Internet
" Things

A HANDS-ON APPROACH

ur4g HAEEI y

i |

i
01068270

U # ot
'*%) Universities Press

Arshdeep Bahga « Vijay Madisetti



Lolo 5’5{@
LS

Internet
" Things

A HANDS-ON APPROACH

Arshdeep Bahga « Vijay Madisetti

Universities Press

IREFERENCE B.DDKI
- 5




UNIVERSITIES PRESS (INDIA) PRIVATE LIMITED

Registered Office
3-6-T47/1/A & 3-6-754/1, Himayatnagar, Hyderabad 500 029 (Telangana), India
E-mail: infof@universitiespress.com; www.universitiespress.com

Distrilruted by
Orient Blackswan Private Limited

Registered Office

3-6-752 Himayatnagar, Hyderabad 500 029 (Telangana), India
hther Offices

Bengaluru, Bhopal, Chennai, Guwahati, Hyderabad, Jaipur, Kolkata
Lucknow, Mumbai, New Delhi, Noida, Patna, Vijayawada

© Arshdeep Bahga & Vijay Madisetti 2015

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written
permission of the authors Arshdeep Bahga (arshdeepbahga@gmail.com) and Vijay Madisetti (vkm@
madisetti.com).

First published in India by 501212
Universities Press (India} Private Limited 2015 !-
Reprinted 2016

ISBN 978 81 7371 954 7
Book Website: www.internet-of-things-book.com

l.lllﬂ?..ﬂ'l&

For sale in South Asia and the Middle East onl e,
_v x__1_.1nf,:-':;‘\\

Printed in India at
Seth Informatics, Kolkata 700035

Published by 1 ,‘- 3
Universities Press (India) Private Limit !
3-6-T47/1/A & 3-6-754/1, Himayatnag oL R—
Hyderabad 500 029 (Telangana), India \ ‘x

Limit of LiabilitwDisclaimer af Wnrmm}r. authors have used their best efforts in
preparing this book, they make no representations with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness
for a particular purpose. No warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for your situation. You should consult
a professional where appropriate, Neither the publisher nor the authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

The publisher and the authors make no representations or warranties with respect to the accuracy or completeness
of the contents of this work and specifically disclaim all warranties, including without limitation any implied
warranties of fitness for a particular purpose. The fact that an organization or web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the authors or the publisher
endorse the information the organization or web site may provide or recommendations it may make. Further,
readers should be aware that Internet web sites listed in this work may have changed or disappeared between
when this work was written and when it is read. No warranty may be created or extended by any promotional
statements for this work. Ne:thuﬂw publisher nor the authors shli[bc liable for any damages arising herefrom,

" -
it




I INTRODUCTION & CONCEPTS

1

1.1
1

12

121
1.2.2

1.3

1.3.41
13.2
1.3.3

14

1.4.1
142

Introduction to Internetof Things .................... ..., %

Introduction
Definition & Characteristics of 16T . ... ... vvvernnrnnedisnianaiiee. . =

Physical Design of loT

I A Y - o A e e e T s
IO PrOOBBIE oot ai 0 o it i e i b o ahrae NGV SRR, L

Logical Design of loT

[T FURCHORBL BIOCKE. -+ v voi v s wosin ww aon aonm oo EdiER G e AR e
loTCommunicationModals. . ..¢ ..o sy o rE i oiews el ssali e 18
o Ty g [Ty o Ly B ol e A P R 2y s T 00 S R,

loT Enabling Technologies
Wireless SensorMNetwarks ... ... e ishdmiid s G
Cloud Computing . . . .. b o A s e e TR ST e RO

¥

19

22

24

24
24

31

a1
a1
34



1.4.3
1.4.4
145

1.5

1.5.1
1.6.2
1.5.3
1.5.4
1.5.5
1.5.6

2.1

22

2.2.1
222
223
224

23

2341
23.2
233
234
2.3.5
2.3.6

24

2.4.1
2.4.2
2.4.3
24.4
245

25

251
252
253

T e Uty o e S
COmMMUNIGEEON PrOMOBOIE . b i s v v as s e i b T s a0 e s
Embagted Sy atamIB s e T i e v e b e e A R e

loT Levels & Deployment Templates

B BT o R T e e P T 1 R T AR S e e R Y
R R -, et e R e T e e e e
IO TV . e s oremn st v e e gt T T
B T e i om0 i e o S L R e e S B
IDTE et . s e e el S e T e el
(un P]E T e e B e et S S L e e S R s e

Domain SpecHicIoTs ...........cocvevnvvnnssrnrensnsnsss

Introduction

Home Automation

SRR LABIIRIEEY. & o000 e b it B o i e R
SmartApplances . ot erin e s v ene e cdeies b e o el
IPUBION DEBCHON v v eun va b s v s o i snes i assss i naypanag |
Smoke/Gas Detectors ... ... .o e i o

Cities

SmartParking ........coi0iiiiinnn S R e R
SMartLighling - . ... .. ... cpmuicds b iomypiten wvd sirs s « .
SmartRoads ........... s e T T R R W R R e
Structural Health Monitoring . . ... oo v i vt i v a s v n s viaas i cae
SUrvallEnea . . . oo v v en sl o ade s s G T TR BAT Bannial fn o ok
EMBrgancy FBBPONSE . . . . .« .u e vus e ou mak nn s nm s e b g s

Environment

Weather MorHoring. . . ... oo s = omens s s s ma s s b s MR IR T e
T T T T Tl T S O - U S
Moise Pollition Menitoring: & ... .o iv i i i sanasannnais v
ForogERIR DEROIBI o0 v 00 v e R TR R
River Floods DBBeB . .. . vt v e e et POTETER S

Energy
SartGrdB i i s e Ay LU e R
Renewable Energy SYBIBIMS . .. oo v v v er s vernrnsnasssmssssssens

Prognisliee oo ot e e i o e T T e PR bR el bt i



2.6

2.6.1
26.2
263
2.7

271
2.7.2

2.7.3
2.74

2.8
281
282

29.1
29.2

2.10

2101
210.2

3.1
3.2
3.3

3.4
3.4.1
3.4.2

4.1

42
4.2.1

Retail

NI HBNEORMENE . . - o iiiviiiaiiaibaaie e o ARSI L 4
T S e T e L e N AL S Sl L 15
Emart Vending Machings . . . ... .. -os e ciwssssnssssinswssvnwmsis
Logistics

Route Generation & Scheduling ............. .0 einenreninns
R REING: sy e R R L e R e e S L
Shipmait Monttoning ' . . . . s ri 1 e 0 TH PV b 2 3365 73 Ul el
Remote Vehicle Diagnostics .. ....... i o ivieisnisinnaseniensas
Agriculture

IR IRRAEON . . ..o e s e e AR
LTIV LTI R ATy )] [ e e S e S e L § e s e, LTS

Industry .
Machine Diagnosis & Prognosis . ........ . caliee . isiae v banin. ok
ingoor Alr Guality Monitoring . .. . ... Foie i e anohd el S aesE . b

Health & Lifestyle

Health & Fitness Monitoring ... ... .. it iiiinnanns sl
Waarahlo EIDSIOIEE: ¢ .o il ciis cmiinainmat s tstd dotsrs it et i e

RTINMEN ...l Jabanes D

Introduction
M2M
Difference between loT and M2M

SDN and NFV for loT
Software Defined Networking . ... .........c.iiiiiniiimaninnnn.
Neatwork Function Virtualization . .. .. .. .o v e nnsorararrrrsnssnsss

loT System Management with NETCONF-YANG ............
Need for loT Systems Management

Simple Network Management Protocol (SNMP)
Eimitatons of SNNIB i i i iainsionh s e e e AR e e

&28 3 3 & o

91
92
a3



4.3
4.4
4.5

4.6
4.6.1

Network Operator Requirements
NETCONF
YANG

loT Systems Management with NETCONF-YANG
NETOPEER . ....coovterevuissrnsnrsstasnnsssasnsssannsncns

II DEVELOPING INTERNET OF THINGS

5
5.1

5.2
5.2.1
5.22
523
524
5.2.5
526
527
528
5289
5.2.10

53
54

6.1
6.2

6.3

6.3.1
6.3.2
6.3.3
6.3.4

loT Platforms Design Methodology -..........ccnreuinine

Introduction

loT Design Methodology

Step 1: Purpose & Requirements Specification .. ....... ool
Step 2: Process Specification . ........oiei i
Step 3: Domain Model Specification .. .........covirannriiiees
Step 4: Information Model Specification .. . ......ocovrinereareres
Step 5: Service Specifications . ........ i ey
Step 6: loT Level Spacification ...........cocoverrrarraenrrenens
Step 7: Functional View Specification . ...........ccoiieniree
Step 8: Operational View Specification ...........co.oovvvrvarieens
Step 9: Device & Component Integration . ...........coovevvireeees
Step 10: Application Development . . . .........orrrrnonnrre s rnees

Case Study on loT System for Weather Monitoring
Motivation for Using Python

loT Systems - Logical Design using Python...............

Introduction
Installing Python

Python Data Types & Data Structures

NUMBBIS . . . . oo v v s i s s ogmonm s o mara fid pimaihie o3 s o Seafs oo
T L R e e L bk R
LABAR: ooin @ v R i s b R L LR S YRR

96
97

106
107

111

113

114

114
114
116
117
119
119
121
121
125
127
127

127

131



8355 Dictionarles ... .... ... Ll Ui dT TR ! I
636 TypeCONVersions .......-...c..covovninnaes b 013 ) podighiac; ool
6.4 Control Flow

T g ety R S R R 5 SRR S S ol ok
R TSR e SR SR R S ok b 1 S
SIS G L RTTU Vv s v e s e e e SRR R ERRRR A VRN R RS
B BB A L e e e e T a e ARRSR TR B BRI '
BAS DIBRK/CONUNUG . ... o' vienisesrasensnssannensrasrseiiieiavans I
R e S S el S i e e A o s 0

65 Functions

6.6 Modules

6.7 Packages

6.8 Flle Handling

6.9 Date/Time Operations

6.10 Classes

6.11 Python Packages of Interest for loT

AL JBON ... i se st o0 Ol bt 5.l 2 T P
Liha | aipgsentiie ol N pipe e T ERRERalL- s BT
8113 HTTPLD G URLLID .. \v.ovvnnsrerensnnsssesmsnnunngeasamen: !
QAT S SITPLID . s grpssssssmasrsbonssnnsrssossnnss £ asenm: 5]

7 loT Physical Devices & Endpoints ..........covmiuaammsa 177
7.1  What Is an loT Device 178
714 Basic building blocks of an loT Device . ..........c.comnnrsne AR 178
7.2 Exemplary Device: Raspberry Pi : 179
73  About the Board 180
7.4  Linux on Raspberry Pi 181
75  Raspberry Pl interfaces : @ 186
FES  Serlal: Surbiiy L S LTI R TR istradul om Li.. . 188
752 SPI e b LS e e s SROGH TN

T rnIe A RTCE, Rt o v SSRBB PP PR AL L i il b i 186



7.6

7.6.1
7862
763

1.7

7.7.1
7.7.2
7.7.3

8.1
8.2
83

8.4
8.4.1
842

8.6

8.6.1
8.6.2
8.6.3
8.6.4
865
8.6.6
8.6.7
86.8

8.7

8.1

9.2
9.2.1
922

Programming Raspberry Pi with Python 186

Controlling LED with Raspberry Pi .. ...........c.coiiiiiiviinn. 186
Interfacing an LED and Switch with Raspberry Pi . . ... .....covviannn.ns 188
Interfacing a Light Sensor (LDR) with Raspberry Pi ... ........c.000unn 181
Other loT Devices 193
o 1 S N AP P P R R R TR LR 193
BeagleBone BIack .. .........iciiiiiini i 194
Cublebosind ........-coo00siensssians e o 194
loT Physical Servers & Cloud Offerings ...... e .« WY

Introduction to Cloud Storage Models & Communication APls
WAMP - AutoBahn for loT
Xively Cloud for loT

Python Web Application Framework - Django :
Django ArchIIBCIUrE . ...« oo vvt v nraa s s s eananonnnaans
Starting Developmentwith Django . ............c.ooooiiiiiiiin. .,

Designing a RESTful Web API

Amazon Web Services for loT
T e T RN S N L e e A A e P A W e T 2

SkyNet loT Messaging Platform

Case Studies lllustrating loT Design .......

Introduction

Home Automation

SmartLighting ... ..cveveiiiinaneraneistienerartsensnadanans :
Home Intrusion Detection . ... ... vuiveancaiearsssrassassaniness

R IR T RPN, A




9.3 Cities

931 SmartParking ..........coiiiiiiiiiiiiiii
8.4 Environment

9.4.1 Weather Monitoring System . . ...........cieiirtiiiiiiiiiinrans
942 WeatherReportingBot .. ... ... ... ittt i
843 ArPollutlion Monltoring . « . o v s vvenrenrevnasnanisansaasssssingars
044 ForgstFireDetectlon ... ... oo ivnneieianaraanannrsnnnsns
9.5 Agriculture

951 Smartimigatlon . ... ... e it iheviisaise v i ias Gherbenis :
9.6 Productivity Applications

BB ORI = o e o o R
I ADVANCED TOPICS

10 Data Analytics forloT ........... Vb sl mhianatfsnote
10.1 Introduction

10.2 Apache Hadoop

10.2.1 MapReduce Programming Model . ...........oiiiuiiiinirinnnanns
10.2.2 Hadoop MapReduce Job Execution ...... et AN TN
10.2.3 MapReduce Job Execution Workflow . . . .............ovviniiiiin :
10.2.4 Hadoop Cluster Setup: . . ...« .0 i ol i cidliiin e s i T B

10.3 Using Hadoop MapReduce for Batch Data Analysis
10.3.1 HadoopYARN .............. . i, . b g AP R W 15

10.4 Apache Oozie
104.1 SettingupOOZIB: ... ....nccicnvisasrrassrsarscss erapistansinisnns
10.4.2 Oozie Workflows for loT Data Analysis . ..........c.oueinceerannens
10.5 Apache Spark
10.6 Apache Storm
10.8.1 SettingupaStormCluster ................... ) i

10.7 Using Apache Storm for Real-time Data Analysis
10.7.1 REST-hased aPPIOBCIt » - | i T uivess «omivniis s peamba v Jig v
10.7.2 WebSocket-based approach . ... .......ovieaivivrnsvasraaurnenan

g

357

$E 3888

388



10.8 Structural Health Monitoring Case Study 404

1 1 TWI.‘ for IuT lllllllllllllllllllllllllllllll oW W F RN EEEE 413
11.1 Introduction 414
11.2 Chef 414
ST i N SO E S R (S S 417
11.3 Chef Case Studies a7
11.3.1 Multi-tier Application Deployment .. ........... ... s iravrnnress 417
11.3.2 B NN o vty ci st A s s s wa s a i s e 424
TER.3 Slorm Olugter .. .. ovciin oy v oy o T bR VTIPS . 433
11.4 Puppet ' 438
11.5 Puppet Case Study - Multi-tier Deployment 440
11.6 NETCONF-YANG Case Studies 444
11.6.1 Steps for loT device Management with NETCONF-YANG .. ............. 445
11.6.2 Managing Smart Irrigation loT System with NETCONF-YANG . .......... 446
11.6.3 Managing Home Intrusion Detection loT System with NETCONF-YANG . . . . 462
11.7 loT Code Generator 476

Ammlx‘h'&“lngupm.mwpl' ------- Ihlllllllllll'llllm

ﬂppﬂﬂdlx-a-soﬂlnﬂupumntuv“ --------- lii‘llllllllllm

Appendix-C - SettingupDjango ...........coovernsrnanas m
Biblography ........ccccii0nnn Ity o AT
o pF R e R A sttt Sl 517



About This Book

Internet of Things (IOT) refers to physical and virtual objects that have unique identities
and are connected to the internet to facilitate intelligent applications that make energy,
logistics, industrial control, retail, agriculture and many other domains “smarter”. Internet of
Things is a new revolution of the Internet that is rapidly gathering momentum driven by the
advancements in sensor networks, mobile devices, wireless communications, networking
and cloud technologies. Experts forecast that by the year 2020 there will be a total of 50
billion devices/things connected to the internet.

This book is written as a textbook on Internet of Things for educational programs
at colleges and universities, and also for IoT vendors and service providers who may be
interested in offering a broader perspective of Internet of Things to accompany their own
customer and developer training programs. The typical reader is expected to have completed
a couple of courses in programming using traditional high-level languages at the college-level,
and is either a senior or a beginning graduate student in one of the science, technology,
engineering or mathematics (STEM) fields.

Like our companion book on Cloud Computing, we have tried to write a comprehensive
book that transfers knowledge through an immersive "hands on" approach, where the reader is
provided the necessary guidance and knowledge to develop working code for real-world IoT




12

applications. Concurrent development of practical applications that accompanies traditional
instructional material within the book further enhances the learning process, in our opinion.
Please also check out the accompanying website for this book that contains additional support
for instruction and learning.

The book is organized into 3 main parts, comprising of a total of 11 chapters. Part I covers
the building blocks of Internet of Things (IoT's) and their characteristics. A taxonomy of loT
systems is proposed comprising of various loT levels with increasing levels of complexity.
Domain specific Internet of Things and their real-world applications are described. A generic
design methodology for 1oT is proposed. An IoT system management approach using
NETCONF-YANG is described.

Part 11 introduces the reader to the programming aspects of Internet of Things with
a view towards rapid prototyping of complex IoT applications. We chose Python as the
primary programming language for this book, and an introduction to Python is also included
within the text to bring readers to a common level of expertise. Other languages, besides
Python, may also be easily used within the methodology outlined in this book. We describe
packages, frameworks and cloud services including the WAMP-AutoBahn, Xively cloud
and Amazon Web Services which can be used for developing [oT systems. We chose the
Raspberry Pi device for the examples in this book. Raspberry Pi supports Python and allows
rapid prototyping of practical loT applications. Reference architectures for different levels of
IoT applications are examined in detail. Case studies with complete source code for various
10T domains including home automation, smart environment, smart cities, logistics, retail,
smart energy, smart agriculture, industrial control and smart health, are described.

Part 111 introduces the reader to advanced topics on IoT including loT data analytics and
Tools for IoT, Case studies on collecting and analyzing data generated by Internet of Things
in the cloud are described.

Through generous use of hundreds of figures and tested code samples, we have attempted
to provide a rigorous "no hype" guide to Internet of Things. It is expected that diligent
readers of this book can use these exercises to develop their own loT applications. We
adopted an informal approach to describing well-known concepts primarily because these
topics are covered well in existing textbooks, and our focus instead is on getting the reader
firmly on track to developing robust ToT applications as opposed to more theory.

While we frequently refer to offerings from commercial vendors, such as Xively, Amazon,
GmglcandMicmsnﬂ,mishmkismanmdurmmofﬂwirpmdmurmim&nm
is any portion of our work supported financially (or otherwise) by these vendors. A ]|
trademarks and products belong to their respective owners and the underlying principles and
approaches, we believe, are applicable to other vendors as well. The opinions in this book
are those of the authors alone.

Bahga & Madisetti, © 2015

e e e e



13

Chapter-1: Introduction to Internet of Things
Provides an overview of Internet of Things, building blocks of IoT, IoT enabling technologies,
characteristics of IoT systems and [oT levels.

Chapter-2: Domain Specific loTs

Describes the characteristics and applications of domain-specific IoTs including home
automation, smart environment, smart cities, logistics, retail, smart energy, smart agriculture,
industrial control and smart health.

Chapter-3: loT and M2M
Describes the differences and similarities between and IoT and M2M and applications of
SDN and NFV in IoT.

Chapter-4: loT System Management with NETCONF-YANG

Describes NETCONF protocol, YANG data modeling language, and an approach for loT
system management using Netopeer tools.

Chapter-5: loT Platforms Design Methodology
Describes a generic design methodology for Internet of Things.

Chapter-6: loT Systems - Logical Design using Python

Provides an introduction to Python, installing Python, Python data types & data structures,
control flow, functions, modules, packages, file input/output, data/time operations and
classes.

Chapter-7: loT Physical Devices & Endpoints
Provides an introduction to Raspberry Pi device, programming Raspberry Pi with Python,
interfacing sensors and actuators with Raspberry Pi.

Chapter-8: loT Physical Servers & Cloud Offerings

Provides an introduction to the use of cloud platforms and frameworks such as WAMP-AutoBahn, -

Xively and AWS for developing IoT applications.

Chapter-9: Case Studies Iliustrating loT Design

Provides instruction on the design of several case studies based on Python and Raspberry Pi
including home automation, smart environment, smart cities, logistics, retail, smart energy,

Internet of Things - A Hands-On Approach



14

smart agriculture, industrial control and smart health.

Chapter-10: Data Analytics for loT
Describes approaches for collecting and analyzing data generated by IoT systems in the
cloud.

Chapter-11: Tools for loT
Describes various tools for IoT including Chef, Puppet, NETCONF-YANG and IoT Code
Generator,

Book Website

For more information on the book, copyrighted source code of all examples in the book, lab
exercises, and instructor material, visit the book website: www.internet-of-things-book.com

Bahga & Madisetti, [© 2015



15

Acknowledgments

From Arshdeep Bahga

I would like to thank my father, Sarbjit Bahga, for inspiring me to write a book and sharing
his valuable insights and experiences on authoring books. This book could not have been
completed without the support of my mother Gurdeep Kaur, wife Navsangeet Kaur, and
brother Supreet Bahga, who have always motivated me and encouraged me to explore my
interests.

From Vijay Madisetti
1 thank my family, especially Anitha and Jerry (Raj), and my parents for their support.

Internet of Things - A Hands-On Approach



16

About the Authors

Arshdeep Bahga

Arshdeep Bahga is a Research Scientist with Georgia Institute
of Technology. His research interests include cloud computing
and big data analytics. Arshdeep has authored several scientific
publications in peer-reviewed journals in the areas of cloud
computing and big data.

Vijay Madisetti

Vijay Madisetti is a Professor of Electrical and Computer
Engineering at Georgia Institute of Technology. Vijay is a
Fellow of the IEEE, and received the 2006 Terman Medal
from the American Society of Engineering Education and HP
Corporation. :

Bahga & Madisetti, © 2015









T R P T ) e

20 Introduction to Internet of Things

1.1 Introduction

Internet of Things (I0T) comprises things that have unique identities and are connected to the
Internet. While many existing devices, such as networked computers or 4G-enabled mobile
phones, already have some form of unique identities and are also connected to the Intemnet,
the focus on IoT is in the configuration, control and networking via the Internet of devices or
"things" that are traditionally not associated with the Internet. These include devices such
as thermostats, utility meters, a bluetooth-connected headset, irrigation pumps and sensors,
or control circuits for an electric car’s engine. Internet of Things is a new revolution in the
capabilities of the endpoints that are connected to the Internet, and is being driven by the
advancements in capabilities (in combination with lower costs) in sensor networks, mobile
devices, wireless communications, networking and cloud technologies, Experts forecast that
by the year 2020 there will be a total of 50 billion devices/things connected to the Internet.
Therefore, the major industry players are excited by the prospects of new markets for their
products. The products include hardware and software components for loT mdpmnls hubs,
or control centers of the IoT universe.

Figure 1.1: Inferring information and knowledge from data

The scope of IoT is not limited to just connecting things (devices, appliances, machines)
to the Internet. [oT allows these things to communicate and exchange data (control &
information, that could include data associated with users) while executing meaningful
applications towards a common user or machine goal. Data itself does not have a meaning

Bahga & Madisetti, © 2015



21

Figure 1.2: Applications of IoT

until it is contextualized processed into useful information. Applications on IoT networks
extract and create information from lower level data by filtering, processing, categorizing,
condensing and contextualizing the data. This information obtained is then organized and
structured to infer knowledge about the system and/or its users, its environment, and its
operations and progress towards its objectives, allowing a smarter performance, as shown in
Figure 1.1. For example, consider a series of raw sensor measurements ((72,45) ; (84, 56))
generated by a weather monitoring station, which by themselves do not have any meaning or

Internet of Things - A Hands-On Approach



22 Introduction to Internet of Things

context. To give meaning to the data, a context is added, which in this example can be that
each tuple in data represents the temperature and humidity measured every minute. With this
context added we know the meaning (or information) of the measured data tuples. Further
information is obtained by categorizing, condensing or processing this data. For example,
the average temperature and humidity readings for last five minutes is obtained by averaging
the last five data uples. The next step is to organize the information and understand the
relationships between pieces of information to infer knowledge which can be put into action.
For example, an alert is raised if the average temperature in last five minutes exceeds 120F,
and this alert may be conditioned on the user’s geographical position as well.

The applications of Internet of Things span a wide range of domains including (but not
limited to) homes, cities, environment, energy systems, retail, logistics, industry, agriculture
and health as listed in Figure 1.2. For homes, loT has several applications such as smart
lighting that adapt the lighting to suit the ambient conditions, smart appﬁ@cuu that can
be remotely monitored and controlled, intrusion detection systems, smart smoke detectors,
etc. For cities, IoT has applications such as smart parking systems that provide status
updates on available slots, smart lighting that helps in saving energy, smart roads that provide
information on driving conditions’and structural health monitoring systems. For environment,
JoT has applications such as weather monitoring, air and noise pollution, forest fire detection
and river flood detection systems. For energy systems, IoT has applications such as including
smart grids, grid integration of renewable energy sources and prognostic health management
systems. For retail domain, IoT has applications such as inventory management, smart
payments and smart vending machines. For agriculture domain, IoT has applications such
as smart irrigation systems that help in saving water while enhancing productivity and
green house control systems. Industrial applications of IoT include machine diagnosis and
prognosis systems that help in predicting faults and determining the cause of faults and
indoor air quality systems. For health and lifestyle, IoT has applications such as health and
fitness monitoring systems and wearable electronics.

1.1.1 Definition & Characteristics of loT
The Internet of Things (IoT) has been defined as [1]:

Detnitions A dynamic global network infrsirucuro with slf-configring capabilites
based on standard and interoperable communication protocols where physical and yiriual

data associated with users and their environments.

Bahga & Madisetti, () 2015



1.1 Introduction 23

Let us examine this definition of IoT further to put some of the terms into' perspeéctive.

« Dynamic & Self-Adapting: IoT devices and systems may have the capability to
dynamically adapt with the changing contexts and take actions based on their operating
conditions, user’s context, or sensed environment. For example, consider a surveillance
system comprising of a number of surveillance cameras. The surveillance cameras
can adapt their modes (to normal or infra-red night modes) based on whether it is
day or night. Cameras could switch from lower resolution to higher resolution modes
when any motion is detected and alert nearby cameras to do the same. In this example,
the surveillance system is adapting itself based on the context and changing (e.g.,
dynamic) conditions.

o Self-Configuring: IoT devices may have self-configuring capability, allowing a large
number of devices to work together to provide certain functionality (such as weather
monitoring). These devices have the ability configure themselves (in association with
the ToT infrastructure), setup the networking, and fetch latest software upgrades with
minimal manual or user intervention.

¢ Interoperable Communication Protocols: 10T devices may support a number of
interoperable communication protocols and can communicate with other devices and
also with the infrastructure. We describe some of the commonly used communication
protocols and models in later sections.

o Unique Identity: Each IoT device has a unique identity and a unique identifier (such
as an IP address or a URI). IoT systems may have intelligent interfaces which adapt
based on the context, allow communicating with users and the environmental contexts.
IoT device interfaces allow users to query the devices, monitor their status, and
control them remotely, in association with the control, configuration and management

» Integrated into Information Network: IoT devices are usually integrated into the
information network that allows them to communicate and exchange data with other
devices and systems. IoT devices can be dynamically discovered in the network, by
other devices and/or the network, and have the capability to describe themselves (and
their characteristics) to other devices or user applications, For example, a weather
monitoring node can describe its monitoring capabilities to another connected node
so that they can communicate and exchange data. Integration into the information
network helps in making IoT systems “smarter” due to the collective intelligence of
the individual devices in collaboration with the infrastructure, Thus, the data from
a large number of connected weather monitoring IoT nodes can be aggregated and
analyzed to predict the weather.

