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ENGINEERING MECHANICS:
. WHAT AND WHY?

1.1 ENGINEERING AND ENGINEERING SCIENCES

Engineering is an activity concerned with the creation of new systems for the
benefit of mankind. The process of creativity proceeds by way of research, design
and development; new systems emerge from innovation and systems may be consti-
tuted by mechanical, electromechanical, hydraulic, thermal or other elements. Creation
of new systems is thus basic to all engineering. The Living Webster Encyclopedic
Dictionary aptly defines engineering as the art of executing a partial application of
scientific knowledge.

It is important to understand the difference between engineering and science.
Science is concerned with a systematic understanding and gathering of the facts,
laws and principles governing natural phenomena. Engineering, on the other hand,
is an art of utilisation of the established facts, laws and principles to create certain
desired phenomena as shown in Fig. 1.1. The activities of science and engineering
arc thus mutually opposite. Both may proceed through similar ways and means of
analysis and synthesis but are oppositely directed. The training of scientists and
engineers should be correspondingly designed for their respective objectives.

m—————-
Nature | Basic Facts
———| Science | _|science e.g. Laws
Physics Principles
————

-
. ——] ~—{ Engineering l=—Facts
@*— Engineering [~—sciences e.gAl"‘_‘Lm
———y i

| mechanics |~ Principles

New systems b ——— 4
Fig. 1.1 Role of Engineering Sciences

The sets of core courses meant for engineering students are called engineering
sciences. These are essentially basic sciences compartmentalised and labelled spe-
cially for engineering students with regard to their future responsibility. The exist-
ing laws and principles are conveyed to the students by the engineering-science
courses and emphasis is laid on their application to real-life problems. Some of the
engineering-science courses being offered in India and abroad are: Mechanics,
Manufacturing Processes, Energy Conversions, Transport Phenomena, Material
Science and Design Engineering.
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1.2

MECHANICS AND ITS RELEVANCE TO ENGINEERING

Mechanics is the physical science concerned with the dynamical behaviour of mate-
rial bodies in the presence of mechanical disturbances. Since such behaviour is of
interest to mechanical, civil, electrical, chemical, aeronautical, textile, metallurgical
and mining engineers, it is appropriate to conclude that the subject of mechanics
lies at the core of all engineering analysis.

Engineering mechanics refers to a course in mechanics tailored exclusively for
engineers. Essential features of such a course are:

1.

2.

The subject matter is not presented as rigorously as a course in analytical or
axiomatic mechanics may demand.

On the other hand, the contents are not just a series of applications as implied
by Applied Mechanics but a thorough grounding of the basic principles to-
gether with engineering applications.

. The course is integrated to provide a sound foundation in engincering-sci-

ence.,

. The course comprises the foundation for a number of courses that are to be

built upon it. Some of them are shown in Fig. 1.2.

Viscoetasticity
Space mechanics
Gyromechanics

Vibrations
Elasticity
Plasticity

Hypersonics

2 Non-Newtonian flow

8
ig
s

Particle mechanics

Rigid body dynamics

Rigid body statics

Mechanics of
deformable bodies

Viscoelastic fluids

Compressible flow
Aeromechanics

Ideal fluids
Viscous fluids

Engi

i

2
3
72

§
:

T

1
Continuum | of

i

{

Foundations of
Engineering Mechanics
Axioms, Laws and Principles

Py ol
Fig. 1.2 Mecbanics as tbe Foundation of a Number of Courses
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1.3 DIFFERENT FORMULATIONS OF MECHANICS

The subject of mechanics has been dealt with by a number of scientists from
Archimedes (287-212 B.C.) to Einstein (1878-1955). Apart from the historical de-
velopment of the subject, the following three broad classifications have come to
stay in view of the different axioms and principles employed:

I. Classical mechanics

2. Quantum or wave mechanics

3. Relativistic mechanics

The subject of classical mechanics rests on the classical foundations laid by
Galileo, Kepler, Newton and Euler. The laws of linear motion due to Newton and
the law of angular motion due to Euler have stood the test of time remarkably well.
These are valid for the dynamic behaviour of most of the observable bodies. Alter-
native foundations to classical mechanics were provided by Lagrange in terms of
the Lagrangian equation and by Hamilton in terms of the canonical equations. Later,
the *principle of least action’ on the basis of variational concepts was proposed as
the single principle governing the behaviour of bodies is most circumstances. The
word ‘classical’ therefore, is justifiable with respect to its dictionary meaning:

Classical = Traditionally accepted, long established; excellent, standard

The classical pattern breaks down for a body approaching the speed of light on
the one hand and for particles of size comparable with atoms on the other. It is for
these reasons that the structure of an atom remained unexplained until the principles
of Quantum Mechanics were framed and the problems of very high-speed bodies
remained a mystery until the formulation of the special and general theories of
relativity by Albert Einstein in the twentieth century. Relativistic mechanics is
based upon novel concepts of space and time, mass and energy, and the frame of
reference.

Table 1.1 gives the names of the scientists in relation to their respective regimes
of mechanics. The regimes of different formulations in mechanics are represented
schematically in Fig. 1.3.

Relativistic
Relativistic Principlel of least quantum mechanics
mechanics action
(for velocities
approaching the
speed of light) Lagrangian and Hamiltonian Quantum
formulations in mechanics mechanics
(for atomic and
The realm of subatomic size
classical mechanics objects)

(for observable material bodies)

Newtonian Mechanics

Fig. 1.3 Regimes of Mechanics
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Table 1.1 Pioneers of Mechanics

Quantum or Classical Mechanics Relativistic
Wave Mechanics Mechanics
Schridinger = Ngn-relativistic Lorentz
(1887-1961) = Newtonian (1853-1928)
Broglie Newton (1642-1727) Einstein
(1892-1965) Equivalent foundations by " (1878-1955)
Lagrange (1736-1813) Bose
Hamilton (1805-1865) (1897-1974)

D'Alembert (1717-1783)
Jacobi (1804-1851)
Contributions mainly by
Kepler (1571-1630)
Archimedes (287-212 B.C.)
Galileo (1564-1642)
Euler (1707-1783)
Coulomb (1736-1806)
Coriolis (1792-1843)
Foucault (1819-1868)
Bernoulli (1667-1748)

Further advances have not diminished the value of the Newtonian or classical
‘universal-time and absolute-distance’ concepts except for setting the upper bounds.
The bulk of the engineering work rests upon the foundation of classical mechanics
and it is, therefore, important to lay utmost emphasis on the teaching of classical
mechanics to engineers.

1.4 FOUNDATIONAL CONCEPTS

The axiomatic foundations of mechanics, have the following ingredients:

Undefined terms Defined Axioms Theorems

and concepts IZD entities r:'|> and laws |:>and principles

Some terms and concepts cannot be absolutely defined but are developed for
axiomatic thinking and mutual understanding. Examples of such classical terms are:
point, line and plane; space, time and matter; mass, force and energy.

Space refers to the unlimited general expanse of physical dimensions in which
all material objects are located. Measurements and locations in space involve the
concepts of point, direction, length and displacement. A point, for example, is just
an exact indication of a location in space, requiring no space at all for itself. Time
refers to the sequence of events. It is related to the concepts of before, after and
simultaneous occurrence of two or more events. Measurement of time is made with
the help of a clock. Matter refers to the substance of which physical objects are
composed, the constituent substances are indeed the aroms and molecules. The
quantity of matter associated with an object is measured as its mass. A physical
object may consist of matter which is uniformly or non-uniformly distributed. Bod-
ies with the same quantity of matter or the same mass can possess different shapes
and sizes depending upon the distribution of matter in them.



Engineering Mechanics: What and Why? 5§

Defined entities include momentum, moment of a force, impulse, work, equilib-
rium, rigid body, etc., Axioms are the relatively universal statements relating unde-
fined concepts and defined concepts. Examples of axioms are Newton’s 2nd law,
laws of friction and the law of gravitation.

Theorems and principles are derived from the axioms. Theorems and principles
can be proved. Examples of principles are Work-Energy principle, Lami’s theorem
and Impulse-Momentum principle.

1.5 FRAMES OF REFERENCE: INERTIAL AND MOVING

It is necessary to refer the motion of a body under study to some datum or reference
space and clock. A reference frame, therefore, consists of a space and a clock to
measure time. A reference frame should be such that the relative location of any two
arbitrary points in it remains the same. It follows that the distance between any two
points in the reference frame should remain invariant. A reference frame is called
fixed frame of reference or absolute frame if each point on the frame is at ‘absolute
rest’. It is impossible to locate a fixed frame of reference in the universe. Rectangu-
lar Cartesian axes can be embedded in a frame of reference. The origin and orienta-
vom ol axes can be according to convenience.

A reference frame is termed as moving frame of reference if each point on the
frame is not at rest. A moving frame may be inertial or non-inertial. An inertial
frame is one which moves at a constant velocity, i.e., the velocity of each point
identified on the frame is the same and remains constant. Obviously, an inertial
frame can move in a straight line at constant speed. In other words, an inertial frame
can be defined as a frame which does not have any acceleration. An inertial frame is
also known as Galilean frame.

The state of rest of a body refers to the absence of motion relative to some
coordinate system. By absolute rest we mean a state of fixedness in space. Such a
state could provide an absolute reference for the motion of other objects. However,
it is doubtful if any such reference exists in the solar system or in the entire
universe. It is, therefore, appropriate to speak of relative rest of a body with refer-
ence to a moving frame of reference. A reference frame fixed on the earth is both an
approximation of the rest-frame and a convenient choice for all earth-bound objects
for most engineering applications. A better choice from the point of view of physi-
cists and mathematicians would be the centres of the earth, solar system, galaxy,
and so on.

1.6 IDEALISATION OF BODIES

A body is a distinct mass, continuously distributed over a volume V enclosed in a
surface 5. An element of a body is referred to occupy a small volume AV and have a
small mass Am.

The words ‘body’ and ‘system’ are often used interchangeably. By general con-
sensus, a body implies a single material configuration and a system refers to a
combination of bodies. For cxample, a car is said to be a body if we were to



6  Engineering Mechanics

consider the whole car as a single lump of mass but the car is referred to as a system
of engine, chassis and wheels if we were to identify these items collectively.

It may be understood that the mathematical modelling of a system should be
done for the specific purpose in view: different mathematical models of a system
are made for different objectives' of analysis. For example, an aeroplane may be
regarded as (a) a concentrated mass with negligible dimensions for the purpose of
tracing its trajectory when it is flying sky-high, (b) merely a wing with a large span
for the analysis of its lifting characteristics, (c) a distributed mass system for the
stability analysis under different flight conditions and (d) a deformable shell for the
purpose of calculations of the strain when subjected to different pressures inside
and outside the cabin.

Different idealisations of bodies bear standard nomenclature and have specific
implications. These are:

. Particle

. System of particles
. Continuum

Rigid body

. Deformable body
. Fluid

. Solid

e - SR

Particle

When the dimensions or size of a body are considered to be negligible and are
irrelevant 1o the description of its motion, the body i1s modelled as a particle. A
particle is a point mass or a material point in the abstract sense. A body is, there-
fore, represented as a particle if its dimensions are small compared to the coordi-
nates describing its motion as shown in Fig. 1.4

Not a particle
w.rt x-oy’

o

Fig. 1.4 Criteria of Idealisation of Bodies

Examples A cricket ball as viewed by a spectator; a distant acroplane tracked by
a ground observer; a satellite orbiting the earth and seen by an observer on the
earth; a planel as seen {rom another planet.



Engineering Mechanics: What and Why? 7

System of Particles

When two or more bodies are represented by particles and are dealt with together, a
system of particles is constituted. A system of particles is an idealisation of a
collection of point masses. A body or a set of bodies is, therefore, represented as a
system of particles if each part of the body or each bedy individually qualifies to be
represented by a particle. A system of particles may comprise a rigid collection or a
deformable collection in accordance with the criteria of rigid or deformable bodies
which follow.

Examples Billiard balls observed by a viewer in the gallery; sun-carth-moon sys-
tem; electron-proton-neutron nature of atom.

Continuum

When the microscopic nature of matter is disregarded and properties of the sub-
stance are defined assuming a continuous distribution of mass, the embodiment of
matter so modelled is called a continuum. In a continuum, the gross effects of the
actions of the molecules and atoms are conveyed by the concepts of density, pres-
sure and temperature which simplify our study considerably.

The mass density p at a point P in a continuum is defined as the ratio of the mass
element Am to the volume AV enclosing the point, in the limit when AV tends to
zero

. Am _ dm
P= S avTav

The expression of the mass of a body in terms of its density is, therefore,

where p, the density of the continuum may be constant or may vary continuously
with the space coordinates.

A body may, therefore, be represented as a continuum if the approximations
about the continuity of mass and the continuous variation of the physical variables
are acceptable in terms of analysis and results.

A continuum may be a rigid or a deformable medium in accordance with the
definitions which follow.

Rigid Body

When the dimensions, linear and angular, of a body do not change during the course
of observation, the body is modelled as a rigid body. A rigid body, in other words,
is the one in which the distance between any two arbitrary points is invariant. A
body, therefore, qualifics to be represented as a rigid body if the deformation
between its parts is negligible in the course of its analysis.

(1.1a)

Examples An aeroplane observed in roll, pitch and yaw; a spinning top; a wheel
of a cart.
Deformable Body

When the dimensions, linear or angular, of a body change during its analysis, the
body is modelled as a deformable body. Defoimation may be brought about in a
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varicty of ways; it may be temporary or permanent, instantancous or continuous. A
body is, therefore, represented as a deformable body if the relative deformation
between its parts cannot be ignored in the course of its analysis.

Examples A beam deflecting under the application of a load; a liquid flowing in
any situation; a shaft twisting under the application of a torque.

Fluid

A substance which deforms continuously under the application of shear stresses,
however small, is called a fluid. The process of continuous deformation is called a
flow. A fluid must, therefore, flow when subjected to a shear stress. In the absence
of shear stresses the fluids behave as static masses or as rigid bodies in motion.

Examples A liquid, e.g., water, oil or molten metal; a gas, e.g., air, oxygen or
supercritical steam; a vapour, e.g., dry saturated subcritical steam; blood, slurry,
ink, milk and beer.

Solid

A substance characterised by some preferred configuration of its own, i.e., possess-
ing a definite shape and a definite volume, is called a solid. Any change of shape or
volume of a solid is accompanied by its tendency to regain its original configuration
or stay in the new configuration with a change in some of its properties. Solids can
be regarded as rigid bodies or as deformable bodies depending on their mathemati-
cal-modelling requirements.

Examples A straight metre scale for linear measurements is regarded as a rigid-
solid body; a metre rod bent to draw a curve is regarded as a deformable solid.

1.7 INTERNAL AND EXTERNAL FORCES

Internal forces are those which hold together the material content of the body or the
parts of the system under consideration. Internal forces resist or tend to resist the
external forces. For example, if a car is pulling a trailer by a rope coupling the two
as shown in Fig. 1.5, then the force in the rope is an internal force for the ‘car-and-
trailer’ system. The tractive force developed by a vehicle is transmitted through a
series of components between the engine and the wheels; these forces are internal as
far as the whole vehicle is concerned.

Trailer Car
Internal forces External
traction force
(a) Car-and-Trailer System
Extermnal External L External
force force force

(b) Trailer only (c) Car only
Fig. 1.5 Internal and External Forces
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External forces are those which act on a body or a system from outside. It is
indeed the forces exerted on a body from outside that govern its state of motion. For
example, for the trailer pulled by the car by a rope; the effect of the car is experi-
enced by the force in the rope; hence, for the trailer, the pull by the car, i.e., the
tension in the rope is an external force as shown in Fig. 1.5(b). Similarly, the
tension in the rope is an external force for the car, as shown in Fig. 1.5(c).

If a component, say a gear, is to be considered for analysis, the forces exerted by
the other gears and components on it are external forces.

1t should be clear that a force is classified as internal or external depending upon
the boundaries of the system. For example, the force between the carth and the
moon is external if we were to consider the motion of the moon alone but the same
force is internal if we were to consider the motion of the earth-moon system.

The concept of internal and external action is equally valid for moments also.
Internal moments are those originating from inside a body or a system, whereas
external moments are by virtue of sources outside the body or the system under
consideration,

1.8 PRINCIPLE OF TRANSMISSIBILITY OF FORCE

The principle of transmissibility of force states that the condition of motion of a
rigid body remains unchanged if a force F of a given magnitude, direction and sense
acts anywhere along the same line of action on the rigid body. For example a force
F acting at a, along the line of action a,a, is equivalent to a force F acting at a,
along the same line of action a,a, as shown in Fig. 1.6. Another example of a rigid

Fig. 1.6 Transmissibility of Force

body motion is provided if a mass m being lifted with an acceleration a by means of
a force applied differently at different places by along the same line of action
passing through the centre of gravity C as shown in Fig. 1.7. A string with tension T
pulling it up or an upward force F applied from below or a combination of the two
such that
T=F=T,+F

result in the same motion of the body due to the principle of transmissibility:

T—-mg=ma or a=(T-mg)im

F—mg=ma or a=(F-mg)m

T+ F,-mg=ma or a=(T; + F; - mg)im
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Pulling
T, 1
///.Id/:: 151 C;/, ,/;/c;//
rvery Vvowrdrres] Vorrdrres
mg. Y-z mg;/u/ zmg;i////
F‘ r
F Part pulling
and pushing

Pushing
Fig. 1.7 Examples of Transmissibility of Force

The principle of transmissibility applies only to a rigid body and is valid only
from the point of view of the net external effect for the state of motion of the rigid
body. It applies neither to the rigid body from the point of view of internal resis-
tance or internal forces developed in a body nor to deformable bodies under any
circumstances. Consider, for example, a rigid bar under the action of two equal and
opposite forces as shown in Fig. 1.8(i). The principle of transmissibility would state
that the forces in case 1 and in case 2 are equivalent and in each case the net
external force is zero. This statement is true only from the point of view of external
behaviour of the body. Let us look at the development of the internal forces to keep
the body and its parts in equilibrium. The resistive forces are developed at a, and a,
as shown dotted in the two cases. Clearly, the bar in case 1 is in tension and the bar
in case 2 is in compression. These are entirely different effects. If the bar in
question was non-rigid or deformable as shown in Fig. 1.8(ii), the bar would also
yield in tension or in compression. In case 1, under tension, the bar elongates

a‘
Case (1)

a, a,
Case (2)

(i) Internal Forces in a Rigid Bar

o) M
Case (1)

F 4 C“___________:cla F
Case (2)

(ii) Deformation in a Deformable Bar
Fig. 1.8 Internal Forces and Deformation
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longitudinally whereas in case 2, under compression, the bar contracts longitudinal-
ly. The behaviour of the bar is in contravention of the principle of transmissibility
which would have stated that the bar is subjected to zero external force and there is
no net effect on the body.

In conclusion it may be stated that the principle of transmissibility, which re-
quires the force to be a free vector, is valid only for a rigid body from the point of
view of net external effect for the state of motion of the body.

1.9 CONCEPT OF FREE-BODY DIAGRAM

No system, natural or man-made, consists of a single body alone or is complete by
itself. A single body or a part of the system can, however, be isolated from the rest
by appropriately accounting for its effect. A free-body diagram consists of a diagram-
matic representation of a single body or a subsystem of bodies isolated from its surro-
undings but shown under the action of forces and moments due to external actions.

Consider, for example, a book lying flat on a table. The book exerts its weight on
the table and the table exerts its own weight as well as transmits the weight of the
book on the ground. A free-body diagram for the book alone would consist of its weight
W acting through the centre of gravity and the reaction exerted on the book by the
table top as shown in Fig. 1.9. The reaction per unit area can be shown as R/A as in
Fig. 1.9(b) or as a single resultant reaction force R collinear with the weight W.

Consider, as another example, two cylinders placed in a V-groove, Free-body.
diagrams of the two bodies isolated from the V-groove as well as of each body
separately are shown in Figs. 1.9 (d), (e) and (f) respectively.

"L
R
| EEEEEN! ‘
w RIA w
(a) Book on Table-top (c)
w,
Wt
W! WI RII
H‘
R, R, R
Ao R, P
(d) (e) (U]

Fig. 1.9 (a) Book on Table-top (b), (c) Free-body Diagram of the Book
(d), (e), (f) Free-body Diagram of Cylinders or Spheres
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A free-body diagram may be drawn for any single member of a system, any
subsystem of the system or the entire system irrespective of whether the system is in
equilibrium: at rest, in uniform motion or in a dynamic state of motion.

The example of a book lying flat on a table is that of static equilibrium. In such
cases the forces and moments acting on the body must be in conformity with the
conditions of equilibrium which are dealt with in detail in Chapter 3.

Free-body diagram of a single member or a subsystem of a dynamic system, on
the other hand, would reveal an unbalance of the forces and moments; the unbal-
anced resultants causing accelerations, linear or angular. Further discussion on the
subject of free-body diagram for dynamic systems will be resumed in the chapters
on dynamics and when the concept of inertia forces is introduced.

1.10 LAWS OF MECHANICS

Instead of stating the laws straight away, let us examine the contribution due to
Newton first. The three laws of motion and the law of gravitation due to Newton, a
literal translation from the original Latin ‘Principia Mathcmatica Philosophia
Naturalis’ written in 1667 are collated:

Law 1 Every body perseveres in its state of rest, or of uniform motion in a right
line unless it is compelled to change that state by forces impressed thereon.

Law 2 The alteration (acceleration) of motion is ever proporticnal to the motive
force impressed; and is made in the direction of the right line in which that
force is impressed.

Law 3 To every action, there is always opposed an cqun] reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to
conlrary parts. '

The laws due to Newton reproduced as above are indeed philosophical and
useful but are, by no means, the laws governing the motion of bodics in general. A
comprehensive criticism may not be in order but one can appreciate some of the
points to prove the assertion:

1. The word ‘body’ is undefined: It either refers to" a particle only or to the

centre of mass of a rigid body.

2. The term ‘motion in a right line’ appears in the first and second law but no
altempt has been made to govern the rotational and general motion of the
bodies of finite size.

3. Only the ‘forces’ have been considered; the action of a moment is not includ-
ed.

4, The second law which relates acceleration to the forces impressed assumes
the constancy of mass of the body.

5. If “force’ is recognised as a primitive concept, then the first law can be
considered to be contained in the second law.

6. The action-reaction principle put forth by the third law can also be derived
from the second law for rigid bodies.

7. The first and third laws are, therefore, not entirely independent of the second
law; the message can be conveyed by the second law alone.
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The second law applies to a body of mass m under the application of the motive
force F. Mathematically, the acceleration

acxF
or
F =ka

where k is a constant of proportionality. This constant, determined experimentally,
equals the mass of the system.

Hence, F=ma= m% (1.2a)

It is obvious that the force F and acceleration a must be collinear, vector F being
m times vector a. Further, the units of force are derived from the base units of mass
and acceleration.

Mass kg
Acceleration m/s®
Force kg x m/s’=kg m/s’ =N or newton

Quantitatively, a force of 1 N causes an acceleration of 1 m/s® of a body of mass
1 kg.

The second law is not immediately applicable to the systems of variable mass.
The law can, however, be reframed to cover the motion of constant-mass and
variable-mass bodies by writing

=4
F= dj(mV) (1.2b)

The bracketed term (mV) is the momentum of the body of mass m moving at a
velocity V. The second law, in other words, states:

The rate of change of momentum of a body equals the force impressed upon it.

In view of the fact that the first and third laws are contained in this law, only this
law will be retained and henceforth referred to as Newron's law.

In order to appreciate that the first and third laws of motion due to Newton are
substantially contained in the second law, we proceed as follows:

From the second law,

=0 a=0=49Y
If F=0,a=0=%

whence V = zero or constant.
It follows that, in the absence of an external force, a body will continue to be in a
state of rest or of uniform velocity. This is, in essence, the statement of the first law.
This reduction may also be seen graphically by plotting F vs a as shown in Fig.
1.10. The resulting straight line with slope m passes through the origin where,

for F=10, a=0
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F=m

———

F=0
a=0 —

{a) First Law from the Second Law

— Ve X
, F
F=ma

F+R=m,a F,=mya
(b} Third Law from the Second Law
Fig. 1.10 Deﬁvaﬁbng from the Second Law

Again, consider a rigid body moving at an acceleration a under the application of
a force F. By the second law,

F=ma (-
Imagine the body to be constituted of two sub-bodies A and B such that the

surface of contact is § as shown in Fig.1.10. The sub-bodies have their masses m,
and my for A and B respectively such that

my 4 mg=m (ii)
Since the whole body was moving at an acceleration a, every part of the body -
must have the same acceleration a. The total applied force F is, however, distribut-

ed over the parts of the body to bring about this state. In particular, let the force
acting to accelerate the part B be Fy such that, by the second law,

Fg=mga (iii)

In other words, the action of the body A on B is the force Fp. Let the reaction of B
on A be R. Consequently, the net external force acting on A is given by

F+R=mya @iv)
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Adding (iii) and (iv),
Fp+F+R=mpa+m,a=(m, +mga
Employing (ii},

Fg+F+R=ma

and comparing with (i),

F=ma
it follows that
Fp+F+R=F
‘whence
Fp+R=0
and
=-Fy v)

Relation (v) proves that the reaction force R by the body B is equal in magnitude
and direction to the action Fp exerted on it but is opposite in sense. In other words,
to an action Fy, there is an equal and opposite reaction R. This is, in essence, the
third law of motion due to Newton.

While claiming to prove that the second law contains the first and third laws one
must not underestimate the conditions of validity:

1. "The first law would have served to define the terms ‘force’, ‘frame of refer-
ence’ and ‘state of rest’. These terms need to be defined axiomatically if the
first law is regarded derivable from the second law.

2. The third law can be derived from the second law under the condition of
transmissibility of force which is only valid for rigid bodies. :

3. The third law as stated by Newton does not restrict the action and reaction
principle to forces only. Since the first two laws relate to forces and their
actions only and the concept of moment was not introduced by Newlon, the
third law as stated by Newton refers to the action and reaction of forces alone.

4. The action and reaction principle, in general, is valid for moments also. The
concept of reaction may, therefore, be introduced axiomatically referring both
to forces and moments as actions. ’

Having recognised that Newton's laws are, by themselves, inadequate to govern
the general motion of finite-size bodies under the action of forces and moments and
also that only the restated second law is carried over, it is but natural to decide and
state a complete set of laws for the general motion of observable bodies. The
complete set of laws should include the laws governing the behaviour of mass,
momentum and energy. The basic assumptions in classical mechanics are that the
mass must be conserved and the energy must be conserved separately. Rates of
changes of linear momentum and angular momentum must be governed by the laws
of motion.

In quite the same way as Newton’s law governs the motion of a particle (or of
the centre of mass of a body), Euler's law governs the motion of a rigid body.
Euler's law states that



16 Engineering Mechanics

Table 1.2 Laws of Mechanics

Entity Law Statement Mathematical
) Formulation
Mass Law of conservalion Mass can neither by created d
of mass nor destroyed by any physi- E("’) =0
cal or chemical means.
Linear Newton's law The rate of change of momen- =Ly
momentum tum of a body equals the force Todi
impressed upon it. d X
=—=(p)=p
Angular Euler’s law The rate of change of angular &
momentum momentum of a body about M =-i(rx mV)
an origin O equals the mo- dt
ment impressed upon it about =4g-n
. the origin. d
Energy Law of conservation The rate of change of internal
of energy energy and kinetic energy of

any mechanical system equals
the sum of the rates of work
done by the external forces
and the energy fux across the
boundary as well as the ener-

gy developed within the sys-
tem.

—d R
M 'd;(m'"

where H is the angular momentum of the body about a point and M is the moment
of the external forces acting on the body about that point.
It is interesting to note the similarity of the Newton's and Euler’s laws:

Newton's Law F =%(p)=]’) (1.3)
Euler's Law M =~‘%(H)=H (1.4)

The role of force in the rate of change of linear momentum is similar to the role
of moment in the rate of change of angular momentum. In fact, both the laws relate
to the rate of change of momentum; Newton’s for the linear momentum and Euler's

" for the angular momentum. The force and the moment refer to the external action;
the force for translational motion and the moment for rotational motion or tenden-
cies thereof. A general statement to include both the laws may be made thus:

The rate of change of momentum of a body is proportional to the external action
impressed upon it.

It should be clear that the word ‘action’ implies ‘force’ or ‘moment’ and the
corresponding ‘momentum’ is linear or angular.

The law of conservation of energy may at first appear redundant to the problems
in mechanics. This is not true because the law explains a number of dissipative
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phenomena on the one hand and degenerates to a simple form on the other hand for
reversible phenomena. A pictorial representation of the laws of mechanics is given
in Fig. 1.11.

Foundational
concepts
Newton's Euler's
law law
Law of mass Law of energy
conservation conservation

Goveming equations
applicable to
Continuum, Particles
Rigid bodies
Deformable bodies
Fluids & solids

Fig. 1.11 Law of Mechanics
1.11 LAW OF GRAVITATION—WEIGHT OF BODIES

In addition to the fundamental laws of mechanics, there are some more laws con-
cerned with the origin and nature of forces. The law of gravitation due to Newton is
perhaps the closest to the foundational laws and is discussed below.

Any two particles will be attracted towards each other along a line connecting
their centres with a mutual force whose magnitude is directly proportional to the
product of their masses and inversely proportional 10 the square of the distance
between them.

The law of gravitation requires that the force of attraction between two particles
of masses m, and m, separated by a distance r as shown in Fig. 1.12 is given by

mym
F=G ;1 2 (1.5)
m
where G is the universal constant of gravi- . m,
tation; its value being 6.67 x 107" N m¥ 1 O
kg® or m¥kg s®. Quantitatively, an attrac- F F

tive force of 6.67 x 107" N is exerted by a | |
body of mass 1 kg on another body of mass = r 1
1 kg at 1 m distance from it. Obviously, the ~ Fig. 1.12  Concept of Gravitation
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attractive force of reaction by the other body on it must also be equal to the same
value.

The law of gravitation helps in defining the weight of a body. The weight of a
body is the force excrted on it by the planet. For an earth-bound object of mass n,
the weight is approximately given by

(1.6)

where M, is the mass of the carth = 5.9761 x 10** kg and r is the radial distance
between the centres of the earth and the object.
It is customary to write

W=mg (L.7)
GM. 3
where g= -—R—2~ = 9,806 65 m/s” (1.8)

L3

and R,= mean radius of the earth = 6371 km.

Since g is a constant for a planet and, when multiplied by the mass of a body, it
provides the force on the body, it is termed as acceleration due to gravity. It is
indeed the acceleration acquired by a body falling freely, i.e., without resistance, in
the gravitational field of the planet.

Concept Review Questions

I. Comment on the scope of classical mechanics vis-a-vis other formulations in
mechanics.

2. Comment on the need to idealise a body as a particle, a rigid body, a deformable body
or a continuum.

3. What is the advantage of drawing a free-body diagram? Is it possible to draw a free-
body diagram of a body or a system undergoing acceleration? Give examples.

4. State Newton's second law of motion and show that the first and third laws are
contained in it.

5. What is meant by the state of equilibrium of a body? State the dynamical conditions
of equilibrium and comment whether the conditions are both necessary and sufficient
or not,

Multiple-Choice Questions

Select the correct or most appropriate response from among the available alternatives in
the following multiple-choice questions.
1. In all engineering problems a frame of reference at rest with respect to the carth is
taken as an inertial frame. The assumption is valid because
{a} the centrifugal force on the earth and the force of attraction between the earth
and the sun balance each other
(b) the acceleration and angular velocity of the earth is so small that the error caused
is negligible
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{c) the error due to the acceleration of the earth is taken care of by the experimental
calculation of the value of g

{(d) the earth does not have any acceleration

Zero work done by a system of forces acling on a body implies that

{a) the resultant of the system of forces is zero

(b) the cross product of the resultant of the system of forces and the vector in the
direction of motion of the body is zero

{c) the body does not have any motion

(d) the motion of the body is in a direction perpendicular to the direction of the
simplest resultant of the system of forces

. An inertial frame of reference is one which necessarily has

(a) fixed directions of its coordinate axes but the origin can move with constant
speed

(b) fixed directions of its axes but the origin can move with constant velocity

(c) a fixed origin but dircctions can change with time

(d) fixed origin and fixed directions of its axes

. A free-body diagram of a body shows a body

(a) isolated from all external effects

(b) isolated from its surroundings and all external forces acting on it

(c) isolated from its surroundings and all external actions acting on it

(d) separately from its surroundings and all external and internal forces acting on it

. The free-body diagram of a satellite rotating about the earth will show the satellite

isolated from its surroundings and

(a). no force acting on it

(b) its velocity shown on it

(c) the force of gravity and centrifugal force acting on it

(d) only the force of gravity acting on it

. An implication of Newton's law is that

(a) the total momentum (linear + angular) of the body is conserved

{b) the lincar and angular momentum of the body are conserved separately

(c) only the linecar momentum of the body is conserved

(d) arigid body will tend to rotate if a force is applied at a point other than the centre
of mass of the body

. An implication of Euler's law is that

(a) a rotating wheel will not change the orientation of |ts axis of rotation unless

acted upon by an external torque

a rotating body will not change ils angular velocily unless a couple is applied to

it

a slationary body cannot be made 1o rotate by the application of a single force

only

(d) the total momentum of a body is conserved.

. The momentum of a particle

(a) does not depend on the frame of reference at all

(b) does not depend on the frame of reference so long as it is an inertial frame of
reference

(c) is zero if no external force is acting on it

(d) is conserved under all circumstances

. If a body moving in a horizontal line with a certain velocity starts ejecting mass

downwards at a constant rate, the horizontal velocity of the body will

(a) remain unchanged

—

(b

=

(c

—
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(b) start decreasing at a constant rate
(c) start increasing al a constant rate
(d) start increasing at an increasing rate .
i0. The force of gravitation between two bodies will be inversely proportional to the

square of the distance between their centre of masses if the bodies
(a) are of constant densitics
(b) are symmetrical about their centres of mass
(c) are of any arbitrary shape
(d) are of same shape, size and orientation
It. A man falling down from a height h starts rotating mid-way of his fall. The vertical
velocity with which he will touch the ground will be

(a) 2gh

(b) less than (2 gh

(c} more than Jz?

(d) less or greater but never equal to 2 gl

Answers to Multiple-Choice Questions

1 (b), 2 (o), 3 (b) 4 (c), 5 (c),
6 (d), 7 (b), 8 (a), 9 (a), 10 (b),
11 (b)
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REVIEW SECTION

In this section, an attempt has been made to review the SI units and
vector operations which are required throughout the study of mechanics:
O R1 REVIEW OF SI UNITS
O R2 REVIEW OF VECTORS
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REVIEW OF
SI Unirts

A review of the Systéme International d’ Unit’es, abbreviated as SI Units with

special reference to mechanics is presented as follows:

R1.1 SI BASE UNITS

Supplementary Units

Base Units Unit Symbol  Dimensions Physical Quantity
kilogram kg M mass

metre m L length

second 5 T time

kelvin K t temperature-
ampere A I current

candela cd luminous intensity
mole mol amount of substance

radian rad — plane angle
steradian ST — solid angle
R1.2 SI DERIVED UNITS WITH NEW NAMES
Derived Unit Unit Symbol Physical Quantity
- newton N = kg m/s® force
joule J = Nm = kg m¥s? energy, work, heat
walt W =J/s = N m/s = kg m%s® power
pascal Pa=N/m?= I(ga*‘rns2 pressure, stress
hertz Hz=5s" frequency
Notes:

A. Note that kilogram is writlen as kg and not as kg, kg, etc. Similarly second
as s, not sec or sec., etc. No full stops, plurals, dots or dashes should be used.

For example, torque is in Nm, not N.m, N-m, etc.

B. The unit of force is newton with symbol N and there is no such thing as
kilogram force in SI units; just N and'its multiple and submultiples. The unit
of energy in any form is joule, J = Nm
No horsepower or metric horsepower; just watt, W = J/s = N m/s and its
multiples and submultiples.
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C. Always leave a space between the number and the unit symbol, e.g., 23.2 cm
and 2500 N.

D. For numbers less than unity, zero must be put on the left of the decimal and
for larger numbers exceeding five figures, one space after every three digits
counting from the right end must be left blank without any commas, e.g. 0.23
cm and 15 232 756 are the correct ways of writing these numbers.

E. It is permissible and perhaps advisable that one space be left between any two
unit symbols and no space be left after a multiple or submultiple symbol, e.g.,
kg m%s, kl/kg K.

R1.3 UNITS OF SOME COMMON PHYSICAL QUANTITIES

Physical Quantity Unit Unit Symbol
Acceleration metre/second’ m/s’
Angular acceleration radian/sccond? rad/s’
Angular displacement radian rad
Angular momentum kilogram metre¥/second kg m¥s
Angular velocity radian/second rad/s
Area Square metre m*
Couple, moment newton metre Nm
Density kilogram/metre’ kg/m?
Discharge metre/second mYs
Displacement metre m
Energy joule N=Nm)
Force newton N(= kg m/s®)
Frequency per second Hz(=/s)
Length melre m
Mass kilogram kg
Moduli of elasticity newton/metre’ Pa (= N/m?)
Moment newton metre Nm
Momentum kilogram metre/second kg m/s (= Ns)
Moment of inertia kilogram metre? kg m?
Plane angle radian rad
Power watt W(= N m/s)
Pressure, Stress newton/metre’, Pascal Pa (= N/m?)
Specific energy joule/kilogram kg
Specific volume kilogramfmelre" Kg/m?
Speed metre/second ms
Time second 5
Torque newton metre Nm
Velocity metre/second m's
Velocity potential metre*/second mfs
Viscosily (dynamic) newton second/metre’ N s/m?
or (=Pas)

kilogram/metre second kg/m s
Volume metre? m
Weight newton N (= kg m/s?)
Work joule Ji{=Nm)
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R1.4 MULTIPLES AND SUBMULTIPLES

tera T 10" milli m 107
giga G 10° micro M 10
mega M 10° nano n 10
kilo k 10° pico P 1072
deci d 107! femto f 10!
centi c 1072 atto a 1ort*
R1.5 SOME CONVERSION FACTORS
To convert the Into Multiply by Conversely
following multiply by
inches cm 2.5400 0.3937
feet m 0.3048 3.2808
miles km 1.6093 0.6214
gallons m’ 4,546 x 1073 220
pints m 0.5683 % 107~ 1.76 x 10°
gallons (US) m’ 3,785 x 107 264.2
degrees rad 0.017 45 57,2957
pounds (lb) kg 0.4536 2.2046
tons kg 1016.0 9.842 x 107
tonne kg 1000.0 107
knots m's 0.5144 1.943
r.p.m. rad/s 0.1047 9.550
pound/fect? kg/m® 16.02 0.0624
cusecs m/s 0.0283 3533
g.p.m. m¥s 0.0758 x 107 13.20 x 10°
Ib, N 4.448 0.2248
kg, N 9.807 0.1019
ton, kN 9.964 0.1003
kgflem? kPa 98.07 0.0102
p.s.i. kPa 6.895 1.1450
inches {water gauge) kPa 0.2491 4.015
inches (Mercury) kPa 3.386 0.2953
torr kPa 1.333 0.7502
foot pounds J 1.356 0.7375
h.p. kW 0.7457 1.341
poise N s/m? 0.1 10
stokes mfs 10! 104
R1.6 VALUES OF SOME USEFUL CONSTANTS
Constant Quantity Symbeol Value SI Units
Speed of light in vacunm 2.997 925 % 108 m/s
Planck’s constant 6.6253 x 107 Js

(Conrd.)
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Constant Quantity Symbol Value SI Units
Gravitational constant G 6.670 x 107" N m¥kg?
Universal gas constant Ry 83144 J/K mol
Zero Celsius (centigrade) 0'c 273.15 K
Triple point of water tr 273.16 K
Characteristic gas constant for air Ra 287 kg K
Mean molecular weight of air Ma 28.966
Mean ICAQ" air density Pa 1.225 kg/m®
Mean ICAQ" air viscosity M, 18 % 107 Ns/m?
Mean density of dry air (S.T.P.) P 1.205 kg/m®
Standard atmosphere (pressure) atm 101.325 kN/m?
Standard atmosphere (temperature) T, 288.15 K
Lapse rate for standard atmosphere L 6.5 K/km
Mass of atmosphere 5.27 % 10" kg
Voltage gradient, fine weather; average 100 Vim
Solar constant for earth S, 1400 Jm?s
Sonic speed in air at STP a 340.3 m/s
Gravitational parameter GM 3,986 % 10" m/s?
Mass of the earth M 5.976 x 10* kg
Standard gravitational acceleration C B 9.806 65 s
Mean radius of the earth r, 6371 km
Mean density of the earth Pe 55.17 kg/m®
Escape velocity at the surface v, 11.2 km/s
Rutational velocity at the equator 465 knv/s
Mean velocity in orbit 29.78 km/s
Approximate age of the earth 45x10° years
Area of land surface 148.9 x 1012 m
Area of water surface 362.2 x 10" m?
Height of Mount Everest 8847.7 m
Depth of Marianas Trench 11.033 km

Acceleration g = 9.80616 — 0.025928 cos 2A + 0.000069 cos*A — 0.000003k m/s® at
a place with latitude A and at height i metres above the sea level for the earth.

“International Civil Aviation Organisation.

R1.7 PROPERTIES OF WATER, MERCURY AND AIR

Fluid Properties Water Mercury Air
Density kg/m® (at 20 °C) 1000 13546 1.20 ,
Viscosity, N s/m? 1x 10 1.55 x 1073 18x 1078
Surface tension, Nfm 0.073 0.472 —
Melting point, K 273 234 —
Boiling point, K 373 630 83

Sonic speed m/s (at | bar) 1410 1370 340
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Test Your SI Power

. Write down the seven base units and the two supplementary units in SI. Show, by way
of expressing the following physical quantities in terms of these units, that this is a
complete set of the base and supplementary units:
(a) force
(b) energy
(c) pressure
(d) charge
(e} illuminance
(Ams. kg, m, s, K, A, cd, mol; rad, sr: kg m/s?, kg m¥s2, kg/ms?, As, cd st/m?)
. Recognise the following units and express them in equivalent symbolic forms:
newton, joule, watt, pascal, poise, tesla.
(Ans. N = kg m/s?, J = N m = kg m¥s?
W =J/s =N m/s = kg m¥s’, Pa = N/m? = kg/m
P=gMs=01kg/ms=01Nsm’=0.1Pas
T=Wb/m?=V s/m’=Ws A m’)
. Pick up the correct SI abbreviations:
N m/S, N-m/s, N/m>.s, Ns/m®.s, N s/m?, Pa-s, WS/AZ, N.m/S, kg,.-'m kg,m, kg/sm,
kg m/s?, Cd sr., N m/kg,, N m/N, C.°K.
(Ans. N s/m?, kg m/s?, N m/N)
. Convert the following quantities into coherent SI units:
1 kg fem?, 20 kN/em?, 2 gramsfem?, § foot pounds, 20 Chu, 10 metric horse power,
20 knots, 3000 r.p.m., 2 quintals, 0.05 cumecs, 2 centipoise, 10 centistokes, 20°C,
1 keal/kg °C, 10 lurrberuar‘fuotz 2 light years.
(Ans. 98.07 x 10° Nfm?; 200 x 10® N/m?, 2000 kg/m’, 6.78 J, 38x 10°1.
7.355 x 10° W, 10.288 m/s, 314.1 rad/s, 200 kg, 0.05 m/s,
0.002 N s/m?, 10 % 10°° m?s, 293.15 K, 4.187 x 10° Jkg K,
107.64 1x, 18.921 x 10'* m)
. State the value of the universal gas constant in SI units and hence express the charac-
teristic gas constants for the following gases:

Gas Molecular Weight
(a) air 28.966
(b) carbon dioxide 44,01
(c) oxygen 32.00
(d) hydrogen 2016

(Ans. 8314.4 J/k mol; 287, 188.9, 259.8, 4124.2 J/kg K)

. Write down the accurate mean value of g, the acceleration due to gravity on the earth.

What is the approximation usually made by engineers? State the circumstances under
which a guantity should be multiplied by g in SI units?

(Ans. 9.806 65 m/s2, 9.81 m/s’; only to calculate the weight of a given mass, e.g.,

1 kg mass weighs 1 x 9.81 kg m/s* or 9.81 N)



R2 un-
Y I VECTORS

R2.1 NUMBERS, SCALARS AND VECTORS

The magnitude of a physical variable in terms of a pre-determined unit of measure-
ment is expressed in numbers.

The quantities which are specified completely by the magnitude and units are
called scalars or scalar quantities.

Vector quantities arc those which are specified completely by the magnitude
with units, direction and sense. Vectors must, in addition, obey the laws of vector
operations and, in particular, the parallelogram law of addition.

Examples
Numbers 1,2, 3.14159, 9.80665, 10, 20
Scalars 2 kg mass, 3.14159 m length, 1 s time, 10 m/s speed
Vectors 20 N force vertically downwards, 2 m/fs velocity along the

forward tangent to the path,

9.80665 m/s®> acceleration directed towards the centre of
the earth,

10 N m torque about the positive z-axis.

A vector is represented by a bold-faced letter such as A and B in print and by
overbars in handwriting such as A and B.

Geometrically, a vecfor is represented by a bold line segment with an arrow at
one end such that (a) the length of the line represents the magnitude A with units,
the orientation of the line shows the direction of the vector and the arrow mark
specifies the sense of the vector, i.e., to or from a point.

A vector A is geometrically represented as in Fig. R2.1(a). In a right-handed
system or dextral system of coordinates, a vector represented by an arrowed-line
segment in a certain direction may also imply its rotational character governed by
the right-handed screw-rule. For cxample, a vector A representing angular velocity,
angular acceleration or moment would imply the sense by the right-handed screw
rule as shown in Fig. R2.1(b).

Vectors are categorised as sliding, free, or bound as follows:

A sliding vector or transmissible vector may be applied anywhere along its line
of action; the line segment can be taken anywhere on the line of action so that the
magnitude, direction and sensc as well as the line of action remain the same. A
force acting on a rigid body and producing acceleration is a transmissible vector.
The principle of transmissibility of force is taken up further in Art. 2.6. A free
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vector may be moved anywhere in space Magnituce =  Sense =
provided its magnitude, direction and sense  'ength of APdn‘ling of the arow

remain the same. A bound vector must be the fine
specified with a point of application; a Direction =
bound vector has the magnitude, direction g) Angle with a reference line
and sense as well as the point of applica- (a)
tion specified. A representation of these Right-handed screw:
concepts is made in Figs. R2.1(c) and (d). p Unscrewing along the
A vector is said to be a unit vector if amow
its magnitude equals unity. A unit vector
may, therefore, be chosen in any direction (b)
and with any sense. In particular, the unit Line of
vector along a vector A or in the direction ne of action A
of the vector A must be
A
_A_1 {c)
e="== A (R2.1)
Transmissible vector A
which is in the same direction as A but
with a magnitude of unity as shown in A .
Fig. R2.1 (e). _— A
The unit vectors along the coordinate — A P

axes are given a special status. — (Fixed)
In the rectangular coordinates, Free A veckor A

i = unit vector along the x-axis
§ = unit vector along the y-axis
k= unit vector along the z-axis

In the cylindrical coordinates,
e, = unit vector radially outwards in A Unllng:::' :Jm

the x-y plane along vector A
eg= m?n vector in cricumferential @
direction in the x-y plane.
e, = Unit vector along the z-axis Fig. R2.1 Vector Representation
In the spherical coordinates,
€ = unit vector radially outwards in space
e, = unit vector in circumferential direction referred to the z-axis

(d)

€, = unit vector in circumferential direction in the x-y plane.

The unit vectors in different coordinate systems are illustrated in Fig. R2.2.

A null or zero vector is defined as a vector whose magnitude is zero. The role of
a zero vector in vector operations is equivalent to the role of zero value in scalar
operations. Interestingly, a zero vector may be thought of as parallel to any direc-
tion for convenience since a zero vector must be parallel to all directions simulta-
neously.

Two vectors are said to be equal vectors if their magnitudes, directions and
sense are the same. Two vectors are said to be equivalent or equipollent vectors if,
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Pix, y, 2]

z

(c) Cylindrical Coordinates {d) Spherical Coordinates
Fig. R2.2 Coordinate Systems

in a certain sense, they produce the same effect. It may be mentioned that the
equality of vectors does not necessarily mean their equivalence of effect. A vectoris
said to be negative of another vector, if they have the same magnitude and direction
but are opposite in sense.

a A 0 A
I3 B . g B

8, Correct Angle and a, Incorrect Angle

Fig. R2.3 Amngle between Two Vectors
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It is necessary to understand the concept of the angle between two vectors. The
included angle is defined as the angle, restricted to the interval 0 < 8 < &, formed
between two vectors when both are taken from or towards a common initial point.
In other words, it is the smaller of the two angles formed between the directions of
the vectors when their arrows point out or towards a common point. Clearly, the
concept of the angle between two vectors is restricted to a pair of coplanar vectors.
Vectors may be mutually orthogonal or parallel if the angle between them is /2 or
0 respectively. Two vectors are said to be skew if a common plane cannot be passed
through them.

The correct angle between two vectors A and B has been shown as in different
situations in Fig. R2.2. In particular, B, is perpendicular to A, Bs is parallel to A
and By is antiparallel or parallel and opposed to A.

R2.2 ADDITION OF VECTORS

The most fundamental law of vector algebra is the parallelogram law of vector
addition; so much so that the quantities possessing direction, magnitude and sense
may be denied the vectorial status, if they do not obey the parallelogram law,
Conformity with the law may as well be incorporated in the definition of the vector
quantities.

The parallelogram law of vector addition states that if two vectors comprisé the
adjacent sides of a parallelogram, pointing towards or away from the point of
intersection, then the diagonal of the parallelogram passing through the same point
and with the same sense represents the sum of the two vectors. The addition of
vectors A and B requires that

I. A and B be placed together to point towards or away from a point O

2. A parallelogram be made with A and B as adjacent sides

3. The diagonal of the parallelogram passing through O with the arrow pointing

towards or away from O as the case may be, represents C the sum of rwo
vectors A and B as shown in Fig. R2.4(a).

A corollary of the parallelogram law is the law of triangle of vectors illustrated
in Fig. R2.4(b). The additive vectors A and B are placed one after the other in the
same sense to constitute two sides of a triangle, the third side of which, drawn from
the initial point of A to the final point of B, represents the sum of the vectors A and
B. It can be seen that A added to B or B added to A results in the same vector, i.e.,

The difference of two vectors can be obtained by adding the additive vector to
the negative of the subtractive vector, i.c.,
D=A-B=A+(-B)

If it is desired to add more than two vectors, then the parallelogram law can be
used to continue adding two at a time or the triangle law can be extended to
comprise the polygon law as demonstrated in Fig. R2.4(c).
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D=A~B
b

{b) Triangle Law of Vectors

(c) Polygon Law of Vectors
Fig. R2.4 Addition of Vectors

Two intersecting vectors must lie in a plane. The addition of a number of vectors:
may, therefore, imply that a number of parallelograms in the planes of the pairs of
the vectors must be drawn. Instecad, the addition may be performed by a space
polygon of the vectors. In engineering it is so often desired to obtain the sum of
plane or spatial vectors that the geometrical methods of parallelograms of polygons

prove to be inconvenient.

The addition of a vector to itself results in a vector twice its magnitude but the
same in direction and sense. In general, a vector is n times another vector if its
magnitude is n times that of the other and the direction and sense are the same. The
laws of vector addition and rules of multiplication by scalars are given below.

Addition
A+B=B+A (Commutative law of addition)
A+(B+C)=(A+B)+C (Associative law of addition)

(R2.2)
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Multiplication by Scalars

nA'= An {Commutative)
m(nA) = (mn)A (Associative)
(n+mA=nA+mA (Distributive) (R2.3)
n(A +B)=nA +nB (Distributive)

where n and m are scalars,

R2.3 RESOLUTION OF VECTORS

The resolution of a vector into its constituent vectors is defined as the reverse action
of addition of the component vectors to result in the given vector, Thus if A + B
=C,i.e., if A and B can add to give C, then C can be resolved to give A and B, i.e.,
C=A+B. .

In general, a vector can be resolved into an infinite pair of constituent vectors
but the resolution of a vector in any two stipulated directions coplanar with the
given vectors is unique. Just as a number of vectors can be added to comprise a
resultant, a given vector can be resolved into a number of constituent vectors.

In particular, it is important to understand the resolution of a vector into three
mutually orthogonal component vectors. A vector A is resolved into three compo-
nents corresponding to its projections
along the three orthogonal coordinate
axes, i.e., A, A and A, along the x, y
and z axes respectively as shown in Fig.
R2.5. It can be seen that A, and A add
up to constitute O which when added
to A, results in vector A. Conversely,
the vector A is considered resolved into
A, and Og and Oy further resolved into
A, and A, giving risc to A, A and A,
as the three orthogonal components.

In terms of the unit vectors i, j and k
in the Cartesian system of coordinates, Fig. R2.5 Components of a Vector

A=A
A =Ajj
A=Ak

We may, therefore, state that the scalar components of a vector A are A,, A, and
A, along the x,y and z directions respectively. The scalar components are generally
referred to as the components of the vector. It also follows by the Pythagoras

theorem that
A=|A|=,}A3+A§+A3 (R2.4)
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It may be noted here that the process of arriving at the components of a vector by
our analysis has been long and requires the use of the parallelogram law of vectors.
In fact, it was stated that the parallelogram law is fundamental to the existence of
the vectors and that it could be included in the definition of a vector quantity. This
is indeed the modern approach where the parallelogram law is not talked of and the
vector components are defined straightaway. By definition, then, a vector is a
quantity possessing n components, i.e.,

A=A(r, ry oy Ty o Ty) (R2.5)

such that the components commute, associale, etc., according to a set of rules. The
components can then be sepecialised for the orthogonal systems as arrived at here.
A vector A can be expressed in terms of its scalar components as

A=A i+Aj+A.k

Similarly B=B,i+8B,j+B,k

C=C,i+C,j+Ck

and D=Di+D,j+D.k
G If C=A+B

then C=C,i+C,j+Ck

=(A,+B)i+(A,+B)j+ (A, +B)k

because the scalar components can be added numerically.

Hence, C,=A +8,
C,=A,+8B,
C.=A,+8B,
(i) If D=A-B
then D=D,i+D,j+Dk
=(A,-B)i+ (A, -B)j+(A,-B)k
and D, =A,-B,
D,=A, -8,
D,=A, -8B

I
I

z

In general, ifR=A+B-..
Ri+R j+R k=(A+B -.)i+(A+B~.)j+A, +B,-)k (R2.6)

Example R2.1 A vector of magnitude 10 units is directed 30 degrees north of
east. Represent it graphically and analytically and determine its components due
east and north.

Solution Vector A shown in Fig. Ex. R2.1 with its length OP of 10 units to a
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chosen scale, direction 30° with the east, North, y
the x-axis and arrow to indicate its sense P

0 to P, is the required vector. Its com- T 10 Units A

ponents due east and north, found by 2

measuring its projections on the x and y

axes respectively to the same scale, arc J_ 30°

8.66 units and 5 units as shown. Alter- 0 }=?- 866 Units —=] East, x

natively, its component due east is “8- Ex. R2.1
OP cos 30° = A cos 30° =10 x cos 30° = 8.66 units
" and its component due north is
OP sin 30° = A sin 30° = 10 x sin 30° = 5.00 units
The vector may therefore be expressed analytically as
A=8.66i+5])
where i and j are the unit vectors along x and y axes respectively. The analytical
representation implics that the magnitude of the vector is
A =,/8.66 +5% = 10 units

and that the vector makes an angle 8 with the x-axis.

o (o (e ()

= 30° = m/6 rad

Example R2.2 A vector of magnitude 100 units makes an angle of 30° with the
z-axis and its projection on the x-y plane makes an angle of 45° with the x-axis.
Determine (a) the components of the vector and (b) the angles of the vector with the
axes.

Solution The vector A represented in Fig. Ex. R2.2 has the components represent-
ed by OX along the x-axis, OY along the y-axis and OZ along the z-axis.

The projection of A on the x-y plane is OQ which is composed of OX and OY
component.

0Z = A cos 30° = 100 x 0.866 = 86.6 units

0Q = A sin 30° = 100 x 0.500 = 50.0 units
whence, by further resolution,

OX = 0Q cos 45° = 50 x 0.707 = 35.35 units

OY = 0Q sin 45° = 50 x 0.707 = 35.35 units

The components of the vector along the x, y and z axes are 35.35, 35.35 and 86.6
units respectively.
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Z
z
ANP
14
A
a’ Y ¥
45.
X
/ y @
X
Fig. Ex. R2.2

A=3535i+3535j+866k
It may be checked that

4(35.35)2 +(35.35)2 +(86.6)> = 100 units as expected

The direction cosines are determined as follows:

_ ox 3535
I=cos a= OP ~ 100 =0.3535
B _oy 3535
m=cos f= OP =100 =0.3535
- _ox _866
n=cos y= OP =100 =0.866
It follows that the angles in the respective axes are
a=69.3°, B=69.3°, y=30°

It may be checked that

035352 4035352 +0.8662 =1
in accordance with the relationship
Pemen’=1

Example R2.3 The coordinates of the initial and terminal points of a vector are
(3, 1, -2) and (4, -7, 10) respectively. Determine the components of the vector and
its angles with the axes. Specify the vector.
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Solution
The components of the vector are:

4-3=1 along the x-axis
-7-1=-8 along the y-axis
10-(-2)=12 along the z-axis
The magnitude of the vector is, therefore,
A=y12+(-8)2 +122 =14.46

and its direction cosines are

I=c0sﬂ=—l*r=0069

m=cos f= 8 0553
- T 1446
n-cosy:%:ﬁ&?»ﬂ

whence, a=86.04°, B=12357°, y=339°
The vector is specified as
A=1li-8j+ 12k

or, alternatively stated as a vector of magnitude 14.46 units making angles of
86.04°, -56.43° and 33.9° with the x, y and z axes respectively with its sense from
the initial to the terminal point.

Example R2.4 Two vectors A and B are added and subtracted to comprise vec-
tors C and D. Determine these vectors and the unit vector along them.

A=2i+3j

B=3i-2j
Evaluate also the magnitude of vector E = 2C + 0.75D.
Solution
For A, A,=2 A,=3
For B, B,=3 B,=-2
For C, C,=A,+B,=5 C=A+B,=1
For D, D,;=A-B,=-1 D=A-B =5
Hence, C=5i+]

D=-i+5j
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y
-8 A
c
Fig. Ex. R2.4

The magnitude of C is given by
€ =457 +1% = 5.1 units
Hence the unit vector along C must be given by

C_5. 1. . .
N |+5.I]—0.98I|+O.]96_|

Clearly, the magnitude of the unit vector can be checked 1o be

409812 +0.196% = 1 as expected

Similarly, the unit vector along D is given by

-1 5
i+ j=-0.196i+0981
JIZ+52 12452

which is also unity in magnitude.

Graphically, A and B are added to yield C by the parallelogram method of
addition. B is subtracted from A if -B is added to A to comprise D by the same
procedure.

E=2C+075D
=25i+1§)+075(~1i+5j)
=925i+575j

Magnitude of E =,/9.252 +5.752 = 10.89 units

The unit vector along E is given by

%n%po.mnasm

Example R2.5 Find the resultant of four given vectors
A=3i+2j
CB=2i+3]
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C=3i-4j
D=-5i-2j
Solution Analytically, the components of the resultant vector R are given by
R, =A +B, +C +D,
=3+24+3-5=3
Ry=A,+B,+C,+D,
=2+3-4-2=-]
Hence, R=3i-j

Graphically, A and B are added to comprise E which when added to C provides F
and that added to D results in the final vector R as shown in Fig. Ex. R2.5(a).
Alternatively, the polygon method of vector addition as shown in Fig. Ex. R2.5(b)
requires vector B to be placed at the tip of vector A, C at the tip of B and D at the
tip of C. The closing line of the polygon directed from the starting point O is the
resultant R,

14 E
B~
s

‘A

Z = F
L x

R
D
X
[
{a) By Parallelograms {b) By Polygon Method

Fig. Ex. R2.5

Example R2.6 Three vectors A, B and C are given as
A=2i+3j-4k
B=3i-4j+5k
C=2i-3k

Determine (a) the resultant vector R, (b) the vector E to make the sum of A, B, C

and E zero and (c) the vector D= (A + B - 2C).

Solution

(a) Writing i, j and k components columnwise,
A=2i+3j-4k
B=3i-4j+5k
C=2i+0j-3k
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R=A+B+C=7i-1j-2k
(b) Since A+B+C=R
E must be equal to —R so that
’ A+B+C+E=0
Hence, E=-R=-Ti+j+2k
(c) Writing i, j and k components of A, B and —2C columwise,
A= 2i+3j-4k
B=3i-4j+5k
-2C=4i+0j+6k
A+B-2C= 1i-1j+7k

R2.4 CONCEPT OF PRODUCTS

Numbers, scalars and vectors can be multiplied to yield meaningful results:
(a) Product of a scalar by a number means the magnitude multiplication of the
scalar.

Example 10 m length multiplicd by 4.2 means 42 m length

(b) Product of a scalar by a scalar means the multiplication of the magnitudes as
well as that of the units to result in the units of the resulting physical quantity.

Example 10 m/s speed for 5 s time results in a distance of 50 m.

(c) Product of a vector by a number means that the magnitude of the vector is
multiplied by the number, the direction and sense of the vector remaining the same.
Example 5 times the acceleration of 9.81 m/s? means an acceleration of 49.05
m/s” in the same direction and sense.

(d) Product of a vector by a scalar implies the multiplication of their magnitudes
as well as that of the units resulting in a new vector quantity with its magnitude as
the product of their magnitudes and the dircction and sensc the same as before.
Example A velocity of 10 mfs for 5 s time produces a displacement of 50 m
directed forward along the velocity vector.

(e) Product of a vector by a vector should also provide meaningful results.
There arc two types of vector products of interest to us, i.c., scalar or dot product
and vector or cross product.

(el) Scalar or dot product of two coplanar vectors A and B denoted by A - B and
read as ‘A dot B’ implies a scalar quantity equal to (a) the magnitude of A times the
magnitude of the projection of B on A or (b) the magnitude of B times the magni-
tude of the projection of A on B or (c) the product of the magnitudes of A and B
and the cosine of the smaller angle between them.

R27)
as shown in Fig. R2.5(a).

The dot product of two skew vectors is not defined. The dot product of two



(a) Scalar or Dot Product
;( A Area = AB sin 8

e
\5 l C=Ax8
n

=ABsin @n
(b) Vector or Cross Product

ixj=k
ixk=l
kxl:l
e xeg=e,
e;xe,=e,
e, xe. =@,
Aid to Memory: Cross Product
Fig. R2.5 Products of Vectors

collinear or parallel vectors must result in a scalar quantity equal to the multiplica-
tion of the magnitudes of the two vectors since cos 8 = 1 for 8= 0.

A-nA=nA?
The dot product of two equal vectors results into the square of its magnitudes
A-A=A" (R2.8)

The dot product of two orthogonal vectors must be zero since cos 90° = 0.
In particular, the dot products of the unit vectors are:

i*j=1xlcos0°=1

jrj=1x1lcos0°=1

k-k=1%x1cos0°=1
i-j=j-i=1x1cos90°=0 (R2.9)
j-k=k-j=1X1cos90°=0
k-i=zi-k=1x1cos90°=0
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In terms of the rectangular components,
A=A i+Aj+Ak
B=B,i+B,j+Bk

A-B=AB +AB +AB =B-A (R2.10)
Since i-i=j-j=k-k=1
and
i-j=j-i=j-k=..=0

LA =AY =42 2 2
A-A=A2=A2 + A% +A]

The scalar or dot product is both commutative and distributive

A-B=B-A

A-B+C)=A-B+A-C (R2.11)

nA-By=nA-B=A-nB
If A - B =0, then either A = 0 or B = 0 or both are zero (trivial case), or A and B
are mutually perpendicular vectors. The angle between two vectors A and B is
givt_',n by

AB
cos 0= B

The magnitude of a vector A is given by
=JA? = [A'X=[AT +A2 + A2

Example If a force F = 10 N acts upon a particle causing a displacement § =3 m
at an angle of 60° to the direction of the force, the work done on the particle equals

10x3xcos60°=15Nm

(e2) Vector or cross product of-two coplanar vectors A and B is a vector C
denoted by A x B and read as ‘A cross B’ such that (a) its magnitude equals the
product of the magnitudes of the vectors A and B and the sine of the smaller angle
between them, (b) its direction is perpendicular to the plane of A and B, and (c) its
sense is given by the right-handed screw rule.

C=AxB=ABsin 6, (R2.12)

Geometrically, the magnitude of the cross product vector C equals the area of
the parallelogram bounded by the vectors A and B as the adjacent sides as shown in
Fig. R2.5(b). The direction of vector C is perpendicular to this area with an arrow-
head decided by the right-handed screw rule.

The cross product of two skew vectors is not defined.

The cross product of two collinear or parallel vectors must vanish since
sin 0° = 0.
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The cross product of two orthogonal vectors must be a vector directed along the
third orthogonal axis given by the cross-product rule.
In particular, the cross products of the unit vectors are:

ixi=0 jxj=0 kxk=0
ixj=k jxiz=-k (R2.13)
jxk=i kxj=—i
kxi=j ixk=-j

In terms of the rectangular components,
A=Ali+Aj+Ak
B=8,i+8,j+Bk
AxB=(AB,~AB)i+(AB, - AB)j+(AB, - ABk

i j k
=(A. A, A, (R2.14)
B, B, B,
AxA=0
The vector or cross product is not commutative but obeys the distributive law:
AxBzBxA (R2.15)
AxB=-BxA

Ax(B+Ci=AxB+AxC
nAxB)=nAxB=AxnB

If A x B = 0, then either A = 0 or B = 0 or both are zero (trivial case), or A is
parallel to B, or A and B are collinear.
The angle between two vectors A and B is given by

1A x BI
AB
(f) Triple products of vectors can also be meaningfully defined as follows:
(f1) Scalar triple product of three vectors A, B and C is defined as

sin 8= (R2.16)

A, A, A,
A-BxC)=|B, B, B, (R2.17)
c, ¢, Cc,

where A=Ali+Aj+Ak
B=B,i+B,j+Bk
C=C,i+Cj+Ck
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The scalar triple product results in a scalar
quantity represented by the volume of the
parallelopiped having A, B and C as the ad-
jacent edges.

This can be shown with reference to Fig.
R2.7

Bx C=BCsinfn
A-(BxC)=BCsin 8Acos ¢ Fig. R2.7 Representation of

= Area of the parallelogram con- A-(BxC)
tained by B and C multiplied
by the perpendicular distance between the face OBC and the one
parallel to it

= Volume of the parallelopiped contained by the three vectors A, B
and C
Volume is a scalar quantity. One can arrive at the volume of a parallelopiped by
multiplying the area of its faces by the perpendicular distance between that face and
the one parallel to it. Hence the order of vectors in a scalar triple product is
immaterial. Hence

A BxC)=B-(CxA)=C:(AxB) (R2.18)

If the scalar triple product A - (B x C) is zero, then cither A or B or C is zero singly
or in combination, or they are coplanar vectors or two or all are collinear vectors.
(f2) Vector triple product of three vectors A, B and C is defined as

Ax(BxC)=(A-CB-(A-B)C
(AXxB)yxC=(C-A)B-(C-B)A (R2.19)
and AxBxCOz(AxB)xC

If the vector triple product A x (B x C) = 0 then either A or B or C is zero singly or
in combination, or A is in the plane containing B and C.

Example R2.7 Determine the components of the 500 N force shown along the aa
and bb axes.

Solution ™ Let the x axis be along oa and the y axis perpendicular to it.

b
500 N 500 N y b

45° 60° 45° adl

Fig. Ex R2.7 Fig. Ex R2.7 (Solution)
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Unit vector along ea is i and the unit vector along ob is cos 60i+sin 60 j=05i
+0.866 j.
The 500 N force is expressed as

=500 cos 45 i+ 500sin45 jN
or 35351+ 3535 jN
The component of the force along oa is
(-35351+3535))-i=-353.5N
and the component along ob is
( -353.51+3535))- (051 +0.866 j)=-176.8 + 306.2 = 129.4 N

One can as well determine the desired components geometrically by estimating
the projections of the 500 N force along oa and ob respectively. The projection
along oa is =500 cos 45°, i.e., =353.5 N and the projection along ob is 500 cos (90
~ 60 + 45), i.e., 500 cos 75° or 129.4 N.

Example R2.8 Determine the component of the vector
(3i+2j-5k)
along the vector (4i-3j).

Solution The dot product of a vector with another results in the product of the
projection of one vector along the other and the magnitude of the other vector.

A-B=Acosé B=ABcos8

where @is the angle between A and B.
1t e is unit vector along B8 then

A-e=Acos 8

the component of A along B.
The unit vector along (4§ — 3]J) is

e= ~£:*i—z-—'*—“‘\/—:-33"—2)—-=0.B i-06j
The desired component is
Bi+2j-5k)-(08i-06j)=24-12= 12 units
The component vector is, however, given by
1.2(08i - 06§ =096i-0.92j.

Example R2.9 Two vectors A and B are given as

A=2i+3)

B=3i-j
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Determine (a) the dot praduct A - B
(b) the cross product A x B
(c) the angle between A and B
Solution
(a) The dot product is given by
A-B=AB +AB
=2%x3 + 3% (~1)=3 units
(b) The cross product is expressed as

i j k
AxB=|A, A, A,
B, B, B8,

i J ok

=2 3 0

3 -1 0

=(2x(-1)-3x3]k=-11k

This is represented in Fig. Ex. R2.9.
(c) From the definition of the dot product,

A-B=ABcos @ ‘
cos @ = ﬂ = 3 0
AB J2? +132 XJ32 +12 ¥
=3 0264 ? ’
3.61x3.16
and g="74.7° X
Alternatively, from the definition of cross product,
IA xBIl=ABsin 0 Fl:_;im_g
sin 6 = i}:‘;':m:osm

and 8 =74.7°

Example R2.10 Two vectors A and B are given:
A=2i+3j+k
B=3i-3j+4k

Determine (a) their dot product, (b) their cross product and the unit vector along it,
and (c) the included angle between vector A and the vector resulting from the cross
product.
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Solution
(a) AB=2x3+3x(-3)+1x4=1

i j k
(b) AxB=2 3 1|
3 -3 4

=[Bx4-(-HNx1i-[2x4-3Ix1]j+[2x(-3)-3x3)k

=15i-5j-15k
The magnitude of this product is

1Ilsl‘ +52 4152 =+/475 =218

The unit vector along it is, therefore, given by

15, 3 15

518 " 3189 318 k =0.688i-0229j~0.688k

{c) The included angle between the vector resulting from the cross product and
either of the constituent vectors must be 90° = 7/2. Examining the same for the

present case,

i k
Ax(AxB)=|2 3 1
15 -5 -I5

=(-45+5)i-(-30-15)j+(-10-45) k
=-40i+45j-55k
The magnitude of which is

40,/40? + 452 + 552 =81.55

81.55

S0 0= T9rx 218

whence 6, the angle between A and A x B, is 90°.

R2.5 DERIVATIVES AND INTEGRALS OF VECTORS

(a) Derivatives of Vectors
The derivative of the vector A with respect to a scalar, say time ¢, is expressed as
dA _ .

. A+ AnN-AQ
= = lim = lim —————

dr a0 At 40 Ar (R2.20)
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where the vector A is a function of the scalar r and AA refers to the changes in A

during intervals of scalar Ar as shown in Fig. R2.8a.

If A=A,i+AJJ+A:k
dA __dA dA} s dAz
then @ = i+——j+ ar k
Z
Vector A + AA
at time f + A AA
Vector A at
0 time t

Fig. R2.8(a) Cbange in Vector A

(R2.21)

The derivative of a given vector with respect to a scalar results in a vector
representing the rate of change of the given vector with respect to the scalar.
An extension of the usual rules of differential calculus leads 10 the following

rules:

d dA
dt (nA) =n dt

d _dA  dB
E(A+B) ==-d—+—a?-

wm- dA , 49

O T
da. By =A. 9B, dA
A B =Ar B

dB dA
—(AxB)and ar xB

where n is a real number and ¢ is a scalar function of 1.

(R2.22)

It may be noted that the derivative of a constant vector C with respect to any

scalar must be zero, i.e.,

dC _
d:“o
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(b) Derivatives of Unit Vectors
Derivatives of the unit vectors i, j and k along the fixed space coordmales x,yand z
respectively must be zero with respect to any scalar,

di_o_di_ d Y 6 4% ¢
feoednde. §
Let us consider the derivatives of the unit vec- -
tors in radial and tangential direction, i.c., of e, and / ’
e, as shown in Fig. R2.8(b) e
e, =cos Oi+sin0j 0 ; x
de Fig. R2.8(b) Cbhange in
d_ =(-sinBi+ cusaj) Unit Vectors
Since ey =—sin Bi +cos B
= dé
and w= dr
de,
@O
Similarly,
d

€g _ . de
T =(~cos @i-sin 8)) 4

=-we

r

(c) Integrals of Vectors
If a vector A is a function of a scalar variable, say time ¢,

A(D=Aji+Aj+Ak
then the integral of A over the range ¢, 1o 1, is

1z 1y
JAWd = [(Ai+A,j+Ak)dr

fn N
In 13 1y
=ifAdi+j[A di+k [A di (R223)
h h f
Example R2.11
Assuming r=(rgsin@ni+(rgcos wonj
evaluate (a) r, the magnitude of the vector at any time ¢, (b) % L (c) % and (d) the

integral of r fromt=01tor = W
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Ol - rosinal —=

Fig. Ex R2.11

Solution

(a) r =J(ro sinwf)? +(ry cos@t)? =r,

(b) % = (rgw cos @ 1) i - (ryw sin @ 1) j

the magnitude of which is given by

J(rom coswt)? +(rywsin wt)? =wr,

(c) 3;-2— == (rp” sin @) i — (rge” cos @1) j= - r

the magnitude of which is given by 'r,

xlw xlw nlm
@ | rdi =i [ rysinardi+j | r, cosewredt
0 0 0
| rp coseor "’"’_+ ro sinat|®'® |
==|t— ——1 i
o |, o |,

=N iopido-0i
=- = (-1=Di+-2(0-0)j

2

5]

e|

Example R2.12
FA=2fi+tj-rkand B=sinti+cost]j

cvaluate @) S(A-B), () LA-A). ©LAxBlad @)L (AxA)
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Solution
@ S(A-B) =AM
=(2Pi+1j-r k) - (cos 1i-sin 1j) + (dri +j -3 K)-(sin ri + cos r])

=3tsint+ 2R cos 1 +cos

(b) %(A-A) =A-%+%-A=2A-%=2(2rzi+rj—:-‘k)»(4ri+j—3r= K)

=166 + 2t + 61

(c) %(Ax B)=Ax %+%

=@Pi+1j-rK) X (cos ti-sintj)+ (dri+j-3FK) X (sinri+cost])
=—Psinri-rcostj-(2Psinr+1cos Hk

xB

+3Pcosti-3fsintj+@rcosr—sinnk
=(-Fsint+ 3 cos )i~ ( cost+3Fsin0) j
+(3tcost~(1 +28) sinn k
d _d o
) E(Ax A)—dr(U)—O

Alternatively, the bracketed vector operations can be performed first and differenti-
ation done later. For example, in part (b),

Aoa Ay =25 arie K225 3
d:(A A) dr[(z: i+rj-t k) (2 i+1j-r* k)
= a0s 442 146
-dr(4f +12 415)

=16 + 2t + 6
which is the same as obtained earlier.
R2.6 GRADIENT, DIVERGENCE AND CURL

If a vector A and a scalar ¢ are functions of the space coordinates x, y and z then a
vector differential operator ¥ called ‘del’,

- 3 .6
V =i z {R2.24)
ia +'Ir9y+k

Flo

can be operated to define the following:
(a) Gradient of a Scalar ¢

=Vo=|id+id ikl
grad¢—§?¢—[|ar+]av+k&)¢
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do 09 ¢
=i—+ j—+k—
iy Ty R2.25)
Physically, the gradient of a scalar is a vector in the direction of the steepest
variation of ¢ with respect to the space coordinates. The component of grad ¢ in any
direction is the rate of change of ¢ in that direction.
(b) Divergence of a Vector A

div A = VX A=[i%+j%+k%]x (Ai+Aj+AK)
-2 +a4" + 2 R2.26
IR (R2.26)
The divergence of a vector refers to the net efflux of the vector at a point in
space.
(c) Curl of a Vector A
i i k
' o a9 @
CulA=V xA= x 3y % (R2.27)
A, A, A

x ¥ z

R2.7 SOME VECTOR OPERATIONS
Some of the useful results in vector algebra and calculus commonly referred to by
the engineering students are summarized in Table R2.1.
iri=j-j=k-k=e e, =¢j-¢5=...=1
i'j=j'k=k‘j=E,'eg=EB'¢,=.“=0
ixi=jxj=kxk=e xe =¢ey;xey=..=0
ixj=k=-jxi,jxk=ikxi=j
e Xey=e,eyXe =€, Xe =@
AxB=-BxA,(AxB)xC=(A-C)B-(B-CA
dA,
= d:h* du -'*d:;"
If F = f{x, y) where x = x(1), ¥ = ¥(1)

dF _9Fdx OFdy
ox dt ~ dy dt
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Line integral [A-dr = [(A, dx+ A, dy+A, d2)

Contour or cyclic integral §A-dr

Surface integrals JAxds, [¢ds, [A 2ds, [¢nds
5 s 5 5

Volume integrals jA dV  and IﬂdV
5 v

Divergence Theorem of Gauss

The divergence theorem of Gauss states that if V is the volume bounded by a
closed surface § and if A is a vector function of position with continuous deriva-
tives, then

II{V-AdV=I£A'BdS (RZ.ZB]
where n is the unit vector drawn normal to S.

Stokes’ Theorem

Stokes’ theorem states that if § is an open surface bounded by a simple closed curve
C and if A has continuous derivatives, then

gA.dr=J'£(Vx A)-nds (R2.29)

where C is traversed in the positive (counter clockwise) direction.

Green’s Theorem

Green’s theorem in a plane states that if R is a closed region in the xy plane
bounded by a simple closed curve C and if M and N are continuous functions of x
and y having continuous partial derivatives in the region R, then

§cMdx+ Ndy Jj[d‘ 3y]dxdy (R2.30)

where C is traversed in the positive (counter clockwise) direction.
Green's First Identity

[[[@V2p+V9-Vp)dv =[[ (¢Vp)-ds
v §
Green's Second ldentity
[1]@V2p~pV2 9)av =[(4Vp-pV)ds
v 5

R2.8 VECTOR IDENTITIES

Some vector identitics commonly referred to by the engineering students are listed
below.
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Algebraic Identities
A+B=B+A A+A=2A
A+ B+C)=(A+B)+C
A-B=B-A A-A=A?
A-B+C)=A-B+A-C
AxB=-BxA AxA=0
Ax(B+C)=AxB+AxC (R2.31)

A-BxC)=(AxB)-C=B-(CxA)

¥ z

¥

0w o
~

P

1l
Q-W b
0O W >

x ¥

AxBxC)=B(A-C)-C(A -B)
(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C)
(AxB)x(CxD)=B[A - (C xD)] - A[B - (C x D)]

=C[A - (BxD)]-D[A - (Bx C)] (R2.32)

Calculus Identities

1. V2¢=V-V¢

2. V2A=(V-MA

3. V(VxA)=0
Vx (V=0
Voy)=o¢Vy +yVo
V-(0A)=¢V-A+Vb-A

I

7. Vx ($A)=¢Vx A+Vox A

8. V-(Ax B)=(Vx A)-B—(VxB)-A

9. V(A‘B)=Ax (Vx B)+Bx (Vx A)+(A X V)B+(BX V)A
10. Vx (Vx A)=V(V-A)-V2A

1. (A-V)A:V(%J—Ax (Vx A)

12. Vx (Ax B)=(B-V)A-B(V-A)+(A-V)B-(A-V)B
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R2.9 POSITION VECTOR, DISPLACEMENT, VELOCITY AND
ACCELERATION

The position of a moving point P in space is described by a position vector, a vector
directed from an origin to the point. Thus OP is the position vector of P in Fig. 1.5
at an instant. At a later instant after an interval of time At, the position vector will be
OP’ corresponding to the new position of the moving point. The change in the
position from P to P’ is called the displacement vector or just the displacement.

Displacement = PP = Ar=Axi+Ayj+ Azk (R2.33)

Since this displacement is brought about in a time interval At, the velocity of the
point is given by

Ar_ﬁ_.
Vo= fim AT a st
_dx,
EH'_'H k xi+yj+ik (R2.34)

Similarly, the rate of change of velocity is the acceleration given by

_dv _dr_dix dyj dizy
Tdr T de? dr’ dt? dr?

=V=t=Fi+jj+ik (R2.35)

It is thus noted that (with respect to time):

The derivative of the position vector is the velocity and the derivative of the
velocity is acceleration.

Alternatively (with respect to time),

The integral of the velocity is the position vector and the integral of the acceler-
ation is the velocity

L
j V(t)d:t = r-rn

n
= change in position = displacement (R2.36)

Jamdi=v,-v,

fr
= change in velocity in the interval (R2.37)
Example R2.13 Show that V¢ is a vector perpendicular to the surface ¢ (x, y, 2)

= C where C is a constant. Hence find the unit vector normal to the surface 3xz* ~
3xy — 4x =7 at the point (1, 2, -2) and an equation to the tangent plane at this point.

Solution Letr=xi+y j+zkbe the position vector of any point P (x, y, z) on the
surface ¢ (x, ¥, 2) =
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Vector dr = dx i + dy j + dz k must, therefore, be along a tangent to the surface
at that point.
By differential calculus,

% % %
M—ﬁ;dj’-*‘gd}-}'-éz—dz

or

[ﬂu %h %k]-(dxﬂdyl"‘ dzk)=0

&

or Vo-dr=0

which implies that V¢ must be perpendicular to dr. Since dr is tangential to the

surface, vector V¢ must be normal to it.
Another interesting point worth noting is that

since dg¢= V¢ - dr
b _ g dr
VG

where 5 is an arbitrary space direction. For d@/ds to be maximum, v ¢ and dr/ds
must be collinear and dr/ds being unity, d¢/ds = V¢. In other words, the greatest
rate of change of ¢, i.e., the maximum directional derivative takes place in the
direction of, and has the magnitude of the vector y¢.

For the given surface,

-y -dx=T=0(x )2
V¢ = V(3xz’ - 3xy - 4x)
=(3-3y-4)i-3xj+6azk

At (1,2,-2)V9 =2i-3j- 12k 1V$ 1= 22 +(-3)2 +(-12)? = 1253

Since V¢ is normal to the surface, the unit vector normal to the surface is given by

2 . 3 . 12 . . .
12.531—12.531_12.531‘_0']61 0.24j- 096k

If dr is tangential to the surface

or Vo-dr=0
2i-3j-12k)-[(xi+yj+zk)-(i+2j-2Kk)]=0
which provides 2(x-1)-3(y-2)-12(2+2)=0

as the equation of the tangent plane at the point (1, 2, -2).
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Example R2.14 The motion of a point is expressed as x = 26, y=£# + 41,z =3t - §
in terms of the time parameter f. At time ¢ = 2, determine (a) the velocity and
acceleration, (b) the components of the velocity and acceleration in the direction of
(41 + 3 j), and (c) the unit tangent at the point. Also, determine the displacement of
the point from r=0to =2

Solution  ~
(2) The position vector r is expressed as
* r=xi+yj+zk

=200+ (P +a)j+(3t-5k
Velocity V = 4 =612 i + (21 + 4)j+ 3k
=24i+8j+3katr=2.
Acceleration a = 4¥. =121 +2

=24i+2j arr=2
(b) The unit vector along (4 i + 3 j) would be

4 3
i+ j=08i+06j
Y42 +32 Ja2 432

The velocity component at r = 2 along this direction is
(24i+8j+3k)-(0.8i+0.6j)=19.2 + 4.8 = 24 units.
The acceleration component at ¢ = 2 along this direction is
Q4i+2§-(0.8i+0.6)) =192+ 1.2 =20.4 units.

(c) The velocity vector must be tangential to the curve at the point and time
considered.

Since V=1l242+32 +32 =640 =25.48
The unit tangent at that instant must be

24 . 8 . 3 _ ) .
25.48'+25.481+ 25‘43k—[}.‘)4l~i~{ll,3]_|+C|.12I£

(d) Since -“% =6ri+ (U+4)j+3k

dr=(6fi+ @t +4)j+3K)dt

Displacement (r;-r) = [dr

n
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2
=[ (6t2i+ (2t +4)j+ 3k)dt
1]

=120% 4 (¢2 +40) j+ 3eki?
=16i+12j+6k
The displacement may alternatively be determined by finding the initial and final
positions:
At the initial position, t =0,
5=20=0y, = +4t=0,7,=3t -5=-5
At the final position, £ = 2,
x2=2r‘= 16:y2=rz+4:= 12;2,=3t-5=1
The displacement is given by
n-n=(16-0i+(12-0j+(1-(-5Nk .
=16i+12j+6k

Example R2.15 Determine and sketch the curve traced by a point such that
x=200rand y=1000-4 2. Also, comment on the salient features of the motion if
the distances are in metres and time is in seconds.

Solution Eliminating ¢ from the parametric equations,

2
‘ y:looo—4[L)

S
200° 200
y = 1000 - 0.0001x*
This is the equation of the curve to be traced.

x (metre) 0 1000 2000 2236 3162
¥ (metre) 0 900 600 500 0

The curve is sketched in Fig. Ex. R2.15

A
1000
900
f 600
500
>
| -
0 ] B
0 1000 2000 2236 3162

X

Fig. Ex. R2.15
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At t=0, x=0and y = 1000 m correspond to point A where the observation starts.
In general, the velocity components are

V.=

x

n.[a.

. =200 m/s

-8 rm/s

kS

V5=

Atr=0,V, =200 m/s and V, =0

which shows that the initial velocity at A is wholly horizontal and equals 200 m/s,
whereas with the passage of time, the horizontal component stays at 200 m/s and the
vertical component increases downwards linearly with time. The acceleration is

dv 5
a ——-E-—ﬂsm!s

'y
which is approximately 80% of the gravitational acceleration due to the earth. The
case in hand closely resembles the motion of a bomb released from the low-altitude
bomber aircraft flying at 200 m/s parallel to the ground. The bomb, when dropped,
travels horizontally and, with the passage of time, acquires a vertical velocity by
virtue of the acceleration due to gravity and is resisted by the aecrodynamic drag.

It reaches the base at B where y = 0 and x = 3162 m. The time taken to reach the
base is = 3162/200 = 15.81 seconds. The velocity components at the base B are

V. =200 m/s, V, = -8 x 15.81 = ~126.48 m/s
or
Vp=200i — 126.48 j m/s

where Vg = /2002 +126.482 =236.64 m/s
and
126.48

8 =tan"! (W} =tan "' 0.6324 =32.32°

R2.10 SOME OTHER VECTOR QUANTITIES

In addition to certain vector quantities already referred to, a number of other impor-
tant vector quantities are listed in this section. No attempt is made here to define the
quantities but merely to recognise them as vector quantities. It may also be noted
that only the position vector and the force be conferred the vector status axiomati-
cally, rest of the vector quantities can be proved 1o be vectors by virtue of their
definitions.

Force

Force F is an action exerted on a body which changes or tends to change the state of
rest or of rectilinear motion of the body.
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Moment
Moment M refers to the turning effect of a force F about a point O

The magnitude of the moment is given by

M=rFsin8=F, (R2.38)
where r is the position vector of any point on the line of action of the force and p is
the perpendicular distance from the point to the line of action of the vector F. The
moment is directed perpendicular to the plane containing r and F as shown in

Fig. R2.9.
The principle of moments due to Varignon called Varignon theorem, states that

The moment of a force equals the sum of the moments due to its components.
Consider a force F and moment M of the force about an origin O. By definition,

M=rxF
Let F be resolved into components Fy, F,, ..., F;, ... F, such that
F=F +F,+..+F,+..+F,

M

F,

i=1

u

and the position vector r refers to each of these forces as well.

z
F
@
;
P
M=rxF 0 M
0 X
Fig. R2.9 Force and Moment Fig. R2.10 Concurrent Forces
Then,
M=rxF
=rx(Fi+F,+F;+ .. +F+.+F)
Therefore, M=M +M,+...+M+..+M,
I n
=Z L XFE = EM(
i=1 i

i=1
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It will be noticed that this theorem has no outstanding concept to offer. The
theorem was proposed by the French mathematician long before the introduction of
vector algebra. :

p=mv
- A .
v
H=rxmV V=awxr
0 0 7 a=axr
(b) Momentum and Angular Momentum {b) Velocity and Angular Velocity

Acceleration and Angular Acceleration

Fig. R2.11 Some Other Vector Quantities

Linear Momentum

Lincar momentum p of a body of mass m moving at a velocity V at a certain instant
is defined as the product of the mass and velocity

®2:39
Angular Momentum

Angular momentum or moment of momentum H is expressed as the cross product
of the position vector and linear momentum or the moment of the linear momentumn
mV about a point O as shown in Fig. R2.11.

(R2.40)

The angular momentumn vector is directed perpendicular to the plane of r and V,
i.e., perpendicular to the instantaneous plane of motion.

Infinitesimal Rotation

Infinitesimal rotation 46, defined as a infinitesimally small amount of the angle of
rotation, is a vector quantity. It is important to note herc that finite rotation ‘@ is
not a veclor quantity. The reason is that the finite rotations 6, and 8,, although
possessing magnitudes, directions and sense, do not obey the commutative law of
addition, i.e.,

6 +6, 6,+ 8 (R2.41)

This has been demonstrated in Fig. R2.12 where a foot rule is shown subjected
to rotations about the x and y axes respectively. An initial rotation 8, = @2 i about
the x-axis and a subsequent rotation 8, = 772 j about the y-axis bring the sheet into
positions (Aa) and (Aab). On the other hand, an initial rotation 8, = /2 j about the
y-axis and a subsequent rotation 8 = n/2 i about the x-axis result in positions (Ab)
and (Aba) as shown. Obviously, the final positions (Aab) and (Aba) are not the
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same showing that the commutative law for finite rotations fails; admission disqual-
ifying them from being put under the category of vector quantities.

The case of addition of infinitesimal rotations 6, and d, is also shown in Fig.
R2.12. The position of the foot rule after an initial rotation 46, is shown as (Ba)
whereas that after an initial rotation 4, is shown as (Bb). The final orientation of
the foot rule after both d6; and d@, have been imparted, in either order, is approxi-
mately the same in the limiting case shown in the same figure. Hence,

A6, + AB, = A8, + A6,
and in the limit, d6, + d6, = d6, + db, (R2.42)

Initial Position of the Foot Rule

(Aa) After 8, (Aab) After (8, + 6,)

(Ab) After 8,

(Aba) After (8, + 8,)
Case A: Finite Rotations -
(8, = o2, 6, = nf2)

(Ba) After 48, | Neary the same resutting position |
After (46, + AB,)
| }/ Aftar (ﬁ + j::}
(Bb) After 46,

Case B: Infinitesimal Rotations
Fig. R2.12 Summation of Finite and Infinitesimal Rotations

Angular Velocity

Angular velocity  is defined as the rate of change of angular displacement or
rotation of a body about an axis

_do
W= o (R2.43)



Review of Vectors 65

1t follows from the vector nature of infinitesimal rotation 4 and the scalar nature
of time interval dt that the angular velocity must be a vector quantity.

If a point is located with a position vector r with respect to an origin O on the
axis of rotation, the linear velocity V of the point is given by

V=zwoxr (R2.44)
as shown in Fig. R2.11(b).

Angular Acceleration
Angular acceleration « is defined as the rate of change of angular velocity, i.c.,

_do _d?e
a= = (R2.45)

The linear acceleration a of a point with a positive vector r with respect to an origin
0 on the axis of rotation is given by

asoxr (R2.46)
as also shown in Fig. R2.11(b).

Example R2.16 A force F =3 i+ 2 j passes through a point (0, 2) with respect to
an origin Q. Determine the moment of the force about the origin and establish its
uniqueness with respect to arbitrary position vectors.

Solution The fact that the force passes through a point (0, 2) suggests that the
vector 0i+2 j=2j is a position vector.

Hence M=2jx@i+2}))
=-6k

Allernative position vectors, e.g., (1.51 + 3 j) and (- 3 i) would result in the same
answer

F=3|+2|

P 1514 3]
2]

Fig. Ex. R2.16
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(15i+3j)x(3i+2j)=3k-9k=-6k
(3DxBi+2j)=-6k
If, instead, the perpendicular distance p from O to the line of action of F is known,
M = F - p (clockwise)

=,I32 +22 x1.66(-k)=—

In fact, M=rxF=rFsin 8k
=F.rsin 8k
=Fpk

which means that the cross product takes care of the included angle between the
constituent vectors and allows no discrepancy in the result for different choices of
the position vector.

Example R2.17 A vertical pole is guyed by three cables PA, PB and PC tied at a
common point P 10 m above the ground. The base points of the cables are:

A(-4,-3,0,B05,1,-1)and C(-1,5,0)
If the tensile forces in the cables are adjusted to be 15, 18 and 20 kN, find the
resultant force on the pole at P.
Selution  Since P is 10 m above the ground at O, the forces in the cables must be
directed along PA, PB and PC such that
PA=-4i-3j-10k PA =442 +32 4102 =11.18
PB=5i-1j-11k PB =452 +12 +112 =12.12

PC=-1i+5j-10k PC =412 +52 +102 =11.22

z
F
-]
15 m4
18 kN | 20 kN

37——-- y
X B

Given sketch Free-body Diagram of Point P

Fig. Ex R2.17
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The unit vectors along these directions are

-4 ; 3 . 10 ,__ i - G

€ = —Trigh - Tigg i Tl gk = ~0358i - 0268 - 0894k
e, = ———i+——j——l_k=0412i+0.082j- 0907k
TRt e

= a3 j- 10 ) 0,089i+0.445 - 0891k
PT122 T2t 1z : ) ’

The forces in the cables are, therefore, given by
15, =-537i-4.02j- 1341k
18e,=742i+148j-1633k
20e,=-1.78i+890j- 1782k

Resultant force at P =0.27i + 6.36 j— 47.56 k

This is 48 kN in magnitude and acts predominantly downwards to hold the pole in
position.

Example R2.18 A force of 1000 N in a particular direction must be applied to
tow a boat. For some reason, it is not possible to apply the force in that direction
but two forces can be applied to 30° and 45° on either side of it in the same plane
containing the given force. Determine the magnitudes of the forces required along
these directions.

Solution This is an example on the resolution of a force into two components at
desired inclinations to it.

1000e=F, +F,
Sum of the components of F; and F; along e should add to 1000 N, whereas their
components perpendicular to it must cancel.
F, cos 30° + F, cos 45° = 1000
F, sin 30° = F, sin 45°
From these two equations,
F =732.1Nand F,=5176 N

Alternatively, the components can be determined geometrically by realising that
1000 N force must form the diagonal of the parallelogram with adjacent sides F,
and F,. Completion of the parallelogram and measurement of F, and F, on the same
scale to which the 1000 N force is drawn yields F, and F,.

Alternatively, vectorially,

1000 e=F,e + F,e,
where e, e, and e, are the unit vectors along the respective forces as shown in Fig.
Ex. R2.18(b).
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(V] ©
Fig. Ex R2.18

Choosing x-axis along the 1000 N force, and y-axis perpendicular to it as shown,
e=i
e; =cos 30°i~sin 30° j
e, =cos 45%i +5in45°

1000 i = F, (cos 30°i - sin 30° j) + F, (cos 45° i + sin 45° j)
= (F, cos 30° + F; cos 45°) i + (F; sin 45° - F, sin 30°) j
and the two component cquations arc
1000 = F, cos 30° + F, cos 45°
0 =TF, sin 45° - F, sin 30°
which are indeed the two equations set up in the first method and give
F,=732.1Nand F, =5176 N

It may be commented that if the x-axis was chosen in some other direction, say
along F, then the equations will be different. For x-axis along F, the equations are

F, + F, cos 75° = 1000 cos 30°
F, sin 75° = 1000 sin 30°
which again provide the same answer.
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Alternatively, the components can be determined by observing that the compo-
nents F, and F, add to result in 1000 N by way of a vector triangle as shown in Fig.
Ex. R2.16(c). Applying the sine rule,

F,b K 1000

sin45°  sin30°  sin105°

1000sin 45°
whence, F, = ‘s—;:;. =7321N
sin
1000sin 30°
=——=5176N
2 sin75°

Another point can be discussed with reference to this example. If the two compo-
nents desired were not constrained to lie in the plane containing the given force as
stated in the question, they will still have to lie in the same plane for equivalence.
Hence, the phrase ‘in the same plane containing the given force’ is indeed superflu-
ous. If, instead, the given force was to be resolved into three or more components in
the same plane, then an infinite number of combinations of the magnitudes would
be possible even if their directions were specified. On the other hand, if the given
force was to be resolved into three space components at given inclinations, it would
be possible to determine their magnitudes uniquely. Again, an infinite combination
of the magnitudes would be possible for four or more number of space components
even in the specified directions.

Concept Review Questions
1. Match the following terms with the statements.
Terms Statements
(a) Sliding vector (a) Adding a reversed vector to a veclor
(b) Bound vector (b) Division of vector quantities
(c) Undefined (c) A vector divided by its magnitude
(d) Zero vector (d) The transmissibility principle of vectors
(e) Unit vector (e) Equivalence of effect
(0 Equipolient vectors () Application at a unique point

2. Ifaforce F = F, e, + Fy ey acts on a body with a position vector r=Irinthe r — @
plane, which of the following expressions would result in the moment by the force

about the origin.
(i) rxF (ii) r-Fgey
(iii) rxF,r (iv) r-F,e,
3. Discuss why

(a) the parallelogram law must be obeyed by the vector quantities
(b) the commutation rule fails for the vector products

(c) the scalar triple product results in the volume of a parallelopiped
(d) the position vector and the force must be vector quantitics.
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4. Show geometrically or otherwise that
(@A A+B+nC=nC+B+A
M i-j=j-i
{c) ixjejxi
5. A vector may vary in magnitude and in direction with the passage of time. Iustrate
the concepls of
(a) derivative of a vector with respect to time
(b) integral of a vector with respect to time
Give one example for each of the applications of differentiation and the integration
operations.
6. Define the vector operator del, ¥, and illustrate the physical significance of
(a) the gradient of a scalar ¢
{b) the divergence of a veclor A
(c) the curl of a vector B,
7. Prove that

(a) dp=Vp-dr

(b) VxVe¢=0

€) V- (VxA)=0

where ¢ is a scalar, A is a vector and dr is a differential displacement vector,

Tutorial Problems

R2.1 A vector quantity of 100 units acts along a line OP, terminating at P. If the
coordinates of O and P are (3, - 1, 2) and (10, 5, B) respectively specify the vector quantity
in terms of the unit vectors.

(Ans. 63.6 + 54.5 j + 54.5 k)

R2.2 An object must be lifted from the ground point P(0, 0) to a point Q(0, 10) vertically
above P. It is feasible to lift the object directed from (0, 0) to (3, 4) as far as necessary and
then transport it horizontally to the destination. How long is the feasible path?

(Ans. 20 units)

R2.3 A point is located as (=5, 2, 14) with respect to an origin (0, 0, 0). Specify its
position vector:

(a) in lerms of the rectangular components,
(b) in terms of its direction cosines and
{€) in terms of its unit vector.
{Ans. (a) r=-5i+2j+ 14k
Byr=15li+15mj+15nk;
1=-033,m=013,n=093
dr=15nr;
r==033i+013j+093 k)
R2.4 For a triangle with sides of lengths @, b and ¢ and the angles facing these sides A, B
and C respectively, prove that
(a) ¢ =a®+b? - 2ab cos C (cosine law) and
(b) ﬂ:ﬂ:ﬂ(sim law)
a b c

R2.5 An object is projected at a velocity of 70 m/s perpendicular to the plane containing
vectors A=2i-6j~3kand B=4i+ 3 j- k. Express the velocity in terms of the unit
vectors.

{Ans. 30i-20j + 60 k m/s)
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R2.6 Two vectors A and B have an included angle of 60°. If A=4i+7j+6 kand B is
recorded as 3 i + 3 j + ( ) k where the coefficient of k is missing, calculate this coclficient.

(Ans. - 1.7)
R2L2TUHMA=2i-3j-k.B=i+4j-2kand C=2i,evaluate the following:
(a) A-B (b) AxB
) (A+B)-(A-B) (d) (A+B)x(A-B)
(e) (AxB)-C H (A+B)xC
(Ans. (a) -8 b 10i+3j+ 11k
() =7 dy -20i-6j-22k
(e) 20 M -6j-2k)

R2.8 Show that

() (2B3i-23j+ 13K (WV3i+ 23§+ 23k and (2730 + 1/3 j — 273 k) comprise a set
ol vrthogonal unit vectors.

(b) 2i=-j+Kk,(i+2j=3K) and (3 i-4j+5 k) are noncoplanar vectors.

R29NWA=3i+27j+4 ' k.and B=271+ 3 j+ 'k, compute

dA { ] d
@ b) o (AB) (© ! A()di and (d) 4 (AxB)
(Ans. (a) 3i+drj-dr?k (b) 481

(©) JAT =THYi+ 23T -T2 j+4log (TATHK

) 1260+ 8 =150 § + (18 = 165 k)
R2.10 The motion of a point is described by the position vector

r=(2+50i+4-3Mj

the distance being in metres for the time lapsed in seconds. Compute the velocity and
acceleration at the instant ¢ = 2 seconds.
(Ans. V= (20i-36 j)m/s
a = (10i- 36 j) mis?)
R2.11 A vertical pole is guyed by three cables PA, PB and PC tied at a common point P
at 8 m above the ground. The base points of the cables are:

A(4,0,0), B(-1,4,0) and C(-2,-3,0) m

If the tension in PA is 20 kN, calculate the tensions to be provided in PB and PC so that
the resultant force exerted on the pole is vertical. Find the force exerted on the pole.
(Ans. 22 kN and 28.6 kN, 63 kN)
R2.12 A force 300 N in magnitude acts through a point (1, 6, -5} dirccted towards
another point ({0, 4, -3). Calculate the moment of the force about a point O(1, 0, ~1), if the
distances are in metres.
(Ans. (400 i + 400 j + 600 k) N m)
R2.13 If r is the position vector of a point, show that
(a) divr=3
by cul r=0
{€) divir'ri=(n+ 3Hr"
R2.14 Interpret the significance of the following relations:
(@) r-dr=0
b) rxdr=0
{€) Vxr=10
where r is a vector and dr its differential change.
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R2.15 In a fluid flow the velocity of a 'particlc is given by
V=2i-2yj+xykmis
where the distances are measured in metres. Referred to the origin (0, 0, 0) compute the
cross product r x V for a fluid particle located at (2, 3, 4).
(Ans. 42i+4j-24 k)
R2.16 In a magnetic ficld the velocity of an electron is given by
V=100i+25 j mfs
and the magnetic flux density by
B = 0.01i - 0.001 j Wh/m*

Compute the cross product V x B for the electron.
(Ans. -0.35 k Wh/s m)
R2.17 The Indian satellite Aryabhatta is imparted steadiness in its orbit by spinning it
about the spin-axis as shown in Fig. Prob. R2.17. If the spin is maintained at 50 revolutions
per minute, calculate the linear velocities of the solar cells

C, (0.3 m, 0.0 m, 0.5 m) and C5(0.6 m, 0.2 m, 0.5 m)

with respect to the spin-axis.
(Ans. -2.618 j m/s, 1.047 k — 2.618 j m/s)

Top Shell
116 m 7
Solar Panels =
Spin cj:—— y G, Axis
of » x
Base Shell

I-—1.4? m—-l

Fig. Prob. R2.17

R2.18 A force of 200 N must be replaced by two forces inclined at right angles to it on
one side and at 45° on the other. Show that the magnitude of these forces should be 200 N
and 282.6 N respectively.

Also show that, if the components are equally inclined to the given force. the magnitude
of each component increases as the inclination with the given force increases until the
inclination approaches m/2.

