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Matrices

1Chapter

1.1 INTRODUCTION

In the lower classes, the students have studied a few topics in Elementary Matrix 

theory. They are assumed to be familiar with the basic definitions and concepts of 

matrix theory as well as the elementary operations on and properties of matrices. 

Though the concept of rank of a matrix has been introduced in the lower classes, 

we briefly recall the definition of rank and working procedure to find the rank of a 

matrix, as it will be of frequent use in testing the consistency of a system of linear 

algebraic equations, that will be discussed in the next section.

1.1.1 Rank of a Matrix

Determinant of any square submatrix of a given matrix A is called a minor of A. If the 

square submatrix is of order r, then the minor also is said to be of order r.

Let A be an m × n matrix. The rank of A is said to be ‘r’, if

 (i)  there is at least one minor of A of order r which does not vanish and

(ii)  every minor of A of order (r + 1) and higher order vanishes.

In other words, the rank of a matrix is the largest of the orders of all the non-

vanishing minors of that matrix. Rank of a matrix A is denoted by R(A) or ρ(A).

To find the rank of a matrix A, we may use the following procedure:

We first consider the highest order minor (or minors) of A. Let their order be r. 

If any one of them does not vanish, then ρ(A) = r. If all of them vanish, we next 

consider minors of A of next lower order (r – 1) and so on, until we get a non-zero 

minor. The order of that non-zero minor is ρ(A).

This method involves a lot of computational work and hence requires more time, 

as we have to evaluate many determinants. An alternative method to find the rank of 

a matrix A is given below:

Reduce A to any one of the following forms, (called normal forms) by a series of 

elementary operations on A and then find the order of the unit matrix contained in 

the normal form of A:

I I O
I

O

I O

O O
r r

r r; ; ;|
|

|
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Here I
r
 denotes  the unit matrix of order r and O is zero matrix.

By an elementary operation on a matrix (denoted as E-operation) we mean any 

one of the following operations or transformations:

 (i)  Interchange of any two rows (or columns).

 (ii)  Multiplication of every element of a row (or column) by any non-zero scalar.

(iii)  Addition to the elements of any row (or column), the same scalar multiples 

of corresponding elements of any other row (or column).

Note  The alternative method for finding the rank of a matrix is based on the 

property that the rank of a matrix is unaltered by elementary operations.

Finally we observe that we need not necessarily reduce a matrix A to the normal 

form to find its rank. It is enough we reduce A to an equivalent matrix, whose rank 

can be easily found, by a sequence of elementary operations on A. The methods are 

illustrated in the worked examples that follow.

1.2 VECTORS

A set of n numbers x
1
, x

2
, . . ., x

n
 written in a particular order (or an ordered set of n 

numbers) is called an n-dimensional vector or a vector of order n. The n numbers are 

called the components or elements of the vector. A vector is denoted by a single letter 

X or Y etc. The components of a vector may be written in a row as X = (x
1
, x

2
, ..., x

n
)  

or in a column as X

x

x

xn

1

2
. These are called respectively row vector and 

column vector. We note that a row vector of order n is a 1 × n matrix and a column 

vector of order n is an n × 1 matrix.

1.2.1 Addition of Vectors

The sum of two vectors of the same dimension is obtained by adding the corresponding 

components.

i.e., if X = (x
1
, x

2
, . . ., x

n
)  and  Y = (y

1
, y

2
, . . ., y

n
),

then X + Y = (x
1
 + y

1
, x

2
 + y 

2
. . ., x

n
 + y

n
).

1.2.2 Scalar Multiplication of a Vector

If k is a scalar and X = (x
1
 , x

2
, . . ., x

n
) is a vector, then the scalar multiple kX is defined as

kX = (kx
1
,  kx

2
, . . ., kx

n
).

1.2.3 Linear Combination of Vectors

If a vector X can be expressed as X = k
1
X

1
 + k

2
X

2
 + . . . + k

r
X

r
 then X is said to be a 

linear combination of the vectors X
1
, X

2
, . . ., X

r
.
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1.3  LINEAR DEPENDENCE AND LINEAR INDEPENDENCE  

OF VECTORS

The vectors X
1
, X

2
, . . ., X

r
 are said to be linearly dependent if we can find scalars k

1
, 

k
2
, . . . k

r
, which are not all zero, such that k

1
X

l
 + k

2
X

2
 + . . . + k

r
X

r
 = 0.

A set of vectors is said to be linearly independent if it is not linearly dependent, 

i.e. the vectors X
1
, X

2
, . . ., X

r
 are linearly independent, if the relation k

1
X

1
 + k

2
X

2
+ 

. . . k
r
X

r
 = 0 is satisfied only when k

l
 = k

2
 = . . . = k

r
 = 0.

Note  When the vectors X
1
, X

2
, . . ., X

r
 are linearly dependent, then  

k
1
X

1
 + k

2
X

2
 + . . . + k

r
X

r
 = 0, where at least one of the k’s is not zero. Let k

m
 ≠ 0.

Thus X
k

k
X

k

k
X

k

k
Xm

m m

r

m

r
1

1

2

2 .

Thus at least one of the given vectors can be expressed as a linear combination 

of the others.

1.4  METHODS OF TESTING LINEAR DEPENDENCE  

OR INDEPENDENCE OF A SET OF VECTORS

Method 1 Using the definition directly.

Method 2  We write the given vectors as row vectors and form a matrix. Using 

elementary row operations on this matrix, we reduce it to echelon form, i.e. the one 

in which all the elements in the rth column below the rth element are zero each. If the 

number of non-zero row vectors in the echelon form equals the number of given vectors, 

then the vectors are linearly independent. Otherwise they are linearly dependent.

Method 3 If there are n vectors, each of dimension n, then the matrix formed as in 

method (2) will be a square matrix of order n. If the rank of the matrix equals n, then 

the vectors are linearly independent. Otherwise they are linearly dependent.

1.5  CONSISTENCY OF A SYSTEM OF LINEAR  

ALGEBRAIC EQUATIONS

Consider the following system of m linear algebraic equations in n unknowns: 

 a
11

x
1
 + a

12
x

2
 + . . . + a

1n
x

n
 = b

1

 a
21

x
1
 + a

22
x

2
 + . . . + a

2n
x

n
 = b

2

 a
m1

x
1
 + a

m2
x

2
 + . . . + a

mn
x

n
 = b

m

This system can be represented in the matrix form as AX = B, where

 
A

a a a

a a a

a a a

X

x

x

x

n

n

m m mn

n

11 12 1

21 22 2

1 2

1

2
, , B

b

b

bm

1

2
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The matrix A is called the coefficient matrix of the system, X is the matrix of unknowns 

and B is the matrix of the constants.

If B ≡ O, a zero matrix, the system is called a system of homogeneous linear equations; 

otherwise, the system is called a system of linear non-homogeneous equations.

The m × (n + 1) matrix, obtained by appending the column vector B to the 

coefficient matrix A as the additional last column, is called the augmented matrix of 

the system and is denoted by [A, B] or [A | B].

i.e. A B

a a a b

a a a b

a a a b

n

n

m m mn m

,

11 12 1 1

21 22 2 2

1 2

1.5.1 Definitions

A set of values of x
1
, x

2
 . . ., x

n
. which satisfy all the given m equations simultaneously 

is called a solution of the system.

When the system of equations has a solution, it is said to be consistent. Otherwise 

the system is said to be inconsistent.

A consistent system may have either only one or infinitely many solutions.

When the system has only one solution, it is called the unique solution.

The necessary and sufficient condition for the consistency of a system of linear 

non-homogeneous equations is provided by a theorem, called Rouches’s theorem, 

which we state below without proof.

1.5.2 Rouche’s Theorem

The system of equations AX = B is consistent, if and only if the coefficient matrix A 

and the augmented matrix [A, B] are of the same rank.

Thus to discuss the consistency of the equations AX = B (m equations in n 

unknowns), the following procedure is adopted: 

We first find R(A) and R(A, B).

   (i)  If R(A) ≠ R(A, B), the equations are inconsistent

  (ii)  If R(A) = R(A, B) = the number of unknowns n, the equations are consistent 

and have a unique solution.

In particular, if A is a non-singular (square) matrix, the system AX = B has 

a unique solution.

(iii)  If R(A) = R(A, B) < the number of unknowns n, the equations are consistent 

and have an infinite number of solutions.

1.5.3 System of Homogeneous Linear Equations

Consider the system of homogeneous linear equations AX = O (m equations in n 

unknowns)

i.e a
11

x
1
 + a

12
x

2
 + . . . a

1n
x

n
 = 0

 a
21

x
1
 + a

22
x

2
 + . . . + a

2n
x

n
 = 0

 – – – – – – – – – – – – – – – –

 a
m1

x
1
 + a

m2
x

2
 + . . . a

mn
x

n
 = 0 
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This system is always consistent, as R(A) = R(A, O). If the coefficient matrix A is 

non-singular, the system has a unique solution, namely, x
1
 = x

2
 = . . . = x

n
 = 0. This 

unique solution is called the trivial solution, which is not of any importance.

If the coefficient matrix A is singular, i.e. if | A| = 0, the system has an infinite 

number of non-zero or non-trivial solutions.

The method of finding the non-zero solution of a system of homogeneous linear 

equations is illustrated in the worked examples that follow.

WORKED EXAMPLE 1(a)

Example 1.1 Show that the vectors X
1
 = (1, 1, 2), X

2
 = (1, 2, 5) and X

3
 = (5, 3, 4) are 

linearly dependent. Also express each vector as a linear combination of the other two.

Method 1

Let k
1
X

1
 + k

2
X

2
 + k

3
X

3
 = 0

i.e. k
1
(1, 1, 2) + k

2
(1, 2, 5) + k

3
(5, 3, 4) = (0, 0, 0)

∴ k
1
 + k

2
 + 5k

3
 = 0 (1)

 k
1
 + 2k

2
 + 3k

3
 = 0 (2)

 2k
1
 + 5k

2
 + 4k

3
 = 0 (3)

(2) – (1) gives k
2
 – 2k

3
 = 0  or  k

2
 =2k

3 
(4)

Using (4) in (3), k
1
 = – 7k

3
 (5)

Taking k
3
 = 1, we get k

1
 = – 7 and k

2
 = 2.

Thus –7X
1
 + 2X

2
 + X

3
 = 0 (6)

∴ The vectors X
1
, X

2
, X

3
 are linearly dependent.

From (6), we get X X X1 2 3

2

7

1

7
,

 X X X2 1 3

7

2

1

2
 and X

3
 = 7X

1
 – 2X

2

Method 2

Writing X
1
, X

2
, X

3
 as row vectors, we get

A R R R

1 1 2

1 2 5

5 3 4

1 1 2

0 1 3

0 2 6

2 2 1 , RR R R3 3 15

1 1 2

0 1 3

0 0 0

23 3 2R R R

In the echelon form of the matrix, the number of non-zero vectors = 2 (< the number 

of given vectors).
∴ X

1
, X

2
, X

3
 are linearly dependent.
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Now 0 2

5 2

7 2

3 3 2

3 1 2 1

1 2 3

R R R

R R R R

R R R

i.e. –7X
1
 + 2X

2
 + X

3
 = 0

As before, X X X X X X1 2 3 2 1 3

2

7

1

7

7

2

1

2
,  and X

3
 = 7X

1 
– 2X

2
.

Method 3

 |A| = 0 ∴ R (A) ≠ 3; R (A) = 2
∴ The vectors X

1
, X

2
, X

3
 are linearly dependent.

Example 1.2 Show that the vectors X
1
 = (1, –1, –2, –4), X

2
 = (2, 3, –1, –1),  

X
3
 = (3, 1, 3, –2) and X

4
 = (6, 3, 0, –7) are linearly dependent. Find also the  relationship 

among them.

A

X

X

X

X

1

2

3

4

1 1 2 4

2 3 1 1

3 1 3 2

6 3 0 7

1 1 2 4

0 5 3 7

0 4 9 10

0 9 12 17

2R RR R R

R R R R R

2 1 3

3 1 4 4 1

2

3 6

,

,

1 1 2 4

0 1
3

5

7

5

0 4 9 10

0 9 12 17

1

5
2 2R R ; RR R R R3 3 4 4

1 1 2 4

0 1
3

5

7

5

0 0
33

5

22

5

0 0
33

5

22

5

;

R R R R R3 3 2 4 44 9; R2

1 1 2 4

0 1
3

5

7

5

0 0
33

5

22

5

0 0 0 0

R R R4 4 3

Number of non-zero vectors in echelon form of the matrix A = 3.
∴  The vectors X

1
, X

2
, X

3
, X

4
 are linearly dependent.
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Now 0

9 4

4 4 3

4 2 3 2

4 3 2

R R R

R R R R

R R R

R R R R R R

R R R R

4 1 3 1 2 1

1 2 3 4

6 3 2

∴ The relation among X
l
, X

2
, X

3
, X

4
 is

– X
1
 – X

2
 – X

3
 + X

4
 = 0 or X

1
 + X

2
 + X

3
 – X

4
 = 0.

Example 1.3 Show that the vectors X
1
 = (2, –2, 1), X

2
 = (1, 4, –1) and  

X
3
 = (4, 6, –3) are linearly independent.

Method 1

Let k
1
 X

1
 + k

2
 X

2
 + k

3
 X

3
 = 0

i.e. k
1
 (2, –2, 1) + k

2 
(1, 4, –1) + k

3
 (4, 6, –3) = (0, 0, 0)

∴ 2k
1
 + k

2
 + 4k

3
 = 0 (1)

 –2k
1
 + 4k

2
 + 6k

3
 = 0 (2)

 k
1
 – k

2 
–3k

3
 = 0 (3)

From (1) and (2), k
2
 + 2k

3
 = 0 (4)

From (2) and (3),  k
2
 = 0 (5)

∴ k
1
 = 0 = k

2
 = k

3
.

∴ The vectors X
1
, X

2
, X

3
 are linearly independent.

Method 2

A

X

X

X

1

2

3

2 2 1

1 4 1

4 6 3

1 4 1

2 2 1

4 6 3

R R R R

R

1 2 2 1

2

1 4 1

0 10 3

0 10 1

;

R R R R R

R

2 1 3 3 1

3

2 4

1 4 1

0 10 3

0 0 2

;

R R3 2

Number of non-zero vectors in the echelon form of A = number of given vectors,
∴ X

1
, X

2
, X

3
 are linearly independent.

Example 1.4 Show that the vectors X
1
 = (1, −1, −1, 3), X

2
 = (2, 1, −2, −1) and  

X
3
 = (7, 2, −7, 4) are linearly independent.

A

X

X

X

1

2

3

1 1 1 3

2 1 2 1

7 2 7 4

1 1 1 3

0 33 0 7

0 9 0 17

2

7

2 2 1

3 3 1

R R R

R R R

;
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1 1 1 3

0 3 0 7

0 0 0 4

33 3 2R R R

Number of non-zero vectors in the echelon form of A = number of given vectors.
∴ X

1
, X

2
, X

3
 are linearly independent.

Example 1.5 Test for the consistency of the following system of equations:

 x
1
 + 2x

2
 + 3x

3
 + 4x

4
 = 5

 6x
1
 + 7x

2
 + 8x

3
 + 9x

4
 = 10

 11x
1
 + 12x

2
 + 13x

3
 + 14x

4
 =15

 16x
1
 + 17x

2
+ 18x

3
 + 19x

4
 = 20

 21x
1
 + 22x

2
 + 23x

3
 + 24x

4
 = 25

The given equations can be put as

1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

21 22 23 24

1

2

x

x

xx

x

3

4

5

10

15

20

25

i.e. AX = B (say)

Let us find the rank of the augmented matrix [A, B] by reducing it to the normal form

A B,

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

5 5 5 5 5

10 10 10 10 10

15 15 15 15 15

20 20 20 20 20

(

)

R R R

R R R

R R R

R R R

2 2 1

3 3 1

4 4 1

5 5 1

Note  If two matrices A and B are equivalent, i.e. are of the same rank, it is 

denoted as A ~ B.

1 2 3 4 5

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

5
2 2R R , , ,R R R R

R R

3 3 4 4

5 5

1

10

1

15

1

20

1 2 3 4 5

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 2 1 3 3R R R R R, R

R R R R R R

1

4 4 1 5 5 1

,

,
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1 0 0 0 0

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

2 2 3C C C, C

C C C C

3

4 4 5 5

2

3 4

1 0 0 0 0

0 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0

,

,

00 0

1 0 0 0

3 3 2 4 4 2

5 5 2

R R R R R R

R R R

, ,

00

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3 3 2 4C C C C C, 44 2

5 5 2

C

C C C

,

1 0 0 0 0

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

( , ,

, )

C C C C C C

C C C C C C

2 2 1 3 3 1

4 4 1 5 5 1

2 3

4 5

Now [A, B] has been reduced to the normal form 

I2 0

0 0

 

 

The order of the unit matrix present in the normal form = 2.

Hence the rank of [A, B] = 2.

The rank of the coefficient matrix A can be found as 2, in a similar manner.

Thus R (A) = R [A, B] = 2
∴ The given system of equations is consistent and possesses many solutions.

Example 1.6 Test for the consistency of the following system of equations:

x
1
 − 2x

2
 − 3x

3
 = 2; 3x

1
 − 2x

2
 = −1; −2x

2
 − 3x

3
 = 2; x

2
 + 2x

3
 = 1.

The system can be put as

1 2 3

3 2 0

0 2 3

0 1 2

2

1

2

1

2

3

x

x

x
11
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i.e. AX = B (say)

A B,

1 2 3 2

3 2 0 1

0 2 3 2

0 1 2 1

1 2 3 2

0 4 9 7

00 2 3 2

0 1 2 1

32 2 1R R R

1 0 0 0

0 4 9 7

0 2 3 2

0 1 2 1

2 32 2 1 3 3 1C C C C C C, , CC C C

R R R

4 4 1

2 4 4

2

1 0 0 0

0 1 2 1

0 2 3 2

0 4 9 7

, R

R R R R R

2

3 3 2 4 4

1 0 0 0

0 1 2 1

0 0 1 4

0 0 1 11

2 , 4

1 0 0 0

0 1 0 0

0 0 1 4

0 0 1 11

2

2

3 3 2 4

R

C C C C C, 44 1

4 4 3

1 0 0 0

0 1 0 0

0 0 1 4

0 0 0 15

1 0 0

C

R R R

00

0 1 0 0

0 0 1 0

0 0 0 15

4

1 0 0 0

0 1 0 0

0 0 1 0

4 4 3C C C

00 0 0 1

1

15
4 4R R
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∴ R[A, B] = 4

But R (A) ≠ 4, as A is a (4 × 3) matrix.

In fact R (A) = 3, as the value of the minor

3 2 0

0 2 3

0 1 2

0

Thus R (A) ≠ R [A, B]
∴The given system is inconsistent.

Example 1.7 Test for the consistency of the following system of equations and solve 

them, if consistent, by matrix inversion.

x − y + z + 1 = 0; x − 3y + 4z + 6 = 0; 4x + 3y − 2z + 3 = 0;

7x − 4y + 7z+ 16 = 0.

A

A B

1 1 1

1 3 4

4 3 2

7 4 7

1 1 1 1

1 3 4 6

4 3 2
,

3

7 4 7 16

1 1 1 1

0 2 3 5

0 7 6 1

0 3 0 9

R R R

R R R

R R R

2 2 1

3 3 1

4 4 1

4

7

1 0 0 0

0 2 3 5

0 7 6 1

,

,

00 3 0 9

1 0 0 0

0

2 2 1 3 3 1 4 4 1C C C C C C C C C, ,

11 6 7

0 5 3 2

0 9 0 3

1 0 0 0

2 3 2 4R R C Cand then

00 1 0 0

0 0 27 33

0 0 54 66

5 93 3 2 4 4 2R R R R R R,

aand then

C C C C C C3 3 2 4 4 26 7,
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1 0 0 0

0 1 0 0

0 0 1 1

0 0 2 2

1

27

1

33
3 3 4 4C C C C,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2
4 4 3R R R and theen

C C C4 4 3

∴ R [A, B] = 3. Also R (A) = 3
∴ The given system is consistent and has a unique solution.

To solve the system, we take any three, say the first three, of the given equations.

i.e. 

1 1 1

1 3 4

4 3 2

1

6

3

x

y

z

i.e. AX = B, say
∴  X = A−1 B (1)

Let  A

a a a

a a a

a a a

1 1 1

1 3 4

4 3 2

11 12 13

21 22 23

31 32 33

Now A
11

 = co-factor of a
11

 in |A| = −6

A
12

 = 18; A
13

 = 15; A
21

 = 1; A
22

 = −6; A
23

 = −7;

A
31

 = −1; A
32 

= −3; A
33

 = −2.

∴  Adj A

6 1 1

18 6 3

15 7 2

 |A| = a
11

 A
11

 + a
12

 A
12

 + a
13

 A
13

 = −9

∴ A
A

A1 1 1

9

6 1 1

18 6 3

15 7 2

adj  (2)

Using (2) in (1),

x

y

z

1

9

6 1 1

18 6 3

15 7 2

1

6

3
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1

9

3

27

33

1

3

3

11

3

∴ Solution of the system is x y z
1

3
3

11

3
, ,

Example 1.8 Test for the consistency of the following system of equations and solve 

them, if consistent:

3x + y + z = 8; − x + y − 2z = − 5; x + y + z = 6; – 2x + 2y − 3z = − 7.

Note  As the solution can be found out by any method, when the system is 

consistent, we may prefer the triangularisation method (also known as Gaussian 

elimination method) to reduce the augmented matrix [A, B] to an equivalent matrix. 

Using the equivalent matrix, we can test the consistency of the system and also 

find the solution easily when it exists. In this method, we use only elementary row 

operations and convert the elements below the principal diagonal of A as zeros.

 

A B,

3 1 1 8

1 1 2 5

1 1 1 6

2 2 3 7

1 1 1 6

1 1 2 5

33 1 1 8

2 2 3 7

1 1 1 6

0 2 1 1

0 2 2 10

0 4

1 3R R

11 5

3 2

1 1 1 6

0 2

2 2 1 3 3 1 4 4 1R R R R R R R R R, ,

1 1

0 0 3 9

0 0 1 3

2

1 1 1 6

0

3 3 2 4 4 2R R R R R R,

22 1 1

0 0 3 9

0 0 0 0

1

3
4 4 3R R R

 

(1)

Now, Determinant of [A, B] = − Determinant of the equivalent matrix = 0. (
∴

 Two 

rows interchanged in the first operation)

∴ R A B, 3
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Now 

1 1 1

0 2 1

0 0 3

6 0

∴ R [A, B] = R (A) = 3 = the number of unknowns.

∴ The system is consistent and has a unique solution.

A system of equations equivalent to the given system is also obtained from the 

equivalent matrix in (1).

The equivalent equations are

x + y + z = 6,  2y − z= 1  and  − 3z = − 9

Solving them backwards, we get

x = 1, y = 2, z = 3.

Example 1.9 Examine if the following system of equations is consistent and 

find the solution if it exists.

x y z x y z x y z x y z1 2 2 3 1 2 5 3 2, ; ; .

A B,

1 1 1 1

2 2 3 1

1 1 2 5

3 1 1 2

1 1 1 1

0 4 1 1

0 2 1 4

00 2 2 1

2

3

1

2 2 1

3 3 1

4 4 1

R R R

R R R

R R R

,

,

11 1 1

0 4 1 1

0 0
1

2

9

2

0 0
5

2

1

2

1

2
3 3 2R R R ,, R R R4 4 2

1

2

1 1 1 1

0 4 1 1

0 0
1

2

9

2

0 0 0 22

R R R4 4 35

It is obvious that det [A, B] = 4 and det [A] = 3

∴ R [A, B] ≠ R [A].

∴ The system is inconsistent.

Note  The last row of the equivalent matrix corresponds to the equation 

0 0 0 22x y z , which is absurd. From this also, we can conclude that the 

system is inconsistent.
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Example 1.10 Solve the following system of equations, if consistent: 

x + y + z = 3, x + y − z = 1; 3x + 3y − 5z = 1.

A B,

1 1 1 3

1 1 1 1

3 3 5 1

1 1 1 3

0 0 2 2

0 0 8 8

R R R R R R

R R

2 2 1 3 3 1

3 3

3

1 1 1 3

0 0 2 2

0 0 0 0

4

,

RR2

∴ All the third order determinants vanish 
∴ R [A, B] ≠ 3

Consider 
1 1

0 2
, which is a minor of both A and [A, B].

The value of this minor = − 2 ≠ 0
∴ R (A) = R [A, B] < the number of unknowns.
∴ The system is consistent with many solutions.

From the first two rows of the equivalent matrix, we have x + y + z = 3 and  

− 2z = − 2 

i.e. z = 1  and  x + y = 2.

∴  The system has a one parameter family of solutions, namely x = k, y = 2 − k,  

z = 1, where k is the parameter.

Giving various values for k, we get infinitely many solutions.

Example 1.11 Solve the following system of equations, if consistent:

x x x x x x x x x x x1 2 3 4 1 2 3 4 1 2 32 5 4 3 2 7 5 2 3 3; ; .

A B,

1 2 1 5 4

1 3 2 7 5

2 1 3 0 3

1 2 1 5 4

0 1 1 2 1

0 5 5 100 5

2

1 2 1 5 4

0 1 1 2 1

0 0 0 0 0

2 2 1 3 3 1R R R R R R,

R R R3 3 25

∴ R [A, B] ≠ 3 (
∴

 the last row contains only zeros)

Similarly R (A) ≠ 3.

Since 
1 2

0 1
0 , R (A) = R [A, B] = 2 < the number of unknowns.

∴ The given system is consistent with many solutions.
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From the first two rows of the equivalent matrix, we have

 
x x x x1 2 3 42 5 4

 (1)

and x x x2 3 42 1  (2)

As there are only 2 equations, we can solve for only 2 unknowns.

Hence the other 2 unknowns are to be treated as parameters.

Taking x
3
 = k and x

4
 = k′, we get

 x
2
 = 1 + k + 2k' [from (2)]

and x
1
 = 4 − 2 (1+ k + 2k') + k + 5k' [from (1)] 

i.e. x
1
 = 2 − k + k'

∴ The given system possesses a two parameter family of solutions.

Note  From the Examples (10) and (11), we note that the number of parameters 

in the solution equals the difference between the number of unknowns and the 

common rank of A and [A, B].

Example 1.12 Find the values of k, for which the equations x + y + z = 1, 

x + 2y + 3z = k and x + 5y + 9z = k2 have a solution. For these values of k, find the 

solutions also.

A B k

k

k

k

,

1 1 1 1

1 2 3

1 5 9

1 1 1 1

0 1 2 1

0 4 8 12 2

R R R

R R R

k

k k

R

2 2 1

3 3 1

2

3

1 1 1 1

0 1 2 1

0 0 0 4 3

,

RR R

A R A

3 24

1 1 1

0 1 2

0 0 0

2

 (1)

If the system possesses a solution, R [A, B] must also be 2. 
∴ The last row of the matrix in (1) must contain only zeros.

∴ k2 − 4k + 3 = 0  i.e. k = 1 or 3.

For these values of k, R (A) = R [A, B] = 2 < the number of unknowns.
∴ The given system has many solutions.

Case (i) k = 1

The first two rows of (1) give the equivalent equations as

 x + y + z = 1 (2)and
 y + 2z = 0 (3)

Puting z = λ, the one-parameter family of solutions of the given system is

x = λ + 1, y = − 2λ  and  z = λ

Case (ii) k = 3 

The equivalent equations are

 x + y + z = 1 (2)
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and y + 2z = 2 (4)

Putting z = μ, the one-parameter family of solutions of the given system is

x = μ − 1, y = 2 − 2 μ, z = μ.

Example 1.13 Find the condition satisfied by a, b, c, so that the following system of 

equations may have a solution:

x + 2y − 3z = a; 3x − y + 2z = b; x − 5y + 8z = c.

A B

a

b

c

a

b a

c a

,

1 2 3

3 1 2

1 5 8

1 2 3

0 7 11 3

0 7 11

R R R R R R

a

b a

a b c

2 2 1 3 3 13

1 2 3

0 7 11 3

0 0 0 2

,

R R R

A R A

3 3 2

1 2 3

0 7 11

0 0 0

2

 (1)

If the given system possesses a solution, R [A, B] = 2.
∴ The last row of (1) should contain only zeros.
∴ 2a − b + c = 0. Only when this condition is satisfied by a, b, c, the system will 

have a solution.

Example 1.14 Find the value of k such that the following system of equations has  

(i) a unique solution, (ii) many solutions and (iii) no solution.

kx + y + z = 1; x + ky + z = 1; x + y + kz = 1.

A

k

k

k

A k k k k

k k k

1 1

1 1

1 1

1 1 1

1 2

2

2

k k1 2
2

|A| = 0, when k = 1 or k = –2

When k ≠ 1 and k ≠ −2, |A| ≠ 0  ∴ R(A) = 3

Then the system will have a unique solution.

∴
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When k = 1, the system reduces to the single equation x + y + z = 1.

In this case, R(A) = R[A, B] = 1.
∴ The system will have many solutions.

(i.e. a two parameter family of solutions)

When k = − 2,

A B,

2 1 1 1

1 2 1 1

1 1 2 1

1 2 1 1

2 1 1 1

1 1 2 1

R R

R R R R R R

1 2

2 2 1 3 3 1

1 2 1 1

0 3 3 3

0 3 3 0

2 ,

1 2 1 1

0 3 3 3

0 0 0 3

3 3 2R R R

Now 1 2 1

0 3 3

0 0 0

0 3

1 2

0 3
0 2

2 1 1

3 3 3

0 0 3

R A

R A

a minor of AA B, 0

∴ R[A, B] = 3.  Thus R(A) ≠ R[A, B].
∴ The system has no solution.

Example 1.15 Investigate for what values of λ, μ, the equations x + y + z = 6, 

x + 2y + 3z = 10 and x + 2y + λz = μ have (i) no solution, (ii) a unique solution, 

(iii) an infinite number of solutions.

A B,

1 1 1 6

1 2 3 10

1 2

1 1 1 6

0 1 2 4

0 1 1 6

R R R

R R R

R R

2 2 1

3 3 1

3 3

1 1 1 6

0 1 2 4

0 0 3 10

,

RR

A A

2

1 1 1

0 1 2

0 0 3

3and
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If λ ≠ 3, |A| ≠ 0  ∴ R(A) = 3
∴ When λ ≠ 3 and μ takes any value, the system has a unique solution.

If λ = 3, |A| = 0 and a second order minor of A, i.e. 
1 1

0 1
0

∴ R (A) = 2.

When λ = 3, A B,

1 1 1 6

0 1 2 4

0 0 0 10

 (1)

When λ = 3 and μ = 10, the last row of (1) contains only zeros.
∴  R[A, B] ≠ 3 and clearly R[A, B] = 2.

Thus, when λ = 3 and μ = 10, R(A) = R[A, B] = 2.
∴ The system has an infinite number of solutions.

When λ = 3 and μ ≠ 10, a third order minor of [A, B], i.e.

1 1 6

1 2 4

0 0 10

10 0

∴  R [A, B] = 3

Thus, when λ = 3 and μ ≠ 10, R(A) ≠ R[A, B].
∴ The given system has no solution.

Example 1.16 Test whether the following system of equations possess a non-trivial 

solution.

x
1
 + x

2
 + 2x

3
 + 3x

4
 = 0; 3x

1
 + 4x

2
 + 7x

3
 + 10x

4
 = 0;

5x
1
 + 7x

2
 + 11x

3
 + 17x

4
 = 0; 6x

1
 + 8x

2
 + 13x

3
 + 16x

4
 = 0.

The given system is a homogeneous linear system of the form AX = 0.

A

1 1 2 3

3 4 7 10

5 7 11 17

6 8 13 16

1 1 2 3

0 1 1 1

0 2 1 2

0 2 1 22

3

5

6

1 1 2 3

0 1

2 2 1

3 3 1

4 4 1

R R R

R R R

R R R

,

,

11 1

0 0 1 0

0 0 1 4

2 2

1 1 2 3

3 3 2 4 4 2R R R R R R,

00 1 1 1

0 0 1 0

0 0 0 4

4 4 3R R R

∴ |A| = 4 i.e. A is non-singular
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R(A) = R[A, 0] = 4 

∴ The system has a unique solution, namely, the trivial solution.

Example 1.17 Find the non-trivial solution of the equations x + 2y + 3z = 0,  

3x + 4y + 4z = 0, 7x + 10y + 11z = 0, if it exists.

 

A
R R

1 2 3

3 4 4

7 10 11

1 2 3

0 2 5

0 4 10

2 2 33

7

1 2 3

0 2 5

0 0 0

2

1

3 3 1

3 3 2

R

R R R

R R R

,

 (1)

∴ |A| = 0  and  
1 2

0 2
0   ∴ R(A) = 2

∴ The system has non-trivial solution. From the first two rows of (1), we see that the 

given equations are equivalent to

 x + 2y + 3z = 0 (2)

and − 2y − 5z = 0 (3)

Putting z = k, we get y k
5

2
 from (3) and x = 2k.

Thus the non-trivial solution is x = 4k, y = –5k and z = 2k.

Example 1.18 Find the non-trivial solution of the equations x − y + 2z − 3w = 0, 3x + 

2y – 4z + w = 0, 5x – 3y + 2z + 6w = 0, x – 9y + 14z − 2w = 0, if it exists.

A

1 1 2 3

3 2 4 1

5 3 2 6

1 9 14 2

1 1 2 3

0 5 10 10

0 22 8 21

0 8 12 1

3

5

2 2 1

3 3 1

4 4

R R R

R R R

R R R

,

,

11

2 2

1 1 2 3

0 1 2 2

0 2 8 21

0 8 12 1

1

5
R R

1 1 2 3

0 1 2 2

0 0 4 17

0 0 4 17

23 3 2R R R R, 44 4 28R R
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~

1 1 2 3

0 1 2 2

0 0 4 17

0 0 0 0

4 4 3R R R

∴ |A| = 0 i.e. R(A) < 4
∴ The system has a non-trivial solution.

The system is equivalent to

 x − y + 2z − 3w = 0 (1)

 y − 2z +2w = 0 (2)

 −4z + 17w = 0 (3)

Putting w = 4k, we get z = 17k from (3), y = 26k from (2) and x = 4k.

Thus the non-trivial solution is x = 4k, y = 26k, z = 17k and w = 4k.

Example 1.19 Find the values of λ for which the equations x +(λ + 4) y + (4λ + 2)z = 

0, x + 2(λ + 1) y + (3λ + 4) z = 0, 2x + 3λy + (3λ + 4) z = 0 have a non-trivial solution. 

Also find the solution in each case.

 

A

1 4 4 2

1 2 2 3 4

2 3 3 4

1 4 4 2

0 2 2

0

~

88 5
2

2 2 1

3 3 1

R R R

R R R

,

 (1)

For non-trivial solution, |A| = 0

i.e. −5λ (λ − 2) − (λ − 8) (2 − λ) = 0

i.e. −4λ2 + 16 = 0

∴  λ = ± 2

When λ = 2, the system is equivalent to

x + 6y + 10z = 0

 −6y − 10z = 0, from (1)

Putting z = 3k, we get y = −5k and x = 0

i.e. the solution is x = 0, y = −5k and z = 3k.

When λ = −2, the system is equivalent to

 x + 2y − 6z = 0

 −4y + 4z = 0, from (1)

Putting z = k, we get y = k and x = 4k.

i.e. the solution is x = 4k, y = k and z = k.
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EXERCISE 1(a)

Part A

(Short Answer Questions)

 1. Define the linear dependence of a set of vectors.

 2. Define the linear independence of a set of vectors.

 3. If a set of vectors is linearly dependent, show that at least one member of the 

set can be expressed as a linear combination of the other members.

 4. Show that the vectors X
1
 = (1, 2), X

2
 = (2, 3) and X

3
 = (4, 5) are linearly 

dependent.

 5. Show that the vectors X
1
 = (0, 1, 2), X

2
 = (0, 3, 5) and X

3
 = (0, 2, 5) are linearly 

dependent.

 6. Express X
1
 = (1, 2) as a linear combination of X

2
 = (2, 3) and X

3
 = (4, 5).

 7. Show that the vectors (1, 1, 1), (1, 2, 3) and (2, 3, 8) are linearly independent.

 8. Find the value of a if the vectors (2, −1, 0), (4, 1, 1) and (a, −1, 1) are linearly 

dependent.

 9. What do you mean by consistent and inconsistent systems of equations. Give 

examples.

10. State Rouche’s theorem.

11. State the condition for a system of equations in n unknowns to have (i) one 

solution, (ii) many solutions and (iii) no solution.

12. Give an example of 2 equations in 2 unknowns that are (i) consistent with 

only one solution and (ii) inconsistent.

13. Give an example of 2 equations in 2 unknowns that are consistent with many 

solutions.

14. Find the values of a and b, if the equations 2x − 3y = 5 and ax + by = −10 

have many solutions.

15. Test if the equations x + y + z = a, 2x + y + 3z = b, 5x + 2y + z = c have a unique 

solution, where a, b, c are not all zero.

16. Find the value of λ, if the equations x + y − z = 10, x − y + 2z = 20 and λx −  

y + 4z = 30 have a unique solution.

17. If the augmented matrix of a system of equations is equivalent to 

1 2 1 2

0 5 3 2

0 0 0

, find the value of λ, for which the system has a unique 

solution.

18. If the augmented matrix of a system of equations is equivalent to

1 2 1 3

0 2 2 2

0 0 1 3

, find the values of λ and μ for which the system has 

only one solution.
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19. If the augmented matrix of a system of equations is equivalent to 

1 2 3 4

0 5 4 2

0 0 2 3

, find the values of λ and μ for which the system

has many solutions.

20. If the augmented matrix of a system of equations is equivalent to

1 1 2 3

0 3 1 2

0 0 8 11

, find the values of λ and μ for which the system 

has no solution.

21. Do the equations x − 3y − 8z = 0, 3x + y = 0 and 2x + 5y + 6z = 0 have a non-

trivial solution? Why?

22. If the equations x + 2y + z = 0, 5x + y –z = 0 and x + 5y + λz = 0 have a non-

trivial solution, find the value of λ.

23. Given that the equations x + 2y − z = 0, 3x + y − z = 0 and 2x – y = 0 have 

non-trivial solution, find it.

Part B

Show that the following sets of vectors are linearly dependent. Find their relationship 

in each case:

24. X
1
 = (1, 2, 1), X

2
 = (4, 1, 2), X

3
 = (6, 5, 4), X

4
 = (−3, 8, 1).

25. X
1
 = (3, 1, −4), X

2
 = (2, 2, −3), X

3
 = (0, −4, 1), X

4
 = (−4, −4, 6)

26. X
1
 = (1, 2, −1, 3), X

2
 = (0, −2, 1, −1), X

3
 = (2, 2, −1, 5)

27. X
1
 = (1, 0, 4, 3), X

2
 = (2, 1, −1, 1), X

3
 = (3, 2, −6, −1)

28. X
1
 = (1, −2, 4, 1), X

2
 = (1, 0, 6, −5), X

3
 = (2, −3, 9, −1) and X

4
 = (2, −5, 7, 5).

29. Determine whether the vector x
5
 = (4, 2, 1, 0) is a linear combination of the 

set of vectors X
1
 = (6, − 1, 2, 1), X

2
 = (1, 7, − 3, −2), X

3
 = (3, 1, 0, 0) and X

4
 = 

(3, 3,−2,−1).

Show that each of the following sets of vectors is linearly independent.

30. X
1
 = (1, 1, 1); X

2
 = (1, 2, 3); X

3
 = (2, −1, 1).

31. X
1
 = (1, −1, 2, 3); X

2
 = (1, 0, −1, 2); X

3
 = (1, 1, −4, 0)

32. X
1
 = (1, 2, −1, 0) X

2
 = (1, 3, 1, 2); X

3
 = (4, 2, 1, 0); X

4
 = (6, 1, 0, 1).

33. X
1
 = (1, −2, −3, −2, 1); X

2
 = (3, −2, 0, −1, −7); X

3
 = (0, 1, 2, 1, −6); X

4
 = (0, 

2, 2, 1, −5).

34. Test for the consistency of the following system of equations:

3 4 5 6

4 5 6 7

5 6 7 8

10 11 12 13

15 16 17 18

1

2

3

4

x

x

x

x

7

8

9

14

19
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Test for the consistency of the following systems of equations and solve, if con-

sistent:

35. 2x − 5y + 2z = −3; −x − 3y + 3z = −1; x + y − z = 0; −x + y = 1.

36. 3x + 5y − 2z = 1; x − y + 4z = 7; −6x − 2y + 5z = 9; 7x − 3y + z = 4.

37. 2x + 2y + 4z = 6; 3x + 3y + 7z = 10; 5x + 7y + 11z = 17; 6x + 8y + 13z = 16.

Test for the consistency of the following systems of equations and solve, if 

consistent:

38. x + 2y + z = 3; 2x + 3y + 2z = 5; 3x − 5y + 5z = 2; 3x + 9y − z = 4.

39. 2x + 6y − 3z = 18; 3x − 4y + 7z = 31; 5x + 3y + 3z = 48; 8x − 3y + 2z = 21.

40. x + 2y + 3z = 6; 5x − 3y + 2z = 4; 2x + 4y − z = 5; 3x + 2y + 4z = 9.

41. x + 2y = 4; 10y + 3z = −2; 2x − 3y − z = 5; 3x + 3y + 2z = 1.

42. 2x
1
 + x

2
 + 2x

3
 + x

4
 = 6; x

1
 − x

2
 + x

3
 + 2x

4
 = 6; 4x

1
 + 3x

2
 + 3x

3
 − 3x

4
 = −1; 2x

1
 + 

2x
2
 − x

3
 + x

4
= 10

43. 2x + y + 5z + w = 5; x + y + 3z − 4w = − 1; 3x + 6y − 2z + w = 8; 2x + 

 2y + 2z − 3w = 2.

Test for the consistency of the following systems of equations and solve, if consistent:

44. x − 3y − 8z = − 10; 3x + y = 4z; 2x + 5y + 6z = 13.

45. 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 10z = 5.

46. x − 4y − 3z + 16 = 0; 2x + 7y + 12z = 48; 4x − y + 6z = 16; 5x − 5y + 3z = 0.

47. x − 2y + 3w = 1; 2x − 3y + 2z + 5w = 3; 3x − 7y − 2z + 10w = 2.

48. x
1
 + 2x

2
 + 2x

3
 − x

4
 = 3; x

1
 + 2x

2
 + 3x

3
 + x

4
 = 1; 3x

1
 + 6x

2
 + 8x

3
 + x

4
 = 5.

49. Find the values of k, for which the equations x + y + z = 1, x + 2y + 4z = k and 

 x + 4y + 10z = k2 have a solution. For these values of k, find the solutions 

also.

50. Find the values of λ, for which the equtions x + 2y + z = 4, 2x − y − z = 3λ and 

4x − 7y − 5z = λ2 have a solution. For these values of λ, find the solutions also.

51. Find the condition on a, b, c, so that the equations x + y + z = a, x + 2y + 3z = 

b, 3x + 5y + 7z = c may have a one-parameter family of solutions.

52. Find the value of k for which the equations kx − 2y + z = 1, x − 2ky + z = −2 and 

x − 2y + kz = 1 have (i) no solution, (ii) one solution and (iii) many solutions.

53. Investigate for what values of λ, μ the equations x + y + 2z = 2, 2x − y + 

3z = 2 and 5x − y + λz = μ have (i) no solution, (ii) a unique solution, (iii) an 

infinite number of solutions.

54. Find the values of a and b for which the equations x + y + 2z = 3, 2x − y + 

3z = 4 and 5x − y + az = b have (i) no solution, (ii) a unique solution, (iii) 

many solutions.

55. Find the non-trivial solution of the equations x + 2y + z = 0; 5x + y − z = 0 and 

x + 5y + 3z = 0, if it exists.

56. Find the non-trivial solution of the equations x + 2y + z + 2w = 0; x + 3y + 2z 

+ 2w = 0; 2x + 4y + 3z + 6w = 0 and 3x + 7y + 4z + 6w = 0, if it exists.

57. Find the values of λ for which the equations 3x + y − λz = 0, 4x − 2y − 3z = 

0 and 2λx + 4y + λz = 0 possess a non-trivial solution. For these values of λ, 

find the solution also.

58. Find the values of λ for which the equations (11 − λ) x − 4y − 7z = 0, 7x − 

(λ + 2) y − 5z = 0, 10x − 4y − (6 + λ) z = 0 possess a non-trivial solution. For 

these values of λ, find the solution also.
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1.6 EIGENVALUES AND EIGENVECTORS

1.6.1 Definition

Let A = [a
ij
] be a square matrix of order n. If there exists a non-zero column vector 

X and a scalar λ, such that

AX = λX

then λ is called an eigenvalue of the matrix A and X is called the eigenvector 

corresponding to the eigenvalue λ.

To find the eigenvalues and the corresponding eigenvectors of a square matrix A, 

we proceed as follows:

Let λ be an eigenvalue of A and X be the corresponding eigenvector. Then, by 

definition,

AX = λX = λIX, where I is the unit matrix of order n.

i.e. (A − λI) X = 0 (1)

i.e. 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

1 0 0

0 1 0

0 0 00 1

1

2

x

x

xn

0

0

0

i.e. a x a x a x

a x a x a x

n n

n n

11 1 12 2 1

21 1 22 2 2

0

0

.....................................................

a x an n1 1 2 xx a xnn n2 0

 

(2)

Equations (2) are a system of homogeneous linear equations in the unknowns x
1
, 

x
2
, . . . , x

n.

Since X

x

x

xn

1

2
 is to be a non-zero vector,

x
1
, x

2
, . . . , x

n
 should not be all zeros. In other words, the solution of the system (2) 

should be a non-trivial solution.

The condition for the system (2) to have a non-trivial solution is

 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

0  (3)

i.e. |A − λ I| = 0 (4)

The determinant |A − λI| is a polynomial of degree n in λ and is called the 

characteristic polynomial of A.

The equation |A − λ I| = 0 or the equation (3) is called the characteristic equation of A.
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When we solve the characteristic equation, we get n values for λ. These n roots 

of the characteristic equation are called the characteristic roots or latent roots or 

eigenvalues of A.

Corresponding to each value of λ, the equations (2) possess a non-zero (non-

trivial) solution X. X is called the invariant vector or latent vector or eigenvector of 

A corresponding to the eigenvalue λ.

Notes 

 1. Corresponding to an eigenvalue, the non-trivial solution of the system (2) will 

be a one-parameter family of solutions. Hence the eigenvector corresponding 

to an eigenvalue is not unique.

 2. If all the eigenvalues λ
1
, λ

2
, . . . , λ

n
 of a matrix A are distinct, then the cor-

responding eigenvectors are linearly independent.

 3. If two or more eigenvalues are equal, then the eigenvectors may be linearly 

independent or linearly dependent.

1.6.2 Properties of Eigenvalues

 1. A square matrix A and its transpose AT have the same eigenvalues.

Let A = (a
ij
); i, j = 1, 2, . . . , n.

The characteristic polynomial of A is

 A I

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

 (1)

The characteristic polynomial of AT is

 A I

a a a

a a a

a a a

T

n

n

n n nn

11 21 1

12 22 2

1 2

 (2)

Determinant (2) can be obtained by changing rows into columns of determi-

nant (1).
∴  |A − λ I| = |AT − λ I|
∴ The characteristic equations of A and AT are identical.
∴ The eigenvalues of A and AT are the same.

 2. The sum of the eigenvalues of a matrix A is equal to the sum of the principal 

diagonal elements of A. (The sum of the principal diagonal elements is called 

the Trace of the matrix.)

The characteristic equation of an nth order matrix A may be written as

 n n n n

nD D D1

1

2

2 1 0,  (1)

where D
r
 is the sum of all the rth order minors of A whose principal diagonals 

lie along the principal diagonal of A.
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(Note  D
n
 = |A|). We shall verify the above result for a third order matrix.

Let A

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

The characteristic equation of A is given by

 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

0  (2)

Expanding (2), the characteristic equation is

a a a
a a

a a

a a
a

11

2

22 33

22 23

32 33

12 21

221 23

31 33

13 31

21 22

31 32

a

a a
a a

a a

a a
0

i.e. 3

11 22 33

2

11 12

21 22

11 13

31 33

22 23

32 33

a a a

a a

a a

a a

a a

a a

a a
A 0

i.e. λ3 − D
1
 λ2 + D

2
 λ − D

3
 = 0, using the notation given above.

This result holds good for a matrix of order n.

Note  This form of the characteristic equation provides an alternative 

method for getting the characteristic equation of a matrix.

Let λ
1
, λ

2
, . . . , λ

n
 be the eigenvalues of A.

∴ They are the roots of equation (1).

∴ 1 2

1

1

11 22

1
n

nn

D
D

a a a

ATrace of the matrix .

 3. The product of the eigenvalues of a matrix A is equal to |A|.

If λ
1
, λ

2
, . . . , λ

n
 are the eigenvalues of A, they are the roots of

n n n n

nD D D1

1

2

2 1 0
.

∴ Product of the roots 
1 1

1

n n

nD

i.e. λ
1
, λ

2
 . . . λ

n 
= D

n
 = |A|.

1.6.3 Aliter

λ
1
,
 
λ

2
, . . . , λ

n 
are the roots of |A −  λI| = 0
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∴ |A − λI| ≡ (−1)n (λ − λ
1
) (λ − λ

2
) . . . (λ − λ

n
), since L.S. is a nth

 
degree polynomial 

in λ whose leading term is (−1)n λn.

Putting λ = 0 in the above identity, we get |A| = (−1)n (−λ
1
) (−λ

2
) . . . (−λ

n
)

i.e. λ
1 
λ

2
 . . . λ

n
 = |A|.

1.6.4 Corollary

If |A| = 0, i.e. A is a singular matrix, at least one of the eigenvalues of A is zero and 

conversely.

 4. If λ
1
, λ

2
, . . ., λ

n 
are the eigenvalues of a matrix A, then

(i)  kλ
1
, kλ

2
, . . . kλ

n
 are the eigenvalues of the matrix kA, where k is a non-

zero scalar.

(ii)  1 2

p p

n

p, , ,  are the eigenvalues of the matrix Ap, where p is a positive 

integer.

(iii)  
1 1 1

1 2

, ,
n

 are the eigenvalues of the inverse matrix A−1, provided λ
r
 

≠ 0 i.e. A is non-singular.

  (i) Let λ
r
 be an eigenvalue of A and X

r
 the corresponding eigenvector.

Then, by definition,

 AX
r
 = λ

r
 x

r
 (1)

Multiplying both sides of (1) by k,

 (kA)X
r
 = (kλ

r
) X

r
 (2)

From (2), we see that kλ
r
 is an eigenvalue of kA and the corresponding 

eigenvector is the same as that of λ
r
, namely X

r
.

  (ii) Premultiplying both sides of (1) by A,

A X A AX

A X

AX

X

r r

r r

r r

r r

2

2

Similarly A X Xr r r

3 3
 and so on.

In general, A X Xp

r r

p

r

From, (3), we see that r

p
 is an eigenvalue of Ap with the corresponding 

eigenvector equal to X
r
, which is the same for λ

r
.

  (iii) Premultiplying both sides of (1) by A−1,

A−1 (AX
r
) = A−1 (λ

r
 X

r
)

i.e. X
r
 = λ

r
 (A−1 X

r
)

∴  A X Xr

r

r

1 1
 (4)
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From (4), we see that
1

r

is an eigenvalue of A–1 with the corresponding

eigenvector equal to X
r
, which is the same for λ

r
.

 5. The eigenvalues of a real symmetric matrix (i.e. a symmetric matrix with real 

elements) are real.

Let λ be an eigenvalue of the real symmetric matrix and X be the corre-

sponding eigenvector. 

Then AX = λ (1)

Premultiplying both sides of (1) by X T  (the transpose of the conjugate of 

X), we get

 X AX X XT T
 (2)

Taking the complex conjugate on both sides of (2),

 X A X X XT T ( )assuming that may becomplex

i.e. X A X X X A A AT T ( , )as is real  (3)

Taking transpose on both sides of (3),

X A X X X AB B AT T T T T T( )

i.e. X A X X X A A AT T T( ) , as issymmetric  (4)

From (2) and (4), we get

X X X XT T

i.e. 
( ) X XT 0

X XT  is an 1 × 1 matrix, i.e. a single element which is positive

∴ 0

i.e. λ is real.

Hence all the eigenvalues are real.

 6. The eigenvectors corresponding to distinct eigenvalues of a real symmetric

matrix are orthogonal. 

Note  Two column vectors X

x

x

x

Y

y

y

yn n

1

2

1

2
and are said to be

orthogonal, if their inner product (x
1
y

1
 + x

2
y

2
 + … x

n
y

n
) = 0

i.e. if XTY = 0.

Let λ
1
, λ

2
 be any two distinct eigenvalues of the real symmetric matrix A 

and X
1
, X

2
 be the corresponding eigenvectors respectively. 

Then AX
1
 = λ

1
X

1
 (1)

and AX
2 
= λ

2
X

2
 (2)

Premultiplying both sides of (1) by, X T
2  we get

X AX X XT T

2 1 1 2 1
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Taking the transpose on both sides,

 X AX X X A AT T T

1 2 1 1 2 ( )  (3)

Premultiplying both sides of (2) by X T
1 , we get

 X AX X XT T

1 2 2 1 2  (4)

From (3) and (4), we have

 1 1 2 2 1 2X X X XT T

i.e. 
( )1 2 1 2 0X XT

Since 1 2 1 2 0, X XT

i.e. the eigenvectors X
1
 and X

2
 are orthogonal.

WORKED EXAMPLE 1(b)

Example 1.1 Given that A
5 4

1 2
, verify that the eigenvalues of A2 are the

squares of those of A. 

Verify also that the respective eigenvectors are the same.

The characteristic equation of A is 
5 4

1 2
0

i.e. (5 − λ) (2 − λ) − 4 = 0

i.e. λ2 − 7λ + 6 = 0

∴ The eigenvalues of A are λ = 1, 6.

The eigenvector corresponding to any λ is given by (A − λ I) X  = 0

i.e. 
5 4

1 2
0

1

2

x

x

When λ = 1, the eigenvector is given by the equations

4x
1
 + 4x

2
 = 0 and

x
1
 + x

2
 = 0, which are one and the same. 

Solving, x
1
 = − x

2
. Taking x

1
 = 1, x

2
 = −1.

∴ The eigenvector is 
1

1
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When λ = 6, the eigenvector is given by

−x
1 
+ 4x

2
 = 0

and x
1 
− 4x

2  
= 0

Solving, x
1 
= 4x

2

Taking   x
2 
= 1, x

1 
= 4

∴ The eigenvector is 
1

4

Now  A2
5 4

1 2

5 4

1 2

29 28

7 8

The characteristic equation of A2  is 
29 28

7 8
0

i.e. (29 − λ) (8 − λ) − 196 = 0

i.e. λ2 − 37λ + 36 = 0

i.e. (λ − 1)(λ − 36) = 0 
∴ The eigenvalues of A2 are 1 and 36, that are the squares of the eigenvalues of A, 

namely 1 and 6. When λ = 1, the eigenvector of A2 is given by

28 28

7 7
0 28 0 7 7 0

1

2
2 1 2

x

x
x x x x. i.e. 28 and1

Solving, x
1
 = –x

2
. Taking x

1
 = 1, x

2
 = –1.

When λ = 36, the eigenvector of A2  is given by

7 28

7 28
0 7 28 0 7 28

1

2
2 1 2

x

x
x x x x. i.e. and1 00.

Solving, x
1
 = 4x

2
. Taking x

2
 = 1, x

1
 = 4.

Thus the eigenvectors of A2 are

1

1

4

1
and , which are the same as the respective eigenvectors of A.

Example 1.2 Find the eigenvalues and eigenvectors of the matrix

A

1 1 3

1 5 1

3 1 1
The characteristic equation of A is

1 1 3

1 5 1

3 1 1

0

i.e. (l – λ) {λ2 – 6λ + 4} – (1 – λ – 3) + 3(1 – 15 + 3λ) = 0

i.e. –λ3 + 7λ2 – 36 = 0 or λ3 – 7λ2 + 36 = 0 (1)

i.e. (λ + 2) (λ2 – 9λ + 18) = 0 [∴ λ= –2 satisfies (1) ]

i.e. (λ + 2) (λ – 3) (λ – 6) = 0

∴ The eigenvalues of A are λ = –2, 3, 6.

Case (i) λ = –2.

The eigenvector is given by
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3 1 3

1 7 1

3 1 3

0

1

2

3

x

x

x
 

(2)

i.e. x
1
 + 7x

2
 + x

3
 = 0

 3x
1
 + x

2
 + 3x

3
 = 0 

Solving these equations by the rule of cross-multiplication, we have

 
x x x1 2 3

21 1 3 3 1 21

i.e. 

x x x1 2 3

20 0 20
 

(3)

Note  To solve for x
1
, x

2
, x

3
, we have taken the equations corresponding to the second 

and third rows of the matrix in step (2). The proportional values of x
1
, x

2
, x

3 
obtained 

in step (3) are the co-factors of the elements of the first row of the determinant of the 

matrix in step (2). This provides an alternative method for finding the eigenvector.

From step (3), x
1
 = k, x

2
 = 0 and x

3
 = –k.

Usually the eigenvector is expressed in terms of the simplest possible numbers, 

corresponding to k = 1 or – 1.

∴  x
1
 = 1,   x

2
 = 0,   x

3
 = – 1

Thus the eigenvector corresponding to λ = – 2 is 

X1

1

0

1

Case (ii) λ = 3.

The eigenvector is given by 

2 1 3

1 2 1

3 1 2

0

1

2

3

x

x

x

.

Values of x
1
, x

2
, x

3
 are proportional to the co-factors of –2, 1, 3 (elements of the 

first row i.e. –5, 5, –5. 

i.e. 
x x x x x x1 2 3 1 2 3

5 5 5 1 1 1
or

∴ X 2

1

1

1

Case (iii) λ = 6.

The eigenvector is given by 

5 1 3

1 1 1

3 1 5

0

1

2

3

x

x

x
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∴  

x x x1 2 3

4 8 4

or 

x x x1 2 3

1 2 1

∴

 

X3

1

2

1

Note  Since the eigenvalues of A are distinct, the eigenvectors X
1
, X

2
, X

3
 are 

linearly independent, as can be seen from the fact that the equation k
1
X

1
 + k

2
X

2
 + k

3
X

3
 

= 0 is satisfied only when k
1
 = k

2
 = k

3
 = 0.

Example 1.3 Find the eigenvalues and eigenvectors of the matrix

A

0 1 1

1 0 1

1 1 0

The characteristic equation is given by

λ3 – D
1
λ2 + D

2
λ – D

3
 = 0, where

D
1
 = the sum of the first order minors of A that lie along the main diagonal of A 

= 0 + 0 + 0

= 0

D
2
 =  the sum of the second order minors of A whose principal diagonals lie along the 

principal diagonal of A.

0 1

1 0

0 1

1 0

0 1

1 0

= – 3

D
3
= |A| = 2

Thus the characteristic equation of A is

λ3 – 3λ – 2 = 0

i.e. (λ + l)2 (λ – 2) = 0

∴ The eigenvalues of A are λ = –1, –1, 2.

Case (i) λ = –1.

The eigenvector is given by

1 1

1 1

1 1

0

1

2

3

x

x

x

All the three equations reduce to one and the same equation x
1
 + x

2
 + x

3
 = 0. There 

is one equation in three unknowns.
∴ Two of the unknowns, say, x

1
 and x

2
 are to be treated as free variables (parameters). 

Taking x
1
 = 1 and x

2
 = 0, we get x

3
 = –1 and taking x

1
 = 0 and x

2
= 1, we get x

3
= – l
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 X X1 2

1

0

1

0

1

1

and

Case (ii) λ = 2.

The eigenvector is given by

2 1 1

1 2 1

1 1 2

0

1

2

3

x

x

x

Values of x
1
, x

2
, x

3
 are proportional to the co-factors of elements in the first row.

i.e. 
x x x

1 2 3

3 3 3

or 
x x x

1 2 3

1 1 1

∴ x3

1

1

1

Note  Though two of the eigenvalues are equal, the eigenvectors X
1
, X

2
, X

3
 are 

found to be linearly independent.

Example 1.4 Find the eigenvalues and eigenvectors of the matrix

A

2 2 2

1 1 1

1 3 1

The characteristic equation of A is

2 2 2

1 1 1

1 3 1

0

i.e. (2 – λ)(λ2 – 4) + 2(– l – λ – l) + 2(3 – l + λ) = 0

i.e. (2 – λ)(λ – 2)(λ + 2) = 0

∴ The eigenvalues of A are λ = –2, 2, 2.

Case (i) λ = – 2

The eigenvector is given by

4 2 2

1 3 1

1 3 1

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

8 2 14
 (by taking the co-factors of elements of the third row)
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i.e. 
x x x

1 2 3

4 1 7

∴ X1

4

1

7Case (ii) λ = 2.

The eigenvector is given by

0 2 2

1 1 1

1 3 3

0

1

2

3

x

x

x

∴ 
x x x x x x

1 2 3 1 2 3

0 4 4 0 1 1
or

∴ X X2 3

0

1

1

Note  Two eigenvalues are equal and the eigenvectors are linearly dependent.

Example 1.5 Find the eigenvalues and eigenvectors of the matrix 

A

11 4 7

7 2 5

10 4 6

Can you guess the nature of A from the eigenvalues? Verify your answer.

The characteristic equation of A is

11 4 7

7 2 5

10 4 6

0

i.e. (11 – λ)( λ2 + 8λ – 8) + 4(8 – 7λ)–7(10λ – 8) = 0

i.e. λ3 – 3λ2 + 2λ = 0
∴ The eigenvalues of A are λ = 0, 1, 2.

Case (i) λ = 0.

The eigenvector is given by 

11 4 7

7 2 5

10 4 6

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

8 8 8
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or 
x x x

1 2 3

1 1 1

∴ X1

1

1

1

Case (ii) λ = 1.

The eigenvector is given by 

10 4 7

7 3 5

10 4 7

0

1

2

3

x

x

x

∴ 

x x x
1 2 3

1 1 2

∴ X 2

1

1

2

Case (iii) λ = 2.

The eigenvector is given by 

9 4 7

7 4 5

10 4 8

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

12 6 12

or  
x x x

1 2 3

2 1 2

∴ X 3

2

1

2

Since one of the eigenvalues of A is zero, product of the eigenvalues = |A| = 0, i.e. A 

is non-singular. It is verified below:

11 4 7

7 2 5

10 4 6

11 12 20 4 42 50 7 28 20 0.

Example 1.6 Verify that the sum of the eigenvalues of A equals the trace of A and 

that their product equals |A|, for the matrix

A

1 0 0

0 3 1

0 1 3
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The characteristic equation of A is

1 0 0

0 3 1

0 1 3

0

i.e. (l – λ)(λ2 – 6λ + 8) = 0

∴ The eigenvalues of A are λ = 1, 2, 4.

Sum of the eigenvalues = 7.

Trace of the matrix = 1 + 3 + 3 = 7

Product of the eigenvalues = 8.

|A| = 1 × (9 – l) = 8.

Hence the properties verified.

Example 1.7 Verify that the eigenvalues of A2 and A–1 are respectively the squares 

and reciprocals of the eigenvalues of A, given that

A

3 1 4

0 2 6

0 0 5

The characteristic equation of A is

3 1 4

0 2 6

0 0 5

0

i.e. (3 – λ) (2 – λ) (5 – λ) = 0

∴ The eigenvalues of A are λ = 3, 2, 5.

Now A2

3 1 4

0 2 6

0 0 5

3 1 4

0 2 6

0 0 5

9 5 38

0 4 42

0 0 25

The characteristic equation of A2 is

9 5 38

0 4 42

0 0 25

0

i.e. (9 – λ)(4 – λ)(25 – λ) = 0

∴ The eigenvalues of A2 are 9, 4, 25, which are the squares of the eigenvalues of A.

Let A

a a a

a a a

a a a

3 1 4

0 2 6

0 0 5

11 12 13

21 22 23

31 32 33

A
11

 = Co-factor of a
11

 = 10; A
12

 = 0; A
13

 = 0;
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A
21

 = – 5; A
22

 = 15; A
23

 = 0; A
31

 = – 2; A
32

 = – 18; A
33

 = 6

 |A| = 30.

∴ A 1 1

30

10 5 2

0 15 18

0 0 6

 

1

3

1

6

1

15

0
1

2

3

5

0 0
1

5

The characteristic equation of A–1 is

 

1

3

1

6

1

15

0
1

2

3

5

0 0
1

5

0

i.e. 
1

3

1

2

1

5
0

∴ The eigenvalues of A–1 are 
1

3

1

2

1

5
, , ,  which are the reciprocals of the eigenvalues of A.

Hence the properties verified.

Example 1.8 Find the eigenvalues and eigenvectors of (adj A), given that the 

matrix

 

A

2 0 1

0 2 0

1 0 2

The characteristic equation of A is

 

2 0 1

0 2 0

1 0 2

0

i.e. (2 – λ)3 – (2 – λ) = 0

i.e. (2 – λ) (λ2 – 4λ + 3) = 0
∴ The eigenvalues of A are λ = 1, 2, 3.

Case (i)   λ = 1.

The eigenvector is given by 

1 0 1

0 1 0

1 0 1

0

1

2

3

x

x

x
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x x x

X

1 2 3

1

1 0 1

1

0

1

Case (ii) λ = 2.

The eigenvector is given by

0 0 1

0 0 0

1 0 0

0

1

2

3

x

x

x
i.e. –x

3
 = 0   and  –x

1
 = 0

∴ x
1
 = 0, x

3
 = 0 and x

2
 is arbitrary. Let x

2
 = 1

∴ X 2

0

1

0

Case (iii) λ = 3.

The eigenvector is given by

1 0 1

0 1 0

1 0 1

0

1

2

3

x

x

x

.

x x x

X

1 2 3

3

1 0 1

1

0

1

The eigenvalues of A–1 are 1
1

2

1

3
, ,  with the eigenvectors X

1
, X

2
, X

3
.

Now 
adj A

A
A 1

i.e. adj A = |A| · A–1 = 6A–1 ( A 6  for the given matrix A)

∴ The eigenvalues of (adj A) are equal to 6 times those of A–1, namely, 6, 3, 2.  

The corresponding eigenvectors are X
1
, X

2
, X

3
 respectively.

Example 1.9 Verify that the eigenvectors of the real symmetric matrix

A

3 1 1

1 5 1

1 1 3

are orthogonal in pairs.

The characteristic equation of A is
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3 1 1

1 5 1

1 1 3

0

i.e. (3 – λ)(λ2 – 8λ + 14) + (λ  – 3 + 1) + (1 + λ  – 5) = 0

i.e. λ3 – 11λ2 + 36λ  – 36 = 0

i.e. (λ – 2) (λ – 3) (λ – 6) = 0

∴ The eigenvalues of A are λ = 2, 3, 6.

Case (i) λ = 2.

The eigenvector is given by 

1 1 1

1 3 1

1 1 1

0

1

2

3

x

x

x

x x x x x x

X

1 2 3 1 2 3

1

2 0 2 1 0 1

1

0

1

or

Case (ii) λ = 3.

The eigenvector is given by 

0 1 1

1 2 1

1 1 0

0

1

2

3

x

x

x

x x x

X

1 2 3

2

1 1 1

1

1

1

Case (iii) λ = 6.