Internet of Things - A Hands-On Approach



24 Introduction to Internet of Things

1.2 Physical Design of loT

1.2.1 Things in loT
The "Things" in ToT usually refers to IoT devices which have unique identities and can
perform remote sensing, actuating and monitoring capabilities. IoT devices can exchange
data with other connected devices and applications (directly or indirectly), or collect data
from other devices and process the data either locally or send the data to centralized servers
or cloud-based application back-ends for processing the data, or perform some tasks locally
and other tasks within the IoT infrastructure, based on temporal and space constraints (i.e.,
memory, processing capabilities, communication latencies and speeds, and deadlines).

Figure 1.3 shows a block diagram of a typical IoT device. An IoT device may consist of
several interfaces for connections to other devices, both wired and wireless. These include (i)
1/0 interfaces for sensors, (ii) interfaces for Internet connectivity, (iii) memory and storage
interfaces and (iv) audio/video interfaces. An IoT device can collect various types of data
from the on-board or attached sensors, such as temperature, humidity, light intensity. The
sensed data can be communicated either to other devices or cloud-based servers/storage. IoT
devices can be connected to actuators that allow them to interact with other physical entities
(including non-IoT devices and systems) in the vicinity of the device. For example, a relay
switch connected to an IoT device can turn an appliance on/off based on the commands sent
to the IoT device over the Internet. o

ToT devices can also be of varied types, for instance, wearable sensors, smart watches,
LED lights, automobiles and industrial machines. Almost all IoT devices generate data in
some form or the other which when processed by data analytics systems leads to useful
information to guide further actions locally or remotely. For instance, sensor data generated
by a soil moisture monitoring device in a garden, when processed can help in determining
the optimum watering schedules. Figure 1.4 shows different types of IoT devices.

1.2.2 loT Protocols

Link Layer
Link layer protocols determine how the data is physically sent over the network’s physical
layer or medium (e.g., copper wire, coaxial cable, or a radio wave). The scope of the link
layer is the local network connection to which host is attached. Hosts on the same link -
exchange data packets ‘over the link layer using link layer protocols. Link layer determines
how the packets are coded and signaled by the hardware device over the medium to which
the host is attached (such as a coaxial cable). Let us now look at some link layer protocols
which are relevant in the context of IoT.

e 802.3 - Ethernet : IEEE 802.3 is a collection of wired Ethernet standards for the link

Bahga & Madisetti, © 2015




.2 Physical Design of loT 25

Figure 1.3: Generic block diagram of an IoT Device

layer. For example, 802.3 is the standard for I0BASES Ethernet that uses coaxial

1 cable as a shared medium, 802.3.i is the standard for 10BASE-T Ethernet over copper

| twisted-pair Connections, 802.3,] is the standard for 10BASE-F Ethernet over fiber

apuccmnmons.sﬂlﬂummm.ﬂdfm 10 Gbit/s Ethernet over fiber, and so on.
These standards provide data rates from 10 Mb/s to 40 Gb/s and higher. The shared
medium in Ethernet can be a coaxial cable, twisted-pair wire or an optical fiber. The
shared medium (i.e., broadcast medium) carries the communication for all the devices
on the network, thus data sent by one device can received by all devices subject to
propagation conditions and transceiver capabilities. The specifications of the 802.3

@ standards are available on the IEEE 802.3 working group website [2].

' e 802,11 - WiFi : [EEESﬂlelslmHmﬁmdmrelmlmﬂmamm
communication standards, including extensive description of the link layer. For
example, 802.11a operates in the 5 GHz band, 802.11b and 802.11g operate in the
2.4 GHz band, 802.11n operates in the 2.4/5 GHz bands, 802.11ac operates in the 5
GHz band and 802.11ad operates in the 60 GHz band. These standards provide data
rates from 1 Mb/s to upto 6.75 Gb/s. 'I‘tuspecjﬁnuﬂomufthumﬂmm
available on the TEEE 802.11 working group website [3] G

e 802.16 - WiMax : IEEE 802.16 is a collection of wireless broadband standards,
including extensive descriptions for the link layer (also called WiMax). WiMax

Internet of Things - A Hands-On Approach



Introduction to Internet of Things

Figure 1.4: IoT Devices

standards provide data rates from 1.5 Mb/s to 1 Gb/s. The recent update (802.16m)
provides data rates of 100 Mbit/s for mobile stations and 1 Gbit/s for fixed stations.
The specifications of the 802.11 standards are readily available on the IEEE 802.16

working group website [4]

Bahga & Madisetti, © 2015



|
EEH j
§ 802.11- wiFi [l 802.15.4 - LR-WPA

13 a-.':-*»-"l- . Figure 1.5: IﬂTH‘ﬂwFﬂlﬂ

.. 802154 - LR-WPAN : IEEE 802,15.4 isannlhcﬁmnfnhﬂdﬂdlﬁmlqw-nu
mmmmkpmwmm}, These standards form the basis of
mdﬂmﬁrmlnﬂmmmmw such as ZigBee. LR-WPAN.
. . standards provide data rates from 40 Kb/s 250 Kb/s. These standards provide low-cost
e mdhw-spebdcummunmaﬂunforpﬂwucnnsunmﬁddmdcesm _ 5 C
*..___._;ﬂu the 802.15.4 standards are available on the IEEE 802,15 working group website [3

; ,mmmwm - Mobile Communication : Mmmmmw

ag?ﬁrl mmmwmmmmmmmmnﬂ

B v QDMngmtﬂﬁ-mmmmAﬁ‘Mmﬂm
ég_,i; ... 4G - including LTE), IoT, devices based on these standards can commu

e ai;aﬂaﬂarnurwmks D;umﬁummdsmﬁmﬂ.ﬁ /s (for
1WMHn{fm4G}nndmmlabhfmmth&3(}PPm

i _(.m i

:w:mm-m-lmdlﬂnapprmh



28 Introduction to Internet of Things

Network/Internet Layer

The network layers are responsible for sending of IP datagrams from the source network
to the destination network. This layer performs the host addressing and packet routing.
The datagrams contain the source and destination addresses which are used to route them
from the source to destination across multiple networks. Host identification is done using
hierarchical IP addressing schemes such as IPv4 or IPv6.

¢ IPv4 : Internet Protocol version 4 (IPv4) is the most deployed Internet protocol that is
used to identify the devices on a network using a hierarchical addressing scheme. IPv4
uses a 32-bit address scheme that allows total of 2% or 4,294,967,296 addresses. As
more and more devices got connected to the Internet, these addresses got exhausted
in the year 2011. IPv4 has been succeeded by [Pv6. The IP protocols establish
connections on packet networks, but do not guarantee delivery of packets. Guaranteed
delivery and data integrity are handled by the upper layer protocols (such as TCP).
IPv4 is formally described in RFC 791 [6].

e IPv6 : Internet Protocol version 6 (IPv6) is the newest vﬂ'mun of Internet protocol
and successor to IPv4. IPv6 uses 128-bit address scheme that allows total of 2'28 or
3.4 x 10°® addresses. IPv4 is formally described in RFC 2460 [7].

e« 6LoWPAN : 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks)
brings IP protocol to the low-power devices which have limited processing capability.
6LoWPAN operates in the 2.4 GHz frequency range and provides data transfer rates
of 250 Kb/s. 6LoWPAN works with the 802.15.4 link layer protocol and defines
compression mechanisms for IPv6 datagrams over IEEE 802.15.4-based networks

[8].

Transport Layer

The transport layer protocols provide end-to-end message transfer capability indcpemhnt
of the underlying network. The message transfer capability can be set up on connections,
either using handshakes (as in TCP) or without handshakes/acknowledgements (as in UDP).
The transport layer provides functions such as error control, segmentation, flow control and
congestion control.

o TCP : Transmission Control Pmmml (TCP) is the most widely used transport layer
protocol, that is used by web browsers (along with HTTP, HTTPS application layer
protocols), email programs (SMTP application layer protocol) and file transfer (FTP).
TCP is a connection oriented and stateful protocol. While IP protocol deals with
sending packets, TCP ensures reliable transmission of packets in-order. TCP also
provides error detection capability so that duplicate packets can be discarded and
lost packets are retransmitted. The flow control capability of TCP ensures that

Bahga & Madisetti, © 2015



1.2 Physical Design of loT 29

rate at which the sender sends the data is not too high for the receiver to process.
The congestion control capability of TCP helps in avoiding network congestion and
congestion collapse which can lead to degradation of network performance. TCP is
described in REC 793 [9].

e UDP : Unlike TCP, which requires carrying out an initial setup procedure, UDP is a
connectionless protocol. UDP is useful for time-sensitive applications that have very
small data units to exchange and do not want the overhead of connection setup. UDP
is a transaction oriented and stateless protocol. UDP does not provide guaranteed
delivery, ordering of messages and duplicate elimination. Higher levels of protocols
can ensure reliable delivery or ensuring connections created are reliable. UDP is
described in RFC 768 [10].

Application Layer
Application layer protocols define how the applications interface with the lower layer
protocols to send the data over the network. The application data, typically in files, is
encoded by the application layer protocol and encapsulated in the transport layer protocol
which provides connection or transaction oriented communication over the network. Port
numbers are used for application addressing (for example port 80 for HTTP, port 22 for SSH,
etc.). Application layer protocols enable process-to-process connections using ports.
¢ HTTP : Hypertext Transfer Protocol (HTTP) is the application layer protocol that
forms the foundation of the World Wide Web (WWW). HTTP includes commands
such as GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, etc. The protocol
follows a request-response model where a client sends requests to a server using the
HTTP commands. HTTP is a stateless protocol and each HTTP request is independent
of the other requests. An HTTP client can be a browser or an application running
on the client (e.g., an application running on an IoT device, a mobile application or
other software). HTTP protocol uses Universal Resource Identifiers (URIs) to identify
HTTP resources. HTTP is described in RFC 2616 [11].
¢ CoAP : Constrained Application Protocol (CoAP) is an application layer protocol for
machine-to-machine (M2M) applications, meant for constrained environments with
constrained devices and constrained networks. Like HTTP, CoAP is a web transfer
protocol and uses a request-response model, however it runs on top of UDP instead of
TCP. CoAP uses a client-server architecture where clients communicate with servers
using connectionless datagrams. CoAP is designed to easily interface with HTTP.
Like HTTF, CoAP supports methods such as GET, PUT, POST, and DELETE. CoAP
draft specifications are available on IEFT Constrained environments (CoRE) Wm:hng
Group website [12].

Internet of Things - A Hands-Cn Approach



30

Introduction to Internet of Things

* WebSocket : WebSocket protocol allows full-duplex communication over a single

socket connection for sending messages between client and server. WebSocket is
based on TCP and allows streams of messages to be sent back and forth between the
client and server while keeping the TCP connection open. The client can be a browser,
a mobile application or an loT device. WebSocket is described in RFC 6455 (13].
MOQTT : Message Queue Telemetry Transport (MQTT) is a light-weight messaging
protocol based on the publish-subscribe model. MQTT uses a client-server architecture
where the client (such as an IoT device) connects to the server (also called MQTT
Broker) and publishes messages to topics on the server. The broker forwards the
messages (o the clients subscribed 1o topics. MQTT is well suited for constrained
and the network bandwidth is low. MQTT specifications are available on IBM
developerWorks [14].

XMPP : Extensible Messaging and Presence Protocol (XMPP) is a protocol for
powers wide range of applications including messaging, presence, data syndication,
gaming, multi-party chat and voice/video calls. XMPP allows sending small chunks
of XML data from one network entity to another in near real-time. XMPP is a
decentralized protocol and uses a client-server architecture, XMPP supports both
client-to-server and server-to-server communication paths. In the context of loT,
XMPP allows real-time communication between loT devices. XMPP is described in
RFC 6120 [15]. ;

DDS : Data Distribution Service (DDS) is a data-centric middleware standard for
device-to-device or machine-to-machine communication. DDS uses a publish-subscribe
model where publishers (e.g. devices that generate data) create topics o which
subscribers (e.g., devices that want to consume data) can subscribe. Publisher is an
object responsible for data distribution and the subscriber is responsible for receiving
published data. DDS provides quality-of-service (QoS) control and configurable
reliability. DDS is described in Object Management Group (OMG) DDS specification [ 16].
AMOQP : Advanced Message Queuing Protocol (AMQP) is an open application
layer protocol for business messaging. AMQP supports both point-to-point and
publisher/subscriber models, routing and queuing. AMQP brokers receive messages
from publishers (e.g., devices or applications that generale data) and route them over
connections to consumers (applications that process data). Publishers publish the
messages to exchanges which then distribute message copies (o queucs. Messages are
cither delivered by the broker to the consumers which have subscribed to the queues
or the consumers can pull the messages from the queues. AMQP specification is

Bahga & Madisetti, © 2015



1.3 Logical Design of loT a

available on the AMQP working group website [17].

1.3 Logical Design of loT

Logical design of an IoT system refers to an abstract representation of the entities and
processes without going into the low-level specifics of the implementation. In this section
we describe the functional blocks of an IoT system and the communication APIs that are
used for the examples in this book. The steps in logical design are described in additional
detail in Chapter-5.

1.3.1 loT Functional Blocks

An ToT system comprises of a number of functional blocks that provide the system the
capabilities for identification, sensing, actuation, communication, and management as shown
in Figure 1.6. These functional blocks are described as follows:

o Device : An IoT system comprises of devices that provide sensing, actuation, monitoring
and control functions. You learned about IoT devices in section 1.2.

e Communication : The communication block handles the communication for the IoT
system. You learned about various protocols used for communication by loT E}’Stcms
in section 1.2,

o Services : An IoT system uses various types of IoT services such as services for
device monitoring, device control services, data puhhshmg services and services for
device discovery.
¢ Management : Management functional block provides various functions to govern
the [oT system.

e Security Security functional block secures the 1oT system a.nd by providing functions
such as authentication, authorization, message and content integrity, and data security.

o Application : IoT applications provide an interface that the users can use to control
and monitor various aspects of the IoT system. Applications also allow users to view
the system status and view or analyze the processed data.

1.3.2 loT Communication Models
¢ Request-Response : Request-Response is a communication model in which the
client sends requests to the server and the server responds to the requests. When
the server receives a request, it decides how to respond, fetches the data, retrieves
resource representations, prepares the response, and then sends the response to
the client. Request-Response model is a stateless communication model and each
request-response pair is independent of others. Figure 1.7 shows the client-server

Internet of Things - A Hands-On Approach



Introduction to Internet of Things

SR A i it =

Figure 1.7: Request-Response communication model

interactions in the request-response model.

* Publish-Subscribe : Publish-Subscribe is a communication model that involves
publishers, brokers and consumers. Publishers are the source of data. Publishers send
the data to the topics which are managed by the broker. Publishers are not aware of
the consumers. Consumers subscribe to the topics which are managed by the broker.
When the broker receives data for a topic from the publisher, it sends the data to all the
subscribed consumers. Figure 1.8 shows the publisher-broker-consumer interactions

Bahga & Madisetti, © 2015




1.3 Logical Design of loT 33

Figure 1.9: Push-Pull communication model

in the publish-subscribe model.

¢ Push-Pull : Push-Pull is a communication model in which the data producers push the
data to queues and the consumers pull the data from the queues. Producers do not need
to be aware of the consumers. Queues help in decoupling the messaging between the
producers and consumers. Queues also act as a buffer which helps in situations when
there is a mismatch between the rate at which the producers push data and the rate rate
at which the consumers pull data. Hgmlgmmemw
interactions in the push-pull model.

¢ Exclusive Pair : Exclusive Pair is a bi-directional, fuﬂyduphmmw

ImmMW-AHw&OnAppmuh




34 Introduction to Internet of Things

‘Request to setup Connection

-.ﬁw accepting the request

Message from Client to Server

dﬁ:np'imhummmum

~ Connection close response

e

Figure 1.10: Exclusive Pair communication model

that uses a persistent connection between the client and server. Once the connection is
setup it remains open until client sends a request to close the connection. Client
and server can send s to each other after connection setup. Exclusive pair is
a stateful communication model and the server is aware of all the open connections.
Figure 1.10 shows the client-server interactions in the exclusive pair model.

1.3.3 loT Communication APis

In the previous section you leamned about various communication models. In this section
you will learn about two specific communication APIs which are used in the examples in
this book. ;

REST-based Communication APls

Representational State Transfer (REST) [88] is a set of architectural principles by which
you can design web services and web APIs that focus on a system's resources and how
resource states are addressed and transferred. REST APIs follow the request-response
communication model described in previous section. The REST architectural constraints
apply to the components, connectors, and data elements, within a distributed hypermedia
system. The REST architectural constraints are as follows: P :

Bahga & Madisetti, © 2015



1.3 Logical Design of loT 35

Figure 1.11: Communication with REST APIs

e Client-Server: The principle behind the client-server constraint is the separation of
concerns. For example, clients should not be concerned with the storage of data which
is a concern of the server. Similarly, the server should not be concerned about the user
interface, which is a concern of the client. Separation allows client and server to be
independently developed and updated.

e Stateless: Each request from client to server must contain all the information necessary
to understand the request, and cannot take advantage of any stored context on the
server. The session state is kept entirely on the client.

¢ Cache-able: Cache constraint requires that the data within a response to a request
be implicitly or explicitly labeled as cache-able or non-cache-able. If a response is
cache-able, then a client cache is given the right to reuse that response data for later,
equivalent requests. Caching can partially or completely eliminate some interactions
and improve efficiency and scalability.

¢ Layered System: Layered system constraint, constrains the behavior of components
such that each component cannot see beyond the immediate layer with which they are
interacting. For example, a client cannot tell whether it is connected directly to the
end server, or to an intermediary along the way. System scalability can be improved

Internet of Things - A Hands-On Approach



36 Introduction to Internet of Things

REST
| e sene

Request (GET, PUT, UPDATE or DELETE)
with payload (JSON or XML)

Response [JSON or XML)

Request (GET, PUT, UPDATE or DELETE])
with payload [JSON or XML}

Response (JSON or XML}

Figure 1.12: Request-response model used by REST

by allowing intermediaries to respond to requests instead of the end server, without
the client having to do anything different.

o Uniform Interface: Uniform Interface constraint requires that the method of
communication between a client and a server must be uniform. Resources are identified
in the requests (by URIs in web based systems) and are themselves separate from the
representations of the resources that are returned to the client. When a client holds
a representation of a resource it has all the information required to update or delete
the resource (provided the client has required permissions). Each message includes
enough information to describe how to process the message.

e Code on demand: Servers can provide executable code or scripts for clients to execute
in their context. This constraint is the only one that is optional.

A RESTful web service is a "web API" implemented using HTTP and REST principles.
Figure 1.11 shows the communication between client and server using REST APIs. Figure 1.12
shows the interactions in the request-response model used by REST. RESTful web service
is a collection of resources which are represented by URIs. RESTful web API has a base
URI (e.g. http://fexample.com/api/tasks/). The clients send requests to these URIs using the

Bahga & Madisetti, © 2015



1.3 Logical Design of loT

DELETE

Get mfnrmauun hrtp.ﬁnxnmpln.mnpﬂmskxﬂf
about a resource {gatmfnrmaunnmmk 1)

T —

http://example.com/apiftasks/1/
(update task-1 with data
provided in the request)

Delete  a | http://example.com/apiftasks/1/
Element URT | resource (delete task-1)

Table 1.1: HTTP request methods and actions

methods defined by the HTTP protocol (e.g., GET, PUT, POST, or DELETE), as shown in
Table 1.1. A RESTful web service can support various Internet media types (JSON being the
most popular media type for RESTful web services). [P for Smart Objects Alliance (IPSO
Alliance) has published an Application Framework that defines a RESTful design for use in
IP smart object systems [18].

WebSocket-based Communication APls
WebSocket APIs allow bi-directional, full duplex communication between clients and servers.
WebSocket APIs follow the exclusive pair communication model described in previous
section and as shown in Figure 1.13. Unlike request-response APIs such as REST, the

Internet of Things - A Hands-On Approach




38 Introduction to Internet of Things

WebSocket Protocol
Request to setup WebSocket Connecticn >
Initial Handshale
el Response accepting the request {over HTTF)
Data frame
_‘
Data frame
Bidirectional Communication
Data frame (over persistent
WebSocket connection)
Data frame
i—
Connection chose request >
J Conibaction choeé response } Closing Connection

Figure 1.13: Exclusive pair model used by WebSocket APls

WebSocket APIs allow full duplex communication and do not require a new connection to
be setup for each message to be sent. WebSocket communication begins with a connection
setup request sent by the client to the server. This request (called a WebSocket handshake)
is sent over HTTP and the server interprets it as an upgrade request. If the server supports
WebSocket protocol, the server responds to the WebSocket handshake response. After the
connection is setup, the client and server can send data/messages to each other in full-duplex
mode. WebSocket APIs reduce the network traffic and latency as there is no overhead for
connection setup and termination requests for each message. WebSocket is suitable for IoT
applications that have low latency or high throughput requirements.

1.4 loT Enabling Technologies

loT is enabled by several technologies including wireless sensor networks, cloud computing,
big data analytics, embedded systems, security protocols and architectures, communication
protocols, web services, mobile Internet, and semantic search engines. This section provides
an overview of some of these technologies which play a key-role in IoT. ;

Bahga & Madisetti, © 2015




1.4 loT Enabling Technologies 39

1.4.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) comprises of distributed devices with sensors which are
used to monitor the environmental and physical conditions. A WSN consist of a number
of end-nodes and routers and a coordinator. End nodes have several sensors attached to
them. End nodes can also act as routers. Routers are responsible for routing the data packets
from end-nodes to the coordinator. The coordinator collects the data from all the nodes.
Coordinator also acts as a gateway that connects the WSN to the Internet. Some examples of
WSNs used in [oT systems are described as follows:

s Weather monitoring systems use WSNs in which the nodes collect temperature,

humidity and other data, which is aggregated and analyzed.

e Indoor air quality monitoring systems use WSNs to collect data on the indoor air

quality and concentration of various gases.

¢ Soil moisture monitoring systems use WSNs to monitor soil moisture at various

locations.

e Surveillance systems use WSNs for collecting surveillance data (such as motion

detection data)

o Smart grids use WSNs for monitoring the grid at various points.

¢ Structural health monitoring systems use WSNs to monitor the health of structures

(buildings, bridges) by collecting vibration data from sensor nodes deployed at various
points in the structure,

WSNs are enabled by wireless communication protocols such as IEEE 802.15.4. ZigBee
is one of the most popular wireless technologies used by WSNs. ZigBee specifications are
based on IEEE 802.15.4. ZigBee operates at 2.4 GHz frequency and offers data rates upto
250 KB/s and range from 10 to 100 meters depending on the power output and environmental
conditions. The power of WSNs lies in their ability to deploy large number of low-cost
and low-power sensing nodes for continuous monitoring of environmental and physical
conditions. WSNs are self-organizing networks. Since WSNs have large number of nodes,
manual configuration for each node is not possible. The self-organizing capability of WSN
makes the network robust, In the event of failure of some nodes or addition of new nodes to
the network, the network can reconfigure itself.

142 Cloud Computing

Cloud computing is a transformative computing paradigm that involves delivering applications
and services over the Internet. Cloud computing involves provisioning of computing,
networking and storage resources on demand and providing these resources as metered
services to the users, in a "pay as you go" model. Cloud computing resources can be
provisioned on-demand by the users, without requiring interactions with the cloud service

Internet of Things - A Hands-On Approach



40 Introduction to Internet of Things

provider. The process of provisioning resources is automated. Cloud computing resources
can be accessed over the network using standard access mechanisms that provide
platform-independent access through the use of heterogeneous client platforms such as
workstations, laptops, tablets and smart-phones. The computing and storage resources
provided by cloud service providers are pooled to serve multiple users using multi-tenancy.
Multi-tenant aspects of the cloud allow multiple users to be served by the same physical
hardware. Users are assigned virtual resources that run on top of the physical resources.

Cloud computing services are offered to users in different forms (see the authors

companion book on Cloud Computing, for instance):

e Infrastructure-as-a-Service (IaaS) : IaaS provides the users the ability to provision
computing and storage resources. These resources are provided to the users as virtual
machine instances and virtual storage. Users can start, stop, configure and manage
the virtual machine instances and virtual storage. Users can deploy operating systems
and applications of their choice on the virtual resources provisioned in the cloud.
The cloud service provider manages the underlying infrastructure. Virtual resources
provisioned by the users are billed based on a pay-per-use paradigm.

¢ Platform-as-a-Service (PaaS) : PaaS provides the users the ability to develop and
deploy application in the cloud using the development tools, application programming
interfaces (APIs), software libraries and services provided by the cloud service
provider. The cloud service provider manages the underlying cloud infrastructure
including servers, network, operating systems and storage. The users, themselves, are
responsible for developing, deploying, configuring and managing applications on the
cloud infrastructure.

¢ Software-as-a-Service (SaaS) : Saa$ provides the users a complete software application
or the user interface to the application itself. The cloud service provider manages
the underlying cloud infrastructure including servers, network, operating systems,
storage and application software, and the user is unaware of the underlying architecture
of the cloud. Applications are provided to the user through a thin client interface
(e.g., a browser), SaaS applications are platform independent and can be accessed
from various client devices such as workstations, laptop, tablets and smart-phones,
running different operating systems. Since the cloud service provider manages both
the application and data, the users are able to access the applications from anywhere.

1.4.3 Big Data Analytics

Big data is defined as collections of data sets whose volume, velocity (in terms of its temporal
variation), or variety, is so large that it is difficult to store, manage, process and analyze
the data using traditional databases and data processing tools. Big data analytics involves

Bahga & Madisetti, © 2015




1.4 loT Enabling Technologies 41

several steps starting from data cleansing, data munging (or wrangling), data processing and
visualization. Some examples of big data generated by IoT systems are described as follows:

¢ Sensor data generated by IoT systems such as weather monitoring stations.

e Machine sensor data collected from sensors embedded in industrial and energy systems
for monitoring their health and detecting failures.

o Health and fitness data generated by IoT devices such as wearable fitness bands.

¢ Data generated by loT systems for location and tracking of vehicles.

e Data generated by retail inventory monitoring systems.

The underlying characteristics of big data include:

s Volume: Though there is no fixed threshold for the volume of data to be considered
as big data, however, typically, the term big data is used for massive scale data that is
difficult to store, manage and process using traditional databases and data processing
architectures. The volumes of data generated by modern IT, industrial, and health-care
systems, for example, is growing exponentially driven by the lowering costs of data
storage and processing architectures and the need to extract valuable insights from the
data to improve business processes, efficiency and service to consumers.

s Velocity: Velocity is another important characteristic of big data and the primary
reason for exponential growth of data. Velocity of data refers to how fast the data is
generated and how frequently it varies. Modern IT, industrial and other systems are
generating data at increasingly higher speeds.

o Variety: Variety refers to the forms of the data. Big data comes in different forms
such as structured or unstructured data, including text data, image, audio, video and
sensor data.

1.4.4 Communication Protocols

Communication protocols form the backbone of IoT systems and enable network connectivity
and coupling to applications. Communication protocols allow devices to exchange data
over the network. In section 1.2.2 you learned about various link, network, transport
and application layer protocols. These protocols define the data exchange formats, data
encoding, addressing schemes for devices and routing of packets from source to destination.
Other functions of the protocols include sequence control (that helps in ordering packets
determining lost packets), flow control (that helps in controlling the rate at which the sender
is sending the data so that the receiver or the network is not overwhelmed) and retransmission
of lost packets.

Internet of Things - A Hands-On Approach



42 Introduction to Internet of Things

1.4.5 Embedded Systems

An Embedded System is a computer system that has computer hardware and software
embedded to perform specific tasks. In contrast to general purpose computers or personal
computers (PCs) which can perform various types of tasks, embedded systems are designed
to perform a specific set of tasks. Key components of an embedded system include,
microprocessor or microcontroller, memory (RAM, ROM, cache), networking units (Ethernet,
WiFi adapters), input/output units (display, keyboard, etc.) and storage (such as flash
memory). Some embedded systems have specialized processors such as digital signal
processors (DSPs), graphics processors and application specific processors. Embedded
systems run embedded operating systems such as real-time operating systems (RTOS).
Embedded systems range from low-cost miniaturized devices such as digital watches to
devices such as digital cameras, point of sale terminals, vending machines, appliances (such
as washing machines), etc, In the next chapter we describe how such devices form an integral
part of loT systems.