R2.19 The vertical mast of a flag is positioned by three ropes tied to a common point on
the mast with their other ends fixed on the ground. If the angles between the ropes and the
mast are 30°, 25° and 30° respectively and they are spaced equally apart in the plan view,
determine the magnitudes of the forces in the ropes if the net downward force at the common
point is 1000 N. (Ans. 422, 357, 357 N)

R2.20 Determine the magnitude of cach of the three forces F|, F; and F; which when put
together at a point result in a single force 100 N in a given direction (e = 0.6 i + 0.8 j). The
unit vectors in the respective directions are as follows:

e, =05i+05j+0707 k
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¢ =0.707 i +0.707 k
e, =08i-06]

(Ans. -363, 363 and 169 N)

Look up Hints to Tutorial Problems!

Select the correct or most appropriale resy from g the alter
Sfollowing multiple-choice questions:

1.

Two vectors are equal if

{a) their magnitudes are equal

(b} their magnitudes and directions arc the same
{c) they are equal in magnitude and are collincar

Multiple-Choice Questions

in the

(d) their magnitudes, dircction and the sense are the same and they may lie anywherc

in space

. The magnitude of a vector quantity is

(a) the dot product of the vector with itself

(b) the cross product of the vector with unit vector along itself
(c} the dot product of the vector with unil vector along itself
(d) the cross product of the vector with itself

. Orthogonality of two vectors demands that

(a) their dot product equals unity

(b} the magnitude of the dot and cross products are equal
(¢} their cross product vanishes

(d) their cross product equals unity

. If the dot product of two vectors is zero, then

(a) either of the vectors or both must be zero

(b) the vectors must be perpendicular to each other
{c) either (a) or (b) is satisfied

(d) the vectors must be concurrent

. If the cross product of two vectors is zero, then

(a) either of the vectors or both must be zero

(b) the vectors must be parallel to each other

{(c) the vectors must be perpendicular to each other
(d) the vectors must be collinear

. The derivative of a vector with respect 1o a scalar must be

(a) in the direction of the given vector

(b) perpendicular to the given vector

{c) zero if the vector has a constant magnitude
(d) zero if the vector is a constant vector

. The integral of a vector with respect to a scalar

(a) results in a vector in the direction of the given vector
(b) is called the line integral

(c) must be a definite integral

(d) may have a direction other than that of the given vector.

. The gradient of a scalar function

(a) must be a scalar quantity
(b} must be a vector in the direction of the steepest variation of the scalar
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(c) must be a vector with its magnitude equal to the scalar
{d) is undefinable
9. The divergence of a vector
(a) implies the net efflux of the vector at a point in space
{b) must be a vector quantity
{c) is Iess than the curl of the vector
(d) implies the continuity of the vector space
10. The curl of a vector
(a) may or may not be a vector
(b) refers to the rotationality of the vector field
(c) refers to the efflux of the vector
(d) vanishes if the vector has a constant magnitude
11. The linear momentum of a particle
{a) must be directed along the velocity of the particle
(b) is the dot product of the mass with its velocity
(c) is the cross product of the mass with its velocity
(d) is a scalar quantity
12. The angular momentum of a particle is the
(a) linear momentum per unit angle
(b) product of the mass with its angular velocity
{c) moment of the product of the mass and the angular velocity about an origin
(d) cross product of the position vector and the linear momentum
13. The simplest resultant of a plane force system is always
(a) a single force
(b) a wrench
(c) asingle moment
(d) a single force or a single moment
14. A force acts in the plane of a paper from top to boltom. An anticlockwise moment is
applied on it The line of action of the force will shift parallel to itself to get the
simplest resultant
(a) above the plane of the paper
(b) under the plane of the paper
{c) to the right of the given line of action of force in the same plane
(d) to the left of the given line of action of force in the same plane
15. A plane system of forces has a single force resultant if the sum of the moments
{a) about the origin is zero
(b) about any point on the plane is zero
(c) about any point on a particular line in that plane is zero
(d) about any point on or outside the plane is zcro,
16. For a plane system of forces to have the simplest resultant as a single momet
(a) the forces must be parallel
(b) the force system must constitute moments and/or couples only
(c) the force system cannot have the forces as concurrent
(d) the force system cannot have an odd number of forces

Answers to Multiple-Choice Questions

1 (), 2 (c), 3 (e, 4 (c), 5 (b), 6 (d), 7 (d),
8 (b), 9 (a), 10 (b), 11 (a), 12 (d), 13 (d), 14 (c),
15 (c), 16 (b)



FORCES AND FORCE
4l  SysTEMS

Resultant, Equivalence and
Origin of Forces

2.1 FORCE AND MOMENT CONCEPTS

It has been stated in Chapter 1 that an ‘action’ which changes or tends to change the
state of rest or of uniform motion of a body must be a force or a moment. A force
when exerted on the centre of mass of a body causes or tends to cause a change of
state of rest or of uniform rectilinear motion of the body. The action of a moment
causes or tends to cause a rotational motion of a body. The moment of a force about
a point has been defined as the turning effect of the force about that point

M:er| (2.1)

= rF sin B or F p, perpendicular to the plane containing r and F

where F is the force, r, the position vector of any point on the line of action of the
force with the origin at the point about which the moment is desired, p the perpen-
dicular distance from the point to the line of action of the force and @ the angle
between r and F as shown in Fig. 2.1.

Force and moment concepts are most im-
portant in the study of Newtonian mechanics.
As a matter of fact, the laws of Newton and
Euler lay the foundation of force-based me-
chanics. An alternative formulation called en-
ergy-based mechanics is based on energy con-
cepts where force and moment do not play the

primary role. Since we are concerned with the M=rxF
Newtonian formulation of mechanics, we shall o

have to allot special status to force and mo-  Fig. 2.1 Concepts of Moment
ment concepts. due to a Force

A body may be subjected to a single force
or a moment or a system of forces under the action of which the body may stay at
rest, be in uniform motion or in general motion. It is important, therefore, to recognise
the total effect of a system of forces acting on a body. This is represented by the
concepts of resultant and equivalent systems which are discussed at length for
different force systems acting on a particle or rigid body. The application of the



76 Engincering Mechanics

resultant concept for a rigid body is appreciated by using the principle of transmis-
sibility of a force; the principle being applicable to a rigid body but not to a
deformable body.

Forces may originate from a variety of circumstances. It is neither possible nor
desirable to cover all the possible modes of origin and the nature of forces but it
should be helpful to introduce the concepts of gravitational force field, hydrostatic
force field and frictional and drag forces. The origin and nature of forces is a
fundamental subject and must be conceived before their effect is dealt with in
statics and dynamics. There is little scope of solving any numericals on the nalure
of forces at this stage. Appropriate and adequate number of examples will be taken
up in the context of statics and dynamics during our study.

Example 2.1 A 50 cm % 30 cm plate is acted on by a 10 kN force at B in the plane
of the plate as shown in Fig. Ex. 2.1. Determine the moment of the force about
and about A.

Solution In order to determine the moment about D, fix the origin at .D and let the
xand y axes be along DC and DA respectively as shown in Fig. Ex. 2.1 (Solution).

10 kN
A B /~60°
cm
b 50 cm c
Fig. Ex. 2.1 Fig. Ex. 2.1 (Solution)

The force is specified as
F = 10 cos 60° i + 10 sin 60° j
=5i+8.606jkN
and the position vector for a point B on the line of action of the force is
DB=05i+03jm
The moment of the force about 7 is, therefore,
M,=DB xF
=(05i+03j)x(5i+8.66j)
=283kkNm
It may also be noticed that the moment equals

Mp=10p
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where p is the perpendicular distance from D to the line of action of the force..From
the knowledge of this distance by a drawing to scale or by trigonometry, the mo-
ment is determined as

Mp =10 % 0.283 = 2.83 kN m

directed anticlockwise, i.e.. along the positive z direction.
Similarly, the moment about point A may be evaluated by sclecting the origin at
A and the axes in the same directions as before

AB=05i
F=5i+8.66j
M,=ABxF=05ix(5i+866j)

=433 kkNm

2.2 FORCE FIELDS: LINEAR, PLANE AND SPATIAL

A force may be originated by the action of one body on another body in contact
with it or by virtue of a force field. A force field implies the existence of a force as
a function of the space coordinates and time. In general, in a force field,

F=F(xyzn=Fr0z1
A force ficld is said to be steady if, at any point in space, it is independent of time,

i.e.,
F=F(x, v.2)=F(r. 0,2)

Force fields are classified as linear, plane and spatial as follows:

Linear Force Field

A linear force field is confined to a line only, i.e., the force at any point is a function
of one dimension only.

F = F(x) or F = F(s)

A lincar spring is an example of a linear force ficld. As shown in Fig. 2.2(a), the
force F on the weight W by the spring is a function of the horizontal displacement x
of the weight only.

Plane Force Field
A plane force ficld refers to a field where the force varies with two space coordi-
nates, i.e., x, y or r, 8, etc.

F =F(x, y) or F(r, )

The magnetic ficld generated by a current-carrying conductor with rectangular cross-
section AB is an example of a plane force field. The force excrted on any magnetic
particle near it is a function of its two coordinates (x, ¥) as shown in Fig. 2.2(b).
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(a) Linear Force Field F = F(x)

y F. F"—'—" P
x
Y
; z
y : )

Tl Py x

A e

Bar Magnet ekl ,/ v
(b) Plane Force Field F = Flx, y) (c) Spatial Force F = Fx, y, 2)
Fig. 2.2 Force Fields
Spatial Force Field

A spatial force field is a general force field in which the force varies with respect to
the position of the point in space, i.c., with all the three coordinates x, y, z, or r, 6, 2,
ete.
F=Fx y 2o F=Fr 62

The gravitational force field gencrated by a body is an example of a spatial force
ficld. The force exerted on any particle P towards the body is a function of the
position of this particle with respect to the body in space, i.c., x, ¥, 7 as shown in
Fig. 2.2(c).
Example 2.2 A force field represented by

F=6xyi+3xj

acts on a circular plate of 2 m radius placed in the x-y plane with the z-axis passing

through the centre of the plate. Determine the force at some salient points on the
periphery of the plate.

Solution Let us consider the points A, B, C, D, E, F, G and H on the periphery as
shown in Fig. Ex. 2.2. The forces at these points are determined by substituting the
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values of corresponding x and y. For example, at point A(2, 0),
F=6x2x0i+3%x2j=6]

FPoint x ¥ Force F
A 2 0 6j
B 1.414 1.414 12i+4242j
C 0 2 0
D -1.414 1.414 -12i-4242
E -2 0 -6 j
F -1.414 -1.414 12i-4242j
G 0 -2 0
H 1.414 -1.414 -12i+4242j

2.3 DISTRIBUTED FORCE FIELDS

A distributed force field is characterised by the action of a continuously distributed
force. Such forces may act over a line, a surface or a volume; these are correspond-
ingly denoted as lineal, surface and body forces.
Linecal Force
A lineal force is one that acts along a line on the body. The force dF at any small
length d! is given by

dF = wdl
where @ is the intensity of loading at dl.

An example of the lineal distributed force is a loaded cable as shown in Fig. 2.3(a).

Surface Force
A surface force acts over a surface and the force dF at any area dA is given by

dF =p dA

where p the intensity of force per unit arca is Igcncml]y termed as pressure.
Hydrostatic pressure acting on the surface of a cylinder immersed in water as
shown in Fig. 2.3 is an example of the surface force.

Body Force

A body force is essentially the force exerted on the mass or volume content of the
body.
Thus the body force dF on an element of mass dm or volume dV is given as

dF =g dm
or dF = ydv

where g is the force per unit mass on the small mass dm or yis the force per unit
volume on the volume dv.
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An example of body force is the force exerted on a body due to gravitational
attraction of the earth as shown in Fig. 2.3(c). The force is distributed throughout
the volume or mass of the body.

Types of Distributed Forces Examples

daF S Loading w = w{)

ds

Cable
Lineal Force, F = Fis) A Loaded Cable
(a)

daF

Surface Force, F = FlA) A Cylinder Immersed in Water

(b)
‘immm'
Body Force F = F{V) A Body Under the Force of Gravity

(c)
Fig. 2.3 Distributed Forces

2.4 FORCE SYSTEM ACTING ON A BODY

A body may be subjected to a number of forces in a specified manner
F,.F, F,, ..

acting such that the position vectors of any points on their lines of action are
r), T, Iy, e

respectively referred to an arbitrary origin O.

Some of the forces may be equal and opposite and may constitute couples. The
couples are sometimes bracketed separately from the other forces and are taken into
account by way of couple moments. There may, in addition, be moments acting
otherwise. Thus, the body may be acted upon by moments

M, M, M, ...
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The forces acting in a specified man-
ner and the moments acting on the body
constitute a force system or a system of
forces as represented in Fig. 2.4. A force
system is sometimes referred to as an
‘external action’ on the body.

The force system acting on a body
may consist of forces which may be qual-
ified in one or more of the following
classifications:

. Concurrent force systems: Col-

linear, planar or spatial

Fig. 2.4 A Force System Acting on

2. Parallel force systems: Planar or a o
spatial

3. Coplanar force systems: Concurrent and non-concurrent, parallel and non-
parallel

4, Spatial force systems: Concurrent and non-concurrent, parallel and non-paral-
lel.
It is obvious that a particle may only be subjected to a concurrent force system
whereas a rigid body may be under the action of any force system.

I 2,5 RESULTANT OF A FORCE SYSTEM

The resultant of a force system acting on a body implies the net external action on
the body. In other words, the resultant action is a simple equivalent force system
which can replace the given force system for an equivalence of effect so far as
motion or tendency of motion of the body is concerned. The definition of a rigid
body permits no internal dimensional or structural changes within the body; the
resultant concept applied to a rigid body stands for complete equivalence of action
and is therefore highly meaningful. Similarly, a particle conceived as a relatively
small or point object allows the resultant concept to be used to advantage due to
complete equivalence of action represented by it. We shall, therefore, confine our-
selves to the resultant concept for a particle and a rigid body.
The action of a force is two-fold: first, in its
own right as a translational action and second,
to generate a moment or rotational action about
an arbitrary point or an axis. It follows that the
resultant of a force system should, in general,
comprise of (a) a force and (b) a moment, as
shown in Fig. 2.5.
It is necessary to qualify the point of action
or line of action of the force and the direction of
the moment as will be shown later. It is also
likely that a force system can resull in a force  Fig. 2.5 Resultant Action for
only or in a moment only for certain force ficlds the Force System
and certain choices of the point of action of the Acting on a Body
resultant.

R
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Sometimes, the resultant of a force system is referred to as the equivalent or
equipollent action. It is, in general, incorrect to term the resultant as the equivalent
because the equivalence of an action has a wider implication. The equivalence of
action on a body may be desired with different objectives. For example, the objec-
tive may be to study the motion of the body, to analyse its internal forces or to
compute its deformation or rate of deformation. Thus, by definition, the equivalent
system of forces for a given system of forces is such that it produces the same
desired effect. In particular, for a rigid body in moticn or having a tendency of
motion, the analysis of motion can be made with the resultant replacing the given
system of forces. The resultant is, therefore, the equivalent action of a system of
forces for the dynamic consideration of a rigid body.

It may be scen that the resultant of a plane system of forces must be a force in
that plane which may be accompanied by a couple-moment in a direction normal to
that plane. Similarly, the resultant of a system of parallel forces should be a force
parallel to them which may be accompanicd by a moment in a direction normal to
the parallel forces. The resultant of a system of concurrent forces should be a single
force which must pass through the point of concurrency. These statements cannol be
taken for granted; let us discuss the individual cases.

2.6 PRINCIPLE OF PARALLEL TRANSFER OF A FORCE

Consider a force F acting through a point p, on a rigid body as shown in Fig. 2.6(a).
If it is desired that the force be applied through a point p, on the body, then the
force F applied at p, must be accompanied by a moment with magnitude

M=Fd

perpendicular to the plane of transfer of the force for equivalence where d is the
perpendicular distance of the parallel transfer of force. This is the principle of
translation of a force to a parallel position. The principle can be proved by imagin-
ing a pair of equal and opposile forces F and —F adding to null at point p, in the
first instance. The perpendicular distance from p, to the given force is d. The
system of three forces thus constituted as shown in Fig. 2.7(b), may be visualised as
a force F acting through p, and a couple of forces F and -F acting through points p,
and p, respectively. The couple of forces comprise a couple-moment M given by

M=Fd (2.2)

in magnitude, perpendicular to the plane of transfer of the force F.

The sense of the accompanying couple-moment may either be visualised with the
help of a neat sketch or observed vectorially as follows:

Let the position vector of a point p, on the new line of action of F, called F,,,
with reference to a point p; on the initial line of action of the force, be Tpp,- Then,
the moment vector accompanying the transferred force is

i
specified completely in magnitude and direction. If the magnitude of the displace-
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o

P
F/

F
(a) Given Force F Through p, (b) A Null Force Added at p,
M=Fd
pzM ”’f —F
/" |
- 1
£ '
P I
Tospy :
t-M
Plane of B
Transfer of
the Force F
(c) Force F Through p, and a Moment (d) A Force Fand a Moment M

Reduced to a Single Force sz
Fig. 2.6 Principle of Parallel Transfer of Force

ment vector is d and it is the perpendicular distance through which the force is
transferred, then the direction of the accompanying moment of magnitude

M=Fd

is equal and opposite to the moment exerted by F,, about a point on the initial line
of action of the force as shown in Fig. 2.6(c).

Let us now discuss the reverse problem. If a force F and a moment M act on a
rigid body such that the force passes through a point p; and the moment has no
component along the direction of the force then the given system of F and M may
be replaced by a single parallel force F,,, passing through the point p,.

The transfer of F so as to pass through p, would have required as accompany-
ing moment

Ty X Fpy
which, in this case, must nullify the existing moment M normal to the plane of
transfer. Hence,

M=oy, x Fy,

or
M=r,, xF (2.3)
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The point p, can be located with respect to p; by solving Eq. (2.4) by way of
decomposing it into scalar equations as shown in Fig. 2.6(d).

A force acting through a point and a moment can be replaced by a single parallel
force for equivalence if the moment has no component in the direction of the force.
Let us observe the difficulty when the moment has a component in the direction of
the force. Clearly, the transfer of the force parallel to itself involves the application
of a moment perpendicular to the plane of transfer of the force; no moment along
the direction of the force may creep in. Conversely, any amount of transference of a
force parallel to itself cannot involve a moment along the direction of the force so
as to nullify the given component along that direction. The simplest system to which
an arbitrary force acting at a point and a moment acting on the rigid body may be
reduced is the force parallel to itself and a moment along the line of action of the
force. The simplest equivalent form, i.e., a force and couple-moment directed along
the force is called wrench. If the force in the wrench is displaced 1o any parallel
position, the moment directed along the force will remain unaltered and an addition-
al moment arising from the parallel transfer of the force will be required.

The concept of a wrench is explained with reference in Fig. 2.7(a) where an
arbitrary force F passing through a point p, in a rigid body and an arbitrary moment
M are given. The moment has a component M, along the direction of the force and
a component M, normal to the direction of the force. The force F may be transferred
to act at another point p, in the body such that it is cquivalent to F at p; and the
component M, of M. There is no possibility for the component M in the direction
of the force to be taken care of by a parallel transfer of F. The simplest equivalent
system which remains is, therefore, a force F through p, and a moment My in the
direction of the force. This system, called a wrench, is shown in Fig. 2.7(b).

/ N\

F d
M, Wrench
W Py / M
Py
Given: Arbitrary F at p, and M F Transterred to p, and M,

Fig. 2.7 Concept of a Wrench on & Rigid Body

is made of parallel bars AB, CD, EF

and OP as shown in Fig. Ex. 2.3. A

force F of 10 kN acting along CD is ¢
to be replaced by an equivalent ac- ~
tion by applying the force along any ~
of the other parallel bars. Determine g
the equivalent action in each case. -

2m

Example 2.3 A rigid parallelopiped 4 E
]
|
+

am

b3
@

Seolution
If a 10 kN force were to act along Fig. Ex. 2.3
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EF, it should be accompanied by a moment
M=10x2=20kNm
along the positive z-axis or by the moment vector
M=-rg-xFg
=-(2i)x10j=20kkNm
If it were to act along AB, the accompanying moment would be
M=10x3=30kNm
along the negative x-axis or by a moment vector
M=-rxF,
=—(-3k)x10j=-30i kNm
Similarly, if the force were transferred to the bar OP, the moment accompanying
it would be
M=10x /(3% +22) = 36.06 kN

along a direction normal to the plane containing CD and OP, i.e., normal to the
plane OCDP.
Vectorially, the accompanying moment would be

M=-ry:xF,
=—~-2i-3k)x10j=20k-30ikNm
Example 2.4 A force F acts at a position vector r:
F=5i+6j+4kkN
r=-2i+3j+4km
A couple-moment M also acts:
M=2i+3jkNm
It is desired to replace the system by a wrench. Specify the equivalent wrench.
Solution The unit vector in the direction of the force F is

= Si+6j+4k
52 +62 +42

The given couple. moment may be resolved into a component M, in the direction
of the force and a component M,, normal to it.

M=M-f
=(2i+3j)-(057i+0684j+ 0456 k)
=1L14+205=3.19kNm

=057i+0.684 j + 0456 k
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Fig. Ex. 2.4 (Solution)

M,=M-M,
=(2i+3)-3.19%057i+ 0.684 j + 0456 k)
=0.18i+0.82j-145k
The component Mf= 3.19(0.57 i + 0.684 j + 0.456 k)
=182i+218j+145k

is there to stay as a component of the wrench but the normal component M, may be
eliminated by way of parallel transfer of the force. Let the force be transferred to a
new position p, defined by a position vector

xi+yj+zk
The displacement vector for the force is
T = (C2Di+ -3+ -k
=(x+2)i+(y-3)j+z-dk

The parallel transfer must be accompanied by a moment vector

_'rf-'zr’IXFPz
i i k
=—|x+2 y-3 z-4
5 6 4

which should be negative of M,, in order to nullify it, i.e., equal to - 0.18 i - 0.82 j
+ 145k

The solution of this equation provides x, y and z which implies that the equiva-
lent wrench is such that the force 5 i + 6 j + 4 k passes through this pointxi+ y j +
z k and the accompanying moment in the direction of the force is 1.82 1+ 2.18 j +
145 k.

Example 2.5 Replace the force system consisting of three forces shown in the
figure by a wrench passing through a point in the yz plane.
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¥
f 200 N
I 10m
|
|£ 1.5m 12m
]
_______ -, e
300 N /I,,
,
//
/ 150 N
F4
Fig. Ex. 2.5

Solution The resultant force R = 200 i + 300 j — 150 k N. The moment of the
given forces about the origin o is given by

M=12jjx200i+ 1 kx300j+ 1.5ix(=150Kk)
=-300i + 225 j - 240 k Nm.

Let the wrench be located at point P(o, y, ) located by the position vector y j +
z k. The moment must be Mi, i.e. normal to yz plane.
Then,

(vj+z k)X (200i+ 300 j- 150 k) + Mi = -300 i + 225 j - 240 k.

whence, 300z + 150 y=M
200 z =225
200 y = 240

¥y=12m,z=1L125m, M =217.5 Nm

The desired wrench, therefore. consists of a force 200§ + 300 j — 150 k N and a
moment 217.5 i Nm at the point (0, 1.2, 1.125 m).

R=20001+300]-150k N

M= 2175 i Nm

{0, 1.2, 1.125)
Fig. Ex 2.5 (Solution)

2.7 RESULTANT OF A CONCURRENT FORCE SYSTEM

A concurrent force system may be collinear, coplanar or spatial; collinear if the
forces have the same line of action, coplanar if the lines of action of the forces lie in
a plane and spatial if the lines of action of the forces lie in space as shown in
Fig. 2.8.
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,-F" '
(a) Collinear Forces
R
o/

{b) Coplanar Forces

(c) Spatial Forces
Fig. 2.8 Concurrent Force Systems

(a) Collinear Forces
A system of collinear forces
F]; Fg, F]. v

acting on a body may be replaced by a single resultant force R acting in the same
line of action as the given forces where

R=F, +F,+F; +.. (2.4)

In other words, the sum of the forces in the collinear force system must provide the
resultant.
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(b) Coplanar Concurrent Forces
A system of coplanar concurrent forces
F,,Fy, Fy, ..
acting on a body may be replaced by a single resultant force R passing through
the point of concurrency in that plane where
F=F +F,+F;+ ..
In terms of rectangular components,
F\=F,i+F,j
Fo=Fy i+ Fyj
Fy=Fy i+ Fy
and Tl;(F,,:F;:.“)i +(F+Fy+ )
=Ri+Rj (2.5)
Geometrically, a polygon of forces can be constructed to add the coplanar con-
current forces Fy, F, F, ... to result in R.
(c) Spatial Concurrent Forces
A system of concurrent forces not confined to a plane,
F,.F,, F;, ..

acting on a body may also be replaced by a single resultant force F passing through
the point of concurrency such that

R=F +F,+F,+..
=(F+Fy+ )i+ (Fly+ Fp+ ) j+ (F + Fp+ )k
=R,i+R, j+Rk (2.6)

In view of the space distribution of the forces, the geometrical construction, though
possible is not feasible for adding the spatial forces because of the complexity of
drawing space diagrams. v i
Example 2.6 At a point P on a vertical mast three :
forces F, F, and F; act: !

———= F
F,=50i F2‘7P +
F,=-30i-15j
F;=-25i-10j+5k

Determine the resultant force at P.

Fig. Ex. 2.6



90 Engineering Mechanics

Solution The resultant of the concurrent forces is given by
R=F +F;+F,
=50i-30i-15j-25i-10j+5k
=-5i-25j+5k

This single force when applied at P results in the same dynamic action as that
exerted by the given system of concurrent forces.

2.8 RESULTANT OF A PARALLEL FORCE SYSTEM

A force system consisting of parallel forces may be planar or spatial: planar, if the
parallel forces lie in a plane and the moments applied externally or couple-moments
by the applied forces are directed normal to the plane and spatial, if the parallel
forces are in space or the moments applied externally are directed in arbitrary
directions.

An analysis of parallel force systems such as that of concurrent force systems can
be made under the heads of plane and spatial systems but the parallel force systems
conslitute an important class in engineering and will, therefore, be dealt with sepa-
rately.

(a) Plane Parallel Force System

Consider a simple case of two parallel forces. Any two parallel forces must be
coplanar. Let the two parallel forces be equal in magnitude. If they are in the same
sense as in Fig. 2.9(a,i), they add up to result in a single force which has twice the
magnitude of each force, directed parallel to them and in the same sense as the
constituent forces. The forces also produce a net moment about any point in the
plane. The net moment is zero about any point midway between the forces. The net
effect of the pair of forces, in this case, is to result in a resultant force R as well as
an appropriate moment about the point considered. If they are in the opposite sense
as in Fig. 2.9(a,ii), they add up to result in a null force. In addition, they have a net
turning effect. In fact, they constitute a couple and the net turning effect is denoted
by the moment of the couple. The moment of the couple is determined as

M=rxF

where r is the position vector of a point on the line of action of one force with
respect to an origin taken on the line of action of the other and F is the former
force.

Alternatively, the magnitude

M=rFsin 8
=Frsin@=Fd
where d is the perpendicular distance between the forces constituting the couple and
@ is the angle between r and F.

It follows that the moment of the couple is directed perpendicular to the plane
containing r and F, i.c., perpendicular to the plane of the couple. It can be concluded,
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ﬂ\
E

{a) Equal Parallel Forces

R=F +F,

(c} General Coplanar Parallel Forces
Fig. 2.9 Resultant of Parallel Forces

therefore, that a pair of equal parallel forces with opposite sense can be replaced by
an equivalent moment. It must be understood that the moment is a free vector; the
directions and the lines of action of the forces constituting the couple are of no
consequence. Whether the couple is in a particular plane or in any parallel plane is
also immaterial. The moment may well be duc to an equivalent couple of smaller
forces but placed further apart as illustrated in Fig. 2.10.

Consider next the case of a pair of parallel but unequal forces, Fy and F,. If they
have the same sense, their resultant R is parallel to them with the same sensc and its
magnitude

R=F,+F,

If they have opposite sense, their resultant R is parallel to them in sense of the
larger force and the magnitude

R=1F ~F,l (v X))



92  Engineering Mechanics

Fig. 2.10 Equivalent Couple Momenis

The net effect of the forces is also in producing a turning effect; the moment of
the forces F; and F, is different at different places. If a line AB is drawn perpendic-
ular to the lines of action of the forces, it is easy to observe that the net moment of
the force is different both in magnitude and sense about different points. In cach
case, a point O can be located such that the net moment about that point is zero.
This point O should lie closer to the larger force; on the side of the smaller force if
they are in the same sense and on the opposite side of-the smaller force if they are in
opposite sense, In terms of d; and d,, the distances between the forces F; and F,,
and the point O,

Fyd, = Fyd, 2.8)

as is clear in Fig. 2.9(b).
Let us now consider a case of coplanar parallel forces as shown in Fig. 2.9(c).

F,F, F;, ..
The resultant force is
R=F +F,-F+.. (2.9)

and the resultant moment about a point © through which R is passed has the
magnitude

M=Fd, + Fydy - Fydy + ...
whereas, in vector notation, .
My=rxF+nxF-ryxF,+.. (2.10)

is the moment vector about O accompanying the resultant force F passed through
this point.

The general case of coplanar parallel forces can, therefore, be represented by an
equivalent system of a single force R passing through a point P and a moment about
an axis perpendicular to the plane of the forces. If R is non-zero, it can be made to
pass through a point such that the moment vanishes and the single resultant force R
becomes the equivalent. If R is zero, the moment remains as the single equivalent.
The single resultant of a system of coplanar parallel forces may, therefore, be a
single force if the force is non-zero or a single moment if the resultant force is zero.
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The concept of equivalence of coplanar parallel forces may be extended to the
case of spatial parallel forces. If the system of parallel forces in space consists of
F,F, Fy .
specified by the position vectors
£, F Ty,
respectively as shown in Fig. 2.11, then the resultant force is given by
R=F +F,+F;+..

and if this force is passing through the origin O, the moment accompanying it for
equivalence should be

My=rxF, +r,xF, + ..

z
F\ fa l
F
¥ | ol
rl\J # y \v M, Y
L] F, M,
x x
{a) Specified Spatial Force System (b) Equivalent System at 0
z
Fy
0 7 y
,x
y—-
X

(c) Single Non-Zero Equivalent Force
Fig. 2.11 Egquivalence of Spatial Parallel Forces

The system of parallel forces cannot generate a moment in the direction of the
paralle] forces; the moment My is wholly normal to the lines of action of the parallel
forces. It is, therefore, possible to reduce the resultant 1o

(i) a single equivalent non-zero force by shifting it parallel to itsell so as to
reduce the accompanying moment to null,
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(ii) a single equivalent moment if the resultant force happens to be zero, or
(iii) a null force and null moment in a particular case.

Example 2.7 A rigid bar AB is subjected to a system of parallel forces as shown in
Fig. Ex. 2.7. Reduce the given system of forces to an equivalent (a) single resultant,
(b) force-moment system at A, and (c) force-moment system at D,

40 kN
i 20 kN
x
A D
8
[+
m i 2m 2m
15 kN
S0 kN
Fig. Ex. 2.7

Solution The resultant force for the coplanar parallel force system is
R=Fl+F2+F;+F4
=15j-40§+30j-20j=~15jkN
which implies that it is 15 kN downward. This force may be made to act through
any desired point in the bar.
(a) In order that the single force —15 j kN be equivalent to the given system of
forces, it should be so located that the moment exerted by it about any point should

be the same as that exerted by the given system of forces. For example, let us
consider the moments about A for the given system

M,=1ix(-40§)+3ix30j+5ix(-20j)

=-40k+90k-100k=-50k U]
If the resultant is assumed to act at a distance x from A, then
M,=xix(-15))=-15xk (ii)
Equating (i) and (ii) as postulated before,
-15xk=-50k
x=333m

(b) If the force of ~15 j were acted at A, the moment accompanying it should be
M,=-50kkNm

as determined before.
(c) If the force of —15 j were acted at D, the moment accompanying it would be

Mp=-3ix15j-2ix(-40j)+2ix(-20}))
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. =(-45+80-40)k=-5kkNm
(d) If the force of —15 j were acted at B, the moment accompanying it would be
M,=5ix15j-4ix(40j)-2ix30j
=(-75+160-60) k=25kkNm
The results (a), (b), (c) and (d) are shown in Fig. Ex. 2.7 (Solution).

15kN

A * B
,.——x=3.33m_—|

(a) Single Resultant Force

15 kN
A‘ ) B
S50kN M
(b} Equivalent Force — Moment at A
15 kN
AY
A D} B
S5kN m
(c) Equivalent Force — Moment at D
15kN
A ,\ 8
25kN m

(d) Equivalent Force — Moment at B8
Fig. Ex. 2.7 (Solution)
Example 28 A 4 m x 5 m slab carries four forces normal to it as shown in
Fig. Ex. 2.8. Determine the equivalent action which can be applied only at point O
and determine the single resultant of the force system.
Solution The resultant force R for the given force system must be
R=-4k-3k+5k-6k=-8kkN

which means that it should be 8 kN force acting vertically downward. If this was
located to pass through O, the moment accompanying it for equivalence would be

My=4ix(-4k+(1i+1)x(B3K+2i+3j)x5k+(1i+4j)x(-6k)

=-12i+15jkNm
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F4

BkN
3kN |
c
ol ] y
i {
1,1 (1. 4)
AKN (2,'3) 4m
A I B
x 5kN
Fig. Ex. 2.8
f
8kN

DI ~ —
/' is5kNm y
12kN m
x/

(a) Equivalent Action Applied at 0
z[ 8KN

0 I "
/.a?s. 1.5) /
e

(b) Single Equivalent Force
Fig. Ex. 2.8 (Solution)

The moment accompanying the force 8 kN downward applied at O is, therefore,
such that it has an x-component of =12 kN m and the y-component of 15 kN m as
shown in Fig. Ex. 2.7a (Solution).

In order to locate the poim'{x, y) through which the force -8 k should be passed
for complete equivalence, the moment accompanying it should be null. In other
words, the moment generated due to the parallel transfer of the force should just
cancel the moment M, i.e.,

-My=-rxF,,
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~(-12i+I5))=~(xi+yj)x(-8k)

=-8xj+8yi
whence 8y =12; y=15m
- 8x=-15; x=1875m

The single resultant force -8 k kN can, therefore, be equivalent to the prescribed
paraliel force system if it is applied at a point (1.875 m, 1.5 m) as shown in Fig. Ex.
2.7b (Solution).

2.9 RESULTANT OF A COPLANAR FORCE SYSTEM

When the forces constituting a force system lie in a plane and the moments applied
externally or generated by the applied forces are directed normal to the plane, the
force system is said to be coplanar. Coplanar systems may consist of concurrent or
non-concurrent forces, parallel or non-paratlel forces. The analyses of plane concur-
rent and plane parallel forces has been dealt with already. Attention is now focussed
on the analysis of general coplanar systems.

For a coplanar force system in the x-y plane, there can be no forces in the
z-direction and no moments about the x and y axes.

A system of coplanar forces

Fp F-z. F_‘, .
whose lines of action are specified by the position vectors
ry, I3 Iy, .

confined in the x-y plane and couple moments

M, M,, M,, ...
directed normal to the x-y plane are reducible to a resultant force
R=F +F,+F; +.. (2.11)

which can be made to pass through any point and a resultant moment M. If the
resultant force R is acted through the origin O, the moment which must accompany
it is given by
M=rxF, +rpxF,+..
=M, +M; +M;+ ... (2.12)
This is shown in Figs 2.12(a) and (b).

It is possible to shift the resultant force R parallel to itself until the moment M is
cancelled. The position vector of the line of R would then be r such that

rxR=M

as shown in Fig. 2.12(c).
In case the resultant force vanishes,

R=0; R=0, R=0

¥
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z
4] y
R
x
(a) Given Coplanar System of Forces (c) Single Resultant R if M = 0
z
0
o 'M y y
A M
x x
(b) Resultant Force R and Moment M (d) Resultant Moment M if R = 0
Fig. 2.12 Resultant Force and Moment of a Given Coplanar System of

Forces

the resultant of the coplanar force system may be a couple-moment.
M=r xF +ryxFy+ ..
=M, + M, +..

In case the couple-moments add to zero in addition to the resultant force being
zcro, the resultant is a null force and a null couple-moment.

The discussion on coplanar force systems may be summed up by stating that the
force system may be replaced by a non-zero single force R in that plane passing
through any desired point and an appropriate moment by a non-zero single force R
appropriately located in that plane, by a single moment normal to that plane if the
resultant force R is zero or by a zero moment and zero force in some particular
case.
A graphical procedure known as funicular polygon method is usually applied to
determine the resultant of a plane system of parallel or non-parallel forces.
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The forces F,, Fy, Fy, ... are drawn and the areas enclosed between their lines of
action are marked in capital letters. Such a figure is called space diagram. If the
space on the left of the line of action of F, is called A and the other spaces as B, C,
D, ... as shown in Fig. 2.13(a), the forces are also referred to as AB, BC, CD, ... in
terms of the space notation.

The-next step is to draw the force polygon by drawing the forces in magnitude
and direction and joining them end to end. In the force polygon the forces are
named in small letters thus the force between regions A and B will be named ab in
the force polygon. The closing side of the polygon in opposite order gives the
resultant of the forces in magnitude and direction in accordance with the polygon
law of forces.

In order to find the line of action of the resultant, the following procedure is
adopted:

Take any arbitrary point p inside or outside the force polygon and join all the
vertices of the polygon with this point. This arbitrary point is called pole and the
lines joining the pole to the vertices of the force polygon arc called rays. These rays
can be imagined as the components of the force, e.g. c¢p and pd are components of
cd; bp and pc are components of bc, and so on. The diagram showing the force
polygon, pole and rays is called ray diagram as shown in Fig. 2.13(a). Starting with
an arbitrary point s on the line of action of the force F,, a line sb is drawn parallel to
the ray pb such that it intersects the line of the action of the next force F, as shown
in Fig. 2 13(b). From that point, another line is drawn parallel to the next ray pc and
produced to intersect the line of action of the next force, and so on. Finally, a line

{b) For Coplanar Forces
Fig. 2.13 Grapbical Methods
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parallel to sa is drawn through the starting point s and the point of intersection O
with the last line drawn as above is located. This is the point through which the
resultant R of the given forces should act. The figure so drawn is called funicular
polygon. The resultant is, therefore, completely specified by stating that it is a force
denoted by ae in magnitude and direction as shown in the force polygon and acting
through the point O located by drawing the funicular polygon.

It may be pointed out that, in general, the ray diagram should be such that it does
not coincide with or is parallel to the forces; otherwise it may not be possible to
draw the funicular polygon. This fact places a restriction on the choice of the pole
p, namely, the pole should not lie on the closing side ae of the force polygon. In
particular, when the given forces are parallel, the force polygon is made up of
collinear lines and the pole p must not lic on the line.

The graphical procedure is a geometrical manifestation of the theoretical meth-
od. The simplicity offered by it is at the expense of accuracy of results. Moreover,
the graphical procedure is restricted to the plane system of forces. An insight into
the equivalence of the graphical procedure with the theoretical method is provided
as follows.

The closing side ae of the force polygon abede provides the direction and
magnitude of the resultant force in accordance with the polygon law of forces. The
construction of the ray diagram cnables us to replace cach of the given forces by
two components, e.g., Fy by ap and ph, F, by bp and pc and F; by cp and pd.
Summation of the forces shows that the resultant R is made up of ap and pe because
the pairs of forces pb and bp, pc and ¢p, etc. cancel off mutuaily as shown by the
arrows on the force diagram. The construction of the funicular diagram by drawing
lines parallel to the rays enable us to locate the points on a hypothetical string such
that it is in equilibrum. The force F, is balanced by the virtual tensions ap and pb
in the string. Similarly, the force F, is balanced by bp and pe, and so on. A point O
is located where the resultant R would be balanced by the components ap and pe, so
that point must be the point of application of the resultant. It may be noted that
different choices of the pole result in different rays and hence in different shapes of
the funicular polygons. In each case, however, the equilibrium criteria is automati-
cally satisfied and the point O finally located must lie on the line of action of the
resultant force. It may also be added that a funicular polygon is indeed the shape of
a string it would acquire under the application of the given forces at the correspond-
ing points. For the same reason, the method of funicular polygon is also called
string analogy method.

Example 2.9 Three forces of magnitudes 1, 2 and +/2 N act along the sides of a
rigid, triangular frame formed by the lines AB, BC and CA specified by

x+y=1, y-x=1 and y=2

in the same order.
Find the resultant and the equation of its line of action.

Solution The sides of the triangle are given by

y=-=x+1, y=x+1 and y=2
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y
J_ y=x+1
2
i ye2
A [#
! 2
B
y=-x+1
X
0/
/ R=070710+0707j
x=y=1
Fig. Ex. 2.9

indicating that their slopes are —1, +1 and O respectively. The unit vectors along the
sides are, therefore,

0.707 i - 0.707 j, 0.707 i + 0.707 j and i respectively.

The three forces are, in turn, represented as

F,=0707i-0.707 j passing through (0, 1)
F,=1414i+ 1414 passing through (0, 1}
F,=-1414i passing through (0, 2)

The resultant R is given by their sum
R=0707i+0.707 j

The line of action of the resultant is located by considering the equivalence of the
given system with the resultant in regard to the moments about the origin O;

(xi+yj) x(0707i+0707 j)=1jx(0.707i-0707 j)+ 1]}
x(1414i+ 1414 j)+2jx(-1.4141)

whence 0.707x - 0.707y = 0.707
or
x=y=1

which is the line of action of the resultant force.

Example 2.10 The moments of a given plane system of forces about three points
(1, 0), (0, 1) and (1, 2} arc +4., + 25, + 22 units respectively. Find the resultant
force and prove that it acts along the line 12x - 9y = 16.

Solution 'The plane system of forces may be replaced by a resultant force
Ri+Rj

in that plane acting at a point (x, y) in accordance with the concept of equivalence.
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The gravitational force field of the earth is due to its mass M and acts on a body
of mass m placed at a height 4 above the surface of the earth of radius R

F= GM(R:_’—'h)z (2.16)

Denoting the acceleration due to gravity g, and recognising that the weight of the
body is given by

W=F=mg @.17)
GM
8= R+m? 2.18)

It may, however, be pointed out here that the earth has been assumed as a
spherical and stationary body. Since the earth is not a perfect sphere, the radial
distance of the surface from the centre of the earth varies with the latitude as well as
the altitude. The variation of g has been investigated and expressed as

g = 9.806 16 — 0.025 928 cos® A + 0.000 069 cos’ 22 — 0.000 003 h m/s* (2.19)

where A is the latitude of the place and 4 is the height in metres above the mean sea
level.

It is usual in engineering o consider g, the acceleration due to gravity as con-
stant and the weight force directed perpendicular to the surface of the earth for most
carthbound objects. This assumption is known as assumption of a flat earth. 1t is
indeed incorrect to allow such an assumption in principle but it is acceptable to
admit this assumption for most practical purposes, particularly when the analysis is

- confined to a region close to the earth.

Another noteworthy fact is that the gravitational force between two bodies of
finite sizes is not necessarily along the line joining their centres, nor is it necessary
that the magnitude of the force be given by Eq. (2.15). A carcful reading of the
statement of Newton's law of gravitation would reveal that the law relates to the
force between two particles or point bodies. A body of finite size may be thought of
as a distributed mass or a distribution of mass clements over the domain of the
body. According to the law of gravitation, each element on a body would experi-
ence a force from each element of the other body and the total force on a body
would require double-volume integration. Only in the special case of two homoge-
neous solid or thin hollow spheres does the law hold in its stated from because the
force of gravitation turns out to be along the line joining their centres and the
magnitude is given by Eq. (2.15). It is for this reason that the law holds fairly well
for the nearly spherical celestial bodies. In fact, Kepler's laws of planetary motion,
formulated before Newton was born, contain Newton's law of gravitation for spher-
ical planetary bodies; Newton’s original contribution was to state the laws applica-
ble to particles or infinitesimal elements which may belong to any distributed mass-
es of which spheres are only particular cases.

Example 2.11 Determine the gravitational force of attraction of a thin uniform rod
of length @ and mass M on a concentrated mass m outside the rod but on the same
line as the rod and at a distance b from the nearer end.
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L a -—:—— b_ -
I--——--X——---
. T T YT T | 7 e X a0
M -] | m
dx
Fig. Ex. 2.11

Solution The force on the concentrated mass m can be determined by writing the
force due to an element of length dx situated at a distance x from it and integrating
the same for the entire length of the uniform rod. Let the mass density of the rod be
p per unit length of the rod. The infinitesimal element of length dx has a mass pdx
and the force of attraction on the mass m due to it is

_ Gmpdx

dF = =

(i

The total force of attraction due to the entire length of the rod must be

F =de=T G”;”zd‘
[ et
=Gmp|-%|,
_ Gmpa _ GmM -
“ba+b) bla+b) a0
where the mass of the rod is taken as
M = pa
The distance between the concentrated mass and centre of the rod is
x.=b+al2

If the mass of the rod was concentrated at its mid-point, the force of attraction
would have been

GmM

= Gra? o

It may be appreciated that F and F_ are of different magnitudes; they are closer if
the length of the rod is less,
a— 0, F-oF,

Equation (iii) enables us to interpret that the force of attraction of the rod would
be the same if the entire mass of the rod was concentrated at x,

where Fo_GmM__ GmM
bla+b) 2
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whence x, =,fb(a+b}

Again, x, coincides with x,_ if a tends to zero, as expected.

2.12 HYDROSTATIC FORCE FIELD

A fluid exerts pressure on a surface exposed to it as shown in Fig. 2.15. The
pressure distribution due to hydraulic fluids, i.c., liquids is studied under hydrostar-
ics and that due to pneumatic fluids is often classified as aerosiarics although the
word hydrostatics is generally used to imply any situation.

L rmews
___________________ 1

Fluid at rest z
Pressure

z variation

Fig. 2.15 Pascal's Law and Hydrostatic Law for Fluids at Rest

In a static fluid, the intensity of pressure at a point is the same in all directions.”
This statement is due to Pascal and can be proved by considering the equilibrium of
a fluid element at a point.

The rate of change of pressure in a vertically downward direction must equal
the local specific weight of the fluid.” This statement comprises the hydrostatic law,
Mathematically

dp _
il (2.20)

where dp/dz is the rate of change of pressure in the downward direction and pg is
the specific weight or weight density, p being the mass density and g, the accelera-
tion due to gravity.

Alternatively, Eq. (2.20) is written as

dp = pg dz (2.21)

implying that the increment of pressure dp in the vertically-downward direction
over a distance of dz equals the product of mass density p, gravitational accelera-
tion g and the distance dz.
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In a fluid of constant density,
fdp =[pgdz=pg [dz

or P = Pret =P8 (2~ Zry)

Assuming the atmospheric pressure at the free surface of a liquid, as the reference,
ie.,

Pref = Patm 8 Zreg = 0
the pressure at a point with the atmospheric pressure as the reference is

In other words, the pressure varies linearly as the depth in an incompressible fluid at
rest, the rate of change of pressure being equal to the specific weight of the fluid.

It follows that the pressure at the same depth in different locations of a continu-
ous fluid must be the same and the rate of variation of pressure along an inclined
direction depends upon the rate of increment of the veriical coordinate along the
incline.

The pressure on a surface acts normal to that surface.” This statement follows
from the fact that, in a static fluid, there can be no shearing stresses; because if the
shearing stresses existed, the fluid would flow. The pressure is the intensity of a
surface force acting normal to the surface. Hence, the hydrostatic force on a surface
element AA is given by

F = p AA normal to the area AA.

Concept Review Questions

1. Classify the following stalements as true or false and state the reasons:
(a) The simplest equivalent of a force system is either a force or a couple-moment.
(b} The force in a force-field must vary monotonically only.
(c) Force is a transmissible vector or a free vector.
(d) Equivalent forces are defined on the basis of providing an identical action in a
particular capacity.
(e) Resultant and equivalent are identical concepts.
(f) A particle may be subjected only to a concurrent force system; collinear, copla-
nar or spatial.
() A force is a bound vector; its line of action on a rigid body must be specified.
(h) A moment is a free vector; its line of action on a rigid body need not be
specified.
2. (a) Can a system of forces acting on a rigid body be replaced by a wrench at any
desired point on it?
If a rigid slender bar is subjected to a number of forces, which factors would
decide whether the resultant will be a single force or not? Is it necessary that the
system of forces should not be distributed in space?
3. A number of plane forces act on a simply supported rigid body at two points. Deter-
mine the resultant of these forces and appreciate the fact that it is also the equivalent

(b

=
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force so far as the determination of the reactions from the supports is concerned but is
not the equivalent force if the body is analysed either for deflection or for the resisting
moments and forces developed in the body.

Which of the following system of forces may be represented by a single resultant non-
zero force

(a) Concurrent force system

(b} Parallel force sysiem

(c) Coplanar force system

(d) Spatial force system.

. State Newton's law of gravitation for two point-objects of masses m; and m, placed a

distance r apart. How would you proceed to determine the gravitational force between
two bodies which have an arbitrary but specified distribulion of mass, e.g., a cricket
bat and ball.

A plate AR of mass m and dimensions 2 m x 3 m is to be lifted by a string tied 1o it
and going vver a set of pulleys with a suspended mass M at the other end as shown in
Fig. CRQ 6. Recognised the sources of force in the system,

v

Water

[§]
3

|~—

s |

Fig. CRQ 6

It the sum of gouple-moments and moments of all the forces of a Torce system about
any three noncollinear points is zero, show that the fake system results in o null.

=]
(]

24

Tutorial Problems

It is desired to transfer a 50 kN force parallel to itself from a point (2, 1) to a point
(1, 2) as shown in Fig. Prob. 2.1. Determine the additional 1 t, if any. required to
maintain equivalence, (Ans. 70.7 kN m; 50 i + 50 j)
A force of 100 N acting wngential to a drum at A must be transferred parallel to itself
to its centre O or to a diametrically opposite point B. Determine the moments which
should accompany it for equivalent effect. (Ans. 25 N m and 50 N m)
Determine the resultant of the coplanar concurrent force system shown in Fig. Prob.2.3

(Ans. 49 N, &= -267)
Determine the resultant of the concurrent force system acting at a point @ as shown in
Fig. Prob. 2.4, (Ans. 19.7 N; a=43; f=56° and y= 66°)
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F4
1
1
0 : y B
50 kN
. 2) E
b4
@1 }
'/ A 100 N
X
Fig. Prob. 2.1 Fig. Prob, 2.2

180 N 10N
Fig. Prob. 2.3 Fig. Prob. 2.4

Two unlike parallel forces, each 10 N, act 0.3 m apart as shown in Fig. Prob. 2.5(a).
What is their resultant action? If one force was 11 N instead of 10 N as shown in Fig.
Prob. 2.5 (b). what would the resultant action be? Can these systems be replaced by
single resultant forces for equivalence? (Ans. 3 Nm; IN, 3.15 Nm)

Determine the resultant action of a coplanar parallel force system in Fig. Prob. 2.6
{Ans. M =-30 N m)
2.7 The resultant of four vertical forces is a couple-moment 30 N m acting counterclock-
wise. Three of the four forces are shown in Fig. Prob. 2.7. Determine the fourth force.
(Ans. 33 N upward at 44.5 cm to the right of A on AR)

10N Yy

- 200 N 400 N
¥ L.. x
0‘11 m —--izo cm 1—:30cm-;-—— 406m 20cm l——

100 N 300 N
10 N 200 N
(a) Fig. Prob. 2.6
10N
N
I © 27N
20N
03 m
t 25¢m 50 cm
1N
(b A c B

Fig. Prob. 2.5 Fig. Prob, 2.7
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2.8 The following forces act parallel to the z-axis. Their respective points of application in
the x-y plane are also given. Delermine the single resultant and locate it in each of the
following cases:

Case 1
Force in kN 3 -4 2 ]
x yinm (2,5) (1,-5) 3,3) (-4,-4)
Case 2
Force in N 100 200 - 300
X yincm (10, 1) (20, - 50) (30, - 40)

(Ans. Case I: R=-4 kN at -7.0,-153) m
Case 22M, =30 Nm, M, =40 N m)
29 A coplanar parallel force sysiem )
consisting of three forces acls on a 40 kN

rigid bar AB as shown in Fig. Prob. 20 kN 1

2.9. Determine the simplest equiva-

lent action for the force system. If 3m 2m —-f

an additional force of 10 kN acts B
along the bar A to B, what would *

be the simplest equivalent action? 30 kN

(Ans. —10 kN along 40 kN force;
14,14 kN, -45°) Fig. Prob. 2.9
2.10 A pulley of 1 m diameter is subjected to 2 kN and | kN force at A and B respectively
as shown in Fig. Prob. 2.10. Its own weight of 0.5 kN acts at the centre Q. Determine
the resultant force and its line of action with respect to AOR.

(Ans. 3.04 kN making an angle of B0.5" with AOB)
2.11 A bell-crank lever AOB is subjected to a horizontal force 10 N at A while a weight of
7.5 N is attached at B. Dctermine the resultant action on the lever. If the 10 N force

were transferred to point P, what would be the change in the resultant action?
(Ans. In equilibrium; 1 N m moment and lever turning counterclockwise)

A 10N
0.1m
P
4 I
0.2m
2 kN
2 1
0 0.4m |
0.5 kN
1 kN
B 75N
Fig. Prob. 2.10 Fig. Prob. 2.11

2.12 A dam is subjected to three forces; 50 kN force on the upstream vertical face AB,
30 kN force on the downstream inclined face and its own weight 120 kN. Determine
the single equivalent force and locate ils point of intersection with the base AC,
assuming all the forces 1o lie in the same plane. {Ans. 137kN: y + 5.6 x=0)
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Fig. Prob. 2.12

2.13 A 2 m x 4 m plate is subjected to a system of three coplanar forces as shown in Fig.
Prob. 2.13. Determine the equivalent action at O which may replace the force system.
(Ans. 59 kN and 1.7 kN m)

4 kN

///////4 A

2] c

5 kN
Fig. Prob. 2.13

2.14 A symmetrical truss is loaded by five forces as shown in Fig. Prob. 2.14. Obtain the
resultant load and its line of action.
(Ans. 15.5 kN along 0.29 j - 0.95 k)

4 kN

Fig. Prob. 2.14

2.15 Determine the resultant of the forces acting on a bell-crank lever as shown in Fig.
Prob. 2.15.
(Ans. 4.25 Nm clockwise)
2.16 A bracket is subjected to a coplanar force system shown in Fig. Prob. 2.16. Determine
the magnitude and the line of action of the single resultant of the system.
(Ans. 200§ -154 j ; 35 cm from A)
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120 N
3g¢// 40cm
50N ™
60° TN, a
=20 CIT =20 T -]
100 N
Fig. Prob. 2.15
300 N 400 N 200 N
60°
A 8
je—— 30cm 200"‘""-'|
S50Nm
Fig. Prob. 2.16

2.17 Reduce the wrench along the x-axis as shown in Fig. Prob, 2.17 to a system of two
forces perpendicular to the v-axis acting at A and B on the y-axis. It is given that

OA =0.2mand OB = 0.6 m.
{(Ans. 100i-75k -50i+75k)

z
0 A B
- — y
R =100 N
M = 300 N cm
X
Fig. Prob. 2.17

2.18 A system of three forces acts on a parallelopiped as shown in Fig. Prob. 2.18. Replace
the forces by a wrench and specify its point of action on a face.
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2.19 Reduce the given force system to an equivalent force plus couple-moment system at

comer O as shown in Fig. Prob. 2.19.
(Ans. -56.5i+ 174 j- 174k -3.5i-287j+30k)

z
3

10[Nm
BO N '
A 2z T 20cm /| ;
! 15 cm 19 om / : :
2 I T I v e 8
// Yy 20cm ,ﬂ
x 50 N } //

2.20

2.21

222

223

224

225

2.26

s
|——25¢m——| 50 cm

Fig. Prob. 2.18 Fig. Prob. 2.19

Find the force of attraction between two homogeneous solid spheres of radii ) and ry
and masses m, and m, placed at a distance r between their centres.

Gi
[Ans. % along the line joining their centres)
r

Find the force of attraction of a thin uniform rod of length 24 and mass M on a particle
of mass m placed at a distance b from its midpoint such that the particle is equidistant
from its ends.

GMm
bJﬂz +h?

Determine the maximum possible friction force which may be developed between a
pair of sliding surfaces if the normal reaction between them is 20 kN and the coeffi-
cient of static friction is 0.30. What happens to the frictional force if the applied
tangential force is increased further and the bodies acquire relative motion?
{Ans. 6 kN)
A stack of plates of different materials are placed one above the other and a horizontal
force F is applied to one of them in the middle of the stack. Discuss the circumstances
under which (a) the plate on which force is applied and all the plates above it slide
together (b} the place on which force is applied and some more plates below it slide
together and (c) only the plate on which force is applied slides out.
Three forces act along the three sides of a triangle in the same order with their
magnitudes proportional to the sides along which they act. Prove that their simplest
resultant is a single moment whose magnitude is proportional to twice the area of the
triangle. Hence, extend it for a polygon of any numbers of sides.
Replace the three forces shown in Fig. Prob. 2,25 by a resultant force R passing
through the point O and a couple C for equivalent effect.
(Ans. R=200i-400j-500k N
C=15j-24kNm)
Determine the tension in cable BC (Fig. Prob. 2.26). Neglect the weight of AB.
(Ans. 5.0 kN)

Ans, along the line joining the mid- point of the rod with the purticle}
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¥y

400 N parallel to y axis

7y 200 N

3

e

,7&“7,

500 N parallel to z axis

Fig. Prob. 2.25

B

T ST T T T T Y
I
1

Fig. Prob. 2.26

2.27 Determine the point on the line joining the centres of the earth and moon (Fig. Prob.
2.27) at which the gravitational forces of the earth and moon are equal. It is given that
the mass of moon is .0123 times that of earth and distance from earth to moon is 3.8 x
10° km.
(Ans. 3.45 x 10° km from carth)

: O
F'r

Fig. Prob. 2.27
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2.28 In the punch shown in Fig. Prob. 2.28 links OA and AB have negligible mass and all
friction may be neglected. The punch has a mass of 2 kg and moves in a vertical
direction only. Find the moment which must be applied to OA to maintain its speed
constant at 10 rad/s clockwise, with the mechanism in the position shown in Fig.

Prob. 2.28 and with F zero.
(Ans. 4,53 Nm)

\

|y —

be

Fig. Prob. 2.28
2.29 Determine the moment of a force 10 kN acting as shown in the figure (a) about the
point C (b) about the point H and (c) about the axis CF.
(Ans. (a) and (b) 3.71 j + 5.94 k Nm; (c) 2 k Nm)

E H

B 07 m c
z
Fig. Prob. 2.29
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2.30 (a) Find the resultant of the force system shown in the figure and locate the position
of its line of action on the x-axis.

{b) Delermine the magnitude and sense of a single vertical force to be applied at
point C so as to make the resultant of the entire system pass through A. Also, find
that resultant.

{Ans. (a) 300 i - 280 j N at 107 mm from 0
(b) 72 j N: 300 i~ 208 j Nat A)
120 N 400 N

L :

|——75mrr|--|-— 125 mm

100 m

300 N

Fig. Pro. 2,30

Look up Hints to Tutorial Problems!

Multiple-Choice Questions

1. A rigid body is acted upon by a force system. It can in general be brought o equilib-
rium by the application of a force acting
{a) on a suitable point on the body
(b} anywhere along a suitable line
(¢) along a suitable line and a moment along the direction of the force
(d) along a suitable line and a moment in the direction perpendicular to the direction
of force
2. The simplest resultant of a spatial parallel force system is always
(a} a wrench
(b} a force
(c} a moment
{d) a force and moment
3. The force of gravitation between two bodies will be inversely proportional to the
square of the distance between their centres of masses if the two are
(a) of constant densities
(b} spherical
(c) of any arbitrary shape
(d) of the same shape and size
4. A force F acting on a rigid body at a point P can be replaced by a force of equal
magnitude and in the same direction at a point Q on the body, together with a moment
(a) equal in magnitude o PO umes F, acting normal to the plane of F and PQ
(b} equal in magnitude to F times the distance moved in the lines of actions of the
force, acting in the plane of PQ and F
c) given by F x QP
(d) given by FxPQ

.

Answers to Multiple-Choice Questions
I (c) 2 (e) 3 (b) 4 (¢}



EQUILIBRIUM ANALYSIS OF
& STATIC SYSTEMS

3.1 EQUILIBRIUM CONCEPT IN MECHANICS

A body is said to be in a state of equilibrium if the body is either at rest or is
moving at a constant velocity. The phrase constant velocity implies motion along a
straight line at a constant speed. The state of equilibrium, in other words, implies
that the body must be at rest with respect to some inertial frame. Equilibrium is a
kinematic state of the body; a special state when there is no motion or when the
motion is at a constant speed along a straight line. Clearly, all other possible states
of motion do not qualify to be categorised as states of equilibrium. Such states are
characterised by the presence of the rate of change of momentum, linear and angu-
lar. Examples of non-equilibrium are: a particle accelerating along a straight line, a
particle going round a curved path and a body rotating about any axis within or
outside it.

Let us now try and relate the concept of equilibrium to the action of forces and
moments acting on a body. The laws of mechanics governing the motion of a body
are:

Newton's Law: F=p

Euler's Law: M = H

For a body in equilibrium, there should be no rate of change of momentum, linear
or angular

p=0 and H=0
and hence, the necessary conditions are:
F=0 and M=0

‘The resultant external force and resultant external moment should, therefore, vanish
for a body to be in equilibrium.
Let the forces acting on a body be

F,,F, F;, ..
and the position vectors of any points on the lines of action of the forces be
Ly Py Oy e

respectively with reference to an arbitrary origin @ as shown in Fig. 3.1. The forces
will then tend to compel the body to change its state of rest or of constant velocity
in two ways:
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x
Fig. 3.1 Equilibrium under the Action of a System of Forces

1. By adding to comprise a resultant force

R=ZF=F +F,+F;+.. 3.1
tending to destroy the equilibrium by bringing about a translational accelera-
2. Il;;néenerating moment vectors about the reference point O,
M,=r xF,
M;=rxF,
My=r;xF,

and the sum of the moments
IM=M, +M;+M;+ ..

tending to destroy the equilibrium by bringing about angular acceleration.
It is possible that the force system acting on a body can as well include some
couples with couple-moments

€. Cy, Cyy ..

in addition to the forces, In that case, the sum of the moments should include the
couples provided the forces comprising the couples are not counted in their own
right for producing moments.

IM=C +C+ ..+ M +M; +.. 3.2)

It follows, therefore, that the necessary conditions of equilibrium for a body are:
LF=0

IM=0 (3.3)

These are, however, not the sufficient conditions for the equilibrium of a body.

In words, the sum of all the forces acting on the body should be zero and the sum
of all the moments produced due to the force system about any point should also be
zero for equilibrium. It may also be seen that each of these vector equations
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represents three scalar equations, i.e.,one along each coordinate axis. In the rectan-
gular system of coordinates, the equivalent scalar equations are:

IF =0 IM =0
EF,, =0 and EM’}, =0
IF,=0 IM,=0 (3.3a2)

If, in a given situation, a body which is acted upon by a system of forces is to be
brought to a state of equilibrium it is achieved in two steps:
1. The system of forces is reduced to an equivalent force, its point of application
as desired and the accompanying moment.
2. An equilibrant action equal and opposite to the corresponding equivalent
action is applied in the desired manner:

E=-R=-XF
E,=-IM

If the simplest equivalent for a particular case can be reduced to a single force R
suitably applied, then the simplest equilibrant for that case

E=-R
may also be applied along the same line of action.

Example 3.1 The following forces as shown in Fig. Ex. 3.1 are applied to a rigid
body initially at rest:

Fi=2i+j+3kat(7,2,3),F,=i-2j-4kat (5 1,0)
Fo=-2i+2j+2kat(4,0,-1),Fy=—i-j-ka (2,2, 1)
Show that the body is in equilibrium.

z

Fy

@21

(7,2,9)

(0,0, 0)
(5,1,0)

4,0,-1)

X F; F,
Fig. Ex. 3.1
Solution The necessary conditions of equilibrium of a body are
ZF =0 and ZM =0. In this case,
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EF=Q2i+i-2i-D+(j-2j+2j-)+CBk-4k+2k-k)

= zero, identically.

Taking moments about the origin (0, 0, 0},
EMy=(7i+2j+3KxQi+j+3k+Gi+1j+0kx(i-2j-4k)

+(3i+0j-1Kx(=2i+2j+2KxQ2i+2j+kx(-i-j-k =0,
identically, which shows that the necessary conditions of equilibrium are identical-
ly, satisfied. The body should, therefore, be in equilibrium.
It is interesting to observe that for a body in equilibrium, the summation of the
moments about any arbitrary point must vanish. Let us take moments about the
point (2, 2, 1):

IM=((7T-2i+(2-2)j+B-Dk)x(2i+j+3k)
+((5-i+(1-2J+O0-DKIx(i-2j-4k)
+((A=2)i+(0-2)j+(-1-DK)x(-2i+2j+2k)

=(=2+2+0)i+(-114+114+0)j+(5-5+0)k

= zero, identically, as expected

3.2 FREE-BODY DIAGRAM IN STATICS

The technique of isolating a body from its surroundings or isolating a subsystem
from the remaining system by the introduction of ‘reaction’ forces, etc., referred to
as a free-body diagram, is employed extensively in considering equilibrium.

Let us extend the example of a free-body diagram of a book lying flat on a table
given in Chapter 1 in view of the concept of friction forces discussed in Chapter 2.
Consider the static equilibrium of a book lying flat on a table and a pencil in an
inclined position partly on the book and partly on the table. We can consider the
system of the table top, book and pencil in equilibrium as shown in Fig. 3.2. A free-
body diagram may be drawn for a single body, e.g., the pencil alone, the book
alone, a part of the pencil or a page of the book. Free-body diagrams may also be
drawn for the subsystems comprising the book and pencil, the book and table top
and the pencil and table top. Three such free-body diagrams are shown in Figs. 3.2
(b}, (c) and (d).

Some of the interesting points are summarised as follows:

1. A free-body diagram of a system in equilibrium should comprise a force

system in equilibrium.

2. If a system of bodies is in equilibrium, then each subsystem and each constit-
uent body must also be in equilibrium,

3. The force due to gravitation, i.e., the weights acting through the centres of
mass of the bodies are classified as external forces if the bodies are isolated
from the earth, i.c., the table as in Figs. 3.2 (b), (c) and (d) and internal forces
if the earth is a part of the system as in Figs. 3.2 (a).

Examples of free-body diagrams of some objects are shown in Fig. 3.3.
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{a) Pencil, Book and Table top

c
1]
6 W, |
wY f
M fm
(b) Pencil and Book
R
, w, [ 7 ¢
Ne w7
(c) Pencil alone N,
(d) Book alone

Fig. 3.2 Free-body Diagrams

2 N,
=
=
(@ %
w
N, w -
1
Rough Floor F
w w
{b) 1?%. '::l:}
Knife-Edge Roller R, R,
w
1 2 y.d
(e)
FAa b f
Hinge Roller A, R,

Fig. 3.3 Examples of Free-body Diagrams of Objects
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(@

F3
Fig. 3.3 Examples of Free-body Diagrams of Objects (Contd.)
3.3 REACTIONS BY SUPPORTS

Different types of supports are employed to hold structural members and compo-
nents in motion. The purpose of a support is to provide a desirable reaction. Let us
see the nature of reactions offered by different types of supports as shown in
Fig. 3.4.

Type of Support Reactlon
Ball or
Roller R=N
=
or
Rough Smooth 0

(a) Normal to the surface at that point

(b) With nommal and tangential components

Pin R, ]
. Joint Zs Hinge 1. >_/ |
0 9\ A,
(c) Vertical and horizontal components
R R
Ball and R,
Socket
0“——"R,
{d) Along the member in space (three components)
R
Fixed
end [ | M
(e) A moment and a force depending upon loading
Fig. 3.4 Nature of Reactions by Some Typical Supports
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Cord or Cable R
Tied [ [
0
0

(f) Tension in the Cable

(g) A normal force and a twisting moment
Fig. 3.4 Nature of Reactions by Some Typical Supports (Contd)

A ball or roller support on a rough surface can roll and hence not provide a
tangential reaction. The reaction at a ball or roller support is, therefore, normal to
the surface at that point. Similarly, the reaction by a smooth surface to a member in
contact with it must be normal to the surface,

Reaction by a rough surface to an element in contact with it can be non-normal,
i.c., at an angle 8 to it even if the member is inclined at any angle a or normal to it.
This is because both normal and tangential components of reaction are possible.

A pin-joint or a hinge gives rise to reaction along the axis of the member.

A ball-and-socket joint provides reaction along the axis of the member. Since a
ball-and-socket joint is a universal joint in space, the reaction is also in space.

A fixed end of a member is capable of providing a general reaction R and a
general moment M.

A cord or a cable tied to a surface can be under tension only, the reaction must
be along the cord or the cable.

A bearing of a rotating shaft can provide a reaction R and a frictional moment M.

Example 3.2 Draw the free-body diagrams of all the members of a simple-loaded
system sketched in Fig. Ex. 3.2 and comment on their usefulness in the analysis of
the system.

Solution First, the free-body diagram of the cen-
tre system is drawn in Fig. Ex. 3.2(a) Solution.
This is necessary to estimate the reactions at the
supports A and E. The unknowns R, and Rg can be
determined by considering the equilibrium of the
system.

Free-body diagrams of the members are drawn
in Fig. Ex. 3.2 (Solution) (b) and (c).

In Fig. Ex. 3.2 (Solution) (b) all the reactions
are taken in ﬂw direction of the posi_tive coordinate Fig. Ex. 3.2
axes. By doing so we get 15 reaction unknowns,
viz. A, A_\,. B,, B, B,,, B;, etc. These 15 unknowns can be solved by using three
equilibrium equations for each member and 2 action-reaction equations at each joint
of two members. (Total number of equations =3 x3 +2x3=15)
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Fig. Ex. 3.2 (Solution)

Though such a procedure leads to the correct solution of the structure, it is not a
normal practice to assume all the reactions to be initially positive in a free body
diagram.

While drawing the direction of these forces in free-body diagram, the following
points are considered:

1. The action-reaction equations are applied directly while drawing the frec-

body diagram itself. For example in Fig. (c), the action-reaction principle
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gives that at joint C, C, =-C,, C, = -C,’. These two cquations arc climinated
from the calculations and C,’, C,” are shown equal and opposite to C,, C,
respectively in the free-body diagram itself. By doing this in the present case
at every point we are left to analyse the structure for 9 equilibrium equations
only.

2. It is a usual practice to assume the direction of the reactions intuitively rather
than taking them arbitrarily. For example, in Fig. (c) on the member BD, B,
and D, should act in upward direction in order to balance F. Similarly intu-
mvely we can sce that A,, E, should act upward and C, should act to the left
on CA. However, a later {:heck by the equilibrium equations decides the
validity of these assumptions.

It must also be noted that free-body diagrams of the members are not mutually
independent and hence it is, in general, not possible to determine the unknowns on a
member by considering the equilibrium of that member alone. For example, sup-
pose after finding R, and Rg, we wish to determine the reactions at B, C and D, i.e.,
B, B,, C, C,, D, and D,. There are four unknowns on the members ABC consid-
ered alonc and a]so four unknowns on the member CDE considered alone, but taken
together as ABCDE, there are again only four unknowns. Similarly, on member BD
alone, there are four unknowns. It may not be possible to solve for the unknowns by
considering the equilibrium of each member one by one, but it must be possible to
determine all the unknowns by writing all the equations of equilibrium for all the
members.

3.4 EQUILIBRIUM OF A PARTICLE

A particle, by definition, has negligible dimension in comparison with the coordi-
nates describing its motion. It is an idealisation of a real body when its mass can be
considered to be concentrated at a central point. A particle can, therefore, experi-
ence a system of forces which must be concurrent at the particle. The concurrent
system of forces can act along a common line to constitute collinear forces or they
can belong to a plane or a spatial system as shown in Fig. 3.5. In cach case, the
condition of equilibrium must be

IF=0

Since there is a point through which all the forces pass, it follows that the summa-
tion of the moments of all the forces about that point vanishes. The summation of
the moments of the concurrent forces about any other point in space must also be
zero, The other condition

IM=0

is, therefore, automatically satisfied by the state of concurrency of the forces. As a
matter of fact, the conditions of equilibrium, namely

F=0 and M=0

are alternative conditions for a concurrent force system; one implies the other also.
Hence, it is a matter of choice whether to use one or the other.
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F, R P F, F,

(a) Collinear Forces

Fs

Fy

(b) Concurrent Forces

A

F. .

B
c F,;
Triangle of Forces
Fi. Fa F3

sina_ sinf  siny

{c) Three Concurrent Forces
Fig. 3.5 Equilibrium of a Particle

For equilibrium under the action of coplanar concurrent forces,
ZF=0
which implies that
Fiu+Fy+..=0;  F,+F+..0

In words, the sums of the components of the forces along any two mutually
perpendicular directions in the plane of the forces must be zero for the equilibrium
of a particle under the action of coplanar concurrent forces. The polygon of forces
should automatically close to provide the zero resultant force for equilibrium.

It is interesting to observe that two concurrent forces must be coplanar since a
plane can always be passed through two intersecting straight lines. Further, three
concurrent forces in equilibrium must be coplanar, for if the third force was not in
the plane of the other two it would result in a component normal to the plane and
upset the equilibrium. However, four concurrent forces in equilibrium may be co-
planar or spatial. Three concurrent forces Fy, F; and F; which maintain the particle
in equilibrium as shown in Fig. 3.5(c) are related by the sine law.

Lami's Theorem

Lami’s theorem states that, if three forces acting on a particle keep it in equilibrium,
then each force is proportional to the sine of the angle between the other two and
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the constant of proportionality is the same. Symbolically,

F _ A F_
sna sinf siny k G4

where o, B and yare the angles between F,, Fy; F|, F; and F), F, respectively. The
triangle of forces, in this case, should close to provide the resultant force zero for
equilibrium and by applying the sine-rule for a triangle, Lami’s theorem may be
obtained as follows:
For the triangle ABC shown in Fig. 3.5(c) corresponding to the forces F;, F, and
F,, acting at a point O,
ZCAB=180° -
ZABC=180° -8
£ZBCA=180° -y
From the sine rule for the triangle,

F _ F, _ Fy
sin (180° —~a) sin (180° — B)  sin (180° — )

and from the fact that sin (180° — @) = sin a, elc., it reduces to the Lami's theorem

sina@ _ sin ﬁ siny

For equilibrium, under the action of spatial concurrent forces,
LF=0
which implies that
Fi,+Fy+..=0
Fiy+Fy+..=0
F,+F+..=0

In words, the sums of the components of the forces along the three coordinate
directions must be zero for the equilibrium of a particle under the action of spatial
concurrent forces.

Let us discuss another aspect of the state of a particle. If a particle is subjected to
a system of concurrent forces

F,,Fy, Fy, ...
then it may or may not be in equilibrium. If it is in equilibrium, then
IF=F +F,+F;+..=0
If it is not in equilibrium, then the system reduces to a resultant force
R=F,+F,+F;+
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which represents the net external force on the particle. In case it is desired to bring
the particle in equilibrium, provision must be made to apply a force equal and
opposite to R. The force which, when applied on it brings it to a state of equilibri-
um, is called the equilibrant force denoted by E

E=-R (3.5)

Example 3.3 A body weighing 800 N is hung from a horizontal ring 6 m in
diameter by means of three cords, each 5 m long. On the ring, two of the cords are
placed 90° apart and the point of attachment of the third cord bisects the remaining
arc of the ring. Find the tension in each cord.

Fig. Ex. 3.3

Solution With reference to Fig. Ex. 3.3 where the body is represented by a par-
ticle P,

OA=3i,0B=3j,0C=-3/42i-31/2j,0P=-5k
From these vectors
PA=3i+5k,PB=3j+5kPC=-212i-212j+5k
and the unit vectors along these cords are given by
ep =(3i+5k)/f32 452 =051i+086k

epy =051 j+086k
epr =—=0.36i-036j+0.86k
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Let the tension in these cords be F|, F; and F; respectively in magnitude. Vectorially,
F, =F,(0.51i+ 086 k)
F, =F,(051 j+ 086 k)
F; =F;(-0.36i-0.36j+0.86k)
For equilibrium of the particle P,
F,+F,+F,-800k=0
whence
0.51F, - 0.36F, =0
0.51F, - 0.36F; =0
F, + F, + F; = 800/0.86 =930
and solving these equations,
Fi=272N,F,=272Nand F, =386 N

Experiment E1
Equilibrium under Coplanar Forces

OBJECTIVE
To study the equilibrium of a particle under the action of forces in a plane.

APPARATUS

A horizontal circular force table, also called universal force table, as shown in Fig.
E 1.1(a), or a vertical rectangular force table, also called Gravesand's apparatus, as
shown in Fig. E1.1(b), standard weights and metre rod.

BACKGROUND INFORMATION

The state of equilibrium of a particle refers to a state of uniform velocity of rest. In
the present case, it is intended to study the forces acting on a particle when it is at
rest.

A particle cannot be in equilibrium when a single force is applied on it. It would
be in equilibrium under the action of two or more forces if the vectorial summation
of forces is zero

LF=0 (EL.1}

In particular, if a particle is subjected to only two forces, the forces must be
equal and opposite, i.e., equal in magnitude, in the same line of action but opposite
in sense in order to keep it in equilibrium. If it is subjected 10 only three forces, the
three forces must be coplanar for equilibrium. Conversely, three non-coplanar forc-
es cannot keep a particle in equilibrium.
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W
(b) Vertical Rectangular Force Table
Fig. E1.1 Force Table

This fact can be appreciated by recognising that the resultant of any two must be
equal and opposite to the third force for equilibrium, and this cannot happen unless
the three forces lie in onc and the same plane. If a particle is in equilibrium under
the action of four or more forces, the forces may be spatial, i.e., not necessarily
confined to act along the same line or in the same plane.

When a particle is in equilibrium under the action of three forces Fy, F, and F;,
as shown in Fig. E1.2, the condition of equilibrium, i.c.,

ZF=D;FI +F2+F3=0
may alternatively be expressed as Lami’s theorem or Triangle Law of Equilibrium.

Lami's Theorem If a particle is in equilibrium under the action of three forces,
each force must bear the same proportionality with the sine of the angle between
the other two forces.
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F o P2
Fy
F
F
Fy Fy £ g
Fig. E1.2 A Particle in Fig E1.3 Possible Triangles to Represent
Equilibrium Force F; F; and F;

F _F K
sinaﬁsinﬂ-siny

Triangle Law of Equilibrium If a particle is in equilibrium under the action
of three forces, the forces must be represented in magnitude, direction and sense by
the sides of a triangle, taken in order, in the same sense.

When a particle is in equilibrium under the action of more than three coplanar
forces, the condition of equilibrium i.e.,

IF=0;F +F,+F;+F,+...=0

may alternatively be stated in terms of the polygon law of equilibrium.

If a particle is in equilibrium under the action of n coplanar forces, the forces
must be represented in magnitude, direction and sense by the n sides of a polygon,
taken in order, in the same sense.

F
£ Fa
F‘Q §
Fy

(a) Polygon of Forces for Fig. E.1.1(a) (b} Polygon of Forces for Fig. E1.1(b)
Fig. E1.4 Polygon Law of Equilibrium

OBSERVATIONS AND CALCULATIONS

The table of observations and calculations depends precisely on the motivation of
the experiment which may be one or more of the following:
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(a) To demonstrate the triangle law or polygon law of equilibrium

In this case, a particle may be subjected to as many forces as desired on either force
table and the positions of the strings together with the loads suspended at the
corresponding endpoints are noted. The forces, in magnitude and direction, are
drawn end to end, in order to verify whether a closed triangle or polygon is formed.
If so0, within the allowable limits of error, the corresponding law is verified; if not,
the sources of error must be recognised and minimised to allow a closer prediction
by the law.

(b) To demonstrate the application of Lami's theorem
In this case, only three forces must be made to act on the particle on either force
table. The three forces must automatically be coplanar for maintaining equilibrium.
Measurements must be made for the directions of the three strings and the loads
applied at the ends. The included angles between every pair of forces are calculated
and, as per Fig. E1.2, the following constants arc calculated:
F F. F,

_ . __f2 L
h=Gma b sinf’ " siny
If ky, k, and k, are equal within the allowable limits of error, the validity of the
Lami’s theorem is upheld; if not efforts must be made to recognise the sources of
error and to improve upon the result.

(c) To determine the two unknown loads hanging at the ends of two strings.

In this case, Lami’s or triangle law/polygon law of equilibrium is taken for granted
to be valid and, from the knowledge of the other forces, the unknown forces are
determined. The procedure is to record all the directions of the strings and all the
known loads. Then apply Lami’s theorem or use the triangle law if the number of
total forces is three or use the polygon law if the number of forces exceed three. It
will be seen that, with all the directions known and with magnitudes for two less
than all the forces known, it is possible to complete the polygon. The unknown
forces are then read off from the corresponding sides of the closed polygon to the
same scale as the other forces.

(d) To demonstrate the validity of the condition SF = 0 for a given case of equilib-
rium

In this case, the measurements of the inclinations of the strings may be made with
reference to x- and y-axis selected arbitrarily. The corresponding forces in the
strings are known from the loads applied at the ends. The forces are then resolved
into x and y components. Summation of the x components and of the y components
are made separately and observed whether the results are close to zero or not, i.e.,

Sx=FxI + Fx2 + F13+."
S,=Fy+Fa+Fu+..

If the summations §, and S, are each close to zero, the experimental values obey
the condition of equilibrium F = 0, if not the sources of error must be minimised.
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RESULTS

The results, whether or not a theorem or law holds for the situations examined,
should be recorded. Discrepancies, if any, may be mentioned.

POINTS FOR DISCUSSION

1. State the sources of error in the experiment. Notice if the pulleys have fric-
tion, if the threads have knots, if the central ring and the strings are coplanar,
if the strings are tied to the ring radially, if the weights are standard, if the
graduations are uniform, etc.

2. The condition of equilibrium ZF = 0 is valid in general. The graphical condi-
tions, i.e., the triangle law and polygon law of equilibrium apply only when
the forces are coplanar. Can you suggest how the graphical method may be
extended 1o be employed for spatial forces?

3. When the experimental values differ from the theoretical and graphical val-
ues, which of them must be in error and why?

4. Should the condition ZF = 0 hold good for the equilibnium of a rigid body if it
is subjected to a system of forces which are
(a) concurrent
(b} non-concurrent
(c) coplanar and
(d) spatial
Discuss why the answer is “yes” in all these cases.

5. What happens to the point P if a weight, say W), is increased by 10%? What
needs to be done to bring it back to equilibrium?

Example 3.4 Four pieces of string knotted at A support two equal masses in
equilibrium in a vertical plane as shown. Determine the tensions in the strings AB
and AC and the angle @ between AB and AE for minimum tension in AB.

¥
c B
45° ]
~ E x
N
D
Fig. Ex. 3.4

Solution As shown in Fig. Ex. 3.4 the tension in AE must be mg; so also the
tension in AD must be mg, since the pulleys are assumed to be frictionless.
Let the x-axis be along AE and y-axis perpendicular to it. Then,

Fue =mgi

F,p =—-mgcos 30i—mg sin 30 j



134  Engineering Mechanics

mgi-mgllj

it

Fug=Fyp(cos 8 i+sin 0))
Fyc= Fyc (—cos 45 i + sin 45 j)

_ F.ac. j
N r
For equilibrivm at A, ZF = 0
or Faup+Fuo+Fip+Fip=0
F
mg —% mg + Fypcos 6- % = (i)
-mgl2 +F sin8+Fi—0 (ii)
8 AB 2

These are 2 equations for the three unknowns F,g, F,c and 8. The third equation
comes up from the physical constraint, i.e., the force in AB must be the minimum.

From (i), F,p cos 8- F:E =[§—]]mg
and from (ii), Fpp sin 0+ 14C - 7€
J2 2
Adding the two,
(3-1)

F,g (cos 8 + sin 6) = 3 mg

Minimum F; corresponds to maximum (cos 8 + sin 8)

ic., % (cos @+s5in 8)=0
-sin@+cos =0
or sin @=cos 6, i.c., 8= 45°
-1
Now, F ( 1 ] (J_ )mg
7B
Ji-1
whence, Fup -_-( )ngO.?.G mg
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1 lAC mg
Now, 0.26!’8'_1-——* =—
Fac-- 0.45 mg

3.5 EQUILIBRIUM OF A RIGID BODY

A rigid body may be subjected to one of the force systems classified as follows:
(a) Concurrent force system: Collinear, plane or spatial
(b) Parallel force system: plane or spatial
(c) Coplanar force system: concurrent and non-concurrent, parallel and non-par-
allel
(d) Spatial force system: concurrent and non-concurrent, parallel and non-paral-
lel.

(a) Concurrent Force Systems

The analysis of the static equilibrium of a rigid body under the action of concurrent
forces is quite similar to that of a particle. Concurrent forces may be collinear,
coplanar or spatial and the vector method or the algebraic method can be employed
with advantage.

If there are two forces acting at a point in equilibrium, the forces must be
collinear. If there are three forces acting at a point in equilibrium, the forces must
lie in a plane, i.c., the force system must be coplanar. This follows from the fact that
any two lines of forces acting at a point must constitute a plane and the third force
cannot have a component normal to that plane; otherwise that unbalanced compo-
nent would upset the equilibrium. If there are four or more forces acting at a point
in equilibrium, these may be coplanar or spatial.

The condition of equilibrium for a rigid body under the action of concurrent
forces

F.Fy F;, ...
is that their resultant
R=ZF=F +F;+F; + ..
must vanish, i.e.,
R=XF=0

This vector qu;ﬂliDl‘l for equilibrium stands for three scalar equations for a
general concurrent force system:

R=EF, =0=F, + Fy + F3, + ...
Ry=EF, =0=F +F, + Fy +..
R =ZF,=0=F _ +F,, +Fy, +..

where x, y and z are the coordinate axes arbitrarily drawn through the point of
concurrency as shown in Fig. 3.6(a).
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If, on the other hand, there is a rigid body subjected to a system of concurrent
forces resulting in R, then an equilibrant force E given by

E=-R

must be applied passing through the point of concurrency in order to bring the body
to equilibrium, °

(b) Parallel Force System

If arigid body is subjected to a parallel force system, the resultant of the forces may
be a non-zero force or a zero force, unaccompanied or accompanied by a couple-
moment. Equilibrium of the rigid body demands that the resultant force and result-
ant moment must vanish:

IF=0; IM =0 (3.6)

It may be understood that the moment about any arbitrary point O as shown in
Fig. 3.6(b) may be considered and should be equated to zero.

For a plane parallel-force system, the moment of the forces about any point in
the planc of the forces must be perpendicular to the plane of the forces. It is
interesting to note that moment summation about different points provide different
equations, such as

M, =0, M, = 0, M, =0,
In fact, there can be only two of these equations mutually independent: one in its
own right and the other in licu of
IF=0

It follows that for a system of plane parallel forces acting on a body, the condi-
tions of equilibrium may alternatively be stated as

IM,=0 and EM,=0 &%)

where 1 and 2 are two suitably chosen points.

(c) Coplanar Force System

If the forces applied on a rigid body are such that their lines of action lie in the
same plane and the moments due to the couples or otherwise are directed perpen-
dicular to the plane, the body is said to be subjected to a coplanar force system. It is
usual to choose the x-y plane in the plane of the coplanar force system and the x-
and y-axes are chosen conveniently in regard to the directions of the forces as
shown in Fig. 3.6(c). The necessary conditions of equilibrium reduce to a set of
three equations:

IF, =0 and EM=0 (3.8)
XF, =0

The moment summation referred to above is about any point in the plane of the
forces; it is about the z-axis through the chosen point.
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y

(c) Plane Forces (in x-y Plane)
Fig. 3.6 Different Force Systems Acting on a Rigid Body

An interesting and extremely useful point is to express the force summations of
equilibrium in terms of equivalent moment summations. The advantage of doing so
is that the moments can be taken about the line of action of a force which is
unknown and needs to be climinated at least temporarily. For example, if there are
three unknown coplanar forces in a system, then moments about the line of action of
each force, in turn, will yield three moment equations.

M, =0
M, =0 (39)
M, =0
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which comprise a set equivalent to Eq. (3.8).
It may as well be decided to consider the equivalent equations of equilibrium as

M, =0
3F, =0 (3.10)
M, =0

In each case, there are, in essence, two force equations and one moment cqua-
tion; the apparent difference is only in the embodiment of these equations. It may so
happen that the three equations set up in a particular case may not form an indepen-
dent or a complete set, e.g., when a moment is taken about the point of intersection
of two or more lines of forces. In such cases further equations for moment summa-
tions would provide an answer. It may also be noted that it is often advisable to set
up a redundant equation to provide a check on the solution of the problem.

(d) Spatial Force System

The necessary conditions of equilibrium for a rigid body subjected to a general
force system are those specified earlier by general equilibrium considerations

.IF =0
IM =0
These two vector equations are equivalent to a set of six scalar equations:
IF,. =0 M, =0
IF, =0 and IM, =0 (3.11)
IF, =0 IM, =0

where the x, y and z axes are chosen arbitrarily but with due regard to convenience
of handling the force system. For example, it may be preferable to have an axis in a
direction in which a number of forces act and it may be advantageous to choose the
x-y plane as the plane in which a number of forces lie.

3.6 EQUILIBRIUM OF A SYSTEM OF PARTICLES

Consider a system consisting of three particles P|, P, and P, as shown in Fig. 3.7.
The system is subjected to net external forces F, at P,, F, at P, and F; at P; as
shown.

The resultant action on the system of particles consists of a single force F equal
to the sum of the external forces.

F=F +F,+F,
The system will be in equilibrium if the resultant of the external forces vanishes,
ie.,
F=F +F,+F;=0
or F, F, and F; constilute a closed triangle.
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Fig. 3.7 A System of Three Particles

It is essential that each constituent particle of a system must also be in equilibri-
um. Take, for example, particle P|. It is subjected to the external force F, as well as
the internal forces, F|; due to particle P; and F,; due to particle P,. Obviously, F,,
F|; and F;; must keep the particle in equilibrium.

Since action and reaction must be equal and opposite

Fo=-F i Fp+ Fy =0
Fi3=-Fy: Fj3+ Fy =0
Fy=-FuiFp+F;=0

It follows that the sum of all internal forces in a system must be zero,
Extending the argument to a system of a number of particles, say n, the equilibri-
um demands that

1. The vector sum of all external forces is zero
IF. =0
2. The vector sum of all external plus all internal forces must be zero
IF, + ZF; =0

in order that each particle be in equilibrium separately.

It is interesting to note that a system of three particles must lie in a plane and the
forces on the particles must constitute a coplanar force system for equilibrium. A
system of four or more particles may not be coplanar and may constitute spatial
force systems for equilibrium.

General Comments

A number of rigid bodies may be interconnected to comprise a system. In such a
case, if the total system of rigid bodies is in equilibrium, every subsystem and every
component of the system must also be in equilibrium.

It follows, therefore, that the necessary conditions for equilibrium may be written
for the total system as well as for any desired subsystem or a component of the
system. For example, if two rigid bodies are connected by an inextensible string
which is kept taut, then the net external forces and moments should satisfy the
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conditions of equilibrium as well as the net external forces and moment, as
observed from the free-body diagram of each body, should also satisfy the condi-
tions of equilibrium scparately.

Example 3.5 Three homogeneous cylinders of the same material having masses
m, 2m and m are placed in a container with a curved base as shown in Fig. Ex. 3.5,
Determine the reaction on cylinder P from the left wall, upper cylinder and curved
base. Assume that the cylinders are of equal length and that they are placed such
that their centres of gravity lie in the same vertical plane. The radius of the curved
base is three times the radius of cylinder P.

0
Fig. Ex. 3.5 Fig. Ex. 3.5 (Solution)
Solution By geometry of the system,
op=3r+r=4r

pe=3r—r=2r
oc =,J(4r)? —(2r)? =3.464r
pqg=r++2 r=2414r

and cg =4/2.4142 =22 r=1.35r

because the radius of the top cylinder is /2 r from the ratio of their masses, i.e.,
given by the expression

2-mrilp
rlp

The free-body diagram of the cylinder P shows the following forces.acting on it:
Reaction R, by the left vertical wall; R, must be horizontal.
Reaction Ry from the supporting curved surface; R, must be directed along op.
Reaction R, by the top cylinder Q; R, is directed along gp.
Weight mg of the cylinder itself; acting downwards.

From the equilibrium consideration of the cylinder P,

Ry+Rg+Rp+mgj=0
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or Ryi-R,2ZLj+R 38645 p 3 _;_p LI 5. 5-0

B 4r 4r 2 2.414r Q2 2.414r
whence,
Ry—~05Ry~0829R;, =0 (i)
and 0.866R; — 0.56 Ry —mg =0 (ii)

It is also known that the vertical component of R, must be equal to half the
weight of the top cylinder;

0.56 Ry =mg
or Ry =179 mg (iii)
Substituting Ry, from (i) in (i),
2 mg
R = =
B =866 2ol m8

and substituting these values in (i),
R, =1(0.5 %231 + 0.829 x 1.79) mg
=2.64 mg
The reactions R,, Ry and Ry, are, therefore, given by
R,=264mg i
Rg=(-05i+0.866 j) x 2.31 mg
=—1.155mgi+2mg}j
R, =(-0.829i-0.56 j) x 1.79 mg
=—1484mgi-mgj

Example 3.6 Three identical cylinders, each weighing W, are stacked, as shown in
Fig. Ex. 3.6, on smooth inclined surfaces, each inclined at an angle @ with the
horizontal. Determine the smallest angle 8 to prevent the stack from collapsing.




142 Engineering Mechanics

Solution The free-body diagrams are drawn (Fig. Ex. 3.6 (Solution)) for cylinders
1 and 3 in order to understand the forces acting on each of them. The limiting case
of collapse of the stack implies that the reaction between cylinder 2 and cylinder 1
becomes zero

Ry =0

Fig. Ex. 3.6 (Solution)
From the equilibrium of the cylinder 3 with regard to its free-body diagram,
}:F)' =(};R|3c03 30° +R23°08 30°-W=0

IF, =0 Ry; sin 30° - Ry; sin 30° =0
w
whence Ry =Rpy = Joos 30°

From the equilibrium of cylinder 1 with regard to its free-body diagram,
IF, =0 R cos 8- W— Ry cos 30°=0

XF, =0 R; sin 30° - R sin @ =0
Substituting
_ = W
Ra =Ry = 2cos 30°

Simplifying and solving for 6,

tan 30" _ 0.577
3 3

and 8 =10.9°

tan @ = =0.1924
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It shows that if the inclined surfaces are frictionless, the angles between the
surfaces and the horizontal line should not be less than 10.9°. If it is less, the
reaction R, will not be able to provide a horizontal resisting component to balance
the horizontal component of R,; and the cylinders will fall apart. On the other hand,
if the angle exceeds 10.9°, R, will provide a horizontal resisting component in
excess of that required by Ry; and then the reaction from cylinder 2 will also act to
guarantee equilibrium.

Example 3.7 A painter’s scaffold 10 m long and weighing 0.75 kN is supported in
a horizontal position by vertical ropes attached at equal distances from the ends of
the scaffold as shown in Fig. Ex. 3.7. Find the greatest distance from the ends that
the ropes may be attached to permit a 1 kN painter to stand safely at one end of the
scaffold.

Tl
Painter A

Scaffold 1 Free end

A\ 2 B

o J
0.75 kN I""‘

- X
10m |
Fig. Ex. 3.7

Solution 1If the painter stands at A then the free-body diagram of the scaffold is as
shown in Fig. Ex. 3.7. The tensions in the strings are T} and 7. For equilibrium of
the scaffold,

IF =0; T+ T,=1+075= 175 kN (i)
M, =0; T, + T, (10-x)-075%5=0 (ii)

For x to be as large as possible, the tension T, in the string 2 reduces to zero.
Then,

T, = 1.75kN

_0.75x5

75 = 2.14m

and

If x is more than 2.14 m, i.c., if the ropes are attached closer to each other, then
the solution of (i) and (ii) would show negative tension T,; a state of compression
which is not possible in a rope. On the other hand, if x is less than 2.14 m, i.e., if the
ropes are attached farther, T, remains positive, permitting safe operation of the
painter.

As a digression, let us demonstrate what we meant by the equivalence of the set
of conditions, Eq. (3.7) with the set of conditions, Eq. (3.6) for equilibrium. In this
example, the conditions chosen to provide Egs. (i) and (ii) came from Eq. (3.6).
Instead, Eq. (3.7) would provide, say,



144 Engineering Mechanics

M, =0; 1x=075(5-x)+ T, (10-2x) =0
IM, =0; 1(10-x)—T, (10 - 2x) + 0.75(5 - x) =

or
1.75x + 10T, - 2Tx =375 (iii}

~1.75x - 10T, + 2Tyx =-13.75 (iv)
which are equivalent to Egs. (i) and (ii). For x to be as large as possible T, = 0
which when substituted in Eq. (iii), provides

x= ﬂqzmn

175
and from (iv)
T, = 1.75 kN, as before

Example 3.8 The boom of a crane is shown in Fig. Ex. 3.8. If the weight of the
boom is negligible compared with the load W = 60 kN, find the compression in the
boom and also the limiting value of the tension T when the boom approaches the
vertical position.

Solution By drawing the free-body diagram of the boom, we observe that it is
under the action of three forces:
(i) 60 kN acting downwards at B
(ii) Tension T along the string inclined at an angle o with the horizontal. It can be
resolved into T sin & and T cos & components acting vertically and horizon-
tally respectively at B.
(iii) Reaction A at A acting along AB. it can be resolved into A sin 8 and A cos @
components as shown in Fig. Ex. 3.8 (Solution).

c

Asin @

AAousa

Fig. Ex 3.8 Fig. Ex. 3.8 (Solution)
For equilibrium of the boom,
IF=0;ZF,=0,ZF,=0
Acos@
T

Acos 0—-Tcosa=0;cos @ =
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60— Asin@
'1"3incr,+Asinl9—6[}=(};sir|:-;:Ts"ll
whence tan a =60‘-Asinﬂ
Acos@

By the geometrical configuration,

cp _AC-AD _6-5sin8

W =TT BD - 5cos@

From Eqgs (i) and (ii), by comparison, A mus: be 50 kN
and T7?(cos® &+ sin® @) = A% cos® @+ (60 — A sin 8
or T?= A + 3600 - 120 A sin 8

For vertical position of the boom,

6=90°sin 0= 1
7% =A% + 3600 - 1204
= 2500 + 3600 - 6000 = 100
and T=10kN

145

(i)

(i)

It is interesting to observe the implication of this answer. The reaction at A
remains 50 kN for all values of 8, i.e., for all inclinations of the boom. The load of

60 kN, therefore, requires only 10 kN to be shared by the string.

Example 3.9 A three-bar pendulum ABCD has three bars cach 2 m in length and
weighing 2.5 kN as shown in Fig. Ex. 3.9. It is held in equilibrium by applying a
horizontal force of 3 kN at the free end. Determine the angles 6, 6,-and 8; made

with the vertical.

2.5 kN
Fig. Ex. 3.9
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Solution
AB=BC=CD=2m

Weight of each bar assumed to act at their respective midpoints = 2.5 kN
Consider the equilibrium of bar CD:

IM, = 0; 3 CD cos 6 — 2.5 CD/2 sin 6, = 0

=5
whence tan & = 35 = 2.4
and 6, = 674°

Also, by the equilibrium of bar CD,
IF=0;R;+3i-25j=0
whence R, =-3kN and R, =25kN
Consider now the equilibrium of bar BC:
IMp=0;-25%x22sin O, k+2(sin @y i—cos B,j)x(3i-25)).=0

or —2.5sin 8, 5sin 6, + 6cos 6,=10
6
“me:=ﬁ=n.8
6, = 38.66°
IF=0;R;+3i-25j-25j=0
and Ry,=5j-3i

and the free-body of bar AB is drawn. For the equilibrium of AB,
IM =0:-25x22sin G, k+2(sin @ i-cos 8, j)x(3i-5j)=0

Ry

25kNq B

c
ai-5) 25KN

kN
3i-25] 3
2.5 kN

Fig- Ex. 3.9 (Solution)
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or -25sin & - 10sin &, +6¢cos 6, =0
:_6._ =
tan 6, =55 =048
8 =25.64°
It may be checked that
R.‘ =-3i+ TSj

by applying the condition of ZF = 0 for this bar. This value of R; was expected
from the equilibrium consideration of the entire system:

Ry+3i-25j-25j-25j=0
Ry=-3i+75j

Example 3.10 A uniform bar AB hinged at A, is kept horizontal by supporting and
settling a 40 kN weight with the help of a string tied at B and passing over a smooth
peg C as shown in Fig. Ex. 3.10. The

bar weighs 20 kN. Determine the reac- I

tions at the supports A and C as well as

the tension in the string.

3m
Solution  Consider the equilibrium of
the bar AB with reference to its free- 3:5 D
body diagram as shown in Fig. Ex. 3.10 A :[ B
(Solution). It may be noted that the b—2m | 4m

weight of 40 kN is partly resting on the Fig. Ex. 3.10
bar and is partly supported by the string
to the extent of tension 7.

IM, =0
From this relation

—(40-M*x2k-20x3k+06ixT(-cos &i+sin 8j)=0

or -140 + 2T + 6T sin =0
Taking sin 6= 2 = 0.6,
T=25kN
IF,=0;A,-Tcos =0
4

A, =25 x5 =20kN

ZF,=0;A, + Tsin - (d0-1)-20=0
A, =20kN

Hence the tension in the string is 25 kN and the reaction at the hinge A is (20 i +
20 j) kN which is 28.28 kN inclined at 45° upwards with the bar. Consider now the
equilibrium of the entire system with reference to the free-body diagram:
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T y
,, X, 1
A
A, 120
40-T
j
G C|
N
A, 20 kN
40 kN
Fig. Ex. 3.10 (Solution)
IF. =0 A +C. =0
ZFI=0;AJ—40—20—CI=0
whence C,=-A,=-20kN

C),=A!—60=20—60=—4GRN
which shows that the reaction at C must be (=20 i — 40 j) kN
Example 3.11 A rectangular table 1 m x 2 m is mounted on three equal supports.
The table weighs 2 kN which acts through its centre of gravity C. If two vertical

loads 1 kN and 4 kN arc applied on the surface of the table as shown in Fig.
Ex. 3.11, calculate the reaction at the supports.

4 kN

Lo,

Fig. Ex. 3.11

Solution Choosing the plane of the table as the x-y plane, the origin O at 1 and
coinciding the y-axis with the line joining the reactions 1 and 2 as shown, the loads
and reactions are specified as follows:
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Description Load Position Vector
I kN downward -1k 0751

2 kN downward -2k 025i+1j
4 kN downward -4k -025i+1})
Reaction R, Rk 0i+0j
Reaction R, Rk 2j

Reaction R; . R; k 075i+1]

For equilibrium, the necessary conditions are:
ZF=0 and EM;=0

From the former,
(-1-2-44+R +R,+ Ry )k =0

or Ri+Ry+Ry =7 (i)
From the latter,
075ix (-1 ky+ (025i+1j)x (-2 k) + (-0.25i + 1 j)
X(-4Kk)+0+2jxR k+(075i+1j)xR, k=0

- or

or 075j+05j-2i-1.00j-4i+2R,i-075R;,j+R;i=0
whence (-6+2R,+R;)i =0
or 2R, +R; =6 (ii)
and (025+075Ry) =0
075 Ry =0.25 (iii)
From (iii), Ry =0.33 kN
From (ii), R, =2835 kN
and
From (i), R, =3.835 kN

Example 3.12 A horizontal rigid bar AB weighing | kN/m carries a load of 2 kN
at its free end A. It is supported by the ball-and-socket joint at B and the cables PQ
and RS are taut. Determine the tensions in the cables and the reaction at B.

