

 {

 printf(“\n ch=%c, in=%d, f=%f”,b.ch,b.in,b.f);

 }

	 /***	function	linkfloat()	***/

	 void	linkfloat()

 {

	 	 float	a=0.0,*x;

 x=&a;

 a=*x;

 }

output

 Enter ch, in and f:g 30 92.55

 ch=g, in=30, f=92.550003

 From the preceding examples, it is evident that to modify
the value of the members of the structure by a function,
the programmer must pass a pointer to that structure to the
function. This is just like passing a pointer to an int type
argument whose value is to be changed.
 If the programmer is only interested in one member of a
structure, it is probably simpler to just pass that member to
the function. This will make for a simpler function, which is
easier to reuse. But, of course, if the value of that member
has to be changed, a pointer to it should be passed to the
function.
 However, when a structure is passed as an argument to a
function, each member of the structure is copied. This can
prove expensive where structures are large or functions are
called frequently. passing and working with pointers to large
structures may be more efficient in such cases.

note
 ∑ A pointer to a structure is not itself a structure, but merely

a variable that holds the address of a structure.
 ∑ Passing and working with pointers to large structures may

be more efficient while passing structures to a function
and working within it.

14.3 unIon
A union is a structure, the members of which share the
same storage. The amount of storage allocated to a union is
sufficient to hold its largest member. At any given time, only
one member of the union may actually reside in that storage.
The way in which a union’s storage is accessed depends on
the member name that is employed during the access. It is the
programmer’s responsibility to keep track of which member
currently resides in a union.
 A union is identified in C through the use of the keyword
union in place of the keyword struct. Virtually, all other
methods for declaring and accessing unions are identical to
those for structures.

14.3.1 declaring a union and its Members
The general construct for declaring a union is given as
follows.

 union tag_name
 {
 member1;
 member2;
 .
 .
 memberN;
 }variable1,variable2,variable3,…,variableX;

 Similar to structure, the union also has a tag name, members,
and variable names. In the preceding declaration construct,
the variable names, variable1, variable2, variable3,…
,variableX, are optional and therefore these may not be
mentioned.
 The general construct of declaring the individual union
variables is

 union tag_name variable1,variable2,…,variableX;

 As an example, consider the following declarations for a
union that has a tag named mixed.

 union mixed

 {

 char letter;

	 	 	 float	radian;

 int number;

 };

 union mixed all;

User-defined Data Types and Variables 411
 The first declaration consists of a union of type mixed,
which consists of a char, float, or int variable as a member.
At a time only one member belonging to any one of the data
types, that is, char, int, or float, can exist. This is due to the
provision of a single memory address that is used to store the
largest variable, unlike the arrangement used for structures.
Figure 14.4 depicts the way the three members letter, radian,
and number are stored in memory, for a 16-bit machine.

Address 5000 5001 5002 5003

letter

radian

number

Fig. 14.4 Three members of a union sharing a memory
location for a 16-bit machine

 Therefore, the variable all can only be a character, a
float, or an integer at any one time. C keeps track of what
all actually is at any given moment, but does not provide a
check to prevent the programmer accessing it incorrectly.
 It is evident from the previous example that a union is
similar to a structure except that all the members in it are
stored at the same address in memory. Therefore, only one
member can exist in a union at any instant of time. The union
data type was created to prevent the computer from breaking
its memory up into several inefficiently sized pieces, which
is called memory fragmentation.
 The union data type avoids fragmentation by creating a
standard size for certain data. When the computer allocates
memory for a program, it usually does so in one large block
of bytes. every variable allocated when the program runs,
occupies a segment of that block. When a variable is freed, it
leaves a ‘hole’ in the block allocated for the program. If this
hole is of an unusual size, the computer may have difficulty
allocating another variable to ‘fill’ the hole, thus leading to
inefficient memory usage. However, since unions have a
standard data size, any ‘hole’ left in memory by freeing a
union can be filled by another instance of the same type of
union. A union works because the space allocated for it is the
space taken by its largest member; thus, the inefficiency of
allocating small-scale memory space for the worst case leads
to memory efficiency on a larger scale.
	 Unions can also be a member of a structure. The following
is an example showing such a structure.

 struct conditions
 {
	 	 	 float	temp;
 union feels_like {

	 	 	 	 float	wind_chill;
	 	 	 	 float	heat_index;
 }
 } today;

 As is known, wind_chill is only calculated when it is ‘cold’
and heat_index when it is ‘hot’. There is no need for both at
the same time. So, when the today is specified, feels_like
has only one value, either a float for wind_chill or a float for
heat_index.
 Within a union, data types can be of any kind; in fact, it
may even be of struct type.

14.3.2 Accessing and Initializing the Members of
a union

Consider, the general declaration construct of a union.
union tag_name
{
 member1;
 member2;
 . . .
 memberN;
 }variable1,variable2,variable3,…,variableX;

 For accessing members of, say, variable1 to N of the union
tag_name, the following constructs are used.

variable1.member1
variable2.member2
 . . .
variableX.memberN

 Only a member that exists at the particular instance
in storage should be accessed. The general construct for
individual initialization of a union member is

variableX.memberN = constant;

where X is any value 1 to X and N is any value 1 to N.

ExamplE

 27.	 Write	 a	 program	 that	 illustrates	 the	 initialization	of	 a	member	 in	 a	
union.

 #include <stdio.h>

 #include <conio.h>

 union test /* declaration of union */

 {

 int i; /* integer member */

 char c; /* character member */

 }var; /* variable */

 int main()

 {

 var.i=65; /* initializing integer member */

 printf(“\n var.i=%d”, var.i);

 /* output integer member */

412 Computer Fundamentals and Programming in C

 printf(“\n var.c=%c”, var.c);

 /* output character member */

 return 0;
 }
 output

 var.i=65
 var.c=A

Note See Fig. 14.5 for the storage location of union test.

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

15Bit position 1413121110 9 8 7 6 5 4 3 2 1 0

char c

int i

Fig. 14.5 The storage location of union test, for a 16-bit
machine

 Figure 14.5 shows the storage location of union test.
The location has two bytes because the largest member in
the union test is an integer named ‘i’. The other member,
‘c’, being a character, occupies eight bits from bit 0 to bit 7.
The integer member ‘i’ is assigned the value ‘65’. Hence,
this value in binary form is stored in bits 0 to 15 as seen in
the figure. So when printf() is executed, the value 65 for
‘i’ is printed on the screen. But the member ‘c’ has not been
assigned any value. Therefore, the existing value of 65 in the
referred storage location is taken when the printf() for the
member ‘char c’ is executed. referring to the ASCII table,
the equivalent symbol for the decimal value 65 is ‘A’. Thus,
when the second printf() is executed, the output is ‘A’.
 It must be remembered that while accessing member
variables, the user should make sure that they can access the
member whose value is currently in storage. For example,
considering the union in example 27, the following
statements

var.i = 145;
var.c = 273.85;
printf(“%d”, var.i);

would produce an erroneous output. This results because
the value assigned to var.c overlays the value assigned to
var.i.
 The initialization of only the first member of the union can
be carried out during the declaration of the union variable. The
initialization value must be of the same data type as the member.
Again referring to example 27, a declaration statement with
initialization will appear as follows.

 union test var={65};

 Here, the value used to initialize the member ‘i’ is of the
same data type as that of ‘i’ in the previous case. But in this
example, if the initialization value is a float data type, then
the initialization will not be valid because the member ‘i’ is

an integer data type. Therefore, the following construct will
be wrong and invalid with reference to example 27.

 union test var={45.62};

 A union is also employed as an important convenience for
the programmer. For example, it is often useful to name a
single cell to hold a type-independent value, say, one returned
by any of the several functions or one returned by a macro
whose arguments may have different types.

14.3.3 Structure versus union
Memory allocation The amount of memory required to
store a structure is the sum of the size of all the members
in addition to the slack bytes or padding bytes that may be
provided by the compiler. On the other hand, in case of a
union, the amount of the memory required is same as that
of the largest member. This can be proved by the following
program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct S
{
 int i;
 char ch;
 double d;
};
union	U
{
 int i;
 char ch;
 double d;
};
int main()
{
printf(“\n Size of the structure is %d”, sizeof\
 (struct S));
printf(“\n	Size	of	the	union	is	%d”,	sizeof(union	U));
return 0;
}

Output
 Size of the structure is 16
 Size of the union is 8

Member access While all structure members can be
accessed at any point of time, only one member of a union
can be accessed at any given time. Because at a particular
moment of time, only one union member will have a
meaningful value. The other members have garbage values.
It is the responsibility of the programmer to keep track of the
active member. Consider the following program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct S

User-defined Data Types and Variables 413

{
 int i;
 char ch;
 double d;
};
union	U
{
 int i;
 char ch;
 double d;
};
int main()
{
 struct S a={10,‘A’,3.1415};

	 union	U	b={10};

 printf(“\n a.i=%d a.ch=%c a.d=%lf”,a.i,a.ch,a.d);

 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);

 b.ch=‘B’;

 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);

 b.d=5.12345;

 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);

 return 0;
}

Output
a.i=10 a.ch=A a.d=3.141500

b.i=10 b.ch=

b.d=0.000000

b.i=66 b.ch=B b.d=0.000000

b.i=-1388133430 b.ch= b.d=5.123450

Careful study reveals the aforesaid point.
Identifying active members There is no way to find which
of the members is active at any instant of time. The program
must keep track of active members explicitly.

Do’s and don’ts for unions
It is important to remember which union member is being
used. If the user fills in a member of one type and then tries
to use a different type, the results can be unpredictable. The
following operations on union variables are valid.
 A union variable can be assigned to another union

variable.
 A union variable can be passed to a function as a

parameter.
 The address of a union variable can be extracted by using

& operator.
 A function can accept and return a union or a pointer to a

union.
 Do not try to initialize more than the one union member.
 Do not forget that the size of a union is equal to its largest

member.
 Do not perform arithmetical or logical operations on union

variables.

note

 ∑ At any given time, only one member of the union may
actually reside in the storage.

 ∑ In a union, the amount of memory required is same as
that of the largest member.

 ∑ It is important to remember which union member is being
used. If the user fills in a member of one type and then tries
to use a different type, the results can be unpredictable.

 ∑ The following operations on union variables are valid:

 n A union variable can be assigned to another union
variable.

 n A union variable can be passed to a function as a
parameter.

 n The address of a union variable can be extracted by
using & operator.

 n A function can accept and return a union or a pointer
to a union.

 ∑ No attempt should be made to initialize more than one
union member.

 ∑ Performing arithmetical or logical operations on union
variables is not allowed.

14.4 enuMerAtIon tyPeS
enumeration data types are data items whose values may be
any member of a symbolically declared set of values. The
symbolically declared members are integer constants. The
keyword enum is used to declare an enumeration type. The
general construct used to declare an enumeration type is

enum tag_name{member1, member2,…, memberN}
variable1,...,variableX;

 In this declaration, either tag_name or variable name may
be omitted or both may be present. But, at least one of them
must exist in this declaration construct.
 The enum tag_name specifies the user-defined type. The
members are integer constants. By default, the first member,
that is, member1, is given the value 0. The second member,
member2, is given the value 1. Members within the braces
may be initialized, in which case, the next member is given a
value which is one more than the preceding member. So, each
member is given the value of the previous member plus 1.
 The general form of the construct for declaring variables
of enum type separately is

 enum tag_name variable1,...,variableX;

 The variables can take on as values only the members in
the member list. Therefore,

 variable1 = member2;

assigns the value represented by member2 to variable1. A
typical declaration would be

 enum days {Mon, Tues, Wed, Thurs, Fri, Sat, Sun};

414 Computer Fundamentals and Programming in C

 The above declaration means that the values ‘Mon,...,Sun’
may be assigned to a variable of type enum days. The actual
values are 0,...,6 in this example and it is these values that
must be associated with any input or output operations. The
following example illustrates these features.

ExamplE
	 28.	 Write	a	program to	illustrate	the	assignment	of	default	values	to	the	

members	of	data	type	enum.

 #include <stdio.h>
 enum days{Mon, Tues, Wed, Thurs, Fri, Sat, Sun };
 int main()
 {
 enum days start, end;
 start= Tues; /* means start=1 */
 end= Sat; /* means end=5 */
 printf(“\n start = %d, end = %d”, start,end);
 start= 64;
	 	 printf(“\n	start	now	is	equal	to	%d”,	start);
 return 0;
 }

 output
 start = 1, end = 5
	 	 start	now	is	equal	to	64

 It will be noticed that it is possible to assign a normal
integer to an enum data type and no verification is carried out
to find that an integer assigned to an enum data type is within
range.
 It is possible to associate numbers other than the sequence
starting at zero with the names in the enum data type by
including a specific initialization in the variable name list.
This also affects the values associated with all the following
variable names. For example, consider the following
declaration construct.

enum coins{ p1=1, p2, p5=5, p10=10, p20=20, p50=50 };

 Here, all the variables except p2 are initialized. Since p2
is next to p1, it will be assigned a value 2. Similar examples
showing how the members in a enum data type are initialized
are given below.

ExamplE

	 29.	 Illustrations	of	initialization	of	members	in	enum	data	type
 (a) enum fruit {mango=10, orange, apple=6, pear}fru;

	 	 Here,	 since	mango	 is	 initialized	 to	10, orange	 has	 a	 value	
of 11.	For	 the	same	reasons,	because	apple	 is	assigned	a	
value	of	6, pear	has	a	value	of	7.	 It	may	be	observed	 that	
initialization	 of	multiple	 values	 are	 allowed,	 but	 the	member	
names	must	themselves	be	unique.

 (b) enum veg{tomato=15, beans=15, onions=15}
veget1,veget2;

	 	 Here,	all	the	members	are	initialized	with	a	value.

	 (c)	 enum {teak,pine}tree;

	 	 In	this	case,	since	no	tag	name	has	been	specified,	no	other	
variable	of	type	enum {teak,pine}	can	be	declared.

 (d) enum veg{tomato,beans,onions}veg;

	 	 The	above	example	shows	that	a	tag	name	can	be	reused	as	
a	variable	name	or	as	an	enumerator.	This	is	because	the	tag	
names	have	their	own	name	space.	Such	usage,	though	valid,	
is	not	good	programming	practice.

	 	 	 Few	 programmers	 use	 enum	 data	 types.	 The	 same	 effects	
can	be	achieved	by	use	of	#define	although	the	scoping	rules	are	
different. The enum	data	types	are	rarely	used	in	practice.	

14.5 BItFIeldS
There are two ways to manipulate bits in C. One of the ways
consists of using bitwise operators. The other way consists of
using bitfields in which the definition and the access method
are based on structure. The general format for declaring
bitfields using a structure is given as follows.

struct	bitfield_tag
 {
 unsigned int member1: bit_width1;
 unsigned int member2: bit_width2;
 . . .
 unsigned int memberN: bit_widthN;
 };

 In this construct, the declaration of variable name is
optional. The construct for individually declaring the variables
to this structure is given by

	 struct	bitfield_tag	variable_name;

 Each bitfield, for example, ‘unsigned int member1: bit_
width1’, is an integer that has a specified bit width. By this
technique, the exact number of bits required by the bitfield
is specified. This way a whole word is not required to hold a
field. This helps in packing a number of bitfields in one word.
The savings made possible by using bits within a word rather
than whole words can be considerable. This idea directly
motivates the concept of packed fields of bits and operations
on individual bits. Consider the following example.

 struct test
 {
 unsigned tx : 2;
 unsigned rx: 2;
 unsigned chk_sum : 3;
 unsigned p : 1;
 } status_byte;

 This construct declares a structure that has a variable name,
status_byte, containing four unsigned bitfields. The number
following the colon is the field width. Field variables may be
assigned values. However, the value assigned to a field must
not be greater than its maximum storable value. Individual
fields are referenced as though they are structure members.
The assignment

 chk_sum = 6;

User-defined Data Types and Variables 415
sets the bits in the field chk_sum as 110. The signed or
unsigned specification makes for portability; this is important
because bitfields are extremely implementation-dependent.
For example, C does not specify whether fields must be stored
left to right within a word, or vice versa. Some compilers may
not allow fields to cross a word boundary. Unnamed fields
may be used as fillers. In declaring the following structure, a
two-bit gap is forced between the fields tx and rx.

 struct
 {
 unsigned tx : 2;
 : 2;
 unsigned rx : 4;
 }status;

 The unnamed field of width 2 will cause the next field to
begin in the following word instead of at the boundary of
the last field. It should be noted that a field in a word has no
address. Therefore, it is wrong to try and use the operator ‘&’
with bitfields.
 The use of bitfields may save some memory as against
storing variables whose values are only 1or 0 in characters,
but it should be remembered that extra instructions will be
required to perform the necessary packing and unpacking.
Bitfields are very rarely used in practice.
 Here is an example of assigning a byte to memory and
then examining each bit. The bitfields are used in a structure,
and the structure is used in a union.

 #include <stdio.h>

 #include <stdlib.h>

 struct cbits {

 unsigned b1 : 1;

 unsigned b2 : 1;

 unsigned b3 : 1;

 unsigned b4 : 1;

 unsigned b5 : 1;

 unsigned b6 : 1;

 unsigned b7 : 1;

 unsigned b8 : 1;

 };

	 union	U	{

 char c;

 struct cbits cb;

 };

 int main()

 {

	 	 union	U	look;

 /* Assign a character to memory */

 look.c = ‘A’;

	 	 /*	Look	at	each	bit	*/

 printf(“\nBIT 1 = %d\n”, look.cb.b1);

 printf(“BIT 2 = %d\n”, look.cb.b2);

 printf(“BIT 3 = %d\n”, look.cb.b3);

 printf(“BIT 4 = %d\n”, look.cb.b4);

 printf(“BIT 5 = %d\n”, look.cb.b5);

 printf(“BIT 6 = %d\n”, look.cb.b6);

 printf(“BIT 7 = %d\n”, look.cb.b7);

 printf(“BIT 8 = %d\n\n”, look.cb.b8);

 return 0;

 }

 This program returns the bits (in terms of unsigned ints
0 or 1) for the character A stored in memory at the address
of character variable named c. The output looks like the
following.

 BIT 1 = 0

 BIT 2 = 1

 BIT 3 = 0

 BIT 4 = 0

 BIT 5 = 0

 BIT 6 = 0

 BIT 7 = 0

 BIT 8 = 1

 The output makes sense because 01000001 (binary) = 65
(decimal) = 101 (octal) = 41 (hexadecimal) which maps to an
A in the ASCII character set. If one wants to do this with an
integer, the size using the function sizeof(int) has to be first
determined, then a structure is created with eight bit fields for
each byte counted by sizeof(int).

note

 ∑ The members in an enumerator are integer constants.
 ∑ By default, the first member of a union is given the value

0.
 ∑ With reference to bitfields, it should be noted that a field

in a word has no address.

SuMMAry
A structure	is	a	collection	of	variables	under	a	single	name.	These	variables	
can	be	of	different	types,	and	each	has	a	name	that	is	used	to	select	it	from	
the	 structure.	 There	 can	 be	 structures	within	 structures,	which	 is	 known	
as nesting	of	structures.	Arrays	of	structures	can	be	formed	and	initialized	

as	required.	Pointers	may	also	be	used	with	structures.	Structures	may	be
passed	as	function	arguments	and	they	may	also	be	returned	by	functions.
 A union is	a	structure,	all	of	whose	members	share	the	same	storage.	
The	amount	of	storage	allocated	to	a	union	is	sufficient	to	hold	its	largest	

416 Computer Fundamentals and Programming in C

member. Enumeration	data	types	are	data	items	whose	values	may	be	any	
member	of	a	symbolically	declared	set	of	values.	Bitfields	are	 identifiers	

whose	bit-width	can	be	specified	and	used	to	form	packed	words	containing	
different	fields.

Key terMS

accessing a structure member	 It	 refers	 to	 the	 act	 of	 handling	 any	
member	of	a	structure	 for	 the	purpose	of	assigning	a	value	or	using	 the	
member	in	any	expression.
arrays of structures it	 refers	 to	 that	 “structure	 variable”	 which	 is	 an	
array	of	objects,	each	of	which	contains	 the	member	elements	declared	
within	the	structure	construct.
Initialization of structure It	refers	to	assigning	values	to	members	of	an	
instance	variable.

Instance variable it	is	one	of	the	named	pieces	of	data	that	make	up	a	
structure.
non-homogeneous data it	 includes	 data	 of	 different	 types	 such	 as	
integer,	float,	character,	etc.
Structure It	 is	 a	 collection	of	 data	grouped	 together	 and	 treated	as	a	
single	object.
type template it	is	a	document	or	file	having	a	preset	format,	used	as	a	
starting	point	for	a	particular	application	so	that	the	format	does	not	have	to	
be	recreated	each	time	it	is	used.

Frequently ASKed queStIonS
1. What is the difference between structure and union?
 Memory allocation The	amount	of	memory	required	to	store	a	structure	is	
greater	or	equal	to	the	sum	of	the	size	of	all	the	members	in	addition	to	the	
slack	bytes	or	padding	bytes	that	may	be	provided	by	the	compiler.	On	the	
other	hand,	in	case	of	a	union,	the	amount	of	the	memory	required	is	same	
as	that	of	the	largest	member.
 Member access While	 all	 structure	 members	 can	 be	 accessed	 at	 any	
point	of	time,	only	one	member	of	a	union	can	be	accessed	at	any	given	
time.	Because	at	a	particular	moment	of	time,	only	one	union	member	will	
have	a	meaningful	value.	The	other	members	have	garbage	values.
 Identifying active members There	is	no	way	to	find	which	of	the	members	
is	active	at	any	moment	of	 time.	The	program	must	keep	track	of	active	
members	explicitly.

2. Why can’t structures be compared?
 There	can	be	unused	padding	bytes	with	structures	as	needed	by	alignment	
requirements	for	a	platform	and	how	they	are	filled	 is	not	defined	by	the	
standard.	Hence,	a	byte	by	byte	comparison	will	also	fail.	This	is	because	
the	comparison	might	stumble	on	random	bits	present	in	unused	“holes”	in	
the	structure	as	padding	is	used	to	keep	the	alignment	of	the	later	fields	
correct.	So,	a	memcmp()	of	the	two	structure	will	almost	never	work.	

3. How can two structures be compared?
 One	way	to	compare	two	structures	is	comparing	the	individual	fields	in	the	
structure.

4. Why do structures get padded?
 Almost	all	modern	processors	support	byte	addressing,	i.e.	an	address	is	
the	address	of	a	byte.	However,	there	is	often	a	constraint	that	larger	data	
items	(integers	and	floating-point	numbers)	should	start	at	locations	whose	
address	 is	a	multiple	of	 the	size	of	 the	data	 item.	This	constraint	called,	
an	alignment	constraint,	much	simplifies	the	handling	of	such	data	items.	
Structure	 padding	 occurs	 because	 the	 members	 of	 the	 structure	 must	
appear	at	the	correct	byte	boundary.	This	enables	the	CPU	to	access	the	
members	faster.	If	they	are	not	aligned	to	word	boundaries,	then	accessing	
them	might	take	up	more	time.	So	the	padding	results	in	faster	access.	
	 	Additionally,	the	size	of	the	structure	must	be	such	that	in	an	array	of	the	
structures	all	the	structures	are	correctly	aligned	in	memory,	so	there	may	
be	padding	bytes	(also	known	as	slack	bytes)	at	the	end	of	the	structure	
too.

5. How can the effect of padding be minimized?
 Structure	 padding	 definitely	 introduces	 unused	 holes.	 There	 is	 no	 standard	
method	 to	 control	 the	 padding	 of	 structure.	One	 suggested	way	may	 be	 to	

arrange	the	members	in	the	order	of	their	largest	to	the	smallest	sizes.

6. While compiling a program the following error message “Floating
point formats not linked is obtained”. What is wrong with the program?
 When	parsing	the	source	file,	if	the	compiler	encounters	a	reference	to	the	
address	of	a	float,	it	sets	a	flag	to	have	the	linker	link	in	the	floating	point	
emulator.	 A	 floating	 point	 emulator	 is	 used	 to	 manipulate	 floating	 point	
numbers	in	run	time	of	library	functions	like	scanf() and atof() etc.
	 	There	 are	 some	 cases	 in	 which	 the	 reference	 to	 the	 float	 does	 not	
necessitate	the	compiler	to	involve	the	emulator.	The	most	common	case	
is	the	one	which	uses	scanf()	to	read	a	float	in	an	array	of	structures	and	
does	not	call	any	other	functions	related	with	floating	point	manipulation.	
In	such	cases	the	run	time	error	might	be	caused	by	giving	the	message	
“Floating point formats not linked “.
	 	The	solution	of	 this	problem	 is	 that	 the	emulator	will	be	used	 in	such	
a	 fashion	 that	 the	compiler	can	accurately	determine	when	 to	 link	 in	 the	
emulator.	To	force	the	floating	point	emulator	to	be	linked	into	an	application,	
just	include	the	following	functions	in	your	program.	

 void	FloatLink()	

 {
	 	 float	a	=	0	,	*b	=	&a;	

 a = *b;

 }

Or
	 static	void	forcefloat	(float	*p)

 {

	 	 float	f=*p;

	 	 forcefloat(&f);

 }

 There	is	no	need	to	call	these	functions;	but	it	is	necessary	to	include	it	
anywhere	in	the	program.

	 	Another	solution	is	to	include	the	following	statements	at	the	beginning	
of	the	program.

 #include <math.h>

 double dummy = sin(0.0);

 This	 code	 forces	 the	 compiler	 to	 load	 the	 floating-point	 version	 of	
scanf().

User-defined Data Types and Variables 417

exercISeS
	 1.	 What	is	the	difference	between	a	structure	and	a	union?

	 2.	 What	is	a	member	of	a	structure?

	 3.	 How	is	a	structure	different	from	an	array?

	 4.	 What	are	member,	 tag,	and	variable	name	 in	a	structure	and	what	
purpose	do	they	serve?

	 5.	 What	keyword	is	used	in	C	to	create	a	structure?

	 6.	 What	 is	 the	 difference	 between	 a	 structure	 tag	 and	 a	 structure	
instance?

	 7.	 What	does	the	following	code	fragment	do?

 struct address {

 char name[31];

 char add1[31];

 char add2[31];

 char city[11];

 char state[3];

 char zip[11];

 } myaddress = { “Barun Dasgupta”,

 “Q_Software”,

 “P.O. Box 1213”,

 “Kolkata”, “WB”, “700 015”};

	 8.	 Assume	that	you	have	declared	an	array	of	structures	and	that	ptr
is	 a	 pointer	 to	 the	 first	 array	 element	 (that	 is,	 the	 first	 structure	 in	
the	array).	How	would	you	change	ptr	to	point	to	the	second	array	
element?

	 9.	 Write	 a	 code	 that	 defines	 a	 structure	 named	 time,	 which	 contains	
three int members.

	10.	 Write	a	code	that	performs	two	tasks:	defines	a	structure	named	data
that	contains	one	int	type	member	and	two	float	type	members,	and	
declare	an	instance	of	type	data named info.

	11.	 Continuing	with	Exercise	10,	how	would	you	assign	the	value	100 to
the	integer	member	of	the	structure	info?

	12.	 Write	a	code	that	declares	and	initializes	a	pointer	to	info.

	13.	 Continuing	with	Exercise	12,	show	two	ways	of	using	pointer	notation	
to	assign	the	value	5.5	to	the	first	float member of info.

	14.	 Define	a	structure	type	named	data	that	can	hold	a	single	string	of	up	
to	20	characters.

	15.	 Create	 a	 structure	 containing	 five	 strings:	address1, address2,
city, state, and zip.	Create	a	typedef	called	RECORD	that	can	
be	used	to	create	instances	of	this	structure.

	16.	 Using	 the	 typedef	 from	 Exercise	 15,	 allocate	 and	 initialize	 an	
element	called	myaddress.

	17.	 What	is	wrong	with	the	following	code?

 struct {

 char zodiac_sign[21];

 int month;

	 		 }	sign	=	“Leo”,	8;

	18.	 What	is	wrong	with	the	following	code?

 /* setting up a union */

 union data{

 char a_word[4];

 long a_number;

 }generic_variable = {“WOW”, 1000};

	19.	 What	will	be	the	output	of	the	following	program?

 struct {

 int i;

	 		 	 float	f;

 }var;

 int main()

 {

 var.i=5;

 var.f=9.76723;

 printf(“%d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 5 9.76723

	 (c)	 5 9.76

 (d) 5 9.77

	20.	 What	will	be	the	output	of	the	following	program?

 struct {

 int i;

	 		 	 	 float	f;

 };

 int main()

 {

 int i=5;

	 		 	 	 float	f=9.76723;

 printf(“%d %.2f”,i,f);

 return(0);

 }

 (a) Compile-time error

 (b) 5 9.76723

 (c) 5 9.76

 (d) 5 9.77

	21.	 What	will	be	the	output	of	the	following	program?

 struct values {

 int i;

	 		 	 float	f;

 };

418 Computer Fundamentals and Programming in C

 int main()

 {

 struct values var={555,67.05501};

 printf(“%2d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 55 67.05

 (c) 555 67.06

 (d) 555 67.05

	22.	 What	will	be	the	output	of	the	following	program?

 typedef struct {

 int i;

	 		 	 float	f;

 }values;

 int main()

 {

 static values var={555,67.05501};

 printf(“%2d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 55 67.05

 (c) 555 67.06

 (d) 555 67.05

	23.	 What	will	be	the	output	of	the	following	program?

 struct my_struct {

 int i=7;

	 		 	 float	f=999.99;

 }var;

 int main()

 {

 var.i=5;

 printf(“%d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 7 999.99

 (c) 5 999.99

 (d) None of these

	24.	 What	will	be	the	output	of	the	following	program?

	 		 struct	first	{

 int a;

	 		 	 float	b;

 }s1={32760,12345.12345};

 typedef struct {

 char a;

 int b;

 }second;

 struct my_struct {

	 		 	 float	a;

 unsigned int b;

 };

 typedef struct my_struct third;

 int main()

 {

 static second s2={‘A’,--4};

 third s3;

 s3.a=~(s1.a-32760);

 s3.b=-++s2.b;

 printf(“%d%.2f\n%c%d\n%.\

 2f %u”,(s1.a)––,\

 s1.b+0.005,s2.a+32,s2.b,\

 ++(s3.a),––s3.b);

 return(0);

 }

 (a) Compile-time error

 (b) 32760 12345.12

 A 4

 1 –5

 (c) 32760 12345.13

 a –5

 0.00 65531

 (d) 32760 12345.13

 a 5

 0.00 65530

	25.	 What	will	be	the	output	of	the	following	program?

 struct {

 int i,val[25];

 }var={1,2,3,4,5,6,7,8,9};

 *vptr=&var;

 int main()

 {

 printf(“%d %d %d\n”,var.i,);\

 (vptr->i,(*vptr).i);\

 printf(“%d %d %d %d %d %d”,\

User-defined Data Types and Variables 419
 var.val[4],*(var.val+4),vptr—>val[4],\

 *(vptr—>val+4),(*vptr).val[4],\

 *((*vptr).val+4));

 return(0);

 }

 (a) Compile-time error

 (b) 1 1 1

 6 6 6 6 6 6

 (c) 1 1 1

 5 5 5 5 5 5

 (d) None of these

	26.	 What	will	be	the	output	of	the	following	program?

 typedef struct {

 int i;

	 		 	 float	f;

 }temp;

	 		 void	alter(temp	*ptr,int	x,float	y)

 {

 ptr->i=x;

 ptr->f=y;

 }

 int main()

 {

 temp a={111,777.007};

 printf(“%d %.2f\n”,a.i,a.f);

 alter(&a,222,666.006);

 printf(“%d %.2f”,a.i,a.f);

 return(0);

 }

 (a) Compile-time error

 (b) 111 777.007

 222 666.006

 (c) 111 777.01

 222 666.01

 (d) None of these

	27.	 What	will	be	the	output	of	the	following	program?

 union A {

 char ch;

 int i;

	 		 	 float	f;

 }tempA;

 int main()

 {

 tempA.ch=’A’;

 tempA.i=777;

 tempA.f=12345.12345;

 printf(“%d”,tempA.i);

 return(0);

 }

 (a) Compile-time error

 (b) 12345

 (c) Erroneous output

 (d) 777

	28.	 Write	a	program	using	enumerated	types	which	when	given	today’s	
date	will	print	out	tomorrow’s	date	in	the	form	31st	January.