1.5 loT Levels & Deployment Templates

In this section we define various levels of loT systems with increasing completely. An IoT
system comprises of the following components:

e Device: An IoT device allows identification, remote sensing, actuating and remote
monitoring capabilities. You learned about various examples of 10T devices in section
1.2.1.

o Resource: Resources are software components on the IoT device for accessing,
processing, and storing sensor information, or controlling actuators connected to the
device. Resources also include the software components that enable network access
for the device.

o Controller Service: Controller service is a native service that runs on the device
and interacts with the web services. Controller service sends data from the device to
the web service and receives commands from the application (via web services) for
controlling the device.

¢ Database: Database can be either local or in the cloud and stores the data generated -

by the loT device.

* Web Service: Web services serve as a link between the IoT device, application,
database and analysis components. Web service can be either implemented using
HTTP and REST principles (REST service) or using WebSocket protocol (WebSuckat
service). A comparison of REST and WebSocket is provided below:

Bahga & Madisetti, © 2015

SRR e

|
|
1
?




1.5 loT Levels & Deployment Templates 43

~ Stateless/Stateful: REST services are stateless in nature. Each request contains
all the information needed to process it. Requests are independent of each other.
WebSocket on the other hand is stateful in nature where the server maintains the
state and is aware of all the open connections.

— Uni-directional/Bi-directional: REST services operate over HTTP and are
uni-directional. Request is always sent by a client and the server responds to the
requests. On the other hand, WebSocket is a bi-directional protocol and allows
both client and server to send messages to each other.

- Request-Response/Full Duplex: REST services follow a request-response
communication model where the client sends requests and the server responds
to the requests. WebSocket on the other hand allow full-duplex communication
between the client and server, i.e., both client and server can send messages to
each other independently.

- TCP Connections: For REST services, each HTTP request involves setting up
a new TCP connection. WebSocket on the other hand involves a single TCP
connection over which the client and server communicate in a full-duplex mode.

— Header Overhead: REST services operate over HTTP, and each request is
independent of others. Thus each request carries HTTP headers which is an
overhead. Due the overhead of HTTP headers, REST is not suitable for real-time
applications. WebSocket on the other hand does not involve overhead of headers.
After the initial handshake (that happens over HTTP), the client and server
exchange messages with minimal frame information. Thus WebSocket is suitable
for real-time applications.

— Scalability: Scalability is easier in the case of REST services as requests are
independent and no state information needs to be maintained by the server.
Thus both horizontal (scaling-out) and vertical scaling (scaling-up) solutions
are possible for REST services. For WebSockets, horizontal scaling can be

fis cumbersome due to the stateful nature of the communication. Since the server
maintains the state of a connection, vertical scaling is easier for WebSockets
k0 than horizontal scaling.

s Analysis Component: The Analysis Component is responsible for analyzing the IoT
" data and generate results in a form which are easy for the user to understand. Analysis
of IoT data can be performed either locally or in the cloud. Analyzed results are stored
_in the local or cloud databases.

 Application: IoT applications provide an interface that the users can use to control
_ and monitor various aspects of the IoT system. Applications also allow users to view
_ﬁua system status and view the processed data.

t of Things - A Hands-On Approach



44 Introduction to Internet of Things

1.5.1 loT Level-1

A level-1 IoT system has a single node/device that performs sensing and/or actuation, stores
data, performs analysis and hosts the application as shown in Figure 1.14. Level-1 IoT
systems are suitable for modeling low-cost and low-complexity solutions where the data
involved is not big and the analysis requirements are not computationally intensive.

Let us now consider an example of a level-1 IoT system for home automation. The

system consists of a single node that allows controlling the lights and appliances in a home -

remotely. The device used in this system interfaces with the lights and appliances using
electronic relay switches. The status information of each light or appliance is maintained in
a local database. REST services deployed locally allow retrieving and updating the state of
each light or appliance in the status database. The controller service continuously monitors
the state of each light or appliance (by retrieving state from the database) and triggers the
relay switches accordingly. The application which is deployed locally has a user interface
for controlling the lights or appliances. Since the device is connected to the Internet, the
application can be accessed remotely as well.

1.5.2 loT Level-2

A level-2 10T system has a single node that performs sensing and/or actuation and local
analysis as shown in Figure 1.15. Data i4 stored in the cloud and application is usually
cloud-based. Level-2 IoT systems are suitable for solutions where the data involved is big,
however, the primary analysis requirement is not computationally intensive and can be done
locally itself.

Let us consider an example of a level-2 IoT system for smart irrigation, The system
consists of a single node that monitors the soil moisture level and controls the irrigation
system. The device used in this system collects soil moisture data from sensors. The
controller service continuously monitors the moisture levels. If the moisture level drops
below a threshold, the irrigation system is turned on. For controlling the irrigation system
actuators such as solenoid valves can be used. The controller also sends the moisture data to
the computing cloud. A cloud-based REST web service is used for storing and retrieving
moisture data which is stored in the cloud database. A cloud-based application is used for

visualizing the moisture levels over a period of time, which can help in making decisions

about irrigation schedules.

1.5.3 loT Level-3

A level-3 IoT system has a single node. Data is stored and analyzed in the cloud and
application is cloud-based as shown in Figure 1.16. Level-3 IoT systems are suitable for

Bahga & Madisetti, [© 2015



£
. 1.5 loT Levels & Deployment Templates 45
# loT Level-1
&= |
A |
.1 Local : Cloud
A |
& l
REST/WebSocket }
. Communication i
i
il |
. J
e I
<3 |
|
R I
A :
i I II.: |
Zu- l
|
I |
(i |
.: A |
B I
H I
Monitoring Node
performs analysis, stores data

Figure 1.14: IoT Level-1

s where the data involved is big and the analysis requirements are computationally

us consider an example of a level-2 10T system for tracking package handling. The
consists of a single node (for a package) that monitors the vibration levels for a
being shipped. The device in this system uses accelerometer and gyroscope sensors
itoring vibration levels. The controller service sends the sensor data to the cloud

me using a WebSocket service. The data is stored in the cloud and also visualized
a cloud-based application. The analysis components in the cloud can trigger alerts if

rnet of Things - A Hands-On Approach



46 Introduction to Internet of Things

loT Level-2

Cloud

Local

REST/WehSocket
Communication

]
REST/WehSocket
Communication

Monitaring Node
performs analysis Cloud Storage

Figure 1.15: ToT Level-2

the vibration levels become greater than a threshold. The benefit of using WebSocket service
instead of REST service in this example is that, the sensor data can be sent in real time to the
cloud. Moreover, cloud based applications can subscribe to the sensor data feeds for viewing
the real-time data.

1.5.4 loT Level-4

A level-4 ToT system has multiple nodes that perform local analysis. Data is stored in the
cloud and application is cloud-based as shown in Figure 1.17. Level-4 contains local and

Bahga & Madisetti, © 2015



1.5 loT Levels & Deployment Templates 47

loT Level-3

Cloud

Local

[
|
|
|
[
|
|
|
|

REST/WebSocket
Communication

REST/WebSocket
Cammunlimﬂnn

Manitaring Node
Cloud Storage & Analysis

Figure 1.16: IoT Level-3

cloud-based observer nodes which can subscribe to and receive information collected in
the cloud from IoT devices. Observer nodes can process information and use it for various
applications, however, observer nodes do not perform any mmml functions. Level-4 IoT
systems are suitable for solutions where multiple nodes are required, the data involved is big
and the analysis requirements are computationally intensive.

Let us consider an example of a level-4 [oT system for noise monitoring. The system
consists of multiple nodes placed in different locations for monitoring noise levels in an area.

Internet of Things - A Hands-On Approach



48 Introduction to Internet of Things

The nodes in this example are equipped with sound sensors. Nodes are independent of each
other. Each node runs its own controller service that sends the data to the cloud. The data is
stored in a cloud database. The analysis of data collected from a number of nodes is done in
the cloud. A cloud-based application is used for visualizing the aggregated data.

loT Level-4
Cloud

Local

Monitering Nodes
perform |ocal anakysis

Cloud Storage

Figure 1.17: IoT Level-4

1.5.5 loT Level-5

A level-5 ToT system has multiple end nodes and one coordinator node as shown in
Figure 1.18. The end nodes that perform sensing and/or actuation. Coordinator node
collects data from the end nodes and sends to the cloud. Data is stored and analyzed in the

cloud and application is cloud-based. Level-5 ToT systems are suitable for solutions based

on wireless sensor networks, in which the data involved is big and the analysis requirements
are computationally intensive.

Let us consider an example of a level-5 IoT system for forest fire detection. The system
consists of multiple nodes placed in different locations for monitoring temperature, humidity
and carbon dioxide (CO;) levels in a forest. The end nodes in this example are equipped with

Bahga & Mﬂ{ﬁ, (€ 2015




1.5 10T Levels & Deployment Templates 49

various sensors (such as temperature, humidity and CO;). The coordinator node collects
the data from the end nodes and acts as a gateway that provides Internet connectivity to the
IoT system. The controller service on the coordinator device sends the collected data to the
cloud. The data is stored in a cloud database. The analysis of data is done in the computing
cloud to aggregate the data and make predictions. A cloud-based application is used for

~ visualizing the data.

loT Level-5
Cloud

Local

i

Routers/End Mm./._—.

Figure 1.18: IoT Level-5

156 IloT Level-6

A level-6 ToT system has multiple independent end nodes that perform sensing and/or
actuation and send data to the cloud. Data is stored in the cloud and application is cloud-based
as shown in Figure 1.19. The analytics component analyzes the data and stores the results
in the cloud database. The results are visualized with the cloud-based application. The
centralized controller is aware of the status of all the end nodes and sends control commands

Internet of Things - A Hands-On Approach

-
il




|
{
i

e T — L

50 Introduction to Internet of Things

to the nodes.
Let us consider an example of a level-6 IoT system for weather monitoring. The

system consists of multiple nodes placed in different locations for monitoring temperature,
humidity and pressure in an area. The end nodes are equipped with various sensors (such as
temperature, pressure and humidity). The end nodes send the data to the cloud in real-time
using a WebSocket service. The data is stored in a cloud database. The analysis of data is
done in the cloud to aggregate the data and make predictions. A cloud-based application is
used for visualizing the data.

loT Level-6

Local

Cloud

Multiple Monitoring Modes
./ Contralized
Cantraller Choud m‘.

Analysis

Figure 1.19: ToT Level-6

Summary

Internet of Things (IoT) refers to physical and virtual objects that have unique identities
and are connected to the Internet. This allows the development of intelligent applications
that make energy, logistics, industrial control, retail, agnculmrundmuymhud:mmuf

Bahga & Madisetti, €} 2015



 loT Levels & Deployment Templates 51

-’. human endeavour "smarter”. IoT allows different types of devices, appliances, users and
chines to communicate and exchange data. The applications of Internet of Things (IoT)
a wide range of domains including (but not limited to) homes, cities, environment,
rgy systems, retail, logistics, industry, agriculture and health. Things in IoT refers to
0T devices which have unique identities and allow remote sensing, actuating and remote
monitoring capabilities. Almost all IoT devices generate data in some form or the other
which when processed by data analytics systems leads to useful information to guide further
actions. You learned about IoT protocols for link, network, transport and application
- layers. Link layer protocols determine how the data is physically sent over the network. The

~ network/internet layers is responsible for sending of IP datagrams from the source network to
, the destination network. The transport layer protocols provides end-to-end message transfer
capability independent of the underlying network. Application layer protocols define how the
applications interface with the lower layer protocols to send the data over the network. You
learned about functional blocks of an IoT system including device communication, services,
management, security and application blocks. You learned about IoT communication models
such as request-response, publish-subscribe, push-pull and exclusive pair. You learned about
REST-based and WebSocket-based communication APIs. REST is a set of architectural
principles by which you can design web services and web APIs that focus on a system’s
resources and how resource states are addressed and transferred. A RESTful web service
is a web API implemented using HTTP and REST principles. WebSocket APIs allow
bi-directional, full duplex communication between clients and servers. You learned about
enabling technologies of IoT such as wireless sensor networks, cloud computing, big data
analytics, communication protocols and embedded systems. Finally, you learned about IoT
levels. A level-1 ToT system has a single node/device that performs sensing and/or actuation,
stores data, performs analysis and hosts the application. A level-2 IoT system has a single
node that performs sensing and/or actuation and local analysis. A level-3 IoT system has
a single node. Data is stored and analyzed in the cloud and application is cloud-based. A
level-4 ToT system has multiple nodes that perform local analysis. Data is stored in the
cloud and application is cloud-based. A level-5 IoT system has suiripte-sad nodes and one

Review Questions

1. Describe an example of an [oT system in which Infarntation and kifptvledge are
| inferred from data. i
i 2. Why do IoT systems have to be self-adapting and self-configuring?

Internet of Things - A Hands-On Approach



52

Introduction to Internet of Things

0% kW

. What is the role of things and Internet in IoT?
. What is the function of communication functional block in an IoT system?

Describe an example of IoT service that uses publish-subscribe communication model.
Describe an example of IoT service that uses WebSocket-based communication.
What are the architectural constraints of REST?

What is the role of a coordinator in wireless sensor network?

What is the role of a controller service in an loT system?

Bahga & Madisetti, @ 2015




AT

S T




54 Domain Specific loTs

2.1 Introduction

The Internet of Things (IoT) applications span a wide range of domains including (but not
limited to) homes, cities, environment, energy systems, retail, logistics, industry, agriculture
and health. This chapter provides an overview of various types of loT applications for each
of these domains. In the later chapters the reader is guided through detailed implementations
of several of these applications.

2.2 Home Automation

2.2.1 Smart Lighting

Smart lighting for homes helps in saving energy by adapting the lighting to the ambient
conditions and switching on/off or dimming the lights when needed. Key enabling technologies
for smart lighting include solid state lighting (such as LED lights) and IP-enabled lights. For
solid state lighting solutions both spectral and temporal characteristics can be configured
to adapt illumination to various needs. Smart lighting solutions for home achieve energy
savings by sensing the human movements and their environments and controlling the lights
accordingly. Wireless-enabled and Internet connected lights can be controlled remotely
from IoT applications such as a mobile or web application. Smart lights with sensors for
occupancy, temperature, lux level, etc., can be configured to adapt the lighting (by changing
the light intensity, color, etc.) based on the ambient conditions sensed, in order to provide a
good ambiance, In [19] controllable LED lighting system is presented that is embedded with
ambient intelligence gathered from a distributed smart wireless sensor network to optimize
and control the lighting system to be more efficient and user-oriented. A solid state lighting
model is described in [20] and implemented on a wireless sensor network that provides
services for sensing illumination changes and dynamically adjusting luminary brightness
according to user preferences. In chapter-9 we provide a case study on a smart lighting
system.

222 Smart Appliances

Modern homes have a number of appliances such as TVs, refrigerators, music systems,

washer/dryers, etc. Managing and controlling these appliances can be cumbersome, with

uchapphmhﬂugiuwnmnuohwmmm& Smart appliances make the -
mmagmntw:umdahnmdcmnﬂmnﬁmtnthnmmmly For example,

smart washer/dryers that can be controlled remotely and notify when the washing/drying

cycle is complete. Smart thermostats allow controlling the temperature remotely and can

learn the user preferences [22]. Smart refrigerators can keep track of the items stored

(using RFID tags) and send updates to the users when an item is low on stock. Smart

Bahga & Madisetti, © 2015




s Automation 55

allows users to search and stream videos and movies from the Intérnet on a‘local
e drive, search TV channel schedules and fetch news, weather updates and other
ntent from the Internet. OpenRemote [21] is an open source automation platform for
s and buildings. OpenRemote is platform agnostic and works with standard hardware.
(OpenRemote, users can control various appliances using mobile or web applications.
nRemote comprises of three components - a Controller that manages scheduling and
ne integration between devices, a Designer that allows you to create both configurations
the controller and create user interface designs and Control Panels that allow you to
eract with devices and control them. An IoT-based appliance control system for smart
ymes is described in [23], that uses a smart central controller to set up a wireless sensor
d actuator network and control modules for appliances.

Figure 2.1: Applications of IoT for homes

Internat of Things - A Hands-On Approach



56 Domain Specific loTs

2.2.3 Intrusion Detection

Home intrusion detection systems use security cameras and sensors (such as PIR sensors and
door sensors) to detect intrusions and raise alerts. Alerts can be in the form of an SMS or
an email sent to the user. Advanced systems can even send detailed alerts such as an image
grab or a short video clip sent as an email attachment. A cloud controlled intrusion detection
system is described in [24] that uses location-aware services, where the geo-location of each
node of a home automation system is independently detected and stored in the cloud. In
the event of intrusions, the cloud services alert the accurate neighbors (who are using the
home automation system) or local police. In [25], an intrusion detection system based on
UPnP technology is described. The system uses image processing to recognize the intrusion
and extract the intrusion subject and generate Universal-Plug-and-Play (UPnP-based) instant
messaging for alerts. In chapter-9 we provide a case study on an intrusion detection system.

2.2.4 Smoke/Gas Detectors

Smoke detectors are installed in homes and buildings to detect smoke that is typically an early
sign of fire. Smoke detectors use optical detection, ionization or air sampling techniques to
detect smoke. Alerts raised by smoke detectors can be in the form of signals to a fire alarm
system. Gas detectors can detect the presence of harmful gases such as carbon monoxide
(CO), liguid petroleum gas (LPG), etc. A smart smoke/gas detector [22] can raise alerts in
human voice describing where the problem is, send or an SMS or email to the user or the
local fire safety department and provide visual feedback on its status (healthy, battery-low,
etc.). In [26], the design of a systemthntdﬂmtrgasleukagcmﬂ&mkemﬂg:m visual
level indication, is described.

2.3 Cities

2.3.1 Smart Parking

Finding a parking space during rush hours in crowded cities can be time consuming and
frustrating. Furthermore, drivers blindly searching for parking spaces create additional traffic
congestion. Smart parking make the search for parking space easier and convenient for
drivers. Smart parking are powered by [oT systems that detect the number of empty parking
slots and send the information over the Internet to smart parking application back-ends.
These applications can be accessed by thg drivers from smart-phones, tablets and in-car
navigation systems. In smart parking, sensors are used for each parking slot, to detect
whether the slot is empty or occupied. This information is aggregated by a local controller
and then sent over the Internet to the database. In [29], Polycarpou et. al. describe latest
trends in parking availability monitoring, parking reservation and dynamic pricing schemes.

Bahga & Madisetti, © 2015



T P e T S e S e BT Cr T ¥

2.3 Cities 57

Design and implementation of a prototype smart parking system based on wireless sensor
network technology with features like remote parking monitoring, automated guidance, and
parking reservation mechanism is described in [30]. In chapter-9 we provide a case study
on a smart parking system.

Figure 2.2: Applications of IoT for cities

ﬂ.ﬂ Smart Lighting

Smart lighting systems for roads, parks and buildings can help in saving energy. According
to an [EA report [27], lighting is responsible for 19% of global electricity use and around
6% of global greenhouse gas emissions. “Smart lighting allows lighting to be dynamically
controlled and also adaptive to the ambient conditions. Smart lights connected to the Internet
can be controlled remotely to configure lighting schedules and lighting intensity. Custom
lighting configurations can be set for different situations such as a foggy day, a festival,
elc. Smart lights equipped with sensors can communicate with other lights and exchange
information on the sensed ambient conditions to adapt the lighting. Castro er. al. [28]
describe the need for smart lighting system in smart cities, smart lighting features andhuw
to develop mmpe:able smart lighting solutions.

Internet of Things - A Hands-On Approach



58 Domain Specific loTs

2.3.3 Smart Roads

Smart roads equipped with sensors can provide information on driving conditions, travel time
estimates and alerts in case of poor driving conditions, traffic congestions and accidents. Such
information can help in making the roads safer and help in reducing traffic jams. Information
sensed from the roads can be communicated via Internet to cloud-based applications and
social media and disseminated to the drivers who subscribe to such applications. In [31], a
distributed and autonomous system of sensor network nodes for improving driving safety.
on public roads in proposed. The system can provide the drivers and passengers with a
consistent view of the road situation a few hundred meters ahead of them or a few dozen
miles away, so that they can react to potential dangers early enough.

2.3.4 Structural Health Monitoring

Structural Health Monitoring systems use a network of sensors to monitor the vibration
levels in the structures such as bridges and buildings. The data collected from these sensors
is analyzed 1o assess the health of the structures. By analyzing the data it is possible to detect
cracks and mechanical breakdowns, locate the damages to a structure and also calculate the
remaining life of the structure. Using such systems, advance warnings can be given in the
case of imminent failure of the structure. An environmental effect removal based structural
health monitoring scheme in an loT environment is proposed in [32]. Since structural
health monitoring systems use large number of wireless sensor nodes which are powered by
traditional batteries, researchers are exploring energy harvesting technologies to harvesting
ambient energy, such as mechanical vibrations, sunlight, and wind [33, 34].

2.3.5 Surveillance

Surveillance of infrastructure, public transport and events in cities is required to ensure
safety and security. City wide surveillance infrastructure comprising of large number of
distributed and Internet connected video surveillance cameras can be created, The video
feeds from surveillance cameras can be aggregated in cloud-based scalable storage solutions.
Cloud-based video analytics applications can be developed to search for patterns or specific
events from the video feeds. In [35] a smiart city surveillance system is described that
leverages benefits of cloud data stores. Fo

2.3.6 Emergency Response

IoT systems can be used for monitoring the critical infrastructure in cities such as buildings,
gas and water pipelines, public transport and power substations. IoT systems for fire
detection, gas and water leakage detection can help in generating alerts and minimizing

Bahga & Madisetti, (€ 2015



2.4 Environment 59

their effects on the critical infrastructure. IoT systems for critical infrastructure monitoring
enable aggregation and sharing of information collected from large number of sensors. Using
cloud-based architectures, multi-modal information such as sensor data, audio, video feeds
can be analyzed in near real-time to detect adverse events. Response to alerts generated by
such systems can be in the form of alerts sent to the public, re-routing of traffic, evacuations
of the affected areas, etc. In [36] Attwood ef. al. describe critical infrastructure response
framework for smart cities. A Traffic Management System for emergency services is
described in [37]. The system adapts by dynamically adjusting traffic lights, changing
related driving policies, recommending behavior change to drivers, and applying essential
security controls. Such systems can reduce the latency of emergency services for vehicles
such as ambulances and police cars while minimizing disruption of regular traffic.

2.4 Environment

2.41 Weather Monitoring

loT-based weather monitoring systems can collect data from a number of sensor attached
(such as temperature, humidity, pressure, etc.) and send the data to cloud-based applications
and storage back-ends. The data collected in the cloud can then be analyzed and visualized
by cloud-based applications. Weather alerts can be sent to the subscribed users from such
applications. AirPi [38] is a weather and air quality monitoring kit capable of recording and
uploading information about temperature, humidity, air pressure, light levels, UV levels,
carbon monoxide, nitrogen dioxide and smoke level to the Internet. In [39], a pervasive
weather monitoring system is described that is integrated with buses to measure weather
variables like humidity, temperature and air quality during the bus path. In [40], a weather
monitoring system based on wireless sensor networks is described, In chapter-9 we provide
a case study on a weather muniturjng system.

o oM
2.4.2 Air Pollution Monitoring

IoT based air pollution monitoring systems can monitor emission of harmful gases (€03, CO,
NO, NO», eic.) by factories and automobiles using gaseous and meteorological sensors. The
collected data can be analyzed to make informed decisions on pollutions control approaches.
In [41], a real-time air quality monitoring system is presented that comprises of several
distributed monitoring stations that communicate via wireless with a back-end server using
machine-to-machine communication. In [42), an air pollution system is described that
integrates a single-chip microcontroller, several air pollution sensors, GPRS-Modem, and a
GPS module. In chapter-9 we provide a case study on an air pollution monitoring system.

Imernat of Things - A Hands-On Approach



60 Domain Specific loTs

Figure 2.3: Applications of IoT for environment

2.4.3 Noise Pollution Monitoring

Due to growing urban development, noise levels in tities have increased and even become
alarmingly high in some cities. Noise pollution can cause health hazards for humans due to
sleep disruption and stress. Noise pollution monitoring can help in generating noise maps
for cities. Urban noise maps can help the policy makers in urban planning and making
policies to control noise levels near residential areas, schools and parks. IoT based noise
pollution monitoring systems use a number of noise monitoring stations that are deployed at -
different places in a city. The data on noise levels from the stations is collected on servers
or in the cloud. The collected data is then aggregated to generate noise maps. In [43], a
noise mapping study for a city is presented which revealed that the city suffered from serious
noise pollution. In [44], the design of smart phone application is described that allows the
users to continuously measure noise levels and send to a central server where all generated

Bahga & Madisetti, © 2015



25 Energy 61
' } information is aggregated and mapped to a meaningful noise visualization map.

244 Forest Fire Detection

~ Forest fires can cause damage to natural resources, property and human life. There can be
~ different causes of forest fires including lightening, human negligence, volcanic eruptions and
sparks from rock falls. Early detection of forest fires can help in minimizing the damage. IoT
based forest fire detection systems use a number of monitoring nodes deployed at different
locations in a forest. Each monitoring node collects measurements on ambient conditions
including temperature, humidity, light levels, etc. A system for early detection of forest
L fires is described in [45] that provides early warning of a potential forest fire and estimates
" the scale and intensity of the fire if it materializes. In [46], a forest fire detection system
| based on wireless sensor networks in presented. The system uses multi-criteria detection
which is implemented by the artificial neural network (ANN). The ANN fuses sensing data
corresponding to multiple attributes of a forest fire (such as temperature, humidity, infrared
and visible light) to detect forest fires.

24.5 River Floods Detection

River floods can cause extensive damage to the natural and human resources and human
life. River floods occur due to continuous rainfall which cause the river levels to rise and
flow rates to increase rapidly. Early warnings of floods can be given by monitoring the
water level and flow rate. IoT based river flood monitoring system use a number of sensor
nodes that monitor the water level (using ultrasonic sensors) and flow rate (using the flow
velocity sensors). Data from a number of such sensor nodes is aggregated in a server or in
the cloud. Monitoring applications raise alerts when rapid increase in water level and flow
rate is detected. In [47), a river flood monitoring system in described that measures river and
weather conditions through wireless sensor nodes equipped with different sensors. In [48], a
motes-based sensor network for river flood monitoring is described. The system includes a
water level monitoring module, network video recorder module, and data processing module
that provides flood information in the form of raw data, predicted data, and video feed.

2.5 Energy

25.1 Smart Grids _

Smart Grid is a data communications network integrated with the electrical grid that collects
and analyzes data captured in near-real-time about power transmission, distribution, and
consumption. Smart Grid technology provides predictive information and recommendations
to utilities, their suppliers, and their customers on how best to manage power. Smart

Internet of Things - A Hands-On Approach



62 Domain Specific loTs

Grids collect data regarding electricity generation (centralized or distributed), consumption
(instantaneous or predictive), storage (or conversion of energy into other forms), distribution
and equipment health data, Smart grids use high-speed, fully integrated, two-way
communication technologies for real-time information and power exchange. By using IoT
based sensing and measurement technologies, the health of equipment and the integrity of
the grid can be evaluated. Smart meters can capture almost real-time consumption, remotely
control the consumption of electricity and remotely switch off supply when required. Power |
thefts can be prevented using smart metering. By analyzing the data on power generation,
transmission and consumption smart girds can improve efficiency throughout the electric
system. Storage collection and analysis of smarts grids data in the cloud can help in dynamic
optimization of system operations, maintenance, and planning. Cloud-based monitoring of
smart grids data can improve energy usage levels via energy feedback to users coupled with
real-time pricing information. Real-time demand response and management strategies can
be used for lowering peak demand and overall load via appliance control and energy storage
mechanisms. Condition monitoring data collected from power generation and transmission
systems can help in detecting faults and predicting outages. In [49], application of loT in
smart grid power transmission is described.

2.5.2 Renewable Energy Systems
Dmmﬁembﬂumd:mm&mmﬁhmnmm(nmhuﬂrmﬂwiﬂ]
integrating them into the grid can cause grid stability and reliability problems. Variable
output produces local voltage swings that can impact power quality. Existing grids were
designed to handle power flows from centralized generation sources to the loads through
transmission and distribution lines. When distributed renewable energy sources are integrated
into the grid, they create power bi-directional power flows for which the grids were not
originally designed. loT based systems integrated with the transformers at the point of
interconnection measure the electrical variables and how much power is fed into the grid. To
ensure the grid stability, one solution is to simply cut off the overproduction. For wind energy
systems, closed-loop controls can be used to regulate the voltage at point of interconnection
which coordinate wind turbine outputs and provides reactive power support [52].