Solution With reference to the x, y and z-axes, as shown in Fig. Ex. 3.12, the
forces on the bar AB are shown and tabulated below. The unit vector egp along QF
may be determined by locating P and Q;

P(-1,1,00 and  Q(0,0,2)
(=1—0)i+(1-0)j+(0—2)k

e =

o JENT $17 £(2)2
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Fig. Ex. 3.12

=-041i+041 j- 082Kk

Similarly, the unit vector eg along SR is expressed as

_ (1-0)i+(1-0)j+(0 - Dk

SR
JO7 12 +12)
=058i+058j-058k
Description Force Position Vector
1. Weight at the free end -2j 25k
2. FQ. the force in cable QP FQ(— 0.41i+04] j-082k) 2k
3. F,. the force in cable SR F,(0.58i+058j-058k) 1k
4. Weight of the bar -1j 1.25k
5. Reaction at B B.i+B,j+Bk 0

For equilibrium, ZF = 0 and M = 0.
From the summation of the forces on AB,

-041 Fy+ 058 F,+B, =0 )
-2+041 Fy+058 F,—1+B, =0 (ii)
~082F,-058 F,+B, =0 (iii)

The moments of the forces about the origin at B are calculated as follows:
L. 25kx(-2j)=5i

2. 2kx Fp(-041i+041j-0.82k)=(-0.82 j- 0.82i) F,

3. 1kxF (0.58i+058j-058k)=(058j-0.581i)F,

4. 1.25kx (-1 j)=1.25i

5.0
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Summation of the moments about the origin yields
IM=5i+(-082j-082i) Fy+ (058 j-058i) F +125i=0
whence,
625-082F,-058F, =0 (iv)

-082F,+058F, =0 )

Now, we have a set of five equations (i) to (v) for the five unknowns
Fp F, B, B,and B,

which may be solved to provide

Fy =3.80 kN along QP

F, =5.37 kN along SR

B, = 1.56 kN
B, =-1.67 kN
B, =623 kN
Experiment E2

Equilibrium under Spatial Forces

OBJECTIVE
To study the equilibrium of a particle under the action of forces in space.
AFPPARATUS

A skeleton space frame consisting of bars with provisions to pass the strings over
frictionless pulleys at the desired points. Standard weights and metre rod.

BACKGROUND INFORMATION

The equilibrium of a particle under the action of forces in space is essentially
governed by. the condition

IF =0

i.e., the vector sum of all the forces must vanish.

In the space frame shown in figure a load W is supported by three strings AP, BP
and CP in order to keep the knot P in equilibrium at rest. Taking the origin at a
corner point 0, the coordinates of A, B, C and P are measured and are used to find
the unit vectors ap, bp and cp along AP, BP and CP respectively.

For example,

r, =x i+ k
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rp =xpi+ypj+zpk

fp =l —xp)i+ypi+(@i-zp) k

whence. AP = .‘I(Jr,j| —xp )24 yh +(zy —2p)?

(x,=x,) ¥y, (z,-2,)
AP APt ap K
The forces Fy, F, and Fy in AP, BP
and CP respectively are such that

XF=0;F +F,+F,- Wk=0
or Fiap+ Fo,bp+ Fyep-Wk=0

From a knowledge of the unit vec-
tors ap, bp and cp in terms of i, j and
k, this vector equation is rewrilten as
three scalar equations and the three un-
knowns F\, F, and F; are obtained.

In the apparatus the strings are kept
taut under the application of hanging
loads at A, B and C. Neglecting fric- ]
tion at the pulleys, the tensions in the Skeleton Space Frame
strings must equal the comresponding
applied loads.

and ap =

OBSERVATIONS AND CALCULATIONS

It is advisable to record the coordinates and to formulate the equations in a tabular
form. For example, the table of force F is as follows:

Point P Point A For AP

X Yp Ip T YA u (G —=xp) Oa-yp) (34-2p)

AP =
ap =

‘TABLE OF RESULTS

Forces in members Difference
Member Theoretical Experimental Abs.
(N) (N} %
AP
BP

cP
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POINTS FOR DISCUSSION

1. State the necessary and sufficient conditions of equilibrium for a rigid body.
In particular, is the condition

ZF=0

just necessary or necessary and sufficient as far as the equilibrium of a parti-
cle is concerned?

2. If aload W hangs from P maintained in equilibrium under the action of F}, F,
and F; as done in the experiment and the load W is increased by 10%, what
will happen to the position of the strings and why? Would the strings stay
unaltered if the tension in each string were increased by 10%?

3. Enumerate the sources of error in the experiment and suggest how each can
be minimised.

4. Would you suggest some other design of the skeleton frame to be able to
perform experiments on equilibrium under the action of spatial and coplanar
forces?

Concept Review Questions

1. (a) If a system is in equilibrium, is it necessary that it should be static? Relate the
concept of equilibrium with the laws of motion.
(b) -If a rigid body is rotating at a constant angular velocity about some axis, is the
body said to be in equilibrium or not?
2. Draw the free-body diagrams for the following:
(a) a nut-cracker in action
(b) a ladder leaning against a wall
(c) a bullock-cart in motion
(d) an aeroplane in flight
(e) a body floating in a liquid.
3. (a) State the Lami's theorem for the equilibrium of a body under the action of three
coplanar forces.
(b) Prove that a body must be in equilibrium if Lami’s theorem is obeyed.
4. Examine the truth in the following statements and rewrite them afier necessary correc-
tions.
(a) A rigid body must be in equilibrium if the resultant of the force system acting on
it vanishes.
(b) A rigid body subjected to a couple may be brought to equilibrium by a force
placed suitably in the plane of the couple.
(c) A pin joint and a hinge are identical supports so far as the reaction is concerned.
(d) If three concurrent forces keep a particle or a rigid-body in equilibrium, then the
forces must be coplanar.
(e) The equilibrant action required to bring a rigid-body into equilibrium should be
equal and opposite to any equivalent force system acting on the body.
5. Tlustrate why the necessary conditions of equilibrium

LF=0 and ZIM=0

can be replaced by the equivalent moment equations
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IM, =0 and EM,=0

for a plane force system acting on a body.

3,

3.2

33

34

Tutorial Problems

A small boat is held static in a river by means of three inextensible taut ropes OA, GB
and OC. The water in the river exerts a force on the boat in the direction of the flow,
If the tensions in OA and OB are 1 kN and 0.6 kN respectively, as shown in Fig. Prob.
3.1, determine the force exerted by the flow on the boat and the tension in rope OC.
(a) Will the boat remain in equilibrium if rope OC breaks?
(b) What would be the tension in OA after OC breaks?

(Ans. 0.116, 0.808 kN; yes, 0.067, 0.133 kN)
A force F applied to a stretched elastic string at @ stretches it to a position AOB as
shown in Fig. Prob. 3.2 If the tension in each part of the string is 50 N, determine the

magnitude and direction of the force applied. (Ans. 61 N, 7.5%)
A C
45°
: EIZRIiIiis 0 &LF L
= Flow in ;
: River Loinn
0
]
B B
Fig. Prob. 3.1 Fig. Prob. 3.2

In an old drawing, four forces are shown acting at a point but the line of action of the

fifth force has been disfigured. However, it is known that the moments exerted by the

forces about some origin in space are:

2i+2j-3Kk3i-4j+Tk2i+3j-4k-Bi+j-2kand]li-2j+2k

respectively. Determine whether the fifth force passes through the same point or not.

(Ans, Yes, since IM =0)

A 4 m x 5 m slab carries four forces normal to it as shown in Fig. Prob. 3.4,

(a) Determine the magnitude and point of application on it of a single force equiva-

lent to the given system of forces.

If the slab is to be in equilibrium, determine the magnitude and location of the

equivalent.

(c) If the slab must be brought into equilibrium by holding it at the origin O,
determine the reaction necessary from the device to hold it.

(d) Is it possible to hold the slab in equilibrium by applying suitable forces at the
three free corers A, 8 and C? (Ans. - 8 kN; at 1.9 m, 1.5 m point)

(b
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Z
3kN
(1, 1)
4 kN {2, 3)
A
/" 5m
* 5 kN
Fig. Prob. 3.4

3.5 A simple stone-crushing mechanism consists of a piston on which a force of 15 kN
acts and three rigid weightless links OA, OB and OC hinged at O, A, B and C as
shown in Fig. Prob. 3.5. At the given orientation, what is the force exerted on the
stone 8 trapped between the jaw and the fixed wall. (Ans. 28 kN)

15 kN

15%

Fig. Prob. 3.5 Fig. Prob. 3.6

3.6 A cylinder having a diameter of 0.5 m and mass 50 kg is supported on a uniform rigid
link AQ 2 m long and of mass 10 kg by means of a string O held taut as shown in
Fig. Prob. 3.6. Assuming the surfaces of contact of the cylinder as frictionless, calcu-
late the tension in the string and the reaction at the hinge A.
{Ans. T'=335 N, R, = 424 N at 89.4° to horizontal)
3.7 {a) A weight W tied to the lower end of a suspended cord of length [ 1s pulled by a
horizontal force F so as to displace it by a distance o away from its vertical
paosition. Express the force F and tension T in the cord as a function of the
horizontal displacement of the weight.
(b) Determine the horizontal distance to which a 10 m long inextensible nylon thread
holding a mass of 1000 N can be drawn before it breaks. The thread can withstand
a maximum tension of 10 kN.
(Ans. F = W cot (cos™ dil), T= W cosec (cos™ d/l), d = 10 m)
3.8 A\wniform metre rod AB, assumed rigid, of mass 0.5 kg is suspended from its ends in
an melined position and a mass of 1 kg is suspended from a point D. Determine the
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tension in each string. Where should the suspended mass be placed in order to get
equal tension in the strings? (Ans. Fy =49 Nand F, =9.8I N; at C)

MI/// f LI ASSS PSS LSS IS SISO,

|
|
I
1 : N
! 8
| F
|
’/
7
d‘—-‘
Fig. Prob. 3.7 Fig. Prob. 3.8

3.9 A crane is idealised by a uniform rigid arm of weight W, supported on a knife edge off
the rest and held by a cable together with a counter weight of 5 kN as shown in Fig,
Prob. 3.9. The 10 kN load held by it is moved outward on the arm with a constant
velocity v of 0.2 m/fs. Assuming the system to be in equilibrium when &= 30° find the
rate of change of the tension T in the cable.

[m_ﬂzs v =1.155 kN/s
dr cos &

rl—-——-sm e wed
gl G —= )
1 Am
w
ol |
Cable, 2mll
Fast

10 kN

Fig. Prob. 3.9

3.10 Two cylinders 1 and 2 are connected by a rigid bar of negligible weight hinged at cach
cylinder and are left 1o res* in equilibrium in the position shown under the application
of a force P applied at the centre of cylinder 2. Determine the magnitude of force P if
the masses of the cylinders are my, = 100 kg and m; = 50 kg,

{Ans. 263 N)

311 Three identical balls rest on a smooth horizontal surface touching one another as
shown in Fig. Prob. 3.11. A fourth ball of the same size and weight is placed on top of
these three to form a pyramid and the three lower halls are now held together by an
encircling string as shown in the plane view. Determine the tension in the string if the
mass of each ball is 900 kg. Assume all surfaces of contact Lo be smooth.

(Ans, 1200 N} .
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Fig. Prob. 3.11 Fig. Proh, 3.12

3.12 Fig. Prob. 3.12 shows a weight W tied to the end of a cord of length L. Find the
magnitude of the force F required to pull the weight 1o an angle ¢ from its vertical
position and the tension in the cord. (Ans. Wcot e, Weosee @

3.13 A three-wheeler scooter rickshaw with weight 2 kN acting at its centre of gravity Cis
shown schematically in Fig. Prob. 3.13. The driver D weighing 0.5 kN and the
passenger P weighing 0.8 kN are located as shown, Calculate the reactions at the
wheels 1, 2 and 3 for equilibrium on a horizontal road.

(Ans. 100, 1.23, 1.07 kN)

3.14 A vertical tower of height /i is subjected to a horizontal force F at its top and it is
anchored by two equal guy wires symmetrically as shown in Fig. Prob. 3.14. Deter-
mine the tension T in the guy wires if h =20m, a =3 m, b = 4 m and (b) the
horizontal force F = 10 kN. - (Ans. 34.5 kN)

3.15 A vertical mast AB is supported in a ball-and-s..kel joint at A and by cables BC and
DE as shown in Fig. Prob. 3.15. A force

F =500 i+ 400 j - 300 k
is applied at B. Calculate the reaction provided by the ground at A.
{Ans. 5100 N)

316 Two cables BG and BH are attached 1o hold the boom ABC 1.4 m long, hinged at A,
horizontally as shown in Fig. Prob. 3.16. Determine the tensions in the cables if a load
of | kN acts at C. (Ans. 1230 N and 486 N)

Look up Hints to Tutorial Problems!
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Multiple-Choice Questions

Select the correct or most appropriate res Sfrom g the available alternatives in the
Sfollowing multiple-choice questions:

A rigid body is in equilibrium under the action of three forces. It implies that the
forces must

{a) be concurrent

(b) be coplanar

(¢) either be concurrent or coplanar

(d) pass through the centre of mass

. A rigid body is in equilibrium. Given that the moment of all the forces acting on the

body about some axis is zero and also given that forces are concurrent, implies that

(a) the resultant force is zero

(b) the forces have a line of action passing through the axis

(¢) the resultant forces have a line of action parallel to the axis

(d) any of (a), (b), (c) can be true

A body is acted upon by a force system. It can in general be bmught to equilibrium by

the application of

(a) a force acting on a suitable point on the body

(b) a force acting anywhere along a suitable line

(c) a force acting along a suitable line and a moment along the direction of the force

{d) a wrench acting anywhere on the body.

Lami's thcorem

(a) relates the forces with the sines of angles

(b) state that, for equilibrium under the action of three concurrent forces, there is a
unique constant of proportionality between a force and the angle between the
other two forces

(c) may be applied to consider a relationship between forces and angles of a polygon
representation of forces

(d) may be applied for a body which may or may not be in equilibrium

If the sum of all the forces acting on a body is zero, it may be concluded that the body

(a) must be in equilibrium

(b) cannot be in equilibrium

{¢) may be in equilibrium provided the forces are concurrent

(d) may be in equilibrium provided the forces are parallel

Answers to Multiple-Choice Questions
I, 2(d). 3(c), 4(b), 5(c)
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S 1 SIMPLE STRUCTURES

§1.1 TYPES OF STRUCTURES

A structure may consist of a truss or a frame—pin-connected or rigidly secured. A
truss is an assemblage of slender bars fastened together at their ends by smooth
bolts or ball-and-socket joints acting as hinges. A truss, by definition, is a pin-
connected structure. The bar members, therefore, act as two-force members which
can either be in tension or in compression; there can be no transverse force in a
member of a truss. A frame structure, on the other hand, consists of members which
may be subjected to a transverse load in addition to the axial load. We shall again
limit our discussion to pin-connected frames. The reason for leaving out rigidly-
secured structures, such as welded trusses is that the members may then be subjected
to initial loads, axial or transverse, the estimation of which is a task by itself.

A simple structure is thus a pin-connected frame or truss. A truss consists of
slender-bar members which can carry no transverse loads. It follows that the load-
ing in a truss must be at the joints only. A truss consisting of members which lie in
a plane and are loaded in the same plane is called plane rruss. If a truss is made of
non-coplanar members, it is referred to as space truss. Similarly, a frame may be a
plane frame or a space frame depending upon its structure.

Let us now examine trusses ‘with regard to their rigidity. Trusses are classified as
just-rigid, over-rigid and non-rigid mechanisms. If the members are allowed any
relative movement, then the assemblage of members is called a non-rigid truss or
mechanism and if the members are not allowed any relative movement, then it is
called a rigid truss. A just-rigid truss is that which, on the removal of any single
member, becomes non-rigid. An over-rigid truss is the one that has redundant
members which may be removed to render the truss just-rigid. Examples of such
trusses are shown in Fig. S1.1. We shall confine our study to the just-rigid simple
trusses and frames.

The number of joints j in a truss is related to the number of members m. A
necessary relationship between the number of joints j and the number of members m
for a just-rigid plane truss is

m=2j-3
This is, however, not a sufficient relationship. In other words, a truss cannot be just-
rigid if m and j arc related otherwise but a truss may not be just-rigid even if m and
Jj are related as before. )

Consider, for example a simple truss ABCDEF as shown in Fig. S1.2. A just-
rigid truss requires the number of members to be given by

m=2j-3
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Ae .
{(a) Non-Rigid Truss — A Mechanism (b} Just-Rigid Truss

A¥ » B
(c) Over-Rigid Truss
Fig. 51.1 Types of Trusses

According 1o the law, the number of members must be (2j — 3) for a truss to be
just-rigid but if the number is different from (2j - 3) the following may happen:
m<(2j~3) the truss cannot be just-rigid; parts of which must be under-rigid
and a part may be just-rigid or over-rigid as shown in Fig. §1.2(b)
m > (2j-3) the truss cannot be just-rigid; parts of which must be over-rigid and
a part may be under-rigid or just-rigid as shown in Fig. $1.2(c).

Tt may be appreciated that m = (2j - 3) is no guarantee for a truss to be just-rigid.
Some parts of such a truss may be over-rigid and some other parts under-rigid. For
example, in Fig. $1.2(d), pants ABCF are under-rigid and FCDE over-rigid.

It may be appreciated that simple or just-rigid trusses are generated from the
basic triangular truss by successively adding a pair of new members to the existing
joints and by generating a new joint by connecting the new members. Now, for a
basic triangular truss which is just-rigid, the number of joints j = 3. For each
additional joint, two members must be added to keep it just-rigid. If we wish to
visualise a truss of j joints, then (j - 3) joints must be added to the basic triangular
truss. The number of members which will be added are 2( j — 3) and the total number
of members become

m=2(jj-3)+3
whence m=2-3

It may also be observed from the equation that the number of members in a
simple just-rigid truss must be odd.

There are some standard types of trusses known after the names of the origina-
tors or their shape. Some of them, Warren truss, Pratt truss, Howe truss and K-truss
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are shown in Figs. S1.3(a), (b), (c} and (d). Let us check the just-rigidity of the
trusses:

Table $1.1 Typical Just-Rigid Trusses

Types of Truss Jaints | Members m Condition
) m=2-3
(a) Warren Truss 7 11 Satisfied
(b) Prau Truss 12 21 Satisfied
{c) Howe Truss 12 21 Satisfied
(d) K-Truss 16 29 Satisfied

Just-rigid trusses are statically determinate and the over-rigid trusses are statically
indeterminate. This statement follows from the fact that the number of members in a
just-rigid truss are in accordance with the necessary conditions of equilibrium for
the number of joints. We shall, therefore, confine ourselves to the analysis of just-
rigid trusses. The task of determining the reactions at the supports and the forces in
the members of simple plane trusses is achieved by three standard techniques known
as method of joints, method of sections and graphical method with the help of the
Maxwell’s diagram. These methods are discussed in the following sections.

A space truss (or frame) consists of members which do not lie in a single plane.
If the non-coplanar members are pin jointed, it is called a simple space truss. A
necessary relationship between the number of joints j and the number of members m
for a just rigid simple space truss is

m=3-6
E D E D
F c F c
A B A B
(a) Just-Rigid Trusses m= (2/-3)
E D E D
Under-Rigid Under-Rigid
F c F c
Over Rigid
Just-Rigid
A B A ' B

(b) m < (2f ~ 3), Non-Rigid Trusses



166  Engincering Mechanics

E D E D
Over-Rigid
L OverRig
F c F c
Under-Rigid
Just-Rigid
A B A B
{c) m = (2 j— 3) Part Over-Rigid
LA B A * g
. Under-Rigid Under-Rigid

F c F Cc

Over Rigid Over Rigid
E D E! D

(d} m = (2 j - 3), Non-Just-Rigid Trusses
Fig. 51.2 Conditions of Rigidity of a Truss
s« T -
(a) Warren Truss
X ¥ « + > . 3 7ol
(b) Pratt Truss
X . * L * 1ol

(c) Howe Truss
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(d) K-Truss
Fig. S1.3 Some Standard Types of Trusses

This is because the basic space truss is a tetrahedron consisting of 6 members
and 4 joints, i.e., m = 6, j = 4. It can be extended 1o a bigger space truss by adding
3 non-coplanar members from any 3 previously existing joints and creating one
additional joint, i.e., m=9, j=5 and m = 12, j = 6, etc. which leads to the equation
m =3 j— 6. Like plane truss relationship, this relationship is necessary but not a
sufficient condition for a space truss to be just-rigid. For example, a truss may be
partly over-rigid and partly non-rigid even if m = 3j - 6.

$1.2 INTERNAL FORCES: TENSION AND COMPRESSION

In a frame, members are interconnected at joints. If a member is in tension as shown
in Fig. S1.4(a), the member is pulled towards its ends on either side by external
forces. Consequently, the internal forces in the member tend to resist it and hence
act in a sense away from the end.

Likewise, if a member is in compression as shown in Fig. S1.4(b) the external
forces compress it at its ends and the internal forces tend to resist it.

External Forces External Forces
— B g —a—
;q//"’s A "’/,4
"‘:J//‘—’ B —
Internal Forces .-/’r.a | Forces

Fig. $1.4 (a) A Member in Tension (b) A Member in Ce fi

External and internal forces on a member are indeed in accordance with the
action and reaction principle.

Members in a frame may be subjected only to forces along them. A member
cannot be subjected to a transverse force. That is why members are said to be
2-force (or two-force) members, i.e., subjected to a pair of tensile forces or a pair of
compressive forces.

§1.3 ANALYSIS BY THE METHOD OF JOINTS

A plane truss or frame can be subjected only to a coplanar force system. Any joint
of a plane truss or frame may be subjected only to a coplanar and concurrent force
system. A space truss or frame can be subjected to a spatial force system. Any joint
of a space truss may be subjected to a spatial concurrent force system. The condi-
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tion of concurrency of a force system at a joint in a truss follows from the equilibri-
um of the forces at that joint which is also the point of concurrency.

The method of joints consists of taking up one joint at a time and analysing it for
equilibrium. At every joint in a truss the forces must be along the members at that
joint. The forces acting at every joint must satisfy the necessary condition of equi-
librium:

IF =0
which implies that
F,=0, XF, =0, ZXF,=0

¥

for spatial forces at a joint
and

for plane forces at a joint.

In addition to the equations of equilibrium at each joint, the overall equilibrium
of a truss provides additional equations which can be used 10 determine the reac-
tions of the supports, In fact, one of the first tasks in the method of joints is to
evaluate the reactions from the supports. The equations of over-all equilibrium are:

IF =0
IM =0
which, for a plane truss reduce to only three equations:
IF, =0 ZIF =0

and M =0
or an alternative set of equations
IF, =
and M, =0, M, =0

as has been shown earlier.

The points about which moments are taken may be the points of application of
the support reactions for convenience and for simplicity in analysis.

Once the reactions are known, there must be a pin-joint in a simple just-rigid
plane truss where there are only two or less unknown forces in magnitude. These
values are determined by analysing the joint for equilibrium. The force in any
member at a joint being known, the force at the joint at the other extremity of that
member is known by the action-reaction principle. We then look for another joint
where there are a maximum of two unknown forces in magnitudes and analyse it for
equilibrium. In this manner, a chain process is set up to proceed from one joint to
another and analyse the forces in the members. When the objective is to determine
the force in a particular member, it is necessary to search a joint nearest to the
member where to start with and proceed towards a joint where the member is
connected.
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It is a uscful convention in the method of joints to indicate the forces at a joint
such that the known forces are taken in the comect directions and the unknown
forces are assumed positive, away from the joint. On evaluation, if a force turns out
to be positive, the member must be in tension and if a force comes out to be )
negative, the member must be in compression. It is also a universal practice to
designate the force at a joint due to a member by the name of the member itself. For
example, the force exertd by a member BC at B or C is refered to as BC.

Remarks on the loading conditions of some joints are also in order:

1. If there are only two members and no external force at a joint, the two
members must be collinear in order that any force is taken by them. The
reason for this is that the two forces maintaining a point in equilibrium must
act along the same line of action and their magnitudes must be equal. The two
members at the joint should, therefore, not only be collinear but also have
equal forces and their nature must be the same, i.e., either both tensile or both
compressive.

It follows from this that, in the special case when the two members do not
have any forces, they may not be collinear. Conversely, if in a truss, there
exists a joint of two members which are non-collinear and there is no external
force, the forces in the members must be zero. This is shown in Fig. S1.5(a).

It also follows that if an external force acts on a two-member joint then the
members cannot be collinear.

2. If there are only three members and no external force at a joint, the members
will carry forces in accordance with the condition of equilibrium. If two of the
three members are collinear, these two members should have equal forces and
the third must be a zero-force member, otherwise equilibrium will not be
maintained.

If an external force is applied at a joint of three members, the forces in the
members can again be determined in the light of equilibrium of the joint. If
two of the three members are collinear and the force acts in line with the thi
member, then the force in the third member must be equal and opposite to the
external force. These facts are illustrated in Fig. S1.5(b).

3. If there are four members at a joint, the members will carry forces in accor-
dance with equilibrium. If, however, there are two pairs of collinear members
al a joint and there is no external force then the forces in the collinear
members must be equal. One such example is shown in Fig. $1.5(c) where the
joint B is in equilibrium under the action of two pairs of collinear forces.

Example S1.1 A pin-jointed frame ABCO is supported and loaded as shown in
Fig. Ex. S1.1. The members AB and BC are each 3 m long. Find the magnitude and
nature of force in each of the members due to a load of 10 kN at the apex.
Solution Considering the equilibrium of the structure as a whole

IF, =0; Ry +R.-10=0

IF, =0; Ry =0
and M, =0;3R,-10x32=0
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AB AB = BC

CD=DE=0
(a) Consideration of Joints Band D

'

[+ c

/B

A

D
D F
B BC
BD=0 BD=F
AB = BC AB = BC
(b) Consideration of Joint B in Each Case

’/:_>-<’c
B E

8D 8
AB

AB

BC

BE
AB = BC BE = BD
{c) Consideration of Joint B
Fig. $1.5 Consideration of Joints
whence R. =5kN, Ry, =5kN, Ry, =0
For equilibrium of the joint A (Fig. Ex. S1.1 (Solution)),
'IF, =0:;5+ OA sin 30° + AB sin 60° = 0
XF, =0; AB cos 60° + OA cos 30° =0
0A =-0.577 AB
and 5+ 0.866 AB-0577/12AB=0
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10 kN

Fig. Ex. 81.1 (Solution)

whence AB =-8.66 kN; compressiun
and 0A = 5.00 kN; tension
For equilibrium of the joint B,
ZF, =0: CB sin 30° - AB sin 30° =
ZF,. =0; - 10 - OB -AB cos 30°- CB cos 30° =0

whence, CB = AB = - 8.66 kN; compression
and OB + 2% 0.866 AB=-10

or OB =-10+ 2 x 8,66 x 0.866

or OB =5 kN; tension

and OC = 0A =5 kN; tension

Example S1.2 A frame PORSTU is hinged to a rigid support at P and is simply
supported at T. It is loaded as indicated in the Fig. Ex. 51.2. Estimate the magnitude
and nature of the force in the members PQ and UT.

Solution ‘The free-body diagram of the structure is shown in Fig. Ex. S1.2. For
equilibrium,
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1 KN 1.5 kN
P, P J'Lx
e r = 7 ;
P
' PQ
P/(
15 kN ‘ PU
0.75 kN
Fig. Ex. §1.2 (Solution)
IF =0
IF, =0, P, +T-1-1-1=0
P+T =3kN
EF, =0;1.5-P, =0
P, = 1.5kN
M, =0
8T-1x4-1x8-1%x12-15x4=0
whence T =375kN
and hence PI =3-375=-0.75kN

Consider the equilibrium at joint P:
IF, =0;-15+PU+PQcos 8=0
IF, =0; PQsin® -0.75=0

Taking sin @ =—2—=0.447

J20
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and cos B =—2—=0.895

V20

PQ =0.75/0.447 = 1.68 kN; tension
PU =15-168x0895=0

Since UQ is perpendicular to PU and UT, UQ can transmit no force and the force in
UT must be the same as in PU which is zero.

Hence ur=0

Example S1.3 A simple structure ABCDE is supported on a hinge at A and on
rollers at B while it carries a horizontal force of 1000 kN at E as shown in Fig. Ex.
51.3. Determine the force in member AC, using the method of joints.

Solution 1000 kN —=A
Method of Joints Starting with E
For joint E, im im

IF,=0; 1000 + EC sin 30° - ED sin 30° =0
IF, =0:-ECcos 30° - ED cos 30° =0
whence -EC = ED = 1000 kN im

Next, for joint D,
ZF, =0; DEcos 60° + CD =0 im 1m

ZF,=0; DE sin 60°-DA =0
whence, CD =~ 500 kN
DA = 866 kN

im
Fig. Ex. S1.3
Finally, for joint C,
IF,=0;-DC - EC cos 60° — AC cos 45° =
IF,=0;-BC - ACsin 45° + ECsin 60° =0
and from the former
500 + 1000/2 - AC x0.707 =0

_ 1000 _
whence AC =5757= 1414 kN

which implies that the force in AC is 1414 kN tensilc. The internal forces in AC are
shown in Fig. Ex. §1.3 (Solution) and it is clear that the external force on AC must
be tensile.

Method of Joints Starting with B
For this method, we should first determine the reactions at A and B.
Let the reaction at hinge A be

Ai+Aj
and the reaction at the roller support B be vertical, i.c., Bj.
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EC
DE
E 1000 kN C
60° be
D cD
30" 30° AC
DA
ED EC 80
AD AC
A
A, AB=10
A A
¥ Forceat A ¥

Fig. Ex. $1.3 (Solution)

For the equilibrium of the structure,
IF, =0 A, +1000=0
EF,.:D: A_,+B=D
IM, =0;Bx1-1000x 1.866 =0
whence B = 1866, A, =~ 1000 and A, = - 1866 kN

At B, the reaction is vertical and there are two members BA and BC; one hori-
zontal and the other vertical. The horizontal member can carry no force because if it
did it would not be balanced.

For joint A,
IF, =0; A, + ACcos 45° =0
LF, =0; A, + AD + ACsin 45° =0
whence AC == 1414 kN

The internal or resistive forces in AC are outwards which, as before, imply that
the member AC carries a tensile force of 1414 kN,

Experiment E3
Forces in a Plane Truss

OBJECTIVE
To determine the forces in the members of a statically determinate plane truss.
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APPARATUS

A pin-joined, simply supported plane determinate truss, some members of which
have spring balances installed in them. Standard weights and a metre rod.

BACKGROUND INFORMATION

The forces in the members of a truss may be computed analytically by the method
of joints and by the method of sections and also graphically based upon the concept
of equilibrium of the whole or of a part of the truss. Experimentally, the spring
balances installed within the members are read off without loading and with loading
in order to estimate the forces developed due to the loading of the truss. A typical
truss ABCDEFGHIJ hinge-supported at A and roller-supported at G as shown in
Fig. E3.1, may be subjected to loads at C, D and E, for example. If it is required to
determine the force in member AC, the procedure would be to determine the reac-
tions R, and R; at A and G respectively in the first instance. This may be done by
considering the equilibrium of the entire truss. For the vertical loading as given, R,
and R are directed upwards.

IF =0; Ry +Rg+We+Wp+We=0 (i)
IM; =0, We3l+ Wy 2la Wl - Rdl=0 (ii)
whence R, and R; are determined.
J H
A ST
d
Spring
Balances
B c D E F
- Waights
R = Rl =
[} WE‘
[ ! ! !

Fig. E3.1 Free-Body Diagram of a Loaded Plane Truss

By the method of joints, one would first consider the simplest joint B where only
two members AB and BC are pinned at right angles. From the free-body diagram of
joint B, it is seen that it can be in equilibrium only if each of BA and BC is zero,
because if either is non-zero it will leave an unbalanced force at B. Next, consider
the joint A. The free-body diagram of joint A shows that there are two forces AJ and
AC unknown in magnitude as shown in Fig. E3.2. From the equilibrium of A,
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$F, =0; AJ+ACsin6=0 (iii)
IF, =0; Ry-ACcos8=0 (iv)

The solution of Eqgs (iii) and (iv) provide the desired force in the member AC.
Whether the member is in tension or compression may be sorted out by observing
the sign of AC. It would come out to be positive in this case which may be interpret-
ed as tension, following the text; otherwise, a free-body diagram of the member AC
may be drawn as also shown in Fig. E3.3. The internal forces being inward, the
external forces at A and C must be outward which suggest that the member AC must
bear a tensile force.

By the method of sections, one would cut a section through members AJ, AC and
BC. Consequently external forces AJ, AC and BC are shown acted upon the left
section in its free-body diagram drawn in Fig. E3.3. Consider the section for equi-
librium:

M, =0 BCd=0
whence the force BC is seen to be zero.
IF, =0 AJ+ACsin 8+ BC=0

IF, =0; R,—ACcos 6=0

Ry \ R4

o L e

X A AJ d‘

2]
6C c '
BA=0 AB=0 \ AC
BC=0 AC B——) —=&c
Joint B Joint A Member AC
Fig. E3.2 Free-body Diagram Fig. E3.3 Free-body Diagram of
the Section

The desired force AC is thus obtained from these equations. The sign of AC
would decide whether it is tensile or compressive. It would come out to be positive in
this case which may be interpreted as tension; otherwise, as noted from the fact that
the external force AC on the member AC is outward, the member must be in tension.

Experimentally, the spring balance installed in the member AC would show a
tensile force acting on the member when the truss is loaded as shown.

TABLE OF RESULTS

Forces in the members with spring balances for the prescribed loading should be
reported.

Forces in members AC DH EG

Experimentally
Analytically
Difference %
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Results on the lincarity of response of the system should be reported in the form
of a curve plotted between the load at C and the force in AC.

POINTS FOR DISCUSSION

1. Recognise the sources of ermor in the experiment. In particular, observe the

- play in the spring balances and joints. The use of a spring balance which
operates on the principle of elongation of the member is inherently prone to
error.

2. Suggest some means of eliminating the sources of error. One of the ways of
minimising the error in the experiment would be to use larger loads for the
first part of the experiment and to change the load in larger steps in the
second part of the experiment.

3. Explain the truth in the statement: “The method of joints is a special case of
the method of sections”.

4, Do the forces in members of a truss respond linearly to loading? How?

$1.4 ANALYSIS BY THE METHOD OF SECTIONS

The method of sections consists of hypothetically cutting a section of the given truss
and analysing it for equilibrium. Equilibrium of the entire truss guarantees the
equilibrium of every part of the truss. In the method of joints, equilibrium of every
joint was considered. In the method of sections, equilibrium of any selected section
of the truss is considered. The section of the truss is selected in such a way as to
‘cut’ the desired member only once. The free-body diagram of the section will thus
include the unknown force in the member. The analysis of the section for equilibri-
um requires the application of

IF=0 and IM=0
For a plane section, the necessary conditions of equilibrium reduce to
IF,=0,EF,=0 and ZIM=0

or an equivalent set of three equations.

The force system acting on a section of a plane truss can only be a coplaner force
system. The three necessary equations as above are also sufficient conditions of
equilibrium.

The free-body diagram of the desired section of a truss may have one, two, three
or more unknown forces. The equations of equilibrium written for a section may or
may not be adequate to determine all the unknowns. In case a selected section of the
truss is not amenable to solution, an attempt must be made to locate a section which
includes some of the unknown forces of the desired section that can be determined.
The knowledge gained from the analysis of simpler sections must enable us to
determine all the unknowns. It may be appreciated that the method of joints is a
special case of the method of sections. When a section is chosen in the vicinity of a
joint so as to enclose the joint, the section in question reduces to the joint only.
Equilibrium of the section implies cquilibrium at the joint. The method of joints is
thus the method of sections applied to enclose one joint at a time.
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It is a useful convention in the method of sections 1o indicate the forces on a
section such that the known forces are taken in the correct directions and the
unknown forces are assumed acting away from the section under consideration. On
evaluation, if a force turns out to be positive, the member must be in tension and if
a force comes out to be negative, the member must be in compression, The forces
are named after the names of the members for convenience in recognition.

Example S1.4 A simple structure ABCDE is support- E
ed on a hinge at A and on rollers at B while it carries a
horizontal force of 1000 kN at E as shown in Fig. Ex.
S1.4. Determine the force in member AC, using the
method of sections.

1000 kN

Solution 60°

Method of Sections (a)

A section 8§ can be cut through members AD, AC and
BC as shown in Fig. Ex. §1.4 (Solution), and a consid- im m
eration of equilibrium of cither side of the section should
fead to the force in AC. Consider the upper part of the

structure. The external forces on the part are A 45° 8
(a) 1000 kN at E, acting horizontally 1m
(b) Forces along AD, AC and BC due to the lower Fig. Ex. S1.4

part of the structure; tensile if away from the sec-
tion under consideration.
For equilibrium,
IF,=0; 1000 -ACcos45°=0

EF . =0:-AD - BC-ACsin45° =0
and from the former,
AC =%
= 1414 kN
which shows that the member AC is subjected to 1414 kN tensile force.

Method of Sections (b)

It is instructive to consider the free-body diagram and the equilibrium of the lower
part of the section S§ for the desired purpose and to show that it involves more
work. The additional work is required to calculate the reactions by considering the
equilibrium of the entire structure first. After obtaining that

B, = 1866 kN
A, =-1000 kN
and A= ~1866 kN

the equilibrium of the tower part requires that
IF, =0;A, +ACc0s45° =0
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1000 kN
D ¢
N
/AC
AD -~
B
AB S
1866 kN

Fig. Ex. S1.4 (Solution)

XF, =0; A, + B +AD + BC + ACsin 45° =0

whence
=.1000 _
AC = 0.707 = 1414 kN
which shows that the member AC is subjected to 1414 kN tensile force.
Method of Sections (c)

The section S5 may instead be cut through members AD, AC and AB and the part of
the structure on its right can be considered for equilibrium

ZF,=0; 1000 - AB-ACcos45°=0 (i)
XF,=0; 1866 - AD - ACs5in 45° =0 (i1)
IMp=0;-1000% 1.866 + | X AD + ACXx0.707 =0 (iii)

whence,
AB + 0.707 AC = 1000 (i)
AD + 0.707 AC = 1866 (i)
AD + 0.707 AC = 1866 (iii)

and it can be noticed that the equations (ii) and (iii) arc identical. The three
unknown forces AD, AC and AB cannot be evaluated by only two independent
equations.

Another look on the section reveals that the three forces under question are
concurrent. Such sections which render three concurrent forces as unknowns are not
plausible.
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The way out of this difficulty can be found by evaluating one of thé three
urknowns by considering some other section or joint for equilibrium. In this case,
we notice from the consideration of equilibrium at B, that the force in AB is zero.

Hence, from Eq. (i),

0.707 AC = 1000
AC = 1414 kN
which shows that AC must carry a tensile force of 1414 kN.

Example S1.5 A derrik has ball-and-socket joints at A, B, C and D as shown in
Fig. Ex. §1.5. Determine the forces in links AD, BD and CD when it is supporting a
dead load of 1000 kN.

20 m 1000 kN

15'm

Fig. Ex. §1.5

Seolution  With respect to the given origin O, position vectors of the salient points
are as follows:

OA =-15i
OB =15k
oC =12i-9k
OD =20j

It follows that the unit vectors along the three members all pointing to D are:

R OD-0A  20j+I15i

w =[,{01)= +OA? |“ 25

=0.8j+0.6i

20j-15k
e ="T=0‘3j—0.6k
ecp = 22012149k _ 4 48i4+0.8j+0.36k

25
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Let the magnitudes of forces in members be denoted by AD, BD and CD, then for
equilibrium,
AD(08j+06i)+BD(08j-06k)+CD(-048i+08j+036k)
-1000j=0
This vector equation is written as three component scalar equations:
06AD-048CD =0, for x-direction
0.8AD + 0.8 BD + 0.8 CD - 1000 =0, for y-direction

and -06BD+0.36 CD=0, for z-direction
Solving these equations,
AD =416.7 kN, BD = 3125 kN, CD = 520.83 kN.
The unit vectors were taken pointing to the common D

point D. Now that AD, BD and CD all turn out positive

the members exert forces pointing to D as shown in Fig.

Ex. S1.5 (Solution) which means the members must be 1000 kN
under compression.

Example 81.6 A simple crane rests on a ball-and-sock-

et joint O and it is supported by two strings AB and AC as shown in Fig. Ex. S1.6.
Determine the forces in the cables and the reaction at @ when it holds a load of
1280 kN.

Fig. Ex. $1.5 (Solution)

y
A
4m
D
c 6 m l
! 4
am | m 1280 kN
! 1
4my 8m (<] x
B z
Fig. Ex. S1.6

Solution Position vectors of A, B, C and D are as follows:
0OA=8j
OB=-8i+4k
OC=-8i-4k
OD=4j+61
and the foad applied at D is 1280 j kN.
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The unit vectors along the cables, pointing towards A are

_8j+8i+dk 2. 2. 1
fa =Ty =3itFitgk
8j+8i-4k 2, 2. 1
[T T e ——YY PRy P
& 2 3i+3i-3k

The negative sign implies that the forces exerted by the strings are not pointing
towards A but away from A, which means that they must be in tension. This is
irdeed true for strings and cables.

The ball-and-socket joint at O cannot resist any moment. It can provide only
force reactions. Therefore, using

IF =0

for equilibrium of the crane structure,

2 2 1 2 2 1
?Zo(mii~-§-j+§k)+720(-—§i—-§j—-§k)

~1280j+ R, i+R, j+R, k=0

whence
R, = 960 kN
R, =2240 kN
R,=0
A Rr
R,
RX
Fig. Ex. 51.5(a) (Solution) Fig. Ex. 51.5(b) (Solution)

Taking moments about the joint O,
(-Bi+4K)XABeg +(-8i-4K) X AC ey + (4 + 6 i) X (-1280 j)
(-8} 2;,2: 1 —8i- 2;02:,1
=( 8|+4k)x(3|+3_| 3k)AB+_( 8i 4k)x(3.+3,+3k).4c

+(61+4]) % (~1280 )

(164 8 B B ap (16 s 88 8:) ac
_[ Sk-85+3; 3:)AB [3k+3, 3_|+31JAC 7680 k

=“3000k-%(33-Acn-%(uumk
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Now e052—8i+4k=—2i+k
N J5
=2i-k
and eoe =
T

The moment about axis OB, i.e.,

Mgz =M, -egp must be zero for equilibrium,

[—%(AB—AC)i— %(43‘» AC+ 1-1n40)k][_2i+ "]

J5

16 48— AC)- 2 (AB+ AC+1440)=0

W5 35
=32 16
—— AC =—=x 1440
or m 3..}'3
or AC = =720 kN.

183

By symmetry (or by considering the moment about axis OC), AB = 720 kN.

Example S1.7 A vertical pole CD is supported on a hinge D at the base and two
guy wires tied at its top as shown in Fig. Ex. S1.7. The pole is supporting a
horizontal pull of 1 kN along x-axis. Determine the reactions at the support A, B

and C.

Fig. Ex. $1.7
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Solution Reactions at A and B should be along the guy wires; Reaction at C
consists of R,, R, and R,.

From the coordinates of the points A0, 3, 1), B(0, -3, 1), C(4, 0, 0) and (4, 0,
4), unit vectors along the wires are

epn=(-4i+3j-3kV3%  Fp =Fepy

epp=(-4i-3j-3kV34  Fpy=Fep

By symmetry forces in guy wires must be equal. As shown in Fig. Ex. 81.7
(Solution) the force exerted by the wires on the pole at D is

Fps+ Fpg =(-8i-6k//34 F=(-8i-6KF’
For equilibrium of the pole,
(-8i-6K) F* +1000i +Ri+R j+R k=0
The isolated component along y; R, = 0.
—8F” + 1000+ R, =0

~6F’ +R, =0
and IM,=0;4kx(-8i-6Kk) F’ +3kx 1000i=0
D
whence  (-32F” +3000) = 0; F’ =93.75 -1
1im
and F=+34 x9375=547N e
Also, R =8x9375-1000=-250N (BI-6WF
R,=6x9375=5625 N
R 3m
Let us check the solution. Taking moments * R
about D, for example, /
-1000% 1 -4 R, =0; R, = -250 N ¢ )

A —— —1 ..
x

which is the same as before. Fig. Ex. $1.7 (Solution)

Experiment E4
Forces in a Space Frame

OBJECTIVE

To determine the forces in the members of a loaded shear-legs space frame experi-
menially, vectorially and graphically.

APPARATUS
Shear-legs apparatus consisting of two rigid bars AB and AC and a tie-bar AD
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together with a provision for loading at A as shown in Fig. E4.1. Metre rod, spring
balances and standard weights.

Fig. E4.1 Sbear Legs Apparatus

BACKGROUND INFORMATION
Since the frame is in equilibrium, every part and sub-part of the frame must also be
in equilibrium. Consider, for example, the joint A. The forces that act at A to keep it
in equilibrium are the known loads acting vertically downward and the forces along
AB, AC and AD. The directions of AB, AC and AD are determined from coordinate
geometry; only the magnitudes of forces are unknown which may be obtained
experimentally by reading the spring balances installed in the members. Theoreti-
cally, the method of vector analysis or a graphical construction may be employed to
estimate the forces.

Vectorially, let the unit vectors along AB, AC and AD be ab, ac and ad respec-
tively. These are obtained by measuring the coordinates of the end points. For
example, if the origin is chosen at O,

ry=xi+z,k
rp=-yg§

Fp=Tp-Ty=~(xi+ysi+z, k)

= 2 2 2
whence AB = J(x +y2 +23)
¥ Z
A s B . A
AB " ARV ABK

Let the unknown forces be F|, F, and Fy in the members AB, AC and AD
respectively. Then, for equilibrium of the joint A

IZF=0
Fiab+ Fyac+ F;ad-Wk=0

and ab=-

This equation may be written as three cquations, one along each coordinate
direction to obtain the three unknowns.
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Graphically, the forces in the members may be determined in two steps. First, a
fictitious member AO is assumed to replac~ the bars AR and AC. The point A may
then be considered for equilibrium under the action of the load and forces in AQ
and AD. A triangle of forces is drawn whence, by measurement to appropriate scale,
the forces in AQ and AD are determined, as shown in Fig. E4.2,

D fe) p
Fig. E4.2 Construction of Triangle of Forces

It is advisable to draw a scale diagram ADO of the frame with the fictitious
member AO before drawing the triangle of forces. It may be seen that the force in
AD must be F; and the force in AO in F,. The nature of forces in AD and AO is
observed by drawing the arrows of the internal forces and of the external forces on
the members.

Since the force exerted by the member AD on the joint is F3, directed A to D, the
external force acting at A on AD must be equal and opposite to it as shown by the
dotted lines in Fig. E4.3. Outward cxternal forces on AD imply that it must be in
tension. Similarly, the fictitious member AO is observed to be in compression.

The second step is to resolve the force F, along AO into forces F, and F, along
AB and AC respectively. After drawing the force Fi, along AO, the directions of AB
and AC are drawn and the force F,, is resolved into F, along AB and F, along AC
by completing the parallelogram of forces with AQ as the resultant diagonal as
shown in Fig. E 4.4.

External
Force
// , A
Fa A ‘ F,
A F,
Fﬂ
Internal Forces B
D o}
# o]
Extemal I : c
Force
AD in Tension AQ in Compression

Fig. E4.4.. Construction of
Parallelogram
of Forces

Fig. E4.3 Internal Forces in Members
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RESULTS

Experimental values

Force in Vectorial Graphical
member Initial When Force (by analysis procedure

reading loaded difference)

POINTS FOR DISCUSSION

. What are the assumptions made in the vectorial and graphical analyses in

respect of the rigidity and mass of the members?

Concept Review Questions

Tutorial Problems

2. Examine the joints and supports of the frame and comment on the validity of
your analysis in view of the same.

3. Is it possible to calibrate one of the spring-balances to determine the weight
of a given body?

4. Comment on the validity of the assumption of a fictitious member AO lying in
the plane of AB and AC.

1. (a) What is meant by a simple structure?

(b) Differentiate between a structure and mechanism.
(c) Can a simple structure be a space structure?

2. (a) Draw a just-rigid structure with five members and another just-rigid structure
with five joints. Draw one additional member in each of them to render them
over-rigid.

(b) Is it possible to have a just-rigid structure with an even number of members?
Why or why not?

3. In the analysis by the method of joints, should one proceed from a joint on the
extreme left to the joint on the extreme right or the reverse or are there some other
important considerations?

4. Draw the free-body diagram of a member subjected to tension. What would be the
internal forces at the two joints?

5. Recalling the comments on loading conditions, fill in the blanks:

(a) If there are only two members and no external force at a joint,........
(b) If there are three members, two of which are collinear and there is no external
force at a joint,......

6. Illustrate the implication of the Bow's notation. What are the space diagram and rays
diagram?

7. Comment on the graphical method of analysing a simple structure. Under what condi-
tions is the graphical method preferred and for what conditions does it fail?

SL1

Determine the forces in the members of the pin-jointed truss shown in Fig. Prob. S1.1.



188  Engineering Mechanics

c a D (Ans. D, = 3W

D, =2W E,=-3W,

AB = -W (Comp),

BC = -W (Comp),

a a AC=2W (tens),

CD = W (tens.),

BD = 242 W (tens),

A BE = -3W (comp),
1 a B a E DE = 0)

w w

Fig. Prob. §1.1

S1.2 A coplanar simple truss ABCDE is loaded with a force of 50 kN at A as shown in Fig.
Prob. S1.2. Determine
(a) the forces exerted in the members of the truss
(b) the force exerted on the pins at the joints.
{Ans. AB = -86.6 kN (comp) = BC,
AE =50 kN = ED,

EB=0=EC)
A
30°
E
: BW
30°
D 30° .

Fig. Prob. §1.2

S1.3 Using the method of joints or the method of sections, calculate the force in
each member of the trusses shown in Fig. Prob. §1.3. State whether the
members are in tension or in compression

(Ans. AB =406, AC = 34.6, BC = 27.95 kN PN=2J2,MN=2
DE = 29.8, DF = -36.6, EF = 29.5 kN MP=2 LM=2
ON=5PO=0=KP LP =22, KL=5)
51.4 Determine the forces in the members of the given simple truss. (Fig. Prob. §1.4)
AB =100 V2/3

(Ans. CD =-100 V213, DE = 1003 = CE
CB =-100/3 = FE = AF etc)
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SL.6

SL7

S1.8
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B
2m am 2m am

A LA

50 kN
3 kN 2 kN 3 kN

M
L N1
am

K P 0

I 2lm |

3 3
| m I " |
Fig. Prob. §1.3
20 kN

+ -

20 kN 30 kN
Fig. Prob, 51.4

A simple truss is loaded as shown in Fig. Prob. S1.5. Calculate the forces in the
members.
(Ans. AB=BC=0=CD=FE, AC=-240, AH=133 = HG
HC =-100, CG = 24.0, CD = 0.0 = DE, GF = 106.7, GE = 96.1 kN)
Compute the forces in the members of the given pin-jointed truss. (Fig. Prob. 51.6).
(Ans. DH =9.1, BH = 12,93, EH = 20.0 AB = 28.28,
AG =400, AF = 28.28, GE = 27.87 kN)
A triangular simple truss is loaded as shown in Fig. S1.7. Determine the forces in the
members.
(Ans. CD =046, AD = 10.15, BD = 10.60, BC = 0.55 = AB)
A frame is subjected 1o a horizontal load 1o 2 kN at C, a vertical load of 1 kN and a
moment of 1.5 kNm at the mid-point of DE as shown in Fig. Prob. S1.8. Determine
the reactions at the support A and 8 and the force on the pin at D.
{Ans. R,, =-2 kN, R,, =~-121 kN, Rg = 2.21 kN; Zero)
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A B
20 kN
2m
H c
10 kN 30 kN
2m
¢ D
20 kN
2m
F E
| !

[ 3m !
Fig. Prob. 51.5

10 kN 20 kN
A B c 45°
1
H | e
N |
1 b
] ¢ AN
I——a—.La-—---—a a——l
Fig. Prob. 51.6
10 kN
B8
2m
3m 3m
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aom

|
I 8.0 m |

Fig. Prob. 51.8

S1.9 A ball-and-socket jointed space frame is loaded with a single load of 10 kN at C in the
y-z plane as shown in Fig. Prob. 5§1.9. All dimensions are in metres. Determine the
force in the member CG.

(Ans. CG = 7.07 kN (comp); AC = BC = -1.6;
DG = FG = 1.6; EG = 3.35 (comp))

10 kN z
€(0. 0, 2) G (0.6 2)
F (-2, 6, 0)
Bi{-2,0,0
E (0, 8, 0)
D 5 6 0

Fig. Prob. 51.9

$1.10 Determine the forces produced in the bars of the system due to the horizontal force P
applied at the hinge B (Fig. Prob. 51.10)
[Ans. AB = AD = P (tension); BC = 0 AC = 1.414 P (comp)]

A 8 P

D c
Fig. Prob. $1,10

Look up Hints to Tutorial Problems!
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Multiple-Choice Questions

Select the correct or most appropriate resp from g the available al, ives in the
following multiple-choice questions:

1. If, for a plane pin-jointed truss, m = 2j — 3 with the usual nation,
(a) it must be a just-rigid truss
(b} it cannot be over-rigid over any part of the truss
(¢) it may or may not be a just-rigid truss
(d) it cannot be non-rigid over any part of the truss

2. The method of joints for the analysis of forces in the members of a pin-jointed truss
(a) is a special case of method of sections
(b) does not need the determination of reactions at the supports
(¢) works equally well, irrespective of starting point for the analysis
(d) fails when there are only two members at a joint and no external load is applied

there

3. In the method of sections for the analysis of forces in the members of a pin-jointed
truss,
(a) the section can be cut through any set of members for equal ease of analysis
(b) the sections must be cut so that the number of unknowns is limited and deter-

mined by employing the conditions of equilibrium.

(c) care must be taken to ensure that the section being cut is in equilibrium
(d) the sections to be cut are as small as possible

Answers to the Multiple-Choice Questions
1 () 2 () 3 (b)



TaN Ricip BEAMS

§2.1 BEAMS AND LOADING

Beams are structural members primarily subjected to transverse forces. Forces in
the longitudinal direction and twisting moments about the longitudinal axis may act
in addition to the transverse loading. One basic feature of a beam is that internal
forces called shear forces and the internal moments called bending moments are
developed in a beam so as to resist the applied-force system. Beams dealt with
under this section are assumed to be rigid; they do not deform under the application
of loads. Further, beams are qualified as thin to imply that their transverse dimen-
sions are negligible in comparison with their length. These assumptions are univer-
sally accepted in studying the shear-force and bending moment variation over the
span of a beam.

A beam may be simply supported if one of its ends is hinged and other is
supported on a roller as in Fig. $2.1(a). A becam may be confined within the space
between the supports or it may extend on one or both ends with forces acting on it;
it is then said to be an overhanging beam (Fig. S2.1(b)). If a-beam is fixed on one
end and is free on the other end, it is said to be a cantilever beam or a cantilever as
shown in Fig. S2.1(c).

A beam may be fixed on one or both ends as shown in Figs. $2.1(d) and (f). It
may as well be propped by a support within the span. A beam may also be support-
ed on hinges at a number of points over the span; it is then said to be a continuous
beam as in Fig. S2.1(e). Beams may be combined by means of ball-and-socket
joints or otherwise to constitute a longer combined beam as shown in Fig. S2.1(g).

A beam may be loaded in a variety of ways. A concentrated load is that which
acts over so small a length that it is assumed to act at a point. On the other hand, a
distributed load acts over a finite length of the beam. A distributed load may be
uniform over the length or it may vary uniformly or non-uniformly. A distributed
load is specified by the intensity of loading per unit length, say w N/m in SI units. A
uniformly-distributed load, therefore, implies a constant intensity of loading w,
whereas a uniformly-varying load implies the increase or decrease of loading inten-
sity at a constant rate along the length

w=w, +kx (82.1H
where k is the rate of change of the loading intensity, w; being the loading at the

reference point. Similarly, distributed load may be represented by a parabolic, cubic
or a higher order curve for non-uniformly varying load

w=w +kx+ kx? (parabolic)
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(a) Simply Supported (b) Overhanging
(c) Cantilever (d) One End Fixed or Propped Cantilever
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(e) Continuous Beam

{f) Fixed-End Beam

(g) Combined Beam
Fig. $2.1 Types of Beams and Reactions at Supporis

w=wy + ke + ko + kg’ (cubic)
w=w, + kX + kx + x4+ kx? {(quartic)
A load may also be a combination of a uniform load and a uniformly-varying load:

a uniform load is shown by a rectangular distribution, a uniformly-varying load by a
triangle and the combination by a trapezium drawn on the beam.

§2.2 SHEAR FORCE AND SF DIAGRAM

The shear force in a beam at any section is the transverse force tending to cause
shear across the section.

Consider a simple beam supported at its ends and subjected to an external
concentrated load P at a given point p as shown in Fig. §2.2. The shear force SF at
a cross-section S§ is the transverse force tending to shear the beam at this cross-
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Shear-force Diagram
Fig. $2.2 Shear Force: Definition, Sign and Diagram

section. In order to determine the shear force, consider the free-body diagram of a
part of the beam on either side of the section SS. The free-body diagram of parts A
and B of the beam are shown in Fig. S2.2. The transverse force F acting on the
cross-section §§ is the shear force at that section. The sign of the shear force should
be determined with reference to the sign convention:

Sign Convention

The sign convention for shear force is A positive shear force is that which acts in a

positive direction on a positive face or in a negative direction on a negative face.
It may be understood that a face is said to be positive if the outward normal to it

acts along the positive coordinate direction and negative if otherwise. The concept
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of positive and negative faces as well as the sign convention for shear force is
illustrated in Fig. 52.2.

Shear-force Diagram _

The shear-force diagram generally referred to as SF diagram is a graph showing the
variation of shear force along a beam. If the positive shear force is shown above an
arbitrary reference line OO and the negative shear force below it, the line joining
the extremities of the shear forces at different points is the shear-force diagram. The
SF curve over a given length may remain constant, vary lincarly or non-linearly
depending upon the loading condition. In general, for no load between two points,
SF remains constant, for uniformly distributed load SF varies linearly and for non-
uniformly varying load SF varies non-linearly. The implication of this stalement
will be clear when we relate the loading diagram to the shear-force diagram.

Drawing of Shear-force Diagram

The drawing of a shear-force diagram is an important task because the SF diagram
provides a picture of the shear force at all points along the length of the beam. The
procedure to plot an SF diagram is as follows:
1. Draw the symbolic loading diagram of the given beam to scale along the
length of the beam.
2. Find the reactions at the supports by using the fact that the entire beam is in
equilibrium and that

IF=0
and XM = 0 about any point; say about the points of the supports

3. Start from the right-hand end of the beam for convenience. The shear force at
the end equals the loading or the reaction, as the case may be, in magnitude
and in direction.

4. The shear force at a section to the left of the right-hand end is obtained by
considering a free-body diagram of the length of the beam up to that section.
In general, the SF equals the sum of the loads and reactions starting from the
right up to that section; positive, if the sum is positive and negaltive, if the sum
is negative. Loads and reactions are referred positive upwards, i.c., along the
positive y direction.

5. Determine the SF at a number of salient points, i.e., where the SF changes in
magnitude or sign and where the SF is an extremum, i.e., maximum or mini-
mum.

6. Plot the SF diagram (o a suitable scale, preferably under the loading diagram
with the same scale along its length.

Consider, for example, the beam shown in Fig. §2.2. From the loading diagram,

the reactions, R, and R, are determined from the relations governing the equilibrium
of the beam

R,+R,=P
and R, xab=Pxap (for moments about a)

or R, x ba=Pxbp (for moments about b)
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Starting from the right-hand end, the shear force equals the reaction itself; it is
positive because the reaction is positive, i.e., upwards. Since there is no other force
between b and p, the shear force remains same up to p. At p, the load p acts
downwards bringing the shear force to

F=R,-P=-R,
which is now equal to the reaction at a in magnitude but negative in sign. From p to

a the shear force remains the same, ie., - R,. The SF diagram has consequently
been drawn under the beam.

§2.3 BENDING MOMENT AND BM DIAGRAM

The bending moment in a beam at any section is the transverse moment tending to
cause bending of the beam in the plane of loading.

Consider a simple beam supported at its ends and subjected to an external
concentrated load P at a given point p as shown in Fig. $2.2. The bending moment
al a cross-section S§ is the transverse moment tending to bend the beam at this
cross-section. In order to determine the bending moment M, consider the free-body
diagram of a part of the beam on either side of the section 5§ as shown in Fig. $2.3.

+ BMM =R, -ap= Rb . bp
0 1]
1 P
Bending-moment Diagram
BM (Along +2)
y
Positive Face
x
BM (Along -2) +2
._@ (z Positive Outwards)
Negative Face

Sign Convention: Positive Bending Moment
Fig. 52.3 Bending Moment: Definition, Sign and Diagram

The moment of the forces of either part of the beam about the section results in the
bending moment. The magnitude of the bending moment is therefore, given by

(P X ps - R, X as) or R, % sb
considering the moments acting on part A or part B due to the other part of the
beam. These two expressions imply the same value because the algebraic sum of the
moments about any point must be zero for equilibrium of the whole beam. The sign
of the bending moment should be determined with reference to the sign convention:
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Sign Convention

The sign convention for bending moment is A positive bending moment is that
which acts in a positive direction (shown counterclockwise) on a positive face or in
a negative direction on a negative face.

The Bending Moment Diagram

The bending moment diagram generally referred to as BM diagram is a graph
showing the variation of bending moment along a beam, If the positive bending
moment is shown above an arbitrary reference line OO and the negative bending
moment below it, the line joining the extremeties of the bending moments at differ-
ent points is the BM diagram. The BM curve over a given length may remain
constant, vary linearly or non-linearly depending upon the loading condition. In
general, for no shear force between two sections, the BM remains constant; for
constant shear force, the BM varies linearly; for varying shear force, the BM varies
non-linearly, Further implication of this statement will be clear when we relate the
BM, SF and the loading diagrams.

Drawing of a BM diagram is an important task because the BM diagram provides
a picture of the moments tending to bend the beam at all points along the length of
the beam. The procedure to plot the BM diagram is as follows:

1. Draw the symbolic loading diagram.

2. Determine the reactions at the supports.

3. Start from the right-hand end of the beam for convenience. The bending
moment at the end cquals the applicd moment or the reaction moment, as the
case may be, in magnitude and direction.

4. The bending moment at a section to the left of the right-hand end is obtained
by the summations of the moments due 1o the reactions and other forces
acting on the right-hand side only. This bending moment acts on the other
part of the beam with a positive face and hence provides the bending moment
with proper sign in accordance with the sign convention.

5. Determine the BM at a number of salient points, i.e., where the BM changes in
magnitude or sign and where the BM is an extremum, i.e., maximum or
minimum.

6. Plot the BM diagram to a suitable scale preferably under the loading diagram
and the SF diagram with the same scale along the length.

For the simple beam shown in Fig. §2.2, the bending moment at the right-hand end
is zero. At a section 85, sb from the right end,

M, =R, % sh

Al a section at point p,
M, =R, x pb

Al a section to the left of point p the bending moment can be obtained correctly
in magnitude and direction by the summation of the moments of the forces to the
right of it as outlined. However, it may sometimes be more convenient to determine
the summation of the moments from the left-hand side. In that case a negative sign
is necessary because that moment would act on a negative face of the right-hand
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part of the beam. It is therefore possible to draw the SF and BM diagram starting
from either end. It may also be added that the SF and BM diagrams need not
necessarily be drawn to scale. The salient values should be mentioned in the dia-
grams.

$2.4 RELATIONSHIP BETWEEN BENDING MOMENT, SHEAR
FORCE AND LOADING

The bending moment, shear force and loading at any section of a thin beam subject-
ed to distributed loading are mutually related.
Consider a continuously-loaded thin beam with variable loading w per unit length.

Clearly, w = w(x) (52.2)

The loading has been shown positive upwards, i.e., along the positive y-direction in
Fig. 52.4.

In order to derive the desired relationship, consider the equilibrium of a differen-
tial element Ax of the beam as shown in an enlarged sketch. The differential

T
= —
T SF + ASF

i / A .BM+AEM
‘///;} L

SF Ax
Fig. $2.4 A Section of a Beam

y —

element of the beam has a positive face on the right and a negative face on the left.
Consequently, the directions of positive shear force and bending moment on these
faces are mutually opposed as also shown in the same sketch. It is also conventional
to assume increments in the shear force and in the bending moment in the positive
x-direction over the element of the beam. The shear force changes from SF to SF +
ASF and the bending moment from BM to BM + ABM over the length dx. For
equilibrium, '
1. The sum of the forces in the y-direction must be zero, i.c.,
SF + A(SF) - SF + wAx=0

A(SF)
Ax

whence
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which, in the limit Ax — (), becomes

d(SF) _
5 =

2. The sum of the moments in the plane of the bending, i.e., about the z-axis
must be zero. Taking the moments about the point F on the positive face,

BM + ABM — BM + SFAx - wAxAx/2=0

- (82.3)

ABM) _ o, WAX

whence Ax 2

which, in the limit A x — 0 becomes

d(BM)
dx

=-SF (52.4)

From the two conditions of equilibrium, it follows that for a distributed-loaded thin
beam,
1. The rate of change of shear force along the length of the beam equals the
loading with a negative sign,
2. The rate of change of bending moment along the length of the beam equals
the shear force with a negative sign.
3. By combining Eqs. (S2.3) and (S2.4),

d2(BM) _
de?

which shows that the second longitudinal derivative of the bending moment equals
the loading at that cross-section.

It is interesting to observe the implications of Eqs. (S2.3) and (S2.4) in sketching
the SF and BM diagrams.

From Eg. (S2.3), by integration,

(S2.5)

SF,-SF,= jwdx (S2.6)

1

It shows that the difference of shear force between two points along the length of a
beam cquals the integral or the summation of the vertical forces over the length
which is also equal to the area under the loading diagram. If there is no loading
between two points, there can be no change in the shear force.

In order to start the construction of an $F diagram, it is more convenient to write
the integral equation (52.6) as

SF= [ wdx+SF, (82.7)

where SF, is the shear force at the origin O selected at the end of a beam. SF,
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equals the loading at the end or the reaction force on the beam if it is supported at
the end. It can also be observed from Eq. (S82.7) that

d(iF) W
d (dSF)) __dw
and Z(T) =" dx

which imply that

1. The slope of the SF diagram equals the negative of the loading at that section.
If the loading is constant, the slope of the SF diagram must be constant, i.e.,
the shear force varies linearly, If the loading is zero, the shear force remains
constant. If the loading is variable, the shear force varies non-linearly.

2. The rate of change of the slope of the SF diagram equals the negative of the
rate of change of the loading. It shows that the curve of the SF diagram is one
degree higher than the curve of the loading diagram.

Table §2.1 Relationship between Loading and SF Diagram

Type of Loading Shape of the Loading Shape of the SF
Diagram Diagram
1. Zero Zero line Rectangular
2. Uniform Rectangular Triangular
3. Uniformly varying Triangular Parabolic
4, Linearly varying Parabolic Cubic

3. Although the case of concentrated loads is not covered by these relationships,
it is possible to use these relations in the presence of concentrated loads and
reactions provided these are applied between the positions of the concentrated
loads and reactions and nor ar the positions of the concentrated loads and
reactions.

From Eq. (S2.4), by integration.

%3
BM, - BM, = |SF dx (52.8)
xy
It shows that the difference of the bending moments between two points along
the length of a beam equals the integral of the shear forces over the length which is
also equal to the area under the SF diagram. If there is no shear force over a length,
there can be no change in the bending moment.
It is perhaps more convenient to write the integral equation as

BM = - [SFdx + BM, (52.9)
0

where BM,, is the bending moment at the origin O selected at the end of the beam.
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BM,, equals the moment at the end or the reaction moment on the beam if it is
supported at the end. ‘
It can also be observed from Eq. (52.9) that

d(BM)
dx

==SF

w

d (d(BM) _  d(SF) _
A\ dx )T de T

which imply that

1. The slope of the BM diagram equals the negative of the shear force at that
section. If the shear force is constant, the slope of the BM diagram must be
constant, i.e., the bending moment varies linearly. If the shear force is zero,
the hending moment remains constant. If the shear force is variable, the
bending moment varies non-linearly.

2. The rate of change of the slope of the BM diagram equals the negative of the
rate of change of the shear force. It shows that the curve of the BM diagram is
one degree higher than the curve of the SF diagram.

Table §2.2 Relationship between SF and BM Diagrams

Type of Loading Shape of the SF Shape of the BM
Diagram Diagram

Zero Rectangular Triangular

Uniform Triangular Parabolic

Uniformly varying Parabolic Cubic

Parabalic Cubic Quartic

3. Although the step variations in the shear force due to concentrated loads or
otherwise are not covered by these relations, it is possible to use these rela-
tions in the presence of such step variations provided these are applied
between such points and net ar such points.

Example S2.1 Draw the SF and BM diagrams for the beam loaded as shown in
Fig. Ex. §2.1. Also locate the points of contraflexure.

Solution From the conditions of equilibrium of the beam
IF=0;-10+R -4%x2-10+R,-2%x2=0
Ry + Ry=32

IMp=0; -10X1-8x1-10X3+R;x4-4x5=0
R, =12kN and Ry =32-12=20kN
The shear-force distribution in kN is calculated as follows:

O<x<1 SF-10=0;5F=10
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10 kN 4 kN/m 10 kN 2 kN/m
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Ry R,
+10 +10
+8 +8
0 0
/s —é /
-4
~10 SF Diagram
+4
+2
0 ; PVU
-4
-10 BM Dlagrarn
Fig. Ex. §2.1
Atx=1 SF changes from +10 to - 10
l<x<3 SF-10+20-4(x-1)=0;SF=-14 + 4x
Atx=3 SF=-2
I<x<4 SF=-2
Atx =4 SF changes from -2 to + 8.
4<x<5 SF-10+20-8-10=0;5F=8
At x=15 SF changes from +8 to -4

203
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S5<x<7 SF-104+20-8-10+12-2(x~-5)=0;S5F=2x- 14
Atx=7 SF =0, as is expected at the end A.
The bending-moment distribution in kN m is estimated as follows:
O<x<1 BM+ 10x=10; BM = -10x
Atx=1 BM=-10
l<x<3 BM +10x-20(x- 1) +4(x- 1’2 =0
BM =-2(x- 1)* + 10x - 20
Atx=1 BM=-10;atx=2 BM=-2

Atx=3 BM=2
J<x<d4 BM+10x-20(x=1}+8(x=-2)=10
BM=2x-4

Atx=3 BM=2;atx=4BM=4

decx<S BM+10x-200x - 1)+ Blx-2)+ 10(x-4)=0
BM = -8x + 36

Atx=4 BM=4;atx=5BM=-4

5<x<7 BM+ 10x -20(x - 1) + 8(x — 2) + 10(x - 4)
~12x-5)+2x - 52 =0

BM=—(x-5)+4xr-24
Alx=5 BM=-4;atx=6 BM =-1
Atx=7 BM =0, as cxpected at the end F.

The points of contraflexure can be located by observing the change of sign of
BM
For Py, -2(x~ 1> + 10x-20=0 x =238m

For P;, -8x+36=0 x =450m

Example S2.2 A beam carrying a uniformly-distributed load rests on two supports
b m apart with an equal overhang of @ m at each cnd. Determine the ratio b/a for the
maximum bending moment to be as small as possible. Use this result to determine
the most economical length for a railway sleeper if the rail centres are 1.6 m apart.
and also for the metre-gauge rails.

Solution Consider the variation of the bending moment along the length of the
beam . ’
For O<x<a BM+wx - xf2=0; BM = -wx"/2

For x=a BM =-wd*2
The reactions are symmetrically located; these are each

w(2a + b2
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Fig. Ex. 52.2 (Solution)

For a<x<(a+b) BM+wx-x2-w2a+b¥2-(x-a)=0
BM = — wx*I2 + wax — wa® + whbxl2 - wab/2

As is clear from the nature of the BM diagram (Fig. Ex. S2.2 (Solution)) the
bending moment can be maximum either atx=aand x=a + borat x=a + bf2.
The maximum bending is the least when the numerical values at these places are
equal:

wa'f2 = - w(a + bI2)*12 + wala + b/2) - wa®
+ whla + bi2)12 = w abl2

whence, cancelling w and simplifying,
a =bl8
and alb =1/48

It is clear that, for @ > b//8 the BM at x = q, i.e., at the supports is maximum and

for a < b/+J8 the BM at x = a + b/2, i.e., at the centre is maximum.
The railway slcepers rest uniformly on the ground and are subjected to two equal
point loads as a first approximation. For 1.6 m gauge rails,

b=1.60;a=16//8 =057m

The most economical length of the railway sleeper is, therefore,
[=057+1.60+057=274m

For the metre gauge rails,

b=1.00;a=1/8 =0.36m
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and the most economical length of the sleeper is
1=036+1+036=172m

Example 82.3 Figure Ex. $2.3 shows the SF diagram for a beam supported at two
points and loaded in some manner. Determine the position of the supports and
details of loading over the entire length. Also, determine the positions of maximum
positive and negative bending moments and the points of contraflexure.

6 kN

— iM f—3 m

P B
1.5 kN 1.5 kN I

0 0
A B c D E
-25 kN -2.5 kN iy
Fig. Ex. 52.3

Solution  Conclusions in respect of the relationship between the loading, shear
force and BM diagrams can be drawn from the fact that

F .
deh ®
and % = -SF i)

Between A and B, the shear force is constant; the loading must be zero. At A and
at B, the shear force changes abruptly indicating the presence of concentrated loads
at A and B. Positive shear force at A and from A to B indicates negative, i.c.,
downward load of 6 kN at A. A change of sign of SF at B requires an upward
concentrated force of 8.5 kN at B. Between B and C, there is no loading. Again, at
C, there must be a downward load of 4 kN raising the SF to 1.5 kN. Again, no
loading between C and D and an upward force of 4.5 kN at D is observed from the
SF diagram. From D to.E the SF increases linearly showing that the loading must be
uniform and downward. This load is, by difference, 3 kN.

The upward forces at B and D are the reactions from the supports as shown in
the loading diagram Fig. Ex. $2.3 (Solution).

The bending moment distribution in kN m is calculated as follows:

For O<x<l, BM +6x =0
BM =-6x
At x=0, BM =0,
At x=1, BM =-6
For 1<x<4, BM '+ 6x-85(x~1)=0

BM =25x-85
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Fig. Ex. §2.3 (Solution)

At x=1, BM =-6,
At x=4, BM =15
For 4<x<6, BM +6x-85(x-1)+4(x-4)=0
BM =-15x+15
At i=4, BM =+15
At x=6, BM =-15
For 6<x<(6+L), BM +6x-85(x-1)+4(x-4)-4.5x-6)

+3(x-6)2L=0
BM =+3x-19.5 + 3(x - 6)/2L
At x=6, BM =-135
At x=6+L BM =45L-15
Since the BM at E should be zero,
45L-15=0;L=033m

The total length of the beam is, therefore, 6.33 m.

The maximum positive bending moment occurs at C and its value is 1.5 kN m.

The maximum negative bending moment occurs at B and its value is — 6 kN m,

Points of contraflexure, P, and P,, where the bending moment changes sign, can
be located as follows:

BP/6 = (3 - BP,)/1.5; BP, = 2.4
CP,J15 =2-CP,15; CPy=1

The points of contraflexure are, therefore, at distances of 3.4 m and 5 m from the
left end A of the beam.
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Example S2.4 A log of wood, specific gravity 0.78, 3 m long and 25 cm x 25 cm
in cross-section floats in water. Determine the load that should be placed centrally
on the log so that the log is just completely immersed in water. Draw the SF and
BM diagrems of the log.

Solution The log of wood is subjected to an upward hydrostatic force from below,
as shown in Fig. Ex. S2.4 (Solution) the hydrostatic pressure being

p =p gh=1000x 9.81 x 0.25 = 2452.5 N/m?

which comes to an upward uniform loading

¥y '

0pb—=x

c
. ST T IS TTTTT TSI TSI ST TSI S ST T ST TN
Hydrostatic nﬂm
|

Force I Rk S s et e e W
Loading Diagram Log

\l\l\Jc

SF Diagram

Eall

° [
BM Diagram
Fig. Ex. 2.4 (Solution)

/

/

wy =2452.5 x 0.25 =613 N/m
The weight of the log appears as downward uniform loading
w, = 0.78 x 1000 % 9.81 x 0.25 x 0.25 = 478 N/m
The effective uniform loading is
w=w, —w, =613 - 478 = 135 N/m upward
The centrally placed wéight should, therefore, be
W=135x3=405N

in order to keep the log in equilibrium.
The shear-force distribution is calculated thus:

For D<x<1.5, SF + 135x = 0; SF = -135x
At x=0, SF=0
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At x=1.5, SF changes from —202.5 N to + 202.5 N

For 15<x<3, SF + 135x - 405 = (); SF = 405 - 135x

At x=15, SF=2025N

At x=3, SF =0, as expected at the free end
The BM diagram can be plotted from the following:

For O<x<15, BM - 135x. x/2 = 0; BM = 67.55

At x=0, BM=0;atx=15BM=152Nm

For 1.5<x<3, ~ BM - 135x. x/2 + 405(x - 1.5)=0

BM = 67.5¢* - 405(x - 1.5)
At x=15 BM=152Nm
At x=3, . BM =0, as expected at the frec end

Example S2.5 Draw the SF and BM diagrams of the beam shown in Fig. Ex. §2.5.

Solution From the equilibrium of the beam,
5F =0:R, - (12+12x5-1= 0; R, =475 kN

1 kN/m "
0.5 kN/m ‘/
b O N PR
S5kNm 2 kN
t 5m / 20m

05m
Fig. Ex. §2.5
=1 kN
~4.75 kN
| —
SF Diagram
=347 kN ~228kNm /L/\’JJ/’
| —

BM Diagram
Fig. Ex. $2.5 (Solution)
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R,-2 =0;R,=2kN

75
IM;, =0 M- j wrde=5-1x10=0
29

where the loading w is determined as a function of x as follows:

w=ax+b
0.5=25a+b
I.[}:?.Sa+b}a—0'l'b_0'25
or w=0Ix+ 0.25
and M=347kNm
Consideration of the shear force at different sections shows that
For 0<x<25, SF+475=0; SF=-475kN
X
For 25<x<75, SF+475 - [ (0.25+0.1x)dx =0
25
. SF = 0,05x* + 0.25x - 5.67
At x=25, SF=-475kN
At x=50, SF=-3.17 kN
At x=1725, SF =-1.00 kN
1.5
For 71.5<x<10, SF+475 - [ (0.25+0.1x)dx =0
2.5

SF=-1.00 kN

The bending moment at different sections is determined as follows:

For 0<x<25 BM -4.75x 4+ 34.7=0; BM = 4.75x - 34.7
At x=0, BM = -34.7 kN m
At x=2.5, BM =-22.8 kN m
For 25<x<73, BM = 4.75x + 34.7 + (0.25 + 0.1)(x - 2.5)

BM =475x - 347 - 0.125 (x - 2.5)°
0.05x(x - 2.5)° + 0.033 (x - 2.5)°
At x=25, BM =-228kNm
At x=50, BM=-1177kNm
At x=125, BM=-715kNm
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For 75<x<8, BM varics linearly from =7.5 kN m to -7 kN m
At x=8, BM changes abruptly from -7 kM mto -2 kN m
For 8<x<10, BM varies lincarly from — 2 kN m to 0.

Example S2.6 Compute the shear force, axial force and bending moment over the
length of the bent beam shown in Fig. Ex. $2.6.

50 N/m

i

e
e

4m

Fig. Ex. 52.6

Solution From the equilibrium of the beam,
IMy=0;-300-14R, +50x4%x5=0; R, =50 N
EF=0;-50x4 +50 + Rey=0; Ry = 150 N; Ry =0

Consider a section at a distance s from A along AB. From the free-body diagram
of the beam segment (Fig. Ex. $2.6 (Solution)).

AF sin 45° + SF cos 45° + 50 =0
AF co5 45° - SF sin45° =0

whence, AF=8F=-70.7TN
BM = 50 5 cos 45°
=3535s
At 5=4.24, BM =150Nm

Consider now a section between B and C. From the free-body diagram,
SF+50=0;SF=-50Nand AF=0
BM - 50(s —4.24 + 3) =0
or BM = 505 - 62.0
At s=424, BM=150Nm;ats=824 BM=350Nm
From the free body of a section between C and D of the beam,
SF + 50 - 50(s — 4.24 - 4) = 0; SF = 505 - 462
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At

At
At

s=12.24,

5 =8.24,
5=12.24,

50 Nfm
e b by e
—~-
s
I"5)’5‘.&!
4 AF
o :

Fig. Ex. 52.6 (Solution)
AF=0
SF=150N
BM-50(s —424 +3)+50(s - 424 - 42 =0
BM = 505 - 62 — 25(s - 8.24)°
BM=350Nm
BM=150Nm

For a section between D and E, from the free-body diagram of the part on the

left,

whence

SFcos 8- AFsin 8+ 50-200=10
SFsin 8+ AFcos 8=0
SF =150 cos 8and AF = =150 sin 8

BM-50(s-424+3+3sin @ +2002+3s5in 6 =0
BM = 505 — 450 sin 8 - 462



At 5=12.24,
At s=12.24,

until F where these values drop down to zero.
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BM=150Nmand =0
BM =-168 N m and 8= /4

At E, the BM changes abruptly from —168 N m to 132 N m and varies linearly
down to zero between E and F. The shear force and the axial force are given by

SF =150 cos 8; AF=-1505sin 8

Example S2.7 An overhanging beam AB 20 m long simply supported at A and D
carries a uniformly-distributed load and two concentrated loads as shown in Fig.
Ex. $2.7. Determine the location of the supports placed 12 m apart sharing the load
equally. Draw the BM diagram and locate the points of zero shear force in the

beam.

Solution From the equilibrium of the beam,

5t
0.6 vm
W B
C D
I: f 12m 1
20m
Fig. Ex. §2.7

IF =O;Rc+Rp—3-06x20-5=0

Rc+Rp=20
and using the condition Re=Rp,
R-=10=R,
IM, =0; 10L + IO(L+12)-5%x20-20x06x10=0
whence L =5 m, the distance of C from A.

For evaluating the bending moment in tonne metres along the beam, taking the
origin at A and proceeding for the equilibrium of different sections:

0<x<5 BM+3x+06642=0; BM =-3x-03x°

At
At
At

x=0,
x=2.5,

x=5,

BM =0, as expected at the end
BM =-9.375
BM =-225

5<x<17TBM+3x+0.6x2-10(x-5)=0

At
At
At

BM =7x-0.3x" - 50

BM =-225, providing a check
BM =-93

BM =-17.7
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17 <x <20 BM +3x+ 062 - 10 (x—5) = 10(x = 17) =0
BM = +17x - 0.3x* - 220
At x=17, BM = -17.7, providing a check
At x =20, BM =0, as expected at the end

The BM diagram is shown in Fig. Ex. §2.7 (Solution). There is no point of
contraflexure in the beam because the bending moment does not change sign at any

point.

o X 1.67m—]
A g - f ]
177
225

Bending-moment Diagram
Fig. Ex. $2.7 (Solution)

The point of zero shear in the beam corresponds to the location of the minimum
bending moment:

% (Tx-03x*-50)=0

7-06x=0

or at x = 11.67 m; at point M as shown.
It may also be noted that the shear force changes sign, i.e., passes through zero at
points C and D but the value at these points is not said to be zero.

Example S2.8 A flat plate (4 m x 1 m) (Fig. Ex. $2.8) hinged at the top 1 m edge
serves as a wide wall of a tank containing oil of specific gravity 0.9 to a depth of
3 m above the lower edge of the plate. De-

termine the horizontal force required at the T
lower edge of the plate to keep it in equilib-
rium. Draw the SF and BM diagrams of the
plate.

B) Hinge —= y

Solution The pressure at a depth h in oil
is given by

p=pgh
=900 x 9.81 x h = 8829h N/'m*
A
= 8.83h kN/m®

Fig. Ex. $2.8
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0
] Hinge
im
x ¥
, t
m Pressure m
3m Profile
3974 KN——
| 29.80
kN
-994
9.94 9.84 kN
———
25m ]x
. l 8.83 kN/m
1 h
—pd
+29.80 29,80 kN
—= BM —= SF

Bending Shearing Loading
Moment Force Diagram
Diagram Diagram {Load in kN}
(BM in kN m) (SF in kN)

Fig. Ex. $2.8 (Solution)

Total hydrostatic force acting on the plate is

3
L]

=[8.8342/2]) =8.83x9/2

=39.74 kN

which acts at 1 m from the base of the plate, i.c., at 3 m below the hinge.
For equilibrium of the plate
IM, =0
4F=39T74x3
whence F=29.80 kN

The reaction at the hinge 0 must be (39.74 — 29.80) = 9.94 kN towards right in
the horizontal direction. -
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The shearing force is estimated as follows:

For 0O<x<l], SF =-994 kN
For l<x<d,
&k
or 0<h<3, SF=-9.94 + [ 8.83h. (1 x dh)
(1]
=-9.94 + 441H° kN
- _ [o9a _
which is zero at h= 241 =L50m
or at x=150+1=25m
and maximum being -~ 994 + 441 x 3% or 29.80 kN
At h=3morx=4m

which was expected because the reaction of 29.80 kN would bring it to zero at the
end.

The bending moment is calculated as follows:

For 0 <x<l, BM =994xkN m

At x =1, BM =994 kN m

For 1 <x<4,

or 1 <h<3, BM =9.94x-4.41 - hf3

=9.94(h + 1) - 147K
=994 +9 +94h - 1.47h kN m
It may be seen that BM is maximum at A= 1.5 m.
Maximum BM =9.94 + 994 x 1.5 - 1.47x 1.5’ = 199 kN m
It should also be appreciated that, at A = 3 m, the BM reduces to
094 +994x3-147x3"=0

as is expected at the lower end of the plate.
The SF and BM diagrams are consequently as shown in Fig. Ex. §2.8 (Solution).

Experiment E5

Shear Force and Bending Moment in a
Beam

OBJECTIVE

To determine the shear force and bending moment at a cross section of a beam and
to compare the same with the corresponding theoretical values.
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APPARATUS

A simply supported level beam with provision for loading at the desired points and
spring balances provided to enable the measurement of shear force and bending
moment at a cross section.

BACKGROUND INFORMATION

The shear force at a cross section X of a beam is defined as the transverse force
tending to cause shear across the section. The bending moment in a beam at any
cross-section X is the transverse moment tending to cause bending of the beam in
the plane of the loading.

Experimental determination of the shear force and bending moment at a cross-
section is made by improvising a beam in two parts and by measuring the reaction
of one part on the other.

Initially, the unloaded beam is positioned to be horizontal by adjusting the wing
nuts provided on the spring and the initial readings on the spring are noted. The
beam is then loaded as desired. This may be achieved by suspending masses m,, m,
and m; at three places at distances of x;, x, and x; from the left end A as shown in
Fig. E5.1. The loads acting at these locations are, therefore, mg, m,g and msg. The
two parts of the beam tend to get disturbed from the horizontal position on the
application of the loads. The wing nuts are turned suitably to bring them in the
horizontal position.

A = B
X
_@_ m B =

"!_'{

¥,
a2

0b—= x

>

)

Fig. E5.1 Measurement of Sbear Force and Bending Moment

[ [

The magnitude of the shear force at the cross section equals the corrected read-
ing on the spring balance 5,

SF =S5, (E5.1)
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The theoretical value may be obtained by computing the reactions R, and Ry and
then by noting that, for the equilibrium of the left-hand part,

Ry - mg - myg + SF =0
whence SF=mg+mg-R, (E5.2)

‘The magnitude of the bending moment at the cross-section equals the moment
exerted by the force observed as the corrected reading S, on the spring balance
placed at an arm of length a, i.e,

BM=5,-a (E5.3)

The theoretical value may be obtained by observing that, for the equilibrium of
the left-hand part,

Ry - X+mg-(X-x)+mg - (X-x;)+BM=0
whence BM =R, X-mg(X-x)-mg(X-x,) (E5.4)

OBSERVATIONS AND CALCULATIONS

The initial and final readings of the springs for the unloaded and loaded beams
respectively are recorded:
A set of observations and calculations for a prescribed loading may be arranged
as follows:
Length of the Beam:
Loading on the Beam:
Distances of Loads:
Distance ‘a’:

Initial Final Difference

Spring balance A
Spring balance B
Spring balance §,
Spring balance §,

SF =8 =
BM =S8,a=

RESULTS

The measured values of the shear force and bending moment at the section X may
be recorded and compared with the theoretical values.

POINTS FOR DISCUSSION

1. Comment on the difference between the experimentally measured and the
theoretical values of shear force and bending moment.

2. Compute the percentage error for each system of loading and observe whether
the percentage error increases as the value of theoretical shear force and
bending moment decrease. If so, why? If not, why not?

3. Have you taken the weight of the beam into account? Explain how?
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. Can the method of measuring the shear force and the bending moment be

employed on a cantilever? Explain how with the help of a sketch. Can the
method be used on a beam with the fixed end supported and with other end
conditions?

. Is it possible to state from the observations §; and S, taken from the spring

balances whether the shear force and bending moment are positive or nega-
tive?

m——

Concept Review Questions

(a} What is the difference between a beam and a member of a simple truss?
(b) What are the implications of a beam referred to as thin and rigid?

. State the different means of supporting a beam and differentiate between an overhang-

ing beam, a cantilever beam and a continuous beam.

(a} Define the terms shear force and bending moment at a cross-section in a beam.
How are the $F and BM diagrams drawn and what useful purpose is achieved by
drawing them?

(b) Comment on the sign conventions for the shear force and bending moment at a
section.

(c) Can a structural member have shear force and bending moment at a cross-
section?

(a) How are the distributions of the loading, the shear force and bending moment
related to each other? Are there any pre-conditions for the relationship?

(b) Sketch a simply supported beam with some transverse and inclined loading.
Draw the SF and BM diagrams for the same alongside the sketch.

. What are the implications of sudden changes ol

(a) loading

{b) shear force

(c) bending moment

for a simply supported beam?

. Is it possible to predict the location and mode of failure of a beam subjected to a given

loading? [s it necessary to draw the SF and BM diagrams before predicting the same?

S52.1

Tutorial Problems

Draw the SF and BM diagrams for the beams and loading shown in Fig. Prob. 52.1(a),
(b}, (<)

20 ml 40 kN

B
(a) A ‘:

|

I

25m am 3m

|

|
2 kN/m

JaYatalata'ata’) =Ty

AI 8
®) I——Sm ! 3m E 3m—1£|kNm
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{c)

§2.2

§2.3

524

§2.5

§2.6
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F=—2m ——]-—2 m —_I-‘1ITI"'I'\""D'1KI'I|; T~

20 kN
A s D E
B c T
3 kN/m

Fig. Prob. 52.1 (a), (b), ()

A beam of length L is loaded by an external moment M as shown in Fig. Prob. 52.2.
Draw the SF and BM diagrams.

Aa /._\M a B

AN &/

a |
L

Fig. Prob. §2.2

A simply supported overhanging beam 4 m long is uniformly loaded at 2 kN/m over
the entire span and carries a triangularly distributed load over the left half of the span
as shown in Fig. Prob. 52.3. Draw the §F and BM diagrams for the beam.

v 2 kN/m
W J\M/\fé\l\f\r\r\r\mr\
3 @C ID
! 2m im 1 1 m—=]
Fig. Prob. 52.3

5 kN/m

A uniform beam AB of weight W rests horizontally on two supports C and D at one
third of the span from cither and respectively. There are two loads, each 2W at one
third the distance between C and D measured from € and D respectively. Draw the §F
and BM diagrams for the beam.

A train of weight W and length L is in the centre of a bridge whose span is twice the
length of the train as shown in Fig. Prob. $2.5. Assuming that the weight of the train
is uniformly distributed throughout its length, calculate the bending moment at the
centre of the bridge. Compare it with the value when one end of the train just reaches
the pier-end of the bridge.

. erw ,
o as

Pier Pier

Fig. Prob. 52.5

Draw the SF and BM diagrams for a light horizontal cantilever 4 m long carrying
concentrated loads each of 2 kN at its centre and its free end.
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8.27 The SF diagram for a part of a loaded beam is shown in Fig. Prob. 82.7. All the 5F
values are in kN. Draw the loading diagram and the BM diagram for the beam.

2m 1 M-sed—e-1m 2m——
kN 5 kN
I
|
-
A c [2] E ]
-5 kN
Fig. Prob. §2.7

S2.8 The BM diagram for a beam | m long is parabolic with a maximum of 20 KN m at the
mid-span ol a beam as shown in Fig. Prob. 52.8. Sketch the corresponding 5F and
loading diagrams.

Fig. Prob. S2.8

Look up Hints to Tutorial Problems!

Multiple-Choice Questions

Select the correct or most appropriate resy from g the available alternatives in the
following multiple-choice g

L. A thin rigid beam hinged at one end and roller-supported at its mid-points is said to be
(a) asymmetrical simply supported beam
{b) an overhanging simply supported beam
{c) a cantilever beam
{d) a fixed beam

2. The shear force at a section in a beam is given by
{a) the external force at that section
{b) the transverse component of the external foree at that section
{c) the transverse force from the part of the beam on one side of the section to that

on the other side of the section

(d) the addition of the forces at (b) and (c) above

3. The bending moment al a section in a beam is given by
(a) the external moment at that section
(b) the summation of all the moments about that section
(¢) the summation of moments of all the forces about the section
(d) the net moment exerted by the part of the beam on one side of the section to that

on the other side of the section

4. The point of contraflexure in a loaded beam is one where

{a) the bending moment is maximum
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(b} the shear force is maximum
{c} the bending moment changes sign
(d} the shear force changes sign
5. In a symmetrically overhung simply supported beam, the maximum bending moment
will be the least possible when )
(a) the supports are near the ends
(b) the supports coincide to become a single support at the centre
{c) the distance between the supports becomes one-third of the length of the beam.
(d) the numerical values of the bending moment at either supports and at the centre
of the beam are equal
6. The maximum bending moment in a simply supported beam length L loaded by a
concentrated load W at the mid point is given by
(a) WL (by WL2 {c) WL/4 (d)y WL/8

Answers to the Multiple-Choice Questions
1 (b), 2 (e) 3 (d). 4 (c), 5 (d), 6 (c)
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$3.1 FRICTION AND IMPENDING MOTION

Forces of friction come into play when two surfaces in contact with each other exert
force normal to each other and one surface slides or tends to slide with respect to
the other. The force of friction is also called frictional resistance or simply friction.
The mechanism of friction can be explained by the interlocking of the roughnesses
of the surfaces or by the development of adhesive forces as the molecules of the
surfaces come close together or by some other hypothesis; these explanations are of
little consequence if the net effect is expressed in terms of a macroscopic parameter,
coefficient of friction, defined as follows:

Consider a body of mass m resting on a surface as shown in Fig. S3.1. If a
normal force F, acts normal to the lower surface, the body continues to be at rest
because an equal and opposite force R acts upon it by the lower surface. The
normal force F, may be due to the weight of the body or by some other action. If
now a small tangential force F, is also acted upon the body, the body may still
continue to be at rest. The applied tangential force F,, is balanced by the friction
force f due to the lower surface. Until a certain limiting value of F,

f=F,

the body stays at rest. Clearly, the body would slide if the magnitude of F, is
increased beyond this limiting value. This state of the body is called stare of
impending motion; a critical border line condition between the static and dynamic
conditions of the body.

The state of impending motion can be modelled in terms of Coulomb’s laws” of
dry friction:

1. The maximum force of friction is independent of the magnitude of area in

contact between the surfaces.

2. The maximum force of friction is proportional to the normal force on the

area of contact.

3. The maximum force of friction is less and practically constant at low veloci-

ties of sliding than that at the state of impending motion.

The first law allows us to ignore the extent of the area in contact. The area does
not enter the picture, perhaps because the extent of mechanical interlocking or
cohesive forces adjusts with respect to the normal forces along which acts the total
force of friction. The second law provides a proportionality

* These laws are stated without proofs at this stage. Premature statements are given merely
to introduce the pressure intensity and force concepts in the context of force fields.
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Fig. $3.1 Concept and Variation of Frictional Force

S =N
or S =N

(83.1)

where f,,, is the limiting force of friction, N the normal reaction force and y, the

constant of proportionality.

Coefficient of friction between two surfaces is the constant of proportionality u,

between the limiting for £, and the normal reaction R.
Sovnx

Hy ==

N

If two surfaces have the coefficient of friction y, = 0, the surfaces are said to be
smooth. Surfaces with a non-zero coefficient of friction are called rough surfaces.
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Obviously, a smooth surface cannot provide a force of friction and hence the reac-
tion of a smooth surface must always be normal to it. If, however, a body with a
smooth surface rests on another smooth surface and a tangential force is applied to
it, the body must slide and accelerate under the action of the applied forces. The

friction force

given by the coefficient of friction is the maximum frictional force which can be
developed between the two surfaces for a given normal reaction force N. In actual
practice,

(i) if a body is at rest on a surface, the friction force at an instant may be less
than the limiting value, it being only equal to the applied tangential component of
the force such as that shown in case (b) in Fig. $3.1 where

funN

(i) if the body is in motion, the friction force is given by the coefficient of
dynamic friction or the coefficient of kinetic friction. This coefficient is indeed less
than the coefficient of static friction; the difference being a function of the velocity
and the nature of surfaces in contact. The coefficient of dynamic friction is written
as i, to differentiate it from the coefficient of static friction which is often simply
denoted as g. In the dynamic state, as shown in case (d), Fig. §3.1.

f=uN (83.2)

where u; =15% p,

Table $3.1 Coecfficients of Static Friction p,

Pair of Surfaces Range of p,*
Wood and wood 0.2-0.6
Wood and leather 0.2-0.5
Rope and wood 0.6-07
Steel and cast iron 04-05
Steel and leather 0.4 -0.6
Mild steel and mild steel 0.5-06

* The coefficient of dynamic friction is about 25% less than that for static friction.

(iii) if the body is in an unsteady state, e.g., in intermittent or reversed sliding
motion, the coefficient of friction may be quite different from the steady state value.

It is usual to define the term angle of friction. Angle of friction is the angle
between the line of action of the total reaction by one body on the other and the
normal to the common tangent to the surfaces in contact in the state of impending
motion.

Angle of friction ¢ =tan"! [%J: tan~!
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o 2

The angle of friction ¢, is, therefore, the maximum angle between the normal
reaction R and the resultant reaction at the instant of impending motion.

It can also be shown that the angle to which an inclined plane may be raised
before the object resting on it slides under the action of its weight and the reaction
of the plane, also called as the angle of repose, equals the angle of friction. This is
shown in Fig. §3.2. Also shown in the figure are the cases of o less than ¢, and
greater than ¢,

w
a <@,
fep, N
a !
B\a
N
(a) Block at Rest

a> ¢y
ay < 95

Hg =tan ¢,
f=psN
(c) Block in Mation fecpu,N

Fig. $3.2 Frictional Force on a Body on an Incline

Fluid Resistance

Surface contact between two material bodies which results in friction forces is
permitted only when the frictional forces are usefully employed. This is, however,
not the case in most circumstances when the relative velocity of sliding is required
and the resistive forces must be minimised. In such case the interspaces must be
filled with suitable fluid lubricants. Drag forces resulting from the fluid resistance
appear on the moving components. In general, a drag force appears when a solid
body moves in a mass of fluid or when a fluid flows around a solid body.

Two different modes of drag formation resulting "from the relative velocity
between a solid and a fluid must be recognised. First, the laminar flow drag, when
the relative velocity is low and the fluid flow is charatterised by thin sliding laminas
sliding over each other; second, the turbulent flow drag, when the relative velocity
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is higher and the fluid flow is characterised by random turbulence and eddy forma-
tion. N

While the mechanics of drag formation in laminar and wrbulent flow is not
discussed at this stage, it is worthwhile stating that the variation of drag with the
basic parameters is different in the two cases as shown in Table §3.2.

Table $3.2 Variation of Drag

Laminar Flow Turbulent Flow
o speed ee speed?

Drag Force e viscosity o density
o« size o size?

Example S3.1 A wooden block of mass 1 kg rests on a rough incline at an angle 8
as shown in Fig, Ex. 83.1. If the coefficient of friction between the contact surfaces
is 0.5, determine the force required to be applied to the string passing through a
frictionless pulley to initiate motion of the block down the plane. At what angle 8
would the force required be zero? What would happen if the angle is increased
beyond that value?

x
f
Y
mg
Fig. Ex. §3.1 Fig. Ex. §3.1 (Solution)

Solution Consider the free-body diagram of the block shown in Fig. Ex. $3.1
(Solution). It is subjected to a weight force mg acling downward, a string force F
down the plane and a frictional force f up the plane because the impending motion
is down the planc and the normal reaction R perpendicular to the plane. At the state
of impending motion, the frictional force must be such that

f=HR 0]
where R is the normal reaction by the plane on the block.
For equilibrium of the block,
IF,=0;f-F-mgsin@=0 (ii)
ZFy=0:N-mgcos 8=0 (iii)
From Egq. (iii), N=mgcos 8

and from Egq. (i), f=pmgcos @



228  Engineering Mechanics

which when substituted in Eq. (ii) provides
F = umg cos 8—mé sin @
or F = (i cos 8- sin 6) mg (iv)
Substituting pH=05and m=1kg
F=(0.5cos &-sin 6) 1 x 9.81
= (4.905 cos 8- 9.81sin ) N
The force required would be zero when
pcos @=sin 8=0
or tan 8=y
For the present case,
6 =tan"' 0.5 = 26.56°

If the angle of incline is increased beyond 26.56°, the force required to initiate
the motion is negative which means that an upward force is required to hold the
block in equilibrium. If the angle of incline is decreased below 26.56°, the force
required to initiate the motion increases.

Example $3.2 Two boxes of weights W, and W, are stacked on the floor as shown
in Fig. Ex. §3.2. The coefficient of friction between the boxes is p; and between the
box and the floor is u,. A horizontal force F is

applied to the top of the boxes and gradually in- d F
creased. What is the maximum force before the
equilibrium is destroyed? How will the equilibri-
um be destroyed? 1 a

Solution The free-body diagram of cach box is
drawn in Fig. Ex. 83.2 (Solution). The upper box
1 is subjected 1o the applied force F, weight W, 2
normal reaction R, from box 2 and frictional force J
[, acting by virtue of contact with box 2. In turn,
box 2 is acted upon by a frictional force equal and
opposite to f; as well as a normal reaction equal
and opposite to R, at its upper surface. It is, in addition, subjected to a normal
reaction R, and a friction force f, at its base surface due to contact with the floor
and its own weight W,.

Let us examine the different possibilities of upsetting the equilibrium.

1. Box | may slide to the right, box 2 remaining intact.

2. Boxes 1 and 2 may remain stuck and slide together over the ground.

3. Box I may tip over its right edge A, box 2 remaining intact.

4. Boxes | and 2 may remain stuck and tip together over the bottom right

cdge B.

Since the force F is increased from a zero value, the mode of upsetting the

equilibrium depends upon which of the four possibilities materialises first. We,

Fig. Ex. 83.2
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m

W,

Fig. Ex. $3.2 (Solution)

therefore, evaluate the minimum forces required to materialise each possibility and

the least of them would be the decisive force.

For the first possibility, consider the equilibrium of box 1 at the state of impend-

ing motion.
IF, =0, Fy=fi=mN,
IF, =0, N, =W,
whence F, =, W,

Similarly for the second possibility,
N=W+W,
By =f=pmN=u (W, + W)
For the tipping of the upper box alone,
Fyxa =W xel2
whence Fy =E'£
’ 2a
For the tipping of the two blocks together,
Fyx{a+b) =(W, +W,)xc2
(W, +W,)c

whence F. s = W

(i)

(ii)

(iii)

(iv)

An observation of the results (i) to (iv) reveals that the magnitudes of F, F;, F;
and F, depend upon the values of weights, coefficients of friction and the dimen-

sions of the blocks. In particular, if
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My =y =03
W, =W,=100N
a=b=c=d, say

Fi=03x100=30N
Fy=03x(100+ 100) =60 N

_(100+100)xd _
T Ad+d) =50N

Since F| is the smallest, the boxes will no longer be in equilibrium if the applied
force F exceeds 30 N. The equilibrium will be destroyed by the slippage of the
upper box, the lower remaining intact.