The eigenvector is given by 

3 1 1

1 1 1

1 1 3

0

1

2

3

x

x

x

x x x

X

1 2 3

3

2 4 2

1

2

1
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Now 

X X

X X

T

T

1 2

2 3

1 0 1

1

1

1

0

1 1 1

1

2

1

0

XX XT
3 1 1 2 1

1

0

1

0

Hence the eigenvectors are orthogonal in pairs.

Example 1.10 Verify that the matrix

A
1

3

2 2 1

2 1 2

1 2 2

is an orthogonal matrix. Also verify that 
1

 is an eigenvalue of A, if λ is an eigenvalue 

and that the eigenvalues of A are of unit modulus.

Note  A square matrix A is said to be orthogonal if AAT = ATA = I.

Now 

AAT 1

3

2 2 1

2 1 2

1 2 2

1

3

2 2 1

2 1 2

1 2 2

1

9

99 0 0

0 9 0

0 0 9

1 0 0

0 1 0

0 0 1

I

Similarly we can prove that ATA = I.

Hence A is an orthogonal matrix.

The characteristic equation of 3A is

2 2 1

2 1 2

1 2 2

0

i.e. (2 – λ) (λ2 – 3λ + 6) – 2(2λ  – 4 – 2) + (4 – 1 + λ) = 0

i.e. λ3 – 5λ2 + 15λ – 27 = 0

i.e. (λ  – 3) (λ2 – 2λ + 9) = 0

∴ The eigenvalues of 3A are given by 
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 λ = 3   and  
2 4 36

2
1 2 2i

∴ The eigenvalues of A are

1 2 31
1 2 2

3

1 2 2

3
, ,

i i

Now 
1

1

1 3

1 2 2

3 1 2 2

2 2 2 2

1 2 2

3

1

1

2

3
i

i

i i

i

and similarly 
1

3

2.

Thus, if λ is an eigenvalue of an orthogonal matrix, 
1

 is also an eigenvalue.

Also |λ
1
| = |1| =1.

2

1

3

2 2

3

1

9

8

9
1

i

Similarly, |λ
3
| = 1.

Thus the eigenvalues of an orthogonal matrix are of unit modulus.

EXERCISE 1(b)

Part A

(Short Answer Questions)

1. Define eigenvalues and eigenvectors of a matrix.

2. Prove that A and AT have the same eigenvalues.

3. Find the eigenvalues of 2A2, if A
4 1

3 2
.

4. Prove that the eigenvalues of (–3A–1) are the same as those of A
1 2

2 1
.

5. Find the sum and product of the eigenvalues of the matrix A

1 2 2

1 0 3

2 1 3

.

6. Find the sum of the squares of the eigenvalues of A

3 1 4

0 2 6

0 0 5

.
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 7. Find the sum of the eigenvalues of 2A, if A

8 6 2

6 7 4

2 4 3

.

 8. Two eigenvalues of the matrix A

2 2 1

1 3 1

1 2 2

 are equal to 1 each. Find the 

third eigenvalue.

 9. If the sum of two eigenvalues and trace of a 3 × 3 matrix A are equal, find the 

value of |A|.

10. Find the eigenvectors of A
1 2

0 3
.

11. Find the sum of the eigenvalues of the inverse of A

3 0 0

8 4 0

6 2 5

.

12. The product of two eigenvalues of the matrix A

6 2 2

3 3 1

2 1 3

 is 16. Find 

the third eigenvalue.

Part B

13. Verify that the eigenvalues of A–1 are the reciprocals of those of A and that the 

respective eigenvectors are the same with respect to the matrix

A
1 2

5 4
.

14. Show that the eigenvectors of the matrix A
a b

b a i i
are and

1 1
.  

Find the eigenvalues and eigenvectors of the following matrices:

15. 

2 2 0

2 1 1

7 2 3

 16. 

1 2 2

1 2 1

1 1 0

 17. 

2 2 7

2 1 2

0 1 3

18. 

2 2 3

2 1 6

1 2 0

 19. 

2 2 1

1 3 1

1 2 2

 20. 

6 2 2

2 3 1

2 1 3

21. 

3 10 5

2 3 4

3 5 7

 22. 

2 2 2

1 1 1

1 3 1

 23. 

2 1 0

0 2 1

0 0 2

 



I – 1.46 Part I: Mathematics I

24. 

5 2 0 0

2 2 0 0

0 0 5 2

0 0 2 2

25. Find the eigenvalues and eigenvectors of A

8 6 2

6 7 4

2 4 3

.

What can you infer about the matrix A from the eigenvalues. Verify your 

answer.

26. Given that A

15 4 3

10 12 6

20 4 2

, verify that the sum and product of the eigen-

values of A are equal to the trace of A and |A| respectively.

27. Verify that the eigenvalues of A2 and A–1 are respectively the squares and 

reciprocals of the eigenvalues of A, given that A

3 0 0

8 4 0

6 2 5

.

28. Find the eigenvalues and eigenvectors of (adj A), when A

2 1 1

1 2 1

1 1 2

.

29. Verify that the eigenvectors of the real symmetric matrix A

2 1 1

1 1 2

1 2 1

.

are orthogonal in pairs.

30. Verify that the matrix A
1

3

1 2 2

2 1 2

2 2 1

 is orthogonal and that its 

eigenvalues are of unit modulus.

1.7 CAYLEY-HAMILTON THEOREM

This theorem is an interesting one that provides an alternative method for finding the 

inverse of a matrix A. Also any positive integral power of A can be expressed, using 

this theorem, as a linear combination of those of lower degree. We give below the 

statement of the theorem without proof:

1.7.1 Statement of the Theorem

Every square matrix satisfies its own characteristic equation.
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This means that, if c
0
 λn + c

1
 λn –1 + … + c

n –1
 λ + c

n
 = 0 is the characteristic equation 

of a square matrix A of order n, then

 c
0
 An + c

1
 Αn –1 + … + c

n –1
 A + c

n
 I = 0 (1)

Note:  When λ is replaced by A in the characteristic equation, the constant term 

c
n 
should be replaced by c

n
 I to get the result of Cayley-Hamilton theorem, where I is 

the unit matrix of order n.

Also 0 in the R.S. of (1) is a null matrix of order n.

1.7.2 Corollary

(1) If A is non-singular, we can get A–1, using the theorem, as follows:

Multiplying both sides of (1) by A–1 we have

c
0
 An –1 +c

1
 An –2 + … + c

n –1
 I + c

n
 A–1 = 0

∴ A
c

c A c A c I
n

n n
n

1
0

1
1

2
1

1
.

(2) If we multiply both sides of (1) by A, c
0
 An + 1 + c

1
 An + … + c

n –1
 A2 + c

n
 A = 0

∴  A
c

c A c A c A c An n n
n n

1

0
1 2

1
1

21

Thus higher positive integral powers of A can be computed, if we know powers 

of A of lower degree.

1.7.3 Similar Matrices

Two matrices A and B are said to be similar, if there exists a non-singular matrix P 

such that B= P–1 AP.

When A and B are connected by the relation B = P–1 AP, B is said to be obtained 

from A by a similarity transformation.

When B is obtained from A by a similarity transformation, A is also obtained from 

B by a similarity transformation as explained below:

B= P–1 AP

Premultiplying both sides by P and postmultiplying by P-1, we get

PBP–1 = PP–1 APP–1

 = A

Thus A = PBP–1

Now taking P–1 = Q, we get A = Q–1 BQ.

1.8 PROPERTY

Two similar matrices have the same eigenvalues.

Let A and B be two similar matrices.

Then, by definition, B = P–1 AP

∴ B – λΙ = P–1AP – λ I

 = P–1 AP – P–1 λ IP
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 = P–1 (A – λI) P

∴ |B – λI| = |P–1| |A – λI| |P|

 = |A – λI| |P–1P|

 = |A – λI| |I|

 = |A – λI|

Thus A and B have the same characteristic polynomials and hence the same 

characteristic equations.
∴ A and B have the same eigenvalues.

1.8.1 Diagonalisation of a Matrix

The process of finding a matrix M such that M–1 AM = D, where D is a diagonal matrix, 

is called diagonalisation of the matrix A. As M–1 AM = D is a similarity transformation, 

the matrices A and D are similar and hence A and D have the same eigenvalues.

The eigenvalues of D are its diagonal elements. Thus, if we can find a matrix M 

such that M–1 AM = D, D is not any arbitrary diagonal matrix, but it is a diagonal 

matrix whose diagonal elements are the eigenvalues of A.

The following theorem provides the method of finding M for a given square matrix 

whose eigenvectors are distinct and hence whose eigenvectors are linearly independent.

1.8.2 Theorem

If A is a square matrix with distinct eigenvalues and M is the matrix whose columns 

are the eigenvectors of A, then A can be diagonalised by the similarity transformation 

M–1 AM = D, where D is the diagonal matrix whose diagonal elements are the 

eigenvalues of A.

Let λ
1
, λ

2
, . . .,  λ

n
 be the distinct eigenvalues of A and X

1
, X

2
, . . . , X

n
 be the 

corresponding eigenvectors.

Let M = [X
1
, X

2
, …, X

n
], which is an n × n matrix, called the Modal matrix.

∴ AM = [AX
1
, AX

2
,…, AX

n
] [Note  Each AX

r
 is a (n × 1) column vector]

Since X
r
 is the eigenvector of A corresponding to the eigenvalue λ

r
,

AX
r
=λX

r  
(r=l,2,…n)

∴ AM = [λ
1
X

1
, λ

2
X

2
,…, λ

n
X

n
]

 

X X X n

n

1 2

0 0 0

0 0 0

0 0 0

, , ,

 = MD (1)

As X
1
, X

2
, . . . , X

n
 are linearly independent column vectors, M is a non-singular 

matrix Premultiplying both sides of (1) by M–1, we get M–1 AM = M–1 MD = D. 

Note  For this diagonalisation process, A need not necessarily have distinct 

eigenvalues. Even if two or more eigenvalues of A are equal, the process holds good, 

provided the eigenvectors of A are linearly independent.



Chapter I: Matrices I – 1.49

1.9 CALCULATION OF POWERS OF A MATRIX A

Assuming A satisfies the conditions of the previous theorem,

 D = M−1 AM

∴ A = M D M−1

 A2 = (M D M−1) (M D M−1)

 = MD(M−1 M)DM−1

 = MD2M−1

Similarly, A3 = MD3 M−1

Extending,  Ak = M Dk M−1

 

M M

k

k

n

k

1

2 1

0 0 0

0 0 0

0 0 0

1.10  DIAGONALISATION BY ORTHOGONAL 

TRANSFORMATION OR ORTHOGONAL REDUCTION

If A is a real symmetric matrix, then the eigenvectors of A will be not only linearly 

independent but also pairwise orthogonal. If we normalise each eigenvector X
r
, i.e. 

divide each element of X
r
 by the square-root of the sum of the squares of all the 

elements of X
r
 and use the normalised eigenvectors of A to form the normalised 

modal matrix N, then it can be proved that N is an orthogonal matrix. By a property 

of orthogonal matrix, N−1 = NT.
∴ The similarity transformation M−1 A M = D takes the form NT AN = D.

Transforming A into D by means of the transformation NT AN = D is known as 

orthogonal transformation or orthogonal reduction.

Note:  Diagonalisation by orthogonal transformation is possible only for a real 

symmetric matrix.

WORKED EXAMPLE 1(c)

Example 1.1 Verify Cayley-Hamilton theorem for the matrix A

1 3 7

4 2 3

1 2 1
and also use it to find A−1.

The characteristic equation of A is

1 3 7

4 2 3

1 2 1

0
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i.e. (1 − λ)( λ2 − 3 λ − 4) − 3(4 − 4 λ − 3) + 7(8 − 2 + λ) = 0

i.e. λ3 − 4λ2 − 20λ – 35 = 0

Cayley-Hamilton theorem states that

 A3 − 4A2 − 20A − 35 I=0 (1)

which is to be verified.

Now, A2

1 3 7

4 2 3

1 2 1

1 3 7

4 2 3

1 2 1

20 23 23

15 22 37

110 9 14

1 3 7

4 2 3

1 2 1

20 23 23

15 22 33 2A A A 77

10 9 14

135 152 232

140 163 208

60 76 111

Substituting these values in (1), we get,

L.S. =

135 152 232

140 163 208

60 76 111

80 92 92

60 88 148

40 336 56

20 60 140

80 40 60

20 40 20

35 0 0

0 35 0

00 0 35

0 0 0

0 0 0

0 0 0

R.S.

Thus Cayley-Hamilton theorem is verified. Premultiplying (1) by A−1,

A2 – 4A – 20I – 35A−1 = 0

∴ A A A I1 21

35
4 20

1

35

20 23 23

15 22 37

10 9 14

4 12 28

166 8 12

4 8 4

20 0 0

0 20 0

0 0 20

1

35

4 11 5

1 6 25

6 1 10

Example 1.2 Verify that the matrix A

2 1 2

1 2 1

1 1 2

 satisfies its characteristic 

equation and hence find A4.

The characteristic equation of A is

2 1 2

1 2 1

1 1 2

0
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i.e. (2 − λ) (λ2 − 4λ + 3) + (λ − 2 + 1) + 2(l − 2 + λ) = 0

i.e. λ3 − 6λ2 + 8λ − 3 = 0 (1)

According to Cayley-Hamilton theorem, A satisfies (1), i.e.

 A3 − 6A2 + 8A − 3I = 0 (2)

which is to be verified.

Now A2

2 1 2

1 2 1

1 1 2

2 1 2

1 2 1

1 1 2

7 6 9

5 6 6

5 5 7

A A A3 2

2 1 2

1 2 1

1 1 2

7 6 9

5 6 6

5 5 7

29 28 38

22 23 28

22 22 29

Substituting these values in (2),

L.S.

29 28 38

22 23 28

22 22 29

42 36 54

30 36 36

30 330 42

16 8 16

8 16 8

8 8 16

3 0 0

0 3 0

0 0 3

0 0 0

0 0 0

0 0 0

R.S.

Thus A satisfies its characteristic equation. 

Multiplying both sides of (2) by A, we have, 

A4 − 6A3 + 8A2 − 3A = 0

∴  A4 = 6A3 − 8A2 + 3A (3)

 = 6(6A2 − 8A + 3 I) − 8A2 + 3A, using (2)

 = 28A2 − 45A+18I (4)

A4 can be computed by using either (3) or (4).

From (4),

A4

196 168 252

140 168 168

140 140 196

90 45 90

45 900 45

45 45 90

18 0 0

0 18 0

0 0 18

124 123 1662

95 96 123

95 95 124

Example 1.3 Use Cayley-Hamilton theorem to find the value of the matrix given by 

(A8 − 5A7 + 7A6 − 3A5 + 8A4 − 5A3 + 8A2 − 2A + I), if the matrix

A

2 1 1

0 1 0

1 1 2

.
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The characteristic equation of A is

2 1 1

0 1 0

1 1 2

0

i.e. (2 − λ) (λ2 − 3λ + 2) + λ − 1 = 0

i.e. λ3 − 5λ2 + 7λ − 3 = 0
∴  A3 − 5A2 + 7A − 3I = 0, by Cayley-Hamilton theorem  (1)

Now the given polynomial in A

 = A5(A3 − 5A2 + 7A − 3I) + A(A3 − 5A2 + 8A − 2I) + I

 = 0 + A(A3 − 5A2 + 7A − 3I) + A2 + A +I, by (1)

 = A2 + A +I, again using (1) (2)

Now A2

2 1 1

0 1 0

1 1 2

2 1 1

0 1 0

1 1 2

5 4 4

0 1 0

4 4 5

Substituting in (2), the given polynomial

5 4 4

0 1 0

4 4 5

2 1 1

0 1 0

1 1 2

1 0 0

0 1 0

0 0 1

8 5 5

0 3 0

5 5 8

Example 1.4 Find the eigenvalues of A and hence find An (n is a positive integer), 

given that A
1 2

4 3
.

The characteristic equation of A is

1 2

4 3
0

i.e. λ2 − 4λ − 5 = 0
∴ The eigenvalues of A are λ = − 1, 5

When λn is divided by (λ2 − 4λ − 5), let the quotient be Q(λ) and the remainder be 

(aλ + b).

Then λn ≡ (λ2 − 4λ − 5) Q(λ) + (aλ + b) (1)

Put λ = −1 in (1). − a + b = (−l)n (2)

Put λ = 5 in (l). 5a + b = 5n (3)

Solving (2) and (3), we get

a b
n n n n5 1

6

5 5 1

6

( ) ( )
and
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Replacing λ by the matrix A in (1), we have

A A A I Q A aA bI

Q A aA bI

n ( ) ( )

( ) (

2 4 5

0 byCayley-Hamilton theorrem)

( ) ( )5 1

6

1 2

4 3

5 5 1

6

n n n n 1 0

0 1

For example, when n = 3,

A3 125 1

6

1 2

4 3

125 5

6

1 0

0 1

21 42

84 63

20 0

0 20

41 42

84 83

Example 1.5 Diagonalise the matrix A

2 2 7

2 1 2

0 1 3

 by similarity transforma-

tion and hence find A4.

The characteristic equation of A is

2 2 7

2 1 2

0 1 3

0

i.e. (2 − λ) (λ2 + 2λ − 5) −2 (−6 − 2λ + 7) = 0

i.e. λ3 − 13λ + 12 = 0

i.e. (λ − l) (λ − 3) (λ + 4) = 0

∴  Eigenvalues of A are λ = 1, 3, −4.

Case (i) λ = 1.

The eigenvector is given by 

1 2 7

2 0 2

0 1 4

0

1

2

3

x

x

x

∴  x x x1 2 3

2 8 2

∴  X1

1

4

1

Case (ii) λ = 3.
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The eigenvector is given by 

1 2 7

2 2 2

0 1 6

0

1

2

3

x

x

x

∴ x x x1 2 3

10 12 2

∴  X 2

5

6

1

Case (iii) λ = −4.

The eigenvector is given by 

6 2 7

2 5 2

0 1 1

0

1

2

3

x

x

x

∴  x x x1 2 3

3 2 2

∴  X3

3

2

2

Hence the modal matrix is M

1 5 3

4 6 2

1 1 2

Let M

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

Then the co-factors are given by

A
11

 = 14, A
12 

= 10, A
13

 = 2, A
21 

= −7, A
22

 = 5, A
23

 = −6,

A
31

= −28, A
32

 = −10, A
33 

 = 26.

and |M| = a
11

A
11

 + a
12

A
12

 + a
13

A
13

 = 70.

∴ M 1 1

70

14 7 28

10 5 10

2 6 26

The required similarity transformation is

 M–1 A M = D(1, 3, −4) (1)

which is verified as follows:    

AM

2 2 7

2 1 2

0 1 3

1 5 3

4 6 2

1 1 2
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1 15 12

4 18 8

1 3 8

M A M1 1

70

14 7 28

10 5 10

2 6 26

1 15 12

4 18 8

1 3 8

1

70

70 0 0

0 210 0

0 0 280

1 0 0

0 3 0

0 0 4

A4 is given by A4

 
= M D4 M–1 (2)

 

D M4 1

1 0 0

0 81 0

0 0 256

1

70

14 7 28

10 5 10

2 6 26

1

70

14 7 28

810 405 810

512 1536 6656

 
M D M4 1

1 5 3

4 6 2

1 1 2

1

70

14 7 28

810 405 810

512 15336 6656

1

70

5600 2590 15890

3780 5530 18060

1820 26660 12530

i.e. A4

80 37 227

54 79 258

26 38 179

Example 1.6 Find the matrix M that diagonalises the matrix A

2 2 1

1 3 1

1 2 2

 by

means of a similarity transformation. Verify your answer. The characteristic equation 

of A is
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2 2 1

1 3 1

1 2 2

0

2 5 4 2 1 1 0

7

2

3

i e

i e 2

2

11 5 0

1 5 0i e

∴ The eigenvalues of A are λ = 5, 1, 1.

Case (i) λ = 5.

The eigenvector is given by 

3 2 1

1 2 1

1 2 3

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

4 4 4

∴ X1

1

1

1
Case (ii) λ = 1.

The eigenvector is given by 

1 2 1

1 2 1

1 2 1

0

1

2

3

x

x

x

All the three equations are one and the same, namely, x
1
 + 2x

2
 + x

3
 = 0

Two independent solutions are obtained as follows:

Putting x
2
 = –1 and x

3
 = 0, we get x

1
 = 2

Putting x
2
 = 0 and x

3
 = -1, we get x

1
 = 1

∴ X X2 3

2

1

0

1

0

1

and

Hence the modal matrix is

M

a a a

a a a

a a a

1 2 1

1 1 0

1 0 1

11 12 13

21 22 23

31 32 33

Then the co-factors are given by

A
11

 = 1, A
12

 = 1, A
13

 = 1, A
21

 = 2, A
22

 = –2, A
23

 = 2

A
31

 = 1, A
32

 = 1, A
33

 = –3 and

|M| = a
11

A
11

 + a
12

A
12

 + a
13

A
13

 = 4
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∴ M 1 1

4

1 2 1

1 2 1

1 2 3

The required similarity transformation is

 M A M D1 5 1 1, ,  (1)

We shall now verify (1).

AM

2 2 1

1 3 1

1 2 2

1 2 1

1 2 1

1 2 3

5 2 1

5 2 1

5 2 33

1

4

1 2 1

1 1 0

1 0 1

5 2 1

5 2 1

5 2 3

1M A M

1

4

20 0 0

0 4 0

0 0 4

5 0 0

0 1 0

0 0 1

D 5 1 1, , .

Example 1.7 Diagonalise the matrix A

2 1 1

1 1 2

1 2 1

 by means of an 

orthogonal transformation. The characteristic equation of A is 

2 1 1

1 1 2

1 2 1

0

2 2 3 1 1 02i e

i e 3 24 4 0

1 1 4 0i e

∴ The eigenvalues of A are 1 = –1, 1, 4.
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Case (i) λ = –1.

The eigenvector is given by 

3 1 1

1 2 2

1 2 2

0

1

2

3

x

x

x

∴ x x x
1 2 3

0 5 5

∴ X1

0

1

1

Case (ii) λ = 1.

The eigenvector is given by 

1 1 1

1 0 2

1 2 0

0

1

2

3

x

x

x

∴ x x x
1 2 3

4 2 2

∴ X 2

2

1

1

Case (iii) λ = 4.

The eigenvector is given by 

2 1 1

1 3 2

1 2 3

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

5 5 5

∴ X 3

1

1

1

Hence the modal matrix M

0 2 1

1 1 1

1 1 1

Normalising each column vector of M, i.e. dividing each element of the first column 

by 2 , that of the second column by 6  and that of the third column by 3 , we 

get the normalised modal matrix N. 
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Thus N

0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3

The required orthogonal transformation that diagonalises A is

 NT A N = D (–1, 1, 4) (1)

which is verified below:

A N

2 1 1

1 1 2

1 2 1

0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3

0
2

6

4

3

1

2

1

6

4

3

1

2

1

6

4

3

N A NT

0
1

2

1

2

2

6

1

6

1

6

1

3

1

3

1

3

0
22

6

4

3

1

2

1

6

4

3

1

2

1

6

4

3

1 0 0

0 1 0

0 0 4

D 1 1 4, , .

Example 1.8 Diagonalise the matrix A

2 0 4

0 6 0

4 0 2

 by means of an orthogonal  

transformation.
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The characteristic equation of A is

2 0 4

0 6 0

4 0 2

0

2 6 2 16 6 0

6 2

i e

i e 44 12 0

6 0i e

∴ The eigenvalues of A are λ = −2, 6, 6.

Case (i) λ = −2.

The eigenvector is given by 

4 0 4

0 8 0

4 0 4

0

1

2

3

x

x

x

∴ x x x
1 2 3

32 0 32

∴ X1

1

0

1

Case (ii) λ = 6.

The eigenvector is given by 

4 0 4

0 0 0

4 0 4

0

1

2

3

x

x

x

We get only one equation,

i.e. x
1
 − x

3
 = 0 (1)

From this we get, x
1
 = x

3
 and x

2
 is arbitrary.

x
2
 must be so chosen that X

2
 and X

3
 are orthogonal among themselves and also each 

is orthogonal with X
1
.

Let us choose X
2
 arbitrarily as 

1

0

1

Note  This assumption of X
2
 satisfies (1) and x

2 
is taken as 0.

Let X

a

b

c

3

X
3
 is orthogonal to X

1

∴  a − c = 0 (2)

X
3
 is orthogonal to X

2

∴  a + c = 0 (3)
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Solving (2) and (3), we get a = c = 0 and b is arbitrary.

Taking b X1

0

1

0

3,

Note  Had we assumed X
2
 in a different form, we should have got a different 

X
3
.

For example, if X X2

1

2

1

1

1

1

, then 3

The modal matrix is M

1 1 0

0 0 1

1 1 0

The normalised model matrix is

 N

1

2

1

2
0

0 0 1

1

2

1

2
0

The required orthogonal transformation that diagonalises A is

 NT AN = D(−2, 6, 6) (1)

which is verified below:

AN

2 0 4

0 6 0

4 0 2

1

2

1

2
0

0 0 1

1

2

1

2
0

2

2

6

2
0

0 0 6

2

2

6

2
0
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N ANT

1

2
0

1

2

1

2
0

1

2

0 1 0

2

2

6

2
0

0 0 6

2

2

6

2
0

 

2 0 0

0 6 0

0 0 6

2 6 6D , ,

Note  From the above problem, it is clear that diagonalisation of a real symmetric 

matrix is possible by orthogonal transformation, even if two or more eigenvalues are 

equal.

EXERCISE 1(c)

Part A

(Short Answer Questions)

1. State Cayley-Hamilton theorem.

2. Give two uses of Cayley-Hamilton theorem.

3. When are two matrices said to be similar? Give a property of similar 

matrices.

4. What do you mean by diagonalising a matrix?

5. Explain how you will find Ak, using the similarity transformation M−1 AM = 

D.

6. What is the difference between diagonalisation of a matrix by similarity and 

orthogonal transformations?

7. What type of matrices can be diagonalised using (i) similarity transformation 

and (ii) orthogonal transformation?

8. Verify Cayley-Hamilton theorem for the matrix A
5 3

1 3
.

9. Use Cayley-Hamilton theorem to find the inverse of A
7 3

2 6
.

10. Use Cayley-Hamilton theorem to find A3, given that A
1 3

2 4
.
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11. Use Cayley-Hamilton theorem to find (A4 – 4A3 – 5A2 + A + 2I), when

A
1 2

4 3
.

12. Find the modal matrix that will diagonalise the matrix A
5 3

1 3

Part B

13. Show that the matrix A
a b

c d
 satisfies its own characteristic equation and

hence find A−1.

14. Verify Cayley-Hamilton theorem for the matrix A

7 2 2

6 1 2

6 2 1

and

hence find A−1

15. Verify Cayley-Hamilton theorem for the matrix A

1 1 1

1 2 3

2 1 3

 and hence

find A−1.

16. Verify that the matrix A

1 2 3

2 1 4

3 1 1

 satisfies its own characteristic 

equation and hence find A4.

17. Verify that the matrix A

1 0 3

2 1 1

1 1 1

 satisfies its a own characteristic

equation and hence find A4.

18. Find An, using Cayley-Hamilton theorem, when A
5 3

1 3
. Hence find A4.

19. Find An, using Cayley-Hamilton theorem, when A
7 3

2 6
. Hence find A3.

20. Given that A

1 0 3

2 1 1

1 1 1

, compute the value of (A6 − 5A5 + 8A4 − 2A3 −

9A2 + 31A − 36I), using Caylay-Hamilton theorem.

Diagonalise the following matrices by similarity transformation:

21. 

2 2 0

2 1 1

7 2 3

22. 

1 1 1

0 2 1

4 4 3

; find also the fourth power of this matrix.
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23. 

3 1 1

1 5 1

1 1 3

 24. 

1 3 3

3 5 3

6 6 4

 25. 

6 2 2

2 3 1

2 1 3

26. 

0 1 1

1 0 1

1 1 0

Diagonalise the following matrices by orthogonal transformation:

27. 

10 2 5

2 2 3

5 3 5

 28. 

3 1 0

1 2 1

0 1 3

 29. 

2 1 1

1 2 1

1 1 2

30. 

2 2 3

2 1 6

1 2 0

1.11 QUADRATIC FORMS

A homogeneous polynomial of the second degree in any number of variables is called 

a quadratic form.

For example, x x x x x x x x x1

2

2

2

3

2

1 2 1 3 2 32 3 5 6 4  is a quadratic form in three 

variables.

The general form of a quadratic form, denoted by Q in n variables is

Q c x c x x c x x

c x x c x c x x

c

n n

n n

11 1

2

12 1 2 1 1

21 2 1 22 2

2

2 2

311 3 1 32 3 2 3 3

1

x x c x x c x x

c x

n n

n n xx c x x c xn n nn n1 2 2

2

i.e. Q c x xij i j

i

n

j

n

11

 

In general, c
ij
 ≠ c

ji
. The coefficient of x

i
 x

j
 = c

ij
 + c

ji
.

Now if we define a c cij ij ji

1

2
, for all i and j, then a

ii
 = c

ii
, a

ij
 = a

ji
 and

a
ij
 + a

ji
 = 2a

ij
 = c

ij
 + c

ji
.

Q a x xij i j

i

n

j

n

11

, where a
ij
 = a

ji
 and hence the matrix A = [a

ij
] is a symmetric

matrix. In matrix notation, the quadratic form Q can be represented as Q = XT AX, 

where
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A a X

x
x

x

X x x xij

n

T

n, , , ,

1

2
1 2and

.

The symmetric matrix A a

a a a

a a a

a a a

ij

n

n

n n nn

11 12 1

21 22 2

1 2

 is called the matrix of

the quadratic form Q.

Note  To find the symmetric matrix A of a quadratic form, the coefficient of

xi

2
 is placed in the a

ii
 position and 

1

2
coefficient x xi j

 is placed in each of the a
ij

and a
ji
  positions.

For example, (i) if Q x x x x2 3 41

2

1 2 2

2 , then

A

2
3

2

3

2
4

(ii) if Q x x x x x x x x x1
2

2
2

3
2

1 2 1 3 2 33 6 2 6 5 ,

then A

1 1 3

1 3
5

2

3
5

2
6

Conversely, the quadratic form whose matrix is

3
1

2
0

1

2
0 6

0 6 7

3 7 121

2

3

2

1 2is Q x x x x xx x2 3

1.11.1 Definitions

If A is the matrix of a quadratic form Q, |A| is called the determinant or modulus of Q.

The rank r of the matrix A is called the rank of the quadratic form.

If r < n (the order of A) or |A| = 0 or A is singular, the quadratic form is called 

singular. Otherwise it is non-singular.
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1.11.2 Linear Transformation of a Quadratic Form

Let Q = XT AX be a quadratic form in the n variables x
1
, x

2
, . . . , x

n
.

Consider the transformation X = PY, that transforms the variable set X = [x
1
, x

2
, . . 

. , x
n
]T to a new variable set Y = [y

1
, y

2
, . . . , y

n
]T, where P is a non-singular matrix.

We can easily verify that the transformation X = PY expresses each of the variables 

x
1
, x

2
, . . . , x

n
 as homogeneous linear expressions in y

1
, y

2
, . . . , y

n
. Hence X = PY is 

called a non-singular linear trans formation.

By this transformation is transformed to

=

, Q X AX

Q PY A PY

Y P

T

T

T TT

T T

AP Y

Y BY B P AP, where

Now B P AP P A P

P AP A
B

T T
T

T T

T is sysmmetric

∴  B is also a symmetric matrix.

Hence B is the matrix of the quadratic form YT BY in the variables y
1
, y

2
, . . . , y

n
. 

Thus YT B Y is the linear transform of the quadratic form XT AX under the linear 

transformation X = PY, where B = PT AP.

1.11.3 Canonical Form of a Quadratic Form

In the linear transformation X = PY, if P is chosen such that B = PT A P is a 

diagonal

matrix of the form 

1

2

0 0

0 0

0 0 n

, then the quadratic form Q gets reduced as

Q Y BY

y y y

y

T

n

n

1 2

1

2

10 0

0 0

0 0

, , ,
yy

y

y y y

n

n n

2

1 1

2

2 2

2 2

This form of Q is called the sum of the squares form of Q or the canonical form of Q.

1.11.4  Orthogonal Reduction of a Quadratic  

Form to the Canonical Form

If, in the transformation X = PY, P is an orthogonal matrix and if X = PY transforms the 

quadratic form Q to the canonical form then Q is said to be reduced to the canonical 

form by an orthogonal transformation.
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We recall that if A is a real symmetric matrix and N is the normalised modal 

matrix of A, then N is an orthogonal matrix such that NT AN = D, where D is a 

diagonal matrix with the eigenvalues of A as diagonal elements.

Hence, to reduce a quadratic form Q = XT AX to the canonical form by an 

orthogonal transformation, we may use the linear transformation X = NY, where 

N is the normalised modal matrix of A. By this orthogonal transformation, Q gets 

transformed into YT DY, where D is the diagonal matrix with the eigenvalues of A as 

diagonal elements.

1.11.5 Nature of Quadratic Forms

When the quadratic form XT AX is reduced to the canonical form, it will contain only 

r terms, if the rank of A is r.

The terms in the canonical form may be positive, zero or negative.

The number of positive terms in the canonical form is called the index (p) of the 

quadratic form.

The excess of the number of positive terms over the number of negative terms in the 

canonical form i.e. p − (r -p) = 2p − r is called the signature(s) of the quadratic form 

i.e. s = 2p − r.

The quadratic form Q = XT A X in n variables is said to be

(i) positive definite, if r = n and p = n or if all the eigenvalues of A are 

positive.

 (ii) negative definite, if r = n and p = 0 or if all the eigenvalues of A are negative.

(iii) positive semidefinite, if r < n and p = r or if all the eigenvalues of A ≥ 0 and 

at least one eigenvalue is zero.

(iv) negative semidefinite, if r < n and p = 0 or if all the eigenvalues of A ≤ 0 and 

at least one eigenvalue is zero.

(v) indefinite in all other cases or if A has positive as well as negative eigen-

values.

WORKED EXAMPLE 1(d)

Example 1.1 Reduce the quadratic form 2 2 2 41

2

2

2

3

2

1 2 1 3 2 3x x x x x x x x x  to 

canonical form by an orthogonal transformation. Also find the rank, index, signature 

and nature of the quadratic form.

Matrix of the Q.F. is A

2 1 1

1 1 2

1 2 1

Refer to the worked example (7) in section 1(c).

The eigenvalues of A are −1, 1, 4.

The corresponding eigenvectors are [0, 1, 1]T [2, −1, l]T and [1, 1, −l]T respectively.
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The modal matrix M

0 2 1

1 1 1

1 1 1

The normalised modal matrix N

0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3

Hence NT AN = D (−1, 1, 4), where D is a diagonal matrix with −1, 1, 4 as the 

principal diagonal elements.

 The orthogonal transformation X = NY will reduce the Q.F. to the canonical form

y y y1

2

2

2

3

24

Rank of the Q.F. = 3.

Index = 2

Signature = 1

Q.F. is indefinite in nature, as the canonical form contains both positive and negative 

terms.

Example 1.2 Reduce the quadratic form 2 6 2 81

2

2

2

3

2

1 3x x x x x  to canonical 

form by orthogonal reduction. Find also the nature of the quadratic form.

Matrix of the Q.F. is A

2 0 4

0 6 0

4 0 2

Refer to worked example (8) in section 1(c).

The eigenvalues of A are −2, 6, 6.

The corresponding eigenvectors are [1, 0,−1]T, [1, 0, l]T and [0, 1, 0]T respectively.

Note  Though two of the eigenvalues are equal, the eigenvectors have been so 

chosen that all the three eigenvectors are pairwise orthogonal.

The modal matrix M

1 1 0

0 0 1

1 1 0

The normalised modal matrix is given by 

N

1

2

1

2
0

0 0 1

1

2

1

2
0
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Hence NT AN = Diag (−2, 6, 6)
∴  The orthogonal transformation X = NY

i.e. x y y

x y

x y y

1 1 2

2 2

3 1 2

1

2

1

2

1

2

1

2

will reduce the given Q.F. to the canonical form 2 6 61

2

2

2

3

2y y y .

The Q.F. is indefinite in nature, as the canonical form contains both positive and 

negative terms.

Example 1.3 Reduce the quadratic form x x x x x x x1

2

2

2

3

2

1 2 2 32 2 2  to the 

canonical form through an orthogonal transformation and hence show that it is 

positive semidefinite. Give also a non-zero set of values (x
1
, x

2
, x

3
) which makes this 

quadratic form zero.

Matrix of the Q.F. is A

1 1 0

1 2 1

0 1 1

The characteristic equation of isA

1 1 0

1 2 1

0 1 1

0

i.e. 1 2 1 1 1 0

i.e. 1 3 02

 The eigenvalues of A are λ = 0, 1, 3.

When λ = 0, the elements of the eigenvector are given by x
1
 − x

2
 = 0, − x

1
 +2x

2
 + 

x
3
 = 0 and x

2
 + x

3
 = 0.

Solving these equations, x
1
 = 1, x

2
 = 1, x

3
 = −1

 The eigenvector corresponding to λ = 0 is

 [1, 1, − 1]T

When λ = 1, the elements of the eigenvector are given by −x
2
 = 0, − x

1
 + x

2
 + x

3
 = 

0 and x
2
 = 0.

Solving these equations, x
1
 = 1, x

2
 = 0, x

3
 = 1.

 When λ = 1, the eigenvector is

[1, 0, 1]T

When λ = 3, the elements of the eigenvector are given by −2x
1
 − x

2
 = 0, − x

1
 − x

2
 + 

x
3
 = 0 and x

2
 − 2x

3
 = 0

Solving these equation, x
1
 = −1, x

2
 = 2, x

3
 = 1.

 When λ = 3, the eigenvector is [−1, 2, 1]T.

Now the modal matrix is M

1 1 1

1 0 2

1 1 1
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The normalised modal matrix is

N

1

3

1

2

1

6

1

3
0

2

6

1

3

1

2

1

6

Hence NT AN = Diag (0, 1, 3)

 The orthogonal transformation X = NY.

i.e.  x y y y

x y y

1 1 2 3

2 1 3

1

3

1

2

1

6

1

3

2

6

x y y y3 1 2 3

1

3

1

2

1

6

will reduce the given Q.F. to the canonical form 0 3 31

2

2

2

3

2

2

2

3

2y y y y y .

As the canonical form contains only two terms, both of which are positive, the 

Q.F. is positive semi-definite.

The canonical form of the Q.F. is zero, when y
2
 = 0, y

3
 = 0 and y

1
 is arbitrary.

Taking y1 3 , y
2
 = 0 and y

3
 = 0, we get x

1
 = 1, x

2
 = 1 and x

3
 = −1.

These values of x
1
, x

2
, x

3
 make the Q.F. zero.

Example 1.4 Determine the nature of the following quadratic forms without reduc-

ing them to canonical forms:

i x x x x x x x x x1

2

2

2

3

2

1 2 2 3 3 13 6 2 2 4

ii 5 5 14 2 16 81

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x

iii 2 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x .

Note  We can find the nature of a Q.F. without reducing it to canonical form. The 

alternative method uses the principal sub-determinants of the matrix of the Q.F., as 

explained below:

Let A = (a
ij
)

n×n 
be the matrix of the Q.F.

Let  D
1
 = |a

11
| = a

11
, D

a a

a a
2

11 12

21 22

,

 D

a a a

a a a

a a a

3

11 12 13

21 22 23

31 32 33

 etc. and D
n
 = |A|



Chapter I: Matrices I – 1.71

D
1
, D

2
, D

3
, … D

n
 are called the principal sub-determinants or principal minors of A.

(i) The Q.F. is positive definite, if D
1
, D

2
, …, D

n
 are all positive i.e. D

n
 > 0 for 

all n.

(ii) The Q.F. is negative definite, if D
1
, D

3
, D

5
, … are all negative and D

2
, D

4
, D

6
, 

… are all positive i.e. (−1)n D
n
 > 0 for all n.

(iii) The Q.F. is positive semidefinite, if Dn 0  and least one D
i
 = 0.

(iv) The Q.F. is negative semidefinite, if (−1)n Dn 0  and at least one D
i
 = 0.

(v) The Q.F. is indefinite in all other cases.

(i) Q x x x x x x x x x1

2

2

2

3

2

1 2 2 3 3 13 6 2 2 4

Matrix of the Q.F. is A

1 1 2

1 3 1

2 1 6

Now D
1
 = |1| = 1; D2

1 1

1 3
2 ;

D
3
 = 1 · (18 − 1) − 1 · (6 − 2) + 2(1 − 6) = 3.

D
1
, D

2
, D

3
 are all positive.

 The Q.F. is positive definite.

(ii) Q x x x x x x x x x5 5 14 2 16 81

2

2

2

3

2

1 2 2 3 3 1 .

A

5 1 4

1 5 8

4 8 14

Now D
1
 = 5; D2

5 1

1 5
24;

D A3 5 70 64 1 14 32 4 8 20

30 18 48 0

D
1
 and D

2
 are > 0, but D

3
 = 0

 The Q.F. is positive semidefinite.

(iii) Q x x x x x x x x x2 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1

A

2 6 2

6 1 4

2 4 3

Now D
1
 = |2| = 2; D2

2 6

6 1
34;
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D A3 2 3 16 6 18 8 2 24 2

38 156 44 162

 The Q.F. is indefinite.

Example 1.5 Reduce the quadratic forms 6 3 14 4 41

2

2

2

3

2

1 2 2 3x x x x x x x

18 3 1x x  and 2 5 4 21

2

2

2

1 2 3 1x x x x x x  simultaneously to canonical forms by a 

real non-singular transformation.

Note  We can reduce two quadratic forms XT AX and XT BX to canonical forms 

simultaneously by the same linear transformation using the following theorem, 

(stated without proof):

If A and B are two symmetric matrices such that the roots of |A − λB| = 0 are all distinct, 

then there exists a matrix P such that PT AP and PT BP are both diagonal matrices.

The procedure to reduce two quadratic forms simultaneously to canonical forms 

is given below:

(1) Let A and B be the matrices of the two given quadratic forms.

(2) Form the characteristic equation |A – λB| = 0 and solve it. Let the eigenvalues 

(roots of this equation) be λ
1
, λ

2
, …, λ

n
.

(3) Find the eigenvectors X
i
 (i = 1, 2, …, n) corresponding to the eigenvalues λ

i
, 

using the equation (A − λ
i
 B) X

i
 = 0.

(4) Construct the matrix P whose column vectors are X
1
, X

2
, …, X

n
. Then X = PY 

is the required linear transformation.

(5) Find PT AP and PT BP, which will be diagonal matrices.

(6) The quadratic forms corresponding to these diagonal matrices are the required 

canonical forms.

The matrix of the first quadratic form is

A

6 2 9

2 3 2

9 2 14

The matrix of the second quadratic form is

B

2 2 1

2 5 0

1 0 0

The characteristic equation is |A − λB| = 0

i.e. 

6 2 2 2 9

2 2 3 5 2

9 2 14

0

Simplifying, 5λ3 − λ2− 5λ+ 1 = 0

i.e. (λ− 1)(5λ − 1)( λ+ 1) = 0

 λ 1
1

5
1, ,
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When λ = −1, (A − λB) X = 0 gives the equations.

8x
1
 + 4x

2
 + 10x

3
 = 0; 4x

1
 + 8x

2
 + 2x

3
 = 0; 10x

1
 + 2x

2
 + 14x

3
 = 0.

Solving these equations, x x x1 2 3

72 24 48

 X
1
 = [−3, 1, 2]T

When 
1

5
0, A B X  gives the equations. 

28x
1
 + 8x

2
 + 44x

3
 = 0; 8x

1
 + 10x

2 
+ 10x

3
 = 0; 44x

1
 + 10x

2
 + 70x

3
 = 0.

Solving these equations, 
x x x1 2 3

360 72 216

∴ X
2
 = [−5, 1, 3]T

When λ = 1,(A − λB) X = 0 gives the equations

 4x
1
 + 8x

3
 = 0; − 2x

2
 + 2x

3
 = 0; 8x

1
 + 2x

2
+ 14x

3
 = 0

∴ X
3
 = [2, −1, −1]T.

Now P X X X[ , , ]1 2 3

3 5 2

1 1 1

2 3 1

Now 

P APT
3 1 2
5 1 3
2 1 1

6 2 9
2 3 2
9 2 14

3 5 2
1 1 1
2 33 1

2 1 3
1 1 1
1 1 2

3 5 2
1 1 1
2 3 1

1 0 0
0 1 0
0 0 1

Hence the Q.F. XT AX is reduced to the canonical form y y y1

2 2

3

2
2 .

Now P B PT
3 1 2
5 1 3
2 1 1

2 2 1
2 5 0
1 0 0

3 5 2
1 1 1
2 3 1

2 1 3
5 5 5
1 1 2

3 5 2
1 1 1
2 3 1

1 0 0
0 5 0
0 0 1

Hence the Q.F. XT B X is reduced to the canonical form y y y1

2

2

2

3

25 .

Thus the transformation X = PY reduces both the Q.F.’s to canonical forms.

Note  X = PY is not an orthogonal transformation, but only a linear non-singular 

transformation.
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EXERCISE 1(d)

Part A

(Short answer questions)

 1. Define a quadratic form and give an example for the same in three variables:

 2. Write down the matrix of the quadratic form 3 5 5 2 21

2

2

2

3

2

1 2 2 3x x x x x x x

6 3 1x x .

 3. Write down the quadratic form corresponding to the matrix 

2 1 2

1 2 2

2 2 3

.

 4. When is a Q.F. said to be singular? What is its rank then?

 5.  If the Q.F. XT AX gets transformed to YT BY under the transformation X = PY, 

prove that B is a symmetric matrix.

 6.  What do you mean by canonical form of a quadratic form? State the condition 

for X = PY to reduce the Q.F. XT AX into the canonical form.

 7.  How will you find an orthogonal transformation to reduce a Q.F. XT AX to the 

canonical form?

 8. Define index and signature of a quadratic form.

9. Find the index and signature of the Q.F. x x x1

2

2

2

3

22 3 .

10. State the conditions for a Q.F. to be positive definite and positive semidefinite.

Part B

11. Reduce the quadratic form 2 5 3 41

2

2

2

3

2

1 2x x x x x  to canonical form by an 

orthogonal transformation. Also find the rank, index and signature of the Q.F.

12. Reduce the Q.F. 3 3 5 2 6 61

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x  to canonical form by 

an orthogonal transformation. Also find the rank, index and signature of the Q.F.

13. Reduce the Q.F. 6 3 3 4 2 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x  to canonical form 

by an orthogonal transformation. Also state its nature.

14. Obtain an orthogonal transformation which will transform the quadratic form 

2 2 2 2 2 21

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x  into sum of squares form and find 

also the reduced form.

15. Find an orthogonal transformation which will reduce the quadratic form 

2 2 21 2 2 3 3 1x x x x x x  into the canonical form and hence find its nature.

16. Reduce the quadratic form 8 7 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x  to the 

canonical form through an orthogonal transformation and hence show that it 

is positive definite. Find also a non-zero set of values for x
1
, x

2
, x

3
 that will 

make the Q.F. zero.

17. Reduce the quadratic form 10 2 5 6 10 41

2

2

2

3

2

2 3 3 1 1 2x x x x x x x x x  to a 

canonical form by orthogonal reduction. Find also a set of non-zero values of 

x
1
, x

2
, x

3
, which will make the Q.F. zero.

18. Reduce the quadratic form 5 26 10 6 4 141

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x  to 

a canonical form by orthogonal reduction. Find also a set of non-zero values 

of x
1
, x

2
, x

3
, which will make the Q.F. zero.
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19. Determine the nature of the following quadratic forms without reducing them 

to canonical forms:

 (i) 6 3 14 4 18 41

2

2

2

3

2

2 3 1 3 1 2x x x x x x x x x

 (ii) x x x x x1

2

1 2 2

2

3

22

 (iii) x x x x x x x x x1

2

2

2

3

2

1 2 2 3 3 12 3 2 2 2

20. Find the value of λ so that the quadratic form x x x x x x1

2

2

2

3

2

1 2 22   

x x x3 3 12 may be positive definite.

21. Find real non-singular transformations that reduce the following pairs of qua-

dratic forms simultaneously to the canonical forms.

 (i) 6 2 3 4 8 5 5 2 81

2

2

2

3

2

1 2 3 1 1

2

2

2

3

2

1 2 3 1x x x x x x x x x x x x x xand .

 (ii) 3 3 3 2 2 2 4 2 21

2

2

2

3

2

1 2 2 3 3 1 1 2 2 3 3 1x x x x x x x x x x x x x x xand .

 (iii) 2 2 3 2 4 4 2 21

2

2

2

3

2

1 2 2 3 3 1 2 3 1 2 2

2x x x x x x x x x x x x x xand .

 (iv) 3 6 2 8 4 5 5 8 21

2

2

2

3

2

1 2 2 3 1

2

2

2

3

2

1 2 2 3x x x x x x x x x x x x x xand .

ANSWERS  

Exercise 1(a)

Part A

(6) X X X1 2 3

1

2

3

2
(8) a = 8.

(12) x + 2y = 3 and 2x – y = 1; x + 2y = 3 and 2x + 4y = 5.

(13) x + 2y = 3 and 2x + 4y = 6. (14) a = −4, b = 6.

(15) Have a unique solution. (16) λ ≠ 5.

(17) No unique solution for any value of λ.

(18) λ ≠ −1 and μ = any value. (19) λ = 2 and μ = 3.

(20) λ = 8 and μ ≠ 11. (21) No, as |A| ≠ 0.

(22) λ = 3 (23) x = k, y = 2k, z = 5k.

Part B

(24) −7X
1 
+ X

2
 + X

3
 + X

4
 = 0;

(25) 2X
1 
− X

2
 − X

3
 + X

4
 = 0;

(26) 2X
1 
+ X

2
 − X

3
 = 0;

(27) X
1 
− 2X

2
 + X

3
 = 0;

(28) X
1 
− X

2
 + X

3
 − X

4
 = 0;

(29) Yes. X
5 
= 2X

1
 + X

2
 − 3X

3
 + 0.X

4
.

(34) R(A) = R[A, B] = 2; Consistent with many solutions.
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(35) R(A) = 3 and R[A, B] = 4; Inconsistent.

(36) R(A) = 3 and R[A, B] = 4; Inconsistent.

(37) R(A) = 3 and R[A, B] = 4; Inconsistent. 

(38) Consistent; x = –1, y = 1, z = 2. (39) Consistent; x = 3, y = 5, z = 6.

(40) Consistent; x = 1, y = 1, z = 1. (41) Consistent; x = 2, y = 1, z = −4.

(42) Consistent; x
1
 = 2, x

2
 = 1, x

3
 = −1, x

4
 = 3.

(43) Consistent; x y z w2
1

5
0

4

5
, , , .

(44) Consistent; x = 2k − 1, y = 3 − 2k, z = k.

(45) Consistent; x
k

y
k

z k
7 16

11

3

11
, , .

(46) Consistent; x k y k z k
16

3

9

5

16

3

6

5
, , .

(47) Consistent; x = 3 − 4k − k′, y = 1 − 2k + k′, z = k, w = k′.

(48) Consistent; x
1
 = −2k + 5k′ + 7, x

2
 = k, x3 = −2k′ − 2, x

4
 = k′.

(49) k = 1, 2: When k = 1, x = 2λ + 1, y = −3λ, z = λ.

When k = 2, x = 2μ, y = 1 − 3μ, z = μ.

(50) λ = 1, 8: When λ = 1, x = k + 2, y = 1 − 3k, z = 5k.

 When x k y k z k
1

5
52

1

5
3 16, , .

(51) a + 2b − c = 0.

(52) No solution, when k = 1; one solution, when k ≠ 1 and −2; Many solutions, 

when k = −2.

(53) No solution when λ = 8; and μ ≠ 6; unique solution, when λ ≠ 8 and μ = any 

value; many solutions when λ = 8 and μ = 6.

(54) If a = 8, b ≠ 11 no solution, ; If a ≠ 8 and b = any value, unique solution; If 

a = 8 and b = 11, many solutions.

(55) x = k, y = −2k, z = 3k. (56) x = −4k, y = 2k, z = −2k, w = k.

(57) λ = 1, −9; When λ = 1, x = k, y = −k, z = 2k and when λ = −9, x = 3k, y = 

9k, z = −2k.

(58) λ = 0, 1, 2; When λ = 0, solution is (k, k, k); When λ = 1, solution is (k,  −k, 

2k); When λ = 2, solution is (2k, k, 2k).

Exercise 1(b)

(3) 2, 50. (5) −2, −1.

(6) 38. (7) 36.

(8) 5. (9) 0.

(10) 
1

0

1

1
and .  (11) 

47

60
.

(12) 2.

(15) 1, 3 −4; (−2, 1, 4)T, (2, 1, −2)T, (1, −3, 13)T

(16) 1 5 5 1 0 1 5 1 1 1 5 1 1 1, , ; , , , , , , , , .
T T T

(17) 1, 3, −4; (−1, 4, 1)T, (5, 6, 1)T, (3, −2, 2)T
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(18) 5, −3, −3; (1, 2, −1)T, (2, −1, 0)T , (3, 0, 1)T

(19) 5, 1, 1, ; (1, 1, 1)T, (2, −1, 0)T, (1, 0, −1)T

(20) 8, 2, 2; (2, −1, 1)T, (1, 2, 0)T, (1, 0, −2)T

(21) 3,.2, 2; (1, 1, −2)T, (5, 2, −5)T

(22) −2, 2, 2 ; (4, 1, −7)T, (0, 1, 1)T

(23) 2, 2, 2; (1, 0, 0)T.

(24) 1, 1, 6, 6; (0, 0, 1, 2)T, ( 1, −2, 0, 0)T, (0, 0, 2, −1)T and (2, 1, 0, 0)T

(25) 0, 3, 15; (1, 2, 2)T, (2, 1, −2)T, (2, −2, 1)T; A is singular

(26) Eigenvalues are 5, −10, −20; Trace = −25; |A| = 1000

(28) 1, 4, 4; (1, −1, 1)T, (2, −1, 0)T, (1, 0, −1)T

(29) −1, 1, 4; (0, 1, 1)T, (2, −1, 1)T, (1, 1, −1)T

Exercise 1(c)

(9) 
1

36

6 3

2 7
  (10) 

19 57

38 76

(11) 
3 2

4 5
 (12) M

1 3

1 1

(13) 
1

ad bc

d b

c a
 (14) 

1

3

3 2 2

6 5 2

6 2 5

(15) 
1

11

3 4 5

9 1 4

5 3 1

 (16) 

248 101 218

272 109 50

104 98 204

(17) 

7 30 42

18 13 46

6 14 17

(18) An
n n n n6 2

4

5 3

1 3

3 2 6

2

1. 00

0 1

976 960

320 336
;

(19) An
n n n n9 4

5

7 3

2 6

9 4 4 9

5

. . 11 0

0 1

463 399

266 330
;

(20) 

0 0 0

0 0 0

0 0 0

 (21) D M1 3 4

2 2 1

1 1 3

4 2 13

, , ;

(22) D M A1 2 3

1 1 1

2 1 1

2 0 1

99 115 65

100 116 65

160

4, , ; ;

1160 81
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(23) D M2 3 6

1 1 1

0 1 2

1 1 1

, , ;

(24) D M4 2 2

1 1 1

1 1 0

2 0 1

, , ;

(25) D M8 2 2

2 1 1

1 0 2

1 2 0

, , ;

(26) D M2 1 1

1 1 1

1 1 0

1 0 1

, , ;

(27) D N0 3 14

1

42

1

3

3

14

5

42

1

3

1

14

4

42

1

3

2

14

, , ;

(28) D N1 3 4

1

6

1

2

1

3

2

6
0

1

3

1

6

1

2

1

3

, , ;

(29) D N4 1 1

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

, , ;

(30) D N5 3 3

1

6

2

5

1

30

2

6

1

5

2

30

1

6
0

5

30

, , ;
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Exercise 1(d)

 (2) 

3 1 3

1 5 1

3 1 5

 (3) 2 2 3 2 4 41
2

2
2

3
2

1 2 2 3 3 1x x x x x x x x x .
 (4) Singular, when |A| = 0; Rank r < n.

 (6) PT AP must be a diagonal matrix.

 (9) index = 2 and signature = 1.

(11) N Q y y y r

1

5
0

2

5

2

5
0

1

5

0 1 0

3 61
2

2
2

3
2; ; 3 3 3; ;p s

(12) N Q

3

10

1

35

1

14

0
5

35

2

14

1

10

3

35

3

14

; 44 8 3 1 11
2

2
2

3
2y y y r p s; ; ;

(13) N Q y y

2

6
0

1

3

1

6

1

2

1

3

1

6

1

2

1

3

8 21
2

2; 22
3
22y Q;  is positive definite

(14) N Q y y

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

4 1
2

2
2; y3

2

(15) N Q y y

1

3

1

2

1

5

1

3

1

2

1

5

1

3
0

2

5

2 1
2

2; 22
3
2y Q;  is indefinite
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(16) N Q y y

1

3

2

3

2

3

2

3

1

3

2

3

2

3

2

3

1

3

3 152
2

3; 22
1 2 3; x x x= 1, = 2, = 2

(17) N Q

1

42

1

3

3

14

5

42

1

3

1

14

4

42

1

3

2

14

3; yy y x x x2
2

3
2

1 2 314 5 4; .= 1, = , =

(18)  N

16

378

2

14

1

27

1

378

1

14

5

27

11

378

3

14

1

27

; ; .Q y y x x x14 27 1 112
2

3
2

1 2 3= 16, = , =

(19) (i) positive definite; (ii) positive semidefinite; (iii) indefinite.

(20) λ > 2.

(21) (i) P Q y y y Q y y y

1 1 0

1 1 1

1 0 0

4 2 41 1
2

2
2

3
2

2 1
2

2
2

3
2; ;

 (ii) P Q y y y Q y y

1 1 1

1 1 1

2 0 0

16 4 8 4 41 1
2

2
2

3
2

2 1
2

2; ; 22
3
24y

 (iii) P Q y y y Q y y

1 0 1

0 1 1

1 1 1

1 1
2

2
2

3
2

2 2
2

3
2; ; .

 (iv) P Q y y y Q y y y

0 0 1

0 1 1

1 1 1

2 4 41 1
2

2
2

3
2

2 1
2

2
2

3
2; ; .



Sequences and Series

2Chapter

2.1 DEFINITIONS

If u1, u2, u3,…un… be an ordered set of quantities formed according to a certain law 

(called a sequence), then u1 + u2 + u3 +…un + … is called a series. If the number of 

terms in a series is limited, then it is called a finite series. If the series consists of an 

infinite number of terms, then it is called an infinite series.

For example

 
1 1 1

...
1 2 2 3 3 4

 to  and 

 
2 3 41 2 3

...
2 3 4

x x x  to 

are infinite series.

The terms of an infinite series may be constants or variables. The infinite series u1 

+ u2 + + un +  to  is denoted by 
1

n

n

u  or simply nu .The sum of its first n 

terms, namely, (u1 + u2 +  + un ) is called the nth partial sum and is denoted by sn.

If sn tends to a finite limit s as n tends to infinity, then the series nu  is said to 

be convergent and s is called the sum to infinity (or simply the sum) of the series. If 

sn    as n  , then the series nu  is said to be divergent.

If sn neither tends to a finite limit nor to   as n  , then the series nu  is 

said to be oscillatory. When nu  oscillates, sn may tend to more than one limit as 

n  .

To understand the ideas of convergence, divergence and oscillation of infinite 

series, let us consider the familiar geometric series

 a + ar + ar2 +  + arn –1 +  to  (1)

For the geometric series, sn is given by.

 sn = a + ar + ar2 + … + arn –1

    = 
(1 ) ( 1)

or
1 1

n n
a r a r

r r
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Case (i) Let 1r  or – 1 < r < 1.

 sn = 
1 1

na a
r

r r

 lim ( )n
n

s  = lim ( )
1 1

n

n

a a
r

r r

  = 0,
1 1

a a

r r
 since 1r

  = 
1

a

r
 = a finite quantity.

 The geometric series (1) converges and its sum is 
1

a

r
.

Case (ii)  Let r > 1.

 sn = 
( 1)

.
1 1 1

n
na r a a

r
r r r

 lim ( )n
n

s  = lim ( )
1 1

n

n

a a
r

r r

  = 
1

a

r

  =  , according as a is positive or negative.

 Series (1) is divergent.

Case (iii)   Let r = 1.

Then sn = a + a + a +  + a (n terms)

  = na

 lim ( )n
n

s  = lim ( )
n

a n

   =  , according as a is positive or negative.

 Series (1) is divergent.

Case (iv)   Let r < – 1 and put r = –k

Then k > 1

 sn = 
1 1

n
a ar

r r

  = 
(– )

1 1

n
a k

a
k k

  = 

1( 1)

1 1

n n
a k

a
k k
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Now  lim ( )n

n
k  = , since k > 1

  lim ( )n
n

s  = , if n is odd and = – , if n is even.

i.e. sn oscillates between –  and + .

 Series (1) is oscillatory, oscillating between –  and .

Case (v) Let r = –1

Then sn = a – a + a – a +  to n terms 

  = a or 0, according as n is odd or even.

 Series (1) oscillates between a and 0.

Thus the geometric series a + ar + ar2 +  + arn – 1 + is convergent, if 1,r  

divergent if 1r  and oscillatory if 1r .

2.2 GENERAL PROPERTIES OF SERIES

1. If a finite number of terms are added to or deleted from a series, the conver-

gence or divergence or oscillation of the series is unchanged.

2. The convergence or divergence of an infinite series is not affected when each 

of its terms is multiplied by a finite quantity.

3. If the two series nu  and nv  are convergent to s and s  then ( )n nu v

is also convergent and its sum is (s + s ).

Note  Form the geometric series example, it is clear that, to find the convergence 

or divergence of a series, we have to find s n and its limit. In many situations, it may 

not be possible to find sn and hence the definition of convergence cannot be applied 

directly in such cases. Tests have been devised to determine whether a given series is 

convergent or not, without finding sn. Some important tests of convergence of series 

of positive terms are described below without proof.

2.2.1 Necessary Condition for Convergence 

If a series of positive terms nu  is convergent, then lim ( ) 0.n
n

u

Since nu  is convergent, lim ( )n
n

s  = s, where sn = u1 + u2 +  + un.

Now 1lim ( )n
n

s  = 1 2 1lim ( )n
n

u u u

  = 1 2lim ( ),m
m

u u u  putting m = n – 1

  = lim m
m

s

  = s
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 lim ( )n
n

u  = 1lim ( )n n
n

s s

  = 1lim ( ) lim ( )n n
n n

s s

  = s – s 

  = 0

Note  The condition is only necessary but not sufficient, i.e. lim ( )n
n

u  = 0 does 

not imply that nu  is convergent.

For example, if un = 
1

n
, then 

1
lim
n n

 = 0, but nu  is known to be divergent.

2.2.2 A Simple Test for Divergence

If lim ( ) 0n
n

u , then nu  is not convergent. Since a series of positive terms either 

converges or diverges, we conclude that nu  is divergent, when lim ( ) 0n
n

u .

2.2.3 Simplified Notation

When a series is convergent, it is written as Series is (C).

When a series is divergent, it is written as series is (D).

2.2.4 Comparison Test (Form I)

1. If nu  and nv  are two series of positive terms such that u n  vn for all n 

(= 1, 2, 3, ) and if nv  is (C), then nu  is also (C).

2. If nu  and nv  are two series of positive terms such that un  vn for all n 

and if nv  (D), then nu  is also (D).

2.2.5 Comparison Test (Form II or Limit Form)

If nu  and nv  are two series of positive terms such that lim n

n
n

u

v
 = l, a finite 

number  0, then nu  and nv  converge together or diverge together.

Note  Using comparison test, we can test the convergence of nu , provided 

we know another series nv  (known as auxiliary series) whose convergence or 

divergence is known beforehand.

In most situations, one of the following series is chosen as the auxiliary series for 

the application of comparison test.

1. The geometric series 1 + r + r2 + , which is (C), when 1r  and (D), when 

1r .
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2. The factorial series 
1

1 1 1 1

! 1! 2! 3!n n
 which is (C) as discussed 

below.

3. The p-series 
1

1 1 1 1
1

2 3 4p p p p
n n

 which is (C), when p > 1 and 

is (D), when p  1.

2.2.6 Convergence of the Series 
n =

n
1

1

!

Let 
1 1 1 1 1

! 1! 2! 3! 4!
nu

n
 to 

Consider  
1 1 1 1

1 1 2 1 2 2 1 2 2 2
nv  to 

We note that u1 = v1 and u2 = v2 

Since 3! > 1  2  2, 
1 1

3! 1 2 2
, i.e., u3 < v3 

Similarly u4 < v4 and so on.

Thus each term of nu  after the second is less then the corresponding term of 

nv . 

But nv  = 
2 3

1 1 1
1

2 2 2
 is a geometric series in which 

1
1.

2
r

Hence nv  is (C).

 By the comparison test, nu  is also (C).

2.2.7 Convergence of the p-series 
p

n = n1

1

Let nu  = 
1 1 1

1 2 3p p p

Case (i) Let p > 1.

nu  can be rewritten as 

nu  = 
1 1 1 1 1 1 1

1 2 3 4 5 6 7p p p p p p p

such that the nth group contains 2n – 1 terms of nu .
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Consider the auxiliary series

nv  = 
1 1 1 1 1 1 1

1 2 2 4 4 4 4p p p p p p p

We note that u1 = v1, u2 = v2, u4 = v4, u8 = v8 and so on.

Since p > 1, 3p > 2p

  
1 1

3 2p p
, i.e. u3 < v3

Similarly 
1 1

5 4p p
, i.e. u5 < v5, u6 < v6, u7 < v7 and so on.

Hence in the two series nu  and nv , un  v n for all n.

 By comparison test, nu  is (C), provided nv  is (C).

Now  nv  = 
1 2 4

1 2 4p p p

  = 
1 1 1

1 1 1 1

1 2 4 8p p p p

  = 

2 3

1 1 1

1 1 1
1

2 2 2p p p

This series is a geometric series with r = 
1

1

2p

Since  p > 1, p – 1 > 0

 2p–1 > 1 and so 
1

1

2p
 < 1

 nv  is (C).

Hence nu  is also (C).

Case (ii) p = 1

Now nu  = 
1 1 1

1 to
2 3 4

 (This series is called the harmonic series).

nu  can be rewritten as

1 1 1 1 1 1 1 1 1 1
1 to

2 3 4 5 6 7 8 9 10 16
nu

Consider the auxiliary series

 nv  = 
1 1 1 1 1 1 1

1 to
2 4 4 8 8 8 8
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We note that u1 = v1, u2 = v2, u4 = v4, u8 = v8, u16 = v16 and so on.

Also since 
3 3 5 5

1 1 1 1
, ; since , ;

3 4 5 8
u v u v

Similarly u6 > v6, u7 > v7 and so on.

 In the two series nu  and nv , un  vn for all n.

 By comparison test, nu  is (D), provided nv  is (D).

Now nv  = 
1 1 1

1
2 2 2

sn = nth partial sum of nv  = 
1 1

1
2 2

n n

 
lim ( )n
n

s

 nv  is (D)

 nu  is also (D)

Case (iii) Let p < 1.

 nu  = 
1 1 1

to
1 2 3p p p

Consider the auxiliary series

 nv  = 
1 1

1 to
2 3

Since p < 1, np < n (except when n = 1)

 
1 1

, for all values of 
p

n
nn

i.e. un  vn, for all values of n

But, by case (ii), nv  is (D).