25.3 Prognostics

Energy systems (smart grids, power plants, wind turbine farms, for instance) have a large
number of critical components that must function correctly so that the systems can perform
their operations correctly. For example, a wind turbine has a number of critical components,
e.g., bearings, urning gears, for instance, that must be monitored carefully as wear and tear
in such critical mmmummd@:huyhmﬁngmﬂﬁmmmamﬁnaum

Bahga & Madisetti, © 2015



2.5 Energy

Figure 2.4: Applications of IoT for energy systems

oot
; M in failures. In systems such as power grids, real-time mfm‘matinn is collected using
i Mﬂmﬂ electrical sensors called Phasor Measurement Units (PMU) at the substations.
""”‘!h information received from PMUs must be monitored in real-time for estimating the
- state of the system and for predicting failures. Energy systems have thousands of sensors
=_ ‘that gather real-time maintenance data continuously for condition monitoring and failure
. m&uu purposes. [oT based prognostic real-time health management systems can predict
I ~ performance of machines or energy systems by analyzing the extent of deviation of a system
. fromits normal operating profiles. Analyzing massive amounts of maintenance data collected
';_ hllnimm-s in energy systems and equipment can provide predictions for the impending
(potentially in real-time) so that their reliability and availability can be improved.
2 Mﬂc health management systems have been developed for different energy systems.
' C [50] is a set of applications for processing of streaming time-series data collected
[ or Measurement Units (PMUs) in real-time. A generic framework for storage,
"g' M anduua!yms of massive machine maintenance data, collected from a large number




64 Domain Specific loTs

of sensors embedded in industrial machines, in a cloud computing environment was proposed
in [51].

2.6 Retail

2.6.1 Inventory Management
Inventory management for retail has become increasingly important in the recent years with .
the growing competition. While over-stocking of products can result in additional storage
expenses and risk (in case of perishables), under-stocking can lead to loss of revenue. loT
systems using Radio Frequency Identification (RFID) tags can help in inventory management
and maintaining the right inventory levels. RFID tags attached to the products allow them
to be tracked in real-time so that the inventory levels can be determined accurately and
products which are low on stock can be replenished. Tracking can be done using RFID
readers attached to the retail store shelves or in the warehouse. loT systems enable remote
monitoring of inventory using the data collected by the RFID readers. In [53], an RFID
data-based inventory management system for time-sensitive materials is described.

2.6.2 Smart Payments

Smart payment solutions such as contact-less payments powered by technologies such as
Near field communication (NFC) and Bluetooh. Near field communication (NFC) is a set of
standards for smart-phones and other devices to communicate with each other by bringing
them into proximity or by touching them. Customers can store the credit card information in
their NFC-enabled smart-phones and make payments by bringing the smart-phones near the
point of sale terminals, NFC maybe used in combination with Bluetooh, where NFC (which
offers low speeds) initiates initial pairing of devices to establish a Bluetooh connection while
the actual data transfer takes place over Bluetooh. The applications of NFC for contact-less
payments are described in [54, 55].

1

2.6.3 Smart Vending Machines

Smart vending machines connected to the Internet allow remote monitoring of inventory
levels, elastic pricing of products, promotions, and contact-less payments using NFC.
Smart-phone applications that communicate with smart vending machines allow user -
preferences to be remembered and learned with time. When a user moves from one vending
machine to the other and pairs the smart-phone with the vending machine, a user specific
interface is presented. Users can save their preferences and favorite products. Sensors in
a smart vending machine monitor its operations and send the data to the cloud which can
be used for predictive maintenance. Smart vending machines can communicate with other

Bahga & Madisetti, © 2015



2.7 Logistics 65

vending machines in their vicinity and share their inventory levels so that the customers
can be routed to the nearest machine in case a product goes out of stock in a machine. For
perishable items, the smart vending machines can reduce the price as the expiry date nears.
New products can be recommended to the customers based on the purchase history and
preferences.

Figure 2.5: Applications of IoT for retail

2.7 Logistics

2.7.1 Route Generation & Scheduling
Modern transportation systems are driven by data collected from multiple sources which
is processed to provide new services to the stakeholders. By collecting large amount of

Internet of Things - A Hands-On Approach




66 Domain Specific loTs

data from various sources and processing the data into useful information, data-driven
transportation systems can provide new services such as advanced route guidance [62,
63], dynamic vehicle routing [64), anticipating customer demands for pickup and delivery
problem, for instance. Route generation and scheduling systems can generate end-to-end
routes using combination of route patterns and transportation modes and feasible schedules
based on the availability of vehicles. As the transportation network grows in size and
complexity, the number of possible route combinations increases exponentially. IoT based
systems backed by the cloud can provide fast response to the route generation queries and
can be scaled up to serve a large transportation network.

2.7.2 Fleet Tracking

Vehicle fleet tracking systems use GPS technology to track the locations of the vehicles in
real-time. Cloud-based fleet tracking systems can be scaled up on demand to handle large
number of vehicles. Alerts can be generated in case of deviations in planned routes. The
vehicle locations and routes data can be aggregated and analyzed for detecting bottlenecks
in the supply chain such as traffic congestions on routes, assignments and generation of
alternative routes, and supply chain optimization. In [58], a fleet tracking system for
commercial vehicles is described. The system can analyze messages sent from the vehicles
to identify unexpected incidents and discrepancies between actual and planned data, so that
remedial actions can be taken.

2.7.3 Shipment Monitoring

Shipment monitoring solutions for transportation systems allow monitoring the conditions
inside containers, For example, containers carrying fresh food produce can be monitored
to prevent spoilage of food. IoT based shipment monitoring systems use sensors such as
temperature, pressure, humidity, for instance, to monitor the conditions inside the containers
and send the data to the cloud, where it can be analyzed to detect food spoilage. The analysis
and interpretation of data on the environmental conditions in the container and food truck
positioning can enable more effective routing decisions in real time. Therefore, it is possible
to take remedial measures such as - the food that has a limited time budget before it gets
rotten can be re-routed to a closer destinations, alerts can be raised to the driver and the

distributor about the transit conditions, such as container temperature exceeding the allowed -

limit, humidity levels going out of the allowed limit, for instance, and corrective actions
can be taken before the food gets damaged. A cloud-based framework for real-time fresh
food supply tracking and monitoring was proposed in [61]. For fragile products, vibration
levels during shipments can be tracked using accelerometer and gyroscope sensors attached
to IoT devices, In [59], a system for monitoring container integrity and operating conditions

Bahga & Madisetti, © 2015




Figure 2.6: Applications of loT for logistics

is described. The system monitors the vibration patterns of a container and its contents
1o reveal information related to its operating environment and integrity during transport,
handling and storage.

2.74 Remote Vehicle Diagnostics

Remote vehicle diagnostic systems can detect faults in the vehicles or wamn of impending
fﬂhThﬂsedingnmucmmuunn-bmdlonwmfmmﬂncﬁngdmmwﬁcle
operation (such as speed, engine RPM, coolent temperature, fault code number) and status of
various vehicle sub-systems. Such data can be captured by integrating on-board diagnostic
systems with loT devices using protocols such as CAN bus. Modern commercial vehicles
support on-board diagnostic (OBD) standards such as OBD-II. OBD systems provide
real-time data on the status of vehicle sub-systems and diagnostic trouble codes which
allow rapidly identifying the faults in the vehicle. IoT based vehicle diagnostic systems can
send the vehicle data to centralized servers or the cloud where it can be analyzed to generate
alerts and suggest remedial actions. In [60)], a real-time online vehicle diagnostics and early
fault estimation system is described. The system makes use of on-board vehicle diagnostics

Internet of Things - A Hands-On Approach



-

68 Domain Specific loTs

device and expert system to achieve real-time vehicle diagnostics and fault warning.

2.8 Agriculture
2.8.1 Smart Irrigation

Smart irrigation systems can improve crop yields while saving water. Smart irrigation
systems use 10T devices with soil moisture sensors to determine the amount of moisture in
the soil and release the flow of water through the irrigation pipes only when the moisture
levels go below a predefined threshold. Smart irrigation systems also collect moisture level
measurements on a server or in the cloud where the collected data can be analyzed to plan
watering schedules. Cultivar's RainCloud [56] is a device for smart irrigation that uses water
valves, soil sensors and a WiFi enabled programmable computer.

Figure 2.7: Applications of IoT for agriculture

Bahga & Madisetti, @ 2015




2.9 Industry 69

2.8.2 Green House Control

Green houses are structures with glass or plastic roofs that provide conducive environment for
growth of plants. The climatological conditions inside a green house can be monitored and
controlled to provide the best conditions for growth of plants. The temperature, humidity, soil
moisture, light and carbon dioxide levels are monitored using sensors and the climatological
conditions are controlled automatically using actuation devices (such as valves for releasing
water and switches for controlling fans). IoT systems play an important role in green
house control and help in improving productivity. The data collected from various sensors
is stored on centralized servers or in the cloud where analysis is performed to optimize
the control strategies and also correlate the productivity with different control strategies.
In [57], the design of a wireless sensing and control system for precision green house
management is described. The system uses wireless sensor network to monitor and control
the agricultural parameters like temperature and humidity in real time for better management
and maintenance of agricultural production.

2.9 Industry

2.9.1 Machine Diagnosis & Prognosis

Machine prognosis refers to predicting the performance of a machine by analyzing the
data on the current operating conditions and how much deviations exist from the normal
operating conditions. Machine diagnosis refers to determining the cause of a machine
fault. IoT plays a major role in both prognosis and diagnosis of industrial machines.
Industrial machines have a large number of components that must function correctly for the
machine to perform its operations. Sensors in machines can monitor the operating conditions
such as (temperature and vibration levels). The sensor data measurements are done on
timescales of few milliseconds to few seconds, which leads to generation of massive amount
of data. IoT based systems integrated with cloud-based storage and analytics back-ends
can help in storage, collection and analysis of such massive scale machine sensor data.
A number of methods have been proposed for reliability analysis and fault prediction in
machines. Case-based reasoning (CBR) is a commonly used method that finds solutions to
new problems based on past experience. This past experience is organized and represented
as cases in a case-base. CBR is an effective technique for problem solving in the fields in
which it is hard to establish a quantitative mathematical model, such as machine diagnosis
and prognosis. Since for each machine, data from a very large number of sensors is collected,
using such high dimensional data for creation of case library reduces the case retrieval
efficiency. Therefore, data reduction and feature extraction methods are used to find the
representative set of features which have the same classification ability as the complete of

Internet of Things - A Hands-On Approach



70 Domain Specific loTs

Prognostic Health Management

Figure 2.8: Applications of IoT for industry

features. A CBR based machine fault diagnosis and prognosis approach is described in [51].
A survey on recent trends in machine diagnosis and prognosis algorithms is presented in [65].

2.9.2 Indoor Air Quality Monitoring

Monitoring indoor air quality in factories is important for health and safety of the workers.
Harmful and toxic gases such as carbon monoxide (CO), nitrogen monoxide (N@), Nitrogen
Dioxide (N@), etc., can cause serious health problems. IoT based gas monitoring systems -
can help in monitoring the indoor air quality using various gas sensors. The indoor air
quality can vary for different locations. Wireless sensor networks based IoT devices can
identify the hazardous zones, so that corrective measures can be taken to ensure proper
ventilation. In [66] a hybrid sensor system for indoor air quality monitoring is presented,
which contains both stationary sensors (for accurate readings and calibration) and mobile

Bahga & Madisetti, © 2015



- 2.10 Health & Lifestyle 71

s nsors (for coverage). In [67] a wireless solution for indoor air quality monitoring is
scribed that measures the environmental parameters like temperature, humidity, gaseous
ollutants, aerosol and particulate matter to determine the indoor air quality.

* Figure 2.9: Applications of IoT for health
.

il i 1

210 Health & Lifestyle

1 Health & Fitness Monitoring

.arable 0T devices that allow non-invasive and continuous monitoring of physiological
ameters can help in continuous health and fitness monitoring. These wearable devices
y can be in various forms such as belts and wrist-bands. The wearable devices form a

- of Things - A Hands-On Approach



72 Domain Specific loTs

type of wireless sensor networks called body area networks in which the measurements from
a number of wearable devices are continuous sent to a master node (such as a smart-phone)
which then sends the data to a server or a cloud-based back-end for analysis and archiving.
Health-care providers can analyze the collected health-care data to determine any health
conditions or anomalies. Commonly uses body sensors include: body temperature, heart
rate, pulse oximeter oxygen saturation (SPo2), blood pressure, electrocardiogram (ECG),
movement (with accelerometers), and electroencephalogram (EEG). An ubiquitous mobility .
approach for body sensor networks in health-care is proposed in [72]. In [73], a wearable
ubiquitous health-care monitoring system is presented that uses integrated electrocardiogram
(ECG), accelerometer and oxygen saturation (SpO2) sensors. Fitbit wristband [74] is a
wearable device that tracks steps, distance, and calories burned during the day and sleep
quality at night.

2.10.2 Wearable Electronics

Wearable electronics such as wearable gadgets (smart watches, smart glasses, wristbands,
etc.) and fashion electronics (with electronics integrated in clothing and accessories, (e.g.,
Google Glass or Moto 360 smart watch) provide various functions and features to assist
us in our daily activities and making us lead healthy lifestyles. Smart watches that run
mobile operating systems (such as Android) provide enhanced functionality beyond just
timekeeping. With smart watches, the users can search the Internet, play audio/video files,
make calls (with or without paired mobile phones), play games and use various kinds of
mobile applications [68]. Smart glasses allows users to take photos and record videos, get
map directions, check flight status, and search the Internet by using voice commands [69].
Smart shoes monitor the walking or running speeds and jumps with the help of embedded
sensors and be paired with smart-phones to visualize the data [70]. Smart wristbands can
track the daily exercise and calories burnt [71].

Summary

In this chapters you learned about domain specific applications of Internet of Things (IoT).
For homes, ToT has several applications such as smart lighting that adapt the lighting to suit
the ambient conditions, smart appliances that can be remotely monitored and controlled, -~
intrusion detection systems and smart smoke detectors. For cities, applications of loT include
smart parking systems that provide status updates on available slots, smart lighting that helps
in saving energy, smart roads that provide information on driving conditions and structural
health monitoring systems. For environment, you learned about IoT applications including
weather monitoring, air and noise pollution, forest fire detection and river flood detection

Bahga & Madisetti, (€ 2015




210 Health & Lifestyle 73

! i systems. You learned about IoT applications for energy systems including smart grids, grid
~ integration of renewable energy sources and prognostic health management systems. For
~ retail domain, you learned about IoT applications such as inventory management, smart
i pngments and smart vending machines. For agriculture domain, you learned about smart
F irrigation systems that help in saving water while enhancing productivity and green house
control systems. You learned about the industrial applications of IoT including machine
~ diagnosis and prognosis systems that help in predicting faults and determining the cause
~ of faults and indoor air quality systems. You learned about IoT applications for health
;L‘ and lifestyle such as health and fitness monitoring systems and wearable electronics. The
applications generate much value to the end users and also provide new revenue opportunities
to service and systems providers when integrated to rating, billing and financial applications.

Review Questions

1. Determine the [oT-levels for designing home automation IoT systems including smart
lighting and intrusion detection.

2. Determine the ToT-levels for designing structural health monitoring system.

3. Determine the various communication models that can be used for weather monitoring
gystem. Which is a more appropriate model for this system. Describe the pros and
cons.

4, Determine the types of data generated by a forest fire detection system? Describe
alternative approaches for storing the data. What type of analysis is required for forest
fire detection from the data collected?

l Internet of Things - A Hands-On Approach



. This Chapter' Covers

e M2M
i_ o Differences and Similarities between M2M and IuT

_» SDN and NFV for IoT




76 loT and M2M

3.1 Introduction

In Chapter-1, you learned about the definition and characteristics of Internet of Things
(IoT). Another term which is often used synonymously with IoT is Machine-to-Machine
(M2M). Though IoT and M2M are often used interchangeably, these terms have evolved
from different backgrounds. This chapter describes some of the differences and similarities
between IoT and M2M.

3.2 M2Mm

Machine-to-Machine (M2M) refers to networking of machines (or devices) for the purpose
of remote monitoring and control and data exchange. Figure 3.1 shows the end-to-end
architecture for M2M systems comprising of M2M area networks, communication network
and application domain. An M2M area network comprises of machines (or M2M nodes)
which have embedded hardware modules for sensing, actuation and communication. Various
communication protocols can be used for M2M local area networks such as ZigBee,
Bluetooh, ModBus, M-Bus, Wirless M-Bus, Power Line Communication (PLC), 6LoWPAN,
IEEE 802.15.4, etc. These communication protocols provide connectivity between M2M
nodes within an M2M area network., The communication network provides connectivity to
remote M2M area networks. The communication network can use either wired or wireless
networks (IP-based). While the M2M area networks use either proprietary or non-IP based
communication protocols, the communication network uses [P-based networks. Since non-IP
based protocols are used within M2M area networks, the M2M nodes within one network
cannot communicate with nodes in an external network. To enable the communication
between remote M2M area networks, M2M gateways are used,

Figure 3.2 shows a block diagram of an M2M gateway. The communication between
the M2M nodes and the M2M gateway is based on the communication protocols which
are native to the M2M area network. M2M gateway performs protocol translations to
enable IP-connectivity for M2M area networks. M2M gateway acts as a proxy performing
translations from/to native protocols to/from Internet Protocol (IP). With an M2M gateway,
each node in an M2M area network appears as a virtualized node for external M2M area
networks. :

The M2M data is gathered into point solutions such as enterprise applications, service
management applications, or remote monitoring applications. M2M has various application
domains such as smart metering, home automation, industrial automation, smart grids, etc.
M2M solution designs (such as data collection and storage architectures and applications)
are specific to the M2M application domain.

Bahga & Madisetti, © 2015




3.3 Difference between loT and M2M 77

M2M Core Network _|

_,' wum "a‘

Hathe Protocal
:
HNative Protocol
Protocol Translation

Figure 3.2: Block diagram of an M2M gateway

3 Difference between loT and M2M

both M2M and IoT involve networking of machines or devices, they differ in the
ng technologies, systems architectures and types of applications.

of Things - A Hands-On Approach



loT and M2M

The differences between M2M and loT are described as follows:

¢ Communication Protocols: M2M and IoT can differ in how the communication
between the machines or devices happens. M2M uses either proprietary or non-IP
based communication protocols for communication within the M2M area networks.
Commonly uses M2M protocols include ZigBee, Bluetooh, ModBus, M-Bus, Wirless
M-Bus, Power Line Communication (PLC), 6LoWPAN, IEEE 802.15 4, Z-Wave,
etc. The focus of communication in M2M is usually on the protocols below the -
network layer. The focus of communication in IoT is usually on the protocols above
the network layer such as HTTP, CoAP, WebSockets, MQTT, XMPF, DDS, AMQP,
etc., as shown in Figure 3.3,

e Machines in M2M vs Things in IoT: The "Things" in IoT refers to physical objects
that have unique identifiers and can sense and communicate with their external
environment (and user applications) or their internal physical states. The unique
identifiers for the things in IoT are the TP addresses (or MAC addresses). Things have
software components for accessing, processing, and storing sensor information, or
controlling actuators connected. [oT systems can have heterogeneous things (e.g., a
home automation ToT system can include IoT devices of various types, such as fire
alarms, door alarms, lighting control devices, etc.) M2M systems, in contrast to ToT,
typically have homogeneous machine types within an M2M area network.

o Hardware vs Software Emphasis: While the emphasis of M2M is more on hardware
with embedded modules, the emphasis of IoT is more on software. IoT devices run
specialized software for sensor data collection, data analysis and interfacing with the
cloud through IP-based communication. Figure 3.4 shows the various components of
ToT systems including the things, the Internet, communication infrastructure and the
applications. i

e Data Collection & Analysis: M2M data is collected in point solutions and often in
on-premises storage infrastructure. In contrast to M2M, the data in [oT is collected
in the cloud (can be public, private or hybrid cloud). Figure 3.5 shows the various
loT-levels, and the IoT components deployed in the cloud. The analytics component
analyzes the data and stores the results in the cloud database. The ToT data and analysis
results are visualized with the cloud-based applications. The centralized controller
is aware of the status of all the end nodes and sends control commands to the nodes.
Observer nodes can process information and use it for various applications, however,
observer nodes do not perform any control functions.

e Applications: M2M data is collected in point solutions and can be accessed by
on-premises applications such as diagnosis applications, service management
applications, and on-premisis enterprise applications. 10T data is collected in the cloud

Bahga & Madisetti, [© 2015



3.3 Difference between loT and M2M 79

and can be accessed by cloud applications such as analytics applications, enterprise
applications, remote diagnosis and management applications, etc. Since the scale of
data collected in IoT is so massive, cloud-based real-time and batch data analysis
frameworks are used for data analysis.

Figure 3.3: Communication in ToT is IP-based whereas M2M uses non-IP based networks,
Communication within M2M area networks is based on protocols below the network layer
whereas IoT is based on protocols above the network layer,

Computing Infrastructure
Things Internet 5 i

[ 1 T 1
Backhaul Networks

ive - pus
A

Wireless

: IoT components

Internet of Things - A Hands-On Approach



80 loT and M2M

Figure 3.5: IoT levels and IoT cloud components

3.4 SDN and NFV for loT

In this section you will learn about Software Defined Networking (SDN) and Nemurk
Function Virtualization (NFV) and their applications for IoT.

Bahga & Madisetti, © 2015




3.4 SDN and NFV for loT 81

34.1 Software Defined Networking

Software-Defined Networking (SDN) is a networking architecture that separates the control
plane from the data plane and centralizes the network controller. Figure 3.6 shows the
conventional network architecture built with specialized hardware (switches, routers, etc.).
Network devices in conventional network architectures are getting exceedingly complex with
the increasing number of distributed protocols being implemented and the use of proprietary
hardware and interfaces. In the conventional network architecture the control plane and data
plane are coupled. Control plane is the part of the network that carries the signaling and

routing message traffic while the data plane is the part of the network that carries the payload
data traffic.

Figure 3.6: Conventional network architecture

The limitations of the conventional network architectures are as follows:
o Complex Network Devices: Conventional networks are getting increasingly complex
with more and more protocols being implemented to improve link speeds and reliability.

Internet of Things - A Hands-On Approach



loT and M2M

R

AL Edel st il LU Al -
Southbound Open AP1 [OpenFlow)
Layer ~~"7 777 """"":"'_""""!

r-—-————-
| LT S TFLAC =

Figure 3.7: SDN architecture

g smerabie Spes AP
iwriace|

e Eimyred & Data Mare Progeammabin
irbeface (S thisieral e e

Figure 3.8: SDN layers

Interoperability is limited due to the lack of standard and open interfaces. Network
devices use proprietary hardware and software and have slow product life-cycles
limiting innovation. The conventional networks were well suited for static traffic

Bahga & Madisetti, © 2015




3.4 SDN and NFV for loT 83

patterns and had a large number of protocols designed for specific applications. For
IoT applications which are deployed in cloud computing environments, the traffic
patterns are more dynamic. Due to the complexity of conventional network devices,
making changes in the networks to meet the dynamic traffic patterns has become
increasingly difficult.

« Management Overhead: Conventional networks involve significant management
overhead. Network managers find it increasingly difficult to manage multiple network
devices and interfaces from multiple vendors. Upgradation of network requires
configuration changes in multiple devices (switches, routers, firewalls, etc.)

» Limited Scalability: The virtualization technologies used in cloud computing
environments has increased the number of virtual hosts requiring network access.
IoT applications hosted in the cloud are distributed across multiple virtual machines
that require exchange of traffic. The analytics components of loT applications run
distributed algorithms on a large number of virtual machines that require huge amounts
of data exchange between virtual machines. Such computing environments require
highly scalable and easy to manage network architectures with minimal manual
configurations, which is becoming increasingly difficult with conventional networks.

SDN attempts to create network architectures that are simpler, inexpensive, scalable,

agile and easy to manage. Figures 3.7 and 3.8 show the SDN architecture and the SDN
layers in which the control and data planes are decoupled and the network controller is
centralized. Software-based SDN controllers maintain a unified view of the network and
make configuration, management and provisioning simpler. The underlying infrastructure
in SDN uses simple packet forwarding hardware as opposed to specialized hardware in
conventional networks. The underlying network infrastructure is abstracted from the
applications. Network devices become simple with SDN as they do not require implementations
of & large number of protocols. Network devices receive instructions from the SDN controller
on how to forward the packets. These devices can be simpler and cost less as they can be
built from standard hardware and software components.

Key elements of SDN are as follows:

o Centralized Network Controller: With decoupled control and data planes and
centralized network controller, the network administrators can rapidly configure the
network. SDN applications can be deployed through programmable open APIs. This
speeds up innovation as the network administrators no longer need to wait for the
device vendors to embed new features in their proprietary hardware.

¢ Programmable Open APIs: SDN architecture supports programmable open APls
for interface between the SDN application and control layers (Northbound interface).
With these open APIs various network services can be implemented, such as routing,

Internet of Things - A Hands-On Approach



loT and M2M

quality of service (QoS), access control, etc.

+ Standard Communication Interface (OpenFlow): SDN architecture uses a standard
communication interface between the control and infrastructure layers (Southbound
interface). OpenFlow, which is defined by the Open Networking Foundation (ONF) is
the broadly accepted SDN protocol for the Southbound interface. With OpenFlow, the
forwarding plane of the network devices can be directly accessed and manipulated.
OpenFlow uses the concept of flows to identify network traffic based on pre-defined
match rules. Flows can be programmed statically or dynamically by the SDN control
software. Figure 3.9 shows the components of an OpenFlow switch comprising of one
or more flow tables and a group table, which perform packet lookups and forwarding,
and OpenFlow channel to an external controller. OpenFlow protocol is implemented
on both sides of the interface between the controller and the network devices. The
controller manages the switch via the OpenFlow switch protocol. The controller can
add, update, and delete flow entries in flow tables, Figure 3.10 shows an example of
an OpenFlow flow table. Each flow table contains a set of flow entries. Each flow
entry consists of match fields, counters, and a set of instructions to apply to matching
packets. Matching starts at the first flow table and may continue to additional flow
tables of the pipeline [83].

|

i OpenFlow
! Protocol
i

Gru_u‘ﬁ'l‘ahla.

Figure 3.9: OpenFlow switch

Bahga & Madisetti, () 2015



3.4 SDN and NFV for loT 85

Figure 3.10: OpenFlow flow table

3.4.2 Network Function Virtualization

Network Function Virtualization (NFV) is a technology that leverages virtualization to
consolidate the heterogeneous network devices onto industry standard high volume servers,
switches and storage. NFV is complementary to SDN as NFV can provide the infrastructure
on which SDN can run. NFV and SDN are mutually beneficial to each other but not
dependent. Network functions can be virtualized without SDN, similarly, SDN can run
without NFV,

E
|
|
|
|

FALRAL L LA P A L i

Figure 3.11: NFV architecture

Internet of Things - A Hands-On Approach



86 loT and M2M

Figure 3.11 shows the NFV architecture, as being standardized by the European
Telecommunications Standards Institute (ETSI) [82]. Key elements of the NFV architecture
are as follows:

e Virtualized Network Function (VNF): VNF is a software implementation of a

network function which is capable of running over the NFV Infrastructure (NFVT),

o NFV Infrastructure (NFVI): NFVI includes compute, network and storage resources

that are virtualized.
o NFV Management and Orchestration: NFV Management and Orchestration focuses
on all virtualization-specific management tasks and covers the orchestration and

life-cycle management of physical and/or software resources that support the infrastructure

virtualization, and the life-cycle management of VNFs.

NFV comprises of network functions implemented in software that run on virtualized
resources in the cloud, NFV enables separation of network functions which are implemented
in software from the underlying hardware. Thus network functions can be easily tested and
upgraded by installing new software while the hardware remains the same. Virtualizing
network functions reduces the equipment costs and also reduces power consumption. The
multi-tenanted nature of the cloud allows virtualized network functions to be shared for
multiple network services. NFV is applicable only to data plane and control plane functions
in fixed and mobile networks.