	29.	 Write	 a	 simple	 database	 program	 that	 will	 store	 a	 person’s	 details	
such	as	age,	date	of	birth,	and	address.

Project queStIonS
 1.	 Write	a	menu-based	program	 in	C	 that	uses	a	set	of	 functions	 to	

perform	the	following	operations:

	 	 (a)	reading	a	complex	number

	 	 (b)	writing	a	complex	number

	 	 (c)	addition	of	two	complex	numbers

	 	 (d)	subtraction	of	two	complex	numbers

	 	 (e)	multiplication	of	two	complex	numbers

	 	 Represent	the	complex	number	using	a	structure.

	 2.	 Declare	 a	 structure	 to	 store	 the	 following	 information	 of	 an	
employee:

 ∑	 Employee	code

 ∑	 Employee	name

 ∑	 Salary

 ∑	 Department	number

 ∑	 Date	of	joining	(it	is	itself	a	structure	consisting	of	day,	month,	and	
year)

	 3. Write	a	C	program	 to	store	 the	data	of	 ‘n’	employees	where	n is
given	by	the	user	(Use	dynamic	memory	allocation).	Include	a	menu	
that	will	allow	user	to	select	any	of	the	following	features:

 (a) Use	a	function	to	display	the	employee	information	while	getting	
the	maximum	and	minimum	salary.

 (b)	Use	 a	 function	 to	 display	 the	 employee	 records	 in	 ascending	
order	according	to	their	salary.

 (c)	Use	 a	 function	 to	 display	 the	 employee	 records	 in	 ascending	
order	according	to	their	date	of	joining.

 (d)	Use	a	function	to	display	the	department	wise	employe	records.

420 Computer Fundamentals and Programming in C

15.1 IntroductIon
A file is a repository of data that is stored in a permanent
storage media, mainly in secondary memory. So far, data was
entered into the programs through the computer’s keyboard.
This is somewhat laborious if there is a lot of data to process.
The solution is to combine all the input data into a file and
let the C program read the information from the file when it
is required. Frequently, files are used for storing information
that can be processed by the programs. Files are not only used
for storing data, programs are also stored in files. The editor,
which is used to write or edit programs and save, simply
manipulates files for the programmer. The UNIX commands
cat, cp, and cmp are all programs which process the files.
 In order to use files one has to learn about file I/O, i.e., how
to write information to a file, and how to read information
from a file. It will be seen that file I/O is almost identical

to the terminal I/O that has been used so far. The primary
difference between manipulating files and terminal I/O is that
the programs must specify which files are to be used because
there are many files on the disk. Specifying the file to use is
referred to as opening the file. When one opens a file, what
is to be done with the file must also be mentioned, i.e., read
from the file, write to the file, or both.
 A very important concept in C is the stream. The stream
is a common, logical interface to the various devices that
comprise the computer. In its most common form, a stream is
a logical interface to a file. As defined by C, the term ‘file’ can
refer to a disk file, the screen, the keyboard, a port, a file on
tape, and so on. Although files differ in form and capabilities,
all streams are the same. The stream provides a consistent
interface to the programmer. Stream I/O uses some temporary
storage area, called buffer, for reading from or writing data to
a file. This is illustrated in Fig. 15.1.

C
h
A
p
t
e
rFiles in C

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

15

∑ analyse the concept of streams used in the C file system
∑ discuss text and binary files
∑ process text files as well as binary files using standard

library functions
∑ explain the sequential and random access of data stored

in a disk file using proper standard library functions
∑ discuss advanced file management system and low-

level input and output

Files in C 421

Operating
system side

C Side

Buffer

Base of buffer
(Initial file pointer)

Storage device,
e.g., file on disk

Fig. 15.1 Stream I/O model

 The figure models an efficient I/O. When a stream linked
to a disk file is created, a buffer is automatically created and
associated with the stream. A buffer is a block of memory
used for temporary storage of data being written to and read
from the file. Buffers are needed because disk drives are
block-oriented devices. This means that they operate most
efficiently when data is read and written in blocks of a certain
size. The size of the ideal block differs, depending on the
specific hardware in use. It is typically of the order of a few
hundred to a thousand bytes. However, it is not necessary to
be concerned about the exact block size.
 The buffer associated with a file stream serves as an
interface between the stream (which is character-oriented)
and the disk hardware (which is block-oriented). As the
program writes data to the stream, the data is saved in the
buffer until it is full, and then the entire contents of the buffer
are written as a block to the disk. A similar process takes
place when reading data from a disk file. The creation and
operation of the buffer are handled by the operating system
and are entirely automatic; the programmer does not have
to be concerned with them. C does offer some functions for
buffer manipulation. In practical terms, this buffer operation
means that during program execution, data that the program
wrote to the disk might still be in the buffer, and not on the
disk. If the program hangs up, because of power failure, or in
case of some other problem, the data that is still in the buffer
might be lost, and the user will not know what is contained
in the disk file. This is because data resides in the buffer until
the buffer is flushed or written out into file. Any abnormal
exit of code may cause problems.
 A stream is linked to a file while using an open operation.
A stream is disassociated from a file while using a close
operation. The current location, also referred to as the current
position, is the location in a file where the next file access will
occur.

 There are two types of streams—text and binary. A text
file can be thought of as a stream of characters that can be
processed sequentially. It can only be processed (logically)
in the forward direction. For this reason, a text file is usually
opened for only one kind of operation, that is, reading or
writing or appending, at any given time. Similarly, since text
files only process characters, they can only read or write one
character at a time. Functions are provided that deal with
lines of text, but these still essentially process one character
at a time.
 As text streams are associated with text files, they may
contain a sequence of lines. Each line contains zero or more
characters and ends with one or more characters that specify
the end of the line. The maximum number of characters in each
line is limited to 255 characters. It is important to remember
that a ‘line’ is not a C string; there is no terminating NUL
character (‘\0’). When a text-mode stream is used, translation
occurs between C’s new-line character (\n) and whatever
character(s) the operating system uses to mark end-of-line on
disk files. On DOS systems, it is a carriage-return line feed
(CR-LF) combination. When data is written to a text-mode
file, each ‘\n’ is translated to a CR-LF; when data is read
from a disk file, each CR-LF is translated to a ‘\n’. On UNIX
systems, no translation is done; new-line characters remain
unchanged.
 When text data files are used, there are two representations
of data—internal and external. For example, a value of type
int will usually be represented internally as two- or four-bytes
(16- or 32-bit) of memory. Externally, though, that integer
will be represented as a string of characters representing
its decimal or hexadecimal value. Conversion between the
internal and external representations is very easy. To convert
from the internal representation to the external, printf or
fprintf is used in almost all cases. For example, to convert
an int, %d or %i format might be used. To convert from the
external representation to the internal, scanf or fscanf can
be used, or the characters are read and then functions such as
atoi, strtol, or sscanf are used.
 Binary file is a collection of bytes. In C, a byte and a
character are equivalent. Hence, a binary file is also referred to
as a character stream, but there are two essential differences.
 First, the data that is written into and read from remain
unchanged, with no separation between lines and no use of
end-of-line characters. The NULL and end-of-line characters
have no special significance and are treated like any other
byte of data.
 Second, the interpretation of the file is left to the
programmer. C places no construct on the file, and it may
be read from, or written to, in any manner chosen by the
programmer.
 In C, processing a file using random access techniques
involves moving the current file position to an appropriate

422 Computer Fundamentals and Programming in C

place in the file before reading or writing data. This indicates
a second characteristic of binary files—they are generally
processed using read and write operations simultaneously.
For example, a database file will be created and processed as
a binary file. A record update operation will involve locating
the appropriate record, reading the record into memory,
modifying it in some way, and finally writing the record back
to disk at its appropriate location in the file. These kinds of
operations are common to many binary files, but are rarely
found in applications that process text files.
 Some file input/output functions are restricted to one file
mode, whereas other functions can use either mode.

note

 ∑	 When	 one	 opens	 a	 file,	 the	 operation	 that	 has	 to	 be	
carried	on	the	file	must	also	be	specified,	i.e.,	read	from	
the	file,	write	to	the	file,	or	both.

 ∑	 C	 treats	a	disk	file	 like	a	stream	which	can	be	opened	
either	in	text	or	in	binary	mode.

 ∑	 The	maximum	number	of	characters	in	each	line	is	limited	
to	255	characters.

 ∑	 A	‘line’	of	a	text	stream	is	not	a	C	string;	thus	there	is	no	
terminating	NULL	character	(‘\0’).

 ∑	 In	a	binary	file,	the	NULL	and	end-of-line	characters	have	
no	special	significance	and	are	treated	like	any	other	byte	
of	data.

 ∑	 C	places	no	construct	on	 the	binary	file,	and	 it	may	be	
read	 from,	 or	written	 to,	 in	 any	manner	 chosen	 by	 the	
programmer.

15.2 usIng FIles In c
To use a file, four essential actions should to be carried out.
These are as follows:
∑ Declare a file pointer variable.
∑ Open a file using the fopen() function.
∑ Process the file using suitable functions.
∑ Close the file using the fclose() function.

For clarity, the above order is not maintained.

15.2.1 declaration of File Pointer
Because a number of different files may be used in a
program, when reading or writing, the type of file that is to
be used must be specified. This is accomplished by using a
variable called a file pointer, a pointer variable that points to
a structure FILE. FILE is a structure declared in stdio.h. The
members of the FILE structure are used by the program in
various file access operations, but programmers do not need
to be concerned about them. However, for each file that is to
be opened, a pointer to type FILE must be declared.
 When the function fopen() is called, that function creates
an instance of the FILE structure and returns a pointer to that

structure. This pointer is used in all subsequent operations on
the file. The syntax for declaring file pointers is as follows:

FILE *file_pointer_name,…;

For example,
FILE *ifp;
FILE *ofp;

declares ifp and ofp to be FILE pointers. Or, the two FILE
pointers can be declared in just one declaration statement as
shown below.

FILE *ifp, *ofp;

The * must be repeated for each variable.

15.2.2 opening a File
To open a file and associate it with a stream, the fopen()
function is used. Its prototype is as follows:

FILE *fopen(const char *fname, const char *mode);

 File-handling functions are prototyped in <stdio.h>,
which also includes other needed declarations. Naturally, this
header must be included in all the programs that work with
files. The name of the file to be opened is pointed to by fname,
which must be a valid name. The string pointed at for mode
determines how the file may be accessed.
 Every disk file must have a name, and filenames must be
used when dealing with disk files. The rules for acceptable
filenames differ from one operating system to another.
In DOS, a complete filename consists of a name that has one
to eight characters, optionally followed by a period and an
extension that has from one to three characters. In contrast,
the Windows operating systems as well as most UNIX
systems permit filenames with up to 256 characters.
 Readers must be aware of the filename rules of the
operating system they use. In Windows, for example,
characters such as the following are not permitted: /, \, :, *, ?,
 “, <, >, and |.
 A filename in a C program can also contain path
information. The path specifies the drive and/or directory
(or folder) where the file is located. If a filename is specified
without a path, it will be assumed that the file is located
wherever the operating system currently designates as the
default. It is good programming practice to always specify
path information as part of the filename. On PCs, the
backslash character (\) is used to separate directory names
in a path. For example, in DOS and Windows, the name

c:\examdata\marks.txt

refers to a file named marks.txt in the directory \examdata on
drive C. It is to be remembered that the backslash character
has a special meaning in C with respect to escape sequence
when it is in a string. To represent the backslash character
itself, one must precede it with another backslash. Thus, in a
C program, the filename would be represented as follows.

Files in C 423

Directory	

name

 “c:\\examdata\\list.txt”;
Drive	
name File	

name

 However, if the filename is entered by the user through
the keyboard, a single backslash has to be entered. Not all
systems use the backslash as the directory separator. For
example,

UNIX uses the forward slash (/).

File modes—What sort of open
Before a file can be used for reading or writing, it must be
opened. This is done through the fopen() function. fopen()
takes two string arguments. The first of these is the filename;
the second is an option that conveys to C what processing is
to be done with the file: read it, write to it, append to it, etc.
Table 15.1 lists the options available with fopen().

Table 15.1	 File	opening	modes

Mode Meaning

r Open	a	text	file	for	reading

w Create	a	text	file	for	writing

a Append	to	a	text	file

rb Open	a	binary	file	for	reading

wb Open	a	binary	file	for	writing

ab Append	to	a	binary	file

r+ Open	a	text	file	for	read/write

w+ Create	a	text	file	for	read/write

a+ Append	or	create	a	text	file	for	read/write

r+b Open	a	binary	file	for	read/write

w+b Create	a	binary	file	for	read/write

a+b Append	a	binary	file	for	read/write

 The following statements are used to create a text file with
the name data.dat under current directory. It is opened in w
mode as data is to be written into the file data.dat.

FILE *fp;
fp = fopen(“data.dat”,“w”);

fopen() requires two parameters—both are character strings.
Either parameter could be a string variable. The following is
an example where a file pointer “ fp” is declared, the file name,
which is declared to contain a maximum of 80 characters, is
obtained from the keyboard and then the file is opened in the
“write” mode.

char filename[80];

FILE *fp;

printf(“Enter the filename to be opened”);

gets(filename);

fp = fopen(filename,“w”);

Checking the result of fopen()
The fopen() function returns a FILE *, which is a pointer to
structure FILE, that can then be used to access the file. When
the file cannot be opened due to reasons described below,
fopen() will return NULL. The reasons include the following.
∑ Use of an invalid filename
∑ Attempt to open a file on a disk that is not ready; for

example, the drive door is not closed or the disk is not
formatted

∑ Attempt to open a file in a non-existent directory or on a
non-existent disk drive

∑ Attempt to open a non-existent file in mode r
 One may check to see whether fopen() succeeds or fails
by writing the following set of statements.

fp = fopen(“data.dat”,“r”);

 Attempts to
open	the	file	
named	“data.dat”		
in	read	mode

if(fp == NULL)

{

 printf(“Can not open data.dat\n”);

 exit(1);

}

 Alternatively, the above segment of code can be written as
follows.

FILE *fp;

if((fp = fopen(“data.dat”, “r”)) ==NULL)

{

 printf(“Can not open data.dat\n”);

 exit(1);

}

 Whenever fopen() is used in a program, it is recommended
to test for the result of an fopen() and check whether it is
NULL or not. There is no way to find exactly which error has
occurred, but one can display an error message to the user
and try to open the file again, or end the program.

15.2.3 closing and Flushing Files
After completing the processing on the file, the file must be
closed using the fclose()function. Its prototype is

int fclose(FILE *fp);

 The argument fp is the FILE pointer associated with
the stream; fclose() returns 0 on success or -1 on error.
When a program terminates (either by reaching the end of
main() or by executing the exit() function), all streams
are automatically flushed and closed. Generally, in a simple
program, it is not necessary to close the file because the
system closes all open files before returning to the operating
system. It would be a good programming practice to close
all files.

424 Computer Fundamentals and Programming in C

 When a file is closed, the file’s buffer is flushed or
written to the file. All open streams except the standard ones
(stdin, stdout, stdprn, stderr, and stdaux) can also be
closed by using the fcloseall() function. Its prototype is int
fcloseall(void);

 The above function also flushes any stream buffers and
returns the number of streams closed. A stream’s buffers
can be flushed without closing it by using the fflush() or
flushall() library functions. Use fflush() when a file’s buffer
is to be written to disk while still using the file. Use flushall()
to flush the buffers of all open streams. The prototypes of
these two functions are:

int fflush(FILE *fp);

int flushall(void);

 The argument fp is the FILE pointer returned by fopen()
when the file was opened. If a file was opened for writing,
fflush() writes its buffer to disk. If the file was opened for
reading, the buffer is cleared. The function fflush() returns
0 on success or EOF if an error occurred. The function
flushall() returns the number of open streams.

note
 ∑	 The	type	of	file	that	is	to	be	used	must	be	specified	using	

a	variable	called	a	file	pointer.
 ∑	 The	Windows	operating	systems	as	well	as	most	UNIX	

systems	permit	file	names	with	up	to	256	characters.
 ∑	 A	 filename	 in	 a	 C	 program	 can	 also	 contain	 path	

information.
 ∑	 If	a	filename	is	entered	by	the	user	through	the	keyboard,	

a	 single	 backslash	 or	 front	 slash	 has	 to	 be	 entered	
depending	upon	the	system	as	the	directory	separator.

 ∑ fclose()	returns	0	on	success	or	-1	on	error.
 ∑	 The	operating	system	closes	all	open	files	when	the	pro-

gram	execution	finishes	and	before	returning	to	the	oper-
ating	system.

15.3 WorkIng WIth text FIles
C provides four functions that can be used to read text files
from the disk. These are
∑ fscanf()
∑ fgets()
∑ fgetc()
∑ fread()
 C provides four functions that can be used to write text
files into the disk. These are
∑ fprintf()
∑ fputs()
∑ fputc()
∑ fwrite()

15.3.1 character Input and output
When used with disk files, the term character I/O refers to
single characters as well as lines of characters. This is because
a line is a sequence of zero or more characters terminated by
the new-line character. Character I/O is used with text-mode
files. The following sections describe character input/output
functions for files with suitable examples.

putc() function
The library function putc() writes a single character to a
specified stream. Its prototype in stdio.h appears as follows:

 int putc(int ch, FILE *fp);

 The argument ch is the character to be outputted. As with
other character functions, it is formally considered to be of
type int, but only the lower-order byte is used. The argument
fp is the pointer associated with the file, which is the pointer
returned by fopen() when the file is opened. The function
putc() returns the character just written if successful or EOF
if an error occurs. The symbolic constant EOF is defined in
stdio.h, and it has the value –1.
 Because no ‘real’ character has that numeric value, EOF
can be used as an error indicator with text-mode files only.
 The following program illustrates how to write a single
character at a time into a text file.

Write	mode

Declaring	
pointer	to	
FILE

File	name

#include <stdio.h>

int main()

{
 FILE *fp;

 char text[80];

 int i, c;

 fp = fopen(“abc.txt”, “w”);

 printf(“\n ENTER TEXT”);

 scanf(“%[^\n]”, text);

 for(c = 1; c <= 10; c++)

 {

 for(i = 0; text[i]; i++)

 putc(text[i], fp);

 putc(‘\n’, fp);

 }

 fclose(fp);

 return 0;

}

 To append more lines to the file abc.txt, the statement
in bold font has to be replaced with the statement fp =

fopen(“abc.txt”, “a”);

 The operating system close all open files when the program
execution finishes and before returning to the operating
system.

Files in C 425
fputs() function
To write a line of characters to a stream, the library function
fputs() is used. This function works just like the string library
function puts(). The only difference is that with fputs() one
can specify the output stream. Also, fputs() does not add a
new line to the end of the string; to include ‘\n’, it must be
explicitly specified. Its prototype in stdio.h is

char fputs(char *str, FILE *fp);

 The argument str is a pointer to the null-terminated string
to be written, and fp is the pointer to type FILE returned
by fopen() when the file was opened. The string pointed to
by str is written to the file, ignoring its terminating\0. The
function fputs() returns a non-negative value if successful
or EOF on error.

note
 ∑	 With	 disk	 files,	 the	 term character I/O	 refers	 to	 single	

characters	as	well	as	lines	of	characters.
 ∑	 The	function	putc()	 returns	the	character	 just	written	 if	

successful	or	EOF	if	an	error	occurs.
 ∑	 The	symbolic	constant	EOF	 is	defined	in	stdio.h,	and	it	

has	the	value	–1.
 ∑ fputs() does	not	add	a	“new	line”	to	the	end	of	the	string	

written	on	to	a	file.
 ∑	 The	 function	fputs() returns	a	non-negative	value	 if	

successful	or	EOF	on	error.

15.3.2 end of File (eoF)
When reading from a file, how can the program detect that it
has reached the end of the file? One way is to have a special
marker at the end of the file. For instance,

∑	 A # character on its own could be the last line.
∑	 DOS uses Ctrl-z as the special character that ends a file. (It

also knows how many characters are there in the file.) The
use of Ctrl-z is historical and most people would want to
do away with it.

∑	 In UNIX, Ctrl-d is used as the end-of-file character. Using
a special character is not satisfactory. It means that a file that
contains these characters as real text behaves abnormally.

Detecting the end of a file
Sometimes, it is not known exactly how long a file is, but
it is still possible to read data from the file, starting at the
beginning and proceeding to the end. There are two ways to
detect end-of-file.
 When reading from a text-mode file character by character,
one can look for the end-of-file character. The symbolic
constant EOF is defined in stdio.h as -1, a value never used
by a ‘real’ character. When a character input function reads

EOF from a text-mode stream, it ensures that it has reached the
end of the file. For example, one could write the following.

while((c = fgetc(fp)) != EOF)

 The variable returned from the getc() function is a character,
so we can use a char variable for this purpose. However, there
is a problem that could develop here if an unsigned char is used.
This is because C returns a -1 for an EOF which an unsigned
char type variable is not capable of containing. An unsigned
char type variable can only have the values of 0 to 255, so
it will return a 255 for a –1. The program can never find the
EOF and will therefore never terminate the loop. This is easy
to prevent. Always use a char type variable in returning an
EOF.
 There are three character input functions: getc() and
fgetc() for single characters, and fgets() for lines.

getc() and fgetc() functions
The functions getc() and fgetc() are identical and can be
used interchangeably. They input a single character from the
specified stream. The following is the prototype of getc() in
stdio.h.

int getc(FILE *fp);

 The argument fp is the pointer returned by fopen() when
the file is opened. The function returns the character that was
input or it returns EOF on error.
 If getc() and fgetc() return a single character, why are
they prototyped to return a type int? The reason is that when
reading files, one needs to be able to read in the end-of-file
marker, which on some systems is not a type char but a type
int.

fgets() function
fgets() is a line-oriented function. The ANSI prototype is

char *fgets(char *str, int n, FILE *fp);

 The function reads from the stream pointed to by fp and
places the output into the character array pointed to by str.
It will stop reading when any of the following conditions are
true.
∑	 It has read n – 1 bytes (one character is reserved for the

null-terminator).
∑	 It encounters a new-line character (a line-feed in the

compiler is placed here).
∑	 It reaches the end of file.
∑	 A read error occurs.
fgets() automatically appends a null-terminator to the data
read. fgetc() gives the user more control than fgets(), but
reading a file byte-by-byte from disk is rather inefficient.
These functions are illustrated in the following programs. The
following program displays the contents of a file on screen.

426 Computer Fundamentals and Programming in C

ExamplEs

fp

Input
stream

Secondary
storage device

whatever

Data

1

ch

w
w

Input
stream

Datafp

whatever2

ch

w
w

Output device

3

1. #include <stdio.h>
int main()

{

 FILE *fopen(), *fp;

 int ch; File	name

 fp = fopen(“a.txt”, “r”);

 if(fp == NULL) Read
mode

 {

 printf(“Cannot open the file a.txt \n”);

 exit(1)

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 putchar(ch);

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

	 Alternatively,	one	could	prompt	 the	user	 to	enter	 the	filename	again,	
and	try	to	open	it	again.

2. #include <stdio.h>
#include <string.h>

int main()

{

 FILE *fopen(), *fp;

 int ch;

 char fname[30];

 printf(“\n Enter the filename \n”);

 fflush(stdin); Clears	the	input		
stream

 scanf(“%[^\n]”,fname);

 fp = fopen(fname, “r”);

 while(fp ==NULL || strcmp(fname, “ ”)!= 0)

 {

 printf(“Cannot open the file %s for reading \n”,
fname);

 printf(“\n Enter the filename \n”);

 fflush(stdin);

 scanf(“%[^\n]”,fname);

 fp = fopen(fname, “r”);

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 putchar(ch);

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

	 In	this	example,	filenames	are	taken	from	the	user	until	a	valid	existing	
filename	 is	 entered	 or	 the	 space	 bar	 followed	 by	 the <Enter>	 key	 is	
pressed.	The	following	program	illustrates	that	reading	a	line	at	a	time	from	
a	file	can	be	performed	using fgets().

3. #include <stdio.h>
int main()

{

 FILE *fp;

 char word[60];

 char *c;

 fp = fopen(“abc.txt”,“r”);

 do {

 c = fgets(word, 60,fp);

 if(c != NULL)

 printf(“%s”, word);

 }

 while(c != NULL);

 fclose(fp);

 return 0;

}

4. Write	a	C	program	that	counts	the	number	of	characters	and	number	of	
lines	in	a	file.

#include <stdio.h>

int main()

{

 FILE *fopen(), *fp;

 int ch, nc, nlines;

 char fname[30];

 nlines = 0;

 nc = 0;

 printf(“Enter filename:”);

 fflush(stdin);

 scanf(“%s”, fname);

 fp = fopen(fname, “r”);

 if(fp == NULL)

 {

 printf(“Cannot open the file %s for reading \n”,
fname);

 exit(0);

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 if(ch == ‘\n’)

 nlines++;

 nc++;

 ch = getc(fp);

Files in C 427
 }

 fclose(fp);

 if(nc != 0)

 {

 printf(“There are %d characters in %s \n”, nc,
filename);

 printf(“There are %d lines \n”, nlines);

 }

 else

 printf(“File: %s is empty \n”, filename);

 return 0;

}

5.	Write	a	program	to	display	the	contents	of	a	file,	10	lines	at	a	time.

#include <stdio.h>

int main()

{

 FILE *fopen(), *fp;

 int ch, nline;

 char fname[40], ans[40];

 printf(“Enter filename:”);

 scanf(“%s”, fname);

 fp = fopen(fname, “r”);

/* open for reading */

 if(fp == NULL)

/* check whether file exists or not */

 {

 printf(“Cannot open the file %s \n”, fname);

 exit(0);

 }

 nline = 1;

 ans[0] = ‘\0’;

 ch = getc(fp);

/* Read 1st character if any */

 while(ch != EOF && (ans[0] != ‘Q’ || ans[0] != ‘q’))

 {

 putchar(ch); /* Display character */

 if(ch == ‘\n’)

 nline++;

 if(nline == 10)

 {

 nline = 1;

 printf(“[Press Return to continue, q to quit]”);

 fflush(stdin);

 scanf(“%s”, ans);

 }

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

	 The	 above	 program	 pauses	 after	 displaying	 10	 lines	 until	 the	 user	
presses either Q or q	 to	 quit	 or	 return	 to	 display	 the	next	 10	 lines.	 The	
above	program	does	the	same	as	the	unix command ‘more’.

6. Write	a	program	to	compare	two	files	specified	by	the	user,	displaying	
a	message	indicating	whether	the	files	are	identical	or	different.

#include <stdio.h>

int main()

{

 FILE *fp1, *fp2;

 int ca, cb;

 char fname1[40], fname2[40];

 printf(“Enter first filename:”);

 fflush(stdin);

 gets(fname1);

 printf(“Enter second filename:”);

 fflush(stdin);

 gets(fname2);

 fp1 = fopen(fname1, “r”);

/* open first file for reading */

 fp2 = fopen(fname2, “r”);

 /* open second file for reading */

if(fp1 == NULL) /* check does file exist */

 {

 printf(“Cannot open the file %s for reading \n”,
fname1);

 exit(1); /* terminate program */

 }

 else if(fp2 == NULL)

 {

 printf(“Cannot open %s for reading \n”, fname2);

 exit(1); /* terminate program */

 }

 else /* both files opened successfully */

 {

 ca = getc(fp1);

 cb = getc(fp2);

 while(ca! = EOF && cb != EOF && ca == cb)

 {

 ca = getc(fp1);

 cb = getc(fp2);

 }

 if(ca !== cb)

 printf(“Files are identical \n”);

 else if(ca!=cb)

 printf(“Files differ \n”);

 fclose(fp1);

 fclose(fp2);

 }

 return 0;

}

428 Computer Fundamentals and Programming in C

7. Write	a	file	copy	program	in	C	that	copies	a	file	into	another.

#include <stdio.h>
int main()
{

 FILE *fp1, *fp2;

 int ch;

 char fname1[30], fname2[30];

 printf(“Enter source file:”);

 fflush(stdin);

 scanf(“%s”, fname1);

 printf(“Enter destination file:”);

 fflush(stdin);

 scanf(“%s”, fname2);

 fp1 = fopen(fname1, “r”);

/* open for reading */

 fp2 = fopen(fname2, “w”);

 /* open for writing */

 if(fp1 == NULL)

/* check whether file exists or not */

 {

 printf(“Cannot open the file %s for reading \n”,
fname1);

 exit(1); /* terminate program */

 }

 else if(fp2 == NULL)
 {

 printf(“Cannot open the file %s for writing \n”,
fname2);

 exit(1); /* terminate program */
 }
 else /* both files has been opened successfully */
 {
 ch = getc(fp1); /* read from source */
 while(ch! = EOF)
 {
 putc(ch, fp2); /* copy to destination */
 ch = getc(fp1);
 }
 fclose(fp1); / * Now close the files */
 fclose(fp2);
 printf(“Files successfully copied \n”);
 }
 return 0;

}

8. Write	a	C	program	that	accepts	the	names	of	two	files.	It	should	copy	
the	first	file	into	the	second	line	by	line.	Use	the	fgets() and fputs()
functions.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE *fp1, *fp2;

 char fname1[30], fname2[30], t[60];

 printf(“Enter source file:”);

 fflush(stdin);

 gets(fname1);

 printf(“Enter destination file:”);

 fflush(stdin);

 gets(fname2);

 if((fp1 = fopen(fname1, “r”)) == NULL)

 printf(“Unable to open %s for reading \n”, fname1);

 else if((file_2 = fopen(fname2, “w”)) == NULL)

 printf(“Unable to open %s for writing \n”, fname2);

 else

 {

 while((fgets(t, sizeof(t), fp1)) ! = NULL)

 fputs(t, fp2);

 fclose(fp1);

 fclose(fp2);

 }

 return 0;

}

	 The	other	two	file-handling	functions	to	be	covered	are	fprintf() and
fscanf().	These	functions	operate	exactly	like	printf() and scanf()
except	that	they	work	with	files.	Their	prototypes	are

int fprintf(FILE *fp, const char *control-string,

 ...);

int fscanf(FILE *fp, const char *control-string

 ...);

	 Instead	of	directing	their	I/O	operations	to	the	console,	these	functions	
operate	 on	 the	 file	 specified	 by	fp.	 Otherwise,	 their	 operations	 are	 the	
same	as	their	console-based	relatives.	The	advantage	of	fprintf() and
fscanf()	is	that	they	make	it	very	easy	to	write	a	wide	variety	of	data	to	a	
file	using	a	text	format.	The	components	of	the	control	string	are	the	same	
as	for	scanf(). Finally, the ellipses (...) indicate one or more additional
arguments	such	as	the	addresses	of	the	variables	where	inputs	are	to	be	
assigned.	 The	 following	program	 illustrates	 how	 the	 function	fscanf()
can	be	used	to	write	into	a	text	file.