 By comparison test, nu  is also (D).

Cauchy’s Root Test

If nu  is a series of positive terms such that 1/lim , then the series n
n n

n
u l ue j  

is (C), when l < 1 and (D) when l > 1. When l = 1, the test fails.
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WORKED EXAMPLE 2(a)

Example 2.1 Test the convergence of the series

(i) 
1

1
;

1 3n
n

  (ii) 
2

1

cos
.

2n
n

n

(i) Let nu  = 
1

1 3n

  Let nv  = 
1

3n

Now  1 + 3n > 3n for all n

 
1 1

for all .
1 3 3n n

n

i.e. un < vn for all n

 nu  is (C), if nv  is (C).

  Now 
2 3

1 1 1 1 1
is a geometric series with 1.

3 33 3 3
n n

v r

 nv  is (C)

Hence nu  is also (C).

(ii) Let nu  = 

2cos

2n

n

   Let nv  = 
1

2n

 Now |cos n| < 1 or –1 < cos n < 1

 cos2 n < 1 for all n

Hence 
2cos 1

for all ,
2 2n n

n
n

i.e. un < vn for all n

 nu  is (C), if nv  is (C).

Now 
2 3

1 1 1 1
is a geometric series with 1/2 1.

22 2 2
n n

v r

 nv  is (C)

Hence nu  is also (C).
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Example 2.2 Test the convergence of the following series

 (i) 
1 2 3

to
1 2 3 4 5 6

 (ii) 
2 2 2 2 2 2

1 2 3 4 5 6
to

3 4 5 6 7 8

(iii) 
2 3

2 3 4

1 2 3
1 to .

2 3 4

(i) The given series is 
(2 1) 2

n

n
u

n n

           = 
1 1

2 2 1n

Let       
1

.nv
n

Note  If the numerator and denominator of un are expressions of degree p and 

q in n, then we choose vn = 
1p

q q p

n

n n

Then n

n

u

v
 = 

1

2 11 1

12 2 2 1

n n

n

n

  = 
1 1

12
2

n

 lim n

n
n

u

v
 = 

1 1
lim

12
2

n

n

  = 
1

0.
4

  By the limit form of comparison test, nu  and nv  converge or diverge 

together.

Now 
1

nv
n

, which is the harmonic series is (D).

nu  is also (D).
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(ii) The given series is 
2 2 2 2

1 2 3 4
to

3 4 5 6
nu

i.e. 2 2

(2 1) (2 )

(2 1) (2 2)
n

n n
u

n n

Let  
2

4n

n
v

n
 ( the numerator is degree 2 and the 

denominator is of degree 4)

       
2

1

n

Then 
2

2 2

(2 1) (2 )

(2 1) (2 2)

n

n

u n n n

v n n

    

2 2

1
2 2

1 2
2 2

n

n n

 
2

2 2

2 1
lim 0

42 2

n

n
n

u

v

 By comparison test, nu  and nv  converge or diverge together.

Now 
2

1 1
is (C) is (C), when 1n p

v p
n n

 nu  is also (C).

(iii) The given series is 
2 3

2 3 4

1 2 3
to

2 3 4
nu  (omitting the first term)

i.e. 
1( 1)

n

n n

n
u

n

Let 
1

1
or

n

n n

n
v

nn

Then  1( 1)

n
n

n
n

u n
n

v n

   

1

1
1

11
1

n

n
n

n

n
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1 1

11 11

n

nn

 lim n

x
n

u

v
 = 

1 1

11 lim 1lim 1

n

nn nn

  = 
1

0.
e

 By comparison test, andn nu v  converge or diverge together.

Now      nv  = 
1

is (D)
n

 
nu  is also (D).

Note  Omission of the first term (= 1) of the given series does not alter the 

convergence or divergence of the series.

Example 2.3 Examine the convergence of the following series:

 (i) 

23

34
1

2 1

3 2 5n

n

n n
; (ii) 

1

3 4

4 5

n n

n n
n

;

 (iii) 
2

1

1
sin

n

n
n

; (iv) 
1

1 1
tan

n nn
;

(i) nu  = 
2 1/3

3 1/4

(2 1)

(3 2 5)

n

n n

Let nv  = 

2/3

3/4 1/12

1
or

n

n n

Then n

n

u

v
 = 

2 1/3
1/12

3 1/4

(2 1)

(3 2 5)

n
n

n n

  = 
2 1/3 3/4

3 1/4 2/3

(2 1)

(3 2 5)

n n

n n n

  = 

1/3
2

2

1/4
3

3

2 1

3 2 5

n

n

n n

n
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  = 

1/3

2

1/4

2 3

1
2

2 5
3

n

n n

 lim n

n
n

u

v
 = 

1/3

1/4

2
0

3
.

 By comparison test, andn nu v  converge or diverge together.

Now nv  = 
1/12

1 1
is (D) is (D) when 1

p
p

n n

 nu  is (D).

(ii) nu  = 
3 4

4 5

n n

n n

Let 
nv  = 

4

5

n

Then n

n

u

v
 = 

3 4 5

4 5 4

n n n

n n n

  = 

3
1

4

4
1

5

n

n

 lim n

n
n

u

v
 = 

0 1
1 0

0 1
.

 andn nu v  converge or diverge together, by comparison test.

 Now 
4

5

n

nv  is a geometric series with r = 
4

1
5

 and hence is convergent.

Hence nu  is also (C).

(iii) nu  = 
2

1

1
sin

n

n
n

Let nv  = 
1

n
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Then n

n

u

v
 = 2 2 1

sinn
n

  = 

2
1

sin

1

n

n

 lim n

n
n

u

v
 = 

2
1

sin

lim
1n

n

n

  = 
0

sin
1 lim 1

 0

 By comparison test, andn nu v  converge or diverge together.

 nv  = 
1

is (D).
n

 nu  is also (D).

(iv) nu  = 
1

1 1
tan

n nn

Let nv  = 
3/2

1

n

Then n

n

u

v
 = 3/21 1

tan n
nn

  = 

1
tan

1

n

n

 lim n

n
n

u

v
 = 

1
tan

lim
1n

n

n

  = 
tan

1 lim 1

 0
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 By comparison test, andn nu v  converge or diverge together.

 
nv  = 

3/2

1 1
is (C) is (C), when 1

p
p

n n

Hence is also (C).nu

Example 2.4 Determine whether the following series are (C) or (D).

 (i) 
4 41 1 ;n n }{  (ii) 

1
;

n n

n

(iii) 
33 1 ;n ne j  (iv) 

1
.

1n n

(i)  nu  = 
4 41 1 ;n ne j

  = 

4 4 4 4

4 4

1 1 1 1

1 1

n n n n

n n

e j e j

  = 
4 4

2

1 1n n

Let nv  = 
2

1

n

Then n

n

u

v
 = 

2

4 4

2

1 1

n

n n

  = 

4 4

2

1 1
1 1

n n

 lim n

n
n

u

v
 = 

2
1 0

1 1

 By comparison test, andn nu v  converge or diverge together.

 nv  = 
2

1
is (C).

n

Hence nu  is also (C).
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(ii) nu  = 
1n n

n

  = 
1 1

1

n n n n

n n n

e j e j
e j

  = 
1

1n n ne j  (1)

Let nv  = 
1

2

1

n

Then        

1

2

1

n

n

u n

v n n ne j

  = 
1

1
1 1

n

      
1

lim 0.
2

n

n
n

u

v

 nu  and nv  converge or diverge together.

nv  = 
1

2

1

n

 is (C) when 
1 1

1 or
2 2

, and it is (D) when 

1 1
1 or

2 2
.

 nu  is (C) when 
1

2
 and (D) when 

1

2
.

Note  Keeping 
1

n

n n
u

n
, if we choose 

1/2 1
n

n
v

n n
 we will get 

lim 0n

n
n

u

v
 and so comparison test fails.

(iii) un = 3 1/3 3 1/3( 1) ( )n n

  = 
3 3 3 3

3 2/3 3 1/3 3 2/3 2 2

( 1)

( 1) ( 1) ( )

n n a b
a b

n n n n a ab b
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  = 
3 2/3 3 1/3 2

1

( 1) ( 1)n n n n

Let       
2

1
nv

n

Then   
2

3 2/3 3 1/3 2

2/3 1/3

3 3

( 1) ( 1)

1

1 1
1 1 1

n

n

u n

v n n n n

n n

 
1

lim 0
3

n

n
n

u

v

 nu  and nv  converge or diverge together.

 
nv  = 

2

1

n
 is (C)

Hence nu  is also (C). 

(iv)        
1

1
nu

n n

Let         
1

nv
n

  1

1 1
1 1

n

n

u n

v n n

n

 
1

lim 0
2

n

n
n

u

v

 nu  and nv  converge or diverge together.

 nv  = 
1/2

1 1 1
is (D) In , 1

2p
p

n n

 nu  is also (D).

Example 2.5 Examine the convergence of the following series:

(i) 

2 3
1 2 3

to
4 7 10
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(ii) 

2 3

2 31 2 3 4
to ;

2 3 4 5
x x x

(iii) 

1 2 3
2 3 4

2 3 4

2 2 3 3 4 4
to ;

1 2 31 2 3

(iv) 2 2 3 3 toa b a b a b , given a > 0, b > 0.

(i) Given series is 

2 3
1 2 3

to
4 7 10

 un = nth term of the given series 

  = 
3 1

n
n

n

     
1/lim ( ) lim

3 1

1
lim

1
3

1
1.

3

n
n

n n

n

n
u

n

n

 By Cauchy’s root test, nu  is (C).

(ii) 
2 3

2 32 3 4

3 4 5
nu x x x  (omitting the first term)

 un = 
1

2

n

nn
x

n

Then        
1/

1
1

1
or

22
1

n
n

n nu x x
n

n

   1/lim ( ) n
n

n
u x

 By Cauchy’s root test,

 nu  is (C) if x < 1 and it is (D) if x > 1

 If x = 1, Cauchy’s root test fails.

In this case,      
1

lim ( ) lim
2

n

n
n n

n
u

n
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1
1

lim
2

1

n

nn

n

n

   
2

1
or 0

e

ee

i.e. the necessary condition for convergence of nu  is not satisfied.

  nu  is (D)

(iii)  nu  = 

1 2 3
2 3 4

2 3 4

2 2 3 3 4 4

1 2 31 2 3

 un 

1
1 1

n
n

n n

n n

 (un)
1/n 

1
1

1 1
n

n n

n n

  

1
1

1 1
1

n
n n

n n

  = 

1
1

1 1
1 1 1

n

n n

Then   1/ 1 1
lim ( ) ( 1) 1

1

n
n

n
u e

e

  By Cauchy’s root test, nu  is (C)

(iv) nu  = a + b + a2 + b2 + a3 + b3 + 

Then  un = 

1

2 , if odd

n

a n

   = bn/2, if n is even

 un
1/n = 

1 1

2 2 , if  is oddna n

  = b1/2, if n is even

 1/lim ( )n
n

n
u  = ,a  if n is odd

   = ,b  if n is even
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  Whether n is odd or even, nu  is (C) if a < 1 and b < 1, and (D) if a > 1 and 

b > 1, by Cauchy’s root test.

When a = 1 = b, the series becomes

 1 + 1 + 1  to , which is (D).

Example 2.6 Test the convergence of the following series:

 (i) 
2

1
;

(log )n
n n

 (ii) 

2

;
1

n
n

n

 (iii) 

3/2

1
1 ;

n

n
 (iv) 

1

[( 1) ]
, 0.

n

n

n x
x

n

(i) nu  = 
1 1

, 2
(log ) (log )

nn n
u n

n n

       
1/ 1

lim ( ) lim
log

n
n

n n
u

n

  = 0 < 1

 By Cauchy’s root test, nu  is (C).

(ii) nu  = 

2

1

n
n

n

 un = 
2

1/1 1
and so

11 11

n
n nn

u

nn

     1/ 1 1
lim ( ) 1

1
lim 1

n
n nn

n

u
e

n

 By Cauchy’s root test, nu  is (C).

(iii) nu  = 

3/2

1
1

n

n

 un = 

3/2

1/1 1
1 and so 1

n n

n
nu

n n

Hence     

1
1

lim lim 1

n

n
n

n n
u

n
 = e > 1
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 By Cauchy’s root test, nu  is (D).

(iv) nu  = 
1

[( 1) ]n

n

n x

n

 un = 1/

1 1

[( 1) ] ( 1)
and so

n
n

nn n

n

n x n x
u

n
n

   = 
1 1/

( 1)
n

n x

n

   = 1/

1
n

n x

n n

  
1/lim ( )n
n

n
u  = 1/

1
lim 1

lim ( )nn

n

x

n n

  = 
1/lim ( )n

n

x

n
 (1)

Now let v = n1/n  log v = 
1

log n
n

 lim (log )
n

v  = 
log

lim
n

n

n

  = 
1

lim ,
n n

by L’Hospital’s rule

i.e.     
0log lim ( ) 0 or lim 1

n n
v v e  (2)

Using (2) in (1), we have

  1/lim ( )n
n

n
u x

 By Cauchy’s root test, nu  is (C) if x < 1, and (D) if x > 1

If x = 1, the series becomes un = 
1

( 1)n

n

n

n

Let nv  = 
1

n

Then 
n

n

u

v
 = 

1

( 1) 1 1
1

n nn

n

n n
n

n nn
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lim 0n

n
n

u
e

v

 By comparison test, nu  and nv  converge or diverge together. 

nv  is (D). Hence nu  is (D) if x = 1.

EXERCISE 2(a)

Part A

(Short Answer Questions)

 1. Define convergence of an infinite series with an example.

 2. Define divergence of an infinite series with an example.

 3. Show that the series 1 + x + x2 +  to  oscillates when x = –1.

 4. Show that the series 1 + x + x2 +  to  oscillates between –  and , when 

x < –1.

 5. Give an example to shown that nu  is not (C), even though lim ( ) 0.n
n

u

 6. Prove that the series 
1 1 1

1 to is (D).
2 3 4

 7. State two forms of comparison test for the convergence of nu .

 8. State two forms of comparison test for the divergence of nu .

 9. State Cauchy’s root test.

10. Test the convergence of the series 
1 1 1

1 to .
3 5 7

11. Test the convergence of the series 
1

sin .
n

12. Test the convergence of the series 
2

.ne

Part B

Examine the convergence of the following series:

13. 
2

1

sin

3n
n

n
 14. 

1

1

1 4n

15. 
1 2 2 3 3 4

3 4 5 4 5 6 5 6 7
 16. 

1 2 3

1 2 1 2 3 1 3 4

17. 
1 1 1

3 5 7
 18. 

1 1 1

1 2 3 2 3 4 3 4 5
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19. 
1 3 5

1 2 3 2 3 4 3 4 5
 20. 

1

2 3

4 5

n n

n n
n

21. 

4
3 3

5

4 2

2 3

n n

n n
 22. 

1
3 2 3

5 4

5 7

4

n n

n n n

23. 
2 1

sin
n

24. 

1
1

3 0

1 tan
tan : lim 1

x

x
n Hint

xn

25. 2
sin

1

n

n
 26. 

1

3 1

n

n

27. 
3( 1)

( 2)k k

n

n n
 28. 

( 1)
p

n

n

29. 
1/

1 1/

1 1
: Choose and lim 1n

nn n
v n

nn
Hint

30. 2 21n ne j  31. 
3 31n ne j

32. 
4 21n ne j  33. 

1n n

n

34. 

2 3
1 2 3

3 5 7
 35. 

2 3
2 33 4 5

4 5 6

x
x x

36. 
2 3

2 3
1 ( 0)

2 3 4

x x x
x  37. 

2 3 4

( 0)
2 3 4

x x x
x x

38. 

2 3 4 5
1 1 1 1 1

1 2 2 2
3 3 3 3 3

39. 

2

1
1

n

n
 40. 

3/2

1
1

n

n

D’Alambert’s Ratio Test

If nu  is a series of positive terms such that 
1

lim ,
n

n
n

u
l

u
 then the series nu  

is (C) when l < 1 and is (D) when l > 1. When l = 1, the test fails.
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Raabe’s Test

If nu  is a series of positive terms such that 
1

lim 1 ,n

n
n

u
n l

u
 then the 

series nu  is (C) when l > 1 and is (D) when l < 1. When l = 1, the test fails.

WORKED EXAMPLE 2(b)

Example 2.1 Test the convergence of the following series:

 (i) 
2 32 2 2

to ;
1 2 3

 (ii) 
3 3 4 3 4 5

to ;
4 4 6 4 6 8

(iii) 2 3

1 2 3
to ;

1 3 1 3 1 3

(iv) 
2 3 4

1 .
2! 3! 4!

p p p

(i) nu  = 
2 22 2 2 2

1 2 3

n

n

 un = 
1

1

2 2
and

1

n n

nu
n n

          

1
1 2 1

2
11 2

1

n
n

n
n

u n

u n

n

     
1

lim 2 1
n

n
n

u

u

 By ratio test, nu  is (D).

(ii) nu  = 
3 3 4 3 4 5

4 4 6 4 6 8

 un = 
3 4 5 ( 2)

4 6 8 (2 2)

n

n

[Note  There are n factors each in the numerator and denominator of the nth 

term. The factors are in A.P.]
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 un + 1 = 
3 4 5 ( 2) ( 3)

4 6 8 (2 2) (2 4)

n n

n n

  
1n

n

u

u
 = 

3
1

3

42 4
2

n n

n

n

 
1

lim
n

n
n

u

u
 = 

1
1.

2

 By ratio test, is (C).nu

(iii)  nu  = 2 3

1 2 3

1 3 1 3 1 3

 un = 1 1

1
and

1 3 1 3
nn n

n n
u

 
1n

n

u

u
 = 

1

1 1 3

1 3

n

n

n

n

  = 

1
1

1 31
1

3
3

n

n

n

      
1 1

lim 1.
3

n

n
n

u

u

 By ratio test, is (C).nu

(iv)  nu  = 2 3 4
1

2! 3! 4!

p p p

 un = 1

( 1)
and

! ( 1)!

p p

n

n n
u

n n

 
1n

n

u

u
 = 

( 1) !

( 1)!

p

p

n n

n n

  = 
1 1

1

p
n

n n

  = 
1 1

1
1

p

n n
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1
lim 0 1.

n

n
n

u

u

 By ratio test, is (C).nu

Example 2.2 Test the convergence of the following series:

 (i) 
1

( 1) (2 1) (3 1) ( 1)
; , , 0.

( 1)(2 1) (3 1) ( 1)n

a a a na
a b

b b b nb

 (ii) 
3 !

;
n

n

n

n

(iii) 2
( 0);

1

n na x
x

n

(iv) 2
( 0);

1

n

n

x
x

x

(i) nu  = 
( 1) (2 1) ( 1)

( 1) (2 1) ( 1)

a a na

b b nb

 
1n

n

u

u
 = 

( 1) (2 1) ( 1) ( 1 1) ( 1) (2 1) ( 1)

( 1) (2 1) ( 1)( 1) (2 1) ( 1) ( 1 1)

a a na n a b b nb

a a nab b nb n b

  = 

1

( 1) 1 1

1( 1) 1

1

a
n a n

n b
b

n

 
1

lim
n

n
n

u a

u b

 By Ratio test, is (C) if 1 or , and is (D) if 1n n

a a
u a b u

b b
 or a > b.

If a = b, the ratio test fails.

But in this case, the series becomes 1 + 1 + 1 +  to , which is (D).

Thus nu  is (C) when 0 < a < b, and it is (D) when 0 < b  a.

(ii) nu  = 
3 !n

n

n

n

 un = 
1

1 1

3 ! 3 ( 1)!
and

( 1)

n n

nn n

n n
y

n n
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1n

n

u

u
 = 

1

1

3 ( 1)!

( 1) 3 !

n n

n n

n n

n n

  = 
1

3 or 3
11

1

n n
n

n

n

    
1 3

lim 1
n

n
n

u

u e
 (  e = 2.71828 )

  By ratio test, nu  is (D).

(iii) 
nu  = 21

n na x

n

 un = 
1 1

12 2
and

1 1 ( 1)

n n n n

n

a x a x
u

n n

 
1n

n

u

u
 = 

1 1 2

2

1

1 ( 1)

n n

n n

a x n

n a x

  = 
2

2

(1 )

2 2

n
ax

n n

  = 
2

2

1
1

2 2
1

nax

nn

     
1

lim
n

n
n

u
ax

u

 By ratio test, nu  is (C), if ax < 1 or x > 
1

a
.

nu  = is (D), if ax > 1 or x < 
1

a

Ratio test fails, when x = 
1

a
.

But when x = 
1

a
, 

nu  = 
2

1

1 n

 By choosing 
2

1
nv

n
 and using comparison test, we can prove that nu  is 

(C).

Thus nu  is (C) when x  
1

a
 and (D) when x > 

1

a
.
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(iv) nu  = 
21

n

n

x

x

 un = 
1

12 2 2
and

1 1

n n

nn n

x x
u

x x

 
1n

n

u

u
 = 

1 2

2 2

1

1

n n

n n

x x

x x

  = 
2 1

2 21

n

n

x x

x

1
lim ,

n

n
n

u
x

u
 if x < 1 

2 1 2 2lim ( ) 0 lim ( )n n

n n
x x

       
2 11

2 2

1 1

1
1

nn

n
n

u xx

u

x

    
1 1

lim ,
n

n
n

u

u x
 if x > 1

Thus when x < 1 and x > 1, 
1

lim 1
n

n
n

u

u
 and hence nu  is (C).

But when x = 1, the ratio test fails.

In this case, the series becomes

1 1 1

2 2 2
 to , which is (D).

Example 2.3 Test the convergence of the following series:

 (i) 
2 3

2

1 2 3
0

2 5 10 1

nn
x x x x x

n

 (ii) 
2 4 61

0
2 1 3 2 4 3 5 4

x x x
x

(iii) 
2 3

2 3
0

1 1 1

x x x
x

x x x

(iv) 

2 2 3 3 4 42 3 4
0

2! 3! 4!

x x x
x x
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(i) nu  = 
2 31 2 3

2 5 10
x x x

  un = 
1

12 2

1
and

1 ( 1) 1

n n
n

n n
x u x

n n

       

2
1

2

1 1
.

( 1) 1

n

n

u n n
x

u n n

  = 
2

2

1
1

1
1

2 2
1

n x
n

n n

         
1

lim .
n

n
n

u
x

u

 By ratio test, nu  is (C) if x < 1 and it is (D) if x > 1.

When x = 1, ratio test fails.

In this case, the series becomes nu  = 
2 1

n

n
.

 Choosing nv  = 
1/2

1

n
 and using comparison test, we can prove that nu  

is (D).

Thus nu  is (C) when x < 1 and (D) when x  1.

(ii)  nu  = 
41

2 1 3 2 4 3

x x

  un = 
2 2 2

1and
( 1) ( 2) 1

n n

n

x x
u

n n n n

          

2
1

2 2

( 1)

( 2) 1

n
n

n
n

u x n n

u x n n

  = 2

1
1

2 1
1 1

n
x

n n
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1 2lim

n

n
n

u
x

u

By ratio test nu  is (C) if x2 < 1 and (D) if x2 > 1.

When x2 = 1, nu  = 
1 1 1 1

.
2 1 3 2 4 3 ( 1)n n

 Choosing

3/2

1
nv

n
 and using comparison test, we can prove that nu  is (C).

Thus nu  is (C) when x2  1 and it is (D) when x2 > 1.

(iii)  nu  = 
1

n

n

x

x

       

1
1

1

1

1

n n
n

n n
n

u x x

u x x

  = 
1

11

n

n

x x

x

       

1 1lim , if 1 0 as
n n

n
n

u
x x x n

u

Also   
11

1

1

1
1

nn

n
n

x
u x

u

x

  
1

lim 1n

n
n

u

u
, if x > 1

 By ratio test, nu  is (C). If x < 1 and ratio test fails if x > 1.

Also when x = 1, the ratio test fails.

In this case, nu  = 
1 1 1

2 2 2
, which is (D).

(iv) nu  = 

2 2 3 32 3

2! 3! !

n nx x n x
x

n

       
1 1

1 ( 1) !

( 1)!

n n
n

n n
n

u n x n

u n n x

  = 
1

n
n

x
n

 or 
1

1

n

x
n
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1

lim .
n

n
n

u
e x

u

  By ratio test, nu  is (C) if ex < 1 or x < 
1

e
 and it is (D) if ex > 1 or x > 

1

e
. 

When x = 
1

e
, ratio test fails.

In this case, 
!

n

n

n

e
u

n
.

 lim ( ) lim 0.
!

n

n
n n

n

e
u

n
  nu  is (D), when x = 

1

e
.

Example 2.4 Test the convergence of the following series:

 (i) 
1 1 3 1 3 5

1
2 2 4 2 4 6

 (ii) 
2 2 2 2 2 2

2 2 2 2 2 2

1 1 5 1 5 9

4 4 8 4 8 12

(iii) 2 33 3 6 3 6 9
0

7 7 10 7 10 13
x x x x

(iv) 
2 3

2 2 2
1 ( 0).

2 3 4

x x x
x

(i) nu  = 
1 1 3 1 3 5

2 2 4 2 4 6
 (omitting the first term)

 un = 
1 3 5 2 1

2 4 6 2

n

n
 and

 un + 1 = 
1 3 5 2 1 (2 1)

2 4 6 2 (2 2)

n n

n n

           
1 2 1

2 2

n

n

u n

u n
 or 

1
2

2
2

n

n

 
1

lim
n

n
n

u

u
 = 1.



Chapter 2: Sequences and Series I – 2.31

Hence ratio test fails.

Let us try now Raabe’s test.

  
1

2 2
lim 1 lim 1

2 1

n

n n
n

u n
n n

u n

  = lim
2 1n

n

n

  = 
1 1

lim 1
1 2

2
n

n

 By Rabbe’s test 
nu  is (D).

(ii)   
nu  = 

2 2 2 2 2 2

2 2 2 2 2 2

1 1 5 1 5 9

4 4 8 7 8 12

 un = 
2 2 2 2

2 2 2 2

1 5 9 4 3

4 8 12 4

n

n

and  un + 1 = 
2 2 2 2

2 2 2 2

1 5 4 3 (4 1)

4 8 (4 ) (4 4)

n n

n n

 

2

2
1

2 2

1
4

(4 1)

(4 4) 4
4

n

n

u n n

u n

n

   
1

lim 1.
n

n
n

u

u

Hence ratio test fails.

Now    

2

2
1

(4 4)
1 1

(4 1)

n

n

u n
n n

u n

  = 
2

(8 5) 3

(4 1)

n
n

n

 
2

1

5
8

lim 1 lim 3
1

4

n

n n
n

u nn
u

n

   = 
2

3 8 3
1

24
.
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   By Raabe’s test nu  is (C).

(iii) nu  = 
2 33 3 6 3 6 9

7 7 10 7 10 13
x x x

 un = 
3 6 9 3

7 10 13 3 4

nn
x

n

and  un + 1 = 
13 6 9 3 (3 3)

7 10 13 3 4 (3 7)

nn n
x

n n

       1

3
3

3 3
.

73 7
3

n

n

u n nx x
u n

n

   
1

lim
n

n
n

u
x

u

 By ratio test, nu  is (C) if x < 1 and nu  is (D) if x > 1.

When x = 1, ratio test fails.

In the case,    
1 3 3

3 7

n

n

u n

u n

         
1

3 7 4
1 1

3 3 3 3

n

n

u n n
n n

u n n

   
1

4
lim 1 lim

3
3

n

n n
n

u
n

u

n

  = 
4

1.
3

 By Raabe’s test, nu  is (C), when x = 1.

Thus nu  is (C) if x  1 and it is (D) if x > 1.

(iv)  nu  = 

2 3

2 2 22 3 4

x x x
 (omitting the first term)

  
2( 1)

n

n

x
u

n
 and 

1

1 2( 2)

n

n

x
u

n
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2

1 2
1

2 2

1
1

( 1)

( 2) 2
1

n
n

n
n

u x n n
x

u n x

n

 
1

lim .
n

n
n

u
x

u

 By ratio test, nu  is (C) if x < 1 and is (D) if x > 1.

Ratio test fails, when x = 1.

When x = 1, 
2

2
1

( 2)

( 1)

n

n

u n

u n

 
2

1

(2 3)
lim 1 lim

( 1)

n

n n
n

u n n
n

u n

       = 
2

3
2

lim
1

1
n

n

n

       = 2 > 1

 By Raabe’s test, nu  is (C). 

 Note  The convergence of nu  can be proved, when x = 1, by comparison 

test also.

 nu  is (C) if x  1 and is (D) if x > 1.

Example 2.5 Examine the convergence of the following series:

 (i) 
( 1) ( 2) ( 1)

;
( 1) ( 2) ( 1)

a a a a n

b b b b n
 (ii) 

1

;
3

n

n

x

n

(iii) 2

(2 )!
.

( !)

nn
x

n

(i) nu  = 
( 1) ( 2) ( 1)

( 1) ( 2) ( 1)

a a a a n

b b b b n

 
1n

n

u

u
 = 

a n

b n
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1

lim
n

n
n

u

u
 = 

1

lim

1
n

a

n
b

n

 = 1

 Ratio test fails

Now 
1

1n

n

u
n

u
 = 1

b n
n

a n

  = 
( ) ( )

or

1

n b a b a

aa n

n

 
1

lim 1n

n
n

u
n

u
 = b – a

  By Raabe’s test, (C) if 1 or 1nu b a b a  and it is (D) if b – a < 1 or 

b < a + 1.

If b = a + 1, Raabe’s test fails.

In this case,

 un = 
( 1) ( 2) ( 1)

( 1) ( 2) ( 3) ( 1)( )

a a a a n

a a a a n a n

  = 
a

a n

Let nv  = 
1

n

 n

n

u

v
 = 

1

na a

aa n

n

 lim n

n
n

u

v
 = a  0.

 By comparison test, andn nu v  converge or diverge together.

 nv  = 
1

is (D).
n

 is also (D).nu

Thus nu  is (C) if b > (a + 1) and is (D) if b  (a + 1).
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(ii) nu  = 

1

3

n

n

x

n

 
1n

n

u

u
 = 

1 1

3

( 1) 3

n n

n n

x n

n x

  = 
1

13
1

x

n

 
1

lim
n

n
n

u

u
 = 

3

x

 By ratio test, nu  is (C) if 1 or 3
3

x
x  and it is (D) if 1 or 3.

3

x
x

If x = 3, ratio test fails.

When x = 3, 
1 1 1

or is (D)
3 3

nu
n n

 nu  is (C) if x < 3 and it is (D), if x  3.

(iii) nu  = 2

(2 )!

( !)

nn
x

n

 
1n

n

u

u
 = 

2
1

2

(2 2)! ( !)

[( 1)!] (2 )!

n

n

n n
x

n n x

  = 
2

(2 1) (2 2)

( 1)

n n
x

n

  = 
2

1 2
2 2

1
1

n n
x

n

 
1

lim
n

n
n

u

u
 = 4x

 By ratio test, nu  is (C) if 4x < 1 or 
1

4
x  and is (D) if 4x > 1 or 

1

4
x .

If 
1

4
x , ratio test fails.

When x = 1/4,
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1

1n

n

u
n

u
 = 

24( 1)
1

(2 1) (2 2)

n
n

n n

  = 
1

or
12 1

2

n

n

n

 
1

lim 1n

n
n

u
n

u
 = 

1
1

2

 By Raabe’s test, nu  is (D).

Thus nu  is (C), if x < 1/4 and is (D) if x  1/4.

EXERCISE 2(b)

Part A

(Short Answer Questions)

 1. State D’Alembert’s ratio test.

 2. State Raabe’s test. 

 3. For the series 
1

,nu
n

 show that both the ratio test and Raabe’s test 

fail.

 4. Use Raabe’s test to establish the convergence of 2

1
.

n

 5. Prove that series ( 1) nn x  is (C) if 0 < x < 1.

Part B

Examine the convergence or divergence of the following series:

 6. 
2 3

4 5 6

3 3 3
to .

2 2 2

 7. 
1 2 1 2 3

1 to .
1 3 1 3 5

 8. 
2 3

1 2 3
to .

1 2 1 2 1 2

 9. 
1! 2! 3! 4!

to .
2 4 8 16
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10. 
2 3 4

2 3

3 3 3
to .

2 2 3 2 4 2

11. 
3

1

.
2n

n

n k

k

12. 
!

.
n

n

n

13. 
24 .nn e

14. (2 1) ( 0).nn x x

15. 
2 2

( 0).
( 1)

nx
x

n n

16. 
2 3

to . ( 0)
1 2 3 4 5 6

x x x
x

17. 2 33 4 5
2 to . ( 0)

2 3 4
x x x x

18. 2 2 2 2 31 2 3 4 to . ( 0)x x x x

19. 2 32 3 4
to . ( 0)

1 3 2 4 3 5
x x x x

20. 
2 32 3 4

to . ( 0)
1 8 27

x x x
x

21. 
1 1 1 3 1 1 3 5 1

to .
2 4 2 4 6 2 4 6 8

22. 
2 2 2 2 2 2

2 2 2 2 2 2

3 3 5 3 5 7
to .

5 5 7 5 7 9

23. 
3 5 71 1 3 1 3 5

to . ( 0)
2 3 2 4 5 2 4 6 7

x x x
x x

24. 
2 2 3 3 4 42 3 4

to . ( 0)
2! 3! 4!

x x x
x x

25. 2 31 1 2 1 2 3
to . ( 0)

3 3 5 3 5 7
x x x x

26. 

2( !)
( 0).

( 1)!

nn
x x

n
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27. 
4 7 (3 1)

!

nn
x

n

28. 
2 5 8 (3 1)

.
7 10 13 (3 4)

n

n

29. 

2
1 4 7 (3 2)

.
3 6 9 3

n

n

30. 

2 2 2 22 4 6 (2 )
.

3 4 5 (2 2)

n

n

2.3 ALTERNATING SERIES

A series in which the terms are alternately positive and negative is called an alternating 

series.

An alternating series is of the form

u1 – u2 + u3 – u4 +  + 
1

1 1

1

( 1) ( 1)n n
n n

n

u u

where all the u’s are positive.

2.3.1 Leibnitz Test for Convergence of an Alternating Series

The alternating series u1 – u2 + u3 – u4 +  1( 1) ,n
nu  in which u1, u2, u3,  

are all positive, is convergent if (i) each term is numerically less than the preceding 

term, i.e. un+1 < un, for all n and (ii) lim ( ) 0.n
n

u

Note  If lim ( ) 0,n
n

u  then 
1

( 1)
n

nu  is not convergent, but oscillating.

For example, let us consider the series

11 1 1 1
1 ( 1) to .

2 3 4

n

n

Here un = 1

1 1
and

1
nu

n n

Since 
1 1

1 ,
1

n n
n n

i.e. un+1 < un for all n.

Also 
1

lim ( ) lim 0n
n n

u
n

 By Leibnitz test, 
1 1

( 1) is (C).
n

n
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2.3.2 Absolute and Conditional Convergence

A series ,nu  in which any term is either positive or negative, is said to be absolutely 

convergent if the series | |nu  is convergent.

A series nu  consisting of positive and negative terms is said to be conditionally 

convergent, if nu  is (C), but | |nu  is (D). For example, let us consider the 

series.

nu  = 2 3

1 1 1
1

2 2 2
, which is a series of +ve and –ve terms. (In fact, 

it is an alternating series).

Now 
2 3

1 1 1
1 is (C),

2 2 2
nu  since it is a geometric series with 

r = 1/2 < 1.

 The given series nu  is absolutely (C).

Let us now consider 
1 1 1

1
2 3 4

nu  By Leibnitz test, we have proved 

that nu  is (C).

Now nu  = 
1 1 1

1
2 3 4

 is known to be divergent.

 nu  is conditionally (C).

Note  1. We can prove that an absolutely convergent series is (ordinarily) 

convergent. The converse of this result is not true i.e. series which is 

convergent need not be absolutely convergent, as in the case of the series 

1 1 1
1

2 3 4
.

2. To prove the absolute convergence of nu , we have to prove the conver-

gence of | |nu . Since | |nu  is a series of positive terms, we may use any 

of the standard tests (comparison, Cauchy’s root, Ratio and Raabie’s tests) to 

prove its convergence.

2.3.3 Convergence of the Binomial Series

The series 2( 1) ( 1) ( 1)
1

1! 2! !

rn n n n n n r
x x x

r
 is called the 

Binomial series. The sum to which this series converges is (1 + x)n.

Let us now find the values of x for which the binomial series is (C) for any n.
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Omitting the first term 1 in the binomial series,

let 
2( 1) ( 1) ( 1)

1! 2! !

r
r

n n n n n n r
u x x x

r

  The general term ur = 
( 1) ( 1)

!

rn n n r
x

r

Note  As ‘n’ is now a given constant occurring in the given series, the rth term ur 

is taken as the general term.

 ur + 1 = 1( 1) ( 1) ( )

( 1)!

rn n n r n r
x

r

 
1r

r

u

u
 = 

1

11
1

n

n r rx x
r

r

        

1

1

lim lim
1

1

r

r r
r

n

u r
x

u

r

  = |–1|  |x|

  = |x|

 By ratio test, is (C) if | | < 1 and it is (D) if | | > 1.ru x x

 ru , i.e. the given binomial series is absolutely convergent and hence (C) if 

|x| < 1 and not (C) if |x| > 1.

Note  When |x| = 1, the convergence or divergence of ru  can be established 

with further analysis. If x = –1, ru  is (C) when n > 0 and is (D) when n < 0.

If x = 1, ru  is (C) when n > –1 and oscillatory when n  –1.

2.3.4 Convergence of the Exponential Series

The series 
2

1 to
1! 2! !

nx x x

n
 is called the Exponential series. The sum 

to which the series converges is ex.

Let us now consider the convergence of the series 

2

1! 2! !

n

n

x x x
u

n
 

(omitting the first term)
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1n

n

u

u
 = 

1 !

( 1)!

n

n

x n

n x

   = 
1

x

n

  
1 | |

lim lim 0 1.
1

n

n n
n

u x

u n

 By ratio test, | | is (C), for all .nu x

  The given exponential series nu  is absolutely (C) and hence (C) for all 

values of x.

2.3.5 Convergence of the Logarithmic Series

The series 
2 3

1( 1)
2 3

n
nx x x

x
n

 is called the Logarithmic series. The 

sum to which the series converges is log (1 + x).

Let us now consider the convergence of the series 

       

2 3
1( 1)

2 3

n
n

n

x x x
u x

n

 un = 
1 1

1

( 1) ( 1)
and

1

n n n
n

n

x
x u

n n

 
1n

n

u

u
 = 

1

11
1

n
x x

n

n

        

1
lim lim | |

1
1

n

n n
n

u x
x

u

n

 By ratio test, is (C) if | | < 1 and is (D) if | | > 1.nu x x

  The logarithmic series nu  is absolutely (C) and hence (C) if |x| < 1 and not 

(C) if |x|  > 1.

If x = 1, the series becomes 
1 1 1

1
2 3 4

. It is an alternating series which 

has been proved to be (C) by Leibnitz test.

If x = –1, the series becomes 
1 1 1

1 .
2 3 4

 which is (D). 

Thus the logarithmic series is (C), if –1 < x  1.
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WORKED EXAMPLE 2(c)

Example 2.1  Examine the convergence of the series:

(i) 1

2

1 2 3
( 1)

2 5 10 1

n n

n

(ii) 
1 2 3 4

1 3 5 7

(i) The given series is 1 1

2
( 1) ( 1) ,

1

n n
n

n
u

n
 say.

 un = 
2

2

1

11 1

n n

n

n

       lim ( ) 0n
n

u

Now  un – un + 1 = 
2 2

1

1 ( 1) 1

n n

n n

  = 
2 2

2 2

{( 1) 1} ( 1) ( 1)

( 1) {( 1) 1}

n n n n

n n

  = 
2 2

2 2

( 2 2) ( 1) ( 1)

( 1) ( 2 2)

n n n n n

n n n

  = 
2

2 2

1

( 1) ( 2 2)

n n

n n n

  = 
2 2

( 1) 1

( 1) ( 2 2)

n n

n n n

  = positive, for n  1

  un + 1 < un for all n.

 By Leibnitz test, 
1( 1) is (C)n

nu .

(ii) 1( 1)n
nu  = 

1 2 3 4

1 3 5 7

 un = 
2 1

n

n
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 un – un+1 = 
1

2 1 2 1

n n

n n

  = 
(2 1) ( 1) (2 1)

(2 1) (2 1)

n n n n

n n

  = 
2

1
0, for all .

4 1
n

n

 un+1 < un for all n. 

But lim ( )n
n

u  = lim
2 1n

n

n

  = 
1

lim
1

2
n

n

  = 
1

0
2

 The given series is not (C). It is oscillating.

Example 2.2  Examine the convergence of the series:

(i) 
1 1 1

1 to
2 2 3 3 4 4

(ii) 
1

1

( 1) 1 ).n

n

n n

(i) Let          
1 11 1 1 1

( 1) 1 ( 1)
2 2 3 3 4 4

n n
nu

n n

 un = 
1

n n

 lim ( )n
n

u  = 
1

lim 0
n n n

Now  un – un+1 = 
1 1

( 1) 1n n n n

  = 
( 1) 1

0, for all 1
( 1) ( 1

n n n n
n

n n n n

 un+1 < un, for all n.

 The given series is (C) by Leibnitz test.
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(ii) Let          
1 1( 1) ( 1) ( 1 )n n

nu n n

 un  = 
1

1
1

n n
n n

 lim ( )n
n

u  = 
1

lim
1n n n

  = 0

Now un – un+1 = 
1 1

1 2 1n n n n

  = 
( 2 1) ( 1 )

( 1 ) ( 2 1)

n n n n

n n n n

  = 
2

( 1 ) ( 2 1)

n n

n n n n
 > 0, for all n  1.

 un + 1 < un for all n.

 By Leibnitz test, the given series is (C).

Example 2.3  Examine the convergence of the series:

 (i) 
2 2 2 2

1 1 1 1
to ;

1 2 3 4

(ii) 
2 2 2 2

1 1 1 1
to ;

1 4 7 10

(i) Let    
1 1

2 2 2 2

1 1 1 1
( 1) ( 1)

1 2 3

n n
nu

n

 un = 
2

1

n

 2

1
lim

n n
 = 0

Also un – un+1 = 
2 2

1 1

( 1)n n

  = 
2 2

2 2

( 1)

( 1)

n n

n n

  = 
2 2

2 1
0, for all 1

( 1)

n
n

n n

 un+1 < un, for all n.

 By Leibnitz test, the given series is (C).
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(ii) Let 1( 1)n
nu  = 1

2 2 2 2

1 1 1 1
( 1)

1 4 7 (3 2)

n

n

 un = 
2

1

(3 2)n

  lim n
n

u  = 2

1
lim 0

(3 2)n n

Also un – un+1 = 
2 2

1 1

(3 2) (3 1)n n

  = 
2 2

2 2

(3 1) (3 2)

(3 2) (3 1)

n n

n n

  = 2 2

3(6 1)
0 for all 1

(3 2) (3 1)

n
n

n n

i.e. un+1 < un for all n.

 The given series is (C), by Leibnitz test.

Example 2.4  Examine the convergence of the series:

 (i) 
1 1 1 1

;
1 2 3 4 5 6 7 8

(ii) 
1 1 1

;
1 2 3 2 3 4 3 4 5

(i) Let 1( 1)n
nu  = 

1 1 1

1 2 3 4 5 6

 un = 
1

(2 1) 2n n

         

1
lim ( ) lim 0

(2 1) 2
n

n n
u

n n

Also un – un+1  = 
1 1

(2 1)2 (2 1) (2 2)n n n n

  = 
(2 1)(2 2) 2 (2 1)

(2 1) 2 (2 1) (2 2)

n n n n

n n n n

  = 
8 2

0, for all 1
(2 1) 2 (2 1) (2 2)

n
n

n n n n

 un+1 < un for all n.

 By Leibnitz test, the given series is (C).
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(ii) Let 
1( 1)n

nu  = 
1 1 1

1 2 3 2 3 4 3 4 5

 un = 
1

( 1)( 2)n n n

 lim ( )n
n

u  = 
1

lim 0
( 1) ( 2)n n n n

Also un – un+1 = 
1 1

( 1)( 2) ( 1)( 2) ( 3)n n n n n n

  = 
( 3) 3

( 1)( 2)( 3) ( 1)( 2)( 3)

n n

n n n n n n n n

 un – un+1 > 0, for all n  1

or un+1 < un, for all n.

 By Leibnitz test, the given series is (C).

Example 2.5  Examine the convergence of the following series:

 (i) 
1 2 3

;
2! 3! 4!

(ii) 
2 3

2 3
(0 1).

1 1 1

x x x
x

x x x

(i) Let 
1( 1)n

nu  = 
1 2 3

2! 3! 4!

 un = 
( 1)!

n

n

 lim ( )n
n

u  = lim
1 2 3 ( 1)n

n

n n

  = 
1

lim
1 2 3 ( 1)( 1)n n n

  = 0

Also  un – un+1 = 
1

( 1)! ( 2)!

n n

n n

  = 
( 2) ( 1)

( 2)!

n n n

n
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  = 
2 1

( 2)!

n n

n

  = 
( 1) 1

0, for all 1
( 2)!

n n
n

n

 un+1 < un, for all n.

 By Leibnitz test, the given series is (C).

(ii) Let 
1( 1)n

nu  = 
2 3

2 3
(0 1).

1 1 1

x x x
x

x x x

 un = 
1

n

n

x

x

 lim ( )n
n

u  = lim
1

n

nn

x

x

  = 
1

lim
1

1

nn

x

  = 0, since 
1 1

, as 1

n

x x

Also  un – un+1 = 
1

11 1

n n

n n

x x

x x

  = 
1 1

1

(1 ) (1 )

(1 ) (1 )

n n n n

n n

x x x x

x x

  = 
1

(1 )

(1 ) (1 )

n

n n

x x

x x
 > 0, for all n, since 0 < x < 1

i.e. un+1 < un for all n.

 By Leibnitz test, the given series is (C).

EXERCISE 2(c)

Part A

(Short answer questions)

 1. State Leibnitz test for the convergence of an alternating series.

 2. Show that the series 1 1
( 1) .n

n
 is (C).
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 3. What is meant by absolute convergence?

 4. Give an example for a series which is absolutely convergent.

 5. What do you mean by conditional convergence?

 6. Give an example for a series that is conditionally convergent.

 7. Give the values of x for which the binomial series and the logarithmic series 

are convergent.

 8. Show that the series 
1 1 1 1

log 2 log3 log 4 log5
 is convergent.

Part B

Examine the convergence of the following alternating series.

 9. 
1 1 1

1
5 9 13

10. 
3 5 7 9

2 4 8 16

11. 
3 5 7 9

4 7 10 13

12. 
2 3 4

2 3 4

13. 

2
1

3
1

( 1)
( 1) .

1

n

n

n

n

14. 
2 2 2 2

1 1 1 1

1 3 5 7

15. 
2 2 2 2

1 1 1 1

1 1 2 1 3 1 4 1

16. 
1 1 1

1.3 3.5 5.7

17. 
1 1 1

3.4.5 4.5.6 5.6.7

18. 
1 1 1 1

1.1.3 2.3.5 3.5.7 4.7.9

19. 
3 5 7

2! 4! 6!

20. 
1 1 1

2log 2 3log3 4log 4
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2.4 SEQUENCES AND SERIES

Definition

If to each positive integer n, a quantity an is assigned, then the quantities a1, a2, …, 

an, ... are said to form an infinite sequence or simply sequence, denoted by {an}. The 

individual quantities an are called the terms of the sequence.

If the terms of a sequence are real, then it is called a real sequence.

Limit of a Sequence

A sequence {an} is said to be convergent to the limit ‘l’, if there exists an integer N, 

such that

na l  for all n > N, where  is a positive real quantity, however small it may 

be, but not zero.

This is denoted as lim ( )n
n

a l  or an  l, as n  

Note  If a sequence converges, the limit is unique.

Note  For all n > N ‘in the definition means for infinitely many n’. A sequence, 

that is not convergent, is said to be divergent.

Examples

1.  The sequence 1 2 3 4
, , , ,

2 3 4 5
…, viz., 

1

n

n
 is convergent to the limit 1, as 

1
1 ,

1 1

n

n n
 when 

1
1n  or 

1
1n .

 We note that n > 99, if we chose  = 0.01.

2.  The sequence 3
2

n
, viz., 5, 

5

7
, 3, 

11 13
, ,

4 5
converges to the limit 2, as 

3 3
2 2 6

n n
, when 

3

6
n

It is noted that n > 300, if we choose  = 0.01.

Definitions

1.  The sequence {an} is said to be bounded, if there is a positive number K 

such that ,na K  for all n. A sequence that is not bounded is said to be 

unbounded.

2.  A real sequence {an} is said to be monotonic increasing or monotonic 

decreasing, according as 

  a1  a2  a3 … or a1  a2  a3  …
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A sequence that is either monotonic increasing or monotonic decreasing is called 

a monotonic sequence.

We give below three theorems regarding convergence of sequences without 

proof:

Theorems

1.  A sequence {an} is convergent, if and only if for every position number , we 

can find a number N (which may depend on ) such that

 ,m na a  when m > N and n > N

2.  Every convergent sequence is bounded. Hence if a sequence is unbounded, it 

diverges.

Example The sequences 1, 2, 3, 4,… and 
1 1 1

, 2, , 3, , 4,...
2 3 4

 are unbounded and 

hence diverge.

Note  Boundedness is not sufficient for convergence. 

Example The sequence 
1 3 1 4 1 5

, , , , , , ...
4 4 5 5 6 6

 is bounded since 1na , but it is 

divergent, since lim ( ) 0n
n a

a or 1. 

3. If a real sequence is bounded and monotonic, it is convergent.

Examples

1.  Thought the sequence 1, 2, 3, … is monotonic increasing, it is divergent, as it 

is unbounded.

2.  The sequence 
1 2 3

, , , ...
2 3 4

 is both monotonic increasing and bounded and 

hence it converges to the limit 1.

EXERCISE 2(d)

Test the convergence of the following sequences: If convergent find the limit also.

1. 
2 1 3 5 7

1, , , , ...
2 3 4

n

n
 2. 

2 5 3
3, 2, , , ...

3 2

n

n

3. 
1 1 1

, 2, , 3, , 4, ...
2 3 4

 4. 
1 2 3 4

, , , , ...
2 3 4 5

5. 
1 1 1

1, , , , ...
2 4 8

 6. 1, 2, 3, 4, ...

7. 
1

log ...nen
 8. 1/{ }...nn
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9. ....( 0)
!

na
a

n
 10. 2 3, 2 , 3 , ...( 1)a a a a

More Tests of Convergence for Series of Positive Terms

1. Cauchy’s Integral Test

If 
1

n

n

u  is a series of decreasing positive terms, so that u(x) is a decreasing function 

of x, for x  1, then the given series is convergent, if 

1

( )u x dx  exists and divergent 

if 

1

( )u x dx  does not exists.

2. Cauchy’s Condensation Test

If f(n) is a decreasing positive function of n and ‘a’ is any positive integer > 1, then 

the two series ( )f n  and . ( )n na f a  are both divergent.

3. Logarithmic Test

If 
1

n

n

u is a series of positive terms such that 
1

lim log n

n
n

u
n l

u
, then nu is 

convergent if l > 1 and divergent if l < 1.

4. Gauss’s test

If 
1

n

n

u  is a series of positive terms such that 
2

1

( )
1n

n

u h A n

u n n
, where A(n) is 

a bounded function of n as n  , then the series is convergent if h > 1 and divergent 

if h  1.

5. Kummer’s Test

If 
1

n

n

u  is a series of positive terms and {an} is a sequence of positive terms 

such that 1
1

. 0,n
n n

n

u
a a r

u
 for n  m, then nu  is convergent. If 

1
1

. 0n
n n

n

u
a a

u
, then nu is divergent, provided that 

1

1

nn a
 is divergent.

Note  Raabe’s test is a particular case of Kummer’s test corresponding to an = n.
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WORKED EXAMPLE 2(d)

Example 2.1 Test the convergence of the p-series 

1

1
p

n n
, by using the integral 

test.

 
1

1

n np
 = 

1

n

n

u   u(x) = 
1
px

 
1

1
p

dx
x

 = 

1

1
11

1
, if 11 1

1
1 1

, if 1

p

p

px
p

p p x
p

 
1

1

n np
 is (c), when p > 1 and (D), when p  1, by Cauchy’s integral test.

Example 2.2 Test the convergence of the series 
1

logn n
.

Let     
1

log
nu

n n
  

1
( )

log
u x

x x

Now      1

1

1
[log log ]

log
dx x

x x

 By integral test, nu  is (D).

Example 2.3 Test the convergence of the series 
2

1

(log ) p
n n n

Let f(n) = 
1

(log ) pn n

  anf (an) = 
1 1

(log ) ( log )

n

n n p p
a

a a n a
 = 

1 1

(log ) p pa n

Now   
1 1 1

(log ) . (log )p p p pa n a n

is (C), if p > 1 and (D), if p  1, by Cauchy’s condensation test,

Example 2.4 Test the convergence of the series 
2 2 3 3 4 42 3 4

.
2! 3! 4!

x x x
x

     
1 1

1

( 1)! 1

! 1( 1)

nn n
n

n n
n

u n x n n

u n n xn x
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1

1 1 1
lim lim

1 1/

n

nn n
n

u

u x exn

 By Ratio test, nu  is (C), when x < 
1

e
 and (D) when x > 

1

e
.

When x = 
1

e
, the ratio test fails.

      1

1
log log 1 log 1

1 1/

n

n
n

u e
n

u nn

    = 2 3 2

1 1 1 1 1
1 ... ...

22 3 3
n

n nn n n

Now   
1

1
lim log 1.

2

n

n
n

u
n

u

 By the Logarithmic test, nu  is (D).

Example 2.5 Test the convergence of the series 
1 1 1.3 1 1.3.5 1

. . . .
2 3 2.4 5 2.4.6 7

      
1 3 5...(2 1) 1

2 4 6...(2 ) 2 1
n

n
u

n n

     
1

1 3 5...(2 1) 1

2 4 6...(2 ) 2 1

2 4 6...(2 ) (2 2)
(2 3)

1 3 5...(2 1) (2 1)

n

n

u n

u n n

n n
n

n n

  = 2

(2 2) (2 3)

(2 1)

n n

n

  = 

2

2 2

(1 1/ ) (1 3/2 ) (5/2) (3/2) 1
1 1

2(1 1/2 )

n n

n nn n

  = 

2

2 2

(5/2) (3/2) 2 3
1 1

2 4n nn n

  = 
2

(3/2) 1 1
1 terms containing and higher power of

n nn

  = 2 2

(3/2) 1 1
1 0 1 0

h

n nn n

 h > 1 and so nu is (C), by Gauss’s test.
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EXERCISE 2(e)

Test the convergence of the following series:

 1. 
2

1

1

1n n
, using integral test.

 2. 
1

1

n n
, using integral test.

 3. 
4

11n

n

n
, using integral test.

 4. 
2

1

(log ) p
n n n

, using integral test.

 5. 
1

1
p

n n
, using condensation test.

 6. 
2

1

logn n n
, using condensation test. 

 7. 
2 2 3 32 3 4

1
2! 3! 4!

x x x
, using logarithmic test. 

 8. 2 31 1 3 1 3 5

2 2 4 2 4 6
x x x , using logarithmic test.

 9. 
2 2 2 2 2

2 2 2 2 2 2

1 1 3 1 3 5

2 2 4 2 4 6
, using Gauss’s test. 

10. 31 1 2 1 2 3

3 3 4 3 4 5
x , using Gauss’s test.

ANSWERS  

Exercise 2(a)

 (5) 
1

n
 (10) Dgt. (11) Dgt. (12) Cgt. (13) Cgt. (14) Cgt.

 (15) Dgt. (16) Dgt. (17) Dgt. (18) Cgt. (19) Cgt. (20) Cgt.

 (21) Cgt. (22) Dgt. (23) Cgt. (24) Dgt. (25) Dgt. (26) Cgt.
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 (27) Cgt. if k > 4 and dgt. if k  4. (28) Cgt. if p > 2 and dgt. if p  2

 (29) Dgt. (30) Dgt. (31) Cgt. (32) Cgt. (33) Cgt. (34) Cgt.

 (35) Cgt. if x > 4 and dgt. if x  1. (36) Cgt.

 (37) Cgt. if x > 4 and dgt. if x  1. (38) Cgt. (39) Cgt. (40) Cgt.

Exercise 2(b)

 (6) Dgt. (7) Cgt. (8) Cgt. (9) Dgt. (10) Dgt. (11) Cgt.

 (12) Cgt.   (13) Cgt.   (14) Cgt. if x < 1 and dgt. if x  1. 

 (15) Cgt. if x2  1 and dgt. if x2 > 1. (16) Cgt. if x  1 and dgt. if x > 1.

 (17) Cgt. if x < 1 and dgt. if x  1. (18) Cgt. if x < 1 and dgt. if x  1.

 (19) Cgt. if x < 1 and dgt. if x  1. (20) Cgt. if x  1 and dgt. if x > 1.

 (21) Cgt.   (22) Cgt. (23) Cgt. if x2  1 and dgt. if x2 > 1.

  (24) Cgt. if x < 
i

e
 and dgt. if x  

i

e
. (25) Cgt. if x < 2 and dgt. if x  2.

 (26) Cgt. if x < 4 and dgt. if x  4. (27) Cgt. if x < 
1

3
 and dgt. if x  

1

3
.

 (28) Cgt. (29) Cgt. (30) Cgt.

Exercise 2(c)

 (4) 
2 2 2

1 1 1
1

2 3 4
   (6) 

1 1 1

2 3 4
 (9) Cgt.

 (10) Cgt. (11) Oscillatory   (12) Cgt. (13) Cgt. (14) Cgt.

 (15)  Cgt. (16) Cgt. (17) Cgt. (18) Cgt. (19) Cgt. (20) Cgt.

Exercise 2(d)

 (1) Cgt. to 2 (2) Cgt. to 1 (3) Dgt. (4) Cgt. to 1 (5) Cgt. to 0 (6) Dgt.

 (7) Cgt. to 0 (8) Cgt. to 1 (9) Cgt. to 0 (10) Cgt. to 0, when 0  1/2

Exercise 2(e)

 (1) Cgt. (2) Dgt. (3) Cgt. (4) Cgt. if p > 1 and dgt. if p  1 

 (5) Cgt. if p > 1 and dgt, if p  1. (6) Dgt.

 (7) 
1 1

Cgt.,  if  and dgt.,  if x x
e e

 (8) Cgt., if x < 1 and dgt. If x  1

(9) Dgt. (10) Cgt.





Application of 
Differential Calculus

3Chapter

3.1 CURVATURE AND RADIUS OF CURVATURE

Consider the two circles shown in the Fig. 

3.1. It is obvious that the ways in which the 

two circles bend or ‘curve’ at the point P are 

not the same. The smaller circle ‘curves’ or 

changes its direction more rapidly than the 

bigger circle. In other words the smaller 

circle is said to have greater curvature than 

the other. This concept of curvature which 

holds good for any curve is formally defined 

as follows:

3.1.1 Definition of Curvature

P

Fig. 3.1

Let P and Q be any two close points on a plane curve. Let the arcual distances of P 

and Q measured from a fixed point A on the given curve be s and s + Δs, so that PQ

(the arcual length of PQ) is Δs. [Refer to Fig. 3.2]

y

O

A

P

Q ∆ ψ

ψ + ∆ψψ
x

Fig. 3.2



I – 3.2 Part I: Mathematics I

Let the tangents at P and Q to the curve make angles ψ and ψ + Δψ with a fixed 

line in the plane of the curve, say, the x-axis.

Then the angle between the tangents at P and Q = Δψ.

Thus for a change of Δs in the arcual length of the curve, the direction of the 

tangent to the curve changes by Δψ.

Hence 
∆ψ

∆s
 is the average rate of bending of the curve (or average rate of change 

of direction of the tangent to the curve in the arcual interval PQ  or average curvature 

of the arc PQ.

∴ 
∆

∆s∆

ψ ψ
lim
s s0

d

d
= is the rate of bending of the curve with respect to arcual distance

at P or the curvature of the curve at the point P. The curvature is denoted by k.

For example, let us find the curvature of 

a circle of radius at any point on it. [Refer to 

Fig. 3.3]

Let the arcual distances of points on the 

circle be measured from A, the lowest point 

of the circle and let the tangent at A be chosen 

as the x-axis. Let AP = s and let the tangent at 

P make an angle ψ with the x-axis.

Then 

ψ

s a

a

A C P=

=
[

∴

 the angle between CA and CP equals the angle between the

respective perpendiculars AT and PT.]

or ψ s
a
1

=

∴ 
ψ

s
1
a

d

d
=

Thus the curvature of a circle at any point on it equals the reciprocal of its radius. 

Equivalently, the radius of a circle equals the reciprocal of the curvature at any 

point on it. It is this property of the circle that has led to the definition of radius of 

curvature.

Radius of curvature of a curve at any point on it is defined as the reciprocal of the

curvature of the  curve at that point and denoted by ρ. Thus ρ = =
1
k

ds
dψ

.

Note  To find k or ρ of a curve at any point on it, we should know the relation 

between s and ψ for that curve, which is not easily derivable in most cases.

Generally curves will be defined by means of their cartesian, parametric or polar 

equations. Hence formulas for ρ in terms of cartesian, parametric or polar co-ordinates 

are necessary, which are derived below:

Some Basic Results:  Let P (x, y) and Q (x + Δx, y + Δy) be any two close points on

a curve y =f(x). [Refer to Fig. 3.4.] Let AP s  and AQ s s  where A is a fixed

point on the curve. Let the chord PQ make an angle θ with the x-axis.

P
C

A T

ψ

ψ

x

Fig. 3.3
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From ΔPQR, sin where
RQ

PQ

RQ

s

s

PQ
PQ s

y

s

s

PQ

,  (1)

and  cos
PR

PQ

PR

s

s

PQ

 
x

s

s

PQ
 (2)

When Q approaches P, chord PQ → tangent at P and hence θ → ψ. Also 
∆s

PQ
1.

Thus in the limiting case when Q → P, (1) and (2) become sin 
dy

ds
ψ =  and

dx

ds
cos = . ψ .

 
dy

dx
tan ψ = ..

3.1.2 Formula for Radius of Curvature in Cartesian 

Co-ordinates

Let ψ be the angle made by the tangent at any point (x, y) on the curve y = f (x).

Then 

dy

dx
tan ψ =

 (1)

Differentiating both sides of (1) w.r.t. x, we get,

dψ

dx

d 2

dx 2
sec =ψ

y
2

i.e. 
ds

ds

dψ

dx

d 2

dx 2
sec =.ψ

y
2  

i.e. 
dx 2

secsec =
.. ψ

ρ
ψ

d 2 y12  
dx

ds
ψcos =

. ..

 

dx 2

sec
=

ψ
ρ

d 2 y

3

ψ θ

θ

x

R

Q

P
A

O

y

Fig. 3.4
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dx 2 dx 2

dx

dy

)(1 + tan
1 + 

, = =
ψ

d 2 y d 2 y

2

2

3/2

3/2

 by (1).

Note   As curvature (and hence radius of curvature) of a curve at any point is 

independent of the choice of x and y-axis, x and y can be interchanged in the formula 

for ρ derived above. Thus ρ is also given by

1

2
3 2

2

2

d

d

d

d

x

y

x

y

/

This formula will be of use, when 
d

d

y

x
 is infinite at a point.

3.1.3 Formula for Radius of Curvature in Parametric 

Co-ordinates

Let the parametric equations of the curve be

 x = f(t) and y = g(t).

Then  x
x

t
f t

d

d
( )   and  y

y

t
g t

d

d
( ).

 
d

d

d

d

d

d

d

d

d

d

d

d

y

x

y

x

y

x x

y

x t

y

x

t

x

2

2

x y y x

x x

x y y x

x2 3

1

Now 

1

1

2
3 2

2

2

d

d

d

d

y

x

y

x

/

yy

x

xy yx

x

2
3 2

3

/
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x y

x

x

xy yx

2 2

3

3

x y

xy yx

2 2

3.1.4 Formula for Radius of Curvature in Polar 

Co-ordinates

Students are familiar with the following transformations from cartesian co-ordinates 

(x, y) to polar co-ordinates (r, θ):

 x = r cos θ and y = r sin θ (1)

We shall make use of (1) and the formula for the radius of curvature in cartesian co-

ordinates, namely,

 

1

2
3 2

2

2

d

d

d

d

y

x

y

x

/

 (2)

and derive the corresponding formula for ρ at the point (r, θ) which lies on the curve 

r = f(θ)

Now 
d

d

d d

d d

cos sin

sin cos

y

x

y

x

r r

r r

/

/

where r
rd

d
 (3)

r is a function of

 

d

d

d

d

d

d

d

d

si

d

d

d

d
2

2

y

x x

x

r

y

x

y

x

nn cos sin cos sin

cos sin cos

r r r r

r r r

2

2r r

r r

sin cos

sin cos

 

r rr rr r

r r

2 2 2 23 2sin sin cos sin cos

sin cos r rr rr

r r r

2 2 2

2 2

3

2

cos sin cos cos

sin sin cos

r r

r rr r

r r
r

sin cos

sin cos
where

3

2 2

3

2
,

d

d

2

2

r
 (4)

Also 1 1

2 2

d

d

cos sin

sin cos

y

x

r r

r r

 r r

r r

2 2

2( sin cos
 (5)
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Using (4) and (5) in (2), we get

( )r r

r rr r

2 2 3 2

2 22

/

3.2 CENTRE AND CIRCLE OF CURVATURE

Let P (x, y) be a point on the curve y = f (x). On the inward drawn normal to the curve 

at P, cut off a length PC = radius of curvature of the curve at P (namely ρ). The point 

C is called the centre of curvature at P for the curve. [Refer to Fig. 3.5]

The circle whose centre is C and radius ρ is called the circle of curvature at P 

for the curve.

Let (x– , y– ) be the co-ordinates of C.

Then
 

sinx= t }-

 

 (  angle between CP and CQ = angle between

 the respective perpendiculars PT and OP′)

 

cosec

cot

x

x

x
y

y

1

1

2

2

}

t

}

t

t

= -

= -
+

= -
+ l

l

 

ψ ==

∴

cot
dy

dx

y ′

1

 

= = =
1 + y′ 2

1 + y′ 2
d d

dy d 2

2y"
x

y y
y"′

′

x x
andwhere y.

( ) 3/2

i.e. x x
y

y
y( )1 2

Now y C C

P P QC

x

N

P (x, y)

C

Q

O T C' P'

y

ψ

ψ
ρ

Fig. 3.5

x OC

OP QP
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cos

sec

= + ψ

ψ

ψ

ρ

ρ

ρ

y

= +

.

1 + tan

(1 + y' 1

1 + y' y"

y"

y

= +y

= +y

= +y

3

2

2
2

2

)

(1 + y' 
2 )

Having found out the co-ordinates of the centre of curvature, the equation of the 

circle of curvature is written as ( ) ( )x x y y2 2 2 .

WORKED EXAMPLE 3(a)

Example 3.1 Find the radius of curvature at the point 3

2

3

2

a a
,  on the curve 

x3 + y3 = 3axy.