Let us look at an example of how NFV can be used for virtualization of the home
networks. Figure 3.12 shows a home network with a Home Gateway that provides Wide
Area Network (WAN) connectivity to enable services such as Internet, [PTV, VoIP, ete.
The Home Gateway performs various functions including - Dynamic Host Configuration
Protocol (DHCP) server, Network Address Translation (NAT), application specific gateway
and Firewall. The Home Gateway provides private [P addresses to each connected device
in the home. The Home Gateway provides routing capabilities and translates the private
IP addresses to one public address (NAT function). The gateway also provides application
specific routing for applications such as VoIP and IPTV.

Figure 3.13 shows how NFV can be used to virtualize the Home Gateway. The NFV
infrastructure in the cloud hosts a virtualized Home Gateway. The virtualized gateway
provides private IP addresses to the devices in the home. The virtualized gateway also
connects to network services such as VoIP and IPTV.

Bahga & Madisetti, [© 2015




~ 3.4 SDN and NFV for loT
1

Figure 3.12: Conventional home network architecture




loT and M2M

Aemaer) SWOH PIZIENLIA YIiM YI0M]SU SWOH €1 Mndig

Bahga & Madisettl, © 2015
f |
X %



U —
This Chapter Covers

¢ Need for IoT Systems Management
o SNMP :

e Network Operator Requirements

e NETCONF :

¢ YANG

¢ loT Systems Management with NETCONF-YANG




3.4 SDN and NFV for loT - 89

Summary

In this chapter you learned about the differences and similarities between IoT and M2M.
Machine-to-Machine (M2M) typically refers to networking of machines (or devices) for
the purpose of remote monitoring and control and data exchange. An M2M area network
comprises of machines (or M2M nodes) which have embedded hardware modules for sensing,
actuation and communication, M2M and IoT differ in how the communication between
the machines or devices happens. While M2M uses either proprietary or non-IP based
communication protocols for communica-

tion within the M2M area networks, [oT uses IP-based protocols for communication. While

i ToT systems can have heterogeneous things M2M systems usually have the same machine

types within an M2M area network. The emphasis of M2M is more on hardware with
embedded modules, whereas, the emphasis of 1oT is more on software. M2M data is
collected in point solutions and can be accessed by on-premisis applications. IoT is collected
in the cloud. You also learned about Software Defined Networking (SDN) and Network
Function Virtualization (NFV) and their applications for IoT. Software-Defined Networking
(SDN) is a networking architecture that separates the control plane from the data plane
and centralizes the network controller. Key elements of SDN include centralized network
controller, programmable open APIs and a standard communication interface. NFV is
complementary to SDN and leverages virtualization to consolidate the heterogeneous network
devices onto industry standard high volume servers, switches and storage.

Review Questions

Which communication protocols are used for M2M local area networks?
What are the differences between Machines in M2M and Things in [0T?
How do data collection and analysis approaches differ in M2M and 1oT?
What are the differences between SDN and NFV?

Describe how SDN can be used for various levels of 1oT?

What is the function of a centralized network controller in SDN?
Describe how NFV can be used for virtualizing IoT devices?

N YA W~

Internet of Things - A Hands-On Approach



92 loT System Management with NETCONF-YANG

4.1 Need for loT Systems Management

Internet of Things (IoT) systems can have complex software, hardware and deployment
designs including sensors, actuators, software and network resources, data collection
and analysis services and user interfaces. IoT systems can have distributed deployments
comprising of a number of ToT devices which collect data from sensors or perform actuation.
Managing multiple devices within a single system requires advanced management capabilities.
The need for managing IoT systems is described as follows: '
¢ Automating Configuration: IoT system management capabilities can help in
automating the system configurations, Sysiem management interfaces provide predictable
and easy to use management capability and the ability to automate system configuration.
Automation becomes even more important when a system consists of multiple devices
or nodes. In such cases automating the system configuration ensures that all devices
have the same configuration and variations or errors due to manual configurations are
avoided.

¢ Monitoring Operational & Statistical Data: Operational data is the data which
is related to the system's operating parameters and is collected by the system at
runtime. Statistical data is the data which describes the system performance (e.g. CPU
and memory usage). Management systems can help in monitoring operational and
statistical data of a system. This data can be used for fault diagnosis or prognosis.

s Improved Reliability: A management system that allows validating the system
configurations before they are put into effect can help in improving the system
reliability. '

e System Wide Configuration: For [oT systems that consist of multiple devices or
nodes, ensuring system-wide configuration can be critical for the correct functioning
of the system. Management approaches in which each device is configured separately
(either through a manual or automated process) can result in system faults or undesirable
outcomes. This happens when some devices are running on an old configuration while
others start running on new configuration. To avoid this, system wide configuration is
required where all devices are configured in a single atomic transaction. This ensures
that the configuration changes are either applied to all devices or to none. In the event
of a failure in applying the configuration to one or more devices, the configuration
changes are rolled back. This ‘all or nothing’ approach ensures that the system works
as expected.

¢ Multiple System Configurations: For some systems it may be desirable to have
multiple valid configurations which are applied at different times or in certain conditions.

o Retrieving & Reusing Configurations: Management systems which have the capability
of retrieving configurations from devices can help in reusing the configurations for

Bahga & Madisetti, [© 2015




4.2 Simple Network Management Protocol (SNMP) 93

other devices of the same type. For example, for an IoT system which has multiple
devices and requires same configuration for all devices, it is important to ensure that
when a new device is added, the same configuration is applied. For such cases, the
management system can retrieve the current configuration from a device and apply the
same to the new devices.

42 Simple Network Management Protocol (SNMP)

SNMP is a well-known and widely used network management protocol that allows monitoring
and configuring network devices such as routers, switches, servers, printers, etc. Figure 4.1
shows the components of the entities involved in managing a device with SNMP, including
the Network Management Station (NMS), Managed Device, Management Information Base
(MIB) and the SNMP Agent that runs on the device. NMS executes SNMP commands to
monitor and configure the Managed Device. The Managed Device contains the MIB which
has all the information of the device attributes to be managed. MIBs use the Structure of
Management Information (SMI) notation for defining the structure of the management data.
- The structure of management data is defined in the form of variables which are identified by
- object identifiers (OIDs), which have a hierarchical structure. Management applications can
either get or set the values of these variables. SNMP is an application layer protocol that
uses User Datagram Protocol (UDP) as the transport protocol.

4.21 Limitations of SNMP

4 While Simple Network Management Protocol (SNMP) has been the most popular protocol
- for network management, it has several limitations which may make it unsuitable for
- configuration management. -

- » SNMP was designed to provide a simple management interface between the management
applications and the managed devices. SNMP is stateless in nature and each SNMP
request contains all the information to process the request. The application needs to be
intelligent to manage the device. For a sequence of SNMP interactions, the application
needs to maintain state and also to be smart enough to roll back the device into a
T consistent state in case of errors or failures in configuration.

e SNMP is a connectionless protocol which uses UDP as the transport protocol, making
,1 - itunreliable as there was no support for acknowledgement of requests.

-« MIBs often lack writable objects without which device configuration is not possible
uging SNMP. With the absence of writable objects, SNMP can be used only for device
i monitoring and status polling.

- e ltis difficult to differentiate between configuration and state data in MIBs.




94 loT System Management with NETCONF-YANG

Figure 4.1: Managing a device with SNMP

¢ Retrieving the current configuration from a device can be difficult with SNMP. SNMP
does not support easy retrieval and playback of configurations.

o Earlier versions of SNMP did not have strong security features making the management
information vulnerable to network intruders. Though security features were added in
the later versions of SNMP, it increased the complexity a lot.

4.3 Network Operator Requirements

To address the limitations of the existing network management protocols and plan the future
work on network management, the Internet Architecture Board (IAB), which oversees the .
Internet Engineering Task Force (IETF) held a workshop on network management in 2002
that brought together network operators and protocol developers. Based on the inputs from
operators, 4 list of operator requirements was prepared [122]. The following points provide
a brief overview of the operator requirements.

o Ease of use: From the operators point of view, ease of use is the key requirement for

Bahga & Madisettl, © 2015



4.3 Network Operator Requirements 95

any network management technology.

e Distinction between configuration and state data: Configuration data is the set of
wﬁnbleduuthatiumqulrndmmfmthu}rnemﬁumitsiujﬁusm:tnitscunmt
m.Sm:dmnismcdmwhichilnmm;maIﬂu.Smcdﬂainchumﬁmd
data which is collected by the system at runtime and statistical data which describes
the system performance. For an effective management solution, it is important to
make a clear distinction between configuration and state data.

- Mm&wuﬂnumdmmm:lnaddiﬁmmmaﬁngacku
distinction between configuration and state data, it should be possible to fetch the
mﬁgunﬁmmdmdmmlyfmmumageddwim.mhhuufmm
Ihenmﬂmﬁmmdmtadmﬁumdiﬁﬂamdwimmwbcmm

» Configuration of the network as a whole: It should be possible for operators to
mﬁmmmmamhmmwmmmwru
systems which have multiple devices and configuring them within one network wide
transaction is required to ensure the correct operation of the system.

» Configuration transactions across devices: Configuration transactions across multiple

* Configuration deltas: It should be possible to generate the operations necessary
for going from one configuration state to another, The devices should support

E configuration deltas with minimal state changes.

~ » Dump and restore configurations; It should be possible to dump configurations

- from devices and restore configurations to devices.

@ Configuration validation: It should be possible to validate configurations,

¢ Configuration database schemas: There is a need for standardized configuration

- database schemas or data models across operators.

~» Comparing configurations: Devices should not arbitrarily reorder data, so that it is

) ~ possible to use text processing tools such as dif f to compare configurations,

~* Role-based access control: Devices should support role-based access control model,

- lnﬂm-umiugiventhcminimummmytopmfmm:mqtﬁudmk

- » Consistency of access control lists: It should be possible to do consistency checks

~ of access control lists across devices.

- * Multiple configuration sets: There should be support for multiple configurations

- sets on devices, This way a distinction can be provided between candidate and active

~ configurations.

~ * Support for both data-oriented and task-oriented access control: While SNMP

- dceess control is data-oriented, CLI access control is usually task oriented. There

- should be support for both types of access control.

met of Things - A Hands-On Approach



4.5 YANG 97

the role of a NETCONF client. For managing a network device the client establishes a
NETCONF session with the server. When a session is established the client and server
exchange ‘hello’ messages which contain information on their capabilities. Client can
then send multiple requests to the server for retrieving or editing the configuration data.
NETCONF allows the management client to discover the capabilities of the server (on the
device), NETCONF gives access to the native capabilities of the device.

NETCONF defines one or more configuration datastores. A configuration store contains
all the configuration information to bring the device from its initial state to the operational
state. By default a <running> configuration store is present. Additional configuration
datastores such as <startup> and <candidate> can be defined in the capabilities.

NETCONF is a connection oriented protocol and NETCONF connection persists between
protocol operations. For authentication, data integrity, and confidentiality, NETCONF
depends on the transport protocol, e.g., S5H or TLS. NETCONF overcomes the limitations
of SNMP and is suitable not only for monitoring state information, but also for configuration

management.

45 YANG

YANG is a data modeling language used to model configuration and state data manipulated
bjr the NETCONF protocol [137, 124]. YANG modules contain the definitions of the
uﬁnﬂguranun data, state data, RPC calls that can be issued and the format of the notifications,
‘LC&NG modules defines the data exchanged between the NETCONF client and server. A
- module comprises of a number of ‘leaf’ nodes which are organized into a hierarchical tree
mm The ‘leaf” nodes are specified using the ‘leaf” or ‘leaf-list’ constructs, Leal nodes
~ are organized using ‘container’ or ‘list’ constructs. A YANG module can import definitions
5 from other modules. Constraints can be defined on the data nodes, e.g. allowed values.
£ MG can model both configuration data and state data using the ‘config’ statement. YANG
: es four types of nodes for.data modeling as shown in Table 4.2.

Let us now look at an example of a YANG module. Box 4.1 shows a YANG module
"network-enabled toaster". This YANG module is a YANG version of the toaster
igement Information Base (MIB). We use the Toaster MIB since it has been widely
an example in introductory tutorials on SNMP to explain how SNMP can be used
‘managing a network-connected toaster. A YANG module has several sections starting
 header information, followed by imports and includes, type definitions, configuration
srational data declarations, and RPC and notification declarations. The toaster YANG
¢ begins with the header information followed by identity declarations which define
s bread types. The leaf nodes (‘toasterManufacturer’, ‘toasterModelNumber’ and

' ﬂ'TI‘ﬂn; - A Hands-On Approach



98 loT System Management with NETCONF-YANG

Retrim um runnmg cnnﬁgnmtiun md state infurmaunn

Lmdsallnrpnﬂufaspemﬁedconﬁgmmnmthﬂ&pwiﬁedmgm
configuration

Table 4.1: List of commonly used NETCONF RPC methods

‘toasterStatus’) are defined in the ‘toaster’ container. Eachlcnfnmadcﬁmunnhuntypeand
optionally a description and default value. The module has two RPC definitions (‘make-toast’
and ‘cancel-toast). Ammmumofthn toaster YANG module is shown mﬁgureﬂ




Defines a sequence of list entries. Each entry is like a structure
or a record instance, and is uniquely identified by the values of its
key leafs. A list can define multiple key leafs and may contain any
number of child nodes of any type.

Table 4.2: YANG Node Types




100 loT System Management with NETCONF-YANG

~ Bahga & Madisetti, © 2015 i



Internet of Things - A Hands-On Approach



v & toaster@2009-11-20
€. toast-type
€. white-bread
€. wheat-bread
€. wonder-bread
€. frozen-waffle
€. frozen-bagel
hash-brown
Display5tring
» [ toaster
) toasterManufacturer
T toasterModelNumber
) toasterStatus
v & make-toast
G+ output
v (= input
@ toasterDoneness
Fa. toasterToastType
v ™ cancel-toast
G= input
G+ output
v A roastDone
@ toastStatus

Figure 4.3: Visual representation of the Toaster YANG Module

Let us look at another example of a YANG module. Box 4.2 shows a YANG module
for configuring a HAProxy load balancer for a commercial website. The module includes
containers for global, defaults, frontend and backend sections of an HAProxy configuration.
In the global container the leaf nodes for configuration data such as max-connections and

mode are defined. In the defaults container the leaf nodes for configuration data such as'

retries, contimeout, etc. are defined. The front-end port bindings are defined in the frontend
container. The backend container has definitions on the servers to load balance. A reusable
tree structure called ‘server-list’ is used for the server definitions. The ‘server-list’ structure
is defined using the ‘grouping’ construct in the module. A tree representation of the HAProxy
YANG module is shown in Figure 4.4,

Bahpa & Madisetti, © 2015




45 YANG 103

o vt 14-06-01

Egg

maxconn

4

4

mode
‘option

i

default backend
backend

it

maxconn

* Figure 4.4: Visual representation of HAProxy YANG Module




104 loT System Management with NETCONF-YANG

Bahga & Madisetti, © 2015 :-




Internet of Things - A Hands-On Approach




106 loT System Management with NETCONF-YANG

4.6 loT Systems Management with NETCONF-YANG

In this section you will learn how to manage IoT systems with NECONF and YANG.
Figure 4.5 shows the generic approach of IoT device management with NETCONF-YANG.

Let is look at the roles of the various components:

¢ Management System: The operator uses a Management System to send NETCONF
messages to configure the IoT device and receives state information and notifications
from the device as NETCONF messages.

e Management API: Management API allows management applications to start
NETCONF sessions, read and write configuration data, read state data, retrieve
configurations, and invoke RPCs, programmatically, in the same way as an operator
can.

e Transaction Manager: Transaction Manager executes all the NETCONF transactions
and ensures that the ACID (Atomicity, Consistency, Isolation, Durability) properties
hold true for the transactions. Atomicity property ensures that a transaction is executed
either completely or not at all. Consistency property ensures that a transaction brings
the device configuration from one valid state to another. Isolation property ensures
that concurrent execution of transactions results in the same device configuration as
if transactions were executed serially in order, Durability property ensures that a
transaction once committed will persist.

¢ Rollback Manager : Rollback manager is responsible for generating all the transactions
necessary to rollback a current configuration to its original state.

e Data Model Manager: The Data Model manager keeps track of all the YANG data
models and the corresponding managed objects. The Data Model manager also keeps
track of the applications which provide data for each part of a data model.

 Configuration Validator: Configuration validator checks if the resulting configuration
after applying a transaction would be a valid configuration. :

o Configuration Database: This database contains both the configuration and operational
data.

e Configuration API: Using the configuration API the applications on the IoT device
can read configuration data from the configuration datastore and write operational datn
to the operational datastore.

Bahga & Madisetti, © 2015




4.8 loT Systems Management with NETCONF-YANG 107

SEEAE T

=T T e —— = F

Figure 4.5: 10T device management with NETCONF-YANG - a generic approach

¢ Data Provider API: Applications on the [oT device can register for callbacks for
various events using the Data Provider APIL. Through the Data Provider API, the
applications can report statistics and operational data.

4.6.1 NETOPEER

While the previous section described a generic approach of IoT device management with
NETCONF-YANG, this section describes a specific implementation based on the Netopeer
tools [125]. Netopeer is set of open source NETCONF tools built on the Libnetconf

Internet of Things - A Hands-On Approach




108 loT System Management with NETCONF-YANG

library [126]. Figure 4.6 shows how to manage an IoT device using the Netopeer tools. The
Netopeer tools include:

Figure 4,6: [oT device management with NETCONF - a specific approach based on Netopeer
tools

s Netopeer-server: Netopeer-server is a NETCONF protocol server that runs on the
managed device. Netopeer-server provides an environment for configuring the device
using NETCONF RPC operations and also retrieving the state data from the device.

s Netopeer-agent: Netopeer-agent is the NETCONF protocol agent running as a
SSH/TLS subsystem. Netopeer-agent accepts incoming NETCONF connection and

Bahga & Madisetti, © 2015




4.6 loT Systems Management with NETCONF-YANG 109

passes the NETCONF RPC operations received from the NETCONF client to the
Netopeer-server.

s Netopeer-cli: Netopeer-cli is a NETCONF client that provides a command line
interface for interacting with the Netopeer-server. The operator can use the Netopeer-cli
from the management system to send NETCONF RPC operations for configuring the
device and retrieving the state information.

» Netopeer-manager: Netopeer-manager allows managing the YANG and Libnetconf
Transaction API (TransAPI) modules on the Netopeer-server. With Netopeer-manager
modules can be loaded or removed from the server.

¢ Netopeer-configurator: Netopeer-configurator is a tool that can be used to configure
the Netopeer-server.

Steps for loT device Management with NETCONF-YANG

1. Create a YANG model of the system that defines the configuration and state data of the
system.

2. Compile the YANG model with the ‘Inctool’ which comes with Libnetconf.

Libnetconf provides a framework called Transaction API (TransAPI) that provides a mechanism
of reflecting the changes in the configuration file in the actual device. The ‘Inctool” generates
a TransAPI module (callbacks C file). Whenever a change is made in the configuration file
using the NETCONF operations, the corresponding callback function is called, The callback
functions contain the code for making the changes on the device. :

3, Fill in the [oT device management code in the TransAPI module (callbacks C file). This
file includes configuration callbacks, RPC callbacks and state data callbacks. .
4, Build the callbacks C file to generate the library file (.so).

5, Load the YANG module (containing the data definitions) and the TransAPI module (.50
binary) into the Netopeer server using the Netopeer manager tool.

6. The operator can now connect from the management system to the Netopeer server using

the Netopeer CLL
7. Operator can issue NETCONF commands from the Netopeer CL1. Commands can be

issued to change the configuration data, get operational data or execute an RPC on the loT
device.

In Chapter 11, detailed case studies on IoT device Management using the above steps
are provided.

Internet of Things - A Hands-Cn Approach



110 loT System Management with NETCONF-YANG

Summary

In this chapter you learned about the need for [oT systems management. IoT system
management capabilities can help in automating the system configurations. Management
systems can collect operational and statistical data from [oT devices which can be used for
fault diagnosis or prognosis. For IoT systems that consist of multiple devices, system wide
configuration is important to ensure that all devices are configured within one transaction and
the transactions are atomic. It is desirable for devices to have multiple configurations with.
one of them being the active and running configuration. Management systems which have
the capability of retrieving configurations from devices can help in reusing the configurations
for other devices of the same type. SNMP has been a popular network management
protocol, however it has several limitations which make it unsuitable for IoT device
management. Network Configuration Protocol (NETCONF), which is a session-based
network management protocol, is more suitable for IoT device management. NETCONF
works on SSH transport protocol and provides various operations to retrieve and edit
configuration data from devices. The configuration data resides within a NETCONF
configuration datastore on the server. The NETCONF server resides on the network device.
The device configuration and state data is modeled using the YANG data modeling language.
There is a clear separation of configuration and state data in the YANG models. You
learned about a generic approach for 1oT device management and the roles of various
components such as the Management API, Transaction Manager, Rollback Manager, Data
Model Manager, Configuration Validator, Configuration Database, Configuration API and
Data Provider APIL You learned about the Netopeer tools for NETCONF and the steps for
IoT device Management using these tools.

Review Questions

1. Why is network wide configuration important for IoT systems with multiple nodes?
Which limitations make SNMP unsuitable for IoT systems?

What is the difference between configuration and state data?

What is the role of a NETCONF server?

What is the function of a data model manager?

Describe the roles of YANG and Trans API modules in device management?

R

Bahga & Madisetti, © 2015




Part 11

THINGS




This Chapter Covers it
IoT Design Methodology that includes:

¢ Purpose & Requirements Specification

e Process Specification

e Domain Model Specification

e Information Model Specification

e Service Specifications

¢ IoT Level Specification

e Functional View Specification

¢ Operational View Specification

¢ Device & Component Integration

e Application Development




114 loT Platforms Design Methodology

5.1 Introduction

IoT systems comprise of multiple components and deployment tiers. In Chapter-1, we
defined six IoT system levels. Each level is suited for different applications and has different
component and deployment configurations. Designing loT systems can be a complex and
challenging task as these systems involve interactions between various components such as
IoT devices and network resources, web services, analytics components, application and
database servers. Due to a wide range of choices available for each of these components,
IoT system designers may find it difficult to evaluate the available alternatives. loT system
designers often tend to design loT systems keeping specific products/services in mind.
Therefore, these designs are tied to specific product/service choices made. This leads to
product, service or vendor lock-in, which while satisfactory to the dominant vendor, is
unacceptable to the customer. For such systems, updating the system design to add new
features or replacing a particular product/service choice for a component becomes very
complex, and in many cases may require complete re-design of the system.

In this Chapter, we propose a generic design methodology for loT system design which
is independent of specific product, service or programming language. loT systems designed
with the proposed methodology have reduced design, testing and maintenance time, better
interoperability and reduced complexity. With the proposed methodology, IoT system
designers can compare various alternatives for the loT system components. The methodology
described in this Chapter is generally based on the IoT-A reference model [75], but is broad
enough to embrace other industry efforts as well. Later chapters in this book describe the
implementation aspects of various steps in the proposed methodology.

5.2 loT Design Methodology

Figure 5.1 shows the steps involved in the IoT system design methodology. Each of these
steps is explained in the sections that follow. To explain these steps, we use the examplgof a
smart loT-based home automation system. '

5.2.1 Step 1: Purpose & Requirements Specification
The first step in loT system design methodology is to define the purpose and requirements
of the system. In this step, the system purpose, behavior and requirements (such as data
collection requirements, data analysis requirements, system managemeni requirements, data
privacy and security requirements, user interface requirements, ...) are captured.

Applying this to our example of a smart home automation system, the purpose and
requirements for the system may be described as follows:

Bahga & Madisetti, (© 2015




5.2 loT Design Methodology 115

1 T e B .:"" e o L e T e e ST I i
i I i RN R wirements of loT system' 0o e
|
i
Hiss
|
i
:.!ijj-' ] ..-.-..-._--_. -‘,--duﬂ'u,'n.iulqrgh::.Ip‘!hw:ﬂfﬂl-:l -1, " !... :1._--_!! ;- . .I..u.- II':!'h' A
e
|
|
T o
|
i i
t
|
|

Figure 5.1: Steps involved in ToT system design methodology

» Purpose : A home automation system that allows controlling of the lights in a home
remotely using a web application.

o Behavior : The home automation system should have auto and manual modes. In
auto mode, the system measures the light level in the room and switches on the light
when it gets dark. In manual mode, the system provides the option of manually and
remotely switching on/off the light.

e System Management Requirement : The system should provide remote monitoring
and control functions.

¢ Data Analysis Requirement : The system should perform local analysis of the data.

« Application Deployment Requirement : The application should be deployed locally
on the device, but should be accessible remotely. ;

Internet of Things - A Hands-On Approach



116 loT Platforms Design Methodology

s Security Requirement : The system should have basic user authentication capability.

5.2.2 Step 2: Process Specification

ThesecnndstepmthquTdes:g;umeﬂmdnlug}rmmduﬁuethcpmessspeciﬂmm In this
step, the use cases of the IoT system are formally described based on and derived from the
purpose and requirement specifications. Figure 5.2 shows the process diagram for the home .
automation system. The process diagram shows the two modes of the system - auto and
manual. In a process diagram, the circle denotes the start of a process, diamond denotes a

decision box and rectangle denotes a state or attribute. When the auto mode is chosen, the
system monitors the light level. If the light level is low, the system changes the state of the

light to “on”. Whereas, if the light level is high, the system changes the state of the lightto
“off”, When the manual mode is chosen, ﬂ:ﬁsyntemchmksthﬂlightmtemtbythnum.lf i
the light state set by the user is “on”, the system changes the state of light to “on”. Whereas,
if the light state set by the user is “‘off”, the system changes the state of light to “off”. :

Figure 5.2: Process specification for home automation IoT system
\

Bahga & Madisetti, © 2015




5.2 loT Design Methodology 117

5.2.3 Step 3: Domain Model Specification

The third step in the ToT design methodology is to define the Domain Model. The domain
model describes the main concepts, entities and objects in the domain of IoT system to be
designed. Domain model defines the attributes of the objects and relationships between
objects. Domain model provides an abstract representation of the concepts, objects and
entities in the IoT domain, independent of any specific technology or platform. With the
domain model, the ToT system designers can get an understanding of the IoT domain for
which the system is to be designed. Figure 5.3 shows the domain model for the home
automation system example. The entities, objects and concepts defined in the domain model
include:

¢ Physical Entity : Physical Entity is a discrete and identifiable entity in the physical
environment (e.g. a room, a light, an appliance, a car, etc.). The IoT system provides
information about the Physical Entity (using sensors) or performs actuation upon the
Physical Entity (e.g., switching on a light). In the home automation example, there are
two Physical Entities involved - one is the room in the home (of which the lighting
conditions are to be monitored) and the other is the light appliance to be controlled.

e Virtual Entity : Virtual Entity is a representation of the Physical Entity in the digital
world. For each Physical Entity, there is a Virtual Entity in the domain model. In the
home automation example, there is one Virtual Entity for the room to be monitored,
another for the appliance to be controlled.

e Device : Device provides a medium for interactions between Physical Entities and
Virtual Entities. Devices are either attached to Physical Entities or placed near Physical
Entities. Devices are used to gather information about Physical Entities (e.g., from
sensors), perform actuation upon Physical Entities (e.g. using actuators) or used to
identify Physical Entities (e.g., using tags). In the home automation example, the
device is a single-board mini computer which has light sensor and actuator (relay
switch) attached to it.

¢ Resource : Resources are software components which can be either "on-device"
or "network-resources". On-device resources are hosted on the device and include
software components that either provide information on or enable actuation upon
the Physical Entity to which the device is attached. Network resources include the
software components that are available in network (such as a database). In the home
automation example, the on-device resource is the operating system that runs on the
single-board mini computer.

e Service : Services provide an interface for interacting with the Physical Entity.
Services access the resources hosted on the device or the network resources to obtain
information about the Physical Entity or perform actuation upon the Physical Entity. -

Internet of Things - A Hands-On Approach



118

loT Platforms Design Methodology

In the home automation example, there are three services: (1) a service that sets
mode to auto or manual, or retrieves the current mode; (2) a service that sets the light
appliance state to on/off, or retrieves the current light state; and (3) a controller service
that runs as a native service on the device. When in auto mode, the controller service
monitors the light level and switches the light on/off and updates the status in the
status database. When in manual mode, the controller service retrieves the current
state from the database and switches the light on/off. The process of deriving the
services from the process specification and information model is described in the later
sections.