9. #include <stdio.h>
int main()

 {

 FILE *fp;

 if((fp = fopen(“afile.txt”, “w”)) != NULL)

 {

 fprintf(fp, “%s”, “Introduction\n”);

 fprintf(fp, “%s”, “To\n”);

 fprintf(fp, “%s”, “Computing\n”);

 fclose(fp);

 }

 else

 printf(“Unable to open the file for writing”);

 return 0;
 }

Files in C 429
	 A	file	named	‘afile.txt’ is created in the current directory, the content
of	which	is	as	follows:

 Introduction

 To

 Computing

	 The	 next	 program	 reads	 five	 integer	 values	 from	 the	 keyboard	 and	
stores	 them	 in	 the	 data	 file	num.dat.	 In	 this	 program	 the	 user-defined	
character	is	used,	as	end-of-file	marker	instead	of	standard	EOF.

10. #include <stdio.h>
 int main()

 {

 FILE *fp;

 int n[5],i;

 if((fp = fopen(“num.dat”, “w”)) != NULL)

 {

 printf(“Enter 5 numbers, to be stored in
 num.dat...”);

 for(i = 0; i < 5; i++)

 {

 scanf(“%d”, &n[i]);

 fprintf(fp, “%d\n”, n[i]);

 }

 fprintf(fp,”%d”,9999);

 fclose(ptr);

 }

 else

 printf(“Unable to open num.dat ...\n”);

 return 0;

 }

Output
 Enter 5 numbers, to be stored in num.dat ... 1 2 3
4 5

	 The	file	num.dat	now	contains	the	numbers	arranged	in	the	
following	format.

 1
 2
 3
 4
 5
 9999

 Here, 9999	 is	 used	as	 end-of-file	marker.	 It	 is	 not	 a	member	 of	 the	
data	set.	While	reading	data	from	‘num.dat’, the data is read until 9999
is	found.	The	following	program	describes	the	usage	where	the	numbers	
stored	in	the	file	‘num.dat’ are summed up and displayed. Here fscanf()
has	to	be	used	to	read	data	from	the	file.

ExamplE
11. #include <stdio.h>
 int main()

 {

 FILE *fp;

 int n,s=0;

 if((fp = fopen(“num.dat”, “r”)) != NULL)

 {

 fscanf(fp, “%d\n”, &n);

 while(n!=9999)

 {

 s+=n;

 fscanf(fp, “%d\n”, &n);

 }

 printf(“Sum is %d”,s);

 fclose(fp);

 }

 else

 printf(“Unable to open num.dat ... \n”);

 return 0;

 }

Output
 Sum is 15

fscanf() is a field-oriented function and is inappropriate for
use in a robust, general-purpose text file reader. It has two
major drawbacks.

 The programmer must know the exact data layout of the
input file in advance and rewrite the function call for every
different layout.

 It is difficult to read text strings that contain spaces because
fscanf() sees space characters as field delimiters.

 Now, one might think that calls to fprinf() and fscanf()
differ significantly from calls to printf() and scanf(), and
that these latter functions do not seem to require file pointers.
As a matter of fact they do. The file pointer associated with
printf() is a constant pointer named stdout defined in <stdio.
h>. Similarly, scanf() has an associated constant pointer
named stdin. scanf() reads from stdin and printf() writes
to stdout. This can be verified by executing the following
program.

ExamplE
12. #include < stdio.h>

 int main()

 {

 int a, b;

 fprintf(stdout, “Enter two numbers separated by a
space:”);

 fscanf(stdin, “%d %d”, &a, &b);

 fprintf(stdout, “Their sum is: %d.\n”, a + b);

 return 0;

 }

430 Computer Fundamentals and Programming in C

 There is a third constant file pointer defined as stderr.
This is associated with the standard error file. stderr has the
following use: in some systems such as msdos and unix, the
output of the programs can be redirected to files by using the
redirection operator. In Dos, for example, if abc.exe is an
executable file that writes to the monitor, then its output can
be redirected to a disk file abc.out by the command

 abc>abc.out<CR>

 Output that would normally appear on the monitor can
thus be sent to the file abc.out. On the other hand, while
redirecting output, one would not want any error messages
such as ‘Unable to open abc.dat for writing’ to be
redirected; one wants them to appear on the screen. Writing
error messages to stderr

 fprintf(stderr, “Unable to open newfile.dat for
writing”);

ensures that normal output will be redirected, but er-
ror messages will still appear on the screen.
 All three are, in fact, objects of type pointer to FILE, and
they may be used in any file-handling function in just the
same way as a pointer returned by fopen(). In fact, the macro
putchar(c) is really nothing more than

 putc(c,stdout)

 It is sometimes useful to initialize a pointer to FILE to point
to one of the standard items, to provide a ‘standard input as
default’ type of operation.

 FILE *ifp = stdin;

is a typical definition.

15.3.3 detecting the end of a File using the
feof() Function

To detect end-of-file, there is library function feof(), which
can be used for both binary- and text-mode files.

 int feof(FILE *fp);

 The argument fp is the FILE pointer returned by fopen()
when the file was opened. The function feof() returns 0, if
the end-of-file has not been reached, or a non-zero value,
if end-of-file has been reached. The following program
demonstrates the use of feof(). The program reads the file
one line at a time, displaying each line on stdout, until feof()
detects end-of-file.

ExamplE

13. #include <stdlib.h>

 #include <stdio.h>

 #define SIZE 100

 int main()

 {

 char temp[SIZE];

 char fname[60];

 FILE *fp;

 printf(“Enter name of filename:”);

 fflush(stdin);

 scanf(“%s”, fname);

 if((fp = fopen(fname, “r”)) == NULL)

 {

 fprintf(stderr, “Error in opening file”);

 exit(1);

 }

 while(!feof(fp))

 {

 fgets(temp, SIZE, fp);

 printf(“%s”,temp);

 }

 fclose(fp);

 return 0;

 }

Output
Enter name of filename:

first.c

#include <stdio.h>

int main()

{

 printf(“C is Sea”);

 return 0;

}

note
 ∑	 DOS	uses	Ctrl-z	as	the	special	character	that	ends	a	file.
 ∑	 In	UNIX,	Ctrl-d	is	used	as	the	end-of-file	character.
 ∑ fgets()	 automatically	 appends	 a	 null-terminator	 to	 the	

data	read.	
 ∑ fgetc() gives	more	control	than	fgets(),	but	reading	a	

file	byte-by-byte	from	disk	is	rather	inefficient.
 ∑ fscanf() is	a	field-oriented	function	and	is	inappropriate	

for	use	in	a	robust,	general-purpose	text	file	reader.

15.4 WorkIng WIth BInary FIles
The operations performed on binary files are similar to text
files since both types of files can essentially be considered as
streams of bytes. In fact, the same functions are used to access
files in C. When a file is opened, it must be designated as text
or binary and usually this is the only indication of the type
of file being processed. To illustrate a binary file, consider
the following program containing a function, filecopy(), that
is passed the names of the source and destination files and
then performs the copy operation just as the outlined steps.

Files in C 431
If there is an error in opening either file, the function does
not attempt the copy operation and returns -1 to the calling
program. When the copy operation is complete, the program
closes both files and returns 0. The steps for copying a binary
file into another are as follows.
 (i) Open the source file for reading in binary mode.
 (ii) Open the destination file for writing in binary mode.
 (iii) Read a character from the source file. Remember, when

a file is first opened, the pointer is automatically at the
start of the file, so there is no need to position the file
pointer.

 (iv) If the function feof() indicates that the end of the source
file has been reached, then close both files and return to
the calling program.

 (v) If end-of-file has not been reached, write the character to
the destination file, and then go to step (iii).

ExamplE
14. #include <stdio.h>
 int filecopy(char *, char *);

 int main()

 {
 char source[80], destination[80];

 printf(“\nEnter source file:”);

 fflush(stdin);

 gets(source);

 printf(“\nEnter destination file:”);

 fflush(stdin);

 gets(destination);

 if(filecopy(source, destination) == 0)

 puts(“\n Successfully copied”);

 else

 fprintf(stderr, “Error in copying...”);

 return 0;

 }

 int filecopy(char *s, char *d)

 {

 FILE *ofp, *nfp;

 int ch;

 /* Open the source file for reading
in binary mode. */

 if((ofp = fopen(s, “rb”)) == NULL)

 return -1;

 /* Open the destination file for
writing in binary mode. */

 if((nfp = fopen(d, “wb”)) == NULL)

 {

 fclose(ofp);

 return -1;

 }

 while(1)

 {

 ch = fgetc(ofp);

 if(!feof(ofp))

 fputc(ch, nfp);

 else

 break;

 }

 fclose(nfp);

 fclose(ofp);

 return 0;

}

Output
Enter source file: a.txt

Enter destination file: b.txt

Successfully copied

note
 ∑	 At	the	time	of	file	opening,	it	must	be	designated	as	text	

or	binary	for	indicating	the	type	of	file	being	processed.	
 ∑	 The	operations	performed	on	binary	 files	are	 similar	 to	

text	files.

15.5 dIrect FIle InPut and outPut
Direct I/O is used only with binary-mode files. With direct
output, blocks of data are written from memory to disk.
Direct input reverses the process. A block of data is read from
a disk file into memory. For example, a single direct-output
function call can write an entire array of type double to disk,
and a single direct-input function call can read the entire
array from disk back into memory. The C file system includes
two important functions for direct I/O: fread() and fwrite().
These functions can read and write any type of data, using
any kind of representation. Their prototypes are

size_t fread(void *buffer, size_t size, size_t
num,FILE *fp);

size_t fwrite(void *buffer, size_t size, size_t num,
FILE *fp);

 The fread() function reads from the file associated with
fp, num number of objects, each object size in bytes, into
buffer pointed to by buffer. It returns the number of objects
actually read. If this value is 0, no objects have been read,
and either end-of-file has been encountered or an error has
occurred. One can use feof() or ferror() to find out whether
end of file has been detected or an error has occurred. Their
prototypes are

int feof(FILE *fp);

int ferror(FILE *fp);

432 Computer Fundamentals and Programming in C

 The feof() function returns non-zero, if the file associated
with fp has reached the end of file, otherwise it returns 0.
This function works for both binary files and text files. The
ferror() function returns non-zero if the file associated with
fp has experienced an error, otherwise it returns 0.
 The fwrite() function is the opposite of fread(). It writes
to file associated with fp, num number of objects, each object
size in bytes, from the buffer pointed to by buffer. It returns
the number of objects written. This value will be less than
num only if an output error has occurred. To check for errors,
fwrite() is usually programmed as follows:

if((fwrite(buffer, size, num, fp)) != num)

 fprintf(stderr, “Error writing to file.”);

 The following program describes the use of fread() and
fwrite() functions. The program initializes an array. Then,
the fwrite() function is used to save the array to disk. After
that, the fread() function is used to read the data into a
different array. Finally, it displays both the arrays on screen
to show that they now hold the same data.

ExamplE
15. #include <stdlib.h>
 #include <stdio.h>

 #define SIZE 10

 int main()

 {
 int i, a[SIZE], b[SIZE];

 FILE *fp;
 for(i = 0; i < SIZE; i++)
 a[i] = 2 * i;
 if((fp = fopen(“dfile.txt”, “wb”)) == NULL)
 {
 fprintf(stderr, “Error opening file.”);
 exit(1);
 }
 if(fwrite(a, sizeof(int), SIZE, fp) != SIZE)
 {
 fprintf(stderr, “Error writing to file.”);
 exit(1);
 }
 fclose(fp);
 if((fp = fopen(“dfile.txt”, “rb”)) == NULL)
 {
 fprintf(stderr, “Error in opening file.”);
 exit(1);
 }
 if(fread(b, sizeof(int), SIZE, fp) != SIZE)
 {
 fprintf(stderr, “Error in reading file.”);
 exit(1);

 }

 fclose(fp);

 for(i = 0; i < SIZE; i++)

 printf(“%d\t%d\n”, a[i], b[i]);

 return 0;

 }

Output
0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

18 18

15.5.1 sequential Versus random File access
Every open file has an associated file position indicator,
which describes where read and write operations take place
in the file. The position is always specified in bytes from the
beginning of the file. When a new file is opened, the position
indicator is always at the beginning of the file, i.e., at position
0. Because the file is new and has a length of 0, there is no
other location to indicate. When an existing file is opened,
the position indicator is at the end of the file if the file was
opened in the append mode, or at the beginning of the file if
the file was opened in any other mode.
 The file I/O functions covered earlier in this chapter make
use of the position indicator, although the manipulations go
on behind the scenes. Writing and reading operations occur at
the location of the position indicator and update the position
indicator as well. Thus, if one wishes to read all the data in
a file sequentially or write data to a file sequentially, it is not
necessary to be concerned about the position indicator because
the stream I/O functions take care of it automatically.
 When more control is required, the C library functions
that help determine and change the value of the file position
indicator, have to be used. By controlling the position
indicator, random access of a file can be made possible. Here,
random means that data can be read from, or written to, any
position in a file without reading or writing all the preceding
data. This will be covered in the later sections of the chapter.

note
 ∑	 Direct	I/O	is	used	only	with	binary-mode	files.

 ∑ fread() and fwrite() functions	can	read	and	write	any	
type	of	data,	using	any	kind	of	representation.

 ∑	 There	 are	 two	 types	 of	 file	 accessing	 method—:	
sequential	and	random.

 ∑	 Every	open	file	has	an	associated	file	position	indicator.	
The	 position	 is	 always	 specified	 in	 bytes	 from	 the	
beginning	of	the	file.

Files in C 433

15.6 FIles oF records
Most C program files may be binary files, which can logically
be divided into fixed-length records. Each record will consist
of data that conforms to a previously defined structure. In
C, this structure can be formed using a struct data type.
The records are written into disk sequentially. This happens
because as each record is written to disk, the file position
indicator is moved to the byte immediately after the last
byte in the record just written. Binary files can be written
sequentially to the disk or in a random access manner.

15.6.1 Working with Files of records
Using fscanf() and fprintf() The following structure
records the code, name, and price of an item. Using this
structure, a file of records can be processed. Here, 0 is used as
end-of-file marker (logically) to indicate there are no records
in the file.

ExamplE

16. #include <stdio.h>
 struct item

 {

 int itemcode;

 char name[30];

 double price;

 };

 void append();

 void modify();

 void dispall();

 void dele();

 int main()

 {

 int ch;

 struct item it;

 FILE *fp;

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,

 it.name,it.price);

 fprintf(fp,“%d”,0);

 fclose(fp);

 while(1)

 {

 printf(“\n \t 1.APPEND RECORD”);

 printf(“\n \t 2.DISPLAY ALL RECORD”);

 printf(“\n \t 3.EDIT RECORD”);

 printf(“\n \t 4.DELETE RECORD”);

 printf(“\n \t 5.EXIT”);

 printf(“\n \t ENTER UR CHOICE:”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:append(); break;

 case 2:dispall(); break;

 case 3:modify(); break;

 case 4:dele(); break;

 case 5:exit(0);

 }

 }

 return 0;

 }

 void append()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“a”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,
 it.name,it.price);

 fprintf(fp,“%d”,0);

 fclose(fp);

 }

 void dispall()

 {

 FILE *fp;

 struct item it;

434 Computer Fundamentals and Programming in C

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fp, “%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,
 it.name,it.price);

 }

 fclose(fp);

 }

 void modify()

 {

 FILE *fp,*fptr;

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“w”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO EDIT”);

 scanf(“%d”,&icd);

 while(1)

 {

 fscanf(fp,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 if(it.itemcode==icd)

 {

 found=1;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 printf(“\n EXISTING RECORD IS...\n”);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,

 it.name,it.price);

 printf(“\n ENTER NEW ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER NEW PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
 it.itemcode,it.name,it.price);

 }

 else

 {

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
 it.itemcode,it.name,it.price);

 }

 }

 fprintf(fptr,“%d”,0);

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\nRECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“r”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fptr,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fptr,“%s”,it.name);

 fscanf(fptr,“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,
 it.name,it.price);

 }

 fprintf(fp,“%d”,0);

 fclose(fptr);

 fclose(fp);

 }

Files in C 435
 }

 void dele()

 {

 FILE *fp,*fptr;

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“w”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO DELETE”);

 scanf(“%d”,&icd);

 while(1)

 {

 fscanf(fp,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 if(it.itemcode==icd)

 {

 found=1;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 }

 else

 {

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
 it.itemcode,it.name,it.price);

 }

 }

 fprintf(fptr,“%d”,0);

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\n RECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“r”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fptr,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fptr,“%s”,it.name);

 fscanf(fptr,“%lf”,&it.price);

 fprintf(fp, “%d \t%s\t%lf\n”,it.itemcode,
 it.name,it.price);

 }

 fprintf(fp,“%d”,0);

 fclose(fptr);

 fclose(fp);

 }

 }

Using fread() and fscanf() The following program
demonstrates how the records stored in a binary file can be
read sequentially from the disk. This program will work only
if the structure of the record is identical to the record used
in the previous example. Here, the file is opened using the
fopen() function, with the file opening mode set to ‘rb’. The
file is read sequentially because after each read operation the
file position is moved to point to the first byte of the very next
record. It must be remembered that the feof() function does
not indicate that the end of the file has been reached until
after an attempt has been made to read past the end-of-file
marker.

ExamplE

17. include <stdio.h>
 struct item

 {

 int itemcode;

 char name[30];

 double price;

 };

 void append();

 void modify();

 void dispall();

 void dele();

436 Computer Fundamentals and Programming in C

 int main()

 {

 int ch;

 struct item it;

 FILE *fp;

 fp=fopen(“item.dat”,“wb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fp);

 fclose(fp);

 dispall();

 while(1)

 {

 printf(“\n \t 1.APPEND RECORD”);

 printf(“\n \t 2.DISPLAY ALL RECORD”);

 printf(“\n \t 3.EDIT RECORD”);

 printf(“\n \t 4.EXIT”);

 printf(“\n \t ENTER UR CHOICE:”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:append(); break;

 case 2:dispall();break;

 case 3:modify();break;

 case 4:exit(0);

 }

 }

 return 0;

 }

 void append()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“ab”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fp);

 fclose(fp);

 }

 void dispall()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“rb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fread(&it,sizeof(it),1,fp);

 if(feof(fp))

 break;

 printf(“\n %d \t %s \t %lf”,it.itemcode,
 it.name,it.price);

 }

 fclose(fp);

 }

 void modify()

 {

 FILE *fp,*fptr;

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“rb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“wb”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO EDIT”);

 scanf(“%d”,&icd);

 while(1)

 {

Files in C 437
 fread(&it,sizeof(it),1,fp);

 if(feof(fp))

 break;

 if(it.itemcode==icd)

 {

 found=1;

 printf(“\n EXISTING RECORD IS...\n”);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,
 it.name,it.price);

 printf(“\n ENTER NEW ITEM NAME:”);

 fflush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER NEW PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fptr);

 }

 else

 {

 fwrite(&it,sizeof(it),1,fptr);

 }

 }

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\nRECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“wb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“rb”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fread(&it,sizeof(it),1,fptr);
 if(feof(fptr))
 break;
 fwrite(&it,sizeof(it),1,fp);
 }
 fclose(fptr);
 fclose(fp);
 }
 }

Using fgets() and fputc() It is not that only fread() and
fwrite() or fscanf() and fprintf() are used for processing
of files of records. fgets() and fputc() can also be used.
The following program illustrates this. The program keeps
the records of an item in a file stock.dat, uses a structure
item and processes the file, and prints out all items where the
quantity on hand is less than or equal to the reorder level.

ExamplE

18. #include <stdio.h>
 #include <stdlib.h>

 #include <ctype.h>

 #include <string.h>

 /* definition of a record of type item */

 struct item {

 char name[20];

 float price;

 int qty;

 int reorder;

 };

 void show(struct item);

 int getrecord(struct item *);

 FILE *fp; /* input file pointer */

 void show(struct item rec)

 {

 printf(“\nitem name\t%s\n”, rec.name);

 printf(“item price\t%.2f\n”, rec.price);

 printf(“item quantity\t%d\n”, rec.qty);

 printf(“item reorder level\t%d\n”, rec.reorder);

 }

 int getrecord(struct item *p)

 {

 int i = 0, ch;

 char temp[40];

 ch = fgetc(fp);

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF)

 return 0;

 /* read item name */

 while((ch != ‘\n’) && (ch != EOF)) {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 strcpy(p->name, temp);

 if(ch == EOF) return 0;

 /* skip to start of next field */

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

438 Computer Fundamentals and Programming in C

 ch = fgetc(fp);

 if(ch == EOF) return 0; /* read item price */

 i = 0;

 while((ch != ‘\n’) && (ch != EOF))
 {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 p->price = atof(temp);

 if(ch == EOF) return 0;

 /* skip to start of next field */

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF) return 0;

 /* read item quantity */

 i = 0;

 while((ch != ‘\n’) && (ch != EOF))
 {
 temp[i++] = ch;
 ch = fgetc(fp);
 }
 temp[i] = ‘\0’;
 p->qty = atoi(temp);
 if(ch == EOF) return 0;
 /* skip to start of next field */
 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))
 ch = fgetc(fp);
 if(ch == EOF) return 0;
 /* read item reorder level */
 i = 0;
 while((ch != ‘\n’) && (ch != EOF)) {
 temp[i++] = ch;
 ch = fgetc(fp);
 }
 temp[i] = ‘\0’;
 p->reorder = atoi(temp);
 if(ch == EOF) return 0;
 return 1;

/* signify record has been
read successfully */

 }

 int main()

 {

 struct item rec;

 fp = fopen(“stock.dat”, “r”);

 if(fp == NULL) {

 printf(“Unable to open the file %s\n”, filename);

 if(fp != NULL)

 fclose(fp);

 exit(1);

 }

 while(! feof(fp)) {

 if(getrecord(&rec) == 1) {

 if(rec.qty <= rec.reorder)

 show(rec);

 }

 else

 {

 if(fp != NULL)

 fclose(fp);

 exit(1);

 }

 }

 if(fp != NULL)

 fclose(fp);

 exit(0);

 return 0;

 }

note
 ∑	 Most	 C	 program	 files	 may	 be	 binary	 files,	 which	 can	

logically	be	divided	into	fixed-length	records.
 ∑	 The	records	in	a	file	are	written	sequentially	onto	the	disk.
 ∑	 Binary	files	can	be	written	sequentially	to	the	disk	or	in	a	

random	access	manner.
 ∑	 With	fread() and fscanf(),	the	file	is	read	sequentially	

and	after	each	read	operation,	the	file	position	indicator		is	
moved	to	the	first	byte	of	the	next	record.

 ∑ The feof()	 function	 does	 not	 indicate	 that	 the	 end	 of	
the	file	has	been	reached	until	after	an	attempt	has	been	
made	to	read	past	the	end-of-file	marker.

15.7 random access to FIles oF records
For random access to files of records, the following functions
are used.
 fseek()
 ftell()
 rewind()
 By using fseek(), one can set the position indicator
anywhere in the file. The function prototype in stdio.h is

 int fseek(FILE *fp, long offset, int origin);

 The argument fp is the FILE pointer associated with the
file. The distance that the position indicator is to be moved
is given by offset in bytes. It is the number of bytes to
move the file pointer. This is obtained from the formula:
the desired record number × the size of one record. The
argument origin specifies the position indicator’s relative
starting point. There can be three values for origin,
with symbolic constants defined in stdio.h, as shown in
Table 15.2.

Files in C 439
Table 15.2	 Possible	origin	values	for	fseek()

Constant Value Description

SEEK_SET 0 Moves	the	indicator	offset	bytes	from	the	
beginning	of	the	file

SEEK_CUR 1 Moves	the	 indicator	offset	bytes	from	its	
current	position

SEEK_END 2 Moves	the	indicator	offset	bytes	from	the	
end	of	the	file

 The function fseek() returns 0, if the indicator is moved
successfully or non-zero in case of an error. The following
program uses fseek() for random file access. The program uses
the previously created file item.dat and the structure item. It is
assumed that there are four records in the file item.dat.

ExamplEs

19. #include <stdio.h>
 #include <string.h>

 struct item{

 int itemcode;

 char name[30];

 double price;

 };

 typedef struct item product;

 FILE *fp;

 int main()

 {

 product it;

 int rec, result;

 fp = fopen(“item.dat”, “r+b”);

 printf(“Which record do you want [0-3]? Press\
-1 to exit...”);

 scanf(“%d”, &rec);

 while(rec >= 0)

 {

 fseek(fp, rec*sizeof(it), SEEK_SET);

 result = fread(&it, sizeof(it), 1, fp);

 if(result==1)

 {

 printf(“\nRECORD %d\n”, rec);

 printf(“Item code........: %d\n”,
it.itemcode);

 printf(“Item name.......: %s\n”, it.name);

 printf(“Price...: %8.2f\n\n”, it.price);

 }

 else

 printf(“\nRecord %d not found!\n\n”, rec);

 printf(“Which record do you want [0-3]? Press
-1 to exit...”);

 scanf(“%d”, &rec);

 }

 fclose(fp);

 return 0;

 }

The	following	program	will	further	clear	the	concept	of	fseek().

20.#include <stdio.h>
/* random record description—could be anything */

struct rec

{

 int x,y,z;

};

/* writes and then reads 10 arbitrary records from
the file “junk”. */

int main()

{

 int i,j;

 FILE *f;

 struct rec r;

 /* create the file of 10 records */

 f=fopen(“junk”,“w”);

 if(!f)

 {

 printf(“File opening error for writing”);

 exit(1);}

 for(i=1;i<=10; i++)

 {

 r.x=i;

 r.y=i*2;

 r.z=i*3;

 fwrite(&r,sizeof(struct rec),1,f);

 }

 fclose(f);

 /* read the 10 records */

 f=fopen(“junk”,“r”);

 if(!f) {

 printf(“\n File opening error for reading”);

 exit(1);}

 for(i=1;i<=10; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read the first 5
records in reverse order */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“\n File opening error for reading”);

 exit(1);

440 Computer Fundamentals and Programming in C

 }

 for(i=4; i>=0; i––)

 {

 fseek(f,sizeof(struct rec)*i,SEEK_SET);

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read every other record */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“File opening error for reading”);

 exit(1);

 }

 fseek(f,0,SEEK_SET);

 for(i=0;i<5; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 fseek(f,sizeof(struct rec),SEEK_CUR);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read 4th record,

 change it, and write it back */

 f=fopen(“junk”,“r+”);

 if(!f)

 {

 printf(“File opening error for reading and\
 writing”);

 exit(1);}

 fseek(f,sizeof(struct rec)*3,SEEK_SET);

 fread(&r,sizeof(struct rec),1,f);

 r.x=9;

 r.y=99;

 r.z=999;

 fseek(f,sizeof(struct rec)*3,SEEK_SET);

 fwrite(&r,sizeof(struct rec),1,f);

 fclose(f);

 printf(“\n”);

 /* read the 10 records to ensure

 4th record was changed */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“File opening error for reading and\
writing”);

 exit(1);

 }

 for(i=1;i<=10; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 return 0;

}

Output
 1 2 3

 2 4 6

 3 6 9

 4 8 12

 5 10 15

 6 12 18

 7 14 21

 8 16 24

 9 18 27

 10 20 30

 5 10 15

 4 8 12

 3 6 9

 2 4 6

 1 2 3

 1 2 3

 3 6 9

 5 10 15

 7 14 21

 9 18 27

 1 2 3

 2 4 6

 3 6 9

 9 99 999

 5 10 15

 6 12 18

 7 14 21

 8 16 24

 9 18 27

 10 20 30

 To set the position indicator to the beginning of the file, use
the library function rewind(). Its prototype in stdio.h is

void rewind(FILE *fp);

 The argument fp is the FILE pointer associated with the
stream. After rewind() is called, the file’s position indicator is
set to the beginning of the file (byte 0). Use rewind() to read
some data from a file and to start reading from the beginning
of the file again without closing and reopening the file.
 To determine the value of a file’s position indicator, use
ftell(). The prototype of this function, located in stdio.h,
reads

 long ftell(FILE *fp);

Files in C 441
 The argument fp is the FILE pointer returned by fopen()
when the file is opened. The function ftell() returns a type
long that gives the current file position in bytes from the start
of the file (the first byte is at position 0). In case of an error,
ftell() returns -1L (a type long –1).
 There are a number of interesting points here.
 The direct access functions always work with long integers

and traditionally, associated variables are declared as being
of type long int.

 The record numbering starts at zero and the file examination
part of the program is terminated by a negative input.
Strictly, the final parameter of fseek() ought to have been
SEEK_SET, not zero.

 The value returned by ftell() is the byte position of the
byte about to be read from the file. Therefore, when a
new line is encountered, it is the start address of the next
record.

 The functions fsetpos() and fgetpos() do the same
things as fseek() and ftell(), but they use parameters of
type fpos_t rather than long int. This potentially allows for
larger files to be handled. The use of these functions must be
preferred.

note
 ∑	 By	 using	 fseek(),	 one	 can	 set	 the	 position	 indicator	

anywhere	in	the	file.
 ∑	 The	function	fseek()	returns	0	if	the	indicator	is	moved	

successfully	or	non-zero	in	case	of	an	error.
 ∑	 To	determine	the	value	of	a	file’s	position	indicator,	use	

ftell().
 ∑	 The	 record	 numbering	 starts	 at	 zero	 and	 the	 file	

examination	 part	 of	 the	 program	 is	 terminated	 by	 a	
negative	input.