Experiment E6
Coefficient of Static Friction

OBJECTIVE

To determine the coefficient of static friction between two given material surfaces
with the help of an inclined plane.

APPARATUS

An adjustable inclined plane with a frictionless pulley, a block, inextensible string
and standard weights.

Impending Motion: Upward
Fig. E6.1 Determination of Coefficient of Static Friction p
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BACKGROUND INFORMATION

The mating surfaces of the block and the incline are faced with sheets of materials
between which the coefficient of friction is desired. At a fixed angle of inclination
6, the suspended mass is increased until the block is at the verge of upward slip-
page, i.e., in the state of impending motion. Referring to the free-body diagram of
the block at such a state, as shown for equilibrium,

T=Mg=f+mgsin 0
R=mgcos @

Mg—mgsin8 M —msin 6

hence = =
v K=fIR mg cos 6 mcos @

OBSERVATIONS AND CALCULATIONS

The mass of the block as well as the mass of the suspended weight together with the
chosen angle of inclination should be recorded:

Material 1 Material 2

S.No. 2] m M sin @ cos 6 u
1
2

The observations and calculations are repeated with different selections of the
iwo masses or two angles of inclination or both,

RESULT

The average value of the coefficient of static friction y may be obtained and the
range of variation of g may be noted.

POINTS FOR DISCUSSION

1. Compare the value of u between the two surfaces with the value given in a
standard handbook. Account for the difference, if any.

2. Would the value of g be the same if the materials on the incline and block are
interchanged?

3. In the first method, supposing a weight W is placed over the block, would the
angle of repose remain the same?

4. What is the corresponding value of the coefficient of dynamic friction u,
between the same pair of surfaces? Explain, giving examples, as to where i is
used and where g is to be used?

5. Supposing a block is placed on an incline and there is no pulley and string,
etc. Can't we find the coefficient of static friction by creating a condition of
downward impending motion? By increasing the inclination 0; by adding
more weight on the block? Can we? How would it compare with our method?

6. The assumptions made in the analysis of observations are frictionlessness of
the pulley, inextensibility of the string, correctness of masses and angles
measured, How far are the assumptions justified and what are the possible
sources of error?
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7. If the rectangular block were faced with the same material on all faces, would
the observations and calculations alter if the block were placed one face or
the other resting on the incline?

Example $3.3 A ladder of length 5 m and weight 120 N is placed on a flat floor
against a vertical wall as shown in Fig. Ex. §3.3. If the coefficients of friction are
0.3 and 0.2 and the ladder is considered homogeneous, determine the smallest angle
8 the ladder can be placed at the floor for equilibrium.

Solution At the position of the smallest angle 0, the ladder would be in the state
of impending skid at A and at B.

Ny
Fig. Ex. 3.3
fy =03 N,and fz=0.2 Ny
For equilibrium,
LF,=0 fA_NB=O;fA=Nﬂ
IF, =0 Ny 120+ f3=0; f =120 - N,
M, =0. Npx5sin 8+ fzx5cos 8- 120x 2.5 cos =0

From these equations,
Ng=03N, and 120-N, =02 Ny
whence, Ny=1132N and Nyz=34N 800 N
and fi=34N and fp=68N
Finally, 170 sin 8+ (34 — 300) cos 6=0
tan 8= 1.565, 8= 574°

Example S3.4 A man wishes to climb a 5 m
long ladder placed at 60° on a horizontal surface

(i = 0.3) against a vertical wall (z = 0.2) as
shown in Fig. Ex. 53.4. How far can he climb

without the ladder slipping? The man and the
ladder weigh 800 N and 150 N respectively. fh—

Solution  The free body diagram of the ladder
shows that it is subjected to 6 forces of which 4
are unknown and we wish to find the maximum
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value of d, i.e., at the state of impending slip at A and B.
Then, f1=03N, and  fr=02N,
For equilibrium,
IF, =0 f-Npy=0; f,=N,
IF,=0; Ny +fz—-150-800=0; f;=950-N,
IMy=0; 5 Ngsin 60° + 5 fz cos 60° — 800 d cos 60°
=150 x25cos 60° =0 433 Ng+25f;-400d = 1875
From these equations,
Ng=03N,, 950 -N, =02 N
whence N, =18963 and Np=268.9
and Ja=2689 and  fz=53.7 in N units.

Finally, -400d = 187.5 - 11643~ 1343 =-111l.1 andd =277 m
The ladder will skid as the man reaches a distance of 2.77 m up the ladder.
Let us verify this result by considering the summation of moments about point B.

IMy =800 (5-2.77) cos 60° + 150 x 2.5 cos 60° + 268.9 x 5 sin 60°
-~ 896.3 x 5 cos 60°

=889 + 187.5 + 1164.4 - 2240.7 = 0.0

which shows that the distance of 2,77 m up the ladder is the right answer for the
equations. Any mistake in the setting up of the equations is not checked by the
verification. That can be ensured by checking the results vis-a-vis the data in the
problem. From the fact that g = 0.3 at the floor, f, = 0.3 N,. The value of f, as
268.9 N is compatible with that of N, as 896.3 N. Similarly, the value of f as
53.7 N is compatible with that of N as 268.9 N for a ¢ of 0.2 at the wall. The result
is, therefore, correct.

Example 83.5 A homogeneous ladder is placed on a flat horizontal surface to rest
against a vertical wall as shown in Fig. Ex. S$3.5. Assuming that the coefficient of
friction at each surface is p, determine the
minimum possible inclination of the ladder
with the horizontal. Can the angle be less
than 45°?

8

Solution From the free body diagram of the
ladder, the position of minimum inclination
corresponds to that of impending skidding.

Ja= Ny and  fy=pNg
For equilibrium,
IF.=0  fu-Na=0:  uN,=N,

Fig. Ex. $3.5
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IF,=0 Ny+fg-W=0; Ny+uNg=W
IF, =0 NgxLsin@+fy xLcos 8- WxL/2cos 8=0

From these equations,

Ny + i8N, = W; NA=%#_2_

Ng=uN, =Tf._":'2—
and If:”? sin@ = [%— l'lf:vz ]cosﬂ:ll:_z:; =Wcos 8
whence tan 6 = l—ipz

For smooth surfaces, g = 0, tan @ — «, 8 — 90°

For tobe 45° tan 8= 1, | - 2% =, or = 0.5

Hence it is possible for the inclination to be less than 45° if the coefficient of
friction is greater than 0.5.

For example a value of p'= 0.6 implics that tan @ = (1 - 0.72)/0.6 = 0.467.
8=25° Interestingly, 8= 0 corresponds with | — 2 g* = 0; u = 0.707.
Example 83.6 A small block .of mass 100 kg is placed on a 30° incline with a
coefficient of friction of 0.25 as shown in Fig. Ex. $3.6. Determine the horizontal
force to be applied on it in order to keep it in equilibrium at rest.
Solution The block would stay in equilibrium at rest for a range of horizontal
forces between F, and F, where F, is the minimum force required to prevent it from
sliding down and F, is the maximum force applied without sliding it up. For the
case of impending sliding down the incline,

F,cos 30° - 981 sin 30° + f; =0

where fi =025 N, = 0.25 x (F; sin 30° + 981 cos 30°).
0.866 F, — 490.5 + 0.125 F, +212.4 = 0
whence F,=280.6N

For the case of impending sliding up the incline,
Fycos 30° - 981 sin 30° - £, =0

where J3=0.25 N, = 0.25 X (F, sin 30° + 981 cos 30°)
0.866 F, ~490.5-0.125 F, - 2124 =0
whence Fy=948.6 N

The block would, therefore, be in equilibrium if the horizontal force applied is
between 280.6 N and 948.6 N as shown.
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F, f

30° 081 N,
(a) Sliding down (b} Sliding up
Fig. Ex. $3.6
Example S3.7 A horizontal force F acts on a block at a height & above the surface

of the table where it lies as shown in Fig. Ex. §3.7. Explain the condition when the
body (a) slides (b) overturns.

F Fr 1 F

—|c-a]-l— J——F \a h
|\\ h \\ l

—l—‘&—r—- a X

op

f ~f

NG {
—al -

N N
(a) Sliding (b) Overturning
Fig. Ex. $3.7

Solution When a horizontal force F acts at some distance from the base, the point
of application of R and f, i.e., point O is not vertically below C: The point O locates
itself such that the moment due to couple F and f is balanced by the moment due to
couple F,, and N. As long as O lies within the base, the body has a tendency to slide.

Now, if the point O moves to a comer because the frictional force f keeps
increasing due to a high value of p,, the coefficient of static friction then, the body
has a tendency to overturn or tip over that corner. In that case,

fhzF, a
or uF,hzF, a
or hzalu

The tendency to overturn is more if the base width is small, coefficient of friction
is large or the height, h is large.

Example S3.8 A ‘levelling plank’ is often used in a field to level off the earth by
sliding the plank over it. One such plank requires a horizontal force of 600 N to
slide it on a horizontal field at a constant velocity when the frictional resistance is
1.5 N per kg mass of the plank. It is employed to level a field inclined at 5° to the
horizontal. The span of the plank is 2 m and the force is applied along the direction
of movement. It is used for levelling, both going up and coming down the incline
end to end, alternately. Estimate the force required each way and compare the
average force required with that required for a horizontal field.
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Solution  The horizontal force of 600 N on a levelling plank must equal the
frictional resistance for levelling at a constant velocity.
Mass of the plank = 600/1.5 = 400 kg
Weight of the plank =400 x 9.81 = 3920 N

3920 N 3920 KN
Fig. Ex. $3.8 (a) (Solution) Fig. Ex. 83.8 (b) (Solution)

The normal reaction on the horizontal surface is 3920 N. The coefficient of
friction y is, therefore, 600/3920 = 0.153.

For going up the incline, from the free-body diagram of the plank shown in Fig.
Ex. 53.8(a) (Solution),

N =3920cos 5° = 3900 N
f=uR=0.153 % 3900 = 597 N
F=3920sin 5°+ 597 =939 N

For going down the incline,
R = 3900 N and f = 597 N as shown in the free-body diagram (Fig. Ex. S3.8(b)
Solution).

F =597 - 3920 sin 5° = 255 N
The average force required for the inclined ficld is
(939 + 255)/2 =597 N

The force required for a horizontal lawn is 600 N which is slightly more than
597. In fact, it can be observed that the difference is due to the decrease of the
normal component of reaction for the inclined surface.

Example 83.9 A block of mass 150 kg is to be raised by means of inserting a 10°
wedge weighing 50 kg under it and by applying a horizontal force at it as shown in
Fig. Ex. §3.9. Assuming the coefficient of fric-
tion between all surfaces of contact as (0.3, deter-
mine what minimum horizontal force should be
applied to raise the block. What would happen if
the horizontal force is removed?

Solution 1t is necessary 10 visualise the forces
and to draw the frec-body diagrams of the block F
and of the wedge for the impending motion of ™ 0P
the block upwards,
For equilibrium of the block (Fig. Ex. §3.4
‘Solution)), '
W =Rycos a—f, - fysina

N, =fycos a0+ Rysin ¢

Fig. Ex. $3.9
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Fig. Ex. 3.9 (Solution)

where
For equilibrium of the wedge,
F=fcos a+fi+ N,sina
Ny=Rycos ¢+ w-fysina
H=Ny  fy= 5N,
W=150kg = 1470 N
w=50kg=490N

where

Putting

Hy = i, =piy = 0.3, and solving.

N,=8698N  £,=2610N
N,=18546N  f,=5564N
N,=22198N  f,=6659N
F=153594 N

$3.2 ROLLING RESISTANCE

fi = Ry, f, = IR, and W is the weight of the block.

Rolling resistance occurs as a result of the small deformation of the surface upon
which a rolling object rolls. The surface of the rolling object may also be deformed

in the process. A cylindrical or spherical object is
shown rolling in Fig. $3.3. The force F required
parallel to the surface must be adequate to lift the
object out of the depression in the surface. The
process of deformation of the surfaces is continu-
ous during the rolling movement and hence a con-
stant force F must be applied to overcome the
resistance offered by the deformation.

With reference to Fig. $3.3, the sum of the
moments about the point O must be zero for equi-
librium.

Fig. $3.3 Mechanism of
Rolling Resistance
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W-rsing —F-rcos¢ =0
or F =Wtan ¢
Since the angle ¢ subtended by the length deformation must be very small,

tan ¢ = sin Q-%

Hence F= a%

The distance a reckoned as the “forward length of deformation’ is defined as the
coefficient of rolling resistance. The coefficient of the rolling resistance, unlike the
coefficient of friction, has the units of length.

Table §3.3 Cocfficient of Rolling Resistance

Pair of Surfaces Range of a (cm)
Steel on steel 0.02-0.04
Steel on wood 0.15-0.25
Tyre on road 0.05-0.15
Hardened steel surfaces 0.0005-0.0015

It is interesting to observe that the coefficient of rolling resistance is defined as
the forward length of deformation rather than a non-dimensional quantity. The
rolling resistance is, therefore, a function of (a) the weight or load W normal to the
surface, (b) the radius of the cylinder and (c) the coefficient of rolling resistance.

It follows that less force is required to roll a wheel of bigger radius than a wheel
of smaller radius for the same load and the same pair of materials.

§3.3 SLIDING AND ROLLING OF CYLINDERS

If a circular cylinder is placed in contact with a surface and subjected to a force, it
may cither slip or roll about the point of contact. The same is likely to happen when
it is placed on an incline. Whether it will actually slip or roll depends upon the
friction characteristics, force and angle of incline. In many problems, it is necessary
to ascertain whether a cylinder will tend to slip or roll, particularly when it is in
contact with two surfaces. Consider, for example a cylinder and a flat-based block
on an incline and the angle of incline is gradually raised until the equilibrium is
disturbed as shown in Fig. $3.4.

In the limiting condition, the block must slide down the incline at its base
whereas the cylinder may slip at B and roll at A or it may slip at A and remain stuck
at B. It may be seen that a cylinder cannot roll about two points on it because the
meaning of rolling about a point is that the velocity at that point is zero and at all
other points non-zero. However, slipping of a cylinder about two points on it cannot
be ruled out in general and it is decided by the constraints. In the present case,
slipping at A and B would mean rotation about 0, i.e., the cylinder rotates about its
axis which is obviously not possible without an external moment. Hence, the cylin-



Applications in Statics 239

c 4"‘“
Fig. $3.4 Cylinder and Block on an Incline

der may slip at A or B and roll about the other point. There is no simpler way to
decide as to which is the actual mode except by considering each mode for the state
of impending motion and analysing the situation.

At each contact point, a cylinder experiences a normal reaction directed towards
the centre of the cylinder. It also experiences the frictional force at each céntact
point. At a point where it may slip, the frictional force is related to the normal
reaction,

f=uN
but at the point where it may roll, the frictional force is left as an unknown. It
should be between zero and the maximum possible value uR at that point. For
rolling, therefore,
0<f<uN (S3.2)
where y is the coefficient of static friction between the contacting surfaces.

Example 83.10 A circular cylinder of radius 0.5 m and mass 200 kg is placed in
contact with a rectangular block of mass 150 kg on an incline at 30° as shown in
Fig. Ex. §3.10. If the coefficient of static friction is 0.6, determine the minimum
force F to be applied up the plane at the block to prevent the bodies from sliding
down.

Fig. Ex. 53.10

Solution We should first consider the equilibrium of the cylinder at the state of
impending downwards motion. The free-body diagram is constructed by including
the normal and frictional reactions by the contact surfaces as well as the weight of
the cylinder itself as shown in Fig. Ex. $3.10 (Solution). There are two possible
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Fig. Ex. $3.10 (a) (Solution) Fig. Ex. §3.10 (b) (Solution)

modes of the cylinder coming down the incline. It may roll at A and slide at B or it

may slide at A. Let us consider the first possibility, i.e., sliding at B,

Sa= UNg
and fi = any thing between zero and uR,
For equilibrium of the cylinder
IF.=0; Ng + fy —mgsin 30° =0
IF, =0 Se+ Ny—mgcos 30° =0
IM,=0; fix05-fx05=0

From these relations,

N.= 8 _200x9.81
EZ2(0+w) ~ 2(1+0.6)

f5=0.6x613 =368 N; f, =368 N
N,=1331N

=613N

0]

(ii)
(i)
(iv)

A check on the value of f, shows that it lies between 0 and 0.6 x 1331, i,
799 N. The possibility that the cylinder rolls at A and slips at B is, therefore,

feasible.

Now, consider the equilibrium of the block at the state of impending downward

motion,
LF,=0; F-Ng+f-—mgsin 30°=0
IF, =0; Nc—fz—mgcos 30°=0
Since Ng=6I3N, fz=368N
fe=HRc=06R¢
these relations provide
Ne =161SN and  F=380N

A force of 380 N is, therefore, required to be applied up the plane at the block to
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check the state of impending downward motion; this is the minimum force required
to keep the assembly of the block and cylinder in equilibrium on the incline.

The problem could have been formulated in a different way. The block and
cylinder could have been shown on the 30° incline in the absence of any applied
force F and one could be asked to determine whether the bodies are in a state of
equilibrium or not. It can now be suggested to attempt the problem in exactly the
same way as done here and determine the force F required. If F comes out to be
positive, as it did come in the given case, the bodies would not be in equilibrium
without holding them up by any up-the-incline force. If F comes out to be negative,
it means that the bodics were in equilibrium at rest.

Example S3.11 A circular cylinder of radius 0.5 m and mass 200 kg is placed in
contact with a rectangular block of mass 150 kg on an incline at 30° as shown in
Fig. Ex. 83.11. If the coefficient of static friction is 0.6, determine the minimum
force F to be applied up the plane at the block to initiatc an upward motion of the
bodies.

Fig. Ex. §3.11

Seolution The cylinder, while tending to move up, may either tend to roll at A and
slide at B or slide at A. Taking the former possibility first, consider the free-body
diagram drawn in Fig. Ex. S3.11(a) (Solution), for equilibrium.

IF, =0; Rg—fy—mgsin30°=0

ZF, =0; —fg+Ny-mgcos30°=0

IMy=0; faX05-£,%05=0
and fa=HNg=0.6 Ny
From these relations,
Ng=2452 N; Ny=3170N
f3=0.6x2452=147I N; L=1471N

A check on the value of f, shows that it lies between 0 and 0.6 x 3170, i.c., 1902 N
It may, therefore, be taken that the cylinder would roll at A and slip at B.

Next, consider the equilibrium of the block with reference to the free-body
diagram shown in Fig. Ex. §3.11(b) (Solution).
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(b)
Fig. Ex. $3.11 (Solution)
IF, =0 F ~ Ng = fo-mgsin30°=0
IF, =0; Ne+fg-mgeos30°=0
and fc = .UNC =0.6 RC . ‘.
Since Np = 2452 N and f; = 1471 N, thesc relations provide,

F=3070N

A force of 3070 N is, therefore, required to be applied up the incline at the block
in order to initiate an upward motion of the bodies.

It was observed in the previous problem that a force of 380 N is required to hold
the bodies in equilibrium against coming down the plane. It has now been seen that
a 3070 N force is required 1o move the bodies up the plane. Obviously, if a force in
between 380 N and 3070 N is applied, the bodies would stay in equilibrium.

The problem could have been formulated in a slightly different manner. The
block and cylinder would have been shown on the 30° incline and a force of some
magnitude shown applied at the block and one could be asked to ascertain whether
the bodies are moving down, in equilibrium, or moving up. If the applied force was
less than 380 N, the bodies would be moving down; if more than 3070, the bodies
would be moving up and if in between these two values, the body must stay at rest
in equilibrium.

Example S3.12 A cylinder of radius a and

weight W is wedged between a vertical wall

and a light-hinged bar as shown in Fig. Wal
Ex. §3.12. The coefficient of friction be-

tween the cylinder and wall is 0.2 and that
between the bar and cylinder is 0.4. What

is the force F which, when applied at the

end of the bar at right angles to it, is just
sufficient to cause the cylinder to move
upward?

Solution  The cylinder can slip upward at
either point; not necessarily at both points
simultaneously. In other words, the cylinder Fig. Ex. §3.12
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may slip at the bar point B and roll about A or it may slip at the wall point A and roll
about B. We should, therefore, examine both possibilities.

When there is impending motion at B, the free-body diagram drawn at Fig.
Ex. 83.7(a) (Solution) shows the forces acting on the cylinder.
By considering the equilibrium,

IF, =0; Ny - fpcos 45° — 2.5F cos 45° =0
IF, =0 —f4 + 2.5F sin 45° - fzsin 45° - W=0
M, =0; [z X radius = f; x radius

and fa =04x25F=F

From these relations,
fu =F=165W and N, =408 W

Y y
Slipping
here
N A w X N‘ w x
A % o fa=04x2.5F
B W B A, Slipping here
fa=02 R, 25 F 25 F
o 450
Fig. Ex. $3.12 (a) (Solution) Fig. Ex. 53.12 (b) (Solution)

It may be seen that the ratio of the friction to the normal reaction at A is
fa _ 165 _
W =208 =0.4

but the maximum possible ratio is 0.2. Since the slippage at B leads to this impasse,
it is impossible for slippage to occur at B before it occurs at A.

The free-body diagram for the second possibility, i.c., slippage at A is shown in
Fig. Ex. §3.12(b) (Solution).

By equilibrium consideration,
IZF, =0, N,-25Fcosd45°-fzcos45°=0
IF, =0; ~0.2N, x W= fg sin 45° + 2.5F sin 45° = 0
IMy=0;  fgxradius = 0.2 N, Xiradius.
From these relations, P
fa=039W, Ny=194 W
and F=094 W
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‘We may again like 1o check the ratio of friction to the normal reaction at B.

fo 039
Ny = 2.5%0.94 - 017

which is considerably less than the limiting value of 0.4.
It may, therefore, be concluded that the force required at the end of the rod is
0.94 W and that the cylinder will slip at A, the point of contact with the wall.

S$3.4 BAND-BRAKE AND BELT FRICTION

A flexible member, such as a band, belt or rope passing over or wrapped around a
cylinder can be used as band-break for power absorption or as a belt rope drive for
power transmission.

Consider a flexible member passing over a cylinder as shown in Fig. $3.5. The
total angle subtended at the centre by the flexible member is 6. Consider the
equilibrium of a small segment over an angle d6. The tensions on either side are T
and T + dT which may be considered collinear over the small segment. The differ-
ence in the tensions is due to the force of friction which would be a maximum at the
state of impending motion between the flexible member and the cylinder.

Element Tight side
of belt 7
°d
66‘ i
T
Slack side T

Free-body diagram
for the element

Fig. $3.5 Analysis of Belt Drive
dr=f=pF,

where u is the static coefficient of friction between the two surfaces. The normal
force F, must be given by

F,=Tde
Thus dT = uT d@
or % =ude

Integrating T from T, to T, over an angle &

| e
4T _ [ud6=pe
T o

ade—_
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T
or log, T = ub
2
T ]
and T = & (53.3)
2

It may be noticed that the tension T, and T, can be widely different depending
only upon the coefficient of friction ¢ and the angle of contact 8. The side of the
belt with greater tension, T is called the right side and the other with less tension,
T, is called the slack side of the drive. The difference between T, and T, is respon-
sible for transmitting the power. The difference can be increased by placing the
pulleys closer and by employing a cross-belt drive instead of an open belt drive as
far as possible. The power transmitted is given by

Power= (T, - Ty v

where v is the linear speed of the belt.

If T, is desired to be much smaller than T, as is the case of drum pulley blocks
and capstans, the rope can be wound round the drum a few turns. For n turns round
the drum the angle of contact @ becomes 27 times n.

Example §3.13 A rope is placed round a fixed circu- p-ré8
lar post over an angle € as shown in Fig. Ex. §3.13. J
Determine the ratio of tensions 7, and T, for impend- T+3T

ing slip in the anticlockwise direction. ‘ 'l.r "
Solution Let p be the pressure per unit length of the ‘

rope on the post. For an clementary length ré6 of the
rope, the normal force is pré@ and the frictional force

is pprd. It is subjected to tensions T and T + 8T on

cither side. For equilibrium, T T2
T+6r-T =puprdd Fig. Ex. $3.13

or OT = up r 60 (i)

and Té6=pr oo

or T=pr (i)

From these two equations

Integrating over the length of contact

Tl
log ?' = #9
2
T
or -TL:e“a
2
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where @ is the angle of lap over the post.

If the post was non-circular, even then the
T,/T, ratio would be the same as e*® where @ is
the angle of lap determined w.r.1. a centre located
by drawing normals to T, and T, as shown in Fig.
Ex. §3.13(a) (Solution).

This is because every little element can be ap-
proximated a being that of a circle, even though
the centre of the circle keeps changing by the
additional elements.

Supposing it was a belt going over a shaft instead of a rope going over a post.
No difference. The T\/T, ratio for the impending slip of the belt over the shaft
would be the same provided the belt was massless. Therefore, for a belt drive,

T
Fig. Ex. §3.13(a) (Solution)

It may, however, be noted that a belt is usually required to transmit power from a
driver pulley to a driven pulley which creates a tight side with tension T, and a
slack side with tension T; as shown in Fig. -

Ex. §3.13(b) (Solution). It may be observed T Tight side
that the angle of lap on the bigger pulley is @

L
greater than 180 degrees and that on the Slack side \_oren
smaller pulley is less than 180 degrees. It is, 2
therefore, more likely to slip on the smaller
pulley. Fig. Ex. $3.13(b) (Solution)

Example S3.14 A horizontal drum of a belt drive carries the belt over a semicircle
around it. It is rotated anticlockwise to transmit a torque of 300 Nm. If the coeffi-
cient of friction between the belt and the rope is 0.3,

calculate the tensions in the limbs 1 and 2 of the belt

shown in Fig. Ex. §3.14 and the reaction on the bearings.

The drum has a mass of 20 kg and the belt is assumed to

be massless.

Solution If the drum was assumed to be stationary, the

impending motion of the belt over the drum would be 2 1
from 2 to 1. Clearly, T, should be more than T,.
According to this condition,
Fig. Ex. 53.14

T

=" =257

T,

2

or T| = 2«57 Tz (i}

From the knowledge of the torque transmitted,
(T, - T) X 0.5 = 300
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T,-T,=600N (i)
from (i) and (ii)
T,=982N; T,=382N
The downward force exerted by the belt on the drum is
T,+T,=982+382=1364 N
Since the weight of the drum is
W=20x981=196N
the vertical reaction on the bearing should be the sum, i.e.,
1364 + 196 = 1560 N

Example 83.15 Two pulleys, one 450 mm in diameter and the other 200 mm in
diameter, are on parallel shafts 1.95 m apart and are connected by a crossed belt as
shown in Fig. Ex. §3.15. Find the length of the belt required and the angle of
contact between the belt and each pulley.

[ e
.

=l

T ———
e T

—--I f 1.95m

Fig. Ex. §3.15

What power can be transmitted by the belt when the larger pulley rotates at 200
rev/min, if the maximum permissible tension in the belt is 1 kN and the coefficient
of friction between the belt and the pulley is 0.257

Solution From the geometry of the problem,

0.225+ 0.1
3 = e—— . - o
sin @ = 195 0.167; a=96

8, =180° +2 x 9.6 = 199.2°

- Z
= 1992 x {5 = 3.477 rad

8, =6,=3477 rad
Length of the belt is given by
L =0.225(3.477) + 0.1(3.477) + 2 X 1.95 cos 9.6°
=498 m
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According to the condition of impending slippage of the belt over the pulleys,

i = eﬂ& = eD,ZSx,‘M‘n =2.385
T.
2
or T,=2385T,
If the greater of the tensions is allowed to the maximum permissible, i.e.,
T, = 1000 N
then T,=419N

The power transmitted must be given by
Power = (T, — T,) X speed of the belt

7% 0.45x200

=(1000 - 419) x %

=2738 W = 2.738 kW

Example 83.16 A mass of 500 kg is to be maintained in position by pulling a rope
taken over a half barrel and wrapped twice around a capstan as shown in Fig. Ex.
53.16. If the cocfficient of static friction is 0.2 for all contact surfaces, calculate the
minimum force F required to maintain the load.

Capstan

|

Half

| —

Fig. Ex. $3.16

Solution Consider the equilibrium of the segment of the rope taken over the half
barrel. According to the condition of impending slippage of the rope downwards,

T_| =¢U.2xlf2: 137
2
or '=131T,
T, 500x9.81
whence Ty= T= s — = 358N

Now consider the equilibrium of the rope wrapped around the capstan. For the
state of impending motion of the rope towards left, i.e., in lowering the load,
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F

3583 N 1

T

Ty
Fig. Ex. $3.16 (Solution)
35F§3 = cﬂ) *4n = 12.35
whence F=290N

It may be seen that the load of 4905 N can be maintained in position against
falling down, by the application of a force which is merely 20% of its magnitude
through frictional devices.

Let us also work out the force F which would be required to initiate an upward
motion of the load. The impending motion of the rope would then be upwards and
towards right and by equilibrium considerations,

F=500x981x 137 x 1235
= 82,990 N = 82.99 kN

which is over 16 times the load itself. It follows that the rope passed over the half
barrel and wound round the Capstan is a good device if the load is to be maintained
in position but very inefficient if the load is to be lifted.

Example §3.17 Two blocks A and B are to be held in position by means of an
inextensible rope passing over a fixed drum as shown in Fig. Ex. §3.17. The
coefficient of friction between the blocks, between the block and the inclined sur-
face, and between the rope and the drum is 0.2. The mass of B is 500 kg. Determine
the minimum weight of A so that B is prevented from moving downwards. The
drum cannot rotate.

Drum

(phs

4

<
3

Fig. Ex. §.3.17
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Solution A tendency of B to slip down the incline implies that the tendency of the
upper block A must be to slip upward. The friction force is, therefore, shown
accordingly. Friction on the non-rotatable drum implies that the tensions 7, and Ty
on cither side of the inextensible string are unequal and from the knowledge of
impending motion

Tg>T,

The inclination of the slope is specified by

fan 0= 3 or sin 6= 0.6 and cos 6= 0.8

Ap

Rﬂ
Ta
Ta
Drum
Block A Ts
fa Ry L
m.g T
A, s
A fa
Block B
mgg

Fig. Ex. 3.17 (Solution)

With reference to the free-body diagram for the block A, as shown in Fig.
Ex. 3.17 (Solution) the conditions of equilibrium are

Ty—fr—-mygsnf =0
Ry-mygcos 8 =0

and the condition of impending motion is

fo = UR,
Substituting for the coefficient of friction and €
T,~02R,~06m,g =0 (@
R,-08myg =0 (ii)

For block B,
Te+fy+fg—mggsinf =0
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Rg—R,—mggcos 8=0
and Sa=URy
whence Tp+0.2R,+0.2Ry-(500x9.81)x06=0

Rg—R,- (500 x981)x08=0

or Ty +0.2R, + 0.2R; = 2943 (iii)
Ry - R, =3924 (iv)
For the drum,
Ry-Ty,~Tg=0
Since Ty > T,
Tp/ T, = ' = *2* = 1.874 )

‘We have now set up five equations, (i) to (v), for the five unknowns T}, T, R,,
Ry and m, of which only the last one is desired. Even so, the simultancous set of
equations must be solved.

Obtaining Tz=1874T, from Egq. (v),
R,=08m,¢g from Egq. (ii),
Rz=R,+3924 =08 m, g + 3924
from Eq. (iv) and substituting in Eq. (i)
T,-0.16m, g-06m,g =0
or T, =076m, g
and now substituting in Eq. (iii),
1.874(0.76 my g) + 0.16 m, g + 0.16 m, g + 785 = 2943

whence m, g = 1237
and m, =126 kg

The minimum mass of block A should, therefore, be 126 kg; for m, less than
126, the lower block would slide down the incline and the upper block up the
incline.

§4.5 LIFTING BY A SCREW JACK

A screw jack consists of a square-threaded central rod called a screw fitted into the
internally-threaded collar of a jack. The load W is placed on the screw and the effort
F is applied horizontally at the end of a lever of arm L as shown in Fig. $3.6. The
lifting action of the screw jack takes place through the normal and frictional forces
developed at the threaded surface of contact within the collar. Considering a typical
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w
s

Nat o ’/ﬁ —a
- \\ 8

M=Fl _iiox

Screw Jack
Fig. $3.6 Amnalysis of a Screw Jack
element of the threaded surface in contact, the normal force is dN and the friction
force is df opposing the input moment
M=FL

constituted by the effort # applied at an arm L. The total reaction force at the
contact surface must balance the vertical force W and horizontal component H
given by

H=Mir=FLir

At the state of impending motion, or during the lifting action of the screw, the
resultant reaction force makes an angle ¢ with the normal where ¢ = tan~' g and g is
the static coefficient or kinetic coefficient of friction as the case may be.

If e is the pitch angle of the screw, then for equilibrium,

Rceos(a+¢)=W
Rsin (@ + ¢) = M/r=FLIr
and from these equations,
F =Wtan (a+ ¢) riL (S3.4)

If the load W was being lowered instead of being raised, the friction force would
be directed up the incline and the resultant reaction R would be inclined to the line
of action of Wby an angle (e — @). The force F required 1o lower the load would be
given by

F =Wian (a- ¢) x riL (83.5)

which is indeed much smaller than that required to raise the load.
The efficiency of a screw jack is defined as the ratio of the work output to the
work input over the same period of time. Work input for one revolution of the effort

- =2aLF=W-2nran {a+ ¢
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Work output in the same duration
= W x pitch of the screw
=W2 nrtan o

W-2nr tan @

ffici =
Efficiency "= Wiman(@+9)

tan o

= @9 (83.6)

or n
The cfficiency can alternatively be interpreted as the ratio of the force required
to lift a load in the absence of friction to the actual force required to lift the load.
I7 (without friction) = W tan (e + 0) « r/L
F (actual) = Wtan (e + ¢) - r/L

_ F(without friction)  tan &
- F(actual) " tan(a + ¢)

An expression for the maximum efficiency of a screw jack can be obtained by
setting

dnlda =0
1 tan &
or czam(a+@)“sin’(a+¢) =
or sin 2 (x + @) =sin 2
whence a=xl4-¢R2

The maximum efficiency is given by
_ tan(m’4—¢)‘2]ﬁl—sin¢
Moax = an (w/d+¢/2) 1+sing
Assuming that the coefficient of friction is 0.15, ¢ = tan™ 0.15 = 8.53 degrees; a =
4 — 8.53/2 = 40.73 degrees 1, = 74.2%.
Let us also examine the condition for a screw jack to be self-locking. A screw

jack is called self-locking if, in the absence of the applied moment FL, the screw
jack does not unwind to lower the load. Since

FxL=Wtan(a-¢)xr
Equating F X L to zero or making it negative implies

(83.7)

tan (x - $) <0
or tan a¢—tan ¢ <0 (53.8)
or asd

tanx =y
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The screw jack will be self-locking if tan ot equals or is less than u.
From the expression for its efficiency

Y
n= tan (& + ¢)

it follows that, if @ = ¢

_lana _tana(l-tan? a)
= nza 2 tan @

=05-05tan’ & (53.9)
which must be less than 50%.

Example 83.18 A screw jack requires a force F applied at a radius a on a handle
to lift a load W on top of it. Determine the M/F for raising the load for a helix angle
« for the screw and coefficient of friction g. Would the M/F be different for
lowering the load?

Solution For an elemental area ds of the surface of the screw, the normal reaction
is pds where p is the normal pressure on it. The vertical force is (ref. Fig. Ex.
$3.18 (a) (Solution))

pds cos a— pupds sin @
For the screw jack
W=[ (pcosa—pu psina)ds=(pcosa—u psina)A
and M=j r(psina+ppcosa)ds=F-a=r(psina+ u¢cosa) A

M _r(tana+u)
F  l-umna

Now, for lowering the load, the screw is turned in the reverse direction; the
frictional force acts in the opposite direction (see Fig. Ex. S3.18(b) (Solution)).

Hp_ y up A
ds X P h ds \P h
2xr 2rr
(a) b)
Fig. Ex. §3.18 (Solution)
We get W= (pcos o+ i psin o) A (ref. Fig. Ex. $3.18(b) (Solution))

M =r(psin a- upsin a)

r{u —tan o)

and hence M/F =
1+ptan
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1t is, of course, less than the M/F value for raising the load.

A screw jack is said to be self-locking if it does not let the load come down even
if the applied moment or force at the lever arm is zero, i.e., it does need a moment
or a force at the lever arm to lower the load,

p>0
rig-tan a)>0
tan @< g
tan @ < tan ¢
a<¢
i.e., when the helix angle is less than the friction angle.
Example S3.19 A screw thread of a screw jack has a mean diameter of 10 cm and
a pitch of 1.25 cm. The coefficient of friction between the screw and its nut-housing

is 0.25. Determine the force F that must be applied at the end of a 50 cm lever arm
to raise a mass of 5000 kg. Is the device self-locking? Also determine its efficiency.

Solution From the definition of the pitch of a screw,

88818

P 1.25

tangd=s—x=—"-—=
2ny 2m x5 0.04
o=2.28"
Also, p=025=1an ¢; ¢ = 14.04°

The force required at the end of 50 cm long lever is given by
F=Wtan(a+¢) xriL
= 5000 x 9.81 tan (2.28 + 14.04) x 5/50
= 1436 N

For the screw jack
a<¢
Hence, the screw jack must be self-locking.
The efficiency of the jack is given by

tan o 0.04
n “lan(a+¢) O. 293 = 0137

=13.7%

The force required at the end of the lever to lower the load may be determined as
follows:

F=Wtan (a- ¢) x riL
= 5000 x 9.81 tan (2.28 - 14.04) x 5/50
=-1021 N
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The force required to lower the load is thus 1021 N in a direction opposite to
that required to raise it.

$3.6 DISC AND BEARING FRICTION

It is often necessary to estimate the torque required to overcome the frictional
resistance offered by a surface to the rotation of the other surface. It may also be of
interest to estimate the power lost in friction at a given speed of rotation.

Consider, for example, the end of a rotating cylindrical shaft resting on a flat
surface. Such a pair of surfaces constitute a thrust bearing. Let the axial force
transmitted by the shaft on the flat pad be P . The furce may be distributed uniform-
ly or non-uniformly over the area of contact. The problem is dealt with by consider-
ing an elementary area of contact subtending angle d6 at the centre and of width dr
at a radius r as shown in Fig. $3.7. The area of the strip is

dA = rdr d@

[l

Fig. 83.7 Analysis of Disc Friction

The normal force and hence the normal reaction at the strip is
dF, = prdrdé

where p is the intensity of normal force over the small area. The elementary fric-
tional force over the area, acting tangent to the radius, must be given by

df=pdan
=, prdrde

where i, is the coefficient of dynamic friction between the contacting surfaces.
The elementary moment exerted by the elementary frictional forces acting at a
radius r from the centre and at an angle 8 from the x-axis about the axis of the shaft
is
aM =df r
= ptypr* dr dé

and the moment exerted by the entire frictional effect at the contacting surfaces is
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R R R
M=[am=] | M prt drdo=| M, X p2urldr
0 00 0

R
=2m, i pridr (S3.10)

Integration of this expression may be carried out for an assumed or given distri-
bution of p with r. Let us consider two cases:

Case (a)
P
If = =
p = constant —R?

R
then M=21r,u‘,pj r2dr

o
or M=2nu,p R3=2/3P Ry, (§3.11)
Case (b)

If the pressure intensity is assumed to be inversely proportional to the radius,

P =

==

R
P =[ 2mpdr=2mR
0

whence a= %
P
snd P= xRy

With this expression, the moment is determined as

R
M =2my .[ 2;;?:' ridr
0

=112 PR, (S3.12)

Example $3.20 A shaft of radius R with an axial load F acting on it rests on a flat
thrust bearing of radii R, and R, as shown in Fig. Ex. §3.20. Determine the torque,
M for impending rotation of the shaft.

Solution Consider an elementary area

dA =r 80 x Or

at a radial disiance r, subl;:nding an angle 46 at the centrz as shown in Fig. Ex.
$3.20 (Solution).
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F

l

R, t R,
p
Fig. Ex. 53.20 Fig. Ex. §3.20 (Solution)

For a pressure p, the moment is given by
R; 2x
M=I j r-yp-réé ér
’ R, 0

R! ix

and F=j jp‘nSO&

R 0

If p = constant
M=%.M(R§‘~R.’)p

F=nr(R} —R)p

R.’!__.RS
_2 2 1
and MIE—Spkz_Rz
2 1
If p varies inverselyasr.p:%
li.'l-n-ﬁr2
then MIF=;1—-—-2—-

Example $3.21 A shaft of radius R with axial load F
is provided with a conical thrust bearing of radii R,
and R, and cone angle o as shown in Fig. Ex. 53.21.
Determine the torque needed to rotate it.
Solution Consider an elementary area dA = r - 86-
S risin « at a radial distance r, subtending a small angle
56 at the centre.
For a constant pressure p the frictional moment is

given by

Ry 2x 3 _p3
M= I jr-p-p-rﬁﬂ-&!sina=ppnz—3&—-

R, ©

sin @
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and the thrust is
Ry Im R!_Ri
F= I f p-r&-&fsina-sina:p%
R 0

3 3
_2 . Ry - R
MIF = 3 ,M'smt:t[ﬁ’g —Rf J
If pressure p varies inversely as the radius,

P=?

ten, wr=t B

sin @ 2
Example 83.22 'The conical end of a shaft of diameter 5 cm rests in a conical
bearing of cone angle 60° as shown in Fig. Ex. $3.22. If the coefficient of dynamic
friction is 0.3, calculate the frictional torque and power required to rotate the shaft
at 1000 revolutions per minute, if the axial load on the shaft is 5 kN.

=

| 1cm

Fig. Ex. 3.22
Solution Consider a strip of the conical surface in contact. For an inclined length
ds, the area of the strip is
dA =2 (s sin 30°) ds

where s is the inclined distance on the surface measured from the apex.
The axial force due to pressure p on the strip is

dP = dAp sin 30°

=%p.rds
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and the total axial force is
P =j dp
The limits of integration are from
1

5= or 1.155cmto §,=5cm

cos 30°
0.05
P= I % psds
0.01155
T 0.05
=5P-"'”2|0,0115
Since P=5kN
5=0.001 86 p
whence p = 2690 kN/m*
The frictional force df on the strip must be given by
df = y,p dA

=0.3x 2690 x 21y sirll 30° ds kN
and the frictional moment dN is such that
dM = df 5 sin 30°
=1267 s dskN m
The total frictional moment is given by

0.05
M= dM=1267s/3| <  KNm

=52 Nm
The speed of 1000 revolutions per minute corresponds to
= 2r :(;000
The frictional power is given by
Power = Mw =52 x 104.7 = 5445 W
=5.445 kW

=104.7rad /s

Example S3.23 A simple disc brake consists of four shoes, each subtending an
angle o with the inner radius R, and outer radius R,. The shoes are pressed against
a coaxial rotating disc with a force 4P. Determine the torque exerted on the disc if
the coefficient of static frictions is p.
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Solution The area of contact of a single shoe is (ref. Fig. Ex. $3.23 (Solution))
_o
A -7(1?; -R})

and the pressure intensity is given by

=4P1__ 2P
P="r7 (RZ -RY) Fig. Ex. §3.23 (Solution)

The elementary frictional moment on an element of area rd@ dr is

dM =r4f=mdF,,=rﬂprd9xdr=ﬁxrz do dr
G(Ry = R
and the total moment for one shoe is given by
M=[dM
2P -
=——H [ [rrdrde
a(Ry = Ri) &, o
2uP(R} -Rl-‘)
~ 3(RZ-R?)

For the shoe brake with four shoes, the moment is

8uP(R] ~ R})
- _3-(322 ~R?)

It may be noted that the resulting torque is independent of the angle & subtended
by each shoe at the centre of the disc brake.

§3.7 INPUT/OUTPUT OF SIMPLE MACHINES

A machine is a device which enables us to employ the input to advantage for
achieving a desired output. A machine may consist of a single element or an assem-
blage of elements. Machines are classified as electrical, mechanical, electro-
mechanical and others depending upon the nature of the input and output. We
confine ourselves to the consideration of a simple mechanical machine where the
input may be a small force or a moment at a convenient point and the output may be
a larger load being lifted or moved against resistance.

It is usual to employ the terms mechanical advantage, velocity ratio and mechan-
ical efficiency to describesthe features of a lifling machine. The mechanical advan-
tage is the ratio of the load lifted to the cffort applied:

Load lifted

ical ad =ee————
Mechanical advantage Effort applied

=W
=X (S3.13)
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The velocity ratio refers to the ratio of the velocities of the points of application
of the effort and load. Assuming the lifting process to take place steadily, i.e., at the
constant rate, the velocity ratio over an interval of time may also be defined as

Distance moved by the point of application of effort _

Velocity ratio = =2 (s3.14
clocity ratio Distance moved by the load z 314

where the distances are measured along the directions of the respective forces as
shown in Fig. $3.8.

The efficiency of 2 machine is defined as the ratio Lifting
of the work output to the work input, i.c., Machine Effort, P
. Work output Wy
Effi I e = T
Y N = ork input Py
w
_J_E/)’ Fig. 53.8 Input and
“Plx Output of a
Lifting Macbine
Mechanical advantage
= {S3.15)

Velocity ratio

A machine is said to be ideal if the efﬁ'ciem:y is 100% which may be so in the
absence of dissipation actions, such as friction. For an ideal machine. therefore,

Mechanical advantage = Velocily ratio

In actual practice, some energy must be lost in dissipative action and the effi-
ciency is consequently less than 100%. The mechanical advantage must, therefore,
be less than the velocity ratio. It follows that

W,y

?S; (83.16)
depending upon whether a machine is ideal or not. Let us consider the reversed
operation of a machine. The reversed operation refers to the movement of the
machine components under the application of the load only when the effort is
removed. It is possible when the work done by the load overcomes the frictional
work over the same time interval,

Wx 2 Py - Wx
or
2Wx = Py

or

w /Yy

73208 .
or

nz05 (S3.17)

A machine may, therefore, operate in the reverse direction on the removal of the
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effort if its efficiency exceeds or equals 50%. It is often necessary to stop the
reversed operation of a machine. This may be done by reducing the efficiency to
less than 50%. The machine is then said to be self-locking. The condition of self-
locking is contradictory to the condition of an ideal operation.

The relationship between the load lifted and effort required, sometimes called
law of the machine is such that

P=aW+b {83.18)

which shows that the effort bears a linear relationship with the load as shown in
Fig. 83.9. The relationship shows that a minimum effort equal to the intercept b is
required to lift a load, however small, because the frictional resistance is to be
overcome. The efféctive frictional resistance at the point of application of the effort

Fig. $3.9 Law of the Machine

is defined as the difference between, the ideal effort for a frictionless machine and
the actual effort for a real machine. The effective frictional resistance F increases
with the load as also shown in Fig. §3.9. From the expression for mechanical

efficiency,
. ) !/ .
T=Pp

and the law of the machine
. P=aW+b
the efficiency may be wrilten as

-

W [y__«xy $3.19
T=aw+b/ x"a+biw (53.19)
This expression for 1 shows that the efficiency of a machine must be zero at zero
load and that the efficiency increases as the load increases.

W = oo, X
As n ay

The maximum cfficiency is thus given by

1 (83.20)

nlmt =
a % velocity ratio
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as shown in Fig. 83.10, and the corresponding mechanical advantage is given by
Mechanical advantage = 1) x velocity ratio = % (83.21)

Lifting machines may employ one or more of elements such as levers. pulleys.
gears, inclined planes and screw-threads.

—— ——

0

0 —_ W —

Fig. §3.10 Variation of Efficiency with Load

Example §3.24 A drum of mass 6 kg holding water of mass 40 kg 1s to be raised
from a well by the application of a 120 N human force. Would you recommend the
use of a single pulley of diameter 10 cm, a simple wheel and axle of diameters 40 cm
and 10 cm or a differential wheel and axle of diameters 40 cm, 10 cm and 5 cm?
(Ref. Fig. Ex. 3.24)

Load

| (T
=

8

()
Fig. Ex. 3.24
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Solution The requirement of the lifting machine to lift a load
W=(6+40)x 981 =451.3 N

by an effort P=120N
The mechanical advantage is
W _4513 _
P "0 T8

A single pulley has a velocity ratio of 1.0. If it operates without friction, its
efficiency may be 100% and the mechanical advantage is then 1.0. If the mechani-
cal efficiency is short of 100% due to friction, etc., the mechanical advantage would
be less than 1.0. Thus a single pulley may have a mechanical advantage of 1.0 under
ideal conditions. It is usefully employed if it is desired to change the direction of the
effort applied with respect to the direction of the load being lifted as shown in Fig.
Ex. $3.24(a). It is unsuitable for the present problem where the mechanical advan-
tage desired is far beyond 1.0.

A simple wheel and axle of diameters D and 4 as shown in Fig. Ex. $3.24(b)
operates such that the ratio of the distance moved by the effort to the distance
moved by the load, i.e.,

z=D _p

Velocity ratio -4

which equals 40/10 = 4.0 in the given case. The efficiency of th machine would be
n=3.76/4.0 =094 = 94%

A differential wheel and axle of diameters D, d, and d, as shown in Fig. Ex.
$3.24(c) operates such that

W __D
mdy ~mdy, dy—d,

Velocity ratio As =

which, in the present case, would be 40/(10 — 5) = 8.0. The efficiency of the machine
would then be

n=2376/8.0=047=47%

In order to decide the preference in favour of the simple or differential wheel and
axle, it may be noted that both are adequate as far as the lifting action is concerned.
A simple wheel and axle is more efficient but the device is capable of operating in
the reversed direction if the effort is removed. On the other hand, the differential
wheel and axle has less than 50% efficiency, a fact which ensures self-locking when
the effort is removed.

For the simple wheel and axle, the effort lost in overcoming the frictional resis-
tance equals the actual effort minus the ideal effort

451.3

IZO—TO— =72N
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whereas the effort lost in overcoming friction in the differential wheel and axle is

4513 _
120 - 5= =636 N

One would prefer the simple wheel and axle arrangement unless the need for a
self-locking arrangement can justify the additional effort lost in friction.

Example S3.25 Determine the effort required at the end of an arm 40 cm long to
lift a load of 5 kN by means of a simple screw jack with screw threads of pitch 1 cm
if the efficiency at this load is 45%. Also calculate the effort needed if the jack is
converted into a differential screw jack with internal threads of pitch 7 mm and the
cfficiency of operation is 30% (ref. Fig. Ex. 3.25).

w
1

1
= /
s F
T T

-

:
Fig. Ex. §3.25

Solution The velocity ratio of the simple screw jack is given by the ratio of the
distance moved by the point of application of the effort, i.e., 27 X 0.40 = 0.8 m
and the distance moved by the load, i.e., 0.01 m if the arm is turned by one
revolution

. . O08rx
Velocity ratio = o1 =251.3

The mechanical advantage must be .
W/P =2513x045=113.1
whence P=W113.1=5000/113.1=442 N

If the jack is converted into a differential screw jack, the distance moved by the
point of application of the effort over one revolution remains the same, i.c., 0.8 but
the corresponding distance through which the load moves becomes

0.01 - 0.007 = 0.003 m
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and the velocity ratio becomes
0.8270.003 = 837.8

The mechanical advantage must now be
W/P =837.8 x0.30 = 251.3
whence P =5000/2513=199N

Example §3.26 A carpenter's hand drill
consists of a spindle AB which has a drill
at A and a bearing at B as shown in Fig.
Ex. 3.26. A rope is wrapped round the
spindle 4 turns and the ends of the rope
are tied to a handle CD. During opera-
tion, the handle is applied an effort P
with one hand whiie the block at B is
kept pressed with a force W with the oth-
er hand. Calculate the raximum torque
which can be produced at the drill if the
spindle has a diameter of 5 ¢cm and the

coefficient of friction between the rope o= e ]
and the spindle surface is 0.15. The ten- Block of Wood
sion in the slack side of the rope may be Fig. Ex. $3.26
assumed to be 5 N.

Solution The torque at the drill would be maximum when the torque applied at
the spindle is maximum, the two being equal. In the limiting case,

T
2 _ Gue .
T; =¥ (i)
and the torque is given by
M=(T,-T)r (ii)
with the usual rotation.
From the data,
T'=5N u=0.15
r=5/2=25cm=0.025m
f=4wmns=4x2r=8 rad
From (i),
T,=5x e ™ =5¢' =217 N
From (ii),

M= (217 - 5) % 0.025 = 5.3 Nm
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Experiment E7

Performance of Simple Lifting
Machines

OBJECTIVE

To determine the effort required to lift a load and efficiency of lifting by some
simple machines.

APPARATUS

Simple lifting machines, such as a screw jack, wheel and differential axle, worm
and worm wheel. winch crab, as shown in Figs. E7.1 to E7.4; metre rod and
standard weights.

Square-threaded
screw

Fig. E7.1 Screw Jack

BACKGROUND INFORMATION
A lifting machine is employed to lift a larger load W at a point by employing a
smaller force P at some other point. During the process, the distance y moved by
the effort may be much more than the distance x, moved by the load:
Work input = Py
Work output = W x

Efficiency of the machine, n = ‘;’—; = ‘;{f
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Fig. E7.3 Worm and Worm Wheel

N,
H

|

L]

Fig. E7.4 Winch Crab
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_ Mechanical advantage '

~ Velocity ratio
where the term mechanical advantage stands for the ratio of the load to the effort
applied to lift the load at a constant velocity and the term velocity ratio stands for
the ratio of the distance moved by the effort to the distance moved by the load.
Conventionally, the load is lifted vertically up and the point of application of effort
is moved vertically down. The larger the load, the more the effort required. The plot
of P vs. Wis usually linear, whereas that between 1 and W is non-linear as shown in
Fig. E7.5.

- Effort P
Efficiency n—w-

~Load W—— 0 ~Load W=

Fig. E7.5 Variation of Effort and Efficlency with Load

‘While the effort applied to lift a given load at a constant velocity is recorded by
measurement, the velocity ratio is determined from a consideration of the distances
moved by the points of application of the load and effort.

For a screw jack, the distance moved by the effort is D for the load to be lifted
by a distance p where D is the diameter of the drum and p is the pitch of the screw

vR=T2
P
For a wheel and differential axle, the distance moved by the effort is 7D for the
load to be lifted by a distance (md; — md,) where D is the diameter of the wheel and
d, and d, are the diameters of the axles on which the string is wound in the opposite
directions:
m, ~-nd, d -d,
For a worm and worm wheel, the distance moved by the effort is 2D for the load
to be lifted by a distance md divided by the number of teeth N on the worm wheel
where D and d are the diameters of the power drum and the load drum respectively

=D __ND
YR =2dIN="d

For a winch crab or lift, the distance moved by the effort is 2D for the load to be

lifted by a distance nd divided by the ratio No/N, of the teeth of the wheel and

pinion where D and 4 are the diameters of the power drum and load drum respec-

tively

VR

. _NpD
“mI(N,IN,) N,d

VR
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OBSERVATIONS AND CALCULATIONS

It is necessary to note the parameters which enter into the determination of the
velocity ratio for a given machine. The velocity ratio VR is thus obtained. The effort
required to lift a load at a constant speed is determined practically and the experi-
ment is repeated for various loads in convenient steps.

S. No. w P w/pP VR

1
2

RESULT

Plots of P vs. W and n vs. W for the lifting machine may be made from the
measured and calculated values. One may like to express the P vs. W plot in the
form of a linear relationship.

P=aW+b

often called the law of the machine. The values of a and b are obtained from the
plot.

POINTS FOR DISCUSSION

I. A machine is said to be self-locking if the load stays in position even though
the effort is removed. What is the condition, in terms of efficiency, for a
machine to be self-locking? Which of the machines tested by you are self-
locking?

2. How should the effort vary with the load for an ideal, i.e., a frictionless
machine? How docs the plot alter due to friction?

3. Assuming that the law of the machine is linear, what should be the maximum
mechanical advantage and maximum efficiency of the machine?

4. Of the various lifting machines known to you, how would you decide which
one to choose for a particular situation? For example, which lifting machine is
best suited, in your opinion, for the following jobs:

(a) lifting a drum of water from a well?
(b) lifting a heavy consignment from a ship?
(c) lifting the body of a truck for the purpose of changing a wheel?

Concept Review Questions

1. Comment on the nature of friction between two surfaces and the concept of impend-
ing motion.

2. A block of base dimensions a x b and height h is subjected to a horizontal force F at
its mid-hcight. Draw the free-body diagram of the block
(a) for small F
{b) for large F
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both being before the state of impending action. Examine the difference in the point
of application of the resultant of the normal reaction and the frictional force at the
base of the block.

3 Underwhamnﬁmmaqlmdumndommmﬁmmﬁmmnshde

down an inclined plane?

. In the analysis of a belt-drive, the relationship between the tensions in the tight side

and the slack side incorporates the coefficient of static friction p. Explain why it is not
the cocfficient of dynamic friction instead.

. Whenever a rope or a wire under tension is to be held, it is wrapped round a tree-trunk

or a pole by giving it a number of tums. Why?

. Explain why the lifting action of a screw jack is likened to pushing up an incline.
. From the expression for the efficiency of a screw jack,

_ lana
M "an(a+¢)
where a is the equivalent inclination and ¢ is the friction angle, obtain the expression
for the maximum efficiency and also the efficiency for it to be self-locking.

. Define and relate the mechanical advantage velocity ralio and efficiency of a machine.

What is meant by the law of the machine.

53.1

532

Tutorial Problems

Figure Prob. 53.1 shows the location of the centre of gravity in a model of a car which
can be driven cither by its rear or front wheels. If the inertia of the wheels, rolling
resistance and acrodynamic drag are ignored,

what is the ratio of the maximum accelera- =

tions in the two cases when the coefficient
of friction between the tyres of the car and

. 2a f
ground is 0.77
In Fig. Prob. $3.2, the cocfficients of fric- 3a aa
tion between the weight W and the wedge is
4, and between the wedge and the lower Fig. Prob. 53.1

p

ATtrTTreTTTTTTTTTY 1\“1\\\“ e
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block pt,. Ignoring the weight of the wedge and assuming no friction, determine the
applied force F required to raise W by forcing the wedge to the right.

o +tanf ¥
[m’w[ﬂ‘ - tmﬂ)]

$3.3 A homogeneous ladder 6 m Jong and weighing 400 N rests against a smooth wall. The

angle between it and the floor is 70°. The coefticient of friction between the floor and
the ladder is 0.25. How far up the ladder can a 80 kg man walk before the ladder
slips?

(Ans. 4.41 m)

$3.4 A horizontal force, F, is applied to a block which rests on an inclined plane, as shown

§3.5

in Fig. Prob. $3.4. Find the force required to initiate motion up the plane.

[Ans. F, =wsm8+pm38]

cos @ — ysin@
The block of weight W is on a surface (the coefficient of friction is g) which is inclined
at angle 8 with the horizontal as shown in Fig. Prob. 83.5. This surface is part of a
triangular block of weight W,. A horizontal force P causes the system to have an
acceleration a to the right. What value of P will cause the top block to move relative
to the surface? Assume no friction of the bottom surface. What is the acceleration?

g(y—tan8) (W+W, }pu-1an8)
Ans.a= P=
(14 tan @) 1+ ptan @

W,
w ! ———*f

a [:]

536

53.7

i s FAPrrrrr A rr ISty
Fig. Prob. $3.4 Fig. Prob. §3.5

A uniform rod of mass m and length L is lying on a rough horizontal table. A
horizontal force P is applied to the rod perpendicular to its axis at a distance kL(k >

%) from one end so that it just moves. Show that the rod rotates about a point distance

AL from the same end and that P =  mg (1 - 2h), where h = k- (K = k + 1)
A bar rests on two pegs and makes an angle f§ with the horizontal. The coefficients of

. friction are p; at one peg, which is at a distance a from G, the centre of gravity of the

bar, and g at the other peg at distance b from G. Show that for an equilibrium
condilion to exist.
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uyb+paa
{a+b)

$3.8 At what height above the surface of a billiard table should a ball of radius r be struck
by a horizontal force F in order to have no sliding at the point of contact? (as shown
in Fig. Prob. §3.8).

539 A cylinder of diameter d weighing W rests at a corner of two surfaces as shown in Fig.
Prob. $3.9. Prove that the maximum force P that can be applied as shown without
causing the cylinder to rotate is 3/8 W. Take the coefficient of friction for each pair of
contacting surfaces as 0.5.

tan <

P
7

— F 7
4
7
g-—d

h 7

crrel K

P
Fig. Prob. 53.8 Fig. Prob, 53.9

$3.10 Find the minimum weight W of the triangular block such that it remains in equilibri-
um under the action of the force | kN applied to it as shown in Fig. Prob. §3.10. Take

=025,
(Ans. 2.12 kN)

05 m

|

|
05 m
| |

Fig. Prob. $3.10

53.11 A cylinder of diameter 0.3 m and mass 25 kg rests on a rough surface as shown in Fig.
Prob. §3.11, with 4, = 0.4 and g, = 0.35. Determine the force P to be applied shown
to roll the cylinder without slip over the step.

(Ans. P=T70.5N)

§3.12 A cylinder weighing 2670 N, 1.2 m in diameter is acted upon by a force of 445 N, as
shown in Fig. Prob. 3.12 with the help of a cord wrapped around it. Determine the
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P
:0>\ 445N

4

0.025

TITITTIITITIITTT TETTTITITITIIT) TIIIITITIITIITT
Fig. Prob. 53.11 Fig. Prob, §3.12

coefficient of friction required to prevent slipping. What would happen if the coeffi-
cient of friction is reduced?

(Ans. g = 0.21; it would roll with slip at the point of contact)

§3.13 A rope is wrapped three and a half times around a cylinder, as shown in Fig. Prob.
§3.13. Determine the force T exerted on the free end of the rope, that is required to
support a 1 kN weight. The coefficient of friction between the rope and cylinder is

0.25.
i / Cylinder
T
Ty
w
Fig. Prob. 53.13
53.14 A belt passes over a ber of fixed cylinders, as sh in Fig. Prob 3.14. Find the

tension T for a given tension T in terms of the coefficients of frictions and angle.

{ﬁm_T:Tug'W:ﬁ‘ gy By +-..))

$3.15 A square-threaded screw jack has a pitch of | cm and a mean diameter of 7.5 cm. The
mean diameter of the bearing surface between the cap and the screw is 9 cm. The
coefficient of friction between all surfaces is 0.10. What force is required at the end of
a lever 90 cm long to raise 40 kN?

(Ans. 440 N)
53.16 Four turns of a rope around a horizonlal post are just able to hold a 450 kg mass with

a pull of 45 N. Determine the coefficient of friction between the rope and the post.
(Ans. y=0.18)
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Fig. Prob. 3.14

53.17 Two equal pulleys, cach of diameter 75 cm, are connected by a belt. The tension in
the tight side of the belt is 200 N. If the coefficient of friction is 0.25, determine the
tension in the slack side of the belt at the instant of impending slip.

(Ans. 91 N)

53.18 A screw jack has a pitch of 6 mm and the mean radius of the threads is 60 mm. The
mean diameter of the bearing surface under the cap is 80 mm. What is the turning
moment necessary to lift a 680 kg box? Take u = 0.06.

(Ans. 46.4 Nm)

§3.19 An axial force P presses the disc brake of radius R onto a flexible elastic surface so
that the contact pressure decreases parabolically from py, at the centre to zero at the
periphery of the disc. Show that the pressure distribution can be expressed as

2P L 1,p2
p =z (-T2 IRY)

Also show that the torque required to cause the impending motion of the disc brake is
given by M =8/15 u, PR.
§3.20 Find the lifting force P required to raise the load 100 N supported as shown in Fig.
Prob. 83,20, Take g = 0.3. What would happen if the force P is less than this value?
What is the minimum force P required to just hold the load in position?
{Ans. 658.6 N; No lifting; 15.2 N)
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M

100 N
Fig. Prob. §3.20

53.21 A drum brake consists of a drum with brake lining over an angle 4a as shown in Fig.
Prob. 53. 21. The brake shoes are pressed on it with a force P to produce a braking

couple C.
Show that
2"_}1 _ h(a+sm¢'runa¢x) £
C 2uRsina

where the sign depends upon the direction of motion of the drum.

Fig. Prob. $3.21

Look up Hints to Tutorial Problems!
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Multiple-Choice Questions
Select the carrec.r or most appropraate 7 from g the available alternatives in the
Jfollowing multiple-choice g
1. The fome of fnctmn between two bodies in contact is
(a) a function of the relative velocity between them.
(b} dependent on the areas of contact.
(c) always normal to the surface of contact.
{(d) never shown in the free-body diagram of the system of these two bodies.
2. The frictional force is independent of
(a) the area of contact
(b) the coefficient of friction
(c) the normal reaction
(d) the angle of friction
3. The coefficient of friction depends upon
(a) the normal reaction
{b) the surface roughness
{c) the tangential force applied
(d) the speed of movement
4. Once a body just begins to slide, it continues to slide because
(a) the body has inertia
(b} inertia force acts on the body
(c) the body accelerates
(d) the frictional force becomes less.
5. The frictional force on a body acted upon by a force on a rough horizontal surface is
(a) always equal and opposite to the horizontal component of the force.
(b) equal and opposite to the applied force.
(¢) equal and opposite to the horizontal component of the applied fome if the body
is at rest or moving with a constant velocity.
(d) independent of the vertical component of the force.
6. The coefficient of friction between two surfaces is the constant of proportionality
between the applied tangential force and the normal reaction
(a) at the instant of application of the force.
‘(b at any instant when the body is at rest.
(c) at the instant of impending motion.
{d) at an instant after the motion takes place.
7. The ratio between the tensions in the tight side and slack side of a flat belt drive
increases
(a) in direct proportion to the angle of lap.
{b) exponentially as the angle of lap increases,
() in direct proportion to the coefficient of friction.
(d) proportional to the width of the belt.
8. The condition for a screw jack to be self-locking is that
(a) its efficiency should be the maximum possible.
(b) its efficiency should be the minimum possible.
(c) its efficiency should be more than 50%.
(d) it should not unwind to lower the load if left to itself.
9. The maximum efficiency of a machine
(a) should be 100% under ideal conditions.
(b) is directly proportional to the velocity ratio.
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(c) is given by mechanical advantage divided by velocity ratio.
(d) should occur when the load is 50% of maximum permissible load.
Answers to Multiple-Choice Questions

1 (), 2 (a), 3 (b), 4 (d), 5 (c) 6 (c),
7 (b), 8 (d), 9 (0

279



CENTRAL POINTS:

_— — CEeEntrOID, CENTRE OF
Mass AND CENTRE OF
GRAVITY

4.1 INTRODUCTION

It is ofien necessary to define a point such that the entire length of a curve, area of a
surface or volume, mass or gravitational force for a body should be representable to
act at that point for some purposes. The point should serve as a convenient origin
for the coordinate axes moving with the body. It can be regarded as a convenient
base point for the application of the principle of moment of momentum. It can also
be taken as the fundamental base for the moment of inertia computations. In view of
so many good reasons it is natural to define a central point for a given physical
entity, more so, if a single point can satisfy all the above criteria.

Mathematically, a central point is that point about which the summation of the
first moments of the elements of the body results in zero. Altematively, if an origin
is chosen arbitrarily, then the central point is that where the entire physical quantity
may be assumed to be concentrated for the purpose of calculating moment about the
origin. This definition, as will be seen later, makes the central point very meaning -
ful since it is unique and invariant with the choice of the origin and the orientation
of the set of axes with respect to the body.

The terminology of the central point for different physical entities is as follows:

Terminology Physical Entity

Centroid Length of a curve

Centroid Area of a surface

Centroid Volume of a body

Centic of Mass Mass of a body

Centre of Gravity Gravitational force on a body

4.2 CONCEPT OF FIRST MOMENT

The first moment of an ‘clement” about an origin is defined as the product of its
position vector with the element itself. The clement may belong to any physical
quantity, such as continuous length, area, volume, mass or distributed gravitational
force. The element is correspondingly termed as
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Length element
Area clement
Volume element
Mass element
Force element

dl for length (i)
dA for area (ii)
dv for volume (iii)
dm for mass (iv)
g dm for gravity (v)

It may be seen that the element can be a scalar quantity as in (i) to (iv) and a
vector quantity as in (v). The product definition of the first moment implies a
magnitude multiplication for the scalar elements and a cross product for the vector

clements,

Consequently, if the element is located by a position vector r with respect to an
origin O as shown in Fig. 4.1, the first moments are expressed as follows:

rdl

rdA

rdv

rdm

r % (- gdm k)
r4
.\"‘b

0

for the length element

for the arca element

for the volume element

for the mass element

for the gravitational force element 4.1)

~o Element df, dA, dv,
~ o dm or—g dmk

Fig. 4.1 Location of an Element

In general, the position vector r has three rectangular components:

r=xi+)yj+zk

The first moments for the length, area, volume, mass and force elements can be

expressed as follows:

xdli+ ydl j+ zdl k
AdA i + ydA §+ zdA k
xdVi+ydVj+zdVk
xdm i+ ydm § + zdm k
yedm i — xgdm j

for length (i)
for area (i)
for volume (1ii)
for mass (iv)

for gravity (v) 4.2)
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The first moment of any element can be positive or negative, depending upon the
choice of the origin and the contribution of the element. For example, the compo-
nent of the first moment of an area element, i.c.,

xdA

will acquire the sign of x if the area actually exists and it will acquire a sign
opposite to that of x if the area in question is a void from the total area counted as
positive. The sign and magnitude of x will, of course, depend upon the choice of the
origin.

4.3 CENTRAL POINTS: DEFINITIONS OF CENTROID,
CENTRE OF MASS AND CENTRE OF GRAVITY

The central point is defined as a point where the entire physical quantity can be
assumed to be concentrated to give the same first moment as that obtained by
considering the elements of the body. The central points for a length, an area and a
volume are called the centroids whereas the central points for the distribution of
mass and gravitational force are termed as the centre of mass and centre of gravity
respectively.

The central point is denoted by C and its position vector by

rr=xfi+y‘.'j+z‘-‘k

Thus, for a line in space whose total length is [ the first moment is written as r_ I.
Equating it to the summation of the first moments of the length elements over the
entire length.

v i=[rd’
whence r.= (f r dl) / ! (4.3)
Similarly, denoting the total area of a surface by A, its centroid is given by
r.= (I r dA]/A 4.4)
Likewise, the centroid of a volume V is given by
re=([rav)/v @.5)
and the centre of mass of a body of mass m is located by
r. =U rdm)/m
=(

I rpdv]/m (4.6)

where p is the mass density.

*In general. the limits for such definite integrals are not wrilten for the sake of convenience.
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The centre of gravity of a body acted upon by a parallel and uniform gravitation-
al force —mg k is given by

r, x (-mgk) =Irx (—gdmk)
rox mk=[(rxdmk) 4.7

The central point, i.e., the centroid, centre of mass or centre of gravity may or
may not lie on the body itself but it is a point fixed with respect to the body. The
choice of the coordinate axes and origin is arbitrary; the centroid is a unigue point
for the given physical quantity which may be a length, an area, a volume, a mass or
a distributed force. The central point, therefore, represents the given physical quan-
tity so far as its first moment about any origin is concerned.

4.4 CENTROID OF A LENGTH

The centroid of length [ of a curve in space is given by Eq. (4.3), i.c.,

ro=(fral) /i

which implies that the coordinates of the centroid are
o =([ xa)

Ye=([ ydl) /1 (4.8)

and 2 =(fzdl) /i

“1A "/l ’ ?) l i
. D [ / , b) Plane Curve
e

Ye

dl x
(a) Space Curve () Straight Lina )
Fig. 4.2 Centroid of a Length
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For a plane curve, the x and y coordinate axes being chosen in the plane of the
curve,

x.=[(xdht 4.9)
and Ye= [(yd
For a straight line, the x-axis being chosen along the length,
x=([xdl) /1 (4.10)

It may be noted that the centroid of a curve may or may not lie on the curve for
space and plane curves but it must lie at-the mid-point of straight line. Further, the
centroid for a curve is independent of the choice of coordinates and the origin. In
other words, the centroid is a point for a curve and is not concerned with the choice
of the origin O and the orientation of the axes.

4.5 CENTROIDS OF A COMPOSITE LENGTH

When the length of a curve can be decomposed into simpler shapes, such as straight
lines, arcs of circles, etc., the centroid of the length can be determined by employ-
ing the knowledge for these simpler shapes. The principle is:

The first moment of the total length must equal the algebraic sum of the first
moments of the lengths of its parts which indeed follows from the definition of the
centriod.

If a composite length consists of component lengths /,, L, L, ... with centroids at
(Xeps Yok (X0 ¥ep)s etc., respectively, then the centroid of the composite area is
located by

_ Xl txnlh
Xe= Lo+1 +14 +...

=5 (4.11)

and _ yl_lll +y‘.212 +...
Lo+l 1+

Zy.!

= ? {4.12)

Care must be taken to regard the component lengths as positive or negative
depending upon their contribution to the composite length. The coordinates of their
individual centroids, referred from the same origin, can be positive or negative.
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Example 4.1 Locate the centroid of an arc of a circle of radius R and subtended
angle 2a Hence determine the coordinates of the centroid of
(i) a quarter circular arc
(ii) a semicircular arc
(iii) a complete circular arc.

y
(a) Arc of a Circle
R
L/\’"
- 0 - =X
° 45’ . x c
c
x
{b) Quarter-Circular Arc (c) Semi-Circular Arc

Fig. Ex. 4.1 (Solution)

Solution Consider an arc of a circle with reference to the coordinate axes at the
centre of the circle drawn symmetrically with respect to the arc. Symmetry of the x
axis ensures that the centroid is located on the x axis or

Ye=0
In order to determine x,, consider a length clement
di =R d8
at an angle 6 from the x-axis as shown in Fig. Ex. 4.1. (Solution)
By definition,

x=(fxdt)f1=(]xd1)/[al
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(-4 o
=| [ xrde |[| | Rd®
—-a -a
Substituting x = R cos &,
x, =[T R? cos&dﬁ]/(? Rd&]
- ol

_ R (sin @ = sin (- @)
- 2R

Rsina
T a

(i) For a quarter circular arc,

2= m2; a= 4

Consequently,
Rsina/d 22
X, = ————— =R
w4 F 4
and ¥.=0
Table 4.1 Centroid of Length of an Arc
Description Shape Length X
L Rsin a
(Arc of a circle) 2R p
(Quarter circular arc) % ZJE R
2a= a2
(Semicircular arc) 0 4 ~
2R
a=nx F"_"‘ R -
(Circular arc) 2aR 0
2a=1r

(it} For a semicircular arc
=, =xm2

‘= Rsin /2 2R

r 72 T

y.=0
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(iii) For a complete circular arc,
2=2m, a==xn

Rsinrm
X = =

e=—F— =0

¥.=0

The centre of the circle must be the centroid of the complete circular arc by
virtue of its symmetry about the diameteral axes.

Example 4.2 A metal wire is bent into the form shown in Fig. 4.2. EF is along — x
direction and BA is along + x direction and ED and BC are parts of same circle
joined by DC. Find the centroid of the combined length of the wire.

Fig. Ex. 4.2

Solution One way of finding the centroid is to start from one end and use integra-

tion in parts, i.e., A to B, BC, CD, DE and E to F. Another, better way of doing this

is to consider the line as a complete ring with diameter DC minus DB and EC plus

EF and AB. The ring with diameter DC has its centroid at O due to symmetry.
The centroids and lengths of different parts of the line are given below.

Part Length Centroid
Complete ring X Ye 2
and DC an+ 4 0 0 0
EC -3 0 1.977 0
BD -5 0 ~1977 0
EF 2 -1 1.932 518
AB 1 0.5 ~1.932 -.518

Lengths EC and BD are negative because they are to be subtracted from the ring
to get the given shape.
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Length of the combined line=4 + 2 + | + 47 - 223 = 17472
Thus the centroid of the combined length is

(4:r+4)x0+(_—;r—)x0+(%]x0+2x(—l)+l x 0.5
Yo = 17.42
-15
=T7.a72 = -086m
(4m +4) % 0+(—§)x 1.977+(-§)x(—1.977)+2x 1.932-1x1.932
Ye = 17.472 ’

=0.111m
Similarly z.=003m

A glance at the procedure reveals that if one had followed the earlier stated
procedure of integration, the solution would have become cumbersome and also
involving equations for every part of the line.

4.6 CENTROID OF AN AREA

From the definition of the centroid of an area (Eq. (4.4))

r. = Urzﬂ) / A
the x, y and z coordinates for a set of axes, with an arbitrary O as shown in Fig. 4.3,
are given by

X =(jxdd)/.4
Yo =([ydA) /A (4.13)
2 =(fzd4) /A

Y

(a) Curved Surface
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¥

(b) Plane Surface
Fig. 4.3 Centroid of Area

For a plane area, the x and y coordinate axes being chosen in the plane of the
area as shown in Fig. 4.3(b),

X, =(deA)/A
Ye =(IydA)/A 4.14)

It may be added to clarify that the centroid of an area may or may not lie on the
area in question and that it is a unique point for a given area regardless of the choice
of the origin and the orientation of the axes about which we take the first moments.

If an area has an axis of symmetry, the centroid must lie on that axis. If an area
has two axes of symmetry, then the point of intersection of the axes must be the
centroid. For example, a rectangle shown in Fig. 4.4 is symmetrical about the axes
x —x and y — ', the point of intersection of x — x” and y — ¥’ is, thercfore, the
centroid. Similarly, for a circle, the point of intersection of any two diameters is the
centroid; this is the centre of the circle itself. The centroid of a composite area may
be determined from the knowledge of the centroids of the constituent areas in the
same way as is done for a composite length.

y
x x %
(o
y
{a) Rectangle {b) Circle

Fig. 4.4 Location of Centroid

Example 4.3 Locate the centroid of a right-angled triangle with base b and height 4.

Solution Let us consider an area element dA with respect to the x and y axes
drawn from the right-angled vertex O as shown in Fig. Ex. 4.3(a)
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Fig. Ex. 43 (Solution)

x.=(fxdA)/Aand y_=([ydA)/A
introducing dA = dx dy = dy dx
and recognising the equation of the straight line KL as

y =—%x+h
or x=-——g-y+b
and that A=bh

()

Similarly,
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b

A
0

The centroid of a right-angled triangle is, thercfore, located at one-third the
distance along the base and one-third the distance along the height. It may be noted
that, in general, for any triangle, the centroid is located at one-third the height of the
triangle from the base. Obviously, any side can be taken as the base and the rule of
one-third height applies to any orientation. The cenlrmd of a triangle can, there-
fore, be located easily by this consideration.

It is also interesting to note that the centroid of a triangle is coincident with the
point of intersection of its medians, as shown in Fig. 4.3(b) (Solution).

£

x e
3+.\‘!y

=|h
b?

I
=

Example 4.4 Locate the centroid of the area of a circular sector. Hence, obtain the
coordinates of the centroid of a quarter circle and a semi-circle with reference to a
set of axes at the centre of the circle.

Solution Consider the sector of a circle as shown in Fig. Ex. 4.4 (Solution) with
reference to the coordinate axes at the centre of the circle drawn symmetrically with
respect to the sector. Symmetry about the x-axis ensures that the centroid lies on the
X-axis or

Ye=0

In order to determine x,, consider an area element
=Llp =1p2
dA-zRRdﬂ—-zR de

at an angle @ from the x-axis. The centroid of the elementary area must be at 2/3 R
from the centre such that

=2
3
By the definition of centroid,

%= (fxd) [ an

Rcos @

) 1 52 1 2
= _‘LERCGSG.ER de _‘LER de

_ 2 R lSi.:I‘l elfa
S
2 _sing
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(a) Sector of a Circle

¥y
¥ y'
¥'e
0 nl4 ec x
= xi2 *R
Xe

N v

(b) Quarter-Circle

{c) Semi-Circie
Fig. Ex. 4.4 (Solution)

For a quarter-circle,
T T
o= ==
o 2 o a

Hence, the limits of integration become
~ /4 to + mi4

The x-coordinate of the centroid is

_2 psinmld 4R
% =3R—E=V2

Generally, the centroid of a quarter circle is referred to the x" and y” axes:

x, =yc" =x, cus%:%—ﬁ-:ﬂ.d?ﬁ R
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For a semicircle,
2 =ma=n?
and the limits of integration become
-2 to +12

The x coordinate of the centroid is

2 . sinm/2 4R
== =2X_0.4
Y =R =gy = 04K

Example 4.5 Two non-viscous, incompressible and immiscible liquids of densi-
tics p and 1.5 p are poured into the two limbs of a circular tube of radius R and
small cross-section kept fixed in a vertical plane as shown in Fig. Ex. 4.5. Each
liquid occupies one-fourth the circumference of the tube.

Find the angle 8 that the radius vector to the interface makes with the vertical in
equilibrium position.
Solution Centroids C; and C, of the liquids in the circular tube are located by

242

oc, == ~R=0C,

Masses of the two liquids are pa nR/2 and 1.5 pa aR/2 respectively.

Fig. Ex. 4.5 Fig. Ex. 4.5 (Sobution)

The centroid of the composite column BD lies on the vertical line OA. Taking
moments, for equilibrium,

w22

paT-ngRSLn{45+9)

=I.5pa%-gx% Rsin (45— 0)

whence, sin (45 + 6) = 1.5sin (45 - 6)
sin 45 cos 8+ cos 45 sin @ = 1.5 [sin 45 cos 8 — cos 45 sin 6]
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%sin-@&cos 3—%(:0345 sin@ =0

cos 03 5in 6 = 0; tan 0= 3; 0= 18.43°
Example 4.6 Determine the centroid of the area bounded by the x-axis, the line
x = a and the parabola y* = kx as shown in Fig. Ex. 4.6.

Solution We may choose to consider a y
differential area element

dA = dx dy y? =k

located by x, y coordinates, as in the case

of a triangle or we may prefer to deal with T

strip elements, as in the case a circular sec- b

tor (Fig. Ex. 4.6 (a) and (b)) (Solution). In

this case, let us do it both ways and see the l
equivalence of the procedures.

Method 1 I a ] x
Choosing a differential area element Fig. Ex. 4.6

dA = dx dy

at a location (x, y), the centroid is given by

x =(Jxda)[A, y. =(]yda)/a

Noting that A=[dA=| [ dxdy

and
k=l b2
X a
therefore,
_ bia _ 2ab
A=ab B2 -3
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y

Fig. Ex. 4.6(a) (Solution)

]
K =[j (a? ﬁy‘.-'kz)aqdy]/ﬁ
: [+]
1 b3a?
25(“%_ 5h? )/A

=2 2, 3 _3
=595
« B

ye={ [ ydydxliA
O y=0

The centroid is, hence, at [% a, ‘g‘ b).

Method 11
Choose an elementary strip of area

dA =y dx

295

at a distance x from the y-axis, the centroid of the strip being at ¥/2 from the base,

the centroidal ordinate for the given area is

Ye=(fyr2-ydr)/A

{54l

|
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y y
dA = ydx dA = (a — X)dy
. {a, b) (a, b)
x {a-x)y2
T | @a-x %ay
@il
0 —del-—— (a, 0) x 0 (0, a)

Fig. Ex. 4.6(b) (Solution)

Similarly, by taking a strip of area
=(a—x)dy

with its centroid at
a-x x+a

2 2
from the y-axis, the abscissa is given by

b \
xc=[J (a x)dyJ/A
0

X+

[
=]
&

The centroid is again observed to be at the point [% a.%b)
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Table 4.2 Centroids of Geometrical Shapes

Description Shape Area X, Ye

Yy

.

Rectangle } bh b2 2
Square h
(h=b=a) c % & a2 al2

S —

¥

e —

Parallelogram &\\}\\\‘\\\Q{‘%\iﬁ‘ ' 7 ab sin a E—-a;ﬂ f%'.’f.
e 51N S

¥y

NN
Triangle X@\? \ %bh 113 (a + b) hi3
[+——a
y
Semi-circle .t\c — % 0 -;—':- =0.424R
R i
GO | 4=
X

Quarter circle ,-“:—2 ‘3‘5 ;—:

=0424 R =0424R

(Contd.)
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Table 4.2 (Contd) Centroids of Geometrical Shapes

Description Shape Area X, Ve
y
R
Rsina
Sector of a ‘<'/z //;G Ra % : 0
circle 0 {7 7 x
xc
Y x2 y2 _,
aZ b2 mb  4a 4
Qu_aner 4 3n k4
ellipse T
b c
‘, / Ye
Qpe———g —=j x

2ab 3 3
3 59 g’
ab n+l n+1_2
n+ n+2’ 2n+1 2
@ 3 3
3 4 4

Example 4.7 Locate the centroid of the given composite arca shown in Fig.
Ex. 4.7.

Solution  The given area can be considered to comprise a rectangle 40 cm x 50 cm
plus a semicircle of 20 cm radius minus a circle of 10 cm radius. With respect to the
x-y axes with the origin at O, we proceed by preparing a table:
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y
20 cm
o ” *
___y 30 cm
<) ;
X, / 20 cm
Lo .
I—-— 40 cm -—I
Fig. Ex. 4.7
Camponent Area X, ¥e x A ¥ A
(em?) (cm) (em) (cm) (em®)
Rectangle 2000 20 25 40 000 50 000
- . %202
Sem1c13:[c with 3 =6283 20 50+ 0424x20
centre
1 =58.5 12 566 36 756
Circle with centre -ax10? 15 20 -4712 - 6284
0, (void area) =-314.2
Total 2314.1 —_ —_ 47 854 80 472

ZA I A Iy A

Employing the relations for the centroidal point,

_z;fA zyc“‘
S VR s v o
we obtain,
47854
X = 3101 =208
80472
e =P34 ot TTem

4.7 THEOREMS OF PAPPUS-GULDINUS

There are two very important theorems initially due to the Greek geometer Pappus
and later restated by the Swiss mathematician Guldinus which deal with the surfaces
and volumes of revolution.

Theorem 1
The area of a surface of revolution is equal to the length of the generating curve
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times the distance travelled by the centroid of the generating curve while the
surface is generated.

Proof of Theorem 1
A variety of generating curves can be employed to generate the surfaces of revolu-
tion as shown in Fig. 4.5.

GENERATING SURFACE
CURVE GENERATED
B

x ¥
(a) Straight Line Surface of Cone
dl
—
]
N
\
§
=
X 0 8 X
N
N
K}

(b) General Spandrel General Surface
Y @
(c) Semi-Circle Sphere
Xomimeimaimarione x Xewomms M X
(d) Circle above the x-axis Torus

Fig. 4.5 Surfaces of Revolution
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Consider a generating curve, say the general spandrel to generate a surface of
revolution as shown in Fig. 4.5(b). An elementary length dl of the curve of length [
generates a surface arca

dA = 2my-dl

The total surface arca generated by the given curve is

!
A =_[dA=j 2nydl
0

1
=2z [ ydl
0

=2ny, - (4.15)
Since yl= I vdi
by the definition of the centroid of a curve.

Hence, the area of the surface generated is given by the product of 2y, and the
length of the surface [; as if the entire length of the generating curve were concen-
trated at the radius y,. In other words, the area of the surface generated equals the
area of a cylindrical surface of radius y, and length [.

Theorem 2

The volume of a body of revolution is equal to the generating area times the
distance travelled by the centroid of the area while the body is generated.

Proof of Theorem 2 and its scope

Consider a surface area A bounded by a curve, y = 0 and x = a lines as shown in
Fig. 4.6. An area element dA of the surface, when revolved about the x-axis gener-
ates a volume

dV =2ny - dA
The entire volume generated by the total area is
V=[dV=]2nrydA
=2x[ ydA=2my, A (4.16)
since YA = IJ' dA

by the definition of the centroid of an area.

a
Generating Surface with
Area A

Volume = 2aY_A
Fig. 4.6 Volume Generated by a Surface
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Hence the volume of the body generated is given by the product of 2my, and the
magnitude of area A of the surface as if the entire area of the generating surface was
concentrated at its centroid at radius y.. In other words, the volume of the body
generated equals the volume of a right circular cylinder of radius y, and cross-
sectional area A.

The theorems of Pappus-Guldinus provide simple means of relating the areas
and volumes of the surfaces and bodies of revolution to the lengths and areas of the
generating curves and surfaces. These relationships can be used with advantage
both ways, i.e., to determine the areas and volumes of the surfaces and bodies of
revolution from the given curves and surfaces to generate these or to locate the
centroids of the curves and surfaces from the knowledge of the areas and volumes
of the surfaces and bodies generated.

Example 4.8 A semicircle is rotated about its diameter to generate a sphere.
Calculate the volume of a sphere of radius R.

Semicircle
Rotated
about A-A

Fig. Ex. 4.8

Solution The theorems of Pappus-Guldinus can be used to great advantage in this
case. The centroid of the semicircle is 4R/37 above the diametral axis. The area of
the semicircle is 7R%2. According to the Pappus-Guldinus, the volume of the body
of revolution generated should be same as that which would be obtained if the
entire area 7R*/2 were concentrated at a radius 4R/37. The volume of the sphere is,
therefore,

4R TR 4 .,
Mg Xy =3™

Example 4.9 Determine the centroid of a quadrant of a circle using the theorems
of Pappus and Guldinus.

Solution It is an interesting application of the theorem to locate the centroid of an
area if the volume generated by revolving the area over an axis is known. In this
case, the volume generated by revolving the quadrant of a circle about either the
x-axis or the y-axis is that of a hemisphere, i.e.,

%zm

Since the area of the quadrant of a circle is

nR2
4
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W,

N Hemisphere Generated
A
v

_:/ 2ny,

Fig. Ex. 4.9

o
]

The distance travelled by the centroid of the quadrant of a circle in generating
the hemispherical volume must be

2 4oy TR R
3”"“/ 4 3

Equating it to 2my, for rotation about the x-axis

=4R
Ye 7 3g

Similarly, the x-coordinate of the centroid may be determined by rotating the
quadrant about the y axis

_4R
%" 3x

4.8 CENTROID OF A VOLUME

The centroid of a volume, by definition, is given by Eq. (4.5), i.e.,

r‘=U rdv}/V

whence the coordinates of the centroid are obtained as
X, =(j de)/VI
ye=(Jyav)/v (4.17)

2. =([zdV) [V

as are shown for the volume of a matka in Fig. 4.7.
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z

\

e Ye
v

Fig. 4.7 Centroid of a Volume

Table 4.3 Centroids of Volumes of Revolution

Deseription Shape X, Volume
. 3 2.p

Hemisphere 8 R 7R

I/
Right circular I‘ 13aRkh
cone
Semi-ellipsoid 3
of revolution h 2/3xR%

{(Contd.)
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Table 4.3 (Contd) Centroids of Volumes of Revolution

Description Shape X, Volume

o

Paraboloid

4 1/27R%h
of revolution 3

The centroid of a volume is a point about which the first moment of the volume
equals the summation of the first moment of the distributed volume elements. It is a
unique point for the volume and its location is the body is independent of the choice
of the origin or the orientation of the axes.

When a volume V possesses a plane of symmetry, the centroid of the volume
must lie in that plane. When a volume possesses two planes of symmetry, the
centroid must lie on the line of intersection of the two planes. When a volume has
three or more planes of symmetry, the centroid must be located at the point of
intersection of these planes. The centroid of the volume of a sphere, a cube, an
ellipsoid or a rectangular parallelopiped can be located readily by considering their
triple or multiple symmetry.

The centroid of a volume of revolution must lie on the axis of symmetry but the
distance of the centroid from the apex must be determined by inlegration. It is
cautioned that the centroid of a volume of revolution may not coincide with the
centroid of its cross-section containing the axis. A summary of the centroids of
some volumes of revolution is given in Table 4.3,

Example 4.10 Locate the centroid of the volume of a right circular cone of base
radius R and height h.

Solution A right circular cone possesses an
axis of symmetry; the centroid must be locat-
ed on this axis. Let the origin be at O, the
apex and x-axis along the axis of symmetry as
shown in Fig. Ex. 4.10.

Consider an elementary disc of radius r and
width dx at a distance x from the origin. The
volume of the elementary disc is

dv = m? dx

and its centroid is at a distance x from O,
For the entire volume of the cone, by defi-
nition, ‘

*o=(xav)/v FI;: Ex. 4.10
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Substituting r =%x and V =é:r R?
3
h .'I'Rl 1
x,=[£ 3 x-‘dx]/(irrth)
=zR2h2 3 _3,
4 TR2h 4

The centroid of a right circular cone is, therefore, located at quarter height from

its base.

Example 4.11 A right circular cone of base radius R and height k is attached to a
hemisphere of radius R as shown in Fig. Ex. 4.11. Determine the ratio &/R for which
the centroid of the composite volume is located in the plane between the cone and
the hemisphere.

Fig. Ex. 4.11 Fig. Ex. 4.11 (Solution)

Solution With reference to the origin O at the apex of the cone, as shown in Fig.
Ex. 4.11 (Solution) the centroid of the cone alone lies at

3
X = zh
and the centroid of the semicircle lies at
Xa=h+ % R
Recollecting that the volume of the cone is

v, = 1%
'3
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and that the volume of the hemisphere is

Vy= 228

the centroid of the composite volume must be located such that

x(V, + V) =x,V, +x,V,

=_3.h

1. p2 3p12,.p3
Y 3:1'R h+(h+gﬂ)3fr5‘

In order that the centroid lies in the plane between the cone and the hemisphere,

x.=h
Then,
Lzls)=1212314
11(37&2 h+3rrR 4.rrR h +3rrR h+4rrR
h? 2 h? 2 R?
or 3+3Rh_ 4+3Rh+ 7
or K= 3R
and finally hiR =3

4.9 CENTRE OF MASS

The centre of mass for a body of mass m is a point where the entire mass m can be
assumed to be concentrated to give the same first moment as that obtained by
considering the element of mass continuously distributed over the body:

r, =(rdm)/m

In terms of an arbitrarily chosen set of x-y-z axes, as in Fig. 4.8(a),

Z
V.3 ”
c
/'
r /rc
~~—
r4 z=
) y
4 X’ /
e Xz
s Y

/ Ye
x

Fig. 4.8(a) Centre of Mass
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% =(fxdn)/m
Ye =([ydm)[m (4.18)

Ze =(szm)/m

The centre of mass is an important point in the study of dynamics. If the external
forces acting on a body pass through its centre of mass then the body will behave,
for all practical purposes, as if it were, a point mass concentrated at the centre of
mass.

For a body with constant mass density p, also known as homogeneous body,

dm = p dv
and m=py
hence x=([xpdv)/pv=(] xdv)/v
Similarly,
ye=(fydv)/v and  z.=(]zdv)/v 4.19)

which means that the centre of mass is coincident with the centroid of volume. It is
indeed the variation in density which makes the centre of mass different from the
centroid of volume for a body.

If the distribution of the mass of a body is symmetrical about an axis, the centre
of mass must lic on that axis. If there are more than one axes of symmetry, the point
of intersection of such axes corresponds to the centre of mass. For a body of
revolution of uniform mass density, the centroid must lie on the axis of symmetry.

¥
X ——
Drilled hole
/
e At
O — 3——le—

X, My+Xg, Mg =Xp, M3

X = o
1+Mp -Mmy

Fig. 4.8 (b) Centre of Mass of a Composite Body
The centre of mass for a composite mass consisting of masses m,, my, ms, ... with
the mass centres at (X.y, ¥eps Z1) (Xe2r Yea» Zea)s €1c., Tespectively is located by
X
-

e

1 ml 'i'.\fr2 ?ﬂ: + ...

ml +m2 +m3 +...
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= (4.20)

y )"cl ml +yc2 m2 + ...

<

m, +m2 +J'1'J_1 +...

Zy.m
= — 4.21
Em ¢ )

ch ml +zc2 .l‘l‘.'.2 +...

ml +m2 +m3 +...

c =

_Zzm (4.22)

Zm

Care must be taken, however, to ensure the proper sign of coordinate distances
and masses of the component bodies. For example, the centre of mass of a compos-
ite body shown in Fig. 4.8(b) is determined by selecting the origin at O from where
all x-distances are positive but the void mass 3 is considered negative because the
mass 1 refers to the undrilled solid body.

Example 4.12 'The density at any point of a slender rod varies with the first power
of the distance of the point from one end of the rod. Locate the mass centre.

dm
[Vl T & N T YT T T T Ty = x
i
Fig. Ex. 4.12

Solution For the slender rod of length ! shown in Fig. Ex. 4.12, the density at
distance x from the left end, say, is

p=ke

where p, the density is taken as the mass per unit length of the rod,
The mass dm of an element located at a distance x from the origin is, therefore,

dm = p dx = kx dx

From the definition of the centre of mass,

x‘.=(_|'xdm)/m=(_|'xdm)/j‘ dm

e oo
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kit 2|2,

3 k2|, 3
The centre of mass for this rod is located at two-third of the length from the end

chosen as a reference. This is obviously different from the centroid of volume of the
slender rod which is at its mid-point.

Example 4.13 A thin wire of homogencous material is bent to form an isosceles
triangle as shown in Fig. Ex. 4.13. Determine the base angle o for which the centre
of mass of the wire coincides with the centroid of the area enclosed by the wire,

Solution The centroid of the area of a y

triangle is at one-third the height of the

triangle from the base. Further, by sym- |

metry about the y-axis, the centroid must h

lie on it. Therefore, (] +

X,=0 and ¥, =2% - 0 y *
=4 and f= - 2 1

The centre of mass of the wires of Fig. Ex. 4.13

the triangle must also lie on the y-axis

and the y-coordinate can be obtained by considering it as a composite mass:
Component Length Mass Yo ¥. X Mass
Base 2 2p! 0
Each side ,sz +h? pJaZ +}|2) % % h‘ﬁ +h2
Totals for the

triangle o 200 +4J1% +h?) Y, phfI2 + 12

~ ,oh,jti +h?
2p(1+,}£2+h2)

Equating it to % and cancelling p,

2h, . 2h
2 2 === == 2 2
W +h? =5H+ 21 +h

or hJI2 +h? =2h
or Py =4P
and h=31

whence a:mn"%:mn" 3)=60°
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Example 4.14 A hollow cylindrical component 15 cm outer diameter and 5 cm
inner diameter is 30 cm long as shown in Fig. Ex. 4.14. Its mass density varies from
4000 kg/m® at the left end to 10 000 kg/m® at the right end. Locate the centre of
mass of the component
(a) by assuming a lincar variation of density over the length of the component
(b) by assuming that it consists of three components A, B and C of mass densities
4000 kg/m?, 7000 kg/m* and 10 000 kg/m*.

15 cm

|5cm|
o]

|—-10an----1oun—|-~1om--|

Fig. Ex. 4.14

Solution By virtue of axisymmetry of the component about x-axis as shown in
Fig. Ex. 4.14, the mass cenitre must be located on the x-axis.
The area of the cross-section is

7(0.152 - 0.052)
a =—-———-—--‘-‘---——-—-

(a) By definition of the centre of mass,

% =(] x dm) [ [dm
=(f xpav)/[pav

=([ xpax)[[pdx

For linear variation of density,

f=4000+(10000~4000)x—6%

= 4000 + 20 000 x
where x is in m.
With reference to the origin at the left end,

0.3
|| (4000 +20000x) xdx
0

X =__'_____-__~.-.- s

0.3
| (4000 +20000x) dx
0
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|4000x2 /2 +20000x3 /3]0
|4000x +20000x2 /2|
=360 =0.1715 m = 17.15 cm from the left end
2100 = - :
(b) For the components of the composite mass,
Component Mass X, X, X Mass

A 4000 x a x 0.1 0.05 20a

B 7000 x a x 0.1 0.15 105 a

C 10 000 x a x 0.1 0.25 250 a

Totals 2100 a 375a

The centre of mass of the composite area is, therefore, located at

375a
X: 2100 a =0.1786 m

= 17.86 cm from the left end.

It can be observed that the process of taking the averaged density over the
segments yields the same mass, i.c., 2100 a kg as by assuming a linear variation of
the density as expected but the location of the mass centre is different because the
first moments of the variable-density mass involve second-order terms.

Example 4.15 A concentric hole of diameter 10 cm is drilled half way through a
20 cm diameter, 30 cm long solid cylinder of brass. The hole is then filled com-
pletely with gold and finished flush to make it a complete cylinder again as shown
in Fig. Ex. 4.15. Locate the centre of mass of the finished cylinder.

|-—15cm——-|

\\\§ ______
///////

Fig. Ex. 4.15

20cm
10cm

30cm |

Assume that the density of brass is 8500 Iu:g;‘m3 and density of gold is 19 500 kg/m’.

Solution The composite mass may be visualised as being composed of:
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a solid brass cylinder 20 cm diameter and 30 cm long
— a solid brass cylinder 10 cm diameter and 15 cm long
+ a solid gold cylinder 10 cm diameter and 15 cm long
This can also be interpreted as
1. a solid brass cylinder 20 cm diameter and 30 cm long plus
2. asolid cylinder 10 cm diameter and 15 cm long with a density equal to
the difference of densities in gold and brass.
Consequently, taking the origin at the left end of the cylinder on the axis, as
shown in Fig. Ex. 4.14.

Component x,. {cm) m (kg) x.m (kg em)
%202 8500
=801
rx102 (19500 - 8500)
2 1.5 1 x15x% 06
=12.96 97.2
Total 93.06 1298.7

The distance of the centre of mass of the finished composite cylinder from the
left end of the cylinder on the axis is

4.10 CENTRE OF GRAVITY

The centre of gravity for a body of mass m acted upon by a parallel and uniform
gravitational force field is a point through which the resultant force due to gravity
would act whatever the orientation of the body may be.

For a given orientation of the body, the gravitational force acts vertically down-
ward. The line of action of the resultant force must also be a vertical line and the
resultant force must be a summation of the forces acting on the mass elements, i.e.,

F=[dF=-]gdmk
=-g[dmk=-mgk (4.23)

which is also the total gravitational pull on the body as shown in Fig. 4.9.

The line of action of the resultant gravitational force, i.e., — mg k should be such
that the moment by the resultant about any arbitrary origin or about any set of axes
must be the same as that exerted by the clemental forces distributed over the mass

r.xF =Irx{—gdmk)

or r,x(—mgk):]rx{—gdmk)
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z

gl

Fig. 4.9 Concept of Centre of Gravity

or r.xmk = [ rxdmk (4.24)
whence,

x=(J xdm)/m=(f xpdv)/m
and Ye=(f ydm)[m=(] ypav)[m (4.25)

If the body is now turned through some angle, say by 90°, about an axis other
than the vertical axis, another line of action of the resultant gravitational force can
be located and the point of intersection of the two lines of action locates the centre
of gravity.

The coordinates of the centre of gravity are the same which locate the centre of
mass of a body. Tt follows that the line of action of the gravitational force on a body
of mass m must also pass through its centre of mass.

The centre of gravity can be different from the centre of mass only when the
-gravilational force field is not parallel and uniform, i.e., if there is a change in the
magnitude or the direction of the gravitational force. It can be visualised that the
centre of gravity of a large body with the dimensions not negligible in comparison
with the radius of the earth or of a body of considerable width where the gravita-
tional force must be taken directed towards the centre of the earth will differ from
the centre of mass. For most practical purposes and unless otherwise stated, the
centre of gravity and centre of mass are assumed to be identical. It is for this reason
that many authors do not distinguish between them.

The centre of gravity of a material body may also become identical with the
centroid of volume of the body if the material is homogeneous, i.c., if the density

p = Constant

Further, for a thin plate of constant thickness and homogencous material, the
centre of gravity may tend to coincide with the centroid of area of the plate. This,
then, offers an experimental method of determining the centroid of area of a thin
lamina. If the lamina is suspended by a thread from a point at its periphery, the line
of suspension of the thread passes through the centroid. If now the lamina is sus-
pended again from another point at its periphery, the new line of suspension of the
thread also passes through its centroid. The point of intersection of the two lines
locate the centroid as shown in Fig. 4.10. One may, hnwever, suspend the lamina
for a third time and ensure the location of the centroid.