Figure 5.3: Domain model of the home automation IoT system

Bahga & Madisetti, © 2015



5.2 loT Design Methodology 119

5.2.4 Step 4: Information Model Specification

The fourth step in the IoT design methodology is to define the Information Model. Information
Model defines the structure of all the information in the IoT system, for example, attributes
of Virtual Entities, relations, etc. Information model does not describe the specifics of how
the information is represented or stored. To define the information model, we first list the
Virtual Entities defined in the Domain Model. Information model adds more details to the
Virtual Entities by defining their attributes and relations. In the home automation example, -
there are two Virtual Entities - a Virtual Entity for the light appliance (with attribute - light
state) and a Virtual Entity for the room (with attribute - light level). Figure 5.4 shows the
Information Model for the home automation system example.

Figure 5.4: Information model of the home automation IoT system

5.2.5 Step 5: Service Specifications

The fifth step in the IoT design methodology is to define the service specifications. Service
specifications define the services in the [oT system, service types, service inputs/output,
service endpoints, service schedules, service preconditions and service effects.

You learned about the Process Specification and Information Model in the previous
sections. Figure 5.5 shows an example of deriving the services from the process specification
and information model for the home automation IoT system. From the process specification
and information model, we identify the states and attributes. For each state and attribute
we define a service. These services either change the state or attribute values or retrieve the
current values, For example, the Mode service sets mode to auto or manual or retrieves the
current mode. The State service sets the light appliance state to on/off or retrieves the current
light state. The Controller service monitors the light level in auto mode and switches the

Internet of Things - A Hands-On Approach



120 loT Platforms Design Methodology

light on/off and updates the status in the status database. In manual mode, the controller
service, retrieves the current state from the database and switches the light on/off.

mtm Mode Service Lty mode 0 WA o
Mo iR | anual o netrimens the curment mode
mim

. i L Lﬂ“ .‘m____ lhhl" L

retrigves the current light state

Comtroller Servics. In auto mode, the controfer Lervce moniton the light level
and vwritches the lght on/off snd updastes the datus in the daiun detabase

In manual mode, the controller serice, retrieves the curment state from the
database and switches the light anfolf

Figure 5.5: Deriving services from process specification and information model for home
automation loT system

Figures 5.6, 5.7 and 5.8 show specifications of the controller, mode and state services of
the home automation system. The Mode service is a RESTful web service that sets mode to
auto or manual (PUT request), or retrieves the current mode (GET request) . The mode is
updated to/retrieved from the database. The State service is a RESTful web service that sets
the light appliance state to on/off (PUT request), or retrieves the current light state (GET
request). The state is updated to/retrieved from the status database. The Controller service
runs as a native service on the device. When in auto mode, the controller service monitors

Bahga & Madisetti, © 2015




5.2 loT Design Methodology 121

the light level and switches the light on/off and updates the status in the status database.
When in manual mode, the controller service, retrieves the current state from the database

and switches the light on/off.

Figure 5.6: Controller service of the home automation IoT system

5.2.6 Step 6: loT Level Specification

The sixth step in the IoT design methodology is to define the IoT level for the system. In
Chapter-1, we defined five IoT deployment levels. Figure 5.9 shows the deployment level of
the home automation IoT system, which is level-1.

5.2.7 Step 7: Functional View Specification

The seventh step in the IoT design methodology is to define the Functional View. The
Functional View (FV) defines the functions of the IoT systems grouped into various
Functional Groups (FGs). Each Functional Group either provides functionalities for interacting
with instances of concepts defined in the Domain Model or provides information related to
these concepts.

The Functional Groups (FG) included in a Functional View include:

e Device : The device FG contains devices for monitoring and control. In the home

automation example, the device FG includes a single board mini-computer, a light .

Internet of Things - A Hands-On Approach



122

loT Platforms Design Methodology

Figure 5.8: Service specification for home automation IoT system - state service

sensor and a relay switch (actuator).

Bahga & Madisetti, © 2015




5.2 loT Design Methodology 123

Cloud

Local

Manitoring Node
performs analysis, stores data

Figure 5.9: Deployment design of the home automation loT system

¢ Communication : The communication FG handles the communication for the
IoT system. The communication FG includes the communication protocols that
form the backbone of IoT systems and enable network connectivity. You learned
about various link, network, transport and application layer protocols in Chapter-1.
The communication FG also includes the communication APIs (such as REST and
WebSocket) that are used by the services and applications to exchange data over the
network. In the home automation example the communication protocols include -
802.11 (link layer), IPv4/IPv6 (network layer), TCP (transpont layer), and HTTP
(application layer). The communication APl used in the home automation examples is
a REST-based API.

¢ Services : The service FG includes various services involved in the loT system such

Internet of Things - A Hands-On Approach



wa)sAs [0] uonewoine Jwoy 10 sdnoss Euonsuny o) [2a2] Juswiojdep Surddepy :g1°¢ amdLg

el £ Bacpsar, o e

:
loT Platforms Design Methodology

Ry pa (i Sy [ e oy mg
- W SRS MY

e e wpg U J LT dvunyy wy) pur
D] VDRI AR (a0 [rarnanz Ruganuam A ST

00 MW RSSO E OPAIE-0| D S0V Sl o) See dunity T “RHVTURS) D S0MAD S AL SR 303D 18 T

” e

124

s 4
Bahga & Madisetti, @ 2015




A T

5.2 loT Design Methodology 125

as services for device monitoring, device control services, data publishing services
and services for device discovery. In the home automation example, there are two
REST services (mode and state service) and one native service (controller service).

+ Management : The management FG includes all functionalities that are needed to
configure and manage the IoT system.

o Security : The security FG includes security mechanisms for the IoT system such as
authentication, authorization, data security, etc.

o Application : The application FG includes applications that provide an interface to
the users to control and monitor various aspects of the IoT system. Applications also
allow users to view the system status and the processed data.

Figure 5.10 shows an example of mapping deployment level to functional groups for

home automation IoT system.

1IoT device maps to the Device FG (sensors, actuators devices, computing devices) and

the Management FG (device management). Resources map to the Device FG (on-device
resource) and Communication FG (communication APIs and protocols). Controller service
maps to the Services FG (native service). Web Services map to Services FG . Database
maps to the Management FG (database management) and Security FG (database security).
Application maps to the Application FG (web application, application and database servers),
Management FG (app management) and Security FG (app security).

5.2.8 Step 8: Operational View Specification

The eighth step in the [oT design methodology is to define the Operational View Specifications.

In this step, various options pertaining to the loT system deployment and operation are
defined, such as, service hosting options, storage options, device options, application hosting
options, etc.
Figure 5.11 shows an example of mapping functional groups to operational view
specifications for home automation IoT system.
Operational View specifications for the home automation example are as follows:
e Devices: Computing device (Raspberry Pi), light dependent resistor (sensor), relay
swiltch (actuator).
¢ Communication APls: REST APIs
e Communication Protocols: Link Layer - 802.11, Network Layer - IPv4/IPv6, Transport
- TCP, Application - HTTP.
e Services:
1. Controller Service - Hosted on device, implemented in Python and run as a
native service,
2. Mode service - REST-ful web service, hosted on device, implemented with

Internet of Things - A Hands-On Approach



loT Platforms Design Methodology

wisAs 0] UOTPWOINE JWOY 10§ Mata [puonerdo 01 sdnoid puonouny Smddepy ;[ 1°¢ amSiyg

126

Bahga & Madisetti, © 2015



5.3 Case Study on loT System for Weather Monitoring 127

Django-REST Framework.
3. State service - REST-ful web service, hosted on device, implemented with
Django-REST Framework.
e Application:
Web Application - Django Web Application,
Application Server - Django App Server,
Database Server - MySQL.
® Security:
Authentication: Web App, Database
Authorization: Web App, Database

e Management:
Application Management - Django App Management
Database Management - MySQL DB Management,
Device Management - Raspberry Pi device Management.

5.2.9 Step 9: Device & Component Integration

The ninth step in the IoT design methodology is the integration of the devices and components.
Figure 5.12 shows a schematic diagram of the home automation IoT system. The devices
and components used in this example are Raspberry Pi mini computer, LDR sensor and relay
switch actuator, A detailed description of Raspberry Pi board and how to interface sensors
and actuators with the board is provided in later chapters.

5.2.10 Step 10: Application Development

The final step in the IoT design methodology is to develop the IoT application. Figure 5.13
shows a screenshot of the home automation web application. The application has controls
for the mode (auto on or auto off) and the light (on or off). In the auto mode, the loT system
controls the light appliance automatically based on the lighting conditions in the room. When
auto mode is enabled the light control in the application is disabled and it reflects the current
state of the light. When the auto mode is disabled, the light control is enabled and it is used
for manually controlling the light.

5.3 Case Study on loT System for Weather Monitoring

In this section we present a case study on design of an [oT system for weather monitoring
using the IoT design methodology. The purpose of the weather monitoring system is to
collect data on environmental conditions such as temperature, pressure, humidity and light

Internet of Things - A Hands-On Approach




128 loT Platforms Design Methodology

Figure 5.12: Schematic diagram of the home automation IoT system showing the device,
sensor and actuator integrated

in an area using multiple end nodes. The end nodes send the data to the cloud where the data
is aggregated and analyzed.

Figure 5.14 shows the process specification for the weather monitoring system. The
process specification shows that the sensors are read after fixed intervals and the sensor

measurements are stored.

Figure 5.15 shows the domain model for the weather monitoring system. In this domain

model the physical entity is the environment which is being monitored. There is a virtual

entity for the environment. Devices include temperature sensor, pressure sensor, humidity |

sensor, light sensor and single-board mini computer, Resources are software components
which can be either on-device or network-resources. Services include the controller service
that monitors the temperature, pressure, humidity and light and sends the readings to the

Bahga & Madisetti, © 2015



5.3 Case Study on loT System for Weather Monitoring 129

Figure 5.13: Home automation web application screenshot

Figure 5.14: Process specification for weather monitoring IoT system

cloud.

Figure 5.16 shows the information model for the weather monitoring system. In this
example, there is one virtual entity for the environment being sensed. The virtual entity
has attributes - temperature, pressure, humidity and light. Figure 5.17 shows an example of .

Internet of Things - A Hands-On Approach



130 loT Platforms Design Methodology

Figure 5.15: Domain model for weather monitoring IoT system

deriving the services from the process specification and information model for the weather
monitoring system.

Figure 5.18 shows the specification of the controller service for the weather monitoring
system. The controller service runs as a native service on the device and monitors temperature,
pressure, humidity and light once every 15 seconds. The controller service calls the
REST service to store these measurements in the cloud. In Chapter-8 we describe a
Platform-as-a-Service called Xively that can be used for creating solutions for Internet
of Things. An implementation of a controller service that calls the Xively REST API to store
data in Xively cloud is described in Chapter-9.

Figure 5.19 shows the deployment design for the system. The system consists of multiple
nodes placed in different locations for monitoring temperature, humidity and pressure in
an area. The end nodes are equipped with various sensors (such as temperature, pressure,
humidity and light). The end nodes send the data to the cloud and the data is stored in a cloud

Bahga & Madisetti, © 2015




5.4 Motivation for Using Python - 131

hos volue has vafur

Figure 5.16: Information model for weather monitoring IoT system

database. The analysis of data is done in the cloud to aggregate the data and make predictions.
A cloud-based application is used for visualizing the data. The centralized controller can
send control commands to the end nodes, for example, to configure the monitoring interval
on the end nodes.

Figure 5.20 shows an example of mapping deployment level to functional groups for the
weather monitoring system. Figure 5.21 shows an example of mapping functional groups to
operational view specifications for the weather monitoring system.

Figure 5.22 shows a schematic diagram of the weather monitoring system. The devices
and components used in this example are Raspberry Pi mini computer, temperature sensor,
humidity sensor, pressure sensor and LDR sensor.

5.4 Motivation for Using Python

This book uses the Python language for all the examples, though the basic principles apply
to other high level languages. In this section we explain the motivation for using Python
for developing ToT systems. Python is a minimalistic language with English-like keywords
and fewer syntactical constructions as compared to other languages. This makes Python
easier to learn and understand. Moreover, Python code is compact as compared to other
languages. Python is an interpreted language and does not require an explicit compilation
step. The Python interpreter converts the Python code to the intermediate byte code, specific

Internet of Things - A Hands-On Approach



132 loT Platforms Design Methodology

Process Specification

Information Model ’

Controller Service: Runs as a native service on the device. Gets the current
temperature, pressure, humidity and light readings and sends to the cloud database,

Figure 5.17: Deriving services from process specification and information model for weather :
monitoring IoT system

to the system. Python is supported on wide range of platforms, hence Python code is easily

Bahga & Madisetti, © 2015




e e L E

5.4 Motivation for Using Python

133

Figure 5.18: Controller service of the weather monitoring IoT system

Local Cloud

o

Multiple Maonitering mm

" Centralized
Cantroller Cloud Storage &
Analysis

Figure 5.19: Deployment design of the weather monitoring IoT system

et of Things - A Hands-On Approach



loT Platforms Design Methodology

134

ik s s e ) A

Bahga & Madisetti, © 2015



135

5.4 Motivation for Using Python

waysks o] Suuojmous JSyEIM ) 10§ Ma1A [euoneiado o) sdnoid reuonouny Suiddepy :17°C amdlg

Internet of Things - A Hands-On Approach



136 loT Platforms Design Methodology

Figure 5.22: Schematic diagram of a weather monitoring end-node showing the device and

SENnsOrs

portable. The wide library support available for Python makes it an excellent choice for
IoT systems. Python can be used for end-to-end development of IoT systems from [oT
device code (e.g. code for capturing sensor data), native services (e.g., a controller service
implemented in Python), web services (e.g. a RESTful web service implemented in Python),

Bahga & Madisetti, © 2015




5.4 Motivation for Using Python 137

web applications (e.g., Python web applications developed with Python web frameworks
such as Django) and analytics components (e.g. machine learning components developed
using Python libraries such as scikit-learn). In the next chapter you will learn the basics of
Python language amd all the related packages of interest that are used in the examples in this
book.

Summary

In this chapter you learned about generic design methodology for IoT system design which
is independent of specific product, service or programming language. The first step in IoT
system design methodology is to define the purpose and requirements of the system. In the
second step, the use cases of the IoT system are formally described based on the purpose and
requirement specifications. The third step is to define the Domain Model which describes the
main concepts, entities and objects in the domain of IoT system to be designed. The fourth
step is to define the Information Model which defines the structure of all the information in
the IoT system. The fifth step is to define the Functional View which defines the functions
of the [oT systems grouped into various Functional Groups. The sixth step is to define the
service specifications which define the services in the IoT system, service types, service
inputs/output, service endpoints, service schedules, service preconditions and service effects.
The seventh step is to define the Deployment & Operational View Specifications in which
various options pertaining to the IoT system deployment and operation are defined. The
eight step is the integration of the devices and components. The final step in the loT design
methodology is to develop the IoT application.

Review Questions

1. What is the difference between a physical and virtual entity?
2, What is an IoT device?

3. What is the purpose of information model?

4, What are the various service types?

5. What is the need for a controller service?

Internet of Things - A Hands-On Approach



v =

This Chapter covers
e Introduction to Python
¢ Installing Python
o Python Data Types & Data Structures
e Control Flow
» Functions
. Mﬂdul:s
e Packages
e File Input/Output
e Date/Time Operations
e Classes




140 loT Systems - Logical Design using Python

6.1 Introduction

This book uses Python as the primary programming languages for examples. This chapter
will help you in understanding the basics of Python programming and the Python packages
that are used in examples in this book.

Python is a general-purpose high level programming language. Python 2.0 was released
in the year 2000 and Python 3.0 was released in the year 2008. The 3.0 version is not
backward compatible with earlier releases. The most recent release of Python is version 3.3.
Currently, there is limited library support for the 3.x versions with operating systems such as
Linux and Mac still using Python 2.x as default language. The exercises and examples in this
book have been developed with Python version 2.7. The main characteristics of Python are:

Multi-paradigm programming language
Python supports more than one programming paradigms including object-oriented programming
and structured programming

Interpreted Language

Python is an interpreted language and does not require an explicit compilation step. The
Python interpreter executes the program source code directly, statement by statement, as a
processor or scripting engine does.

Interactive Language
Python provides an interactive mode in which the user can submit commands at the Python
prompt and interact with the interpreter directly.

The key benefits of Python are:

Easy-to-learn, read and maintain

Python is a minimalistic language with relatively few keywords, uses English keywords
and has fewer syntactical constructions as compared to other languages. Reading Python
programs is easy with pseudo-code like constructs. Python is easy to learn yet an extremely
powerful language for a wide range of applications. Due to its simplicity, programs written
in Python are generally casy to maintain.

Object and Procedure Oriented

Python supports both procedure-oriented programming and object-oriented programming.
Procedure oriented paradigm allows programs to be written around procedures or functions
that allow reuse of code. Procedure oriented paradigm allows programs to be written around
objects that include both data and functionality.

Bahga & Madisetti, © 2015



6.2 Installing Python 141

Extendable
Python is an extendable language and allows integration of low-level modules written in
languages such as C/C++. This is useful when you want to speed up a critical portion of a

program.

Scalable
Due to the minimalistic nature of Python, it provides a manageable structure for large

programs.

Portable

Since Python is an interpreted language, programmers do not have to worry about compilation,
linking and loading of programs. Python programs can be directly executed from source
code and copied from one machine to other without worrying about portability. The Python
interpreter converts the source code to an intermediate form called byte codes and then
translates this into the native language of your specific system and then runs it.

Broad Library Support

Python has a broad library support and works on various platforms such as Windows, Linux,
Mag, etc. There are a large number of Python packages available for various applications
such as machine learning, image processing, network programming, cryptography, etc.

6.2 Installing Python

Python is a highly portable language that works on various platforms such as Windows,
Linux, Mac, etc. This section describes the Python installation steps for Windows and Linux:

Windows :
Python binaries for Windows can be downloaded from http://www.python.org/getit . For
the examples and exercise in this book, you would require Python 2.7 which can be
directly downloaded from: http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi Once
the python binary is installed you can run the python shell at the command prompt using

> python

Linux
Box 6.1 provides the commands for installing Python on Ubuntu.

Internet of Things - A Hands-On Approach



142 loT Systems - Logical Design using Python

6.3 Python Data Types & Data Structures
6.3.1 Numbers

Number data type is used to store numeric values. Humbmmlmmumhlemm
mcmmmmﬁamﬁuwmmmnmyaﬂm%
Box 6.2 shows some examples of working with numbers : '

Bahga & Madisetti, © 2015



v

6.3 Python Data Types & Data Structures 143

et T L

6.3.2 Strings

A string is simply a list of characters in order. Ihmmmﬁmlumﬁnmj :
you can have in a string. Aauingwhmhhumuchmtmiscaﬂdmwm )

IrmmufThlngu-AHwﬂ:-ﬂﬂw




144 loT Systems - Logical Design using Python

shows examples of working with strings.




6.3 Python Data Types & Data Structures 145

List is a compound data type used to group together other values. List items need not all
have the same type. Am:mmmmmmwmmmmm;qm
- brackets. Box 6.4 shows examples of working with lists.

Internet of Things - A Hands-On Approach



146 loT Systems - Logical Design using Python

6.3.4 Tuples

A tuple is a sequence data type that is similar to the list. Ammﬂamg
values separated by commas and enclosed within parentheses. Unﬂeﬂmhm '
of tuples cannot be changed, so tuples can be thought of as read-only lists. MHM
mﬂudmwﬂhw

Bahga & Madisett, © 2015




L sy
g ]

6.3 Python Data Types & Data Structures 147

6.3.5 Dictionaries N
Dictionary is a mapping data type or a kind of hash table that maps keys to values. Keys in a
dictionary can be of any data type, though numbers and strings are commonly used for keys.
Values in a dictionary can be any data type or object. Box 6.6 shaws examples on working
with dictionaries. R

Internet of Things - A Hands-On Approach




148 loT Systems - Logical Design using Python

1

Banhga & Madiselt, © 2015




trol Flow
ok at the control flow statements in Python. .

nt in Python is similar to the {f statement in uthnrianzuagu Box 6.8 shows
es of the if statement. - 3




150 loT Systems - Logical Design using Python

6.4.2 for
The for statement in Python iterates over items of any sequence (list, string, ﬂc]inh :
order in which they appear in the sequence. This behavior is different from the for statement

mnhrlmpmm&uﬂhwmﬂhmmuﬂmmmmsaﬂmm e
mptmi&ed. Bux Eﬂ»Mmﬂuﬁ&nfwmm .

1
i

Bahga & Madisetti, © 2015



X

s
e
E
|
fl

6.4 Control Flow 151

ALk oy
H (]

6.4.3 while
The while statement in Python executes the statements within &wwhﬂrlmpum ﬂﬁn
while condition is true. Box 6.10 shows a while statement example.

F b o I 2]
ot T
o

6.4.4 range
The mngcﬂmmtmﬁmgmmsahstofnmbmmmw
Exmmlmnfrmgesmmnentmshuwnmﬂnxﬁll el

6.4.5 break/continue R e
Mbmakmdcmmmmmmﬁmmmﬂum&wﬁﬂ.mw

statement breaks out of the for/while loop whereas the continue statement continues with
the next iteration. Boxﬁliﬂmmcxmplcsufbmakmdmw.

Internet of Things - A Hands-On Approach



152 loT Systems - Logical Design using Python

6.4.6 pass |
mmwhﬁmmhamnapmm The pass statement is used when a
statement is required syntactically but you do not want any command or code to execute.
Box 6.13 shows an example of pass statement.




6.5 Functions 153

6.5 Functions

A function is a block of code that takes information in (in the form of parameters), does some
computation, and returns a new piece of information based on the parameter information.
A function in Python is a block of code that begins with the keyword def followed by the
function name and parentheses. The function parameters are enclosed within the parenthesis.
The code block within a function begins after a colon that comes after the parenthesis
enclosing the parameters. The first statement of the function body can optionally be a
documentation string or docstring. Box 6.14 shows an example of a function that computes
the average grade given a dictionary containing student records.

r Pmcuonsmhnvedefmﬂtvﬂucmﬂhﬂpmmﬁafumﬁmwhhvah
mmthfﬂﬂ:rpammetersmmﬂmtm}rparﬂmem ttmdt:fmﬂwdmof&m
s ﬂ-m;edushmmﬂwmmplcinﬁoxﬁlj _

Internet of Things - A Hands-On Approach



154 loT Systems - Logical Design using Python

All parameters in the Python functions are passed by reference. Therefore, if a
nwm.mmmmmmmummma
shows an example of parameter passing by reference.

WMMMWMWMMMMWﬁ-
the parameter name when the function is called. Box 6.17 shows examples of keyword
arguments.

Bahga & Madisetti, © 2015






- 156 loT Systems - Logical Design using Python

Box 6.18.

6.6 Modules 4
Pyﬁouﬂwsmgmmgnfﬁ:mymmmmﬁﬂmmwmﬂwm 1
cudum&biﬁwmdmamhmdukwaﬁﬂwnﬁhm&ﬁnuamw k-
in the form of functions or classes. Modules can be imported using the import keyword.
M@ﬂmmuwmhmmmmmm&wmmwd
ammmmmtmmmmmm&mmMmmﬂw
themdmlmuduleln&uﬁagﬁ-

Batua.& Madisetti, © 2015




6.6 Modules




158 loT Systems - Logical Design using Python

The import keyword followed by the module name imports all the functions in the
module. If you want to use only a specific function it is recommended to import only that
function using the keyword from as shown in the example in Box 6.21.

Python comes with a number of standard modules such as system related modules
(sys), OS related module (0s), mathematical modules (math, fractions, etc.), Internet related
modules (email, json. etc), etc. The complete list of standard modules is available in the
Python documentation [87]. Box 6.22 shows an example of listing all names defined in a
module using the built-in dir function. - '

Bahga & Madisetti, @ 2015




thot mkagnmﬁmhicﬂﬁhmmmm“safmomﬂﬁmdmmm
" Packages allow better organization of modules related to a single application environment.
i Mﬂmmle.ﬂmﬁzashmthahmngofthashmgepmgnﬂmmﬁduma
- processing algorithms. The package is organized into a root directory (skimage) with
sub-directories (color, draw, etc) which are sub-packages within the skimage package. Bach
MMamﬂﬁhmJﬂwaﬁmmmemmu
W This file can either be an empty file or contain some initialization code for the

6.8 File Handling

Python allows reading and writing to files using the file object. Thnopnntﬁlmmddﬂ}
function is used to get a file object. The mode can be read (r), write (w), append (a), read
and write (r+ or w+), read-binary (rb), write-binary (wb), etc. Box 6.24 shows an example
of reading an entire file with read function. After the file contents have been read the close
function is called which closes the file object.

Internet of Things - A Hands-On Approach




160 loT Systems - Logical Design using Python

Bmﬁ,zsMmexnﬂlphofmadingumhﬂhuﬁumaﬁhmmmﬁmﬂﬁﬁ

Box 6.26 shows an example of reading lines of a file in a loop using the readlines

Bahga & Madisettl, © 2015



6.8 File Handling : 161

Box 6.27 shmuenmphnfmatﬁngncnminmmhﬂnfbmﬁm;ﬂﬁm_ﬁ
read(size) function. s

Box 6.28 shows an example of getting mmmdmmmwm

Box 6.29 shows an example of seeking to a certain position in a file using the seek
function. |

Box 6.30 shows an example of writing a file using the write function.

Internet of Things - A Hands-On Approach



162 loT Systems - Logical Design using Python

6.9 Date/Time Operations ¥
ﬁmmmmmfmdmmmmmdmmﬁmmm% :
module allows manipulating date and time in several ways. Box 6.31 shows examples of

manipulating with date. \

The time module in Python provides various time-related functions. Box 6.32 shows




6.10 Classes 163

6.10 Classes

Python is an Object-Oriented Programming (OOP) language. Python provides all the
standard features of Object Oriented Programming such as classes, class variables, class
methods, inheritance, function overloading, and operator overloading. Let us briefly look at
these OOP concepts:

Class

A class is simply a representation of a type of object and user-defined prototype for an object
that is composed of three things: a name, attributes, and operations/methods.

Instance/Object
Object is an instance of the data structure defined by a class.

Inheritance
Inheritance is the process of forming a new class from an existing class or base class.

Function overloading
Function overloading is a form of polymorphism that allows a function to have different

meanings, depending on its context.

Operator overloading
Operator overloading is a form of polymorphism that allows assignment of more than one
function to a particular operator.

Function overriding
Function overriding allows a child class to provide a specific implementation of a function
that is already provided by the base class. Child class implementation of the overridden
function has the same name, parameters and return type as the function in the base class.
Box 6.33 shows an example of a Class. The variable studentCount is a class variable
that is shared by all instances of the class Student and is accessed by Student.studentCount.
The variables name, id and grades are instance variables which are specific to each instance
of the class. There is a special method by the name __init__() which is the class constructor.

Internet of Things - A Hands-On Approach



164 loT Systems - Logical Design using Python

mﬂmmm.mmmahmmm_ﬁ_ﬂh
the class destructor.

Bahga & Madisettl, © 2015




6.10 Classes i : - 185

BET
AH .
il
AN . :

Box 6.34 shows an example of class inheritance. In this example Shape is the base

and Circle is the derived class. The class Circle inherits the attributes of the Shape class.
The child class Circle overrides the methods and attributes of the base class (eg. draw()
function defined in the base class Shape is overridden in child class Circle). It is possible to
hide some class attributes by naming them with a double underscore prefix. For example,
__label! attribute is hidden and cannot be directly accessed using the object (circ.__label
gives an error). To hide the attributes with double underscore prefix, Python changes their
names internally and prefixes the class name (e.g. __label is changed to _Circle__label).