15.8 other FIle management FunctIons
The copy and delete operations are also associated with file
management. Though one could write programs for them,
the C standard library contains functions for deleting and
renaming files.

15.8.1 deleting a File
The library function remove() is used to delete a file. Its
prototype in stdio.h is

 int remove(const char *filename);

 The variable *filename is a pointer to the name of the file
to be deleted. The only precondition is that the specified file
must not be open. If the file exists, it will be deleted and
remove() returns 0. If the file does not exist or if it is read-
only, if the programmer does not have sufficient access rights
(for unix system), or in case of some other error, remove()
returns -1.

 The following program describes the use of the remove()
function.

ExamplE

21.#include <stdio.h>
int main(void)
{
 char file[80];
 /* prompt for filename to delete */
 printf(“File to delete: ”);
 gets(file);
 /* delete the file */
 if(remove(file) == 0)
 printf(“Removed %s.\n”,file);
 else
 perror(“remove”);
 return 0;
}

In	this	program,	a	function	perror()	is	used,	the	prototype	for	which	is

 void perror(const char *message);

perror()	produces	a	message	on	standard	error	output,	describing	the	
last	error	encountered.	The	argument	string	message	is	printed	first,	then	a	
colon	and	a	blank,	followed	by	the	message	and	a	new	line.	If	the	message	
is a NULL	pointer	or	if	it	points	to	a	null	string,	the	colon	is	not	printed.	

15.8.2 renaming a File
The rename() function changes the name of an existing disk
file. The function prototype in stdio.h is as follows.

int rename(const char *oldname, const char *newname);

 The filenames pointed to by oldname and newname follow
the rules given earlier in this chapter. The only restriction
is that both names must refer to the same disk drive; a file
cannot be renamed on a different disk drive. The function
rename() returns 0 on success, or -1 if an error occurs. Errors
can be caused by the following conditions (among others).
 The file oldname does not exist.
 A file with the name newname already exists.
 One tries to rename on another disk.
Consider the following program.

ExamplE

22.#include <stdio.h>
int main(void)

{

 char oldname[80], newname[80];

 /* prompt for file to rename and new name */

 printf(“File to rename:”);

 gets(oldname);

 printf(“New name:”);

442 Computer Fundamentals and Programming in C

 gets(newname);

 /* Rename the file */

 if(rename(oldname, newname) == 0)

 printf(“Renamed %s to %s.\n”, oldname, newname);

 else

 perror(“rename”);

 return 0;

}

note
 ∑	 The	copy	and	delete	operations	are	also	associated	with	

file	management.
 ∑	 In	case	of	remove()	function,	the	only	precondition	is	that	

the	specified	file	must	not	be	open.
 ∑	 The	 only	 restriction	 in	 rename()	 function	 is	 that	 both	

names	must	refer	to	the	same	disk	drive;	a	file	cannot	be	
renamed	on	a	different	disk	drive.

15.9 loW-leVel I/o
This form of I/O is unbuffered. This means that, each read
or write request results in accessing the disk (or device)
directly to fetch/put a specific number of bytes. There are no
formatting facilities. Instead of file pointers, we use low-level
file handles or file descriptors, which give a unique integer
number to identify each file.

To open a file the following function is used.
int open(char *filename, int flag, int perms);

 The above function returns a file descriptor or -1 for
a failure. The flag controls the file access and has the
following predefined in fcntl.h: O_APPEND, O_CREAT,
O_EXCL, O_RDONLY, O_RDWR, O_WRONLY, and others. perms is
best set to 0 for most of our applications.
The function

 creat(char *filename, int perms);

can also be used to create a file.
 int close(int handle);

can be used to close a file.
 The following functions are used to read/write a specific
number of bytes from/to a file stored or to be put in the
memory location specified by buffer.

 int read(int handle, char *buffer,unsigned length);

 int write(int handle, char *buffer, unsigned length);

 The sizeof() function is commonly used to specify the
length. The read() and write() functions return the number
of bytes read/written or -1 if they fail.

note
 ∑	 Low-level	I/O	has	no	formatting	facilities.	
 ∑	 Instead	 of	 file	 pointers,	 low-level	 file	 handles	 or	 file	

descriptors,	 which	 give	 a	 unique	 integer	 number	 to	
identify	each	file,	are	used.

summary
Data	can	also	be	stored	in	disk	files.	C	treats	a	disk	file	like	a	stream	(a	
sequence	of	characters),	just	like	the	predefined	streams	stdin, stdout,
and stderr.	A	stream	associated	with	a	disk	file	must	be	opened	using	
the fopen()	library	function	before	it	can	be	used,	and	it	must	be	closed	
after	use	through	the	fclose()	function.	A	disk	file	stream	can	be	opened	
either	in	text	or	in	binary	mode.	

	 After	a	disk	file	has	been	opened,	data	can	be	read	from	the	file,	written	
into	the	file,	or	both.	Data	can	be	accessed	either	in	a	sequential	manner	
or	in	a	random	manner.	Each	open	disk	file	has	an	associated	file	position	
indicator.	This	indicator	specifies	the	position	in	the	file,	measured	as	the	

number	 of	 bytes	 from	 the	 start	 of	 the	 file,	 where	 subsequent	 read	 and	
write	operations	occur.	With	some	cases,	the	position	indicator	is	updated	
automatically	by	the	system,	and	programmers	do	not	have	to	be	bothered	
with	 it.	For	random	file	access,	 the	C	standard	 library	provides	functions	
such as fseek(), ftell(), and rewind()	for	manipulating	the	position	
indicator.

	 Finally,	 C	 provides	 some	 rudimentary	 file	 management	 functions,	
allowing	 deletion	 and	 renaming	 of	 disk	 files.	 Low-level	 file	 handling		
functions	 that	do	not	use	 	 formatting	and	file	position	 indicators	are	also	
available.

key terms
binary file	 It	is	a	collection	of		bytes	or		a	character	stream.	The	data	
that	is	written	into	and	read	from	binary	file	remains	unchanged,	with	no	
separation	between	lines	and	no	use	of	end-of-line	characters	and	the	
interpretation	of	the	file	is	left	to	the	programmer.

buffer	 It	is	a	block	of	memory	used	for	temporary	storage	of	data	
being	written	to	and	read	from	the	file.	It	serves	as	an	interface	between	
the	stream	(which	is	character-oriented)	and	the	disk	hardware	(which	is	
block-oriented).

file management	 It	refers	to	all	operations	related	to	creating,	renam-
ing,	deleting,	merging,	reading,	writing,	etc.	of	any	type	of	files.	

Path	 It	specifies	the	drive	and/or	directory	(or	folder)	where	the	file	is	
located.		On	PCs,	the	backslash	character	is	used	to	separate	directory	
names	in	a	path.	Some	systems	like	UnIx	use	the	forward	slash	(/)	as	the	
directory separator.

Random file access It	means	reading	from	or	writing		to	any	position	
in	a	file	without	reading	or	writing	all	the	preceding	data	by	controlling	the	
position indicator.

record	 It	consists	of	a	collection	of	data	fields		that	conforms	to	a	
previously	defined	structure	that	can	be	stored	on		or	retrieved	from	a	
file.

Files in C 443
Sequential file access	 In	case	of	sequential	file	access,	data	is	read	
from	or	written	to	a	file	in	a	sequential	manner	while		the	position	indicator	
automatically	gets	adjusted	by	the	stream	I/O	functions.

Stream	 It	is	a	common,	logical	interface	to	the	various	devices	that	
comprise	the	computer	and		is	a	logical	interface	to	a	file.	Although	files	

differ	in	form	and	capabilities,	all	streams	are	the	same.

text file	 It	is	a	stream	of	characters	that	can	be	processed	sequentially	
and	logically	in	the	forward	direction.	The	maximum	number	of	characters	
in each line is limited to 255 characters.

Frequently asked questIons
1. What is a file?
	A	file	is	a	collection	of	bytes	stored	on	a	secondary	storage	device,	which	is	
generally	a	disk	of	some	kind.	It	is	identified	by	a	name,	which	is	given	at	the	
time	of	its	creation.	It	may	be	amended,	moved	from	one	storage	device	to	
another	or	removed	completely	when	desired.

2. What is a stream?
 In	 C,	 the	 stream	 is	 a	 common,	 logical	 interface	 to	 the	 various	 devices	
that	form	the	computer.	When	the	program	executes,	each	stream	is	tied	
together	to	a	specific	device	that	is	source	or	destination	of	data.	The	stream	
provides	a	consistent	interface	and	to	the	programmer	one	hardware	device	
will	look	much	like	another.	In	its	most	common	form,	a	stream	is	a	logical	
interface	to	a	file.	Stream	I/O	uses	some	temporary	storage	area,	called	
buffer,	for	reading	from	or	writing	data	to	a	file.	A	stream	is	linked	to	a	file	
by	using	an	open	operation.	A	stream	is	disassociated	from	a	file	using	a	
close operation.
	 	The	 C	 language	 provides	 three	 “standard”	 streams	 that	 are	 always	
available	to	a	C	program.	These	are	the	following:

Name Description Example
stdin Standard Input Keyboard

stdout Standard	Output Screen

stderr Standard Error Screen

3. What is a buffer? What is its purpose?
 Buffer	 is	 a	 temporary	 storage	 area	 that	 holds	 data	 while	 it	 is	 being	
transferred	 to	 and	 from	 memory.	 Buffering	 is	 a	 scheme	 that	 prevents	
excessive	 access	 to	 a	 physical	 I/O	 device	 like	 a	 disk	 or	 a	 terminal.	 Its	
purpose	 is	 to	synchronize	 the	physical	devices	 that	 the	program	needs.	
The	buffer	collects	output	data	until	there	is	enough	to	write	efficiently.	The	
buffering	activities	are	taken	care	of	by	software	called	device	drivers	or	
access	methods	provided	by	the	operating	system.

4. How are buffers useful?

	Buffers	speed	up	input/output	which	can	be	a	major	bottleneck	in	execution	
times.	Thus,	it	is	less	time-consuming	to	transmit	several	characters	as	a	
block	than	to	send	them	one	by	one.	

5. What is FILE?
 FILE is a structure declared in stdio.h.	 The	 members	 of	 the	 FILE
structure	are	used	by	 the	program	 in	 the	various	file	access	operations.	

For	each	file	that	is	to	be	opened,	a	pointer	to	type	FILE	must	be	declared.	
When	the	function	fopen()	is	called,	that	function	creates	an	instance	of	
the FILE structure and returns a pointer to that structure. This pointer is
used	in	all	subsequent	operations	on	the	file.	But	programmers	do	not	need	
to	be	concerned	about	the	members	of	the	structure	FILE.
	 	Because	one	may	use	a	number	of	different	files	in	the	program,	he	or	
she	must	specify	when	reading	or	writing	which	file	one	wishes	to	use.	This	
is	accomplished	by	using	a	variable	called	a	file pointer,	a	pointer	variable	
that points to a structure FILE.

6. How many files can be opened simultaneously?
	The	number	of	files	that	can	be	opened	simultaneously	will	be	determined	
by	 the	value	of	 the	constant	FOPEN_MAX	 that	 is	defined	 in	<stdio.h>.
FOPEN_MAX	is	an	integer	that	specifies	the	maximum	number	of	streams	
that	can	be	opened	at	one	time.	The	C	language	standard	requires	that	the	
value	of	FOPEN_MAX	be	at	least	8,	including	the	standard	streams	stdin,
stdout, and stderr.	Thus,	as	a	minimum,	it	is	possible	to	work	with	up	
to	five	files	simultaneously.

7. What happens if a file is not closed?
	By	 default,	 the	 file	 should	 be	 closed	when	 the	 program	 exits;	 however,	
one should never depend on this. A	file	must	be	closed	as	soon	as	 the	
programmer	has	finished	processing	with	it.	This	defends	data	loss	which	
could	occur	if	an	error	in	another	part	of	the	program	caused	the	execution	
to	be	stopped	in	an	abnormal	fashion.	As	a	consequence,	the	contents	of	
the	output	buffer	might	be	lost,	as	the	file	would	not	be	closed	properly.	It	
should	be	noted	that	one	must	also	close	a	file	before	attempting	to	rename	
it or remove it.

8. What is the difference between gets() and fgets()?

gets() fgets()

The function gets() is
normally	 used	 to	 read	 a	 line	 of	
string	from	the	keyboard.

The	function	fgets() is used to
read	 a	 line	 of	 string	 from	 a	 file	 or	
keyboard.

It automatically replaces the ‘\n’
by ‘\0’.

It does not automatically delete the
trailing	‘\n’.

It takes	one	argument. It	takes	three	arguments.

It	does	not	prevent	overflow. It	prevents	overflow.

exercIses

 1. What	are	the	primary	advantages	of	using	a	data	file?

 2. What is FILE?

	 3.	 What	is	the	purpose	of	the	fopen()	function?

	 4.	 What	is	the	purpose	of	the	fclose()	function?	Is	it	mandatory	to	use	

this	in	a	program	that	processes	a	data	file?

	 5.	 What	 is	 the	 difference	 between	 a	 text-mode	 stream	 and	 a	 binary-
mode	stream?

	 6.	 Describe	different	file	opening	modes	used	with	the	fopen()	function.

444 Computer Fundamentals and Programming in C

	 7.	 What	 is	 a	 stream?	 Describe	 two	 different	 methods	 of	 creating	 a	
stream-oriented	data	file.	

	 8.	 What	are	the	three	general	methods	of	file	access?	

 9. What is EOF?	When	is	it	used?

	10.	 Describe	the	different	methods	for	reading	from	and	writing	into	a	data	
file.

	11.	 What	is	the	difference	between	a	binary	file	and	a	text	file	in	C?

 12. Compare fscanf() and fread()	functions.

	13.	 What	is	the	purpose	of	the	feof()	function?

	14.	 How	do	you	detect	the	end	of	a	file	in	text	and	binary	modes?	Write	a	
code	to	close	all	file	streams.

	15.	 Indicate	two	different	ways	to	reset	the	file	position	pointer	to	the	be-
ginning	of	the	file.	

	16.	 Is	anything	wrong	with	the	following	program?	

FILE *fp;
int c;
if((fp = fopen(oldname, “rb”)) == NULL)
 return -1;
while((c = fgetc(fp)) != EOF)
 fprintf(stdout, “%c”, c);
fclose(fp);

 17.	 Write	a	program	to	copy	one	existing	file	into	another	named	file.

	18.	 Write	a	complete	C	program	that	can	be	used	as	a	simple	line-orient-
ed	text	editor.	The	program	must	have	the	following	capabilities.

	 (i)	 Enter	several	lines	of	text	and	store	them	in	a	data	file
	 (ii)	 List	the	data	file
 (iii) Retrieve and display a particular line

 (iv) Insert n lines
 (v) Delete n lines
	 (vi)	 Save	the	new	text	and	exit
	 	 Carry	out	these	tasks	using	different	functions.

	19.	 Write	a	program	that	opens	a	file	and	counts	the	number	of	charac-
ters.	 The	program	should	 print	 the	 number	 of	 characters	when	 fin-
ished.

	20.	 Write	a	program	 to	compare	 two	files	and	print	out	 the	 lines	where	
they	differ.

	21.	 Write	an	interactive	C	program	that	will	maintain	a	list	roll,	name,	and	
total	marks	of	students.	Consider	the	information	associated	with	each	
roll	to	be	a	separate	record.	Represent	each	record	as	a	structure.	In-
clude	a	menu	that	will	allow	the	user	to	select	any	of	the	following.

	 (i)	 Add	a	new	record
 (ii) Delete a record
	 (iii)	 Modify	a	record
	 (iv)	 Retrieve	and	display	an	entire	record	for	a	given	roll	or	name
 (v) Display all records
	 (vi)	 End	of	computation

	22.	 Write	a	program	that	opens	an	existing	text	file	and	copies	it	to	a	new	
text	 file	with	 all	 lowercase	 letters	 changed	 to	 capital	 letters	 and	 all	
other	characters	unchanged.	

	23.	 Write	a	function	that	opens	a	new	temporary	file	with	a	specified	mode.	
All	temporary	files	created	by	this	function	should	automatically	be	closed	
and	deleted	when	the	program	terminates.

	24.	 Write	a	C	code	that	will	read	a	line	of	characters	(terminated	by	a	\n)
from	a	text	file	into	a	character	array	called	buffer. NULL terminates
the	buffer	upon	reading	a	\n.

Project questions
 1.	 Write	a	C	program	that	takes	the	name	of	a	file	as	a	command-line	

argument,	opens	the	file,	reads	through	it	to	determine	the	number	
of	words	in	each	sentence,	displays	the	total	number	of	words	and	
sentences,	and	computes	the	average	number	of	words	per	sentence.	
The	results	should	be	printed	in	a	table	(as	standard	output),	such	as	
shown	below:	

 This program counts the words and sentences in file
“comp.text”.

Sentence: 1 Words: 29
Sentence: 2 Words: 41
Sentence: 3 Words: 16
Sentence: 4 Words: 22
Sentence: 5 Words: 44
Sentence: 6 Words: 14
Sentence: 7 Words: 32

 File “comp.text” contains 198 words words in
7 sentences for an average of 28.3 words per
sentence.

 In	this	program,	you	should	count	a	word	as	any	contiguous	sequence	
of	 letters,	 and	 apostrophes	 should	 be	 ignored.	 Thus,	 “O’Henry”,	
“government’s”,	and	“friend’s’”	should	each	be	considered	as	
one	word.	

 Also	in	the	program,	you	should	think	of	a	sentence	as	any	sequence	
of	words	that	ends	with	a	period,	exclamation	point,	or	question	mark.	
A	 period	 after	 a	 single	 capital	 letter	 (e.g.,	 an	 initial)	 or	 embedded	
within	digits	(e.g.,	a	real	number)	should	not	be	counted	as	being	the	
end	of	a	sentence.	White	space,	digits,	and	other	punctuation	should	
be	ignored.

 2. Write	a	C	program	that	removes	all	comment	lines	from	a	C	source	
code.

Advanced C 445

16.1 IntroductIon
This chapter deals with some of the topics that typically fall
in the domain of advanced use of C. The features discussed
in this chapter may not be required for general applications,
but may be essential and extremely advantageous for certain
specific cases.
 Preprocessing is the first step in the C program compilation
stage, which is an important feature of the C compiler. In C,
all preprocessor directives begin with a #. It is used to define
constants or any macro substitution.
 It has been discussed in an earlier chapter that pointers
provide control over low-level memory operations. There are
many programs that operate at a low level when individual
bytes are operated on. The combination of pointers and

bit-level operators makes C useful for many low-level
applications and can almost replace assembly code. unIx is
mostly written in C.
 Type qualifiers include the keywords const and volatile.
The const qualifier places the assigned variable in the
constant data area of memory which makes the particular
variable unmodifiable. volatile is used less frequently and it
indicates that the value can be modified outside the control of
the program.
 A function usually takes a number of arguments whose
types are fixed when its code is compiled. But sometimes
it is desirable to implement a function where the number of
arguments is not constant or not known beforehand, when
the function is written. For example, the printf function
is a special type of routine that takes a variable number of

C
h
A
p
T
e
rAdvanced C

LEARNING

 OBJECTIVES

After studying this chapter, the readers will be able to

16

∑ explain bitwise operators and their uses
∑ discuss how command arguments can be passed and

used
∑ discuss C preprocessor, its directives and predefined

identifiers
∑ list the three data type qualifiers–const, volatile, and

restrict

∑ use the data type qualifier restrict with pointers,
functions, blocks, and structures

∑ comprehend variable length argument list and its uses
∑ discuss different memory models and their application

446 Computer Fundamentals and Programming in C

arguments. The user-defined function may use variable-
length argument list. The declaration requires a special
syntax to indicate the fact that beyond a certain argument,
the number and type of the parameters cannot be checked at
compile time. Instead, the number and type of the parameters
has to be computed at run time. using ellipsis in the signature
denotes a variable argument list.

16.2 BItwIse operator
Since a computer understands only machine language, data is
represented as binary numbers that are various combinations
of 0’s and 1’s. readers are conversant with the binary number
system and the binary arithmetic. Table 16.1 lists the bitwise
operators that may be used to manipulate binary numbers.
 Bitwise operators allow the user to read and manipulate
bits in variables of certain types. It is to be remembered that
bitwise operators only work on two types—int and char.
Bitwise operators fall into two categories—binary bitwise
operators and unary bitwise operators. Binary operators
take two arguments while unary operators take only one.
The ~ (bitwise nOT) is a unary bitwise operator as it acts
on a single operand. The &, |, ^, and ~ are known as bitwise
logical operators. The >> and << are termed as bitwise shift
operators. Bitwise operators, like arithmetic operators, do not
change the value of the operands. Instead, a temporary value
is created. This can then be assigned to a variable.

Table 16.1 Bitwise operators used in C

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise Complement

<< Bitwise Shift Left

>> Bitwise Shift Right

 Arithmetic operators are used in conjunction with the
assignment operator to form shorthand forms that do the
desired operation as well as assignment. Such forms are +=,
-=, *=, and so on. These shorthand forms can also be applied
to bitwise operators. For example, |=, &=, and ^= are some of
the shorthand forms with bitwise operators. nearly all binary
operators have a version with = after it. These operators do
change the value of the operands.
 Arithmetic operators have higher precedence than bitwise
operators. The precedence and associativity of bitwise
operators are given in Table 16.2.

Table 16.2 Precedence and associativity of bitwise operators
and logical operators

Precedence Associativity
<< >> L Æ R

< <= > >= L Æ R
== != L Æ R

& L Æ R
^ L Æ R
| L Æ R
&& L Æ R
|| L Æ R
?: R Æ L

= >>= <<= &= ^= |= R Æ L

 It is evident from the table that among bitwise operators,
bitwise shift operators (<< and >>) have higher precedence
than bitwise logical operators and bitwise compound
operators (>>=, <<=, &=, ^=, and |=).

Uses of bitwise operations
 Bitwise operators can be used to set or clear any bit in an

integer.
 They can be used to quickly multiply and divide integers.
 They are most often used in coding device and low-level

applications as they can be used to mask off certain bits.
 Assuming that unsigned ints use 32 bits of memory, two
variables X and Y are defined for illustration as

 X = x31x30...x0
 Y = y31y30...y0

 each bit of X and Y is referred to by writing the variable
name in lowercase with the appropriate subscript numbers.

16.2.1 Bitwise and
The bitwise AnD is true only if both the corresponding bits in
the operands are set. The following chart defines the operation
of ‘&’ operator by applying AnDing on individual bits.

xi yi xi & yi

0 0 0

0 1 0

1 0 0

1 1 1

Result of logical
ANDing between
corresponding bit

positions

 however, here is an example of bitwise ‘&’ operation
applied on numbers represented by four bits.

Variable Decimal equivalent b3 b2 b1 b0

x 12 1 1 0 0

y 10 1 0 1 0

z = x & y 8 1 0 0 0

Advanced C 447
 The & operator can be used to check whether a number is
a power of 2 or not. This can be achieved by using the while
loop and the arithmetic operator % as follows.

ExamplE
1. #include <stdio.h>
 int main()
 {
 int n, r;
 printf(“\n ENTER THE NUMBER :”);
 scanf(“%d”,&n);
 while(n>1)
 {
 r=n%2;

r is assigned the
value obtained as

remainder from this
expression. if(r==0)

 n=n/2;
 else
 break;
 }
if(r!=0)
 printf(“\n The number is not power of 2 ”);
else
 printf(“\n The number is power of 2 ”);
return 0;
}

 using bitwise AnD, the program in example 1 can be
rewritten without using the loop or the arithmetic operators.

 #include <stdio.h>
 int main()
 {
 int n;
 printf(“\n ENTER THE NUMBER :”);

 scanf(“%d”,&n);

 if((n & (n-1))==0)
 printf(“\n The number is power of 2 ”);
 else
 printf(“\n The number is not power of 2 ”);
 return 0;
 }

 For illustration, let n = 8, n & (n – 1) evaluates to 0000.
here n is represented as four binary digits. hence

n 1 0 0 0

n – 1 0 1 1 1

n & (n – 1) 0 0 0 0

 So, the number 8 is a power of 2. But, when n = 12, then,

n 1 1 0 0

n – 1 1 0 1 1

n & (n – 1) 1 0 0 0

Bitwise
operation

 Thus, n & (n–1) is not equal to 0. Therefore, it is not a
power of 2, though it is divisible by 2.
 Masking is a process by which a given bit pattern is
converted into another bit pattern by means of a logical
bitwise operator. One of the operands in the bitwise operation
is the original bit pattern that is to be transformed. The other
operand, called mask, is the selected bit pattern that yields
the desired conversion. The bitwise AnD operator, &, is often
used to mask off some set of bits. The following segment of
code uses a mask with the value 1 and prints an alternating
sequence of 0’s and 1’s.

int i, mask=1;
for(i=0;i<16;++i)
 printf(“%d”,i & mask);

 A mask value can be used to check if certain bits have
been set. For example, to check whether bits 1 and 3 were set,
the number should be masked with 10 and the result tested
against the mask.

ExamplE

2. #include <stdio.h>
 int main()

 {

 int n, mask = 10;

 printf(“Enter a number: ”);

 scanf(“%d”, &n);

 if((n & mask) == mask)

 printf(“Bits 1 and 3 are set”);

 else

 printf(“Bits 1 and 3 are not set”);

 return 0;

 }

 The above example is better understood with the following
illustration:

Variable Contents Remarks

n any
decimal
number

binary (16 bits)
x x x x x x x x
x x x x x x x x

x = 0 or 1
byte (most significant)
byte (least significant)

mask 10 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0

n & mask 0 0 0 0 0 0 0 0
0 0 0 0 x 0 x 0

15... 8
7... ... 3 2 1 0

byte (most significant)
byte (least significant)

Bit number

 In case the value of n & mask is equal to mask, that is, if the
bits 1 and 3 marked as x are equal to 1, then the bits in 1 and
3 positions are set to 1.
 Another important example of mask is 255; its binary
equivalent is 0000 0000 1111 1111. As only the lower order

448 Computer Fundamentals and Programming in C

bits are set to 1, the expression n & 255 produces a value
having a bit pattern with all its most significant bytes 0 and
its least significant byte the same as the least significant byte
in n.

16.2.2 Bitwise or
The | operator is used as bitwise Or. This operation returns a
1 if either of the two bits (but not both) is a 1. The following
chart defines bitwise OR in individual bits which are
represented by variables with subscript i.

xi yi xi | yi

0 0 0

0 1 1

1 0 1

1 1 1

 here is an example of bitwise | applied on four-bit
numbers.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x | y 1 1 1 0

 The bitwise Or operator | is used to turn bits on. In the
following statement

n = n | mask;

the bits, which are set to 1 in mask, are set to 1 in n.

 ExamplE
3. #include <stdio.h>
 int main()
 {
 int n, mask = 4;
 printf(“\n Enter a number: ”);
 scanf(“%d”, &n);
 num |= mask;
 printf(“\n After ensuring bit 2 is set: %d\n”, n);
 return 0;
 }

Output
Enter a number: 3
After ensuring bit 2 is set: 7

 The binary equivalent of 3 represented in eight bits is
00000011. here, the mask is 4, the binary equivalent of which
is 00000100. The | operator sets the third bit of 3 from the
right-hand side to 1. Thus, n becomes 7; its binary equivalent
is 00000111.
 One must distinguish the bitwise operators & and | from
the logical operators && and ||, which imply left-to-right
evaluation of a truth value. For example, if x is 1 and y is 2,
then x & y is 0 while x && y is 1.

16.2.3 Bitwise exclusive-or
The ^ operator is known as the bitwise exclusive Or (xOr).
This operation returns a 1 if either of the two bits (but not
both) is a 1. The following chart defines XOR applied on
individual bits.

xi yi xi ^ yi

0 0 0

0 1 1

1 0 1

1 1 0

 The bitwise exclusive Or operator ^ sets a 1 in each bit
position where its operands have different bits, and 0 where
they are the same. however, the following chart is an example
of bitwise ^ on four bit numbers.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x ^ y 0 1 1 0

 using bitwise xOr operator, two integer variables can be
swapped without using the third variable, as follows.

ExamplE
4. #include <stdio.h>
 int main()
 {
 int a, b;
 printf(“\n Enter the value of a: ”);
 scanf(“%d”, &a);
 printf(“\n Enter the value of b: ”);
 scanf(“%d”, &b);
 a^=b^=a^=b;
 printf(“\n a = %d \t b = %d”,a,b);
 return 0;
 }

Output
 Enter the value of a:8
 Enter the value of b:10
 a = 10 b = 8

 Initially, a = 8; its binary equivalent on an eight-bit machine
is 00001000. b = 10; its binary equivalent is 00001010. The
statement a^=b^=a^=b; can be split into three equivalent
statements as it evaluates from right to left due to the
associativity of the ^= operator.
 (i) a ^= b
 (ii) b ^= a
 (iii) a ^= b

Advanced C 449
 After the execution of (i), the values of a and b in binary
equivalent will be 00000010 and 00001010 respectively.
After the execution of (ii), the values of a and b in binary
equivalent will be 00000010 and 00001000 respectively.
After the execution of (iii), the values of a and b in binary
equivalent will be 00001010 and 00001000 respectively.
That is, a=10 and b=8.
 The above logic may be applied to reverse a given string
using a bitwise operator.

ExamplE

5. #include <stdio.h>
 #include <string.h>

 void reverse(char *str)

 {

 int l,j;

 l = strlen(str) -1;

 if(1==l)

 return; /* No need to reverse */

 for(j=0;j<l;j++,l––)

 {

 str[j]^=str[l]; /*triple xor will

 str[l]^=str[j]; /*replace c[j] with c[i]*/

 str[j]^=str[l]; /*without a temp var*/

 }

 }

 int main()

 {

 char s[80];

 void reverse(char *);

 printf(“\n Enter the string : ”);

	 fflush(stdin);

 scanf(“%[^\n]”,s);

 reverse(s);

 printf(“\n Reverse of the string is %s”,s);

 return 0;

 }

16.2.4 Bitwise not
There is only one unary bitwise operator—bitwise nOT.
It is also known as 1’s complement operator. Bitwise NOT
flips all the bits. This works on a single number and simply
converts each 1 to 0 and each 0 to 1. note that it is not the
same operation as a unary minus.
 The following is a chart that defines ~ on an individual
bit.

xi ~xi

0 1

1 0

 The bitwise ~ is easiest to demonstrate on four-bit numbers
(although only two bits are necessary to show the concept).