Central Points: Centrotd, Centre of Mass and Centre of Gravity 315

First Suspension:
Centroid on 1-1

Second Suspension:
Centroid on 2-2

f
Fig. 4.10 Experimental Determination of the Centroid for a Thin Plate
Example 4.16 Locate the centre of gravity of an idealised bullet of 1 cm diameter

with a cone in the front and a hemisphere cut from the back as shown in Fig. Ex.
4.16. Assume the material to be homogeneous.

q

b

\
N

A\
g
W

\

A
A\

2.5cm

\

-

FANN

Fig. Ex. 4.16 Fig. Ex. 4.16 (Solution)
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Solution By virtue of axisymmetry about the x-axis, the centre of gravity which is
also the same as the centre of mass or centroid of volume due to homogeneity of the
material must lic on the x-axis.

The bullet is idealised to consist of a cone plus a cylinder minus a hemisphere as
shown in Fig. Ex. 4.16. The following table is made with reference to O as origin.

Volume X, 1, % Volume
Component (em?) (cm) (em?)
Cone 3052 x1 25 +0.25 0.7205

=0.262 =275
Cylinder X (0.5 %25 1.25 24544

= 1.963

Ix0.5

Hemisphere —%KR{U.SF 2

=-0.262 =0.1875 - 0,0491
Total 1.963 3.1258

The x coordinate of the centroid of the bullet is given by

X.= % = 1.592 ¢m from the base.
Example 4.17 An isosceles triangle is to be cut out from one edge of a square
piece of thin uniform sheet as shown in Fig. Ex. 4.17 such that the remaining sheet
when suspended from the apex P of the cut
will remain in equilibrium in any position. Find __
the area of the triangle cut-out. eC ‘T_ A

; ! |

Solution In order that a body remains inequi- | F——=——a————=—
librium in any orientation when suspended from . P -

a point, the point must be the centre of gravity. c G
For the piece of thin uniform sheet, the point h
also qualifies to be the centre of area or the

centroid. N

The apex point P can, therefore, be located

by the definition of the centroid: Fig. Ex. 4.17
(I—h) I h h_
(I=h)x 3 _ZXEXEX§_D
or 2 - 6lh + 3% =0
6Ii1’3ﬁl? - 2412
whence, h e

=[3%3)1)2
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=[@+2 o [G-¥IHIR
Rejecting the first solution which requires & to be more than /,
h = (3 - 3))12 =0.6341
The area of the triangle cut out is, therefore,
0.634/x 12 =0317

Alternatively, the apex point P can be located by the fact that this is arrived at by
removing the cut-out triangle of area a from the given square piece of area 2,

2 o[y 2h _
I x[z I h)]ax—s 0
. _2a
Using the fact lhalh—-r

2 l_ _E) — ﬁ:
e‘x[z [f l}axal 0
or 8a’-12fa+31%=0

_ 1212 i,p‘l441“ -9614

16

=[(3++/3)/4]1?

Again, rejecting the impermissible solution, the answer is

a =[3-+3)412=0317 7

Example 4.18 A wooden block of cross-section 10 cm % 10 cm is fixed on top of
a semicircular steel cylinder of radius 5 cm as shown in Fig. Ex. 4.18. Determine
the maximum height & of the wooden

block so that the composite body will f— 100m o]

be in stable equilibrium at its base. It 10cm
is given that the density of wood is
one-tenth that of steel. Woaden

/
Solution The composite body should H ?% |_— Block
7

be in stable equilibrium as long as the
centre of gravity lies on the semi-
cylindrical base. This is so because
then a restoring couple will act on the
body when it is tipped on either side.
In the parallel and uniform gravita-
tional field of the earth, the centre of
mass must be the centre of gravity. We
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proceed in a tabular form with reference to the mid-point on the base, to determine
the centre of mass of the composite body.

Component Mass Ye ¥, X Mass
kg) fem) (kg em)
' h h
Wooden block 10x 10 x hx p, 5+3 S+3 |x100hp,
= 100 hp,
C nx52 4x5
Semi-cylindrical base 3 x iOpz T 820 p,
= 390p, =21
Total 100 hp, + 390 p, 500 hp, + 50 h*p, + 820 p,

The centre of mass of the composite body is, therefore, situated at

; 500hp, +50h%p +820p,
€= 100hp, +390p,

which must be a maximum of 5 cm. Equating it to 5 cm to obtain the maximum
height k of the wooden block

500hp, +50h*p +820p,

100 hp, +390p,
or 1950 p, = 50 h’p, + 820 p,
P
whence h=4.75 |
1
Since py=10p,

h=47510=15cm

It may he noted that if the block and base are made of the same material, i.e.,
P2 = py, then
h=475cm

but if the block material is lighter than the base material, the length of the block can
be made much longer for maintaining stable equilibrium. On the other hand, if the
block material is heavier than the base material, the length of the block would be
less than 4.75 cm.

Concept Review Questions

1. State why
{a) The centroid of a curve, an area or a volume is independent of the choice of the
origin or the orientation of the coordinate axes?
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(b) The theorems of Pappus and Guldinus are valid for a complete revolution or a
fraction of a revolution of the generating line or area?

. Comment on the concept of the first moment of an element about an origin and about

a line. Does the first moment have any relationship with the moment of a force?

. Compare the location of the centroids of an arc of a circle and a sector of a circle

subtending the same angle at the centre of the circle.

. Under what conditions do the following coincide?

(a) Centre of mass and centre of gravity.
(b) Centroid of volume and centre of mass.
(c) Centre of gravity and centroid of area.

. Would you agree or disagree with the following statements and why?

(a) The centroid of a body may or may not lie on a material point in the body.

(b) The centroid of an area symmetrical about two axes must be the point of intersec-
tion of these axes.

(c) The centroid of a parallelogram is located by the point of intersection of its
diagonals because the diagonals are the axes of symmetry.

(d) The vertical line of free suspension of a thin sheet of homogeneous or non-
homogeneous material must contain the centre of gravity.

4.1

42

43

44

4.5

Tutorial Problems
Determine the moment of a semicircular arc about its diameter and hence locate its
centroid. 2R
(All.l. 2R 2 H ?.0]
Determine the y coordinate of the centroid of the area between the x-axis and the
curves y = sin x between 0 and & (Ans. &/ 8)
Locate the centroid of the area of a segment of a circle which subtends an angle 26 at
the centre. (Ans. 0, 2R sin@/36)
Locate the centroid of a trapezium with the base b and the parallel sides A, and h;.

3h, +h7) YT 3(hy +hy)
Determine the location of the centroid of the area bounded by the x-axis and the sine

b(hy +2h ht +h2 +hy h
[A X = (hy +2hy) i thy +iy hy

T
cumy:asin—fi fromx=0tox=L (Ans. (112, 7alB))

—— |——15|:|1-|

) el // L
i

‘ b~ 2sem
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4.0

4.7

4.8

49

4.10

4.11

4.12

4.13

4.14

Engineering Mechanics

Find the centroid of the L-section shown in Fig. Prob. 4.6.
(Ans. x, =26 cm, y = 3.17 cm)
A flywheel of outside diameter 5 m has a heavy rim of the cross-section shown in Fig.
Prob. 4.7. Determine the mass of the rim if the density of the material of the rim is
7000 kg/m*. (Ans. 13 030 kg)
From a circular area of diameter 24, a smaller circle of diameter  is removed as
shown in Fig. Prob. 4.8. Locate the centroid of the remaining area.
(Ans. d/6 left of 0)
Find the surface area of the annular torus formed by revolving the circle about the
x-axis as shown in Fig. Prob. 4.9, (Ans. 4 T'rR)

—"]

qP

J
"
1
[
"
1
Il
"
"
"
1
"
i
.

.

Fig. Prob. 4.9

An area is bounded by the curves y* = 9x and x* = 6y. Sketch the area and find the
coordinates of the centroid. (Ans. x. = 3.09, y, = 3.54)
A concentric hole of 10 cm diameter is drilled
to a depth of 15 cm in a perspex cylinder of
diameter 20 cm and 40 ¢m long as shown in ' 1
Fig. Prob. 4.11. The hole is filled with lead
to make it a complete cylinder again. Locate
the centre of mass of this cylinder. Take the
densily of perspex as 1200 kg/m® and of lead
as 12 000 kg/m’”.

(Ams. 5.72 cm below the centre of cylinder) .
A square hole is punched out of a thin circu- f o

15em|

lar lamina, the diagonal of the square being
equal to the radius of the circle as shown in
Fig. Prob. 4.12. Find the centre of gravity of

the remaning lamina.

(Ans. 0.095 R left of 0) I_ng__l
A frustrum of a solid right circular cone of
basc diameter 2 m, top diameter 1 m and =— 20 cm —

height 2 m has an axial hole of 0.5 m diame-
ter in it. Locate the centroid of volume of the Fig. Prob. 4.11

hollow cone. (Ans. 0.76 m from the base and on the axis)
Determine the maximum height & of a right circular cylinder mounted on a hemispher-
ical base as shown in Fig. Prob. 4.14 so that the composite body may be in stable
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Cylinder : l
- ' h
Hemi- :
spherical '
Base ;
Fig. Prob. 4.12 Fig. Prob. 4.14

block made of wood, the density of wood being onc-tenth that of steel?
(Ans. k12,5 R)
415 A thin rectangular plate of length « and width b of homogeneous material is suspend-
ed from a corner, Caleulate the angle the longer side will make with the vertical in the
equilibrium position?
[Ans. mn'lg]
4,16 Determine the length of a thin homogeneous wire which is bent into a semicircular arc
of radius R together with extensions on either end as shown in Fig. Prob. 4.16 such
that the centroid is located at the centre €0, (Ans. (7 +2)2 R)
4.17 A thin semicircular bar of weight w is suspended from a hinge at A as shown in Fig.
Prob. 4.17. Determine the angle between the diameter and the vertical line. What
would the angle be il a weight W is suspended from point B?

Ans. tan™! 3l.lnf.l tan”~"' _
n x(w+2W)

Fig. Prob. 4.16 Fig. Prob. 4.17

418 Knowing that the surface and volume of a sphere of radius r are 4r® and 4/32r
respectively. deduce the centroid of a semi-circular arc and a semi-circular dise, each
of radius . (Ans. 2vfm 4ri3m

4.19 A frame consists of a wire hent into a rectangular shape 0.3 m by 0.2 m plus a length
of the same wire bent into a semicirele of 0.3 m diameter fixed to a 0.3 m side. Find
the distance of the mass-centre of the frame from the 0.3 base. (Ans. (L163 m)

Look up Hints to Tutorial Problems!
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Multiple-Choice Questions

Select the correct or most appropriate response from among the available alternatives in the
following multiple-choice questions:

1. The length of a line can be considered to be concentrated at the centroid of that line
for the purpose of calculating.
{a) the area of the surface of revolution gencrated by revolving the line about any

axis outside it.

{b) the average distance of the line from any axis outside it.
(c) the volume of the body generated by revolving the line about any axis outside it.
(d) the weightage factor for all purposes.

2. The centre of volume and centre of mass of a body coincide.
(a) if and only if the body is of uniform density.
(b) if the body is geometrically symmetrical about the centre of mass.
(c) if the density variation is symmetrical about the centroid.
{d) if and only if the body is made of homogencous material.

3. The centroid of a body
(a) must be a point on that body.
(b) is a point which can be made to lic on or outside the body by changing the

coordinate system.

(c) is a fixed point in space regardless of the orientation of the body.
(d) is a unique point fixed with respect to the body.

4. The first moment of area of a semicircular area about its diameter d is given by
@ 2.
(b) /24,
(c) d6.
@ d'36.

5. The first moment of a triangular area of base b and height ﬁ taken about an axis
comc:dcnl with the base is given by
(a) bHM2.
(b) bhie.
(c) bh¥e.
(d) W3,

6. Given that there is a rectangle and a triangle, each of base b and arca A, the first
moment of the area of the rectangle about its base
(a) equals the first moment of the triangular area about its base b.
(b) is more than the first moment of the triangular area about its base b.
(c) is less than the first moment of the triangular area about its base b.
(d) equals twice that of the triangular area about its base b.

Answers to Multiple-Choice Questions
1 (a) 2 (c), 3 (@), 4 (a), 5 (o), 6 (c}



KINEMATICS OF A
PARTICLE
and of a Point in General

5.1 KINEMATIC CONCEPTS

Kinematics refers to the study of motion of bodies without reference to mass or
force. It deals with ‘displacement, velocity and acceleration’ of a point of interest at
a particular time or with the passage of time.

A point may be displaced from its initial position in any direction, i.c., the
displacement of a particle can have arbitrary components along the three mutually
perpendicular directions. The particle is said to possess three degrees of freedom in
a general motion. The number of the degrees of freedom of a particle in a given
configuration equals the minimum number of coordinates required to describe its -
configuration. The minimum number of coordinates is often called the generalised
coordinates. For example, a particle confined to move in a plane has two degrees of
freedom and hence two generalised coordinates are required to describe its motion;
the generalised coordinates may be x, y or r, 6 or some other pair of independent
coordinates not necessarily belonging to any particular coordinate system. A parti-
cle constrained to move along a curve, spatial or plane, has only one degree of
freedom, and only one generalised coordinate, such as x, y, z, 5, r or 8to describe its
location at any instant.

z

r+Ar

—_———f o ———

(a) Space Motion
Fig. 5.1 Types of Motion
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5.2 MOTION REFERRED TO FIXED RECTANGULAR
COORDINATES

Consider a point P moving in space with respect to a rectangular or cartesian frame
of reference fixed in space as shown in Fig. 5.1(a). The position vector of the point

is denoted by a vector r.
r=xi+yj+zk

at a certain instant of time . In words, the point is located by tracing x along the

x-axis, y along the y-axis and z along the z-axis.

Over a short interval of time Ar, the point moves over to a new position P’

described by the position vectorr + A,
rt+Ar=(x+Ax)i+(y+Ap) j+(z+42k
‘The point is said to have been displaced by A r such that
Ar=(r+Ar)-r
=(x+Ax)i+(y+AYj+(z+ADk
~xi+yj+zk)
=Axi+Ayj+Azk

In warr.ls, the displacement A r of a point is composed of displacements Ax

along the x-axis, A y along the y-axis and A z along z-axis.
The velocity of the point is the rate of change of displacement:

Ar Ax

V="ar "| ar +_j k
Ar=»0 410
_dr _dx
S i

=Vi+V,j+Vk
where V.= % = x-component of the velocity

dy

V= dr = Yy-component of the velocity

B8

V,= T?‘ = z-component of the velocity

and V= 'Vf + V: +V2 =speed, the magnitude of the

velocity.
The acceleration of the point is the rate of change of velocity:

_ AV _dV
a iu-?um ra
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a? o drr aer T ae

dir g2y dz}'."_dlzk

dvx . dv) dvz
=a ta itk
=ai +a_‘.j +ak (5.3)
dv, 2
where a,=—t-= % = x-component of the acceleration
av, d2y
ay=——= s y-component of the acceleration
dV: dlz
a. =g = g2 =&component of the acceleration

and a = Jaf +a? +a?, magnitude of the acceleration vector.

It is possible to rewrite Eqs. (5.2) and (5.3) in the integral form

r={Vdi+C

V=[adi+K

where C and K are the vector constants of integration.
In terms of definite integrals, the change in velocity is given by

'
V-V,=fad (54)

Iy

and the displacement is expressed as

[4
. 55

T

where V, and ry are the velocity and displacement respective at time f,,.
It may also be noted that a differential element of the arc-length is given by

ds =(dr - dr)'? = [(dx)? + (dy)* + (d2)]"? (5.6)

The distance travelled by a point along its trajectory can be calculated by inte-
grating this expression over the appropriate time interval.

The plane motion of a particle may be studied by referring to two coordinaters as
shown in Fig. 5.1(b). '
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y

(b) Plane Motion

X _dx
P P
{c) Rectilinear Motion
Fig. 5.1 Types of Motion (Contd.)

5.3 RECTILINEAR MOTION OF A POINT

In order-to study the rectilinear motion of a point, we choose the x-axis along the
line of motion as shown in Fig. 5.1(c). From the expressions for the position vector,
displacement, velocity and acceleration, we write

r=xi; Ar= Axi
—de.
=4 i=Vi
acdin e,
d‘Z dt x
Since all these vectors are directed along the x-axis only, the vector notation and
suffices may be dropped.
Hence,
V=dx x=[Vdi+C
dt
and ' a=d_2x=d_V‘ V=Iadr+K
dr? ot
If the acceleration a is constant,
V=ar+ K
and if the initial velocity of the point at time ¢ = 0 is U, then at any time
V=U-+at (5.7)

From the cxpression for x, the distance moved by the point
s=[(U+an)dt
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or 5 =Ur+%m'—’- (5.8)

Eliminating r in Eqgs. (5.7) and (5.8)
Vi UP=2as

Motion curves or motion diagrams are drawn to show the variation of displace-
ment, velocity and acceleration with time for the rectilinear motion of a particle. An
important aspect of the motion curves is that these are mutually related. Drawing of
motion curves is useful to obtain a graphical picture of the distance traversed,
velocity at any instant, the average velocity and the effect of acceleration particular-
ly when the motion occurs in distinct phases.

The motion curves of some typical motions of a particle are shown in Fig. 5.2. In
order to explore the relationship between the curves, consider the motion of the
particle over a time interval (1, - 1,).

s=Wi 1

| | s=Ul+ = ar
2

I

|

|

I

I

—_— ——

I i
| I
! I
I I
! I
a ! |
! | .
I ! I RSN
- bl
Il a=0 ; -‘\‘?\\\\l
1 2 1 2
— — —
(a) Constant Velocity {b) Constant Acceleration

Fig. 5.2 Motion Curves
From the relatonship,

2
av=Vy-v,={ud
I
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it is clear that the area under the acceleration diagram for a time interval must equal
the change of the velocity during that interval.
From the relationship,

2
As=s5, -5, =[ Vi
1
it follows that the area under the velocity diagram for a time interval must equal the
displacement over the time interval.

Some comments on the shape of the motion curves can now be made:

I. The linear displacement diagram corresponds to uniform velocity, i.e., zero
acceleration.

2. Constant acceleration implies linear velocity variation and a parabolic dis-
placement diagram.

3. The point of zero acceleration must correspond to the point of maxima or
minima or inflexion on the velocity curve and the point of inflexion on the
displacement diagram.

4. The slope of the velocity curve must be the maximum at the point of the
maximum acceleration.

5. The reversal of the motion of a particle corresponds to a drop in the displace-
ment curve, reversal of velocity and maximum acceleration.

The rectilinear motion of a particle due to gravitational acceleration of the

earth is of a special interest. In such a case,

a = g =9.81 m/s® directed towards the centre of the carth.

A particle approaching the earth in this manner is said to be in a state of free fall.

During a free fall, as shown in Fig. 5.3, .
V=U+gt v
and Vi = 2gh | |
In particular, if a particle is dropped from rest, U/ = 0, then : i
V=gt ‘
and V2= 2gh or V =42gh v

Fig. 5.3 Free Fall

whence t=.J2hlg

For an upward motion of a particle in the gravitational field,
V=U-gt
and V-or= 2gh

Since it is acted upon by a declaration —g.
When it comes to rest, V=0

U=gt
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U* = 2gh

and again, t=2hig
Example 5.1 A point moving in a straight line is observed to accelerate as
a=12t-20

It passed through a reference point at ¢ = 0 and another point 20 cm away after
an interval of 5 s. Calculate the displacement, velocity and acceleration of the point
after a further interval of 5 s.

Solution

a=12t-20
Integrating with respect to time t,
V=67 - 201+ C,
and integrating once again,
§=20-102 + Cy1 + G,
Using the boundary conditions,
att =0:85=0,C,=0 and atr=5s85=20cm, C, =4
The expressions for the displacement, velocity and acceleration are, therefore,
§=2-107+4rem
V =67 - 20f cm/s
a = 12r - 20 cm/s’
Substituting t=5+5=10s
§=1040cm = 104'm
V=400 cm/s =4 m/s
a =100 cnvs” = | m/s”

Example 5.2 A particle, while at rest at the position (5, 6, 2) is accelerated at
a=6ti- 245 + 10k m/s?

Determine the acceleration; velocity and displacement of the particle afier a
lapse of one second.

Solution

Atr =0
r=5i+6j+2k
and V=0
From the acceleration

a=6i-247j+ 10k (i)
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the velocily at any instant must be
v=[adi+K
=3i- 80 + 100k + K
where K = 0 from the initial condition, V=0att=0
Hence, V=3¢ -85+ 10tk (ii)
Integrating Eq. (ii) with respect to time r again,
r=[Vdi+C
=rfi-205+5°k+C

From the initial condition
r=5i+6j+2katr=0

C=5i+6j+2k

and
r=(+5)i+6-2j+ 6+ 2k (iii)

t=1s
the acceleration is obtained from Eq. (i)
a=6i —24j+ 10 km/s?
the velocity is obtained from Eq. (ii)
V=3i-8j+10kmSs
and the position vector is obtained from Eq. (iii),
r=6i+4j+7km
The displacement from the initial position must be
S=06i+4j+7k-5i+6j+2k)
=i+2j+2km

5.4 MOTION REFERRED TO CYLINDRICAL POLAR COORDINATES

Consider the motion of a point on a circular trajectory in the x-y plane, i.e., the r—8
plane as shown in Fig. 5.4.

The position of a point P at any time ¢ can be speuf ied by the x and y
coordinates or the r and 8 coordinates such that

x=rcos 0

y=r5in9

y
- 2 2 =<
or r _.Jx +y and tan 6 "
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Fig. 5.4 Circular Motion of a Point

Let the angular displacement of the point be A6 over a differential time interval
Ar. The angular velocity is, therefore,

= lim [42)=42
o=l [ At ] Todt
directed about an axis normal to the plane; anticlockwise positive for the right-
handed triad.
The linear velocity V of the point is given by

—ro=rd8
V=ro=r yn 5.9
directed tangentially to the circular path.
Over a differential time interval dt, the velocity of the point changes both in
magnitude and in direction as shown in the sketch.

Change Direction Remarks

dav Tangentially forward; 8 +ve, if the speed increases

vde Radially inwards; -r - ve always, because r is
+ve radially out

The acceleration of the point is the rate of change of velocity with time. The
components of acceleration are

{ 2
Tangential: % =r % (—‘gi) =r %‘—2‘1= ra (5.108)
2
Radial: -% =—Vm=—VT=—w2r (5.10b)

The tangential component of acceleration dV/dr is by virtue of a change in speed
only whereas the radial component called the centripetal acceleration is by virtue of
the circular trajectory of radius r traced at a speed V. Obviously,
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1. For a rectilinear motion, the ‘radial’ component is zero because the radius r of
the *circle’ is infinite.

2. For a circular motion at a constant speed V, the tangential component dV/dr =
0 and the point undergoes only the centripetal acceleration @r directed radi-
ally inwards towards the centre or axis of rotation. For such a case,

a = afre,

In terms of angular quantities alone,

angular displacement = d@

angular velocity =@ = %?.

s _do_d2e
angular acceleration = & =g

and in the integral form,

o=[ad+kK’

and o=[wd+C’

If the angular acceleration & is constant,
w=wy+ ot (5.11)

where the initial angular velocity at time t= 0 is @,

and 0=[(wy +andt+C’

or e=mo:+-;-a:2 (5.12)

where the angular displacement 8 is referred to 8=0att = 0.
Eliminating r between the equations
0 -wi=2a00 (5.13)
The relations for the angular quantities are similar to those for the linear quanti-
ties derived earlier. Table 5.1 brings out a systematic comparison.
Let us now consider the general motion of a point in space referred to cylindrical
coordinates as shown in Fig. 5.5(a).
At any instant of time ¢, the position vector of the point P is
' R=re +ze, (5.14)
and at a later instant ¢ + At, the position vector for the location Q of the point is
R+ AR =(r+ Ar)(e, + de,) + (z+ Az) e,
The displacement of the point is, therefore, given by A R, which by subtraction
is,
AR = Are, + rde, + Aze,
neglecting the term (Arde,) which is smaller in order of magnitude than the other
terms.
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Table 5.1 Lincar vs Angular Motion

of a Particle 333

Linear Motion Angular Motion  Remarks
Displacement 5 [} ds=rdf
Velocity v=% m=% V=rao
Acceleration ﬂ=':-::" R=% a=rax
Initial velocity u o,
Expressions V==u+ar o=w,+at valid only for
relating the s=ut+ Yyai 0=y + Yo CONSEN accele-
displacement, ration
!‘fbd‘?-m ‘ﬂ—f:?ﬂ; m—m,:?.nﬂ
tion and time

s=[vdt+C 0=fwdi+C’

V=Iadl+K u=Ju¢#+K'

(©)

y
J o
I
sno | 1 erl
| S - —x

Fig. 5.4 Motion Referved to Cylindrical Coordinates
‘The velocity of the point is expressed as
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or v %e + %+%e : (5.15)

This expression requires the knowledge of the temporal derivative of the unit
vector e It can be seen from Fig. 5.4(b) that a small change in e, takes place in the
direction of (+ eg) and a small change in e, takes place only along the direction of
(- e,). The magnitude of the change in cach case is given by the product of the
magnitude of the unit vector, i.e., unity and the small angle A8 through which the
unit vector is turned;

1-48= 48
Consequently,
ro= i = lim 48,
dt  a-o At hﬂlu Ar
=we, (5.16)
deg. Ae,
= = i e
=-we, 5.17

The temporal derivatives of the unit vectors e, and e, may alternatively be
obtained as follows with reference to Fig. 5.4(c). If, at a particular instant, the radial
direction makes an angle 8 with the x direction,

. e =cos Bi+sin6j
since the magnitude of e, is unity.
Differentiating with respect to time ¢

de de do
r
= smod'HcosG i

_de ., . .
_d:( sin @i+ cos 8 j)

=wey
Similarly,
eg=—sin Bi+cos 0
_d_;Ta_ =——-—-{cm‘.6|+sm 0j)

=-ae,
Returning to the equation for the velocity of the point,

Y =th'.r +rmes +zez

or V=V,e +Voey+ Ve (5.18)
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choc. the acceleration of the point,

dv 4 .. .
a _-E-—E‘-(rer troe, +ze‘)

=Fe, +ie, +fwes +rvey —rot e, +ze,

La =(F-r82)e, +(r8+2i0)e, +ic, (5.19)

where dot (-) stands for derivative with respect to time.
Observation of the results for V and a lead us to some interesting and useful
conclusions:

For plane motion in the x-y plane
z=Const.,, 2=0=1%

the point can, therefore, have neither velocity nor acceleration in a direction perpen-
dicular to the plane.
For constant speed of rotation @

@® =80 =Const.,0=0=0
Ilhc point can, therefore, not have any angular acceleration.
For plane circular motion in the x-y plane
z=Const.,, i=0=7
and r=Const., F=0=F
the expressions for the velocity and acceleration reduce to
V=rwey
a=-rafe, +rae,
which shows that the velocity of the point is wholly tangential at any instant where-
as the acceleration has two components:

ra? radially inwards, towards the centre of the circle, due to the rotational speed
of the point about the centre
ror tangentially directed due to the angular acceleration & of the point.

In particular, for a plane circular motion at constant speed, the tangential acceler-
ation vanishes and the point is only subjected to a tangential velocity together with a
radially inwards acceleration often termed as the centripetal acceleration.

For helical motion, i.e., particle moving along a helix, as shown in Fig. 5.5,
dealing in terms of cylindrical coordinates,

r =R, a constant
z=kR¢ .

where k is the tangent of the helix angle. Note that k = 0 corresponds to planc
circular notion.
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Now, let p=0
and ; =kR¢ = kRw

With these values, velocity V =F=Rwe, +kRwre,
and the acceleration
a=V=F=-Rw?e, +Rie, +kRie,
If the particle moves at a uniform speed along the z
helix, the angular acceleration g) is zero and only the
radial acceleration remains. Then, a=—Rdle,.
The radius of curvature p of the helix is given by
p=R1+8.
For a helix angle of 45°, p=12R
For a helix angle of zero, p = R, i.e., the radius
itself since it reduces to plane circular motion.
Example 5.3 A Scotch yoke mechanism consists of
a crank CA of radius r turning with a constant angular
velocity @ rad/s and a reciprocating slotted sliding
member § as shown in Fig. Ex. 5.3. Obtain the ex-
pression for the displacement, velocity and accelera-
tion of the sliding member.

) )
01_.._-|. ...... gng ........ @.s P 5
-
Fig. Ex. 5.3

Solution Let the motion of the slider be referred to its extreme left position O as
the origin when the angle of the crank is zeroat t =0
x=0C-I1-CAcos 8
=({+r)~l-rcosB=p (1 -cos &)
Differentiating with respect to time r and recognising that

%%—:mﬂneoonsmmﬁmalqud

and 0=wrt

14 =%=rmsinm



Kinematics of a Particle 337

and differentiating again,

a=% - 102 cos .
dt
Example 54 A 3 m long arm OA rotates in a plane such that 8 = 0.15 * where 6
is the angle with x-axis in radius and ¢ is in seconds. A slider collar B slides along
the arm in such a way that its distance from the

hinge O is given by r = 3 — 0.4 1* where r is in A
metres. Determine the velocity and acceleration
of the collar at an instant the arm has turned r B
through 30°
Solution o = X
For 2=30° % radians, Fig. Ex. 5.4
o
¢ =05 s
whence t = 1.87 scconds
For r=3-04r=3-04x187=16m
F=-08=-08x187=-15m/s
¥ =-0.8 m/s’

Comrespondingly,  0=0.15#= % =0.524 rad

8 =0.31=0.3x 1.87 = 0.561 rad/s
6 = 0.3 radss’
Velocity of the collar B is such that
Vr =F=-15mis
Vo= rd = 1.6 x 0561 = 0.9 m/s
which is 1.75 m/s at an angle & with the arm as shown in Fig. Ex. 5.4 (Solution) (a)

smhthata:lan"%:iil'

Fig. Ex. 5.4 (Solution)
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The acceleration of the collar is such that
a,=f-r@?
=-0.8- 1.6 x (0.561)* = -1.3 m/s’
ag=rb+278
= 1.6 % 0.3 + 2 x (-1.5) x 0.561 = -1.2 m/s*
which is 1.77 m/s* at an angle B with the arm as shown in Fig. Ex. 5.4 (Solution)
(b) such that = tan~! %:42.7.

Example 5.5 A wheel of radius 0.5 m is turned to advance up on a right-handed
screw of pitch 1 ¢m as shown in Fig. Ex. 5.5. At an instant when the wheel is turned
at a rotational speed of 2 rad/s, determine the velocity and acceleration of the hand
held at A. If the wheel was accelerated rotationally at 0.6 rad/s?, what would be the
velocity and acceleration of the hand?

; ; |
C . | H r
Wheel Z A ; A r
Screw = :
Fig. EX. 5.5 Fig. EX. 5.5 (Solution)
Solution For the point A on the wheel (ref. Fig. Ex. 5.5 (Sol.))
r=05m and w=2radls= 8
The velocity is given by
V=ier+rée9+ic: ()
0.01x2
=0+05x2e,+ Wez
. = e+ 0.0032 ¢, m/s
The acceleration is obtained as
a=(F-rf2)e +(rB+2if)e, +ie, (ii)

=(0-05%x2%e,+(0.5x0+2x0x2) e+ 0e,
=-2 e, m/s%, i.e., 2 m/s? radially inwards
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For the second case,
r=05m, @=0 =2rad/s and § = 0.6 rad/s’
The velocity is given by Eq. (i) as
V =eg+03e,mfs
the same as before and the acceleration from Eq. (ii) becomes,
a=((}—-CI.S><Z:l)e,+(0.5--Gl.ﬁ+2)<0)(2)eﬁ}+0.{]'03?.)<{]'.6ez
=-2e, +0.3e;+0.0019 ¢, rad s°
It may be noted that the speed and acceleration of advance of the wheel along the

z-axis are related to the rotational speed and rotational acceleration respectively of
the wheel. This fact has been used to evaluate Z and Z terms in the analysis.

5.5 MOTION REFERRED TO PATH COORDINATES

It is sometimes very convenient to describe the kinematics of a point in terms of the
path coordinates, i.e., the geometric features of the curve traced by the point as
shown in Fig. 5.5(a). it may be appreciated that the path of a point may not be
known a priori and hence the path coordinates cannot be specified until the point
traces a curve in the vicinity of the position of interest. For this reason, the path
coordinates are also known as intrinsic coordinates.

ES
\

T ¥ X
,/ A&A?rl\
4
| Yo c
(a) Features of the Path Coordinates (b) Velocity
y

{c) Acceleration (d) Change in 'e; Unit Vector
Fig. 5.5 Motion Referred io Path Coordinates
The orthogonal triad in the path coordinates consists of the following unit vectors:

e, tangential to the path
e, directed towards the instantancous centre of curvature
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e, perpendicular to the plane containing e, and e,
s0 as to form a right-hand triad.

In terms of the path coordinates, the velocity of a point is given by

AR _dR _dR
V= lim — ds

Am AT a s d 520

which means that the velocity must be tangential to the path at any instant as shown
in Fig. 5.5(b).
The acceleration of the point is expressed as

av g4
= =a Ve

dv de, gg
=V hoa

_ds 2
_d!'_ze' +kV<ie

2 2
a=dse sV,

52
7 e (5:21)

where k, the curvature of the path = ‘f—‘f and p, the radius of curvature = j—; =—

For a plane curve,

_l(l +(d)’ftb.‘)2 )3.‘2 | _l[i! +)',2 )3:‘2 |

= = (5.22)
| d?yldx? || iy - y¥ |

The components of acceleration are shown in Fig. 5.5(c). The fact that

der dB_dex _ _1
0 ds T ds ke =p e

used in the above derivation can be appreciated with reference to a circular diagram
(Fig. 5.5(d)). The unit vector e, suffers a small change Ae, along the + e, direction

de, . 140 _, _1
= Jim e, =ke =, (523)

Let us examine the relations for the simple case of motion of point on a circular
trajectory. The curvature of a circle is the inverse of the radius

k:l
r
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The velocity and acceleration of the point are

V=Ve,
2
and a =-‘£{-e, +VTe,, =a.e, ta,e,

It may be seen that the velocity is directed
along a tangent to the circle at any instant. The
acceleration, on the other hand, is made up of a
tangential component, dV/dt; sensc forward and
normal component, V?/r; sense inwards. This is
shown in Fig. 5.6. In particular, if the point moves
at a constant speed on a circular path, the tangen-
tial component of acceleration vanishes and only Fi&- 56 Velocity amd Accele-

Ihe‘ radially inward centripetal acceleration re- swhion for & Crcular
mains. ) Yectony
Example 5.6 A particle is projected to move along a parabola

y:' =4x

At a certain instant, when passing through a point P(4, 4) its speed is 5 m/s and
the rate of increase of its speed is 3 m/s? along the path. Ex[:lmlhevelocltyand
acceleration of the particle in terms of rectangular coordinates.

Y

y2=4ax
e,

4m

I
0 i x

Fig Ex 5.6

Solution Since the data relate to the path of the particle, the path coordinates may
be used to advantage. The unit vectors are related as follows:

€, =cos ai+sin aj (i)

e, =sin ai-cos aj (ii)

_dy
where lanu—dxatP

From the equation of the path,
yz =4x
differcntiation with respect to x yields

dy

2)’; =4
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and

BlE

which, at P, is —= or 0.5

J4
and o= tan™ 0.5 = 26.57° = 0.464 rad
Equations (i) and (ii) at point P become
e,=0.894i+0447j
e,=0447i-0.89%4 j
The velocity of the particle is given by
V = Ve, = 5(0.894 i +0.447 j)
=447i+2235jm/s
The tangential component of acceleration is
a, = 3(0.894 i + 0.447 j) = (2.68 i + 1.34 j) m/s’

The normal component of acceleration is

|4
a, =—¢u

The radius of curvature r is given by
_(1+(dyldx)?)¥?
T dyldx?

_(1+0.52)2

0.0625 =22.36m

2
because 92 = (-1/2¢?) = 0.0625
d,,z

The normal component of acceleration is

-y
a, = P e
=5« (0447i-0804 j)
22.36
=05i-j
The acceleration is, therefore, given by
a=a_ +a,

=268i+134j+05i-j
= (3.18 i + 0.34 j) m/s?
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Example 5.7 A particle moves in the xy plane with a velocity of 30 m/s directed
at an angle of tan™' 4/3 as.shown in Fig. Ex. 5.7. It accelerates as a, = -1.8 m/s® and
a,=-9 m/s®. Compute the radius of curvature of the path and the rate of change of

speed along the path.

Fig. Ex. 5.7
Solution The unit vector along the velocity vector is
e =cosfi+sin@j=06i+08j
The unit vector along the inward normal is
e,=08i-06j
In terms of path coordinates, the acceleration is expressed as
a=fe+Vipe,
where f is the rate of change of speed along the path and p is the radius of
curvature.

or —l.8i—9j=f(0.6i+0.8j)+%(0.8i—0.6j)

which results in two equations:
0.6 f+720/p = -1.8
.and 0.8 f-540/p=-9
whence f=-8.3 m/s and p=227 m.

5.6 PLANE MOTION OF A POINT: GRAVITATIONAL FIELD

A point is said to be in plane motion if the point continues to move in one and the
same plane, i.e., its trajectory is in a plane. Let us choose the xz plane to coincide
with the planc of motion as shown in Fig. 5.1(b). From the expressions for the
position vector, displacement, velocity and acceleration,
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r=xi+zk
Ar=Axi+Azk
dx- dz
v_dl d!k Vii+Vk
dix d: dV
a=CX; e =a,i+a,k

z
drrdiz dl dt

Of special interest here is the case of a particle projected at an angle « to the
horizontal in the gravitational field of the earth close to its surface as shown in Fig.
5.7. Then,

a,=0 and a,=-g
a = —g k; constant acceleration.

Fig. 5.7 Parabolic Trajectory of a Particle

Starting with the equation
V=jad’:+l(

and substituting a=—gk
V=—ptk+K

Vii+ Vk=—grk+ Vgi+ Vyk

where V., and V,,, are the initial components of velocity Vg at 1= 0.
It follows that,

v.t= on
i.e., the horizontal component of velocity remains the same during motion
and vz = Vzﬂ -8t

i.e., the vertical component of velocity undergocs a linear change.
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Starting now with the equation
r=[Vdi+C

and substituting V=V,i+(V,,-gnk

xi+zk=erl+(V :~Eg:1)k

where x and z are measured from the initial point @ as the origin at 1 = 0
It follows that,

x=V ot

1
2=Vt =5 8t 2
Eliminating ¢ and using the relations

Vz(l
v =tana and V,o=Vycosa
x0

gx?

Z=xtan @ - ————
2v2 cos? e

345

(5.24)
(5.25)

(5.26)

This is the equation of the trajectory. Since it represents a parabola, the path of a
particle projected in some oblique direction must be a plane parabolic trajectory.

The assumptions in this analysis are:

1. Air-resistance is negligible

2. The gravitational acceleration g is constant

3. The point stands for the particle or centre of mass of a body.

These assumptions restrict the analysis to short-range and low-altitude motion of

small objects in the atmosphere.
Let us now inspect the equation to provide some further information.
(a) Maximum attainable height z.,, occurs when

V.,=0 or .g.z._o

dx
From the expression for z.
dz 8%
_— =t =
dx an V2cos? a
whence a =Lgin 2ex
2 v?
0
- , in 2a
Vn 72

and the ordinate of the vertex is given by
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‘lv’o2 sin? @

Zyax = 72 (5.27a)

(b) Range of the particle on a horizontal plane equals twice the x coordinate
fOF Zpy

V2 sin2a
Range 0A =-0 " °% (5.27h)
8
V2
This is a maximum for o = 45°, Maximum range = TD

(c) Range of the particle on an incline plane Ol is determined by solving for
(x, 2), the point of interaction of the parabola and the inclined plane z = x tan f.

(d) Variation of 7., with a is observed from the relationship
2 gin2

o = Vs sin® a

and z,,,, is the maximum possible when a = 90°, i.e., when the particle is projected
vertically upwards.

() For a particle projected horizontally,
a=0
gx?

2V7

(5.28)

(f) For a particle projected vertically upwards,
a=90°, tan@ — e and x=0

the problem reduced to that of a rectilinear motion along the gravitational accelera-
tion due to the earth.

(g) The time taken to reach a particular point on the trajectory can be estimated
from the relations,

x =Vt
=Vt~ ~gr
2 =VYl-738
If the initial velocity Vj, (in terms of, Vg and V.p) is known, the time taken can
be estimated by knowing either the x or z coordinate of the point on the trajectory.
The time of flight t,,,, of the particle from the origin O to the end point A, at the
initial level can be calculated by observing that

2=0 at =i,
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= 1
0= Vzﬂ'rlmx - ng:-ﬂ

_:’-V,_n _ 2V, sine

he t, 5.29
whence oax 2 2 (5.29)
. xmu
Alternatively, oox =
on
_ Vg sin 2a _2VgsinaV, cosa
&Y &V
_ 2“{10 qu _ 2V:o _ 2Va sina
Vo 8 8
The time of flight on an inclined plane can be seen to be
2V sin (@ —B) '
tas =°—B (5.30)

. gceos P

since the initial velocity component normal to the inclined plane is V; sin (@ - f)
instead of Vj sin &=V, and the acceleration due to gravity is g cos f instead of g.

The range of flight on an inclined plane can be calculated by working out the
horizontal coordinate x first,

x =Vt =Vocos at,
2V°1 cos & sin (@ —- f3)
- geos

The range s on the incline is given by

—_x
cos f#

2 - -
.o ZVD cos & sin (& — fB)
g Cos 2 ﬂ
It may be checked that when 8 = 0, it reduces to the expression

(5.31)

or

o V2 sin 2a
8
as obtained earlier for the horizontal plane.
(h) At any time 1, the velocity of the particle can be computed from
V.=V,
Vi=Vio—sgt
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and hence, V=Vi+Vk=Vyi+(Vy-gnk (5.32)

which is (V2 +(V,, - g0?) in magnitude

V&t
and directed at an angle tan™' vV
x0

(i) At a certain height A, the velocity of the particle can be computed from
Vi=Vy
v, =(sz0 - 2gh)!'?
and hence, V=Vi+Vk
=V, i+ (V3 -2gh)" k (5.33)

(j) If the angle of projection a is negative, the z-coordinate continues to de-
crease, V, continues to increase and the particle tends to drop down closer to the
vertical line with the passage of time. )

Example 5.8 A gun is fired, aimed at a ball, from a ground position simultaneous-
ly as the ball is let go vertically down. Show that the shot will hit the ball regardless
of the initial velocity of the shot and the distances.

Solution Let the ball be at a horizontal distance x and be at an angle of elevation &
with respect to the gun as shown in Fig. Ex. 5.8(a) (Solution). Let the velocity of the
shot at the instant of firing be V,, at an angle of elevation of 8 in the line of sight of
the ball. '

| X -
{a) -
S L L=
Ball - -?_ —_—
Ball
(b) Initial Level (c) Initial Depression

Fig. Ex. 5.8 (Solution)
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The time taken for the shot to travel a horizontal distance x is

(=X o x =Hhan0= H @)
Vio Vo cosB V¥, cos® VW sinB
' The vertical coordinate z of the shot in that time is éiven by,
z= 'l"z‘,r—%g:.2
\2
=Vosnoy gnﬂ_%g(‘lfn gns]
or

H? .
z =H_W (i)

During the same time interval r given by Eq. (i), the ball drops through a distance
s where

Sl 1 [ H ) __gH?
s=78 ’23[vosin6] T2V2sin? 0
and the z coordinate of the ball becomes '

_8H?
:wuz sin2 @

z=H-

which is the same as that of the shot. The shot should, therefore, hit the ball
irrespective of the initial coordinates of the ball with respect to the gun and initial
velocity of the shot.

1t may be noted that the drop of the ball before it is shot is

s = gH?  g(xtan8)? _ gx?
2V] sin28 2V!sin28 2V} cos? @

which docs vary with all the parameters. The drop is less if the initial velocity Vj of
the bullet is more, range angle € is more or horizontal distance x is less.

It may also be noted that the shot will hit the ball whether the ball is initially at
an angle of elevation, level, or an angle of depression with respect to the gun so
long as the gun is fired at the initial line of sight of the ball. This is illustrated in
Figs. Ex. 5.8(b) and (c) (Solution).

Example 5.9 , The world records for the shot put and discus throw arc 20 m and
70 m respectively. Assuming that their respective masses are 7 kg and 2 kg respec-
tively, compare the work done by the champions in making their record throws if
each trajectory starts at an elevation of 2 m and has an initial inclination of 45° with
the horizontal. Neglect air resistance.
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Fig. Ex. 5.9

Solution The equation of the trajectory of an object projected at an angle @ with
an initial speed V,, from the point O in the gravitational field of the earth is

2

gx
z=xtan g —-———
2V°2 cos? &
For the shot put
2
-2 =20 tan 45° — 2-81X207
2V0'*’] cos? 45°
whence Vor = 13.36 m/s

The kinetic energy at the instant of its projection is

3m Vg =3 x7x1336% =625]

Forl the discus throw

2
2270 tn 45° - — X T0__
2V2 cos? 45°

whence Vo2 = 26.2 mfs
and the kinetic energy at the instant of projection is

1 2 =1 2 o
3 M, Vg = ) xX2x26.22 =687])

Neglecting that the discus has a tendency of spinning during flight, the work
done by a champion must equal the kinetic energy imparted to the object at the
instant of projection, i.e., at the same datum. The champion throwing the discus,
therefore, does more work than the champion putting the shot.

Example 5.10 A large balloon is rising up with a velocity of 9.81 m/s at an
altitude of 39.2 m from the ground. At that instant, a stone of mass 5 kg is dropped
from it. After how many seconds will the stone reach the ground?

Solution The acceleration due to gravity g = 9.81 m/s%. Considering all quantities
positive downwards,
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U=-98mss, g =+ 9.81 m/s?
and employing, S=Ut+ % gt

302=-9811+ % x 9.81 £

whence £-2-8=0
t=4 or r=-2
Rejecting the negative value of time, r=4s.

Example 5.11 A car A is travelling on a straight level road with a uniform speed
ol 60 km/hr. It is followed by another car B moving at a speed of 70 km/hr. When
the distance between them is 2.5 km, the car B is decelerated at 20 km/hr?. Will the
car B catch up with A? If not, why not? If yes, at what distance and time?

Solution Let us suppose that car B catches up the car A in t hours. (If it doesn't, ¢
will turn out to be negative or imaginary!)
In that time, A travels 60 t km, The distance travelled by B will be given by

N =m‘+%¢:|r2

=70r—%x20:2=70:—1012
Since the car A is already leading by 2.5 km, the condition for B to catch up with
Ais
70r-10F2 =601+25
whence, 10£-101+25 =0, t=05 hr.

In that time, A travels 60 x 0.5 = 30 km and B travels by 70 x 0.5 - 10 x 0.57
ie., 33.5 km,

Example 5.12 A stone is dropped gently from the top of a tower. During its last
one second of motion it falls through 64% of the height. Find the height of the
tower.

Solution Assuming that the total time of fall is r seconds,

h==gf (i)

(ST

In (f — 1) seconds it falls through a distance given by % g(t — 1)* which is only
36% of its height, '

0364 = % g - 1) (i)
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TN | t?
Dividing (i) by ().535 =77 11— 27
whence 0.64-2t+1 =0 and  =2.5 seconds

From (i), h = % x 9.81 x 2.5% = 30.65 m.

Example 5.13 Two motor cars start from A simultaneously and reach B after
2 hours on the same road. The first travelled half the distance at a speed of 30 km/hr
and the other half at a speed of 60 km/hr. The other car covered the entire distance
with a constant acceleration. At what instants of time were the speeds of both the
vehicles the same?

Solution Let the distance AB be 2x.
From the data for the first car,

X

X
30 T 60

For the second car,

=2 hrs; x = 40, 2x = 80 km.

=0+t ar=1g2
80-0+2ar2 5 @

a = 40 km/hr*.

V=0+40x2=80km/rat B
At any instant of time, for car B

V=401t

It becomes 30 km/hr at ¢ = 3/4 hours and it becomes 60 km/hr at t = 3/2 hours
after departure from A. :

Let us check the state of the first car at these timings. At ¢ = 3/4 hours, it was
30x 3/4, i.e., 22.5 km from A running at 30 knvhr. At 1= 3/2, it was indeed running
at 60 km/hr, having crossed the 40 km mark. Hence, the two had the same speed at
these twp timings. It can be checked that there was no overtaking!

Example 5.14 An elevator ascends with an upward acceleration of 1.2 m/s”. At
the instant when the upward speed is 2.4 m/s, a loose bolt drops from the ceiling of
the elevator located 2.75 m from its floor. Calculate:
(a) the time of flight of the bolt from ceiling to floor of the elevator
(b) the displacement and the distance covered by the bolt during the free fall
relative to the elevator shaft.

Solution .
(a) The bolt, initially travelling up with a velocity of 2.4 m/s drops under gravity;
its downwards displacement is

S, =—2.4r+7;.x9.81r2
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The floor of the elevator is displaced up in the same time,

S =241+ 2 x127

The sum of the two must be 2.75 m.
Hence, (4.9 + 0.6)* = 2.75; t=0.707 s.
(b) Displacement of the bolt is given by

§,=-24x0.707 + % % 9.81x0.707 =075 m
The distance travelled by the bolt is the sum of distances it goes up first and then

comes down. It goes up until its velocity becomes zero,
VU =2 gs
0-24% =-2x981x5; §=029m

It comes down such that the final downward displacement is 0.75 m, ic., it
traverses 0.293 m down and then 0.75 m down, making a total distance of 0.293 +
0293 +0.75= 134 m.

Example 5.15 A bullet is projected so as to graze the tops of two walls each of
height 20 m located at distances of 30 and 170 m in the same line from the point of
projection as shown in Fig. Ex. 5.15. Find the angle and the speed of projection of
the bullet. )

Solution
From the equation,

2

z =xtane-———
2V} cos? o
for the two points F, and P,,
9.81x302 4415 .
20=30tant -—————=30tan & - ——>—-
2V7 cos’ a V2 cos?a ®
9.81x%1702 141755
and 20 =170 tan @ — -0 =170 1an @ = ————— (i)

2V2 cos? V2 cos?a
0 o
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we can determine both & and V,,

Calling *V;? cos? & as a parameter p

642 =963 tan ot — 141755
20 =170 tan ¢ — 141755
whence tan o= 0.784 ; o= 38.1°

Substituting the value of o in (i),
Vo=45m/s
Example 5.16 A shell bursts on contact with the ground and pieces fly off in all

directions with speeds up to 30 m/s. A person is standing 40 m away. What is the
time duration over which he can be hit by a piece?

Solution With the maximum initial velocity of 30 m/s, the horizontal range of
40 m requires that

302 xsin2a
= s =0.43
40 981 sin 2 5
whence 2a =25.8° or 154.2°% a=12.9° or 77.1°

The first piece that can hit the person has an angle of projection of 12.9° and
initial velocity 30 m/s takes time

. _2x30xsin12.9°
X 3

The last piece that can hit the person has an angle of projection of 77.1° and

2x30xsin 77.1
initial velocity 30 m/s which takes time 1, =—~g~§;—

=1.36 seconds.

= 5.96 scconds.

How about the maximum time taken by a piece at less than 30 m/s? Well, then
the higher value of & would be less than 77.1° and hence 1, would be less.

The duration over which the person can be hit by a piece is a period of 4.6
seconds, beginning 1.36 seconds and ending 5.96 seconds after the bursting of the
shell.

Example 517 The maximum horizontal range of a gun is R,,,. Determine the
firing angle which should be used to hit a target located at a distance R,/ 2 on the
same level.

Solution The range of a bullet fired with a velocity V) at an angle e is given by
2
_ Vs sin2a

R=—— ®
8
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This would be maximum for a = 45°

Rax =V‘}2 lg

The target is located at
R=R /2=V /2 (i)
Equating it to (i),
Visin2a _ l’i
8 2
in2a=1
sin 2 = 2
whence 2¢=30° and a=15°

The gun shouid therefore, be fired at an inclination of 15° to hit the target.
One may check the result by considering the equation of trajectory,

g x?
Z=xtang— —2—
ZVO’ cos? o
For the target, z=0,x= Vg
v: o v2
0=—"tan g - —2—
2g 8gcos? &
whence, tan @ = ————;sin 2 =1/2
4cos? @

which is the same as determined earlier.

5.7 MOTION REFERRED TO MOVING FRAMES OF REFERENCE

In order to arrive at the description of the motion of a point with reference to an
inertial frame for the application of Newton's laws it may be nccessary to first
ascertain the motion in relation to a moving frame and then refer it to an inertial
frame for the sake of convenience. The moving frame may, in general, translate and
rotate as well as accelerate linearly or angularly. It is the purpose of the following
treatment to arrive at a systematic procedure for referring the space motion of a
point with respect to a frame of reference if its motion is known in relation to
another frame moving with respect to the former.

This task is achieved through a series of simple steps for the sake of clarity of
understanding.

(a) Relative Motion of Two Points
Consider a pair of points, P; and P, moving with the velocities V, and V, and the
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accelerations a, and a, with respect to a fixed frame of reference. The velocity of
P, with respect to P, is given by )

Vi =V,-V; (5.34)
and the acccleration of P, with respect to P, is given by
a, =a - (5.35)

This is demonstrated in Fig. 5.8. It can also be appreciated that
Vy =V,-V, ==V,

and )
) =, -a=-ap

2

Fig. 58 Relative Velocity and Relative Acceleration

Example 5.18 Two roads cross at 60° angle at an intersection at O. At an instant
of time, a scooter 1 at 100 m east of the intersection moving at a velocity of 50 km/
hr decelerates at 5 km/hr/s as it approaches the intersection O. At the same instant, a
car 2 passes the intersection at a velocity of 20 km/hr and accelerates at 10 km/hr/s
as shown in Fig. Ex. 5.18. Determine (a) the velocity of the scooter with respect to
the car and (b) the acceleration of the car with respect to the scooter at the instant of
observation as well as after a lapse of 3 s and, in general after ¢ 5.

Solution Choosing the x and y axes as shown,

At the instant of observation,
Y, =-50ikm/h
a; =+ 5 i km/h/s

Vz=20(sin60i+r;0560j)
=17.32i+ 10 jkm/h -

a, = 10(sin 60 i + cos 60 j)
=8.66i=35 jkmhis
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s
Fig. Ex. 5.18

(a) Vi=V;~-V, =-50i-17.32i-10j
' =-6732i- 10 j kmh

(b) a, =a,-a, =866i+5j-5i
=3.661i+ 5 j km/h/s
At an instant after a lapse of 3 5

V,=-50i+3x5i=-35ikm
V,=17321i+10j+ 3(8.66i+5 j)
=4331+25jkmh
(a) V=V, -V, =-35i-433i-25]j
=-78.31i-25 j km/h
(b} the relative acceleration remains the same;
a, =3.66i+5 j km/h/s
In general, after a lapse of t s
V,=-501i+ 5fi = (-50 + 5¢) i km/h
V,=1732i+ 10§+ (8.661+5 j)i
=(17.32 + 3.661) i + (10 + 51) j km/h
The relative velocity of the scooter with respect to the car is
V,p = (=50 + 51— 17.32 - 8.661) i — (10 + 51) j kmvh
=(-67.32 - 3.66¢) i (10 + 5 1) j km/h

The relative acceleration remains the same as at the earlier instants because the
acceleration of each vehicle is unaltered with time.

a, =366i+5]
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Example 5.19 A rod follower AB is subjected to a vertical up-and-down move-
ment while resting on the circular contour of radius 30 cm of a cam. The cam
moves to the right with a velocity of 5 cm/s and an acceleration of 10 cm/s?. Find
the velocity and acceleration of the point B on the rod at the instant of interest as
shown in Fig. Ex. 5.19.

Solution 1t is an interesting and a fairly simple problem which can be solved by a
variety of methods.
Let us demonstrate the power of two different methods by solving this problem.

8

rrsrarsrrrsrrrsrrisiris Q| srsrs.

Fig. Ex. 5.19 Fig. Ex. 5.19 (Solution)

Method 1
The point B moves with the same velocity and acceleration as A. The motion of A
may in turn be related to the motion of A’, a coincident point on the cam

V=V 4V,

V,i=005i+ Vg, (-0866i+05]) @)
since the velocity of A must be along the y-axis, that of A” is given along the x-axis
and the velocity of A with respect to A’ is assumed up the tangent intuitively. From
Eq. (), -

0.05-0.866 V- =0
Va=05 V=0
whence
V4 = 0.0577 m/s
V,=0.0289 mis =V,
Similarly, for the acceleration,
Vi, .
ay=ay+a, + ﬁ" 0.5i - 0.866 j)

0.05772
=011+ ay,(-0.866i+0.5j) + 03 (-05i-0.866j) (i)

From this, the x-component of acceleration is equated to zero.
0.1 - 0.866 a,, - 0.0055 =0
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Then, a, = 0.5a,, + 0.0096
whence
ay =0.109 m/s’

a, =-0.045 m/s’ = ap

Hence, the point B moves up with a velocity of 0.0289 m/s and decelerates at
0.045 m/s* while moving upward.

Method 2

One may like to visualise the cam to be at rest and the point A of the rod follower to
slide up the circular path with the x-component of velocity -5 cm/s and x-compo-
nent of acceleration —10 cm/s® , the equation of the path, then being

2+ =(03)
Differentiating it with respect to time 7,
xi+yj =0 . )
and differentiating it again with respect to time 1,
X+ 22 +yy+3: =0 (ii)
The position of A is given by
x =03sin30°=0.15m
y =03¢cos30°=026m

From Eq. (i)
0.15 x (-0.05)
0% - 0.0288 m/s
which must be the velocity of A and of B.
From Eq. (ii)
" 0.15x (=0.1) + (- 0.05)* +0.02882
j == =0.D %26 ) =0.045m/s?

which must be tne acceleration of A and B.

(b) Translation of a Moving Frame

If a moving frame of reference x-y-z translates with respect to a fixed frame X-Y-Z,
. as shown in Fig. 5.9, then any pair of parallel lines in the two frames remain parallel
to each other with the passage of time. It follows that the unit vectors i, j and k in
the moving frame remain parallel to themselves and their magnitudes remaining
unity, the unit vectors remain irvariant,

If the velocity of the moving frame is ¥ and the velocity of a point with respect
to the moving frame is Vi, the velocity of the point with respect to the fixed frame

is given by
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Vo=V + Vg (5.36)
Similarly, the acceleration of a point with respect to the fixed frame is

a5 = apn . 3 (537

where ap,, is the acceleration of the point with respect to the moving frame and a, is
the linear acceleration of the moving frame with respect to the fixed frame.

It should be understood that a translating frame may translate either in space or
in a plane or along a straight line. The velocity ¥, and acceleration a, of the
moving origin may, in general, be in different directions at any instant of time. Only
for the case of rectilinear translation, i.c., for motion along a straight line would V,
and a, be collinear. '

Z
z
Yo
Ve, Ve,
ap_
v
k ap [
[1] Translating y
i Frame
i
a
Fixed x
Frame Y

Fig. 5.9 Translation of a Moving Frame
(<) Rotation of a Moving Frame

Consider a moving frame of reference x-y-z and a fixed or inertial reference frame
X-Y-Z. Infinitesimal rotations d6,, 46, and d@, of the moving frame are specified
about the X,Y and Z axes respectively and are represented by vector components
along the respective axes with i, j, k unit vectors as shown in Fig. 5.10.

Angular velocity components @,, @, and @, refer to the rates of rotation about X,
Y and Z axes respectively.

o=0it+o,j+rok

e, . d6, de,
=& g it gk
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4 . z

Fixed

Frame

Fig. 5.10 Rotation of a Moving Frame

(d) Derivatives of Moving Unit Vectors

Consider the change in the unit vector i observed from the fixed frame (d i), due to
the differential rotation (46,, d6,, d6,) lo the moving frame as shown in Fig. 5.10:

d6, produces no change in i
d6, produces a change = -k d@ , ini
d8, produces a change = j d6, in i
Total change (d i), = j d6, - k d6,
and the rate of change of i with respect to ¢ is given by
( di ) de de,
!

=j—*-k——=jo, -ko,

dr dt dt

which is the same as @ x i

di
Hence ( ]) =wxXi
dt y

Similarly, expressions for the rates of thange of j and k can be obtained:
(d i)
=wxi
dt ’

dj
[E]}, =@x]j (5.38)

dk
(?! =wxk

(e) Derivative of a Constant Vector in a Moving Frame

Consider a fixed position vector r of a point P fixed with respect to a moving frame
x-y-z which is rotating at an angular velocity @ as shown in Fig. 5.11.
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z
‘
Frame
/o
X

Fig. 5.11 Reference to Fixed and Moving Frames

The axis of rotation must be along the w vector. Writing the position vector of P
and differentiating it with respect to ¢ as observed from the moving frame,

r=xi+yj+zk

(&), =g+ Giefrs(F), (F), +(F)

Since the position vector is fixed with respect to the moving system,

(%l:; dyj+ k 0

[g) =x(oxi)+y(@x j)+z(wxk)
!

=oxX(xi+yj+zk)

=swWXr

(4) -oxe
dl!

Let there be a vector A fixed with respect to the x-y-z frame rotating at w. if the
position vectors of its end are rand r', thenA=r"-r.

dr _
[E) =WxXr
( J =wxr’
I
- = (r' -
( (r’ r))! wX(r'-r)

(ﬂ] —oxA (5.39)
t /i :

Hence,
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(f) Derivatives of a Position Vector for Different References

Let the position vector of a moving point P be r referred to the moving frame x-y-z
and R referred to the fixed frame X-Y-Z.

r=xi+yj+zk
R=Ry+r
Differentiating r with respect 10 t observed from the moving frame and fixed
frame respectively,

dr
L) e, . de
(d‘l, =@t aitak

+x(wxi)+y(oxj)+z(oxk)

dr L .
-(-Z]m +ox(xi+yj+zk)

dr
= [E) +mxXr (5.40)

(g) Velocity of a Point

The velocity of a point relative to a reference frame is the time derivative, as seen
from the reference of the position vector with respect to that reference. Referring to

Fig. 5.12.
dR
Vir '(Wl

Differentiating R with respect to time for the f reference

(@), () (@)

dr
or V,,=Va+ ) texr

| Vo= Vp, + Vot OXr | (5.41)
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Frame (m)
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X

Fig. 5.12 Motion Observed from fixed and Moving Frames

This is interpreted by stating that the velocity V, of a particle as observed from
a fixed reference frame must be the vector sum of the velocity Vp,, as observed
of the moving origin and the term
angular velocity ® with respect to

from a moving reference frame, the velocity V,,
% r due to rotation of the moving frame at an
the fixed frame.

(h) Acceleration of a Point

The acceleration of a point relative to a reference frame is the time derivative, as
seen from the reference frame of the velocity relative to that reference. Referring to

Fig. 5.12 again,

(),
amm =

w=( V),

d

30N

a

w ), (%),

cto+(fvn), +{shoxn),

d _[dVpy,
(-d—rvm )r —[ a +meM

=apm+mxvh

(i(mxr)] =mx(£] +[d_m) xr
dt r dr), dt ),
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(&), o]
=0X||—| +oxr|{+axr
dt m

=0 X[Vp, tOXr]j+oaxr

=0XVp, +OX(@Xr)+oxXr
Finally,

| By =8p, + 8+ AXT+20X Vp, + O X (@X 1) | (542)

The interpretation of the terms is as follows:

ap acceleration of the point P with respect to the fixed frame of reference.

Bppy acceleration of the point P with respect to the moving frame of refer-
ence.

- translational acceleration of the origin of the moving frame with re-
spect to the fixed origin.

axr acceleration due to the moving frame accelerating with an angular

acceleration o; the tangential component as seen from the fixed origin.
It vanishes when o and r are parallel, collincar or when either is zero.

2w X Vp,,  Coriolis component of acceleration due to w, the rotation of the mov-
ing frame and Vp,, the relative velocity of the point P in the moving
frame. It is zero when @ is paraliel to or collincar with Vp,, or either
of them vanishes.

® X (® X r) normal component of acceleration as seen from the fixed frame; also
called centripetal acceleration, which for plane circular motion of the
point becomes rar’. It vanishes where ® and r are collinear or when
either ® or r is zero.

(i) A Note on Coriolis Acceleration

It is interesting to demonstrate the origin of Coriolis acceleration and the concept of
its direction physically by a simple example.

Consider a slidable collar P made to slide at a constant velocity Vp,, with respect
to a rod rotating at a constant angular velocity @ about O as shown in Fig. 5.13(a).
Placing a frame of reference on the rod, we notice that the relative acceleration of P
with respect to the rotating rod, angular acceleration of the rotating frame and the
absolute acceleration of the origin on the rotating frame are specified as zero. For
this simple case of plane motion only, the centripetal component © X (o X r) and
the Coriolis component 2@ X V,, are non-zero. The former, r &7 in magnitude, is
directed radially towards O whereas the latter, 20 X Vp, is directed at right angles
to Vp,, and w.

In order to appreciate the origin of the Coriolis acceleration, consider the change
in system configuration over a small time interval At as shown in Fig. 5.13(b).
Initially, the velocity of P was made up of two components:

Radial: Vp, shown by OA
Tangential: rew shown by OC
Finally, after a lapse of time Ar, the components of the velocity of P are:
Radial: Vp, shown by OB
Tangential:  (r + Ar)w shown by OF
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(a) Sliding Collar on a Rotating Arm {b) Change in Velocity
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(c) Sign Convention ‘OUT-ALONG'
Fig. 5.13 Coriolis Acceleration

The initial velocity vector P can be obtained by adding OA and OC and the final
velocity vector by adding OB and OE, but these are purposely not shown to avoid
unnecessary details. It is preferred to show the change of the velocity of P in three
stages:
1. Due to the rotation of the relative sliding velocity
AB =V, A8

2. Due to the rotation of the rod
CD = rw A8

3. Due to the sliding effect on the rotational velocity
DE=(r+Ar)o-ro=Arw

It is the sum of AB and DE, divided by As, in the limiting case which is called
Coriolis acceleration:

Coriolis acceleration a, == lim
Ar—0

Vo A8+ Ar-@
At

—y, 40, dr
= Vo d:+drw'mv"" + @ Vp,

a.=2wVp,

directed perpendicular to the rod as indicated by the limiting case of the velocity
diagram for At — 0 and Aw getting smaller.
Similarly, the rate of change of CD corresponds to the centripetal acceleration:

. . . re - A8
Centripetal acceleration a, = Jr“—nm[ m ]
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=r0 98 - ro2

& dt

directed towards the centre of rotation of the rod as also observed from the limiting
case of the velocity diagram.

It is sometimes difficult to visualise the direction of the Coriolis acceleration.
Actually, there is no difficulty about the direction of any component of acceleration
when proceeding vectorially but a rule or sign convention (shown in Fig. 5.13(c))
may be stated for the graphical procedure applicable to the plane motion of rigid
bodies:

If the slider collar moves radially out with respect to the centre of rotation of
the arm on which it slides, the Coriolis acceleration of the collar is along the
direction of rotation. This is called the Out-Along conventoion

Example 5.20 A platform as shown in Fig. Ex. 5.20 rotates about its axis with an
angular speed of 2 rad/s counterclockwise and decelerates with an angular decelera-
tion of 3 rad/s>. A rod OA rotates about the hinge O with an angular velocity
4 rad/s and accelerates at a rate 5 rad/s® with respect to the platform. A collar B
slides outward on the rod OA with a velocity of 2 m/s and an acceleration of 3 m/s
with respect to the rod. Compute the absolute velocity and acceleration of the collar
if it is at 0.5 m from O.

Z

d

d>
z J Y
| /
2m
B ‘ A ¥
0 ]
4
x 05m

Fig. Ex. 5.20
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Solution Let the fixed frame XYZ be fixed with the ground with its origin coinci-
dent with the centre of the platform and let the moving frame xyz be attached to the
rod OA with its origin at O. '

Next, it is necessary to identify the motion of the collar with respect to the
moving framec and the motion of the moving frame with respect to the fixed frame.
The collar moves with respect to the moving frame identified with the rod such that

r=05jVp,=2j and ap, =3]

The moving frame moves with respect to the fixed frame such that
w=2k+4k=6k
a=@p=5k-3k=2k
Ro=2i
Vo=R =2kx2i=4]j
ao=ﬁu=—3kx21+2kx4j=-6j-8i
The absolute velocity and acceleration of the collar are determined by recalling
the corresponding expressions:
Vp=Vp, + Yo+ oxr
=2j+4j+6kx05j
=-3i +6jmfs
Bp=8p, + 8+ AXT+2OX Vp, + 0 X (®0XT)
=3j-6j-8i+2kx05j+26kx2j)
+6kx(6kx05j)
=-33i-21 jm/s?

Alternatively, the moving frame xyz could have been attached to the platform
with the origin either at O or at the centre of the platform. If the origin is located at
O, the collar moves with respect to the moving frame such that

r =05j
Vo, =2j+4kx05j=-2i+2jm/s
ap, =(F—r@2)e, +(rB+2/0)e, +5e,
=(3-05%x4)j-(05x5+2x2x4)i
=-185i-5jm/s’
The motion of the moving frzllmc with respect to the fixed frame is such that
w=2k
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a=m=-3k
Ry=2i
Vo=R =4]

a,=R =-6j-8i
Again, from the expressions for the absolute velocity and acceleration,
Vo= Vp, + Vo+ @ Xr
=-2i+2j+4j+2kx05j
-3i +6jmfs

ap, +ay+oxXr+2oxV, +ox(@xr)
-185i-5j-6j-8i-3kx05j
+22kx(-2i+2)+2kx(2kx05})
=-33i-21 jm/s?

Apy

Example 5.21 A crane rotates about a vertical axis with a constant angular veloc-
ity of 0.4 rad/s while the boom is being raised with a constant angular velocity of
0.5 rad/s relative to the cab as shown in Fig. Ex. 5.21. If the length of the voom is
10 m, determine (a) the angular velocity of the boom, (b) the angular acceleration of

the boom, (c) the velocity of the tip of the boom and (d) the acceleration of the tip
of the boom.

Fig. Ex. 5.21

Solution The problem may be tackled in a varicty of ways by considering the
moving frame attached to any moving component at any desired point. We shall
consider some of the different possibilitics with a view to gaining experience of
analysing such motions.
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Method |

Moving frame x-y-z attached to the rotating cabin with its origin at O and the fixed
Sframe X-Y-Z fixed in space but with its origin also at O.

The angular velocity « of the moving frame is then 0.4 rad/s about the z axis,
ie.,

o =04k

From the given length OP = 10 m, the tip of the boom P is located by the position
vector
r =10 (cos 30 j + sin 30 k)

=865j+5k
The velocity of P with respect to the fixed frame is given by

Vo = Ve + Vo+@Xr

where Ve, =05ix(8.66j+5k)
=433k-25j
Vy =0, the origin being coincident with O
and oxr =04kx(8.66j+5k)=-34651
Hence, VH =-3465i-25j+433km/s

The angular velocity of the boom must be the sum of the angular velocity of the
moving frame on the cab and the angular velocity of the boom with respect to the
cab, i.e.,

Wyoom = Wy + 0
=04 k+05irad/s

The angular acceleration of the boom can be likewise visualised as that due to
the rotation of the boom on a rotating cab.

lpoom = W) X W,
=04 kx05i=02j rad/s®
The acceleration of P with respect to the fixed frame is given by

Bp =ap, +8+AXTr+20X Vp, + 0% (0XT)

where ap, =05ix(05ix%(8.66j+5k)
=-216j-125k
ag =0
axr =0

2wxVp, =2x04kx(433k-25})
=2i
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Ox(@xr) =04kx(04kx (866 +5k)

=-1.385]
Hence,
By =-2165j-125k+2i-1385]
=2i-355]j-1.25 k rad/s*
Method 2

Moving frame x-y-z attached to the boom with its origin at O and the fixed frame
fixed in space but with its origin alse ar O.
In this case,
=04k+05i

is the angular velocity of the moving frame attached to the boom.
r=8.66j+ 5 k as before

Ver=Vou+ Vgt xr

where Vj,, = 0, the point P being on the boom itself and
V,, = 0, the origin being coincident with 0.

oxr=04k+05)x(B865j+5k)
=-3465i-25j+4.33k
Hence, V,}.-——3465|—25j+433kmfs

The angular acceleration of the boom is obtained by ®; x w, by imagining the
moving frame undergoing a relative rotation with respect to a rotating frame.

Cpoom = 0.4 kX 0.5 i = 0.2 j rad/s’
This is also the angular acceleration of the moving frame in this case.
o = Oy = 0.2 j rad/s®
The acceleration of P with respect to the fixed frame is

ap=ap, +a,+AXTr+20X Vp, +@X (@XT)

where ap, =0

Now, a;=0
axr=02jx(B866j+5k =11

20%xXVp, =0

OX(@Xr)=04k+05i)x (04 k+05i)x(8.66j+5k))
=1i-355j-125k

Hence,
ap=2i-355j-1 25 k m/s?
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Method 3

No moving frame at all X-Y-Z fixed with reference to frame fixed in space with its
origin at O. '

The angular velocity of the boom is due to @, of the cab and ®, of the boom
with respect to the cab, i.e.,

Wpoom = @y + 0y
=04 k+05iradfs
The angular acceleration of the boom is obtained by

_ dmm _ du)l dml
“'m‘[ dr )f ‘[ dr l, ""[ dr l,

dﬂ), _ !
Now, - (T]}, =0

because the cab rotates at a constant angular velocity with respect to the fixed frame
but the boom has a constant angular velocity with respect to the cab. Observing that
w, rotates with the cab at @,

dw,
Cpoom = (T] =0, XM,
g
=0.4 kx05i=02 jradss’®
The velocity of P is given by
Ve=wXxr
=(04k+05i)x(8.66j+5k)
=-3465i-25j+433kmfs
The acceleration of P is likewise computed:

Bp = Olpoom X T+ Whgor X (0o, X) + 1)
=02§x(866j+5Kk)+((04k+05i)x(04k+0.5i)x(8.66j+5k))
=2i-355j-125 km/s®

Method 4

By multiple references. A moving frame X-Y-Z attached to the boom with its origin
at O and another moving frame attached to the cab with its origin at O and a fixed
frame X-Y-Z also with its origin at O.

The velocity and acceleration are now determined first with respect to the inter-
mediate reference m, and then with respect to the fixed frame in the next step.
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For the first step in respect of velocity.
) Veu1 = Vou + Vgt @ X1
where Ve, =0
V=0
oxr=05i(866j+5k)=433k-25j

o being the angular velocity of the boom with respect to the cab.
Hence,
Ve =—25j+433k

and for the second step,

Ver=Vom + Yo+ @Xr
where Ve =-25j+433k

Vo=0

oxr=04k(8.66j+5k =-3465i

 being the angular velocity of the cab with respect to the ground.
Hence,

Vp =3465i-25j+433km/s

Similarly, for the first step in respect of acceleration,

ap, =ap,+tag+toxXr+2wxVy +0oxX{wxr)

where ap, =0
a, =0
axr =0

20X Vg, =0,a5 Vp, =0
oX(@xr) =05ix(05ix(8.66j+5k)
=-2165j-125k
Hence, ap, =-2.165j- 125k
and for the second step,
Ap =8py, +ay+ XTI+ 20+ Vp, + O X (WXT)
=-2165j-125k+0+0+2x04kx(-25j+4.33k)
+04kx(04kx(866j+5k)
=2i-355j-125kmss’

Some comments can be made on the choice of a method. Methods 1 and 2
invoke a single moving frame whereas method 3 does not require any moving frame
and method 4 requires more than one moving frame. Method 3 tends to be difficult
because it requires thinking of the complete motion in one go. Method 4 offers
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simplicity of understanding and is indeed the choice if the number of moving
components is large. There can be a number of intermediate moving frames for
convenience. Methods 1 and 2 combine two steps into one and reduce the length of
the procedure at the cost of clarity. However, in many problems, it is necessary to
choose one moving frame for expressing the motion of every two rotating members.
Methods 1 and 2 are, therefore, representative of a typical choice.

The origin of every moving frame was fixed at O only for convenience because
then V= 0 and a, = 0. There is no bar to fix the origin of the moving frame at any
point. For example, it can be fixed at P, the tip of boom itself. Then, r = 0 and
Vy=0anda,=0.

Table 5.2 Expressions for Velocity and Acceleration in Different

Coordinate Systems
IEmiry Cartesian Coordinates Cylindrical Coordinates
r xi+yj+zk re +ze,
ui+vj+ok Ve + Vgeg + Ve,
u, du, du  du 3V 3V V3 v, Vi
“ Ty Tt et ee e T

31‘ av é‘v av JVQ aVQ va aVa 81’9 V,VE
o  wAtETRT% a Ve tr e Vet
dow dw da dw dV, v v, Vg 9V, v av,

— [ A P— —_— + V. —= —=
9 ar “‘ax”ay”’az at T ar e T dz

Concept Review Questions

1. Comment on the truth of the following statements:

(a) The displacement of a particle during an interval of time may not be the same as
the distance moved by it.

(b) Directions of velocity and acceleration of a point at any instant may not be the
same whereas the directions of displacement and velocity at any instant must be
the same.

(c) The acceleration of a particle undergoing simple harmonic motion must be di-
rected towards the centre of oscillations whereas the velocity may either be
towards or away from it.

(d) A vector may be constant in a moving frame of reference but it may not be
constant as observed from a fixed frame of reference.

2. State the assumptions made in the derivations of the relations

V=U+a
5 =U:+%ar=
and V- U =2as

and hence state when these relations are not applicable.
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3. Explain the meaning of the terms: centripetal acceleration, Coriolis acceleration and
normal acceleration as applied to the motion of a particle.
4. Show that
de,
dt =@wey
d e,
@ =-oe
de,
@ =
ii =—we,
d "
5. Under what circumstances are the cylindrical coordinates preferred to the rectangular
coordinates and under what conditions are the path coordinates preferred to both?
6. Would the unit vectors i, j and k of a moving frame appear to change with time as
observed from a fixed frame, if the moving frame
(a) translates at a constant velocity?
(b) translates rectilinearly with a variable velocity?
(c) rotates at a constant rotational velocity?
(d) rotates at a variable rotational velocity?
Tutorial Problems
5.1 The acceleration of a particle is given by
a=¢£-37+5ms
where the time ¢ is in s. If the velocity of the particle at 1 = 1 5 is 6.25 m/s and the
displacement is 8.80 m, calculate the velocity and the displacement at t =2 s.
(Ans. 8 m/s and 16.1 m)
5.2 A particle, starting from rest, moves in a straight line and its acceleration is given by
a =50 - 36" /s’
where ¢ is in s. Determine (a) the velocity of the particle when it has travelled 52 m,
and (b) the time taken by it before it comes to rest again. (Ans. 4 mfs, 2.04 m)
5.3 A particle passes through a point (3, 4, 5) with a velocity of
V=10i+I11j+12k
at a time ¢ = | s. A constant acceleration
a=2i-3j
is impressed upon it for 10 s. Compute the position and velocity of the particle at the
final instant. {Ans, 203,-36, 125 30i-19j+ 12 k)
5.4 A particle is observed at 1 =0, and 2 s when it passes through positions (0, 3, 0) and

(20, 3, — 4) respectively. If the velocity vector has the form
V=Ati+Bj+Ck
determine its position and velocity at 1 = 5 s, (Ans. (125, 3, -10),25i - 2 k m/s)
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A point moving with simple harmonic motion has an amplitude of | m and the period
of one complete oscillation is 2 s. Determine its displacement, velocity and accelera-
tion at an instant 0.4 s after passing an extremity.
(Ans. 0.309 m, 2.99 m/s, 3.05 m/s?)
A particle moving with simple harmonic motion performs 10 complete oscillations
per minute and its speed, when at a distance of 8 cm from the centre of oscillation is
60% of the maximum speed. Find the speed of the particle when it is 6 cm from the
centre of oscillation. (Ans. x5 - 10 cm, V = 8,38 cm/s)
A particle , moving with simple harmonic motion, has a time period of 0.6 s. Its speed
at ils mean position is 1.5 m/s. Determine its speed when it is half way between its
mean position and an extremity. (Ans. 1.3 m/s at x = 0.0715 m)
Determine from first principles, the angle at which a bullet must be fired over a
horizontal plane such that the greatest height attained by it equals the range on the
plane. ’ s (Ans. @ = 76°)
Two guns are projected at each other, one upward at an angle of 30° and the other at
the same angle of depression, the muzzles being 30 m apart as shown in Fig. Prob.
5.9. If the guns are shot with velocities of 350 m/s upward and 300 m/s downward
respectively, find when and where the bullets may meet.
(Ans. 0.0462 s, (14 m, 8.07 m))

B
30°

i
|

x
|

Fig. Prob. 5.9

Show that there are two directions in which a particle may be projected at the same
velocity so that it passes through a given target. Establish the minimum velocity-of-
projection requirement such that the particle does reach the target.
(Ans.8, =1/2sin~! (gx/v2),7/2-8,;
Vmin 2 [gx2/2(xtan 8~ y]"2 for®, and 8, )
The horizontal distance of a target to be hit by a projectile is 10,000 m. The shell
leaves the gun with a velocity of 600 m/s as shown in Fig. Prob. 5.11. What must be
the angle of elevation & of the gun if a mountain 2000 m high intervening midway
between the gun and the target is to be cleared? (Ans. a = 82.1%)
A projectile is fired from a cliff 120 m above sea level with an initial velocity of 500
m/s directed-at an angle of elevation of 30° to the horizontal. Estimate the time of
flight and the horizontal range if the target is at the sea level.
' (Ans. 51.4 5, 22 276 m)
Two particles are projected simultaneously from two points A and B such that h is the
horizontal distance and & the vertical distance between them. They are projected at
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o ——]

Fig. Prob. 5.11

the same inclination o to the horizon with the same velocity V as shown in Fig. Prob.
5.13. Show that their distance from each other will be minimum after a time.
n
| = e—
2Vcosa

and that the minimum distance will be k.

v

} v oo
k |
i '
B
I h 1
Fig. Prob. 5.13

5.14 If a body travels half its total path in the last second of its free fall, starting from rest,

find the total time and height of its fall. (Ans. 3.414 seconds; 57.2 metres)

5.15 A ball rolls off the top of a stairway with a honizontal velocity of 1.5 m/s. The steps
are 20 cm wide and 20 cm high. Which step will the ball hit first?

(Ans. The path y = - 2.18 x* intersects the line

¥=-xat x =045 m; hence, 3rd step).

5.16 Determine the minimum speed with which the motorcycle must leave the 30° ramp at

A to reach the point B, clearing the pond in between. {Ans. 37 km/hour)

A {

12m
Fig. Prob 5.16

5.17 A helicopter is descending vertically downward with a uniform velocity. At a certain
instant, a food packet is dropped from it which takes 5 seconds to reach the ground.
As this packet strikes the ground, another food packet is dropped from it, which takes
4 seconds to reach the ground. Find the velocity with which the helicopter is descend-
ing and its height, when second packet is dropped. Also find the distance travelled by

the helicopter during the interval of dropping the packets.
(Ans. 11.04 mfs downwards at 177.8 m height; 55.2 m downwards)
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A point moves on a curve xy = 16 according to the law x =4  where x and ¥ are
expressed in meters and 7 is in seconds. Find the magnitude and direction of the
velocity of the point (a) when ¢ = 1 second and (b) when x = 2 metres. .
(Ans. V=8¢V =-8/f inm/s; (a) r= 1, x=y=4V, =8, V,=-8ms
(b)x=2,y=8,1=0707s: V, = 5.66, V, = - 22.6 mfs)
A gun fires a bullet with such an initial velocity and such an angle of elevation that
the maximum height to which it rises is h. Find the maximum range that can be
obtained with the same initial velocity.
V2
(Ans. h =1z, = —-20? at et = 90% x,,, = Vo sin 2 alg = 2h at a = 45°)

A body travels a distance s in a duration of t seconds. It starts from rest and ends at,
rest. In the first part of its journey it moves at a constant acceleration a and in the
second part with a constant retardation r. Show that

r=,,‘2.7(la"a+”r}

(Hint: Set up the three equations; t =1 + 1, 5 = 1/2 (a f,z +r .‘2:) and a ty = rt, and
eliminate #; and ;)
The rotor of a motor has an angular acceleration which is directly proportional to the
time r. The motor starts from rest at time 1 = 0. After 3 seconds, the rotor has
completed 5 revolutions. Obtain the equation of motion of the rotor and estimate its
angular velocity at r = 2 seconds (Ans, @ = dw/dt = 2009 x1; 14 rad/s)
A 250 m long railway train is travelling along a curved track of 1 km radius at a speed
of 60 kmv/hour and decelerates at 0.2 g. Calculate the velocity and acceleration of the
engine as seen by the guard at the tail end of the train,

(Ans. 16,67 (i - §) m/s; - 1.68 i - 2.24 j m/s’)

¥y

L
Fig. Prob. 5.22 Fig. Prob. 5.23

The path of a particle P is an Archimedean spiral. The motion of the particle is
defined by the relations,

r=101¢ and =21

where r is in metres, 1 is in seconds and @ is in radians. Determine the velocity and
acceleration of the particle (a) when ¢ = 0 and (b) when ¢ = 0.25 seconds.

{Ans. (a) 10 {, 407j; (b) 10~ 5 7i, =40 wi - 102 j)
An acroplane is flying with a constant velocity v at a constant height h. Show that, if a
gun is fired point blank at the acroplane as it passes directly over the gun with an
angle of elevation e, the shell will hit the aeroplane provided ’

2AVeos a@—v)vian® @=gh
where V is the initial velocity of the shell.
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A bomber is flying horizontally at a speed of 500 km/h at an altitude of 3 km such that
a ship lies in a vertical plane through the line of sight as shown in Fig. Prob 5.25.
Determine the angle of the line of sight of the bomber with the ship at the instant a
bomb is released so as to hit the ship. Where would the bomber be at the instant the
ship is wrecked? (Ans. 8 = 48.9° Over the ship)

Bomber Line of Flight

Fig. Prob. 5.25

The motion of a point in the vertical plane is given by
r=37,08=05 sin 74

where r is in cm and 8 in radian and  in s. Determine the velocity and acceleration of
the point when 1= 3 s, (Ans. 19.5 cm/s, 16.4 cm/s”)
A wheel rotates at an angular speed 10 rad/s and
the rotational speed increases at 2 rad/s’. A collar
C moves out on a horizontal spoke such that its
speed and acceleration with respect to the spoke “
are 3 m/s and 2 m/s? respectively as shown in Fig.
Prob. 5.27. Compute the absolute velocity and ac- Q (o
celeration of the collar if it is at 0.5 m from the

centre of rotation.  (Ans. 5.83 m/s; 77.62 m/s%)
A tracking device stationed at the launching poimt
of a missile records the r and @ coordinates of the
missile with the passage of time. It is noticed that
if ris in km, 8 in degrees and 1 in s, the following
expressions represent the motion closely |"‘°-5""

r=20-7120 Fig. Prob. 5.27
8% =1300-1°

for the plane trajectory of the missile. Estimate the position , velocity and acceleration
of the missile at 1 = 20 s. {Ans. 20 km, - 0.2333 kmv/s. 0.104 km/s?)
A particle moves on a frictionless wire bent into a cubic y = 24, Ata point (1, 2), the
speed of the particle is 3 m/s and it decreases at a rate of 2 m/s. Compute its velocity
and acceleration in terms of the rectangular coordinates.
{Ans. 0.493, 2.96 nv/s; -0.79, -1.84 mv/'s?)
A particle P slides down an incline of 30° frictionlessly and then moves up a circular
arc of 1 m radius as shown in Fig. Prob, 5.30. Compute the velocity and acceleration
of the particle at A just before the start of the arc and at B midway on the arc.
(Ans. 5.18 m/s; 8.5, 27.3 ms?)
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Fig. Prob. 5.30

A load P is being raised by means of an assemblage of two links AR and BP as shown
in Fig. Prob. 5.31. At the instant of interest link AB rotates and accelerates at 3 rad/s
and 4 rad/s’ respectively with respect to the ground whereas link 8P with an angle of
90° AB rotates and accelerates at 5 rad/ and 2 rad/s* with respect to link AB. If AB is 5
m long and BP is 2 m long with an angle of 60° at the instant of interest, determine
the acceleration of the load with respect to the ground reference.

B

Fig. Prob. 5.31 Fig. Prob. 5.32

Two boys A and # stand diametrically opposite on a plane horizontal table of diameter
5 m rotating anticlockwise at 10 radians per second as shown in Fig. Prob. 5.32. If A
throws a ball towards B at a speed of 5 m/s, how will it tend to move on the table and
why? {Ans. 50 m/s tangential, 5 m/s radius)
A rotating spollight is at a perpendicular distance | from a horizontal Aoor. The light
revolves at constant N revolutions per minute about a horizontal axis perpendicular o
the plane representing it in Fig. Prob. 5.33. Drive expressions for the velocity and
acceleration of the light spot travelling along the floor. Let &be the angle between the
vertical line { and the light beam at time 1.

' (Ans. @=0.1051 N sec” 6 a=0.0221 N sec’ @1an &
A flexible chain of length { rests on a smooth table with length ¢ overhanging the edge
as shown in Fig. Prob 5.34. The system originally at rest is released. Describe the
motion. The chain weighs w Nfm.

(Ans. ¥ —gx/l=gell;x= %c exp(Jgll)+ %r: exp (= g/ln)
A straight tube is attached to a vertical shaft at a fixed angle & as shown in Fig. Prob.
5.35. The shaft rotates with a constant angular velocity @ A particle moves along the

tube with a constant velocity V relative to the tube. Find the magnitude of the acceler-
ation of the particle when it is at a distance / along the tube from the centre.

2vy
Ans.a =o' sina l+[—] ]
lw] |
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e
.
1

Fig. Prob. 5.33 Fig. Prob. 5.34

Fig. Prob. 5.35
Look up Hints to Tutorial Problems!

Multiple-Choice Questions

Select the correct or most appropriate res Sfrom g the available alternatives in the
Jollowing multiple-choice questions:
I. The displacement of a point
(a) implies the distance moved by the point
(b) is a vector, from the initial to the final position of the point
(c) is always less than the distance traversed by the point
(d) is independent of the distance and the direction of movement of the point
2. The relationship V2 = U? = 2as, with conventional notation, is applicable for
(a) all possible motions of a point
(b) constant velocity of a point
(c) constant acceleration of a point
(d) variable acceleration of a point
3. One of the following assumptions is nor necessary in obtaining the equation for
parabolic trajectory of a particle:
{a) Air resistance is negligiblé
(b) The gravitational acceleration g is constant
(c) The body can be represented by a particle
(d) The body must not change its mass during the motion
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4. The unit vector ‘normal’ to a curve
(a) is directed towards the local centre of curvature
(b) is directed outward along the join of the centre of curvature and the point
(c) is the same as the radial unit vector

(d) must only be perpendicular to the path of the point
5. The Coriolis acceleration may not vanish if the

(a) relative velocity of the moving point becomes zero

(b) rotational velocity of the moving frame becomes zero

(c) rotational velocity of the moving frame and the relative velocity become collinear
(d) angular acceleration of the point becomes zero

Answers to Multiple-Choice Questions
1 (b), 2 (c), 3 ), 4 (a), 5 (d).



DyYNAMICS OF A PARTICLE
. and of the Mass Centre of Any System

6.1 INTRODUCTION

The study of dynamics refers to the motion of bodies under the application of
action, i.e., external forces or moments. The same laws of dynamics are applicable
to the motion of a particle and of the centre of mass of any system undergoing
translation under the application of forces. This is because the mass of a particle is
assumed to be concentrated at a point which is also its centre of mass. This fact is
supported by kinematic considerations; the general motion of a rigid body may be
considered to comprise the translation of the mass centre and a rotation superim-
posed upon it. The laws and principles studied in this chapter apply to the transla-
tion of any body or a system of bodies. The terms ‘centre of mass’ and ‘particle’ are
at times used interchangeably in this chapter and should cause no confusion on the
scope of application of the equations.

The dynamics of a mass centre or of a particle is governed by the Newton’s law

=d
F—dt(mV)

This is the fundamental equation of motion which governs the interaction of the
applied force F with the motion of a particle or a mass centre. Problems in dynam-
ics may be concerned with the determination of the motion, i.e., acceleration, veloc-
ity and positions for a prescribed force or vice versa.

It may be stated at the outset that the work-energy principle, impulse-momentum
principle and the moment of momentum principle are alternative forms of Newton's
law. One or the other may be preferred under different circumstances. A compara-
tive study of the equivalent dynamical equations is given in Table 6.1. This is
indeed a summary of the principles derived and discussed in this chapter.

6.2 EQUATION OF MOTION

The equation of motion due to Newton for the centre of mass of any system or a
particle of constant mass m may be written as

Y pa=mdi
F=m 7 —m"ul—irwdr2 (6.1)

It may be noted that for a particle, the net force, velocity and acceleration refer
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to the point representation of the particle, while for a rigid body, the net force may
be applied anywhere on it but the velocity and acceleration are referred to the mass
centre only as shown in Fig. 6.1.

dv dV,
F=m—r=ma F=mTc=ma‘.

Fig. 6.1 Implication of Newton’s Law

The motion can be determined from a knowledge of the applied force F. Let us
first consider some simple cases of rectilinear translation as visualised in Fig. 6.2.

m l-—n-- v
F F 5
a
(a) F=Const.
(b) F=F()
() F=F(v)
(d) F=F{(s)
Fig. 6.2 Rectilinear Translation

Case (a): Constant Force F along s-direction

Then, a =d’—2=Ffm
On integration, ds
v =E=Ffmf+Cl
=1 2
and s -iFfm: +CIM-C1

The constants of integration are determined from the given conditions.

Case (b): Force F(¢) is Function of Time along s-direction

Ill

2
Then, a =425 _ peyim

a

On integration,

v

1}

-‘;'T =[ F(tymdt+C,
and s =[(JF@)mdt+C,)dt+C,

where the constants C; and C, are again determined from the given conditions.
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Case (c): Force F(v) is a Function of Speed along s-direction

—dv _
Then, a=" =F(v)/m
dv 1
or. Foy ~m
On integration,
j-2 =L
F(vy m i
which provides v=f(1)

and on further integration, yields an expression for the displacement 5, the constant
being determined from the given conditions.

Case (d): Force F(s) is Function of the Rectilinear Displacement s

Then, a =2 Fis)m
dvds _ dv_
or, g}; —vdT = F(s)/m
-1
or vdv = po F(s) ds

On integration,

v2 1
=R =;_|' F(s)dfq-Cl

_ds _[2 "
and V—E—[;J F(S)d.\'+cl]

Separating the variables and integrating again provides s as a function of 1, the
constants of integration being determined from a knowledge of the given condi-
tions.

If the motion of a particle is prescribed, the force required to accomplish it may
be determined by employing the equation of motion

F=ma
and substituting the value of a in it.

Example 6.1 A particle of mass 1 kg moves in a straight line under the influence
of a force which increases linearly with time at the rate of 60 N/s, it being 40 N
initially. Determine the position, velocity and acceleration of the particle after a
lapse of 5 s if it started from rest at the origin.
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Solution From the statement of the problem,
F =40 + 60r

which, by Newton's law should equal mass times acceleration of the particle. Since
the mass is 1 kg,

a=92X_ 40460

E
Integrating the terms with respect to time ¢.
v =% = 40143002 +C
dt !

and integrating again, §
x=20+ 108 + Cit + G,
From the initial conditions,

v=0 and x=0 att=0

the constant C, and C, vanish.

Hence, v =401 + 307
and x=207+ Il_]r’
Al the instant, tr=5s

a =40 + 60 x 5 = 340 m/s?
v=40x 5 + 30 x 5% = 950 m/s
x=20%5%+ 10 x 5% = 1750 m from the origin.

Example 6.2 A particle moving with a velocity v along a straight line is retarded
such that the retardation is (a) proportional to velocity and (b) proportional to
square of velocity. Determine the expressions for velocity as a function of time and
the distance traversed before it comes to rest for both cases.

Solution For case (a), let the retardation be kv

, _dv _
Le., d—d‘_—k\}
dv
or d‘+kv_0;
On integration [2 s kfd=0
" v 0
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v:u_‘"
—dv ds _ dv_
Also, a_ds A vds kv
v 1]
or _{dv+kjds=0
] 1]

v-u+ks=10
v=u—ks

R u=v
k

For case (b), let the retardation be g v

ie., ﬂ=%=—#"z
or %+pv2=0
v i
On integration, j‘gzlhu]' dt=0
u v 0
——+-1—+m—0
u
or yp=—2=
1+ put
—dv ds_ dv__ 0o
Also, T ds d'_vds_ Hv
or v%huva:l]
v X
jﬂ-i-.u_l.d.f:o
o v ]
v
Iogf;+p.f=0
Ve M
=Lljog X
s-ﬂlog‘_ "

It may be noticed that the distance traversed before coming to rest in case (a) is
finite whereas that in case (b) is infinite!
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Example 6.3 If a body of mass m moves through a liquid at low velocity, the
force of resistance due to viscosity is given by

F=kv

where k is the resisting force at unit velocity. Show that the velocity would decrease
exponentially with time and linearly with displacement.

Solution The motion of the centre of mass of the body is given by

_ v _
F—ma—m-——-d‘— kv
dv
whence ar =—kimv
or v __k g
v m

On integration,
k
log, v = “m t+C

Using the condition, v=vyatt=0, C=log, vy

A
Iog,[uu] m:

v

or = g=kim!

o

[
which shows that the velocity decreases exponentially with respect to time.

.. dx
Writ =—
riting V=
dx = =kime
L2 =y, e
dt ]
or dx =vy-e~*m dt

which, upon integration gives

¥
x=T0(I_e-t!wf)

Substituting for v,
v=vy—-kx
which shows that the velocity of the body decreases linearly with displacement.
Example 6.4 Tdentify the correct and incorrect response(s) in the following:
A particle is acted upon by a force of constant magnitude which is always

perpendicular to the velocity of the particle. The motion of the particle takes place
in a plane. It follows that:
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(A) its velocity is constant.

{B) its acceleration is constant.
(C) its kinetic energy is constant.
(D) it moves in a circular path.

In this case,
V-F=0 Fig. Ex. 6.4
Since F has no component along the velocity vector, it must be constant in
_magnitude.

Since F is constant in magnitude, the particle must have an acceleration also
constant in magnitude only. Directions of ¥, F and a vary.

(A) and (B) are incorrect because only the magnitudes of velocity and accelera-
tion must be constant, not their directions.

The kinetic energy 1/2 mV? is not constant as V is not constant. (C) is incorrect.
Also (D) is incorrect because the given conditions may bring about motion in a non-
circular path.

Example 6.5 The angular velocity of a flywheel is observed to decrease by 10%
in the first minute. Calculate the decrease in the second minute if the retardation is
proportional to the angular velocity.

Solution
Given that
dw
a =k
Hence, ‘L—?+km=0
w T
and [ 42 kfdr=0
w
a, 0
or logﬁi'k!:ﬂ
° i__ —k1
and , =e

In the first one second, ml becomes 90%.
0

In the second second, it will become 90% of that, i.e., 81% of the original
velocity.

Example 6.6 An object of mass m falls vertically down in a medium with the
resistance R proportional to the velocity. Obtain an expression for the velocity at
time ¢ if it starts from rest at time r = 0. What is the terminal velocity?

Solution The motion of the centre of mass C of the object may be studied by
employing the Newton's law,
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—ma=m
F=ma=m dr
but the net external force on the object is given by
F=mg-kv
as shown in Fig. Ex. 6.6(a) (Solution).
. |
Therefore mdr_mg-kv x e kv t
X
dv__ _k
or mglk-v ~ m dt
. a * *V
On integrating,
k W=mg
~In(melk - v)==—1t+C
mE m ! Fig. Ex. 6.6(a) (Solution)
Recognising that v=0att=0

Cy =—In (mglk)
Hence - In (mglk - v) =%r— In(mglk)

mglk—v

_ -kim) ¢
mglk ¢

from which v = mglk(1 — eV (i)
The terminal velocity of the centre of mass occurs at t tending to infinity;

V = mgik (ii)

If it is desired to obtain an expression for the displacement of the centre of mass

of the object, the fact that v = % together with Eg. (i) provides

dx = mglk(1 - &7y dy
whence, by integration with the prescribed condition,

x = [mglklt + mgh*e ™™ _ mglk?
2
or x=Vr—VT{1—e"”'“")

It may also be added that the case of the resistance R being proportional to the
velocity of an object is a factual situation for low-speed movements through viscous
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fluids. At higher speeds, however, the resistance is proportional to the square of
velocity of the object.

Another very important comment must be noted. The object was assumed to
have a symmetrical shape such that the weight and resistance act along the same
line. This assumption was not necessary. In fact,
the object chosen could have been unsymmetri-
cal and the line of action of the resistance to
motion could have been displaced with respect
to that of the weight mg, although parallel as x
shown in Fig. 6.6(b) (Solution). The equations
still apply as far as the motion of the centre of
mass is concerned and the results obtained are
correct because the net external force is still giv-

en by

R=kv

F=mg-kv

and the displacement, velocity and acceleration n;g
of the centre of mass are implied. The centre of :
mass drops vertically down. It is quite a differ- H

ent matter whether the object rotates or not. The Fig. Ex. 6.6(b) (Solution)
rotation aspect is not within the purview of the

Newton's law of motion.

Example 6.7 Two blocks of mass 2.9 kg and 1.9 kg are suspended from a rigid
support § by two inextensible wires each of length 1 metre, see Fig. Ex. 6.7. The
upper wire has negligible mass and the lower wire has a uniform mass of 0.2 kg/m.
The whole system of blocks, wires and support have an upward acceleration of
0.2 m/s*. Acceleration due to gravity is 9.8 m/s%,

(i) Find the tension at the mid-point of the lower wire.

(ii) Find the tension at the mid-point of the upper wire.

Solution For the free-body diagram of the lower mass together with 50% of the

0.2 mis?
0.2 m/s? ﬂ

FrI TP IR TRy

-
[eow ]
mﬂ 098N 1m | 02 kgim
] 1.9kg | ’:Gm

18.62
Fig. Ex. 6.7 Fig. Ex. 6.7 (Solution)
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lower wire, the forces acting are as shown in Fig. Ex. 6.7 (Solution). Applying the
Newton's law of motion.

T-1862-098=(19+0.1)x0.2
whence T=04+196=20N

In order to find the tension at the mid point of the upper wire, consider the free
body diagram of the entire part below it. Then,

T-18.62-196-29%98 =(1.9+02+29)x0.2
whence T =50N :
Example 6.8 A block of mass m = 5 kg rests on a smooth inclined surface of a
wedge of mass M = 10 kg. The wedge is resting on a smooth horizontal surface.

Assuming the pulley to be weightless, smooth and frictionless and the string to be
light and inextensible, find the acceleration of mass M.

ar°

Fig. Ex. 6.8

Solution From the free body diagram of the mass m, as shown in Figs. Ex. 6.8(a)
and (b) (Solution),
R=mgcos37°=5x9.81 x0.8=392N.

T=mgsin37°=5x9.81 x0.6=294N.

Now, let us consider the f.b.d. the wedge.
The horizontal force acting on it is R sin 37°

=39.2x06= 236N

whence 10xa=236
a=236ms>.
R
R
T
a
370 ar° |
mg 10g

Fig. Ex. 6.8 (a and b) (Solution)
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Example 6.9 Two blocks m; = 2 kg and m, = 5 kg are initially resting on the
floor. They are connected by a light and inextensible cord running over a weightless
and frictionless pulley as shown in Fig. Ex. 6.9, Find the
acceleration of each block and the pulley if an upward
force F applied to the pulley is (i) 14 N, (ii) 70 N.
Find the force required to lift both the blocks.