Internet of Things - A Hands-On Approach



Bahga & Madiseft, © 2015



6.1 Python Packages of Interest for loT 167

6.11 Python Packages of Interest for loT

6.11.1 JSON
JavaScript Object Notation (JSON) 1smmymmadandwnmdm-immhmgamu.
_ mﬂﬂhmedmmﬂmanwmmmlsismyfmmhjmmmmm
I JSON is built on two structures - a collection of name-value pairs (e.g. a Python dictionary)
: and ordered lists of values (e.g.. a Python list).
ISDNfumathuﬂmmdfwmﬂ:ﬂumdmmﬂﬁngmmdmw:m
wmmmhmmqmmmammmmmnm&n
MEmmhnfaWMManmdaduJSDN :

B

Internet of Things - A Hands-On Approach



168 loT Systems - Logical Design using Python

Exchange of information encoded as JSON involves encoding and decoding steps. The
mmlsuﬂm[im]mmmmfmmwmm -
Box 6.36 shows an example of JSON encoding and decoding. |

Bahga & Madisetti, © 2015




6.11 Python Packages of Interest for loT 169

6.11.2 XML
XML (Extensible Markup Language) is a data format for structured document interchange.

i Box 6.37 shows an example of an XML file. In this section you will learn how to

.- parse, read and write XML with Python. The Python minidom library provides a minimal
implementation of the Document Object Model interface and has an API similar to that in
other languages. Box 6.38 ﬂwwnahtmmfnrpmingmmm BB:E.H
shows a Python program for creating an XML file.

mm-W-ammw






6.11 Python Packages of Interest for loT 17

6.11.3 HTTPLIb & URLLIb

HﬂPUmedURIJMmPyﬂlmﬁbrmimumdmnﬂworkﬁmemﬂpmm [lll

112]. HTTPLib2 is an HTTP client library and URLLib2 is a library for fetching URLs.
Box 6.40 shows an example of an HTTP GET request using the HTTPLib. Thua:iahh

mspmn_tainaﬂ_mrcaponﬂhuders and content mtninsﬂ::coﬂamm&om&m

Bmﬁﬂshman!fﬂ'?mqmtexnmpkumgﬂ'ﬂlhbz Amqum jec md
by calling urilib2. Request with the URL to fetch as input parameter. Tt o

mcmdmmmmmtoﬁmwmmmhmmumwmﬁ_ reqL 1
The response object is read by calling read function. SR t-'_u'm.._ ATy

Internet of Things - A Hands-Cn Approach




172 loT Systems - Logical Design using Python

Box 6.42 shows an example of an HTTP POST request. The data in the POST body is
ancodcdusmgﬂwmfemudaﬁmmfmmmﬂ:b

Box 6.43 shows an example of sending data to a URL using URLLib2 (e.g. an HTML
form submission). This example is similar to the HTTP POST example in Box 6.42 and uses
URLLib2 request object instead of HTTPLib2. ]

Bahga & Madisetti, © 2015



6.11 Python Packages of Interest for loT 173

6.11.4 SMTPLib

Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending emﬂand
routing e-mail between mail servers. The Python smtplib module provides an SMTP client
session object that can be used to send email [113].

Box 6.44 shows a Python example of sending email from a Gmail account. The string
message contains the email message to be sent. Tusendemnﬂﬁomaﬂmnﬂaﬂmumﬂm

ﬁm&ﬂﬂMTPsewerisapeciﬂadinthemwersm
" To send an email, first a connection is established with the SMTP server by calling

smt plib.SMT P with the SMTP server name and port. The user name and password provided
" are then used to login into the server. The email is then sent by calling server.sendmail
Mﬂmmmmc&umaddms.wﬂm;sﬁnmﬁmmminpmpumm

" Internet of Things - A Hands-On Approach




174 loT Systems - Logical Design using Python

Summary :

In this chapter you learned the essentials of the Python programming language. Python is a
general-purpose, high level programming language that supports more than one programming
paradigms including object-oriented programming and structured programming. Python is
an interpreted language and does not require an explicit compilation step. Python provides
an interactive mode in which the user can submit commands at the Python prompt and
interact with the interpreter directly. Python supports both procedure-oriented programming
and object-oriented programming. Python programs can be directly executed from source
code and copied from one machine to another without worrying about portability. Python
Data Types & Data Structures include Numbers, Strings, Lists, Tuples and Dictionaries.
Control flow statements in Python include if, for, while, break, continue, range and pass.
A function in Python is a block of code that begins with the keyword def followed by the
function name and parentheses. Python allows organizing the program code into different
modules which improves the code readability and makes it easy to manage. Python packages
allow better organization of modules related to a single application environment. Python
provides all the standard features of Object Oriented Programming such as classes, class

Bahga & Madisetti, © 2015




6.11

Python Packages of Interest for loT 175

variables, class methods, inheritance, function overloading, and operator overloading.

Review Questions

1.

N W WP

What is the difference between procedure-oriented programming and object-oriented

programming?
What is an interpreted language?

. Describe a use case of Python dictionary?
. What is a keyword argument in Python?

What are variable length arguments?
What is the difference between a Python module and a package?
How is function overriding implemented in Python?

Lab Exercises

¥

In this exercise you will create a Python program to compute document statistics.
Follow the steps below:
» Create a text file with some random text.
e Create a Python program with functions for reading the file, computing word
count and top 10 words. Use the template below:
def readFile(filename):
#lmplement this

def wordCount{contents):
#lmplement this

def topTenWords(wordCountDict):
#Implement this

def main():
filename = sys.argv[1]
contents = readFile(filename)
wordCountDict=wordCount(contents)
topTenWords(wordCountDict)

if __name ='_main_":
main()

Internet of Things - A Hands-On Approach



176 loT Systems - Logical Design using Python

¢ Run the Python program as follows:
python documentstats.py filename.txt

¢ Extend Exercise-1 to compute top 10 keywords in a file. To ignore stop-words
(commonly occurring words such as 'an’, 'the’, "how’, etc) create a list of i
stop-words. Ignore stop-words when computing top 10 keywords. }




 This Chapter covers

e Basic building blocks of an IoT Device
o Exemplary Device: Raspberry Pi
e Raspberry Pi interfaces
. e Programming Raspberry Pi with Python
| @ Other [oT devices




178 loT Physical Devices & Endpoints

7.1 What is an loT Device

As described earlier, a "Thing" in Internet of Things (ToT) can be any object that has a unique
identifier and which can send/receive data (including user data) over a network (e.g., smart
phone, smart TV, computer, refrigerator, car, etc. ). IoT devices are connected to the Internet
and send information about themselves or about their surroundings (e.g. information sensed
by the connected sensors) over a network (to other devices or servers/storage) or allow

actuation upon the physical entities/environment around them remotely. Some examples of *

IoT devices are listed below:

e A home automation device that allows remotely monitoring the status of appliances
and controlling the appliances.

e An industrial machine which sends information abouts its operation and health
monitoring data to a server.

e A car which sends information about its location to a cloud-based service.

e A wireless-enabled wearable device that measures data about a person such as the
number of steps walked and sends the data to a cloud-based service.

7.1.1 Basic building blocks of an loT Device

An IoT device can consist of a number of modules based on functional attributes, such as:

e Sensing: Sensors can be either on-board the IoT device or attached to the device. IoT
device can collect various types of information from the on-board or attached sensors
such as temperature, humidity, light intensity, etc. The sensed information can be
communicated either to other devices or cloud-based servers/storage.

e Actuation: IoT devices can have various types of actuators attached that allow taking
actions upon the physical entities in the vicinity of the device. For example, a relay
switch connected to an IoT device can turn an appliance on/off based on the commands
sent to the device.

e Communication: Communication modules are responsible for sending collected data
to other devices or cloud-based servers/storage and receiving data from other devices
and commands from remote applications.

o Analysis & Processing: Analysis and processing modules are responsible for making
sense of the collected data.

The representative IoT device used for the examples in this book is the widely used
single-board mini computer called Raspberry Pi (explained in later sections). The use of
Raspberry Pi is intentional since these devices are widely accessible, inexpensive, and
available from multiple vendors. Furthermore, extensive information is available on their
programming and use both on the Internet and in other textbooks, The principles we teach in

Bahga & Madisetti, © 2015




7.2 Exemplary Device: Raspberry Pi 179

this book are just as applicable to other (including proprietary) loT endpoints, in addition to
Raspberry Pi. Before we look at the specifics of Raspberry Pi, let us first look at thnmﬂmng
blocks of a generic single-board computer (SBC) based IoT device.

- Figure 7.1 shows a generic block diagram of a single-board computer (SBC) based
IoT device that includes CPU, GPU, RAM, storage and various types of interfaces and

s Pi [104] is a low-cost mini-computer with the physical size of a credit card.
i runs various flavors of Linux and can perform almost all tasks that a normal
ter can do. In addition to this, Raspberry Pi also allows interfacing sensors
through the general purpose I/O pins. Since Raspberry Pi runs Lhiuxapcraﬁng
s Python "out of the box™.

hings - A Hands-On Approach



180 loT Physical Devices & Endpoints

7.3 About the Board

Figure 7.2 shows the Raspberry Pi board with the various components/peripherals labeled.

e Processor & RAM : Raspberry Pi is based on an ARM processor. The latest version of
Raspberry Pi (Model B, Revision 2) comes with 700 MHz Low Power ARMI1176JZ-F
processor and 512 MB SDRAM. :

e USB Ports : Raspberry Pi comes with two USB 2.0 ports, The USB ports on Raspberry
Pi can provide a current upto 100mA. For connecting devices that draw current more
than 100mA, an external USB powered hub is required.

¢ Ethernet Ports : Raspberry Pi comes with a standard RJ45 Ethernet port. You can
connect an Ethernet cable or a USB Wifi adapter to provide Internet connectivity.

¢ HDMI Output : The HDMI port on Raspberry Pi provides both video and audio
output. You can connect the Raspberry Pi to a monitor using an HDMI cable. For
monitors that have a DVI port but no HDMI port, you can use an HDMI to DVI
adapter/cable.

¢ Composite Video Output : Raspberry Pi comes with a composite video output with
an RCA jack that supports both PAL and NTSC video output. The RCA jack can be
used to connect old televisions that have an RCA input only.

e Audio Output : Raspberry Pi has a 3.5mm audio output jack. This audio jack is used
for providing audio output to old televisions along with the RCA jack for video. The
audio quality from this jack is inferior to the HDMI output.

e GPIO Pins : Raspberry Pi comes with a number of general purpose input/ouput pins.
Figure 7.3 shows the Raspberry Pi GPIO headers. There are four types of pins on
Raspberry Pi - true GPIO pins, I12C interface pins, SPI interface pins and serial Rx and
Tx pins.

« Display Serial Interface (DSI) : The DSI interface can be used to connect an LCD
panel to Raspberry Pi.

e Camera Serial Interface (CSI) : The CSI interface can be used to connect a camera
module to Raspberry Pi.

¢ Status LEDs : Raspberry Pi has five status LEDs, Table 7.1 lists Raspberry Pi status
LEDs and their functions. .

e SD Card Slot : Raspberry Pi does not have a built in operating system and storage.
You can plug-in an SD card loaded with a Linux image to the SD card slot. Appendix-A
provides instructions on setting up New Out-of-the-Box Software (NOOBS) on
Raspberry Pi. You will require atleast an 8GB SD card for setting up NOOBS.

o Power Input : Raspberry Pi has a micro-USB connector for power input.

Bahga & Madisetti, (¢) 2015




7.4 Linux on Raspberry Pi 181

Table 7.1: Raspberry Pi Status LEDs

RCA Vidao

GPI0 Headers
Statug LEDs

D5l Connaciar
Display

S0 Card
Slot

Micre LSE I S Ethwrnet
iy I d
Prraser

L5 Connectar
i) Camera

Figure 7.2: Raspberry Pi board

7.4 Linux on Raspberry Pi

Raspberry Pi supports various flavors of Linux including:

¢ Raspbian Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi. This
is the recommended Linux for Raspberry Pi, Appendix-1 provides instructions on
setting up Raspbian on Raspberry Pi.

e Arch : Arch is an Arch Linux port for AMD devices.

e Pidora : Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

e RaspBMC : RaspBMC is an XBMC media-center distribution for Raspberry Pi.

® OpenELEC : OpenELEC is a fast and user-friendly XBMC media-center distribution.

¢ RISC OS : RISC OS is a very fast and compact operating system.

Internet of Things - A Hands-On Approach



182 loT Physical Devices & Endpoints

- (B O
soipcion | Q @ |
avigacstd | Q) © | seome
@01 | O O | smouumrnny
mlﬂ © | o1 sar wny. |
(oD O O el :
e | Q © | anousa : -
aou |Q O oen {
e |0 O eron
s shomcs) | @) @ | oo
sl s () | oo
CemonERE | @) ) | G ko o
showo | O € | ‘oRo7EmocELN)

Figure 7.4: Rasbian Linux desktop

Bahga & Madisetti, © 2015




183

| 7.4 Linux on Raspberry Pi

T idamesyi®

S fann Iﬂl- il
l.:n“"lr-“"‘ "' Mt.-ll.l.lllll

b ki o it enppore s
i me. o T
*hitg: f fbugs. deblea. o=

¥

Figure 7.6: Console on Raspberry Pi

of Things - A Hands-Cn Approach



184 loT Physical Devices & Endpoints

n re T Hvad fr i useen st by deer gading ard ratalieg
o i Gt of Bl Soksmea OS] ke DO o lagard B0 caed. On
T beet, dhin aemsnie pou k& otuins bl efena g apsiee e,
ki Raapbin, Pikors 5o e Rinmrs of i, nce o b
il 7 pparnieg apilire, o b e 18 e RS mie-ere by
foadilinng cosn st dhurireg e thie wies poe Lo emiich b o cfferent
g BT o et veTpes e wd? @ e el of i
T o

3 1@ i« [0 B)®

iy vk pO OO ol FeiR Pe HO B yuor dipless prebeed
rmmhiion, wewt | e HO gl i ponneted. f you da el e
Ak 07 prar WO iy 61 & 4 bire] 18 compaie curpad, prest Lo
B0 erd g pme baybead b s G awered mec, 0N s

Figure 7.7: Browser on Raspberry Pi

Figure 7.8: Raspberry Pi configuration tool

Figure 7.4 shows the Raspbian Linux desktop on Raspberry Pi. Figure 7.5 shows
the default file explorer on Raspbian. Figure 7.6 shows the default console on Raspbian.
Figure 7.7 shows the default browser on Raspbian. To configure Raspberry Pi, the raspi-config
tool is used which can be launched from command line as (Sraspi-config) as shown in
Figure 7.8, Using the configuration tool you can expand root partition to fill SD card, set
keyboard layout, change password, set locale and timezone, change memory split, enable

Bahga & Madisetti, @ 2015




—rre=re

7.4 Linux on Raspberry Pi 18

or disable SSH server and change boot behavior. It is recommended to expand the root
file-system so that you can use the entire space on the SD card.

Though Raspberry Pi comes with an HDMI output, it is more convenient to access the
device with a VNC connection or SSH. This does away with the need for a separate display
for Raspberry Pi and you can use Raspberry Pi from your desktop or laptop computer.
Appendix-A provides instructions on setting up VNC server on Raspberry Pi and the

instructions to connect to Raspberry Pi with SSH. Table 7.2 lists the frequently used -

commands on Raspberry Pi.

Pl'it li. ﬂtE]]j]]g a Pane.m S:WP -T ilpiu- mm -

e L —

Table 7.2: Raspberry Pi frequently used ¢ 230 { el

Internet of Things - A Hands-On Approach



186 loT Physical Devices & Endpoints

7.5 Raspberry Pi Interfaces
Raspberry Pi has serial, SPI and 12C interfaces for data transfer as shown in Figure 7.3.

7.5.1 Serial

The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for communication !
with serial peripherals. !

7.5.2 SPI

Serial Peripheral Interface (SPI} is a synchronous serial data protocol used for communicating
with one or more peripheral devices. In an SPI connection, there is one master device and
one or more peripheral devices. There are five pins on Raspberry Pi for SPI interface:
MISO (Master In Slave Out) : Master line for sending data to the peripherals.
MOSI (Master Out Slave In) : Slave line for sending data to the master.

SCK (Serial Clock) : Clock generated by master to synchronize data transmission
CED (Chip Enable 0) : To enable or disable devices.

CED (Chip Enable 1) : To enable or disable devices.

753 12C

The I2C interface pins on Raspberry Pi allow you to connect hardware modules. 12C interface
allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line).

7.6 Programming Raspberry Pi with Python

In this section you will learn how to get started with developing Python programs on
Raspberry Pi. Raspberry Pi runs Linux and supports Python out of the box. Therefore, you
can run any Python program that runs on a normal computer. However, it is the general
purpose input/output capability provided by the GPIO pins on Raspberry Pi that makes it
useful device for Internet of Things. You can interface a wide variety of sensor and actuators
with Raspberry Pi using the GPIO pins and the SPI, 12C and serial interfaces. Input from the
sensors connected to Raspberry Pi can be processed and various actions can be taken, for
instance, sending data to a server, sending an email, triggering a relay switch.

7.6.1 Controlling LED with Raspberry Pi

Let us start with a basic example of controlling an LED from Raspberry Pi. Figure 7.9 shows
the schematic diagram of connecting an LED to Raspberry Pi. Box 7.1 shows how to turn

Bahga & Madisetti, © 2015 |




ik

7.6 Programming Raspberry Pi with Python 187

the LED on/off from command line. In this example the LED is connected to GP1O pin 18.
You can connect the LED to any other GPIO pin as well.

Box 7.2 shows a Python program for blinking an LED connected to Raspberry Pi every
second. The program uses the RPi. GP10 module to control the GPIO on Raspberry Pi. In
this program we set pin 18 direction to output and then write T'rue/False alternatively after a
delay of one second.

Internet of Things - A Hands-On Approach



188 | loT Physical Devices & Endpoints

7.6.2 Interfacing an LED and Switch with Raspberry Pi
Nuwletusluukaxammdmﬂedmmplemmlvmgmlmmdamhthnsumdm
control the LED.

Fm:e?lﬂmmmgsnhma&cmnmufmmmmmmwkuﬁmy
Pi. Box 7.3 shows a Python program for controlling an LED with a switch. In this example
the LED is connected to GPIO pin 18 and switch is connected to pin 25, In the infinite while
loop the value of pin 25 is checked and the state of LED is toggled if the switch is pressed.
This example shows how to get input from GPIO pins and process the input and take some
action. The action in this example is toggling the state of an LED. Let us look at another
example, in which the action is an email alert. Box 7.4 shows a Python program for sending
an email on switch press. Note that the structure of this program is similar to the program in
Box 7.3. ﬂﬂspmgmmumﬁeﬁmnnsmwﬁrmmmﬂmﬂzm
cunnﬂctudtuRaspben'}'P‘iispressad '




r A

7.6 Programming Raspberry Pi with Python

o Figure 7.10: Interfacing LED and switch with Raspberry Pi

et of Things - A Hands-On Approach

5
T
i

e



Bahga & Madisetti, © 2015



_n{ ”

7.6 Programming Raspberry Pi with Python 191

7.6.3 Interfacing a Light Sensor (LDR) with Raspberry Pi

: So far you have learned how to interface LED and switch with Raspberry Pi. Now let us
i look at an example of interfacing a Light Dependent Resistor (LDR) with Raspberry Pi and
| turning an LED on/off based on the light-level sensed.

H;um?ll@w:hﬁmﬂ&mﬁomw&;nlﬂmmﬁ.m
one side of LDR 1o 3.3V and other side to a 1uF capacitor and also to a GPIO pin (pin 18 in
this example). An LED is connected to pin 18 which is controlled based on the light-level
sensed.

Box 7.5 shows the Python program for the LDR example. The mdLDR[]ﬂmﬂiua
returns a count which is proportional to the light level. In this function the LDR pin is set
to output and low and then to input. At this point the capacitor starts charging through the
resistor (and a counter is started) until the input pin reads high (this happens when capacitor
voltage becomes greater than 1.4V). The counter is stopped when the input reads high. The
final count is proportional to the light level as greater the amount of light, smaller is the LDR
resistance and greater is the time taken to charge the capacitor.

internet of Things - A Hands-On Approach



192 loT Physical Devices & Endpoints

Figure 7.11: Interfacing LDR with Raspberry Pi

Bahga & Madisetti, © 2015




7.7 Other loT Devices 193

7.7 Other loT Devices

Let us look at single-board mini-computers which are alternatives to Raspberry Pi. Table 7.3
provides a comparison of some single-board mini-computers that can be used for loT.

Figure 7.12: pcDuino

Figure 7.13: Beaglebone Black

7.7.1 pcDuino
pcDuino [105] is an Arduino-pin compatible single board mini-computer that comes with a
1 GHz ARM Cortex-A8 processor. pcDuino is a high performance and cost effective device

Internet of Things - A Hands-On Approach



194 loT Physical Devices & Endpoints

Figure 7.14: Cubieboard

that runs PC like OS such as Ubuntu and Android ICS. Like, Raspberry Pi, it has an HDMI
video/audio interface. pcDuino supports various programming languages including C, C++
(with GNU tool chain), Java (with standard Android SDK) and Python.

7.7.2 BeagleBone Black

BeagleBone Black{106] is similar to Raspberry Pi, but a more powerful device. It comes
with a 1 GHz ARM Cortex-A8 processor and supports both Linux and Android operating
systems. Like Raspberry Pi, it has HDMI video/audio interface, USB and Ethernet ports.

7.7.3 Cubieboard

Cubieboard [107] is powered by a dual core ARM Cortex A7 processor and has a range
of input/output interfaces including USB, HDML, IR, serial, Ethernet, SATA, and a 96 pin
extended interface. Cubieboard also provides SATA support. The board can run both Linux

and Android operating systems.

Bahga & Madisetti, © 2015




7.7 Other loT Devices - 195

Summary

In this chapter you learned about Raspberry Pi which is a low-cost mini-computer. Raspberry
Pi supports various flavors of Linux operating system. The official recommended operating
system is Raspbian Linux. Raspberry Pi has an ARM processor, 512MB RAM, two USB
ports, HDMI, RCA and audio outputs, Ethernet port, SD card slot and DSI and CSI interfaces.
Raspberry Pi has serial, SPI and I2C interfaces for data transfer. Raspberry Pi supports
Python. You learned how to develop Python programs that run on Raspberry Pi. You learned
how to interface LED, switch and LDR with Raspberry Pi.

Review Questions

1. How is Raspberry Pi different from a desktop computer?
2. What is the use of GPIO pins?
3. What is the use of SPI and I2C interfaces on Raspberry Pi?7

Internet of Things - A Hands-On Approach



196 loT Physical Devices & Endpoints

VideoCore IV PowerVR Dual core ARM |
S Multimedia s SGX530 Mali 400 MP2

':- U. I ponunbs e i ‘ e s D |
Input/Output | MMC,  SDIO | - 441 USB.| g5 SATA, IR
card slot SENsor

Angstrom Linux, | Android, Official |

Android, Ubuntu | Linux distribution

Table 7.3: Comparison of single board mini-computers

Bahga & Madisetti, © 2015



This Chapter Covers

¢ Cloud Storage Models & Communication APIs
e Web Application Messaging Pmmml (WAMP)
* Xively cloud for IoT

e Python web application framework - Django

* Developing applications with Django

¢ Developing REST web services

¢ Amazon Web Services for IoT

e SkyNet IoT Messaging Platform




198 loT Physical Servers & Cloud Offerings

8.1 Introduction to Cloud Storage Models & Communication APIs

Cloud computing is a transformative computing paradigm that involves delivering applications
and services over the Internet. NIST defines cloud computing as [77] - Cloud computing is
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction, The interested reader may want to refer to the companion book
on Cloud Computing by your authors.

In this chapter you will learn how to use cloud computing for Internet of Things
(IoT). You will learn about the Web Application Messaging Protocol (WAMP), Xively's
Platform-as-a-Service (PaaS) which provides tools and services for developing IoT solutions,
You will also learn about the Amazon Web Services (AWS) and their applications for loT.

8.2 WAMP - AutoBahn for loT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket which
provides publish-subscribe and remote procedure call (RPC) messaging patterns. WAMP
enables distributed application architectures where the application components are distributed
on multiple nodes and communicate with messaging patterns provided by WAMP.

Let us look at the key concepts of WAMP: '

o Transport: Transport is channel that connects two peers. The default transport for
WAMP is WebSocket. WAMP can run over other transports as well which support
message-based reliable bi-directional communication.

¢ Session: Session is a conversation between two peers that runs over a transport.

¢ Client: Clients are peers that can have one or more roles. In publish-subscribe model
client can have following roles:

- Publisher: Publisher publishes events (including payload) to the topic maintained
by the Broker.

~ Subscriber: Subscriber subscribes to the topics and receives the events including
the payload.

In RPC model client can have following roles:

~ Caller: Caller issues calls to the remote procedures along with call arguments.

- Callee: Callee executes the procedures to which the calls are issued by the caller
and returns the results back to the caller.

* Router: Routers are peers that perform generic call and event routing. In publish-subscribe
model Router has the role of a Broker:

~ Broker: Broker acts as a router and routes messages published to a topic to all

Bahga & Madisetti, © 2015




8.2 WAMP - AutoBahn for loT 199

subscribers subscribed to the topic.
In RPC model Router has the role of a Broker:

- Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee

and routes results from Callee to Caller.
e Application Code: Application code runs on the Clients (Publisher, Subscriber,

Callee or Caller).

Figure 8.1 shows a WAMP Session between Client and Router, established over a Transport. °
Figure 8.2 shows the WAMP protocol interactions between peers. In this figure the WAMP
transport used is WebSocket. Recall the WebSocket protocol diagram explained in Chapter-1.
WAMP sessions are established over WebSocket transport within the lifetime of WebSocket

transport.

Figure 8.1: WAMP Session between Client and Router

For the examples in this hands-on book we use the AutoBahn framework which provides
open-source implementations of the WebSocket and WAMP protocols [100]. i

Figure 8.3 shows the communication between various components of a typical
WAMP-AutoBahn deployment. The Client (in Publisher role) runs a WAMP application
component that publishes messages to the Router. The Router (in Broker role) runs on the
Server and routes the messages to the Subscribers. The Router (in Broker role) decouples
the Publisher from the Subscribers. The communication between Publisher - Broker and
Broker - Subscribers happens over a WAMP-WebSocket session.

Let us look at an example of a WAMP publisher and subscriber implemented using
AutoBahn. Box 8.1 shows the commands for installing AutoBahn-Python.

i . i ,,f:g i

Internet of Things - A Hands-On Approach



loT Physical Servers & Cloud Offerings

WARP transport
lifetime

e TCP ponnection established
- TLS connection established j
fequest 1o setup WebSocket Cannection
. Response accepting the request
le- WAMP established
WAMP closed
WAMP established |
-
G WAMP closed o
WabSocke! connection close request ¥
WebSocket connection close response
TLS connection closed
-+
i TCP connection closed

B
Hyssrt e e, =-Ld

Tpgipaw i

Uit reisealingg

Bahga & Madisettl, © 2015




WAMP - AutoBahn for loT

nstalling AutoBahn, clone AutobahnPython from GitHub as follows:

‘a WAMP publisher component as shown in Box 8.2. The publisher component
s 4 message containing the current time-stamp to a topic named 'test-topic’. Next,
WAMP subscriber component as shown in Box 8.3. The subscriber component that
to the "test-topic’. Run the application router on a WebSocket transport server as

e publisher component over a WebSocket transport client as follows:

,_ ﬁlﬁcﬁbﬂcompmmtwua.w transport client as follows:




202 loT Physical Servers & Cloud Offerings

While you can setup the server
mmmmmmﬁmﬁhﬂ;mwmmm
machines. The server process (the brains or the "Thing Tank"!) is setup on a
mmncewhﬂeﬂmcﬂentpmmmunmmﬂmmlmﬂhummﬂimuinmm

8.3 Xively Cloud for loT

Jﬁvﬂylsammmddﬂaﬁmwmmmucmhm&mmﬂm
for Internet of Things. WiﬂtXivelyclmd.Ianwelopmmfocmmmeﬁmt-md

Bahga & Madisettl, © 2015




8.3 Xively Cloud for loT 203

infrastructure and devices for IoT (that generate the data), while the backend data collection
infrastructure is managed by Xively.

<> Add Device

Thas Mhwely Developar Weikhench il hal o te el your dadoes;
npplications and Lervices [akag ko poch oFer TEoLGS Keay. Tre sl
NP I8 0 Cradln @ deakpined cevon, Bagn by pravicig ase b
nfarmahiare

PrOVBEY Vi ot el cimla, wan kg s B L 99800 krio

* Privie Device
T0E e A BEET B ENDins Haad e an ana e e
s

© Publc Davice
Vou #iaed u sfuew & devon's dale snder fae COD 10

UakspE i oerae. The Davice's dits b miznd D 34 radin
ENDS Angnien, dnrl WL Focd DOgE i PRl iy et

m s

Figure 8.4: Screenshot of Xively dashboard - creating a new device

Xively platform comprises of a message bus for real-time message management and
routing, data services for time series archiving, directory services that provides a search-able
directory of objects and business services for device provisioning and management. Xively
provides an extensive support for various languages and platforms, The Xively libraries
leverage standards-based API over HTTP, Sockets and MQTT for connecting IoT devices to
the Xively cloud. In this chapter we will describe how to use the Xively Python library.