Variable b3 b2 b1 b0

x 1 1 0 0

z = ~x 0 0 1 1

ExamplEs

6. #include <stdio.h>
 int main()

 {

 int num = 0xFFFF;

 printf(“The complement of %X is %X\n”, num, ~num);

 return 0;

 }

Output
The complement of FFFF is 0

7. #include <stdio.h>
 int main()

 {

 int num = 0xABCD;

 printf(“The complement of %X is %X\n”, num, ~num);

 return 0;

 }

Output
The complement of ABCD is 5432

16.2.5 Bitwise shift operator
The shift operators << and >> perform left and right shifts of
their left operand by the number of bit positions given by the
right operand, which must be non-negative.

Bitwise shift left
The bitwise shift left operator shifts the number left. The
most significant bits are lost as the number moves left, and
the vacated least significant bits are zero.
 Suppose a is a number whose value is 7335. Its binary
equivalent is 0001 1100 1010 0111. The expression b=a<<6
will shift all bits to the left. By shifting the bits to the left,
the most significant bits are lost, and the number is padded
with zeroes at the least significant bit. The following is the
resulting number.

Shift left

10688
(in decimal)

0000110010010010

Lost bits

0111101011000001

Filled with 0’s

7335
(in decimal)

450 Computer Fundamentals and Programming in C

Bitwise shift right
The bitwise right shift operator causes all the bits in the first
operand to be shifted to the right by the number of positions
indicated by the second operand. The rightmost bits in the
original bit pattern will be lost. The leftmost bit positions that
become vacant will be padded with zeroes.
 Taking the number stored in a, the expression b=a>>6 will
shift all bits to the right.

Shift right

114
(in decimal)

0010011100000000

Lost bits

0111101011000001

Filled
with 0’s

 Thus, x << 2 shifts the value of x by two positions, filling
vacated bits with zero; this is equivalent to multiplication by
4. Right shifting an unsigned quantity always fits the vacated
bits with zero. Right shifting a signed quantity will fill sign
bit (‘arithmetic shift’) on some machines and 0 bits (‘logical
shift’) on others. To divide an integer by 2n, a right shift by
n bit positions is applied. To multiply an integer by 2n, a left
shift by n positions is applied.
 The following program uses the bitwise shift right and
bitwise AnD to display a number as a 16-bit binary number.
The number is shifted right successively from 16 down to
zero and bitwise ANDed with 1 to see if the bit is set. An
alternative method would be to use successive masks with
the bitwise Or operator.

ExamplEs
8. #include <stdio.h>
 int main()

 {

 int counter, num;

 printf(“Enter a number: ”);

 scanf(“%d”, &num);

 printf(“\n The binary Equivalent of %d is”, num);

 for(counter=15; counter>=0; counter––)

 printf(“%d”,(num >> counter) & 1);

 putchar(‘\n’);

 return 0;

 }

Output
Enter a number: 7335
The binary Equivalent of 7335 is 0001 1100 1010 0111

9. A program to print the binary equivalent of an integer number using
bitwise operator.

 Solution
#include <stdio.h>

int main()

{

 int n,i,k,m;

 printf(“\n ENTER THE NUMBER :”);

 scanf(“%d”,&n);

 for(i=15;i>=0; ++i)

 {

 m=1<<i;

 k=n&m;

 k==0? printf(“0”):printf(“1”);

 }

 return 0;

}

 A better version of the program in Example 9 that works on machines
having either two- or four-byte words follows.

#include <stdio.h>

#include <limits.h>

int main()

{

 int num,i,n,mask;

 printf(“\n ENTER THE NUMBER :”);

 scanf(“%d”,&num);

 printf(“ \n BINARY EQUIVALENT IS :”);

 n =sizeof(int) * CHAR_BIT;

 mask= 1 << (n-1);

 for(i=1;i<=n;++i)

 {

 putchar(((num & mask) ==0) ? ‘0’: ‘1’);

 num<<=1;

 if(i% CHAR_BIT == 0 && i<n)

 putchar(‘ ’);

 }

 return 0;

}

Output
 ENTER THE NUMBER :
 BINARY EQUIVALENT IS : 00011100 10100111

 In AnSI C, the symbolic constant CHAR_BIT is defined in
limits.h whose value is 8, representing the number of bits
in a char. Because a char takes 1 byte of storage space, the
constant 1 contains only its LSB as 1. The expression 1 <<
(n-1) shifts that bit to the higher order end. Thus, the mask
has all bits off except for its most significant bit, which is 1. If
the high-order bit in num is 0, then the expression num & mask
has all its bits set to 0 and the expression (num & mask) == 0)
evaluates to true. In the opposite case, if the high-order bit is
set to 1, then the expression num & mask has all its bits set to 1

Advanced C 451
and the expression (num & mask) ==0) evaluates to false. Thus
putchar() prints 0 if the most significant bit is 0 and prints
1 if the most significant bit is 1. After that, the expression
num << = 1 evaluates the value of num with the same bit pattern
except that the next bit is brought as the MSB. The following
statement

if(i% CHAR_BIT == 0 && i<n)

 putchar(‘ ’);

prints a blank space after each byte has been printed.

ExamplE
10. A program to rotate a given number called value, n number

of times. If n is positive, rotate it left, otherwise right. It is to
be noted that rotation means shifting each bit by one place and
recovering the lost bit. For example, in a left shift, each bit is
shifted one place to the left and the leftmost bit, which comes
out is returned to the rightmost place.

 Solution
/* Function to rotate an unsigned int left or right */

 unsigned int rotate (unsigned int value, int n)

 {

 unsigned int result, bits;

 if(n== 0|| n== -16 || n== 16)

 return(unsigned int)l;

 else if(n > 0) /* left rotate */

 {

 n=-n;

 bits = value << (16 - n);

 result = value << n | bits;

 }

 else

 {

 n= -n;

 bits = value << (16 -n);

 result = value >> n | bits;

 }

 return(result);

 }

 int main()

 {

 unsigned int w1 = oxalb5, w2 = Oxff22;

 printf(“%x\n”, rotate(w1, 4);

 printf(“%x\n”, rotate(w1, -4);

 printf(“%x\n”, rotate(w2, 8);

 printf(“%x\n”, rotate(w2, -2);

 printf(“%x\n”, rotate(w1, 0);

 return 0;

 }

Output
 1b5a

 5a1b

 22ff

 bfc8

 alb5

note
 ∑ Arithmetic operators are used in conjunction with the

assignment operator to form shorthand forms that do the
desired operation as well as assignment. Such forms are
+=, –=, *=, and so on.

 ∑ Shorthand forms can also be applied to bitwise operators.
For example, |=, &=, and ^= are some of the shorthand
forms with bitwise operators. Nearly all binary operators
have a version with = after it. These operators do not
change the value of the individual operands.

 ∑ Arithmetic operators have higher precedence than bitwise
operators.

16.3 command-lIne arguments
All C programs define a function main() that designates the
entry point of the program and is invoked by the environment
in which the program is executed. In the programs considered
so far, main() did not take any arguments. however, main()
can be defined with formal parameters so that the program
may accept command-line arguments, that is, arguments
that are specified when the program is executed. Thus, the
program must be run from a command prompt. The following
version of main() allows arguments to be passed from the
command line.

int main(int argc, char *argv[])

This declaration states that
 main returns an integer value (used to determine if the

program terminates successfully).
 argc is the number of command-line arguments including the

command itself, i.e., argc must be at least 1.
 argv is an array of the command-line arguments.
 The declaration of argv means that it is an array of pointers
to strings. By the normal rules about arguments whose type
is array, what actually gets passed to main is the address of
the first element of the array. As a result, an equivalent (and
widely used) declaration is

int main(int argc, char **argv)

 When the program starts, the following conditions hold true.
 argc is greater than 0.
 argv[argc] is a null pointer.
 argv[0], argv[1], ..., argv[argc–1] are pointers to

strings with implementation-defined meanings.

452 Computer Fundamentals and Programming in C

 argv[0] is a string that contains the program’s name. The
remaining members of argv are the program’s arguments.

 The following program echoes its arguments to the
standard output. This program is essentially the unix or msdos
echo command.

ExamplE
11. #include <stdio.h>
 int main(int argc, char *argv[])
 {
 int i;
 for(i = 0; i < argc; i++)
 printf(“%s \n”, argv[i]);
 printf(“\n”);
 return 0;
 }

 If the name of this program is prg.c, an example of its execution is
as follows.
 prg.c oxford pradip manas

Output
 prg.c
 oxford
 pradip
 manas

 The following program is a version of the cat command in
unix or type in msdos command that displays files specified
as command-line parameters.

ExamplE
12. #include <stdio.h>
 #include <stdlib.h>
 int main(int argc, char *argv[])
 {
 int i = 1;
 int c;
 int num_args = 0;
 FILE *fp;
 if(argc == 1)
 {
	 	 	 fprintf(stderr,	“No	input	files	to	display…\n”);
 exit(1);
 }
 if(argc > 1)
	 	 printf(“%d	files	to	be	displayed\n”,	argc-1);
 num_args = argc - 1;
 while(num_args > 0)
 {
	 	 printf(“[Displaying	file	%s]\n”,	argv[i]);
 num_args––;
 fp = fopen(argv[i], “r”);
 if(fp == NULL)

 {
 fprintf(stderr,“Cannot display %s \n”, argv[i]);
	 	 	 continue;	/*	Goto	next	file	in	list	*/
 }
 c = getc(fp);
 while(c!= EOF)
 {
 putchar(c);
 c = getc(fp);
 }
 fclose(fp);
 printf(“\n[End of %s]\n———————\n\n”, argv[i]);
 i++;
 }
 return 0;
}

 The following program named count.c is similar to the wc
command in unix call. The output of the program, run on unix,
is given here.

 $ count prog.c
 prog.c: 300 characters 20 lines
 $ count –l prog.c
 prog.c: 20 lines
 $ count –w prog.c
 prog.c: 300 characters

ExamplE
13. /*count.c	:	Count	lines	and	characters	in	a	file	*/
 #include <stdio.h>
 #include <stdlib.h>
 int main(int argc, char *argv[])
 {
 int c, nc, nlines;
	 	 char	filename[120];
 FILE *fp, *fopen();
 if(argc == 1)
 {
	 	 fprintf(stderr,	“No	input	files\n”);
	 	 fprintf(stderr,	“Usage:	\%	count	[-l]	[w]	file\n”);
 exit(1);
 }

 nlines = 0;

 nc = 0;

 if((strcmp(“-l”, argv[1]) == 0)||
 (strcmp(“-w”, argv[1]) == 0))

	 	 	 	 strcpy(filename,	argv[2]);

 else

	 	 	 	 strcpy(filename,	argv[1]);

	 	 fp	=	fopen(filename,	“r”);

 if(fp == NULL)

 {

	 	 	 fprintf(stderr,“Cannot	open	%s\n”,	filename);

 exit(1);

Advanced C 453
 }

 c = getc(fp);

 while(c!= EOF)
 {
 if(c == ‘\n’)
 nlines++;
 nc++;
 c = getc(fp);
 }
 fclose(fp);
 if(strcmp(argv[1], “-w”) == 0)
	 	 	 printf(“%s:	%d	characters	\n”,	filename,	nc);
 else if(strcmp(argv[1], “-l”) == 0)
	 	 	 printf(“%s:	%d	lines	\n”,	filename,	nlines);
 else
	 	 	 printf(“%s:	%d	characters	%d	lines\n”,	filename,	

nc, nlines);
 return 0;
}

 It should be noted that the preceding program crashes if it
is run as

 $ count –w

or
 $ count –l

 This is because, in this case, we failed to test if there was a
third argument containing the filename to be processed. Here,
trying to access this non-existent argument causes a memory
violation. This gives rise to a so-called ‘bus error’ in a unix
environment.

ExamplE
14. Write a cpy command to operate like the unix cp or msdos COPY

command that takes its text files from the command line as follows.
	 cpy	file	newfile

 Solution
#include <stdio.h>
int main(int argc, char **argv)
{
 FILE *in, *out;
 int key;
 if(argc < 3)
 {
	 	 puts(“The	source	must	be	an	existing	file”);

puts(“If	the	destination	file	exists,	it	will	be	
overwritten”);

 return 0;
 }
 if((in = fopen(argv[1], “r”)) == NULL)
 {
	 	 puts(“Unable	to	open	the	file	to	be	copied”);
 return 0;
 }

 if((out = fopen(argv[2], “w”)) == NULL)
 {
	 	 puts(“Unable	to	open	the	output	file”);
 return 0;
 }
 while(!feof(in))
 {
 key = fgetc(in);
 if(!feof(in))
 fputc(key, out);
 }
 fclose(in);
 fclose(out);
 return 0;
}

main() may take the third command line argument env, though
it is compiler dependent. The argument env is an array of
pointers to the strings. each pointer points to an environment
variable from the list of environment variables. Consider the
following program.

#include <stdio.h>

int main(int argc, char *argv[], char *env[])

{

 int i = 0;

 while (env[i])

 printf (“\n%s”, env[i++]);

 return 0;

}

The above program produces a typical output when it
was executed in Quincy which uses the MinGW port of
the GCC compiler system.

ALLUSERSPROFILE=C:\ProgramData

APPDATA=C:\Users\Manas\AppData\Roaming

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=MANAS-PC

ComSpec=C:\Windows\system32\cmd.exe

FLTK_DOCDIR=C:\Program Files\quincy\html\

programmerhelp\fltk\fltk1.1\

FP_NO_HOST_CHECK=NO

HOMEDRIVE=C:

HOMEPATH=\Users\Manas

LOCALAPPDATA=C:\Users\Manas\AppData\Local

LOGONSERVER=\\MANAS-PC

NUMBER_OF_PROCESSORS=2

OS=Windows_NT

Path=C:\Program Files\quincy\mingw\bin\;C:\Program
Files\quincy\bin\VistaBin;C:\Program Files\
quincy\bin;C:\JavaFX\javafxsdk\bin;C:\
JavaFX\javafxsdk\emulator\bin;C:\Windows\
system32;C:\Windows;C:\Windows\System32\

454 Computer Fundamentals and Programming in C

Wbem;C:\Windows\System32\WindowsPowerShell\
v1.0\

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;
.WSF;.WSH;.MSC

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 15 Model 6 Stepping
5, GenuineIntel

PROCESSOR_LEVEL=15

PROCESSOR_REVISION=0605

ProgramData=C:\ProgramData

ProgramFiles=C:\Program Files

PROMPT=PG

PSModulePath=C:\Windows\system32\

WindowsPowerShell\v1.0\Modules\

PUBLIC=C:\Users\Public

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\Windows

TEMP=C:\Users\Manas\AppData\Local\Temp

TMP=C:\Users\Manas\AppData\Local\Temp

USERDOMAIN=Manas-PC

USERNAME=Manas

USERPROFILE=C:\Users\Manas

windir=C:\Windows

16.4 the c preprocessor
The C preprocessor is a program that processes any source
program in C before compilation. Since it allows the user
to define macros, the C preprocessor is also called a macro
processor. A macro is defined as an open-ended subroutine.
An open-ended subroutine is a set of program instructions, as
in a function, that does not have a return statement.
 The preprocessor provides its own language that can be
a very powerful tool for the programmer. These tools are
instructions to the preprocessor, and are called directives.
The C preprocessor has several directives that are used to
invoke it. A directive usually occupies a single line. The #
symbol should be the first non-blank character on the line,
which means that only spaces and tabs may appear before it.
Blank symbols may also appear between the # and directive.
A directive line may also contain a comment; these are
simply ignored by the preprocessor. A # appearing in a line
on its own is simply ignored. A line having only non-white
space character in a # is termed as null directive in standard
C and is treated the same as a blank line. Most directives are
followed by one or more tokens. A token is anything other
than a blank. A line with a directive whose last non-blank
character is \, is assumed to continue in the line following it,
thus making it possible to define multiple line directives.

 Directives are generally placed at the beginning of a
source program, which means that these are written before
the main(). however, preprocessor directives can appear
anywhere in a source file, but they apply only to the remainder
of the source file. It is advantageous to use the preprocessor
because it makes
 program development easier.
 programs easier to read.
 modification of programs easier.
 C code more transportable between different machine

architectures.

16.4.1 the c preprocessor directives
The preprocessor directives can be classified into two
categories: unconditional and conditional. Figure 16.1 depicts
the two categories of directives.

preprocessor

directives

unconditional

undef

else

include

elif

define

if

conditional

line

ifdef

error

ifndef

pragma

endif

Fig. 16.1 Types of preprocessor directives in C

 The C preprocessor directives shown in Fig. 16.1 are given
in Table 16.3 with brief explanations.

Table 16.3 The C preprocessor directives

Directive Explanation

#define Defines a macro

#undef Undefines a macro

#include Textually includes the contents of a file

#ifdef Makes compilation of code conditional on a macro
being defined

#ifndef Makes compilation of code conditional on a macro
not being defined

#endif Marks the end of a conditional compilation block

#if Makes compilation of code conditional on an
expression being non-zero

#else Specifies an else part for a #ifdef, #ifndef, or #if
directive

#elif Combination of #else and #if

#line Change current line number and filename

#error Outputs an error message

#pragma Is implementation-specific

Advanced C 455
define
 The general form for the define directive is

#define	macro_name	replacement_string

 The #define directive is used to make substitutions
throughout the program in which it is located. In other words,
#define causes the compiler to go through the program,
replacing every occurrence of macro_name with replacement_
string. The replacement string stops at the end of the line.
no semicolon is used at the end of the directive.

ExamplEs
15. A typical illustration of the use of #define.

#include <stdio.h>

#define	TRUE	1

#define	FALSE	0

int main()

{

 int done=0;

 while(done=!TRUE)

 {

 printf(“\n Here done is FALSE”);

 done++;

 }

printf(“\n Now done is TRUE”);

return 0;

}

Output
 Now done is TRUE

 Another feature of the #define directive is that it can take
arguments, making it rather useful as a pseudo-function creator.
Consider the following example.

16. #include <stdio.h>
#define	abs_value(a)((a<0)?	–a	:	a)
int main()
{
 int a=-1; Replaced by (a<0)? –a : a
 while(abs_value(a))
 {
 printf(“\n Value of a=%d within while”,a);
 a=0;
 }
 printf(“\n Value of a=%d outside while”,a);
 return 0;
}

Output
Value of a=-1 within while
Value of a=0 outside while

 The next example shows how to use the #define directive to
create a general-purpose incrementing for loop that prints out the
integers 1 through 5.

17. #include <stdio.h>
#define	up_count(x,lo,hi)\
 for((x)=lo;(x)<=(hi);(x)++)
int main()
{
 int k;

Replaced by for (k = 1;
k<=5; k++)

 up_count(k,1,5)
 {
 printf(“\n k is %d”,k);
 }
 printf(“\n Test program ended”);
 return 0;
}

Output
k is 1
k is 2
k is 3
k is 4
k is 5
Test program ended

 It should be noted that a macro should be written in a
single line, but it can be continued to more than one line by
using the statement continuation character, \. One could write
the following:

#define	min(x,	y)	\
 ((x)<(y) ? (x) : (y))

note

 ∑ Apart from parameterized macros, C99 adds a better way
of creating function which expands in line.

#undef
The general form of this #undef directive is

#undef macro_name

 This directive undefines a macro. A macro must be
undefined before being redefined to a different value. For
example,

#undef VALUE
#define	VALUE	1024
#undef MAX

 The use of #undef on an undefined identifier is harmless
and has no effect. If a macro ceases to be useful, it may be
undefined with the #undef directive. #undef takes a single
argument, the name of the macro to be undefined. The bare
macro name is used even if the macro is function-like. If
anything appears on the line after the macro name, it is an
error. Moreover, the #undef directive has no effect if the name
is not a macro.

#include
The #include directive has two general forms

	 #include	<file_name>

456 Computer Fundamentals and Programming in C

and
	 #include	“file_name”

 The first form is used for referring to the standard system
header files. It searches for a file named file_name in a standard
header file library and inserts it at the current location. Header
files contain details of functions and types used within the
library. They must be included before the program can make
use of the library functions. The angle brackets, < >, indicates
the preprocessor to search for the header file in the standard
location for library definitions.
 The second form searches for a file in the current directory.
This is used where multi-file programs are being written.
Certain information is required at the beginning of each
program file. This code in the file_name can be put into the
current directory and included in each program file. Local
header file names are usually enclosed by double quotes, “ ”.
It is conventional to give header files a name that ends in ‘.h’
to distinguish them from other types of files. Examples of
both forms of #include have been given in earlier chapters.
 In addition, each preprocessing directive must be on its
own line. For example, the following will not work:

#include <stdio.h> #include <stdlib.h>

 Include files can have #include directives in them. This is
referred to as nested includes. The number of levels of nesting
allowed varies between compilers. however, C89 stipulates
that at least eight nested inclusions will be available. C99
specifies that at least 15 levels of nesting be supported.

#if, #else, #elif, and #endif
here, #if is a conditional directive of the preprocessor. It has
an expression that evaluates to an integer. The #else is also
used with this directive if required. The #if and #else pair
operates in a way similar to the if-else construct of C. The
#endif is used to delimit the end of statement following the
statement sequence.
 The general form of #if with #endif and #else is

 #if< constant_expression>
 <statement_sequence1>
 #endif

or
 #if< constant_expression>
 <statement_sequence1>
 #else<statement_sequence2>
 #endif

 As an example, if a program has to run on an MSDOS
machine and it is required to include file MSDOS.h, otherwise
a default.h file, then the following code using #if can be
used.

 #if SYSTEM == MSDOS
 #include <msdos.h>

 #else
 #include “default.h”
 #endif

 The general form for using #if with #elif, which is else-
if, and #endif is

 #if<constant_expression1>
 <statement_sequence1>
 #elif<constant_expression2>
 <statement_sequence2>
 .
 .
 #elif<constant_expressionN>
 <statement_sequenceN>
 #endif

 Sometimes, it may be necessary to choose one of
the different header files to be included into a program.
For example, preprocessors might specify configuration
parameters to be used on different types of operating systems.
The programmer can do this using a series of conditional
directives as shown in the following illustration.

 #if SYSTEM1
 #include “SYSTEM_1.h”
 #elif SYSTEM2
 #include “system_2.h”
 #elif SYSTEM3
 ...
 #endif
#ifdef and #ifndef

 The #ifdef directive executes a statement sequence if the
macro_name is defined. If the macro_name is not defined, the
#ifndef directive executes a statement sequence. For both the
directives, the end of statements is delimited by #endif. The
general form of #ifdef is

 #ifdef macro_name
 <statement_sequence>
 #endif

and the general form of #ifndef is
 #ifndef macro_name

 <statement_sequence>

 #endif

 These conditional directives are useful for checking if
macros are defined or set, perhaps from different header files
and program modules. For instance, to set integer size for a
portable C program between Turbo C (on MSDOS) and LINUX
(or other) operating systems, these directives can be used.
 As an example, assume that if Turbo C is running, a macro
TURBOC will be defined. So, the programmer just needs to
check for this. Thus, the following code may be written.

 #ifdef TURBOC
	 	 #define	INT_SIZE	16

Advanced C 457
 #else
	 	#define	INT_SIZE	32
 #endif

 Another example of the use of #ifdef is given as follows.

ExamplE

18. #include <stdio.h>
		 	 #define	VAX	1

		 	 #define	SUN	0	

 int main()

 {

 #ifdef VAX

 printf(“This is a VAX\n”);

 #endif

 #ifdef SUN

 printf(“This is a SUN\n”);

 #endif

 return 0;

 }

Output
 This is a VAX

note

 ∑ C89 states that #ifs and #elifs may be nested at least
eight levels. C99 states that at least 63 levels of nesting
be allowed.

The logical operators such as && or || can be used to test if
multiple identifiers have been defined.
#error
The directive #error is used for reporting errors by the
preprocessor. The general form is

#error error_message

 When the preprocessor encounters this, it outputs the
error_message and causes the compilation to be aborted.
Therefore, it should be only used for reporting errors that
make further compilation pointless or impossible. It is used
primarily for debugging. For example,

#ifndef LINUX

#error This software requires the LINUX OS.

#endif

Another example of the use of #error is as follows:

#if	A_SIZE	<	B_SIZE

#error “Incompatible sizes”

#endif

 here, the #error macro is used to enforce the consistency
of two symbolic constants.

#line
The #line directive is used to change the value of the __LINE__
and __FILE__ variables. The filename is optional. The __FILE__
and the __LINE__ variables represent the current file and the line
that is being read. The general form of this directive is

#line	line_number	<file	_name>

The example,
#line 20 “program1.c”

changes the current line number to 20, and the current file to
“program1.c”.

#pragma
The #pragma directive allows the programmer the ability to
convey to the compiler to do certain tasks. Since the #pragma
directive is implementation-specific, uses vary from compiler
to compiler. One option might be to trace program execution.
Three forms of this directive (commonly known as pragmas)
are specified by the 1999 C standard. A C compiler is free to
attach any meaning it likes to other pragmas.

16.4.2  Predefined Macros
The preprocessor furnishes a small set of predefined macros that
denote useful information. The standard macros are summarized
in Table 16.4. Most implementations augment this list with
many non-standard predefined identifiers.

Table 16.4 Standard predefined identifiers

Identifier Denotes

__FILE__ Name of the file being processed

__LINE__ Current line number of the file being processed

__DATE__ Current date as a string (e.g., “16 Dec 2005”)

__TIME__ Current time as a string (e.g., “10:15:30”)

 The predefined macros, also known as macros, can be
used in programs just like program constants.
 All predefined macros have two underscore characters
more at the beginning and the other at the end. A demonstra-
tion of predefined identifiers is illustrated below:

#include <stdio.h>
int main()
{
 printf(“__DATE__ == %s\n”,__DATE__);
 printf(“__FILE__ == %s\n”,__FILE__);
 printf(“__LINE__ == %d\n”,__LINE__);
 printf(“__TIME__ == %s\n”,__TIME__);
 printf(“__STDC__ == %d\n”,__STDC__);
 return 0;
}

Output
__DATE__ == Dec 18 2010
__FILE__ == pred.c

458 Computer Fundamentals and Programming in C

__LINE__ == 11
__TIME__ == 17:25:09
__STDC__ == 1

 The __DATE__ macro provides a string representation of
the date in the form Mmm dd yyyy where Mmm is the first three
characters of the name of the month, dd is the day in the form of
a pair of digits 1 to 31, where single-digit days are preceded by
a blank and finally, yyyy is the year as four digits.
Similarly, __TIME__, provides a string containing the value of
the time when it is invoked, in the form hh:mm:ss, which is
evidently a string containing pairs of digits for hours, minutes,
and seconds, separated by colons. note that the time is when
the compiler is executed, not when the program is run. Once
the program containing this statement is compiled, the values
that will be output by the printf() statement are fixed until it
is compiled again. On subsequent executions of the program,
the then current time and date will be output. Do not confuse
these macros with the time function
C99 adds the following macros.

_ _STDC_HOSTED_ _ 1 if an operating system is present

_ _STDC_VERSION_ _ 199901L or greater; represents
version of C

_ _STDC_IEC_559_ _ 1 if IEC 60559 floating-point
arithmetic is supported

__STDC_IEC_599_COMPLEX_ _ 1 if IEC 60559 complex arithmetic is
supported

_ _STDC_ISO_10646_ _ A value of the form yyyymmL
that states the year and month of
the ISO/IEC 10646 specification
supported by the compiler

 There are two special operators that can be used in macro.
They are # and ##.

Stringizing operator
If the formal parameter associated with a macro is preceded
by a “#” symbol in the replacement string, then a string
complete with enclosing quotes and all relevant escapes is
formed. This operation is known as stringizing. It is illustrated
in the following program.

#include <stdio.h>

#define	 SHOWX(x)	printf(#x	“=	%d”,	(x));printf	(“\n”)

int main(void)

{

 int a = 5, b = 10;

 SHOWX(a);

 SHOWX(b);

 SHOWX(a+b);

 return 0;

}

Output
a = 5
b = 10
a+ b = 15

In this illustration, SHOWX(a); is expanded as
printf(“a” “= %d”,(a));printf(“\n”);

Similarly, SHOWX(a+b); is expanded as
printf(“a+b” “= %d”,(a+b));printf(“\n”);

Token pasting operator
The ## operator within a macro expansion causes concatenation
of the tokens on either side of it to form a new token. This is
called token pasting. This means two tokens on either side of
the ## will be merged as if they were a single text token. The
modified version of the above program is as follows:

#include <stdio.h>
#define	SHOWX(x)	printf(“%d”,a##x);printf(“\n”)
int main(void)
{
 int a1 = 5, a2 = 10;
 SHOWX(1);
 SHOWX(2);
 return 0;
}

Output
5
10

When the preprocessor processed SHOWX(1), it generated
printf(“%d”,a1);

 The ## operator can be used to swap two variables of any
data type as follows.

#include <stdio.h>
#define	 SWAP(datatype,	a,b)		datatype	a##b	=	a;	\
 a = b; \
 b = a##b
int main(void)
{

 int x = 5, y = 10;
	 float	m	=	1.23f,	n	=	4.56f;
 SWAP(int, x, y);
 printf(“\n x = %d \t y = %d”, x,y);
	 SWAP(float,	m,	n);
 printf(“\n m = %g \t n = %g”, m,n);
 return 0;
}

Output
x = 5 y = 10
m = 1.23 n = 4.56

 A formal parameter as an operand for ## is not expanded
before pasting. The actual parameter is substituted for the
formal parameter; but the actual parameter is not expanded.
For example,

#define	a(n)	aaa	##	n
#define	b	2

the expansion of a(b) is aaab, not aaa2 or aaan.

Advanced C 459
note

 ∑ Command-line arguments are specified when a program is
executed.

 ∑ Preprocessor directives can appear anywhere in a source
program, but these are generally placed at the beginning
of a source program.

16.5 type QualIfIer
A type is a fundamental concept in Standard C. When a
variable is declared, it is associated with a data type. each
expression and sub-expression that is written has a type. This
means that data type is a foundation attribute of a variable.
Additional attributes include the following.
	Type specifier (signed or unsigned)
 Type qualifier (const, volatile, and/or restrict)
 Storage class (auto, register, extern, or static)
 A type specifier affects the range of values that an object
can have. It may either be signed or unsigned. Storage class
has already been discussed in Chapter 12. Type qualifiers
are used to provide greater control over optimization. Many
important optimization methods are based on the principle
of caching: under certain circumstances the compiler can
remember the last value accessed (read or written) from a
location, and use this stored value the next time that location
is read. If this memory is a register of the machine, for
example, the code can be smaller and faster using the register
rather than accessing external memory.
 There are two or three types of qualifiers—const, volatile,
and/or restrict. The concepts of const and volatile are
completely independent. A common misconception is to
imagine that const is the opposite of volatile and vice versa.
The C89 standards committee added two type qualifiers to C,
const and volatile. The C99 committee added a third type
qualifier with restrict. A discussion on the type qualifiers
follows.