Solution Weights of the two blocks are 2 x 9.81 =
19.62 and 5 x 9.81 = 49.05 N respectively.
(i) With F = 14 N, neither of the weights is over-
come; none will be lifted. a; =0=a,=4a

(it) With F = 70 N, tension in each cord = 35 N. m T

For the smaller block, Fig. Ex. 6.9

35-19.62 = 2 a,; a, = 7.69 m/s’

but the bigger block cannot move, a, = 0
The pulley moves up with the average velocity and acceleration,

= (7.69 + 0)/2 = 3.85 m/s*

Both the blocks will move up if tension in each string exceeds 49.05 N, the
weight of the bigger block. Then F =2 x 49.05 = 98.10 N. :

Example 6.10 Two blocks A and B are held stationary 10 m apart on a 20° incline
as shown in Fig. Ex. 6.10. The coefficient of dynamic friction between the plane
and A is 0.3 whereas between the plane and B is 0.1, If the blocks are released
simultancously, calculate the time taken and distance travelled by each block before
they are at the verge of collision.

u=030

Fig. Ex. 6.10

Solution From the free-body diagrams of the blocks, as shown in Fig, Ex. 6.10
(Solution) for block A,

my g sin 20° - 0.3R, = m, a,

Ry =m, g cos 20°

or my g sin 20° - 0.3 my g cos 20° = m, a,
or 9.81x0342-03%x9.81x094 =a,
a, = 0.59 m/s’

Similarly, for block B,
my g sin 20° ~ 0.1R; = myag
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Fig. Ex. 6.11

Motion
meg / Ta

T, r’
B
A Aaa' . Sm}g
A E l

Figs. Ex. 6.11 (a) and (b) (Solution)

(Solution), the forces along the direction of motion are evaluated and substituted in
the equations of motion:
(a) For frictionless incline

For block A,
Ty—-mygsin30°=m,a, (ii)
For block B,
mpg ~Tp=mpay (i)
From kinematic considerations for the step-pulley,
ag=2a,=2x2=4mfs’ (iv)

Substituting Eqgs. (i) and (iv) into Egs. (ii) and (iii),
2T -3x981 x05=3x%x2

9.81 mB-T,=4m,
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From the former,

Ts=w=m,3w

and from the latter,

_10.36

M =581

=178kg

(b) For frictional incline
For block A.

Ty-mugsin30°-03 R, =mya,

where R, =m,g xcos 30°
=3 x9.81 x0.866 =2549 N
Then, T,-3%x981x05-03x%x2549=3x2
or T,~-2236 =6
whence T, =28.36
For block B,

mpg =Ty =myap
Employing the facts that T, =2T; and ay=2a,=4 m/s?
it becomes 9.8Imy— 28.36/2 =4 my
whence my =244 kg

It may be noted that the presence of friction on the incline results in considerably
higher tension in the cords and requires a larger mass of the hanging block to cause
the same acceleration of the block on the incline. A litte reflection will show that if
a single pulley was employed instead of a step-pulley, the problem would be lot
casier but the mass of block B required for the same purpose would be considerably
more!

Example 6.12 A painter of mass 100 kg standing in a jhoola,
i.e., suspended cage of mass 25 kg has arranged to pass the rope
over a fixed pulley. He pulls the rope with an acceleration in
order to rise. At an instant, he exerts an effective weight of
450 N on the jhoola, find the

(i) acceleration of the painter and

(ii) tension in the string.

Selution Let us draw the free body diagram of the jhoola as
also of the painter alone. (Ref. Ex. 6.12 (Solution)) Fig. Ex. 6.12
For the two free-bodics respectively,
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*rn.q

Fig. Ex 6.16 (Solution)

T-F-mg =ma T+F-mg =ma
T-450-25%98] =254 T+450-100x981 =100a
T-25a =6953 T-100a =531

~ From these two equations,
a =2.19mis%, T=750N.

6.3 D’ALEMBERT PRINCIPLE: INERTIA FORCES
If the mass centre of a body or a particle of mass m is subjected to a net force F and
it acquires an acceleration a, then,

F+(-ma)=0 (6.2a)
This is indeed a restatement of Newton’s law but it suggests that the term (- ma)

may be considered as a fictitious force, often called D'Alembert force or the inertia
force as depicted in Fig. 6.3.

c c
—— = -~
m F F=-ma m F
=
a
F=ma F+F,=F +(-ma)=0

Fig. 6.3 Newton's Law = D'Alembert’s Principle

According to the D’Alembert principle, the net cxternal force F actually acting
on the body and the inertia force F; together keep the body in a state of ‘fictitious
equilibrium’

F+F=0 (6.2b)

The principle tends to give the solution procedure of a dynamic problem an
appearance akin to that of a static problem. The rule of equilibrium for statics, i.c.,

EF=0

may, therefore, be employed for a dynamic problem with the introduction of the
concept of fictitious dynamic equilibrium.



400  Engineering Mechanics

The significance of D' Alembert principle does not end with the extension of our
ability of using the methods of statics in dynamics but goes beyond to be coupled
with the principle of virtual work and to lead to an alternative formulation of
mechanics on the basis of energy considerations. A glimpse of this formulation is
given in Chapter 10 under the heading ‘Variational Principles’.

Let us consider the motion of a pariicle along a circular path on a smooth plane
with reference to Newton's law and the D’Alembert principle. At any instant of
time, the velocity must be tangential to the circular path and the acceleration may
consist of a tangential component and a radially inward or centripetal component. If
the speed of the body is constant, it experiences only the centripetal acceleration,
equal in magnitude to v¥r. The force F that must act on the body 1o enable the body
to move in a circular path must be radially inwards at all times such that

F=ma
with a magnitude mv¥/r.

This is so shown for two positions of the body in Fig. 6.4(a). The force F
actually required to be acted on the body is called the centripetal force.

According to the D’ Alembert principle, the equation of motion may be written as

F+(-ma)=0
and the fictitious force (—m a) is called the centrifugal force. The equation is inter-
preted by saying that the body may be considered in a state of ‘equilibrium’ under
the application of two forces: the actual or centripetal force F and a fictitious or
centrifugal forces CF equal to (-m a).

The two forces must be equal and opposite. The centripetal force being radially
inward, the centrifugal force must be radially outward at any instant. This is so
shown for two positions of the body in Fig. 6.4(b).

CF

Vs
0&—
Centripetal Force

]

Fig. 6.4 Motion Along a Circular Path

Since the concept of centrifugal force replaces that of the ‘acceleration’ of the
body, the body is considered ‘nonaccelerating’ or in ‘equilibrium’ once the centrifu-
gal force is imagined to be acting upon it.
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Let us consider the traditional example of a small stone of mass m tied at the end
of a string of length [ and whirled at a constant speed v. If whirled in a horizontal
plane, the stone is subjected to a vertically downward force equal to its weight mg
and a radially outward horizontal centrifugal force equal to mv¥/r. The force due to
the string, also in a horizontal plane, can only balance the centrifugal force leaving
the vertical force mg unbalanced. The conclusion is that a stone cannot be whirled,
by means of a string, keeping the string in a horizontal plane. Instead, the string
must be inclined downward, going outward, to provide a vertical component in the
string force to balance the weight as shown in Fig. 6.5. The centrifugal force is still
horizontal. It may be observed that the angle of inclination @ is given by

mg_ mg _gr

tan 6 = £ (6.3)

CF ™ mvilr v?

Fig. 6.5 Whirling of a Stone in a Horizontal Plane

The angle is independent of the mass of the stone but increases as the velocity
decreases or the radius of the circular path increases.

mg

| CF
Fig. 6.6 Whirling of a Stone in a Vertical Plane

If the stone is whirled in a vertical plane, the three forces, i.e., its weight mg
acting downward, the centrifugal force CF equal to mv¥/r acting radially outward
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and the string force T radially inward may be considered to keep it in ‘equilibrium’
at any instant as shown in Fig. 6.6. At the lowest position,
T =CF +mg =-'!’:—z+mg
whereas at the uppermost position,
CF =T+ mg
whence T =CF——mg=-’-’—I%2—-mg

The tension in the string must be positive at the lowest position for all values of
v-but it can drop 10 zero at the uppermost position if

my?

-mg <0

or v < Jg_r (6.4)

Since a string cannot remain straight without being in tension, the stone will not
reach the uppermost position on the circle if the velocity of whirling drops below
ver.

6.4 WORK, POWER AND ENERGY

If a body is subjected to a force F and the point of application of the force is
displaced by an infinitesimal displacement dr as shown in Fig. 6.7(a), the work
done by the force is defined as the scalar or dot product of the force and the
infinitesimal displacement

dW =F -dr (6.5)
=Fdrcos 8

where @ is the angle between the force and displacement vectors. In other words,
the work done by a force is the product of the magnitude F of force and the distance
dr cos 8@ moved by the point of application of the force in the direction of the force.
Alternatively, the work done may be considered to be the product of the magnitude
dr of the displacement and the component F cos 8 of the force acting in the
direction of the displacement of the point of application of the force. The work done
by a force may be positive or negative depending upon whether the force compo-
nent is directed along or opposite to the direction of displacement, i.e., whether the
angle between the force and displacement is acute or obtuse.

For a particle, the force acts at the same point for which the displacement is
considered. For a rigid body, on the other hand, the displacement of the point of
application of the force must be considered.

For a finite displacement of a particle, therefore, the work done due to a force F
is given by

LF]
W = | Fdr (6.6)

n




Dynamies of a Particle 403

where r; and r, refer to the initial and final positions 1 and 2 as shown in Fig. 6.7(a).

The force F acting on the particle may be a function of the space coordinates and
the displacement dr may also be in space. The elementary work done can, therefore,
be written as

dW = (F i+ F,j+ Fk): (dxi+dyj+dzk)
=F.dx+ F_rdy+ F,dz

where F,, F, and F, may vary with the space coordinates. The total work done to
displace the particle from state 1 to state 2 is given by

2 2 2 2
w =]I' dw:! F,dx+! F, dy+jl' F, dz

For a finite displacement of a rigid body, the work done by a force F acting ai
the centre of mass C is

2
W =[F-dr,
i
where dr_ refers to the displacement of C as in Fig. 6.7(b). If the force F acted at

some other point P such that C did not fall on the line of action of F as in Fig.
6.7(c), then the work done by the force F on the body would be

R
W = [F-dr,

T

where dr, refers to the displacement of P. It must be noted that the expression.

2
I F-dr.

n

does not mean the work done by the force as it is acting but, instead, the work done
by the force F as if it acted through the centre of mass C.

It is interesting to observe the cases where no work is done by a force: (a) when
the displacement is zero, e.g., by the force acting on a stationary structure and (b)
when the displacement is perpendicular to the force applied, ¢.g., work by the
gravitational force on an object moving horizontally on the surface of the earth.

The rate at which work is done is called power, given by

_aw
Power =a (6.7)
Since dW =F . dr

for a force F whose point of application is displaced by an infinitesimal displace-
ment dr,
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the power dissipated in a process is referred to the power associated with the
dissipative forces.

The kinetic energy possessed by a particle of mass n moving with a velocity v is
defined as

KE =% my? (6.9)

where v is the speed or magnitude of v. The kinetic energy of a rigid body of mass
m in translation at a velocity v is also defined by the same expression but the kinetic
energy of rigid body in general translational and rotational motion must be deter-
mined from a consideration of the velocity of the individual elements dm.

KE:],,‘,‘,,,%\;2 dm (6.10)

where the integration is taken over the entire mass of the body. Similarly, the total
kinetic energy for a system of n particles is obtained by the addition of the kinetic
energies possessed by the individual particles,

KE =i%mivf 6.11)

i=t
It is also possible to demonstrate that the total kinetic energy of a system can be
considered to be composed of two parts: the kinetic energy of the total mass moving
with the velocity v. of the mass centre and the kinetic energy of motion of the
elements of the system relative to the mass centre:
1 1
KE =Emvf +3 Eml_vl_";
It may be remarked that the units of work and energy are the same. In SI units,
the unit of work is joule, J = N m and the unit of energy is kg m%s?=Nm =1,
A force field is said to be conservative if the force F in the field is continuous in
space and is expressible as a gradient of a scalar function ¢, i.c.,

F=F(xy 2
and " F=grad¢=Vo¢
Y T T
or F,1+ij+sz—ax|+65'j+azk
B B R
whence F‘_&:’F"—By'F‘_(}z (6.12)

The scalar function or force potential ¢ must be such that its partial derivative
with respect to a coordinate results in the force component along that direction.
Alternatively, the condition for F to be equal to the gradient of ¢ requires that

VxForeurl F=0
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instead of the radial lines. The expression for a change in potential energy is then
given by

APE = mgh
as is commonly used for earth-bound objects.

Example 6.13 A vertical lift of total mass 500 kg acquires an upward velocity of
2 m/s over a distance of 3 m of motion with constant acceleration, starting from
rest, Calculate the tension in the cable supporting the lift.

If the lift, while stopping, moves with a constant deceleration and comes to rest
in 2 s, calculate the force transmitted by a man of mass 75 kg on the floor of the lift
during that interval.

A

mg
Upward Acceleration Downward Inertia Force
(a) (b}
Fig. Ex. 6.13 (a) and (b) (Solution)

i}
T

Solution The upward acceleration a is obtained by using

V' - V)= 2as
_2? _ 2
a-2x3 =0.67 m/s

Examining the forces acting on the lift as shown in Fig. Ex. 6.13(a) (Solution),
the net force must equal mass times acceleration in accordance with the Newton's law,

T-mg=ma
whence T=m(g + a)
= 500(9.81 + 0.67)
=5240N

Alternately the D'Alembert principle suggests that an inertia force equal to
(- ma), i.e., ma downward be imagined acting on the lift together with the external
force T and mg as shown in Fig. Ex. 6.13(b) (Solution) and the problem be solved
as an equilibrium problem in statics. By this principle,

LF=0
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T-mg+(~-ma) =0
or T-500x9.81~500x0.67 =0
whence T =5240N
While stopping, the acceleration of the lift is
0-2

=-—1m/s?

a=

The negative sign of acceleration implies that the acceleration is opposed to the
direction of velocity, as shown in Fig. Ex. 6.13(c) (Solution).
The force transmitted by the man on the floor
on the lift equals the reaction R exerted by the
lift on the man. With reference to the free-body
diagram,
R-mg =ma

R=ma+mg i mg
=75¢-1+981 X V% l

=661 N

‘The force transmitted by the man on the floor
of the lift is, therefore, 661 N downwards. A

It is interesting to understand that the man in (c) Man being decelerated
the lift experiences the acceleration imposed upon  Fig. Ex. 6.13 (c) (Solution)
him and, consequently, experiences a change in
his weight W. The reaction R exerted by the lift on the man is equal and opposite to
the weight W felt by him. The weight felt by a man is less than mg while accelerat-
ing downwards and more than mg while accelerating upwards. In particular, if the
lift was to be accelerated downwards at an acceleration g, the man would feel
weightless and the reaction by the floor of the lift on the man would become zero.
The weight felt by a man in a lift moving at a constant velocity would be mg. The
pictorial representation of the weight felt by him in a lift during a round trip is
shown in Fig. Ex. 6.13(d) (Solution).

Example 6.14 A segment of a smooth circular curved road of radius 30 m is
located in a zone of 40 km/h speed limit. What should be the angle of banking so
that a vehicle may travel on it without any outward side thrust?

If the coefficient of static friction between the road and tyres of a vehicle was
0.3, calculate the maximum possible speed before the vehicle experiences a side-
slip.

Solution When a vehicle negotiates a circular curve, it may be considered in
‘equilibrium’ under the action of three forces, namely the weight mg, centrifugal
force CF equal to mv¥r and reaction R which is normal to the road in the absence of
friction.

Resolving the forces along the incline and writing for equilibrium,
m

2
Y~ cos@
.

mgsin @ =Fcos@=
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Upper Floor -
|§ Feeling of Lightness gl
ag % a
l% 2 l
g W= m{g-a) w=mg-a)| $§
i
g
2 &
| g §
> 5 g 2
5§ S W=mg W=mg 8
g g Normal % g
12
$
ilé W=m(g+a) W= m{g+ a) 5 L
I E Feeling of Heaviness g |
Lower Floor

Fig. Ex. 6.13(d) (Solution) Weight Felt in a Lift
y \
R

f=uR

Fig. Ex. 6.14 (a and b) (Solution)

whence tan 8 v
gr
For the case in hand,
_ (40 x1000/3600)% _
tan @ = 9.81x30 =0.42
and 6 =22.76°

In the presence of frictional force which would act down the plane if the velocity
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exceeds 40 km/h, the limiting velocity may be worked out with reference to the
free-body diagram drawn in Fig. Ex. 6.14(b) (Solution).
Along the x-axis,
CFcos - uR - mgsin 8=0

2
or E-'—:——casﬂ—uR—mgsin8=0 (i)
and along the y-axis,

R-mgcos 8- CFsin8=0

2
"': sin 8=0 (i)

or R-mgco@-

From Eq. (ii)

2
MV~ sin 6
r

R =mgcos 8+
Substituting in Eq. (i) and simplifying it,

+tan @
'If'2 = 'lil:?-m'gr (III)

For the case in hand,

2 _ 0.3+1an22.76°

me— %9, x
Y ST osmmazte O 81x30

whence v = 15.565 m/s

= 3600 _
=15.565x 1W—-SG km/h
It is interesting to note that the angle of banking for a circular road calculated on
the basis of no-friction is safer because the presence of friction allows even higher
maximum velocity without any danger of side-slip. In other words the angle of
banking calculated by taking friction into account would have been less than 22.76°
as may be seen by substituting the given values in Eq. (iii).

Example 6,15 A small spherical object comes rolling down a ramp and leaves the
edge horizontally with a velocity V. Describe its trajectory.

Solution The spherical object would

continue to have its rolling motion at

constant angular velocity, in the absence

of air resistance, on leaving the ramp.
At any instant of time ¢,

x=Vot z=-12g
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Example 6.17 A particle of mass 0.05 kg slides down -
the circular periphery of a horizontal smoocth cylinder of
radius 12 cm when let go from the top position, as shown
in Fig. Ex. 6.17. Determine the reaction of the cylinder on
it when it reaches 30° degree position.
Will it leave the surface? If so, where and with what
velocity?
Solution From the freebody diagram of the mass as shown Fig. Ex. 6.17
in Fig. Ex. 6.17 (Solution) at an angle 6, -

v J_' A

mg cos 6~ R =m— 0] h o

Also, by conservation of energy, lo

Fig. Ex. 6.17 (Solution)
mgh:mg(r—rcosﬂ):%mpz g

or  g(l-cos 8)=%"”f (ii)

Eliminating v¥r between (i) and (ii)
R =mgcos 8-2mg (1 -cos 6)
=0.05 x9.81 x 0.866 — 2 x 0.05 x 9.81 (1 - 0.866)
=029 N.

It must leave the circular periphery, latest when it reaches the extremity of the
horizontal diameter when the velocity is zero or the mass is zero. With its finite
mass and velocity it will lose contact with the cylinder where R =0, i.e..
Equating mg cos @ with m - 2g - (1 —cos 6)

cos @ =2 (1 -cos 6)
cos @ =2-2cos 6
3cos 8 =2
6 =cos™' 2/3=482°

At this location,
v =2gr(l-cos 6)

=2x981x0.12(1 -2/3)=0.78
whence, v =0.886 m/s

The direction of the velocity must be tangent to the circle at that point, i.e., at
(- 48.2°) with the horizontal direction.

Example 6.18 Two blocks m; and m,, of masses 2 and 4 kg respectively arc
placed one on the other on a horizontal table and connected to a suspended weight
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M through a frictionless pulley as shown in

Fig. Ex. 6.18. The coefficient of static friction ’_T'_l
between m, and m, is 0.4 and the coefficient my
of kinetic friction between m, and the table is

0.2. Find the maximum mass of the block M
in order that m, accelerates over the table with-
out m,; slipping over m. M
Solution For the free body diagram of mass
m, as shown in Fig. Ex. 6.18(a) (Solution),
the frictional force is 0.4 x 2 x 9.81, i.c., 7.85
N. The maximum acceleration of m; should
be limited to a, such that

Fig. Ex. 6.18

myxa =785 a= 7'285 =3.925m/s?

.
[m]
> ”
(7] =+ | —
".7— —— a
F=02x(4+2)x981
=11.77N mg

(a) (b) {©)
Fig. Ex. 6.18 (a, b and c) (Solution)

Now, let us draw the free body diagram of the two masses m,; and m, together as
also for the suspended mass M (ref. Fig. Ex. 6.18(b) (Solution)).
By dynamical equations,
T-1177T =2 +4)x 4 T=357TN
Mg-T =Mx4, M=3577/(981 -4)=6.15kg

Example 6.19 A bob of mass m = 20 grams is attached to a 20 cm long string tied
to the apex of a cone with rough surface as shown in Fig. Ex. 6.19. At time 1 = 0,
the cone is imparted a constant angular acceleration o= 0.5 rad/s? about its vertical
axis. Assuming that the bob has no relative motion w.r.t. the surface of the cone,
(i) at what time will the bob leave contact with the surface?
(ii) what would be tension in the string at that instant?

Solution Consider the free body diagram of the bob at any instant in rotation as
shown in Fig. Ex. 6.19 (Solution).

T cos 30 - R cos 60° = mr o
T sin 30° + R sin 60° = mg

whence, %T—%:mxo.lnmz
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Fig. Ex. 6.19 (Solution)

and I -£R=mx9.81
22
which leads to R=(0.173 & - 43 x 9.81)

It leaves contact when R = 0; w = 9.9 rad/s
(i) From the relationship,
o =yt at
t =9.9/0.5 = 19.8 seconds
(ii) Solving for T from the above,
T=039N

Example 6.20 Two masses m, and m, are connected by a
massless inextensible string which passes over a massless and
frictionless pulley Fig. Ex. 6.20. This constitutes an Atwood's
machine. Find the acceleration of mass m, and the tension in
the string as the system moves under gravity.

Solution Considering the free-body diagram of each of the
masses (Fig. Ex. 6.20),

mg-T=ma

T-mg=ma
From these equations,

m o—m Fig. Ex. 6.20
a=—L__2,
ml +m1
_@2m; my)
and T= my +m,
myg
Atwood used this system to determine the value of g

&, the acceleration due to gravity. If m; = 2m, which Fig. Ex. 6.20 (Solution)
meant a = gf3, i.e., the system accelerates at one third

the value of g. He used different values of m, and m, and measured the resulting
acceleration whence he computed the value of g;

Ity

§ Sm -m,
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One can get the same result by employing the work-energy principle or the
conservation-of-energy principle in this case. Let us apply the latter.
If the mass m; moves down by x the resulting velocity would be given by
considering
PE + KE = Const.

(my —my)g x =%(“"3|*“"2)V2

1 .
or (my —myg x == (my +my) x?
Differentiating it w.r.t. time,
(my—mygx =(my +nmy) ¥x
and dividing by %, which in guneral is non-zero,
(my—my)g =(m +m)a

m, —m,
whence a =|—|¢g

m +m,
Example 6.21 Establish that the gravitational force field close to the surface of
the earth and the force field due to a linear spring are conservative force fields.
Solution
(a) Gravitational force field

Consider a particle of mass m placed in a parallel gravitational force field close
the surface of the earth is shown in Fig. Ex. 6.21(a).

FJ =0, F). =0
F, = — mg, the weight of the particle

A potential function ¢ should exist for a conservative force field. For this case,

) @

o ..
Fy =;=0 (i)
F, —%:—mg (iii)

From Egs. (i) and (ii) it may be seen that the potential function is not a function
of x or y. Therefore integrating Eq. (iii),

=~ mgz + Constant
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Fig. Ex. 6.21(a) Fig. Ex. 6.21(b)

|

PE = mgz

1
l

¥y

il

T
i

T
b

Fig. Ex. 6.21 (Solution)

— ]

- ]

-—| &

The existence of ¢ is a guarantee for the field to be conservative. The potential
energy for the gravitational force field is

E =-¢=mgz
it being reckoned zero at the origin of the coordinates arbitrarily.
(b) Force field of a linear spring
For a linear spring compressed by x, the force field is such that
Fo=-kx
F,=0,F,=0

In an cffort to determine the potential function, let

=—kx ®
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3. In certain situations, where the work done may be evaluated readily, the
velocities may be computed by employing the work-energy equation.

6.6 CONSERVATION OF MECHANICAL ENERGY

Let us now examine the case where the force is conservative. In a conservative
force fieid, the work done in moving a particle or a mass centre from position 1 to 2
depends upon the potential energy PE of the end states only,

W= PE, - PE,
Equating this expression for the work done with that provided by the work-
energy cquation,
PE, - PE, = KE, - KE,
whence PE, + KE, = PE, + KE,
or | (PE + KE), = (PE + KE), | (6.16)

which implies that in a conservative force field, the sum of the potential energy and
kinetic energy remains constant for all positions of a particle or a mass centre. The
sum of the potential energy and kinetic energy is called mechanical energy. Equa-
tion (6.16) is referred to as the Principle of conservation of mechanical energy. In
other words, the mechanical energy of a mass centre or a particle is conserved
when it moves in a conservative force field, as also visualised in Fig. 6.9.

Mechanical Energy
1 )
KE
KE
Process PE KE
E PE
PE
+ l
Datum Line

Fig. 6.9 Visualisation of the Motion with Conservation of
Mechanical Energy (PE + KE = Const.)

If a particle is, instead, made to move in a force ficld, a part of which is
conservative and another part non-conservative, then

F = Feons. + Froncons.
and a potential energy function PE may be determined for the conservative part of
the force F .. The work-energy principle provides that

2
W =[ F-dr=KE, - KE,
1
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The kinetic energy at each point is expressed as follows:

KE, =0
| 1
KEszimv:=5x0.5vi=0.25v§
KE. =Lmv2 =Lx0.5v2 =0.25v2
CT2a™ e T e T c

Employing the principle of conservation of mechanical energy,
(PE + KE) = Constant

50 +0=-1.24 + 0.25vg* = -9.81 + 0.25v7
whence vg=14.32 m/s
and ve= 1547 mis

Let us consider a point D where the slider would come 1o rest again

PEp=-2x9.81 X 05 + 3 X 400 x &*

KE,=0

Again, by conserving mechanical energy,
50 +0=-2x9.81 x 0.5 +% X 400 X *

x=055m

The stretch of the spring being 0.55 m, its stretched length should be 0.55 + 0.5
= 1.05 m which suggests that

CD=(1.052-05%)"=092m

Example 6.24 A block of mass 5 kg is released from rest from a position A on a
30° incline as shown in Fig. Ex. 6.24. Determine the maximum compression of the
spring if the spring constant is 8 N/cm and the coefficient of friction between the
block and the incline is 0.2.

Fig. Ex. 6.24
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T 101
7
0 A
] 4 8 12 16 20

—_—

Fig. 6.10 Force vs Time Curve

Magnitude of 1 =222 ~10x (12 8)+ 22200712 1 o

2 2
=40+40+20+0=100 Ns

computed as the area under the F-t curve.

The concept of impulse is particularly useful if large forces act over short inter-
vals of time. The action may then be classified as impulsive and expressed in terms
of an impulse I in its own right without regard to the force associated with it.

The impulse of a force is often called linear impulse in order to differentiate it
from angular impulse which may arise due to a moment acting over a period of
time.

6.8 IMPULSE-MOMENTUM PRINCIPLE

Newton’s law for a particle or a mass centre provides that

—mdv
F—md:

which may be rewritten as
Fdt=madv

Integrating each side from an initial position at t; when the velocity is v, to final
position at 1, when the velocity is v,

l: V“

[Fdt =[mdv=m(v,-v,) (6.19)
:l Y,
In words,

Impulse = Change in momentum
or Initial momentum + Impulse = Final momentum

This is a vector equation which applies to a particle or mass centre of a rigid
body or of a system of bodies. It is the velocity v, of the mass centre that must be
considered to evaluate the linear momentum of a rigid body at any instant, no
matter where the force actually acts on the body.
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The left hand side of Eq. (6.19) can be rewritten as

l'! "1 l} l:
'{ F dt =i‘{ F_dt +j:{ F, d:+k'_|l' F dt
and similarly the right hand side can also be written as
=mvy, = vi) i+ mvy, = v ) j+mlv, —v ) k

Equating the left hand and right hand sides of Eq. (6.19), we get

s

F_dt = m(V, - V)

[ F, di=mvy, -V,

| F, dt =m(Vy, - Vy)

6.9 CONSERVATION OF MOMENTUM

It may be observed from the impulse-momentum principle that the momentum of a
particle or of the centre of mass of a system is conserved in the absence of an
external impulse or an external force acting on it. Then,

Initial momentum = Final momentum
Example 6.25 A force given by
F=32i+5tj- (87 +400) k N

acts from 7 = 0 to 1 = 10 5. Detlermine the impulse of the force. If this impulse acted
at the centre of mass of a body of mass 500 kg and brought it to rest, estimate the
velocity of the body before it acted.

Solution
I=[Fdt

] [[1] 10
=[3t2dri+ [ Stdtj- | (817 +400)dr k
0 ] o

=|e3]y i+]2.502] ) j=|2r* +d00r]) K

= 1000 i + 250 j — 24,000 k Ns
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Applying the impulse-momentum principle in the vertical direction,
(10 x 600 x sin 30 - 0) = F x 10/1000
whence F = 300,000 N = 300 kN.

This must also be reaction by the ground on the frame in the vertically upward
direction.

Example 628 A 0.001 kg bullet has a velocity of 1000 m/s as it enters a fixed
block of wood. It comes to rest 0.002 s after entering the block. Determine the
average force that acted on the bullet and the distance penetrated by it.

Solution From the impulse-momentum principle,

2
I =I Fdt=F, -At=0.002 F,
1
=m(vy,—v;)=0001(0-1000)=-1 N
whence, F,, =-1/0.002 = -500 N

which implies that a resistive force of 500 N acts opposite to the direction of motion
of the bullet.

The distance penetrated by the bullet into the block may be worked out
quite simply by employing the work energy principle or by using Newton’s law of
motion.

By the work-energy principle,

!
| Fedr =%m(v§ ~v2)

N
or 500 x distance penetrated = -é— % 0.001 x (0% - 1000%)

whence the distance penetrated = 1.0m
Alternatively, the acceleration of the bullet should be

a =Fim=(v,—v)A

0 - 1000
S — 2
0.002 500,000 m/s
and the distance penetrated is given by
v% - vl2 =2as
0-10002
whence K =m=l.0m

Example 6.29 A person of mass 60 kg stands at one end of a 6 m long floating
boat of mass 240 kg. If the person walks across to the other end at a steady rate of
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1.2 m/s, determine (a) the velocity of the boat as observed by an observer on the
ground during the process, (b) the distance by which the boat is shifted, (c) the
velocity of the boat if the person stops at the other end and (d) the velocity of the
boat if the person, while walking, falls out of the boat at the other end.

Solution Considering the person (1) and the boat (2) as a single system, there is
no external focce on it. The momentum of the person and the boat taken together
must, therefore be conserved. Distances and velocities are referred positive to the
right as shown in Fig. Ex. 6.29 (Solution).

em

G T

\ ¢ =/

_—— ]

. v

1 +V il
Fig. Ex. 6.29 (Solution)

(a) Initially, the person and the boat are at rest; their total momentum is zero. As
the person moves with a velocity of 1.2 m/s to the right with respect to the boat, the
boat may be moving with a velocity V, m/s. The absolute velocity of the person is,
therefore,

Vi=-12+ V,m/s
Momentum of the system in the process is

mVy+mV,=60(-1.2 + V,) + 240 V,

=300V,-72
which must be equal to the initial momentum, i.e., zero
300V,-72=0
whence V,=0.24 mfs
and Vi=-12+024=-096 m/s

An observer on the ground will, therefore, observe the boat to be drifting to the
right with a velocity of 0.24 m/s and the person moving to the left with a velocity of
0.96 m/s.

(b) The time taken by the person to walk across the other end is

t=6/12=5s
and the distance the boat travels in 5 seconds is
x=5x024=12m

“(c) If the person stops at the other end, the boat should also stop because their
total momentum must remain zero.
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(d) If the person, while walking falls out of the boat at the other end, he would take
with him a momentum

mV, =60(-1.2 + 0.24) =-57.6 Ns

The momentum possessed by the boat is, therefore, +57.6 Ns because the sum of
the momenta equals zero all the time. The boat must have a velocity V, after the
person fell out

v, =‘"%§=°'24 m/s

In the absence of any external force, the boat will thus continue to move to the
right at 0.24 m/s.

An alternative approach to the solution of the first two parts of the problem
would be as follows:

The person and the boat taken together do not experience any external force.
Therefore, the centre of mass of the system must remain unaltered.

. 60x6+240x3
Initially Xe ==—e3T340 =3.6m
Finally, after the person has moved to be other end,

60X (0+x;)+240(3+ x, )
- 60 +240

300, +720
=7 300

whence, x=12m

which shows that the boat must have moved by 1.2 m to the right.
The velocity of the boat during the process is determined from the knowledge of
the time taken by the person and the displacement of the boat

I T
Vz -T-m-ﬁ.?.d m/s
Example 6.30 A military truck of mass 4000 kg while developing a tractive force
of 12 kN tows a jeep of mass 2000 kg with the help of an inextensible cable up an
incline of 1 in 10. A winch mounted on the jeep is operated to approach the truck
with a constant acceleration of 0.5 m/s?. Before the winch is operated, the truck and
jeep were travelling at 12 m/s each. Determine their speed after a lapse of 10 s (refer
Fig. Ex. 6.30).
What would the final velocities be if the winch did not operate?

Solution This problem is best solved by employing the impulse-momentum equa-
tion. This preference is in view of the obvious requirement to deal with the action of
forces over a prescribed time and to determine the velocities as a result of change of
momentum, )
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Slope 1in 10

Fig. Ex. 6.30

Taking the truck and jeep together as a single system, the magnitude of the
external force acting on it is
F =12 - (4000 + 2000) x 9.81 sin 61000

=12-(4+2)x98l x 1/10=12-393 - 1.96
=611 kN

Fig. Ex. 6.30 (Solution)

The magnitude of the impulse acting on the system is
I=Fx10=6.11 x10=061.1 kNs
Initial momentum of the system is
P = (4000 x 12 + 2000 x 12)/1000
=72 kNs
Denoting the final velocity of the truck by V, and that of the jeep by V; where
V=V, + 05
the final momentum of the system is
P2 = (4000 x V, + 2000 x V;/1000
=4V, +2(V,+ 05 x 10))

=6V, + 10 kNs
Since
Impulse = Change in momentum
61.1=6V,+10-72
whence V,=2052 m/s
and V;=20.52 + 0.5 x 10 = 25.52 m/s

In the absence of a winch, the final momentum of the system would have been
given by
P2 = (4000 X V, + 2000 x V;) /1000

=4V, +2V;= 6V
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and "1"’!"{,‘“2 -1)

Taking time r; = 0 at the beginning when v, = 0

Vv, =%x5=42m!5

Alternatively, from
v=u+ar
v=0+84x5=42mfs

(c) From the Newton's law,

2
F:,,,u

dr?
F

5 =—r2.-‘2+C|r+C2
m

Noting that both C, and C, are zero for the given conditions,

168 2y
.r_-20><5 12=105m

Alternatively, from

1 .2
s =ut+—at
2

s=0+—;—x8.4x52=105m

(d) The kinetic energy is given by
Lol 2_
7 m _2x20x42 17,640 1

(e) The work done on the body is
F-s=168x105=17,6401

which is indeed equal to the change in kinetic energy of the body.
(f) The momentum possessed is

m v =20 x 42 = 840 kg m/s or Ns
(g) The impulse imparted to the body is
I=Fdr=168 x5 =840 Ns

which is indeed equal to the change in momentum of the body.
For the second phase of the motion, i.e., along a horizontal surface, the force
along the direction of motion is
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-f=-puN=-02%1962=-392N
The work done on the body is
—39.2 x distance travelled
Equating it to the change in kinetic energy, -17,640 J
the distance travelled is 17,640/39.2 = 450 m
The impulse on the body is
~39.2 x time of action
Equating it to the change in momentum,
) 0 - 840 = -840 Ns
the time of travel is 840/39.2 =21.43 s
Alternatively, the acceleration of the body can be determined as
a =-39.2/20 = -1.96 m/s*

and from the Newton's law in the form

-
F=m
the time can be determined and from the form
dis
dt?

the distance wravelled can be calculated.
Alternatively, employing the relations

v =u+at and  s=ut+ 12a

0-42
t = ~196 =21.43s
and 5 =42x21.43 + 1/2 % (-1.96) X 21.43* =450 m

6.10 MOMENT OF MOMENTUM

The term ‘moment of momentum’ is defined analogous to the moment of a force.
The momentum possessed by a body of mass m moving with a linear velocity v
being mv, the definition for the moment of momentum H is that

H=rxmv

where r is the position vector of the centre of mass of the body at a given instant
with respect to a reference point.
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The term ‘angular momentum’ is used interchangeably with moment ol momen-
tum. This term is possibly designed to denote its difference from the linear momen-
tum m v, also written simply as momentum. The physical interpretation of Moment
of Momentum is not readily clear from its definition but the meaning can be appre-

ciated in the following article, where the rate of change of moment of momentum is
related to the external moment about the same reference point for the body.

6.11 MOMENT OF MOMENTUM EQUATION
Starting with the Newton's law in the form
-d
F= 7 {mv)

and taking moment of each term of the equation about a point O in space as shown
in Fig. 6.11.

rxF =rX%(m\')

o
Fixed Point Trajectory of the Particle
Fig. 6.11 Trajectory of the Particle
The addition of a zero term, namely
u b 0
—Xmv =
dr

on the right hand side of the above equation yields

rxF =r><g?(mv)+£><mv

dt
or M0=rXF=£(r)<mV) (6.20
dt
or M, :dHO =H
dt 0

This is the moment of momentum equation which states that the moment of tic
resultant force or a particle or at the mass centre of a system about a fixed point €
equals the time rate of change of moment of momentum about the same point.
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6.12 CONSERVATION OF MOMENT OF MOMENTUM

If the moment of the resultant force acting on a particle or at the centre of mass of a
system about a fixed point in space is zero, then

d
E(rxmv}:{]

or rxmv=Const. =H {6.21)

i.e., H, the moment of momentum is conserved. The moment of the resultant force
would be zero if cither the force is zero or the force is directed towards or away
from the origin O.

Example 6.32 A particle of mass 2 kg tied at the end of an inextensible string is
rotated at 20 rad/s along a circle of 1 m radius over a smooth horizontal table top.
The string is pulled down through a slot at the centre of the table top at a speed of
5 mi/s as shown in Fig. Ex. 6.32. Calculate the speed of the particle when it reaches
0.5 m from the centre. Comment on the variation of tension in the string with time.

Fig. Ex. 6.32

Solution As the particle is rotated over the table and the string is pulled in, the
only force that acts on the particle is the tension in the string which is always radial.
Consequently, the fact that

rxF=0

prompts the utilisation of the principle of conservation of moment of momentum,
ie.,

rx mv=Const. = H

Since the motion is confined 1o a plane, the velocity at any instant of time must
be given by :

v=V.e + Vgey
and rXxmv=rXmv.e +vgeg
=rXmvgeg=H
or h=Him=rvg
= rw = Constant (i)
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Initially, hy = 17220 =20 ms
and finally, hy = 0.5 @, = @/4 m’ls
From the conservation principle,
hy = h,
20 = /4, w, = 80 rad/s
and v = 0.5 X 80 = 40 m/s
Since V=35 mfs

the speed of the particle is

=402 +52 =40.3 m/s

The tension in the string may be estimated by applying the Newton's law to the
particle. There is no force and no acceleration in the tangential direction.
In the radial direction,

-F=2-rar)
or F=2rar (it)
It is prescribed that  r=1-5¢
and from the moment of momentum conservation Eg. (i)
Pa=12-20=20

20
(1-50)?

which, when substituted in Eq. (ii), gives

w=

F=2(1-57—2"_
{ r) N

_ 800

*(1*5:)3N

It is interesting to note that the force required to pull the string at a constant
speed is not constant; it increases as the particle approaches the centre-slot. The
following table should supplement the understanding of the phenomenon.

or

Table 6.2
1(s) rim) o (rad/s) FIN)

0 1 20 800
0.05 0.75 35.56 1896
0.10 0.50 80 6400
0.15 0.25 320 51,200
0.20 0 oo oo
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It is noticed that the particle turns increasingly faster as it approaches the centre
and it may, therefore, be expected that the string must break at some position.
However, in reality friction and drag come into play and neither the rotational speed
nor tension is allowed to increase to such an extent. The fact that the rotational
velocity of a mass increases as it is drawn closer to the axis of rotation is used by
expert figure skaters on the ice. They start into a whirl with both their arms and one
leg extended and then, upon drawing the arms and the leg in, they obtain a greatly
increased angular velocity, which is both amusing and amazing!

Example 6.33 A thin circular ring of mass 100 kg and radius 2 m resting on a
smooth surface is subjected to a sudden application of a force of 300 N at a point
on its periphery. Calculate (a) the angular acceleration of the ring and (b) the
acceleration of the mass centre.

Solution (a) Applying the moment of momentum equation with the origin chosen
at the mass centre of the ring and realising that r, v and M are mutually perpendic-
ular,

300N

_d -4 ..
M—dl{rmv)_dr(r ma)

=rimw

whence w= ‘;’4
r=m

300x 2
=X _1 2
=37 xi00 - O/ Fig. Ex. 6.33 (Solution)

(b) The acceleration of the mass centre may be determined by applying Newton's
law,

F=ma,
The =300 _ 2
n a_ 100 Im/s

The Newton’s law is indeed applicable although the force is acting at a point
other than the centre of mass C.

Concept Review Questions

1. Recognise and explain the truth in the following statements:

(a) The acceleration or deceleration for a rectilinear motion is ascertained on the
basis of like or unlike signs for the acceleration and velocity vectors rather than
on the basis of the acceleration vector alone,

(b) An object may be travelling at a constant speed but it may have variable acceler-
ation,

(¢) The laws of motion applicable to a particle must also be applicable to the centre
of mass of any system whether or not the force acts at the centre of mass.
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(d) The work-energy principle, impulse-momentum principle, moment of momentum
principle and D" Alembert principle are alternative manifestations of the New-
ton’s law of motion.

. Under what circumstances is Newton's law of motion applicable? When would you

prefer the work-energy, impulse-momentum or moment of momentum principle for-
mulations? How does the D' Alembert principle differ from the Newton's law?

. Which of the following are conserved in a central-force motion and why?

(a) Force

(b} Lincar momentum

(e} Moment of momentum
(d) Mechanical energy.

. Match the following definitions correctly with the features of the plots indicated.

Net applied force Slope of velocity vs time

Change in kinetic energy Area of acceleration vs time
Change in velocity Area of velocity vs time

Change in the applied force Slope of position vs time

Change in displacement Area of force vs position
Instantaneous acceleration Slope of kinetic energy vs position
Instantaneous velocity Slope of linear momentum vs lime
Change in linear momentum Area of force vs time

6.1

6.2

6.3

6.4

6.5

Tutorial Problems

A stone is dropped into a well. If the splash is heard 2.50 seconds later determine the
depth of the water surface assuming that the velocity of sound is 330 m/s.

(Hint: 41330 + J2479.81 = 2.50. d = 28.6 m)

A particle accelerates as a= 94/ where a is in m/s’ and x is rectilinear displacement
in metres. At ¢ = 3 seconds, the displacement is 16 m and the velocity is 27.7 m/s.
Determine the displacement, velocity and acceleration of the particle one second later.
(Ans. 67.5 m, 81.6 m/s, 73.9 m/s%)

A block of mass 2 kg slides down the face of a smooth 45° wedge of mass 10 kg as
shown in Fig. Prob. 6.3. The wedge is placed on a frictionless horizontal surface.
Determine the acceleration of the wedge. (Ans. 0.89 m/s%)

Block

= a,=7

Wedge
10 kg

PR AL R AR LR A R R S A L S
Fig. Prob. 6.3

A vehicle is uniformly accelerated upon an incline of 1 in 20 from rest and attains a
velocity of 5 m/s in 15 s. Determine the tractive force if the vehicle has a mass of
2000 kg and the resistance to motion is 200 N. (Ans. 0.33 m/s, 1848 N)
Three blocks of masses my, m, and m, are connected by two cords as shown in Fig.
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Prob. 6.5. Obtain an expression for the acceleration a of the system and determine the
tension in the cords.

(m, =@ m —p,m,g
{Ans.a: 3 1" 2"
J'I‘l|+m2 g
mogim, = m = m,}
Ty=#ymg+ : n: +H‘: -:-J'I'.I —
1 2 3

maglmy —pym, —p,m,)

T, =m,g-
my o+ m, +n,

Frictionless
Pulley
Fig. Prob. 6.5
6.6 A block A resting on a smooth floor and n

carrying a block B upon it is pulled by a
horizontal force as shown in Fig. Prcb. — F
6.6, Determine-the acceleration of A to
cause a slip between A and B if the coeffi- Fig. Prob. 6.6
cient of friction between them is .
(Ans, a = ug)
6.7 An object of mass m falls vertically down in a medium with resistance R proportional
to the square of the velocity. Obtain an expression for the velocity at time 1 if it starts
from rest at time ¢ = 0. What is the terminal velocity?

_ 2 fkgim |
mg|l-e mg
Ans. V= 1‘ 2 J

[ [] + e—z: keim ] k J
6.8 A particle of mass m is projected vertically upward with a velocity v, in a medium

whose resistance is kv. Determine the time for the particle 1o come to rest. What
would be the time if the resistance was v? instead of kv?

{Ans.m/kin(1+kvg /mg) and Jmikg tan~!vo Jkimg)

6.9 A horizontal force of 100 N is exerted on block A of mass 20 kg which is tied by an
inclined string to block B of mass 5 kg as shown in Fig. Prob. 6.9. The coefficients of

R R R Ry
Fig. Prob. 6.9
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friction between the plane and block surfaces A and B are 0.25 and 0.5 respectively.
Calculate the tension in the string and the acceleration of the system.

(Ans. 28 N, .11 m/s®)
A particle of mass m rests on the top of a smooth sphere of radius r as shown in Fig.
Prob. 6.10. Assuming that the particle starts moving from rest, at what point will it
leave the sphere?

(Hint: = N + mg cos 8 = mras and mg sin 6= mra,

a8 (]
o =48 a=-5i—5‘1,j' adé=[ wdo
dt dt
0 0
Substituting N =0,cos 8=2/3, 8§=482°)

I
I

I

- :— - :\

I

_I_,_-'

-
-~

Fig. Prob. 6.10 Fig. Prob. 6.11

A conical pendulum consists of a particle of mass m tied to a cord of length / such
that it traces a circular path of radius r at an angular velocity @ when the cord makes
an angle @ with the axis of rotation as shown in Fig. Prob. 6.11. If its velocity
increases, the particle rises and the radius r of the circular path and angle 8 increase.
Derive a relationship between 8 and @ for constant angular velocity and express the
frequency in terms of 6.

[Ans. w=fgllcos8, f=-2—l; Jailcos8 )

A small block of mass 2 kg, held by a cord
rests on a smooth inclined plane which can
turn about the vertical axis zz as shown in
Fig. Prob. 6.12 The cord is 0.6 m long. De-
termine the tension in the cord when the an-
gular velocity of the plane and block is 10
revolutions per minute.
Also calculate the angular velocity and ten-
sion in the cord when the block is at the
verge of loosing contact with the incline plane.

(Ans. 10,75 N; 5.72 rad/s, 39.24 N)
A wagon of mass 5000 kg is loose shunted to
acquire a speed of 10 m/s before it goes and
hits a bumper. If the spring constant of the Fig. Prob. 6.12
stationary bumper is 200 N/cm and the spring
constant of the wagon pumper is 300 N/cm, calculate (a) the maximum compression
of the stationary bumper and (b) the time taken to reach that state.

- (Ans. 3.87 m; 0.72s)
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6.14

6.15

6.16

6.17

6.18

6.19

6.20
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Fig. Prob. 6.13

A photograph of the 7.25 kg shot-put champion in action shows that the initial angle
of projection was 45°. The toss on a level ground was 22 m. Calculate the velocity ol
projection and the time of flight (a) assuming that the height of the champion is
negligible in comparison with the toss and (h) assuming that the height of the point of
projection is 2 m. (Ans, 147 m/s, 2.15 s; 14.1 m/s, 2.2 5)
A 2 kg ball is suspended by an inextensible string from a ceiling to comprise a
pendulum of length 3 m. The ball is released from a position where the string makes
an angle of 45% with the vertical. Determine the velocity of the ball when the string
makes an angle of 30° with the vertical and when it is at the bottom position.

(Ans. 3.06 m/s, 4.15 m/s)
Determine the minimum velocity a body must have at the top of a vertical circutar
cylinder of radius r if, when moving circularly, it is to remain in contact with the

circular cylinder.
(Ans. Y in :Jg_r].
A bead of mass m moves around a vertical circle of radius r. If the tangential velocity
is v, at the top of the circle, find the tangential velocity v, at the base of the circle.
Assume that the friction is negligible.
(Ans. v, = (l_F;" +4gr))
A 1 kg stone is whirled at 60 revolutions per minute in a plane vertical circle of radius
1.5 m by means of a string. Determine the tensions in the string at the lop and bottom
positions. How would the tensions alter if
{a) the mass of the stone were halved?
(b) the whirling speed were halved?
f¢) the radius of the circle were halved?
(Ans. 49.4, 69 N; 24.7, 345 N; 5.0, 24.6 N; 19.8, 39.4 N)
In a circus, a motor cyclist is moving inside a spherical cage of radius 3 m. The motor
cycle and the man together have a mass of 725 kg. Find the least velocity with which
the motor cyclist must pass the highest point on the cage without losing contact with
the cage.

(Hint: The reaction [mg S ﬁj 20
r

and V= J8r =542 mis)

A cyclist, riding at 5 m/s, wishes to turn as fast as he can without skidding. If the
coefficient of static friction between the tyres and the road is 0.25, estimate the
minimum safe radius of his turn.

R v
(Hint: To avoid sliding, — < pt mg

and V< Jugr;r=102m)
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6.21 A particle of mass m slides down a frictionless track and enters a vertical loop of

radius r at A to ‘loop the loop’ as shown in Fig. Prob. 6.2]1. What should be the
minimum height & at the starting point of the particle in order that it may make a
complete circuit in the loop? ‘
(Hin: Va =Jﬁ and the top position is the critical point were the reaction N = 0
and the velocity v is given by ¥ = v, — dgr. Employing mg = mv¥/r, h = 2.5r. If the
particle is started from a height less than 2.5r it will not reach the top position and if
it is started from a height more than 2.5r, it should loop the loop successfully.}

M

-

Fig. Prob. 6.21

6.22 A vertical shaft rotating at 5 rad/s has a light horizontal arm fixed with it. Two
identical collars A and B each of mass 3 kg, slide out with respect to the arm at 2 m/s
as shown in Fig. Prob. 6.22. Determine the angular acceleration of the arm.

(Hint: didt (r % m V) = 0 = dldir*mw)

Pdw/dt + 2rw dridi =0
Hence, dm/dt = - 10 rad/s?)

B

: 5 rad/s
=
A ! B
' j_ ! 20m
2m T 2m % E

: X

38 U

Fig. Prob. 6.22 Fig. Prob. 6.2

6.23 Determine the work done in winding up a homogeneous cable which hangs from a
horizontal drum if its free length is 20 m and weighs 1 kN as shown in Fig.
Prob. 6.23. (Ans, 98.1 kI)

6.24 A bullet enters a 5 cm thick plank with a speed of 600 m/s and leaves with a speed of
240 m/s. Determine the greatest thickness of the plank that can be penetrated by the
bullet. (Ans. 5.95 cm)
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Multiple-Choice Questions

Select the correct or most appropridate response from among the available aliernatives in the
Sellowing muldtiple-choice guestions.

(=]

The motion of a particle, in general, is deseribed by

{a} the Newton's law and not the work-energy equation

(b} the impulse-momentum principle alone if there is no external force

(c) the Newton's law, the work-cnergy equation, impulse momentum principle or the
moment-of-momentum principle '

(d} the principles of conservation of energy and momentum

. The D' Alembert principle

(a) is a hypothetical principle

(b) provides no special advantage over Newton’s law

(c) is based upon the existence of inertia forces

{d}) allows a dynamical problem to be treated akin to a statical problem

. The centrifugal force

{a} is nol an inertia force

(b) tends to overturn a body outwards on a curved path

(c) is a fictitious force

(d} is the real force experienced by a body negotialing a bend

. A particle of mass m is projected with a velocity V making an angle of 457 with the

horizontal. The magnitude of the angular momentum of the particle about the point of
projection when the particle is at its maximum height /i is

(a) zero, (b) m V(443 g), (©) m VI(J7 g). (d) myf2gh?

. The momentum of a system of two bodies is conserved

{a) if either body does not exert a force on the other

(b} when there is no external force acting on either body
{c) when the external forces act only on one body

(d) when the external moment on the system is zero.

. The impulse-momentum principle is applicable

{a} if there is no external force acting on the body
(b} when the impulse is conserved

{c) when the momentum is conserved

(d) wherever Newton's law is applicable.

. The principle of conservation of mechanical energy requires that

{a) the acceleration should be zero

b} there should be no external forces

(¢} the motion should be restricted to the gravitational field only
i} the force-field should be conservative

. A simple pendulum mounted on a lorry moving on a horizontal track with a constant

acceleration & will be deflected away from the vertical
{a) towards the direction of acceleration, 8= sin™ (a/g)

{b) against the direction of ncceleration, &= sin™ (alg)
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(c) against the direction of acceleration, § = tan ! (2)
g

(d) towards the direction of acceleration, &= tan ™! (?]

Answers to Multiple-Choice Questions
T, 2( 3@, 4(®), 5, 6,

7 (),

8 (o)
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7.1 INTRODUCTION

A rigid body is an idealisation of the behaviour of a body. A body can be idealised
as rigid when its dimensions and the relative positions of points within it do not
change during the course of observation. Mathematically, distances between any
pairs of points within the body remain constant. For example, two arbitrary points
P, and P, shown in a rigid body in Fig. 7.1(a) remain a constant distance apart no
matter what happens to the body. Mathematically, PP, = k. In other words, the
body is undeformed under the static and dynamic actions. The idealisation of a rigid
body allows the distribution of matter, uniformly or non-uniformly over the extent
of the body.

Kinematics of a rigid body refers to the relationship of position, velocity and
acceleration with time for a rigid body. We first visualise the types of motion a rigid
body can undergo and classify them as pure translation, pure rotation, plane mo-
tion and space motion. We then proceed to study the kinematics in the same order
for two reasons: one, to go from simple to not-so-simple and two, because the more
general motions can be thought of as superpositions of the simpler motions namely
translation and rotation.

A great deal of attention is paid to the relative motion of rigid bodies with
reference to the moving and fixed frames of reference. A number of examples on
the analysis of motion, i.c., on the determination of velocity and acceleration, both
analytically and graphically, are given.

7.2 TYPES OF MOTION

A rigid body may be displaced from its initial position rectilinearly zlong one or
more of the three axes or angularly about one or more of the three axes, the set of
axes being chosen arbitrarily.

There are altogether six modes of displacement and hence six coordinates are
needed to specify the motion; a rigid body is said to have six degrees of freedom as
shown in Figs. 7.1(a) and (b). Correspondingly, a rigid body may have six compo-
nents each of velocity and of acceleration.

The degrees of freedom of a rigid body can be thought of in another way.
Suppose that a rigid body is to be located in space during its motion. The number of
independent coordinates required to specify its location in space is equal to the
number of degrees of freedom it enjoys. A little reflection will show that if a body is
heiu at one point, it can rotate about that point; if it is held at two points, it can
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rotate about the axis passing through the two points and if it is held at three non-
collinear points, it is held fully constrained. It follows that the position of the body
is fully specified if the coordinates of any three non-collinear points on the body are
specified such as that shown in Fig. 7.1(c). Each of the three points requires three

8z
]
388,

PO

Py 88 = 86,1 + 56, j + 86, k
?nsd Ss=8xi+dj+8zk
P N
L) wy Y

wl

(a) Six Modes of Displacement of a Rigid Body

{b) Six Degrees of Freedom of an Aeroplane
Fig. 1 (Contd.) Degrees of Freedom
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y
h / /
/ Ya
Ya
w4
(c) Degrees of Freedom of a Rigid Body
Fig. 7.1 Degrees of Freedom
Cartesian Components
x y z Numbers

Linear displacement 8, &, §,
Angular displacement 86, 56, 56, } 6
Linear velocity v, L8 v,
Angular velocity @, a, o, } 6
Linear acceleration a, a, a,
Angular acceleration a, a, a, } 6

coordinates to be specified which makes a total of nine coordinates for the entire
body. Of these nine coordinates, only six are independent because the distance
between the points remains fixed by the definition of the rigid body. In other words,
the nine coordinates are

X ¥p2y XpY¥aZ oand X332
and the three constraints are
' =X + -y’ +(@-2) =C
-2+ =) +(@m-2) =G
=)'+ 3=y + (-2 =Gy
The number of independent coordinates is thus reduced to six.
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The motion of a rigid body is usually subjected to certain kinematic constraints,
thus bringing down the number of degrees of freedom.

A rigid body allowed to rotate about a fixed axis has only one degree of free-
dom, i.e., it can only undergo angular displacement about that axis. A rigid body
allowed to translate in general has three degrees of freedom, ie., il can acquire
displacements along the x, y and z axes. If the translation is restricted in a plane, it
has only two degrees of freedom and if it is required to go along a specified curve,
it is left with only one degree of freedom.

The concept of the degrees of freedom of a rigid body can be extended to a
number of connected rigid bodies. Each rigid body has six degrees of freedom.
From the total, the number of constraints must be subtracted to find the degrees of
freedom of the system of bodies.

A mechanism is an assemblage of rigid linkages which have relative motion
between them but the motion of every linkage is uniquely determined if one of them
is given a prescribed motion. A mechanism has, therefore only one degree of
freedom.

A structure is an assemblage of members capable of withstanding loads without
any change in their dimensions. No relative motion is allowed between the structur-
al members. A structure can, therefore;-be thought of as-a rigid body with zero
degree of freedom.

The definition of a rigid body has far-reaching implications, There can be no
component of velocity of a point relative to another point along the line joining the
two points in the rigid body because the distance between them cannot change. The
velocity of a point relative to another point in the rigid body must, therefore, be
wholly perpendicular to the join of the two points. For example, with reference to
Fig. 7.1{(c), point | can have any arbitrary velocity v, but points 2 and 3 cannot
have arbitrary velocities. The component of v; along 1-2 must be the same as that of
v, along 1-2. Similarly, the component of v, along 1-3 must equal the component of
v, along 1-3 and of v, along 3-2 must equal the component of v, along 3-2. In other
words,

vy, is perpendicular to line -2
v,, is perpendicular to line 1-2
v, is perpendicular to line 1-3, etc.

It implies that a point on a rigid body can only undergo an angular displacement
with respect to another point on the body at any instant, The absence of relative
velocity along the join of two points on a rigid body does not imply the absence of
relative acceleration along the join of the points. In fact, whenever there is relative
velocity between two points in a rigid body, there must be a component of acceler-
ation along the join. In addition, there may be a component of acceleration normal
to the join of the points resulting from the rate of change of the relative velocity of
the points,

Translation

A rigid body is said to be in translation if the linear displacement of every point in
the rigid body is the same. Translatory motion is characterised by the movement of
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a typical line element PQ parallel 1o itself. In other words, the translational motion
of a rigid body is characterised by each point on the body to have the same velocity
and also the same acceleration at an instant. It should be understood that a rigid
body can undergo a change in velocity both in magnitude and direction during
translation. In rectilinear translation, a typical point P translates along a straight
line P P, P’ and an element PQ moves to P,@,, P'Q" as shown in Fig. 7.2(a). In
curvilinear translation, a typical point P may trace a plane or a space curve PP, P
and a line PQ IIP,Q, | P'Q’ as shown in Fig. 7.2(b). The curve traced by each pomt
must be identical on a rigid body in a translation. Tt follows that all the points of the
body have the same linear displacement, same velocity and same acceleration at a
given instant.

(b) Curvilinear Translation
Fig. 7.2 Translation of a Rigid Body

Rotation

Rotational motion is characterised by the same angular displacement of all the
points in the rigid body. It fallows that the angular displacement, angular velocity
and angular acceleration at a given instant are the same for all the points in the body
with reference to the axis of rotation. The axis of rotation, chosen as z-z, may lie
within the body or outside it as'shown in Figs. 7.3(a) and (b). The trajectory of each
point on the rigid body in rotation must be a circle with its centre on the axis of
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(a) Axis within the Body (b) Axis outside the Body
Fig. 7.3 Rotational Motions

rotation. It may be noted that the velocity of a point with a position vector r on a
body in rotation at angular velocity o is given by
Vg=wxr (7.1)
The acceleration of a point is likewise given by
a=0aXr+ox (wxr) (7.2)

The words pure translation and pure rotation are often used to stress the
absence of rotation and translation respectively.

In general, a rigid body may translate and rotare simultaneously. Conversely, a
general rigid body motion may be thought of as a superposition of a pure rotation
and a pure translation, viz., (a) pure rotation about an axis through a chosen point
and (b) pure translation along the join of the initial and final positions of the chosen
point.

A rigid body is said to be in fixed-axis rotation if there exists a fixed straight line
within or outside the body such that the points identified with the body but on that
line have zero velocity and zero acceleration. The straight line thus qualified is
called axis of roration of the body. Rotation may also be specified to be about a
point if there exists only a fixed point identified with the body where both the
velocity and acceleration vanish. An example of fixed-axis rotation is a shaft rotat-
ing in a fixed journal bearing and an example of fixed-point rotation is a spinning
top rotating about the tip in steady or unsteady states.

Plane Motion

The motion of a rigid body is said to be plane motion if all the points in the body

stay in the same parallel planes. A plane motion may be composed of translation
and rotation. Examples of plane rotation are given as follows:

1. Curvilinear translation is a plane motion if the curve traced by any point on it

is a plane curve. A thin plate hanging by two equal inextensible strings is an
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example of plane curvilinear translation, e.g., AP and BQ oscillating in its
own plane as shown in Fig. 7.4(a).

2. Linear translation of a rigid body must be a planc motion.

. Rotation of a rigid body about a fixed axis must be a plane motion.

4. Translation and rotation can result in a plane motion if the rotation takes
place about an axis perpendicular to a plane of motion as shown in Fig.
7.4(b).

5. Rolling without slipping of a cylindrical object on a flat or curved surface
must be a plane motion as shown in Fig. 7.4(c).

a

1777k

{a) Curvilinear Translation

=

28
S §
o
3%
S5
E o
s E
- =0
peregea 1]
lFé—aP’ _J
(b) Translation and Rotation (c) Rolling of a Cylinder

Fig. 7.4 Examples of Plane Motion

Space Motion

Space motion of a rigid body is a general type of motion, with 6 degrees of
freedom, not constrained to be categorised in any of the restricted motions. Exam-
ples of such motions are the flying objects, vehicles on land. etc. The rolling of a
cone on a flat or curved surface and the final stage of the motion of a spinning top
are space motion. The space motion of a body in which one point remains fixed in
space is called motion about a fixed point. An example of such a motion is the
cntire span of spinning motion of a top on a rough floor.
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The equivalent combinations are described as follows:

Fig. 7.8(a) Translation from PQ to P’Q, and rotation about P’

Fig. 7.8(b) Translation from PQ to P,Q’ and rotation about Q"

Fig. 7.8(c) Translation from PQ to P,Q, and rotation about C’

Fig. 7.8(d) Translation from PQ to P,Q, and rotation about 0’

Fig. 7.8(e) Rotation from PQ to PQ, about P and translation to P'Q’

Fig. 7.8(f) Rotation from PQ to P,Q about Q and translation to P'Q’

Fig. 7.8(g) Rotation from PQ to P,Q, about C and translation to P'Q’

Fig. 7.8(h) Rotation from PQ to P,;Q, about an arbitrary point O and translation

to P'Q’ .

Of course, translation and rotation for a plane motion are commutative, the
order of rotation and translation in the summation is immaterial as can be verified
geometrically. For example, Figs. 7.8(e) and (f) show equal amount of translation
and rotation but in Fig. 7.8(h) translation is done first and rotation later and in Fig.
7.8(F) it is the other way round. Similarly, Figs. 7.8(a) and (e), (c) and (f); (d) and
(h) also commutative.

It is also important to note that, whatever be the mode of combination, the
amount of rotation is the same. The angular velocity @ of every point on the
element is therefore the same. It is, therefore, in order to use the term angular
velocity of the link or of the rigid body rather than about any particular point on it.

The fact that a general plane motion can be thought of as a superposition of
translation and rotation is a special case of Chasle’s theorem. The theorem, in
general, states that any general motion of a rigid-body can be considered as an
appropriate superposition of a translational motion and a rotational motion. In par-
ticular, if a rigid body is displaced from position 1 to position 2 in space, then it is
possible to visualise the body to have undergone translation from position 1 to an
intermediate position in regard to a certain point O on the body and then rotation
about the point 0. The extent of translation up to the intermediate position depends
upon the choice of the reference point on the body whereas the extent of rotation is
independent of the choice. Alternatively, a rigid body can be visualised to have
rotated about a reference point first and then translated to the final position. In other
words, the order of superposition of the translational and rotational motions is
immaterial.

7.5 RIGID-BODY MOTION OF FLUIDS

It is possible that fluids, particularly liquids, may undergo rigid-body translation
and rigid-body rotation.

An example of translation is a liquid mass in a container subjected to a constant
linear acceleration a along any direction. For the simplest case of constant horizon-
tal acceleration a, the liquid orients itself with its free surface inclined at @ as shown
in Fig. 7.9(a) such that

tan =2
2 (7.9)

An example of rotation is a forced-vortex flow of air in the core region of a
tornado or cyclone. Another case of solid-body rotation is that of a liquid in a
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container subjected to a constant angular velocity @ about any axis, passing through
the liquid or outside it. The surface of the liquid orients itself in the form of a
paraboloid of revolution as shown in Fig. 7.9(b) such that

+ r"l;ﬂu2
mn g

=z (7.10)
where z is the depth of the liquid at a radial distance r from the axis of rotation and

Zmin 18 the minimum depth. Equations (7.9) and (7.10) have been stated without proofs.

g i z'
(a) Plane or Rectilinear Translation (b) Fixed-axis Rotation
Fig. 7.9 Rigid Body Motion of Fiuids

7.6 INSTANTANEOUS CENTRE OF ROTATION

Recalling the statement that a general plane motion of a rigid body may be consid-
ered as the sum of a plane translation and a rotation about an axis perpendicular
to the plane of motion, the velocity of a rigid body is completely specified by
stating the translational velocity V, of a point P and the rotational velocity @ about
an axis through the point as shown in Fig. 7.10(a).

The fact that at an instant, the rotational velocity @ is the same for every point in
the body and the extent of translation is different for different choices of the points
of rotation suggests that a point can exist such that the body may be assumed to
rotate about an axis though that point ar the instant. Such a point is called the
instantaneous centre of rotation. The velocity of the instantaneous centre of rota-
tion is zero at that instant. Location of such an instantaneous point / requires that
the perpendicular distance from it to the velocity at a point P in one of the parallel
planes should be such that

Ve=IPxaw or Vp=rw  and r=Velow (7.11)

The velocity of the other points in the body can be determined by considering
the body to rotate about an axis passing through [ and normal to the parallel planes
of motion. For example,

Vo = (1Q) X w perpendicular to IQ
and Ve = (IR) x w perpendicular to IR
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Ve

(a)

(c) (d)
Fig. 7.10 Instantaneous Centre of Rotation

This fact provides another method for locating the instantaneous centre of rota-
tion I if the dircctions of the velocities at any two points on a rigid body are known.
The point of intersection of the perpendiculars to the directions of the velocities
must be I, In case the directions of the two points are the same, the magnitudes of
the velocities are required to locate / by the join of the extremities of the velocity
vectors as at P and R in Figs. 7.10(b) and (c). The instantaneous centre of rotation is
a point identified with the body where the velocity is zero; conversely if a point
identified with the rigid body is at rest at an instant within or outside a rigid body, it
must be the instantaneous centre of rotation.

The instantaneous centre of rotation of a body undergoing pure translation must
be at infinity since the directions of velocities of all the points in the body are the
same in pure translation. The instantancous centre of rotation of a cylindrical body
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Vp=201Q0=20x2x05=20m/s

perpendicular to /Q or parallel to V, as shown in Fig. Ex. 7.1(b) (Solution).
Vg=120 IP=20x0.707 = 14.14 m/s

perpendicular to IR as shown in Fig. Ex. 7.1(b) (Solution).

The motion of the wheel can alternatively be visualised as that of rotation about
C and translation down the incline. In that case the velocity of a point on the
periphery is composed of a component Vj tangential to the periphery and a transla-
tional component of 10 m/s. The tangential component must also be 10 m/s for
rolling without slip. Vector addition of the tangential velocity of 10 m/s to the
down-slope component of 10 m/s at P, @, R and [ result in the velocities of 14.14
m/s, 20 m/s and O respectively. '

Example 7.2 A straight rigid link AB 40 c¢m long has, at a given instant, end B
moving along a line OX at 4 m/s and the other end A moving along YO, XOY being
a right angle. Find the velocity of the end A and of the mid-point of the link when
inclined at 30° with OX.

Solution The instantaneous centre of rotation of the link AB can be located by the
knct\\rlédge of the directions of the velocities of the ends A and B. The point of
intersection of the dotted lines drawn normal to the direction of velocities at A and
B, as shown in Fig. Ex. 7.2 (Solution) should be the instantancous centre /. The
instantaneous angular speed with which the entire link AR rotates about the instanta-
neous centre / is given by

Vi Ve
® =TI
T
—m—m—mradis )

The velocity of the point A must, therefore, be
V, =20 x0.3464 = 6.93 m/s
Once the angular velocity of a link about an instantaneous centre is known, the

velocity of any point on the link can be determined. The velocity of the midpoint C
of the link is

—
B

0
- 34.64 cm —————=|

Fig Ex. 7.2 (Solution)
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Ve = wx(IC)
=20x020=4 m/s

in magnitude and its direction is perpendicular to the join IC.
It may be noted that the lengths /A, IB and /C are determined either by measure-
ment if the whole drawing is made to scale or by trigonometry.

7.7 RELATIVE VELOCITY AND ACCELERATION FOR POINTS
ON A RIGID BODY

From the fact that a general plane motion is made up of a translation of a reference
point P and a rotation about P, the absolute velocity of a point @ is given by

VQ =Vp+@Xr, ) (7.12)

where r is the position vector of Q with respect to P as shown in Fig. 7.11.
Alternatively,

Vo =Vp+ Voo
Hence Vop =00XxT (7.13)

which implies that the velocity of a point @ with respect to a point P on a rigid link
must be perpendicular to the plane containing @ and r, i.e., must be in the plane of
the motion and directed perpendicular to the line joining P and Q.

Similarly, the absolute acceleration of a point Q in terms of the acceleration of a
reference point P is given by -

ag =ap+ag . ©(7.14)
The acceleration of Q with respect to a point P may be made up of
Tangential cump;menl: axr .
Normal component: ® X (0 X r)

 In the plane motion of a rigid body, attention is focussed on one of the parallel
planes; the velocity of a point in the plane must stay in that plane and the rotation of
the body must be about an axis normal to that plane. It follows that the velocity of P
and Q as well as the relative velocity of Q with respect to P must lie in that plane.
Likewise, the accelerations of P and @ and the components of the relative accelera-
tion of @ with respect to P must all lie in the same plane. From the fact that ® and &
are collinear and r is perpendicular to either of them. the magnitudes of the vectors
are identified easily:

Vector * Magnitude Direction
Vop=wXxr rew Perpendicular to r
agp=0XT Perpendicular to r

ra
App, = 0 X (WX ) rof From Qto P
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Ve

Vg=Vp+ Vg 8g = 8p + 8gp
wx r agp = rat + rafn

Fig. 7.11 Relative Velocity and Acceleration

There may, in addition, be a Coriolis component of acceleration if there is a
velocity of sliding vg, of an element S sliding over the link PQ and being coincident
with Q at that instant, The Coriolis acceleration of § would be

B =2(DX\"B (7.15)

Some facts regarding the graphical or vectorial representation of the velocities

and accelerations for link-motions are summarised as follows:

1. The velocity of a point on a link with respect to another point on the same
link must be perpendicular to the line joining the two points.

2. The acceleration of a point on a link with respect to another point on the same
link may have a component perpendicular to the line joining the points and a
component along the line joining them.

3. The velocity of a point on a member sliding relative to a link must be along
the line and the velocity of a point on a link sliding relative to a surface must
be along the tangent to that surface at that point.

4. If a member slides along a link rotating about a point of an axis in space, the
member is subjected to the Coriolis component of acceleration in addition to
the other components. If the member slides outward from the centre of rota-
tion; the Coriolis component is along the direction of rotation and vice versa.

5. The velocity and acceleration diagrams are drawn for a known configuration
of the linkage or mechanism and give results which are valid for that instant
only. The velocity and acceleration diagrams are, therefore, instantaneous
diagrams and keep changing from instant to instant.

Example 7.3 A straight bar AB is placed in a semi-cylindrical trough of radius
20 cm and released to slide in it such that the end A slides inside the trough as
shown in Fig. Ex. 7.3, while the bar touches and slips at the corner O. At an instant
when the bar makes 45° with the diametral axis Ox and the end A is known to slide
at 5 m/s, determine the velocity of sliding of the bar at point P.



Kinematics of a Rigid Body 465

Fig. Ex. 7.3

Solution This example will be solved both graphically and vectorially to demon-
strate the methods as well-as to appreciate the simplicity offered by the graphical
method for the plane motion of rigid bodies.

The bar AB slides at the corner point O of the trough. The point P on the bar is
coincident with the point O on the trough such that P has a relative velocity with
respect to O as shown in Fig. Ex. 7.3(a) (Solution). Since O is a stationary point,
this is also the absolute velocity of P. It is related to the velocity of A as

‘VP = VA + V.PA
5 mis
o] a
3.55 m/s
p
y Al
s\
I/ !
B y :
Pl !
o X :
------ c
Ve ':
Vea I
I
I
|
A Va A Va

Fig. Ex. 7.3(a), (b), (c) (Solution)
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Finally, the velocity vector for P where the bar slides at the corner of the trough is

Vo= 3.54( - 2
=254 (i - j)

Comparison of the Two Methods

It is probably quite clear from this simple example that the graphical construction
offers great simplicity. This is indeed true for the planc motion of rigid bodies in
general. However, it may be remarked that the velocity and acceleration diagrams
are only valid for the instant they arc drawn. For every instant of motion, we may
require to draw separate diagrams. Analytically, on the other hand, one can write
the equations for the velocity and acceleration in terms of the variables and obtain
the results by numerical substitution for different instants. For example, in this case,
vector equations for Vp and V,, can be written for any angle 8 instead of 45° and at
different instants, substitution for 8 would give the results whereas the graphical
construction will have to be repeated many times.

The same problem can be solved by employing the concept of the instantaneous
centre of rotation. The centre of rotation can be located by knowing that the veloci-
ty of A is tangential to the trough at A and the velocity of P is along the bar at O.
Lines /A and /P drawn normal to the directions of velocity at A and P respectively
to locate the instantaneous centre of rotation [/ as shown in Fig. Ex. 7.3(c) (Solu-
tion).

By measurement from the figure drawn to scale or from trigonometry,

IA=2CA=40cm

IP =4J(20% +202)=28.28cm
Considering the bar to be in pure rotation about [ at this instant,
VoV,
T TIA
Vp=5x28.28/40 = 3.54 m/s

It may also be remarked that the ‘instantaneous centre of rotation’ concept can
be employed to advantage in some cases.

Example 7.4 A straight rigid link AB 40 cm long has, at a given instant, end ¥
moving along a line OX at 0.8 m/s and accelerating at 4 m/s® and the other end
moving along YO, XOY being a right angle as shown in Fig. Ex. 7.4. Find the
velocity and the acceleration of the end A and of the mid-point C of the link when
inclined at 30° with OX.

Solution
For the velocity diagram

Vy =Vg+Vy
Ve =Vp+ Vg
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The acceleration of mid-point C is, therefore, represented by oc. By measurement
a. =oc = 10 m/s’

directed at an angle of 79° with OX as shown in the acceleration diagram.

It may be appreciated that the point ¢ can alternatively be located on the line ab
which represents the relative acceleration of A with respect to B. Since C is the mid-
point of AB, the point ¢ must be the mid-point of ab. This is because both the
centripetal and tangential components of the relative acceleration of A with respect
to B are halved for the point C.

Example 7.5 A reciprocating engine mechanism shown in Fig. Ex. 7.5 has a crank
OA of radius 150 mm rotating at 10 revolutions per second in the clockwise direc-
tion. The connecting rod AB is 700 mm long and its centre of gravity is 200 mm
from A. Find the velocity and acceleration of the piston and of the centre of the
connecting rod when the crank is 45° past the inner dead centre as shown. Find also
the angular velocity and the angular acceleration of the connecting rod AB.

Fig. Ex. 7.5

Solution  The solution is attempted both by the graphical method and by vectorial
analysis. ‘

By graphical method
The link diagram is first drawn 1o a suitable scale as shown. From the data,

Wy =27 % 10 = 62.83 rad/s
Vi = g, xr=62.83x0.15 =942 m/s

The velocity diagram is now constructed to a suitable scale. Line oa is drawn
perpendicular to OA to represent the absolute velocity of A. The velocity of B must
be along BO and the velocity of B with respect to A on the link AB must be
perpendicular to AB. Point b is thus located by drawing a line from o parallel to BO
and a line from a perpendicular to AP as shown in Fig. Ex. 7.5(a) (Solution). The
velocity of the piston at B is, therefore, given by

Vg =0b=7.65m/s
directed towards O.
The angular velocity of AB is

v,
g =£-“—b—§ﬁ-964radfs
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ag = ob =418 m/s

directed towards O.
The acceleration of the centre of gravity C is determined by locating the point ¢
such that

ac _ AC

ab AB

The acceleration of the centre of gravity of the connecting rod is, therefore,
e = oc = 515 m/s? directed at ~35° with the line of dead centre.

By vectorial analysis
From the data and the geometry,
Wy, =—2m% 10 k =-62.83 k rad/s
rox =0.15 % (—cos 45° i + sin 45° j)
=-0.106i + 0.106
V, =g, X Ty =-062.83 kx (-0.106i + 0.106 j)
=6.66 i+ 6.66 j m/s
Vy = Vi

At the instant of interest, the connecting rod is inclined at an angle ¢ with the
x-axis such that

0.7 sin ¢ = 0.15 sin 45°
sin ¢ =0.1515
whence ¢ =871° and cos ¢=0988
The unit vector along AB is
e, =cos ¢i+sin¢@j=00988i+0.1515j
and the unit vector normal to AB is
e, =-sin@i+cos §j=-0.1515i+ 00988 j
The velocity of B must be given by
Vg =V, + Vy,
Substituting the values of the terms to the extent these are known,
Vi =6.66i0 + 6.66 j + (-0.1515 1 + 0.988 j) Vg,
which may be written as two scalar equations,
Vg =6.66 - 0.1515 Vg,
0 =6.66 + 0.988 Vg,
whence Voo =-6741 m/s
and Vy =7.68 m/s
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It may be noted that the negative sign of V;, implies that the velocity of B with
respect to A is opposed to the unit vector e, whereas the positive sign of V; means

that the velocity of B is indeed directed towards O.
The angular velocity of the connecting rod is given by

g4 =-‘$";—-=—%~1-=—9.63 rad/s
The velocity of C must be given by
Ve =V, + Vg,
CA

=6.66i+6.66]+ BA (-6.741) x (- 0.15151 + 0.988 j)

=695i+4.76j
The magnitude of V¢ is, therefore,
Ve =4/(6.952 +4.762)=8.42 m/s

and it is inclined to the x-axis at an angle

= tan -1 4.76)= .
6 =tan (6’95 34.4

The acceleration of B may be obtained from the relation
ag =a, + ag,
which, upon substitution of the known facts, becomes

agl = wgy X (Wgy X Tgy) + Wgy X (Wgy X Tgy) + LK Ty,

or agi=—-62.83 kX (- 62.83 k X (- 0.106 i + 0.106 j)) + (- 9.63 k) X (- 9.63 k)

x 0.7 (-0.988i-0.1515 j)) + c k x 0.7(- 0.988 i — 0.1515 j)
or agi=4184i-4184j+64.14i+9.84 j+ 0.106xi- 0.69a j
which may be written as two scalar equations,
ap =482.54 + 0.106
0 =-4084 - 0.69

whence a =-592 rad/s?
and ay =420 m/s’

The acceleration of C may be obtained by utilising the fact that

a.=a, +ac,

a =4184i-4184j+ ‘;;C% (64.14 i +9.84 j + 0.106a i - 0.69¢ j)

=418i-300]
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which shows that the magnitude of the acceleration of C is

a, =./4182 +3002 =514.5m/s?

and it is directed at an angle of

with the line of dead centres.

Example 7.6 A quick-return shaping mechanism consists of a crank CA rotating
clockwise, as shown in Fig. Ex. 7.6, at 50 revolutions per minute. At an instant
when the crank makes 30° with the x-axis, determine the velocity of the ram F
moving in the horizontal direction. Determine also the stroke length of the ram and
the velocity of the ram, which carries the cutting tool, during the cutting stroke of
the ram when the oscillating link OFE and the crank CA are vertical.

Cutting Stroke

—+——=— Quick Return Stroke

CA=10cm
OC = 35 cm
OE = 55 cm
EF=10cm
6= 30"

Fig. Ex. 7.6

Solution The link diagram is first drawn to a suitable scale as shown in Fig. Ex.
7.6 (Solution). The angular velocity of the crank CA is
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_2ax50
760

and the linear velocity of point A is
Vy, =524 x0.1 =0.524 m/s

=5.24rad/s

o 0.55 m/s

op = 0.355 m/s

P
a L}
et 0,524 M/§ ————————————]

0.64 m/s ———————————=

Fig. Ex. 7.6 (Solution)

Consider P as a point on link OF coincident with the point A on the crank CA.
The points A and C have, therefore, a relative motion of sliding in the slot 55,
shown in the line diagram.

At the instant shown,

e =30°
OA =0P=4lcm

For the velocity diagram, draw ca = 0.524 m/s perpendicular to CA to represent
the velocity of A. Since P can slide with respect to A along the slot, draw pa parallel
to the slot as shown in Fig. Ex. 7.6 (Solution). Knowing that P is on the rotating
link OPE, the absolute velocity of P must be perpendicular to OPE; this is shown
by drawing op perpendicular to OPE and thus locating P. From the link diagram,

Ve _oE
Ve OoP
oe is, therefore, mode 55/41 times op.
oe = ().355 x 55/41 = 0.48 m/s

Since F can only move horizontally, of is drawn a horizontal line. The velocity
of F with respect to E on the link EF must be perpendicular to EF; ef is drawn thus
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The velocity of point S or of the string would be given by
Vi =V, +oxrg
=0+(-20k)x 03}
=6im/s
The velocity of point B marked on wheel would be given by
Vi =V +wxrg,
=0+ (=20 k) x 0.5 (cos 30 i + sin 30 j)
=5i-8.66 jm/s

Example 7.10 A link OAR rotates anticlockwise at an angular velocity of 1 rad/fs.
Another link BCS at right angles to it has a collar at B which slides over OAR at
1 m/s and decelerates at 2 m/s® with respect to OAR as shown in Fig. Ex. 7.10. A
collar D slides over BCS with a velocity of 3 m/s and decelerates at 4 m/s with

\'Dnﬁl-!-al g
-
" c 4 b
as
VABSI- i 2
[}
&
> b z b
8p=-61+11]
3
Velocity Diagram

Acceleration Diagram

0
Fig. Ex. 7.10
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respect to BCS as shown. Obtain the velocity and acceleration of the collar D with
respect to ground reference at the instant of interest.

Solution There are many alternative methods of locating the moving frame of
reference. Accordingly, the methods of solution differ.

Method 1
The moving frame can be fixed at point C on the link BCS such that
® = | kradfs
a =0
and rp =0
since the points C and D are coincident.
Vo, =3 imfs
Vor = Vo + Vet o X1y
=3i+(1kx(4i-3j)-1)+0
=6i+3jms
Similarly, ap, =—-4imfs
and ap = ap, +ac+ WX ry + 20X Vp, + 0 X (0 X rp)
=—4i+Qj+ I kx(1kx@i-3jD+2%x1kx(-1j)
+0+2%x1kx3i+0
=—6i+11jmis*
Method 11
Let the moving frame be fixed at O on the link OAR such that
o =1 krad/s
a =0
and rp =4i-3j

The velocity of the collar D with respect to the link OAR is
Vom =(Bi-j)m/s
and the acceleration of the collar with respect to the link OAR is
ap, =(-4i+2j)ms
Velocity of the collar D with respect to ground reference is
Vo = Vot Yo+ 0 X1p
=(3i-j)+0+1kx{di-3j)
=3i-j+4j+3i=6i+3jmis
Acceleration of the collar D with respect to the ground reference is

ap =8p, + 8+ X Tp+ 20XV, + 0 X (0Xrp)
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=(-4i+2P+0+0+2x 1 kx@Bi-H+1kx(1kx@i-3j)
=-4i+2j+6j+2i-4i+3}

=-6i+11jms
Method 111
Let us now fix the moving frame at point A on the link OAR such that
o =1 kradfs
a=0
and rp =4i

Velocity and acceleration of the collar D with respect to the link OAR are first
obtained:

Vo, =(3i-j)mss
ap, =(-4i+2j) ms

Velocity of the collar D with respect to the ground reference is then expressed
as

Vor =Vom+ V4 + 00X,
=@Bi-D+1kx=3)+1kx@Eh
=3i-j+3i+4j=3j+6im/s

Acceleration of tlﬁc collar D with respect to the ground reference is given by

B =8p, +8, +OAXIp+ 20X Vp, + 0 X (0X1p)

=-4i+2j+1kx(1kx(-3j)+0

+2X1kxBi-f+1kx(1kx4i)
=-4i+2j+3j+6j+2i-41i
=-6i+11jms

Method IV .
The moving frame may alternatively be fixed on the intermediate collar B but at a
location coincident with A such that

o =1kradss
a=0
and rp, =4i

The velocity and acceleration of the collar D with respect to the collar B on link
BCR are .
Vo =3imfs

ap, =—-4im's
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Method VI
There is no end to the choice and location of the moving frames. Moving frames
may be fixed at intermediate locations on the links but no advantage can be gained
by such choices. Finally, let us see how we can solve the problem by two extreme
choices of the moving frames:

(a) Without fixing the moving frame anywhere.

(b) By fixing the moving frame at the collar D itself.

In case (a), the moving frame is coincident with the fixed frame.

@ =0
a=0
The velocity and acceleration in the moving and the fixed frame are such that
Vom = Vi
Bpy = 8p

The entire thinking of the components and the constitution of Vp, and ap, is,
therefore, done mentally in one long step. This is clearly inconvenient and unman-

ageable.
In case (b), the moving frame is at the collar D itself such that
Vm = 0
Dm = 0

which leave the entire job of finding out Vj, and ap, to the application of the
formulae in one long step. The method is as inconvenient as that in case (a). Thus,
we can state that if a moving frame is desired to be used to advantage then it may
not be chosen to be at the object. The moving frame should be located at a conve-
nient point intermediate between the object and the ground reference.

Concept Review Questions

1. State with justifications if the following statements are true or false:

(8) A rigid body may move along a curved path but may not be in a state of rotation.

(b) A general plane motion must be a combination of a translation and a rotational
motion about an axis perpendicular to the plane.

(c) There must always be an instantaneous centre of rotation and a centre of angular
acceleration of a rigid body no matter what the mode of motion of the body may
be.

(d) The plane motion of a rigid body is characterised by the locus of the instanta-
neous centre of rotation to be a plane curve.

2. Classify the following motions as translation, rotation, plane motion or space motion:

(a) A cone rolling on a flat surface.

(b) A cone sliding on a flat surface.

(c) A door being shut by turning about the hinges.

(d) A spherical ball rolling down an incline.

(e} An aeroplane banked and taking a steady turn.
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Fig. Prob. 7.2 Fig. Prob. 7.3

. o
?z 10 cm 7
. Fig. Prob.7.4

* 7.5 A stone-crusher mechanism is shown in Fig. Prob. 7.5. The crank OA rotates clock-
wise at 100 revolutions per minute. For the given configuration, determine the veloc-
ity and acceleration of the points marked on the crusher jaw. (Ans. 0.094 m/s)
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7.6 A straight bar OA rotates and accelerates about a fixed axis through O as shown in
Fig. Prob. 7.6. It carries a collar C which slides and accelerates with respect to the bar
as shown. Find the total absolute acceleration of the collar.

(Ans. (- 260 i + 180 j) m/s?)

Z 0ems 2 15em 1
A y /
Ocm 10 cm
0 45°
o D
17 cm
Fig. Prob. 7.6 Fig. Prob. 7.7

7.7 In a four-bar mechanism ABCD shown in Fig. Prob. 7.7, link AR rotates anticlo ckwise
at 5.25 rad/s and accelerates clockwise at 23 rad/s®, Obtain the angular velocity and
angular acceleration of the link CD.

(Ans. 4.05 rad/s anticlockwise and 17 rad/s® anticlockwise)

7.8 A slender bar AB slides down a circular surface and on a horizontal surface as shown
in Fig. Prob. 7.8. At an instant when & = 45° the velocity of the end A is 2 m/s.
Determine the angular velocity of the bar and velocity of the point of contact on the

circular surface. (Ans. 7.07 rad/s; 1.414 m/s)
B
' 20 mi
20'em s
\ a4 _2ms
- FEIETETTETadddiieed
Fig. Prob. 7.8 Fig. Prob. 7.9

7.9 A wheel of diameter 0.5 m with three equispaced spokes rolls without slip on a flat
surface and proceeds to the right at 20 m/s as shown in Fig. Prob. 7.9. Determine the
angular speed of the wheel and velocity of the point where the top spoke joins the rim
when it is vertical. (Amns. 80 rad/s clockwise; 40 i m/s)

Fig. Prob. 7.10
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Fig. Prob. 7.13

7.15 The end A of a straight bar moves with a constant tangential velocity v along a semi-
cylindrical trough as shown in Fig. Prob, 7.15. Find the velocity of the point B at the
point of contact of the bar and the edge of the trough as a function of the angle ¢
between the bar and the horizontal. The bar moves in a plane normal to the axis of the
trough. (Ans. v/2 sin ¢)

. — Xy

[ } - X

Fig. Prob. 7.14 Fig. Prob. 7.15

7.16 In Fig. Prob. 7.16, C is a roller fixed to the link OB and sliding in a slot in QD.
Determine the velocity of A when 8 = 30° if QD rotates at constant speed 10 rad/s

clockwise. (Ans. 4.28 m/s)
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7.17 Figure Prob. 7.17 shows diagrammatically the quick-return mechanism of a machine
tool in which the driving crank AB rotates clockwise with a uniform speed of 150
revolutions per minute. What is the velocity and acceleration of the cutting tool al E
when the crank AB makes an angle of 60° with the vertical line passing through the
pivots A and C?

E D
120 mm R
60 P
m N
130 mm AB = 60 mm
CLD = 300 mm
DE = 400 mm
[=
Fig. Prob. 7.17
Look up Hints to Tutorial Problems!
Multiple-Choice Questions
Select the correct or most appropriate res) from g the available alternatives in the

Sfoltowing multiple-choice questions:
1. Degrees of freedom of a rigid body imply the
(a) angles that it may turn through
{b) angular motions the body can have
(¢c) constraints 1o its motion
{d) total number of modes of displacement
2. A rigid body, in translation,
(a) can only mové in a straight line
(b) may move along a straight or curved path
{c} cannot move on a circular path
(d) must undergo plane motion only
3. The instantaneous centre of rotation
(a) should also be the instantaneous centre of acceleration
(b) is a hypothetical concept to solve problems
{c) can exist for any space motion
(d) must exist for any plane motion
4. For the motion of a rigid link in any mechanism,
{a) the velocity of one of the ends should be zero
(b) the velocity of one end with respect to that of the other should be perpendicular
to the link
the acceleration of one end with respect to that of the other should be perpendic-
ular to the link
(d) the two ends of the link may have different components of velocity along the link

(¢

Answers to Multiple-Choice Questions
b (d), 2 (b), 3 (), 4 ()



MOMENT OF INERTIA:
AREA AND MaAss

8.1 INTRODUCTION

The area of a surface and mass of a body are important concepts but not less
important are the concepts of relative distribution of area and mass over the do-
mains. The shape and orientation of a surface with respect to some reference axes
are as vital as the shape and orientation of a body relative to some reference frame
in many circumstances. Quantitative estimates of the relative distribution of area
and mass over the regions of interest are made by the concepts of ‘moment of
inertia’ and ‘radius of gyration’. The former is the second moment and the latter a
length concept emanating from the second moment.

The concept of inertia is provided by Newton's first law of motion. The property
of matter by virtue of which it resists any change in its state of rest or of uniform
motion is called inertia. the translatory inertia is identified as mass whereas the
rotational inertia is termed as moment of inertia. In other words, the moment of
inertia is the rotational analogue of mass, i.e., it plays the role of resisting a change
in rotational motion in quite the same sense as mass plays the role of resisting a
change in translatory motion.

The concepts of the moment of inertia and radius of gyration are developed for
an area and a mass in quite the same way. The area moment of inertia and mass
moment of inertia will, therefore, be dealt with together. It is shown in the text that
for thin bodies of uniform thickness and homogeneous density, the area moment of
inertia and the mass moment of inertia are directly related.

It may appear, in the first instance, that the same notation for the area-inertia as
for the mass-inertia is confusing particularly when the words ‘area’ and ‘mass’ are
not used for specifying the moments of inertia. But there is no confusion because
the moments of inertia refer to the area or mass in question and it is unnecessary to
qualify the moment of inertia once it is known whether it refers to an area or a mass.

8.2 INERTIAL CONCEPTS: AREA

Consider a plane area A as shown in Fig. 8.1. Let the reference axes be xy in the
plane of the area as indicated. The moments of inertia of the area about the x and y
axes are defined as the second moments of the area about the x and y axes respec-
tively.

I, =[y*dA (8.1)
A
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r,/{’d..

o v y

Fig. 8.1 Consideration for Inertial Concepts

I, =£ x2 dA (8.2)

It follows from the definitions that the moments of inertia of an area cannot be
negative whether the coordinates of its elements are positive or negative because it
is the summation of the product of square quantities, i.e., x* or y* and dA. It can also
be observed that the moment of inertia for an element farther from the axis is more
and the moment of inertia of an element on the axis is zero.

The moments of inertia may also be written as

I, =k’A (8.3)
I, =k’A 8.4)

where k, and k, are called the corresponding radii of gyration. The coordinates k,
and k, locate a point in the area which depend upon the shape of the arca and its
relationship with the reference axes. The radius of gyration k is the effective dis-
tance where the entire area may be considered to be located with respect to the
axis of rotation.

Comparing the forms of writing the moments of inertia,

L=k?A=[ydA
A

k,=m=1’1 (2 dA)IA
A

and k=JI,[A= (1:244},4
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The product of inertia relates an area to a set of axes. For example,

Iy = I xy dA (8.5)
A

which may be negative or positive depending upon the location of the area with
respect to the reference axes. In particular, the product of inertia is zero if the area
is symmetrical about any of the axes.
The polar moment of inertia of an area A about an axis normal to the area and
passing through a pole O is defined as

L=[rtda
A
=J(x?+y2)da
A

=[y?dA+[ x? dA
A A

or Iy=Jy=1,+1, (8.6)
It is thus noted that, by definition, the polar moment of inertia about an axis
through a pole must be the sum of the moments of inertia about the axes through the
pole in the plane of the area. The polar moment of inertia is also denoted by J in
literature.
Also,
Jp=lg=ki A
=l +1,
=kIA+ETA
and ki =kl +k} (8.7,
Example 8.1 Determine the moment of in-
ertia of a rectangle with sides b and h about

an axis coincident with side b. Determine
also the radius of gyration about this axis.

Selution Let the x-axis be along the side b
and y-axis along k. It is convenient to con- T

sider a strip-element of width dy and area. h °C .
dA = b dy
The moment of inertia of the sirip-ele- k ¥
ment about the x-axis is I l
dl, =y dA =y b dy 0 b
and the moment of inertia of the entire rfect- Fig. Ex. 8.1
angle is
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h 3
Lo=] y?bdy=2
]

Expressing it in terms of the radius of gyration,
I, = KA = Kbh
and comparing with bi’*/3,

poh

NE)

The point P located by the radius of gyration is, in general, different from C, the
centroid of the area because the latter is related to the first moment of area whereas
the former depends upon the second moment of area. The point P is also a function
of the axes whereas C is not. Moreover, the point P is not unique whereas C is
uniquely located for a given area. An axis passing through the centroid and lying in
the plane is called a centroidal axis.

Example 8.2 Determine the moments of inertia of a circular area about the
centroidal axes. Determine also the radius of an equivalent cylindrical surface of the
same area for the same polar moment of inertia.

¥ k dA=dr-rdf
¥
A, |% o
/ X
o[C
b= Widith —-]
(a) {b)

Fig. Ex. 8.2(a) Fig. Ex. 8.2(b)

Solution Considering a small element of area
dA = drr d@
as shown in the figure and noting its moments of inertia,
dl,, =(r sin@)* dr-r d@
Integrating over the circular area,

R Ir
I, = [ [risin?0dedr

r=08=0
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TR*

- =7 f ridr=——r
ral 4
Similarly,
r R 4
IH=I _{ rjcoszﬂd&dr=xn
§=0 r=0
and lLy=h=l,+1,
_mR* +ER“ _mR*
=77 T - 2

The radii of gyration about the x, y and r axes are:

k,:k =

and k, —1‘ KR R’ —JRZ

The radius of the equivalent cylindrical surface having the same polar moment of
inertia as the circular area is, therefore, R/+/2 . The width of the cylinder is given
by

SIES

20-E x width = 7 R?

Nz

whence width =

Sl

which is the same as the radius of the cylinder.

Example 8.3 Calculate the polar area moment of inertia and the radius of gyration
for the area of a ring of radii R, and R,.

Solution The polar moment of inertia of a circular area can be determined conve-
niently by considering concentric ring-elements. For an e]emenmry ring of width dr
at a radius r, the elementary area is

dA =2nmrdr
and its polar moment of inertia is
dly =7 2mrdr=2n" dr
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J!.'R; :IR;‘
b==3="=3
_R(RY - RY)

2

and the corresponding radius of gyration is again obtained as above.

8.3 PARALLEL-AXIS THEOREM: AREA

The parallel-axis theorem, also known as the transfer theorem, permits us to relate
the moment of inertia [, of an area with respect to a given axis aa to the moment of
inertia [, of the area with respect to a centroidal axis cc parallel to aa.

By definition,

I,=]rdA
A
Substituting r = r_ + 5, as shown in Fig. 8.2,
La=[rtdA+] 2rcsdA+f st dA
A A A

The first term on the right-hand side represents the moment of inertia of the area
about the centroidal axis cc and the second term vanishes because it is

J'Zsr‘_dA =2s[r, dA
A A

and the first moment of area about the centroid is zero by the definition of centroid.
The third term is

jszdﬂ =s2_|'dA=SZA
A A

Finally, PSP | [ § PR W
Joa =1+ 5°A (8.8)

This is the statement of the parallel-axis r
theorem. In words, the moment of inertia of l ;
an area about an axis aa is in excess of the a
moment of inertia of the area about a paral- Fig. 8.2 Parallel Axes
lel centroidal axis ec by a positive amount
5*A where s is the distance between the axes aa and ce. Obviously, the moment of
inertia of an area is the least about an axis passing through the centroid.
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The parallel-axis theorem for products of inertia appears in the form

"',n' = !J'\" + 55, A
{for any set (for a parallel set of (8.9)
of axes) centroidal axes)

where 5, and s, are the perpendicular distances from the centroid to the x and y axes
respectively.
The parallel-axis theorem for the polar moment of inertia of the area states that

where s is the distance between O and C.

8.4 MOMENT OF INERTIA OF COMPOSITE SECTIONS

The inertial concepts can be applied to determine the moments and products of
inertia of plane sections. The values for simpler geometrical shapes are obtained by
integration and remembering these values, the moments and product of inertia for
composite sections can be worked out. The moment of inertia of simple plane
sections are tabulated in Table 8.1, whereas those for composite sections are com-
puted by subdividing the area into its components. Let a composite area A have its
components A, As, Ai, o of which the moments of inertia about the axis in
question are obtainable from Table 8.1 and by the application of the parallel-axis
theorem. Let these moments of inertia be [, I,, I, ... respectively. The moment of
inertia of the entire area A about an axis is the algebraic sum of the moments of
inertia of its component areas about the same axis:

I=h+ L+ 5+ (8.11)

It may be mentioned that the composite area can be made up of additive or
subtractive component areas. The moment of inertia of a component area may,
therefore. be additive or subtractive in the algebraic summation to compute the
moment of inertia of the composite area. It should be noted that the radius of
gvration k for the composite area about an axis is not equal to the sum of the radi
of gyration of the component areas about the same axis:

k#Eky + ky+ ky+ o

Table 8.1(a) Moment of Inertia of Plane Figures

Figures Description  Area Moments of inertia

¥ ¥

3
h
X = - x Re‘cl.flng!e bh I, .—_E; ,‘,.v.z_s.
(Upright)
Yy

bh > 4
J =20 p2 2
¥ ¢ Izl{.'; +h=)

Jq =!§i(b: +h)
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I

xx

4
=%+{x x0.152)x 0.852

(for circle removed)
=0.0515 m*

rx0.154

u:—T—o
(for circle added)

=0.0939 m*

+(mr+0.152)x1.152

The moment of inertia for the composite area is,
therefore,

I, = 0.1667 - 0.0515 + 0.0939 = 0.2091 m*

Part(b)
The product of inertia about the base and left side can 0
be calculated as follows:

I,=0+(1x05)x05x 025
(for rectangle)
=0.0625 m*

Iy =0+ (7% 0.15%) x 0.85 x 0.25
(for circle removed)

=0.0150 m*

I,=0+(rx0.15% x 1.15 x 0.25
(for circle added)
=0.0203 m*

9@

1
1

Fig. Ex. 8.4

For the composite area,
I, = 0.0625 — 0.0150 + 0.0203 = 0.0678 m*

Part (c)
The polar moment of inertia about the pole O can be calculated in a similar way.

!U =% (05 x 1.0) » (052 + ]2) + (0.5 x ]'0) % (0_252 + 052)
(for rectangle)
=0.2084 m*
rx0.154
2

(for circle removed)
=0.0563 m*

Ip = + (% 0.15% x (0.85% + 0.25%)
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7 x0.154
h=—7—

(for circle added)
= 0.0983 m*

+ (% 0.15% x (1.15% + 0.25%)

For the composite area,
I, = 0.2084 - 0.0563 + 0.0983 = 0.250 m*

Example 8.5 Determine the moments of inertia with respect to the centroidal axes
of the wide-flange beam section shown in Fig. Ex. 8.5.

Solution From the symmetry of the section, the cen- y
troid can be located by inspection. The moment of iner-
tia of the composite section can be determined by dif-
ferent choices of the subdivisions. Let us consider some
choices for [,

Choice ol
By subdividing it into three rectangles; 15 cm x 2 cm at
top, 15 cm X 2 cm at the bottom and 20 cm X 2 ¢cm in
the middle.

TG0 O s,

..\\\

SOOI AR

RN SRR

Al

-—g]-—

P
1 3
Iu=2x|: 5;‘22 +(|5x2)x112] |——'15c.m—l
(for the top and Fig. Ex. 8.5
bottom rectangles)
= 7280 cm®
2% 203 .
P T 1333¢m
(for the middle
rectangle)
1, of the composite section = 7280 + 1333 = 8613 cm*
Choice Il

By subdividing it into five rectangles, 24 cm X 2 c¢m in the middle and two each
above and below of 6.5 cm x 2 cm

6.5%212
I, =4x[T+{6.5x2)x111]

(for the four
rectangles at top
and bottom)

= 6309 cm®

2% 243
I =222 =2304 cm*

(for the middle rectangle)
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with respect to the ox"-oy” axes inclined at an angle 6 with ox

(y")? dA

1]
Sy

| (~xsin 8+ ycos 6)2 dA
A

=1, sin2 8+ 1, cos? 8—21” sin 8 cos 8
or, by using the identities,
cos? @=(1+cos?28)/2
sin @=(1-cos28)/2
2 sin @ cos 8= sin 28

Io+1, 1, -1

lye =—— 2 4 3 2 cos 20 - I,, sin 26
Similarly,
I+, I, -1
Iy =——5——+="———c0s 20 + I, sin 26
d =22 Giogsd 20
an vy S5 sin +1,, cos

(8.13)

(8.14)

(8.15)

These equations permit us to determine the moment of inertia and products of
inertia of an area about any set of axes with an origin O from the knowledge of I,

I,, and I,, about a known set of axes with the same origin.