Differentiating the equation of the curve with respect to x,

 
3 32 2x y

y

x
a x

y

x
y

d

d

d

d

i.e. ( )
d

d
y ax

y

x
ay x2 2

∴ d

d

y

x

ay x

y ax

2

2
 (1)

Again differentiating with respect to x,

 d

d

( )
d

d
( )

d

d
2

2

2 22 2
y

x

y ax a
y

x
x ay x y

y

x
a

(( )y ax2 2
  (2) 

∴ 
d

d
and

,

y

x

a a

a aa a3

2

3

2

2 2

2 2

3

2

9

4

9

4

3

2

1
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d

d

2 y

x

a a a
a

a a2 3

2

3

2

2
23

4
3

3

4

,

3

9

16

4

a a

a

Note   It is not necessary to express d

d 

y

x
 as a function of x and y from (1) and

then evaluate d

d

2 y

x2
. When x

a3

2
 and y

a y

x

3

2
1,

d

d
, which may be used in (2).

i.e. 
d

d

2

,

y

x

a

a aa a
2

3

2

3

2

3

4

6

9
16

32

3

 

1

2
3 2

2

d

d

d

d

2

y

x

y

x

/

∴ 3

2

3

2

3 2
1 1

32

3

a a

a

,

/

∴ 
3 2

16

a
.

Example 3.2 Find the radius of curvature at (a, 0) on the curve xy2 = a3 − x3. 

The equation of the curve is

 y
a x

x

2
3 3

 (1)

Differentiating w.r.t. x,

 2
3 22 3 3

2

3 3

2
yy

x x a x

x

x a

x

i.e. y
x a

x y

2

2

3 3

2
 (2)

Now y
a, 0

.

The formula 

1

2
3 2

2

d

d

d

d

2

x

y

x

y

/

 should be used.



Chapter 3: Application of Differential Calculus I – 3.9

From (2), d

d

x

y

x y

x a

2

2

2

3 3
 (3)

Differentiating (3) w.r.t. y,

 
d

d

d

d

d

d2 x

y

x a x y x
x

y
x y x

x

y

x a
2

3 3 2 2 2

3 3
2

2 2 6

2
2

 (4)

From (3), we get 
d

d

x

y
a, 0

0

From(4), we get 
d

d

2 x

y

a

a a
a2 0

5

6

2 3

9

2

3
,

∴ 
1 0

2 3

3

2

3 2/

/ a

a

Example 3.3 If ρ is the radius of curvature at any point (x, y) on the curve

y
ax

a x
, show that 2

2 3 2 2

a

x

y

y

x

/

. 

 y
ax

a x  (1)
Differentiating w.r.t. x,

 y
a a x x

a x

a

a x
2

2

2  (2)

Differentiating again w.r.t. x,

 y
a

a x

2 2

3
 (3)

 
1 2

3 2

y

y

/

 (only the numerical value of ρ is considered)

 1

2

4

4

3 2

3

2

a

a x
a x

a

/

∴ 2
4 4

3 2

3 3a

a x a

a a x

/

∴ 
2

2 3 4 4

2 2

2

a

a x a

a a x

a x

a

a

a x

/ 2
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x

y

y

x
x y

2 2

the point lies on the curve,
yy

x

a

a x

Example 3.4 Show that the measure of curvature of the curve
x

a

y

b
1  

at any point (x, y) on it is 
ab

ax by2
3

2

.

The equation of the curve is

 
1 1

1
a

x
b

y  (1)

Differentiating w.r.t. x,

 
1

2

1

2
0

a x b y
y'

∴ y
b y

a x
'  (2)

Differentiating further w.r.t. x,

 

y
b

a

x
y

y y
x

x

b

a x

b

a

"

'
1

2

1

2

1

2

yy

x

b

ax
bx ay

b

ax
ab

2
2

2

2
1

3

2

3

2

,

,

using

using

b

a x2
3

2

Now, 

1
1

2

2

2
3

2

3

2

3

2

3

2

y

y

by

ax

b
a x

ab
ax by

'

"

 Curvature k
ab

ax by

1

2
3 2/
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Example 3.5 Find the co-ordinates of the real points on the curve y2 = 2x (3 − x2), the 

tangents at which are parallel to the x-axis. Show that the radius of curvature at each 

of these point is 
1

3
.

 y2 = 2x (3 − x2) (1)

Differentiating w.r.t. x,

 2yy′ = 2 [3 − 3x2]

i.e. yy′ = 3(l − x2) (2)

The points at which the tangents are parallel to the x-axis are given by y′= 0.

i.e. 3(l − x2) = 0, from (2)

i.e. x =  ±1.

Putting x = − 1 in (1), we get y2 = negative

i.e. y is imaginary.

∴ The real points are given by x = 1.

Putting x = 1 in (1), we get y2 = 4. ∴ y = ± 2.

∴ The points, the tangents at which are parallel to the x-axis, are (1, 2) and 

(1, − 2).

From(2), y
x

y

x

x x

3 1

3 1

2 3

2

2

3

Differentiating w.r.t. x,

 y

x x x x x x

x x

3

2

3 2 1 3

3

3 2 3

3

( )
d

dx

∴ y

y

y

1 2

2 3 2

3

2

2 2

2
3

1

,

/

.
( )

( )

∴ 
1 2

3 2
1 0

3

1

3,

/

Example 3.6 Show that the curves y c
x

c
cosh  and x2 = 2c (y − c)  have the same 

curvature at the points where they cross the y-axis.

The point at which the curve y c
x

c
cosh  crosses the y-axis is got by solving the

equation of the curve with x = 0.
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Thus the point is (0, c).

Similarly the point of intersection of the second curve with the y-axis is also found 

to be (0, c)

Equation of the first curve is y c
x

c
cosh .

Differentiating w.r.t. x twice, we get

y c
x

c c

x

c
sinh sinh.

1

 y
c

x

c

1
cosh

 
( )

sinh

cosh

3/21
1

1

2

2

3 2

y

y

x

c

c

x

c

/

∴ (ρ)
(0,c)

 = c.

Equation of the second curve is y
x

c
c

2

2
Differentiating w.r.t. x twice, we get

 y
x

c
 and y

c

1

∴ 
0

2

2

3 2

0

1

1,

/

c

x

x

c

c

c

Thus (ρ)
(0,c)

 is the same for both curves.

∴ (k)
(0,c) 

is the same 1

c
 for both curves.

Example 3.7 Find the radius of curvature at the point (a cos3 θ, a sin3 θ) on the curve 

x2/3 + y2/3 =a2/3.

The parametric equations of the given curve are x = a cos3 θ and y = a sin3 θ. 

Differentiating twice w.r.t. θ,

 

x
x

a y
y

a

x
x

d

d
cos sin ; 

d

d
sin cos

d

d

3 3

3

2 2

2

2
aa

y
y

a

cos cos sin

d

d
sin cos  sin

3

3

2

3 2

2

2

2

2
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( ) ( cos sin sin cos )3/2 4 4x y

xy yx

a a2 2 2 2 2 2 3 29 9 /

99 2

2

2 2 2

2 3 2

a cos si n sin cos sin

sin cos cos cos sin

3

27

9 2

3 3 2
3 2

2 2

a

a

sin cos cos sin

sin cos cos s

3 2

2 2

/

iin cos sin

sin cos

cos sin
sin c

2

2

2 2

2

2

3
3

a
a oos

∴ 3a sin cos .

Example 3.8 Show that the radius of curvature at the point ‘θ’ on the curve x = 3a 

cos θ  − a cos 3θ, y = 3a sin θ  − a sin 3θ is 3a sin θ.

x = 3a cos θ  − a cos 3θ; y = 3a sin θ −  a sin 3θ.

Differentiating w.r.t. θ,

 x a a y a a3 3 3 3 3sin 3 sin ; cos cos ;

Now, d

d

(cos cos )

(sin sin )

sin 2 sin

cos 2 s

y

x

y

x

a

a

3 3

3 3

2

2 iin
tan 2

 
d

d

d

d
 tan 

d

d

sec  
(sin sin )

sec  

2

2

2

2
2

2 2
1

3 3

2

y

x x

a

22

6 2

2

3

1 12

a

a

y

y

cos sin 

sec  

sin 

( ) ( tan  2 )

3

3/2 2 33 2

3

3

/

.

sec  2
sin 

sin 

3
a

a

Example 3.9 Find the radius of curvature of the curve r = a (1 + cos θ) at the point 

2
.

 r = a (1 + cos θ)

∴  r′= − a sin θ and r″ = − a cos θ

 
( )3/2r r

r r r

2 2

2 22
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a a

a a a

2 2 2 2
3 2

2 2 2

1

1 1 2

cos sin

cos cos cos

/

22

3 3 2

2

1 2

2 1

3 1

2 2

3
1

sin

cos

cos

cos

2

a

a

a

/

/ 44

3 2

a
 cos 

∴ 

2

4

3 4

2 2

3

a
a cos .

Example 3.10 Show that the radius of curvature of the curve rn = an sin nθ at

the pole is a

n r

n

n1 1
.

 rn = an sin n θ (1)

∴ n log r = n log a + log sin n θ .

Differentiating w.r.t. θ,

 
n

r
r n ncot

∴ r′ = r cot nθ (2)

 r″ = r′cot nθ  − nr cosec2 nθ.

 = r cot2 nθ  − nr cosec2 nθ. (3)

 

( )

 cot

 cot

2 3/2r r

r rr r

r r n

r r n

2

2 2

2 2 2
3 2

2 2 2

2
/

nnr n r n2 2 2 22cosec  cot
, using (2) and (3)

 

r n

r n n

r n

n

a

n r

n

n

2 2
3 2

2 2

1

1

1

1

cosec

cosec

cosec 

/

Example 3.11 Find the radius of curvature at the point (r, θ) on the curve 

r2 cos 2θ = a2.

 r2 = a2 sec 2θ (1)

∴ 2 log r = 2 log a + log sec 2 θ.
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Differentiating w.r.t. θ ,

 2
2

r
r tan 2 .

i.e. r′ = r tan 2θ (2)

∴ r″ = r′ tan 2θ + 2r sec2 2 θ

 = r tan2 2θ + 2r sec2 2θ, using (2).

 
( )3/2r r

r rr r

2 2

2 22

 
(  tan  2 )

 tan  2  sec  2  tan  22 2

r r

r r r r

2 2 2 3 2

2 2 2 2 22 2

/

, using (1) and (2),

 
r

r

3

2

sec  2

sec  2

3

2

∴ r
r

a
sec 2

3

2

Example 3.12 Show that at the points of intersection of the curves r = a θ and 

r
a , their curvatures are in the ratio 3:1.

 r = aθ (1)

and r
a

 (2)

Solving (1) and (2), a
a

i.e. θ = ± 1.

∴ The points of intersection of the two curves are given by θ = ± 1.

For curve (1), r′ = a    and   r″ = 0.

∴ 1

2 2 2

2 2 22

( )3/2a a

a a

∴ 
1 1

2

2

2

3

2 2

3

( )3/2a

a
a .

For curve (2), r
a

2
 and r

a2
3

∴ 
2

2

2

2

4

3 2

2

2

2

4

2

4

2
2

a a

a a a

/
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∴ 2  = ± 1

( )2
2 2

2 3 2

2

a

a
a

/

∴ 1 2 :  : 31

∴ Ratio of their curvatures = 3:1.

Example 3.13 If the centre of curvature

of the ellipse 
x

a

y

b

2

2

2

2
1  at one end of

the minor axis lies at the other end, 

prove that the eccentricity of the ellipse 

is 
1

2
.

The centre of curvature of the ellipse at 

B(0, b) lies at B  (0, − b). [Refer to Fig. 3.6]

We recall that if the centre of curvature of any curve at a point P is C, then PC 

equals the radius of curvature of the curve at P.

∴ Radius of curvature of the ellipse at 

 B = BB′ = 2b. (1)

x

a

y

b

2

2

2

2
1

Differentiating  w.r.t. x,

x

a

y

b
y

2 2
0'

∴ y
b x

a y

2

2
 (2)

Differentiating again w.r.t. x,

 y
b

a

y xy

y

2

2 2
 (3)

From (2) and (3), we get

 y
bo,

0  and y
b

abo, 2

Now, 1 2
3

2y

y

∴ 
0

2

21
,b b

a

a

b

From (1) 
a

b
b a b

2
2 22 2 i.e.  (4)

x

B (o, b)

B' (o, –b)

O

y

Fig. 3.6
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The eccentricity e of the ellipse is given by

b2 = a2 (1 − e2) or e
a b

a

2
2 2

2

Using (4), we get, e
b

b
e2

2

22

1

2

1

2

Example 3.14 Find the centre of curvature at 
2

 on the curve

x = 2 cos t + cos 2t, y = 2 sin t + sin 2t.

x = 2 cos t + cos 2t;   y = 2 sin t + sin 2t

Differentiating w.r.t. t,

 x t t y t t2 2 2 2 2 2sin sin ; cos cos

∴  y
t t

t t

t t

t t

2

2

2
3

2 2

2
3

2 2

cos 2 cos

sin 2 sin

cos cos

sin cos

ccot
3

2

t

 y
x

y
t

t t

x

t

t

d

d

d

d
cot

d

d

cosec
sin 2

3

2

3

2

3

2

1

2

2

sin

sin cos3

t

t t

3

8
2 2

 x y y

y

2 2 2

2

1 2
3

4
1

3

8

; ; cot ;

sin3

44 4

3

2
cos

Now x x
y

y
y1 2

∴ x

y y
y

y

2

2

1
1 1

3

2

1
4

3

1

3

1
1
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∴ y
2

2
1 1

3

2

2
4

3

2

3

∴ Required centre of curvature is 
1

3

2

3
, .

Example 3.15 Find the equation of the circle of curvature of the parabola 

y2 = 12x at the point (3, 6).

y2 = 12x

Differentiating w.r.t. x,

 2yy′= 12 :. y
y

6

Differentiating again w.r.t. x,

 y
y

y
6

2

 (y′) 
(3, 6)

 = 1 and y
3 6

1

6,

  
(1+ )y

y

2 3 2/

  ( )(3,6)

2 2

1

6

12 2

 x x
y

y
y1 2

∴ x

y y
y

y

3 6

2

3
1

1

6

1 1 15

1
1

6
1

1

6

,
.

1 1 6

The equation of the circle of curvature is

x x y y
2 2 2

∴ The equation of the circle of curvature at the point (3, 6) is

( 15)  + (  + 6)  = (12 )2 2 2x y 2

i.e. x2 − 30x + 225 + y2 + 12y + 36 = 288

i.e. x2 + y2 −30x + 12y − 27 = 0.
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Example 3.16 Find the equation of the circle of curvature of the curve

x y a
a a

at ,
4 4

.

x y a

Differentiating w.r.t. x, 
1

2

1

2
0

x y
y

∴ y
y

x

Differentiating again w.r.t. x,

 y

x
y

y y
x

x

1

2

1

2

∴ y
a a

4 4

1
,

 and

 

y
aa a

4 4

1

2

1

2

4

,

4

a

 
1 2

3 2

y

y

/

 ∴  a a

a

a

4 4

2 2

4 2,

 
x x

y

y
y1 2

∴ x
a

a

a
a a

4 4
4

1

4
1 1

3

4,

 y y
y

y
1

1 2 ;
,

y
a

a

a
a a

4 4 4

1

4
1 1

3

4

The equation of the circle of curvature is

x x y y
2 2 2

∴ The equation of the circle of curvature at 
a a

4 4
, is

 x
a

y
a a3

4

3

4 2

2 2 2
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EXERCISE 3(a)

Part A

(Short Answer Questions)

1. Define curvature and radius of curvature.

2. Prove that the radius of curvature of a circle is its radius.

3. Find the curvature of the curve given by s = c tan ψ at ψ  = 0.

Find the radius of curvature of each of the following curves at the points 

indicated:

4. y = ex at x = 0.

5. y e x3  at x = 0.

6. y = log sec x at any point on it.

7. y = log sin x at x
2

.

8. xy = c2 at (c, c).

9. y2 = 4ax at y = 2a.

10. x = t2, y = t at t = 1.

11. r = aθ at the pole.

12. rθ = a at any point on it.

13. r = a cos θ at any point on it.

14. r = eθ at any point on it.

Part B

Find the radius of curvature of the following curves at the points specified:

15. x3 + xy2 − 6y2 = 0 at (3, 3).

16. 4 2
2

2 3
ay a x a

a
at , .

17. x3 + y3 = (y − x) (y − 2x) at (0, 0).

18. xy2 = a2 (a − x) at (a, 0)

19. 4ay2 = 27 (x − 2a)3 at 
7

3 2
a

a
,

20. y = x2 (x − 3) at the points where the tangent is parallel to the x-axis.

21. y = c cosh x
c

 at the point where it is minimum.

22. x2 = 4ay at the point where the slope of the tangent is tan θ.

23. 
x

a

y

b

2

2

2

2
1  at (a cos θ, b sin θ)

Find the radius of curvature of the following curves at the points specified:

24. x = a (cos t + t sin t), y = a (sin t − t cos t) at ‘t’.

25. x = a (θ − sin θ), y = a (1 − cos θ) at ‘θ’.

26. x = et cos t, y = et sin t at (1, 0).
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27. x = a log 
4 2

, y = a sec θ at ‘θ ’.

28. x = a log cot cos
2

, y = a sin θ at ‘θ ’.

29. Find the radius of curvature at any point on the equiangular spiral r = 

a eθ cot α.

30. Find the radius of curvature of the curve r = a(1 − cos θ) at any point on it.

31. Find the radius of curvature of the curve rn = an cos nθ at any point (r, θ). 

Hence prove that the radius of curvature of the lemniscate r 2 = a2 cos 2θ is

a

r

2

3
.

32. Find the radius of curvature at any point (r, θ) on the curve r cos
2

a .

33. Find the radius of curvature at any point (r, θ) on the curve r (1 + cos θ) = a.

34. If ρ
1
 and ρ

2
 be the radii of curvature at the ends of any chord of the cardioid

r = a (1 + cos θ), that passes through the pole, prove that 1

2

2

2
216

9

a
.

[Hint: The ends of any chord that passes through the pole are given by θ =

θ
1
 and θ = π + θ

1
. Use the result 

4

3 2

a
cos .]

35. Find the centre of curvature of the curve y = x3 − 6x2 + 3x + 1 at the point 

(1, −1)

36. Find the centre of curvature of the hyperbola 
x

a

y

b

2

2

2

2
1  at the point

(a sec θ, b tan θ).

37. Show that the line joining any point ‘t’ on the cycloid x = a(t + sin t). y = 

a(1 − cos t) and its centre of curvature is bisected by the line y = 2a.

38. Find the equation of the circle of curvature of the parabola y2 = 4ax at the 

positive end of the latus rectum.

39. Find the equation of the circle of curvature of the rectangular hyperbola 

xy = 12 at the point (3, 4).

40. Find the equation of the circle of curvature of the curve x3 + y3 = 3axy at the

point 
3

2

3

2

a a
, .

3.3 EVOLUTES AND ENVELOPES

Let Q be the centre of curvature of a given curve C at the point P on it. When P moves 

on the curve C and takes different positions, Q will also take different positions and 

move on another curve C′. This curve C′ is called the evolute of the curve C. Thus 

evolute can be defined as the locus of the centre of curvature.

When C′ is the evolute of the curve C, C is called the involute of the curve C′.
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The procedure to find the equation of the evolute of a given curve is given 

below:

Let the equation of the given curve be y = f (x) (1)

If x y,  is the centre of curvature corresponding to the point (x, y) on (1), then

 x x
y

y
y1 2  (2)

 y y
y

y
1

1 2
 (3)

By eliminating x and y from (1), (2), (3), we get a relation between x  and y , which 

is the equation of the evolute.

Note  If the parametric co-ordinates of any point on the given curve are assumed, 

then we have to eliminate the parameter from Equations (2) and (3), which will 

simplify the procedure.

Evolute of a given curve can also be defined in a different manner, using the 

concept of envelope of a family of curves, which is discussed below:

Consider the equation f (x, y, c) = 0, where c is a constant. If c takes a particular 

value, the equation represents a single curve. If c is an arbitrary constant or parameter 

which takes different values, then the equation f (x, y, c) = 0 represents a family of 

similar curves.

If we assign two consecutive values for c, we get two close curves of the family. 

The locus of the limiting positions of the points of intersection of consecutive 

members of a family of curves is called the envelope of the family.

It can be proved that the envelope of a family of curves touches every member of 

the family of curves.

3.3.1 Method of Finding the Equation of the Envelope 

of a Famly of Curves

Let f (x, y, c) = 0 be the equation of the given family of curves, where c is the 

parameter. Two consecutive members of the family (corresponding to two close 

values of c) are given by

 f (x, y, c) = 0 (1)

and f (x, y, c + Δc) = 0 (2)

The co-ordinates of the points of intersection of (1) and (2) will satisfy (1) and (2)

and hence satisfy 
f x y c c f x y c

c

, , , ,
0 

Hence the co-ordinates of the limiting positions of the points of intersection of (1) 

and (2) will satisfy the equation

 lim
, , , ,

c

f x y c c f x y c

c0
0

i.e. 
f

c
x y c, , 0  (3)
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These limiting points will continue to lie on (1) and satisfy

f(x, y, c) = 0

If we eliminate c between (1) and (3), we get the equation of a curve, which is the 

locus of the limiting positions of the points of intersection of consecutive members 

of the given family, i.e. we get the equation of the envelope.

Thus the equation of the envelope of the family of curves f(x, y, c) = 0 (c is the 

parameter) is obtained by eliminating c between the equations

f(x, y, c) = 0 and f

c
x y c, , 0.

Equation of the envelope of the family Aα2 + Bα+ C = 0, where α is the parameter 

and A, B, C are functions of x and y:

Very often the equation of the family of curves will be a quadratic equation in the 

parameter. In such cases, the equation of the envelope may be remembered as a 

formula.

Let the equation of the family of curves be

 Aα2 + Bα + C = 0 (1)

Differentiating partially w.r.t. α,

 2Aα + Β = 0 (2)

From (2), 
B

A2
Substituting this values of α in (1), we get the eliminant of α as

 A
B

A
B

B

A
C

2 2
0

2

i.e. B

A

B

A
C

2 2

4 2
0

i.e. B2 − 4AC = 0, which is the equation of the envelope of the family (1).

3.3.2 Evolute as the Envelope of Normals

The normals to a curve form a family of straight lines. The envelope of this family of 

normals is the locus of the limiting position of the point of intersection of consecutive 

normals. But the point of intersection of consecutive normals of a curve is the 

centre of curvature of the curve. Hence the locus of centre of curvature is the same 

as the envelope of normals.

Thus the evolute of a curve is the envelope of the normals of that curve.

WORKED EXAMPLE 3(b)

Example 3.1 Find the evolute of the parabola x2 = 4ay.

The parametric co-ordinates of any point on the parabola x2 = 4ay are

x = 2 at and y = a t2

 x a y2 2;  at ∴ 
d

d

y

x

y

x
t
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d

d

d

d

d

d

2

2

1

2

y

x t
t

t

x a

Let x y,  be the centre of curvature at the point ‘t’

 

x x
y

y
y

at
t

a

t

at

1

2
1

2

1

2

2

2

3
 (1)

 y y
y

y
1

1 2

 at

a

t at a2 2 21

1

2

1 3 2  (2)

To get the relation between x  and y , we have to eliminate t from (1) and (2).

From (1), we get t
x

a

3

2
 (3)

From (2), we get t
y a

a

2 2

3
 (4)

From (3) and (4), we get

x

a

y a

a2

2

3

2 3

i.e. 27 4 22 3
a x y a .

∴ Locus of x y, , i.e. the equation of the evolute is 27a x2 = 4(y − 2a)3.

Example 3.2  Find the evolute of the hyperbola x

a

y

b

2

2

2

2
1.

The parametric co-ordinates of any point on the hyperbola are

 x = a sec θ and y = b tan θ 

∴ x a y b

y
y

x

b

a

b

a

sec tan sec

sec

tan sin

; 2

∴ y
b

a x

b

a a

b

a

sin
cos

cos

sin

cos

sin

cos

sin

2 2

2

3

2

d

d

33
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x x
y

y
y

a
b

a

a

b

b

a

1

1

2

2 3

3

2

2 2
sec

sin

sin

cos sin

a

a
a b

a a b

a

cos cos
sin

cos sin

cos

1
3

2 2 2

2 2 2 2 2

33

2 2

3

a b

a cos

 (1)

 

y y
y

y

b
a

b

b

a

1
1

1

2

2 3

3

2

2 2
tan

sin

cos sin

b

b
a b

b
b a

sin

cos

sin

cos
sin

sin

cos
cos sin

3

2 2 2

3

2 2 2 22 2

2 2

3

b

a b

b
tan  (2)

From (1),  sec3

2 2

ax

a b
 and

From (2),  tan3

2 2

by

a b

To eliminate θ, we use the identity sec2 θ − tan2 θ = 1

∴  
ax

a b

by

a b2 2

2 3

2 2

2 3

1

/ /

∴ The locus of x y,  i.e. the evolute of the hyperbola is

 (ax)2/3 − (by)2/3 = (a2 +b2)2/3 [ (−by)2/3 = (by)2/3]

Example 3.3 Find the evolute of the curve x2/3 + y2/3 = a2/3.

The parametric co-ordinates of any point on the curve are x = a cos3 θ and y = a 

sin3 θ
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∴ x a y a3 32 2cos sin sin cos;

∴ y
y

x
tan

 

y
x a

a

sec sec
cos sin

cos si

2 2

2

4

1

3

1

3

d

d

nn

cos
tan tan

cos sin

x x
y

y
y

a

a

1

1

1

3

2

3

2

4

a a

a a

cos
sin

cos cos
cos sin

cos cos si

3

2

4

3

1
3

3 nn2

 (1)

 

y y
y

y

a a

a a

1
1

3

3

2

3 2 4

3 2

sin sec cos sin

sin sin cos  (2)

Now x y a cos sin cos sin cos sin3 3 2 23 3

 a cos sin
3
 (3)

and  x y a cos cos sin cos sin sin3 2 2 33 3

 a cos sin
3
 (4)

Now 
x y

a

x y

a

2 3 2 3
2

/ /

cos sin cos sin
2

2

 

i.e. x y x y a
2 3 2 3 2 32

/ / /

∴ The equation of the evolute is

x y x y a
2 3 2 3 2 32

/ / / .

Example 3.4 Show that the evolute of the cycloid x = a(θ − sin θ), y = a(1−

cos θ) is another cycloid.

Any point on the cycloid is given by

x = a (θ − sin θ) and y = a(1 − cos θ)

∴ x a 1 cos ; y a sin
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y
a

a

 sin 

 cos 

 sin cos 

 sin

cot 
1

2
2 2

2
2

22

 y
x

a

a

1

2 2

1

2
2

1

2
2

1

4

2

2 2

4

 cosec 
d

d
 sin   sin 

  sin
2

 

x x
y

y
y

a a

a

1

2 2
4

2

2

2 4sin cot  cosec  sin

ssin  sin cos 

sin sin

sin

4
2 2

2

a

a a

a  (1)

 

y y
y

y

a a

a a

1
1

1
2

4
2

1 2 1

2

2 4cos cosec sin

cos cos 

cos a 1  (2)

Elimination of θ from (1) and (2) is not easy.

∴ The locus of x y, is given by the parametric equations x = a (θ + sin θ) and 

y = −a (1 − cos θ ), which represent another cycloid.

Example 3.5 Find the equation of the evolute of the curve x = a (cos t + t sin t), y = 

a (sin t − t cos t)

 x = a(cos t + t sin t); y = a (sin t − t cos t)

∴ x a t t t t y a t t t tsin sin cos ; cos cos sin

∴ y
at t

at t
t

sin

cos
tan

 y t
t

x
t

at t at t
sec

d

d
sec

cos cos

2 2

3

1 1

 

x x
y

y
y

a t t t t t at t

a t t

1 2

2 3cos sin tan sec cos

cos siin sin

cos

t a t t

a t  (1)
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y y
y

y

a t t t t at t

a t

1
1 2

2 3

( )

sin cos sec cos

sin
 (2)

Eliminating t between (1) and (2), we get

x y a2 2 2

:. The evolute of the given curve is x2 + y2 = a2.

Example 3.6 Prove that the evolute of the curve x a cos + log tan 
2

,

y= a sin θ is the catenary y a
x

a
cosh .

 

x a y a

x a

cos log tan ; = sin 

sin

tan

sec2

2

1

2

.

22

1

2

1

2
2 2

a sin

sin cos

a
a

sin
sin

cos

sin

21

and y a cos

∴ y a
a

' cos
sin

cos
tan

2

 
y

x a a
" sec

d

d
sec

sin

cos

sin

cos

22

2 4

 

x x
y

y
y

a
a

'

"
'1

2

2

2
4

cos log tan tan sec
cos

ssin

cos log tan cos

log tan

a a

a

2

2  (1)
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y y
y

y

a
a

a
a

a

1
1 2

2
4

2

"
'

sin sec
cos

sin 

sin
cos

sin

siin
 (2)

Now y

a 1
2

2
2

tan

tan

2

 (3)

and  tan
2

ex a/  (4) [from (1)]

From (3) and (4), we get,

 

y
a e

e

a
e e a

x

a

x a

x a

x a x a

=

cosh

2

1

2

2 /

/

/ /

∴ The evolute is y a
x

a
cosh

Example 3.7 Find the envelope of the family of straight lines given by

(i) y mx a m b2 2 2 , where m is the parameter, (ii) x cos α+ y sin α= a sec α,

where α is the parameter, (iii) the family of parabolas given by y = x tan α

gx

u

2

22 cos
,

2
where α is the parameter.

(i) Rewriting the given equation, we have

a2 m2 − b2 = ( y − mx)2

 = y2 − 2xym + m2x2

i.e. (x2 − a2) m2 − 2xym + (y2 + b2) = 0

This is a quadratic equation in ‘m’. ∴ The envelope is given by

the equation ‘B2 − 4AC = 0’

i.e. 4x2y2 − 4(x2 − a2) (y2 + b2) = 0

i.e. x2y2 − (x2y2 + b2x2  − a2y2 − a2b2) = 0

i.e. b2x2 − a2y2 = a2b2

i.e. 
x

a

y

b

2

2

2

2
1, which is the standard hyperbola.
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Note  The envelope touches every member of the given family of straight 

lines and vice versa. This is, in fact, obvious as the given family represents

the family of tangents to the hyperbola x

a

y

b

2

2

2

2
1.

(ii) x cos α + y sin α = a sec α

Dividing throughout by cos α, we have

x + y tan α = a sec2 α

i.e. x + yt = a (1 + t2), where t = tan α can be treated as the new parameter.

i.e. at2 − yt + (a − x) = 0

This is a quadratic equation in ‘t’.

:. The envelope is given by

 y2 − 4a (a − x) = 0 i.e.  y2 = − 4a (x − a)

(iii) y x
gx

u
tan

cos2

2

22
Putting t = tan α, we get

gx

u
t xt y

2

2

2

2
1 0

i.e. gx2t2  − 2u2 xt + (gx2 + 2u2y) = 0

If we treat ‘t’ as the parameter, we see that this equation is a quadratic equation 

in the parameter

∴ The envelope is given by

 4u4 x2 − 4gx2 (gx2 + 2u2 y) = 0

i.e. g2x2 + 2u2gy − u4 = 0

i.e. x
u

g
y

u

g

2
2 22

2
.

Example 3.8 Find the envelope of the family of straight lines (i) y cos θ − x sin 

θ = a cos 2θ, θ being the parameter, (ii) x cos α + y sin α = c sin α cos α, α being 

the parameter, (iii) x sec2 θ + y cosec2 θ = c, θ being the parameter.

(i) y cos θ − x sin θ = a cos 2 θ (1)

Differentiating (1) partially w.r.t. θ,

 − y sin θ − x cos θ = −2a sin 2θ (2)

(1) × cos θ  − (2) × sin θ gives

 y = a(cos 2θ cos θ + 2 sin 2θ sin θ)

 = a(cos θ + sin 2θ sin θ) (3)

(1) × sin θ + (2) × cos θ gives

 x = − a(cos 2θ sin θ −2 sin 2θ cos θ)

 = − a(− sin θ − sin 2θ cos θ)

 = a(sin θ + sin 2θ cos θ) (4)
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Adding (3) and (4), we get

x + y = a{(sin θ + cos θ) + sin 2θ . (sin θ + cos θ)}

 = a(sin θ + cos θ) (1 + sin 2θ)

 = a(sin θ + cos θ) (sin2 θ + cos2 θ  + 2 sin θ cos θ)

 = a(sin θ + cos θ) (sin θ + cos θ)2

 = a(sin θ + cos θ)3 (5)

Subtracting (3) from (4), we get

 x − y = a{(sin θ − cos θ) − sin 2θ (sin θ − cos θ)}

 = a(sin θ − cos θ)3 (6)

From (5) and (6), we get

 
x y

a

x y

a

2 3 2 3/ /

 = (sin θ + cos θ)2 + (sin θ − cos θ)2 

 = 2

∴ The envelope is

(x + y)2/3 + (x − y)2/3 =2a2/3

Note  This is the evolute of the astroid x2/3 + y2/3 = a2/3

[Refer to Example (3.3) above].

In this problem, we have found out the envelope of the normals of the 

astroid.

(ii) x cos α + y sin α = c sin α cos α.

Dividing by sin α cos α, we get

 
x y

c
sin cos

 (1)

Differentiating (1) w.r.t. α,

 
x y

sin
cos

cos
sin

2 2
0 (2)

From (2), x ycos

sin

sin

cos2 2

i.e. 
x y

k
sin cos33

 say.

∴ sin and cos33 x

k

y

k
 (3)

sin2 α + cos2 α = 1

∴ x

k

y

k

2 3 2 3

1

/ /

i.e. k2/3 = x2/3 + y2/3 (4)
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∴ From (3), we have

 sin and cos
x

k

y

k

1 3

1 3

1 3

1 3

/

/

/

/
 (5)

Using (5) in (1), the equation of the envelope is k 1/3 ( x 2/3 + y 2/3 ) = c

i.e. x y x y c2 3 2 3
1 2

2 3 2 3/ /
/

/ / , from (4)

i.e. x y c2 3 2 3
3 2

/ /
/

i.e. x y c2 3 2 3 2 3/ / /

(iii) x sec2 θ + y cosec2 θ = c (1)

Differentiating (1) partially w.r.t. θ ,

 2x sec2 θ tan θ − 2y cosec2 θ cot θ = 0

i.e. x ysin 

cos

cos 

sin3 3
0  (2)

From (2), 
x y

k
cos sin4 4

. say.

∴ cos and sin4 4x

k

y

k
 (3)

Using the identity cos2 θ + sin2 θ = 1, we have

 
x

k

y

k
1

i.e. k x y( )2  (4)

Using (3) and (4) in (1), we get

 x
x y

x
y

x y

y
c

i.e. x y c
2

i.e. x y c , which is the equation of the required envelope.

Example 3.9 Find the envelope of the straight line 
x

a

y

b
1, where a and b are

parameters that are connected by the relation a + b = c.

 
x

a

y

b
1 (1)

 a + b = c (2)

From (2), b = c − a.

Using in (1), x

a

y

c a
1 , where a is the only parameter. (3)
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Differentiating (3) w.r.t. a, we get

 
x

a

y

c a
2 2

0  (4)

From (3) 
x

a

y

c a
2 2

∴ 
x

a

y

c a

x y

c

∴ 1 1

a

x y

c x c a

x y

c y
and  (5)

Using (5) in (3), the equation of the envelope is 
x

c
x y

y

c
x y 1

i.e. x y c
2

or x y c .

3.4 ALITER

Without eliminating one of the parameters, we may treat both a and b as functions

of a third parameter t and proceed as follows:

Differentiating (1) w.r.t. t,

 x

a

a

t

y

b

b

t2 2
0

d

d

d

d

i.e. x

a

a

t

y

b

b

t2 2

d

d

d

d
 (3)

Differentiating a + b = c w.r.t. t 

 
d

d

d

d

a

t

b

t
 (4)

Dividing (3) by (4), we have 

 
x

a

y

b2 2

∴ x

a

y

b

x y

c
 (5)

a b c

Using (5) in (1), we get

x

c
x y

y

c
x y 1
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i.e. x y c
2

or x y c .

Example 3.10 Find the envelope of the system of lines 
x

l

y

m
1, , where l and

m are connected by the relation 
l

a

m

b
1  (l and m are the parameters).

 
x

l

y

m
1  (1)

and 
l

a

m

b
1  (2)

Differentiating (1) and (2) w.r.t. t,

 
x

l

l

t

y

m

m

t2 2
0

d

d

d

d
 (3)

and 
1 1

0
a

l

t b

m

t

d

d

d

d
 (4)

From (3) and (4), we have

 
x

l a

y

m b2 2

i.e. 

x

l

l

a

y

m

m

b

x

l

y

m
l

a

mm

b

1

1

or 
ax

l

by

m2 2
1

∴ l ax m byand  (5)

Using (5) in (1), we get the envelope as 
x

a

y

b
1 .

Example 3.11 Find the envelope of the ellipse 
x

a

y

b

2

2

2

2
1, where a and b

are connected by the relation a2 + b2 = c2, c being a constant.

 
x

a

y

b

2

2

2

2
1 (1)

and a2 + b2 = c2 (2)
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Eliminating b from (1) and (2), we get

x

a

y

c a

2

2

2

2 2
1

i.e. (c2 − a2)x2 + a2y2 = a2(c2 − a2)

i.e. a4 − a2(c2 + x2 − y2) + c2x2 = 0 (3)

(3) is a quadratic equation in a2, which may be regarded as the parameter.

∴ The envelope is given by B2 − 4AC = 0

i.e. (c2 + x2 − y2)2 − 4c2x2 = 0

i.e. [(c2 + x2 − y2) + 2cx] [c2 + x2 − y2 − 2cx] = 0

i.e. (x + c)2 − y2 = 0; (x − c)2 − y2 = 0

∴ x + c = ± y and x − c = ± y

i.e. x = −c ± y and x = c ± y

i.e. x ± y = ± c.

Example 3.12 Find the envelope of a system of concentric ellipses with their axes 

along the co-ordinate axes and of constant area.

The equation of the system of ellipses is

 
x

a

y

b

2

2

2

2
1 (1)

The condition satisfied by a and b is π ab = c (2)

Differentiating (1) and (2) w.r.t. ‘t’,

 
2 2

0
2

3

2

3

x

a

a

t

y

b

b

t

d

d

d

d
 (3)

 b
a

t
a

b

t

d

d

d

d
0  (4)

From (3) and (4), we have

 
x

a b

y

ab

x

a

y

b

2

3

2

3

2

2

2

2
or

or 
x

a

y

b
k , say (5)

From (5), a
x

k
 and b

y

k

Using in (2), 
xy

k
c

2
 or k

xy

c
 (6)

Using (5) and (6) in (1), the equation of the envelope is 
xy

c

xy

c
1

i.e. 2 π xy = c.

Example 3.13 Find the evolute of the parabola y2 = 4ax, considering it as the 

envelope of its normals.
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The normal at any point (at2, 2at) on the parabola y2 = 4ax is

 y + xt = 2at + at3 (1)

(1) represents the family of normals, where t is the parameter.

Differentiating (1) w.r.t. ‘t’,

 x = 2a + 3at2 (2)

From (2), t
x a

a

2

3

1

2  (3)

Substituting (3) in (1), we get

y x a
x a

a
a

x a

a

x a

2
2

3

2

3

2

3

1

2

3

2

3

2

aa

x a

a

x a

a

1

2

3

2

1

2

3

2

1

2

1

3

2

3

2

3

2

3

i.e. y
a

x a2 34

27
2

∴ The evolute of the parabola is

 27ay2 = 4 (x − 2a)3

Example 3.14 Find the envelope of the ellipse 
x

a

y

b

2

2

2

2
1 , treating it as the

envelope of its normals.

The normal at any point (a cos θ, b sin θ) on the ellipse 
x

a

y

b

2

2

2

2
1  is

 
ax by

a b
cos sin

2 2  (1)

where θ is the parameter.

Differentiating (1) w.r.t. ‘θ’,

 
ax by

cos
sin

cos

sin2 2
0  (2)

From (2), 
ax by

k
cos sin3 3

, say

∴ cos and
ax

k

by

k

1

3

1

3sin  (3)
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Using the identity cos2 θ + sin2 θ = 1, we have

 
ax

k

by

k

2

3

2

3

1

∴ k ax by
2

3
2

3

2

3

i.e. k ax by
1

3
2

3

2

3

1

2

 (4)

Using (3) and (4) in (1), we have

 
ax by k a b

2

3

2

3

1

3 2 2

i.e. ax by a b
2

3

2

3

3

2
2 2

i.e. ax by a b
2

3

2

3
2 2

2

3

Example 3.15 Find the evolute of the tractrix x a cos log tan
2

,

y = a sin θ, treating it as the envelope of its normals.

 x a y acos log tan , sin
2

.

Differentiating w.r.t. θ,

 
x a

a

sin

tan cos

sin

1

2 2

1

2

1

2

ssin

cos

sin

a 2

and y a cos

∴ 
d

d

y

x

y

x
tan .

∴ Slope of the normal at ‘θ’ = − cot θ

Now the equation of the normal at ‘θ’ is

 y a x asin cot cos log tan
2

 (1)

(1) represents the family of normals of the tractrix, where θ is the parameter.
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The evolute of the tractrix is the envelope of (1).

Differentiating (1) w.r.t. ‘θ’,

 a x a acos cosec cot
cos

sin
cosec cos log tan2 2

2

2

x a a
a

x

sin

cos

sin

cos

sin
cosec log tan

s

2

3

2 2

2

2

iin
cos

sin
log tan

2 2 2
a

a

∴ x a log tan
2

 (2)

Rewriting (1), we have

 y a x a asin cot
cos

sin
cot log tan

2

2
 (3)

Using (2) in (3), we get

 y a
a

a asin
cos

sin
cot log tan cot log tan

2

2 2

i.e. y
a

sin

 

a

a

1
2

2
2

2 2

1

2

2tan

tan

tan

tan

a
e e

x

a

x

a

2
, again using (2)

i.e. y a
x

a
cosh , which is the equation of the evolute of the tractrix.

EXERCISE 3(b)

Part A

(Short Answer Questions)

1. Define evolute and involute.

2. Explain briefly the procedure to find the evolute of a given curve y = f (x).
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3. Define envelope of a family of curves.

4. Give the working rule to find the equation of the envelope of the family 

f(x, y, α) = 0, α being the parameter.

5. Obtain the equation of the envelope of the family f
1
(x, y)α2 + f

2
(x, y)α + 

f
3
(x, y) = 0, where α is the parameter.

6. Define evolute of a curve as an envelope.

7. If the centre of curvature of a curve at a variable point ‘t’ on it is (2a + 3at2, 

− 2at3), find the evolute of the curve.

8. If the centre of curvature of a curve at a variable point ‘t’ on it is

c

a
t

c

b
tcos , sin3 3  , find the evolute of the curve.

9. If the centre of curvature of curve at a variable point ‘θ’ on it is

a
a

log cot
sin2

, , find the evolute of the curve.

10. Find the envelope of the family of lines y mx a m1 2 , m being the 

parameter.

11. Find the envelope of the family of lines y mx
a

m
, m being the parameter.

12. Find the envelope of the family of lines y = mx + am2, m being the parameter.

13. Find the envelope of the family of lines y mx a m b2 2 2, m being the 

parameter.

14. Find the envelope of the family of lines 
x

t
yt c2 , t being the parameter.

15. Find the envelope of the lines x cos α + y sin α = p, α being the parameter.

16. Find the envelope of the lines 
x

a

y

b
cos sin 1, θ being the parameter.

17. Find the envelope of the lines 
x

a

y

b
sec tan 1, θ being the parameter.

18. Find the envelope of the lines x sec θ − y tan θ = a, θ being the parameter.

19. Find the envelope of the lines x cosec θ − y cot θ = a, θ being the parameter.

20. Show that the family of circles (x − a)2 + y2 = a2 (a is the parameter) has no 

envelope.

Part B

21. Find the evolute of the parabola y2 = 4ax.

22. Find the evolute of the ellipse 
x

a

y

b

2

2

2

2
1 .

23. Find the evolute of the rectangular hyperbola xy = c2.

24. Show that the evolute of the cycloid x = a(θ + sin θ), y = a(1 − cos θ) is an-

other cycloid, given by x = a(θ − sin θ), y − 2a = a(1 + cos θ).

25. Find the envelope of the family of lines 
x

a

y

b
1 , where the parameters a

and b are connected by the relation a2 + b2 = c2.
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26. Find the envelope of the family of lines x

a

y

b
1 , where the parameters a

and b are connected by the relation ab = c2.

27. Find the envelope of the family of ellipses 
x

a

y

b

2

2

2

2
1 , where the parameters 

a and b are connected by the relation a + b = c.

28. From a point on the ellipse 
x

a

y

b

2

2

2

2
1 , perpendiculars are drawn to the axis

and the feet of these perpendiculars are joined. Find the envelope of the line 

thus formed.

29. Find the evolute of the parabola x2 = 4ay, treating it as the envelope of its 

normals.

30. Find the evolute of the hyperbola
x

a

y

b

2

2

2

2
1, treating it as the envelope of

its normals.

ANSWERS

Exercise 3(a) 

(5) 
1

c
. (4) 2 2. (5) 

8

3
.

(6) sec x. (7) 1. (8) c 2 . 

(9) 4 2a . (10) 
5 5

2
.  (11) 

a

2
.

(12) 
a 1 2

3

2

4
. (13) 

a

2
. (14) 2 r.

(15) 5 5. (16) 
125

24

a
. (17) 

5 5

18
.

(18) 
a

2
. (19) 

97 97

216

a
. (20) 

1

6
.

(21) c. (22) 2 3a sec .

(23) a b ab2 2 2 2
3

2sin cos / .   (24) at.

(25) 4
2

a sin . (26) 2.  (27) a sec .2
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(28) a cot . (29) r cosec .  (30) 
2

3
2ar .

(31) 
a

n r

n

n1 1
. (32) 

2
3

2r

a
. (33) 

2
3

2r

a
.

(35) 36
43

6
, . (36) 

a b

a

a b

b

2 2

3

2 2

3sec , tan .

(37) x y ax ay a2 2 210 4 3 0

(39) x y
43

6

57

8

125

24

2 2 2

.

(40) x
a

y
a a21

16

21

16

9

128

2 2 2

.

Exercise 3(b)

(5) f f f2

2

1 34 0 . (7) 27 4 22 3
ay x a .

(8) ax by c
2

3

2

3

2

3 . (9) y a
x

a
cosh .

(10) x2 + y2 = a2. (11) y2 = 4ax. (12) x2 + 4ay = 0.

(13) 
x

a

y

b

2

2

2

2
1 . (14) xy = c2. (15) x2 + y2 = p2.

(16) 
x

a

y

b

2

2

2

2
1 . (17) 

x

a

y

b

2

2

2

2
1 . (18) x2 − y2 = a2.

(19) x2 − y2 = a2. (21) 4 (x − 2a)3 = 27ay2.

(22) ax by a b
2

3

2

3
2 2

2

3 .

(23) x y x y c
2

3

2

3

2

34 . (25) x y c
2

3

2

3

2

3 .

(26) 4xy = c2. (27) x y c
2

3

2

3

2

3

(28) 
x

a

y

b

2

3

2

3

1 . (29) 27ax2 = 4(y − 2a)3.

(30) ax by a b
2

3

2

3
2 2

2

3 .



Differential Calculus 

of Several Variables

4Chapter

4.1 INTRODUCTION

The students have studied in the lower classes the concept of partial differentiation 

of a function of more than one variable. They were also exposed to Homogeneous 

functions of several variables and Euler’s theorem associated with such functions. 

In this chapter, we discuss some of the applications of the concept of partial 

differentiation, which are frequently required in engineering problems.

4.2 TOTAL DIFFERENTIATION

In partial differentiation of a function of two or more variables, it is assumed that 

only one of the independent variables varies at a time. In total differentiation, all 

the independent variables concerned are assumed to vary and so to take increments 

simultaneously.

Let z = f (x, y), where x and y are continuous functions of another variable t.

Let Δt be a small increment in t. Let the corresponding increments in x, y, z be Δx, 

Δy and Δz respectively.

Then z f x x y y f x y

f x x y y f x y y f x y y

( , ) ( , )

{ ( , ) ( , )} { ( , ) f x y( , )}

∴

 

z

t

f x x y y f x y y

x

x

t

f x y y f x y

( , ) ( , )

( , ) ( , )

yy

y

t
 

(1)

We note that Δx and Δy → 0 as Δt → 0 and hence Δz → 0 as Δt → 0

Taking limits on both sides of (1) as Δt → 0, we have
 d

d

d

d

d

d

z

t

f

x

x

t

f

y

y

t

( ∴  x, y and z are functions of t only and  f  is a function of x and y).
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i.e.,  
d

d

d

d

d

d
since

z

t

z

x

x

t

z

y

y

t
f x y z x y[ ( , ) ( , )].  (2)

d

d
and also

d

d
and

d

d

z

t

x

t

y

t
 is called the total differential coefficient of z.

This name is given to distinguish it from the partial differential coefficients  

z

x
 and z

y
. Thus to differentiate z, which is directly a function of x and y, (where 

x and y are functions of t) with respect to t, we need not express z as a function of t 

by substituting for x and y. We can differentiate z with respect to t via x and y using 

the result (2).

Corollary 1: In the differential form, result (2) can be written as

 

dz
z

x
x

z

y
yd d  (3)

dz is called the total differential of z.

Corollary 2: If z is directly a function of two variables u and , which are in turn 

functions of two other variables x and y, clearly z is a function of x and y ultimately. 

Hence the total differentiation of z is meaningless. We can find only z

x

 and z

y
by 

using the following results which can be derived as result (2) given above.

 

z

x

z

u

u

x

z

x  

(4)

 

z

y

z

u

u

y

z

y  

(5)

We note that the partial differentiation of z is performed via the intermediate 

variables u and , which are functions of x and y. Hence z

x
 and z

y
 are called 

partial derivatives of a function of two functions.

Note  Results (2), (3), (4) and (5) can be extended to a function z of several 

intermediate variables.

4.2.1 Small Errors and Approximations

Since lim ,
x

y

x

y

x

y

x

y

x
y

y

x0

d

d

d

d
approximately or

d

d
x  (1)

If we assume that dx and dy are approximately equal to Δx and Δy respectively, result 

(1) can be derived from the differential relation.
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d
d

d
dy

y

x
x

 

(2)

Though (2) is an exact relation, it can be made use of to get the approximate 

relation (1), by replacing dx and dy by Δx and Δy respectively.

Let y = f (x). If we assume that the value of x is obtained by measurement, it is 

likely that there is a small error Δx in the measured value of x. This error in the 

value of x will contribute a small error Δy in the calculated value of y, as x and y are 

functionally related. The small increments Δx and Δy can be assumed to represent 

the small errors Δx and Δy. Thus the relation between the errors Δx and Δy can be 

taken as

y f x x( )

This concept can be extended to a function of several variables.

If u = u(x, y, z) or f (x, y, z) and if the value of u is calculated on the measured 

values of x, y, z, the likely errors Δx, Δy, Δz will result in an error Δu in the calculated 

value of u, given by

u
u

x
x

u

y
y

u

z
z,

which can be assumed as the approximate version of the total differential relation

d d d du
u

x
x

u

y
y

u

z
z

Note  The error Δx in x is called the absolute error in x, while x

x
 is called the 

relative or proportional error in x and 100 x

x
 is called the percentage error in x.

4.2.2 Differentiation of Implicit Functions

When x and y are connected by means of a relation of the form f (x, y) = 0, x and y 

are said to be implicitly related or y is said to be an implicit function of x. When x 

and y are implicitly related, it may not be possible in many cases to express y as a 

single valued function of x explicitly. However 
d

d

y

x
 can be found out in such cases as 

a mixed function of x and y using partial derivatives as explained below:

Since f x y f( , ) ,0 0d

i.e., 
f

x
x

f

y
yd d 0, by definition of total differential. Dividing by dx, we have

f

x

f

y

y

x

d

d
0
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∴
 d

d

y

x

f

x

f

y
 

(1)

If we denote f

x

f

y

f

x

f

x y
, , ,

2

2

2

 and 
2

2

f

y
 by the letters p, q, r, s, t respectively,

then

 d

d

y

x

p

q
 (2)

We can express the second order derivative 
d

d

2

2

y

x
 in terms of p, q, r, s, t as given 

below. Noting that p and q are functions of x and y and differentiating both sides of 

(2) with respect to x totally, we have

d

d

d

d

d

d

d

d

2

2

2

y

x

q
p

x
p

q

x

q

p
q

x

q

y

y

x
q

p

xx

p

y

y

x

q

p s t
p

q
q r s

p

q

d

d
2

q2
,

since

 

p

x

f

x
r

p

y

q

x

f

x y
s

q

y

f

y
t

p qs pt

2

2

2 2

2
; ; .

( ) qq qr ps

q

p t pqs q r

q

( )

( )

3

2 2

3

2

WORKED EXAMPLE 4(a)

Example 4.1

 (i) If u = xy + yz + zx, where x = et, y = e−t and z
t

1
,  find d

d

u

t

(ii) If u = sin−1 (x − y), where x = 3t and y = 4t3, show that 
d

d

u

t t

3

1 2
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(i) u = xy + yz + zx

∴ d

d

d

d

d

d

d

d

u

t

u

x

x

t

u

y

y

t

u

z

z

t

y z e z x e xt t( ) ( ) ( ) ( yy
t

e
t

e
t

e e e e
t

t t t t t t

)

.

1

1 1 1

1

2

2

1 1
1

1 1

2 2

2 2

2

t
e

t
e

t
e

t
e

t
t

t
t

t t t t

sinh cosh .

(ii) u = sin−1 (x − y)

∴

 

d

d

d

d

d

d

u

t x y

x

t x y

y

t

x y
t

1

1

1

1

1

1
3 12

2 2

2

2

( ) ( )

( )
( )

 

(1)

Now 1 1 3 4

1 9 24 16

1 1 8 16

1

2 3 2

2 4 6

2 2 4

( ) ( )

( ) ( )

(

x y t t

t t t

t t t

t t2 2 21 4) ( )

 

(2)

Using (2) in (1), we get

 

d

d
3(1 4 )2u

t t t
t

t

1

1 4 1

3

1

2 2

2

( )

Example 4.2 If u f
x

y

y

z

z

x
, , , prove that x

u

x
y

u

y
z

u

z
0.

Let r
x

y
s

y

z
t

z

x
, and  (1)
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∴ u = f (r, s, t), where r, s, t are functions of x, y, z as assumed in (1)

∴

 

u

x

u

r

r

x

u

s

s

x

u

t

t

x

y

u

r

u

s

z

x

u

t

1
0

2

 

(2)

 

u

y

u

r

r

y

u

s

s

y

u

t

t

y

x

y

u

r z

u

s2

1

 

(3)

 

u

z

u

r

r

z

u

s

s

z

u

t

t

z

y

z

u

s x

u

t2

1

 

(4)

From (2), (3) and (4), we have

 

x
u

x
y

u

y
z

u

z

x

y

u

r

z

x

u

t

x

y

u

r

y

z

u

s

y

z

u

s

z

x

u

t

0.

Example 4.3 If z be a function of x and y, where x = eu + e−  and y = e−u − e , prove 

that

 

z

u

z
x

z

x
y

z

y

z

u

z

x

x

u

z

y

y

u

e
z

x
e

zu u

y

 

(1)

   

z z

x

x z

y

y

e
z

x
e

z

y

 

(2)

From (1) and (2), we have

   

z

u

z
e e

z

x
e e

z

y

x
z

x
y

z

y

u u( ) ( )
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Example 4.4 If u = f (x, y), where x = r cos  and y = r sin , prove that

 

u

x

u

y

u

r r

u

2 2

2

2

2
1

.

 

u

r

u

x

x

r

u

y

y

r

u

x

u

y
cos sin  (1)

 

u u

x

x u

y

y

r
u

x
r

u

y
sin cos

i.e.,

 

1

r

u u

x

u

y
sin cos  (2)

Squaring both sides of (1) and (2) and adding, we get

u

r r

u u

x

u

y

2

2

2 2 2
1

Example 4.5 Find the equivalent of 
2

2

2

2

u

x

u

y
 in polar co-ordinates.

u = u(x, y), where x = r cos  and y = r sin 

∴ u can also be considered as u(r, ), where

r x y
y

x

2 2 1and tan

Now we proceed to find 
u

x

u

y
and via r and .

 

u

x

u

r

r

x

u

x

x

x y

u

r y

x

y

x

u

2 2 2

2

2

1

1

cos
sinu

r r

u

 

(1)
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From (1), we can infer that

 x r r
cos

sin

 

(2)

Now

 

2

2

u

x x

u

x

r r

u

r r
cos

sin
cos

sin uu

u

r r r

u

r

cos sin cos

sin
c

2

2

2

1

oos
sin

sin
u

r r

u
2

 

r
u

r

u
rand are independent and and are functions of and .

 

cos sin cos

sin
cos

2
2

2

2

2

2

1 1u

r r

u

r r

u

r

u

r

u

r r

u u
sin

sin
sin cos

2

2

2

 

(3)

Now 
u

y

u

r

r

y

u

y

y

x y

u

r y

x

x

u

2 2 2

2

1

1

1

siin
cosu

r r

u

 

(4)

From (4) we infer that

 y r r
sin

cos

 

(5)

∴

 

2

2

u

y y

u

y

r r

u

r r
sin

cos
sin

cos uu

u

r r

u

r r

u
sin sin cos

cos

2
2

2

2

2

1 1

r

u

r

u

r r

u u
sin cos

cos
cos sin

2

2

2

2

 

(6)
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Adding (3) and (6), we have

2

2

2

2

2

2 2

2

2

1 1u

x

u

y

u

r r

u

r r

u

Example 4.6 Given the transformations u = ex cos y and  = ex sin y and that f is a 

function of u and  and also of x and y, prove that

 

2

2

2

2

2 2
2

2

2

2

f

x

f

y
u

f

u

f

f

x

f

u

u

x

f

( )

x

 
e y

f

u
e y

fx xcos sin

 
u

f

u

f

 

(1)

 x
u

u  

(2)

 

2

2

2

2

f

x
u

u
u

f

u

f

u u
f

u

f

u
u

f

u
u

f

u

f f

2 2

2

2

 

(3)

 f

y

f

u

u

y

f

y

e y
f

u
e y

f

f

u
u

x xsin cos

ff

 

(4)

∴
 y u

u

 

(5)

 

2

2

2
2

2

2

f

y u
u

f

u
u

f

f

u
u

f

u

f
u

f

u

f

u

u
f

2

2
2

2
 

(6)
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Adding (3) and (6), we get

2

2

2

2

2 2
2

2

2

2

f

x

f

y
u

f

u

f
( )

Example 4.7  If z = f (u, ), where u = cosh x cos y and  = sinh x sin y, prove that

2

2

2

2

2 2
2

2

2

2

z

x

z

y
x y

z

u

z

z z u zx u x

sinh sin

x x

u

z
z

x

x y z x y z

,

sinh cos cosh sin

where  etc.

Since z is a function of u and , z
u
 and z  are also functions of u and .

Hence to differentiate z
u
 and z with respect to x or y, we have to do it via u and .

∴

 

z y x z x z x y z x yxx u uu ucos cosh sinh sinh cos cosh sin

sin yy x z x z x y z x yusinh cosh sinh cos cosh sin

i.e., 
z x y z x y z x y z

x x

xx u uucosh cos sinh sin sinh cos

sinh cosh s

2 2

2 iin cos cosh siny y z x y zu
2 2

 
(1)

 
z z x y z x yy u cosh sin sinh cos

 

z x y z y z x y

z x y

yy u uu

u

cosh [cos sin { cosh sin

sinh cos } siinh [ sinh

cos { cosh sin sinh cos }]

x y z

y z x y z x yu

i.e.,

 

z x y z x y z

x y z x

yy u

uu

cosh cos sinh sin

cosh sin sinh cosh2 2 2 xx y y z

x y z

usin cos

sinh cos2 2

 
(2)

Adding (1) and (2), we get 

z z x y x y z z

x y

xx yy uu(sinh cos cosh sin ) ( )

{sinh ( sin

2 2 2 2

2 21 )) ( sinh )sin }( )

(sinh sin ) ( )

1 2 2

2 2

x y z z

x y z z

uu

uu
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Example 4.8  Find d

d

y

x

, when (i) x3 + y3 = 3ax2y and (ii) xy + yx = c.

 (i) f (x, y) = x3 + y3 −3ax2y

 
p

f

x
x axy3 62

 

q
f

y
y ax3 32 2

 

d

d

y p

q

x axy

y ax

x ay x

y axx

3 2

3

22

2 2 2 2

( )

( )

( )

(ii) f (x, y) = xy + yx − c

 
p

f

x
yx y yy x1 log

 

q
f

y
x x xyy xlog 1

 

d

d

y

x

p

q

yx y x

xy x x

y x

x y

1

1

log

log
.

Example 4.9 If ax2 + 2hxy + by2 = 1, show that 
d

d

2

2

2

3

y

x

h ab

hx by
.

f (x, y) = ax2 + 2hxy + by2 − 1

 

p
f

x
ax hy q

f

y
hx by2 2;

 

r
f

x
a s

f

x y
h t

f

y
b

2

2

2 2

2
2 2 2; ;

 

d

d

y

x

p

q

ax hy

hx by

 

d

d

2

2

2 2

3

2y

x

p t pqs q r

q

(Refer to differentiation of implicit functions)

 

8 16 8

8

1

2 2

3

b ax hy h ax hy hx by a hx by

hx by

hx( bby
h ahx ab h xy bhy

a bx abhxy h by ah x

)
[ { ( ) }

{ } {

3

2 2 2

2 2 2 2 2 2

2

2 22 2 2abhxy ab y }]
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1
2

3

2 2 2 2 2

2

( )
[ ( ) ( ) ( ) ]

( )

(

hx by
a h ab x h h ab xy b h ab y

h ab

hx byy
ax hxy by

h ab

hx by

h ab

hx by)
( )

( )

( ) ( )
.

3

2 2
2

3

2

3
2

1

Example 4.10  Find 
d

d

u

x

 if (i) u = sin (x2 + y2), where a2x2 + b2y2 = c2 (i), u = tan−1 
y

x
 

where x2 + y2 = a2, by treating u as function of x and y only.

(i) u = sin (x2 + y2)

∴

 

d

d

d

d

d

d

u

x

u

x

u

y

y

x

x x y y x y
y

x
2 22 2 2 2cos cos

 
(1)

Now a2x2 + b2y2 = c2

Differentiating with respect to x,

or

   

2 2 02 2

2

2

a x b y
y

x

y

x

a x

b y

d

d

d

d
    

(2)

Using (2) in (1), we get

(ii)

 

d

d

u

x
x x y y x y

a x

b y

x x y b

2 2

2

2 2 2 2
2

2

2 2

cos cos

cos 22 2 2

1

2

2

2

1

1

a b

u
y

x

u

x

u

x

u

y

y

x

y

x

y

x

/

tan

d

d

d

d

1

1

1
2

2

2 2 2 2

y

x

x

y

x

y

x y

x

x y

y

x

d

d

d

d
 

(3)

∴
 

x y a

x y
y

x

2 2 2

2 2 0
d

d
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or
 

d

d

y

x

x

y  

(4)

Using (4) in (3), we get

d

d

u

x

y

x y

x

x y

x

y

y

2 2 2 2

1 .

Example 4.11 If u = x2 − y2 and  = xy, find the values of 
x

u

x y

u
, ,  and 

y

x and y cannot be easily expressed as single valued functions or u and .

Given x2 − y2 = u (1)

and xy =  (2)

Nothing that x and y are functions of u and  and differentiating both sides of (1) 

and (2) partially with respect to u, we have

 
2 2 1x

x

u
y

y

u  

(3)

 
y

x

u
x

y

u
0

 
(4)

Solving (3) and (4), we get

 

x

u

x

x y

y

u

y

x y2 22 2 2 2
and

Differentiating both sides of (1) and (2) partially with respect to , we have

 
2 2 0x

x
y

y

 

(5)

 
y

x
x

y
1

 

(6)

Solving (5) and (6), we get

 

x y

x y

y x

x y2 2 2 2
and .
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Example 4.12  If x2 + y2 + z2 − 2xyz = 1, show that

 

d d dx

x

y

y

z

z1 1 1
0

2 2 2
.

Let 
x y z xyz2 2 2 2 1 0

 
(1)

∴ d 0

i.e.,

 x
x

y
y

z
zd d d 0

 

(2)

i.e.,
 

2 2 2 0x yz x y zx y z xy zd d d

Now

 

x yz x xyz y z

y z y z

y z

2 2 2 2

2 2 2 2

2 2

2

1 1

1 1

, ( ) from 

∴
 

x yz y z1 12 2

Similarly,
 

y zx z x1 12 2

and
 

z xy x y1 12 2

Using these values in (2), we have

 
1 1 1 1 1 1 02 2 2 2 2 2y z x z x y x y zd d d

Dividing by 1 1 12 2 2x y z ,  we get

 

d d dx

x

y

y

z

z1 1 1
0

2 2 2
.

Example 4.13 The specific gravity s of a body is given by s
W

W W

1

1 2

 where W
1
 

and W
2
 are the weights of the body in air and in water respectively. Show that if there 

is an error of 1% in each weighing, s is not affected. But if there is an error of 1% in 

W
1
 and 2% in W

2
, show that the percentage error in s is W

W W

2

1 2

.

s
W

W W

1

1 2

∴
 

log log logs W W W1 1 2
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Taking differentials on both sides,

 

1 1 1

1

1

1 2

1 2
s

s
W

W
W W

dW dWd d

∴ The relation among the errors is nearly

 

1 1 1

1

1

1 2

1 2
s

s
W

W
W W

W W  (1)

or

 

100 100 1
100 1001

1 1 2

1 2

s

s

W

W W W
W W

 

(2)

 (i) Given that 100
1

100
11

1

2

2

W

W

W

W
and

Using these values in (2), we have

 

100
1

1
0

1 2

1 2

s

s W W
W W

∴ s is not affected, viz., there is no error in s.

(ii)  Given that 
100 100

21

1

2

2

W

W

W

W
1 and .  Using these values in (2), we have

 

100
1

1
2

1 2

1 2

2

1 2

s

s W W
W W

W

W W

i.e., % error in s
W

W W

2

1 2

.

Example 4.14  The work that must be done to propel a ship of displacement D for a 

distance s in time t is proportional to s2 D3/2 ÷ t2. Find approximately the percentage 

increase of work necessary when the distance is increased by 1%, the time is 

diminished by 1% and the displacement of the ship is diminished by 3%.

Given that W = ks2 D3/2/t2, where k is the constant of proportionality.

∴
 

log log log log log .W k s D t2
3

2
2

Taking differentials on both sides,

d d d dW

W

s

s

D

D

t

t
2

3

2
2
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∴ The relation among the percentage errors is approximately,

 

100
2

100 3

2

100
2

100W

W

s

s

D

D

t

t
 (1)

Given that 
100

1
100

1
100

3
s

s

t

t

D

D
, . and 

Using these values in (1), we have

 

100
2 1

3

2
3 2 1

0 5

W

W

.

i.e., percentage decrease of work = 0.5.

Example 4.15  The period T of a simple pendulum with small oscillations is 

given by T
l

g
2 .  If T is computed using l = 6 cm and g = 980 cm/sec2, find 

approximately the error in T, if the values are l = 5.9 cm and g = 981 cm/sec2. Find 

also the percentage error.