16.5.1 const Qualifier
const means something that is not modifiable. The const type
qualifier is used to qualify an object whose value cannot be
changed. Objects qualified by the const keyword cannot be
modified. Using the const qualifier on an object protects it
from the side effects caused by operations that alter storage.
 The syntax and semantics of const were adapted from
C++. Any variable that is declared with const as a part of its
type specification must not be assigned to in the program. The
following program clarifies the use of const in a C program.

ExamplEs
19. #include <stdio.h>
 #include <stdlib.h>
 int main(){
 int i=10;

 const int c = 5;
 const int *cp;
 int *ncpi;
 cp = &c;
 ncpi = &i;

 cp = ncpi;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 exit(EXIT_SUCCESS);
 return 0;
 }

Output
 c=5 i= 10
 *cp=10 *ncpi=10

 Now; if a statement c=20; is inserted in the program in Example
19, the compiler generates an error.

20. #include <stdio.h>
 #include <stdlib.h>
 int main(){
 int i=10;
 const int c = 5;
 const int *cp;
 int *ncpi;
 cp = &c;
 ncpi = &i;
 cp = ncpi;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=d”,*cp,*ncpi);

 c=20;
C compiler may give

an error here.

 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 *ncpi = 0;
 exit(EXIT_SUCCESS);
 return 0;
 }

 Consider the following version of the program in Example 20.

21. #include <stdio.h>
 #include <stdlib.h>
 int main()
 {
 int i=10;
 const int c = 5;
 const int *cp;
 int *ncpi;
 cp = &c;
 ncpi = &i;
 cp = ncpi;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 ncpi = (int *)cp;
 *ncpi=20;

460 Computer Fundamentals and Programming in C

 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 exit(EXIT_SUCCESS);
 return 0;
 }

Output
 c=5 i= 10
 *cp=10 *ncpi=10
 c=5 i= 20
 *cp=20 *ncpi=20

 The output obtained will be clear after reading the
subsequent paragraphs. The following properties may be
applied to the const type qualifier.

 The const qualifier can be used to qualify any data type,
including a single member of a structure or union.

 If const is specified when declaring an aggregate type,
all members of the aggregate type are treated as objects
qualified with const. When const is used to qualify
a member of an aggregate type, only that member is
qualified.

For example,
const struct employee {
 char name[30];
 int age;
 int deptno;
	 float	salary;
 } a, b;

 here, name, age, deptno, and salary are treated as though
declared with const. Therefore, all members of a and b are
const-qualified.

struct empl {
 char *name;
 const int age;
 int deptno;
	 float	salary;
 } c, d;

 here, member age is qualified. All members in the previous
structure are qualified with const. If the tag employee is used
to specify another structure later in the program, the const
qualifier does not apply to the new structure’s members
unless explicitly specified.

 The address of a non-const object can be assigned to a
pointer to a const object (with an explicit const specifier),
but that pointer cannot be used to alter the value of the
object. For example,
 const int i = 0;
 int j = 1;
 const int *p = &i;

Explicit const
specifier required.

 int *q = &j;

 *p = 1;

Error—attempt to modify a const-
qualified object through a pointer.

 *q = 1; This is VALID.

 Attempting to modify a const object using a pointer to a
non-const qualified type causes unpredictable behaviour.

 There are two standards for const specifier. One, an
object that is defined with ‘const’ may not be modified
in any way by a strictly conforming program. Since the
‘c’ in example 19 is const, it may not be modified; if it
is modified, the behaviour is undefined. Two, an lvalue
with the const-qualifier may not be assigned to. Note also
that the following strictly conformant program must print
‘5, 7’.

ExamplE
22. #include <stdio.h>
 int v=5;

 int *p;

 void f(const int *);

 int main(void) {

 p = &v;

 f(&v);

 return 0;

 }

 void f(const int *vp) {

 int i, j;

 i = *vp;

 *p = 7;

 j = *vp;

 printf(“%d, %d\n”, i, j);

 }

 The compiler cannot assume that i and j are equal, despite
the fact that *vp is const-qualified, because vp can (and does)
point to a modifiable lvalue and the assignment to *p can
(and does) modify the lvalue to which the const-qualified
vp pointer points. As this example illustrates, const does not
mean constant.
 Consider the following statements.

 int c;
 int *const p = &c;

 note, p is a pointer to an integer, which is exactly what
it must be if the const were not there. The const means that
the contents of p are not to be changed, although whatever
it points to can be—the pointer is constant, not whatever it
points to. The other way round is

 const int *cp;

that indicates cp is now an ordinary, modifiable pointer, but
what it points to must not be modified. So, depending on what

Advanced C 461
one chooses to do, both the pointer and what it points to may
be modifiable or not; just choose the appropriate declaration.
 The const qualifier may be specified with the volatile
qualifier. This is useful, for example, in a declaration of a
data object that is immutable by the source process but can
be changed by other processes, or as a model of a memory-
mapped input port such as a real-time clock.

note

∑ const char *p This is a pointer to a constant char.
 One cannot change the value pointed at by p, but
 can change the pointer p itself.

 *p = ‘A’; is illegal.
p = “Hello”; is legal.

∑ const * char p This is a constant pointer to (non-
 const) char. One cannot change the pointer p, but
 can change the value pointed at by p.
 *p = ‘A’; is legal.
 p = “Hello”; is illegal.
∑ const char * const p This is a constant pointer to
 constant char! One cannot change the value pointed
 to by p, nor the pointer.
 *p = ‘A’; is illegal.
 p = “Hello”; is also illegal.

16.5.2 volatile Qualifier
volatile is used to do away with the problems that
are encountered in real time or embedded systems
programming using C. A volatile value is one that might
change unexpectedly. This situation generally occurs while
accessing special hardware registers, usually when writing
device drivers. The compiler should not assume that a
volatile-qualified variable contains the last value that was
written to it, or that reading it again would yield the same
result that reading it the previous time did. The compiler
should, therefore, avoid making any optimizations that
would suppress seemingly redundant accesses to a volatile-
qualified variable. Examples of volatile locations would be
a clock register (which always gives an up-to-date time value
each time you read it), or a device control/status register,
which causes some peripheral device to perform an action
each time the register is written to.
 The volatile qualifier forces the compiler to allocate memory
for the volatile object, and to always access the object from
memory. This qualifier is often used to declare that an object
can be accessed in some way not under the compiler’s control.
Therefore, an object qualified by the volatile keyword can be
modified or accessed by other processes or hardware, and is
especially vulnerable to side effects.
 The following rules apply to the use of the volatile
qualifier.
 The volatile qualifier can be used to qualify any data type,

including a single member of a structure or union.

 redundant use of the volatile keyword elicits a warning
message. For example,
 volatile volatile int x;

 When volatile is used with an aggregate type declaration,
all members of the aggregate type are qualified with volatile.
When volatile is used to qualify a member of an aggregate
type, only that member is qualified. For example,

volatile struct employee {
 char name[30];
 int age;
 int deptno;
	 float	salary;
 } a, b;

struct empl {
 char *name;
 volatile int age;
 int deptno;
	 float	salary;
 } c, d;

 If the tag employee is used to specify another structure later
in the program, the volatile qualifier does not apply to the
new structure’s members unless explicitly specified.
 The address of a non-volatile object can be assigned to a
pointer that points to a volatile object. For example,

const int *intptr;

volatile int x;

intptr = &x;

 Likewise, the address of a volatile object can be assigned
to a pointer that points to a non-volatile object.

16.5.3 restrict Qualifier
The restrict qualifier is an invention of the C99 committee.
The object that is accessed through the restrict-qualified
pointer has a special relation with that pointer. Only pointer
types can be restrict-qualified. A restrict-qualified pointer
that is a function parameter, is the sole means of access to an
object.

Some typical uses of the restrict qualifier
The typical uses are in
 file scope restricted pointers
 function parameters
 block scope
These uses are explained in the following sections.

File scope restricted pointers A file scope-restricted
pointer is subject to very strong restrictions. It should point
to a single array object for the duration of the program. That
array object may not be referenced both through the restricted
pointer and through either its declared name (if it has one) or
another restricted pointer.

462 Computer Fundamentals and Programming in C

 note in the following example how a single block of
storage is effectively subdivided into two disjoint objects.

float	*restrict	x,	*restrict	y;

void init(int n)

{

	 float	*t	=	malloc(2	*	n	*	sizeof(float));

 x = t; /* x refers to 1st half */

 y = t + n; /* y refers to 2nd half */

}

Function parameters restricted pointers are also very
useful as pointer parameters of a function. A compiler can
assume that a restrict-qualified pointer, that is, a function
parameter, is at the beginning of each execution of the
function, the sole means of access to an object. note that
this assumption expires with the end of each execution.

Block scope A block scope-restricted pointer makes an
aliasing assertion that is limited to its block. This seems
more natural than allowing the assertion to have function
scope. It allows local assertions that apply only to key
loops. In the following example, parameters x and y can be
assumed to refer to disjoint array objects because both are
restrict-qualified. This implies that each iteration of the
loop is independent of the others, and hence the loop can be
aggressively optimized.

void	f1(int	n,	float	*	restrict	x,	
const	float	*	restrict	y)

{

 int i;

 for(i = 0; i < n; i++)

 x[i] += y[i];

}

Members of structures

The restrict qualifier can be used in the declaration of a
structure member. When an identifier of a structure type is
declared, it provides a means of access to a member of that
structure type. The compiler assumes that the identifier
provides the sole initial means of access to a member of the
type specified in the member declaration. The duration of the
assumption depends on the scope of the identifier, not on the
scope of the declaration of the structure. Thus, a compiler can
assume that s1.x and s1.y below are used to refer to disjoint
objects for the duration of the whole program, but that s2.x and
s2.y are used to refer to disjoint objects only for the duration of
each invocation of the f3 function.

struct t {

 int n;

	 float	*	restrict	x,	*	restrict	y;

};

struct t s1;

void f3(struct t s2) { /* ... */ }

note
 ∑ The const type qualifier is used to qualify an object value

that cannot be changed.
 ∑ A volatile qualifed object is one that might change

unexpectedly.
 ∑ The restrict-qualifier, used only with pointers, is

used to access an object through a specially related
pointer.

16.6 VarIaBle length argument lIst
All the functions discussed so far accept a fixed number of
arguments. But functions like printf() accept any number
of parameters. how can a function with a variable number of
arguments be written? To write such functions, macros defined
in the header file stdarg.h have to be used. The presence of
a variable-length argument list is indicated by an ellipsis (...)
in the prototype. For example, the prototype for printf(), as
found in <stdio.h>, looks something like this.

extern int printf(const char *, ...);

 The three dots ‘...’ allow the function to accept any number
of parameters. Only the last parameters must be NULL and the
function prototype must be as follows.

void function_name(const char *, ...);

 The macros used are va_list, va_start(), va_arg(), and
va_end(). va_list is an array or special ‘pointer’ type that
is used in obtaining the arguments that come in place of the
ellipsis. va_start() begins the processing of an argument
list, va_arg() fetches argument values from it, and va_end()
finishes processing. Therefore, va_list is a bit like the stdio
FILE * type and va_start is a bit like fopen(). Consider the
following program.

ExamplE
23. #include <stdarg.h>
 #include <stdio.h>
 void show(int n, ...)
 {
 va_list ap;
 va_start(ap, n);
 printf(“count = %d:”, n);
 while(n–– > 0)
 {
 int i = va_arg(ap, int);
 printf(“%d”, i);
 }
 printf(“\n”);

Advanced C 463
 va_end(ap);
 }
 int main()
 {
 show(1, 1);
 show(3, 1, 2, 3);
 return 0;
 }

 The show() function declares a single parameter (n), followed by
an ellipsis. The ellipsis specifies that a variable number of additional
parameters are present. This means that a caller of show() can pass an
arbitrary number of arguments in addition to the first int argument.

Output
count = 1: 1
count = 3: 1 2 3

 There are some restrictions on functions with variable-
length arguments.
 The first parameter must be present since its name has to be

passed to va_start().
 While calling the function, if the type of the variable passed

does not match the type expected in the function, the results
are unpredictable. The C variable argument mechanism
is quite useful in certain contexts. But, the mechanism is
error-prone because it defeats type checking.

 For example, if the second show() call is changed to
 show(3, 1, 2, 3.4);

the result is something like
count = 1: 1

count = 3: 1 2 858993459

 The program assumes that an int argument has been
passed, when in fact a double (3.4) is passed.
 The macro va_end() performs clean-up operations. It
releases any memory that might have been allocated when
va_start() was called. Another function vprintf() is used to
develop a function that outputs an error and exits.

void error(const char *fmt)

 {

 va_list ap;

 va_start(ap, fmt);

 vprintf(fmt, ap);

 va_end(ap);

 exit(0);
 }

 The use of the preceding function prompts the user to
enter an integer greater than 0, failing which it outputs an
error message and exits.

printf(“\n enter an integer >0”);

scanf(“%d”, &n);

if(n<=0)

 error(“value of n= %d it must be greater than 0
\n”, i);

 notice that the function error() is called just like
printf().
 perhaps the most important change to the preprocessor
is the ability to create macros that take a variable number
of arguments. This is indicated by an ellipsis (. . .) in the
definition of the macro.
 The built-in preprocessing identifier __VA_ARGS__
determines where the arguments will be substituted. For
example, given the following definition,

#define	Largest(.	.	.)	max(__VA_ARGS__)

the statement,
Largest(a, b);

is transformed into,
max(a, b);

16.7 memory models and poInters
The concept and use of pointers have been discussed in
detail in Chapter 13. In C, each program is usually restricted
to 64K of static data. In most C compilers, the programmer
is able to select from a variety of memory models that control
the way in which physical memory (RAM) is utilized by
the program. It may be that the program needs to process
large volumes of data in rAM or the applications (such as
simulations) involve very large amounts of code. Most C
compilers offer several memory models to achieve flexible
ways of optimizing the use of available memory. Thus,
choosing a memory model means making choices among
meeting minimum system requirements, maximizing code
efficiency, and gaining access to every available memory
location. Modern compilers use the Win32 model. If the
program’s total size is under 640KB, one of the memory
models in Table 16.5 should be chosen. These are the real
mode memory models.

Table 16.5 Turbo C memory models

Memory model Memory available Pointers used

Tiny 64K code +
data/stack

Near for code, Near
for data

Small 64K code,
64K data/stack

Near for code, Near
for data

Medium 1 M code,
64K data/stack

Far for code,
Near for data

Compact 64K code,
1 M data/stack

Near for code,
Far for data

Large 1 M code,
1 M data/stack

Far for code,
Far for data

Huge 1 M code,
1 M data/stack

Far for code,
Far for data
(inc. static > 64K)

464 Computer Fundamentals and Programming in C

 The important differences between the memory models are
in the size of the data and code pointers, number of data and
code segments, and the number and types of heaps available.
 In all the 16-bit memory models, the compiler puts all
static and global variables into a single data segment (called
DGROUP) that can contain only 64KB. With far data, a
particular data structure can be put into a data segment of
its own. however, that data structure cannot be larger than
64KB. The major determinant of memory availability is the
size of the pointers used to access memory locations.
 If the pointer is declared globally, the value of its address
will be 0000 in the case of a near pointer and 0000:0000
in the case of a far pointer. If the pointer is declared inside
a function definition as an auto variable (default), then it
is created on the stack and will have a default address of
whatever value happened to be at that location on the stack
when it was created. In either case; these default memory
addresses are invalid. This is referred to as an uninitialized
pointer and should never be dereferenced.
 There are three types of pointers. They are near, far, and
huge.
 In Turbo C; almost all pointers are declared as near (16
bits per pointer by default) or far (32 bits per pointer). While
near pointers simplify memory access in the segmented
memory of Intel processors by allowing direct arithmetic on
pointers, they limit accessible memory to 64 kilobytes (216).
Far pointers can be used to access multiple code segments,

each 64K, up to 1 megabyte (232), by using segment and
offset addressing. The disadvantage is that the programmer
cannot use the simple pointer arithmetic that is possible with
near pointers.
 The default model is small, which is effective for the
majority of applications. The tiny model is specifically
designed for the production of TSr (Terminate and Stay
Resident) programs, which must fit into one code segment
and be compiled as .com rather than .exe files. The remaining
models are selectable in the compilation process through the
IDE or in the make file.
 Gnu C does not have memory models because in this
compiler all addresses are 32 bits wide. This is advantageous
for the user, since it does not have the 64K limit. For DOS or
Win16 compilers, a memory model must be selected.

note
 ∑ The mechanism of using variable-length arguments with

functions is error-prone because it defeats type checking.
 ∑ There are six types of memory models: tiny, small,

medium, compact, large, and huge.
 ∑ The important differences between the memory models

are in the size of the data and code pointers, number of
data and code segments, and the number and type of
heaps available.

 ∑ There are three types of pointers: near, far, and huge,
which use different memory models and functions for
memory allocation.

 summary
There are several features in C that can be classified as advanced features.
Among these are the bitwise operators. There are six bitwise operators,
namely AND (&), OR (!), complement (~), XOR (^), left-shift (<<), and
right-shift (>>). These operators act on the contents of bits individually
when applied on bytes or words.

 The function main() can be defined with formal parameters so
that the program may accept command-line arguments. This means that
arguments are specified to main() when the program is executed.

 The C preprocessor is a program that processes any source program
in C before compilation. Since it allows the user to define macros, the C
preprocessor is also called a macro processor. The preprocessor provides
its own instructions, called directives. There are several directives that
are used to invoke it. A directive usually occupies a single line. The
preprocessor also furnishes a small set of predefined identifiers that denote
useful information.

 There are two or three data type qualifiers—const, volatile, and/
or restrict—that have been introduced in C. The concepts of const
and volatile are completely independent. A common misconception
is to imagine that const is the opposite of volatile and vice versa.

The C89 standards committee added two type qualifiers to C, const
and volatile and the C99 committee added a third type qualifier with
restrict.

 const means something that is not modifiable. The const type
qualifier is used to qualify an object whose value cannot be changed.
Objects qualified by the const keyword cannot be modified. On the other
hand, a volatile value is one that might change unexpectedly. This
situation generally occurs while accessing special hardware registers,
usually when writing device drivers. The compiler should not assume that
a volatile-qualified variable contains the last value that was written to
it, or that reading it again would yield the same result that reading it the
previous time did. An object qualified by the volatile keyword can be
modified or accessed by other processes or hardware, and is especially
vulnerable to side effects.

 The restrict qualifier is an invention of the C99 committee. The
object accessed through the restrict-qualified pointer has a special
relation with that pointer. Only pointer types can be restrict-qualified. A
restrict-qualified pointer that is a function parameter is the sole means
of access to an object.

Advanced C 465

 The functions discussed so far accepted a fixed number of arguments.
But functions such as printf() can accept any number of parameters.
How can a function with variable number of arguments be written? To write
such functions, macros defined in the header file stdarg.h have to be

used. The presence of a variable-length argument list is indicated by an
ellipsis in the prototype.

 There are six types of memory models: tiny, small, medium, compact,
large, and huge. There are three types of pointers: near, far, and huge.
They use different memory models and functions for memory allocation.

Key terms
bitwise operators These are Boolean operators that implement bit-to-
bit operation between corresponding bit positions of two arguments.

Directives These are instructions that are given to the preprocessor.

macro It is an open-ended subroutine, similar to a function, that does not
have a return statement.

masking It is a process by which a given bit pattern is converted into
another bit pattern by means of a logical bitwise operator.

predefined macros These are a set of identifiers that provide preset
information.

preprocessor It is a program that processes any macro in C before
compilation of the main program.

type qualifier It is an additional attribute attached to a data type that
further specifies the implementation nature of the defined variable.

type specifier It is an additional attribute attached to a data type
specifying the signed or unsigned nature of a variable.

freQuently asKed QuestIons
1. What is a translation unit?
 A translation unit refers to a C program with all its header files. In a project
involving different C source files to be compiled separately, each of them
together with its header files forms a translation unit. Hence, there will be
as many translation units as there are files to be compiled separately. The
preprocessor produces this translation unit.

2. What is a preprocessor?

 The C preprocessor is a program that processes any source program in
C and prepares it for the translator. It can be an independent program or
its functionality may be embedded in the compiler. The preprocessor is
invoked as the first part of your compiler program’s compilation step. It is
usually hidden from the programmer because it is run automatically by the
compiler.
 While preparing code, it scans for special commands known as
preprocessor directives. These directives instruct the preprocessor to look
for special code libraries, make substitutions in the code and in other ways
prepare the code for translation into machine language.

3. What facilities do a preprocessor provide to the programmer?

 C preprocessor provides the following three main facilities to the
programmers.

∑ file inclusion using #include directive

∑ macro replacement using #define directive

∑ conditional inclusion using directives like #if, #ifdef, etc.

 The preprocessor reads in all the include files and the source code
to be compiled and creates a preprocessed version of your source
code. Macros get automatically substituted into the program by their
corresponding code and value assignments. If the source code contains
any conditional preprocessor directives (such as #if), the preprocessor
evaluates the condition and modifies your source code accordingly.

4. Why should the preprocessor statements be used in the
program?
 The C preprocessor provides the tools that enable the programmer
to develop programs that are easier to develop, read, modify, and to
port to a different computer system. One should use the preprocessor
statements in the program for the following basic demands of the software
programming.

 Improving readability and reliability of the program Macros can
make the C program much more readable and reliable, because symbolic
constants formed by non-parameterized macros aid documentation.
They also aid reliability by restricting to one place the check on the actual
representation of the constant.

 Facilitating easier modifications Using a macro in one place and using
it in potentially several places, one could modify all instances of the macro by
changing it in one place rather than several places.

 Providing portability The macros aid portability by allowing symbolic
constants that may be system dependent to be altered once. Conditional
compilation is often used to create one program that can be compiled to
run on different computer systems.

 Helping in debugging The C preprocessor can be used to insert
debugging code into your program. By appropriate use of #ifdef
statements, the debugging code can be enabled or disabled at your
discretion. It is used to switch on or off various statements in the program,
such as debugging statements that print out the values of various variables
or trace the flow of program execution.

5. What is the difference between #include <file> and #include
“file”?
 Whether the filename is enclosed within quotes or by angle brackets
determines how the search for the specified file is carried on.
 #include <file> tells the preprocessor to look for the file in the predefined
default location. This predefined default location is often an INCLUDE
environment variable that denotes the path to the include files. #include

466 Computer Fundamentals and Programming in C

“file” instructs the preprocessor to look for the file in the current directory
first, then in the predefined locations. In general, the location of the standard
header files is system dependent. In UNIX, the standard header files are
typically located in the directory /usr/include whereas in Borland
C system they are found at \BC\INCLUDE. Integrated development
environments (IDEs) also have a standard location or locations for the
system header files.
 The #include	“file”	method of file inclusion is often used to include
non-standard header files created for use in the program. However, there
is no hard and fast rule that demands this usage. The angle brackets
surrounding the file name in #include instructs that the file being included
is part of the C libraries on the system.

6. Why should one include header files?

Header files should be included because they have information that the
compiler needs. The ANSI C standard groups the library functions into
families, with each family having a specific header file for its function
prototypes. Refer to the FAQs in Chapter 8.

7. Why should one create his or her own header file?
 One can create his or her own header file to divide a program of larger size
into several files and, of course, to manage the declarations for any library
functions of his or her own. Using include files to centralize commonly used
preprocessor definitions, structure definitions, prototype declarations, and
global variable declarations is good programming practice.

8. Write a program which produces the source code.
 #include <stdio.h>
 int main(void)
 {
 int c;
 FILE *f = fopen (__FILE__, “r”);
 if (!f) return 1;
 for (c=fgetc(f); c!=EOF; c=fgetc(f))
 putchar (c);
 fclose (f);
 return 0;
 }

9. What is the benefit of using const for declaring constants?
 const has the advantage over #define while defining a constant. This
is because a const variable can be of any type such as a struct or
union, which cannot be represented by a #define	constant. The compiler
might be able to perform type checking as well as make optimizations
based on the knowledge that the value of the variable will not change.
 When an array or a string is passed to a function it degenerates into
a pointer. As a consequence, any modifications on the corresponding
formal parameters, in the called function, would affect the arguments in the
calling function. The arguments can be made read-only inside the called
function by declaring the parameter const in function prototype as well as
in the formal parameter of the function definition. Also, because a const
variable is a real variable, it is allocated in memory and has an address that
can be used, if needed, with the aid of a pointer.
 Apart from these, scope rules can be applied with the constants defined
with const. The scope of a variable relates to parts of the program in
which it is defined.

10. What can be put into a header file?

 Basically, any code can be put in a header file but commonly used prepro-
cessor definitions, structure definitions, prototype declarations, and global
variable declarations are included in the header files. The following state-
ments are recommended to be placed in a header file.

∑ Manifest constants defined with enum or #define.

∑ Function prototype declarations

∑ Parameterized macro definitions

∑ Declaration of external global variables

∑ Type definition with typedef and struct statements

 It is to be noted here that header files are different from libraries.
The standard library contains object code of functions that have already
been compiled. The standard or user-defined header files do not contain
compiled code.

11. Which is better to use: a macro or a function?
 Macros are more efficient (and faster) than functions, because their
corresponding code is inserted directly at the point where the macro
is called. There is no overhead involved in using a macro, unlike
function; in which case most C implementations impose a significant
overhead for each function call. When a function is called, the processor
maintains a data structure called a stack, which provides the storage
area for “housekeeping” information involved when a function call is
made, e.g. the return address from the function, the machine state on
entry to the function, copies of the actual parameters and space for all
the function’s local variables. Maintaining the stack, each time when a
function call is made, imposes system overhead. On the other hand,
macro cannot handle large and complex coding constructs. A function
is more suited for this type of situation. Thus, the answer depends on
the situation in which one is writing the code for. To replace small,
repeatable code sections, macro should be used and for larger code,
which requires several lines of code, function should be employed.

12. What is argc and argv? What do argc and argv stand for? Can
they be named other than argc and argv?

 When main() is called by the run time system, two arguments are
actually passed to the function. The first argument, which is called argc
by convention (for argument count), is an integer value that specifies the
number of arguments typed on the command line. The second argument in
main is an array of character pointers, which is called argv by convention
(for argument vector). There are argc + 1 character pointers contained in
this array, where argc always has a minimum value of 0. The first entry in
this array is a pointer to the name of the program that is executing or is a
pointer to a null string if the program name is not available on the system.
Subsequent entries in the array point to the values that were specified in
the same line as the command that initiated execution of the program. The
last pointer in the argv array, argv[argc], is defined to be NULL.
 The names argc and argv are traditional but arbitrary. It is not mandatory
to name these two parameters as argc and argv; any name maintaining the
rules for identifier naming can be used.

Advanced C 467
13. How do I print the contents of environment variables?
 The environment variables are available for all operating systems. Though
it is compiler dependent, main() has the third command line argument
env, which is used for these environment variables. env is an array of
pointers to the strings. Each pointer points to an environment variable from
the list of environment variables. The following program demonstrates the
use of env.

 #include <stdio.h>
 int main(int argc, char *argv[], char *env[])
 {
 int i = 0 ;
 while (env[i])
 printf (“\n%s”, env[i++]);
 return 0;
 }

 The last element in the array env is a null pointer. Therefore,
while(env[i]) can be used instead of while(env[i])!= NULL).
The typical output of the above code in Windows based GCC compiler
(quincy v 1.3) is shown below.

ALLUSERSPROFILE=C:\Documents and Settings\All Users

APPDATA=C:\Documents and Settings\Owner\Application
Data

CLIENTNAME=Console

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=0DDB352EEEAB43E

ComSpec=C:\WINDOWS\system32\cmd.exe

FLTK_DOCDIR=C:\Program Files\quincy\html\
programmerhelp\fltk\fltk1.1\

FP_NO_HOST_CHECK=NO

HOMEDRIVE=C:

HOMEPATH=\Documents and Settings\Owner

LOGONSERVER=\\0DDB352EEEAB43E

NUMBER_OF_PROCESSORS=2

=Windows_NT

Path=C:\Program Files\quincy\mingw\bin\;C:\Program
Files\quincy\bin;C:\WINDOWS\system32;C:\
WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program
Files\Panda Security\Panda Internet Security
2011

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.
WSF;.WSH

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 6 Model 28 Stepping
2, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=1c02

ProgramFiles=C:\Program Files

PROMPT=PG

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\WINDOWS

TEMP=C:\DOCUME~1\Owner\LOCALS~1\Temp

TMP=C:\DOCUME~1\Owner\LOCALS~1\Temp

USERDOMAIN=0DDB352EEEAB43E

USERNAME=Owner

USERPROFILE=C:\Documents and Settings\Owner

windir=C:\WINDOWS

14. What is #pragma?
 The #pragma preprocessor directive allows each compiler to implement
compiler-specific features. It provides a single well-defined implementation
specific control and extensions such as source listing controls, structure
packing, loop optimization, and warning suppressing.

15. What is the limitation of using bitwise operators?
 Bit operations can be performed on any type of integer value in C—be it
short, long, long long, and signed or unsigned—and on
characters, but bitwise operators cannot be used with float,	 double,	
long double, void, or other more complex types. Consider the
following program where bitwise AND is applied on a float variable.

 #include <stdio.h>
 int main()
 {
	 	 float	a,	b=3.2;
 a=b & 1;
 printf(“a = %f\n”, a);
 return 0;
 }

 The program would not compile and causes the following error
message.
 error: invalid operands to binary &

16. What are the uses of bitwise operators?

∑ The bitwise AND operator can be used to clear a bit. That is, if any bit
is 0, in either operand, it causes the corresponding bit in the outcome to
be set to 0.

∑ The bitwise OR operator, as the reverse of bitwise AND, can be
used to set a bit. Any bit that is set to 1 in either operand causes the
corresponding bit in the outcome to be set to 1.

∑ Bitwise shift operators can be used to quickly multiply and divide
integers. A shift right effectively divides a number by 2 and a shift
left multiplies it by 2. Bitwise shift operators can be used to pack four
characters byte-by-byte into an integer on a machine with 32-bit words.

 There are several applications of bitwise operators in low-level
programming.

∑ Bitwise operations are most often applied in coding device drivers such
as modem programs, disk file routines, and printer routines because
bitwise operations can be used to mask off certain bits.

468 Computer Fundamentals and Programming in C

∑ Bitwise-shift operations can be very useful in decoding input from an
external device, such as a digital-to-analog converter, and
reading status information.

∑ Bitwise operators are often used in cipher routines. To make a disk file
appear unreadable, some bitwise manipulations can be applied on it.

17. What are the limitations or restrictions on using bitwise shift
operators?

 A right shift of a signed integer is generally not equivalent to division of
power of two even if the implementation copies the sign into vacated bits.
Thus, -1>>1 is not equal to 0, but -1/2 produces 0 as result.
 If a number being shifted is n-bits long, then the shift count must be
greater than or equal to 0 and strictly less than n. Thus, it is not possible
to shift all the bits (i.e., n bits) out of the value in a single operation, e.g.
if an int occupies 32 bits and x is a variable of type int, then x << 31
and x << 0 are legal but x << 32 or x << -1 is illegal. The purpose
of this restriction is to allow efficient implementation on hardware with the
corresponding restriction.