It can be appreciated that these equations are the parametric equations of a

circle. Eliminating 8, by using the identity
sin® 20 + cos? 28 = 1

Y Y

Fig. 8.4 Rotation of Axes



Moment of Inertia: Area and Miiss

I, +1, \? 1, -1, \?
[:,,,. _%] .3, =(%] .2

We obtain,

Setting the average moment of inertia

=J’u+ln_
w 2
I -1\
and R= [—Hzﬁ)-!-ffy

it can be rewritten as

pge =y )2+ 12, =R

507

(8.16)

8.17)

(8.18)

which is the equation of a circle of radius R centered at a point located by (/,,, 0) on

the abscissa I, and ordinate /.. This circle is often called Mohr’s circle.

A typical point P on the circle denotes that the moment of inertia about an axis
represented by radius vector CP is I, and the product of inertia with reference to
the axes is I, as shown in Fig. 8.5. In particular, the product of inertia at A and B is
zero. The moment of inertia /., is also an extremum at these points; [, at A and

I at B. These points are located by setting

- 21,
whence tan (26,) =—-—+—
T. -1,
If)"
j.l‘d" I
| p
1 I
L\
c 28 "
0 B A
et frin
l— Iy,
fmax

Fig. 8.5 Mobr’s Circle Diagram

(8.19)
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If the sides of the rectangle were equal, i.e., if it was a square, i.e., b=h, then
tan 26, would be infinite and 6, = 45° and 135° i.e., along the diagonal and
perpendicular to it. The principal axes for a square at one of its corners must be
along the diagonal through that comer and perpendicular to it. this is, however, not
the case for a rectangle, as has been seen above. Let us calculate the moment of
inertia about one of its diagonals, say OP. For this diagonal,

= ﬁ =
tan 6 = b 1.5
6=5631°
26=112.62° .
sin (26) =0.923  cos (26) =-0.385

Employing the expressions for the moments of inertia from Egs. (8.13) and
(8.14),
Ir =13 +5%(-0.385) - 9 x0.923

=277 m*
Ipw =13 +5 x (0.385) + 9 x 0.923
=19.38 m*
It can be verified that

I{,ﬂ#ﬁ

8.6 INERTIAL CONCEPTS: MASS

The mass moment of inertia is a measure of its inertial behaviour, i.e., resistance to
the rotational acceleration of the mass of the body. Consider a body of mass m
whose distribution with reference to a Cartesian frame of reference xyz is known.
Let an element of mass dm, also denoted by
dm =pdV
in terms of the mass density and its volume be located by a position vector r,
r=xi+yj+zk

as shown in Fig. 8.6.
The mass moment of inertia of the element about the x, y and z axes respectively
are defined as follows:

dl, =0+ dm (8.23)
dl,, =(P+2) dm (8.24)
dl, = (¢ +y)dm : (8.25)

#The moment of inertia of an element about an axis is given by the product of the
mass element and the square of the\ perpendicular distance from the axis. The
moment of inertia.about the x-axis is shown in Fig. 8.6.
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/ I =[(y2 +22)dm=k2 .m

z
Fig. 8.6 Mass Moment of Inertia

The mass moments of inertia of that entire body is, therefore,

Io=[ (2 +22)dm=[ (y2 +2%)pdv (8.26)
v

Ly=[(x?+22)dm=[ (x? +2?) pdv 8.27)
v

L=[(x*+y2)dm=[ (x2 +y?) pdv (8.28)
v

The mass products of inertia of the body are similarly defined as

Iy=[oypdv=1, (8.29)
I.=[xpdv=1, (8.30)
Iy=[yzpdv=1, (8.31)

about the pairs of the axes specified in the indices.

For a given body, there are nine elements of moments and products of inertia
defined above but only six of them are mutually independent; the set depends upon
the mass distribution in the body and its relative orientation with respect to the
reference axes These are
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I

yz

Lolyl, and I,

IZ’

The sum of the moments of inertia at a point in space for a given b dy is
invariant. This important property can be proved readily by addition and showing
that the sum is

Lo+ o+ 1, =] 2 pav (8.32)
v

which is constant for the chosen point irrespective of the inclination of the refer-
ence axes at that point.

It can be observed from the definitions that the moments of inertia must be
positive quantities whereas the products of inertia can be positive or negative. If
two axes of a body form a plane of symmetry for the mass distribution of the body,
the products of inertia related to the normal to the plane of symmetry must be zero.
The products of inertia may also vanish at a point for a pair of axes other than the
axes of symmetry.

The moments of inertia may also be expressed in terms of the comresponding
radii of gyration

I,=k2m (8.33)
I,=klm (8.34)
I,=kZm (8.35)

The radius of gyration of a body is that distance from the axis of rotation where
the entire mass of the body may be assumed to be concentrated for the same mass
moment of inertia as the body offers.

The mass moments of inertia and the mass products of inertia of a body may be
visualised as the nine components of a matrix called the inertia matrix

I 1y I,
=1, 1, I,
Iy Iy Iy

) The diagonal components are the moments of inertia about the x, y and z axes
whereas the other components are the products of inertia. As already shown,

ILy=1, I,=1, and I,=1,

The inertia matrix is, therefore, expressed as

i.:x v AL
=i, I, I,
I, I, I
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Example 8.7 A uniform slender rod of length / is supported and made to rotate
about an axis through the bar at distance /; from one end. Obtain an expression for
the moment of inertia about the axis

and hence evaluate the moment of in- : !

ertia if the rod is supported ~—h T kL
(a) atitsend .l |
(b) at its mid-point. ”m" x |

Solution Consider an elementary l: +X

length dx of the rod at a distance x Fig. Ex. 8.7

from the axis of rotation. The mass of
the element is

dm = pa dx

where p is the uniform density and a is the cross-section area
The mass of the rod can be seen to be

m=pal
The moment of inertia of the element about the axis of rotation is
dly =x* dm = Xpa dx (0]

The moment of inertia of the entire rod is obtained by integrating it between the
end limits of the rod.

+.i'1

Iy = | pax? ds (iD)
-1

3 ""x
X
-;I

=pa Ui+ ; 1) (iii)
where I, +1; =1is the length of the rod.
In terms of the mass of the rod
m =pal
the moment of inertia is expressed as

(3 +13)
I =%m_‘ —

(a) If the rod is supported at an end, either I, or [, is zero depending upon at which
end it is supported. For support at its left end,

L =0 and =1

(iv)
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1
3
(b) If the rod is supported at its mid-point,

and Io =5 pal® =1 mi? )

h=h=731
D T P ;
and Iy = 2 pal 2 ml (vi)

Example 8.8 A rectangular prism of cross-section (a x b) and uniform density p
has a length /. Determine its moments of inertia and the products of inertia about the
longitudinal and transverse axes passing through the centre of mass.

F4

X
Fig. Ex. 8.8

Solution For the rectangular prism and coordinate axes through C as shown in
Fig. Ex. 8.8.

ILe=[ (2 +z*)pdv
v

b2 12 el
= | JG*+2?)pdrdyd:
~bi2 =112 ~ar2
b1z 112
= | JO?+z%)apdyds
-bi2 -2

bi2 13
I (]—i—+zliJapdz
-hil

3 3
=’°‘:"; +p‘:‘; = pabl(i? +b2)/12
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12452 12 4h?

B S T

Similarly,

I =j (x*+z3)padv
v

a? +b?
12

L=[(x2+y)pdv
v
a? +1?

12
The products of inertia are obtained as follows:

=m

Iq=£ xyp dv

B2 M2 all

[ | [ xopdedyde

=bi2 =112 -al2

b2 12

1 (az a? )
Sy|=5-=—|dyd:z
- 2\4 4
=0
This result was expected from the symmetry; the above integration is only as an
exercise. Similarly, by symmetry,
I_vx = f_r: = "n =0
It may be verified that if three axes were drawn through a corner instead of the
centre of mass C, the results would have been
12 +b?

2 2
! =m%

»

a? +1?
iy =m 3
and the products of inertia would not vanish due to lack of symmetry
I, = mﬂ—Iil =y

Iy

4
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8.7 MOMENTS OF INERTIA OF THIN PLATES

Let us now consider the moments of inertia of the uniform plates of homogeneous
material where the reference axes x and y are contained in the plane and z is normal
to the plane of the plate. Consider a plate of uniform thickness 7 and mass density p
as shown in Fig. 8.7

Fig. 8.7 A Thin Plate of Uniform Thickness
|~ ] =[(y?+z?)pdv
v

_[nuu

=p[(y2+22)dV=p [ (y2 +22)1dA
v A

=pt [ (y? +z2)dA
A

H I, =ptl
ence x =Pl (8.36)
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and y =4 forx=0

it can be seen that

x ==075y+3
The length of the strip is thus
2x =6- 1.5y

and the area of the strip is
2xdy =(6-1.5y)dy
whose moment of inertia is
dl,, = (6 - 1.5y) y* dy = (6y* - 1.5") dy

Therefore, the moment of inertia of the entire area is

4
I, =[dl,=f 6y -15y%)dy
A 0

4
=32m*
0

-

T = 5000 % 0.1 x 32 = 16,000 kg m?
mass
6x4
2
= 6000 kg
The radius of gyration is, therefore,

k = ,.’9:920.=1_53m

Mass of the sheet = x 5000 x 0.1

8.8 PARALLEL-AXIS THEOREM (MASS MOMENT OF INERTIA)

The parallel-axis theorem for the mass moment of inertia states that the mass
moment of inertia with respect to any axis is equal to the moment of inertia with
respect to a parallel axis through the centre of mass plus the product of the mass and
the square of the perpendicular distance between the axes. Mathematically,

where /,, is the mass moment of inertia about an axis aa and /.. is the mass moment
of inertia about an axis parallel to aa and passing through the centre of mass C. The

two axes are 5 apart and the mass of the body is m.
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With reference to Fig. 8.8 where a thin strip of mass dm is taken parallel to either
of the parallel axes and the distances r, r_ and s are measured in a plane perpendic-
ular to the parallel axes and passing through C

Le=[r?dm

Elevation View Side Plane through C
Fig. 8.8 Parallel Axes for Moments of Inertia

Substituting r=r.+s or P=r.r =(r.+s)-(r.+s)
=rl42r s+
Iy =] r2 dm+[2s-x, dm+s? dm
=1“+szm

because the middie term vanishes by virtue of the definition of the centre of mass,
ie.,

[2sr, dn=2s-[ r, dm=0

Similarly, the parallel axes theorem for the mass products of inertia states that

Ly =1 + 5;85,m (8.39)
(for any set  (for a parallel
of axes) set of axes at the
centre of mass)

where s, and s, are the perpendicular distances from the centre of mass to the x and
y axes respectively.

Example 8.10 Determine the mass moments of inertia for a hollow cylinder of
radii R, and R, and axial length / about the longitudinal and transverse axes at the
centre of mass.
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and (Ry,-R))<<R
such that R} +R} =2R?

Iy =3m2R = mR:

;- =f_w=—|15(12+3x2R’)=%m(l’+63’)

8.9 MOMENT OF INERTIA OF COMPOSITE BODIES

The moment of inertia of bodies composed of simpler homogeneous bodies can be
determnined from the knowledge of the corresponding values for the components
about the same axes. The steps for computing the moment of inertia for a composite
body are, therefore, as follows:
1. decompose the body into its simpler components, positive or negative de-
pending upon the fact that the mass is additive or subtractive
2. look up or recall the moment of inertia of the component bodies about their
centroidal axes
3. determine the moment of inertia of the component bodies about the desired
axes by the application of the parallel-axis theorem
4. add algebraically the moment of inertia of the component bodies to obtain the
moment of inertia of the composite body

Ish+L+1+.. (8.40)

The moments of inertia of some simple homogeneous bodies are tabulated in
Appendices 2 and 3 for ready reference. It may be noticed that the moments of
inertia of these bodies can be deduced from the values for a rectangular prism,
hollow circular cylinder and hollow sphere which may be remembered.

It may be added that the radius of gyration of a composite body cannot be
obtained by adding the radii of gyration of the component bodies

k #ky+ky+ky+

Mass Removed

il
v

M=my+ My =My
1= by + bigy = Loz

-

Fig. 8.9 A Composite Body
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but it may be determined from the moment of inertia of the composite body, i.e.,

[T Ih+1, +1; ...
8 _J:_ my +my +my +.. (8.41)
For example, the composite body shown in Fig. 8.9 consists of a mass m given

by

m=ny + m, - ny

Example 8.11 A clock pendulum consists of a slender rod and a circular disc with
a hole in it as shown in Fig. Ex. 8.11. The rod has a density of 7000 kglm" and cross
sectional area of 50 mm? and the disc has a
density of 8000 kg/m® and a thickness of T
5 mm. Compute the moment of inertia of the
pendulum about an axis of rotation perpendic-
ular to the plane of oscillations.
Solution Let us consider the pendulum to
consist of three composite parts:
(i) a slender rod 20 cm long

plus (i) a solid disc 10 cm diameter and 20 cm
minus (iii) a solid disc 5 cm diameter
for the sake of computing its moment of inertia.

For the slender rod,

2
In=m-"-j-=(‘.~'l)00x50><10‘° x0.22/3

=9.33x 10"* kg m® e 5cm 10 cm
For the solid disc of 10 cm diameter,
m=8000x5x 107% x 1t x0.1> = 1.257 kg.

Fig. Ex. 8.11

Iy = % mR* + m (OP)?

- % x 1257 x 0.1% + 1.257 x 0.25°
= 0.085 kg m*
For the solid disc 5 em diameter

m=8000x5x107%x 7 <(0.05)7 = 0314 kg

lo=3 mk* + m(OPY’

x 0.314 x (0.05)* + 0.314 x 0.25°

2| =
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=0.02 kg m®
The moment of inertia of the pendulum about the axis of rotation through O is
Iy =9.33 % 107 + 0.085 - 0.02 = 0.066 kg m*

Experiment ES
Moment of Inertia of a Body

OBJECTIVE
To determine the moment of inertia of a stepped pulley or a flywheel experimentally.
APPARATUS

A stepped pulley or flywheel mounted with its axle on bearings as shown in
Fig. E8.1. Provision for a cord to be wound round it, to pass over a frictionless
fixed pulley, to hold 2 known mass and to allow its fall through a known height.

Bracket
Cord Initial Lwel_
—
. Bearing
Bearing :r
eran] Femineseim b -4 ) Ghimtagyigrp [ -y IL; - -
Pulley
Block
FETIITEITTIITFY i PEEES ! G GG G TN
Table
Falling

Ground

Fig. E8.1 Apparatus for Determining Moment of Inertia

BACKGROUND INFORMATION
The equations expressing the moment of inertia in terms of the measurable parame-
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With this substitution, Eq. (E8.3) becomes

o2 [8 ) e 2 (828
I =mr [Zh 1|=mr P (E8.4)

Alternatively, if the time taken to complete N revolutions before the rotating
body comes to stop after the instant the falling mass touches the ground is 7, the
average angular velocity would be

2n N "

v =—'—f—“ (ii)

Since the deceleration is assumed to be constant, the angular velocity at the
instant of touchdown of the mass should be twice the average value

4n N
W =2%Xw,, ==

If it is substituted in Eq. (E8.2), it reduces to

ghT?
IN2p2
=mr2 L (E8.5)
(1+%)
and if n is negligible compared to N, i.e., if the frictional effect is neglected,
_ ghT?
I = mrz [W - ]) (ES‘G)

It can be seen that Eqs. (E8.2) and (E8.5) are identical and that Egs. (E8.3),
(E8.4) and (E8.6) are also identical, the difference being the use of @ from Eq. (i)
or Eq. (ii).

OBSERVATIONS AND CALCULATIONS

The scheme of taking observations and calculations depends upon whether it is
intended to account for friction or not and as to which of the two methods, (i) and
(ii) for evaluating the rotational velocity @ at the instant of touchdown of the mass
on the ground is preferred.

It is probably easiest to evaluate first and to substitute the same in either Eq.
(E8.2) or Eq. (E8.3) accordingly depending on whether friction is to be accounted
for or not. It may be noted that the fall & of the mass is related to the number of
turns n the body makes before the touchdown of the falling mass as

h=2arn
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A recommended tabulation of observation and calculations would be as follows:

S.No. m r h ' T N n (] I
Units kg m m 5 s — — rad/s  kgm?®
1

2

3

4

RESULTS AND POINTS FOR DISCUSSION

1. Obtain the average moment of inertia [ from the set of observations and
calculations.

2. Measure the dimensions of the body and estimate its mass. From a knowledge
of its moment of inertia and mass, calculate the radius of gyration .

3. Comment on the accuracy in the measurements of time, length and mass in
relation to the accuracy in the measurement of the moment of inertia. Would
you recommend the use of a better stop watch, a more accurate scale or a
better weighing machine in order to improve the accuracy of the value of the
moment of inertia?

4. From a knowledge of the dimensions of the body, obtain its moment of inertia
theoretically and compare it with the experimental result. Account for the
difference.

5. What is the role of the moment of inertia of a body in its rotational motion?
Explain why a flywheel should have a large moment of inertia.

6. Can you suggest some alternative methods for determining the moment of
inertia of a body about a given axis if the body is cylindrical or irregular in
shape. Examine the method of rolling a body down an inclined plane and the
method of oscillating a body about a mean position.

Example 8.12 A spoked flywheel as
shown in Fig. Ex. 8.12 consists of four
spokes each 0.9 m long and of mass 50 _

kg which are cast with a rim of inner

and outer radii 1 m and 1.5 m respec- 15m
tively and having a mass of 5000 kg.

The shaft at the centre of the wheel has Spokes %’ c
a diameter of 0.2 m and a mass of | A }

1500 kg. Calculate the moment of iner- E{D_ﬁq—
tia of the flywheel about the axis of Rl iX:]
rotation and also its radius of gyration.

Solution The moment of inertia of fly- Rim of the

wheel is the sum of the moments of Flywheel
inertia of the central shaft, spokes and
rim. The greatest contribution is by the Fig. Ex. 8.12
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rim as is obvious from the figure and the values of the masses. Taking the compo-
nents one by ong,

mR® = 3 x 1500 x 0.1% = 7.50 kg m®

The moment of inertia of one spoke about an axis passing through C and parallel
to the axis of rotation is

e =—-="""""_=3375kgm?
(spoke)

and by the parallel-axis theorem.

l,s  =3.375+50x% 055" = 18.85 kg m’
(spoke}

For four spokes

I,  =1885x4=7540kgm’
{four spokes)

The moment of inertia of the rim is

L =2m(R2+R2)

(rim)

% 5000 x (12 + 1.5%) = 8125 kg m’

=1
2
The moment of inertia of the flywheel is, therefore,
7.50 + 75.40 + 8125 =8207.9 kg m? _
It can be seen that the rim alone contributés to the moment of inertia to the

extent of

8125 . 100 =98.99%

8207.9
The radius of gyration of the flywheel can be determined from
I!N] = mz
. 2 _ 8207.9 _ 2
whence k _—4x50+500(}+1500_l‘225m
and k=1107m

Example 8.13 A three-bladed rotor of a helicopter consists of a 0.2 m diameter
shaft, 1 m long and 1.5 m long radial blades. The shaft is made of steel, specific
gravily 7, and the blades have a mass of 20 kg/m. Assuming the blades as uniform
rods, estimate the polar moment of inertia of the rotor about the axis of rotation.
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Shaft
0.2 m Diamater
1 m Length
c

— 1
Blades

(=] ]

1.5m |

Three-bladed Rotor

Fig. Ex. 8.13

Solution The polar moment of inertia of the shaft alone is

1, - mR?
(shaft) 2
2 2
=ﬂxlx7x‘0ﬂ]x&
4 2
= 1.1 kg m?

The moment of inertia of one uniform-rod blade about an axis through C parallel
to the axis of rotation is
I mi?

o
(blade) 12

=5.625kgm?

_ 1.52
=(L5x20)x 355

By the parallel-axis theorem, for each blade

I, =5.625+(1.5x20)x (075 +0.1)
(blade)

=273 kg m?
For the three blades of the rotor,

[l =213x3=819kgm’
(three blades)
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For the complete rotor, then
I, =1.1+819=83kgm’

Example 8.14 Determine the moment of inertia of a hollow sphere of radii R, and
R, and hence estimate the moments of inertia of

(a) a solid sphere of radius 0.5 m and mass 50 kg

(b) a thin spherical shell of mean radius 0.5 m and mass 20 kg.

Fig. Ex. 8.14

Solution Consider a ring element of radius r, radial width dr and axial width dz at
a distance z from the centre of the sphere. The mass of this element is

p-2rr-drdz

and its moment of inertia about the z-axis is

dl; = pand drdz i)

{mass)

The moment of inertia of the hollow sphere is obtained by integration over the
domain:

[r varying from 0 to (R} —z2)

z varying from R, to R, and from — R, to— R,

and

r varying from J(Rf -22) 1o (R} -2%)
z varying from - R, 10 R,
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8 .
=-l-5-prr‘{R§ -R}) (it}
Since the mass of the hollow sphere is
-4 3 _ R
m —gﬂpfﬂ_} - R: )

the moment of inertia can be expressed as

; 2 (RS R
= P prrgh S S
(hollow sphere)

5" (R} —-R}) (iii)

By symmeltry about the axes and by interchangeability of the axes,
I =1,=1,
Let us now observe two special cases as a matter of interest:

(a) Solid Sphere
Setting R, to zero and R, = R

i1 z = 2 mR? i
(solid sphere) (iv)
In fact, the moment of inertia of a solid sphere could be determined ab-initio by
considering elementary rings as for hollow sphere but with simple limits of integra-

tion, i.e.
r varying from 0 to m
and z varying from -R to R
In that case,

o JETTT
I. =] | pomidrdz
(sphere) -R 0

R (R%_z2)2

1
Ay
©
B
ES

In terms of the mass of a sphere,

m =%p:rﬁ‘-‘
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What should be the length to radius ratio, i.e., I/R of a solid cylinder such that the
moments of inertia about the longitudinal and transverse axes are all equal.

[Ans. [/R=4/3]

. From the fact that the moments of inertia for a hollow night circular cylinder are

7 1 2 1 LR
I, =1, =75m? +3(R} +R}))

and

I, =m(R} +R3)I2

Obtain the expression for the moment of inertia of
(a) a solid cylinder of radius R

(b} a slender rod of length [

(c) a thin cylindrical shell of mean radius R

id) a thin disc of radius R

(e) a thin ring of radii R, and R,

. You are given two spheres of the same mass, size and appearance but one of them is

hollow at the centre and the other is solid throughout. How will you find out which is

hollow and which is solid?

(Hint: Consider their moments of inertia and try relating their accelerations when
rolled down the same incline. The solid sphere accelerates faster and hence
reaches down the incline first.)

. What is the relative significance of the moment of inertia and the radius of gyration?

With what intention are these defined? Under what circumstances is it desirable to
have small and large values of the moment of inertia?

. Would you imagine that the moment of inertia of the earth around its own axis is a

negligible fraction of its moment of inertia about the axis of rotation around the sun?
Take the mean radius of the earth as 6371 km and the mean radius of rotation
around the sun as 149.7 x 10° km. [Ans. Yes, it is true]

8.2

8.3

84

Tutorial Problems

Determine the moments of inertia of an ellipticat disc of mass m and the semi-major
and semi-minor axes a and b respectively.

[}\M.%mﬂz.%_fﬂbz .%m{az +b? ]]
An isosceles triangle of base b and height & is such that the moment of inertia about
the base equals the moment of inertia about a perpendicular axis through the vertex.
Determine the b to A ratio. (Ans. b = 2h)
Show that the moment of inertia about a centroidal axis parallel 1o a side for a cube of
mass m is

I= %ma 2
where a is the length of a side.
Determine the moments of inertia about z axis of a right circular cone of mass m, base
radius R and height h, as shown in Fig. Prob. 8.4

[Aus. I, =-]'%mRz]
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8.9 A semicircle of radius r has been cut of a circle of radius R as shown in Fig. Prob. 8.9.
Calculate the polar moment of inertia about O for the resulting section.

/‘20!11

—_ -
15 cm
t
A 2em
15 cm T
Fig. Prob. 8.9 Fig. Prob. 8.10

8.10 A T-section is 15 cm x 15 em x 2 cm as shown in Fig. Prob. 8.10. Calculate the
moment of inertia of the section about an axis parallel to the base of the T and passing

through its centroid. [Ans. 1160 cm*]
8.11 Find the moment of inertia of a channel section shown in Fig. Prob. 8.11 about the
centroidal axes. [Ans. 4558 and 760 cm*]
|
_ | 12 cm l
/Zm A
7
/
20cm / Scn 15 cm
/ 10 cm
%
%‘W’ i 25on
/2.5 cm A
" |- 10cm —] T |

Fig. Prob. 8.11 Fig. Prob. 8.12

8.12 The cross-section of a cast iron beam is shown in Fig. Prob. 8.12. Determine the
moments of inertia about the centroidal axes. [Ans. 2885 and 340 cm*)

8.13 Calculate the moment of inertia of a cast iron pulley with respect to its axis of
rotation, Mass density of cast iron is 7200 kg/m®.

8.14 A spherical bob of radius R and mass my is attached to a slender rod of length [ and
mass m,. Calculate the moment of inertia of the assembly about the axis of rotation.

[Ans.%mrlz +2m,R2 + U+ RID? mb]
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18 cm
N
N

20 cm| ke K

NN
%f §
I CAANANRNNN
!-—5 cm-=]

Fig. Prob. 8.13 Fig. Prob. 8.14

 —

8.15 A flywheel consist of a | m diameter plate 10 em thick with four holes, each 20 cm in
diameter cut at a pitch circle diameter of 40 cm symmetrically. Compute the mass
moment of inertia of the flywheel about the axis of rotation. The material of the
flywheel is cast iron with specific gravity 7.5. [Ans. 69.4 kg m?)

100 cm

Fig. Prob. 8.15

Look up Hints to Tutorial Problems!

Multiple-Choice Questions

Select the correct or most appropriate response from among the available alternatives in the
Sfollowing multiple-choice questions:
1. The moment of inertia of a body is
(a) the moment of its inertia
(b} the rotational moment acting on the body
(¢} the rotational analogue of mass
(d) the inertial moment acting on the body



Dynamics ofF RiGiD
< BoDIES

9.1 INTRODUCTION

Further to the study of the general principle of dynamics and the kinematic behaviour
of rigid bodies, it is our intention to study the dynamic behaviour of rigid bodies. A
rigid body may be subjected to external forces and moments and kinematic parame-
ters, such as velocity and acceleration may be predicted. Conversely, it may be
required to evaluate the external action necessary for a desired set of kinematic
conditions. This can be achieved by applying Newton's law of motion for the linear
motion of the centre of mass of the rigid body and Euler’s equation for the rotation
of the rigid body. The purpose of this chapter is to present the methodology of
applying the laws under different circumstances.

It is chosen, for the sake of simplicity of understanding, to study the dynamics of
rigid bodies in steps, i.e., pure translation, fixed-axis rotation, plane motion and
finally, space motion. The general form of the Euler’s equation obtained for space
motion is shown to contract for the special cases of translation, fixed-axis rotation,
ete. There is no difficulty, therefore, if it is desired to reverse the approach, i.e., to
proceed from general to particular cases.

A rigid-body model is not too hypothetical a model for many engineering situa-
tions. Most engineering materials maintain their shape and size and can be consid-
ered to be undeformed during their overall motions. It may also be appreciated that
most engineering devices can be modelled as undergoing plane motion. More stress
is, therefore, laid on the plane motion of rigid bodies than on their space motion.

9.2 TRANSLATION OF A RIGID BODY

Recalling the fact that the acceleration and velocity of each element on a rigid body
must be the same in a pure translation, the translational motion must be governed by
the Newton's law,

F=ma 9.1)

where F is the net external force acting on the body and a is the acceleration of any
point on the body. The net external force, sometimes written as ZF, must be the
vector sum of all the external forces acting on the body

F or ZF=F +F,+F;+..

as also shown Fig. 9.1.
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There being no tendency of rotation,
the angular velocity and the angular ac-
celeration remain zero. In other words,
the relative velocity of any point on
the body referred to the centre of mass
is zero and the angular momentum of
the entire body with respect to the cen-
tre of mass is zero. It follows from the
Euler's equation that the summation of
moments about the centre of mass, C
must also vanish:

M, =0 9.2)

These relations govern the general
translatory motion of a rigid body. If Fig. 9.1 A Rigid Body in Translation
the body undergoes a plane motion, the
parallel planes of motion being parallel to the x-y plane, the component equations
governing the motion reduce to

F.=ma,

x
F,=ma,

where a, and a, are rectangular components of acceleration of the centre of mass, as
also of any other point on the body and F, and F, are the rectangular components of
the net force acting on the body. Also, the moment about the z-axis passing through
the centre of mass must vanish:

M,=0

Example 9.1 A motor of mass 8000 kg resting on two supports A and B is pulled
along a smooth horizontal surface by a string passing through a hook as shown in
Fig. Ex. 9.1.

Calculate the acceleration of the motor and the reactions at the supports for a
tension T applied in the string. Calculate the maximum tension in the string for the
sliding motion.
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Solution From the free-body diagram of the motor as shown in Fig. Ex. 9.1
(Solution),
F, =T, =Tcos 30° = 0866 T

F, =T,~mg+Ry+Ry=05T~78500 + R, + R,
M, =05Tx05+Ryx05-0.866 Tx 0.6~ R, x0.5
=05R,-05R,-027T

Fig. Ex. 9.1 (Solution)

By the equations of motion for a rigid body in translation,
F.=0.866T=ma=8000a
F,=05T-78500+ R+ Ry=0
M,=05R;~05R, -027T=0
From these equations,
a = 0.000 108 T mvs?
R, =39250-052T
Rp=139250+002T

It can be observed that the reaction R, decreases with the tension T increasing. In
the limiting case of sliding,

R, =0=39250-052T
and T =39,250/0.52 = 75,480.8 N = 75.48 kN

beyond which the point A will not be restrained to move along the surface. The
motor may then overturn forward.

Example 9.2 A horizontal uniform bar PQ of mass 100 kg and length 30 cm is
supported by strings from A and B 30 cm apart and is released from rest when 8 =
60° as shown in Fig. Ex. 9.2.

For a plane curvilinear motion of the bar, determine the tension in the string at
the instant when
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A B

(a) it is released from rest
(b) it crosses the mean position
(c) 8=30°

Solution From the free-body diagram of the bar
PQ at any instant as shown in Fig. Ex. 9.2 (Solu-
tion),

F.=T,-T,+mgcos 8
Fg=mg sin 6
M. =-T,p,+ Ty p,

where p; and p, are the perpendicular distances Fig. Ex. 9.2
from C to the lines of action of T, and T, respec-
tively.

Since Pi=py=p P2
from the symmetry and \i’“/\(

M. =0 e _‘ T, _‘

for pure translation of the rigid body, it follows 1) : a{{( 18 :
that e !
Tip-Thp=0 Y
or T'=T,=T o / mg @
' r
i.e., the tensions in the strings must be equal at Fig. Ex. 9.2 (Solution)

all times. Then,
F.=-2T + mg cos 0
Fg=mgsin @

The acceleration of any point on the body is made up of two components;
the radially inward component, i.e.,
-ro’=-04 0"

and the tangentially forward component, i.c.,
ra=04a

By employing the equations of motion,

~ 2T + mg cos 8= 100 x (- 0.4 @) = - 40 o (i)
or - 2T — mg cos 8= 40 of
and mg sin 8= 100 x 0.4
or mg sin =400 (i)

Case (a)
At the instant of release,
8=60°, w=0
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from Eq. (i) 2T-mg/2=0
T =mgl4
=100x 9.81/4 = 24525 N
and the angular acceleration @ is obtained from Egq. (ii) as

100 % 9,81 x 0.866
= e

- 2
a0 2124 rad/s

Cases (b) and (c)
At any instant when the strings are inclined at 8 with the vertical,
from Eq. (ii).

_mgsint?__d_m__ do
=0 &~ %6
or o /de = — mgl40 sin 6dO

and integrating each side,
@2 = mgld0 cos 8+ C
Employing the initial condition,

w=0 at 8= 60°

C = (- mgl40) cos 60° = — mg/80
and o = mgl20 cos 8- mgld0 (iii}
{b) When it crosses the mean position, 8 =10
From Egq. (ii),

o =—mg sin 840 =0

and from Eq. (iii), o = mgl20 — mg/40 = mgl40

o = 100 x 9.81/40 = 24.52

or =495 rad/s
From Eq. (i), 2T = mg cos 8= 400°
' 27 =40 X 24.52 + 100 x 9.81
" =1962N
and the tension T=981 N
fc) When 8= 30°
From (ii), @ =~ 100 x 9.81/80 = ~ 12.26 rad/s®
and From (iii), o =42.5-245=180

o= 4.24 rad/s
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From (i), 2T - mgcos 8=40x 18 =720
2T =720 + 100 x 9.81 x 0.866
and the tension T=785N

It can be observed that the tension in each string is the least at the extremities of
the oscillatory motion, It is the maximum at the mean position. At this position, the
weight of the bar acting downward is

mg =981 N

but the total tension in the two strings upward is 1962 N. The vertically upward
unbalanced force (1962-981) N is the one which is responsible for the radially
inward (in this position, vertically upward) acceleration, i.c., 0.4er. If, on the other
hand, the mass was in equilibrium, supported by two equal vertical strings AP and
BQ, the tension in each string would only be mg/2, i.e., 490.5 N each.

9.3 ROTATION OF A RIGID BODY ABOUT A FIXED
PRINCIPAL AXIS

The case of a rigid body rotating about a fixed principal-axis is a special case of
plane motion of a rigid body. Let the principal-axis of rotation be the z-axis passing
through O such that O and C lie on a plane normal to the axis of rotation. With
reference to the coordinate system shown in Fig. 9.2, the rotational velocity and
acceleration are @ and « respectively.

An elementary strip of mass dm chosen y
parallel to the fixed-axis located at a posi-
tion vector r as shown is then imparted a
velocity and an acceleration given by L

v=rweg
a.—..—rmzer+raeﬂ By

The elementary mass must have been dm
acted upon by an elementary force dF in
accordance with Newton's law, i.e.,

df =dma=(-rwe, + raeg dm

The moment of the elementary force
about the axis of rotation passing through
Qis . z
dM,=rxdF Fig. 9.2 Rotation about a Fixed
Principal Axis
=re X (-rat e, + raey) dm

=P admk

This is the moment which must be exerted about O so as 10 accelerate the element-
ary mass at an angular acceleration a. The total moment required to rotate and
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accelerate the rigid body about an axis through O is, therefore,
M, =[dM_=ea|r*dnm
or M, =lLa (9.3)

where [,, the mass moment of inertia of the body about an axis through O is, by
definition, given by

I, =] r2dm

and the moment vector M, is directed perpendicular to the parallel planes of rota-
tion.

It should be recorded here that the moment M, acting on the rigid body about an
axis through O is due to the entire system of forces on the rigid body. For example,
the weight of the body, reactions from the supports and other external actions as
obtained by drawing a free-body diagram of the rigid body must be taken into
account to obtain the net moment M.

The centre of mass denoted by C in the figure is imparted a velocity and a
acceleration given by

V.SWOXF =roeg

a.=-rate +rae

The equation of motion for the centre of mass is given by
F=ma, (9.4)

The net external force F on the rigid body is due to the weight, reactions from
the supports and other actions. This equation is useful if the desired goal is to find
the reactions from the supports on a dynamic body.

In particular, if the axis of rotation passes through the centre of mass, i.e., @ and
C coincide,

F=ma,=0
M, =la

It is usual to define a point called centre of percussion as a location on a rigid
body through which the resultant of the applied forces acts.

Consider, for example, a rigid-body model of a cricket bat free to rotate about an
axis through O as shown in Fig. 9.3(a). Its centre of mass is at C but the centre of
percussion is at a point P such that if the force due to a ball striking it passes
through P, there is no horizontal reaction at O where the bat is held by the batsman
and he can receive the ball comfortably, without jarring. '

If the moment of inertia of the body about its axis of rotation is J, and the
corresponding radius of gyration is k,, the distance p at which the centre of percus-
sion is located is given by

kla’:.
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) -

Held by

(a) Ball Hitting the Bat Held by a Player (b) Free-body Diagram of the Bat at
the Instant of Impact

Fig. 9.3 Concept of the Centre of Percussion

This may be shown by considering the free-body diagram of the bat and by
determining the condition of zero horizontal reaction at O. Referring to the free-
body diagram shown in Fig. 9.3(b), the equation of motion for the centre of mass is

R, -F =ma (i)
and the Euler’s equation for rotation about the axis of rotation through O is
~-Fp =ho=(.- mhz)a
= mk,fa*—- J'I'I(k(.z + hz) o (ii)
Eliminating F between Egs. (i) and (ii)

mkga mk? +h!)a
R, =ma- = ma -
P P

Considering the fact that
a =ha

the condition for R, to be zero is

k2 k2 +h?
P m——— (95)

h h
Example 9.3 A rectangular plate 2 m x 3 m of mass 100 mg/m? is supported by
hinges at A and B as shown in Fig. Ex. 9.3. If the support A is removed, determine
the reaction at B, the angular acceleration of the plate and acceleration of the centre
of mass.
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)
Ay
B .
—_—
R,
c
im
mg
Fig. Ex. 9.3 Fig. Ex. 9.3 (Solution)

Solution At the instant when the support A is removed, the plate tends to rotate
about the axis passing through B and nofmal to the plane of the plate. From the free-
body of the plate at that instant, as shown in Fig. Ex. 9.3 (Solution)

F.=R,

Fy=R, - mg =R, - 600 x9.81
=R, - 5886

Mg=mgx1=5886 Nm

Iy =73 X 600X (3% +2%) + 600 x (1.5 + 17)

2
= 2600 kg m*
By the equation of motion for a rigid-body rotation about a fixed axis,
Mg =l
or o = 5886/2600 = 2.26 rad/s’
Also, M =la
1xR, - I‘SxR,:%xﬁ(l)x(3z+22]x2.26
R, - L5 R, = 1469
and F.=R,=ma, =600a,

F,= R, - 5886 = 600 a,

At the initial instant, the body starts from rest, @ = 0 although the acceleration o
is finite as determined above. The acceleration of the centre of mass C is

a=oxr

=220kx(-1i-15j)=339i-226j
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where the negative sign shows that the pearing friction torque acts to resist the
motion and to bring about deceleration of the disc.
This resisting torque is equivalent to a constant resisting force of
5.00/0.5 = 10.00 N

acting over the rim of the disc.

(b) From a=-1.31 rad/s’
15002 x 7w
ay =T'= 157.1 rad/s
and w,=0
Since W -’ =2a8
0-157.12
whence, = m = 9420 rad
and n =9349/2x = 1499.2 revolutions

9.4 PLANE MOTION OF A RIGID BODY

Plane translation, rectilinear or curvilinear, together with rotation about an axis
perpendicular to the parallel planes in which translation takes place, constitutes a
general plane motion. Conversely, a general plane motion can be regarded equiva-
lent to a combination of translation of the centre of mass and rotation about an axis
passing through the centre of mass. Correspondingly, the dynamic behaviour of a
rigid body is governed by the set of equations

F, =ma, (9.6)
F, =ma

y

for translation of the centre of mass

and 9.7

for rotation about an axis passing through the centre of mass of the body.

Example 9.5 A cord passing over a light frictionless pulley carries a weight W,
suspended vertically at one end and is wrapped around a cylinder of weight W, as
shown in Fig. Ex. 9.5. Assuming that the cylinder can roll without slip on a horizon-
tal plane, calculate the acceleration of the suspended weight.

, O | Pulley
o« Cylinder
W,

Fig. Ex. 9.5
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Hence,

&
3w
1+ 2

8 W,

iy =

An observation of this equation shows that W/W, is the only factor which
governs the acceleration of the suspended weight. The size of the cylinder is imma-
terial. When W./W, is zero, a, = g, the acceleration of the free-fall. As W,/W,
increases, the acceleration of the suspended weight decreases, tending to become
zero as Wo/W, tends to infinity.

Example 9.6 A wheel and a differential axle assembly has a mass m and a radius
of gyration k. The radii of the two parts of the axle are r, and r,. Cords wrapped
round these parts carry suspended weights W, and W, as shown in Fig. Ex. 9.6.
Determine the acceleration of the suspended weights when the weight W, descends,

Wheel Differential
] axle

Bearing Y ‘ Bearing

= =
4 ﬁ;:
W]

Fig. Ex. 9.6

—y

Solution Let the acceleration of the suspended weights be g, and a, downwards
and upwards respectively. The angular acceleration & of the wheel and differential
axle assembly is

T Ta
a
o= r—l = r—z s
wthe $[1] f
With reference to the free-body diagrams of the
suspended weights
W W, W,
W, -T, = ) a, ()  Fig. Ex. 9.6 (Solution)
W wa
=W, = ?az {ii)

The net external moment on the assembly due to the suspended weight is
M=Tr - Ty,
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and solving for T and « simultaneously with Eq. (iii), remembering that

I _m2Ly? g2
cT 12 T3

the expressions for T and ¢ appear as follows:

mg
T=—
1+3cos? @

~3gcos @

and = ———
L(1+3cos? 6)

It may be remarked that the positive sign of T shows that the string is indeed in
tension and the negative sign of & indicates that the angular acceleration is clock-
wise and not anticlockwise as assumed in the free-body diagram.

Example 9.8 A uniform bar of length L and weight W rests on smooth surfaces as
shown in Fig. Ex. 9.8. Obtain an expression for the angular velocity of the bar and
determine the angle @ at which the bar no longer touches the vertical wall.

Fig. Ex. 9.8

Solution With reference to the free-
body diagram of the bar where the reac-
tions at the two surfaces are taken
normal only due to the absence of fric-
tion, let us consider the motion of the bar
with reference to its centre of mass C.
Assuming the motion as a plane motion
in the plane of the figure, the equations
describing its motion are

N,

N, = ma, (i
Ny- W= ma, (i)

L .. L _
N, '55'“9"”2'5"1059 =l (i)

Fig. Ex. 9.8 (Solution)
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. ml?
Tak I =
aking <=3
and W=mg
for the rod, and substituting N, and N, from Eqs. (i) and (ii) into Eq. (iii),
a, sin B—al‘.cos 0=gcos 8+-f6=a' (iv)

The linear accelerations a, and a, of the centre of mass are related to its angular
acceleration a by the geometry of the motion. From the coordinates of the centre of
mass at any instant,

L

x==cos@® and '=%sin9

2

Differentiation with respect to 7 leads to

x _E=E.E__38in8'(}”

e O
Similarly,

% *%z_%sm(%?')z +;‘cosﬂ‘;‘—zf

Substituting these relations in Eq. (iv)

2 3
jf—f =—%c059 (v)

the angular speed @ is obtained by integration,

@ =1P§(l —sin.ﬂ} (vi)

assuming that the bar started from rest at 8 = 90°, i.e., when the bar was vertical.
The condition of it no longer touching the wall means

N, =0
and from Egq. (i)

a =0

X

“Looso(d0) _Lgngd30_ i
or zmse(d!] 2smn';? e =0 (vii)
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Substituting for the first and second derivates of 8 in Eq. (vii),
sin 0 =2 = 0667 I
whence 6 =41.8° ’
Example 9.9 Two homogeneous cylindrical discs, each of diameter 1 m and mass
10 kg connected by an axle of diameter 0.3 m and mass 15 kg lie on a rough surface |
as shown in Fig. Ex. 9.9.

A string wrapped round the axle as shown, exerts a force of 50 N at the mid-span
of the axle. Analyse the motion to determine the acceleration of the system.

Disc

Solution With reference to the free-body diagram of the system where the motion
is assumed to be towards right and the frictional force f is shown to act in a
direction to oppose the motion, as shown in Fig. Ex. 9.9 (Solution):

Fig. Ex. 9.9 (Solution)

For the reference axes fixed at the centre of mass C, the equations of motion are:
F,=50~f=ma,
F.\"_’ R-(10+ 10+ 15) g = ma,

0.3 1
ML'=SOXT_-{X—2-=I‘-H



Dynamics of Rigid Bodfes 557
Using the fact that
a,=0
because the body is not being lifted along the y-axis and
o =2%($x10%0.5 )+ x15x0.152 =2.67 kg m?

2
and m=2x10+15=35 kg
the equations of motion simplify to
50 — f= 35a, ) (i)
R-35¢g=0 (ii)
15-/12=267T0x (iii)
Substituting
o %
0.5
in Eq. (iii) reduces it to
15 - f= 10.68a,
which, together with Eq. (i), provides
a, = 1.44 m/s?

o Experiment E9
Looping the Loop |

OBJECTIVE . .

To determine the minimum initial height of a ball in.order that it may succeed in
‘looping the loop’. )

APPARATUS

A channel-track arranged in the form of a looping-the-loop apparatus as shown in
Fig. E9.1, spherical ball and a metre scale.

Straight
Track

Fig. E9.1 ‘Looping-tbe-loop’ Apparatus Fig. E9.2 Free-body
Diagram of
the Ball
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BACKGROUND INFORMATION

When a spherical ball is released from rest from a position on the straight part of
the track, it rolls down and gains speed until it reaches the bottom of the loop.
Thereafter, it is subjected to a centripetal force and a varying reaction N normal to
the track. Considering the free-body diagram of the ball at a point P, as shown in
Fig. E9.2, the equations of motion for its centre of mass C are

Tangential: mg sin 0 - f-=ma (E9.1)
: - omv? __ mre?
Normal: N-mgcos @ = R-1"(R-7 (E9.2)

where v is the velocity of the centre of mass of the ball, ( R - r) is the radius of the
path of the centre of mass as the ball of radius r moves within the circular loop of
radius R and @ is the angular velocity of the centre of mass of the ball.

The Euler's equation for the rotation of the ball must be

= —g Zd_m
fr=la =gmet 2

= 5 mrew— (E9.3)

Integrating Eq. (E9.3) and substituting for f from Eg. (E9.1) together with the
fact that

it is seen that

_]og(R—r) log(h=R+r)
w = 752 cos 6+ =3
where the initial height 4 is related to the velocity of the ball by the principle of

energy conservation applied during the rolling of the ball down the incline without
friction

(E9.4)

1 2,10

g Lo} +5m} (E9.5)
where vy, the translational velocity of the centre of mass of the ball at 8= 0 position
equals r times the rotational velocity ay, of the ball at the same position.

Substituting the value of @ in Eq. (E9.2),

2 [log(R-r) log(h—R+r
L [g_m cos 8+ =2 )] (9.6)

It is noticed that the reaction N from the track on the ball varies with 8, the
angular position of the ball for a given initial height k, the other parameters, i.e., the
radii of the ball and the track remaining the same. The position where the ball loses
contact with the track must be such that the reaction N becomes zero. If the ball is

mgh =

- m
N mgc059+R
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to complete the loop, it must be able to go all the way up to the position 8 = 180°
because it would then continue on the track thereafter,
Substituting @ = 180°, cos 8 = -1 and N = 0 in Eq. (E9.6) and simplifying the
result,
hy=27(R-n (E9.7)
This is the minimum initial height of the ball for it to succeed in looping the loop.
Alternatively, the analysis may be considerably simplified if the moment of
inertia of the ball is ignored, i.e., if the ball is assumed to be represented by a mass

sliding frictionlessly. In that case only the normal equation of motion, i.e., Eq. (E9.2)
together with the energy conservation principle would provide the result

2
_ mv .
N—mgcosG—R_r (i)
mgh =3 mv? + mg (R - R cos 6) (i)

Substituting 8 = 180°; cos 8 = -1 and N = 0 as well as thelvalue of v from
Eq. (ii) in Eq. (i),
_2mgh—4mg(R-r)
- (R=r)
whence hy =25(R-r) (E9.8)

It may be seen that this result is remarkably close to the one obtained above,
Eq. (E9.7). In practice, neither of them may be valid because the ball may roll as
well as slide with friction simultaneously.

mg

OBSERVATIONS AND CALCULATIONS

The experiment is indeed very interesting. The condition of success of the ball in
looping the loop is independent of the mass of the ball, angle of inclination of the
straight track and value of g at a particular place. The minimum initial height h
required for a ball to be able to reach the top position and to complete the loop is
determined experimentally by hit and trial.

R = =
hﬂp - k!
SN hy, h=27R-r) hy=25R-r) % 100% Differences in
hnp —hy
Eq. (E9.7) Eq. (E9.8) h—x 100%
RESULT

State the average of the minimum experimental heights obtained together with the
percentage discrepancy in comparison with the theoretical results by the alternative
analysis.
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POINTS FOR DISCUSSION

1.

2.

Under what circumstances is a ball likely to roll without sliding and under
what conditions is it likely to roll as well as slide?

Examine the percentage variation within the experimental results and com-
pare the same with the percentage difference between the experimental and
theoretical values. Which of the two theoretical results is closer to the actual
result?

. The energy conservation principle has been employed in the theoretical analy-

ses. Discuss the validity of the principle for the case of a ball rolling without
sliding as assumed in the first analysis. The validity of the principle for
frictionless sliding as assumed in the second analysis is quite clear.

. If a ball were allowed to complete the loop and made to go up another incline,

would it attain a height equal to the initial height h?

. Supposing it was desired to determine the dissipation of energy between the

initial position of the ball and its top position in the loop in the limiting case,
how would you proceed to estimate it?

. If you were to improve the experimental equipment, would you recommend

(i) the selection of a smoother ball, a lighter ball or a smaller ball?
(ii) the improvement of the track by minimising friction, by decreasing the
radius of the loop or by increasing the inclination of the straight track?
(iii) the use of a small circular cylinder or a small rectangular block instead of
a spherical ball?

Example 9.10 A string is wrapped around the periphery of a thin disc of radius
0.5 m and mass 10 kg as shown in Fig. Ex. 9.10. At an instant when the string is
pulled up with a force of 200 N, determine the acceleration of the centre of the disc
and the angular acceleration of the disc.

Solution Considering the freebody diagram of the disc, and taking C as the refer-
ence point,

——

Fig. Ex. 9.10 Fig. Ex. 9.10 (Solution)
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T- W=ma, (i)

0=ma, : (ii)

~Tr=la=m’l-a (iii)
From (i), a, =3£9;l%’iﬂ= 10.2 m/s?

and from (ii) a,=0
. -200x0.5x2
From (i o0 =—" """ " —_ 1

(iii) 0x0.5? 80 rad/s

which means that the angular acceleration is 80 rad/s” in the clockwise direction,
One may also determine the acceleration of the string which is the tangential
component of acceleration of the disc at point P.

a=10.2 + 0.5 x 80 = 50.2 m/s* upwards.

9.5 WORK-ENERGY FORMULATION FOR PLANE MOTION

Let us recapitulate the definitions of work and energy, obtain expressions for them
and formulate the work-energy principle as an alternative principle for studying the
dynamics of a rigid body.

The work done due to a force F acting at an arbitrary point P on a body equals
the dot product of the force with the displacement of the point of application of the
force:

dW =F -dr,

For a finite displacement of the point of application of force, i.e., from r, to r,,
the work done is given by

’1 .
‘W =[F-dr,

N

If, instead, it is sought to evaluate the integral

fy
wo=] F.dr, (9.8)

i

as is the case in the work-energy formulation to follow, the integral does not
represent the work done by the force on the body, it only represents the work which
would have been done by the force on the body if the force acted at its centre of
mass.

The action of 2 moment M due to a couple on a rigid body results in an angular
displacement d6 of the body. The work of the moment is expressed by

dW =M -dé
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In view of these facts, it may be stated that the kinetic energy of a rigid body in a
general plane motion, as given by Eq. (9.11), may be thought of as the sum of

1. The kinetic energy (uz}mvj associated with the motion of the centre of mass

C of the body as if the total mass were concentrated at that point
2. The kinetic energy (1/2)1, @’ associated with the rotation of the body about an
appropriate axis through C.

If a rigid body undergoes fixed axis rotation about an axis which does nol pass
through the centre of mass C, the expression for the kinetic energy of the body in
plane may surely be employed but a simpler expression is more convenient. In order
to arrive at it, consider a rigid body rotating about an axis through O as shown in
Fig. 9.5. The expression for kinetic energy is

=1, vyl 2
KE_szc +2Icm

Substituting V, = r.@

KE =-:1-,-mrfmz +-%- I.w?

which implies that the kinetic energy of a rigid body during a non-centroidal fixed-
axis rotation may also be written as (1/2) I, @ provided the moment of inertia / is
taken about the axis of rotation. The same fact could have been established by
considering a small element of mass dim at an arbitrary point P. The kinetic energy
of the element is

KE =] £V? dm

=] 1 (Rw)?dm

=[ L R2dm-w?
I3

Fig. 9.5 Fixed-axis Rotation

1
or KE.=E.‘ON2

where J;;, the moment of inertia of the entire body about the axis of rotation through

O equals the integral | R2dm.
The work-energy equations for a rigid body may be obtained from the Newton's

law and Euler's equation. From the Newton's law applied to the centre of mass of
the body,

F=ma

(53
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rs a,
[ Fedr, +af Mo do=2m(Vi -V 41l @i -0}) | (919
1

f

which is termed as the total work-energy equation for the plane motion of a rigid
body.

The total work-energy equation may be reduced to a conservation of energy
equation in the absence of dissipative external forces and moments acting on a
body or a system of bodies. The work done by a conservative force F during a
displacement of the centre of mass from position | to 2 equals the change in
potential energy and remembering that the action of a moment M, about the centre
of mass cannot bring about a change in its position, the total work done is

wtnlal = {PEI - P‘El)mr:l

Equating it to the total change in kinetic energy,
(PE) = PEy)yy = (KEy = KEj)yyq)

Rearranging the terms,

(KE| + PE\ )y = (KEy + PE3)oy (9.18)

which shows that, under the action of a conservative force ficld, the sum of the total
kinetic energy and potential energy of a rigid body is conserved. This is also
referred to as the principle of conservation of mechanical energy for a rigid body.

Example 9.11 In a laboratory, a flywheel of diameter 0.5 m is made to rotale,
starting from rest, by means of a suspended mass of 100 kg by an inextensible string
wound around a concentric drum of 0.3 m diameter as shown in Fig. Ex. 9.11. If the
frictional moment in the bearing is estimated to be 50 N m, determine the moment
of inertia of the flywheel if the velocity of the suspended mass after a fall of 1 m is
estimated to be 0.3 m/s.

05m

Fig. Ex. 9.11
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Soluti Let us consider the motion of the system of the flywheel together with
the drum and suspended mass. The free-body diagram of the system is shown in
Fig. Ex. 9.11 (Selution). Note that the tension in the string does not enter the
picture.

The work done by the weight of the suspend-
ed mass over a fall of 1.0 m is given by

mgh=100x98] x1.0=981 Nm

and the negative work done by the frictional
moment of 50 N m during an angular displace-
ment of
1.0
SEe—=0 7
2] 015 6.67 rad
is given by
M8=-50%667=-333.5Nm
Total work done by the net external force

and the net external moment acting on the sys-
tem is

W=981 N
Fig. Ex. 9.11 (Solution)

Wig = 981~ 333.5 = 647.5 N m

The final total kinetic energy of the system must be the sum of the rotational
kinetic energy of the flywheel together with the drum and the translational kinetic
energy of the suspended mass.

’ 2
i =eime” 41 (25)
=45+21,

Since the assembly started from rest, the initial kinetic energy must be zero. The
total change in kinetic encrgy is also given by

(KEy = KE )y =45+ 21,
Using the work energy principle,
45+21, =6475
whence I, =3215kgm®

Example 9.12 The following bodies are released from rest on an incline at the
same elevation. In each case, the mass is m and the maximum radius is R. (a) A
solid sphere, (b) a hollow sphere of inner radius R/2, (c) a solid cylinder, (d) a
hollow cylinder of inner radius R/2 and (e) a hoop.

Determine the velocity of each body after it has rolled down the incline through
the same distance s, What would be the velocity of each body if the incline was
frictionless and the bodies slided instead of rolling?
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Fig. Ex. 9.12

Solution Consider the rolling motion of a cylindrical body in general. The motion
takes place in the gravitational field of the earth and the frictional forces do no work
in the rolling motion; the mechanical energy of the system is, therefore, conserved.

(KE + PE), = (KE + PE),
KE, =0
PE, = 0; initial position referred as datum

KEy =5 mV,? +%hﬂ’§

and PE, = -mgh
Substituting
w,=V,/R
h=s5sin8

and from the conservation of mechanical energy,

2

1 1 €2
E 3 +_2‘!r R2

2zgh ..}235 sin @

2=
1 1
l [ [
J -'-mR2 Jl-'-mk2

Introducing the appropriate values of the moments of inertia for each case,

= mgh

whence

Case  Body 1, V.,

(a) Solid sphere % mR1 0.845 ,ngs sin @

(b) Hollow sphere 2 mw 0.8324/2gssin 8
5T RY-(R12)} )

(Contd.)
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(Contd.)
Case  Body 1. V.,
. . [ _—
(& Solid cylinder Fmk 0.816y/2g55in 8
(&)  Hollowcylinder  Lm(R* + (Ri2)") 0,785y 2gs sin 0
(e) Hoop mR* 0707 2gssin @

If the incline was [rictionless, the bodies would not be able to roll down. Fric-
tionless sliding through an inclined distance 5 would be equivalent to a free fall
through a vertical distance /i

h =s5sin 8

The velocity of each body would then be

J2gh =, 2gssin@

A comparison of the final velocities of the bodies is indeed meaningful. Friction-
less fall down the incline results in the maximum possible velocity. The final
velocities in the other cases are less not because of frictional loss of energy bur
because of the energy stored in rotation of the bodies. The rotational energy de-
pends on the moment of inertia of the bodies and for this reason their final veloci-
ties differ. Of the given bodies of the same mass m and same outer radius R, the
solid sphere has the least moment of incrtia and hence the greatest final velocity. On
the other extreme, in the case of a hoop, the entire mass is concentrated at the radius
R which makes its moment of inertia the maximum and its final velocity the least.

The results can be interpreted in another way, i.c.. if the bodies in the list were
allowed to start from rest at the same level simultaneously, the acceleration of the
hodies would be such that the velocity at a later instant would be determined in the
analysis., The body which accelerates most reaches first, The solid sphere will,
therefore, reach the finishing point of the race first and then the hollow sphere, solid
cylinder and hollow cylinder in that order. The hoop will be the last to reach. It is
also interesting to note that the final velocities attained over a given distance along
the slope or the accelerations acquired by the bodies are independent of their mass
and size. In other words, whether a sphere is small or large, light or heavy, it will
reach the finishing point before the other bodies do. It also follows that if a number
of spheres of different sizes and mass densities are allowed to go down an incline
starting from rest simultaneously, they will all acquire the same acceleration and
reach the finishing point simultaneously.

Let us also demonstrate the application of the dynamical equations in terms of
forces and moments for this problem. With reference to the free-body diagram
showa in Fig. Ex. 9.12 (Solution) the dynamical equations may be writien as

F, = mg sin 8- f=ma, = ma, (@)

r"\ =mgcosB—R=ma¢=0 (ii)
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support gently and allowed to move for r seconds fur- B
ther, estimate its angular speed and the velocity of the
centre of mass at that instant.

Solution  Applying the energy conservation principle
between the vertical position (1) and the horizontal posi-
tion (2),

A
(KE + PE), = (KE + PE), —=T=T==z=3
(0 + mgLi2) = (% 1.w? +% mv? + DJ Fig. Ex. 9.13
. ml?
Using the facts that [. =TMd V.=wlLl2,

@ =3gl. or @=.3g/L
in the clockwise direction.

Considering the free-body diagram at the instant when it just acquires the hori-
zontal position (Fig. Ex. 9.13 (Solution)).

H)’
T
A B x
RX
mg

Al 1B

A\ Vo o Ve, o apiE
~
A

Fig. Ex. 9.13 (Solution)

For the centre of mass of the bar,
R, = ma,, @)
R, = mg=ma, (ii)
and by the Euler’s equation applied at A,

2
—mg L2 =1, a=%a (iii)
From Egq. (iii), the angular acceleration

a=-3g/l2L
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Potential energy at the point of interest
=M/4 g RI2 = MgR/8

because the rolling mass must be quarter fraction of the initial mass.
Release of potential energy = 7/8 Mg R
The kinetic energy at this instant must be given by

=IM y2 1,02
KE >4 V; +2Im
MV R VN6 ey
T8 2742 RI2) ¢
Hence, 316 MV2 =718 Mg R

and V. =.J14!3 gR

Example 9.15 A small sphere rolls down without slipping from the top of a track
in a vertical plane. The track has an elevated section and a horizontal part as shown
in Fig. Ex. 9.15. The horizontal part is 1.0 metre above the ground level and the top
of the track is 2.4 metres above the ground. Find the distance on the ground with
respect to the point B (which is vertically below the end of the track as shown)
where the sphere lands. During its flight as a projectile, does the sphere continue to
rotate about its centre of mass? Explain.

Solution At the initial point P,

P
24m A
1.ti m
B
Fig. Ex. 9.15
KE, =0, PE, =24 mg A
At the end point A, T
im

KEZ=%mv2+%!m2

"+

c
Fig. Ex. 9.15 (Solution)
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mv? +%(%mR2]V—'

R?
S IS SO TS SR e vS
sz +—=m IOmV
PE; =10 mg

By conservation of energy in the absence of dissipation,

0+24 mg =~%'-mb’1 +1.0mg;

whence, V=,2g

After leaving A, the sphere would continue to rotate at the same rotational speed
in the absence of my external moment acting on it.

. 2
, =85
Then, z = 2V
Therefore, x =2x2gx1l/g=2.0m.

Example 9.16 State whether the following statement is TRUE or FALSE. Give
very brief reasons in support of your answer.

A ring of mass 0.3 kg and radius 0.1 m and a solid cylinder of mass 0.4 kg and
of the same radius are given the same kinetic energy and released simultaneously on
a flat horizontal surface such that they begin to roll as soon as released towards a
wall which is at the same distance from the ring and the cylinder as shown in Fig.
Ex. 9.16. The rolling friction in both cases is negligible. The cylinder will reach the
wall first,

— v, E
Fig. Ex. 9.16
Solution
For the ring, For the cylinder,
m =03 kg m =04kg
r=01m r=0Im
I =03x0.1% = 0.003 kg m® 1, =0.4x 21 20,002 kg m?

2
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For the ring, For the cylinder,
XE=%XO.3XV‘2+ K =-%x0.4ch"+
%xo.{mx(%]_z %xﬁ.mzx[%]z
=0.5V2 +0.15V2? =0.3V? =0.2V2 +0.1V2 =0.3V2

Since they have the same kinetic energy at the start, the expressions for KE
require that they have the same velocity as well. There being no change in potential
energy and negligible friction, they will reach the wall simultaneously.

The given statement is, therefore, FALSE.

Example 9.17 A sphere of radius 0.5 m and mass 10 kg is released gently from
rest on a 30° incline as shown in Fig. Ex. 9.17. If it rolls without slipping, determine
the minimum coefficient of friction compatible with the rolling motion. What would
be the velocity of its centre of mass after it rolled down 5 m.

Fig. Ex. 9.17 Fig. Ex. 9.17 (Solution)

Solution Considering the free-body diagram of the sphere as shown in Fig. Ex. 9.17
(Solution) rolling without slipping,

a=ro
R=mgcos 8 (i
mg sin 8~ f=ma (ii)

mgsin@-r=ma-r+la
or mgsin8r=ma:J+2)‘5mr2-a

a_Sgsinﬂ_Sx‘?.Slxsin 30°

— 2
TS Ix05 - rdls

whence,
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and a=05x%x7=35m/s
From (ii), f=10x9.81xsin30-10x3.5=1405N
For f=puR=pu-mgcos B

# = 14.05/(10 x 9.81 x cos 30) = 0.165

Since the acceleration of the centre of mass is constant, 3.5 m/s?, the velocity
5 m down the plane is such that

V-0=2x35x5
whence v=5.91 m/s

Let us determine the velocity of the sphere if it was sliding all the way on a
frictionless plane. Then f= 0,

mg sin 8= ma, a=0
a=gsin 6
vi-0=2x9.81xsin30°x5
v="7m/s

This is more than the velocity of the rolling sphere but there is no rotational
velocity in this case. Let us compare the kinetic energies in the two cases, i.e., with
rotation and frictionless sliding. In the former,

KE=Lmv2 +L1g2
2 2

_1 _ 1 2_ ,
=3 m? (1 +2/5) = 15 X 10x 5917 =245

In the latter,
KE=3 x10x7* = 245]
The kinetic energy (as also the potential energy) is the same in both cases. It is
indeed so because pure rolling does not entail loss of energy.

Let us do a little reflection. If it was a cylinder instead of a sphere, the moment
equation would be

mgsin@-r=marf+mrf2-a=32m’ a
_2gsin8 _ 2x9.81xsin 30

whence a= T 3x035 =6.54 rad/s
a=0.5 %654 = 3.27 m/s?
Then, f=10x981xsin30-10%327=1635N_

and 4= 16.35/(10 x 9.81 x cos 30) = 0.192
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which means that the surface must be more rough for the rolling of a cylinder than
for a sphere. In other words, if an incline is rough enough to cause a cylinder to roll
without slip, a sphere of the same mass and radius would surely rofl without slip!
Extending the same analysis to a hoop of the same mass and radius, g = 0.288
implies that the hoop is even more likely to slip than a cylinder on the same slope.

9.6 IMPULSE-MOMENTUM FORMULATION FOR PLANE MOTION

The equations of motion due to Newton and Euler may be integrated with respect to
time 1o constitute an alternative set of equations for studying the dynamics of a rigid

body.
The statement of the Newton's law
dVv
F =ma= m—=

integrated with respect to time 1 over the limits 1, to ¢, results in

[ Fdi=miVi? =m(V, -V,) (9.19)

The left-hand side of Eq. (9.19) is the linear impulse due to the net external force
F over the period of action whereas the right-hand side is the change in linear
momentum of the centre of mass over the same interval of time. The equation is,
therefore, called the linear impulse momentum equation, sometimes referred simply
as the impulse-momentum equation.
The Euler’s equation,
dw

MC =], cx=l,?

on integration with respect to time 7 over the limits f; and 1, results in

L]
M di=110}=1(0;-0)) (9.20)

I

The left-hand side of Eq. (9.20) is the angular impulse due to the net moment M,
. acting about the centre of mass C over the period of action, whereas the right-hand
side is the change in angular momentum about the centre of mass over the same
interval of time. The equation is, therefore, known as the angular impulse-momen-
rum principle. It may be noted that for the plane motion of a rigid body, the angular
impulse as well the angular momentum about the centre of mass must only be about
the axis of rotation through C.

There is no doubt that the principles of linear impulse-momentum and angular
impulse-momentum applied to a rigid body are mutually independent principles,
one not derivable from the other and both of them are required jointly to tackle a
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problem on rigid-body dynamics in just the same way as Newton's law and Euler's
equation are used. Preference for thé impulse-momentum principles over the said
laws is natural when concerned with the gross effect of the change in linear and
angular velocity over a period of time. In particular, when the net external force or
net external moment is zero, the corresponding impulse-momentum principle reduc-
s to momentum conservation and may be used more conveniently. A system of two
bodies in an encounter, say an impact, have no external force or moment acting
upon them; the momentum conservation principle may be applied to advantage to
the system of the two bodies. The momentum conservation principles for two bod-
ies may be stated as follows:

Linear-momentum conservation principle:
mVe +my Ve, =m\V, +myV, (9.21)
Angular-momentum conservation principle:

oo+l 0,=1 0]+l 0 . (9.22)

where suffices 1 and 2 refer to the two bodies; unprimed variables for conditions
just before and primed variables for conditions just after the phenomenon.

Example 9.18 A uniform circular cylinder of mass m and radius r is given an
initial angular velocity @, and no initial translational velocity as shown in Fig.
Ex. 9.18. It is placed in contact with a plane inclined at @ to the horizontal and it
moves up. Assuming the coefficient of friction g for sliding between the cylinder
and the plane, find the distance the cylinder moves before sliding stops. Assume
that g is greater than tan a.

Solution Considering the free-body diagram of the cylinder as shown in Fig.
Ex. 9.18. (Solution). Let us choose the centre of mass O as the reference point and
use the angular impulse momentum equation to determine the time f required to
decrease the velocity to a value .

/=
B
uR
)
\
R
o mg
Fig. Ex. 9.18 Fig. Ex. 9.18 (Solution)
2
—URrt =l (w-w,)= m; (w-wy)
Since R =mgcos
r (mo - )

r= 2Ugcos @
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The velocity of the centre O parallel to the plane is obtained by applying the
linear impulse momentum equation.
mg ([ cos & — sin o) = m(v—0) (ii)

with positive direction up the plane.
At the instant sliding stops and pure rolling begins,

V==ro-
From (i) and (ii),
_ ncosa—sina_
“3ucosa—sina °
re
and g

= 8(3 4 cos ot —sin &)

The forces acting on the cylinder remain constant during sliding and hence
acceleration is constant. The distance travelled while sliding must be

d=1/2 vt

r? @2 (ucos - sin @)

= 2g (3 p cos & —sin a)? ’

Example 9.19 Determine the angular momentum of a uniform thin bar of length L
and mass m when it is rotating at a constant angular velocity @

(a) about its centre of mass

(b} about one end
provided that it stays in the same plane.

Solution The mass per unit length of the bar is m/Lh

. dr

e

—L

]
|
1

Fig. Ex. 9.19 (Solution)

For case (a), the element of mass m/L -dr shown in Fig. Ex. 9.19 (Solution}
rotates at a velocity re; its angular momentum is r m/L ro dr.
Integrating from —L/2 to + L/2, for the whole bar,

+LI12 +LI2
2
= [ e no (" ] =1/12 ml2w

-LI2 =Li2
=l2mlo=I 0

where /1, is the moment of inertia of the bar about its centroid.
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Similarly, for case (b), considering the origin at O and locating the element dr at

a distance r for O,

L
Ho=[Z2rtdr=13mL2 0=1, 0.
0

Example 9.20 A uniform bar AD of length 2 m and mass 5 kg hanging freely from
a frictionless pivot at A is struck by a 25 g bullet approaching at a velocity of 500

m/s as shown in Fig. Ex. 9.20. The bullet pierces
through the bar and emerges with a velocity 40%
of its initial value.

Determine the angular velocity of the bar just
after the bullet emerges and the maximum angle
through which the bar would swing. Comment on
the total loss of energy in the process.

Solution The free-body diagrams are drawn or
simply visualised in order to decide whether to
apply the linear impulse-momentum principle or
the angular impulse-momentum principle (Fig. Ex.
9.20 (Solution)).

The fact that there is going to be an unknown
impulsive reaction at the pivot A rules out the con-
servation of linear momentum along any axis. From
the fact that the moment of impulsive reaction at A
taken about A is zero, the angular impulse momen-

A
Bar
Bullet 1.8 em
\ C|e
1 ~
30° ("~ \B—-—
~ ~
0.5 cm 2\' ~.
-0
Fig. Ex. 9.20

tum principle about A can be employed with advantage. It should be understood that
there is no external force acting at B as far as the system of bullet and bar is

[Rot

Impulslva\
Reaction A

Free Body Diagram

\ 4

c

1mm--ﬁa

"~

Impulsive Action

Fig. Ex. 9.20 (Solution)
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concerned. The bullet exerts a force on the bar and the bar reacts it undiminished on
the bullet.

The net angular impulse must equal the change in the angular momentum.
Initially, the angular impulse or the moment of linear momentum taken about A is

0.025 x 500 cos 30° x 1.5 = 16.24 kg m¥s

Finally, the angular impulse or the summation of the moments of the linear
moment of the system about A is

0.025 %(500 X 0.4) cos 30°x 1.5+ 5% > x @
=65+50 kgm¥s
Net angular impulse about A is
16.25 - (6.5 + Sw) =9.75-50 kgm%s (i

Starting from rest, the bar acquires an angular velocity so that the change in the
angular momentum is

Lo=15x5x2Pw =160  kgmis (ii)

Equating Eqgs. (i) and (ii)
9.75 - 50 = 1.67w
whence @ = 1.46 rad/s

Alternatively, the angular impulse-momentum principle applied to the bar can be
interpreted as,
Net angular impulse imparted by _ Change in angular momentum of the bar
the bullet on the bar ~ about its centre of mass
The left-hand side term is

0.025 x (500 - 0.4 x 500) cos 30° x 1.5 =9.75 kg m¥s
and the right-hand side term is

% x5x2(w-0)=6670 kgm¥s

which when equated, provide @ = 1.46 rad/s, the same result as obtained earlier.

The maximum swing of the bar can be calculated by applying the energy conser-
vation principle because there are no dissipative actions from the instant the bullet
emerges out of the bar to the instant of maximum swing. Considering the mma]
position as the reference position,

PE, =0

KE, =-%x(—%—x5x22Jxl.46’ =711
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Finally, the bar swings through an angle 6 and the centre of gravity is lifted by
h:—g-x(l —cos 8)=(1-cos )

PE, =5%9.81 x (1 -cos 6
=49.05(1 - cos 6)
and KE, =0
because the bar comes to momentary rest at the position of maximum swing.
By energy conservation,
PE, + KE, = PE, + KE,
7.1 = 49.05(1 - cos 8)
whence 6=31.2°
In order to estimate the total loss of energy in the process, consider the energy in

the system just before and after impact.
Just before the impact, only the bullet has kinetic energy given by

% % 0025 x 500% = 3125

Just after the impact, the bullet has a part of its kinetic energy and the bar has
kinetic energy given by
1x0.025x 2002 +%x(%x5x22)x 1467

=507.17J
Loss in energy of given by
3125 -507.1 =2617.97J
which is
% x 100 = 83.8%
of the initial energy of the bullet.
The percentage energy imparted to the pendulum in moving the pendulum is

L1 2100 =023%

3125
which is indeed a very small fraction of the initial energy of the bullet.
It is the mechanical energy which is lost; in fact, it is converted into heat and
sound and thus dissipated.
If it is desired to determine the impulsive reaction at A, it is now possible to do
so by applying the linear impulse momentum principle.

JR, dt =0.025(500 - 200) cos 30° -~ 5 x 1 x 1.46
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It shows that the safe velocity limit is higher for
o large b, i.e., wide-base vehicles
* low h, i.e., low centre of mass
¢ high r, i.e., curve of large radius
and for a location with a higher value of g!
The vehicle would slip side ways when the lateral force equals the frictional
resistance.

vZ
m ke H(R + Ry
=pmg
whence v =4fugr (ii)

Comparing (i) and (ii), it is observed that on a smooth road, i.e., i less than b/h,
the vehicle will skid rather than overturn. For a rough road, u greater than b/h, the
vehicle tends to overturn than slip sideways.

Let us now consider the free body diagram of the vehicle turning on a banked
road (as shown in Fig. Ex. 9.22 (Solution)).

Fig. Ex. 9.22 (Solution)

fi+fi+mgsinf@= m% cos 8
)2
R, + Ry~ mg cos 8=m‘Tsin 7]

2
Ry -2b—-mg (bcos 8- hsin 8) = an (b sin 8+ hcos 6)

For the condition of overturning, R, = 0,

1+ hibtan 8
Y= T=bihune /M
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9.7 GENERAL MOTION OF A RIGID BODY

Let us now establish the dynamical cquations of the general motion of a rigid body.
By general motion, we imply a combination of translation in space and rotation
about the coordinate axes.

Consider a rigid body in general motion referred to the fixed reference frame
XYZ as shown in Fig. 9.6. Let a set of body axes xyz be fixed at the point A, Let the

z w
z
| Element
dm
/€ b
Téa
Body
Axes A y
R Ra
Aa
x
Y
Fixed
Axes

Fig. 9.6 General Motion of a Rigid Body
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H=o,[(?+)dn-o, | xydn-o, [ xzdm
H=o [ +xdn-o_ [yzdn-o, [ yxdm
Ho=w_ [(x?+y)dn-o, Judn-w, [ydn
Recalling the definitions of the moments of inertia, c.g.,
lo=[(y* +22)dm
I, =[ xydm

the angular momenta can be expressed as
H =l.0- 1o -1.0
H=l0-10 -0 (9.29)
H=1La -0~ 0

In matrix form,

1 =1, =1

H, X Ay X W,
Hop==1, I W - .f_‘.__ @,
H: - f:x ﬁf:r ‘(z: @,
or Hy=1, w (9.30)

The components of the inertia matrix arc defined with respect to axes attached to
and rotating with the body; these are invariant with respect to the bady axes. If the
body axes are selected to be the axes of symmetry or if these are the principal axes
at the reference point, then the products of inertia vanish i.c.,

Iy = 'f_..- = ‘(:,x = 'f_n = "'.u = 'fz_r =0
and the principle moments of incrtia are
I.=1.. n"_\_ =/, and I =1I.

Then the angular momentum is expressed as
H=H,i+Hj+Hk
where’ H =1,
H, = 1o,

H.=Lo. ©.31)
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Case VI: Translation of a Rigid Body

w=0 and w =0
whence, w,=w=0=0
and O =0 =0 =0

The Euler’s equations are then reduced 1o naught and the dynamical equations
for the body are:

F.=ma,
F.=ma,
F.=nma, (9.44)

where @, a, and a, are the acceleration components for any point of the body, as
also for the centre of mass.
For a plane translatory motion, therefore,

F.o=ma,
F, = ma,
if the parallel planes of motion are parallel to the xy plane.

For a rectilinear motion along the x-axis, the sole equation of motion must be

F.=ma,

9.8 GYROSCOPIC ACTION

If an axisymmetric rigid body such as a plate or wheel spins about its axis of
symmetry and this axis is precessing with a uniform angular velocity about an axis
perpendicular to that of spin, then a couple called a gyroscopic couple acts on the
body which is directed normal to the axes of spin and precession.

If a body spins at a constant angular velocity @ about its x-axis as shown in Fig.
9.7(a) and it has a moment of inertia [ about this axis then the angular momentum
possessed by it is given by

H=Iw

which is shown by a vector oa. In a short interval of time Ar, the axis of spin
precesses about the z axis by an angle of A¢. The angular momentum of the body
remains the same in magnitude, i.c., /@ but changes in direction through an angle
A as represented by a vector Ob. The change from the initial to the final position
over the time At is given by /@ A¢ and the rate of change of angular momentum,

lwAg  d¢

= L1 =
a0 At @ dt

=lww,
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because the precessional angular velocity is given by

_d¢
@ =

The rate of change of angular momentum, by Euler’s equation, must equal the
external moment acting on the body

This moment is also termed the gyro-couple.

It may be noted that the gyro-couple acts in accordance with the right-handed
triad. The rule to determine the direction of the gyro-couple may be stated as
follows:

The spin @, gyro-couple M and precession o, are consistent if all of them are
along the positive axes or if two of them are along the negative axes.

X
Vector Diagram in the x-y Plane for Gyroscopic Phenomenon

Fig. 9.7 fa) Gyroscope and Gyroscopic Action
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By the principle of the gyroscope,

M =lwa,
w=-M__ 2.94
lw, 0.005x0.524
= 1122 rad/s
_ 60 . .
=1122x i 10,720 revolutions per minute

As is typical of a gyroscopic action, the spinning speed of the gyro-rotor is
extremely high. The high speed of rotation of 10,720 revolutions per minute is,
hence, not unexpected.

Another fact that emerges from this example is that the gyroscopic couple can be
large to be able to precess a rotating body. If the polar moment of inertia of the
gyro-rotor is large and the spinning velocity is made extremely high, then the gyro-
couple required to precess the rotor by a small angle can be very large. This fact
about a gyroscope is exploited by using it to provide stability to vehicles both on
the carth and in space. But for gyroscopic stability, it would have bheen impossible
to drive a two-wheeler vehicle such as a bicycle or motorcycle. Some other exam-
ples of the gyroscope are gyrocompass, rate-of-turn gyro, artificial horizon for
aircraft and stabilization of aero-engines, rockets and ships.

Concept Review Questions

I. Stale. giving reasons, why
(a) the reference point on a rigid body is usually chosen as the centre of mass or a
point fixed in space.
(b) the reference axes are attached with a rigid body oriented to coincide with the
principal axes.
{c) Newton's law and Euler's equation together govern the motion of rigid bodies.
{d) the kinetic energy of a rigid body in general motion is the sum of the translation-
al kinelic energy associated with the centre of mass and the rotational kinetic
energy of the mass rotaling about the centre of mass.
2. Under what conditions and for what states of motion is the simple lorm
M=la
adequate to describe the motion of a rigid body?
3, Write down the set of equations governing the dynamic behaviour of
(a) arigid body in rectilinear translation, plane translation, and space translation.
(b) arigid body in general plane motion.
(c) a rigid body rotating about a fixed axis which is also its principal axis.
4. Why is it that
(a) Euler’s equations do not contain the products-ol-inertia terms?
(b) the components of the inertia matrix do not change with time during the motion
of a rigid body?
{¢) the reference point has to be chosen with restrictions for the application of
Euler’s equations?
5. State the assumptions made in the development of Euler's equations and trace the
origin of these assumptions.
6. State the form of the following principles as applied to the dynamics of a rigid body.
{a} Impulse-momentum principle
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£

Fig. Prob. 9.6 Fig. Prob. 9.7

A horizontal force F applied to the centre of mass of a sphere of radius R and mass m

causes it to roll without slip (Fig. Prob. 9.7).

(a) Find the acceleration of the sphere.

(b) If there was a cylinder of the same radius and mass instead of a sphere and the
force was applied centrally on it, would it have accelerated more or less and
why?

Assume the friction coefficient as 4 in each case.
(Ans. (5F/7) m and (2F/3)} m; less)

At what distance p should the horizontal force F be applied to the homogeneous bar,

homogeneous cylinder and homogencous sphere so that the horizontal component of

the reaction at the point of suspension is zero (ref. Fig. Prob. 9.8).

24 Sdand 7 d]

1 TOI)

Cylinder
Fig. Prob. 9.8

An aeroplane is flying at 500 km/hr. Find the angle with the horizontal at which it
must bank in order to turn without slip sideways, in a circular path of radius 5 km.
Assume thal the resultant air pressure on it acts through its centre of gravity at right
angles to the angle of banking. (Ans. 21.5%)
A uniform rigid cylinder of mass m and radius r rolls without slip on a horizontal
surface., What is its kinetic energy when its centre has a speed V.?

Would a sphere of the same radius, same mass and same velocity of the centre of mass
have less or more kinetic energy?

3 v2. a1 2)
(Ans.4m‘r" 3 less, IomV

A bar AR of mass M and length L is pinned to a disc of mass m and radius r and the
two are suspended at point A to hang freely. If a horizontal force F is applied at the
centre of the bar, determine the angular accelerations of the bar and disc at the instant
as shown in Fig. Prob. 9.11.
247 12f
[‘“’" 13mL' 13 mr)
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APPLICATIONS IN
DYNAMICS

This section consists of some salient applications in dynamics under
the following two chapters:

Q D1 IMPACT OF TWO BODIES
QO D2 CENTRAL FORCE MOTION
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D1.2 COEFFICIENT OF RESTITUTION

The energy dissipation effects are assumed to be described by a single scalar pa-
rameter e, the coefficient of restitution defined as the ratio of the impulses of
recovery and deformation for either body. Considering the equation of motion for
each body, the impulse of contact force equals the change in momentum for the
body along the line of impact in the vicinity of the contact point.

With reference to an oblique central impact, as shown in Fig. D1.3(b), together
the force-time plot, .

_ _Impulse of recovery i,
" Impulse of deformation ~ /,

4r, 4
= [Fdt [ [Fat
ar, 0

For body 1,
_m.(Vf"V‘.}'e,, .
_m,(V,.—V,)ve,, ®

For body 2,
_my (Vz'_v.;)'e,, "
€=, (V. ~Vy)e, @

Combining Egs. (i) and (ii)
(Vz’ - 'Vl’) \4

- P D1.3
‘ [VI - VZ ) an ( )

Velocity of separation along the line of impact
Velocity of approach along the line of impact

The coefficient of restitution e may now be related to the dissipation of energy
during a direct central impact. Assuming that the potential energy of each body
remains the same during the infinitesimal time of impact, the kinetic energy just
before the impact is

1 1
KE =5mt Vlz +Em2 V; (D1.4)
and the kinetic encrgy just after the impact is

KE” =3m V(* +3my Vi (D1.5)



618  Engineering Mechanics

i —
Uy
S, {
u=0
2 m Track
__fg Waight

R B

Fig. E12.1 Apparatus for Coefficient of Restitution

BACKGROUND INFORMATION

The trolley is placed on the bumper end of the track. The cord and weight are tied
to it at the other end and released. As soon as the weight drops to the ground the
trolley is let go freely on the track. It decelerates and comes to rest after a distance
5, given by :

ul=2a8, (E12.1)

where u; is the speed of the trolley at the instant the weight just touches the ground.

If the trolley is now placed on the other side of the pulley and the weight,
attached to the same length of the cord, is dropped by the same height A, the speed
acquired by the trolley would be u; and it would go on for a distance §;. However,
after the trolley travels a distance §,, an impact takes place, a fraction of energy is
dissipated and the trolley retracts by a distance S, instead of the distance (S, - §,) as
expected in the absence of an impact.

The speed of the trolley just before the impact is given by

ul - ut = 2aS,
whence uf = u? - 2aS, = 2a$, - 2aS, = 2a (S, - S,)

and Uy = ’2(;(5" "Sz) (E12.2)

‘The speed of the trolley just after the impact would be such that

tliz = 2(15_‘; Uy = ’235_‘ (E12.3)
By the definition of coefficient of restitution,
i 2aS S
e=—= V25 = [ (E12.4)

uy  Jas, -5 V8-S,
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The value of e is unity if the collision is elastic, i.c., if energy is not dissipated
during the collision. Minimum value of e is zero for plastic collision, i.e., if the
energy is entirely dissipated. Typical values of e are given in Table D1.1.

Table D1.1 Typical Values of Coefficients

Value of ¢ Type of Materials
1 Perfectly elastic materials
05to 1 Steel, cast iron, brass
0to0.5 Plasticine, rubber, wood
0 . Perfectly plastic materials

D1.3 PLANE CENTRAL COLLISION

Let us now analyse a plane central collision of two bodies with reference to
Fig. D1.4.

Body 1 Body 2

Precollision velocity v Vz
Post-collision velocity v

Pre-Collision Velocities

9 ® v

Collision Past-Collisiun Velocities
Fig. D1.4 Central Collision of Two Bodies

With the knowledge of the initial conditions, computation of post-collision ve-
locities implies the evaluation of four velocity components. Four scalar equations
must, therefore, be set up:



622  Engineering Mechunfes

impact when the precollision velocities of the bodies are in the same direction and
sense as shown in Fig. D1.5.
By the conservation of momentum principle,

mVy+myVy =m V/+m,V; (D1.13)

and by definition of e,

_ Vm_ V{-V-;
e =mpregif (D1.14)

This is a set of equations for the two unknowns, say the final velocities after the
impact.

It is interesting to see the change of kinetic energy during the impact:

Before the impact

_1 1
KE ---,‘;-i'i't]‘lfl2 +5m2v;

After the impact

o 1 2 .L 2
KE —.Emllﬁ +oym, v,
By employing Eqs. (D1.13) and (D1.14), the expression for KE* can be reduced
in terms of V, and V,. The amount of kinetic energy dissipated is given by

1-e2 mym,

KE-KE' =
2 my +my

(v, -Vy)? (D1.15)

It may be noted that the dissipation of kinetic energy depends upon the coeffi-
cient of restitution e, masses m; and m, and the initial difference of velocities of the
bodies. The dissipation is zero if e = 1, i.e., when the impact is elastic.

Perfectly Elastic Direct Central Impact

For a perfectly elastic direct central impact, as shown in Fig. D1.5(a), the coeffi-
cient of restitution is unity

P SR { el £
VLTV oL
It follows that
V=V, =V, V== (V, = V) (D117

which means that the velocity of separation equals the velocity of approach in
magnitude but is opposed to it in direction.
From Eq. (I1.15), for e = 1, the kinetic energy dissipated is

KE-KE'=0 (D1.18)
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Since the potential energy remains unaltered during a collision, Eq. (D1.18) may
be interpreted to imply that the mechanical energy of the system of bodies is
unaltered during a direct central elastic collision. If the surfaces are frictionless, the
mechanical energy will also be conserved in an indirect central elastic collision
because the tangential velocity component of each body will then remain unaltered
during the collision.

'KE, + KE, = KE’, + KE",

1 1
or Ele|2+—m2V22 =

1 m vy +%m3V2’2 (D1.19)

1
2
Perfectly Plastic Direct Central Impact

For a perfectly plastic direct central impact, as shown in Fig. D1.5(b).
Vo _ W -W2

V, V-V,

wn

e =0=— (D1.20)

It follows that
VW=Vi=0;, V/=V/=V"' (D1.21)

which means that the two bodies move together at a common post-collision velocity
V* following a direct central plastic impact.
From Eq. (D1.15), for e = 0, the kinetic energy dissipated is
my My

KE-KE' =1

- 2 D1.22
2 my +my Vi -V2) ( )

This is incidentally not the entire kinetic energy possessed by the bodies before the
collision. The kinetic energy KE before the collision was

1
2

1

KE = 2

2 2
m Ve +=myVy

and that after the collision is
KE' = 1 ( I
=5 my +my)V
The percentage dissipation of energy is given by

KE - KE’

s x 100 %

D1.4 COLLISION OF A SMALL BODY WITH A MASSIVE BODY

If a small body collides with a massive rigid body of a flat or curved surface, as
shown in Fig. D1.6, the velocity of the massive body remains unaltered because of
its large mass and the large momentum required to produce a small change in its
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velocity. If a normal is drawn at the point of n
impact, the velocity component of the small body
in the direction of the normal must obey the 91""“"""--9,'
restitution hypothesis
11V,
V; in
e=-- : v,

n A i

or Vi=eV, (D1.23)  seestondt a4l '
Massive Body
which implies that V7, is opposed to V, and is Fig. D1.6 Collision of a Small
reduced in magnitude by a factor e. The veloci- Body with a Massive
ty component tangential to the surface remains Rigid Body
unaltered in the absence of frictional forces,
V=V (D1.24)
The angle of incidence 8, is given by
6 Y, D1.25)

lan & —W (D1.

and the angle of deflection 8" is given by
v/ V
tan 8 =?:7=~T'e=-mn9,fe (D1.26)

This implies that 8 must be reverse in sign to that of 8, i.e.,, the angles of
incidence and deflection must be subtended on either side of the normal direction.
Since ¢ may lie within O and { for different materials, numerically

tanB] 2tan B
or 8128,
In particular, for an elastic impact, e = 1
tan ) =tan 8; 8 =6,
the angles of incidence and deflection must be equal.
For a plastic impact, e = 0
tan 8] —e0; 6] =90°

The small body must be deflected tangential to the massive body at the point of
contact.

Example D1.1 (a) A small steel ball is dropped on to a plane surface from a
height 4 and it rebounds to a height h, after impact. If the ball is allowed to drop
and rebound repeate dly, determine the height of rebound after n impacts.
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_ [h-d

e Y

or eh=h~d
whence h= dz
l-¢

It has been assumed that the ball drops approximately vertically on each step and
that the step width is small.

Example D1.2 A bullet of mass 20 g moving with a velocity of 100 m/s hits a
2 kg bob of a simple pendulum horizontally as shown in Fig. Ex. D1.2. Determine
the maximum angle through which the pendulum string 0.5 m long may swing if

(a) the bullet get embedded in the bob

(b) the bullet escapes from the other end at 20 m/s

(c) the bullet is rebounded from the surface of the bob at 20 m/s

0 0
]
I
|
|
|
h
1.2 ! i
=& |
T
Before Impact After Impact Maximum Swing
Fig. Ex. D1.2

Solution
Just before the impact, for the bullet,

V), =100mf/s and m=002kg, mV,=2kgmis
and for the bob
. V, =0 and my=2kg mV,=0
Now, mV, +m,V, =2 kg mis
Case (a)

Just after the impact, the bullet and the bob become united to travel at a velocity of
V’ m/s and their momentum is

(2+0.02)V’' =202V’ kg m/s
Equating the initial and final momenta,
202V =2, V'=0.99 mfs
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|
|
|
|
h
|
|
i
1

Fig. Ex. D1.7 (Solution)
During explosion, the momentum of the system must be conserved,
mIVI’ +m, V; =mV
4V 1V =5%10=50 @)
Before the explosion, the kinetic energy is
Ly =Lxsxi0?=2501
2" 2
and the potential energy is
mgh =5 x 981 x15.29=7501].
Afler the explosion, the kinelic energy becomes

1 1 2 _ =
Fo4Vy 451V =2 250 = 500

4V + V;Z = 1000 (i)
From (i) and (ii)
Vi, =50rit5mis and V’y=-10and 15m/s
Feasible sets of answers are
V. =5 and 2=30m/s Set I
and V4 =15 and V’3=-10m/s Setll

The horizontal separation between the two on the ground equals the sum of their
ranges.
Time taken to reach the ground is given by

0+ % ¢ P =15.29; 1 = 1.766 seconds
D =15% 1.766 + 10 1.766 = 44.15m  for set I

Alternatively,
D =30x%x1766-5%1766=44,15m for set 11

The two answers happen to be indentical!
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Example D1.9 A simple pendulum is suspended from a peg on a vertical wall.
The pendulum is pulled away from the wall to a horizontal position and released
(see Fig. Ex. D1.9). The ball hits the wall, the coefficient of restitution being _Jz?
What is the minimum number of collisions after which the amplitude of oscillation
becomes fess than 60 degrees?

Solution In the initial state, with P as datum, - L .
PE=mg L, KE=0 ;l
Just before hitting the wall, /
/
PE=0,KE=1 my? J
2 -
’/
By energy conservation, P3—-
12
= mV-=mglL V=, 2gL
2 Fig. Ex. D1.9
_ Velocity of separation _ v+ _ 2
Now, e = Velocity of approach ~ V'~ _[5

It also implies that the kinetic energy becomes €, i.e., 4/5 times i.e.. 80% with
every impact.
At the position of 60° oscillation,

PE = mg L(1 - sin 30) = mg L2
which corresponds to a kinetic energy 50% of the original value. The kinetic energy
would be less than 50% after 3 collisions since
80% x 80% x 80% is just less than 50%

The minimum number of collisions is, therefore, three.

Example D1.10 A block A of mass 2 m is placed on another block B of mass 4 m
which in turn is placed on a fixed table. The two blocks have the same length 44
and they are placed as shown in Fig, Ex.

D1.10. The coefficient of friction (both A

static and kinetic) between the block B and 2m

the table is . There is no friction between

the two blocks. A small object of mass m v B 4m T
moving horizontally along a linc passing l—-; M SRV I T 2d
through the centre of mass (c, see figure) ] ! {
of the block B and perpendicular to its | Pre—dd—= |
face with a speed V collides clastically with Fig. Ex. D1.10

the block B at a height d above the table.
(a) What is the minimum value of
V (call it V) required to make the block A topple?
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(b) If V=2V, find the distance (from the point P in the figure) at which the
mass m falls on the table after collision. Ignore the role of friction during
the collision.

Solution The block A would topple if the block B below it slides past it half way,
i.c., a distance of 2d to the right. The frictional force f between the table and the
block B at the state of impending motion and thereafler is given by

f=6mpug
opposing the direction of motion of the block. The encrgy required for the block to
move a distance of 2d is, therefore, B

E=6mugx2d=12mugd
(a) The minimum value of velocity of the block B just after impact should be
such that

T@m -V =12mpugd

whence Vz =4/6ugd
During the impact, the momentum is conserved,
4m 'Ilf"‘sjr + VM =mV,
AVp+ V=V

and, by the definition of restitution,

v V.
e =- Bf— =]
0=V,

From these two equations
Ve =% V, =J6ugd; V,, ==3/15V,

or VD=% 6ugd

(b) In this case,
V=2V, =5/6pgd
For momentum conservation during the impact,
am- Vgrm-Vy=mV

and by virtue of elastic impact

Vg, =V
Bf Af . _
8=—[0_—v]=].vm _V-"f =V



636 Engineering Mechanics

whence, V= —% v

=——(2V0)———x2x—,f6,ug
—3,’6,ugd

Example D1.11 A drop hammer 1 with a mass of 6 Mg falls from rest 0.8 m onto
a forged anvil 2 mounted on springs which have a composite stiffness 2 MN/m as
shown in Fig. Ex. D1.11. Find the maximum compression of the springs after the
impact if the anvil has a mass of 4 Mg and the coefficient of restitution between the
hammer and the anvil is e = 0.5. Neglect the friction along the vertical guide posts.

|... s

L

o
3

Fig. Ex. D1.11

Solution 'The velocity of the hammer just before the impact is given by
-%-ml Vji =ny gh
=1(2 %x9.81x0.8=3.96m/s
During the impact, momentum is conserved,
m|V| + Iﬂzv! = .le,' + m,_V{

whence 6x10°x3.96 +0=6x 10"V +4x 10° v
or IV +2V = 1188

(Note: 1 Mg = 1 x 10% = 1000 kg)

(i)
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Also, from the definition of coefficient of restitution,

- VJ - Vl" - Vl'
TV, TV W,
V- VI'
0.5 3.96-0
or Vi-V/’ =198 (i1)

From (i) and (ii)
V) =3.564 mfs; V"= 1.584 m/s.
The kinetic energy possessed by the anvil is used up in creating the potential
energy of the springs:

%x4000x3.5642=%><2x10°x2

The spring compression is given by
x=0.16m
provided that the hammer does not hit the anvil again.

Example D1.13 A ball of radius r hits the ground with an initial velocity V; and
top-spin, i.e., angular velocity @,. Determine an expression for its linear velocity V.
just after the impact (see Fig. Ex. D1.13).

L
u
Uy
P P
Just before Impact Just after Impact

Fig. Ex. D1.13

Solution Just before the impact, the ball may have a horizontal component and a
vertical component of velocity, say u; and v, respectively.

The vertical rebound and change in the vertical component of velocity from V,
to V, takes place depending upon the coefficient of restitution between the ball and
the ground. It is not effected by the spin of the ball.

The horizontal component of velocity changes from i, to u, and the spin chang-
es from @, to w,. It is reasonable to assume that the slipping at the point of contact
will cease, the earth being fairly rough and sticky. Consequently, the angular veloc-
ity of the ball just after the impact will only be uy/r;

)y = ylr
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10 mis A
——— e —— ———— —{—‘
05m
o
05m
i = —— ]
6 m/s B
Fig. Ex, D1.14

Momentum of the upper particle = 0.08 x 10 = 0.8 kg m/s
and for the lower particle, 0.08 x 6 = 0.48 kg m/s.
For the system, in the absence of external forces, the linear momentumn is conserved.

0.8 + 0.48 =(0.16 + 0.08 + 0.08) V,.
whence V. =4mfs
Also, in the absence of external moments, the moment of momentum of the
sysiem must be conserved.

0.8% 0.5 -048x05 =0.16x (v3)° /12 X @+ 2% 0.08 x (0.5

Therefore, o =2 radls
The final Kinetic energy is given by

-;— (0.16 + 0,08 + 0.08) x 4> + % x 0.08 x (2)°

=256+0.16=2721
Loss of kinetic energy in the process is, thercfore, 5.44 - 2.72, i.e., 2.72 J.

Example D1.15 A uniform bar of length 6a and mass 8m lies on a smooth hori-
zontal table. Two point masses m and 2m moving in the same horizontal plane with
speeds 2V and V, respectively, strike the bar (as shown in Fig. Ex. D1.15) and stick
to the bar after collision. Denoting angular velocity (about the centre of mass), total
energy and centre of mass velocity by @, E and V. respectively, which of the
following is (are) true after collision?

A
(A) V, =0 v%am
B) o =¥ f—d%a—
Sa
© o -V { 8m . |
Sa - a i 2a I

(D) E =3mV2 2v

Fig. Ex. D1.15
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which, approximated by the binomial theorem, becomes )
g /lg=1-2hR (D2.6)

or g=(0-2hR)g=g-2hiRg
or g, —-8=-2hRg (D2.7)

It implies that the reduction in acceleration due to gravity at a point & above the
surface of the earth in comparison with that on the surface is 2//R g, for small
height h.

Let us look at the variation of the acceleration due to gravity below, i.e., inside
the surface of the earth at a point P as shown in Fig. D2.3. In this case, the mass of
the earth inside it is

M’ = (bR M

where M is the mass of the earth.

This is because the mass is proportional to vol-
ume for constant density and the volume is propor-
tional to the cube of the radius of a sphere.

We are neglecting the gravitational effect of hol-
low sphere of outer radius R and inner radius b or
assuming that the net effect of that is zero.

Then, the gravitational force is given by

Fig. D2.3
GmM’ ¥
F =- 5T e
GM’ GM
and 8 =-b_2¢,=—R—Ibf.Rt‘,
whence g, =8bR or g,lg=hR (D2.8)

which means that, below the surface of the earth, the acceleration due to gravity
varies directly as the radial distance from the centre of the earth as also shown
graphically in Fig. D2.2,

From the above simple analysis, we also conclude that the acceleration due to
gravity is the maximum at the surface of the earth itself ignoring the variation in
density of the earth.

It is also interesting to consider the variation of the acceleration due to gravity
with latitude 6. The variation is due to the differential contribution of acceleration
by virtue of the spinning motion of the earth,

The point P located by R and @ as shown in Fig. D2.4 is in a circular motion of
radius r (= R cos ) with a rotational speed @. A body placed at P experiences a real
acceleration g = GM/R? towards the centre of the carth and a pseudo acceleration g,
= arr as shown. The resultant acceleration g’ is given by

g =[32 +g2-2gg cos 8]%

i
=g[| +(Rwiig)? cos?@-2 Rwlg coszﬂ]i
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if the polar axis is chosen so that ; = (. This is the equation of a conic section in
the polar coordinates with the origin O located at the centre of the earth. Comparing
it with the standard form of a conic section

L =u=—t+l(:059 (D2.13)
r e p
it is seen that
p=1
P
c?
P=CM
2
or e= %i’ (D2.14)

which is the eccentricity of the conic section.
Four cases are given in Table D2.1.

Table D2.1 Trajectories Under Central Force

Case Value of ¢ Features Type of Conic Section
c? :
I e=0 D=0, r= oM Circle
2 e<| Finite r for all @ Ellipse
3 e=1 r—oogt@=m Parabola
4 e> | r—» o for two values of 8  Hyperbola

The eccentricity of the orbit
_bc?
GM
depends upon the constant quantities G and M as well as the constants of motion, C
and of the conic section, D. The state of a satellite can be predicted with the help of
Eq. (D2.13) if the conditions at any one state, say the moment of burnout, are
known,

Assuming that the burnout occurs at the end of a powered flight at a position P in
space such that the velocity of the rocket is parallel to the surface of the earth, as
shown in Fig. D2.5, the satellite or space vehicle is said to begin its free-flight at the
vertex P. If the satellite, at this instant, is localed at a distance ry from the centre of
the carth and has a velocity V;, parallel to the surface of the carth

C= fovo

I
and = P (D2.15)
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since g
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Trajectory, e Launching Velocity, V
Hyperbolae>1; V> \lzﬁM!ra
4/" °
3’-__,,—- Parabola e = 1; V= ‘JZGMJ'IQ

Ellipse e < 1; V< Jaamro

2

Circle = 0 V= JGMirg

\
= Elipse with v fGh7ry

D ro2 'i"'cu2

the acceleration at the surface of the earth is given as

g= i—f (D.2.16)

where R is the radius of the earth.
Let us again discuss the four possible cases in terms of the launching parameters.