   

T
l

g
2

∴
 

log log log log logT l g2
1

2

1

2

Taking differentials on both sides,

 

1 1

2

1

2T
T

l
l

g
gd d d  (1)

∴

 

d d d

d d

T
l

g l
l

g
g

l
l

l

g g
g

2
1

2

1

2

1

0 1

5 9 98

g

. 11

5 9

981 981
1

i.e., Error in T = 0.0044 sec.
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% error in T
T

T

100d

 

50

50
0 1

5 9

1

981

0 8984

d d
by (1)

l

l

g

g
,

.

Example 4.16  The base diameter and altitude of a right circular cone are measured 

as 4 cm and 6 cm respectively. The possible error in each measurement is 0.1 cm. 

Find approximately the maximum possible error in the value computed for the 

volume and lateral surface.

Volume of the right circular cone is given by V
D

h
1

3 2

2

∴

 

d d dV D h Dh D
12

2

12
16 0 1 2 4 6 0 1

2( )

{ . . }

i.e., Error in V = 1.6755 cm3.

Lateral surface area of the right circular cone is given by

 

S
D

l

D D h

2

4
42 2

∴

 

d d d dS D
D h

D D h h D h D
4

1

2 4
2 8 4

4

4

16 144
4 0 1

2 2

2 2(

{ 24 0 1 16 144 0 1

1 6889 2

}

. .cm
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Example 4.17  
The side c of a triangle ABC is calculated by using the measured 

values of its sides a, b and the angle C. Show that the error in the side c is given by

c B a A b a B Ccos cos sin .

The side c is given by the formula

 
c a b ab C2 2 2 2 cos

 
(1)

Taking the differentials on both sides of (1),

i.e.,

 

2 2 2 2c c a a b b b C a

a C b ab C C

c
a b

cos

cos sin , nearly

ccos cos sinC a b a C b ab C C

c
 (2)

Now b cos C + c cos B = a

∴

 

a b C

c
B

cos
cos

 

(3)

 a cos C + c cos A = b

∴
 

b a C

c
A

cos
cos

 

(4)

Also

 

b

B

c

C

b C c B

ab C

c
a B

sin sin

sin sin

sin
sin

 

(5)

Using (3), (4) and (5) in (2), we get

 
c B a A b a B Ccos cos sin

Example 4.18 The angles of a triangle ABC are calculated from the sides a, b, c. If 

small changes δa, δb, δc are made in the measurement of the sides, show that

 
A

a
a b C c B

2
cos cos

and δB and δC are given by similar expressions, where Δ is the area of the triangle.

Verify that δA + δB + δC = 0.

In triangle ABC,

 
cos A

b c a

bc

2 2 2

2  

(1)

∴

∴
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Taking differentials on both sides of (1),

 

2 2 2 2 2 2 2 2 2sin A A bc b b c c a a b c a b c c b b c

bb c c a c b bc b a b c abc a

b c

c a b c b b c

2 3 2 2 3 2

2 2

2 2 2

2

22 2 2

2 2

2

2

2 2 2

a b c abc a

b c

c ab C b b ca B c abc a

b

cos cos

cc2
,

by formulas similar to (1)

∴

 

2

2

a

bc
C b B c a

A
a

bc A
a C b B c

a

cos cos

sin
cos cos

a C b B c bc Acos cos , sinsince
1

2  

(2)

Similarly,

 
B

b
b A c C a

2
cos cos

 

(3)

 
C

c
c B a A b

2
cos cos

 

(4)

Adding (2), (3) and (4), we get

∴ 

2 A B C a b C c B a

b a C c A b c a B b

cos cos

cos cos cos ccos

cos cos .

A c

a a a b b b c c c

b C c B a

A

etc

0

B C 0.

Example 4.19  The area of a triangle ABC is calculated from the lengths of the sides 

a, b, c. If a is diminished and b is increased by the same small amount k, prove that 

the consequent change in the area is given by



I – 4.20 Part I: Mathematics I

 

2
2 2

( )

( )

a b k

c a b

The area of triangle ABC is given by

∴
 

s s a s b s c s a b c

s s a

( )( )( ) ,

log {log log( ) log(

where 2

1

2
ss b s c) log( )}

Taking differentials on both sides, we get

 

1

2

s

s

s a

s a

s b

s b

s c

s c
 

(1)

Since  2 2s a b c s a b c,

 i.e.; 2 s = −k + k + 0 = 0, by the given data.

∴ s = 0 (2)

Using (2) in (1), we have

 

1

2

2

2 2
2

2

k

s a

k

s b

k

b c a c a b
s a b c

k
22

2
2 2

( ) ( )

[ ( )][ ( )]

( )

( )

c a b b c a

c a b c a b

k a b

c a b

EXERCISE 4(a)

Part A

(Short Answer Questions)

 1. What is meant by total differential? Why it is called so?

 2. If u = sin(xy2), express the total differential of u in terms of those of x and y.

 3. If u = xy.yx, express du in terms of dx and dy.

 4. If u = xy log xy, express du in terms of dx and dy.

 5. If u = axy, express du in terms of dx and dy.
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 6. Find d

d

u

t
, if u = x3 y2 + x2 y3, where x = at2, y = 2at.

 7. Find 
d

d
where

u
u e x a t y txy

t
, , , sin .if 2 2 3

 8. Find 
d

d

u

t
, if u = log (x + y + z), where x = e−t, y = sin t, z = cos t.

 9. Find 
d

d

y

x
, using partial differentiation, if x3 + 3x2y + 6xy2 + y3 = 1.

10. If x sin (x − y) − (x + y) = 0, use partial differentiation to prove that

d

d

y y x x y

x x x yx

2

2

cos ( )

cos ( )
.

11. Find 
d

d

y

x
,  when u = sin (x2 + y2), where x2 + 4y2 = 9.

12. Find 
d

d

y

x
,  if u = x2y, where x2 + xy + y2 =1.

13. Define absolute, relative and percentage errors.

14. Using differentials, find the approximate value of 15 .

15.  Using differentials, find the approximate value of 2x4 + 7x3 − 8x2 + 3x + 1 

when x = 0.999.

16.  What error in the common logarithm of a number will be produced by an 

 error of 1% in the number?

17.  The radius of a sphere is found to be 10 cm with a possible error of 0.02 cm. 

Find the relative errors in computing the volume and surface area.

18.  Find the percentage error in the area of an ellipse, when an error of 1% is 

made in measuring the lengths of its axes.

19.  Find the approximate error in the surface of a rectangular parallelopiped of 

sides a, b, c  if an error of k is made in measuring each side.

20.  If the measured volume of a right circular cylinder is 2% too large and the 

measured length is 1% too small, find the percentage error in the calculated 

radius.

Part B

21. If u = f (x − y, y − z, z − x), prove that u

x

u

y

u

z
0.

22.  If f is a function of u, , w, where u yz ,  zx w xy, and  show 

that

 
u

f

u
x

f

x
.
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23. If f = f y x

xy

z x

zx
, , show that x

f

x
y

f

y
z

f

z

2 2 2 0.

24. If u = f (x2 + 2yz, y2 + 2zx), prove that

 

y zx
u

x
x yz

u

y
z xy

u

z

2 2 2 0.

25. If  f (cx – az, cy – bz) = 0, where z is a function of x and y, prove that

 

a
z

x
b

z

y
c.

26. If  z = f (u, ), where u = x + y and  = x – y, show that 2
z

u

z

x

z

y
.

27. If  z = f (x, y), where x = u2 + 2, y = 2u , prove that

 
u

z

u

z
x y

z

x
2 2 2( ) .

28. If  z = f (x, y), where x = u + , y = u , prove that 

 

u
z

u

z
x

z

x
y

z

y
2 .

29. If  x = r cos , y = r sin , prove that the equation 
u

x

u

y
0  is equivalent 

to u

r r

u1

4
0tan .

30. If  z = f(u, ), where u = x2 – 2xy − y2 and  = y, show that the equation 

x y
z

x
x y

z

y
0 is equivalent to 

z
0.

31. If z = f (u, ), where u = x2 − y2 and  = 2xy, prove that

 

z

x

z

y
x y

z

u

z
2 2

2 2
2 2

4( ) .

32. If z = f (u, ), where u = x2 − y2 and  = 2xy, show that

 

2

2

2

2

2 2
2

2

2

2
4

z

x

z

y
x y

z

u

z
( ) .
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33.  If z = f (x, y) where x = X cos a − Y sin  and y = X sin  + Y cos , show that

 

2

2

2

2

2

2

2

2

z

x

z

y

z

X

z

Y
.

34.  If z = f (u, ), where u = lx + my and  = ly − mx, show that

 

2

2

2

2

2 2
2

2

2

2

z

x

z

y
l m

z

u

z
( ) .

35. By changing the independent variables x and t to u and  by means of the trans-

formations u = x − at and  = x + at, show that a
y

x

y

t
a

y

u

2
2

2

2

2

2
2

4 .

36.  By using the transformations u = x + y and  = x − y, change the independent 

variables x and y in the equation 
2

2

2

2
0

z

x

z

y
 to u and .

37.  Transform the equation 
2

2

2 2

2
2 0

z

x

z

x y

z

y
 by changing the independent 

variables using u = x − y and  = x + y.

38.  Transform the equation x
z

x
xy

z

x y
y

z

y

2
2

2

2
2

2

2
2 0, by changing the  

independent variables using u = x and 
y

x

2

.

39.  Transform the equation 
2

2

2 2

2
5 6 0

z

x

z

x y

z

y
,  by changing the indepen-

dent variables using u = 2x + y and  = 3x + y.

40.  Transform the equation 
2

2

2

2
0

u

x

u

y
, by changing the independent variables 

using z = x + iy and z* = x – iy, where i 1.

41.  Use partial differentiation to find 
d

d

y

x
, when (i) xy = yx; (ii) xmyn =  

(x + y)
m + n

; (iii) (cos x)
y
 = (sin y)x; (iv) (sec x)

y
 = (cot y)x; (v) xy = ex - y.

42.  Use partial differentiation to find 
d

d

2

2

y

x
,  when x3 + y3 −3axy = 0.
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43.  Use partial differentiation to find
 d

d

2 y

x2
,
 
when x4 + y4 = 4a2xy.

44. Use partial differentiation to prove that d

d

2
y

x

abc fgh af bg ch

hx by f
2

2 2 2

3

2

( )
,  

when ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

45.  Use partial differentiation to prove that 
d

d

2

2

2

3

y

x

b ac

ay b( )
,  when ay2 + 2by + c

 

= x2.

46.  If x2 – y2 + u2+ 2 2 = 1 and x2 + y2 – u2 – 2 = 2, prove that u

x

x

u

3  and 

x

x2
.

47.  The deflection at the centre of a rod of length l and diameter d supported at its 

ends and loaded at the centre with a weight w is proportional to wl3/d4. What 

is the percentage increase in the deflection, if the percentage increases in w, l 

and d are 3, 2 and 1 respectively.

48  The torsional rigidity of a length of wire is obtained from the formula 

N
Il

t r

8
2 4

.  If l is decreased by 2%, t is increased by 1.5% and r is increased 

by 2%, show that the value of N is decreased by 13% approximately.

49.  The Current C measured by a tangent galvanometer is given by the relation 

C = k tan , where  is the angle of deflection. Show that the relative error in 

C due to a given error in  is minimum when  = 45°.

50.  The range R of a projectile projected with velocity  at an elevation  is given 

by R
g

2

 sin 2 . Find the percentage error in R due to errors of 1% in  and

1

2
% in , when 

6
.

51.  The velocity  of a wave is given by 2

2

2g T
,  where g and  are 

constants and  and T are variables. Prove that, if  is increased by 1% and 

T is decreased by 2%, then the percentage decrease in  is approximately 

3
2

T
.

52.  The focal length of a mirror is given by the formula 
1 1 1

f u
.  If equal  

errors k are made in the determination of u and , show that the percentage 

error
 
in f is 100k 

1 1

u
.
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53.  A closed rectangular box of dimensions a, b, c has the edges slightly altered 

in length by amounts Δa, Δb and Δc respectively, so that both its volume and 

surface area remain unaltered. Show that 
a

a b c

b

b c a

c

c a b2 2 2( ) ( ) ( )
.  

[Hint: Solve the equations dV = 0 and dS = 0 for Δa, Δb, Δc using the method 

of cross-multiplication]

54.  If a triangle ABC is slightly disturbed so as to remain inscribed in the same 

circle, prove that

 

a

A

b

B

c

Ccos cos cos
.0

55.  The area of a triangle ABC is calculated using the formula 
1

2
 bc sin A. 

Show that the relative error in Δ is given by

b

b

c

c
A Acot .

If an error of 5  is made in the measurement of A which is taken as 60°, find 

the percentage error in Δ.

56.  Prove that the error in the area Δ of a triangle ABC due to a small error in the 

measurement of c is given by

 
4

1 1 1 1

s s a s b s c
c.

57.  The area of a triangle ABC is determined from the side a and the two angles B 

and C. If there are small errors in the values of B and C, show that the result-

ing error in the calculated value of the area Δ will be 
1

2

2 2( ).c B b C

 

Hint :
sin sin

sin( )

1

2

2a B C

B C

4.2.3 Taylor’s Series Expansion of a Function of Two Variables

Students are familiar with Taylor’s series of a function of one variable viz. f (x + h) =

f x
h

f x
h

f x( )
!

( )
!

( ) ,
1 2

2

which is an infinite series of powers of h. This idea 

can be extended to expand f (x + h, y + k) in an infinite series of powers of h and k.



I – 4.26 Part I: Mathematics I

Statement

If f (x, y) and all its partial derivatives are finite and continuous at all points (x, y), then

f x h y k f x y h
x

k
y

f h
x

k
y

f( , ) ( , )
! !

1

1

1

2

2

1

3

3

!
...h

x
k

y
f

Proof:

If we assume y to be a constant, f (x + h, y + k) can be treated as a function of x only.

Then f x h y k f x y k
h f x y k

x

h f x y k

x
( , ) ( , )

!

( , )

!

( , ) ...
1 2

2 2

2
 (1)

Now treating x as a constant,

 

f x y k f x y
k f x y

y

k f x y

y
, ,

!

,

!

,
...

1 2

2 2

2  (2)

Using (2) in (1), we have

f x h y k f x y
k f x y

y

k f x y

y

h

( , ) ( , )
!

( , )

!

( , ) ...
1 2

2 2

2

11 1 2

2

2 2

2

2 2

!
( , )

!

( , )

!

( , ) ...

!

x
f x y

k f x y

y

k f x y

y

h

x
f x y

k f x y

y

k f x y

y

f x

2

2 2

21 2
( , )

!

( , )

!

( , ) ... ...

( ,, )
! !

y h
f

x
k

f

y
h

f

x
hk

f

x y
k

f

y

1

1

1

2
22

2

2

2
2

2

2
....

( , )
! !

f x y h
x

k
y

f h
x

k
y

1

1

1

2

2

ff ...

 

(3)

Interchanging x and h and also y and k in (3) and then putting h = k = 0, we have

 

f x y f x
f

x
y

f

y
x

f
( , ) ( , )

!

( , ) ( , )

!

( , )
0 0

1

1

0 0 0 0 1

2

0 02
2

x

xy
f

x y
y

f

y

2

2
2

2

2
2

0 0 0 0( , ) ( , ) ...

 

(4)
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Series in (4) is the Maclarin’s series of the function f (x, y) in powers of x and y. 

Another form of Taylor’s series of f (x, y)

f x y f a x a b y b

f a h b k

f a b h
f a b

( , ) ( , )

( ), ( ),

( , )
!

( , )

say

1

1 xx
k

f a b

y

h
f a b

x
kh

f a b

x y
k

f

( , )

!

( , ) ( , )1

2
22

2

2

2
2

2 (( , ) ..., ( )

( , )
!

( )
( , )

( )

a b

y

f a b x a
f a b

x
y b

f

2
3

1

1

by

(( , )

!
( )

( , )
( )( )

( , )

a b

y

x a
f a b

x
x a y b

f a b

x

1

2
22

2

2

2

yy
y b

f a b

y
( )

( , ) ...2
2

2

 

(5)

(5) is called the Taylor’s series of f (x, y) at or near the point (a, b).

Thus the Taylor’s series of f (x, y) at or near the point (0, 0) is Maclaurins series 

of f (x, y).

4.3 JACOBIANS

If u and  are functions of two independent variables x and y, then the determinant

u

x

u

y

x y

is called the Jacobian or functional determinant of u,  with respect to x and y and 

is written as

( , )

( , )

,

,
.

u

x y
J

u

x y
or

Similarly the Jacobian of u, , w with respect to x, y, z is defined as

( , , )

( , , )

u w

x y z

u

x

u

y

u

z

x y z

w

x

w

y

w

z
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Note  

1.  To define the Jacobian of n dependent variables, each of these must be a func-

tion of n independent variables.

2.  The concept of Jacobians is used when we change the variables in multiple 

integrals. (See property 4 given below)

4.3.1 Properties of Jacobians

1. If u and  are functions of x and y, then ( , )

( , )

( , )

( , )
.

u

x y

x y

u
1

Proof:

Let u = f(x, y) and  = g(x, y). When we solve for x and y, let

 x =  (u, ) and y = ψ(u, ).

Then

 

u

x

x

u

u

y

y

u

u

u

u

x

x u

y

y u

x

1

0

xx

u y

y

u u

u

x

x u

y

y

0

1

 

(1)

Now 
( , )

( , )

( , )

( , )

u

x y

x y

u

u

x

u

y

x y

x

u

x

y

u

y

u

x

u

y

x y

x

u

y

u

x y

u

x

x

u

u

y

y

u

,

u

x

x u

y

y

x

x

u y

y

u x

x

y

y

1 0

0 1
1

1

[ ( )]by

by interchanging the rows 

and columns of the 

second determinant.
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2. If u and  functions of r and s, where r and s are functions of x and y, then

u

x y

u

r s

r s

x y

,

,

,

,

,

,

Proof:

u

r s

r s

x y

u

r

u

s

r s

r

x

r

y

s

x

s

,

,

,

,

yy

 

u

r

u

s

r s

r

x

s

x

r

y

s

y

 

u

r

r

x

u

s

s

x

u

r

r

y

u

s

s

y

r

r

. . . .

.
x s

s

x r

r

y s

s

y
. . .

 

u

x

u

y

x y

u

x y

( , )

( , )
.

Note  The two properties given above hold good for more than two variables too.

3. If u, , w are functionally dependent functions of three independent variables

 

x y z
u w

x y z
, ,

( , , )

( , , )
.then 0

Note  The functions u, , w are said to be functionally dependent, if each can be 

expressed in terms of the others or equivalently f (u, , w) = 0. Linear dependence of 

functions is a particular case of functional dependence.

Proof:

Since u, , w are functionally dependent, f (u, , w) = 0 (1)

Differentiating (1) partially with respect to x, y and z, we have

  

f u f f w

f u f f w

f u f f w

u x x w x

u y y w y

u z z w z

. . .

. . .

. . .

0

0

0

 (2)

, by rewriting the second determinant.

(3)

(4)
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Equations (2), (3) and (4) are homogeneous equations in the unknowns f
u
, f , f

w
.  

At least one of f
u
,  f  and f

w
 is not zero, since if all of them are zero, then f (u, , w) ≡ 

constant, which is meaningless.

Thus the homogeneous equations (2), (3) and (4) possess a non-trivial solution. 

∴ Matrix of the coefficients of f
u
, f

 
, f

w
 is singular.

i.e.,

 

u w

u w

u w

x x x

y y y

z z z

0

i.e.,

 

( , , )

( , , )

u w

x y z
0

Note  The converse of this property is also true. viz., if u, , w are functions of 

x, y, z such that 
( , , )

( , , )

u w

x y z
0  then u, , w are functionally dependent. i.e., there 

exists a relationship among them.

4.  If the transformations x = x(u, ) and y = y(u, ) are made in the double  

integral f x y x y( , ) ,d d then f(x, y) = F(u, ) and d d d dx y J u , where 

J
x y

u

( , )

( , )
.

Proof:

dx dy = Elemental area of a rectangle with vertices (x, y), (x + dx, y), (x + dx, y + dy) 

and (x, y + dy)

This elemental area can be regarded as equal to the area of the parallelogram with 

 verti ces (x, y), x
x

u
u y

y

u
u x

x

u
u

x
y

y

u
u

y
d d d d d d, , ,  and 

 

x
x

y
y

v
d d, ,  since dx and dy are infinitesimals.

Now the area of this parallelogram is equal to 2× area of the triangle with vertices 

(x, y), x
x

u
u y

y

u
ud d,  and x

x
y

y
d d,

d d d d

d d

x y

x y

x
x

u
u y

y

u
u

x
x

y
y

2
1

2

1

1

1
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x y

x

u
u

y

u
u

x y

x

u
u

y

u
u

x y

x

1

0

0

d d

d d

d d

d d

u

y

u

x y
ud d

i.e.,

   

d d d dx y
x y

u
u

( , )

( , )
.

Since both dx dy and du d  are positive, d d d dx y J u ,  where J
x y

u

( , )

( , )
Similarly, if we make the transformations

 
x x u w y y u w z z u w( , , ), ( , , ) ( , , )and

in the triple integral f x y z x y z( , , ) ,d d d  then d d d d d dx y z J u w,  where 

J
x y z

u w

( , , )

( , , )
.

4.4 DIFFERENTIATION UNDER THE INTEGRAL SIGN

When a function f(x, y) of two variables is integrated with respect to y partially, viz., 

treating x as a parameter, between the limits a and b, then f x y y
a

b

( , )d  will be a 

function of x.

Let it be denoted by F(x).

Now to find F ' (x), if it exists, we need not find F(x) and then differentiate it with 

respect to x. F ' (x) can be found out without finding F(x), by using Leibnitz’s rules, 

given below:

1. Leibnitz’s rule for constant limits of integration

If f (x, y) and f x y

x

( , ) are continuous functions of x and y, then

d

d
d d

x
f x y y

f x y

x
y

a

b

a

b

( , )
( , )

,

 

where

a and b are constants independent of x.
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Proof:

Let f x y y F x
a

b

( , ) ( ).d

Then F x x F x f x x y y f x y y

f x x y f x y

a

b

a

b

( ) ( ) ( , ) ( , )

[ ( , ) ( , )]

d d

dd

d

y

x
f x x y

x
y

a

b

a

b
( , )

, ,0 1

by Mean Value theorem, viz., 
d

d
f x h f x h

f x h

x
( ) ( )

( )
, 0 1

 

F x x F x

x

f x x y

x
y

a

b
( ) ( ) ( , )

d

 

(1)

Taking limits on both sides of (1) as Δx → 0,

 

F x
f x y

x
y

a

b

( )
( , )

d

i.e., d

d
d d

x
f x y y

f x y

x
y

a

b

a

b

( , )
( , )

2. Leibnitz’s rule for variable limits of integration

If f(x, y) and f x y

x

( , )  are continuous functions of x and y, then 
d

d
d

x
f x y y

a x

b x

( , )
( )

( )

f x y

x
y f x b x

b

x
f x a x

a

x
a x

b x
( , )

{ , ( )} { , ( )} ,
( )

( )

d
d

d

d

d
provided a(x) and b(x) possess 

continuous first order derivatives.

Proof:

Let f x y y F x y( , ) ( , ),d so that 
y

F x y f x y( , ) ( , )  (1)
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∴

  

f x y y F x b x F x a x
a x

b x

( , ) { , ( )} { , ( )}
( )

( )

d

d

dx
f x y dy

d

dx
F x b x

d

dx
F x a x

d

dx

a x

b x

( , ) { , ( )} { , ( )}
( )

( )

FF x y
d

dx
F x y

x
F x y

y
F x

y b x y a x

( , ) ( , )

( , ) (

( ) ( )

,, )

( , ) ( , )

( )

( )

y
dy

dx

x
F x y

y
F x y

dy

dx

y b x

y a x

by differentiation of implicit functions

 

y a x

y b x

y b xx
F x y f x y

y

x

f x y

( )

( )

( )

( , ) ( , )

( , )

d

d

dd

d

y

x y a x( )

 

by (1)

 

y a x

y b x

x
f x y y f x b x b x f x a x a

( )

( )

( , ) { , ( )} ( ) { , ( )}d (( )

( , )
{ , ( )} ( ) { , ( )}

( )

( )

x

f x y

x
y f x b x b x f x a x

y a x

y b x

d a x

f x y

x
y f x b x b x f x a x a x

a x

b x

( )

( , )
{ , ( )} ( ) { , ( )} ( )

( )

( )

d

WORKED EXAMPLE 4(b)

Example 4.1  Expand ex cos y in powers of x and y as far as the terms of the third 

degree.

f x y e y
f x y

x
f x y e yx

x

x( , ) cos ;
( , )

( , ) cos ;
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f x y

y
f x y e yy

x( , )
( , ) sin .

 

2

2

2f x y

x
f x y e y

f x y

x y
f x y e yxx

x

yx

x( , )
( , ) cos ;

( , )
( , ) sin

 

2

2

f x y

y
f x y e yyy

x( , )
( , ) cos .

Similarly

 

f x y e y f x y e y

f x y e y f

xxx

x

xxy

x

xyy

x

yyy

( , ) cos ; ( , ) sin ;

( , ) cos ; (xx y e y

f f f

f f

x

x y

xx xy

, ) sin

( , ) ; ( , ) ; ( , ) ;

( , ) ; ( ,

0 0 1 0 0 1 0 0 0

0 0 1 0 00 0 0 0 1

0 0 1 0 0 0 0 0 1

) ; ( , ) ;

( , ) ; ( , ) ; ( , ) ;

f

f f f f

yy

xxx xxy xyy yyyy ( , )0 0 0

Taylor’s series of f (x, y) in powers of x and y is

f x y f xf yf

x f xyf

x y

xx xy

( , ) ( , )
!
{ ( , ) ( , )}

!
{ ( , )

0 0
1

1
0 0 0 0

1

2
0 0 22 (( , ) ( , )}

!
{ ( , ) ( , ) (

0 0 0 0

1

3
0 0 3 0 0 3

2

3 2 2

y f

x f x yf xy f

yy

xxx xxy xyy 00 0 0 03, ) ( , )}y f yyy

e y x y x xy y

x x

x cos
!
{ }

!
{ ( )}

!
{

1
1

1
1 0

1

2
1 2 0 1

1

3
1 3

2 2

3 2 yy xy y

x
x y x xy

0 3 1 0

1
1

1

2

1

3
3

2 3

2 2 3 2

( ) }

! !
( )

!
( )

4.4.1 Verification

e y ex cos Real part of  x iy

 

R.P. of  1 +
+

1!

x x iy x iyiy ( )

!

( )

!
,

2 3

2 3

by exponential theorem

∴
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1
1

1

2

1

3
32 2 3 2x

x y x y
! !

( )
!
( )

Example 4.2  Expand ( )( )x h y k

x h y k
 in a series of powers of h and k upto the 

second degree terms.

Let f x h y k
x h y k

x h y k
( , )

( )( )

∴

               

f x y
xy

x y
( , ) .

Taylor’s series of f (x + h, y + k) in powers of h and k is

 

f x h y k f x y h
f

x
k

f

y

h
f

x
hk

f

( , ) ( , )
!

!

1

1

1

2
22

2

2

2

xx y
k

f

y

2
2

2

 

(1)

Now f y
x y x

x y

y

x y
x

( )

( ) ( )2

2

2

 f x
x y y

x y

x

x y
y

( )

( ) ( )2

2

2

 

f
y

x y
f

x y y y x y

x y

y x y y

xx xy

2 2 2

2

2

3

2 2

4

2

( )
;

( ) ( )

( )

{ ( ) }

(xx y

xy

x y

f
x

x y
yy

) ( )

( )
.

3 3

2

3

2

2

Using these values in (1), we have

( )( )

( ) ( ) ( )

x h y k

x h y k

xy

x y

hy

x y

kx

x y

h y

x y

hk

2

2

2

2

2 2

3

2 xxy

x y

k x

x y( ) ( )3

2 2

3
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Example 4.3  Find the Taylor’s series expansion of x
y
 near the point (1, 1) upto the 

second degree terms.

Taylor’s series of f (x, y) near the point (1, 1) is f x y f, ,
!

1 1
1

1

x f y f x f x y fx y xx1 1 1 1 1 1
1

2
1 1 1 2 1 1

2
, ,

!
, xxy

yyy f

1 1

1 1 1
2

,

,
 

(1)

f x y x f x y yx f x y x x

f x y y y x

y

x

y

y

y

xx

y

, ; , ; , log ;

,

1

21 ;; , log

, log

, ;

f x y x yx x

f x y x x

f f

xy

y y

yy

y

xx x

1 1

2

1 1 1 11 1 1 1 1 0

1 1 0 1 1 1 1 1 0

, ; , ;

, ; , ; ,

f

f f f

y

xx xy yy

Using these values in (1), we get

x x x yy 1 1 1 1

Example 4.4  Find the Taylor’s series expansion of ex sin y near the point 1
4

,

upto the third degree terms.

Taylor’s series of f (x, y) near the point 1
4

, is

f x y f x f y fx y, ,
!

, ,1
4

1

1
1 1

4 4
1

44

1

2
1 1

4
2 1

4

2

!
,x f x y fxx xy 1

4

4
1

4

2

,

,y f yy

 

(1)

f x y e y f e y f e y

f e y f e y f

x

x

x

y

x

xx

x

xy

x

y

, sin ; sin ; cos ;

sin ; cos ; yy

x

xxx

x

xxy

x

xyy

x

yyy

x

e y

f e y f e y f e y

f e

sin ;

sin ; cos ; sin ;

coss .y

∴

 

f
e

f
e

f
e

f

x y

xx

1
4

1

2
1

4

1

2
1

4

1

2

1

, ; , ; , ;

,, ; , ; , ;
4

1

2
1

4

1

2
1

4

1

2e
f

e
f

e
xy yy
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f
e

f
e

f

e

xxx xxy xyy1
4

1

2
1

4

1

2
1

4

1

, ; , ; ,

22
1

4

1

2
; ,f

e
yyy

Using these values in (1), we get

e y
e

x y

x x

x sin
!

!

1

2
1

1

1
1

4

1

2
1 2 1

2
yy y

x x y

4 4

1

3
1 3 1

4

2

3 2

!
3 1

4 4

2 3

x y y

Example 4.5 Find the Taylor’s series expansion of x2 y2 + 2x2 y + 3xy2 in powers of 

(x + 2) and (y − 1) upto the third powers.

Taylor’s series of f (x, y) in powers of (x + 2) and (y − 1) or near (−2, 1) is

 

f x y f x f y f

x f

x y, ,
!

, ,

!

2 1
1

1
2 2 1 1 2 1

1

2
2

2

xxx xy

yy

x y f

y f

2 1 2 2 1 2 1

1 2 1
2

, ,

,
 

(1)

 

f x y x y x y xy f

f xy xy y f

f

x x

y

, ,

,

2 2 2 2

2 2

2 3 2 1 6

2 4 3 2 1 9

2 2 6 2 1 4

2 4 2 1 6

4 4 6

2 2

2

x y x xy f

f y y f

f xy x y

y

xx xx

xy

,

,

ff

f x x f

f f

f

xy

yy yy

xxx xxx

xxy

2 1 10

2 6 2 1 4

0 2 1 0

2

,

,

,

4 4 2 1 8

4 6 2 1 2

0 2 1 0

y f

f x f

f f

xxy

xyy xyy

yyy yyy

,

,

,
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Using these values in (1), we have

x y x y xy x y

x x y

2 2 2 2

2

2 3 6
1

1
9 2 4 1

1

2
6 2 20 2 1

!

!
4 1

1

3
24 2 1 6 2 1

2

2 2

y

x y x y
!

Example 4.6  Using Taylor’s series, verify that

 
log 1

1

2

1

3

2 3
x y x y x y x y

The series given in the R.H.S. is a series of powers of x and y.

So let us expand f (x, y) = log (1 + x + y) as a Taylor’s series near (0, 0) or 

Maclaurin’s series.

 

f
x y

f
x y

f
x y

f f

f
x y

f

x y

xx xy yy

xxx x

1

1

1

1

1

1

2

1

2

3

;

( )

xxy xyy yyy

x y

xx xy

f f

f f f

f f

0 0 0 0 0 0 0 1

0 0 0 0

, ; , , ;

, , ff

f f f f

yy

xxx xxy xyy yyy

0 0 1

0 0 0 0 0 0 0 0 2

, ;

, , , , .

Maclaurin’s series of f (x, y) is given by

 

f x y f xf yf

x f xyf

x y

xx xy

, ,
!

, ,

!
,

0 0
1

1
0 0 0 0

1

2
0 0 2 02 ,, ,0 0 02y f yy

  
(1)

Using the relevant values in (1), we have

log 1
1

2
2

1

6
2 6 6 2

2 2

3 2 2 3

x y x y x xy y

x x y xy y



Chapter 4: Differential Calculus of  Several  Variables I – 4.39

x y x y x y
1

2

1

3

2 3

Example 4.7  If x = r cos , y = r sin , verify that 
x y

r

r

x y

,

,

,

,
.1

x = r cos ; y = r sin 

 

x y

r

x

r

x

y

r

y

r

r

r

,

,

cos sin

sin cos

cos s2 iin .2 r

Now r x y
y

x

2 2 2 1and tan

 

2 2
1

1
2

2

2 2 2

r
r

x
x

x y

x

y

x

r

x

x

r

y

x y

y

r

r

y

y

r
Similaarly

y

x

r

r

x y

r

x

r

y

x y

x

r

y

r

y

r

x

r

x

2

2 2

2

,

,

yy

r

r

r r

2

3

2

3

1

∴  x y

r

r

x y
r

r

,

,

,

,
.

1
1

Example 4.8  If we transform from three dimensional cartesian co-ordinates 

(x, y, z) to spherical polar co-ordinates (r, , ), show that the Jacobian of x, y, z with 

respect to r, ,  is r2 sin .

∴

∴

Similarly,
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The transformation equations are

   
x r y r z rsin cos , sin sin , cos .

 

x

r

y

r

z

r

x
r

y
r

sin cos , sin sin , cos

cos cos , ccos sin , sin

sin sin , sin cos ,

z
r

x
r

y
r

z
0..

Now

 

x y z

r

x

r

y

r

z

r

x y z

x y z

, ,

, ,

sin ccos sin sin cos

cos cos cos sin sin

sin sin sin co

r r r

r r ss

[sin cos sin cos sin sin

( sin sin ) cos (

0

0

0

2 2

2

r

ssin cos cos sin cos sin )]

[sin cos sin sin si

2 2

2 3 2 3 2r nn cos ]

(sin sin cos )

sin .

2

2 3 2

2

r

r

Example 4.9  If u = 2xy,  = x2 – y2, x = r cos  and y = r sin , compute 
u

r

,

,
.

By the property of Jacobians,

 

u

r

u

x y

x y

r

u u x x

y y

x y

x y

r

r

,

,

,

,

,

,
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2 2

2 2

4

4

2 2 2 2

y x

x y

r

r

y x r

cos sin

sin cos

( ) (cos sin )

rr3.

Example 4.10  Find the Jacobian of y
1
, y

2
, y

3
 with respect to x

1
, x

2
, x

3
, if

y
x x

x
y

x x

x
y

x x

x
1

2 3

1

2

3 1

2

3

1 2

3

, ,

( , , )

( , , )

y y y

x x x

y

x

y

x

y

x

y

x

y

x

y

x

1 2 3

1 2 3

1

1

1

2

1

3

2

1

2

2

2

33

3

1

3

2

3

3

2 3

1

2

3

1

2

1

3

2

3 1

2

2

1

2

2

3

y

x

y

x

y

x

x x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x11

3

1 2

3

2

1

2

2

2

3

2

2 3 3 1 1 2

2 3 3 1 1 2

2 3 3 1

1

x

x x

x

x x x

x x x x x x

x x x x x x

x x x x xx x

x x x

x x x

1 2

1

2

2

2

3

2

1

2

2

2

3

2

1 1 1

1 1 1

1 1 1

1 1 1

0 0 2

0 2 0

4

Example 4.11  Express xyz x y z( )1  dx dy dz in terms of u, , w given that 

x + y + z = u, y + z = u  and z = u w.
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The given transformations are

 x + y + z = u (1)

 y + z = u  (2)

and z = u w (3)

Using (3) in (2), we have y = u (1 – w)

Using (2) in (1), we have x = u(1 – )

    dx dy dz = ׀J׀ du d  dw, where

∴
 

2 2 2 2

2 2 2

2

2

( , , )

( , , )

1 0

(1 ) (1 )

(1 ){ (1 ) } {  (1 ) }

(1 )

d d d  =  d d d

x x x

u w

x y z y y y
J

u w u w

z z z

u w

u

w u w u

w wu u

u w u w u u w u w

u u

u

x y z u u w
 (4)

Using (1), (2), (3) and (4) in the given triple integral I, we have

 

I u w w u u u w

u w u

3 2 2

7 2 2 1 2

1

2

1 1 1

1 1

( )( )( )

( ) (/ /

d d d

) ( )

1

2

1

21 w u wd d d

Example 4.12  Examine if the following functions are functionally dependent. If 

they are, find also the functional relationship.

  (i) u x y x y y xsin sin ;1 1 2 21 1

 (ii) u y z x z w x yz y; ;2 4 22 2

  (i) u x y x y y xsin sin ;1 1 2 21 1
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u

x x

u

y y x
y

xy

x

1

1

1

1
1

12 2

2

2
; ; ;

yy

xy

y
x

1
1

2

2

Now
 

( , )

( , )

( )(

u

x y

x y

y
xy

x

xy

y
x

xy

x

1

1

1

1

1
1 1

1

1 1

2 2

2

2 2

2

2 y

xy

x y2 2 2
1 1

1 1

0

) ( )( )

.

∴ u and  are functionally dependent by property (3).

Now

 

sin sin (sin sin )

sin (sin )cos (sin ) cos (sin )

u x y

x y x

1 1

1 1 1 ssin (sin )

cos cos ( ) cos cos ( )

1

1 2 1 2

2

1 1

1

y

x y x y

x y y 11 2x

.

∴ The functional relationship between u and  is  = sin u.

(ii) u y z x z w x yz y; ;2 4 22 2

 

u

x x

w

x

u

y y

w

y
y z

u

z z

0 1 1

1 0 4 4

1 4

; ;

; ;

; zz
w

z
y; 4

Now

 

( , , )

( , , )

u w

x y z
z

y z y

0 1 1

1 0 4

1 4 4 4
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4 4 4 4 0y y z z .

∴ u,  and w are functionally dependent

Now w z yz y

y z u

2 4 2

2 2

2 2

2 2

∴ The functional relationship among u,  and w is 2u2 =  − w.

Example 4.13 Given that 
dx

a b x a b
a b

cos
,

0
2 2

 find

 

d
and

d

x

a b x

x x

a b x

x

a b x a b

cos

cos

cos

cos

2

0

2

0

2 2
0

d

 

(1)

Differentiating both sides of (1) with respect to a, we get

a a b x
x

a a b

1

2 2
0

cos
,d  since the limits of integration are constants

i.e., 
d

/
x

a b x
a b a

cos

/

2

2 2
3 2

0

1 2 2

i.e., 
dx

a b x

a

a bcos
/2

2 2
3 2

0

Differentiating both sides of (1) with respect to b, we get

  
b a b x

x
b a b

1

0
2 2cos

d

i.e.,

 

1
1 2 2

2

0

2 2
3 2

a b x
x x a b b

cos
cos /

/

d

i.e.,

 

cos

cos
.

/

x

a b x
x

b

a b
2

2 2
3 2

0

d
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Example 4.14  By differentiating inside the integral, find the value of 
log

.
1

1 2

0

xy

y
y

x

d

Hence find the value of log
.

1

1 2

0

1 x

x
xd

Let  f x
xy

y
y

x log 1

1 2

0

d  (1)

Differentiating both sides of (1) with respect to x, we have

f x
x

xy

y
x

x

xy

y
x

x

x

d

d
d

d

log

log lo

1

1

1

1

2

0

2

0

gg

log

1

1

1 1

1

2

2

2

x

x

x

x

y

xy y
y

d

d

by Leibnitz's rule

d
x

x

x

x xy x

y x

y

x

x

2

2

0

2 2 2

0

1

1 1

1

1 1
ddy

x

x

log
,

1

1

2

2

by resolving the integrand in the first term into partial fractions

 

1

1
1

1

2

1

1
1

12 2

2

2

1

0
x

xy
x

y
x

x
y

x

log log tan
log 11

1

1

2

1

1
1

1

2

2

2

2

2

1

x

x

x
x

x

x
xlog tan

 

(2)

Integrating both sides of (2) with respect to x, we have

f x x x
x

x
x x c

x x

1

2
1

1

1

2
1

2 1

2

1

1

log tan tan

tan log

d d

22 1

2

1

2

2

1

1

tan

tan

x
x

x
x

x x

x
x c

d

d
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1

2
11 2tan logx x c  (2)

Now putting x = 0 in (2), we get

 c = f(0) = 0, by (1)

∴

 

f x
xy

y
y x x

x log
tan log

1

1

1

2
1

2

0

1 2d  (3)

Putting x = 1 in (3), we get

 

log
tan log

log

1

1

1

2
1 2

8
2

2

0

1

1y

y
yd

Since y is only a dummy variable,

 

log
log

1

1 8
2

2

0

1
x

x
xd

Example 4.15 Show that 
d

d
d

a

x

a
x a a a

a

tan tan log1

0

1 2

2

2
1

2
1 .

 

d

d
d d

d

da

x

a
x

a

x

a
x

a

a a
atan tan tan1 1 1

2
2 ,

ta

00

2

2
0

2

22

2

1

1

2

aa

a

x

a

x

a
x a

by Leibnitz's rule

d nn

tan

log tan

1

2 2

0

1

2 2

0

1

2

2

2

1

2
2

a

x

x a
x a a

x a a a

a

a

d
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1

2
2

2
1

2
1

4 2

2

1

1 2

log tan

tan log

a a

a
a a

a a a

Example 4.16 If I e x
x

a

x

2
2

0

d , prove that 
d

d

I

a
I2 . Hence find the value of I.

 

I e x
x

a

x

2
2

0

d

. 

(1)

Differentiating both sides of (1) with respect to a, we have

 

d

d
d

d

I

a a
e x

e
a

x

x
a

x

x
a

x

0

0

2

2
2

2

2
2

2 2
xx

e y x
a

y
y

a

x

e

a

y
y

y
a

y

2

2

2

2

2

0

0

2

2

d on putting or,

ddy

i.e., 
d

d

I

a
I2  (2)

∴

 

d
d

I

I
a2

Solving, we get log I = log c – 2a

∴ I = ce−2a (3)

When a I e xx0
2

2

0

, d  (4)

Using (4) in (3), we get
 
c

2
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Hence I e a

2

2 .

EXERCISE 4(b)

Part A

(Short Answer Question )

 1.  Write down the Taylor’s series expansion of f (x + h, y + k) in a series of (i) 

powers of h and k (ii) power of x and y.

 2.  Write down the Maclaurin’s series expansion of (i) f (x, y), (ii) f (x + h, y + k).

 3. Write down the Taylor’s series expansion of f (x, y) near the point (a, b).

 4. Write down the Maclaurin’s series for e x + y.

 5. Write down the Maclaurin’s series for sin (x + y).

 6. Define Jacobian.

 7. State any three properties of Jacobians.

 8.  State the condition for the functional dependence of three functions u(x, y, z), 

(x, y, z) and w(x, y, z).

 9. Prove that f x y x y f r r r r, cos , sin .d d d d

10. Show that f x y x y f u u u u, ( ), .d d d d1

11.  If x = u (1 + ) and y = (1 + u), find the Jacobian of x, y with respect to u, .

12.  State the Leibnitz’s rule for differentiation under integral sign, when both the 

limits of integration are variables.

13.  Write down the Leibnitz’s formula for 
d

d
d

x
f x y y

a

b x

( , ) ,  where a is a con-

stant.

14.  Write down the Leibnitz’s formula for 
d

d
d

x
f x y y

a x

b

( , ) ,  where b is a 

 constant.

15. Evaluate 
d

d
d

y
x y xlog( ) ,2 2

0

1

without integrating the given function.

Part B

16. Expand ex sin y in a series of powers of x and y as far as the terms of the third 

degree.

17.  Find the Taylor’s series expansion of ex cos y in the neighbourhood of the 

point 1
4

,  upto the second degree terms.
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18.  Find the Maclaurin’s series expansion of ex log (1 + y) upto the terms of the 

third degree.

19.  Find the Taylor’s series expansion of tan 1 y

x
 in powers of (x − 1) and (y − 1) 

upto the second degree terms.

20.  Expand x2y + 3y − 2 in powers of (x − 1) and (y + 2) upto the third degree 

terms.

21.  Expand xy2 + 2x − 3y in powers of (x + 2) and (y − 1) upto the third degree 

terms.

22.  Find the Taylor’s series expansion of yx at (1, 1) upto the second  degree 

terms.

23.  Find the Taylor’s series expansion of e xy at (1, 1) upto the third degree 

terms.

24. Using Taylor’s series, verify that

cos ( )
( )

!

( )

!
x y

x y x y
1

2 4

2 4

25. Using Taylor’s series, verify that

tan ( ) ( ) ( )1 31

3
x y x y x y

26. If x = u (1 − ), y = u , verify that

( , )

( , )

( , )

( , )

x y

u

u

x y
1

27.  (i)  if x = u2 – 2 and y = 2u , find the Jacobian of x and y with respect to u 

and .

 (ii) if u = x2 and  = y2, find ( , )

( , )

u

x y

28. If x = a cosh u cos  and y = a sinh u . sin , show that

( , )

( , )
(cosh cos ).

x y

u

a
u

2

2
2 2

29. If x = r cos , y = r sin , z = z, find ( , , )

( , , )

x y z

r z

30.  If F = xu +  – y, G = u2 + y + w and H = zu –  + w, compute 

( , , )

( , , )
.

F G H

u w

31. If u = xyz,  = xy + yz + zx and w = x + y + z, find

 

u w

x y z

, ,

, ,
.

32.  Examine the functional dependence of the functions u
x y

x y
 and  

xy

x y( )
.

2
 If they are dependent, find the relation between them.
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33.  Are the functions u
x y

xy1
 and  = tan−1 x + tan−1 y functionally  dependent? 

If so, find the relation between them.

34.  Are the functions f
1 
= x + y + z, f

2
 = x2 + y2 + z2 and f

3
 = xy + yz + zx function-

ally dependent? If so, find the relation among f
1
, f

2
 and f

3
.

35.  If e f y y xe
x y

x

x( ) ,d

0

2  prove that f (x) =

 

e x . [Hint: Differentiate 

both sides with respect to x].
Use the concept of differentiation under integral sign to evaluate the following:

36. 
d

Use
d

0

x

x a

x

x a

x x

( )2 2 2

0

2 2
Hint:

37. x x x x xm n m

0

1

(log ) d Use d
0

1

Hint:

38. e ax xx2

0

2cos d

39. 
e x

x
x

x

x
x

ax sin sin
d dand hence

0 0

40. 
x

x
x m

m 1
0

0

1

log
,d .

4.5  MAXIMA AND MINIMA OF FUNCTIONS OF TWO 

VARIABLES

Students are familiar with the concept of maxima and minima of a function of one 

variable. Now we shall consider the maxima and minima of a function of two variables.

A function f (x, y) is said to have a relative maximum (or simply maximum) at 

x = a and y = b, if f (a, b) > f (a + h, b + k) for all small values of h and k.

A function f(x, y) is said to have a relative maximum (or simply maximum) at 

x = a and y = b, if f(a, b) < f (a + h, b + k) for all small values of h and k.

A maximum or a minimum value of a function is called its extreme value. We give 

below the working rule to find the extreme values of a function f (x, y):

(1) Find f

x
 and f

y
.
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(2)  Solve the equations f

x
0 and f

y
0 simultaneously. Let the solutions be 

(a, b); (c, d);…

Note  The points like (a, b) at which 
f

x
0 and 

f

y
0  are called stationary 

points of the function f (x, y). The values of f (x, y) at the stationary points are called 

stationary values of f (x, y).

(3)  For each solution in step (2), find the values of A
f

x
B

f

x y
C

f

y

2

2

2 2

2
, ,

d
 

and Δ = AC − B2.

(4) (i)  If Δ > 0 and A (or C) < 0 for the solution (a, b) then f (x, y) has a maximum 

value at (a, b).

 (ii)  If Δ > 0 and A (or C) > 0 for the solution (a, b) then f (x, y) has a minimum 

value at (a, b).

 (iii)  If Δ < 0 for the solution (a, b), then f (x, y) has neither a maximum nor a 

minimum value at (a, b). In this case, the point (a, b) is called a saddle 

point of the function f (x, y).

 (iv)  If Δ = 0 or A = 0, the case is doubtful and further investigations are required 

to decide the nature of the extreme values of the function f (x, y).

4.5.1 Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three (or more) 

variables say f (x, y, z) which are not independent but are connected by some given 

relation  (x, y, z) = 0. The extreme values of f (x, y, z) in such a situation are called 

constrained extreme values.

In such situations, we use  (x, y, z) = 0 to eliminate one of the variables, say 

z from the given function, thus converting the function as a function of only two 

variables and then find the unconstrained extreme values of the converted function. 

[Refer to examples (4.8), (4.9), (4.10)].

When this procedure is not practicable, we use Lagrange’s method, which is 

comparatively simpler.

4.5.2 Lagrange’s Method of Undetermined Multipliers

Let u f x y z, ,  (1)

be the function whose extreme values are required to be found subject to the 

constraint

 
x y z, , 0

 
(2)

The necessary conditions for the extreme values of u are f

x

f

y

f

z
0 0 0, and
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∴ f

x
x

f

y
y

f

z
zd d d 0  (3)

From (2), we have

 x
x

y
y

z
zd d d 0

 

(4)

Now (3) + λ × (4), where λ is an unknown multiplier, called Langrange multiplier, 

gives

 

f

x x
x

f

y y
y

f

z z
d d 0

 

(5)

Equation (5) holds good, if

 

f

x x
0  (6)

 

f

y y
0  (7)

 

f

z z
0  (8)

Solving the Equations (2), (6), (7) and (8), we get the values of x, y, z, λ, which give 

the extreme values of u.

Note 

 (1)  The Equations (2), (6), (7) and (8) are simply the necessary conditions for 

the extremum of the auxiliary function (f + λ ), where λ is also treated as 

a variable.

 (2)  Lagrange’s method does not specify whether the extreme value found out 

is a maximum value or a minimum value. It is decided from the physical 

consideration of the problem.

WORKED EXAMPLE 4(c)

Example 4.1  Examine f (x, y) = x3 + 3xy2 − 15x2 − 15y2 + 72x for extreme values.

f x y x xy x y x

f x y x

f xy y

f

x

y

xx

( , ) 3 2 2 2

2 2

3 15 15 72

3 3 30 72

6 30

6 30 6 6 30x f y f xxy y; ;
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The stationary points are given by f 
x
 = 0 and  f 

y
 = 0

i.e., 3 10 24 02 2( )x y x      (1)

and 
6 5 0y x( )  

    (2)

From (2), x = 5 or y = 0 

When x = 5, from (1), we get y2 − 1 = 0; ∴ y = ± 1

When y = 0, from (1), we get x2 − 10x + 24 = 0

∴ x = 4, 6.

The stationary points are (5, 1), (5, −1), (4, 0) and (6, 0)

At the point (5, ±1), A = f
xx

 = 0; B = f
xy

 = ±6; C = f
yy

 = 0 

Though AC − B2 < 0, A = 0

∴ Nothing can be said about the maxima or minima of f (x, y) at (5, ±1).

At the point (4, 0), A = −6, B = 0, C = −6

∴ AC − B2 = 36 > 0 and A < 0

∴ f (x, y) is maximum at (4, 0) and maximum value of f (x, y) = 112.

At point (6, 0), A = 6, B = 0, C = 6

∴ AC − B2 = 36 > 0 and A > 0.

∴ f (x, y) is minimum at (6, 0) and the minimum value of f (x, y) = 108.

Example 4.2  Examine the function f (x, y) = x3y2(12 − x − y) for extreme values.

f x y x y x y x y

f x y x y x y

f x y

x

y

( , ) 12  

 4  

 2

3 2 4 2 3 3

2 2 3 2 2 3

3

36 3

24 xx y x y

f xy x y xy

f x y x y x y

f

xx

xy

yy

4 3 2

2 2 2 3

2 3 2 2

3

72 6

72 9

2

 12

 8

44 63 4 3x x x y 2

The stationary points are given by f
x
 = 0;  f

y
 = 0

i.e., x2 y2 (36 − 4x − 3y) = 0  (1)

and x3 y (24 − 2x − 3y) = 0 (2)

Solving (1) and (2), the stationary points are (0, 0), (0, 8), (0, 12), (12, 0), (9, 0) 

and (6, 4).

At the first five points, AC − B2 = 0.

∴ Further investigation is required to investigate the extremum at these points. At 

the point (6, 4),  A = −2304, B = −1728, C = −2592 and AC − B2 > 0.

Since AC – B2 > 0 and A < 0,  f (x, y) has a maximum at the point (6, 4).

Maximum value of f (x, y) = 6912.
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Example 4.3  Discuss the maxima and minima of the function f (x, y) = x4 + y4 −2x2 

+ 4xy – 2y2.

 

f x y x y x xy y

f x x y

f y x y

f x

x

y

xx

( , ) .

( )

( )

(

4 4 2 2

3

3

2

2 4 2

4

4

4 3 1 4 4 3 12); ; ( )f f yxy yy

The possible extreme points are given by

f fx y0 0and

i.e.,
 

x x y3 0
 

(1)

and 
 

y x y3 0
 

(2)

Adding (1) and (2), x y y x3 3 0  (3)

Using (3) in (1):
 

x x3 2 0

i.e., x x x( ) , ,2 2 0 0 2 2

and the corresponding values of y are 0, 2 2, .

∴ The possible extreme points of f (x, y) are (0, 0), ( , ) ( , ).2 2 2 2and

At the point (0, 0), A = −4, B = 4 and C = −4

AC − B2 = 0

∴ The nature of f (x, y) is undecided at (0, 0). At the points ( , ),2 2  A = 20,  

B = 4, C = 20

AC − B2 > 0

∴ f (x, y) is minimum at the points ( , ),2 2  and minimum value of f (x, y) = 8.

Example 4.4  Examine the extrema of f x y x xy y
x y

( , ) 2 2 1 1
.

 

f x y x xy y
x y

( , ) 2 2 1 1

 
f x y

x
x 2

1
2

 
f x y

y
y 2

1
2
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f
x

f f
y

xx xy yy2
2

1 2
2

3 3
; ;

The possible extreme points are given by f
x
 = 0 and  f

y
 = 0.

i.e., 2
1

0
2

x y
x

 (1)

and

 

x y
y

2
1

0
2

 

(2)

(1) – (2) gives x y
y x

1 1
0

2 2

i.e., x y
x y

x y

2 2

2 2
0

i.e., ( )( )x y x y x y2 2 0

∴ x y  (3)

Using (3) in (1), 3x3 – 1 = 0

∴

 

x y
1

3

1

3

At the point 
1

3

1

3

1

3

1

3

, , A = 8, B = 1 and C = 8

∴ AC − B2 > 0

∴ f (x, y) is minimum at 
1

3

1

3

1

3

1

3

,  and minimum value of f x y( , ) .3
4

3

Example 4.5  Discuss the extrema of the function f (x, y) = x2 − 2xy + y2 + x3 − y3 

+ x4 at the origin

f x y x xy y x y x

f x y x x

f x y y

f

x

y

xx

( , ) .2 2 3 3 4

2 3

2

2

2 2 3 4

2 2 3

2 6 12 2x x

 f f yxy yy2 2 6;
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The origin (0, 0) satisfies the equations f 
x
 = 0 and f 

y
 = 0.

∴ (0, 0) is a stationary point of f (x, y).

At the origin, A = 2, B = –2 and C = 2

∴ AC − B2 = 0

Hence further investigation is required to find the nature of the extrema of f (x, y) 

at the origin.

Let us consider the values of f (x, y) at three points close to (0, 0), namely at (h, 0), 

(0, k) and (h, h) which lie on the x-axis, the y-axis and the line y = x respectively.

f h h h h

f k k k k k k

f h h h

( , ) .

( , ) ( ) ,

( , )

0 0

0 1 0 0 1

2 3 4

2 3 2 when

44 0

Thus f (x, y) > f (0, 0) in the neighbourhood of (0, 0).

∴ (0, 0) is a minimum point of f (x, y) and minimum value of f (x, y) = 0.

Example 4.6  Find the maximum and minimum values of

 

f x y x y x y x y

f x y x y x y

fx

( , ) sin sin sin ( ); , .

( , ) sin sin sin ( )

0

ccos sin sin ( ) sin sin cos ( )

sin cos sin ( ) sin

x y x y x y x y

f x y x y xy ssin cos ( )y x y

i.e.,
 

f y x yx sin sin ( )2

and

 

f x x y

f y x y

f y x y y

y

xx

xy

sin sin ( )

sin cos ( )

sin cos ( ) cos

2

2 2

2 ssin ( )

sin ( )

sin cos ( )

2

2 2

2 2

x y

x y

f x x yyy

For maximum or minimum values of f (x, y),  f
x
 = 0 and  f

y
 = 0

i.e., sin y sin (2x + y) = 0 and sin x · sin (x + 2y) = 0

i.e., 
1

2
2 2 2 0[cos cos ( )]x x y  and 

1

2
2 2 2 0[cos cos ( )]y x y

i.e., cos cos ( )2 2 2 0x x y  (1)

and cos cos ( )2 2 2 0y x y  (2)

From (1) and (2), cos 2x = cos 2y. Hence x = y (3)

Using (3) in (1), cos 2x – cos 4x = 0

i.e., 2 sin x sin 3x = 0

∴ sin x = 0  or  sin 3x = 0

∴ x = 0, π and 3x = 0, π, 2π i.e., x 0
3

2

3
, ,
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∴ The admissible values of x are 0, 
3

2

3
, .

Thus the maxima and minima of f (x, y) are given by (0, 0)

 3 3
,

 

and

 

2

3

2

3
,

At the point (0, 0), A = B = C = 0

∴ AC − B2 = 0

Thus the extremum of f (x, y) at (0, 0) is undecided.

At the point 
3 3

3
3

2
, , ,A B  and C 3  and AC B2 3

3

4
0. 

As AC – B2 > 0 and A < 0, f (x, y) is maximum at 
3 3

, .

Maximum value of f x y( , )
3

2

3

2

3

2

3 3

8
.

At the point 
2

3

2

3
3

3

2
, , ,A B  and C 3  and AC B2 3

3

4
0.

As AC – B
2
 > 0 and A > 0,  f (x, y) is maximum at 

2

3

2

3
, .

Minimum value of f x y( , )
3 3

8
.

Example 4.7  Identify the saddle point and the extremum points of

f x y x y x y

f x y x y x y

f x x f yx y

( , ) .

( , )

;

4 4 2 2

4 4 2 2

3

2 2

2 2

4 4 4 4yy

f x f f yx x x y yy

3

2 212 4 0 4 12; ; .

The stationary points of f (x, y) are given by f
x
 = 0 and  f

y
 = 0

i.e., 4 0 4 03 3( ) ( )x x y yand

i.e., 4 1 0 4 1 02 2x x y y( ) ( )and

∴ x = 0 or ±1 and y = 0 or ±1.

At the points (0, 0), (±1, ±1), AC − B2 < 0

∴ The points (0, 0), (1, 1), (1, −1), (−1, 1) and (−1, −1) are saddle points of the 

function f (x, y).

At the point (±1, 0), AC − B2 > 0 and A > 0

∴ f (x, y) attains its minimum at (±1, 0) and the minimum value is −1.
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At the point (0, ±1), AC − B2 > 0 and A < 0

∴ f (x, y) attains its maximum at (0, ±1) and the maximum value is + 1.

Example 4.8  Find the minimum value of x2 + y2 + z2, when x + y + z = 3a.

Here we try to find the conditional minimum of x2 + y2 + z2, subject to the condition

 
x y z a3

 (1)

Using (1), we first express the given function as a function of x and y.

From (1), z = 3a − x − y.

Using this in the given function, we get

 

f x y x y a x y

f x a x y

f y a x y

f

x

y

xx

( , ) ( )

( )

( )

;

2 2 23

2 2 3

2 2 3

4 ff fxy yy2 4;

The possible extreme points are given by f
x 
= 0 and  f

y
 = 0.

i.e., 2x + y = 3a (2)

and x + 2y = 3a (3)

Solving (2) and (3), we get the only extreme point as (a, a)

At the point (a, a), AC – B2 > 0 and A > 0

∴ f (x, y) is minimum at (a, a) and the minimum value of f (x, y) = 3a2.

Example 4.9  Show that, if the perimeter of a triangle is constant, its area is maxi-

mum when it is equilateral.

Let the sides of the triangle be a, b, c.

Given that a + b + c = constant

 = 2k, say (1)

Area of the triangle is given by

 
A s s a s b s c( ) ( ) ( )

 
(2)

where s
a b c

2

Using (1) in (2),

 
A k k a k b k c( ) ( ) ( )

 
(3)

A is a function of three variables a, b , c

Again using (1) in (3), we get

 
A k k a k b a b k( ) ( ) ( )
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A is maximum or minimum, when f (a, b) = A

k

2

 = (k − a) (k − b)(a + b − k) is 

maximum or minimum.

  

f k b k a a b k

k b k a b

f k a k b

a

b

( ){( ) ( ) ( )}

( ) ( )

( ){(

1 1

2 2

)) ( ) ( )}

( ) ( )

( );

1 1

2 2

2 3 2 2

a b k

k a k a b

f k b f k a baa ab ;;

( )f k aab 2

The possible extreme points of f (a, b) are given by

f
a
 = 0 and f

b
 = 0

i.e., (k − b) (2k − 2a − b) = 0 and (k − a)(2k − a − 2b) = 0

∴ b = k or 2a + b = 2k and a = k or a + 2b = 2k

Thus the possible extreme points are given by

(i) a = k, b = k; (ii) b = k, a + 2b = 2k; (iii) a = k, 2a + b = 2k and (iv) 2a + b = 2k, 

a + 2b = 2k.

   (i) gives a = k, b = k and hence c = 0.

  (ii) gives a = 0, b = k and hence c = k.

 (iii) gives a = k, b = 0 and hence c = k.

All these lead to meaningless results.

Solving 2a + b = 2k and a + 2b = 2k, we get

 
a

k
b

k2

3

2

3
and

At the point
 

2

3

2

3

k k
, ,

A f
k

B f
k

C f
k

aa ab bb

2

3 3

2

3
; ;

AC − B2 > 0 and A < 0

∴ f (a, b) is maximum at

 

2

3

2

3

k k
,

Hence the area of the triangle is maximum when
 
a

k
b

k2

3

2

3
and

.

When

 

a
k

b
k

c k a b
k2

3

2

3
2

2

3
, ; ( )

Thus the area of the triangle is maximum, when a b c
k2

3
,  i.e., when the 

triangle is equilateral.
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Example 4.10  In a triangle ABC, find the maximum value of cos A cos B cos C. In 

triangle ABC, A + B + C = π.

Using this condition, we express the given function as a function of A and B

Thus

 

cos cos cos cos cos cos { ( )}

cos cos cos ( )

A B C A B A B

A B A B

Let

 

f A B A B A B

f B A A B A A BA

( , ) cos cos cos ( )

cos { sin cos ( ) cos sin( ))}

cos sin ( )

cos { sin cos ( ) cos sin( )}

cos

B A B

f A B A B B A B

A

B

2

ssin ( )

cos cos ( )

cos cos ( ) sin sin (

A B

f B A B

f B A B B A B

AA

AB

2

2 2

2 2 ))

cos ( )

cos cos ( )

2 2

2 2

A B

f A A BBB

The possible extreme points are given by

i.e., 

f f

B A B

A B0 0

2 0

and

cos sin ( )  
(1)

and cos A sin (A + 2B) = 0

Thus the possible values of A and B are given by (i) cos B = 0, cos A = 0; (ii) cos

B = 0, sin (A + 2B) = 0; (iii) sin (2A + B) = 0, cos A = 0 and (iv) sin (2A + B) = 0, sin 

(A + 2B) = 0

i.e., ( ) , ; ( ) , , ( ) ,

( )

i ii iii and

iv

A B B A A B
2 2 2

0
2

0

2

or or

AA B A B, 2 or

A B
3 3

,

The first three sets of values of A and B lead to meaningless results.

Hence A B
3 3

,
 
give the extreme point.

At  this point

 
3 3

1
1

2
1 02, , ; ; .A f B f f AC BAA AB BB and

Also A < 0

∴ f (A, B) is maximum at

 

A B
3  

and the maximum value 

 

cos cos cos .
3 3

2

3

1

8
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Example 4.11  Find the maximum value of xm yn zp, when x + y + z = a.

Let f = xm yn zp and  = x + y + z – a.

Using the Lagrange multiple , the auxiliary function is g = (f + λ ).

This stationary points of g = ( f + λ ) are given by g
x
 = 0, g

y
 = 0, g

z
 = 0 and g  = 0

i.e.,
   

mx y zm n p1 0
  

(1)

 
nx y zm n p1 0

 
(2)

 
px y zm n p 1 0

 
(3)

 
x y z a 0

 (4)

From (1), (2) and (3), we have

mx y z nx y z px y z

m

x

n

y

p

z

m n p

x y z

m n p m n p m n p1 1 1.

.,i.e

mm n p

a
, ( )by 4

∴ Maximum value of  f occurs,

when

 

x
am

m n p
y

an

m n p
z

ap

m n p
, ,

Thus maximum value of

 

f
a m n p

m n p

m n p m n p

m n p( )

Example 4.12  A rectangular box, open at the top, is to have a volume of 32 c.c. Find 

the dimensions of the box, that requires the least material for its construction.

Let, x, y, z be the length, breadth and height of the respectively.

The material for the construction of the box is least, when the area of surface of the 

box is least.

Hence we have to minimise

 
S xy yz zx2 2 ,

subject to the condition that the volume of the box, i.e., xyz = 32.

Here f = xy + 2yz + 2zx;  = xyz − 32.

The auxiliary function is g = f + , where  is the Lagrange multiplier. 

The stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z
 = 0 and g

λ
 = 0

i.e.,
 

y z yz2 0
 

(1)

 
x x zx2 0

 
(2)

 
2 2 0x y xy

 
(3)

 
xyz 32 0

 (4)
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From (1), (2) and (3), we have

 

1 2

z y  

(5)

 

1 2

z x  

(6)

 

2 2

y x  

(7)

Solving (5), (6) and (7), we get

 
x y z

4 4 2
, and

Using these values in (4), we get

32
32 0

3

i.e.,
 

1

∴
 

x y z4 4 2, , .

Thus the dimensions of the box and 4 cm; 4 cm and 2 cm.

Example 4.13  Find the volume of the greatest rectangular parallelopiped inscribed 

in the ellipsoid whose equation is
 x

a

y

b

z

c

2

2

2

2

2

2
1.

Let 2x, 2y, 2z be the dimensions of the required rectangular parallelopiped.

By symmetry, the centre of the parallelopiped coincides with that of the ellipsoid, 

namely, the origin and its faces are parallel to the co-ordinate planes.

Also one of the vertices of the parallelopiped has co-ordinates (x, y, z), which 

satisfy the equation of the ellipsoid.