18. What is masking?

 Masking is an operation in which the desired bits of the binary number or
bit pattern are set to 0. A mask is a variable or a constant, usually stored
in a byte or in a short integer, that contains a bit configuration that is used
for extracting or testing bits in bitwise operations. Bit masking is used in
selecting only certain bits from byte(s) that might have many bits set.
 To find the value of a particular bit in an expression, a mask 1 can be
used in that position and 0 elsewhere, e.g. the expression 1 << 2 can be
used to mask third bit counting from the right.
 (n & (1 << 2)) ? 1 : 0 has the value 1 or 0 depending on the third
bit in n.
 To set the bits of interest, the number is to be bitwise “ORed” with the bit
mask. To clear the bits of interest, the number is to be bitwise ANDed with
the one’s complement of the bit mask.

19. How do you find whether the given number is a power of 2 using
bitwise operator?

 In a number which is an exact power of 2, only one bit is set and all others
are zero. Let the position of this 1 bit be MSB. Mathematics rules for binary
numbers tells us that if we subtract 1 from this number then the number that
we would get would have all its bits starting from the bit position MSB+1
set to 1. For example, if the given number num is 8(00001000) then num-1
would be 7 (00000111). Now, we notice that these two bit patterns do not
have a 1 in the same bit position. If num and (num –1) are bitwise ANDed,
we get zero.

 The following macro can be used.

#define	ISPOWOF2(n)	(!((n)	&	(n-1))

20. How do you find whether a given number is even or odd without
using % (modulus) operator and using bitwise operators?

 If the number is odd, then its least significant bit (LSB) is set i.e. it is 1. If it
is even, then it is 0. When you bitwise and (&) this number with 1, the result
would be either 1 if the number is odd or zero if it is even.
 int isOdd(int num)

 {

 return (num&1);

 }

 The returned value can be used to determine if the number is odd or not.
If the value returned is 0, the number is even. It is odd otherwise.

21. There are null character, null statement, null pointer in C language.
Is there any null directive?

 A # on a line is a null directive and by itself does nothing. It can be used for
spacing within conditional compilation blocks. Blank lines can also be used
but the # helps the reader see the extent of the block.

22. What does the type qualifier volatile mean?

 The volatile type qualifier is a directive to the compiler’s optimizer that
operations involving this variable should not be optimized in certain ways.
A volatile variable is one that can change unexpectedly. While accessing
special hardware like memory-mapped memory, interrupt-handler or
shared memory, its value must be reloaded into a variable every time it is
used instead of holding a copy in a register. The volatile qualifier forces the
compiler to allocate memory for the volatile object and to access the object
from memory.

23. What does the type qualifier restrict mean?

 restrict qualifier was introduced by C99 committee. Only the pointer
types can be restrict-qualified. The object which is accessed through the
restrict-qualified pointer, that is a function parameter, is the sole means of
access to an object at the beginning of each execution of the function. This
assumption expires with the end of each execution.
 Other than used as function parameter, the pointer with restrict qualifier
can be used in file scope as well as in block scope.
 A restricted pointer having file scope should point to an object for the
duration of the program. That object may not be referenced both through
the restricted pointer and through either its declared name (if it has one) or
another restricted pointer.
 A block scope restricted pointer makes an aliasing assertion that is
limited to its block.

exercIses

 1. What are bitwise operations?

 2. What is the purpose of a complement operator? To what types of op-
erands does it apply? What is the precedence and associativity of

this operator? How can the 2’s complement of a decimal number be
found?

 3. Describe the three logical bitwise operators. What is the purpose of
each?

Advanced C 469
 4. What is masking? Explain with an example.

 5. How can a particular bit be toggled on and off repeatedly? Which
logical bitwise operation is used for this?

 6. What are precedence and associativity of bitwise shift operators?

 7. What is a type qualifier?

 8. Describe the use of the const type qualifier.

 9. Compare volatile and restrict type qualifiers.

 10. What is a memory model in C? Describe the different memory models
used in C.

 11. What is a far pointer? How does it differ from near and huge pointers?

 12. Explain the use of farmalloc() with an example.

 13. What are command-line arguments? What are their data types?

 14. When a parameter is passed to a program from command line, how is
the program execution initiated? Where do the parameters appear?

 15. What useful purpose can be served by command-line arguments
when executing a program involving the use of data files?

 16. What is a macro?

 17. Compare macros and functions.

 18. How is a multiline macro defined?

 19. What is meant by a preprocessor directive?

 20. What is the difference between #include <stdio.h> and
#include “stdio.h”?

 21. What is the scope of a preprocessor directive?

 22. Describe the preprocessor directives # and ##? What is the purpose
of each?

 23. What is meant by conditional compilation? How is conditional
compilation carried out? What preprocessor directives are used for
this purpose?

 24. Define a mask and write C programs using masking to solve the
following.

 (a) Copy the odd bits (bits 1, 3, 5, ..., 15) and place 0’s in the even
bit locations (bits 0, 2, 4, ..., 14) of a 16-bit unsigned integer
number.

 (b) Toggle the values of bits 1 to 6 of a 16-bit integer while
preserving all the remaining bits.

 25. Write a function setbits(x,p,n,y) that returns x with the n bits
that begin at position p set to the rightmost n bits of y, leaving the
other bits unchanged.

 26. Write a function invert(x,p,n) that returns x with the n bits that
begin at position p inverted (i.e., 1 changed into 0 and vice versa),
leaving the others unchanged.

 27. Write a C program that will illustrate the equivalence between

 (a) Shifting a binary number to the left n bits and multiplying the
binary number by 2n

 (b) Shifting a binary number to the right n bits and dividing the
binary number by 2n

 28. Write a function rightrot(x,n) that returns the value of the integer
x rotated to the right by n positions.

 29. Write a symbolic constant or macro definitions for each of the
following.

 (a) Define a symbolic constant PI to represent the value
3.1415927.

 (b) Define a macro AREA that will calculate the area of a circle in
terms of its radius. Use the PI defined above.

 30. Write a multiline macro named ‘interest’ that will compute the
compound interest formula

 F = P (1 + i)n

 where F is the future amount of money that will accumulate after n
years, P is the principal amount, and i is the rate of interest expressed
as percentage.

 31. Write a macro named MAX that uses the conditional operator (?:) to
determine the largest number among three integer numbers.

 32. Define a preprocessor macro swap(t, x, y) that will swap two
arguments x and y of a given type t.

 33. Define a preprocessor macro to select

	 the least significant bit from an unsigned char

 the nth (assuming that the least significant is 0) bit from an
unsigned char

 34. Define plain macros for the following. An infinite loop structure called
forever.

 35. Define parameterized macros for the following.

	 Swapping two values

	 	 Finding the absolute value of a number

	 Finding the centre of a rectangle whose top-left and bottom-right
coordinates are given (requires two macros)

 36. Write directives for the following.

	 Defining Small as an unsigned char when the symbol PC is
defined, and as unsigned short otherwise

 Including the file basics.h in another file when the symbol CPP
is not defined

 Including the file debug.h in another file when release is 0, or
beta.h when release is 1, or final.h when release is greater
than 1

 37. Write a macro named When which returns the current date and time as
a string (e.g., “25 Sep 2005, 12:30:55”). Similarly, write a macro
named Where which returns the current location in a file as a string
(e.g., “file.h:	line	25”).

470 Computer Fundamentals and Programming in C

project QuestIons

Write a program that reads in employee data from two unsorted binary
files (the format of these files is described below), merges the data from
two files together in sorted order on employee name, and outputs the
resulting sorted list of employee data to a binary file. Additionally, as the
program reads each employee’s information from an input file it should
print it to standard output in tabular format, and before the program writes
the resulting sorted merged data from the two input files, it should also
print it to standard output in tabular format, and print out the total number
of employees and the average salary . ‘\t’ is the tab character that can

be used to get good tabular output. The three files used by the program
(two input and one output) will be passed to the program via command line
arguments.

The program will read employee data into a singly linked list. The employee
list should be maintained and sorted alphabetically by employee name. Do
not assume that the employee records in the input file are already in sorted
order. However, the program should write the list to an output binary file
in sorted order.

Features of the Book

After studying this chapter, the readers will be able to

∑ analyse the basic structure of a C program

∑ discuss the commands used in UNIX/Linux and MS-DOS
for compiling and running a program in C

∑ enumerate the various keywords in C

learning Objectives at the beginning
of each chapter to focus attention on

the major learning outcomes of the
chapter

Text interspersed with well-
illustrated and labelled
figures to enable easy
understanding of concepts

 According to C99, a comment also begins with // and
extends up to the next line break. So the above comment line
can be written as follows:

// A Simple C Program

// comments were added for C99 due to their utility and
widespread existing practice, especially in dual C and C++
translators.

#include <stdio.h>

Updated programming
concepts recommend-

ed by the C 99 Commit-
tee highlighted in the

relevant chapters

note

 ∑ C uses a semicolon as a statement terminator; the
semicolon is required as a signal to the compiler to
indicate that a statement is complete.

 ∑ All program instructions, which are also called statements,
have to be written in lower-case characters.

Note provided after few
sections to help impart
better understanding of
the key points discussed

Address 5000 5001 5002 5003

letter

radian

number

Fig. 14.4 three members of a union sharing a memory
location for a 16-bit machine

Check your progress

 1. What will be the output of the following program?
 (a) #include <stdio.h>
 int main()
 {
 int a=010;
 printf(“\n a=%d”,a);

Example

 3. int i = 42;
 i++; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */
 i— —; /* decrement contents of i, same as i = i – 1; */

/* i is now 42 */

++i; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */

– –i; /* decrement contents of i, same as i = i – 1; */
/* i is now 42 */

ASCII It is a standard code for representing characters as numbers and
is used on most microcomputers, computer terminals, and printers. In
addition to printable characters, the ASCII code includes control characters
to indicate carriage return, backspace, etc.

Assembler It creates the object code.

Associativity The associativity of operators determines the order in
which operators of equal precedence are evaluated when they occur in

1. What is the difference between compiling and linking?
 Compiler converts each source file into an object file. Linker takes all
generated object files, as well as the system libraries that are relevant, and
builds an executable file that is stored on disk.

2. What is a bug?
 Any type of error in a program is known as bug. There are three types of
errors that may occur:

 1. Write a program that performs the following. The user inputs a number
and then enters a series of numbers from 1 to that number. Your
program should determine which number (or numbers) is missing or
duplicated in the series, if any. For example, if the user entered 5
as the initial number and then entered the following sequences, the
results should be as shown.

 Input Sequence Output
 ----------------- ---------------
 1 2 3 4 5 Nothing bad

check Your progress modules
to test understanding of

concepts mid-way through
chapters

Numerous examples
interspersed in the
text to illustrate the
use of constructs
and presentation of
programming formats

Key Terms with definitions
help to recapitulate the

important concepts learnt
in the chapter

Frequently Asked Questions
to address common queries
about programming
concepts and reinforce the
learning

Project Questions to
encourage readers to

learn the application of
concepts

Bibliography and References 471

Bibliography and References
 ∑ A. L. Kelly and I. Pohl (1999), A Book on C, 4th edn, Pearson,

Singapore.
 ∑ A. N. Kamthane (2002), Programming ANSI and Turbo

C, 1st edn, Pearson, Singapore.
 ∑ A. Pandey (2003), Programming in C, 1st edn, Cybertech

Publications, India.
	 ∑ B. A. Forouzan and R. F. Gilberg (2001), A Structured

Programming Approach using C, 2nd edn, Thomson
Asia, Singapore.

 ∑ B. Kerninghan and D. Ritchie (1999), C Programming
Language, 2nd edn, Prentice Hall, India.

 ∑ B. S. Gottfried (2000), Programming with C, 2nd edn,
Tata Mcgraw-Hill, India.

 ∑ C. L. Tondo and S. E. Gimple (1989), The C Answer
Book, 1st edn, Pearson, Singapore.

 ∑ Don Gookin (2004), C Programming – 6 books in 1,
Willey Dreamtech Pvt Ltd

 ∑ E. Balaguruswamy (1998), ANSI C, 2nd edn, Tata McGraw-
Hill, India.

 ∑ ftp://scitsc.wlv.ac.uk//pub/cprog/
 ∑ Gary J. Bronson (2001), ANSI C, 3rd edn, Thomson Asia,

Singapore.
 ∑ Greg Perry (2000), C by Example, 1st edn, Prentice

Hall, India.
 ∑ H. M. Deitel (2001), C How to Program—Introducing

C++ and Java, 3rd edn, Pearson, India.
 ∑ H. Schildt (2000), Complete Reference C, 4th edn, Tata

McGraw-Hill, India.
 ∑ Herbert Schildt (2000),	C: The Complete Reference, 4th

edn, Tata McGraw-Hill Education
 ∑ Ivor Horton (2006), Beginning C-From Novice to

Professional, 4th edn, USA.

 ∑ Jeri R Hanly, Elliot B Koffman (2007), Problem solving
and Programming in C, 5th edn, Pearson Education-
Addison Wisley, USA

 ∑ K.N.King. C Programming- A Modern Approach, 2nd
edn, W.W.Norton, NewYork, London

 ∑ Peter van der Linden (1994), Expert C Programming:
Deep C Secrets, 1st edn, Prentice Hall, India.

 ∑	 R.	 Heathfield	 et	 al.	 (2000),	 C Unleashed, 1st edn,
Techmedia, India.

 ∑ R. Radcliffe (1992), Encyclopedia C, 1st edn, BPB
Publications, India.

 ∑ S. Kaicker (1996), The Complete ANSI C, 1st edn, BPB
Publications, India.

 ∑ S. Prata (1991), C Primer Plus, 3rd edn, Techmedia,
India.

 ∑ S. Summit (2000), C Programming FAQs, 1st edn, Pearson,
Singapore.

 ∑ Samuel P. Harbison III, Guy L. Steele Jr. (2007), C: A
Reference Manual, 5th edn, Pearson Education, India

 ∑ Stephen G. Kochan (2005), Programming in C, 3rd edn,
Pearson Education, India

 ∑ Stephen G. Kochan (2005), Programming in C, 3rd edn,
Sams Publishing, Indiana

 ∑ Stephen Prata (1998), C Primer Plus®, 3rd edn, Sams
Publishing, USA

 ∑ Y. Kanetkar (1991), Let Us C, 4th edn (revised), BPB
Publications, India.

 ∑ Y. Kanetkar (2001), Let Us C Solution, 1st edn, BPB
Publications, India.

 ∑ Y. Kanetkar (2001), Understanding Pointers in C, 3rd
edn, BPB Publications, India.

	 ∑ http://cplus.about.com
	 ∑ http://cplus.about.com/mbiopage.htm
	 ∑ http://en.wikipedia.org/wiki/C_syntax
	 ∑ http://goforit.unk.edu/cprogram/default.htm
	 ∑ http://mathbits.com/
	 ∑ www.old.dkuug.dk/JTC1/SC22/WG14/docs/c9x/

	 ∑ http://publications.gbdirect.co.uk/c_book
	 ∑ http://students.cs.byu.edu/~cs130ta/index.html
	 ∑ http://students.cs.byu.edu/~cs130ta/readings/readings.

html
	 ∑ http://users.evtek.fi/~jaanah/IntroC/DBeech/index.htm
	 ∑ http://www.d.umn.edu/~gshute/C/statements.html

472 Bibliography and References

	 ∑ http://www.netnam.vn/unescocourse/os/operatin.htm
	 ∑ http://www.minich.com/education/psu/cplusplus/index.

htm
	 ∑ http://www.cs.utk.edu/~cs102/lectures/index.html
	 ∑ http://www-ee.eng.hawaii.edu/Courses/EE150/Book/

chap7/
	 ∑ subsection2.1.3.1.html
	 ∑ http://www.coronadoenterprises.com
	 ∑ http://www.eskimo.com
	 ∑ http://www.ics.uci.edu/~dan
	 ∑ h t t p : / / w w w. f r e d o s a u r u s . c o m / n o t e s - c p p /

arrayptr/26arraysas
	 ∑ pointers.html
	 ∑ http://www.ibiblio.org/pub/languages/
	 ∑ http://www.cs.cf.ac.uk/Dave/C/CE.html
	 ∑ http://www.cplusplus.com/doc/tutorial/
	 ∑ http://www.cs.mun.ca/~michael/c/problems.html
	 ∑ http://www.comp.nus.edu.sg/~hchia/Teaching/cs1101c/
	 ∑ tut10/tut10.html

	 ∑ http://www.digitalmars.com/
	 ∑ http://www.borland.com/
	 ∑ http://www.function-pointer.org/
	 ∑ http://www.juicystudio.com
	 ∑ http://www.antioffline.com/h/c/
	 ∑ http://www.coronadoenterprises.com/coders/index.html
	 ∑ http://www.mrx.net/c/
	 ∑ http://www.scit.wlv.ac.uk/cbook/
	 ∑ http://www.cs.cmu.edu
	 ∑ http://www-h.eng.cam.ac.uk/help/tpl/languages/C/
	 ∑ teaching_C/node1.html
	 ∑ h t t p : / / w w w . i t s . s t r a t h . a c . u k / c o u r s e s / c /

tableofcontents3_1.
	 ∑ html
	 ∑ http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.

bit.
	 ∑ fields.htm
	 ∑ http://www.xploiter.com/mirrors/cprogram/default.htm
	 ∑ http://yolinux.com/

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

‘_’ 118

‘!=’ 119

‘*’ 118

‘/’ 118

‘ ’ 118

‘+’ 118

‘<’ 119

‘<=’ 118

‘=’ 119

‘>’ 118

‘>=’ 119

3GL 68 124

4GL 68

.com 108

.de 108

-defined structure 395

.edu 108

#error 457

.gov 108

#line 457

-> operator 407

‘*’ operator 407

‘.’ operators 407

.org 108

#pragma 457

.us 108

A

abacus 1

absolute pathname 86

abstraction 63

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

activation record 304

address constant 337

algorithms 60 114 118 133

 flowchart 114

 Nassi-Schneiderman 115

 pseudo-code 114

 step-form 114

alphabetic or character data 117

alphanumeric codes 37

application software 59

argc 451

arguments 287

argv 451

arithmetic operators 118 159

 binary operators 159

 unary operators 161

ARP 108

ARPA 105

ARPANET 105 112

arrays 247 253 271 360

 249 252 274 359

 366

 accessing 250 273

 Fibonacci series 253

 initializing 249

 internal representation 252

 memory allocation 252

 of strings 277

 of structures 415 416

 one-dimensional 247 253

 ragged 366

assembly language 60 61

 code 61

 program 61

 statement 61

associative law 44

axioms 43 55

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

B

base 19

batch processing 101

batch processing system 75

batch process operating system 78

batch process, time-shared 78

batch system 75

Big-O notation 313

binary codes 36 60

binary files 430

binary inputs 53

binary search 305 306 315

binary subtraction

 using signed 1’s complement representation 31

 using signed 2’s complement representation 32

bitfields 414 415

bitwise operators 164 446

 AND 446

 EXCLUSIVE OR 448

 NOT 449

 OR 448

 shift 449

 uses 446

Boolean addition 44

Boolean algebra 43 55

 AND 44

 basic operations 54

 commutative 44

 multiplication 43

Boolean expressions 53 54 55 57

Boolean functions 47 57

Boolean multiplication 43

Boolean negation 44

Boolean operations 44

Boolean variables 47 55 57

break statements 236

broadband over power line (BPL) 112

browser 107 112

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

bubble sort 254 316

buffer 76 420

buffering 102

buffer overflow 382

bug 68

C

C99 standard 399

cable modem broadband 109 112

call by address 334

call by reference 288

call by value 288

calloc() 371

canonical form 48 55

canonical sum of product terms 49

canonical term 48

cat command 89

cellular internet 110

CERN 105 106

CHAR_BIT 450

chat 110 111

child directories 95

CISS 107

clearing screen 90

CLS 96

COBOL 60

code generation 64

coding 66 68

coincidence gate 54 55

command interpreter 73 83 93 101

command-line arguments 451

command prompt 94

commutative law 44

compilation process 64 65

compile errors 140

complement 56

complement law 44

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

complexity analysis 312

 average-case complexity 312

 best-case complexity 312

 worst-case complexity 312

complex number 177

computer hardware 70

computer memory 325

computer network 60 104

computer software 70

conditional operator 165 214

configuration files 59

console 139

const 459

constant 155

constant parameters 383

constant pointers 383

const qualifier 382

continue statements 238

converting algorithms into programs 129

COPY 97

copying a file 97

copying and comparing structures 401

copying files and directories 90

counter 235

cp 101

C preprocessor 454

C program 144

C:\> PROMPT 98

create and delete files 84

creating a directory 87 97

creating a file 89 97

CSNET 105

current directory 86 88

D

damaging programs 112

dangling else 242

dangling pointer 382

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

data 117 133

data files 59

data hiding 63

data segment 325

data structure 246

data types 117 146 147 148

 long int 147

 short int 147

debug 133

debugger 68 140

debugging 65 140

decision constructs 115

 if ... then 115

 if ... then ... else 115

declaration 151

declare an enumeration type 413

declaring a union 410

declaring structures 395

deleting file(s) 91 97

DeMorgan’s law 44

De Morgan’s theorem 52 54 56

dereference operator 331

dereferencing 331

derived data 394

derived data type 246

derived gates 49

designing algorithms 128

 investigation step 128

 stepwise refinement 128

 top-down development step 128

desk-check 130

DevC++ 138

device (i/o) management 72

device management 83

dial-up connection 108

DIR 96 99

direct I/O 431

directives 454

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

directories 85 86 88 95

 96 102

directory files 84

DISKCOPY 100

DISKCOPY command 100

disk drive 94

distributed computing 102

distributed operating system 81

distributive law 44

DNS 107

document root 108

domain name 107

DOS commands 96

 ATTRIB 100

 CD 97

 CLS 96

 COPY 97

 Date 96

 DEL 97

 DIR 96

 DISKCOPY 100

 DOSKEY 100

 ERASE 97

 FIND 100

 MD 97

 MKDIR 97

 MORE 101

 MOVE 98

 PATH 100

 PROMPT 98

 RD 98

 RENAME 98

 RMDIR 98

 SORT 100

 Time 96 97

 TREE 100

 VER 96

DOSKEY 100

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

DOSKEY command 100

dot operator 397

do...while 132

do-while construct 232

do-while loop 232

DSL 109 111 112

dual 44 57

duality principle 44

dynamic IPs 107

dynamic memory allocation 370

E

e-commerce 111

effect of padding 416

ellipsis 462

e-mail 110

encapsulation 63

encircled plus 52

end of file (EOF) 425

ENIAC 2

enumeration data types 413 416

equality detector 53

ERASE 97

error checking 107

ethernet cables 109

even-parity checker 53

executable file 59

exit() 371

F

fclose() 423

feasibility study 66 68

feof() 430 432

ffush() 424

fgetc() 425

fgets() 425

Fibonacci series 253

fifth generation language (5GL) 62

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

file 102 420 422 441

file descriptor 84

file management 72 80 83 101

file management functions 441

file modes 423

filename 89

file pointer 422

file sharing 111

file system in UNIX 85

file system structure 85

file table 84

find command 100

first generation language (1GL)—machine language 60

flag characters 191

floating-point emulator 407 416

flowcharts 114 124 126

 advantages of 126

 limitations of 126

 symbols 125

flushall() 424

fopen() 422

forcefloat() 408

for construct 224 225

format specifers 189 194

fortran 60 75

fourth generation languages (4gl) 61

fprintf() 263 428 433

fputs() 425

fputs() function 425

fread() 431

free() 371

fscanf() 428 433 263

fseek() 438

ftell() 440

FTP 105 106 107 108

 112

full pathname 86

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

function 69 283 287 339

 argument 408

 defnition 284

 linkfloat() 407

 passing arrays to 290

 pointers 367

 prototype declaration 284

functional languages 63

fwrite() 431

G

garbage collectors 381

gateway 107

getc() 425

gets() 262

global variables 293

goto statement 236 241

graphical browser 106

graphic user interface 106

H

hackers 111

head command 90

header files 142

heap 326 370

heterogeneous data 397

hierarchical structure 84

high-level languages 62 68

high-level programming language 61 133

Home directory 86

home page 113

homogeneous data 394

host 107 112

HTML 106

HTTP 106 107 108 112

HTTP servers 105

hyperlink 106 112

hypertext 105 112

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

hypertext and hypermedia 112

hypertext information 106

I

ICANN 107

IC package 50

idempotence law 44

identifier 154

identity law 44

if construct 208

if-else statement 209

indirection operator 328 331

inequality detector 52

inheritance 63

initialization 157 399

initialization of structures 398

initializing an array of structures 406

inline function 299

inode 84

input 131

input and output 184 188

 control string 189

 format string 189

 formatted 188

 getchar() 184

 gets() 184

 non-formatted 184

 printf() 188

 putchar() 184

 puts() 184

instance variable 416

instant messaging 110

instruction code 60

integrated development environment 138

intermediate code generation and optimization 64

internet 60 104 105 106

 107

 addiction 111

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

internet (Cont.)

 address translation 108

 connections 108

 protocol 112

 protocol suite 104

interpreter 9 61 65 69

interrupts 102

inverter 50 53

I/O device 101

I/O management 80

IP address 107 108

IPL 75

IRC 110

ISDN 111

ISP 107 108 111 112

 113

iterate 115

iteration 115 126

K

kernel 73 75 82 83

 93 102

kernel–shell 84

keywords 154

keyword struct 395

L

labels 60

leased lines 109

less command 90

lexical analysis 64 65

lexical analysis phase 68

limits.h 149

linear loops 312

linear search 305 314

linkage 299

linkage editor

linker 65 66 68

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

linkfloat() 408

linking 65 66 68 139

linking errors 140

linux 79 81

loader 65 66 68

 absolute loader 65

 bootstrap loader 65

 linking 65

local application software 59

local variables 293

logarithmic loops 312

logging in 87

logic `0 49

logic `1 49

logical data 117

logical operations 49

logical operators 119 164 204 206

 446

 bitwise AND 446

 bitwise exclusive-OR 448

 bitwise NOT 449

 bitwise OR 448

 bitwise shift operator 449

logical product of logical sums 47

logical sum of logical products 47

logic circuits 53

logic gates 49 56

 AND 44 53 55 119

 AND gate 49 54

 AND law 44

 AND, OR 49 53 54 58

 all or nothing gate 49

 anti-coincidence gate 52

logic programming languages 63

logic symbol 52

logic variables 43 47 54

looping 115

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

low-level languages 62

 assembly language 62

 machine language 62

low-level programming language 133

lvalue 169

M

MAC 108

machine code 60

machine language 60 62 133

 instruction 60

 program 66

macro 454

macroprocessor 454

main() 143 144

main program 65

malloc() 370

markup languages 64

maxterms 54 56 57

member access 412

memory addresses 325

memory allocation 412

memory corruption 381 382

memory fragmentation 411

memory leak 381

memory management 72 80 83 101

message tracking 107

meta network 104

minterms 48 54 57

MKDIR 97

mnemonic codes 60 61

modularity 134

modularization 131

modularization of program 133

modular programming 131

module 131

more command 90 101

MOVE 98

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

MS-DOS 93

MSDOS 93

 history 93

multimedia information 106

multiprocessing system 79

multiprogramming operating system 78

multitasking 82 101

multitasking operating systems 78

multi-user capability 82

multi-user operating system 79

multi-way decisions 211

N

naming a file 95

NAND 49 54 55

NAND function 51

NAND gate 51 54

NAND gates 54

Nassi-Schneiderman 115

nested if 212

nested loops 238 241 312

nesting of structures 404 415

networked computing 102

network operating system 80

NNTP 106

non- homogeneous data 394 416

non-interactive environment 78

non-procedural language 61 63

NOR 49 54 55

NOR function 51

NOR gate 51 52 54

NOR gates 54

‘NOT’ 49 119

NOT 44 53 54 55

 58

NOT-AND 51

NOT gate 50 51 52 54

NSF 105

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

NUL 257 264

NULL 333

null character 257 342

null law 44

null pointer 333

number system 19

 binary 20

 common rules of 20

 decimal 19

 octal 20

number system conversions 21

 binary number to its equivalent octal number 23

 binary number to its hexadecimal equivalent 24

 binary fraction to decimal 26

 binary fraction to hexadecimal 27

 binary fraction to octal 27

 binary to decimal 22

 decimal fractions to binary 25

 decimal fractions to octal 26

 hexadecimal fraction to binary 27

 octal fraction to binary 26

 decimal number to its binary equivalent 21

 decimal number to its hexadecimal equivalent 23

 decimal number to its octal equivalent 22

 hexadecimal number to its binary equivalent 23

 hexadecimal number to its decimal equivalent 23

 hexadecimal to octal, and octal to hexadecimal 24

 octal number to its decimal equivalent 22

numerical representation of Boolean functions 48

numeric data 117

O

object code 65

object-oriented languages 63

object-oriented programming 63

offline debugging 78

one-bit comparator 53

one’s complement 152

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

one-way decisions 208

online information, e-mail 111

online manuals 92

online services 111

open system 82

operand 60

operating system 59 65 71

 commands 74 101

 components 73

 distributed 81

 function 71

 multiprogramming 78

 network 80

 real-time 80

 time-sharing 79

 types 78

operation codes 60

operator

 arithmetic 159

 binary 159

 comma 165 209

 conditional 165

 sizeof 166

 unary 161

 address 326

 assignment 158

 bitwise 158

 equality 158

 logical 158

 relational 158

OR 44 55 119

OR, AND 53

OR gate 50 53 54

OR law 44

P

padding of structure 416

parent directory 95

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

parity bits 52

partial initialization 399

pathname 84 86 95

perror() 441

personal computers 77

pointer 327 328 343

 declaring 328

pointer arithmetic

 addition or subtraction 344

 assignment 343

 integers 344

pointers 329 352 354 357

 367

 array of 354

 initializing 329

 pointers to 352

 to an array 357

 to functions 367

 to pointers 352

 to structures 406

 to constant 382

polling 76

polymorphism 63

portability of language 133

portable software 59

POS form 55

post-test loop 219

preprocessor 454

preprocessor directives 144 454

 #define 455

 #define 454

 #elif 454 456

 #else 454 456

 #endif 454 456

 #error 454 457

 #if 454 456

 #ifdef 454

 #ifndef 454

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

preprocessor directives (Cont.)