Reference is made in Figs. D2.2 and D2.3.
Circular Orbit
DC? | =
e=0= G D=0
The path is given by
1 _GM GM 1

whence

- *Fz‘(m:?{; = Constant

GM
Vo, =J—r;—# 807 D2.17)
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Tnax T
| i - B
b r 9
! - . g §
Apogea o 0 Perigee &
Aphelion Perihelion
Epicentron Pericentron
Apside (1) I Apside (2)
a

Fig. D2.6 Features of an Ellipse

This is the velocity required to launch the satellite for a circular orbit. It can be
secn that the velocity of a satellite in a circular orbit is more if it is closer to the
earth and less if away from it.

Modern-day communication satellites are geo-stalionary or synchronous i.e., re-
main fixed in location relative to the earth spinning about their own axes; the period
of revolution of a communication satellite should also be 24 hours. The orbit of a
communication satellite must be circular and it must be in the equational plane of
the earth. The rotational speed of the earth is

2

=m=o.mnm3 rad/s

[11]

The rotational speed of a geo-stationary satellite must also be the same.
w= Vg/r=0.000 073 rad/s
or V= 0.000 073 r m/s (i)

But, for a circular orbit

V, = JGMIr = [3.9860 x 10" /r (i)
From Eqs. (i) and (ii)
r= 42,180,000 m = 42,180 km
and V= 3080 m/s = 11,100 km/h

Geo-stationary satellites must, therefore, be located at a radial distance of 42,180
km or at an altitude h given by

h=42,180 - 6370 = 35,810 km

above the mean surface of the earth and must move with a velocity of 11,100 km/h
'n circular orbits in an equatorial plane of “\.¢ carth and in the same sense as shown
i Fig. D2.7. The period of rotation of a communication satellite must be 24 hours.
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=

Geo-Stationary

Satellite
h= 235810 km
Vo = 11,100 kmvh >
/Earth
Fig. D2.7 A Communication Satellite
Parabolic Trajectory
_,_Dbc? _GM
e=1= i D==3
The path is given by
1 _GM
rTcr +Dcos @

For launching at §=0and r=ry

p=L_GM_GM
, €* ¢?

Substituting for C = rgVj_in this equation

Ve, = ’@'ﬁ [28,75 =7 Ve D2.18)
o

=42 times the launching velocity for a circular orbit

If this velocity is imparted to a particle, it will follow a parabolic path, i.e.,
escape from the gravitational field of the earth. For such a path

9—5::,1—)0. F—oe
r

Since GM is a constant for the earth, the escape velocity Vg is maximum at the
surface of the earth and it decreases if the satellite is launched from higher altitudes.
This fact explains why satellites are launched after reaching very high altitudes by
powered flights!

Elliptical Orbit

O<e<],

The launching velocity is obviously between the values

Vo = _Q;_ﬂ!_ for a circular orbit

c
o

and Vo = |77 M for a parabolic escape trajectory

0
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If, however, the launching velocity is less than that for a circular orbit, i.e.,

0<V, < oM
o
the satellite still goes on an elliptical orbit with the centre of the earth as the second
focus instead of the first. It may also be appreciated that the launching velocity can
be adjusted to touch the surface of the earth at the diametrical opposite point.

If the launching velocity is less than this value, the object will hit the surface of
the earth while tending to complete the elliptical orbit. A bullet fired from a gun or
stone thrown by hand are examples of this case. In the first instance, it may appear
contrary to our belief that the trajectory of an earth-bound object, such as a stone,
bullet or jet of water should be parabolic. The paradox is resolved by remembering
that the value of g is taken as constant in magnitude and direction for the motion of
carth-bound objects. Analysis with constant g yields a parabolic trajectory which is
an approximation to the elliptical path obtained by taking variable g directed to-
wards the centre of the earth.

Although it is admissible to have the eccentricity e between 0 and 1, it is usual to
keep it very low, i.e., the orbit close to a circular orbit. The orbital eccentricities of
the planets are also very low. For example,

Orbital eccentricity of the earth 0.017
Orbital eccentricity of the moon 0.055
Some salient features of an elliptic conic section are shown in Fig. D2.6.

Eccentricity e =£ (<1
L
= min
rP= rl'uh
r
= max
PHIL
Semimajor axis a=lm ;-rm
Semiminor axis b= =afi-e?)
Distance between the foci =2.f(a? —b?)
Area of the ellipse = mab

Equation of the orbit is given by
r=all —ecos &) (D2.19)
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whence Frax = a(l + &)
and Fiin = a(1 — €)
ep=a(l - &%)
Hyperbolic Trajectory
DCZ
e>1, M >1
2GM !
i
0
From the equation of the trajectory,
1 =%‘?-+Dcos&

it may be observed that when r — e

0=g—‘.f+0cos8
GM

_——-—=—-l_
cos 8= DC? P’

and 8 =cos™! (—%)

describes the asymptote for the final direction of the particle.
It is observed that if the launching velocity equals or exceeds the escape value,
ie.,
2GM
Ven 2 ro

the object escapes the gravitational field of the earth. This is indeed the case of a
mission to reach the Moon or Mars or any other planet in the solar system.

The time taken for a particle in a central-force motion to travel from a position
6, to a position @ can be computed by starting from

ride =c

dt

_ride
or dt = a

The time taken T is given by

p @
T=_|'dr=—c- I rtde
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1 T de
C 2
0 ( %; D ecos 9) (D2.20)

For an elliptical orbit, the area traversed in one revolution is mab and the arcal
velocity is

dA _1,,d0_C
dt 2 d 2
The time period for one revolution is, therefore,
T=2mablC (D2.21)
For a circular orbit,
a=h=r
and the time period is
T=2nrd IC=2nry 1V, (D2.22)

It can again be observed that a synchronous or geo-stationary satellite would
have a time period of 24 hours.

T=2mryglVy, =24x60x60s

or Vg =0.000 073 r m/s
which is the same as determined earlier in Eqg. (i) under ‘Circular Orbit'.
D2.4 ENERGY EXPENDED FOR DIFFERENT TRAJECTORIES

Energy methods may be used to advantage for studying some aspects of the central-
force motion. For the gravitational field,

d(PE) __ . _GMm
dr r r?
or PE =— G"': " (D2.23)

which implies that the gravitational force field is a conservative force field. The law
of conservation of mechanical energy is, therefore, applicable in a central-force
ficld:
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KE + PE = Conslant

G M
or %mvz - m

= Constant (D2.24)

For a body at the surface of the carth of radius R

GMm

PE = R

If a satellite is launched from a radial position at a distance r, from the centre of
the earth,

KE + PE =tmv? _GMm
20 r,
Conservation of mechanical energy
G M GMm
%mvz - r'" =%—mV02 - (D2.25)

provides a relation to relate the velocity with the radial position of a satellite in
terms of the launching conditions.

For a circular orbit, the radial distance r is constant and equal to ry at all times;
so is the velocity V equal to V; at all times.

The escape velocity V, of a body may be determined from the fact that the body
should continue indefinitely and reach

r—e  when V=0

GMm

where KE+PE =imv2 -
2 r
=0-0=0

From the conservation of mechanical energy, the conditions at the launching
position should be such that,

(KE + PE)ypping = 0

GM
or Lav2 20 o9
2 € o
whence V,= 294
r
0
Since by definition,
G Mm
= mgy
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v, = [2M = fogon, (D2.26)
o

If a satellite is launched from a position ry, the energy required to be expended to
set the satellite into a trajectory may be determined if the intended velocity of the
satellite at any position is known

E =(.Lmvz_a"""")_[..9—”fl)
2 r

To

=Llmv2 +GMm[L—l)
2 T

m Voz (D2.27)

b=

Energy requirements for different trajectories are given in Table D2.2.

Table D2.2 Energy Expended for Different Trajectories

Trajectory Velocity Energy Expended
Circular orbit v=|GM E= G Mm
:‘D 2’0

G M
Elliptic orbits Ve ,Gr—‘“ E 2

]
(ii) 9.514'./4 2GM %(E(—nyﬂ
r o 2r, A

Escape trajectory (Parabolic- V= 26M E = GMm

minimum values) "o o

Hyperbolic escape V> 26M E ;.%
ro ro

D2.5 LAUNCHING OF SATELLITES AT AN ANGLE

Consider a general case of launching at r = ry with an angle of launch ¢, as shown
in Fig. D2.8. Let the launching velocity be Vg such that,

Vg, = Vo cosax

V"o =V, sinax
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Let 6, be the angle between the axis of symmetry of the conic and the radius
vector T,

1 GM )
a =F+Dcﬂ.\90

for the position of launching.

In general,
1_GM
'; = c? + Dcos@
and
V, = DC sin8; V, = DC sin,
- _1_GM
Since D cosé, N C?
d D sin6, = Ve
an sinf, = C
TART 12
D= [7‘__ 9_“:1] + [—’C'—] ] (D2.28)
o
_Dbc?
“=Gm

Consider the condition for the escape of the satellite, ¢ = 1. We can obtain that

o V@ cos? alr Vi —2GM)=0

whence, the escape velocity V,, = 2?—‘”

0

This is independent of the angle of launching; may it he (°, 90° or any other. A
satellite projected vertically or radially outwards from the surface of the earth, as
shown in Fig. D2.9, can also escape the earth’s gravitational field at the same
speed. It may, however, be added that the V), for escape is measured with respect to
the centre of earth considered as an inertial frame. The motion of the earth’s surface
adds to the final velocity of the satellite if the blast off takes place on the equator
and along the rotation of the earth and subtracts from the final velocity if the blast
off opposes the rotation. No such ‘gain’ or ‘loss’ is experienced in the velocity if
the satellite is fired from the poles.

Another interesting fact is that if a space vehicle is launched in order to escape
the gravitational ficld of the earth, it may so happen ihat the space vehicle escapes
the entire solar system. This is due to the fact that the earth is rotating around the
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It may be observed from here that if & must be made to approach infinity.

Vo 1' Vi - % (D2.30)

If, in addition, the velocity Vat i — oo becomes negligibly small or V — 0, then

the launching velocity Vj, cquals 1‘ 2 iM which is the escape velocity. of the parti-

cle as is expected from the earlier analysis of launching at any arbitrary angle.
Alternatively, the equation

2GMh

2 _y2 o
Vo=V “RR+ 1)

shows that the maximum height attained by a particle would correspond with the
minimum residual velocity squared V2, ie., V2=10
Hence, hy,, is given by
v 2GMh
o "RR+h_) -0
max

VIR V2R
GM 2\ (QgR-V2)
(2T—Vo] 8 ]

whence . [ —

(D2.31)

It is obvious from this expression that if

2 GM
V = ) ————
o =2-%
or Vp =422R = 2%

. would become infinite, i.e., the particle would escape the gravitational field
of the earth, On the contrary, if h,,, is small, let A, = # and A/R is negligible,

VIR
Ryl -0
(gR-VH % =%
h
2gh - Voz i Vol
Vy =4/2gh (D2.32)

which is a familiar expression for distance close to the surface of the earth.
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D2.6 ASTRONOMICAL FACTS AND LAWS OF KEPLER

A system consisting of a star, planets and satellites is called a solar system. A star is
a source of light, planets only reflect light and orbit around the star and the satellites
revolve about the planets. Satellites may be natural or artificial. Man-made artificial
satellites may be launched to revolve around the planets.

In our solar system, the sun is the star; the nine planets are Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto in order of their mean
distance from the sun. Thirty satellite bodies orbit around these planets. The moon
is the satellite of the earth. A number of artificial satellites are orbiting the earth
with a view to weather forecasting, intercontinental television relaying and spying
missions.

A study of the central-force motion would be incomplete without discussing the
contribution of Kepler who laid the foundation of orbital mechanics as also of
Newtonian mechanics.

The three laws of Kepler for planetary motion are:

1. Every planet moves in an orbit which is an ellipse with the sun at one focus.

2. The radius vector drawn from the sun to any planet sweeps out equal areas

in equal times.

3. The squares of the periods of the planets are proportional to the cubes of the

semi-major axes of their orbits.

These laws were enunciated by Kepler (1571-1630) from an analysis of the data
recorded by Tycho Brahe. This was long before the enunciation of the laws of
motion by Newton and the development of mathematical calculus. Newton (1642-
1727) published his work in 1687 and set the stage for the development of classical
mechanics,

Kepler's laws related to planetary motion can be derived from the laws of New-
ton and Newton’s law can also be derived from Kepler's laws,

The first law refers to a conclusion derivable from the study of central-force
motion; the motion in a central-force field must be plane and for the eccentricity
e < 1, the conic section traced is an ellipse for an inverse square force field due to
the Newton's law of gravitation.

The second law refers to the conclusion that the areal velocity is constant for a
particle in a central-force field. It means that the areas swept by the particle are
equal in equal time intervals. When the particle passes through the perigee, it must
move faster than when it passes through the apogee. Planets move faster when they
are nearer the sun!

In order to prove the third law of Kepler, we proceed as follows:

The time period for an elliptical orbit is

T =2mabiC
From the geometry of the ellipse,

=a\fl-e?

and by comparing with the standard form of the equation for an ellipse with that
for the planetary motion,

ep =a(l -eh =E_,-C:T
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From these relations,

T =4x%IGM or T aa’ (D2.33)

which shows that the squares of time periods of planets are proportional to the
cubes of the semi-major axes of their elliptical orbits.

[Iﬂlllnn--— //// Perigeo

/4
A

Fig. D2.10

Example D2.2 The Aryabhatta was launched by a Soviet launch pad and set into
an orbit by being imparted a velocity of 7600 m/s at a distance of 600 km above the
surface of the earth and parallel to it at that point.

Comment on its orbit and its salient features. It is given that GM for earth =
3.9860 x 10" m*/s? and the radius of the earth is 6371 km.

Solution  The satellite Aryabhatta had the following initial conditions:
ro =600 + 6371 = 6,971 km = 6,971,000 m
Vg, =7600m/s and 6=0

r=7043 km

f=rx D
r=7117 km

r= 7043 km
Fig. Ex. D2.2 (Solution a, b)
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C=ryVy, =530 x 10" m¥s
The orbit is described by the equation

L =GM+D|:059
r C

2

Q

M

=1 _GM
s

2
0

o]

and

_ 1 3,9860 x 104
76,971,000  (5.30 x1010)?

=1.50 x 107 m™
The eccentricity is given by
pC? 150107 x(5.30x 10'0)2
GM 3.9860 x 104

=0.01

The Aryabhatta hs, threfore, gone into an elliptic orbit described by

| 3986 x 10

- = ——————+ 150 x 10" cos

F - (5.30%1010)2 cos §

or %:(142+ 1.5 cos 8) x 10°
The coordinates of the satellite at salient locations are:

=0 r=6971 km
' EW 7] r="7043 km
f=r r=7117 km
=312 r=T7043 km

The maximum distance of the satellite from the surface of the carth is
7117 - 6371 = 746 km

It can be scen that the velocity that would have been required to set the satellite

into circular orbit 1s
Vo= GM _ ‘1986):10“
"y Y 6,971,000

= 7562 m/s

The velocity actually imparted to the Aryabhatta is 7600 m/s which is slightly
more than this value. From this or from the fact that the eccentricity is 0.01, it can
be concluded that the orbit is nearly circular as shown in Fig. Ex. D2.2(b)
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(a) At the surface of the earth,
ro = 6371 km

vV, =282x10° /6371x 10°
=11,170 m/s = 11.17 km/s

(b) At any altitude & km above the carth.

ro =6371 + h
V, =28.2x10°% f1/6371 +h
h(km) V. {m/s)
1000 10,390
3000 9210
5000 8360
10,000 6970

It may be seen from the curve plotted between V, and h that the velocity of
escape is less if the satellite is launched from higher altitudes as shown in Fig. Ex.
D2.4 (Solution). On the other hand, it is a problem to reach a high altitude of the
order of thousands of km. If we were to escape, we would attach the satellite to a
multistage rocket motor which would take it up into the thin air and when all the
stages drop off, the satellite would be on its own. We would also like to take
advantage of the spinning motion of the earth and launch the satellite so as to gain a
component of the velocity from the spin of the earth before leaving it.

11170

0 1000 3000 5000 10000
—h{km) ————
Fig. Ex. D2.4 (Solution)
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Example D2.5 A body is released at a distance far away from the surface of the
earth. Calculate its velocity when it is near the surface of the earth, ignoring air
resistance and all other forces except gravity.

Solution For the body, gain in kinetic energy equals loss in potential energy

1 1 1 _GMm
y mvi = GM(L R)’" R

taking 1/L as zero for L to be very large.

26M
Then, v ==——=2gR
R
=2x981x6.37 x 10°
and V =11.17 % 10° m/s

Example D2.6 A satellite of mass 200 kg, initially at rest on the earth, is to be
launched in a circular orbit at a height equal to the radius of the earth, i.e., 6.37 x
10° m. Calculate the minimum energy required.

Solution Radius of the circular orbit is 2R.
Initial mechanical energy of the satellite at the surface of the earth is

E, =-GMm/R
Mechanical energy of the satellite in the circular orbit of radius 2R should be

1 GMm
o)
2™ % T(T77R

Since vV = ’%
o 2R
the mechanical energy in rotation becomes
R L T St i
The minimum energy required to launch the satellite should be

1 GMm GMm
5o - ()

== % 9.81 x6.37 x 10°=9.365x 10° J

.h
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Example D2.7 The Mars and the carth have their masses in proportion 10 0.107
and their radii in the ratio of 0.53 (Mass being smaller), compare their (i) densities:
(i) gravitational intensities; (iii) escape velocities: and (iv) periods of their satel-
lites.

Solution

Mm Rm -
— =0.107, T = 0.53

3 v

£

(i) Density is mass divided by volume, i.e., M/-;- T R?

3

dN MM Rr ) 1
= —| =0.107x
d, M, [ - 0.533

=0.718

(ii) Gravitational intensity g = %

8w _M, (R 1
= == =0.107x =0.381
8. M, (R,,. 0.532
(iii) Escape velocity equals ZGRM

Vew _ [Mu R, _\(—l_
V. = M. R, = 0,!07><0.53—-0,45

. . pen 4n? i
(iv) Period of a satellite = [_GM R )

Tm Mr Rm ! I 3
T_ M, [T?:] -JWXO.S.} =118

Example 2.8 A sky laboratory of mass 2000 kg has 10 be lifted from a circular
orbit of radius 2R to another circular orbit of radius 3R. Calculate the minimum
energy required to do so.

Solution Mechanical energy of the satellite in a circular orbit of radius r is

1

_2.;"1,!"2 _-g_ﬂi_ﬂl

r

where V= %



VIRTUAL WORK AND
PoOTENTIAL ENERGY
PRINCIPLES

10.1 INTRODUCTION

It is appropriate at this stage of presentation of the subject to look at the formulation
of problems by methods other than Newton’s laws of motion. We are here referring
to the energy-based principles in mechanics. The advantages offered by the energy-
based principles include freedom from drawing the free-body diagram, dealing with
scalar quantities, namely energy and work instead of the vector quantities, such as
force, velocity, acceleration, momentum, etc., ease of application to multibody sys-
tems and relative simplicity of analysis in the long run.

The principle of virtual work is introduced first for static equilibrium and then,
together with the D' Alembert principle, it is extended to the analysis of dynamical
systems. While we are on the subject of equilibrium, an alternative method known
as the principle of potential energy, is also introduced. These principles are helpful
in understanding the variational principles in mechanics.

10.2 PRINCIPLE OF VIRTUAL WORK

Consider a body subjected to a system of forces. If the body is idealised as a
particle, the system of forces

F,,F, F,, ..
must be concurrent and replaceable by a single equivalent force F as shown in Fig.
10.1. If the body is idealised as a rigid body and the forces are non-concurrent then

the system of forces and couple moments

Fl‘ Fg. sneey MI' Mz.
F?
F
P (
F or
(a) Given System of Forces (a) Equivalent Force and Virtual
Displacement of a Particle

Fig. 10.1 Eguivalent Force on a Particle
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acting in a specified manner are replaceable, for an equivalent dynamic.effect, by a
single force F acting at a desired point and moment M. These facts have already
been demonstrated under the study of equivalent system of forces.

Whether a body is actually at rest or in motion, a virtual or possible displace-
ment can be visualised in view of the constraints. Such a displacement is hypothet-
ical or imaginary; it may or may not be along the actual displacement but it must
be one of the physically possible displacements only. Consider, for example, a body
sliding up an incline under the action of some forces. The fact that the body can
slide either up or down without violating the constraints, i.e., without being lifted
from the incline or piercing into it or going sideways, the virtual displacement &r
can be given either up or down the plane. Thus either of the modes of virtual
displacements shown in Figs. 10.2(a) and (b) is acceptable. The fact that the body is
actually moving up is of no consequence as far as the choice of virtual displacement
is concerned. The actual mode of displacement is, however one of the ways a virtual
displacement may be given. Virtual displacement & r is assumed to be very small or
infinitesimal so that it is accompanied by an infinitesimally small amount of virtual
work W. The term virtual work, therefore, implies the hypothetical work which
would have been done to result in a virtual displacement under the application of
the given system of forces and couple-moments.

/I~

SN

{b)
Fig. 10.2 A Body on an Incline

The virtual work 6W, due to a force F resulting in virtual displacement &r at the
point of application of the force is
oW, =F . &r (10.n

and the virtual work W, due to a moment M resulting in an angular virtual dis-
placement 86 of a rigid body is

oW, = M.50 (10.2)

It follows that the virtual work for an infinitesimal virtual displacement of a
particle subjected to a system of forces is

&W =F . or (10.3)

where F is the resultant or equivalent force on the particle.
For a rigid body, the virtual work for an infinitesimal virtual displacement is

SW =F.8r + M.58 (10.4)

where 8r is the linear virtual displacement of the point where the equivalent force F
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acts and 80 is the angular virtual displacement of the body under the application of
the equivalent moment M.
Alternatively, if a system of forces and couple-moments

F,Fp..F,; M, M,.M,

act on a rigid body in a specified manner and the lincar possible virtual displace-
ments at the points of application of the forces are

&r), 8ry,... respectively
and the angular virtual displacements due to the moments are
50,, 80,, ...respectively
as shown in Fig. 10.3, then the total virtual work done on the body must be
OW =F,.0r + F,.0r, + ... + F,.0r,
+M,.50, + M, §6,+ ... + M,.00, (10.5)

Virtually Displaced

(b) Equivalent System of Forces and Virtual Displacements
Fig. 10.3 System of Forces Acting on a Rigid Body



682  Engineering Mechanics

For example, the rolling cylinder shown in Fig. 10.4 is subjected to a system of
forces as shown in the free-body diagram. From the constraints on the motion, the
virtual displacements at the points of action of the forces can be visualised readily is
also shown and this procedure of finding the virtual work can be used with advan-

tage.

dn
Fz
=0
(a) A Rigid Body Subjected to a System (b) Free Body Diagram and the Virtual
of Forces Displacements

Fig. 10.4 Example of a Rigid Body Subfected to a System of Forces

The principle of virtual work which we set out to enunciate is valid for a body in
equilibrium. Jr states that the virtual work should be zero for a body to be in
equilibrium

W=0 (10.6)

This statement is initially due to Bernoulli and is often called the Bernoulli
Virtual Work Principle.

It can be seen readily that this statement is equivalent to the conditions of
equilibrium already formulated, viz.

F=0
M=0

Substitution of these conditions in Eq. (10.4) shows that the virtual work W
must be zero for a body in equilibrium. Further, it was shown earlier that the above
conditions are necessary but not sufficient for equilibrium, the same is also true for
the virtual work principle.

The question that arises next is whether the virtual work principle offers any
advantage over the conditions of equilibrium, Eq. (10.7), which follow directly
from Newton's law and Euler's equation. The answer is “yes". There are definite
advantages, some of which are explained as follows:

1. It may be easier and more convenient to determine the virtual work than to
evaluate the resultant force and resultant moment. It is easier because the constrain-
ing forces which may be due to the normal reactions by the surfaces and the internal
action-reaction forces do not contribute to the virtual work. For example, the reac-
tion by a smooth surface can do no virtual work on a body when it is virtually

(10.7)
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displaced by sliding over the surface because the reaction force and displacement
are at right angles to each other. The merit of the virtual work principle is, there-
fore, that the reaction forces and other constraining forces need not be determined
at all. This step is unavoidable if we were to evaluate the resultant force for equat-
ing it to zero for equilibrium. Some other forces which do not contribute to the
virtual work and need not be evaluated are:
(i) Reaction at a smooth pin for rotation about the pin

(ii) Reaction at a roller moving along a track

(iii) Weight of a body when its centre of gravity moves horizontally

{iv) Friction force acting on a wheel rolling without slip.

2. The principle of virtual work applies to a system of connected particles or of
rigid bodies as good as to a single rigid body or to a single particle. Only the forces
external to the system of connected bodies need be considered for virtual work; the
internal forces cannot contribute to the virtual work. Care must be taken to select
the virtual displacements in a manner which do not violate the constraints.

3. It may appear, in the first instance, that the virtual work principle applies only
to a body in equilibrium and provides an alternative, single condition of equilibrium
which is a linle simpler. A little consideration of the D'Alembert's principle will
show that if a body of mass m is accelerating at an acceleration a under the action of
an external force F, then,

F+(-ma)=0 (10.8)
The form of the equation suggests that if a hypothetical force called inertia force
F,=-ma (10.9)

is to act on the body in addition to the external force F, then the body would
hypothetically come to a state of equilibrium. It shows that the D'Alembert’s princi-
ple used simultaneously with the virtual work principle should be able 1o extent the
virtual work principle 1o bodies not in equilibrium. As a closing comment, it should
be mentioned here that this statement is so truc that a complete formulation of
energy method in mechanics has already overshadowed the Newtonian mechanics.
Energy equations due to Langrange and Hamilton can be shown equivalent to the
Newtonian formulation.

Example 10.1 A frictionless double-incline with angle ; and a; as shown in Fig.
Ex. 10.1 carries a set of sliding masses m; and m, connected with an inextensible
string and passing over a frictionless pulley at O. Obtain the relationship between

o

" Double Incline

Fig. Ex. 10.1
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a, and @, in terms of m; and m, for equilibrium and hence determine a; if
ay = 30° and my = 2m,

How would the angle change if the surfaces had a coefficient of friction u
instead of being smooth?

Seolution Let us draw and observe the free-body diagrams of the two masses in the
absence of friction (Fig. Ex. 10.1 (Solution)).
Since the motion is possible only up and

Ay by
down the inclines, let us give a virtual displace- ol T A
ment dr, up the ¢ incline 10 mass m,. The : 2
virtual displacement of mass m, must then be .~ % \&r
T\ 1
mg

8r) down the o, incline because the string is
inextensible and hence is of constant length.
The virtwal work done by R, for the dis- Fig. Ex. 10.1 (Solution)
placement dr, of mass m, must be zero because
they are at right angles. Similarly, the virtual work by R, for the displacement ér of
mass m, must be zero, Ry and Ry need not be determined. Now, the virtual work
done by T, for displacement dr, of mass m, along T, is T,r; and the virtual work
done by T, for displacement dr, of mass m, along T, is T>dr,. The total work done
by the tension forces in the inextensible string is

T\6ry + Tyér,

which must be zero because T is equal and opposite to T, there being no friction in
the pulley.

*The only forces which indeed do virtual work are the external forces on the bodies.
In this case m;g and m,g are the only external gravitational forces. The virtual work
done by them adds up to

~ mg sina &y + m,g sinc, or,

According to the virtual work principle, the virtual work must be zero for the
system to be in equilibrium

—m, g siny, Ory + ni,g sina, 6r; =0
Cancelling dr, and g from both terms,

sin o _ iy b
sinat, W
It may appear that the virtual work method is also lengthy and requires careful
climination of the non-contributory forces. However, - this is untrue. There was
neither a need to draw the free-body diagram actually nor to eliminate the normal-
reaction and internal equal tension forces. Only a general statement is adequate
and the required proof is between the two asterisks (*) above.

When iy = 2m, and a, = 30°
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sin & =2sin 30° =1
whence a, =90°

Let us now investigate the effect of friction at the inclined surfaces. The virtual
displacement still being the same as before, the frictional forces would enter into
the virtual work,

On mass m,, the frictional force would be

U omyg cosa,
down the incline o; and the virtual work contributed by it
- myg cosay, O
Similarly, the virtual work done by the frictional force on mass m, would be
— Hmyg cosa, ary
The virtual work principle would be applied to the total virtual work, ic.,
—myg singy 8ry + m,g sinay &y — 4 mg cosay O,
— m,g cosa, 6y =0
Cancelling ér; and g,
my(sina, + { cos@) = m, (sing, — U cosdy)

sian:|+,|.|!|:ostxI m

or sine, -pcosa,

-2
: M

A noteworthy comment at this stage is that this relationship applies to the equi-
librium against sliding in accordance with the chosen mode of virtual displacement.
If &r, was reversed in direction, frictional forces would also reverse and the virtual
work principle would yield

sina]—,ucoscrl m

(¥}

singr, +pcosa, m

for equilibrium. The application of the virtual work principle for systems witk
dissipative forces such as friction, acro-dynamic drag, etc., requires as much atten-
tion as the application of Newtonian laws.

Example 10.2 Determine the relationship between the moment M applied at the
crank of radius R and the force F applied at the crosshead in the slider crank
mechanism shown in Fig. Ex. 10.2.

Solution Let the system be virtually displaced as shown in Fig. Ex. 10.2 (Solu-
tion). The virtual work done by the moment M and the force F adds up to

-M 8- F bx (i)

which must be equated to zero in the absence of any other external force or mo-
ment. Here, x is chosen positive to the right and 8 positive anticlockwise as per our
usual convention.
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o] \ \ \y
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¢ i\\c cf\‘\l cno c'c (o]
V)‘\\ W& [o] w \‘
\y Ay ‘\\
2 - W
(a) Stable (b} Unstable (c) Neutral

Fig. 10.7 State af Equitibrium

In Case (a), the bar tends to return to its initial position. In Case (b), the ba.
continues to deviate from the initial position and in Case (c) the bar stays wherever
it is left. This is so because the moment created by the shift of the centre of gravity
from C to C’ tends to restore equilibrium in the first case, deviate it further in the
second case and there is no such moment in the third case. The state of equilibrium
in which a slight disturbance from the equilibrium position is accompanied by a
restoring moment so as to bring the body back into its initial state of equilibrium is
called stable equilibrium. On the other hand, if the slight disturbance is accompa-
nied by an adverse moment to displace the body further, the state is said to be
unstable and if the slight disturbance fails o generate a restoring or a worsening
moment, the body is said to be in a state of neutral equilibrium,

Since the potential energy of a suspended body reckoned to its point of suspen-
sion O is minimum when the centre of gravity C is below O, maximum when the
centre of gravity C is above O and remains unchanged when C and O coincide it is
clear that the states of stable, unstable and neutral equilibrium correspond to the
minimum, maximum and ‘stationary’ potential energy respectively. This fact can
also be appreciated by the observation that a slight angular displacement of the bar
is accompanied by a rise of C to C” in Case (a), lowering of C to C ” in Case (b) and
all-time coincidence of C and C’ in Case (c) showing thereby that while in the
vertical equilibrium position C must be the lowest possible in Case (a), highest in
Case (b) and unchanged in Case ().

From Differential Calculus, we can recollect that PE is a minima when

d? (PE)
T >0 (10.12)

and a maxima when
d? (PE)
ds?
and the point of inflexion and the state of *stationary’ PE are characterised by
d? (PE)
2t =0
It may be remarked that a point of inflexion of PE vs. 5 is not classified as stable,
unstable or neutral equilibrium. This is because slight displacement one way may

(10.13)
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Solution

PE = 10x" + 8x* - 9x

For equilibrium positions,

=-36.56; <0

=+36.55>0

d(PE) . ~
p =3+ 16x-9=0
whence x=-0876m
Xy =+ 03425 m
Now, the second derivatives of the PE are
d2(PE)
—5 = 60x+ 16
d?(PE)
At x ==0876 m, ":,;é""
d?(PE)
At x,=0.3425 m, 2

The equilibrium position at x = - 0.876 m corresponds to unstable equilibrium
and that at x = 0.3425 m corresponds to stable equitibrium.

Example 10.5 A rectangular block and a
semicylinder of the same length made of the
same homogeneous material are secured to-
gether and placed on a flat rough surface in
equilibrium as shown in Fig. Ex. 10.5. Deter-
mine the minimum radius R of the semicylinder
in terms of the height H of the block if the
width of the block is n times the radius of the
semicylinder in order that the composite body
be in stable equilibrium. Assume that the
semicylinder may roll without slip on the flat
surface.

c
[ R — =

N

J

Fig. Ex. 10.5

Solution Let the centre of gravity of the composite body be /& above the base in

the equilibrium position.

When it is tilted by a small angle € as shown, the centre of gravity drops 1o a

new height

R+(h-R)cos 8

Referring to the initial or equilibrium position, the potential energy of the body

is
PE =-mg Ah

=mg(R - h)(1 - cos 8)
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11R
17
c C ¢ 1] RN
~ \R \R T —*— * i
n<2 n>2 n=2
{b) ()

Fig. Ex. 10,5 (Solution)

where m is the mass of the composite body.
d(PE)
de

This is zero when sinf = 0 or 8= 0 showing that the initial position is indeed the
position of equilibrium,

Now, = mg(R - h) sin®

d?(PE)

-—d'-;-é-z—- =mg(R - h) cos8
which, for 8 =0, becomes

d?(PE)

207~ mg(R - h)

This should be positive for stable equilibrium. The geometric condition for
stability of the composite body is, therefore, that R should be greater than h. In
other words, the centre of gravity should lie below the centre of the circle in the
view shown in Fig. Ex. 10.5 (Solution). When k = R, the state is of neutral equilib-
rium: the body would stay where it is left. When h is greater than R, as initially
assumed, the equilibrium is unstable.

In order that the centre of gravity be located at the centre of the circle for the
limiting case,

]

H _4 nR?
2x(nRxH) = X 2

8l
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whence H= 2R

NEN

It is interesting to observe that the wider the block, more is n and less is H. The
thinner the block, less is n and more is H.
In the limits,

1 —> oo, H=>0
and n=—-0, H—= oo

In the special case when the width of the block equals the diameter of ihe
semicylinder,

n=12

and H:E R=0.8165R

Three such cases of n < 2, n > 2 and n = 2 are shown in the neutral equilibrium
condition. The bodies exhibit stable equilibrium of the height of the block is re-
duced, but are unstable if the height is slightly increased beyond the heights shown
for neutral equilibrium.

Another interesting case is of securing a block of square cross-section on the
semicylindrical block. The maximum side of the square cross-section for stable
equilibrium would be

a=H=nR
which together with
2R
H===
N
provides n=@" =11
and a=1I1R

as shown in Fig. Ex. 10.5(c) (Solution).

10.4 GENERALISED COORDINATES

The position of a particle on a given line is described by one coordinate; on a plane
by two coordinates and in space by three coordinates. The coordinates may refer to
any set of axes; thesc may involve distances and angles in any combination. To
describe the position of two particles in space, we use six coordinates. For a larger
number of particles moving in a certain fashion, particularly when the particles refer
to one or inore of the rigid bodies, we may have to use a larger number of coordi-
nates. It is always possible to select the smallest number of independent variables to
describe a system; the smallest number of variables constitute the generalised
coordinates. The values of these generalised variables, whatever they may be, com-
pletely define a system and can be varied to define other states in keeping with the
constraints on the system. There is no unique choice of the generalised coordinates.
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10.2 Using the methed of virtual work, determine the force in the op member of the simple
truss consisting of equilateral triangles. (Ans. 0.577 P}

c o

f
P
Fig. Prob. 10.2
10.3 A simple parallelogram linkage carries three forces as shown in Fig. Prob. 10.3 while
the members AB and CD capable of oscillating about A and D respectively are at 60°

with the base line AD. Determine the moment M required to maintain equilibrium of
the linkagu._

11.5 kN

M=7

AB=CD=02m, BC=03m
Fig. Prob. 10.3

10.4 A simple linkage consisting of two
equal massless bars and a sliding
block B is subjected to a set of two
forces F), and F, as shown in Fig.
Prob. 10.4, Express thc angle 8 as a
function of F| and F, for equilibri-
um. (Ans. tan 8 = F,/2F,)

10.5 Two inextensible strings of equal
lengths and two equal concentrated Fig. Prob. 10.4
masses comprise a double pendulum
as shown in Fig. Prob. 10.5. A force F is applied horizontally at the lower end to keep
it in equilibrium. Express the angles 8, and 8, with the vertical in terms of F and m.

(Ans. tan 6, = F/2mg, tan 8, = Fimg).

10.6 A uniform rectangular plank of height k, base width b and mass m rests on top of a
convex circular surface of radius R, Establish the relationship between the height of
the plank and the radius of the convex surface for the stable and unstable equilibrium
of the plank in rolling without slipping over the convex surface.

(Ans. Equilibrium: OPQ vertical; Stable for R > #/2; Unstable for R < hf2)




702 Engineering Mechanics

diPE
£ =-0
d) 22

5. The time taken by a small frictionless bead to slide on a thin wire in the gravitational
field is the minimum if the shape of the wire is
(a) a straight line (c) a parabola
(b) a cycloid (d) an involute

Answers to Multiple-Choice Questions
1 (d), 2 (a), 3 (b), 4 (c). 5 (b)



VIBRATIONS OF
SIMPLE MECHANICAL
SYSTEMS

11.1 ELEMENTS OF MECHANICAL SYSTEMS

A system, by definition, is an assemblage of interacting elements constituted for a
desired objective. The elements of a system may be certain simple mechanical,
electrical, optical, thermo-mechanical, electrodynamical or some other devices which
are characterised by their behaviour. Similarly, a system may belong to mechanical,
electrical, optical, thermomechanical, electrodynamical or some other class. A sys-
tem is termed dynamical system if the system response is a function of time. It is
interesting, under the systems approach, to deal with different classes of systems in
a unified fashion. This is made possible by the similarity of behaviour of the
elements of different systems. With these comments, we will confine ourselves to
the mechanical systems. The study can, however, be extended to other systems.

A mechanical system comprises of mechanical elements which provide the fol-
lowing properties or characteristics:

1. Inertia

2. Compliance

3. Damping.

These characteristics may either be translational or rotational. It may be noted
that a suitable combination of the translational and the rotational characteristics can
provide the desired characteristics in any motion, by simple superpositions, if the
basic characteristics are linear. We shall restrict our discussion to the linear ele-
ments. Let us now focus our attention to each of the characteristics.

Inertia
. Translational Rotational
Basic Concept Mass Moment of inertia
m -
, _dx _d?%e
Acceleration a= Pl a ey
Action Force Moment
F M
2 2
Constitutive Equation =~ F=ma=m ‘;—f M= Ia:!% (1L.1)

epresentation: Refer Fig. 11.1.
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]

=
5]
w
8
] F=ma Slope
mor/
E or
§ M=la
Acceleration a or o .

Fig. 11.1 Characteristic of an Inertial Element
Examples: Refer Fig. 11.2.

Translating Mass
Fig. 11.2 Inertial Elements

Comments )

Inertial elements, i.e., mass in translation and in rotation are pure translational and
pure rotational elements respectively. By pure, it is implied that they have no other
properties, such as deformability, etc. The motion of an inertial clement is governed
by the laws of Mechanics.

Compliance
Translational Rotational
Concept Elastic Elements
Translational Spring Rotational Spring
(spring constant) (spring constant)
k K
Displacement x 2]
Action Force Moment
F M
Constitutive Equation F=kx . M=Ko (11.2)

Representation: Refer Fig. 11.3.

Examples: Refer Fig. 11.4.
Comments .
A compliance element complies with a steady force to produce a corresponding
steady deformation. Compliance elements such as springs are said to be pure if they
are assumed to be devoid of mass and are capable of conserving energy under all

modes of operation. A compliance clement must return to its equilibrium position
when the applied force is removed.
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Slope k
or K

Dynamic Action F or M
j+4

- X
Displacement x or 8

Fig. 11.3 Cbharacteristic of a Compliance Element

Cail F
Spring F

i\L—/z‘:' -
* x Bea:'\ior Plate __J__[

F
Translational Springs: F = kx
M
Shaft Py
8
Helical
fy Spring
Rotational Springs: M = Ké
Fig. 11.4 Elements Producing Compliance
Damping
Translational Rotational
Concept Dissipative Elements
Translational Damper Rotational Damper
(damping constant) (damping constant)
c C
. dx de
V=— o =—
Velocity dt i
Action Force Moment
F M

Constitutive Equation F=cv= C%J:' M=Cw=C % (1.3
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Representation: Refer Fig. 11.5.

|

Slope
corC
F=cV

M= Co

Dynamic Action F or M
Q

Velocity Vor @
Fig. 11.5 Cbaracteristic of a Damping Element

Examples: Refer Fig. 11.6.

-
= I —_
F —— e 4 F
— Coulomb Dry Friction
x c=0
Dashpot F = Const.
F=cV bt

Rotational Damper
M= Co
Fig. 11.6 Elements Producing Damping

Comments

A damping element is associated with dissipative action. Dissipation of energy may
be achieved through dry friction, viscous shearing or otherwise. Mass and elasticity
of the components of the dampers is assumed to be zero for pure dampers. A
damping element stays where it is, when the applied force is removed.

11.2 SIMPLE MECHANICAL SYSTEMS

Simple mechanical systems are those which can be conceived as simple combina-
tions of the system elements.
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A spring-mass combination with the mass subjected to a force along the line of
the spring and passing through the centre of mass of the spring is called a linear
spring mass system. If the mass is also subjected to a damping force, it is called a
damped spring-mass system. The system may be arranged to operate in translation
or in rotation and the action of forces and moments may be adjusted to comprise a
variety of systems, examples of which are shown in Figs. 11.7 and 11.8.

E K p= F k
B —

Spring-Mass Systems -
Y i e |
Damped Spring-Mass System

Fig. 11.7 Single-degree-af-freedom Systems

We next define the number of degrees of freedom of a mechanical system. The
number of independent coordinates required to specify the position of a body has
been defined as the degrees of freedom of the body. For constrained motion of a
body, the number of constraints must be subtracted from six to obtain the degrees of
freedom. It is, therefore, the possible modes of motion of a body which amount to
the degrees of freedom. Now, for a mechanical system of n interconnected bodies
there can be a maximum number of 6 n degrees of freedom. The actual degrees of
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7. The frequency of oscillation is the number of cycles per unit time described
by the particle,

Example 11.1 A point moves with a simple harmonic motion such that it has a
velocity of 9 m/s when it is at a distance of 2 m from the centre and a velocity of
4 m/s when it is at a distance of 3 m from the centre of the same side for the point
moving in the same direction. Calculate (a) the amplitude of the motion, (b) the
time period of the motion, (c) the time interval between the two positions, (d) the
acceleration of the point at these positions, and (e) the greatest acceleration.

L
X
.l - i A
2 .

<;-n —

1 t, 0
A V. =0
& a
Fig. Ex. 11.1
Selution For the simple harmonic motion of a point,
X =xpcos Of ()]
v =—w1f.rg -x? (i)
and a =-xat (it}

(a) For the data, from Eq. (ii),

9 =—m1f.rg -4 and4=——w1fxl?. -9

whence, Xy =x32mand w=3.6radls
The amplitude of motion of the point is 3.2 m.
(b) The time period is given by

2r _2n
T === =22 =1.75s
© "3.6 1.75s

(¢) Assuming that t = 0 at x = x,, times #, and ¢+, for positions x, and x, are given
by
3 =32co53.64;4=00%s
2 =32c053.61,;1,=02495

and the time interval is
=t =0249-0099 =0.15s

(d) From Eq. (iii), the accelerations are

a; =-3x3.6%=- 38388 ms’
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a, =-2%3.6°=-2592 m/s’
(e) The maximum acceleration must be
Ay == X0
=-32x3.6"=~4147 m/s?

at the right extremity and the same in magnitude but opposite in direction at the left
extremity.

11.4 LINEAR FREE VIBRATIONS

A system of a single mass constrained to move along the axis of a horizontal spring
attached to it, the other end of which is fixed, as shown in Fig. 11.11, is considered
first. The equilibrium position of the mass corresponds to the unstretched length of
the spring, which is also the reference position for the periodic motion.

Equilibrium
Posi}ion
|
m
Length of w—te— x ——
Unstretched |
Spring !
(a) Spring-Mass System
Reference m
0 I—-; —t—sC
(b) Free-Body Diagram of the Mass
x, V
X = X5 008 w,l
Ve =Xg .JZ k o
X E, m ve=Xg Esmmnf
T N
X ! X
I
=0 1 -
v 15 E; [ Time t
P
—

r=2!l‘.J% —

(c) Displacement and Velocity vs Time
Fig. 11.11

At an instant when the mass is displaced by x, the restoring force acting on it is

F =—kx
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The equation of motion in accordance with the Newton's law is

F=ma
dx
or —kx =m—=
dt?
2
or u+£x=0

dr2 m
The most general solution of this second-order linear differential equation is
x =Asin @, t+ Bcos w,t

whence, by differentiating with respect to time 1,

% =w,Acos@,t-a,Bsinw,t
2
47x _ _p2Asinw r-0? Beosw t=-0lx
dr? n n n " n
Substituting these values in the equation of motion,
—wlx+ k=0
m
whence,
Angular frequency, @, :ﬁ,
m
: w 1 |k
Cyclic T ‘F
yclic frequency 2w =2V and
Time period, T = % =2 %

It can be observed that the mass is set into vibrations by applying an initial force
of k x, say towards right, to bring the mass at rest at a distance x, from the
equilibrium position. If the time there is reckoned at 1 = 0, then from the general
solution

x=Asin w,t+ Bcos w,t
the initial condition

t=0 at x=x
gives A=0 and B=x,
rendering the solution as
X = X COS @t
The maximum displacement x,,, corresponds to cos @, f = 1, i.e., at the extrem-
ities of the periodic motion

g | =X
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when the potential energy PE, = 0 for the spring, it being the zero-stretch position.
By the conservation principle,

PE, + KE, = PE, + KE,

kx

e

21
o 2”“

. - 'k
whence VE=X, ;

From the knowledge of the maximum velocity and maximum displacement of the
system, the frequency and time period can also be estimated

|vm“| ,me J_
el

_2n _ m
T_ﬂ’. ~2:r1’k
____’k

f T r

It is interesting to observe the periodic motion graphically. This is shown in Fig.
I1.11(c). The mass is released at r = 0 from a position x = x, from a state of rest.
The mass passes through the equilibrium positions E,, E,, E;, ¢tc., when x =0 and
its velocity is maximum at these positions.

The case of free vibrations of a mass attached to a vertical spring fixed at the
upper end is similar to the horizontal spring-mass system just considered. A refer-
ence to Fig. 11.12 shows that the equilibrium position of the spring-mass system in
this case does not correspond to the unstretched state of the spring but to the spring
stretched by the static deflection

ra|—

w,

=¥
0=%

At the cquilibrium position, the weight W of the mass acting downward balances
the tension T developed in the spring

W=mg=T=ké

For a displacement x from the equilibrium position, the restoring force acting on
the mass equals

=—k({(6+x)+W
== k(& +x)+ kS
=—kx
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The maximum velocity is vg =x, 1’1 =x500,
m

at the equilibrium position, directed alternatively upwards and downwards.

Acceleration of the mass a=-wlx (11.2)

Maximum acceleration Ay == 2 X
at the extremity and directed towards the equilibrium position.

Example 11.2 A small motor of mass 20 kg is symmetrically mounted on four
equal springs, each with a spring constant of 25 N/cm. Estimate the frequency and
period of vibration of the motor.

Solution The four springs arranged ‘in parallel’ may be considered equivalent to a
single spring located in line with the centre of mass of the motor with

k=4 x25 =100 Nfem = 10,000 N/m

. k 10,000
Cyclic frequency =2—[ﬁ~J;-_t= 21—” ‘J 20

=356 Hz

Time period T==—=0.285s

1
f
Example 11.3 A vertical U-tube manometer contains a liquid of mass density p as
shown in Fig. Ex. 11.3. A sudden increase of pressure on one column forces the
level of the liquid down. When the pres-
sure is released, the liquid colums start
vibrating. Neglecting the frictional damp-
ing, determine the period of vibration. )
Comment if the period is affected by chang- Equilbrium
ing the liquid, diameter of the tube or length
1 of the liquid column.

&1 Position

Solution 'The equilibrium position of the
liguid columns is when these are in level.
At any instant during vibration, one col-
umn rises by a distance x while the other
falls by the same distance. The restoring
force, therefore, equals the weight of a lig-
uid column 2x high. Fig. Ex. 11.3

F =-2nr(d4) pg
This must equal the product of the mass of the total length of the liquid column

in motion and the acceleration,

~2¢. m(d ¥4) pg =1x{dH4}p‘i—?
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which, on simplification, yields the equation of motion

d2x 22
az Tt 0
The general solution of this equation is

x=Acos @t + B sin o
d*x 2 ; 2
whence 'a'i*:—wn (Acosw,,r«rﬁsmmnr):-wnx

and substituting it in the differential equation provides

’23
W, = T

1 [2g

T N

= ’L
=2 32

The period is unaffected by the density of the liquid and the diameter of the tube.
The total length of the liquid column, however, does effect the period of vibration.
For a typical vertical manometer with a total column 0.5 m long,

_ 0.5 _
TEIX o8l S

which implies that the manometer is capable of oscillating visibly at 1 cycle per
second in the absence of damping affects which may arise from fluid friction
between the liquid and the tube material.

Another interesting observation is that if the plane of the manometer is set at an
angle 6 to the horizontal, as is the case for low pressure-difference measurement,
the restoring force becomes sin @ times the above value and the period of vibration

becomes
_ !
T= ZKV 2gsin 0

which shows that the time period increases or the frequency decreases; again
neglecting any damping forces.

Experiment E13
Oscillation of a Simple Pendulum

OBJECTIVE

To determine the time period of a simple pendulum and to estimate the value of g,
the acceleration due to gravity.
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If possible, the experiment may be repeated for a different length of string.

5. No. ! Time for 20 T g
(m) oscillations (s) (m/s?)

The average value of g for the observations is the best estimate of g.

RESULT AND POINTS FOR DISCUSION

1. Compare the value of g obtained by you with the standard value
g = 9.80665
and comment on the difference. Note that the difference is due to the latitude A and
height i above the sea level as well as the experimental errors. Couni the sources of
error.
2. Would an improved value of g be obtained if only
(a) the length of the pendulum were increased?
(b) the mass of the bob were increased?
(c) the volume of the bob were decreased?
(d) the surface finish of the bob were improved?
(e) the simple pendulum were enclosed in a vacuum chamber?
(f) the amplitude of oscillations is increased?
3. Is it necessary that the oscillations should be in one and the same vertical plane?
4. What would be the effect of the earth’s spinning about its own axis on the motion of
the simple pendulum over a prolonged period of time?
5. Compare the accuracy of this method of determining g with other methods known to
you.
6. If a simple pendulum is taken to a location as far away from the surface of the earth as
its radius, what would be the time period in relation to the time period at the surface
of the carth?

Experiment E14
Multiple Elastic Impacts

OBJECTIVE

To understand the implications of the simuitaneous conservation of momentum and
cnergy in a multiple elastic impacts.

APPARATUS

A row of identical simple pendulums with steel bobs hanging in close contact with
each other.

BACKGROUND INFORMATION

The momentum of a system of bodies is conserved if no external force acts upon
them. The mechanical energy of a system of bodies is conserved if the motion or
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Before the Impact After the Impact

Hitting with One Ball

Hitting with Two Balls

Hitting with Three Balls
Fig. E14.1 Playing with Simple Pendulums

interaction of the bodies takes place in a conservative force field. Simultaneous
conservation of momentum and mecahnical energy may also take place. For exam-
ple, if a number of balls, touching each other, and are struck by one or more balls
directly and centrally, the motion is governed by the conservation of momentum
and energy simultaneously. Assuming that the mass of each ball is m, lct us analyse
the effect of one or more balls striking the row of balls.

If the bob of a pendulum at one end is released from a small angle, its bob would
move with a velocity v as it approaches the next bob. The momentum possessed by
the first bob was mv and the mechanical energy was 1/2 mv%. The number of balls
that would be displaced, after multiple elastic impacts, would be such that the laws
of conservation of momentum and energy are obeyed simultaneously.
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If n balls moved out with velocities (v, v4, V3, vovee v,) respectively, then
V=Vt Vo, +v,
and

v '=v|1 +v§ +v32 +..v

These equations cannot be satisfied unless n equals 1, in which case v = v,. The
conclusion is that only the last one ball may move out with the same velocity with
which the striking ball approached them. Only one pendulum will swing out. If two
pendulums are released, causing two balls to approach with a velocity v each, the
initial momentum of the system would be 2mv and the initial energy mv?. It will be
discovered that, in this case, two end balls would move out, each with velocity v
after the series of impacts. Supposing only one ball were to move out at velocity v,
then

2myv = myv;vy =2y

and

myv? =%mvf;v|3 =22
which is an inconsistent set of equations.
Similarly if three pendulums are released, then three pendulums would swing
out!

POINTS FOR DISCUSSION

1. When a ball rolls without slip on another surface, energy is conserved. Ex-
plain why and how?

2. Is the momentum conserved for every ball, taken one at a time, in the system?
Recognize the balls for which momentum is conserved separately and for
which it is not conserved separately. Is the energy conserved separately for
each ball?

3. Would the pendulums keep on oscillating indefinitely?

4. Suggest some other experiment where you can gain visual experience on the
conservation of momentum and energy, separately and simultaneously?

Example 11.4 A simple pendulum swings 5 oscillations in the same time as
another 0.48 m longer swings 3 oscillations. Determine their lengths.

Solution Let the length of the first pendulum be [ metres; the length of the second
must be (! + 0.48) metres.
In time T, the former swings 5 oscillations, its time period must be 775,

Therefore, 15 =2n E

Similarly, T3 =2E1#@
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aarm

f
!

In a slightly displaced position at any time ¢, the equations of motion, due to
Newton and Euler, for the mass and the cylinder respeclively are

Fig. Ex. 11.10

mg—-T=ma=mra (ii)
Tr-ki(G,+ 8l =la (iii)
Substituting the value of T from Eq. (ii) into Eq. (iii),
m(g —ra) - r-kI*6, - k8= I
Employing Eq. (i) and rearranging,
+mP) a+ k0 =0

d28 .

or d+mr - +kPP8 =0
de . k2

or d12+1+mr29 =0

from which the cyclic frequency [ is obtained as

_ 1 ki?
f_?-?l' I+mr?

Example 11.11 A uniform horizontal plank is resting symmetrically on two counter
rolating drums, i.e., with equal and opposite angular velocities as shown in Fig.
Ex. 11.11. Show that the plank performs simple harmonic motion, if displaced
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The simple pendulum consists of a concentrated mass m at end of an inextensible
string, of negligible mass, the upper end of which is tied to a rigid support. The
initial disturbance is given by displacing the bob through a small angle 8 and then
releasing it to perform a periodic motion.

The compound pendulum consists of a rigid body that oscillates about a horizon-
tal axis through the body at some point other than the centre of mass. The moment
of inertia of the entire rigid body comes into play to establish the frequency of the
periodic motion.

The rorsional pendulum consists of a rigid body suspended by a vertical clastic
shaft which when twisted develops a restoring moment. The rigid body is generally
a horizontal circular disc or a spherical bob.

There are other pendulums, such as the conical pendulum, ‘Foucault’'s pendu-
lum’, double and multiple-bob pendulums.

(a) simple Pendulum

A simple pendulum, shown in Fig. 11.13(a), consisting of a massless and inextensible
string of length [ supporting a bob of mass m generates a free harmonic motion
under the action of the following factors:

Rigid Support; Point Suspension

L
A\
B AY
;‘ Small Angle
/ \ (<6%
! \
/ \
! \ .
/ \ Inextensible
! \ Strin
/ \’/ 9 Mass
M g = Poit
QN . _____,.i_;, Mass Rigid Body
Position under Equilibrium {b) Compound Pendulum
{a) Simple Pendulum
il
Fixed End
Elastic
Shaft
Rigid
Body
Small Angle

(c) Torsional Pendulum
Fig. 11.13 Types of Pendulums
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4. The restoring force F acting on the bob equals mg sin 6 which, for small 8, is
F=mg@

implying that F varies linearly with 8. This fact can be appreciated with
reference to Fig. 11.15 where the variation of the restoring force is shown as a
function of 6.

Small
} lof
i I
’I" I i
I I
I [
-2 e(ve) 1 0 | a(+ve) +ml2

Fig. 11.15 Variation of the Restoring Force

5. The frequency and time period of the motion are independent of the mass of
the bob. The tension in the string is obviously proportional to the mass of the
bob.

6. The frequency and time period are independent of the amplitude 8 of motion.
Their dependence upon the length of the string { and the acceleration due to
gravity g is employed to determinc the value of g.

7. If there were no resisting forces, the periodic motion would go on for ever
but, in practice, there are resisting forces such as aerodynamic force on the
bob which damp the motion to bring it to rest eventually.

8. The surface of the earth has been considered to provide an inertial frame. This
is, however, untrue because the earth is spinning about its own axis. If the
spinning of the earth is taken into account, the plane of oscillations of the
pendulum precesses with time. Such precessional motion is ignored for a
simple pendulum.

Example 11.12 Determine the following parameters for a simple pendulum at the
mean surface of the earth:
(a) length of a 1-second pendulum
(b) period of a I-metre pendulum.
If these pendulums are taken to the mean surface of the moon where g = 1.67 m/s?,
determine the corresponding periods.

Solution ‘The value of g at the mean surface of the earth is 9.81 m/s%, Employing

the relation,
T =2 J-T-
8

(a) For a l-second pendulum,

=1 =
| =47 X981=0248m
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(b) For a 1-metre pendulum,

T “2’:1’98 =2.01s

At the surface of the moon where g = 1.67 m/s?, the time periods of the twu
pendulums are

0.248

167 - 2,425

T =2n

1
=2 6 =4.86s

The time period on the moon is indeed in the ratio of

g
—arh _242
g

moon
(b) Compound Pendulum
A compound pendulum supported about a horizontal axis at a distance r above the
centre of mass C, oscillating to produce a periodic motion, is shown in Fig. 11.16(a).

The restoring moment due to the weight of the pendulum about the pivot O is
given by

= (~mg sin G)r

considering the moment to be positive along 8 increasing.

@ w
(a) (b)

Fig. 11.16 (a) Analysis of Compound Pendulum
(b) Kater Pendulum
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By Euler’s law, the equation of motion is
de
M=la=1=—"
dr?
where / is the moment of inertia about the pivotal axis.
It follows that
. de
~mgr sin 6 = 1——
&r st dr?

which, for small 6, becomes

2
42+ Mo=0 (11.18)

The most general solution to the second order linear differential equation is given

by

8= A sin @, + B cos @ f

whence, % = Aw, cos w,t - Bw, sin w,r

de
dr?

and =—OJ,2‘ (Asinw,r+ Bcosw,t)=~w?f

Substituting the value of & and ::,—? in the differential equation

020+ 2850
T
mgr

whence, w, = E (11.19)

The cyclic frequency is

81 [mer
f= ar  2e VNV ) (11.20)

=27 [—— (11.21)

and the time period is

It is rather interesting to observe that the simple pendulum is a ‘simple’ case of
the compound pendulum, i.e., when the mass is concentrated at the centre of mass
and the distance r is large in comparison with the dimensions of the mass.

The moment of inertia about the pivotal axis is

I =mi+ 74

where k is the radius of gyration.
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For a simple pendulum r >> &
R
hence, I=mr

Substituting this value of / in the expression for the time period

7
T=2n ‘mr =2.'r,jE
mgr g

Recognising that r is essentially the Jength of the thread.

T:ZﬁJI
g

which is the expression desired for the simple pendulum.

An adaptation of the compound pendulum is the Kater pendulum. Tt consists of a
bar with two knife-edges A and B, as shown in Fig. 11.15(b), such that they are not
obviously at the same distance from the mass centre C. The distance [ between them
can be measured with great precision, It is the accuracy and certainty with which
this distance can be measured that makes it superior to the compound pendulum
where the mass centre cannot be ascertained easily and the simple pendulum whose
string cannot be weightless and inelastic. There is a counterweight mg in the Kater
pendulum which can be adjusted so that the period of oscillation T is the same when
a cither knife-edge is used. The relation

T=21 JL=23JI
. ymgr g

applies to the Kater pendulum and the results obtained are more accurate than with
cither the simple or compound pendulum.

Example 11.13 A rod of length L and mass M is pivoted at one end to constitute a
pendulum. Determine its period of oscillation and calculate its length if the period is
desired to be | second.

If the rod was instcad suspended from a point at one  —— €A Oy —
quarter of its length, what would be the expression for
the period and what would be the length of the rod e U2
required for a period of | second? 10, !
Solution For the first case of suspension from the r=L/4
pivot O,, L

c
i
Mg

I=MLM2 + ML) = ML3

_ ML*/3 L
and “z’rduguz ‘2"\’33 £ L

Fig. Ex, 11.13
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For =15, L=3g8*=0373m

For the second case of suspension frem the pivot 0,,

r=1L/4

[ = ML¥M12 + M(L/4)* = 7148 ML?

’7;43 ML? L
and T=2r W-Zn’ Ti-;;.

12g

For =13, L=—"=0.426m

T 28x2

An extension of this example leads us to an interesting question: What will 7 be

if the rod is suspended at the centre of mass C?
If the pivot is located at the centre of mass,

= i o
=2 [mgxo)_)

which shows that the periodic motion is not possible in this case; obviously because
the restoring moment disappears as the weight of the body acts at the pivot itself.

Example 11.14 A disc of radius 10 cm is sus-
pended from a point on its circumference. De-
termine its frequency of oscillation.

Solution (Referring to Fig. Ex. 11.4) The mo-
ment of inertia about the pivotal axis is

! =M£;—+ Mr2 =—3—Mr2

=%Mx0.12 =0.015M kg m?

where M is the mass of the disc.

The frequency is given by

and the time period

Fig. Ex. 11.14

__1 [Mx981x0.1 i
f=32V oo - L2878
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Experiment E15
Oscillation of a Compound Pendulum

OBJECTIVE

To determine the time period of oscillation of a compound pendulum and to esti-

mate the value of g, the acceleration due to gravity.

APPARATUS

A bar-shaped compound pendulum with provision to suspend it from over a knife
edge at different points along its length as shown in Fig. E15.1. A beam compass, a

stop waich and a metre rod.

Fig. E15.1 Compound Pendulum

BACKGROUND INFORMATION
From the equation of motion of a compound pendulum,

dig  mgr .
2 + T =0
The time period is given by
T=2r L
mgr
-3y mk? +mr?

mgr

o)
o] r Knife Edge
o
L R
s
o
o
o
o
____,\ Bar

(El5.1)
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! k? 2y
=2r L...:Er_..)..i (E15.2)

Comparing of this expression with the expression for the time period of a simple
pendulum, i.e.,

T=2r L
&

shows that the length of an equivalent simple pendulum

k2 +r2
r

=

which, for a straight uniform bar becomes
| = L2N2+r2
- r

where L is the length of the bar.
From Eq. (E15.2), which is a quadratic equation in r,

- 2 2=
r il gr+k*=0
it is noticed that there must be two values of r for the same time period 7 of the
pendulum such that

k*+r2 k4]

h n

whence rr=k? (E15.3)

Since k * must be a positive quantity, it follows that r| and r, must have the same
sign, i.e., the two points of suspension at a distance r, and r, from the centre of
mass must be on the same side of it. Similarly, there must be two points of suspen-
sion on the other side of the centre of mass which yield the same time period. In all,
there are four points of suspension on a bar pendulum which provide the same time
period.

The value of g, the acceleration due to gravity may be obtained from a single
measurement of the time period for a known r and by applying Eq. (E15.2). Averag-
ing on the basis of a number of isolated readings would be an improvement over the
method. Better still is 1o draw a curve of the time period vs. the distance of the point
of suspension from the centre of mass on one side or on both sides of it. Averaging
for the value of g on the basis of pairs of values of the distances on either side of the
centre of mass for the same time period has the added advantage of using the faired
curves drawn on the basis of all the measurements.
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ry = 0A, r," = OA”; average r; = (OA + OA" )2
r, = OB, ry = OB, average r, = (OB + OB')/2

k? = e
From Eq. (E15.2),
4x? k2 +r?
g = 7 * —
T r

wo

cstimates of g are obtained for the average r, and r, and &k * as above and 7

recorded from the plot as CO. Similarly, estimates of g are obtained from the set of
points P, Q, P”and Q", and so on and an average value of g is determined.

RES!
1

ULTS AND POINTS FOR DISCUSSION

. A value of g can as well be obtained from each observation of r and 7 by
employing Eq. (E15.2). What is the advantage of the method adopted by you
over this procedure?

2. Theoretically, for a uniform bar,
k* =112
while it is actually,
k* =rnry
Which is a closer to the true radius of gyration squared and why?

3. Determine the length of an equivalent simple pendulum for the compound
pendulum and state why it must be less than the actual length of the pendulum
below the point of suspension.

4. Which gives a more accurate value of the acceleration due to gravity, a simple
pendulum or a compound pendulum?

5. What is the mean value of g over the surface of the earth and what is the value
of g at the location of the cxperiment? Do the values compare with the
estimate of g made by you?

6. Note that the moment of inertia of a rigid body about an axis may be deter-
mined by suspending the body about that axis and by noting the time period
of oscillations by using Eq. (E16.2), if the acceleration due to gravity is
known. Would you recommend this method of finding the moment of inertia
of a rigid body?

7. What is the ume period of oscillation of a bar when suspended from its centre
of mass?

8. What is the minimum time period of the bar? Why can it not be less than this
value?

(c) Torsional Pendulum

A torsional pendulum consisting of a rigid body attached to an elastic shaft operates
by virtue of the restoring moment due to the elastic deformation of the shaft as
shown in Fig. 11.17.

The restoring moment exerted by the shaft on the rigid body on a displacement 8
is given by

ariG
=-—=7
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The moment of inertia about the axis of the shaft is

16 67

[ = = 2000 4 (0.15)2 =0.187kgm?

2
The angular frequency is

r
,f"" G J:rx 0—2- x35%10° /(2% 1% 0.187)

=136s""

The cyclic frequency fis given by

(d) Conical Pendulum

747

A conical pendulum consists of a mass m suspended by an inextensible string of
length [ from a point O fixed on a vertical rotating rod as shown in Fig. 11.18.

The equation of motion of the mass m can be written as
F=ma
where F, the net external force equals
-mgk-Tsin @i+ Tcos Ok

i and k being unit vectors as shown in Fig. 11.18.
The acceleration of the mass in rolation at a constant
angular velocity is purely centripetal

azox(oxr)=okx(@kx/sin0i)=-w?/sin0i

Hence
~mg k- Tsin i+ Tcos 8 k =—mar! sin 6

whence, the two scalar equations appear as

-mg+Tcos @ =0

Eeeee—r— et —-—-—-4-

o

Fig. 11.18 Conical

or Tcos 8 =mg Pendulum

and T'sin @ = marl sin 8

It follows that

T =mafl (11.26)
and v =cos ™ (glarl) (11.27
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The mass m describes a circle of radius r whereas the string and mass taken
together describe the surface of a cone. The system has, therefore, acquired the

name ‘conical pendulum’.

{e) Foucault's Pendulum

The Foucault’s pendulum is essentially a simple pendulum with a long string. A
string of over 10 m length allows the bob to oscillate with an amplitude of 1 m with

u small angular amplitude. The bob is ca-
pable of oscillation over a long period of
time, say 24 hours or more. A fact which
stands out is that the plane of oscillation of
a simple pendulum should precess abowt
the vertical axis due to the spinning of the
carth as shown in Fig. 11.19. The period of
precession would, of course, be different at
different locations on the earth. The fact
that the carth spins about its own axis is
borne out by the experimental observations
on the Foucault’s pendulum, One such pen-
dulum is installed at the entrance of the
Science Museum, London. The pendutum
is ‘let go” in a plane motion in the morn-
ings and, as the time passes, the plane of
oscillations changes continuously with time,
thus demonstrating the spinning of the earth
about its own axis, day in and day out.

(f) Double Pendulum

A double pendulum consists of a mass m,
suspended on a string of length /[, from a
fixed support and another mass m, suspend-
ed on a string of length I, from the first
mass, as shown in Fig. 11.20. The mass m,
can oscillate about the centre of mass m,
whereas the mass m, can oscillate about the
fixed point O. For a very special case when

my =My =m
L=hL=I1
and 8 =sin 6, cos 8= 1 for small angles
6, and 6,.
The equations of motion are
{2 28,
d-8, + d*e,

2’ 4 b
dr* dr?

=-2g68, (11.28)

A

Fig. 11.19 Shift of Vertical Plane
of Oscillation from
OACB to OA'CB'with
Time of Day due to
Spinning of the Earth

Fixed Support

my
Fig. 11.20 Double Pendulum
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(iii) if and only if the system undergoes simple harmonic motion
(iv) if the initial state as well as the disturbed states are in equilibrium,
(c) The resisting force in an oscillatory system tends to
(i) reduce the time period
(ii} oppose the restoring force proportionately
(iii) reduce the amplitude
(iv) reduce the amplitude with time

. Differentiate critically between

(a) simple pendulum and compound pendulum
(b} damping forces and driving forces
{c) angular frequency and cyclic frequency.

. Make simple sketches to illustrate three oscillating systems

(a) capable of linear oscillations
{b) capable of angular oscillations.

. Can every oscillating system be reduced 10 an eguivalent spring-mass-damper system?

Establish the equivalence of any one linearly and one angularly oscillating system.

. 1ll-effects of the resonance of a system can be avoided

(a) by keeping the resonating frequency as low as possible
(b) by making the frequency of the driving force as low as possible
(c) by passing the system through the state of resonance as quickly as possible.

. Why is it that the equation of motion of a simple pendulum can be obtained either by

Newton's law or by Euler's law or by the principle of conservation of mechanical
energy, whereas the equation of motion for a compound pendulum cannot be obltained
by the application of Newton's law alone?
__GM

(R+m)?
where G is the gravitational constant, M is the mass of the earth, & is the vertical
distance from the surface of the earth and R is the radius of the earth, establish a
relationship between h and the length of a simple pendulum of period | second at all
altitudes.

Tutorial Problems

11.2

11.3

A small ball of mass s is fixed at the mid-length of a taut wire of length / with tension
P in it as shown in Fig. Prob. 11.1. Show that the ball
executes a simple harmonic motion Tor small displacements,
Also calculate the ime period of the ball.

- ’m_-‘ P
[)\ns.r—ZJr 4P]

A solid aluminium sphere with 50 c¢m diameter is X
attached to the lower end of 10 m long aluminium rod of 5 P
cm diameter, the upper end of which s fixed. Find the peri-
od of this pendulum. Take G = 24 x 10 N/m® and
o= 27,000 ng’m3 for aluminium. (Ans. 0.12 5)

A block of steel of mass 50 kg is supported by an altemative  pjg, Prob. 11.1
spring arrangements as shown in Figs. Prob. 11.3(a) and (b)

and (c). Determine the natural frequency of the bluck in vertical motion. Estimate also
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Fig Prob, 11.3

the maximum velocity and acceleration of the block if the amplitude is 5 cm. Take k;
=40 Nfem and k; = 50 N/em.
(Ans. (2) 0.214 57, 0.067 m/s, 0.09 m/s*
(b) 0.106 5!, 0.0334 m/s, 00222 m/s’
(¢) 0.257 5™, 0.08 mJs, 0.13 m/s?)
A vertical U-tube manometer containing mercury for a total length of 0.3 m is subject-
ed 1o a sudden pressure differential which is removed and the columns are set to
vibrate. Determine the frequency of vibration and comment on its value if
(a) the size of the manometer is changed to a tube of half its diameter and a length
half as much and if
(b} the mercury is replaced by water
{c) the U-tube is inclined with its plane making an angle of 30° with the horizontal.
(Ans. f = 1.29 Hz: (a) no change with diameter but f= 1.82 Hz
for half length (b} no change, (c) 0.912 Hz)
A semicircular cylinder of radius r and mass density p rests in the equilibrium posi-
tion on its curved surface on a flat plate. Establish that the semi-cylinder is capable of
oscillating and determine its period of oscillation.

[mm,, Q__‘_"L]

2
A mass m attached to a rigid rod which is held in position by two horizontal springs is
made to vibrate in the plane of the springs (Fig. Prob. 11.6). What condition must be
satisfied for equilibrium in the vertical position? Obtain the equation of motion and
express the natural frequency of the system in terms of the given parameters.

When will the period of oscillations be infinite?

1,
[Ans.!f =m,f—k':1=21t/ ’&::——-}-]
mis 2
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Fig. Prob. 11.8

11.9 A particle P of mass m oscillates along a vertical line in a system of springs shown in
Fig. Prob. 11.9. Determine the [requency of oscillation assuming all other members as
massless elements.

i I t Iy |
: @P
k2 i
b [ ]
ky 3k

)

4
1 1 1 1
’”(.u, i T T }
11.10 A circular disc of diameter d and mass m is free to roll without sliding on a horizontal

plane. Two identical springs of stiffness k are attached to as shown in Fig. Prob.
11.10. Determine the period of small oscillations of the disc.

Ans.w? =

ra > TITIIIT

Fig. Prob, 11.10

1 | 6k(LI2+D)2
Ans, f=— |——————
[mf Y m(L? +121%)
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11.11 Find the period for small oscillations if a rod of length L and mass M is suspended

from a point L/4 from one end.
Ans.2 [ 1L
24¢

11.12 A pulley having a moment of inertia / about its axis of rotation supports a rope which
carrics a mass m at one end, while the other end is connected to a spring of spring
constant & as shown in Fig. Prob. 11.12. Find the period of oscillation of the system.

Assume that the rope does not slip on the pulley.
I+ mR’
Ans. 2
kR

12 } 12 !

T

a
Fig. Prob. 11.12 Fig. Prob, 11.13

11.13 Two parallel cylindrical rollers rotate in opposite directions as shown in Fig. Prob.
11.13. The distance between the centres of the rollers is &, A straight, uniform hori-
zontal rod of length [ and weight W rests on top of the rollers. The coefficient of
Kinetic Iriction between the rod and the roller is 4. Taking x as the distance from the
centre of the rod to the midpoint between the rolls, write the equation of motion of the
rod, assuming that it has been initially displaced from the central position. Find the

frequency of the resulting vibratory motion.
(Ans. J2ug/a)

Look up Hints to Tutorial Problems!

Mahfpfe-.cbotce Questions

Select the correct or the most appropriate response from among the available alternatives in
the following multiple-choice questi
I. A lincar response implies that
(a) the elements are in one line
(b} the response is along the given line
(e} the scnsitivity is constant
{d) the response is not exponeniial
2. A vibrating system
(a} does not pass through an equilibriuvm position
(b} passes through the equilibrium position once every cycle
{c) passes through the equilibrium position twice every cycle
(d) starts from an equilibrium position and does not return to it
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3. Resonance occurs when

(a) a freely vibrating system is made to vibrate at increasingly higher frequencies
(b) the forcing frequency equals the natural frequency of the system

(c) the system vibrates at its natural frequency

(d) the amplitude of vibrations exceeds twice the amplitude of free vibrations

Answers to Multiple-Choice Questions
1 (c) 2 (a), 3 (b)
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APPENDICES

This section consists of appendices with information useful for the
study of mechanics:

O APPENDIX 1 RULES FOR DIFFERENTIATION
AND INTEGRATION

Q APPENDIX 2 PROPERTIES OF PLANE FIGURES
O APPENDIX 3 PROPERTIES OF SOLID BODIES




APPENDIX 1

RULES FOR DIFFERENTIATION
AND INTEGRATION

Some rules of differentiation and integration commonly referred to by the science
aad engineering students are listed as follows:

DIFFERENTATION
( vi=-f(x) =i LW
v = f(x) Y= y=flx dr
a 0 sin”! x (1 =232
uv H%+ V% cos™! x (-2
-1 =1
vﬂmuﬂ tan"'x (1+ P
% dx . dx cot™' x —(1 + x4
Y ) sec™ x o - 1y
" ! E% cosec™ x o s
fw) a‘,i ;‘(u)% sinh™! x 2+ 1y
cosh™ x (2 =112
& & tanh™' x (1-x"
u Vu"‘-:x—"+ u'-:-:los. u | coth'x -2 -1y
sech™! x Al = 2y1R
log, x % cosech™! x4 112
logypx j:*IOSw e
£8) ‘= £(6) 16 1= 50
deé de
sin @ cos 8 sinh 6 cosh 8
cos 8 -sin 8 cosh 8 sinh 8
tan € sec’ @ tanh 6 sech? 6
cot @ —cosec? @ coth 8 —cosech? @
sec 8 tan @sec 8 sech 8 —sech #ianh 8
cosec 8 —cot @ cosec 6 cosech 8 —cosech 8 coth 6
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For a curve y =f(x),
¥ = 0 corresponds to a stationary or extremum point and

<0 for maxima
y”4=0 forinflexion
>0 for minima

“] +)a2)132|
Radius of curvature = Curvature dG ¥ |
(&2 +32)M2
& & LIy
Partial differentiati ___ - =
ial differentiation, d." > for = f(x,»)
The ath derivative, D" (uv) = D"u v +"C, D"'u Dv + ... + "Cr D"™"u. D'y
+ o+ uD
INTERGRATION
fix _ff(xldx fix) _[f{x:dx
I sin=l £
a ax a? -2 ) a
‘“ﬂ'd-l l X
ax' n+1 @+ alan a

1 log, | x1 b log, | £+ Eadpe)
x g Jat ta? a Ya2

e % sec” @ tan 8
sec B tan & sec 6
aX
a fog. a sec 0 log" (sec @+ tan 6)
cosaf
sin a@ - cosec 8 log" (cosec 8- cot 6)
col B log® | sin 81
cosec B cot 8 —cosec 8
sina@
cos af —r——
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fx) [ fex de fix) [ Ax)dx
log . sec af du
lan ad —_— v u_[vd.x - I[Efvdx)dx
log, x xlog, x-x sin’@ ~(sin 6 cos 8 -6)/2
2
1’.\:3 +al %J:z+az -—-'-’—2-- cos’@ (sin Bcos 8 + 8)/2
[x2 +a2
x [log, NE_ T4 [ fixdx
¢ a flax + b) —_—
xyx? -a? 2 ! afx
2 —al - _ﬁi. a2 Cosh-! [;]
x+qyx? —a?
x| log————
a
.t-Jn"’ -x? 2 - 1 Lol x
a?-x? —-—--2-———-—+£i- a? —x? Sin It:)
x sin~! (-‘E-]
a
1 1 a+x I —— 4
at -x? ?a-iog a-x Jx‘ +a? Sinh (:}
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HiNTs TO TUTORIAL
PROBLEMS

CHAPTER R2

R2.:
R22

R2.3

R24

R25

R2.6

R2.7
R2.8

Vector OP = [(10-3)i+ (5+ 1) j+ (8 - 2) KI(7* + 6% + &%).
The feasible path is from P(0, 0) to x, ¥ passing through (3, 4) and then to
the left horizontally to reach (0, 10). Unit vector along the incline is

U = (2 i +4 j)/5. One must go until ¥ =10; hence x = 7.5,

Distance along the incline is J 10* + 7.5 = 12.5 units.
Total distance travelled = 12.5 + 7.5 = 20 units.

F=(=5-00i +Q2-0)j+(14-0)k

Magnitude of 7 is -JS2 +22 4+14% = 15 units,

T =15(i+mj+nk) By comparison with above,

I ==5/15, m =215, n = 14/15, ctc.

For an arbitrary triangle ABC, drop a perpendicular from B to side AC and
use Pythagorus theorem to prove the two laws.,

The direction of projection is along the cross product of A and B vectors
which is given by

i § k
2 -6 -3
4 3

Find the unit vector along it and multiply by 70 m/s.
By definition, A - B = AB cos 60

Find A = 101 units, B = \HIS"‘I: units and hence, by comparing,

& =-35.15 units as the feasible answer.
Use the rules as stated in the text.
(a) You need to show that
e - e;=0,
ey ey=0and
ey e =0
(b) Find AxBand BxC,
Now show that the dot product of the two results is not zero; hence non-
coplanar,

Jie, 15i-10j + 30k,




R2.9

R2.10

R2.11

R2,12

R2.13
R2.14

R2.15

R2.16

R2.17

R2.18

R2.19

R2.20

Hints to Tutorial Problems 775

For (a), differentiate term-by-term. For (b), differentiate the scalar after dot
product, 16 and get the answer 4812, Likewise for (c) and (d).

Velocity V = dr/dr and substitute 7 = 2 seconds.

Acceleration = dV/dr and substitute r = 2 seconds.

Unit vector along PA= [(4 - 0) i+ 0 j + (0 - 8) k] /,}4’ +8?
Force along PA =20 (4 i - 8 k)/\/80
Forces in other cables are T, (~i + 4 j-8 k) / Jﬁ

and Ty (-2i-3j-8k) /J77.

Equating the sum of all threc i and j components and zero, T} = 22 kN,
T, = 28.6 kN,

Forces exerted on the pole = sum of k components which is 63 kN,
Getrpp=-i—-2j+2kwithu=(-i-2j+2 k)/3. The force is 100 u. The
distance PO is 6 j — 4 k and the moment r x F can be found.

Use the definitions and apply the rules.

(a) that ris a constant vector or zero.

(b) that the two are collinear or parallel or one is zero.

(c) irrotationality!

i J k
rxV=|12 3 4 1, etc.
2x =2y xy
ik
VxB= 100 25 0], etc.
[0.01 -0.001 ©
@= 2 50/60 i =5.236 i rad/s

For C|, r=05k V=wxr, el
For C,. r=02j+05k V=wxr,elc.
Construct the force triangle with the desired conditions and show that the
components are 200 and 282.6 N. For equally inclined components,
F| cos 8+ Fycos 8=R
F,sin 8= F,sin 8, F, = F, = RI(2 cos )
As @increases, cos & decreases until &= 90° where cos 8= 0 and F, and F,
tend to infinity.
For equilibrium,
=T, cos 30 = T; cos 25 — Ty cos 30 = -1000
and T, sirf 30 cos 30 = Ty sin 30 cos 30 =0
and T, sin 30 sin 30 + 75 sin 25 — Ty sin 30 5in 30 = 0
which provide, T, = T; = 356.6 N, T, = 4219 N.
The resultant force 100(0.6 i + 0.8 j) must be the vectorial sum of
F(0.5i+0.5 j+0.707 k), etc. Find the values of the magnitudes F,. F; and
F;.
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CHAPTER 2

2.1

22

23

24

25

26

2.7

28

29

2.10
2.11

2.12
2.13
2.14

2.15
2.16

2.17

2.18

2.19

2.20

While at (2, 1), it exerts a moment (2 i + ! j) X (- 50 k), i.e., 100 j-501i
about 0. Now, while at a (1, 2), it exerts 50 j — 100 i. The difference is
required to maintain equivalence.

By the priniciple of parallel transfer of force, it is necessary to accompany
with a moment 100 x 0.25 for O and 100 x 0.5 for B.

Resolve them into components and add, e.g., 150 cos 30 i + 150 sin 30 j +

180 cos 45 i- 180sind5j...

Resolve them into x, y and z components and add.

They result in a couple of moment 0.3 x 10 Nm clockwise normal to the
planc. If one force was 11 N, the resultant force would be 1 N in that direction
and additional moment of 0.15 x | Nm.

Resultant force is zero but the resultant moment about any arbitrary point is
=30 Nm.

Let the fourth force be F located at a distance x from A. Write the equations
for resultant action and solve for F and x.

Proceed by considering the resultant as the summation of forces and summation
of moments about any arbitrary chosen points.

Summation of forces and moments about any chosen point provides the answer.
Addition of a force along the bar is made vectorially.

The resultant force is (3 i — 0.5 j) kN. Find the magnitude and the angle.
The pivot provides force-reactions to balance the forces. Sum of moments is
zero. If the 10 N force moves to P, there is a net moment!

Proceed by summing the forces and moments and locating the single equivalent
force.

The equivalent action at O should consist of F and M which are summations
of forces and their moments about O,

Resolve the loads into x and y components and add. Find the magnitude of the
load and the unit vector only along which it acts.

Consider the sum of forces and moments about the fulcrum.

Single resultant = =400 cos 60 i — (=300 =200 + 400 sin 60) j with the
moment 400 sin 60 X 0.3 x50 -200 0.5 = F, x x.

Fat A and B = 3/0.4 = 7.5 N. The force R referred to A is 100 i acting at A
together with a moment 100 x 0.2 in the z-direction. Equivalent couple force
are 50 N, 0.4 m apart. Hence the replacement.

F =-50i + 80 j - 50 k passing through 0 and M, = 1250 k - 500 i + 750 j.
Find the unit vector along F and the component of the moment along it is
Mg = 351.1 units, This could be eliminated by transferring the force parallel
to itself such that r x F=M,.

Find the angle 6 of the 50 N force wiih the base diagonal as 20.4 degrees.
The angle & between the x-axis and the base diagonal is 68.2 degrees. Write
for the force and then the mements as r X F. Find the resultant force and
moment.

Consider two parallel elementary discs of radii r; and ry of the spheres at a
distance (r — x — y) between them. Write the expression for the elementary
force of attraction and integrate over the radii of the spheres.



2.21

2.22

2.23

2.30

Hints to Tetorial Problems T77

Consider two rod elements equidistant from the point mass. The horizontal
components of the forces cancel and the vertical components add up. Mass
per unit length of the rod is M/2a. Integrate the force from 0 1o a.

Limiting friction = 0.3 x 20 x 10* = 6 kN. With rclative motion the frictional
force decreases.

It all depends upon the masses and coefficient of friction between different
pairs of surfaces. Draw a figure with, say, five plates and apply a horizontal
force at the mid plate 3 with plates 2 and 1 above it and 4 and 5 below it If F
is greater than g, (my g + my g + my g) and 4 (my g + my g) is greater than F,
them the plate number 3 and those above it will slide. Like this, discuss
different possibilities.

Resultant force =k a + k b + k ¢ but a + b = —c by the parallelogram law of
forces. Therefore, the resultant is zero. Moment about an arbitrary point equals -
2 k times arca of the triangle. A polygon can be considered to be composed of
constituent triangles; hence the fact!

Resultant = 200 i — 400 j — 500 k units. If it is passed through the point O, the
accompanying moment would be 3i x (=500 k) + 6 i x (-400 j).

M, =4 x4 sin 40° = T x 6 cos (90 — (180 — (90 + 30 + 40))). Equaie it to
zero Tor equilibrium and find T.

Consider a particle of mass s at a distance  from the earth. Then,

GM,. mid* = GM,,. mi(3.8 x 10° — o), Find d.

The upward force at B must equal the weight of the punch, 2 x 9.81 N. Force
in Al =2 x Y.81/cos 30 and the moment = (.2 X force in AB.

Express the force in components and express the position vector CE or CB (o
find the moment about C, similarly, about K. Moment along the axis CF is
given by the dot product of the moment about C with the unit vector along
CF.

Proceed by taking summation of forces and take moments about the point 1.
Next, employ the *parallel force transfer” principle to get the answer for the
second part.

CHAPTER 3

3.1

32
33
34

35

i6

Consider the free-body diagram of the boat including force F exerted by the
flow and tension T in OC 1o Tind their magnitudes. Now draw the flxd without
T and determine the tensions in OA and OB. Both being positive, the boat will
remain in equilibrium.

Consider the forees at O for equilibrium and apply the Lami’s theorem.

For a concurrent force system, £ M = 0. Check if it is true i this case.

Find ZF und Z My Let (xi+y jlx-8k=-12i+15j.

For (d). yes by choosing three forces which add to 8 k and their
M,=12i-15j].

First, consider the equilibrium at 0. Force in OC is 29 kN.

Then, P =29 cos 15 =28 kN.

First. consider the fhd of the cylinder, and then for the link taking into account
the 570 N force exerted by the cylinder normal to the link.
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38

39

310
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For (a), apply the Lami's theorem. For (b). subsitute for Tand Wyd = 10 m.
Find the tensions from the fbd of the rod. Determine v from A so that M, = 0.
First, use IMy = 0 for the arm. Then, at a time 7, let the load be at x and at
t+ Ar, it beat v + Av. By subtraction and using v = vi. oy = ver get the
answers! Substitute @= 30° at the end.

From the fhd of cylinder 1, get the force in the bar as 1200 N. Then, lrom the

Shel of the eylinder 2, get P.

TFFor the tetrabedron joining the four centres, locate the centre of the top ball;
sin @= 1/v3 . From the fbd of the top ball, 3N cos ¢ = myg. For a lower hall,
N sin #= 2T cos 30

For equilibrium at 8 apply the Lami’s theorem,

Use ZF =0 and take moments about the axis 2 - 3 and then abouwt axis CD for
IM=0

Taking the origin at O, the unit vector along OA is

hi—-aj-h khﬂbz +a® + 17 ). Also, find for OB and consider the
cquilibriom at 0.

Tension in BCis T, (-8 k+4 j—21)/V84 and in DE is

T (-5k-4 Y41 . Consider IM, = 0 for equilibrium. R, =0, R, = 840
and Ry = 5100 N.
Locate 8, C, G and H. Find the unit vector along 8H and BG and consider the

fhe of the boom,

CHAPTER §1

SLI

S1.2

S1.3

ShLo

S1.7

SIR

Reaction at D consists of x and y components, D, and . Reaction at roller £
is only horizontal, E. Take moments about £ and then w D and use ZF = (.
Consider equilibrium at A; then at Cand B.

Cuonsider equilibrium at A 10 get forces in AB and AE. Then consider equilibrium
at B and then at E, Find reaction at 1 and force in 2C by equilibrium at 1.
Determine the inclinations of AB and AC by geometry. Reactions are found by
considering the equilibrium of whole truss. By equilibrium at A, find forces in
AR and AC. Force in BC can be found by considering equilibrivm at B or C.
Same way, attempt the next problem.

Reaction at R has both components A, and A,; reaction at £ is only vertical,
1),. Find them by cquilibrium of the total truss. Then consider equilibrium at
D C, Fand A in turn,

Determine £, Fand E, . Cut a section through AH. AC and BC and consider
the equilibrium of the upper part. Either cut another section through HG, CG
and €I or proceed by taking joints B, H, C and D, in turn.

Determine £, F, and D, by equilibrium of the whole truss. Then vse the
method of joints by taking D, C, H, etc.. reaching F at the end only.

Find the reactions A,, A, and C, first. Then take up joints C, D and A or B, in
wrn. One of the last two can be used Jor verification. )
Find the reactions A, A, and B, by cquilibrium of the whole frame, Consider
the Ih.d. separately Tor BEC and ADC and DE. Each of them is in equilibrium.
BE must be a 2-force member (only in compression) because reaction at 8
must be vertical only.
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Draw the intersecting curves tentatively, intersecting in the first quadrant.
Locate the points of intersection (0, 0) and (6.87, 7.86). Now,

X = _[x dAr‘jdA = Jx ¥y = ) dx/(y; = ¥;) dx and simplify. Similarly
proceed for y,.

4.11 Usey.= (yq ny = N, My N M ]/{m| = my + my) where suffix | stands
for the complete perspex cylinder, 2 for the hole and 3 for the lead filling.

4.12 y_= 0 by symmetry about the x-axis. Side of the square is RI?2 and area is
RZ;‘Z, etc.

4.13 x5 = 0 by symmetry about the y-axis. Volume = )'r!.‘i(rf (hy + hy) - ri hy).
Use the fact that y, for a complete cone is at A/4 from the base.

4.14 For the hemisphere, y, = (R — 3/8R) = 5/8R and V = 2/3x R*. For the cylinder
Yo= R+ W2, et

4.15 For equilibrium, the centre of gravity should be vertically below the point of
suspension and hence at the lowest position.

4.16 For the circular arc, /, = 7R and ¥, = 2R/m + a. Find a such that
Loy +2-all=(L +2a)-a Geta= J2 R and
total length = (7 + Zﬁ K. .

4.17 The centroid of the semicircular wire, which is at 2R/ from the diameter
should be vertically below the point of suspension, for equilibrium. It W is
suspended from B, then take moments about the hinge and equate the sum to
zero.

4.18 Empoly the Pappus-Guldinus theurem. For a hemisphere, 47 PR=rrx
distance covered by the generating arc 7 v. Hence y, = 2r/rand x, = 0.
Similarly y, for a semicircular disc = 2 37 /7 P12, n= 4rl3 .

4.19 Forthe arc, ¥, =02 + 2 x 0.15/7= 0295 m; I'= 7 0.15 and proceed.

CHAPTER 5

dv

5.1 Integrate a = i w.r.l. tin order 1o get v =4 ~ £ + 5t + ¢, and evaluate the

constant ¢, by substituting = 1's, v = 6.25 m/s. Integrate again o get s.
d

52 Froma= _d_: . find v and then find s using v=0atr=0and s=0atr=0. It
will stop again when v = 0. Find 1 at that instant.

5.3 Final velocity is (2 i - 3 j) x 10 more than the initial velocity! Determine the
x, y and z components by employing s = u 1 + 1/2a F* along cach direction.

54 Atr=0,x=0,v=3,z=0;at r=25 x=20, y =3, z=-4. Determine the
constants A, B and C to come out as 5, 0 and -2 respectively. Then find the
velocity at =5 s,

55 Let x= xycos @1 v = —@xy sin @t and .a = - @y, cos @t referred to an
extremity. Use xg = Im, r = 2x/w = 2s.

5.6 Let x = xgsin @, referred 1o the mid-point, Here @ = /3. Use the boundary

conditions.



5.7

5.8

5.10

5.12
5.13

5.14

5.17

5.18

5.20

5.21
5.22

5.23

5.24

Hints 1o Tutorial Problews 783

Here 7= 0.6 = 2@@. At the mean position, v, = @x, = 1.5. At hali’ way
position, (L5 = sin @ 1. So, w1 = 0523 and v = 1.5 cos 0.523 = 1.3 m/s.

iecti . - =y 1. 2
For the projectile path, x,,, = v cos @rand 2., = v sin 8 42~ —g (/2.

Equate x, ., 0 2, and use the fact that z =0 at x,,; 7 = 2v sin 8/g.

The horizontal distance between them, 30 cos 30° is the sum of the distances
traversed by the bullets, i.e. 350 cos 30°¢ + 300 cos (=3(0P). r whence
1 =0.0462 5, ete.

For simplicity consider the target at x,, horizontally = v cos &r and
t=2vsin flg. x, = v*sin 268/g Since sin w= sin (71— ¥, 6, = 1/2 sin”' (px/v?);
&= nl2- 6.

s=xtan o - g,\‘z.-"(Zv"' cos? @). For x =522 2and x =0, z = 0. From the
equation, sin 2a = 0.2725, 2ar= 15.81° and 164.2°. Hence tind the appropriate
a.

z=-120=xtan @ - gx!i’(hz cos® @). Find x for 8= 30. Use x = v cos 6.
At any time 1. separation between them is given by x = /i = (2v cos @t) and
7= 23— 2. Distance d between them is [,1'3 + :2) . For it to be minimum,

differentiate it w.r.L. time and equate o zero!
For the first half distance 572 = %g (r = 1)? and for the next half distance,

$12 = g(t = 1) + 1/2g.1%. Equate the two expressions and proceed.

The path of the ball is given by z = —gx¥(2 x 1.5 x 1), i.e., 2= =2.18x% Find
the point ol its intersection with z = —x, the slope of the tips of the stairs:
x = (145 m which means the third step.

For the path, z = tan 8- gﬁf{ZVz cos? @), substitute x = 12 m, z =~2 m,
8= 30° and with g = 9.81 nv/s’, determine the speed V as 37 km/hour.
Assuming that the helicopter is descending with a vertical u, initial height f,
use h=ur+ 132313, For the second packet, the height is (it = Si), etc.
Obtain dy/dr = 8 and also dv/dr by using x y = 16. Substitute 1 = | sccond to
get the velocity components. For x = 2 m, get + = 0.707 sccond and proceed
the same way.

Given that. lor e¢=90° =z,

Now, ¥, = Vi sin 2a/g = 2h at &= 45°.

Procced by taking s/2 = 1/2a !, 5/2 = 1f2r f% dEhHhal =

Given that & = kt = dw/dr. Intergrate w.r.t. time and substitute the data.

Draw a line joining G to E and wrile vector expressions for position, velocity
and acceleration.

First differentiate the given relations w.r.t. time for velocity and acceleration
and then substitute the data each time.

The time taken for the bullet to hit it is expressed as M(V cos a- v)an a
from tan e= My and x = x" + vt where " is the harizontal distance at the
instant of firing and x is at the instant of striking the shell. Then, find /i by
using the expression Vsin @1 - 1/2gr

Use z = 1/2gr to find the time and x = V. 1. v/ = tan 8; 8= 48.9°,
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Differentiate r and 8 w.r.t. time and use V = Fe, + ra e, and substilute 7 =
3 seconds. Diffcrentiate again V w.r.l. time to get the acceleration.

Notice that @= 10 rad/s,

a=2radfs, F=3mls, F =2m/i% r=0.5m. Substilute in the terms for
velocity and acceleration in cylindrical co-ordinates.

From the given expression for r and 8, determine, r, &, at = 20 seconds and
differentiate twice to get velocity and acceleration respectively in cylindrical
co-ordinates.

Fromy=2x, § =67 X . Now,v= di+ §jand = \J.i‘z +3* =3

whence & =0.493 and y = 2.96 m/s. Similarly, from v =2 ¥, get i and
proceed.

By energy conservation untitAand B, Vy, = V=V = f2¢h; h = 0.5 + [ cos 30°,
The acceleration at A is g cos 30° along the slope and hence — g cos 60°
tangential to the are; the radial component being V¥ towards the centre of
the are. Using v = 5.18 m/s from the above, obtain the total acceleration.
Use ap = ap, + a,+ axr+20x Vp, + @x (@xr). Place the moving frame
at B on the link AB.

Then =4, @=3, Vp,=2x5= 101, ap, =4 i+ 50 j, ay = 0. Substitute
these values above to get the result.

V, =5 m/s radial plus 5 x 10, i.e. 50 m/s tangential velocity. It can never
reach B.

From x = [ tan & get & by using @ = 2x N/60 rad/s. Again, differentiate and
substitute the data and get the acceleration.

Consider the chain at an instant 7 when a length x has dropped and (/ - ¢ - x)
is flat on the table. Consider the tension 7 in the chain at the edge; then,
T+(c+x)wlg ¥ =(c+x)wor T=(c+x)w(l - X/g)for the vertical part.
Also, T = (I~ ¢ = x) wlg ¥ for the horizontal part. The two to get the
differential equation describing the motion. Solve the equation as well.

V.= Vsin (= 7). I, = Isin (= r). Now, a = —rar e, + 2i @ ey The

magnitude of acceleration is given by Ji’ sin@ @) +(2V sin @ @)* which
simplifies to yicld the answer.

CHAPTER 6

6.1

6.2

The splash of water is heard after the stone drops a distance and the sound
travels up the same distance. Hence 2.5 = f2d/g + df330 which gives
d =28.6m.

Here 9.V x = dT: :%v%;— v % whence vy = 9x'7 dv. v = 12 ¥
p X

Now v = %:— . Substitute and integrate to get x = 67.5 m. v = 81.6 m/s and
[

a =739 m/st.
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For the free body diagram of the block, write the equations of motion along
the horizontal and vertical axes. Also, write for the free body diagram of the
wedge. Solve the equations.

Find the acceleration by using v = u + ar and write the equation of motion
along the incline for the verticle. Then

F=2000 x 0.33 + 200 + 2000 x 9.81 x 1/20 = 1848 N.

For the total system of masses accelerating at a, the net external force along
the motion is nyg = g = thnng; equate it to (my + my + ;) times
acceleration. Then, consider the free body diagram of the blocks my and m,
and solve the equations of motion.

Consider the free body diagram of block B. ma = g m g, a = y g. The force F
on block A causes resistance & m g and inertia force m a on B,

Net force on the object is mg — kv = ma = m% . Separating the variables,

dr = dvl (g = Kkim - v3). Intergrate it logarithmically and obtain the expression.
For the upward motion of the particle, —mg -k —ma = 0. Expressing

a= % . separating the variables and integrating both sides logarithmically,
a

get the answers. For the second case —ng —kv? —ma = 0 and proceed the
same way.

From the free body diagram of the block A, F = gty Ny - Tcos 8- Ma = 0.
and Ny — Mg — T sin 8= 0. Eliminate N,. Now consider block B and get
T'= 1 (a+ tgghicos @+ pigsin 6). Then use their given values and solve for T
and a.

For the position at an angle 8 mv/r - mg cos 8- N=0and N = 0 at the
instant of leaving the sphere. Referred to the initial position, mechanical
energy is conserved. Solve for 8

For the conical pendulum, at the instant shown, 7 cos € — mg = 0 and
T'sin 8- m v}r=0. Use v=r wand sin &= 1/l to get the answers.

For the free body diagram of the rotating block,

Tcos 30° = m o r+ N cos 60 © and

T sin 30° = mg — N sin 60°,

Solve the equations. At the instant it loses contact, N = 0. Find T and @
Kinetic energy of the wagon just before it touches the spring is 1/2 m v* and
the potential cnergy stored in the spring after compression is
172 (ky x} +ky.x3). Equate the two, using x, = 2/3 x, . Next, for the free body

diagram of.the wagon, m a + k x = 0. Using a = g{ . 3’:— separating the

variables and inlegrating — v*/2 = kfm - x*2 - 50, etc.
For (a), =22/ V cos 45°, Vsin 45° 1 — 1/2g £=0.
For (b), 1 = 22/V cos 45°, Vsin 45° 1 - 1/2g 1 = -2.
Use conservation of mechanical energy principle,

v=2x9.81x3 (cos 45° - cos 30°) = 3.06 m/s
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Let a moving frame of reference be placed on pin P fixed with CD and let Q
be on the link AB. Use cosine law and sine law. V= 125 i - 64 j and
Vp =V, + V. Finally, @of CD = Vp/12 = -10.7/12 = - 0.89 rad/s.

From geometry. AO = 11.33 em, OF = 10 cm, ete. Take A on CD, coincident
with A. Then V. =V, + V... Also, from geometry, 8= 27.9° Finally, @ of
OP = 99.7/10 = 9.97 rad/s.

In this case, angular momentum must be conserved. r x m V = constant,
7 m & = constant = R m wﬁ . From geometry of moment,

R=r+2ra 62r=r+a 6 Express rand rand integrate w.r.t 1 to get the
desired expressions,

Let the inner cylinder rotate at @, The velocity at the bolttom is 1y, For
mo-slip” condition, this is also the velocity of the inside of the hollow cylinder.
The targential velocity of the hollow cylinder is ry@fr, = vir, whence
@, = r5f(ryry). v, Similarly, proceed for the angular acceleration.

The velocity of C must be the average of the two. It can also be determined by
equating the values of the rotational velocity @ of the cylinder as seen from C,
both above and below; (& ~v)R = (v — &, VR,

Write the expressions for V, and V, and use Vy= V, + Vi, Solve the
equation.

From the geometry, £0CQ = 25.7°, £0CQ = 94.3°, etc. Find V. and Vi
and hence compute Vi and V,, taking into account the fact that A can move
only horizontally.

From the geometry, find the angle ACB and proceed either graphically or
vectorially.

CHAPTER 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

89

8.10

Take a strip of width dy and length 2x at a distance v from the x axis. Use the
equation /e + v*bY = | and substitute X = a cos @and y = b sin & Integrate,
@=—-nri2 10 +a/2.

Equate the 1, 10 /. i.c. bh¥/12 = hbY48. Hence b = 2h.

Consider an clemental strip of length a, cross section dv x dy and find /.
Integrate between the limits —a/2 to + a/2.

Consider an elemental dise of radius ry at a distance z from the apex. Then,
o/ = Rl and m = p.1/37 R*h. Find I, by double integration.

The proof is given in Ex. 8.14 for a solid sphere, set R to zero and R, = R,
Consider a circular disc of radius v at a distance x from the y axis. First, find
the volume and the mass of the ellipsoid. Then, use /,, = my*/2 for the disc
and integrate.

I, =1,=m R¥4 =100 R*. Further, /,, = 100 R? + 400 (0.5)* = 109 etc.
Consider an clement dy at a distance x from the centre. Find /, about the
desired points and substitute { = 30 cm.

Polar moment of inertia [y = 7 D¥32 = & B2 for the circular section and
7144 for the semicircle removed therefrom.

First find the height of the centroid above the base, 4.48 cm and then find /.
by using components.