Thus, we have to maximise V = 8xyz, subject to the condition
 x

a

y

b

z

c

2

2

2

2

2

2
1

Here  f = 8xyz and 
x

a

y

b

z

c

2

2

2

2

2

2
1

The auxiliary function is g = f + λ , where λ is the Lagrange multiplier. The stationary 

points of g are given by

g g g gx y z0 0 0 0, , and

i.e.,
 

8
2

0
2

yz
x

a  
(1)

 
8

2
0

2
zx

y

b  
(2)
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8

2
0

2
xy

z

c  
(3)

 

x

a

y

b

z

c

2

2

2

2

2

2
1

 

(4)

Multiplying (1) by x,

 

2
8

2

2

x

a
xyz

Similarly

 

2 2
8

2

2

2

2

y

b

z

c
xyz

 

from (2) and (3)

Thus
 

x

a

y

b

z

c
k

2

2

2

2

2

2

 
say

Using in (4),

 
3 1

1

3
k k

 

x
a

y
b

z
c

3 3 3
, and

 
Maximum volume

8

3 3

abc
.

Example 4.14  Find the shortest and the longest distances from the point (1, 2, −1) 

to the sphere x2 + y2 + z2 = 24.

Let (x, y, z) be any point on the sphere. Distance of the point (x, y, z) from (1, 2, −1) 

is given by d x y z1 2 1
2 2 2

.

We have to find the maximum and minimum values of d or equivalently

d x y z2 2 2 2
1 2 1 ,

subject to the constant x2 +y2 +z2 – 24 = 0

Here

  

f x y z

x y z

1 2 1

24

2 2 2

2 2 2

and

The auxiliary function is g = f + , where  is the Lagrange multiplier. The 

stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z 
= 0

  
and g

λ
 = 0.

i.e.,
 

2 1 2 0x x
 

(1)

 
2 2 2 0y y

 
(2)

 
2 1 2 0z z

 
(3)

 
x y z2 2 2 24

 (4)
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From (1), (2) and (3), we get

 

x y z
1

1

2

1

1

1
, ,

Using these values in (4), we get

 

6

1
24 1

1

42

2
i.e.,

∴
 

1

2
or

3

2

When

 

1

2
, the point on the sphere is (2, 4, −2)

When

 

3

2
, the point on the sphere is (−2, −4, 2)

When the point is (2, 4, −2),
 
d 1 2 1 6

2 2 2

When the point is (−2, −4, 2), 
 
d 3 6 3 3 6

2 2 2

∴ Shortest and longest distances are 6 and 3 6  respectively.

Example 4.15  Find the point on the curve of intersection of the surfaces z = xy + 5 

and x + y + z = 1 which is nearest to the origin.

Let (x, y, z) be the required point.

It lies on both the given surfaces.

∴ xy – z + 5 = 0 and x + y + z = 1

Distance of the point (x, y, z) from the origin is given by d x y z2 2 2

We have to minimize d or equivalently

 
d x y z2 2 2 2 ,

subject to the constraints xy – z + 5 = 0 and x + y + z – 1 = 0.

Note  Here we have two constraint conditions. To find the extremum of f (x, y, z) 

subject to the conditions 
1
 (x, y, z) = 0 and 

2
 (x, y, z) = 0, we form the auxiliary 

function

g = f + 
1 1

 + 
2 2

, where 
1
 and 

2
 are two Lagrange multipliers.

The stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z
 = 0, g

λ1
 = 0 and g

λ2
 = 0.

In this problem,  f = x2 + y2 + z2, 
1
 = xy – z + 5 and 

2
 = x + y + z – 1.

The auxiliary function is g = f + 
1 1

 + 
2 2

, where 
1
, 

2
 are Lagrange multipliers.

The stationary points of  g are given by

 
2 01 2x y

 
(1)

 
2 01 2y x

 
(2)

 

2 01 2z

 

(3)
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xy z 5 0

 

(4)

 

x y z 1 0

 

(5)

Eliminating 
1
, 

2
 from (1), (2), (3), we have

 

2 1

2 1

2 1 1

0

1 2 0

02 2

x y

y x

z

x x y y y zx

x y x y z x y

x y x y z 1 0

 x y x y zor 1 0

Using x = y in (4) and (5), we have

 
z x2 5

 
(6)

and
 

z x1 2
 

(7)

From (6) and (7), x2 + 2x + 4 = 0, which gives only imaginary values for x.

Hence x y z 1 0  (8)

Solving (5) and (8), we get x y 0  (9)

and z 1  (10)

Using (10) in (4), we get xy 4  (11)

Solving (9) and (11), we get x y2 2and .

∴ The required points are (2, −2, 1) and (−2, 2 ,1) and the shortest distance is 3.

EXERCISE 4(c)

Part A

(Short Answer Questions)

 1.  Define relative maximum and relative minimum of a function of two variables.

 2.  State the conditions for the stationary point (a, b) of f (x, y) to be (i) a maxi-

mum point (ii) a minimum point and (iii) a saddle point.

 3.  Define saddle point of a function f (x, y).

 4.  Write down the conditions to be satisfied by f (x, y, z) and  (x, y, z), when we 

extremise f (x, y, z) subject to the condition  (x, y, z) = 0.

 5.  Find the minimum point of f (x, y) = x2 + y2 + 6x + 12.

 6.  Find the stationary point of f (x, y) = x2 – xy + y2 – 2x + y.

 7. Find the stationary point of f (x, y) = 4x2 + 6xy + 9y2 – 8x – 24y + 4.

i.e.,

i.e.,

i.e.,

∴
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 8. Find the possible extreme point of f x y x y
x y

( , ) .2 2 2 2

 9.  Find the nature of the stationary point (1, 1) of the function f (x, y), if f
xx

 = 

6xy3,  f
xy

 = 9x2 y2 and f
yy

 = 6x3 y.

10.  Given f
xx

 = 6x,  f
xy

 = 0,  f
yy

 = 6y, find the nature of the stationary point (1, 2) of 

the function  f (x, y).

Part B

Examine the following functions for extreme values:

11.  x3 +y3 − 3axy

12. x3 + y3 −12x − 3y + 20

13. x4 + 2x2 y − x2 + 3y2

14. x3 y −3x2 − 2y2 −4y − 3

15. x4 + x2 y + y2 at the origin

16.  x3 y2 (a – x –y)

17. x3 y2 (12 – 3x − 4y)

18.  xy
x y

27
1 1

19.  sin sin sin ( ), , .x y x y x y0
2

20.  Identify the saddle points and extreme points of the function xy (3x + 2y + 1).

21.  Find the minimum value of x2 + y2 + z2, when (i) xyz = a3 and (ii) xy + yz + 

zx = 3a2.

22.  Find the minimum value of x2 + y2 + z2, when ax + by + cz = p.

23.  Show that the minimum value of (a3 x2 + b3 y2 + c3 z2), when 

1 1 1 1 2 3

x y z k
k a b c, ( ) . is

24.  Split 24 into three parts such that the continued product of the first, square of 

the second and cube of the third may be minimum.

25.  The temperature at any point (x, y, z) in space is given by T = k x y z2, where 

k is a constant. Find the highest temperature on the surface of the sphere  

x2 + y2 + z2 = a2.

26.  Find the dimensions of a rectangular box, without top, of maximum  capacity 

and surface area 432 square meters.

27.  Show that, of all rectangular parallelopipeds of given volume, the cube has 

the least surface.

28.  Show that, of all rectangular parallelopipeds with given surface area, the cube 

has the greatest volume.

29.  Prove that the rectangular solid of maximum volume which can be inscribed 

in a sphere is a cube.

30.  Find the points on the surface z2 = xy + 1 whose distance from the origin is 

minimum.

31.  If the equation 5x2 + 6xy + 5y2 = 8 represents an ellipse with centre at the 

origin, find the lengths of its major and minor axes.
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    (Hint: The longest distance of a point on the ellipse from its centre gives the 

length of the semi-major axis. The shortest distance of a point on the ellipse 

from its centre gives the length of the semi-minor axis).

32.  Find the point on the surface z = x2 + y2, that is nearest to the point (3, −6, 4).

33.  Find the minimum distance from the point (3, 4, 15) to the cone x2 + y2 = 

4z2.

34.  Find the points on the ellipse obtained as the curve of intersection of the 

surfaces x + y = 1 and x2 + 2y2 + z2 = 1, which are nearest to and farthest from 

the origin.

35.  Find the greatest and least values of z, where (x, y, z) lies on the ellipse formed by 

the intersection of the plane x + y + z = 1 and the ellipsoid 16x2 + 4y2 + z2 = 16.

ANSWERS

Exercise 4(a)

 (2)  du = cos (xy2) (y2dx + 2xy dy)

 (3)  du = xy − 1 ∙ yx (y + x log y) dx + xy yx − 1 (x + y log x) dy

 (4)  du = y (1 + log xy) dx + x(1 + log xy) dy

 (5)  du = (y log a) axy dx + (x log a) axy dx

 (6)  8 a5t6 (4t + 7);

 (7) e t a t t t t t a ta t2 2 3 2 2 2 3 2 23sin sin cos sin /

 (8)  (cos t − e-t – sin t)/(e-t + sin t + cos t)

 (9)  x xy y

x xy y

2 2

2 2

2 2

4
;  (11) 

3

2

2 2x x ycos ( )

(12)  x(xy + 4y2 – 2x2)/(x + 2y); (14) 3.875

(15)  4.984 (16) 0.0043

(17)  0.006 cm3; 0.004 cm2 (18) 2

(19)  4(a + b + c)k (20) 1.5

(36)
  

2

0
z

u
;
 

(37)
 

2

2
0

z

(38)
  

2

2
0

z

u  
(39)

 

2

0
z

u
;

(40)
  

2

0
u

z z *

(41)   (i)

 

y y x y

x x y x

( log )

( log )
 

(ii)

 

y

x

     

(iii) y x y

x x y

tan logsin

log cos cot
 

(iv) log cot tan

logsec sec

y y x

x x y ycosec
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     (v) x y

x x( log )1

(42)  2a3xy/(ax – y2)3 (43)  2a2xy (3a4 + x2y2)/(a2x – y3)3

(47)  5% (50)  2.3%

(55)  5 3

324
.

Exercise 4(b)

 (4)  1
2

2

( )
( ) ...x y
x y

 (5) ( )
!
( ) ...x y x y

1

3

3

(11)  u +  + 1; (15) 2
11tan
y

(16)  y xy
x y y2 3

2 6
...

(17)

 

e
x y

x
x y y

2
1 1

4

1

2
1

4

1

2 4

2 2

( )
( )

( )

(18)
 

y xy
y

x y xy y
2

2 2 3

2

1

2

1

2

1

3

(19)
 4

1

2
1

1

2
1

1

4
1

1

4
12 2( ) ( ) ( ) ( )x y x y

(20) − 10 – 4 (x − 1) + 4(y + 2) – 2(x − 1)2 + 2(x − 1) (y + 2) + (x − 1)2 (y + 2)

(21) − 9 + 3 (x + 2) – 7(y − 1) + 2(x + 2) (y − 1) – 2(y − 1)2 + (x + 2) (y − 1)2

(22) 1 + (y − 1) + (x − 1) (y – 1) + …

(23)

 

e x y x x y y x1 1 1
1

2
1 2 1 1 1

1

6
1

3

2

2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )

(xx y x y y1 2
3

2
1 2

1

6
22 2 3) ( ) ( ) ( ) ( )

(27) (i) 4(u2 + 2)

  (ii) 4xy

(28) r

(30) x(y  + 1 − w) + z – 2u

(31) (x − y) (y − z) (z − x)

(32) u2 =  + 1

(33) u tan 
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(34) 
f f f1

2

2 32

(36)
 

1

2 3

1 2 2

a

x

a
ax x a{tan ( ) /( )}

(37)

 

( ) !

( )

1

1 1

n

n

n

m

(38)
 

1

2

2

e a

(39)
 

tan ;1 1

2a

(40) log (1 + m)

Exercise 4(c)

 (5) (−3, 0). (6) (1, 0).  (7) 0
4

3
,

 (8) (1, 1). (9) Saddle point. (10) Minimum point.

(11) Maximum at (a, a) if a < 0 and minimum at (a, a) if a > 0.

(12) Minimum at (2, 1) and maximum at (−2, −1).

(13) Minimum at 
3

2

1

4
,

(14) Maximum at (0, −1). (15) Minimum at (0, 0).

(16) Maximum at a a

2 3
,  (17) maximum at (2, 1). (18) Minimum at (3, 3).

(19) Maximum at 
3 3

,  and minimum at 
3 3

, .

(20) Saddle point are (0, 0), 1

3
0,  and 0

1

2
, ; maximum at 1

9

1

6
, .

(21) 3a2; 3a2. (22) p

a b c

2

2 2 2
 (24) 4, 8, 12.

(25) ka4

8
.  (26) 12, 12 and 6 metres.

(30) (0, 0, 1) and (0, 0, −1). (31) 4, 2. (32) (1, −2, 5).

(33) 5 5 . (34) 1

3

2

3
0 1 0 0, , ; ( , , ).  (35) 8

3

8

7
; .



Multiple Integrals

5Chapter

5.1 INTRODUCTION

When a function f(x) is integrated with respect to x between the limits a and b, we get 

f x x

a

b

( )d .

If the integrand is a funtion f (x,y) and if it is integrated with respect to x and 

y repeatedly between the limits x
0
 and x

1
 (for x) and between the limits y

0
 and y

1
 

(for y), 

we get a double integral that is denoted by the symbol f x y x y

x

x

y

y

( , )d d

0

1

0

1

.

Extending the concept of double integral one step further, we get the triple integral

f x y z x y z

x

x

y

y

z

z

( , , ) d d d

0

1

0

1

0

1

5.2 EVALUATION OF DOUBLE AND TRIPLE INTEGRALS

To evaluate f x y x y

x

x

y

y

( , )d d ,

0

1

0

1

f (x, y) with respect to x partially,

i.e. treating y as a constant temporarily, between x
0
 and x

1
. The resulting function got 

after the inner integration and substitution of limits will be a function of y. Then we 

integrate this function of y with respect to y between the limits y
0
 and y

1
 as usual.

The order in which the integrations are performed in the double integral is 

illustrated in Fig. 5.1.
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y1
x1

x0

f (x, y) dx dy

y0

Fig. 5.1

Note  Since the resulting function got after evaluating the inner integral is to be 

a function of y, the limits x
0
 and x

1
 may be either constants or functions of y.

The order in which the integrations are performed in a triple integral is illustrated 

in Fig. 5.2.

Fig. 5.2

dy dz

x1

x0

f (x, y, z) dx

y1
z1

z0
y0

x, we treat y and z 

as constants temporarily. The limits x
0
 and x

1
 may be constants or functions of y and 

z, so that the resulting function got after the innermost integration may be a function 

of y and z. Then we perform the middle integration with respect to y, treating z as a 

constant temporarily. The limits y
0
 and y

1
 may be constants or functions of z, so that 

the resulting function got after the middle integration may be a function of z only. 

Finally we perform the outermost integration with respect to z between the constant 

limits z
0
 and z

1
.

Note  Sometimes f x y x y

x

x

y

y

( , )d d

0

1

0

1

 is also denoted as d dy f x y x

x

x

y

y

( , )

0

1

0

1

 and

f x y z x y z

x

x

y

y

z

z

( , , )d d d

0

1

0

1

0

1

 is also denoted as d d ( , , ) dz y f x y z x

y

y

x

x

z

z

0

1

0

1

0

1

. If these

notations are used to denote the double and triple integrals, the integrations are 

performed from right to left in order.

5.3 REGION OF INTEGRATION

Consider the double integral f x y x y

y

y

c

d

( , )d d

( )

( )

1

2

. As stated above x varies from 
1
(y)

to 
2
(y) and y varies from c to d.

i.e. 
1
(y x

2
(y) and c y d.
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These inequalities determine a region in the xy-plane, whose boundaries are the 

curves x = 
1
(y), x = 

2
(y) and the lines y = c, y = d and which is shown in Fig. 5.3. 

This region ABCD is known as the region of integration of the above double integral.

y = d

y = c

x = 2 (y)x = 1 (y)

x

y

o

A B

D C

Fig. 5.3

Similarly, for the double integral f x y y x

x

x

a

b

( , )d d

( )

( )

1

2

, the region of integration

ABCD, whose boundaries are the curves y = 
1
(x), y = 

2
(x) and the lines x = a, x = 

b, is shown in Fig. 5.4.

x = bx = a

y =   2 (x)

y =   1 (x)
x

y

o

Fig. 5.4

For the triple integral 

z2

z1

2

1

2

1

(z)

(z)

(y, z)

(y, z)

f (x, y, z) dx dy dz,  the inequalities 
1
(y, z x 

2
(y, z); 

1
(z y

2
(z); z

1
z z

2
 hold good. These inequalities determine a 

domain in space whose boundaries are the surfaces x = 
1
(y, z), x = 

2
(y, z), y = 

1
(z), y = 

2
(z), z = z

1
 and z = z

2
. This domain is called the domain of integration of 

the above triple integral.

WORKED EXAMPLE 5(a)

Example 5.1 Verify that ( )d d ( )d dx y x y x y y x2 2

0

1

2 2

1

2

0

1

1

2

.

 L.S. = ( )d dx y x y2 2

0

1

1

2
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x
y x y

x

x
3

2

1

2

0

1

3
d

Note   y is treated a constant during inner integration with respect to x.

 
1

3 3 3

8

3

2

1

2 3

1

2

y y
y y

d

 R.S. ( )d d

d

x y y x

x y
y

y

y

2 2

1

2

0

1

2
3

0

1

1

2

3
xx

Note  x is treated a constant during inner integration with respect to y.

 x x
x

x2

0

1 3

0

1

7

3 3

7

3

8

3
d

Thus the two double integrals are equal.

Note  From the above problem we note the following fact: If the limits of 

integration in a double integral are constants, then the order of integration is immaterial, 

provided the relevant limits are taken for the concerned variable and the integrand is 

continuous in the region of integration. This result holds good for a triple integral also.

Example 5.2  Evaluate r r

a

4

000

2

sin d d d .

The given integral d d sin d

d sin d

r r

r

a

a

a

4

000

2

5

00

2

0
5

55

00

2

5

0

0

2

5

0

2

5

5

5

2

5

4

5

d sin d

( cos ) d

d

a

a

a
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Example 5.3 Evaluate 
d dx y

x y

y

1 2 2

0

1

0

1
2

The given integral 
1

1

1

1 1

2 2

0

1

0

1

2

1

2

2

( ) +
d d

tan

y x
x y

y

x

y

y

0

1

0

1

2
0

1

2

0

1

2

4 1

4
1

4

x

x y

y

y

y

y y

d

d

log

logg ( )1 2

Example 5.4  Evaluate xy x y x y

x

x

( ) d d

0

1

.

Since the limits for the inner integral are functions of x, the variable of inner integration 

should be y. Effecting this change, the given integral I becomes

 

I ( ) d dxy x y y x

x
y

x
y

x

x

y x

y x

0

1

2
2 3

2 3
ddx

x
x

x x

0

1

3
5 2

4 4

2

1

3 2 3

/ dx

x
x

x

0

1

4
7 2

5

0

1

8

2

21 6

1

8

2

21

1

6

3

56

/
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Example 5.5 Evaluate xyz x y z
y zz

d d d
0

1

0

1

0

1

.

The given integral yz
x

y z

yz y z y z

z y z

z

2

0

1

0

1

0

1

0

1

2

1

2
1

d d

( ) d d2

00

1

2 2

0

1

0

1

2
2

1

2
1 2 1

1

2
1

2
2 1

yz z z y y y z

z z
y

z

z

{( ) ( ) } d d

( ) ( z
y

z
y

z

z z z z

y

y z

) d

( ) ( )

3 4

0

1

0

1

4 4

3 4

1

2

1

2
1

2

3
1

1

4
zz z z

z z z

( ) d

( ) d

1

1

2

1

2

2

3

1

4
1

1

24

4

0

1

4

0

1

{{ ( )} ( ) d

( ) ( )

41 1 1

1

24

1

5

1

6

1

24

1

5

0

1

5 6

0

1

z z z

z z

11

6

1

720

Example 5.6 Evaluate e x y zx y z

x yx

d d d

log

000

2

.

Since the upper limit for the innermost integration is a function of x, y, the corresponding 

variable of integration should be z. Since the upper limit for the middle 

integration is a function of x, the corresponding variable of integration should be y. 

The variable of integration for the outermost integration is then x. Effecting these 

changes, the given triple integral I becomes,

 

I e z y x

x y e e

x y z

x yx

x y z

z

z x y

x

d d d

d d ( )

log

log

000

2

0

2

0

0

d ( ) d

log

x e e yx y x y

x

0

2

2 2

0
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d

log

x e
e

e e

e e e

x
y

x y

y

y x

x x x

0

2

2
2

0

4 2

2

1

2

3

2
d

log

log

x

e e ex x x

0

2

4 2

0

2
1

8

3

4

5

8

Example 5.7 Evaluate xy x y

R

d d , where R is the region bounded by the line

x + 2y 

We draw a rough sketch of the boundaries of R and identify R.

The boundaries of R are the lines x = 0, y = 0 and the segment of the line

x y

2 1
1  

Now R is the region as shown in Fig. 5.5.

Since the limits of the variables of integration are not given in the problem and to 

Let us integrate with respect to x y. Then the 

integral I becomes

I = d dxy x y

R

When we perform the inner integration with respect to x, we have to treat y as a 

x.

Geometrically, treating y = constant is equivalent to drawing a line parallel to the 

x-axis arbitrarily lying within the region of integration R 

Finding the limits for x (while y  

of the x co-ordinate of any point on the line PQ. We assume that the y co-ordinates 

of all points on PQ are y each (since y is constant on PQ) and P x
0
, y) 

and Q x
1
, y).

Q (x1, y)(x0, y) P

=1+

x

y

O

B

x y

C

A

R

12

Fig. 5.5
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Thus x varies from x
0
 to x

1
.

Wherever the line PQ has been drawn, the left end P lies on the y-axis and hence 

x
0
 = 0 and the right end Q lies on the line x + 2y = 2, and hence x

1
 + 2y = 2 i.e. 

x
1

y.

Thus the limits for the variable x y. When we 

y.

PQ, so that the region R is 

fully covered. To sweep the entire area of the region R, PQ has to start from the 

position OA where y = 0, move parallel to itself and go up to the position BC where 

y = 1.

Thus the limits for y are 0 and 1.

 I xy x y

y
x

y

y
y y

y

y

d d

d

( ) d2

0

2 2

0

1

2

0

2 2

0

1

0

1

2

2
2 2

2 1

2
2

2
3 4

1

6

0

1

2 3 4

0

1

y y y

y y y

( ) d2

5.3.1 Aliter

Let us integrate with respect to y x.

Then 
I xy y x

R

d d

y, we draw a line parallal to the y-axis 

(x = constant) in the region of integration and note the variation of y on this line

Fig. 5.6

Q (x, y1)

(x, y0)

=1+

y

B

x

x y C

A

R

Po

12
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P(x, y
0
) lies on the x-axis.  y

0
 = 0

Q(x, y
1
) lies on the line x + 2y = 2.  y x1

1

2
2( )

i.e., the limits for y are 0 and 
1

2
2( )x .

To cover the region of integration OAB, the line PQ has to vary from OB (x = 0) 

to AC (x = 2)

 The limits for x are 0 and 2.

 I d d

d

( )

( )

( )

xy y x

x
y

x

x x

x

x

00

2

0

2 2

0

1

2
2

1

2
2

2

1

8
2 22

0

2

2 3 4

0

2

1

8
4

2
4

3 4

1

6

dx

x x x

Example 5.8 Evaluate 
e

y
x y

y

R

d d , by choosing the order of integration suitably,

given that R is the region bounded by the lines x = 0, x = y and y

Q (x, )

y = 

y

x

R

P (x, x)

(0, y) A

x = 0

B (y, y)

y = x

o

Fig. 5.7

Let I d d
e

y
x y

y

R

Suppose we wish to integrate with respect to y

Then I d d
e

y
y x

y

x0
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We note that the choice of order of integration is wrong, as the inner integration 

cannot be performed. Hence we try to integrate with respect to x

Then I d d

( ) d

d

e

y
x y

e

y
x y

e y

e

yy

y
y

y

y

00

0

0

0

0

1

Note  From this example, we note that the choice of order of integration 

sometimes depends on the function to be integrated.

Example 5.9 Evaluate xy x y

R

d d , where R is the region bounded by the parabola

y2 = x and the lines y = 0 and x + y

R is the region OABCDE shown in Fig. 5.8.

Fig. 5.8

y

x

E

D

C

F

x + y = 2

y2 = x

O

Q2

Q1

P1 P2A B

Suppose we wish to integrate with respect to y

line parallel to y-axis (x = constant). We note that such a line does not intersect the 

region of integration in the same fashion throughout.

If the line is drawn in the region OADE, the upper end of the line will lie on the 

parabola y2 = x; on the other hand, if it is drawn in the region ABCD, the upper end 

of the line will lie on the line x + y = 2.

Hence in order to cover the entire region R, it should be divided into two, namely, 

OADE and ABCD and the line P
1
 Q

1 
should move from the y-axis to AD and the line 

P
2
 Q

2
 should move from AD to BF.

Accordingly, the given integral I is given by

I d d d dxy y x xy y x

x x

0 0

2

1

2

0

1
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[  the co-ordinates of D are (1, 1) and so the equation of AD is x = 1]

I
1

6

5

24

3

8

Note  This approach results in splitting the double integral into two and evaluating 

two double integrals. On the other hand, had we integrated with respect to x

problem would have been solved in a simpler way as indicated below. [Refer to Fig. 5.9]
y

x

E

P

D

C

Q (2 – y, y)

x + y = 2

y2 = x

(y2, y)

O B

Fig. 5.9

 I d d

{( ) }d

( )d

xy x y

y y y y

y y y y y

y

y

2

2

0

1

2 4

0

1

2 3 5

0

1

1

2
2

1

2
4 4

3

8

Note  From this example, we note that the choice of order of integration is to be 

made by considering the region of integration so as to simplify the evaluation.

Example 5.10 Evaluate ( )d d dx y z x y z

V

, where V is the volume of the

rectangular parallelopiped bounded by x = 0, x = a, y = 0, y = b, z = 0 and z = c.

O

P
B

A'

B'
O'

C'

y

Q

C

A
x

z

Fig. 5.10
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The region of integration is the volume of the parallelopiped shown in Fig. 5.10, in 

which OA = a, OB = b, OC = c. Since the limits of the variables of integration are not 

given, we can choose the order of integration arbitrarily.

Let us take the given integral I as

I ( + + ) d d dx y z z y x

V

The innermost integration is to be done with respect to z, treating x and y as 

constants.

Geometrically, x = constant and y = constant jointly represent a line parallel to the 

z-axis.

Hence we draw an arbitrary line PQ in the region of integration and we note the 

variation of z on this line so as to cover the entire volume. In this problem, z varies 

from 0 to c. since P  (x, y, 0) and Q  (x, y, c)

Having performed the innermost integration with respect to z between the limits 

0 and c, we get a double integral.

As P xy-plane, the line PQ 

covers the entire voulme of the parallelopiped. Hence, the double integral got after 

The limits for the double integral can be easily seen to be 0 and b (for y) and 0 

and a (for x).

I ( + + ) d d d

( + ) d d

x y z z y x

x y z
z

y x

cba

z

c

000

2

00
2

bba

ba

c x y
c

y x

cx
c

0

2

00

2

2

2

( + ) d d

+ y c
y

x

bcx
bc b c

x

ba

a

2

00

2 2

0

2

2 2

d

d

bc
x bc

b c x

abc
a b c

a
2

02 2

2

( )

( )

Example 5.11 Evaluate d d dx y z

V

, where V is the 

(terra- hedron) formed by the planes x = 0, y = 0, z = 0 and 2x + 3y + 4z = 12.
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B

A

x

C

z

(x, y, z1)

(x, y, 0)

Q

P

O y

Fig. 5.11

Let I = the given integral.

Let I = d d dz y x

V

The limits for z, the variable of the innermost integral, are 0 and z
1
, where 

(x, y, z
1
) lies on the plane 2x + 3y + 4z = 12. [Refer to Fig. 5.11]

z x y1

1

4
12 2 3( )

After performing the innermost integration, the resulting double integral is 

evaluated over the orthogonal projection of the plane ABC on the xy-plane, i.e. over 

the triangular region OAB in the xy-plane as shown in Fig.5. 12.

In the double integral, the limits for y are 0

and 
1

3
12 2( )x  and those for x are 0 and 6.

I d d d

d ( ) d

( ) (12 )

x y z

x x y y

x x y

0

6

0

1

3
12 2

0

1

4
2 3

0

6

0

1

1

4
12 2 3

33
12 2

0

6 2

0

1

3
12 2

1

4
12 2

3

2

1

24

( )

( )

d ( )

(

x

y

y x

x x y
y

112 2

1

6

6

3

12

2

0

6

0

6

x x

x

) d

( )3

B

O D

= 1+
6 4

A

E

y

yx

x

Fig. 5.12
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Example 5.12 Evaluate 
d d dz y x

x y zV 1 2 2 2
, where V is the region of space

bounded by the co-ordinate planes and the sphere x2 + y2 + z2 = 1 and contained in 

the positive octant.

B

C

A

x

O

Q

P

z

y

(x, y, z1)

(x, y, 0)

Fig. 5.13

Note   In two dimensions, the x and y-axes divide the entire xy-plane into 4 

quadrants. The quadrant containing the positive x and the positive y-axes is called 

the positive quadrant.

Similarly in three dimensions the xy, yz and zx-planes divide the entire space into 

8 parts, called octants. The octant containing the positive x, y and z-axes is called the 

positive octant.

The region of space V given in this problem is shown in Fig. 5.13.

Let I =
d d dz y x

x y zV 1 2 2 2

z, we draw a line PQ parallel to the z-axis cutting the voulme 

of integration.

The limits for z and 0 and z
1
, where (x, y, z

1
) lies on the sphere x2 + y2 + z2 = 1

z x y1

2 21  (  the point Q lies in the positive octant)

After performing the innermost integration, the resulting double integral is evaluated  

over the orthogonal projection of the spherical surface on the xy-plane, i.e. over the 

circular region lying in the positive quadrant as shown in Fig. 5.14.

B

D AO

y
E

x2 + y2 = 1

x

Fig. 5.14
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In the double integral, the limits for y are 0 and 1 2x  and those for x are 0 

and 1.

I d d
d

d d

x y
z

x y z

x y
z

x x y

x

0

1

0

1

2 2 2
0

1

0

1

0

1

1

2 2 2

2

1( )

sin
11

2

2
1

2 2

0

1

0

1

0

1

2

2 2

2

x y

x y

x

z

z x y

x

d d

ddx

x
x x

0

1

2 1

0

1

2 2
1

1

2

2 4 8

sin

EXERCISE 5(a)

Part A

(Short Answer Questions)

1. Evaluate 4

0

1

0

2

xy x yd d

2. Evaluate d dx y

xy

ab

11

3. Evaluate sin ( )

00

/2/2

d d

4. Evaluate d d

1

x y

x

00

.

5. Evaluate r rd d

00

sin

6. Evaluate xyz x y zd d d

0

3

0

2

0

1

7. Evaluate d d dz y x

y zz

000

1
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Sketch roughly the region of integration for the following double integrals:

8. f x y x y

a

a

b

b

( , ) .d d

9. f x y x y

x

( , ) .d d

00

1

10. f x y x y

a xa

( , ) .d d

00

2 2

11. f x y x y

a

b
b y

b

( , ) .

( )

d d

00

Find the limits of integration in the double integral f x y x y

R

( , )d d , where R is in the

12. x = 0, y = 0, x + y = 1.

13. x y
x

a

y

b
0 0 1

2

2

2

2
, ,

14. x = 0, x = y, y = 1

15. x = 1, y = 0, y2 = 4x

Part B

16. Evaluate 
y x y

x y
y

y
d d

2 2

40

4

2 /

 and also sketch the region of integration roughly.

17. Evaluate y x y

a x

a xa

d d

2 2

0

 and also sketch the region of integration roughly.

18. Evaluate y x y

x y
x

d d
2 2

1

0

1

 and also sketch the region of integration roughly.

19. Evaluate a x y x y

a xa

2 2 2

00

2 2

d d .

20. Evaluate xyz x y z

x yx

0

1

0

1

0

1

d d d .

21. Evaluate e z y xx y z

x yx

000

2 loglog

d d d .
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22. Evaluate x e x y

x

y

2

d d , over the region bounded by x = 0, x y = 0 and

y = x.

23. Evaluate xy x yd d , over the region in the positive quadrant bounded

by the line 2x + 3y = 6.

24. Evaluate x x yd d , over the region in the positive quadrant bounded

by the circle x2 2ax + y2 = 0.

25. Evaluate ( )x y x yd d , over the region in the positive quadrant bounded

by the ellipse
x

a

y

b

2

2

2

2
1.

26. Evaluate ( )x y x y2 2 d d , over the area bounded by the parabola y2 = 4x

and its latus rectum.

27. Evaluate x x y

R

2 d d , where R is the region bounded by the hyerbola xy = 4,

y = 0, x = 1 and x = 2.

28. Evaluate ( )xy yz zx x y z

V

d d d , where V is the region of space boun-

ded by x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3.

29. Evaluate 
d d dx y z

x y z
V

( )1 3
, where  V is the region of space bounded by

x = 0, y = 0, z = 0 and x + y + z = 1.

30. Evaluate xyz x y z

V

d d d , where V is the region of space bounded by the

co-ordinate planes and the sphere x2 + y2 + z2 = 1 and contained in the posi-

tive octant.

5.4 CHANGE OF ORDER OF INTEGRATION 

IN A DOUBLE INTEGRAL

In worked example ( 1) of the previous section, we have observed that if the limits 

of integration in a double integral are constants, then the order of integration can be 

changed, provided the relevant limits are taken for the concerned variables.

But when the limits for inner integration are functions of a variable, the change in 

the order of integration will result in changes in the limits of integration.

i.e. the double integral f x y x y

g y

g y

c

d

( , )

( )

( )

d d

1

2

 will take the form f x y y x

h x

h x

a

b

( , )

( )

( )

d d

1

2

,

when the order of integration is changed. This process of converting a given double 

integral into its equivalent double integral by changing the order of integration is often 

called change of order of integration. To effect the change of order of integration, the 
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5.5 PLANE AREA AS DOUBLE INTEGRAL

Plane area enclosed by one or more curves can be expressed as a double integral both 

in Cartesian coordinates and in polar coordinates. The formulas for plane areas in 

both the systems are derived below:

(i) Cartesian System

Let R be the plane region, the area of which is 

required. Let us divide the area into a large 

number of elemental areas like  PQRS (shaded) 

by drawing lines parallel to the y-axis at intervals 

x and lines parallel to the x-axis at intervals 

y (Fig. 5.l5).

Area of the elemental rectangle PQRS x. 

y. Required area A of the region R is the sum of 

elemental areas like PQRS.

viz., A x y

x y

x
y

R

lim ( )
0
0

d d

(ii) Polar System

We divide the area A of the given region R into a large 

number of elemental curvilinear rectangular areas like 

PQRS (shaded) by drawing radial lines and concentric 

circular arcs, where P and R have polar coordinates (r, 

) and (r r, ) (Fig. 5.16) 

Area of the element PQRS = r r 

(  PS = r  and PQ r)

  Required area A r r

r r

r

R

lim ( )

.

0
0

d d

 

5.5.1 Change of Variables

(i) From Cartesian Coordinates to Plane Polar Coordinates

If the transformations x = x(u, v) and y = y (u, v) are made in the double integral

f x y x y( , )d d , then f x y g u v( , ) ( , )  and dx dy = |J| du dv, where J
x y

u v

( , )

( , )
.

[Refer to properties of Jacobians in the Chapter 4, “Functions of Several Variables” 

in Part I] .

ARS

P Q

o

y

x

Fig. 5.15

R
S Q

P

O x

Fig. 5.16
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When we transform from cartesian system to plane polar system,

 x = r cos   and y = r sin 

In this case, J

x

r

y

r

x

y

r

r

r r

cos sin

sin cos

(cos sin )2 2

Hence f x y dx dy g r r r

R R

, , d d

In particular,

Area A of the plane region R is given by

A x y r r

RR

d d d d

(ii) From Three Dimensional Cartesians to Cylindrical Coordinates

of a point in space and derive the relations 

between cartesian and cylindrical coordinates 

(Fig. 5.17).

Let P be the point (x, y, z) in Cartesian 

coordinate system. Let PM be drawn r 

to the xoy-plane and MN parallel to Oy. Let 

NOM  and OM = r. The triplet (r, , z) are 

called the cylindrical coordinates of P.

Clearly, ON = x = r cos ; NM = y = r sin 

 and MP = z.

Thus the transformations from three dimensional cartesians to cylindrical 

coordinates are x = r cos , y = r sin , z = z.

In this case,

J
x y z

r z

x x x

y y y

z z z

r

r

r z

r z

r z

( , , )

( , , )

cos sin

sin cos

0

00

0 0 1

r

Hence dx dy dz = r dr  d  dz

and f x y z x y z g r z r r z

VV

( , , ) ( , , )d d d d d d

y

z

r

O

N
x

y

M

P (x, y, z)

Fig. 5.17
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In particular, the volume of a region of space V is given by

d d d d d dx y z r r z

V V

Note  Whenever f x y z x y z( ,  ,  ) d d d  is to be evaluated throughout the 

volume of a right circular cylinder, it will be advantageous to evaluate the 

corresponding triple integral in cylindrical coordinates.

(iii) From Three Dimensional Cartesians to Spherical Polar Coordinates

Let 

relations between Cartesian and 

spherical polar coordinates (Fig. 5.18).

Let P be the point whose Cartesian 

coordinates are (x, y, z). Let PM be 

drawn r to the xOy-plane. Let MN 

be parallel to y-axis. Let OP = r, the 

angle made by OP with the positive 

z-axis =  and the angle made by OM 

with x-axis = .

The triplet (r, , ) are called the 

spherical polar coordinates of P. 

Since OMP 90 , MP = z = r cos  

, OM = r sin , ON = x = r sin  cos  

and NM = y = r sin  sin  .

Thus the transformations from three dimensional cartesians to spherical polar 

coordinates are

x = r sin cos , y = r sin sin , z = r cos 

In this case,

 

J
x y z

r
r

, ,

, ,
sin2

[Refer to example (4.8) of Worked example set 4(b) in the Chapter 4 “Functions of 

Several Variables.” in Part I]

Hence dx dy dz = r2 sin d  d  and f x y z x y z g r r

V V

( , , ) d d d ( , , ) 2

sin  dr d  d .

In particular, the volume of a region of space V is given by

d d d sin d d dx y z r r

VV

2 .

Note  Whenever f x y z x y z( , , ) d d d  is to be evaluated throughout the 

volume of a sphere, hemisphere or octant of a sphere, it will be advantageous to use 

spherical polar coordinates.)

Fig. 5.18

y

r

O

N

x

z

M

P (x, y, z)
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WORKED EXAMPLE 5(b)

Example 5.1 Change the order of integration in 
x

x y
x y

y

aa

2 2
0

d d  and then 

evaluate it.

The region of integration R .

i.e. it is bounded by the lines x = y, x = a, y = 0 and y = a.

The rough sketch of the boundaries and the 

region R is given in Fig. 5.19. 

After changing the order of integration, the 

given integral I becomes

 I = d d
x

x y
y x

R
2 2

The limits of inner integration are found by 

treating x as a constant, i.e. by drawing a line 

parallel to the y-axis in the region of integration 

as explained in the previous section.

Thus I = d d
x

x y
y x

xa

2 2
00

 x y y x x

x x x x x

y

y xa

a

log d

[log ( ) log ] d

log (1 +

2 2

0
0

0

2

2)) log (1 + )
x a

a
2

0

2

2 2
2

Example 5.2 Change the order of integration in
x x y

x y
x

d d
2 2

1

0

1

 and then evaluate it.

Note  Since the limits of inner integration are x and 1, the corresponding variable 

of integration should be y. So we rewrite the given integral I in the corrected form 

I
d dx y x

x y
x

2 2

1

0

1

The region of integration R is bounded by the lines x = 0, x =1, y = x and y = 1 

and is given in Fig. 5.20.

The limits for the inner integration (after changing the order of integration) with 

respect to x x-axis (y = constant)

  I
d dx x y

x y

y

2 2

00

1

x
O

Q

y

(x, x) R

(x, 0) y = 0

x = y

y = a

x = a

P

Fig. 5.19
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x
O

R

y

(0, y) P Q (y, y)

x = 0

y = 1
x = 1

y = x

Fig. 5.20

 
1

2

1

2

2

0

1

0

2

2

log ( + ) d

log d

2 2x y y

y

y
y

x

x y

00

1

1

2
log 2.

Example 5.3 Change the order of integration in xy x y

a

b
b y

b

d d

( )

00

 and then

evaluate it.

The region of integration R is bounded by the lines x = 0, x
a

b
b y( )  or

 
x

a

y

b
1, y = 0 and y = b and is shown in Fig. 5.21.

O P

R

Q

y = 0

(x, 0)

(a – x)x,

x = 0

y = b

x

y

= 1+
x y

b

b

a

a

Fig. 5.21

After changing the order of integration, the integral becomes I d dxy y x

R

.

I = d d

( )

xy y x

b

a
a x

a

00
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x
y

x

b

a
x a x x

b

a
a

x

b
a

a xa

a

2

00

2

2

2

0

2

2

2
2

2

2

2

( )

d

( ) d

22
2

3 4

2

1

2

2

3

1

4

24

3 4

0

2 2

2 2

a
x x

a b

a b

a

Example 5.4 Change the order of integration in x y x

b

a
a x

a

2

00

2 2

d d  and then

integrate it.

The region of integration R is bounded by the lines x = 0, x = a, y = 0 and the 

curve y
b

a
a x2 2  i.e. the curve y

b

a x

a

2

2

2 2

2
, i.e. the ellipse 

x

a

y

b

2

2

2

2
1  

and is shown in Fig. 5.22.

Fig. 5.22

O

R

Q

y = 0

(0, y) P

= 1+

x = 0

x = a

x

a2 b2

b2 – y2, y

x2 y2

a

b

After changing the order of integration, the integral becomes

I d dx x y

R

2

 

I d d

d

x x y

x
y

a

b
b y

b

a

b
b yb

2

00

3

00

2 2

2 2

3
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a

b
b y y

b3

3

2 2

3

2

0
3

( ) d

 

 
a

b
b

3

3

4 4

0

2

3
cos d

/

 (on putting y = b sin )

 

a b

a b

3

3

3

3

4

1

2 2

16

Example 5.5 Change the order of integration in y x y

a y

a ya

d d

2 2

0

 and then

evaluate it.

The region of integration R is bounded by the line x = a y, the curve

x a y2 2 , the lines y = 0 and y = a.

i.e. the line x + y = a, the circle x2 + y2 = a2 and the lines y = 0, y = a. R is shown in 

Fig. 5.23.

R

Q

(x, a – x) P

= 1+

x

a a

a2 – x2

x2 + y2 = a2

x,

x y

y

O

Fig. 5.23

After changing the order of integration, the integral I becomes,

 I d d

d d

d

y y x

y y x

y
x

R

a x

a xa

a x

a xa

2 2

2 2

0

2

0
2

11

2
2 2 2

0

( ) dax x x

a
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a
x x

a

a
2 3

0

3

2 3

6 .

Example 5.6 Change the order of integration in d dy x

x

x

2

4

2

0

4

 and then evaluate it.

The region of integration R is bounded by the curve y
x2

4
 i.e. the parabola

x2 = 4y, the curve y x2  i.e. the parabola y2 = 4x and the lines x = 0, x = 4. R is 

shown in Fig. 5.24.

Q (2    y, y)

y2 = 4x
x2 = 4y

O

y
A

P
y2

, y
4

Fig. 5.24

The points of intersection of the two parabolas are obtained by solving the 

equations x2 = 4y and y2 = 4x.

Solving them, we get x
x

2
2

4
4

i.e x (x3

 x = 0, x = 4

and y = 0, y = 4

i.e. the points of intersection are O(0, 0) and A(4, 4).

After changing the order of integration, the given integral

 I x y

x y

y
y

y

R

y

y

d d

d d

d

2

4

2

0

4

2

0

4

2
4
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4

3 12

32

3

16

3

16

3

3

2

3

0

4

y
y

Example 5.7 Change the order of integration in xy x y

a a y

a a ya

d d
2 2

2 2

0

 and then

evaluate it.

The region of integration R is bounded by the curve x a a y2 2 , i.e. the 

circle (x a)2 + y2 = a2 and the lines y = 0 and y = a. The region R is shown in Fig. 

5.25.

x,   2ax – x2

(x – a)2 + y2 = a2

C (a, 0)(x, 0) P 

y

RQ

O
x

Fig. 5.25

After changing the order of integration, the integral I becomes

 I = d d

d d

xy y x

xy y x

x
y

R

ax xa

ax xa

0

2

0

2

2

0

2

0

2

2

2

2
dd

(2 )d2

x

ax

a
x x

a

a

a

1

2

1

2
2

3 4

2

3

3

0

2

3 4

0

2

4

x x
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Example 5.8 Change the order of integration in xy x y

y

y

 d  d

2

0

1

 and then

evaluate it.

The region of integration R is bounded by the lines x = y, x + y = 2, y = 0 and y = 

1. It is shown in Fig. 5.26.

After changing the order of integration, 

the integral I becomes

I = d dxy y x

R

y in the inner 

integration, we have to draw a line parallel 

to y-axis (since x = constant). The line drawn 

parallel to the y-axis does not intersect the 

region R in the same fashion. If the line segment is drawn in the region OCB, its 

upper end lies on the line y = x; on the other hand, if it is drawn in the region BCA, its 

upper end lies on the line x + y = 2. In such situations, we divide the region into two 

 

I = d d d d

d d d d

xy y x xy y x

xy y x xy y x

x
y

BCA

xx

OCB

0

2

1

2

00

1

22

0

2

0

2

1

2

0

1

3

0

1

2 2

2

x x

x x
y

x

x
x

d d

d
xx

x x

x
x x

x

2

8

1

2
2

4

3 4

1

2

4

0

1

2 3
4

(2 ) d2

1

2

1

8

5

24

1

3

Example 5.9 Change the order of integration in xy y x

x

a

a xa

d d
2

2

0

 and then

evaluate it.

The region of integration R is bounded by the curve y
x

a

2

, i.e. the parabola x2 = ay,

the line y = 2 , i.e. x + y = 2a and the lines x = 0 and x = a. It is shown in Fig. 

5.27.

x + y = 2x = y

B (1, 1)

y

A
x

CO

Fig. 5.26
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y = 2a

(0, y) P2

(0, y) P1

D

E

Q2 (2a – y, y)

Q1

C

A

O

B (a, a)

y

x

ay, y

Fig. 5.27

After changing the order of integration, the integral I becomes

I = d dxy x y

R

When we draw a line parallel to x

with respect to x, it does not intersect the region of integration in the same fashion. 

Hence the region R is divided into two sub-regions OABE and EBCD and then the 

 I d d d d

d d d d

xy xy x y

xy x y xy x y

OABE EBCD

aya a y

a

a

x y

00 0

22

Note  The co-ordinates of the point B are obtained by solving the equations x + 

y = 2a and x2 = ay.

(a, a) and the equation of EB is y = a.

 
I d dy

x
y y

x
y

a

aya

a

a a y
2

00

2 2

0

2

2 2

1

2
yy y y a y y

a
y

a

a

a

a

a

2

0

2

3

0

21

2 3
2

d (2 ) d2

yy
a

y
y

a

a

a

2 3
4

2

44

3 4

3

8
.

Example 5.10 Change the order of integration in each of the double integrals

d dx y

x y2 2

1

2

0

1

 and d dx y

x y
y

2 2

2

1

2

 and hence express their sum as one double integral

and evaluate it.

The region of integration R
1 1

 is bounded by the lines 

x = 1, x = 2, y = 0 and y = 1.
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The region of integration R
2
 for the second double integral I

2
 is bounded by the 

lines x = y, x = 2, y = 1 and y = 2.

R
1
 and R

2
 are shown in Fig. 5.28.

P2 (x, 1)

(x, 1)

(1, 1) D

(x, x) Q2

C (2, 1)

E (2, 2)y

x

Q1

P1 (x, 0)A BO

Fig. 5.28

After changing the order of integration,

 I
d d

1

y x

x y2 2

0

1

1

2

and I
d d

2 2 2

11

2
y x

x y

x

Adding the integrals I
1
 and I

2
, we get

 

I d
d d

x
y

x y

y

x y

x

2 2 2 2

10

1

1

2

 d
d

x
y

x y

x

2 2

01

2

 
1 1

1

2

0
x

y

x
x

y

y x

tan d

 
4 4

2

1

2
d

log
x

x
.

Example 5.11 Find the area bounded by the parabolas y2 x and y2 = x by double 

integration.

The region, the area of which is required is bounded by the parabolas (y  0)2

(x  4) and y2 = x and is shown in Fig. 5.29.

Required area d dyx

ABOC
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 2 d dx y

ABo

, by symmetry

 

2

2 4

2 4
2

3

2 4 2

2

24

0

2

2 2

0

2

3

0

2

d d

( ) d

x y

y y y

y y

y

y

44

3
2

 
16

3
2  square units

Example 5.12 Find the area between the circle x2 + y2 = a2 and the line x + y = a ly-

The plane region, the area of which is required, is shown in Fig. 5.30.

Required area

 

d d

d d

d

si

x y

x y

a y a y y

y
a y

a

CAB

a y

a ya

a

2 2

0

2 2

0

2 2
2

2 2
nn

( )

1
2

0

2
2

2 2

2

2 2 2
2

4

y

a
ay

y

a
a

a a

a

Example 5.13 Find the area enclosed by the lemniscate r2 = a2 cos 2 , by double 

integration.

As the equation r2 = a2 cos 2  remains unaltered on changing , the curve 

is symmetrical about the initial line.

The points of intersection of the curve with the initial line  = 0 are given by r2 = 

a2 or r = ± a.

(4 – y2, y)

2)

y2 = 4 – x

(y2, y)

(4, 0)

y2 = x

y

B

C

A
O x

(2,–

2)(2,

Fig. 5.29

a2– y2, y)(a – y, y)

y

O A

C

x

B (

Fig. 5.30
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Since r2 = a2 cos 2 = a2 cos 2 (  ), the curve is symmetrical about the line

2
.

On putting r = 0, we get cos 2 = 0. Hence 
4

3

4
, . Hence there is a loop 

of the curve between 
4

 and 
4

 and another loop between 
3

4
 and

3

4
.

Based on the observations given above the lemniscate is drawn in Fig. 5.31.

C
P

D

O
A B

X

Fig. 5.31

Required area = 4 × area OABC (by symmetry)

 4 r r

BOA

d d

When we perform the inner integration with respect to r, we have to treat as a 

r.

Geometrically, treating  = constant means drawing a line OP arbitrarily through 

Finding the limits for r (while 

of the r coordinate of any point on the line OP. Assuming that the  coordinates of 

all points on OP are  each (since  is constant on OP), we take O  (0, ) and P 

(r
1
, ); viz., r varies from 0 to r

1
. Now wherever OP be drawn, the point P(r

1
, ) lies 

on the lemniscate.

Hence r1

2  = a2 cos 2  or r a1 2cos  (since r coordinate of any point is + ve)

Thus the limits for inner integration are 0 and a cos 2 .

. 

OP so that it sweeps the 

area of the region, namely OABC. To cover this area, the line OP has to start from 
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the position OA (  = 0) and move in the anticlockwise direction and go up to

OD
4

. Thus the limits for  are 0 and 
4

.

 Required area 4

4
2

2 2

00

4

2

00

4

2

0

r r

r

a

a

a

d d

d

cos d

cos 2

cos 2

44

2

0
4 22a a(sin )

Example 5.14  Find the area that lies inside the cardioid r = a (1 + cos ) and outside 

the circle r = a, by double integration.

The cardioid r = a (1 + cos ) is symmetrical about the initial line. The point 

of intersection of the line = 0 with the cardioid is given by r = 2a, viz., the point 

(2a, 0).

Putting r = 0 in the equation, we get cos . Hence the cardioid 

lies between the lines  and  = .

The point of intersection of the line

2
 is a,

2
.

Noting the above properties, the 

cardioid is drawn as shown in Fig. 5.32. 

All the points on the curve r = a have 

the same r coordinate a, viz., they are 

at the same distance a from the pole. 

Hence the equation r = a represents a 

circle with centre at the pole and radius 

equal to a.

Noting the above points, the circle 

r = a is drawn as shown in Fig. 5.32. 

The area that lies outside the circle r = 

a 

Both the curves are symmetric about the initial line. Hence the required area

 = 2×AFGCB

C

B

A

D

E
y

H

G

FO
x

Fig. 5.32
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 2

1

2

0

2

r r

r

r

d d , where (r
1
, ) lies on the circle r = a and (r

2
, )

lies on the cardioid r = a (1 + cos )

 2

2
2

1

1

0

2

2
1

0

2

2

r r

r

a

a

a

a

a

d d

d

[(

( cos )

( cos )

ccos ) ] d

cos
cos

d

sin

2 1

2
1 2

2

2

0

2

2

0

2

2

a

a
2

1

4
2

2
4 4

8

0

2

2
2

sin

( )a
a

Example 5.15  Express 
x x y

x yy

aa 2

2 2
3 2

0

d d
/

 in polar coordinates and then evaluate it.

The region of integration is bounded by the lines x = y, x = a, y = 0 and y = a, 

whose equations in polar system are 
4

, r = a sec ,  = 0 and r = a cosec

 respectively. The region is shown in Fig. 5.33.

r = a cosec 

= 0
O

A

B

r = a sec 

x

4

Fig. 5.33

Putting x = r cos , y = r sin  and dx dy = r dr d  in the given double integral I, 

we get
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I
r

r
r

r

r

OAB

a

a

3 2

3

2

00

4

0

cos
d d

cos d d

cos [ ]

sec

2 sec

/

00

4

0

4

0
2

/

/

d

cos d [sin ]a a
a

Example 5.16 Transform the double integral 
d dx y

a x y
ax x

a xa

2 2 2
0 2

2 2

 in polar

coordinates and then evaluate it.

The region of integration is bounded by the curves y ax x y a x2 2 2,  

and the lines x = 0 and x = a.

 y ax x2  is the curve x2 + y2 ax = 0

i.e., x
a

y
a

2
0

2

2 2

( )2

i.e. the circle with centre at 
a

2
,0 and radius 

a

2

 y a x2 2  is the curve x2 + y2 = a2

i.e. the circle with centre at the origin and radius a.

The polar equations of the boundaries of the region of integration are r2 ar

cos  = 0 or r = a cos , r = a, r = a sec  and 
2

. The region of integration is

shown in Fig. 5.34.

Putting x = r cos , y = r sin  and dx dy = r dr d  in the given double integral I, 

we get

 

I r r

a r

a r

a

a

a

a

d d

cos 2 20

2

2 2

0

1

2
2

/

cos

/22

d , on putting a2 r2 = t
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r = a

r = a cos 

2

2

r = a sec 

xaaO

Fig. 5.34

a a asin d cos

0

2

0

2

/

Example 5.17 By transforming into cylindrical coordinates, evaluate the integral

( ) d d d2x y z x y z2 2
 x2 + y2

 1.

The region of space is the region enclosed 

by the cylinder x2 + y2 = 1 whose base radius is 

1 and axis is the z-axis and the planes z = 0 and 

z = 1. The equation of the cylinder in cylindrical 

coordinates is  r = 1. The region of space is shown 

in Fig. 5.35.

Putting x = r cos , y = r sin , z = z and dx dy 

dz = r dr d dz in the given triple integral I, we get

 I r z r r z

V

( ) d d d2 2 ,

where V is the volume of the region of space.

 

( ) d d d

d d

2 2r z r r z

r
z

r
z

0

1

0

2

0

1

4
2

2

0

1

0

2

0

1

4 2

1

4

1

2

2
1

4

1

2

2

0

2

0

1

2

0

1

z z

z z

d d

d

z = 1

z = 0

z

x

y

Fig. 5.35
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2
4 6

5

6

3

0

1

z z

Note  The intersection of z = constant c and the cylinder x2 + y2 = 1 is a circle 

with centre at (0, 0, c) and radius 1. The limits for r and 

the area of this circle and then the variation of z has been used so as to cover the 

entire volume.]

Example 5.18 Find the volume of the portion of the cylinder x2 + y2 = 1 intercepted 

between the plane z = 0 and the paraboloid x2 + y2 z.

z

x

y

Fig. 5.36

Using cylindrical coordinates, the required volume V is given by

 V r r zd d d , taken throughout the region of space.

Since the variation of z 

to z and then with respect to r and .

Changing to cylindrical coordinates, the boundaries of the region of space are r = 

1, z = 0 and z r2.

 V z r r

r r r

r
r

r

d d d

( ) d d

0

4

0

1

0

2

2

0

1

0

2

2
4

0

2

4

2
4

11

0

2

0

2
7

4

7

2
d d

Example 5.19 Evaluate xyz z y x

a x ya xa

000

2 2 22 2

d d d , by transforming to spherical

polar coordinates.
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The boundaries of the region of integration are z = 0, z a x y2 2 2
 or x2 + y2 + 

z2 = a2, y = 0, y a x2 2  or x2 + y2 = a2, x = 0 and x = a. From the boundaries,

we note that the region of integration is the volume of the positive octant of the 

sphere x2 + y2 + z2 = a2.

By putting x = r sin  cos , y = r sin  sin , z = r 

cos  and dx dy dz = r2 sin  dr d  d , the given triple 

integral I becomes

I r r r

V

3 2 2sin cos sin cos sin d d d.

where V is the volume of the positive octant of 

the sphere r = a, which is shown in Fig. 5.37.

To cover the volume V, r has to vary from 0 to 

a,  has to vary from 0 to 
2

 and  has to 

vary from 0 to 
2

.

Thus I r r

a

5

00

2

0

2

0

2

3

sin cos sin cos d d d

sin cos d sin

3

. cos d d.

0

2

5

0

r r

a

[  the limits are constants]

 
sin sin2

0

2 4

0

2 6

0

6

2 4 6

1

48

r

a

a

Example 5.20 Evaluate 1 2 2 2x y z x y zd d d , taken throughout the

volume of the sphere  x2 + y2 + z2 = 1, by transforming to spherical polar coordi-

nates.

Changing to spherical polar coordinates, the given triple integral I becomes

 
I r r r

V

1 2 2 sin d d d

Z

M

Pr

O

x

y

Fig. 5.37
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z

M

P (r, ,   )

O

x

y

r

Fig. 5.38

To cover the entire volume V of the sphere, r has to vary from 0 to 1,  has to vary 

from 0 to  and  has to vary from 0 to 2 .

Thus I r r r1 2 2

0

1

00

2

d sin d d

 d sin d sin cos d

0

2

0

2 2

0

2

t t t , by putting

 r = sin t in the innermost integral

 2
1

2 2

3

4

1

2 2

4
4

1

4

1

4

0

2

( cos )

EXERCISE 5(b)

Part A

(Short Answer Questions)

1. Change the order of integration in f x y y x

xa

( , )d d

00

.

2. Change the order of integration in f x y x y

y

( , )d d

1

0

1

.

3. Change the order of integration in f x y y x

x

aa

( , ) d d

0

.

4. Change the order of integration in f x y x y

y

( , )d d

00

1

.

5. Change the order of integration in 

0

1

0

1

f x y x y

y

( , ) d d .
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6. Change the order of integration in f x y y x

a xa

( , )d d

00

.

7. Change the order of integration in f x y y x

x

( , )

0

1

0

1
2

d d .

8. Change the order of integration in f x y x y

a ya

( , )

00

2 2

d d .

9. Change the order of integration in f x y y x

x

( , )

0

2

0

1

d d .

10. Change the order of integration in f x y x y

y

( , )

/

0

1

0

d d .

Part B

Change the order of integration in the following integrals and then evaluate them:

11. 
x x y

x y
y

aa
d d

2 2

0

 12. ( )x y y x

x

2 2

2

0

2

d d

13. x e y x

x

y

x
2

00

d d  14. 
e

y
y x

y

x

d d

0

15. e y xx y

x

2

0

1

0

1

d d  16. xy x y

y

0

4

0

2
2

d d

17. ( )x y y x

x

a

aa

2

4

0

2

d d  18. 
y x y

x y
y

y
d d

2 2

0

1

2

19. ( )x y y x

x

1

4

0

3

d d  20. y x y

a y

a

a

2

0

2 2

d d  

21. d dx y

x

x

5

9

5

3

0

3

2

 22. xy y x

x

d d

0

4

1

2 /

.

23. d dy x

x

x2

0

1
2

24. Change the order of integration in each of the double integrals xy y x

x

00

1

d d

and xy y x

x

0

2

1

2

d d and hence express their sum as one double integral and

evaluate it.
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25. Change the order of integration in each of the double integrals ( + )2 2x y

x

1

1

0

d dy x and ( + ) d d2 2x y y x

x

1

0

1

 and hence express their sum as one double

integral and evaluate it.

26. The area bounded by the parabola y = x2 and the straight line 2x y + 3 = 0.

27. The area included between the parabolas y2 = 4a (x + a) and y2 = 4a(a x).

28. The area bounded by the two parabolas y2 = 4ax and x2 = 4by.

29. The area common to the parabola y2 = x and the circle x2 + y2 = 2.

30. The area bounded by the curve y
x

x

2
3

2
 and its asymptote.

31. The area of the cardioid r = a (1 + cos ).

32. The area common to the two circles r = a and r = 2a cos .

33. The area common to the cardioids r = a (1 + cos ) and r = a ).

34. The area that lies inside the circle r = 3a cos  and outside the cardioid r = a 

(1 + cos ).

35. The area that lies outside the circle r = a cos  and inside the circle r = 2a

cos .

evaluate them:

36. e x y
x y

a xa
2 2

2 2

00

d d  37. x x y

x yy

aa
d d
2 2

0

38. 
x x y

x y

xa 3

2 2
00

d d
 39. 

x x y

x y

a x xa
d d

2 2
0

2

0

2
2

40. 
d dx y

a x y2 2 2
3 2/

coordinates:

41. (  +  + ) d d dx y z x y z

V

, where V is the region of space inside the cylinder

x2 + y2 = a2, that is bounded by the planes z = 0 and z = h.

42. ( + ) d d d2 2x y x y z, taken throughout the volume of the cylinder x2 + y2 = 1

that is bounded by the planes z = 0 and z = 4.

43. d d dx y z , taken throughout the volume of the cylinder x2 + y2 = 4

bounded by the planes z = 0 and y + z = 3.
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44. d d dx y z , taken throughout the volume of the cylinder x2 + y2 = 4

bounded by the plane z = 0 and the surface z = x2 + y2 + 2.

45. d d dx y z , taken throughout the volume bounded by the spherical

surface x2 + y2 + z2 = 4a2 and the cylindrical surface x2 + y2  2ay = 0.

Evaluate the following integrals (46-50) after transforming into spherical 

polar coordinates:

46. 
d d dx y z

x y z2 2 2
, taken throughout the volume of the sphere x2 + y2 +

z2 = a2.

47. 
d d dx y z

x y z1 2 2 2

, taken throughout the volume contained in the

positive octant of the sphere x2 + y2 + z2 = 1.

48. z x y z

V

d d d , where V is the region of space bounded by the

sphere x2 + y2 + z2 = a2 above the xOy-plane.

49. x x y z

a y za xa

d d d

000

2 2 22 2

 50.
d d d x y z

a x y z2 2 2 2
5 2

000

/

5.6 LINE INTEGRAL

integral f x x

a

b

( )d .

x-axis from a to b and the integrand 

f(x) a, b). In a line integral, we shall integrate along a 

curve C C.  

Let C be the segment of a continuous curve joining A(a, b) and 

B(c, d) (Fig. 5.39).

y

Q

P

B (c, d) 

(xr, yr) 

A (a, b) 

(xr –1, yr – 1)
( r, r) 

O
x

Fig. 5.39
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Let f (x, y), f
1
(x, y), f

2
(x, y) be single-valued and continuous functions of x and y,

C.

Divide C into n arcs at (x
i
, y

i
) [i = 1, 2,

 
.
 
.
 
.
 
(n

Let x
0
 = a, x

n
= c, y

0
 = b, y

n
 = d.

Let x
r
  x

r
 = x

r
, y

r
 y

r
y

r
 and the arcual length of PQ PQ sr(i.e. ) ,

where P is (x
r

, y
r

) and Q(x
r
, y

r
).

Let (
r 
, 

r
) be any point on C between P and Q.

Then lim
n

r r r

r

n

f s( , )
1

or lim ( ) ( )
n

r r r r r r

r

n

f x f y1 2

1

, ,

C and denoted respectively as

 f x y s

C

( , )d  or [ ( , )d ( , )d ]f x y x f x y y

C

1 2  

5.6.1 Evaluation of a Line Integral

Using the equation y =  (x) or x = (y) of the curve C, we express [ ( )f x y

C

1 ,

d ( )d ]x f x y y2 ,  either in the form g x x

a

c

( )d  or in the form h y y

b

d

( )d  and evaluate

If the line integral is in the form f x y s

C

( , )d , f x y
s

x
x

C

( , )
d

d
d  

f x y
y

x
x

C

( , )
d

d
d1

2

or as f x y
s

y
y f x y

x

y
y

C C

( , )
d

d
d ( , )

d

d
d1

2

 and then

5.6.2 Evaluation when C is a Curve in Space

C is a curve in

space. In this case, the line integral will take either the form [ ( , , )df x y z x

C

1

f x y z y f x y z z2 3( , , ) d ( , , )d ] or the form f x y z s

C

( , , )d . When C is a curve in 

space, very often the parametric equations of C will be known in the form x = 
1
(t), 

y = 
2
(t), z = 

3
(t). Using the parametric equations of C, the line integral can be

f x y z s

C

( , , )d , it is rewritten as

f x y z
s

t
t

C

( )
d

d
d, , , where

d

d

d

d

d

d

d

d

s

t

x

t

y

t

z

t

2 2 2

.
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5.7 SURFACE INTEGRAL

The concept of a surface integral is a generalisation of the concept of a double 

integral. While a double integral is evaluated over the area of a plane surface, a 

surface integral is evaluated over the area of a curved surface in general. The formal 

 Let S be a portion of a regular two-sided surface. Let f (z, y, z) be a 

S. Divide S into n s
1
,

S
2

S
n
. Let P(

r
,
 r

,
 r

S
r
. Then lim ( , , )

n
S

r r r r

r

n

r

f S

0 1

is called the surface integral of f(x, y, z) over the surface S and denoted as 

f x y z S

S

( , , )d  or f x y z S

S

( , , )d .

5.7.1 Evaluation of a Surface Integral

Let the surface integral be f x y z S

S

( , , )d , where S is the portion of the surface

whose equation is (x, y, z) = c (Fig. 5.40).

z

O y

S

R

x

Fig. 5.40

Project the surface S orthogonally on xoy-plane (or any one of the co-ordinate 

planes) so that the projection is a plane region R.