 #include 454 455

 #line 454 457

 #pragma 454 457

 #undef 454 455

pre-test loop 219

primary memory 325

prime read 234

printf() 184

problem-oriented languages 63

 procedural 68

 algorithmic 63

 object-oriented 63

 scripting 63

procedural programming 62

process management 71 101

process scheduling 83

process symbol 125

process synchronization 83

product of maxterms 48

product of sums 48 55

product of sum terms 49 55

product term 55

program execution 82

program files 59

programming 66 133

 environment 82 138

 language 60 62 68 133

 paradigm 62

program statement 150

 compound 150

 control 150

 declaration 150

 expression 150

 iteration 151

 jump 151

 labeled 150

 selection 151

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

PROMPT command 98

pseudo-code 114 124 133

public switched telephone network 109

putc() function 424

Q

quadratic loop 312

qualifers 459

query language is 61

quick sort 317

quincy 138

R

random file access 432

RD 98

readability 61

realization of logic circuits 53

realloc() 371

reallocating memory blocks 376

real-time operating systems 78 80

recursion 300 304 305

 lrecursion 301

 mutual recursion 301

redirecting the input 93

redirecting the output 92

redirection 92 99

relational operators 118

relative pathname 86

reliability 81

relocation 65 66

remote access 111

remote computer 60

remove() 441

REN 98 99

rename() 98 441

renaming file/files 98

repeat loop 115 116

repetition 115 116

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

repetition constructs 115

 repeat 115

 while 115

requirement analysis 67 68

return statement 236 286

reusable code 63

rewind() 440

rm 101

RMDIR 98 101

root directory 85 86 95

rule-based languages 63

rules of Boolean algebra 43

runtime errors 140

run-time stack 304

rvalue 169

S

satellite internet 112

scalar variables 246

scaling 337

scanf() 184 259 261

scanset 260

scopes 295

 block 295

 file 295

 function prototype 296

 function 295

scripting languages 63

search engines 108 110 113

second generation language (2GL) 68

 assembly language 60

selection statements 208

semantic analysis 64

shell command 87

signed integer 148

simplifcation of Boolean expressions 45 54

simplify a Boolean function 56

size of operator 166

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

size of the structure 416

size specifers

 long 146

 short 146

 signed 146

 unsigned 146

slack bytes 402

SMTP 106 112

social networking websites 111

software development 66

software engineering 282

SOP form 55

SORT 100

SORT command 100

sorting algorithms 306

 insertion sort 308

 merge sort 309

 quick sort 310

 selection sort 307

spaghetti code 134

spam 112

spamming 111

special files 84 85

spooling 102

spooling operating systems 76 77

sscanf() 262

stack 325

standard files 184

standard products 48

standards for flowcharts 124

starting DOS 94

statement block 202

static memory allocation 370

stderr 263

stdin 263

stdout 263

step-form 114 118 133

stepwise refinement 128 133 134

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

storage class 296 297 298

 auto 296

 extern 298

 register 297

 static 297

storage class specifers 299

stream 420

stream I/O model 421

string 257 264 266

 declaration 257

 initialization 257

string arrays 277

stringizing operator 458

string manipulation 265

strings 258 267 342

 printing 258

structure 394 395 397 408

 412 415

 accessing the members 397

structured code 131 132

structured coding 133

structure declaration 397

structured programming 131 133 134

structure element 395

structures 394 398 401 404

 405 406

 and functions 408

 and pointers 406

 arrays of 406

 comparing 401

 initialization 398

 initialization of 398

 nesting of 404

structures and pointers 406

structure_tag_name 395

structure_variables 395

structure variables 395 396

sub-directories 95

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

subprogram 63 65

subroutines 62 65 117

subtraction 29

sum’ of minterms 48

sum of products 48 55

sum of product terms 49

sum term 55

surfing 107

surfing the web 111

surf the internet 111

switch statement 215

symbolic instructions 61

symbolic language 64

symbol table 69

syntax 68 69 131

syntax analysis 64 65 68

syntax error 65

system call interface 83

system calls 74 84 101

system programs 101

system software 59

T

tagged structure 395

tag name 410

tail command 90

target language 64

T-carrier lines 109

TCP 108 112

TCP/IP 104 107 108 112

telnet 106 110 112

template 397

temporary IP address 107

term 47 55

termination 116 133

test condition 203

test expression 204

testing 66 67 68

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

text browser 106

text files 424

third generation language (3GL)—high-level language 61

time complexity 311

time-sharing operating systems 79

token 133 154

 constant 154

 keywords 154

 operators 154

 separators 154

token pasting 458

token pasting operator 458

top–down analysis 131 133

top-down development 133

top-down programming 134

top-level domain name 107

towers of Hanoi 302

translators 65

 assembler 65

 compiler 65 68

 interpreter 65

transmission control program (TCP) 105

transmission control protocol 104

transmission control protocol/internet protocol suite 104

tree 100

tree command 100

two’s complement 152

two-way decisions 209

type conversion 169

typedef 403

type-defined structure 395

typedef keyword 403

typedef struct 403

type qualifier 459

 const qualifier 459

 restrict 461

 volatile 461

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

type qualifiers 146 459

 const, volatile 146

 restrict 146

type template 416

typing a command 95

U

unbounded loops 219

union 410 411 412 415

 416

 initializing 411

union sharing a memory location 411

universal gates 49 54

UNIX 79 82 83

 components 82

 file system 83

 kernel 83

 shell commands 87

 types of files 85

 command 87 88

UNIX commands

 cat 89

 cp 90

 head 90

 ls 88

 more 90

 mv 91

 rm 91

 rmdir 92

 tail 90

 wc 90

UNIX operating system 60 82 93

UNIX system 84

unsigned integer 149 151

URL 107 108 112

user-defined data type 394

uses of Internet 110

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

V

value at address 328

variable length argument 462

variable-length array 253

variables 116 117 395

 names 410

 structure 395

VER 96

virus 111

voice telephony 111

void pointer 332

VoIP 106 112

W

W3C 106

wc 90

web application software 59

web blog 111

web browser 59 106 107 108

webpage 106 107 108 112

web server 106 107 112

website 112 113

weighted codes 36

weighting factor 19

while 132

while loop 116

while-wend 132

wildcards in DOS 99

WiMax 110

windows 2000 server/2003 server 81

windows 2000/xp 79

wireless broadband internet 110

working directory 87

world wide web 105 106

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

X

XNOR 49

XNOR gate 52 53 54

XNOR operation 53

XOR 49

XOR-ed 53

XOR operation 53

	Front Matter
	Preface to the First Edition
	Prefaces
	Preface to the Second Edition

	Table of Contents
	1. Computer Fundamentals
	1.1 Introduction - What is a Computer?
	1.2 Evolution of Computers - A Brief History
	1.3 Generations of Computers
	1.4 Classification of Computers
	1.5 Anatomy of a Computer
	1.5.1 Hardware
	1.5.1.1 Input Devices
	1.5.1.2 Output Devices
	1.5.1.3 Central Processing Unit CPU
	1.5.1.4 Memory Unit
	1.5.1.5 Interface Unit
	1.5.1.6 Motherboard
	1.5.1.7 System Unit

	1.5.2 Software
	1.5.2.1 System Software
	1.5.2.2 Application Software

	1.6 Memory Revisited
	1.6.1 Primary Memory
	1.6.1.1 Read Only Memory ROM

	1.6.2 Secondary Memory

	1.7 Introduction to Operating Systems
	1.7.1 Loading an Operating System

	1.8 Operational Overview of a CPU
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	2. Number Systems and Binary Arithmetic
	2.1 Introduction to Number Systems
	2.2 Base of a Number System
	2.3 Weighting Factor
	2.4 Types of Number Systems
	2.4.1 Decimal Number System [Base-10]
	2.4.2 Binary Number System [Base-2]
	2.4.3 Octal Number System [Base-8]
	2.4.4 Hexadecimal Number System [Base-16]
	2.4.5 Common Rules of Number Systems

	2.5 Number System Conversions
	2.5.1 Working with Integer Numbers
	2.5.1.1 Conversion of a Decimal Number to its Binary Equivalent
	2.5.1.2 Conversion from Binary to Decimal
	2.5.1.3 Conversion of a Decimal Number to its Octal Equivalent
	2.5.1.4 Conversion of an Octal Number to its Decimal Equivalent
	2.5.1.5 Conversion of an Octal Number to its Binary Equivalent
	2.5.1.6 Conversion of a Binary Number to its Equivalent Octal Number
	2.5.1.7 Conversion of a Decimal Number to its Hexadecimal Equivalent
	2.5.1.8 Conversion of a Hexadecimal Number to its Decimal Equivalent
	2.5.1.9 Conversion of a Hexadecimal Number to its Binary Equivalent
	2.5.1.10 Conversion of a Binary Number to its Hexadecimal Equivalent
	2.5.1.11 Conversion from Hexadecimal to Octal, and Octal to Hexadecimal

	2.5.2 Working with Fractional Numbers
	2.5.2.1 Conversion from Decimal Fractions to Binary
	2.5.2.2 Conversion from Binary Fraction to Decimal
	2.5.2.3 Conversion from Octal Fraction to Decimal
	2.5.2.4 Conversion from Decimal Fractions to Octal
	2.5.2.5 Conversion from Octal Fraction to Binary
	2.5.2.6 Conversion from Binary Fraction to Octal
	2.5.2.7 Hexadecimal Number Conversion
	2.5.2.8 Conversion from Hexadecimal Fraction to Binary
	2.5.2.9 Conversion from Binary Fraction to Hexadecimal

	2.6 Binary Arithmetic
	2.6.1 Addition
	2.6.2 Subtraction
	2.6.3 Binary
	2.6.3.1 1's Complement
	2.6.3.2 2's Complement
	2.6.3.3 Subtraction Using Signed 1's Complement Representation
	2.6.3.4 Subtraction Using Signed 2's Complement Representation

	2.6.4 Multiplication
	2.6.5 Division

	2.7 Binary Codes
	2.7.1 Numeric Codes
	2.7.1.1 Weighted Codes
	2.7.1.2 Non-Weighted Codes

	2.7.2 Alphanumeric Codes

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	3. Boolean Algebra and Logic Gates
	3.1 Introduction to Boolean Algebra
	3.2 Theorems
	3.2.1 Some Applications of Boolean Laws and Theorems

	3.3 Boolean Expression
	3.4 Simplification of Boolean Expressions
	3.5 Boolean Functions and Truth Tables
	3.6 Constructing Boolean Functions from Truth Tables
	3.7 Canonical and Standard Forms
	3.8 Numerical Representation of Boolean Functions in Canonical Form
	3.9 Logic Gates
	3.9.1 AND Gate
	3.9.2 OR Gate
	3.9.3 NOT Gate or Inverter
	3.9.4 NAND Gate
	3.9.5 NOR Gate
	3.9.6 Exclusive-OR or XOR Gate
	3.9.7 Exclusive-NOR or XNOR Gate

	3.10 Describing Logic Circuits Algebraically
	3.11 Realization of Logic Circuits from Boolean Expressions
	3.12 Universality of NAND and NOR Gates
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	4. Introduction to Software
	4.1 Introduction
	4.2 Programming Languages
	4.2.1 Generation of Programming Languages
	4.2.1.1 First Generation Language 1GL - Machine Language
	4.2.1.2 Second Generation Language 2GL - Assembly Language
	4.2.1.3 Third Generation Language 3GL - High-Level Language
	4.2.1.4 Fourth Generation Languages 4GL
	4.2.1.5 Fifth Generation Language 5GL

	4.2.2 Classification of Programming Languages
	4.2.2.1 Procedural Programming Languages
	4.2.2.2 Non-Procedural Languages
	4.2.2.3 Problem-Oriented Languages

	4.3 Compiling, Linking, and Loading a Program
	4.4 Translator, Loader, and Linker Revisited
	4.4.1 Translators
	4.4.2 Linker
	4.4.3 Loader

	4.5 Developing a Program
	4.6 Software Development
	4.6.1 Steps in Software Development
	4.6.1.1 Feasibility Study
	4.6.1.2 Requirement Analysis
	4.6.1.3 Design
	4.6.1.4 Implementation
	4.6.1.5 Testing
	4.6.1.6 Deployment
	4.6.1.7 Maintenance

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	5. Basic Concepts of Operating Systems
	5.1 Introduction
	5.2 Introduction to Operating System
	5.3 Functions of an Operating System
	5.4 Components of an Operating System
	5.5 Interaction with Operating System
	5.6 History of Operating Systems
	5.6.1 First Generation 1945-55
	5.6.2 Second Generation 1956-63 - Transistors and Batch System
	5.6.3 Third Generation 1964-80 - Integrated Chips and Multiprogramming
	5.6.4 Fourth Generation 1980-Present - Personal Computers

	5.7 Types of Operating Systems
	5.7.1 Batch Process Operating System
	5.7.2 Multiprogramming Operating System
	5.7.2.1 Multitasking Operating Systems
	5.7.2.2 Multi-User Operating System
	5.7.2.3 Multiprocessing System

	5.7.3 Time-Sharing Operating Systems
	5.7.4 Real-Time Operating Systems
	5.7.5 Network Operating System
	5.7.6 Distributed Operating System
	5.7.6.1 Advantages of Distributed Operating Systems
	5.7.6.2 File System
	5.7.6.3 Protection
	5.7.6.4 Program Execution

	5.8 An Overview of UNIX Operating System
	5.8.1 Reasons for Success of UNIX
	5.8.2 Components of UNIX
	5.8.2.1 Kernel
	5.8.2.2 Command Interpreter

	5.8.3 The UNIX File System
	5.8.3.1 Types of Files
	5.8.3.2 File System Structure

	5.8.4 Account and Password
	5.8.5 Logging In
	5.8.6 UNIX Shell Commands
	5.8.7 Wildcards: The Characters * and?
	5.8.7.1 Creating a File
	5.8.7.2 Filename Conventions
	5.8.7.3 Viewing the Contents of a File
	5.8.7.4 Viewing Contents of Files Using cat Command

	5.9 An Overview of MSDOS
	5.9.1 A Brief History
	5.9.2 Role of Disk Drive for Loading DOS
	5.9.3 Starting DOS
	5.9.4 The Command Prompt
	5.9.5 Communicating with DOS
	5.9.5.1 Typing a Command
	5.9.5.2 Directories, Sub-Directories, and Files

	5.9.6 DOS Commands
	5.9.6.1 Viewing the Contents of a Directory
	5.9.6.2 PROMPT Command

	5.9.7 Wildcards in DOS
	5.9.8 Redirection
	5.9.9 Pipelines

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	6. The Internet
	6.1 Introduction
	6.2 Evolution of Internet
	6.3 World Wide Web
	6.4 Basic Internet Terminology
	6.4.1 Web Page
	6.4.2 Web Browser
	6.4.3 Web Server
	6.4.4 Internet Service Provider
	6.4.5 Gateway
	6.4.6 URL
	6.4.6.1 Protocol
	6.4.6.2 Host
	6.4.6.3 Path

	6.4.7 Search Engines

	6.5 Types of Internet Connections
	6.5.1 Dial-up Connection
	6.5.2 Leased Lines
	6.5.3 Digital Subscriber Line DSL
	6.5.4 Satellite Internet
	6.5.5 Broadband versus Power Line
	6.5.6 Cable Modem Broadband
	6.5.7 Other Forms of Internet Connectivity

	6.6 Uses of Internet
	6.6.1 Communication
	6.6.2 Information
	6.6.3 Entertainment
	6.6.4 Services
	6.6.5 E-Commerce

	6.7 Hazards of Internet
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	7. Introduction to Algorithms and Programming Concepts
	7.1 Algorithms
	7.1.1 What is an Algorithm?
	7.1.2 Different Ways of Stating Algorithms
	7.1.3 Key Features of an Algorithm and the Step-Form
	7.1.3.1 Sequence
	7.1.3.2 The Decision Constructs - if ... then, if ... then ... else...
	7.1.3.3 The Repetition Constructs - Repeat and while
	7.1.3.4 Termination
	7.1.3.5 Correctness

	7.1.4 What are Variables?
	7.1.4.1 Variables and Data Types
	7.1.4.2 Naming of Variables

	7.1.5 Subroutines
	7.1.5.1 Some Examples on Developing Algorithms Using Step-Form
	7.1.5.2 Pseudo-Code
	7.1.5.3 Flowcharts
	7.1.5.4 Advantages of Using Flowcharts
	7.1.5.5 Limitations of Using Flowcharts

	7.1.6 Strategy for Designing Algorithms
	7.1.6.1 Investigation Step
	7.1.6.2 Top-down Development Step
	7.1.6.3 Stepwise Refinement

	7.1.7 Tracing an Algorithm to Depict Logic
	7.1.8 Specification for Converting Algorithms into Programs

	7.2 Structured Programming Concept
	7.2.1 Top-down Analysis
	7.2.2 Modular Programming
	7.2.3 Structured Code
	7.2.4 The Process of Programming

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	8. Basics of C
	8.1 Introduction
	8.1.1 Why Learn C?
	8.1.2 The Future of C

	8.2 Standardizations of C Language
	8.3 Developing Programs in C
	8.3.1 Writing or Editing
	8.3.1.1 Programming Environment

	8.3.2 Compiling the Program
	8.3.3 Executing the Program
	8.3.3.1 Errors
	8.3.3.2 Debugging

	8.4 A Simple C Program
	8.5 Parts of C Program Revisited
	8.6 Structure of a C Program
	8.7 Concept of a Variable
	8.8 Data Types in C
	8.9 Program Statement
	8.10 Declaration
	8.11 How Does the Computer Store Data in Memory?
	8.11.1 How are Integers Stored?
	8.11.1.1 Sign and Magnitude
	8.11.1.2 One's Complement
	8.11.1.3 Two's Complement Form

	8.11.2 How are Floats and Doubles Stored?

	8.12 Token
	8.12.1 Identifier
	8.12.2 Keywords
	8.12.3 Constant
	8.12.4 Assignment
	8.12.5 Initialization

	8.13 Operators and Expressions
	8.13.1 Arithmetic Operators in C
	8.13.1.1 Binary Operators
	8.13.1.2 Unary Operators
	8.13.1.3 Basic Rules for Using ++ and - - Operators

	8.13.2 Relational Operators in C
	8.13.3 Logical Operators in C
	8.13.4 Bitwise Operators in C
	8.13.5 Conditional Operator in C
	8.13.6 Comma Operator
	8.13.7 sizeof Operator
	8.13.8 Expression Evaluation - Precedence and Associativity

	8.14 Expressions Revisited
	8.15 lvalues and rvalues
	8.16 Type Conversion in C
	8.16.1 Type Conversion in Expressions
	8.16.2 Conversion by Assignment
	8.16.2.1 Conversions of Characters and Integers
	8.16.2.2 Conversions of Float and Double
	8.16.2.3 Conversion of Floating and Integral Types

	8.16.3 Casting Arithmetic Expressions
	8.16.3.1 Rounding a Floating Point Value to a Whole Number
	8.16.3.2 Rounding a Floating Point Value to a Specific Decimal Precision

	8.17 Working with Complex Numbers
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	9. Input and Output
	9.1 Introduction
	9.2 Basic Screen and Keyboard I/O in C
	9.3 Non-Formatted Input and Output
	9.3.1 Single Character Input and Output
	9.3.2 Single Character Input
	9.3.3 Single Character Output
	9.3.4 Additional Single Character Input and Output Functions

	9.4 Formatted Input and Output Functions
	9.4.1 Output Function printf
	9.4.1.1 % Format Specifiers in printf
	9.4.1.2 Formatting the Output in printf
	9.4.1.3 Run-Time Adjustment and Precision in printf

	9.4.2 Input Function scanf
	9.4.2.1 Format Specifiers in scanf
	9.4.2.2 Formatted Input in scanf

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises

	10. Control Statements
	10.1 Introduction
	10.2 Specifying Test Condition for Selection and Iteration
	10.3 Writing Test Expression
	10.3.1 Understanding How True and False is Represented in C
	10.3.1.1 Short-Circuiting Evaluation in C

	10.4 Selection
	10.4.1 Selection Statements
	10.4.1.1 One-Way Decisions Using if Statement
	10.4.1.2 if and the comma Operator
	10.4.1.3 Two-Way Decisions Using if-else Statement
	10.4.1.4 Multi-Way Decisions
	10.4.1.5 Nested if
	10.4.1.6 Dangling else Problem

	10.4.2 The Conditional Operator
	10.4.3 The switch Statement
	10.4.3.1 switch vs Nested if

	10.5 Iteration
	10.5.1 while Construct
	10.5.1.1 Some Do's and Don'ts for Testing Floating Point 'Equality'

	10.5.2 for Construct
	10.5.2.1 The Equivalence of Bounded and Unbounded Loops
	10.5.2.2 Some Variations of for Loop

	10.5.3 do-while Construct
	10.5.3.1 while and do-while Loops

	10.6 Which Loop Should Be Used?
	10.6.1 Using Sentinel Values
	10.6.2 Using Prime Read
	10.6.3 Using Counter

	10.7 goto Statement
	10.8 Special Control Statements
	10.9 Nested Loops
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Questions

	11. Arrays and Strings
	11.1 Introduction
	11.2 One-Dimensional Array
	11.2.1 Declaration of a One-Dimensional Array
	11.2.2 Initializing Integer Arrays
	11.2.3 Accessing Array Elements
	11.2.4 Other Allowed Operations
	11.2.5 Internal Representation of Arrays in C
	11.2.6 Variable Length Arrays and the C99 Changes
	11.2.7 Working with One-Dimensional Array
	11.2.7.1 Printing Binary Equivalent of a Decimal Number Using Array
	11.2.7.2 Searching an Element within an Array
	11.2.7.3 Sorting an Array
	11.2.7.4 Binary Searching

	11.3 Strings: One-Dimensional Character Arrays
	11.3.1 Declaration of a String
	11.3.2 String Initialization
	11.3.3 Printing Strings
	11.3.4 String Input
	11.3.4.1 Using %s Control String with scanf
	11.3.4.2 Using Scanset
	11.3.4.3 Single-Line Input Using Scanset with ^
	11.3.4.4 Multiline Input Using Scanset
	11.3.4.5 String Input Using scanf with Conversion Specifier %c
	11.3.4.6 Using gets
	11.3.4.7 sscanf
	11.3.4.8 String Input and Output Using fscanf and fprintf

	11.3.5 Character Manipulation in the String
	11.3.6 String Manipulation
	11.3.6.1 Counting Number of Characters in a String
	11.3.6.2 Copying a String into Another
	11.3.6.3 Comparing Strings
	11.3.6.4 Putting Strings Together
	11.3.6.5 Some Sample Programs

	11.4 Multidimensional Arrays
	11.4.1 Declaration of a Two-Dimensional Array
	11.4.2 Declaration of a Three-Dimensional Array
	11.4.3 Initialization of a Multidimensional Array
	11.4.4 Unsized Array Initializations
	11.4.5 Accessing Multidimensional Arrays
	11.4.6 Working with Two-Dimensional Arrays
	11.4.6.1 Transpose of a Matrix
	11.4.6.2 Matrix Addition and Subtraction
	11.4.6.3 Matrix Multiplication
	11.4.6.4 Finding Norm of a Matrix

	11.5 Array of Strings: Two-Dimensional Character Array
	11.5.1 Initialization
	11.5.2 Manipulating String Arrays

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Questions

	12. Functions
	12.1 Introduction
	12.2 Concept of Function
	12.2.1 Why are Functions Needed?

	12.3 Using Functions
	12.3.1 Function Prototype Declaration
	12.3.2 Function Definition
	12.3.2.1 return Statement

	12.3.3 Function Calling

	12.4 Call by Value Mechanism
	12.5 Working with Functions
	12.6 Passing Arrays to Functions
	12.7 Scope and Extent
	12.7.1 Concept of Global and Local Variables
	12.7.2 Scope Rules
	12.7.2.1 Block Scope
	12.7.2.2 Function Scope
	12.7.2.3 File Scope
	12.7.2.4 Function Prototype Scope

	12.8 Storage Classes
	12.8.1 Storage Class Specifiers for Variables
	12.8.1.1 The Storage Class - auto
	12.8.1.2 The Storage Class - register
	12.8.1.3 The Storage Class - static
	12.8.1.4 The Storage Class - extern

	12.8.2 Storage Class Specifiers for Functions
	12.8.3 Linkage

	12.9 The inline Function
	12.10 Recursion
	12.10.1 What is Needed for Implementing Recursion?
	12.10.1.1 The Fibonacci Sequence
	12.10.1.2 Greatest Common Divisor
	12.10.1.3 The Towers of Hanoi
	12.10.1.4 Algorithm

	12.10.2 How is Recursion Implemented?
	12.10.3 Comparing Recursion and Iteration

	12.11 Searching and Sorting
	12.11.1 Searching Algorithms
	12.11.1.1 Sequential or Linear Search Algorithm
	12.11.1.2 Binary Search Algorithm
	12.11.1.3 Binary Search in a Recursive Way

	12.11.2 Sorting Algorithms
	12.11.2.1 Selection Sort
	12.11.2.2 Insertion Sort
	12.11.2.3 Merge Sort
	12.11.2.4 Quick Sort

	12.12 Analysis of Algorithms
	12.12.1 Asymptotic Notation
	12.12.1.1 Big-O Notation
	12.12.1.2 Lower Bounds and Tight Bounds

	12.12.2 Efficiency of Linear Search
	12.12.3 Binary Search Analysis
	12.12.4 Analysis of Bubble Sort
	12.12.5 Analysis of Quick Sort
	12.12.6 Disadvantages of Complexity Analysis

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Question

	13. Pointers in C
	13.1 Introduction
	13.2 Understanding Memory Addresses
	13.3 Address of Operator &
	13.4 Pointer
	13.4.1 Declaring a Pointer
	13.4.1.1 Why Should Pointers Have Data Types?
	13.4.1.2 Where is a Pointer Stored?

	13.4.2 Initializing Pointers
	13.4.2.1 Printing Pointer Value
	13.4.2.2 Is it Possible to Assign a Constant to a Pointer Variable?

	13.4.3 Indirection Operator and Dereferencing

	13.5 void Pointer
	13.6 NULL Pointer
	13.7 Use of Pointers
	13.8 Arrays and Pointers
	13.8.1 One-Dimensional Arrays and Pointers
	13.8.2 Passing an Array to a Function
	13.8.3 Differences between Array Name and Pointer

	13.9 Pointers and Strings
	13.10 Pointer Arithmetic
	13.10.1 Assignment
	13.10.2 Addition or Subtraction with Integers
	13.10.3 Subtraction of Pointers
	13.10.4 Comparing Pointers

	13.11 Pointers to Pointers
	13.12 Array of Pointers
	13.13 Pointer to Array
	13.14 Two-Dimensional Arrays and Pointers
	13.14.1 Passing Two-Dimensional Array to a Function
	13.14.1.1 Pointer to an Array as a Formal Parameter
	13.14.1.2 A Single Pointer as a Formal Parameter
	13.14.1.3 Ragged Arrays

	13.15 Three-Dimensional Arrays
	13.16 Pointers to Functions
	13.16.1 Declaration of a Pointer to a Function
	13.16.2 Initialization of Function Pointers
	13.16.3 Calling a Function Using a Function Pointer
	13.16.4 Passing a Function to Another Function
	13.16.5 How to Return a Function Pointer
	13.16.6 Arrays of Function Pointers

	13.17 Dynamic Memory Allocation
	13.17.1 Dynamic Allocation of Arrays
	13.17.2 Freeing Memory
	13.17.3 Reallocating Memory Blocks
	13.17.4 Implementing Multidimensional Arrays Using Pointers

	13.18 Offsetting a Pointer
	13.19 Memory Leak and Memory Corruption
	13.20 Pointer and Const Qualifier
	13.20.1 Pointer to Constant
	13.20.2 Constant Pointers
	13.20.3 Constant Parameters

	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Question

	14. User-Defined Data Types and Variables
	14.1 Introduction
	14.2 Structures
	14.2.1 Declaring Structures and Structure Variables
	14.2.2 Accessing the Members of a Structure
	14.2.3 Initialization of Structures
	14.2.4 Copying and Comparing Structures
	14.2.5 typedef and its Use in Structure Declarations
	14.2.6 Nesting of Structures
	14.2.7 Arrays of Structures
	14.2.8 Initializing Arrays of Structures
	14.2.9 Arrays within the Structure
	14.2.10 Structures and Pointers
	14.2.11 Structures and Functions

	14.3 Union
	14.3.1 Declaring a Union and its Members
	14.3.2 Accessing and Initializing the Members of a Union
	14.3.3 Structure versus Union
	14.3.3.1 Do's and Don'ts for Unions

	14.4 Enumeration Types
	14.5 Bitfields
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Questions

	15. Files in C
	15.1 Introduction
	15.2 Using Files in C
	15.2.1 Declaration of File Pointer
	15.2.2 Opening a File
	15.2.2.1 File Modes - What Sort of Open
	15.2.2.2 Checking the Result of fopen

	15.2.3 Closing and Flushing Files

	15.3 Working with Text Files
	15.3.1 Character Input and Output
	15.3.1.1 putc Function
	15.3.1.2 fputs Function

	15.3.2 End of File EOF
	15.3.2.1 Detecting the End of a File
	15.3.2.2 getc and fgetc Functions
	15.3.2.3 fgets Function

	15.3.3 Detecting the End of a File Using the feof Function

	15.4 Working with Binary Files
	15.5 Direct File Input and Output
	15.5.1 Sequential versus Random File Access

	15.6 Files of Records
	15.6.1 Working with Files of Records

	15.7 Random Access to Files of Records
	15.8 Other File Management Functions
	15.8.1 Deleting a File
	15.8.2 Renaming a File

	15.9 Low-Level I/O
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Questions

	16. Advanced C
	16.1 Introduction
	16.2 Bitwise Operator
	16.2.1 Bitwise AND
	16.2.2 Bitwise OR
	16.2.3 Bitwise Exclusive-OR
	16.2.4 Bitwise NOT
	16.2.5 Bitwise Shift Operator
	16.2.5.1 Bitwise Shift Left
	16.2.5.2 Bitwise Shift Right

	16.3 Command-Line Arguments
	16.4 The C Preprocessor
	16.4.1 The C Preprocessor Directives
	16.4.1.1 #define
	16.4.1.2 #undef
	16.4.1.3 #include
	16.4.1.4 #if, #else, #elif, and #endif
	16.4.1.5 #error
	16.4.1.6 #line
	16.4.1.7 #pragma

	16.4.2 Predefined Macros
	16.4.2.1 Stringizing Operator
	16.4.2.2 Token Pasting Operator

	16.5 Type Qualifier
	16.5.1 const Qualifier
	16.5.2 volatile Qualifier
	16.5.3 restrict Qualifier
	16.5.3.1 Some Typical Uses of the restrict Qualifier
	16.5.3.2 Members of Structures

	16.6 Variable Length Argument List
	16.7 Memory Models and Pointers
	Summary
	Key Terms
	Frequently Asked Questions
	Exercises
	Project Questions

	Features of the Book
	Bibliography and References
	Index
	#
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