S  

A

We can divide the area of the region R into elemental areas by drawing lines 

parallel to x and y y x respectively. Then = · .

x · y = S cos , where  is the angle between the surface S and the 

plane R (xoy-plane), i.e. is the angle between the normal to the surface S at the 

typical point (x, y, z) and the normal to the xoy-plane (z-axis). From Calculus, it is
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known that the direction ratios of the normal at the point (x, y, z) to the surface

(x, y, z) = c are 
x y z

, , . The direction cosines of the z-axis are (0, 0, 1)

 cos z

x y z

2 2 2

Thus S x y
x y z

z

2 2 2

.

  f x y z S f x y z x y
x y z

zRS

( , , )d , , ) d d(

2 2 2

Thus the surface integral is converted into a double integral by using the above 

as to cover the entire region R and the integrand is converted into a function of x and 

y, using the equation of S.

Note   Had we projected the curved surface S on the yoz-plane or zox-plane then 

the conversion formula would have been

 

f x y z S f x y z y z
x y z

xRS

( , , )d ( , , ) d d

2 2 2

or  f x y z S f x y z z x
x y z

yRS

( , , )d ( , , ) d d

2 2 2

, respectively.

5.8 VOLUME INTEGRAL

 Let V be a region of space, bounded by a closed surface. Let 

f(x, y, z V. Divide V into n sub-

V
r
 by drawing planes parallel to the yoz, zox and xoy-planes at intervals of 

x, y z V
r
 is a rectangular parallelopiped with dimensions 

x y z.

Let P(
r 
, 

r r
V

r 
.

Then lim ( , , )
n
V

r r r r

r

n

r

f V

0 1

is called the volume integral of f(x, y, z) over the

region V (or throughout the volume V) and denoted as
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f x y z v

V

( , , ) d  or f x y z x y z

V

( , , ) d d d

5.8.1 Triple Integral Versus Volume Integral

A triple integral discussed earlier is a three times repeated integral in which the limits 

of integration are given, whereas a volume integral is a triple integral in which the 

limits of integration will not be explicitly given, but the region of space in which it 

V.

Note:  

of the  line and surface integrals will be discussed in Part II, Chapter 2.

WORKED EXAMPLE 5(c)

Example 5.1  Evaluate [(3 ) d ( ) d ]2 3xy y x x xy y

C

3 23  where C is the

parabola y2 = 4ax from the point (0, 0) to the point (a, 2a)

The given integral

I [(3 ) d ( ) d ]2 3xy y x x xy y

y ax

3 2

4

3
2

In order to use the fact that the line integral 

is evaluated along the parabola y2 = 4ax, we 

use this equation and the relation between dx 

and dy derived from it, namely, 2y dy = 4a dx 

and convert the body of the integral either to 

the form f(x) dx or to the form  (y) dy. Then 

between the concerned limits, got from the 

end points of C.

The choice of the form f(x) dx or  (y) dy for the body of the integral depends on

convenience. In this problem, x is expressed as 1

4a
y2  more easily than expressing y

 as 2 ax .

Note  From y2 = 4ax, we get y ax2 . Since the arc C

quadrant, y is positive and hence y ax2 .

Thus I d3
1

4 2

1

64
3

1

4

2 2 3

3

6 2 2

a
y y y

y

a
y

a
y

a
y y dy

a

0

2

 

(As the integration is done with respect to y, the limits for y are the y co-ordinates of 

the terminal points of the arc C).

y

O

C

A (a, 2a)

(0, 0)
x

Fig. 5.41
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I d
5

4

3

8

1

64

1

4

1

16

1

448

4

2

5

3

6

0

2

5

2

6

a
y

a
y

a
y y

a
y

a
y

a

a

33

7

0

2

486

7

y

a

a

 

Example 5.2 Evaluate [(2 ) d ( ) d ]

C

x y x x y y , where C is the circle x2 + y2 = 9.

In this problem the line integral is evaluated around a closed curve. In such a 

situation the line integral is denoted as

[(2 ) d ( ) d ]x y x x y y

C

, where a small circle is put across the integral symbol.

When a line integral is evaluated around a closed curve, it is assumed to be described 

In the case of a line integral around a closed curve C, any point on C can be 

assumed to be the initial point, which will also be the terminal point.

Further if we take x or y as the variable of integration, the limits of integration will 

be the same, resulting in the value ‘zero’ of the line integral, which is meaningless. 

Hence whenever a line integral is evaluated around a closed curve, the parametric 

equations of the curve are used and hence the body of integral is converted to the 

form f (t) dt or f ( ) d .

In this problem, the parametric equations of the circle x2 + y2 = 9 are x = 3 cos  

and y = 3 sin .

 dx = d  and dy = 3 cos d .

y
B

A

 = 0

 =

 = 2

 = 
x

B'

A'

2

 =
3

2

Fig. 5.42

The given integral = [(6 cos sin ) ( sin d )

0

2

3 3
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(3 cos + 3 sin ) (3 cos d )]

 = 9 ( sin cos ) d

sin

1

9
2

18

0

2

2

0

2

Example 5.3 Evaluate xy s

C

d , where C is the arc of the parabola y2 = 4x

between the vertex and the positive end of the latus rectum.

Given integral  I
d

d
dxy

s

x
x

C

Equation of the parabola is y2 = 4x

Differentiating with respect to x
y

x y
,

d

d

2

  
d

d

d

d

s

x

y

x y
1 1

4
2

2

 
 

I dxy
y

y
x

C

2 4

 

x x x

t t t t

4 4

2 1 2

0

1

1

2

d

( ) d2 , on putting x + 1 = t2

 
4

4
5 3

8

15
1 2

4 2

1

2

5 3

1

2

( ) dt t t

t t

Example 5.4 Evaluate ( d d )y x x y

C

2 2 , where C is the boundary of the triangle

C is made up of the lines BC, CA and AB.
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Equations of BC, CA and AB are respectively y = 0, x + y = x + y = 1.

Given integral ( d d )

d dd dd

y x x y
AB

x y

y x

CA

x y

y x

BC

y

y

2 2

110

0

y

A

C

O

B

(0, 1)

(– 1, 0) (1, 0)
x

Fig. 5.43

 0 1 1

1 2 2 1 2

2

1

0

2 2 2

0

1

1

0

2

[( ) ]d [( ) ]d

( )d (

x x x x x x

x x x xx x

x x
x

x x

)d

( )

0

1

2
3

1

0

2

0

12

3

2

3

Example 5.5 Evaluate [ d ( )d d ]x y x x z y xyz z

C

2 , where C is the arc of the

parabola y = x2 in the plane z = 2 from (0, 0, 2) to ( 1, 1, 2).

Given integral [ d ( )d d ]x y x x z y xyz z

y x

z

2

2

2

 [ d ( )d ]x y x x y

y x

2

2

2

[  dz = 0, when z = 2]

 [ ( ) ]dx x x x
x x

x4

0

1 5 3
2

0

1

2 2
5

2

3
2

17

15

Example 5.6 Evaluate ( d d d )x x xy y xyz z

C

, where C is the arc of the

twisted curve x = t, y = t2, z = t3,  t  1.

The parametric equations of C are x = t, y = t2, z = t3

  dx = dt, dy = 2t dt, dz = 3t2 dt on C.

Using these values in the given integral I,
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I = ( )dt t t t t t

t t t

3

0

1

6 2

2 5 9

0

1

2 3

2
2

5
3

9

17

30

Example 5.7 Evaluate ( )dx y z s

C

2 2 2 , where C is the arc of the circular helix

x = cos t, y = sin t, z = 3t from (1, 0, 0) to (1, 0, 6 )

The parametric of equations of C are

x = cos t, y sin t, z = 3t.

 
d

d
sin

x

t
t, 

d

d
cos

y

x
t , 

d

d

z

t
3  on C.

 
d

d

d

d

d

d

d

d

sin

s

t

x

t

y

t

z

t

t

2 2 2

2 cos2 9 10t

Given integral I = (cos sin )
d

d
d2 2 2

0

2

9t t t
s

t
t

Note  The point (1, 0, 0) corresponds to t = 0 and (1, 0, 6 ) corresponds to t = 2 .

 I =

(1+12 )

t t3 10

2 10

3

0

2

2

Example 5.8 Evaluate xyz S

S

d , where S is the surface of the rectangular

parallelopiped formed by x = 0, y = 0, z = 0, x = a, y = b and z = c (Fig. 5.44).

B

A
x

B' O'

C'

A'

z

C

O

y = b

z = c

z = 0

y = 0

y

Fig. 5.44

Since S is made up of 6 plane faces, the given surface integral I is expressed as
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I ( d )

x x a y y b z z c

xyz S

0 0 0

Since all the faces are planes, the elemental curved surface area dS becomes the 

elemental plane surface area dA.

 On the planes x = 0 and x = a, dA = dy dz.

 On the planes y = 0 and y = b, dA = dz dx.

 On the planes z = 0 and z = c, dA = dx dy.

  I ( d d ) ( d d )

x x a y y b

xyz y z xyz z x

0 0

 
z z c

xyz x y

0

( d d )

Simplifying the integrands using the equations of the planes over which the 

surface integrals are evaluated, we get

 I = d d d d d da yz y z b zx z x c xy x y

bc ca ab

00 00 00

Note  On the plane face z = c), the limits for x and y are easily found 

to be 0, a and 0, b. Similarly the limits are found on the faces  (x = a) and 

 (y = b).]

Now I =

( )

a
b c

b
c a

c
a b

abc
ab bc ca

2 2 2 2 2 2

2 2 2 2 2 2

4

Example 5.9 Evaluate ( )dy z S

S

2 2 , where S is the part of the plane 2x +

3y + 6z = 12, that lies in the positive octant (Fig. 5.45).

B

A

x

z

C

O y

Fig. 5.45

Rewriting the equation of the (plane) surface S in the intercept form, we get
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x y z

6 4 2
1

 S is the plane that cuts off intercepts of lengths 6, 4 and 2 on the x, y and z-axes 

respectively and lies in the positive octant.

We note that the projection of the given plane surface S on the xoy-plane is the 

triangular region OAB shown in the two-dimensional Fig. 5.46.

B
y

4

6
O A

2x + 3y = 12

x

Fig. 5.46

Converting the given surface integral I as a double integral,

I ( ) d dy z x y

OAB

x y z

z

2 2

2 2 2

,

where  = c is the equation of the given surface S.

Here  = 2x + 3y + 6z

 
x
 = 2; 

y
 = 3; 

z
 = 6.

 I ( ) d dy z x y

OAB

2 2
4 9 36

6
 

 
7

6
2 2( )d dy z x y

OAB

 (1)

Now the integrand is expressed as a function of x and y, by using the value of 

z (as a function of x and y) got from the equation of S, i.e. from the equation 2x + 

3y + 6z = 12

Thus  z x y
1

6
12 2 3( )  (2)

Using (2) in (1), we get

 
I ( )d d

7

6

1

3
6 2x x y

OAB
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7

18
6 2

7

18
9

9

4

28

3

0

6
3

2

0

4

2

0

4

( )d d

d

x x y

y y y

y

Example 5.10 Evaluate z d S

S

3 , where S is the positive octant of the surface 

of the sphere x2 + y2 + z2 = a2 (Fig. 5.47)

O

C
z

A

B

x

y

Fig. 5.47

The projection of the given surface of the sphere x2 + y2 + z2 = a2 (lying in the 

positive octant) in the xoy - plane is the quadrant of the circular region OAB, shown 

in the two-dimensional Fig. 5.48.

a2 – x2, y

x2 + y2 = a2

x
A

y

B

(0, y)

O

Fig. 5.48

Converting the given surface integral I as a double integral.

I d dz x y

OAB

x y z

z

3

2 2 2

,

where x2 + y2 + z2 = a2 is the equation of the given spherical surface.

x
 = 2x; 

y
 = 2y; 

z
 = 2z.

  I
( )

d d

d d

z
x y z

z
x y

z x y z x y

OAB

OAB

3

2 2 2

2 2 2 2

4

2
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 a a x y x y

OAB

( )d d2 2 2
 [  (x, y, z) lies on x2 + y2 + z2 = a2]

 a a y x x y

a a y x
x

a ya

a

x

x a

( )d d

( )

2 2 2

00

2 2
3

0 0

2 2

2

3

y

a

y

a a y y

2

2

3

2 2

3

2

0

d

( ) d

 
2

3

5 4

0

2

a cos d

/

, on putting x = a sin .

 
2

3

3

4

1

2 2

8

5

5

a

a

Example 5.11 Evaluate y z x S

S

( )d , where S is the curved surface of the

cylinder x2 + y2 = 16, that lies in the positive octant and that is included between the 

planes z = 0 and z = 5 (Fig. 5.49).

y

x

z

C E

B

D

O

A

Fig. 5.49

We note that the projection of S on the xoy-plane is 

not a plane (region) surface, but only the arc AB of the 

circle whose centre is O and radius equal to 4.

For converting the given surface integral into a 

double integral, the projection of S must be a plane 

region. Hence we project S on the zox-plane (or yoz- 

plane). The projection of S in this case is the rectangular 

region OCDA, which is shown in Fig. 5.50.

x

z

C

O A

D

5

4

Fig. 5.50
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Converting the given surface integral I as a double integral,

 I = ( ) d dy
y

z x

OADC

x y z
z + x

2 2 2

,

where  x2 + y2 = 16 is the equation of the given cylindrical surface. 
x
 = 2x;  

y
 = 

2y; 
z
 = 0.

  I ( )
( )

d d

2 2

y
y

z x

OADC

z + x
x + y4

2

 4 ( ) d dz + x

OADC

z x  [  (x, y, z) lies on x2 + y2 = 16]

 4

4 8

8 4

360

0

4

0

5

0

5

0

5

( ) d d

(4 ) d

( + )2

z + x

z z

z z

.

x z .

Example 5.12 Evaluate xyz x y z

V

d d d , where V is the region of space inside the 

tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 
x

a

y

b

z

c
1.

Vide worked Example 5.11 in the section on ‘Double and triple integrals’ for 

 I d d d= xyz z y x

c
x

a

y

b
b

x

aa

0

1

0

1

0

 xy
z

b
x

a c
x

a

y

b

0

1
2

0

1

2
00

a

y xd d

 
c

xy t
y

b
y x

bta2 2

00
2

d d , where t
x

a
1

 
c

x t
y t

b

y

b

y
x

a bt
2

2
2 3

2

4

0 0
2 2

2

3

1

4
d

 
c

b xt x

a2

0

2 4

2

1

2

2

3

1

4
d
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b c
x

x

a
x

b c
a

x

a

a2 2 4

0

2 2

24
1

24
1 1

d

0

4

2 2

5

1

24

1

5

1

a
x

a
x

ab c

x

a

a

x

a

d

6

0

2 2 2

6

24

1

5

1

6

a

a b c

a

1

720

2 2 2a b c

Example 5.13  Express the volume of the sphere x2 + y2 + z2 = a2 as a volume integral 

and hence evaluate it. [Refer to Fig. 5.51]

y

x

z

O

Fig. 5.51

Required volume = 2 × volume of the hemisphere above the xoy-plane. Vide worked 

example 5.12 in the section on ‘Double and Triple Integrals’.

Required volume 2

0

2 2 2

2 2

2 2

d d dz y x

a x y

a x

a x

a

a

 

2 2 2

2 2

2 2

( ) d d2a x y x

a x

a x

a

a

y

Taking a2 x2 = b2, when integration with respect to y is performed,

 V b y y x

b

b

a

a

2 2 2 d d
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4 2 2

0

b y y x

b

a

a

d d

 
[ is an even function of ]b y2 2 y

 4
2 2

2

2 2
2

1

0

2

y
b y

b y

b
x

x x

b

a

a

a

a

sin d

( ) d2a

aa x
x

a

a

2
3

0

3

3

4

3

Example 5.14 Evaluate ( )d d dx y z x y z

V

, where V is the region of space

inside the cylinder x2 + y2 = a2 that is bounded by the planes z = 0 and z = h [Refer 

to Fig. 5.52].

y

z

Q

P

x

(x, y, 0)

(x, y, h)

Fig. 5.52

Note  The equation x2 + y2 = a2 (in three dimensions) represents the right circular 

cylinder whose axis is the z-axis and base circle is the one with centre at the origin 

and radius equal to a.

 I ( ) d d d

( ) d d

x

x + y h

y z z y x

h
y

h

a x

a x

a

a

0

2

2 2

2 2

2
xx

h x
h

y x

a x

a x

a

a

a x

a

a

2 2

2 2

2 2

2
2

0

d d

[by using properties of odd and even functions]
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2
2

2 2h x
h

a x x

a

a

d

 2 2 2 2

0

h a x x

a

d   [ is odd and is even ]x a x a x2 2 2 2

 2
2 2

2

2 2 2
2

1

0

2 2

h
x

a x
a x

a

a h

a

sin

.

EXERCISE 5(c)

Part A

(Short Answer Questions)

7. Write down the formula that converts a surface integral into a double integral.

8. Evaluate ( d d )x y y x

C

2 2  where C is the path y = x from (0, 0) to (1, 1).

9. Evaluate ( ) dx y s

C

2 2 , where C is the path y = x 

10. Evaluate ( d d )x y y x

C

, where C is the circle x2 + y2 = 1 from (1, 0) to

(0, 1) in the counterclockwise sense.

11. Evaluate dS

S

, where S is the surface of the parallelopiped formed by

x = ± 1, y = ± 2, z = ± 3.

[Hint: dS

S

gives the area of the surface S]

12. Evaluate dS

S

, where S is the surface of the sphere x2 + y2 + z2 = a2.

13. Evaluate dS

S

, where S is the curved surface of the right circular cylinder

x2 + y2 = a2, included between z = 0 and z = h.

14. Evaluate dV

V

, where V is the region of space bounded by the planes

x = 0, x = a, y = 0, y = 2b, z = 0 and z = 3c.
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[Hint: dV

V

gives the volume of the region V]

15. Evaluate dV

V

, where V is the region of space bounded by x2 + y2 +

z2 = 1.

16. Evaluate dV

V

, where V is the region of space bounded by x2 + y2 = a2,

z = , z = h.

Part B

17. Evaluate [ d ( )d ]

(0, )

(1,3)

x y x x y y2

0

2 2  along the (i) curve y = 3x2, (ii) line y = 3x.

18. Evaluate [( + ) d (2 ) d ]

C

x y x x x y y y2 2  from (0, 0) to (1, 1), when C is

(i) y2 = x, (ii) y = x.

19. Evaluate ( d d )

(- , )

( , )

y x x y

a

a

2 2

0

0

 along the upper half of the circle x2 + y2 = a2.

20. Evaluate ( d d )

C

x y y x , where C is the ellipse 
x

a

y

b

2

2

2

2
1  and described

in the anticlockwise sense.

21. Evaluate [( ) d d ]x y x xy y

C

2 2 2 , where C is the boundary of the rectangle

formed by the lines x = 0, x = 2, y = 0, y = 1 and described in the anticlockwise 

sense.

22. Evaluate [( ) d ( )d ]3 8 4 62 2x y x y xy y

C

, where C is the boundary of the

region enclosed by y2 = x and x2 = y and described in the anticlockwise sense.

23. Evaluate ( ) dx y s

C

2 , where C is the arc of the circle x = a cos , y = a

sin ; 0
2

.

24. Evaluate x s

C

d , where C is the arc of the parabola x2 = 2y from (0, 0 ) to 

1
1

2
, .

25. Evaluate [ d ( ) d ( )d ]xy x x z y y x z

C

2 2  from (0, 0, 0) to (1, 1, 1) along

the curve C given by y = x2 and z = x3.

26. Evaluate [ (3 )d d d ]x y x yz y xz z

C

2 26 14 20 , where C is the segment of 

the straight line joining (0, 0, 0) and (1, 1, 1).



Chapter 5: Multiple Integrals I – 5.59

27. Evaluate [ d ( ) d d ]3 22x x xy y y z z

C

 from t = 0 to t = 1 along the curve

C given by x = 2t2, y = t, z = 4t3.

28. Evaluate xy sd  along the arc of the curve given by the equations x = a tan

, y = a cot , z a2 log tan from the point 
4

 to the point 

3
.

29. Evaluate ( )dxy z s

C

2 , where C is the arc of the helix x = cos t, y = sin t,

z = t ).

30. Find the area of that part of the plane 
x

a

y

b

z

c
1  that lies in the

positive octant.  H s

S

int: Area of the surface = d

31. Evaluate z S

S

d , where S is the positive octant of the surface of the sphere

x2 + y2 + z2 = a2.

32. Evaluate xy Sd , where S is the curved surface of the cylinder x2 + y2 =

a2 z k, included in the positive octant.

33. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, 

x

a

y

b

z

c
1 .

34. Evaluate z x y z

V

d d d , where V is the region of space bounded by the

sphere x2 + y2 + z2 = a2 above the xoy-plane.

35. Evaluate ( ) d d dx y x y z

V

2 2
, where V is the region of space inside the

cylinder x2 + y2 = a2 that is bounded by the planes z = 0 and z = h.

5.9 GAMMA AND BETA FUNCTIONS

e x xx n 1

0

d  exists only when n > 0 and when it

exists, it is a function of n and called Gamma function n) [read as 

“Gamma n”].

Thus ( ) dn e x xx n 1

0

x x xm n1

0

1

1( ) d1 exists only when m > 0 and n > 0 and

when it exists, it is a function of m and n and called Beta function and denoted by 

(m, n) [read as “Beta m, n”].

Thus ( , ) ( ) d :1m n x x xm n1

0

1

1
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Note  ( ) = d ( )1 10

0

e x ex x
.

 ( , ) = d = 11 1

0

1

x .

5.9.1 Recurrence Formula for Gamma Function

 ( ) = dn e x xx n 1

0

 ( ) ( ) dx e n e x xn x x n1

0

2

0

1  [integrating by parts]

 ( ) ( ), since limn n
x

en

n

x
1 1 0

1

This recurrence formula (n) = (n  (n n > 1, as (n

exists only when n > 1.

Cor.

n + 1) = n !, where n is a positive integer.

n + l) = n n)

 = n (n (n 

 = n (n n  (n 

 = . . . . . . . . . . . . . . . . . . . . .

 = n (n n (l)

 = n ! (  (l) = 1)

Note  1. (n n is 0 or a negative integer.

2. When n is a negative fraction, (n) 

formula. i.e. when n < 0, but not an integer,

( ) ( )n
n

n
1

1

For example, ( )
( )

( )

( ) ( )
( )

1

( ) ( ) (

3 5
1

3 5
2 5

1

3 5

1

2 5
1 5

3 5 2 5

.
.

.

. .
.

. . 1 5
5

0 5

3 5 2 5 1 5 0 5

.
.

.

. . . .

)
( )

( )

( ) ( ) ( ) ( )

The value of (0.5) can be obtained from the table of Gamma functions, though its 

value can be found out mathematically as given below.

Value of 
1

2
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1

2

1

2

0

e t tt d

 e
x

x xx2 1
2

0

d  (on putting t = x2)

 2
2

0

e xx d

Now 
1

2
2 2

2

00

2 2

e x e yx yd d  [

 is only a dummy variable]

 4
2 2

00

e x yx y( ) d d  (1)

[

the limits are constants].

x y  

xy-plane.

Let us change over to polar co-ordinates through the transformations

x = r cos and y = r sin .

Then dx dy = |J| d r d = r d r d 

r 0
2

.

Then, from (1), we have

 1

2
4

4
1

2

2

00

2

2

e r r

e

r

r

d d

d

/2

00

0

2

/2

/2

d

  
1

2

5.9.2 Symmetry of Beta Function

(m, n) = (n, m)

( ) = ( ) d1m n x x xm n, 1

0

1

1  (1)

Using the property f x x f a x x

aa

( ) d ( ) d

00

 in (1),
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( , ) ( ) { ( )

( )

( , ).

m n x x x

x x x

n m

m n

n m

1 1 1

1

1 1

0

1

1

0

1

1

d

d

5.9.3 Trigonometric Form of Beta Function

( , ) ( )m n x x xm n1

0

1

11 d

Put x = sin2  dx = 2 sin cos  d

The limits for are 0 and 
2

.

 ( , ) sin cos sin cos

sin cos

/

m n m n

m n

2 2 2 2

0

2

2 1 2

2

2

d

11

0

2

d

/

Note  sin cos ( , )

/

2 1 2 1

0

2
1

2

m n m nd

sin and dividing the sum by 2. The second argument is obtained by adding 1 to the 

exponent of cos and dividing the sum by 2.

Thus sin cos ,

/

p q p q
d

1

2

1

2

1

2
0

2

5.9.4 Relation Between Gamma and Beta Functions

( , )
( ) ( )

( )
m n

m n

m n

Consider ( ) ( )m n e t t e s st m s n1

0

1

0

d d

t = x2 and in the second, put s = y2.

 ( ) ( )m n e x x e y yx m y n2 2
2 22 1 2 1

00

d d
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4

4

2 2

2

2 1 2 1

00

2 1 2

e x y x y

e r r

x y m n

r m

( )

( cos ) ( sin )

d d

nn r r1

00

2

d d

/

[changing over to polar co-ordinates]

 4 2 1 2 1 2 2 2

00

2

2

2

2

cos sin

( , )

/

m n r m n

r

e r r r

m n e r

d d

(( )m n r r1

0

2 d

 ( , )m n e u uu m n 1

0

d  [putting r2 = u]

 ( , ) ( , )m n m n

 ( , )
( ) ( )

( )
m n

m n

m n

Cor.

Putting m n
1

2
 in the above relation, 

1

2

1

2

2

1

2

,
( )

  
1

2

1

2

1

2

2

2

0

,

sin cos0 dd

0

2/

 
1

2

WORKED EXAMPLE 5(d)

Example 5.1 Prove that e x x
n

a

ax n

n

1

0

d
( ), where a and n are positive.

x
x

xq

p

1

0

1 1

1
log d .

In e x xax n 1

0

d , put ax = t, so that d
d

x
t

a
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 e x x e
t

a

t

a

ax n t

n

1

1

00

d
d

 

1

1

1

0
a

e t t

a
n

n

t n

n

d

( )  (1)

In I log dx
x

xq

p

1

1

0

1
1

,

put 
1

x
ey

i.e. x = e y

Then d y dy

Also the limits for y  and 0.

  I ( )d( )e y e yq y p y1 1

0

 

e y y

q
p

qy p

p

1

0

1

d

( ) [by (1)] .

Example 5.2 Prove that ( ) =
( )

d
 

m n
x

x
x

m

m n
,

1

0
1

.

Hence deduce that ( ) =
( )

d
 

m n
x x

x
x

m n

m n
,

1 1

0

1

1
.

( ) = ( ) d1m n t t tm n, 1

0

1

1  (1)

In (1), put t
x

x1
. Then d

( )
dt

x
x

1

1 2

When t = 0, x = 0; when t = 1, x x
t

t1Then (1) becomes,

 ( , ) =
( )

dm n
x

x x x

m n

1

1

1

1

1
0

1 1

2
xx

 =
( )

d
x

x
x

m

m n

1

0
1

 (2)

 =
( )

d
( )

d
x

x
x

x

x

m

m n

m

m n

1

0

1 1

1
1 1

 (3)
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In 
x

x
x

m

m n

1

1
1( )

d , put x
y

1
. Then d dx

y
y

1
2

When x = 1, y = 1; when x = , y = 0

 
x

x
x

y

y

y

m

m n

m

m n

1

1

1

21

1

1
1

1

( )

( )

d dy

1

0

 

y

y y
y

y

y
y

x

x
x

m n

m n m

n

m n

n

m n

( )

( )

( )

1

1

1

1

0

1

1

0

1

1

0

1

d

d

d

 [changing the dummy variable] (4)

Using (4) in (3), we have

 

( , )
( )

m n
x x

x
x

m n

m n

1 1

0

1

1
d .

Example 5.3 Evaluate x x xm n p

0

1

1( ) d  in terms of Gamma functions and

dx

xn10

1

.

In I dx x xm n p( )1

0

1

,

put xn = t;

then nxn  dx = dt

 d
d

x
n

t

t n

1

1
1

When x = 0, t = 0; when x = 1, t = 1.

 I d

d

t t
n

t t

n
t t t

n

m

n
p

m

n p n

m

n p

( )

( )

,

1
1

1
1

1 1

1
1

0

1

1
1

0

1

11
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1

1
1

1
1

n

m

n
p

m

n
p

( )

 (1)

 
d

d
x

x
x x x

n

n

1
10

1

2

0

1

0

1

( )

Here m = 0, n = n, p
1

2
.

Using (1); we have

 
dx

x n

n

n

n1

1

1 1

2

1 1

2
0

1

 

n

n

n

1

1 1

2

Example 5.4 Prove that ( , )
( )

n n
n

nn2
1

2

2 1

(or) ( , ) ,n n n
n

1

2

1

22 1

  ( , ) sin cos

/

n n n n2

2

2 1

0

2

2 1 d [using trigonometric form]

ssin cos

sin

/

/

2 1

0

2

0

2 2 1

2 2

2
2

2

1

2

n

n

n

d

d

ssin

/

2 1

0

2

2 2

2 1

0

2

1

2 2

n

n

n

d

sin
d

, putting 2 =
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1

2
2

2 2

2 1

0

2

0 0

2

n

n f fsin (sin ) (sin )

/ /

d d d

1

2

1

2

1

2

1

2

1

2

1

2

2 2

2 1

2 1

n

n

n

n

n

,

,

( )

( )

n

n

n

nn

1

2

1

2

2
1

2

2 1

Example 5.5 Show that x e x
a

nn a x

n

2 2

0

1

1

2

1

2
d .

Deduce that e x
a

a x2 2

0
2

d . Hence show that

cos ( ) sin ( )x x x x2

0

2

0

1

2 2
d d

In I dx e xn a x

0

2 2

, put ax t ; then d
d

x
t

a t2

When x = 0, t = 0; when x = , t = .

 I
dt

a
e

t

a t

n

t

0 2

 

1

2

1

2

1

2

1

1

2

0

1

a
t e t

a

n

n

n

t

n

d

  (1)

In (1), put n = 0.

Then  e x
a a

a x2 2

0

1

2

2 2
d  (2)

In (2), put a
i

a i
1

2

2; then
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e x
i

i

ix2

0
2

2 2

d
(1 )

(1 )

Equating the real parts on both sides,

cos ( ) dx x2

0

1

2 2
.

Equating the imaginary parts on both sides,

sin ( ) dx x2

0

1

2 2
.

Example 5.6  Evaluate

(i) ( ) ( ) dx a b x xm

a

b
n1 1  and

(ii) ( ) ( ) da x a x xm

a

a
n1 1  in terms of Beta function.

(i) In I ( ) ( ) d1

1 1x a b x xm

a

b
n ,

put = y; then dx = dy

When x = a, y = 0; when x = b, y = 

 

I ( ) d

( )

1 y b a y y

b a y
y

b a

m n
b a

n m

b a

1 1

0

1 1

0

1

n

y

1

d  (1)

In (1), put 
y

b a
t ; then dy = (b a) dt

When y = 0, t = 0; when y = b a, t = 1.

 I ( ) (1 ) d

( ) ( , )

1 b a t t t

b a m n

m n m n

m n

1 1

0

1
1

1

(ii) In I ( ) ( ) d2 a x a x xm n

a

a

1 1 ,

put a + x = y; then dx = dy

When x = , y = 0; when x = a, y = 2a.

I (2 ) d2 y a y ym n

a

1 1

0

2
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 (2 ) da y
y

a
yn m

na

1 1

1

0

2

1
2

 (2)

In (2), put 
y

a
t

2
; then dy = 2a dt.

When y = 0, t = 0; when y = 2a, t = 1.

 I (2 ) ( ) d

(2 ) ( , )

2 a t t t

a m n

m n m n

m n

1 1

0

1

1

1

1 .

Example 5.7 Prove that 
e

x
x x e x

x
x

2

4

0

2

0
4 2

d d

In I d1

0

2

e

x
x

x

, put x2 = t; then d
d d

x
t

x

t

t2 2

When x = 0, t = 0; when x t

  I
d

d1 1 4

3

4

00
2

1

2

1

2

1

4

e

t

t

t
e t t

t
t

/

In I d2 x e xx2

0

4

, put x4 = s; then d
d d

x
s

x

s

s4 43 3 4/

When x = 0, s = 0; when x s = 

  I
d

d2 s e
s

s
s e ss s

4

1

4

1

4

3

4

3 4

0

1

4

0

/

 
e

x
x x e x

x
x

2

4

0

2

0

1

8

1

4

3

4
d d  (1)

From Example 5.4;

( , ) ,n n n
n

1

2

1

2
2 1

i.e. 
( ) ( )

(2 )

( )n n

n

n

n
n

1

2 1

2

2 1

  ( )
(2 )

n n
n

n

1

2 22 1
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Putting n
1

4
, we get

 

1

4

3

4

1

2

2

2

1

2

 (2)

Using (2) in (1);

e

x
x x e x

x
x

2

4

0

2

0

2

8 4 2
d d .

Example 5.8 Evaluate 
x

x
x

m

n p

1

0
1( )

d  and deduce that 
x

x
x

m

n

1

0
1

d

n
m

n
sin

. Hence show that 
dx

x1 2 2
4

0

.

In I
( )

d
x

x
x

m

n p

1

0
1

, put t
xn

1

1

Then x
t

t

n 1
   nx x

t
tn 1

2

1
d d

When x = 0, t = 1; when x = , t = 0

 I
( ) d

( )
( )

t t

t

t

nt t t

m

n

m

n

p n

n

n

1 1

0

1

2

1

1

1
11

1

0

1
11

1

1

n

p
m

n

m

n

n
t t t

n
p

m

n

m

n

( ) d

,

 
1

n

p
m

n

m

n

p( )
 (1)

Putting p = 1 in (1), we get

x x

x n

m

n

m

n

m

n

1

0
1

1
1

d

 
n

m

n
cosec  H int : Use ( ) (1 )

sin
 (2)
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Taking m = 1 and n = 4 in (2), we get

d
cosec

x

x1 4 4

2 2

4

0

Example 5.9 Find the value of x y x ym n1 1 d d , over the positive quadrant of

the ellipse 
x

a

y

b

2

2

2

2
1 , in terms of Gamma functions.

Put 
x

a
X  and 

y

b
Y

Then d dx
a

X
X

2
 and d dy

b

Y
Y

2
.

The region of double integration in the xy-plane is given by x y

x

a

y

b

2

2

2

2
1 , shown in Fig. 5.53.

  The region of integration in the XY-plane is given by X Y X + Y

shown in Fig. 5.54.

The given integral

I d d

d d

a X b Y
ab

X Y
X Y

a b
X Y X Y

m n

ABO

m n m n

ABO

1 1

2
1

2
1

4

4

a b
X Y X Y

m n m nY

4
2

1
2

1

0

1

0

1

d d

I d

d

a b
Y

m
X Y

a b

m
Y Y Y

a b

m n n

m Y

m n n

m

m

4

2

2
1

2
1

2

0

1

0

1

2
1

2

0

1

nn

m n

m

n m

a b

m

n m

2 2 2
1

2

2 2
1

,

m n

2 2
1

x

y

O

Fig. 5.53

AO

B
Y

X

X + Y = 1

Fig. 5.54
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a b

m

m m n

m n

a

m n

m

2

2 2 2

2 2
1

bb

m n

m n

n

4

2 2

2
1

Example 5.10 Find the erea of the astroid x 2/3 + y 2/3 = a 2/3, using Gamma func-

tions.

By symmetry of the astroid, required area A =

4 × area of OACB x y

OACB

4 d d

Put 
x

a
X

2 3

 and 
y

a
Y

2 3

i.e. x = aX 3/2 and y = aY 3/2

 dx aX
3

2

1 2  and d dy aY Y
3

2

1 2

The region of integration in the xy-plane is

given by x y
x

a

y

a

2 3 2 3

1 , as shown in Fig. 5.55.

 The region of integration in the XY-plane is given by X Y X + Y

as shown in Fig. 5.56.

  A a X Y X Y

a X Y X Y

a Y X

PQO

Y

4
9

4

9

9
2

3

2 1 2 1 2

2 1 2 1 2

0

1

0

1

2 1 2 3

d d

d d

22

0

1

0

1

2 1 2 3 2

0

1

2

6 1

6
3

2

5

2

Y

Y

a Y Y Y

a

d

( ) d

,

6

3

2

5

2

4
2a

( )

C

O A

B

y

x

Fig. 5.55

O

Q

P
X

Y

Fig. 5.56
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 a2 1

2

1

2

3

2

1

2

1

2
 [

 
3

8

2a  
1

2

Example 5.11 Evaluate [ ( )] d dxy x y x y1 1 2 , over the area enclosed by the

lines x = 0, y = 0 and x + y = 1 in the positive quadrant.

Given Intergral I ( ) d d

d ( ) d

x y x y y x

x x y a y y

x

a

1 2 1 2 1 2

0

1

0

1

1 2

0

1

1 2 1 2

0

1 ,

where a x. (1)

Consider y a y ym n

a

1 1

0

( ) d

 

a y
y

a
y

a a z z a z

n m

na

n m m n

1 1

1

0

1 1 1 1

0

1

1

1

d

( ) d   putting
y

a
z

 a m nm n 1 ( , )  (2)

Note  This result (2) will be of use in the following worked examples also.

Using (2) in (1) note that m n
3

2
,

 
I ( ) , d

, ,

x x x1 2 2

0

1

1
3

2

3

2

3

2

3

2

3

2
3

3

2

3

2

3

3

2
3

( )

( ))

9

2

1

2

1

2

3

2

7

2

5

2

3

2

3

2

2

105

O x

y

Fig. 5.57
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Example 5.12 Show that the volume of the region of space bounded by the

coordinate planes and the surface x

a

y

b

z

c

abc
1

90
is .

Required volume is given by

Vol d d dz y x

V

, where V is the region of space given.

Put 
x

a
X

y

b
Y

z

c
Z, ,

i.e. x = aX2, y = bY2, z = cZ2

 dx = 2aX dX, dy = 2bY dY, dz = 2cZ dZ

 Vol d d d8abc XYZ Z Y X

V '

, where V  is the region of space in XYZ-space

X Y X + Y + Z

  Vol d d d

d d

8

8
2

0

1

0

1

0

1

0

1

0

1 2

abc X Y XYZ Z

abc X X Y Y
Z

X X Y

X

0

1

0

1

2

0

1

4 1

X Y

X

abc X X Y X Y Yd ( ) d

 4 1 34

0

1

abc X X X( ) (2, ) d  [by step (2) of Example (5.11)]

 4
2 3

5
2 5

4
1 2

24

2 5

7

3

1 2

abc

abc

abc

( ) ( )

( )
( , )

( ) ( )

( )

44

720

90

abc

Example 5.13 Evaluate 
d d dx y z

x y z1 2 2 2
, taken over the region of space

in the positive octant bounded by the sphere x2 + y2 + z2 = 1.

Put x2 = X, y2 = Y, z2 = Z

Y

X

Z

Fig. 5.58
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 d
d

, d
d

, d
d

x
X

X
y

Y

Y
z

Z

Z2 2 2

The region of integration in xyz x y z x2 + y2 + 

z2 

 The region of integration V in the XYZ X Y

X + Y + Z 

Given intergral I ( ) d d d

d d

-1

8
1

1

8

1

2

1

2

1

2

1

2

1

2

0

1 1

2

X Y Z X Y Z X Y Z

X X Y Y

V

00

1 1

2

1

2

0

1

1

2

0

1 1

2

1

2

1

1

8
1

X X Y

Z X Y Z Z

X X Y Y X Y

( ) d

d d ( )

-

1

2
1

0

1
1

2

1

2
,

X

[by step (2) of Example (5.11)]

 
8

2
1

2

1

2

0

1

0

1

X X Y

X

d   
1

2

1

2
,

 
4

1

4

1

2

3

2

4

1

2

1

2

0

1

X X X( )  d

,

1/2

33

2

2

8

2

( )

.

Example 5.14 Evaluate a b c b c x c a y a b z x y z

V

2 2 2 2 2 2 2 2 2 2 2 2 d d d ,

where V  x y z
x

a

y

b

z

c

2

2

2

2

2

2
1 .

Put 
x

a
X

y

b
Y

z

c
Z

2 2 2

, ,

i.e. x a X y b Y z c Z, ,

 d d , d d , d dx
a

X
X y

b

Y
Y z

c

Z
Z

2 2 2

The region V  of integration in the XYZ X Y Z X + 

Y + Z  1.



I – 5.76 Part I: Mathematics I

 Integral abc X Y Z
abc X Y Z

X Y Z

a b c
X X Y Y Z

V

X

1
8

8

2 2 2 1

2

0

1 1

2

0

1

'

d d d

d d
1

2

1

2

0

1

1( ) dX Y Z Z

X Y

 
a b c

X X Y Y X Y

X2 2 2 1

2

0

1 1

2

0

1

8
1

1

2

3

2
d d ( ) ,

[by step 2 of Example (5.11)]

 
a b c

X X X
2 2 2 1

2

3

2

0

1

8

1

2

3

2
1

1

2
2, d ( ) ,

[by step 2 of Example 5.11]

 

a b c2 2 2

8

1

2

3

2

1

2
2

1

2

5

2
, , ,

a b c2 2 2

8

1

2

3

2

2

1

2

( )

(22

5

2

1

2

5

2

3

3

2 2 2 2

)

( )

a b c

22

Example 5.15 Find the value of x y z x y z x y zl m n p1 1 1 1( ) d d d-1 , taken

over the interior of the tetrahedron bounded by x = 0, y = 0, z = 0 and x + y + z = 1, 

in terms of Gamma functions.

Given integral x x y y z x y z zl m

x

n p

x y

1

0

1

1

0

1

1

0

1

1d d ( ) d- 1 ,

 x x y x y n p yl m n p

x

1

0

1

1

0

1

1d ( ) ( , ) d1- ,

[by step (2) of Example (5.11)]

 ( , ) ( ) ( , )dn p x x m n p xl m n p1 1

0

1

1 ,

[by step (2) of Example (5.11)]

 ( , ) ( , ) ( , )

( ) ( )

( )

( ) ( )

(

n p m n p l m n p

n p

n p

m n p

m nn p

l m n p

l m n p

l m n p

l m n p

)

( ) ( )

( )

( ) ( ) ( ) ( )

( )
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EXERCISE 5(d)

Part A

(Short Answer Questions)

1. Prove that x e xx4

0

2 3

8
d .

2. Evaluate x e xx3

0

d , given that
5

3
0 902. .

3. Find the value of sin cos d3 5 2

0

2

x x x/

/

.

4. Find the value of sin cos d5 7

0

2/

.

5. Find the value of tan d

0

2/

 in terms of Gamma functions.

6. Prove that cot d

0

2
1

2

1

4

3

4

/

.

7. Find the value of sin d
d

sin
0

2

0

2 //

8. Prove that cos d
d

cos
x x

x

0

2

0

2/ /

x
.

9. Prove that log d ( )
1

0

1 1

x
x

n

n .

10. Find the value of 
x

n
x

n

x
d ( )

0

1n .

11. Assuming that 
x

x
x

1

0
1

d
sin

, prove that ( ) (1 ) =
sin

,

 is neither zero nor an integer. [Hint: put x = tan2 ]

12 Find the value of e xkx2

d .

13. Prove that ( , )

( , )

m n

m n

m

n

1

1
.

14. Prove that ( , ) ( , ) ( , )m n

m

m n

n

m n

m n

1 1 .
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15. Find the value of 
x

x
m 1

0
( )

d
a + bx m + n

 in terms of a Beta function.

H x
a

b
tint: put

16. Prove that (m + 1, n) + (m, n + 1) = (m, n).

17. Find the value of (8 ) d3

1

3x x

0

2

 in terms of Gamma functions.

18. Prove that x x a m nm

a

m n( ) d ( , )a  x n

0

1 1 1 .

20. Derive the recurrence formula for the Gamma function.

21. When n n + 1) = n!

value of 
1

2
.

Part B

23. Prove that e x y x y
a b

nm n

m n

( )2 2

d d ( ) ( )ax + by m

0

2 1 2 1

0

1

4
.

24. When n is a positive integer and m x xm (log ) dx n

0

1

( 1) !

( )

n

n + m + 

n

1 1
.

25. Prove that x x
x

a b

m

m n n m

1 1

0

1
1( )

( )
d

( , )

( )

n

 +  a + bx

m n

a  + 
.

H
x

a bx

z

a b
int:Put

26. Express n n
1

2

1

2
,  in terms of Gamma functions in two different ways 

and hence prove that n
n

1

2 22

(2  +1)

(  +1)

n

n
.

27. Prove that x e x
e

x
xx

x
2

2

0 0
2 2

d d .

28. Prove that x e x x e xx x8 4

0

2

0
16 2

d d .

29. Prove that 
x x

x

x

x

2

4 4
0

1

0

1

1 1 4

d d
.
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30. Evaluate (i) 
dx

x1 4

0

, (ii) 
x x2

0

d

(1 + )4 2x
 and (iii)

x x2

0

d

(1 + )4 3x

[Hint: put x2 = tan2 ]

31. Find the value of x y x ym n d d , taken over the area x y x + y

terms of Gamma functions, if m, n > 0.

32. Find the value, in terms of Gamma functions, of x y z x y zm n p d d d  

taken over the volume of the tetrahedron given by x y  0, z x + 

y + z 
x

a

y

b

2 3 2 3

1

/ /

and the co-ordinate axes.

34. Evaluate x y x ym n1 1 1(1 ) d dx y p  , 

quadrant enclosed by the lines x = 0, y = 0, x + y = 1.

35. The plane 
x

a

y

b

z

c
1  meets the axes in A, B and C. Find the volume of the

tatrahedron OABC.

36. Find the volume of the ellipsoid 
x

a

y

b

z

c

2

2

2

2

2

2
1 .

37. Find the volume of the region of the space bounded by the co-ordinate planes

and the surface 
x

a

y

b

z

c

n n n

1

38. Evaluate xyz x y z x y z(1 ) d d d , taken over the tetrahedral 

x = 0, y = 0, z = 0 and x + y + z = 1.

39. Evaluate x yz x y z2 d d d , 

octant bounded by x = 0, y = 0, z = 0 and 
x

a

y

b

z

c
1 .

40. Evaluate xyz x y zd d d , x y

and x

a

y

b

z

c

2

2

2

2

2

2
1.

ANSWERS

Exercise 5(a)

(1) 4 (2) log a log b (3) 2

(4) 
1

2
 (5) 

4
 (6) 

9

2
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(7) 
1

2
 (8) 

Fig. 5.59

y
y = b

y = – b

x = – a

x = a
x

O

(9) 

y

RO

x = 1
y = x

y = 0
x

Fig. 5.60

 (10) 

y

R

y = 0

x = 0

O

x2 + y2 = a2

x

Fig. 5.61

(11) 

y = 0

x = 0

O

= 1

x

x

a b

y
+

Fig. 5.62

 (12) f x y y x

x

( , )

0

1

0

1

d d  (or) f x y x y

y

( , )

0

1

0

1

d d

(13) f x y y x

b

a
a x

a

( , )

00

2 2

d d  (or) f x y x y

a

b
b y

b

( , )

00

2 2

d d

(14) f x y x y

y

( , )

00

1

d d  (or) f x y y x

x

( , )

1

0

1

d d

(15) f x y x y

y

( , )
2

4

1

0

2

d d  (or) f x y y x

x

( , )

0

2

0

1

d d

(16) 2 log 2 (17) 
a3

6
 (18) 

4

(19) 
a3

6
 (20) 

1

720

(21)
8

3
2

19

9
log   (22) 1 (23) 

3

2
 

(24) 
2

3a  (25) 
1

3
ab a b( )  (26) 

344

105

(27) 6 (28) 
33

2

(29) 
1

16
8 2 5( log )  (30) 

1

48
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Exercise 5(b)

(1) f x y x y

y

aa

( , )d d

0

 (2) f x y y x

x

( , )

00

1

d d

(3) f x y x y

ya

( , )

00

d d  (4) f x y y x

x

( , )

1

0

1

d d

(5) f x y y x

x

( , )

0

1

0

1

d d  (6) f x y x y

a ya

( , )

00

d d

(7) f x y x y

y

( , )

0

1

0

1
2

d d  (8) f x y y x

a xa

( , )

00

2 2

d d

(9) f x y x y

y

( , )
2

4

1

0

2

d d  (10) f x y y x

x

( , )

/

0

1

0

d d

(11) 
a

4
 (12) 

16

3
 (13) 1

(14) 1 (15) 
1

2
1 2( )e  (16) 2

(17) 
9

5

3a  (18) 
1

2
2log  (19) 

241

60

(20) 
8

4a  (21)  3 (22) 8 log 2

(23) 
4

 (24) 
3

8
 (25) 

2

3

(26) 
32

3
 (27) 

16

3

2a  (28) 
16

3
ab

(29) 
2

1

3
 (30) 3  (31) 

3

2

2a

(32) a2 2

3

3

2
 (33) 

a2

2
3 8( )  (34) a2

(35) 
3

4
a2

 (36) 
4

1
2

e a
 (37) 

a

4

(38) 
a4

4
1 2log  (39) 

4

3

3a  (40) 
2

a

(41) 
2

2 2a h  (42) 2  (43) 12

(44) 16  (45) 
16

9
3 43a ( )  (46) 4 a
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(47) 
2

8
 (48) 

4

4a  (49) 
16

4a

(50) 
6 2a

Exercise 5(c)

(8) 
2

3
 (9) 1 (10) 

2

(11) 88 (12) 4 2 (13) 2

(14) 6 abc (15) 
4

3
 (16) 2 2h

(17) 
69

10

29

4
;  (18) 

2

3

2

3
;  (19) 

4

3

3a

(20) 2  (21) 4 (22) 
3

2

(23) a
a2 1

4
 (24) 

1

3
2 2 1 . (25) 

163

70

(26) 
13

3
 (27) 

13

6
 (28) 

2

3

3a

(29) 
2

3

3
 (30) 

1

2

2 2 2 2 2 2a b b c c a

(31) 
a3

4
 (32) 

ka3

2
 (33) 

abc

6

(34) 
4

4a  (35) 
2

4a h

Exercise 5(d)

(2) 0.456 (3) 
8

77
 (4) 

1

120

(5) 
1

2

1

4

3

4

1
1

1(log )
( )

n
n

n

(12) 
k

 (15) 
1

a b
m n

n m
( , )  (17) 

1

3

1

3

2

3

(22)  (30) 
2 2 8 2

5 2

128
; ;
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(31) ( ) ( ) / ( )m n m n1 1 3 .

(32) ( ) ( ) ( ) / ( )m n p m n p1 1 1 4

(33) 
3

32

ab
 (34) ( ) ( ) ( ) / ( )m n p m n p

(35) 
abc

6
 (36) 

4

3
abc

(37) abc
n

n
n

1
3

3
3

2

  (38) 2/1920.

(39) a3b2c2/2520. (40) a2b2c2/48.



Partial Differentiation 

A.1 INTRODUCTION

In many situations we come across a quantity whose value depends on the values 

of more than one variable. For example, (i) the volume of a right circular cylinder 

is a function of the base radius and height; (ii) the volume of a cuboid depends on 

its length, breadth and height. If the value of the variable quantity u depends on the 

values of several other variable quantities x, y, z,…, we say that u is a function of x, 

y, z,… and it is denoted as u = f(x, y, z,…); x, y, z,… are called independent variables 

and u is called the dependent variable.

A.2 PARTIAL DERIVATIVES

Let z = f(x, y) be a function of two independent variables. Let ∆x be a small increment 

given to x and let ∆z be the corresponding increment in z.

Then z + ∆z = f(x + ∆x, y)

Note  (We do not make any change in y, viz., y is kept constant)

∆z = f(x + ∆x, y) − f(x, y)

Then lim lim
( , ) ( , )

x x

z

x

f x x y f x y

x0 0

is called the partial derivative of z with respect to x and denoted as 
z

x
 (if the limit 

exists)

Smilarly,

z

y

z

y

f x y y f x y

yy y
lim lim

( , ) ( , )

0 0

The process of finding the partial derivative of z with respect to x is similar to that of 

finding the ordinary derivative with respect to x, but with the only difference that we 

treat the other independent variables as constants temporarily.

AAppendix



I – A.2 Part I: Mathematics I

Note  All elementary rules of ordinary differentiation hold good for partial 

differentiation too. For example, if u and v are both functions of x and y, then

x
uv u

v

x
v

u

x
( )

Partial derivatives of higher order

When u = f(x, y), the partial derivatives 
u

x
 and 

u

y
 will be, in general, functions

of x and y. Hence each of them may be further differentiated partially with respect to 

x or y, giving partial derivatives of the second order.

Thus 
x

u

x

u

x

2

2
 is a second order partial derivative of u

Similarly 
y

u

x

u

y x

2

 
x

u

y

u

x y

2

and 
y

u

y

u

y

2

2

Note  The ways by which the two mixed second order partial derivatives 
2u

y x

and 

2u

x y
 are different, but they are equal when they are continuous. In

almost all situations we may assume that 
2 2u

y x

u

x y
.

Further partial differentiations will lead to third and higher order partial 

derivatives.

Alternative Notations
u

x
 and 

u

y
 are denoted also as u

x
 and u

y
·

2u

y x y

u

x
 is denoted by u

xy
,

indicating that u
x
 is first found out and then it is differentiated with respect to y.

 
2u

x y x

u

y
 is denoted by u

yx
.
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2

2

u

x
 and 

2

2

u

y
 are denoted by u

xx
 and u

yy
.

A.3 HOMOGENEOUS FUNCTIONS

When a function of x and y can be rewritten as x f
y

x

n , then the function is called

a homogeous function of the nth degree in x and y.

The homogeneous polynomial in x, y of the nth degree, viz., a
0
xn + a

1
xn−1 y + a

2
xn−2 

y2 + … + a
n−1

 xyn−1 + a
n
yn, with which the students are familiar, may be considered a 

homogeneous function of the nth degree in x and y, as a
0
xn + a

1
xn−1y + … + a

n−1
 xyn−1 + 

a
n
yn

x a a
y

x
a

y

x
a

y

x

n

n0 1 2

2

1

nn

n

n

n

a
y

x

x f
y

x

1

A.4 EULER’S THEOREM ON HOMOGENEOUS 

FUNCTIONS

If u is a homogeneous function of degree n in x and y, then

x
u

x
y

u

y
nu

Proof

Since u is a homogeneous function of the nth degree in x, y, we may assume that

 u x f
y

x

n  (1)

Differentiating (1) partially with respect to x,

 

u

x
x f

y

x

y

x
nx f

y

x

n n

2

1

xx
u

x
x y f

y

x
nx f

y

x

n n1
 (2)

Differentiating (1) partially with respect to y,

 
u

y
x f

y

x x

n 1

y
u

y
x y f

y

x

n 1  (3)
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Adding (2) and (3), we have

 

x
u

x
y

u

y
nx f

y

x

nu

n

, by (1) 

Note  If u is a function of several variables x, y, z,…, such that u = xn

f
y

x

z

x
, , , then u is said to be a homogeneous function of the nth degree in x, y,

z,…. In this case, Euler's theorem will be x
u

x
y

u

y
z

u

x
nu.

A.5 EULER’S THEOREM FOR SECOND DERIVATIVES

If u is a homogeneous function of degree n in x and y, then

x
u

x
xy

u

x y
y

u

y
n n u2

2

2

2
2

2

2
2 1( ) .

Proof

By Euler’s theorem for first derivatives, we have

 x
u

x
y

u

y
nu  (1)

Differentiating (1) partially with respect to x,

 x
u

x

u

x
y

u

x y
n

u

x

2

2

2

i.e., x
u

x
y

u

x y
n

u

x

2

2

2

1( )  (2)

Differentiating (1) partially with respect to y,

 x
u

y x
y

u

y

u

y
n

u

y

2 2

2

i.e., x
u

y x
y

u

y
n

u

y

2 2

2
1( )  (3)

(2) × x + (3) × y gives

 x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2

 ( )n x
u

x
y

u

y
1

 = n(n − 1) u, by Euler’s theorem
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WORKED EXAMPLE

Example 1 If u = log (tan x + tan y + tan z), prove that sin sin2 2x
u

x
y

u

y

sin 2 2z
u

z
.

 u = log (tan x + tan y + tan z)

u

x

x

x

sec

tan

2

sin
sin cos sec

tan
2

2 2

x
u

x

x x x

x

2 tan

tan

x

x
(1)

Similarly, sin
tan

tan
2

2
y

u

y

y

x
 (2)

and sin
tan

tan
2

2
z

u

z

z

x
 (3)

Adding (1), (2) and (3), we get

 sin sin sin2 2 2x
u

x
y

u

y
z

u

z

 
2(tan tan tan )

tan

x y z

x

 = 2

Example 2 If u = log (x3 + y3 + z3 − 3xyz),

show that (i) 
u

x

u

y

u

z x y z

3

(ii) 
x y z

u
x y z

2

2

9

( )

 u = log (x3 + y3 + z3 − 3xyz)

u

x

x yz

x y z xyz

3

3

2

3 3 3

( )

Similarly 
u

y

y zx

x y z xyz

3

3

2

3 3 3

( )
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and 
u

z

z xy

x y z xyz

3

3

2

3 3 3

( )

Adding, we get

 
u

x

u

y

u

z

x y z xy yz zx

x y z xyz

3

3

2 2 2

3 3 3

( )

 
3

x y z
 (  the denominator

 ( ){ })x y z x xy2

i.e., 
x y z

u
x y z

3
 (1)

x y z
u

x y z x y z

2

3
, by (1)

 

3 3 3

9

2 2 2

2

( ) ( ) ( )

( )

x y z x y z x y z

x y z

Example 3 If x = r cos θ, y = r sin θ, prove that

(i) 
r

x

x

r
 (ii) r

x r

x1

(iii) 
2

2

2

2

2

2

2

x
r

y
r

x y r
(log ) (log )

cos

(iv) 
2

2

2

2
0

x y
.

 x = r cos θ (1)

and y = r sin θ (2)

 r2 = x2 + y2 (3)

and tan 1 y

x
 (4)

Differentiating (3) partially with respect to x, we have

 2 2r
r

x
x

 
r

x

x

r

r

r

cos
cos
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x

r
cos

r

x

x

r
,

which is the required result (i)

Differentiating (4) partially w.r.t. x,

 

x y

x

y

x

y

x y

r

r

1

1
2

2

2 2 2

2

sin 1

r
sin

i.e., r
x

sin  (5)

Differentiating (1) partially w.r.t. θ,

 
x

r sin

1

r

x
sin  (6)

From (5) and (6), r
x r

x1
, which is required in (ii)

From (3), 2 log r = log (x2 + y2)

x
r

x y
x

x

x y
(log )

1

2

1
2

2 2 2 2

 

2

2

2 2 2

2 2 2

2 2

2 2 2

2 2

2

x
r

x y x

x y

y x

x y

r

(log )
( )

( )

( )

(sin cos22

4

)

r

 
1

2
2r

cos  (7)

Now 
y

r
x y

y
y

x y
(log )

1

2

1
2

2 2 2 2

2

2

2 2 2

2 2 2

2 2

2 2 2

2

y
r

x y y

x y

x y

x y
(log )

( )

( ) ( )
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1

2
2r

cos  (8)

From (4), we get 
y y

x

x

x

x y

1

1

1
2

2

2 2

2 2 2 2

2 2 2 2

2 1
2

x y

x y x

x y r

( )

( )
cos  (9)

From (7), (8), (9), the required result (iii) follows.

From (4), we have 
x y

x

y

x

1

1
2

2

2

 
y

x y2 2

2

2 2 2 2 2 2 2

1
2

2

y
y

x y
x

xy

x y( ) ( )
 (10)

From (4) again, we have

 
y

x

x y2 2

2

2 2 2 2 2 2 2

1
2

2

y
x

x y
y

xy

x y( ) ( )
 (11)

From (10) and (11), the required result (iv) follows

Example 4 If u = (x2 + y2 + z2)−1/2, prove that

 
2

2

2

2

2

2
0

u

x

u

y

u

z

Putting x2 + y2 + z2 = r2, (1)

we get u
r

1

 
u

x r

r

x r

x

r

1 1
2 2

, from (1)

 
2

2

3 2

6

1 3
u

x

r x r
r

x

r
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r xr

x

r

r

3 2

6

3
, from (1)

 
3 2 2

5

x r

r

Since u is a symmetric function in x, y, z,

we get 
2

2

2 2

5

3u

y

y r

r
 and 

2

2

2 2

5

3u

z

z r

r

2

2

2

2

2

2

2 2 2 2

5

3 3u

x

u

y

u

z

x y z r

r

( )

 
3 3

0
2 2

5

r r

r
, by (1)

Example 5 If u2 = (x − a)2 + (y − b)2 + (z − c)2, prove that

 

2

2

2

2

2

2

2u

x

u

y

u

z u

 u2 = (x − a)2 + (y − b)2 + (z − c)2 (1)

2 2u
u

x
x a( )

i.e., 
u

x

x a

u
 (2)

2

2 2

u

x

u x a
u

x

u

( )

 
u

x a

u

u

2

2
, by (2)

 
u x a

u

2 2

3

( )
 (3)

Similarly, by symmetry, we have

 

2

2

2 2

3

u

y

u y b

u

( )
 (4)

and 
2

2

2 2

3

u

z

u z c

u

( )
 (5)
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Adding (3), (4) and (5), we get

 
2

2

2 2 2 2

3

2 2

3

3

3
1

2

u

x

u x a y b z c

u

u u

u

u

{( ) ( ) ( ) }

, ( )

.

by

Example 6 If V
xz

x y2 2
, prove that V satisfies

 
2

2

2

2

2

2

2 2

0
V

x

V

y

V

z

V
xz

x y

V

x
z

x y x

x y

z y x

x y

( )

( )

( )

( )

2 2 2

2 2 2

2 2

2 2 2

2

 

2

2

2 2 2 2 2 2 2

2 2 4

2 2 2V

x
z

x y x y x x y x

x y

( ) ( ) ( ) ( )

( )

 
2 3 2 2

2 2 3

xz y x

x y

( )

( )
 (1)

Note  V is not symmetric in x, y, z

V

y
xz

x y
y

xyz

x y

V

y
xz

x y y

1
2

2

2
1

2 2 2 2 2 2

2

2

2 2 2

( ) ( )

( ) 2 22 2

2 2 4

( )

( )

x y y

x y

 
2 32 2

2 2 3

xz x y

x y

( )

( )
 (2)

Now 
V

z

x

x y2 2  and 
2

2
0

V

z
 (3)

Adding (1), (2), (3), the required result follows.
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Example 7 If xx · yy · zz = 1, find the value of 

2 z

x y
 when x = y = z = 1.

 xx · yy · zz = 1

Taking logarithms, we have

 z log z = − x log x − y log y (1)

Differentiating (1) partially w.r.t. y,

 z
z

z

y
z

z

y
y

y
y

1 1
log log

i.e., ( log ) ( log )1 1z
z

y
y  (2)

Differentiating (2) partially w.r.t. x,

 ( log )1
1

0
2

z
z

x y

z

y z

z

x

2

1

1

z

x y

z

z

x

z

y

z( log )
 (3)

Differentiating (1) partially w.r.t. x, we can get ( log ) ( log )1 1z
z

x
x  (4)

Using (2) and (4) in (3), we have

 

2

3

1 1

1

z

x y

x y

z z

( log )( log )

( log )

2

1

3

1 1

1 1
1

z

x y
x y z

Example 8 If f (x, y) = (1 − 2xy + y2)−1/2, show that

 
x

x
f

x y
y

f

y
( )1 02 2

 f (x, y) = (1 − 2xy + y2)−1/2 (1)

f

x
xy y y

1

2
1 2 22 3 2( ) ( )/

 
y

xy y( ) /1 2 2 3 2

 
x

x
f

x x

x y

xy y
( )

( )

( ) /
1

1

1 2

2
2

2 3 2
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y

xy y x x xy y y

xy y

( ) ( ) ( ) ( ) ( )

(

/ /1 2 2 1
3

2
1 2 2

1 2

2 3 2 2 2 1 2

22 3

2 2

2 5 2

2 1 2 3 1

1 2

)

( ) ( )

( ) /
y

x xy y x y

xy y

 y
x y x y xy

xy y

2 3 2

1 2

2 2

2 5 2( ) /
 (2)

Differentiating (1) partially w.r.t. y,

 
f

y
xy y x y

1

2
1 2 2 22 3 2( ) ( )/

y
f

y
y x y xy y2 2 2 3 21 2( )( ) /

y
y

f

y

xy y xy y

y x y xy
2

2 3 2 2

2 3

1 2 2 3

3

2
1 2

( ) ( )

( ) (

/

y y x

xy y

xy y xy y

2 1 2

2 3

2 2

2 2

1 2

1 2 2 3

) ( )

( )

( )(

/

)) ( )( )

( ) /

3

1 2

2 3

2 5 2

y x y x y

xy y

 
y x y x y xy

xy y

{ }

( ) /

2 3 2

1 2

2 2

2 5 2  (3)

Adding (2) and (3), the required result follows:

Example 9 Verify that 
2 2u

y x

u

x y
,

when u x
y

x
y

x

y

2 1 2 1tan tan .

 u x
y

x
y

x

y

2 1 2 1tan tan  (1)

 
u

x
x

y

x

y

x
x

y

x
y

x

2

2

2

2

1 21

1

2
1

1

tan
22

2

1

y

y
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x y

x y
x

y

x

y

x y

2

2 2

1
3

2 2
2 tan

 y x
y

x
2 1tan  (2)

2

2

2

1 2
1

1

1u

y x
x

y

x

x

 1
2 2

2 2

2 2

2 2

x

x y

x y

x y
 (3)

Differentiating (1) partially w.r.t. y,

u

y
x

y

x

x
y

x

y

x

y
y

x

y

2

2

2

2

2

2

2

11

1

1 1

1

2 tan

 

x

x y

xy

x y
y

x

y

x y
x

y

3

2 2

2

2 2

1

1

2

2

tan

tan

 
2

2

2

1 2
1

1

1u

x y
y

x

y

y

 1
2 2

2 2

2 2

2 2

y

x y

x y

x y
 (4)

From (3) and (4), we see that

 

2 2u

y x

u

x y

Example 10 Verify that 
2 2V

y x

V

x y
,

when V = xy · yx

 V = xy · yx

Taking logarithms,

 log V =  y log x + x log y (1)
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1

V

V

y
x

x

y
log  (2)

and 
1

V

V

x

y

x
ylog  (3)

Differentiating (2) partially w.r.t. x;

 
1 1 1 12

2V

V

x y V

V

x

V

y x y

i.e., 
2

2

1 1 1V

x y
V

V

V

x

V

y x y
 (4)

Differentiating (3) partially w.r.t. y;

 
1 1 1 12

2V

V

y x V

V

y

V

x x y

 

2

2

1 1 1V

y x
V

V

V

x

V

y x y
 (5)

From (4) and (5), we see that 
2 2V

x y

V

y x
.

Example 11 Verify Euler’s theorem, when (i) u  ax2 + 2hxy + by2 and (ii) u ex y3 3

 (i) u  ax2 + 2hxy + by2

 
u

x
ax hy

u

y
hx by2 2 2 2;

x
u

x
y

u

y
ax hxy hxy by( ) ( )2 2 2 22 2

 = 2 (ax2 + 2hxy + by2)

 = 2u (1)

 u x a h
y

x
b

y

x
x f2 2

2

22
yy

x

 u is a homogeneous function of degree 2.

 Step (1) verifies Euler’s theorem.

(ii) u ex y3 3

 v = log u = x3 + y3

is a homogeneous functions of degree 3.

 
v

x u

u

x
x

1
3 2
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v

y u

u

y
y

1
3 2

x
v

x
y

v

y
x y3 3 3

 = 3v (2)

Step (2) verifies Euler’s theorem

Note   (2) can be rewritten as

 x
u

u

x
y

u

u

y
u

1 1
3log

i.e., x
u

x
y

u

y
u u3 log

Example 12 If u
x y

x y
sin 1

2 2

, prove that x
u

x
y

u

y
utan , (i), by

using Euler's theorem, (ii) without using Euler’s theorem

 (i) u
x y

x y
sin 1

2 2

i.e., sin u
x y

x y

x
y

x

x
y

x

2 2

2

2

1

1

xf
y

x

 sin u is a homogeneous function of order (degree) 1.

By Euler’s theorem, we have

x
x

u y
y

u usin sin sin1

i.e., x
u

x
y

u

y
utan

(ii) sin u
x y

x y

2 2

 or x y u x ysin 2 2
 (1)

Differentiating (1) partially w.r.t. x,

 x y u
u

x
u xcos sin 2  (2)

Differentiating (1) partially w.r.t. y,

 x y u
u

y
u ycos sin 2  (3)
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(2) × x + (3) × y gives,

x y u x
u

x
y

u

y
x y u x ycos sin 2 2 2

i.e., x
u

x
y

u

y
u

x y

x y u
tan

cos

2 2 2

 2 2
sin

cos
tan

u

u
uor

 x
u

x
y

u

y
utan

Example 13 If u x
y

x
y

x

y

2 1 2 1tan tan , find the value of x
u

x
y

u

y

 

u x
y

x
y

x

y

x
y

x

2 1 2 1

2 1

tan tan

tan
y

x

y

x

x f
y

2

1

1

2

tan

xx

 u is a homogenous function of degree 2.

 By Euler’s theorem,

 x
u

x
y

u

y
u2

Note  From example (9), 
u

x
y x

y

x
2 1tan

and 
u

y
x y

x

y
2 1tan

 x
u

x
y

u

y
xy x

y

x
xy y

y

x
2 22 1 2 1tan tan

 2 2 1 2 1x
y

x
y

x

y
tan tan

 =2u
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Example 14 If u
x y

x y
tan 1

2 2

, find the value of

 x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 .

 u
x y

x y
tan 1

2 2

 tan u
x y

x y

2 2

is a homogeneous function of degree 1.

 By Euler’s theorem,

 x
x

u y
y

u utan tan tan

i.e., x
u

x
y

u

y

u

u
u u

tan

sec
sin cos

2

 
1

2
2sin u  (1)

Differentiating (1) partially w.r.t. x,

 x
u

x

u

x
y

u

x y
u

u

x

2

2

2

2cos

 x
u

x
x

u

x
xy

u

x y
x u

u

x

2
2

2

2

2cos  (2)

Differentiating (1) partially w.r.t. y,

 x
u

y x
y

u

y

u

y
u

u

y

2 2

2
2cos

 xy
u

y x
y

u

y
y

u

y
y u

u

y

2
2

2

2
2cos  (3)

Adding (2) and (3), we get

 
x

u

x
xy

u

x y
y

u

y
x

u

x
y

u

y

u

2
2

2

2
2

2

2
2

2cos xx
u

x
y

u

y
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x
u

x
xy

u

x y
y

u

y
u2

2

2

2
2

2

2
2

1

2
2sin

 
1

2
2 2sin cosu u, by (1)

i.e., x u xyu y u u uxx xy yy

2 22
1

2
2 2 1sin cos

EXERCISE

Part A

(Short answer questions)

 1. If u = (x − y)4 + (y − z)4 + (z − x)4, show that 
u

x

u

y

u

z
0

 2. If u = ( x − y)(y − z)(z − x), prove that 
u

x

x

y

u

z
0 .

 3. If u = x3y − xy3, show that the value of 
u

x

u

y

1 1

 at the point (1, 2)

is 
13

22
.

 4. If z3 – 3yz − 3x = 0, show that z
z

x

z

y
.

 5. If u = x cos y + y sin x, verify that 
2 2u

x y

u

y x

 6. If u
x y

xy
log

2 2

, verify that 
2 2u

x y

u

y x
.

 7. Verify Euler’s theorem when u x y .

 8. Verify Euler’s theorem, when u x
y

x

3 sin .

 9. If u f
y

x
, prove that x

u

x

u

y
0

10. If u
x

y

y

x
sin tan1 1 ,  prove that x

u

x
y

u

y
0

11. Define a homogeneous function and state Euler’s theorem on homogeneous 

functions.
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12. State Euler’s theorem on homogeneous functions for second order deriva-

tives.

13. If u xf
y

x
, show that

 x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 0

14. If u
xy

x y
, prove that x

u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 0

15. If x = r cos θ and y = r sin θ, prove that 
r

x

r

y

2 2

1

Part B

16. If z(x + y) = x2 + y2, prove that 
z

x

z

y

z

x

z

y

2

4 1

17. If u = log (x2 + y2), prove that 
2

2

2

2
0

u

x

u

y

18. If u = log (x2 + y2 + z2), prove that

 

2

2

2

2

2

2 2 2 2

2u

x

u

y

u

z x y z

19. If u
r

1
, where r2 = (x − a)2 + (y − b)2 + (z − c)2, prove that

2

2

2

2

2

2
0

u

x

u

y

u

z
.

20. If V
r

1
, where r2 = x2 + y2, prove that 

2

2

2

2 3

1V

x

V

y r
.

21. If V = log r, where r2 = (x − a)2 + (y − b)2, prove that 
2

2

2

2
0

V

x

V

y
.

22. If y = f (x − at) + (x + at), show that 
2

2

2
2

2

y

t
a

y

x
.

23. If z = tan (y + ax) + (y − ax)3/2, prove that 
2

2

2
2

2
0

z

x
a

z

y
.

24. If xx yy zz = c, show that, when x = y = z, 
2

11
z

x y
x x{ ( log )}
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25. If x = r cos θ and y = r sin θ, prove that

 
2

2

2

2

2 2

1r

x

r

y r

r

x

r

y

26. If V = eaθ cos (a log r), prove that

 
2

2 2

2

2

1 1
0

V

r r

V

r r

V .

27. Verify that 
2 2u

x y

u

y x
, when u = xy + yx.

28. Verify that 
2 2u

x y

u

y x
, when

u = 3xy − y2 + (y2 − 2x)3/2.

29. If u
xy

x y
tan 1

2 21
, show that

 

2

2 2 3 2

1

1

u

x y x y( ) /

30. Without using Euler’s theorem, prove that

 x
u

x
y

u

y
1, when u

x y

x y
log

3 3

2 2

31. If u
x y

x y
cos 1 , prove that

 x
u

x
y

u

y
u

1

2
0cot .

32. If u
x y

x y
sin 1

3 3

, prove that

 x
u

x
y

u

y
u2 tan .

33. If u ex y3 3

, prove that x
u

x
y

u

y
u u3 log
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34. If u
x y

x y
sin 1 , prove that

 x
u

x
xy

u

x y
y

u

y

u u

u

2
2

2

2
2

2

2 3
2

2

4

sin cos

cos

35. If u
x y

x y
tan 1

3 3

, prove that

 x
u

x
xy

u

x y
y

u

y
u u2

2

2

2
2

2

2
2 4 2sin sin
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Solutions to the 
January 2012 

Question Paper

B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2012

(First Semester)

MA2111 MATHEMATICS - I

(Common to all Branches)

(Regulations 2008)

Times: 3 Hours Maximum: 100 marks

Answer ALL questions.

 PART-A (10  2 = 20 marks)

 1. The product of two eigenvalues of the matrix A = 

6 2 2

2 3 1

2 1 3

 is 16. Find 

the third eigenvalue of A.

 2. Can A = 
1 0

0 1
 be diagonalized? Why?

 3. Find the equation of the sphere concentric with x2 + y2 + z2 – 4x + 6y – 8z + 4 

= 0 and passing through the point (1, 2, 3).

 4. Find the equation of the right circular cone with vertex at the origin, whose 

axis is 
1 1 2

x y z
 and with a semi-vertical angle 30°.

 5. Find the radius of curvature for y = ex at the point where it cuts the y-axis.

 6. Find the envelope of the family of lines 
x

yt
t

 = 2c, where t is the 

parameter.

 7. If u = xy, show that 
2 2u u

x y y x
.
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 8. If x = u2 – v2 and y = 2uv, find the Jacobian of x and y with respect to u by v.

 9. Express 
0 0

( , )f x y dxdy  in polar co-ordinates.

 10. Evaluate 

1

0 0 0

x yy

dxdydz .

 Part-B (5 16 = 80 marks)

 11. (a) (i) Find the eigenvalues and eigenvectors of 

2 2 1

1 3 1

1 2 2

. (8)

  (ii) Find An using Cayley Hamilton theorem, taking A = 
1 4

2 3
. Hence find 

A3. (8)

Or

       (b) Reduce the quadratic form 2x2 + 5y2 + 3z2 + 4xy to canonical form by 

orthogonal reduction and state its nature. (16)

 12. (a) (i)  Obtain the equation of the sphere having the circle x2 + y2 + z2 + 10y – 4z 

– 8 = 0, x + y + z = 3 as the greatest circle. (8)

  (ii) Find the equation of the cone formed by rotating the line 2x + 3y = 6, z = 

0 about the y-axis. (8)

Or

    (b)  (i)  Obtain the equation of the tangent planes to the sphere x2 + y2 + z2 + 2x 

– 4y + 6z – 7 = 0 which intersect in the line 6x –3y –23 = 0 = 3z + 2. (8)

  (ii) Find the equation of the right circular cylinder of radius 2 and whose axis 

is the line 
1 2 3

2 1 2

x y z
. (8)

 13. (a)  (i)  If y = 
ax

a x
, prove that 

22/3 2
2 x y

a y x
, where  is the radius 

of curvature. (8)

  (ii) Find the circle of curvature of at ,
4 4

a a
x y a . (8)

Or

       (b)  (i) Find the evolute of the parabola y2 = 4ax. (8)
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  (ii) Find the envelope of 1
x y

l m
, where the parameters l and m are 

connected by the relation 1
l m

a b
 (a and b are constants). (8)

 14. (a) (i)  If z = f(x, y), where x = u2 – v2, y = 2uv, prove that 
2 2

2 2

z z

u v
 = 

2 2
2 2

2 2
4( )

z z
u v

x y
. (8)

  (ii) Find the Taylor’s series expansion of x2y2 + 2x2y + 3xy2 in powers of 

(x + 2) and (y – 1) upto 3rd degree terms. (8)

Or

 (b)  (i) If x + y + z = u, y + z = uv, z = uvw, prove that 
( , , )

( , , )

x y z

u v w
 = u2v. (8)

 (ii) Find the extreme values of the function f(x, y) = x3 + y3 – 3x – 12y + 20.

 (8)

 15. (a) (i)  Change the order of integration in 

2 2( )

2

0 0

b a xa

x dydx  and then evaluate 

it. (8)

  (ii) Transform the double integral 

2 2

2
2 2 2

0

a xa

ax x

dxdy

a x y

 into polar co-

ordinates and then evaluate it. (8)

Or

 (b)   (i) Evaluate 

2 2 21 11

2 2 2
0 0 0 1

x x y
dxdydz

x y z

. (8)

 (ii) Find the smaller of the areas bounded by the ellipse 4x2 + 9y2 = 36 and 

the straight line 2x + 3y = 6 (8)

SOLUTIONS

PART-A

 1. Product of all the three eigenvalues = |A| = 

6 2 2

2 3 1

2 1 3

 = 32

  Product of 2 eigenvalues = 16;  the third eigenvalues = 2.
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 2. A = 
1 0

0 1
 cannot be further diagonalised, as it is already in the diagonal form.

 3. Equation of a sphere concentric with the given sphere is of the form x2 + y2 + 

z2 – 4x + 6y – 8z + k = 0.

  Since it passes though the point (1, 2, 3), 1 + 4 + 9 – 4 + 12 – 24 + k = 0

  i.e., k = 2

 The required sphere is x2 – 4x + 6y – 8z + 2 = 0.

 4. The equation of the right circular cone is

   {12 + (–1)2 + 22} (x2 + y2 + z2) 
3

4
 = (x – y + 2z)2

  i.e., 9(x2 + y2 + z2) = 2(x2 + y2 + 4z2 – 2xy – 4yz + 4zx)

  i.e., 7x2 + 7y2 + z2 + 4xy + 8yz – 8zx = 0.

 5. The point where y = ex cuts the y-axis is (0, 1)

   y  = ex = y ;  = 

2 2(1 ) 3/2 (1 ) 3/2x

x

y e

y e

   [ ](0, 1) = 2 2 .

 6. The equation of the family is yt2 –2ct + x = 0

  Equation of the envelope is B2 = 4AC; i.e., 4c2 = 4xy or xy = c2

 7. x = xy; logyu
x x

y
; 

2
1 1logy yu

y x x x
x y

  
u

x
 = y xy–1; 

2u

y x
 = xy–1 + y xy–1 log x;  uyx = uxy

 8. 
( , )

( , )

x y

u v
 = 

2 2

2 2

u v

u v

x x u v

y y v u
 = 4 (u2 + v2)

 9. 
0 0

( , )f x y dx dy  = 

/2

0 0

( , )F r r dr d .

 10. I = 

1

0 0 0

x yy

dz dy dx  = 

1 1 2

0 0 0 0

( )
2

yy
x

x y dx dy yx dy

          = 

1
2

0

3

2
y dy  = 

3 1
0

1 1
( )

2 2
y
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11. (a) (i) A = 

2 2 1

1 3 1

1 2 2

; d.E. of A is 

2 2 1

1 3 1

1 2 2

 = 0;

   i.e.; (  – 5) (  – 1)2 = 0

 Eigenvalues of A are 5, 1, 1.

    When  = 5, the eigenvector is given by –3x1 + 2x2 + x3 = 0 and x1 – 2x2 

+ x3 = 0

   Solving, X1 = (1, 1, 1)T.

   When  = 1, the eigenvector is given by x1 + 2x2 + x3 = 0

   Taking x1 = 1, x2 = 0, we get x3 = –1  X2 = (1, 0, –1)T

   Taking x1 = 1, x3 = 0, we get x2 = –1/2  X3 = (2, –1, 0)T.

 (ii) A = 
1 4

2 3
; The C.E. of A is 

1 4

2 3
 = 0; i.e., 2 – 4  – 5 = 0

 The eigenvalues are  = –1, 5

  When An is divided by 2 – 4  – 5, let the quotient and remainder be ( ) and 

(a  + b) respy.

  Then n  ( 2 – 4  – 5) ( ) + (a  + b) (1)

  When  = –1, from (1), –a + b = (–1)n Solving, we get

  When  = 5, from (1), 5a + b = 5n     
5 ( 1) 5 5( 1)

and
6 6

nn n n

a b

  Replacing  by A in (1);

   An = (A2 – 4A – 5I) (A) + (aA + bI)

    = aA + bI, by C.H. Theorem

 An = 
1 4 1 05 ( 1) 5 5( 1)

+
2 3 0 16 6

n
n n n

  Putting n = 3, we have A3 = 
1 4 1 0 41 84

21 20
2 3 0 1 42 83

11. (b)  = 
2 2 2
1 2 3 1 22 5 3 4x x x x x

   A  = 

2 2 0

2 5 0

0 0 3

; C.E. of A is 

2 2 0

2 5 0

0 0 3

 = 0

  i.e., C.E. of A is (3 – ) { 2 – 7  + 6} = 0 or (  – 3) (  – 1) (  – 6) = 0
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 Eigenvalues of A are 1, 3, 6

  When  = 1, the eigenvector is given by x1 + 2x2 = 0 and 2x3 = 0

 X1  (2, –1, 0)T

  When  = 3, the eigenvector is given by –x1 + 2x2 = 0 and x1 + x2 = 0; x3 is 

arbitrary.

 X2  (0, 0, 1)T

  When  = 6, the eigenvector is given by 2x1 – x2 = 0 and x3 = 0

 X3 = (1, 2, 0)T

 Modal matrix M = 

2 0 1

1 0 2

0 1 0

  The normalised modal matrix N = 

2/ 5 0 1/ 5

1/ 5 0 2/ 5

0 1 0

 The orthogonal transformation required for reduction is X = NY

  i.e., x1 = 1 3

2 1

5 5
y y ; x2 = 1 3

1 2

5 5
y y  and x3 = y3

  The canonical form of  is y
1

2
 + 3y

2

2
 + 6y

3

2
.

 is positive definite.

12. (a) (i)  The problem is the same as the worked example 2.11 in page I-2.57 of the 

book “Engg. Maths for sem I and II-Third edition”

          (ii) Let (l , m , n ) be the DR’s of the rotating line.

   Then 2l  + 3m  = 0 and n  = 0  
3

l
 = 

2 0

m n

   DC’s of the y-axis are (0, 1, 0)

 Semivertical angle  of the required right circular cone is given by

    cos  = 
22 4

or cos
131.3 1

    The vertex of the right circular cone is the point of intersection of the two 

lines 2x + 3y = 6, z = 0 and x = 0, z = 0; i.e., v  (0, 2, 0)

   The equation of the right circular cone is given by

l 2  {  (x – )2} cos2  = [  (x – )]2
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   In this problem, l = 0, m = 1, n = 0;  = 0,  = 2,  = 0 and cos2  = 
4

13

 The equation of the cone is {x2 + (y – 2)2 + z2}  
4

13
 = (y – 2)2

   i.e., 4[x2 + y2 + z2 – 4y + 4] = 13 (y2 – 4y + 4)

   i.e., 4x2 – 9y2 + 4z2 + 36y – 36 = 0

12. (b) (i)  Any plane that intersects (or passes through) the line 6x – 3y – 23 = 0 = 

3z + 2 is

    6x – 3y – 23 +  (3z + 2) = 0 or 6x – 3y + 3 z + (2  – 23) = 0 (1)

    Centre of the given sphere C  (–1, 2, –3) and 

radius r = 1 4 9 7 21

   If plane (1) is to be the tangent plane to the given sphere,

   Length of the r from C on plane (1) = r

   i.e., 
2

| 6 6 9 2 23|

36 9 9
 = 21

   i.e., 2 2 – 7  – 4 = 0 or (2  + 1) (  – 4) = 0

  = 
1

2
; 4.

   When  = 
1

2
, the equation of one tangent plane is

    
1

6 3 23 (3 2)
2

x y z  = 0 or 4x – 2y – z – 16 = 0

   When  = 4, the equation of the second tangent plane is

    6x – 3y – 23 + 4 (3z + 2) = 0 or 2x – y + 4z – 5 = 0.

(b) (ii) This problem is similar to the worked example 2.4 in page I-2.77 of the book, 

except for the change in the radius. Instead of 5 in the W.E., 2 is given as the 

radius of the cylinder.

  Proceeding as in the W.E., the equation of the cylinder is

        
21

{2 2 10} 4
9

x y z  = (x – 1)2 + (y – 2)2 + (z – 3)2

  i.e., 4x2 + y2 + 4z2 + 100 + 4xy + 4yz + 8zx – 40x – 20y – 40z + 36

     = 9(x2 + y2 + z2 – 2x – 4y – 6z + 14)
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  i.e., 5x2 + 8y2 + 5z2 – 4xy – 4yz – 8zx + 22x – 16y – 10 = 0

13. (a)  (i)   This problem is the same as the worked example 3.3, given in page I-3.9 

of the book.

  (ii)  This problem is the same as the worked example 3.16, given in page 

I-3.19 of the book.

   (b)  (i)  This problem is the same as the worked example 3.13, given in page I-3.35 

of the book.

  (ii)  This problem is the same as the worked example 3.10, given in page 

I-3.34 of the book.

14. (a) (i) 
z

u
 = 2 2

z x z y z z
u v

x u y u x y

  zuu = 2zx + 2u [zxx 2u + zxy 2v] + 2v [zxy 2u + zyy 2v],

    since zx and zy are also functions of x and y, since z is a function of x and y

   = 2zx + 4u2 zxx + 8uv zxy + 4v2 zyy (1)

   zv = zx  (–2v) + zy  (2x)

 zvv = – 2zx – 2v [zxx (–2v) + zxy 2u] + 2u [zxy (–2v) + zyy 2u]

    = –2zx + 4v2 zxx – 8uv zxy + 4u2 zyy (2)

   Adding (1) and (2), we get

   zuu + zvv = 4(u2 + v2) zxx + 4(u2 + v2) zyy

    = 4(u2 + v2) (zxx + zyy)

 (ii) This problem is the same as the worked example 4.5 given in page I-4.37 of 

the book.

 (b) (i)  The solution to this problem is given as the major part of the solution of the 

worked example 4.11, given in page I-4.41 of the book.

 (ii) f(x, y) = x3 + y3 – 3x –12y + 20

         fx = 3x2 – 3; fy = 3y2 – 12; fxx = 6x; fxy = 0; fyy = 6y

  The stationary points are given by fx = 0 and fy = 0

  i.e., x = ±1 and y = ±2

  The possible stationary points are (1, 2), (1, –2), (–1, 2) and (–1, –2)

  At the point (1, 2), A = fxx = 6; B = 0; C = fyy = 12

  AC – B2 = 72 > 0 and A and C > 0

 f(x, y) is minimum at (1, 2)

   At the point (–1, –2), A = –6; B = 0; C = –12

   AC – B2 = 72 > 0 and A and C < 0.



 Appendix B I-B.9

 f(x, y) is maximum at (–1, –2)

  At the points (1, –2) and (–1, 2), AC – B2 < 0

 f(x, y) is neither maximum nor minimum at these points

15  (a)  (i)  This problem is the same as the worked example 5.4, given in page I-5.23 

of the book.

  (ii)  This problem is the same as the worked example 5.16, given in page 

I-5.34 of the book.

   (b)  (i)   The solution of this problem is available as the latter part of the solution 

of the worked example (in which I is evaluated) 5.12 given in page I-5.14 

of the book.

(ii)  The given ellipse is 
2 2

2 2
1

3 2

x y
 and the given line is 1

3 2

x y

  The required area is the shaded part of the diagram.

  The required area = 
ABCD

dx dy  = 

2

1

2

0

x

x

dx dy

  (x1, y) lies on 2x + 3y = 6   x1 = 
1

(6 3 )
2

y

  (x2, y) lies on 4x2 + 9y2 = 36   x2 = 
21

36 9
2

y

 Area = 

21
36 9

2 2

10
(6 3 )

2

y

y

dx dy  = 

2
2

0

1 1
36 9 (6 3 )

2 2
y y dy

   = 

2 2
2 2

0 0

3
2 (2 )

2
y dy y dy

   = 

2
2 2

2 2 1

0

3 2
2 sin 2

2 2 2 2 2

y y y
y y

   = 
3 3

[ 4 2] ( 2)
2 2
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 PART-A (10  2 = 20 marks)

 1. Find the symmetric matrix A, whose eigenvalues are 1 and 3 with corresponding 

eigenvector 
1 1

and .
1 1

 2. Write down the quadratic form corresponding to the matrix 

2 0 2

0 2 1 .

2 1 2

 3. Find the equation of the sphere whose centre is (1, 2, –1) and which touches 

the plane 2x – y + z + 3 = 0.

 4. Find the radius of curvature of the curve x2 + y2 – 4x + 2y – 8 = 0.

 5. Find the equation of the right circular cylinder whose axis is z-axis and radius 

is ‘a’.

 6. Find the envelope of the lines x cosec  – y cot  = a,  being the parameter.

 7. If u = f(y – z, z – x, x – y), find .
u u u

x y z

 8. If 
( , , )

, , , find .
( , , )

yz zx xy r s t
r s t

x y z x y z
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 9. Plot the region of integration to evaluate the integral ( , )

D

f x y dxdy  where 

D is the region bounded by the line y = x – 1 and the parabola y2 – 2x + 6.

 10. Evaluate 

2
2

0 0

sin .r d dr

 Part-B (5 16 = 80 marks)

 11. (a) (i) Find the eigenvalues and eigenvectors of 

1 2 1

6 1 0 .

1 2 1

 (8)

  (ii) If the eigenvalues of A = 

8 6 2

6 7 4

2 4 3

 are 0, 3, 15, find the eigenvectors 

of A and diagonalize the matrix A. (8)

Or

       (b)  (i)  Reduce the quadratic form 2x1x2 + 2x2x3 + 2x3x1 into canonical form. (8)

  (ii)  Show that the matrix 

1 1 1

0 1 0

2 0 3

 satisfies its own characteristic 

equation. Find also its inverse. (8)

12. (a) (i)  Find the equations of the tangent planes to the sphere x2 + y2 + z2 – 4x – 

2y + 6z + 5 = 0 which are parallel to the plane x + 4y + 8z = 0. Find also 

their points of contact. (8)

  (ii) Find the equation of the right circular cone whose vertex is (2, 1, 0) 

semiverticle angle is 30° and the axis is the line 
2 1

.
3 1 2

x y z
 (8)

Or

    (b)  (i)  Find the equation of the cylinder whose generators are parallel to 

2 2 3

x y z
 and whose guiding curve is the ellipse 3x2 + y2 = 3, z = 2.

 (8)

  (ii) Show that the plane 2x – 2y + z + 12 = 0 touches the sphere x2 + y2 + z2 

– 2x – 4y + 2z = 3 and also find the point of contact. (8)



 Appendix C I-C.3

 13. (a)  (i)  Find the envelope of 1
x y

a b
, where the parameters are related by the 

equation a2 + b2 = c2. (8)

  (ii) Find the radius of curvature at any point of the cycloid x = a(  + sin ) 

and y = a(1 – cos ). (8)

Or

       (b)  (i)  Find the radius of curvature and centre of curvature of the parabola 

y2 = 4x at the point t. Also find the equation of the evolute. (10)

  (ii) Find the envelope of the circles drawn upon the radius vectors of the 

ellipse 
2 2

2 2
1

x y

a b
 as diameter. (8)

 14. (a) (i)  If u = exy, show that 

222 2

2 2

1
.

u u u u

u x yx y
 (8)

  (ii) Test for the maxima and minima of the function f(x, y) = x3y3 (6 – x – y).

 (8)

Or

 (b)  (i)  If F is a function of x and y and if x = eu sin v, y = eu cos v, prove that 
2 2 2 2

2

2 2 2 2
.uF F F F

e
x y u v  (8)

 (ii) If x2 + y2 + z2 = r2, show that the maximum value of yz + zx + xy is r2 and 

the minimum value is 
2

.
2

r
 (8)

 15. (a) (i)  Change the order of integration in the integral
2

2

0 /2

a xa

x

xydxdy  and evaluate 

it. (8)

  (ii) Evaluate 
2 2 21

dxdydz

x y z
 for all positive values of x, y, z for 

which the integral is real. (8)

Or

 (b) (i)  By transforming into polar coordinates, evaluate 
2 2

2 2

x y
dx dy

x y
 over 

the annular region between the circles x2 + y2 = a2 and x2 + y2 = b2, 

(b > a). (8)

 (ii) Find the area which is inside the circler r = 3a cos  and outside the 

cardioid r = a(1 + cos ). (8)
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SOLUTIONS

PART-A

 1. A = MDM–1, where D is the diagonal matrix and M is the model matrix of the 

required matrix A

 A = 
1 1 1 0 1 11

1 1 0 3 1 12
 = 

4 21

2 42
 = 

2 1

1 2

 2. A = 

2 0 2

0 2 1

2 1 2

; The quadratic form corresponding to A is given by 

 A = 
2 2 2
1 2 3 1 3 2 32 2 2 4 2x x x x x x x .

 3. Equation of the sphere, whose center is (1, 2, – 1) and radius is r, is given 

by 

     (x – 1)2 + (y – 2)2 + (z + 1)2 = r2 (1)

 Sphere (1) touches the plane 2x – y + z + 3 = 0 (2)

 r = the length of the r drawn from (1, 2, –1) on the plane (2)

   = 
2 2 2

2 2 1 3 2

62 ( 1) 1

 Equation of the required sphere is (x – 1)2 + (y – 2)2 + (z + 1)2 = 
2

3
.

 4. The given curve x2 + y2 – 4x + 2y – 8 = 0 is the circle (x – 2)2 + (y + 1)2 = 

2( 13) .

 Radius of curvature of a circle = its radius = 13  at any point on it.

 5. The right circular cylinder whose axis is the z-axis and radius is ‘a’ is that 

whose guiding curve is a circle of radius ‘a’ in the xy-plane 

 Its equation is x2 + y2 = a2  

 6. x cosec  – y cot  = a (1)

 Diffg.(1) w. r. t. ‘ ’, – x cosec  cot  + y cosec2  = 0

 i.e.,  – x cos  + y = 0 or cos  = 
y

x
 (2)

  using (2) in (1), we have 
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2 2

2 2 2 2

x y

x y x y
 = a or 

2 2x y  = a

 Equation of the required envelope is x2 – y2 = a2

 7. u = f (r, s, t), where r = y – z, s = z – x and t = x – y

       
u

x
 = 

u r n s u t u n

r x s x t x s t

 by, 
u

y
 = 

u n

r t
 and 

n u u

z r s

 
u

x
 = 0

 8. The problem is the same as the worked example 4.10 in page I–4.41 of the 

book “Engineering Mathematics (For semesters I and II) – Third Edition”.

  The letters x1, x2, x3 must be changed as x, y, z and the letters y1, y2, y3 must 

be changed as r, s, t. Answer = 4.

 9. ( , )f x y dx dy , where D is the region bounded by the line y = x – 1 or x – y 

= 1 and the parabola (y – 02 = 2 (x + 3)

 The shaded region is the region of integration D.

 10. 

2
2

0 0

sinr d dr  = 

22 2
2

0 0

1
sin 2

2 2 2

r
r dr d

PART-B

   11. (a) (i) C, E, of the given matrix

    A = 

1 2 1

6 1 0

1 2 1

 is 

1 2 1

6 1 0 0

1 2 1
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  i.e., 
3 2 12  = 0 or ( 4)( 3) 0

 The eigenvalues of the A are – 4, 0, 3.

 When  = – 4, the eigenvector is given by 5x1 + 2x2 + x3 = 0 and 6x1 + 3x2 = 0  

   i.e.,  X1 = (– 1, 2, 1)T

  When  = 0, the eigenvector is given by x1 + 2x2 + x3 = 0 and 6x1 – x2 = 0

   i.e., X2 = (1, 6, – 13)T

  When  = 3, the eigenvector is given by – 2x1 + 2x2 + x3 = 0 and –6x1 – 

4x2 = 0

      i.e., X3 = (2, 3, – 2)T

 (ii) When  = 0 the eigenvector is given by 8x1 – 6x2 + 2x3 = 0 and –6x1 + 

7x2 – 4x3 = 0

   i.e., X1 = (1, 2, 2)T

  When  = 3, the eigenvector is given by 5x1 – 6x2 + 2x3 = 0 and – 6x1 + 

4x2 – 4x3 = 0

   i.e., X2 = (2, 1, – 2)T

  When  = 15, the eigenvector is given by – 7x1 – 6x2 + 2x3 = 0 and – 6x1 

– 8x2 – 4x3 = 0

   i.e., X3 = (2, – 2, 1)T

  Diagonalisation of A is given by M– 1AM = D or NTAN = D, where N is the 

normalized model matrix given by

  N = 

1/3 2/3 2/3

2/3 1/3 –2/3

2/3 –2/3 1/3

; Verification can be done.

 11. (b) (i) Q = 2x1x2 + 2x2x3 + 2x3x1.

  Matrix of the Q.F. is A = 

0 1 1

1 0 1

1 1 0

;

  C.E. of A is 

1 1

1 1 0

1 1

  i.e., the C.E. is (  + 1)2 (  – 2) = 0;

    the eigenvalues of A are 2, – 1, – 1

    When  = –1, the eigenvector is given by – 2x1 + x2 + x3 = 0 and x1 – 2x2 

+ x3 = 0

   i.e., X1 = (1, 1, 1)T 

  When  = –1, the eigenvector is given by the single equation x1 + x2 + x3 

= 0.
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  Let us choose x3 = 0 and x1 = 1,  x2 = –1. i.e., X2 = (1, –1, 0)T

  Let X3 = (a, b. c)T. X3  is orthogonal to both X1 and X2

   a + b + c = 0 and a – b = 0

  Let a = b = 1, so that c = –2  X3 = (1, 1, –2)T

   Model matrix M = 

1 1 1

1 1 1

1 0 2

; Normalised model matrix N 

  is given by N = 

1 / 3 1/ 2 1/ 6

1/ 3 1/ 2 1/ 6

1/ 3 0 2 / 6

  The orthogonal transformation X = NY i.e., x1 = 1 2 3

1 1 1
,

3 2 6
y y y

    x2 = 1 2 3

1 1 1

3 2 6
y y y  and x3 = 1 3

1 2

3 6
y y  will reduce the 

given Q. F. to the Canonical form 2 2 2
1 2 32y y y .

 (ii) The C. E. of A = 

1 1 1

0 1 0

2 0 3

 is 

1 1 1

0 1 0

2 0 3

 = 0.

   i.e., 3 25 5 1 0

  We have to verify that A3 – 5A2 + 5A – I = 0. (1) 

   A2 = 

1 1 1 1 1 1

0 1 0 0 1 0

2 0 3 2 0 3

 = 

3 2 4

0 0 0

8 2 11

; 

   A3 = 

1 1 1 3 2 4

0 1 0 0 0 0

2 0 3 8 2 11

 = 

11 5 15

0 1 0

30 10 41

  L. S. of (1)

     

11 5 15 15 10 20 5 5 5 1 0 0

0 1 0 0 5 0 0 5 0 0 1 0

30 10 41 40 10 55 10 0 15 0 0 1

    = 

0 0 0

0 0 0

0 0 0

 = R.S. of (1)
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 Hence Cayley-Hamilton theorem is verified

 From (1), A2 – 5A + 5I – A–1
= 0  A–1 = A2 – 5A + 5I

 i.e., A–1 = 

3 2 4 5 5 5 5 0 0

0 1 0 0 5 0 0 5 0

8 2 11 10 0 15 0 0 5

 = 

3 3 1

0 1 0

2 2 1

 12. (a) (i)  This problem is the same as the worked example 2.6 in page I – 2.53 of 

the book “Engg. Maths (For Sem I and II) Third edition”.

 (ii) The equation of the right circular cone whose vertex is ( , , ), axis  

is 
x

l
 = 

y z

m n
 and semi-vertical angle  is given by 

   2 2 2 2 2 2 2( ){( ) ( ) ( ) }cosl m n x y z  

        = 
2{ ( ) ( ) ( )}l x m y n z

  In this problem ( , , )  (2, 1, 0), (l, m, n)  (3, 1, 2) and  = 30°

   Required equation of the cone is 

   14 
2 2 2 3

{( 2) ( 1) ( 0) }
4

x y z

    = 
2 2 2{3( 2) 1( 1) 2( 0) }x y z

  i.e., 21 {x2 + y2 + z2 – 4x – 2y + 5} = 2(3x + y + 2z – 7)2

  i.e., 3x2 + 19y2 + 13z2 – 12xy – 8yz – 24zx – 14y + 56z + 7 = 0  

    (b) (i) Let P (x1, y1, z1) be any point on the required cylinder.

  Then the equations of the generator through P are 

  1 1 1

2 2 3

x x y y z z
r

  Any point Q on this generator is (x1 + 2r, y1 + 2r, z1 – 3r)

  Since the generator intersects the guiding curve, for somes,

  We have 3(x1 + 2r)2 + (y1 + 2r)2 = 3 (1)

  and                                z1 – 3r = 2 (2)

  From (2), r = 1

1
( 2)

3
z . Using the value of r in (1), we have

   3

2 2

1 1 1 1

2 2
( 2) ( 2)

3 3
x z y z  = 3

  i.e.,     2 2
1 1 1 1

1 1
(3 2 4) (3 2 4)

3 9
x z y z  = 3

  i.e.,             3(3x1 – 2z1 – 4)2 + (3y1 + 2z1 – 4)2 = 27
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 (ii)  This problem is the same as the worked example 2.5 in page I – 2.53 of 

the book “Engg. Maths (For Sem I and II) Third edition”.

13. (a) (i) 1
x y

a b
, where a2 + b2 = c2 or b = 

2 2c a

  The family of straight lines is 
2 2

1
x y

a c a
where ‘a’ is 

the parameter.

   Diffg.(1) w.r.t. ‘a’ 
2 2 2 3/2

0
( )

x ay

a c a
 (2)

   From (2), 
3 2 2 3/2( )

x y

a c a
 or 

2/3 2/3 2/3 2/3

2 2 2 2

x y x y

a c a c
 (3)

   From (3), 

2/3 2/3 2/3 2/3

1/3 2 2 1/3

1 1
and

x y x y

a c x c a cy
 (3)

   Using these values in (1), the equation of the envelope is 

    

2/3 2/3 2/3 2/3 2/3 2/3

1
x x y y x y

c c

   i.e., (x2/3 + y2/3)3/2 = c or x2/3 + y2/3 = c2/3

 (ii) x = a(  + sin ); x  = a (1 + cos ) and x  = –a sin  

  y = a (1 – cos ); y  = a sin  and y  = a cos  

    = 

2 2 3/2 2 2 2 2 3/2 3 3/2

22 2 2

( ) { (1 cos ) sin } (2 2cos )

(1 cos )cos 1 cos sin

x y a a a

x y y x aa a

      = 
3/22 2 (1 cos )

2 2 1 cos
1 cos

a
a  or 4 cos

2
a

 (b) (i) The parameter equations of the parabola y2 = 4ax are 

    x = at2;  y = 2at;

   x  = 2at; y  = 2a   
1dx y

dy x t

   
2

2

d y

d x
 = 2 3

1 1 1

2 2

d dy dx

dt dx dt att at

         = 

3/2

2 3/2 2
2 3/2

3

1
1

(1 )
2 (1 )

1

2

y t
a t

y

at
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 If ( , )x y  is the centre of curvature at‘t’

      x  = 
2 2 3

2

1 1
(1 ) 2 1

y
x y at at

y t t

            = 2a + 3at2 (1)

        y  = 
2 3 3

2

1 1
(1 ) 2 2 1 – 2y y at at at

y t
 (2)

 From (1), t2 = 
2

3

x a

a
; From (2), t3 = 

2

y

a

 Eliminating t form these equations, we get 

2 3
2

2 3

y x a

a a
.

 Locus of ( , )x y or the evaluate of the parabola is  

  27 ay2 = 4 (x – 2a)3

 (ii) The family of the circles drawn on the radius vectors of the ellipse as diameter 

is given by

  x(x – a cos ) + y (y – b sin ) = 0

  i.e., ax cos   + by sin  = x2 + y2  (1), where  is the parameter

  Diffg. (1) w. r. t. ‘ ’, we get –ax sin   + by cos  = 0 2

  From (2), 
2 2

sin cos 1

( ) ( )by ax ax by

  i.e., sin  = 
2 2( ) ( )

by

ax by
 and 

2 2
cos

( ) ( )

ax

ax by

  Using these values in (1), we get

   

2 2

2 2

( ) ( )

( ) ( )

ax by

ax by
 = x2 + y2 i.e., 

2 2 2 2( ) ( )ax by x y

  i.e., (ax)2 + (by)2 = (x2 + y2)2

14. (a) (i)   u = exy ; ux = yexy; uxx = y2exy 

   uy = xexy; uyy = x2exy 

  LS = uxx + uyy = (x2 + y2)exy
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   RS = 
2 2 2 2 2 2 2 21 1

[ ] [ ] ( )xy xy xy
x xy

u y y e x e e x y
u e

   RS = LS

 (ii) f(x, y) = x3y3(6 – x – y);  fx = y2(18x2 – 4x3 – 3x2y);  fy = x3(12y – 2xy – 3y2)

       fxx = y2(36x – 12x2 – 6xy);  fxy = 36x2y – 8 x3y – 9x2y2;

       fyy = x3 (12 – 2x – 6y)

  Stationary points are given by fx = 0 and fy = 0

  i.e., x2y2 (18 – 4x – 3y) = 0 and x3y (12 – 2x – 3y) = 0

  i.e., they are (0, 0), (0, 4), (6, 0), (0, 6), (9/2, 0) and (3, 2)

  (3, 2) is the only stationary point which requires examination.

  At (3, 2), A = fxx = – 144; B = fxy = –108; C = fyy = –162

  AC – B2 = 11664 > 0 and A < 0

 f(x, y) is maximum at the point (3, 2)

    (b) (i)    x = eu sin v;   y = eu cos v

   Fu = Fx. e
u sin v + Fy . e

u cos v = xFx + yFy;  
x

 = x y
x y

       Fuu = ( )x yx y xF yF
x y

        = (xFx + yFy) + (x2 Fxx + 2xyFxy + y2Fyy) (1)

         Fv = yFx – xFy   y x
v x y

        Fvv = ( )x yy x yF yF
x y

              = 
2 2( ) ( 2 )x y xx xy yyxF yF y F xyF x F  (2)

  Adding (1) and (2):

   Fuu + Fvv = (x2 + y2)(Fxx + Fyy) or e2x (Fxx + Fyy)

 Fxx + Fyy = e–2x (Fuu + Fvv)

 (ii) Let f = yz + zx + xy  and  = x2 + y2 + z2 – r2

 The Lagrange’s auxiliary function is g = f + 

  The stationary points of g are given by gx = 0; gy = 0; gz = 0  and g  = 0.

  i.e., (y + z) +   2x = 0

(z + x) +  2y = 0 (2)

   (x + y) +  2z = 0 (3)
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  and x2 + y2 + z2 = r2 (4)

  From (1), (2) and (3),  – 2  = 
2( )y z z x x y x y z

x y z x y z

  i.e., 0;x x  i.e.,  ( ) 0xe j

 0x  or  = – 1

  When 0x , (x + y + z)2 = 0, i.e., x2 + y2 + z2 + 2 (xy + yz + zx) = 0

  i.e., xy + yz + zx = – r2 /2, which corresponds to the minimum value of 

f.

  When  = – 1,  y + z = 2x,  z + x = 2y,   x + y = 2z

   y – x = 2(x – y) ;  i.e., 3(x – y ) = 0   x = y

   Similarly y = z and z = x 

   x = y = z

 When  = – 1,  3x2 = 3y2 = 3z2 = r2 or x2 = y2 = z2 = 

2

3

r

  When  = – 1, the value f = r2, which corresponds to the maximum 

value of f.

15. (a) (i) I = 
2

2

0 /2

a xa

x

xy dy dx

  The problem is wrongly given. It ought to have been given as 

  I = 
2

2

0 /2

a xa

x

xy dy dx . The corrected problem is the same as the worked 

example 5.9, given in page I-5.27 of the book.

 (ii) I = 
2 2 21

dx dy dz

x y z
. The integral is real, when the region of space 

is bounded by  the co-ordinate planes and the sphere x2 + y2 + z2 = 1.

  This problem is the same as the worked example 5.12, given in page 

I-5.14 of the book.

     (b) (i)  I = 
2 2

2 2

x y
dx dy

x y
, over the region.

  Putting x = r cos , y = r sin , dx dy = r dr d , we get
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  I = 

4 2

2

cos sin

R

x
r dr d

r
, where R is the annular region shown 

    = 

22 2
3 2 2 3

0 0

sin 2
cos sin

2

b b

a a

r dr d r dr d

    = 

2
4 4 2 4

0

1 1 cos 4
( ) ( )

16 2 16
b a d b a

 (ii) 

  By symmetry, the required area = 2 × area ABCDE

     area =  

3 cos

0 (1 cos )

2

a

a

r dr d

     = 

3 cos
2

0 (1 cos )

2
2

a

a

r
d

     = 
2 2 2 2

0

[9 cos (1 cos ) ]a a d

 i.e., Area = 
2 2

0

(8cos cos )a d

   = 
2

0

{4(1 cos 2 ) cos }a d

   =  2
0

2sin 2 2sina d

   = 
2 2

2sin 2sin 0
3 3

a

   = 
2 23 3a a
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Model Question Paper I

B.E./B.Tech. DEGREE EXAMINATIONS

(First Semester)

(Regulations: 2013)

MATHEMATICS - I

(Common to all Branches)

Times: 3 Hours Maximum: 100 marks

INSTRUCTIONS

Answer ALL Questions

PART-A

 (10  2 = 20 Marks)

 1. If A = 
1 2

5 4
, find the eigenvalues of A–1 and A3.

 2. Use Cayley-Hamilton theorem to find the inverse of 
a b

c d

 3. Use the definition to show that the sequence 
3 5 7

1, , , ,
2 3 4

 converges to the 

limit 2.

 4. Give one example for each of absolutely convergent and conditionally 

convergent series.

 5. Find the radius of curvature of the curve x4 + y4 = 2 at the point (1, 1).

 6. Find the envelope of the line sec tan 1,
x y

a b
 where  is the 

parameter.

 7. If u = x cos y + y sin x, verify that 
2 2u u

y x x y
.

 8. If u = 2xy, v = x2 – y2, x = r cos  and y = r sin , find 
( , )

.
( , )

u v

r
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 9. Express the area bounded by x = 0, y = 0 and 
2 2

2 2
1

x y

a b
 in the first quadrant 

as a double integral.

 10. Change the order of integration in 
2 /

0

.

x
x yx e dy dx

PART-B

 (5  16 = 80 marks)

 11. (a) (i) Find the eigenvalues and eigenvectors of the matrix

   A = 

2 2 0

2 1 1

7 2 3

 (8)

 (ii) Verify cayley-Hamilton theorem for  the matrix A = 

1 3 7

4 2 3

1 2 1

 and also 

use it to find A–1 (8)

Or

      (b) Reduce the quadratic form x1
2 + 2x2

2 + x3
2 – 2x1x2 + 2x2x3 to the canonical 

form through an orthogonal transformation. Give also a non-zero set of values 

(x1, x2, x3) which makes this quadratic form zero. (16)

 12. (a) (i)  Examine the convergence of the series (i) 
1

p

n n

n
 

and (ii) 
1 3n

n
 (5 + 5)

 (ii) Examine the convergence of the series 
1 1 1 1

1 2 3 4 5 6 7 8
 (6)

Or

      (b) (i) Test the convergence of the series (i) 
1

2

n

n

x

n
 and (ii) 

3

3

2

n

n
 (5 + 5)

 (ii) Test the convergence of the series 
1 1 1

2 log 2 3 log 3 4 log 4
 (6)
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 13. (a) (i)  Find the radius of curvature of the curve xy2 = a2(a – x) at the point 

(a, 0). (8)

 (ii) Find the evolute of the hyperbola 
2 2

2 2
1

x y

a b
, treating it as the envelope 

of its normals. (8)

Or

      (b) (i)  Show that the measure of curvature of the curve 1
x y

a b
 at any 

point on it is ab/2(ax + by)3/2. (8)

 (ii) Find the equation of the evolute of the curve x = a(cos t + t sin t), 

(y = a (sin t – t cos t). (8)

 14. (a) (i) Find the equivalent of 
2 2

2 2

u u

x y
 in polar co-ordinates. (8)

 (ii) Given that x = r sin  cos , y = r sin  sin  and z = r cos , find the value 

of 
( , , )

( , , )

x y z

r
. (8)

      (b) (i) If z = f(u, v) where u = x2 – y2 and v = 2 xy, show that 

  
2 2 2 2

2 2

2 2 2 2
4( )

z z z z
x y

x y u v
 (8)

 (ii) Show that the minimum value of x2 + y2 + z2 when ax + by + cz = p. (8)

 15. (a) (i)  Evaluate 
2 2 21v

dz dy dx

x y z
, where V is the region of space bounded 

by the co-ordinate planes and the sphere x2 + y2 + z2 = 1 and contained in 

the positive octant. (8)

 (ii) Find the area that lies inside the cardioid r = a (1 + cos ) and outside the 

circle r = a by double integration. (8)

Or

      (b) (i)  Change the order of integration in 

2 2

2

0

a ya

a

y dx  dy and then evaluate 

it. (8)

 (ii) Find the value of ,

S

z dS  where S is the positive octant of the surface of 

the sphere x2 + y2 + z2 = a2. (8)
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SOLUTIONS

PART-A

 1. C.E. of A is 
1 2

0
5 4

; i.e., 2 – 5  – 6 = 0 i.e., (  – 6) (  + 1) = 0.

 Eigenvalues of A are 6 and 2 – 1.

 Eigenvalues of A–1 and A3 are respectively 
1

6
 and –1 and 216 and –1.

 2. C.E. of A is 0;
a b

c d
 i.e., 2 – (a + d)  + (ad – bc) = 0

  By Cayley-Hamilton theorem A2 – (a + d)A + (ad – bc) I = 0

 A – (a + d) I + (ad – bc) A–1 = 0 

      A–1 = 
1

{( ) )}a d I A
ad bc

  i.e., A–1 = 
01 1

0

a d a b d b

a d c d c aad bc ad bc

 3. 
3 5 7

{ } 1, , , ,
2 3 4

na   
2 1

n

n
a

n

  
1 1

2 2 2 ,na
n n

 if n > 
1

; If we choose  = 0.01, n can be 

found as 101, 102, …  {an} is cgt. to the limit 2.

 4. (i)  
2 3

1 1 1
1

2 2 2
nu  is also cgt, since 

2

1 1
| | 1 ,

2 2
nu  

which is a geometric series with r = 
1

2

 (ii) 
1 1 1

1
2 3 4

nu  is conditionally cgt;

  since 
1 1

| | 1
2 3

nu  is dgt.
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 5. x4 + y4 = 2; 4x3 + 4y3y  = 0   y  = 
3 2

3 4

3 ( )
;

x x xy y
y

y y

  (y )(1, 1) = –1; (y )(1, 1) = –6; r = 

2 3/2(1 ) 2
.

3

y

y

 6. sec tan 1;
x y

a b
  2sec tan sec 0 . sin

x y ay
i

a b bx

  Using in (1); 

2 2
2 2( ) * ( ) ;

bx ay
bx ay

a b
 i.e., 

2 2( ) ( )bx ay ab  

i.e., 
2 2

2 2
1

x y

a b

 7. u = x cos y + y sin x; 
2

cos cos ; sin cos
u u

y y x y x
x y x

  
2 2 2

sin sin ; sin cos
u u u u

x y x y x
y x y y x x y

 8. 
( , ) ( , ) ( , )

.
( , ) ( , ) ( , )

2 2 cos sin

2 2 sin cos

x y r

rx y

u u x xu v u v x y

y yv vr x y r

y x r

x y r

             = –4(x2 + y2)  r(cos2  + sin2 ) = –4r3

 9.   A = 

1

0 0 0 0

a

xb b b

OAB

dx dy dx dy dx dy

 10. 
1

2 2/ /

0 0 0 0

xx
x y x yx e dy dx x e dx dy

                 = 
2 /

0

x y

y

x e dx dy  
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PART-B

 11. (a) (i)  C.E. of A is 

2 2 0

2 1 1 0;

7 2 3

 i.e., 3 – 13  + 12 = 0; 

i.e. (  + 4) (  – 1) (  – 3) = 0

 Eigenvalues of A are –4, 1, 3.

  When  = –4;  the eigenvector is given by 6x1 + 2x2 = 0 and 2x1 + 5x2 + 

x3 = 0 

    Solving, we get X1 = (1, –3, 13)T

  When  = 1; the eigenvector is given by x1 + 2x2 = 0 and 2x1 + x3 = 0

    Solving, we get X2 = (2, –1, –4)T

  When  = 3; the eigenvector is given by – x1 + 2x2 = 0 and 2x1 – 2x2 + x3 = 0

    Solving, we get X3 = (2, 1, –2)T.

 (ii) Worked example in the book.

      (b) Worked example in the book.

 12. (a) (i) (1) worked example in the book.

   (2) worked example in the book.

 (ii) Worked example in the book.

      (b) (i) (1) 

1
1

1 1

2 1
;

122 ( 1)2 1

n n n
n

n n n n
n

n

ux u n x
u

un n x

r

        1. 
1

lim .
2

n

n
n

u x

u
  By ratio test, nu  is cgt. if x < 2 and dgt. if x > 2.

        When x = 2, 
1 1 1

or is (D)
2 2

nu
n n

  (2) 

1 3
1

3 4

3 3 2 3
;

22 2 3

n n n
n

n n n n
n

u
u

u

 
1 3

lim 1
2

n

n
n

n

y
u

u
 is dgt. by Ratio test.
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 (ii) Let the given series be 

1
1

1

( 1)
( 1)

( 1) log ( 1)

n
n

n

n

u
n n

  

1
lim ( ) lim 0

( 1) log ( 1)
n

n n
u

n n

  un+1 – un = 
1 1

0
( 2) log ( 2) ( 1) log ( 1)n n n n

, for all n.

 By Leibnitz test, the given series is Cgt.

 13. (a) (i)        y2 = a2
3

2
1 ; 2

a a
y y

x x

   i.e., y  = 

3

( , 0)2
( , 0

( ) 0
2

a

a

a dx
y

dyx y

 
dx

dy
 = 

2 2
2

3 2 3

2 2 2
; 2

x y d x dx
x xy

dy aa dy a

 = 

2 3/2(1 ) 1

2 2

x a

x

a

 (ii) Equation of normal at (a sec , b tan ) is 2 2 (1)
sec tan

ax by
a b

  Diffg w.r.t ; –ax sin  – by cosec2  = 9 (2)

  From (2), sin3  = 
1/3

1/3

( )
or sin

( )

by by

ax ax

   
2/3 2/3

/3

( ) ( )
cos

( )

ax by

ax
 and cot  = 

2/3 2/3

/3

( ) ( )

( )

ax by

by

  Using these values in (1); 

  
2/3 2/3 2/3 2/3 2/3 2/3 2 2( ) ( ) ( ) ( ) ( )ax ax by by ax by a b

  i.e., [(ax)2/3 – (by)2/3)]3/2 = a2 + b2

  i.e., the equation of the evolute is (ax)2/3 – (by)2/3 = (a2 + b2)2/3

      (b) (i) Worked example in the book.

 (ii) Worked example in the book.
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 14. (a) (i) Worked example in the book.

 (ii) Worked example in the book.

      (b) (i)   z = f(u, v); u = x2 – y2; v = 2xy

    zx = zu  2x + zv  2y;

   zxx = 2zu + 2x{zuu  2x + zuv  2y} + 2y{zuv  2x + zvv  2y}

        = 2zu + 4x2zuu + 8xy zuv + 4y2 zvv (1)

    zy = zu  (–2y) + zv  2x

 zyy = –2zu   –2y{zuu  (–2y) + zuv  2x} + 2x{zuv  (–2y) + zvv  2x} 

        = –2zu + 4y2 zuu – 8xy zuv + 4x2zvv (2)

  Adding (1) and (2);

  zxx + zyy = 4(x2 + y2)zuu + 4(x2 + y2) zvv = 4(x2 + y2) (zuu + zvv)

 (ii) Consider g = f +  , where f = x2 + y2 + z2 and  = ax + by + cz – p

  The stationary points of g are given by gx = 0, gy = 0, gz = 0, g  = 0

  i.e., 2x + a = 0; 2y + b = 0; 2z + c = 0 and ax + by + cz = p.

 –  = 
2 2 2 2

2 2 2 2( ) 2x y z ax by cz p

a b c a b c a

      x = 2 2 2
, ;

pa pb pc
y z

a a a

  Minimum value of f = 

2 2 2

2 2 22

p a p

a b cae j

 15. (a) (i) Worked example in the book.

 (ii) Worked example in the book.

      (b) (i) I = 

2 2

2

0

a ya

a

y dx dy ; Area of integration is bounded by x = 0, 

x = 
2 2a y  or x2 + y2 = a2, y = –a and y = a. It is shown in the 

figure.
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  On changing the order of integration,

  I = 

2 22 2

2 22 2

3
2

0 0
3

a xa xa a

a xz x

y
y dy dx

   = 
/2

2 2 3/2 3 3

0

1 2
2( ) cos ( cos ) ,

3 3

a

a x dx a a d  on putting x = a sin 

    = 

/2
4 4 4 4

0

2 2 3 1
cos .

3 3 4 2 2 8
a d a a

 (ii)  

  Projection of the spherical surface lying in the +ve octant in the xoy-plane 

is the quadrant of the circular region OAB.

  Converting the surface integral into a double integral, we get

  I = 

2 2 2

,
x y z

zOAB

z dx dy  where   x2 + y2 + z2 – a2

    = 

2 2 2 2
34( )
.

2 4 4
OAB OAB

x y z a
z dx dy a dx dy a a

z
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Model Question Paper II

B.E./B.Tech. DEGREE EXAMINATIONS

(First Semester)

(Regulations: 2013)

MATHEMATICS - I

(Common to all Branches)

Times: 3 Hours Maximum: 100 Marks

INSTRUCTIONS

Answer ALL Questions

PART-A

 (10  2 = 20 Marks)

 1. Find the sum of the eigenvalues of A–1, if A = 

3 0 0

8 4 0

6 2 5

 2. Find the matrix B = A4 – 4A3 – 5A2 + A + 2I, when A = 
1 2

4 3
, using  

Cayley-Hamilton theorem.

 3. Give an example of a sequence which is bounded and monotonic. What is the 

limit to which it converges?

 4. Show that the series 1 1
( 1)n

n
 is convergent.

 5. Find the curvature of the curve y = log sec x at any point on it.

 6. Find the envelope of the line y = 
2 2 2 ,mx a m b  where m is the 

parameter.

 7. If u = (x – y) (y – z) * (z – x), prove that 0
u u u

x y z
.

 8. Expand ex sin y in a series of powers of x and y as far as the terms of the 

second degree.
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 9. Change the order of integration in  

0

1
.y

x

e dy dx
y

 10. Express the area that lies outside the circle r = 2 cos  and inside the circle 

r = 4 cos  as a double integral.

PART-B

 (5  16 = 80 Marks)

 11. (a) (i) Find the eigenvalues and eigenvectors of the matrix

   A = 

11 4 7

7 2 5

10 4 6

 (8)

 (ii) Show that A = 

2 3 1

3 1 3

5 2 4

 satisfies the equation A(A + 2I) (A – I) = 1 

 (8)

Or

      (b) Diagonalise the matrix A = 

2 1 1

1 1 2

1 2 1

 by means of an orthogonal 

transformation. Verify your answer. (16)

 12. (a) (i)  Examine the convergence of the series

   (i) 
2 1

sin
n

 and (ii) 
41

n

n
 (5 + 5)

 (ii) For what values of x, the series 1( 1)
1

n
n

n

x

x
 is convergent? (6)

Or

      (b) (i) Test the convergence of the series

   (i) ( 0)
!

n nn x
x

n
 and (ii) 2

1

(log )n n
 (5 + 5)
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 (ii) Test the convergence of the series 1( 1) ( 1 )n n n . (6)

 13. (a) (i)  Find the equation of the circle of curvature of the parabola y2 = 12x at the 

point (3, 6). (8)

 (ii) Find the evolute of the curve x2/3 + y2/3 = a2/3 (8)

Or

      (b) (i)  Find the radius of curvature of the curve x = log cot cos ,
2

a  

y = a sin  at the point ‘ ’. (8)

 (ii) Find the envelope of the family of lines 1,
x y

a b
where the parameters 

a and b are connected by the relation ab = c2. (8)

 14. (a) (i) If f = , ,
y x z x

f
xy zx

show that 2 2 2 0
f f f

x y z
x y y

 (8)

 (ii) Find the extreme value of x3 y2 (12 – 3x – 4y). (8)

      (b) (i)  Find the Taylor's series expansion of (x2 y2 + 2x2y + 3xy2) in powers of  

(x + 2) and (y – 1) upto the third powers. (8)

 (ii) A rectangular box, open at the top, is to have a volume of 32 c.c. Find the 

dimensions of the box, that requires the fast material for its construction.

 (8)

 15. (a) (i)  Change the order of integration in 

2 2

2 20

a a ya

a a y

xy dx dy and then 

evaluate it. (8)

 (ii) Express the volume of the sphere x2 + y2 + z2 = a2 as a volume integral 

and hence evaluate it, (8)

Or

      (b) (i)  Find the area included between the parabolas y2 = 4 ax and x2 = 4 by, 

using double integration. (8)

 (ii) Change the double integral 
2 2

0

a a

y

x dx dy

x y
 into polar co-ordinates and 

then evaluate it. (8)
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SOLUTIONS

PART-A

 1. A = 

3 0 0

8 4 0

6 2 5

; C.E. of A is 

3 0 0

8 4 0 0;

6 2 5

  i.e., (3 – ) (4 – ) (5 – ) = 0.

 E  values of A are 3, 4, 5.  E  values of A–1 are 
1 1 1

, , .
3 4 5

 Sum of the eigenvalues of A–1 = 
47

60
.

 2. C.E. of A is 
1 2

0;
4 3

 i.e., 2 – 4  – 5 = 0

  By C.H theorem, A2 – 4A – 5I = 0

 A4 – 4A3 – 5A2 + A + 2I = A2 (A2 – 4A – 5I) + A + 2I

               = 0 + 
1 2 2 0

4 3 0 2
 = 

3 2

4 5

 3. 
1 1 1 1

1, , , , .
2 4 8 16

; The sequence in bounded, as |an|  1; It is monotonic 

decreasing. The limit of the sequence is 0.

 4.  Let 1 1 1
( 1) ( 1) ;n n

nu
n

 

    1

1 1 1
0.

1 ( 1)
n nu u

n n n n
 for all, 

1
lim ( ) lim 0n

n n
u

n
 

 By Leibnitz test, 1 1
( 1)n

n
  is cgt.

 5. y = log sec x; 21
sec tan tan ; sec

sec
y x x x y x

x

  
2 3/2 2 3/2

2

(1 ) (1 tan )
sec cos

sec

y x
x C x

y x

 6. y = 
2 2 2 ,mx a m b  i.e. (y – mx)2 = a2m2 + b2; i.e., (x2 – a2)m2 – 2xym + 

(y2 – b2) = 0. This is a quadratic equation in m.

 The envelope is 4xy2 – 4(x2 – a2) (y2 – b2) = 0
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  i.e. a2y2 + b2x2 = a2b2 or 
2 2

2 2
1

x y

a b

 7. u = (x – y) (y – z) (z – x); 
u

x
 = (y – z) (z – x – x + y) = (y – z) (y + z – 2x) 

= y2 – z2 – 2x(y – z)

  Similarly, 
u

y
 = z2 – x2 – 2y(z – x); 

u

z
 = x2 – y2 – 2z(x – y)

 0 2 0 0
u

x

 8. f = ex sin y; fx = ex sin y; fy = ex cos y; fxx = ex sin y; fxy = ex cos y; fyy = –ex sin y.

  f(0, 0) = 0; fx(0, 0) = 0; fy(0, 0) = 1; fxx (0, 0) = 0; fxy = 1; fyy = 0.

  f(x, y) = f(0, 0) + 
1

{ (0, 0) (0, 0)
1!

x yxf y f  

           
2 21

{ (0, 0) 2 (0, 0) (0, 0)}
2!

xx xy yyx f xy f y f

 ex sin y = 
1 1

2
1! 2!

y xy

 9. 
0

1 y

x

e dy dx
y

 = 
0 0

1
y

ye dx dy
y

 

 10. A = 

4cos/2

0 2cos

r dr d  

PART-B

 11. (a) (i) Worked example in the book.

 (ii) C.E of A is 

2 3 1

3 1 3 0;

5 3 4

 i.e. 3 + 2 – 2  = 0; 

i.e., (  + 2)(  – 1) = 0

  By Cayley-Hamilton theorem, A(  + 2I) (A – I) = 0.
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      (b) Worked example in the book.

 12. (a) (i) (1) 
2

2

1 1
sin . Choosen nu v

n n

        

2 2

0

sin (1/ ) sin
lim lim lim 1 0.

(1/ )

n

n n
n

u n

v n

 andn nu v  converge or diverge together.

        
2

1
nv

n
 is cgt.  By comparison test, nu  is also egt.

  (2)  nu  = 
4 4 2

1 1 1

1
; ( ) ,

21 1 1

n x dx dt
u x dx

n x t
 on putting x2 = t

                                                     = 1
1

1 1
(tan )

2 2 2 4 8
t

        Since 

1

( ) exists, nu x dx u  is cgt, by integral test.

 (ii) Worked example in the book.

      (b) (i) (1) Worked example in the book.

  (2)  nu  = 
2 2 2

1 1 0

1
; ( ) ,

(log ) (log )

dx dy
u x dx

n n x x y

on putting log x = y

            = 

0
1

y

        Since 

1

( )u x dx  does not exist, nu  is dgt, by integral test.

 (ii) Worked example in the book.

 13. (a) (i) Worked example in the book.

 (ii) Worked example in the book.

      (b) (i) x = log cot cos ;
2

a
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2 21 cosec /2 1 cos

sin sin
2 cot /2 sin sin

a
x a a

  y = a sin ; cos ; tan
y

y a y
x

  
2

2 4

sin sin
( tan ) sec

cot cos

d d
y

d dx a a

 
2 3/2 4

3(1 ) cos
sec cot .

sin

y a
a

y

 (ii) 1,
x y

a b
 where ab = c2   i.e.,  1

x ay

a cz

  i.e., the given family is y a2 – c2a + c2x = 0, where ‘a’ is the parameter.

  This is of the form A a2 + Ba + C = 0.

 The envelope is B2 – 4 AC = 0, i.e., c4 – 4c2xy = 0

  i.e., 4xy = c2.

 14. (a) (i) f = f(r, s), where r = 
1 1x y

xy y x
 and s = 

1 1z x

zx x z

  

2

2 2

1 1
*r s x r s

f f r f s
f f x f f f

x r x s x x x

  
2 2

1 1
;r s

f f
f f

y zy z
  y2 fy = –fr and z2 fz = fs

 2 0.x r s r sx f f f f f

 (ii) f(x, y) = x3 y2(12 – 3x – 4y) = 12x3y2 – 3x4 y2 – 4x3y3

   fx = 36 x2y2 – 12x3y2 – 12 x2y3; fy = 24x3y – 6x4y – 12 x3y2

  fxx = 72x y2 – 36x2y2 – 24xy3; fxy = 72x2y – 24x3y – 36 x2y2

  fyy = 24x3 – 6x4 – 24x3y.

  The stationary points are given by fx = 0 and fy = 0

  i.e., x2y2 (36 – 12x – 12y) = 0 and 6x3y(4 – x – 2y) = 0

  Solving, we get the possible stationary points are (0, 0), (0, 2), (4, 0), 

(0, 3), (3, 0) and (2, 1).

  At all points except (2, 1), AC – B2 = 0, which requires further 

consideration.

  At the point (2, 1), A = –48, B = –48, C = –96    AC – B2 > 0 and A < 0
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 f(x, y) is maximum at the point (2, 1) and the maximum value of 

f(x, y) = 16.

      (b) (i) Worked example in the book.

 (ii) Worked example in the book.

 15. (a) (i) Worked example in the book.

 (ii) Worked example in the book.

      (b) (i)

   The point of intersection of the two parabolas in given by 
4

2
4

16

x
ax

b

  i.e. x = 0 and x3 = 64 ab2 or x = 4a1/3 b2/3 and

     y = 0        y = 4a2/3 b1/3

  Required area = 

2/3 2/3

2

44

0 /4

bya b

OAPB y a

dx dy dx dy

             

2/3 1/3

2/3 1/3

4
2

0

4
3

3/2

0

( 4 /4 )

2
4 .

3 12

a b

a b

by y a dy

y
b y

a

             = 1/2 1/2 24 64 1
8 .

3 12 3

b
b a b a b ab

a

 (ii)

  x = a or r = a sec ; 
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  I = 

sec/4

2
0 0

cos
a

r r dr d

r

    = 

/4 /4
sec

0
0 0

cos .
4

a a
r a d
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