To start using Xively, you have to register for a developer account. You can then create
development devices on Xively. Figures 8.4 shows screenshot of how to create a new device
from the Xively dashboard. When you create a device, Xively automatically creates a

Internet of Things - A Hands-Cn Approach



204 loT Physical Servers & Cloud Offerings

1 I N
Weather Station - Acthted ) Cesiniss _

Pracuct B BRI T Frea B ez ety s e A0 9931
Prndurt Beanl | ol C2iInc AR 2 IOBRII3ETT R e AR I ey, ot Do B SR
Seridl Mumber AP EAR PARINH )

Achustion Cese b0 Ton T Chid s 46 TESERLE

Lo s v v
Request Log [ |
Add Channels to your Devicel
ot v S5 L R, . r
Vot raquenh il DS b 15 000 I me e R R (A
l cehug try clic i wach Dok st
CRannes Lo .o ohm sy sge M Gt
AP Keys
Location
Autor-generated Weather Sintion device loey for feed
o A gt PO LA L T
s SADLUFTATE CRLATL TYLITE
Meladata ’ R I
'l.:* & s Ky
Crdansd BA S T) =230 N
Erabin W R
L LE
Emall Triggers

Tripged ravls ‘putl’ CApaERn By e el ST POST iegursiy
=L, ol R DR BN 8 paeiRor L Laen s fed

Figure 8.5: Screenshot of Xively dashboard - device details

Feed-ID and an API Key to connect to the device as shown in Figures 8.5, Each device has a
unigue Feed-ID. Feed-ID is a collection of channels or datastreams defined for a device and
the associated meta-data. API keys are used to provide different levels of permissions. The .
default API key has read, update, create and delete permissions,

Xively devices have one or more channels. Each channel enables bi-directional
communication between the loT devices and the Xively cloud. loT devices can send data w
a channel using the Xively APIs. For each channel, you can create one or more triggers. A
trigger specification includes a channel to which the trigger comresponds, trigger condition

Bahga & Madisetti, © 2015




8.3 Xively Cloud for loT 205

e T T A

- (e.g. channel value less than or greater than a certain value) and an HTTP POST URL
 to which the request is sent when the trigger fires. Triggers are used for integration with
~ Let us look at an example of using Xively cloud for an [oT system that monitors
temperature and sends the measurements to a Xively channel. The temperature monitoring
device can be built with the Raspberry Pi board and a temperature sensor connected to the
board. The Raspberry Pi runs a controller program that reads the sensor values every few
seconds and sends the measurements to a Xively channel. Box 8.4 shows the Python program
 for the sending temperature data to Xively Cloud. This example uses the Xively Python
library. To keep the program simple and without going into the details of the temperature
sensor we use synthetic data (generated randomly in readTempSensor() function). The
- complete implementation of the read TempSensor() function is described in the next chapter.
~ Inthis controller program, a feed object is created by providing the API key and Feed-ID.
a channel named remperature is created (if not existing) or retrieved. The temperature
sent to this channel in the runController() function every 10 seconds. Figures 8.6
the temperature channel in the Xively dashboard. In this example we created a single
device with one channel. In real-world scenario each Xively device can have multiple
els and you can have multiple devices in a production batch. :

=




206 loT Physical Servers & Cloud Offerings

8.4 WWWW-DW_

In the previous section, you learned about the Xively PaaS for collecting and processing data
from IoT systems in the cloud. You leamed how to use the Xively Python library. To build
ToT applications that are a backed by Xively cloud or any other data collection systems, you

Bahga & Madisetti, © 2015



8.4 Python Web Application Framework - Django 207

Bctumted ") Drpciss i i
Weather Station # bl G hif !.:_

Piivan Do Feat D ) E e T
Prestuet D dal RELCELIMBLL DT T Fowil LIAL mitp oty convirede 030898
Product Bechel || a1 Battec Mo N0 R OGRS B RETT R 280 A Endpalal AR Pl oo e du T A IS
Serisi Mambar || ARATARTANINH i il '
Aciiustion Code | nAISEIN fendiT el Subbbadscd SR80 0d

Channels e asins s b secona sgn N orapns Roquast Log M Pausn
B0 PUT Chisnel Empanmns LRl Ly o
temperatura 20 0 PUT channel Empemmune MR
+ asa channe
Lecation
M Aon ocetion
APl Keys
Metadata i
Auto-generated Westher Siation device key for faed
Taga 50389951
B oriptian
Crentedl JASEE 40830 QR el Pty pla s PR pVRAE DO BOATHETND
b s pemniusiond READ LPCWTECRELT LOMATE
e pitvald BEERES
Amad

4 i ey

Figure 8.6: Screenshot of Xively dashboard - data sent to channel

would require some type of web application framework. In this section you will learn about
a Python-based web application framework called Django.

Django is an open source web application framework for developing web applications
in Python [116). A "web application framework" in general is a collection of solutions,
packages and best practices that allows development of web applications and dynamic
websites. Django is based on the well-known Model-Template-View architecture and
provides a separation of the data model from the business rules and the user interface.
Django provides a unified API to a database backend. Therefore, web applications built with
Django can work with different databases without requiring any code changes. With this
flexibility in web application design combined with the powerful capabilities of the Python
language and the Python ecosystem, Django is best suited for IoT applications. Django,
concisely stated, consists of an object-relational mapper, a web templating system and a -

Internet of Things - A Hands-On Approach



208 loT Physical Servers & Cloud Offerings

regular-expression-based URL dispatcher.

8.4.1 Django Architecture

Django is a Model-Template-View (MTV) framework wherein the roles of model, template
and view, respectively, are 1

Model
The model acts as a definition of some stored data and handles the interactions with the
database. In a web application, the data can be stored in a relational database, non-relational
database, an XML file, etc. A Django model is a Python class that outlines the variables and
methods for a particular type of data.

Template 2
In a typical Django web application, the template is simply an HTML page with a few extr
placeholders. Django’s template language can be used to create various forms of text file:
(XML, email, CSS, Javascript, CSV, etc.)

View
The view ties the model to the template. The view is where you write the code that actuall
generates the web pages. View determines what data is to be displayed, retrieves the dal
from the database and passes the data to the template. 1

8.4.2 Starting Development with Django .
Appendix C provides the instructions for setting up Django. In th1s section you will leas
how to start developing web applications with Django.

Creating a Django Project and App
Box 8.5 provides the commands for creating a Django project and an application withi
project.

‘When yau create a new django project a number of files are created as described belos

. __.py: This file tells Python that this folder is a Python package

® managn py: This file contains an array of functions for mm;mg the me

» settings.py: This file contains the website's settings

e urls.py: This file contains the URL patterns that map URLs to pages. .,

A Dijango project can have multiple applications ("apps"). Apps are whﬂe you write
code that makes your website function. Each project can have multiple apps and
can be part of multiple projects.




208 loT Physical Servers & Cloud Offerings

regular-expression-based URL dispatcher.

8.4.1 Django Architecture
Django is a Model-Template-View (MTV) framework wherein the roles of model, template
and view, respectively, are

Model ,
The model acts as a definition of some stored data and handles the interactions with the
database. In a web application, the data can be stored in a relational database, non-relational
database, an XML file, etc. A Django model is a Python class that outlines the variables and
methods for a particular type of data.

Template

In a typical Django web application, the template is simply an HTML page with a few extra
placeholders. Django’s template language can be used to create various forms of text files
(XML, email, CSS, Javascript, CSV, etc.)

View

The view ties the model to the template. The view is where you write the code that actually
generates the web pages. View determines what data is to be displayed, retrieves the data
from the database and passes the data to the template.

8.4.2 Starting Development with Django
Appendix C provides the instructions for setting up Django. In this section you will learn
how to start developing web applications with Django.

Creating a Django Project and App
Box 8.5 provides the commands for creating a Django project and an application within a
project,

When you create a new django project a number of files are created as described below:

e __init__.py: This file tells Python that this folder is a Python package

e manage.py: This file contains an array of functions for managmg the site.

» settings.py: This file contains the website's settings -

e urls.py: This file contains the URL patterns that map URLSs to pagéa. s

A Django project can have multiple applications ("apps"). Apps are where you write the
code that makes your website function. Each project can have multiple apps and each app
can be part of multiple projects.

Bahga & Madisett, © 2015




8.4 Python Web Application Framework - Django

When a new application is created a new directory for the application is also created
which has a number of files including:

* model.py: This file contains the description of the models for the application.

o views.py: This file contains the application views.

: Django comes with a built-in, lightweight Web server that can be used for development
E mmmwmwmmmmmmmum
at the URL: http:/localhost:8000. Figure 8.7 shows a screenshot of the default project.

O course, _“—qr-uwﬂ:l. M-t-n—t ui

. Im—--llmﬂhmmhhlm.y.
. Hmﬁqnm“" 3 w

Configuring a Database
Tlllmywhwlumdhnwmcmnmﬂjmgapmjactandmappwiﬂamm
project. Most web applications have a database backend. Developers have a wide choice of

Internet of Things - A Hands-On Approach — ——




210 loT Physical Servers & Cloud Offerings

databases that can be used for web applications including both relational and non-relational
databases. Django provides a unified API for database backends thus giving the freedom to
PostgreSQL., Oracle and SQLite3. Support for non-relational databases such as MongoDB .
can be added by installing additional engines (e.g. Django-MongoDB engine for MongoDB). 3

Let us look at examples of setting up a relational and a non-relational database witha
Django project. The first step in setting up a database is to install and configure a database
server. Afier installing the database, the next step is to specify the database settings in the
setting.py file in the Django project.

Box 8.6 shows the commands to setup MySQL. Box 8.7 shows the database setting to
use MySQL with a Django project.

Box sxmummmmmwwwmﬁ@&m S
engine. Box 8.9 shows the database setting to use MongoDB within a Django project.




8.4 Python Web Application Framework - Django

Defining a Model f
A Model acts as a definition of the data in the database. Intl:us section we will uplsinDjmgu
with the help of a weather station application that displays the temperature data collected by
an IoT device. Box 8.10 shows an example of a Django model for TemperatureData. The
TemperatureData table in the database is defined as a Class in the Django model. !
Each class that represents a database table is a subclass of d jango.db.models.Model
which contains all the functionality that allows the models to interact with the database.
The TemperatureData class has fields timestamp, temperature, lat and lon all of which are
CharField. To sync the models with the database simply run the following command:

>python manage.py syncdb

When the syncdb command is run for the first time, it creates all the tables defined in the
DjﬂﬂgﬂmndelmthumﬂgumﬂdaﬂhaumeemfmmmabumﬂmD]mmdph
refer to the Django documentation [117].




8.3 Xively Cloud for loT 205

(e.g. channel value less than or greater than a certain value) and an HTTP POST URL
to which the request is sent when the trigger fires. Triggers are used for integration with
third-party applications.

Let us look at an example of using Xively cloud for an IoT system that monitors
temperature and sends the measurements 1o a Xively channel, The temperature monitoring
device can be built with the Raspberry Pi board and a temperature sensor connected to the
board. The Raspberry Pi runs a controller program that reads the sensor values every few
seconds and sends the measurements to a Xively channel. Box 8.4 shows the Python program
for the sending temperature data to Xively Cloud. This example uses the Xively Python
library. To keep the program simple and without going into the details of the temperature
sensor we use synthetic data (generated randomly in readTempSensor() function). The
complete implementation of the read TempSensor() function is described in the next chapter.
In this controller program, a feed object is created by providing the API key and Feed-ID.
Then a channel named temperature is created (if not existing) or retrieved. The temperature
data is sent to this channel in the runController() function every 10 seconds. Figures 8.6
shows the temperature channel in the Xively dashboard. In this example we created a single
Xively device with one channel. mmﬂ-wnﬂdwmﬁnmmvdydavhumhwmm
mmmmmmmmmmm




206 loT Physical Servers & Cloud Offerings

8.4 Python Web Application Framework - Django

In the previous section, you leamed about the Xively Paa$ for collecting and processing data
from IoT systems in the cloud. Ymhumd!mwmmmmvmwﬂhqhw
IoT applications that are a backed by Xively cloud or any other data collection systems, you

Bahga & Madisetti, © 2015




8.4 Python Web Application Framework - Django 207

Ja Dyvice it il Fead ID EOBESSEY |
Produst 10 ol A BB DT 1 | Foud Ll Hllpsitabiy b Tendh S0 aas08]
Product Beerel | sISStinciie im0 s FERTTIORG 00 AP Endpaiet It Ly ey CD M R SO

I Activmted T Dniciuis "

Bevinl Mamber  HNMAARTWLLGY
Aiivation Code 04105108 0aUITTaTcSahb 0BT o3 407028500

L ntsgir e Caveron dlege

CNANNGIS Lt s wosaconas o M ooges  Request Log M e
Fip (T =k oz orzmies s
temperature 20 05 PUT chinoet tempariee A
+ &dd Crannal
Locatian
-.Mdbﬂum
AP Nye
Metadata ’

Auta-penarsted Westher Statlon devics kay for feed

Taga 503E9051

it B ik mnl::n::_num:
m anhthaEEa ity

Bmes

+ add Kay

Figure 8.6: Screenshot of Xively dashboard - data sent to channel

would require some type of web application framework. In this section you will learn about
a Python-based web application framework called Django.

Django is an open source web application framework for developing web applications
in Python [116]. A "web application framework" in general is a collection of solutions,
packages and best practices that allows development of web applications and dynamic
websites. Django is based on the well-known Model-Template-View architecture and
provides a separation of the data model from the business rules and the user interface.
Django provides a unified API to a database backend. Therefore, web applications built with
Django can work with different databases without requiring any code changes. With this
flexibility in web application design combined with the powerful capabilities of the Python
language and the Python ecosystem, Django is best suited for IoT applications. Django,
concisely stated, consists of an object-relational mapper, a web templating system and a

Internet of Things - A Hands-On Approach



208 loT Physical Servers & Cloud Offerings

regular-expression-based URL dispatcher.

8.4.1 Django Architecture
Django is a Model-Template-View (MTV) framework wherein the roles of model, template
and view, respectively, are:

Model .
The model acts as a definition of some stored data and handles the interactions with the
database. In a web application, the data can be stored in a relational database, non-relational
database, an XML file, etc. A Django model is a Python class that outlines the variables and
methods for a particular type of data.

Template

In a typical Django web application, the template is simply an HTML page with a few extra
placeholders. Django's template language can be used to create various forms of text files
(XML, email, CSS, Javascript, CSV, etc.)

View

The view ties the model to the template. The view is where you write the code that actually
generates the web pages. View determines what data is to be displayed, retrieves the data
from the database and passes the data to the template.

8.4.2 Starting Development with Django
Appendix C provides the instructions for setting up Django. In this section you will learn
how to start developing web applications with Django.

Creating a Django Project and App
Box 8.5 provides the commands for creating a Django project and an application within a
project.

When you create a new django project a number of files are created as described below:

o __init__.py: This file tells Python that this folder is a Python package

» manage.py: This file contains an array of functions for managing the site,

o settings.py: This file contains the website's settings

¢ urls.py: This file contains the URL patterns that map URLs to pages.

A Django project can have multiple applications ("apps"). Apps are where you write the
code that makes your website function. Each project can have multiple apps and each app
can be part of multiple projects,

Bahga & Madisetti, © 2015




"

T e

8.4 Python Web Application Framework - Django 209

When a new application is created a new directory for the application is also created
which has a number of files including:

e model.py: This file contains the description of the models for the application,

e views.py: This file contains the application views.

Django comes w:thnhmlt—m, hghtwm,ghl Web semrttmmanbﬂusedfurdweiopment
purposes. WhmtheDjangodewlopmm:smusWdthedafaﬂpm&tcanb:M
at the URL: http://localhost:8000. Figure 8.7 shows a screenshot of the default project.

b e e
kst l,ﬂgl rléll' LRk il -%’ ||

iy il el i B '“'ﬁﬁi.‘zlam.! i :I".I

wmw“m#mwmhm mﬂh#t&. i

] o “ﬁhm*hm,ﬂ ik :
i ey orcy .

Figure 8.7: Django default project

Configuring a Database
Tl]lnnwyuuhavelemudhnwmmﬂannewﬁmnpﬁ;cctmdmnppu&ﬂﬂnﬂu
project. Most web applications have a database backend. Developers have a wide choice of |

Internet of Things - A Hands-On Approach




210 loT Physical Servers & Cloud Offerings

databases that can be used for web applications including both relational and non-relational
databases. Django provides a unified API for database backends thus giving the freedom to
choose the database. Django supports various relational database engines including MySQL,
PostgreSQL, Oracle and SQLite3. Support for non-relational databases such as MongoDB
can be added by installing additional engines (e.g. Django-MongoDB engine for MongoDB).
Let us look at examples of setting up a relational and a non-relational database witha .
Django project. The first step in setting up a database is to install and configure a database
server. After installing the database, the next step is to specify the database settings in the
setting.py file in the Django project. ! :
Box 8.6 shows the commands to setup MySQL. Box 8.7 shows the database setting to
use MySQL with a Django project. '

----------------------

Box 8.8 shows the commands to setup MongoDB and the associated Djan;go-'MungaDB
engine. Box 8.9 shows the database setting to use MongoDB within a Django project.

R

Bahga & Madisetti, © 2015




8.4 Python Web Application Framework - Django 21

Defining a Model
A Model acts as a definition of the data in the database. In this section we will explain Djan,

mmmmmofawmmwmma:Mﬁmwm 0

an IoT device. Box 8.10 shows an example of a Django model for Ten

TemperatureData table in ﬁMhmﬂlmm'
Each class that represents a database table is a subclass of d

which contains all the functionality that allnws the nodels to i

The TemperatureData class has fields timestamp, temperature, lat and lor

CharField. To sync the models with the database simply run the following ¢

>python manage.py syncdb
Whmmasymdbnmmndmmfwmnﬂruumltcmaﬂlthwhh

Django model in the configured database. memmmmm -
refer to the Django documentation [117].

Internet of Things - A Hands-On Approach




212 loT Physical Servers & Cloud Offerings

Django Admin Site g
Dijango provides an administration system that allows you to manage the website without
writing additional code. This "admin" sjmtemmdsﬂmnjangﬂmndelmdprmridnm :
interface that can be used to add content to the site. The Django admin site is enabled by
adding d jango.contrib.admin and d jango.contrib.admindocs to the INSTALLED_APPS
section in the settings.py file. The admin site also requires URL pattern definitions inthe
urls.py file described later in the URLs sections. ]
To define which of your application models should be editable in the admin interface,a
newﬂlenamedaduunp}rmmatedmthcapphcaﬁunfuldmasshminﬂnxﬂ & &

Figure 8.8 shows a screenshot of the default admin interface. You can see all the tables
corresponding to the Django models in this screenshot. Figure 8.9 shows how to add new
items in the TemperatureData table using the admin site.

Defining a View

The View contains the logic that glues the model to the template. The view determines the
data to be displayed in the template, retrieves the data from the database and passes it to the
template. Conversely, the view also extracts the data posted in a form in the template and

Bahga & Madisetti, © 2015




8.4 Python Web Application Framework - Django 213

bbickidhE ot ot i il et i i e b S A e e St
Add temperature data =
Timestamp: [1393s26%8 |

Figure 8.8: Screenshot of default Django admin interface

Pl adicistean SH- BRI L B S

Site administration
I.;.w.uﬂ:wmu-h;r.ﬁ-liuu..m.
Groups dAdd  FChange | | My Actions 1
Nies #rdd  #Change | | 91393520457
T T SRS
R $ 1393626308 |
Temperature data |

Figure 8.9: Adding data to table from Django admin interface

inserts it in the database. Typically, each page in the website has a separate view, which is
basically a Python function in the views.py file. Views can also perform additional tasks
such as authentication, sending emails, etc,

Box 8.12 shows an example of a Django view for the Weather Station app. This view
corresponds to the webpage that displays latest entry in the TemperatureData table. In this
view the Django’s built in object-relational mapping API is used to retrieve the data from
the TemperatureData table. The object-relational mapping API allows the developers to
write generic code for interacting with the database without worrying about the underlying
database engine. So the same code for database interactions works with different database
backends. You can optionally choose to use a Python library specific to the database

Internet of Things - A Hands-On Approach



214 IoT Physical Servers & Cloud Offerings

backend used (e.g. MySQLdb for MYSQL, PyMongo for MongoDB, etc.) to write database
backed specific code. For more information about the Django views refer to the Django
documentation [118].

In the view shown in Box 8.12, the TemperatureData.ob jects.order_by('—id")[0] query
returns the latest entry in the table. To retrieve all entries, you can use table.objects.all().
To retrieve specific entries, you can use rable.ob jects. filter(s « kwargs) to filter out queries
that match the specified condition. To render the retrieved entries in the template, the.
render_to_response function is used. This function renders a given template with a given
context dictionary and returns an Hrt pResponse object with that rendered text. Box 8.13 i
shows an alternative view that retrieves data from the Xively cloud. -

Bahga & Madisetti, © 2015



hon Web Application Framework - Django

i mlhmpllh
. anjmgommphtaiurypicauymmm{mmhi:mbemymﬂfmmem
as XML, email, CSS, Javascript, CSV, etc,). Django templates allow separation of the
presentation of data from the actual data by using placeholders and associated logic (using
template tags). A template receives a context from the view and presents the data in context
variables in the placeholders. Box 8.14 shows an example of a template for the Weather
Station app. In the previous section you learned how the data is retrieved from the database
in the view and passed to the template in the form of a context dictionary. In the example
shown in Box 8.14, the variables containing the retrieved temperature, latitude and longitude
are passed to the template. mMmMummmwwmmmm
Djanaoﬁucumr.nmuan[ll?]

Internet of Things - A Hands-On Approach



216 loT Physical Servers & Cloud Offerings

Figure 8.10 shows the home page for the Weather Station app. Thnll:lnnplpism
from the template shown in Box 8.14.

Defining the URL Patterns ;
URL Patterns are a way of mapping the URLS to the views that should handle the URL
requests. The URLSs requested by the user are matched with the URL patterns and the view
corresponding to the pattern that matches the URL is used to handle the request. Box 8.15
shows an example of the URL patterns for the Weather Station project. As seen in this
example, the URL patterns are constructed using regular expressions. The simplest regular

Bahga & Madisetti, @ 2015




8.4 Python Web Application Framework - Django 217

Weather Station

h } 1 h f :-?ﬂ :,.
Temparstore 160G x|

Figure 8,10: Screenshot of a temperature monitoring web npphcahnn

expression (r’ * $') corresponds to the root of the website or the home page. For more
information about the Django URL patterns refer to the Django documentation [120].

With the models, views, templates and URL patterns defined for the Django project, the
application is finally run with the commands shown in Box 8.16.

Internet of Things - A Hands-On Approach



218 loT Physical Servers & Cloud Offerings

8.5 Designing a RESTful Web API

In this section you will learn how to develop a RESTful web API. The example in this
section uses the Django REST framework [89] introduced earlier for building a REST API.
With the Django framework already installed, the Django REST framework can be installed

as follows:

After installing the Django RESTﬁ'ammrk, let us create a new Django project named
rest fulapi, and then start a new app called myapp, as follows:

The REST API described in this section allows you to create, view, update and delete a
collection of resources where each resource represents a sensor data reading from a weather
monitoring station. Box 8.17 shows the Django model for such a station. The station model
contains four fields - station name, timestamp, temperature, latitude and longitude. Box 8.18
shows the Django views for the REST APL ViewSets are used for the views that allow you
to combine the logic for a set of related views in a single class.

Box 8.19 shows the serializers for the REST API. Serializers allow complex data (such
as querysets and model instances) to be converted to native Python datatypes that can
then be easily rendered into JSON, XML or other content types. Serializers also provide

dnw'iahzmaﬂwingpmaddammbemmﬂdhwkmmcompkxm:ﬂm*ﬁm !

validating the incoming data.

Bahga & Madisettl, © 2015

e . Tl




i 8.5 Designing a RESTful Web API G0

should be mapped to the logm that deals with handﬁnl
%szlmmmfmmmmmmmm '"“m,

Internet of Things - A Hands-On Approach




220 loT Physical Servers & Cloud Offerings

e AR

Bahga & Madisets, @ 2015



8.5 Designing a RESTful Web AP 221

After creating the Station REST API source files, the next step is to setup the database
and then run the Django development web server as follows: T

Internet of Things - A Hands-On Approach




222 loT Physical Servers & Cloud Offerings

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach




224 loT Physical Servers & Cloud Offerings

Box 8.22 shows examples of interacting with the Station REST API using CURL.
The HTTP POST method is used to create a new resource, GET method is used to obtain
information about a resource, PUT method is used to update a resource and DELETE method
is used to delete a resource. Figure 8.11 shows the screenshots from the web browsable
Station REST APIL.

R i AR - " i . .,,, .I m..l
Station List e | wer e

T =, R,
"ot =M, ML

Figure 8.11: Screenshot from the web browsable Station REST API

Bahga & Madisetti, © 2015



8.6 Amazon Web Services for loT 225

8.6 Amazon Web Services for loT
1In this section you will learn how to use Amazon Web Services for IoT.

8.6.1 Amazon EC2
‘Amazon EC2 is an Infrastructure-as-a-Service (IaaS) provided by Amazon. EC2 delivers
scalable, pay-as-you-go compute capacity in the cloud. EC2 is a web service that provides
computing capacity in the form of virtual machines that are launched in Amazon’s cloud
computing environment. EC2 can be used for several purposes for IoT systems, For example,
10T developers can deploy IoT applications (developed in frameworks such as Django) on
EC2, setup IoT platforms with REST web services, etc

Let us look at some examples of using EC2. BDIB.TJ shows the Python code for
launching an EC2 instance. In this example, a connection to EC2 service is first established
by calling boto.ec2.connect_to_region. The EC2 region, AWS access key and AWS secret
key are passed to this function. After connecting to EC2 , a new instance is launched
using the conn.run_instances function. The AMI-ID, instance type, EC2 key handle and
mntwmpmpmummummmmammw
associated with the reservation are obtained using reservation.instances. Finally the status
of an instance associated with a reservation is obtained using the inst. function.

In the example mmmm&nmmmﬁnmmﬂmmw
Mmmumﬁmmmmmmmmﬂmw&m
IHmdlaunl:htlmc

Internet of Things - A Hands-On Approach



226 loT Physical Servers & Cloud Offerings

Bux&%slmwsﬂ:?ﬁﬁmmduﬁrmpmnsmﬁmmmlummﬁn&n :
conn.get_all_instances function is called to get information on all running instances. This :
function returns reservations. Next, the IDs of instances associated with each reservation are L

obtained. The instances are stopped by calling conn.stop_instances ﬂmcl:lontnwh:chthn '
msnfthniusunmwmpmm&ed '

Bahga & Madisetti, @ 2015




n Web Services for loT

Amazon AutoScaling allows automatically scaling Amazon EC2 capacity up or down

according to user defined conditions. Therefore, with AutoScaling users can increase
hmﬂmmmmmwmﬁﬂymmhm
e down

mltywhenﬂwwmkloadisluwmuwmﬂs mScﬂmsmbenuiﬁi
10T applications and IoT platforms deployed on Amazon EC2. - s
Let us now look at some examples of using AutoScaling. Box 8.25 shows the Python
code for creating an AutoScaling group. hﬂﬂummph,amﬁwt&
service is first established by calling boto.ec2.autoscale.connect_to_regi Sy
The EC2 region, AWS access key and AWS secret mmMﬁ%-. function.

Imnmﬂnﬂtﬂm-il-hnd&-ﬂnﬁpprmh



228 loT Physical Servers & Cloud Offerings

After connecting to AutoScaling service, a new launch configuration is created by calling
conn.create_launch_con figuration. Launch configuration contains instructions on how

to launch new instances including the AMI-ID, instance type, security groups, etc. After
creating a launch configuration, it is then associated with a new AutoScaling group. AutoScaling
group is created by calling

conn.create_auto_scaling_group. The settings for AutoScaling group include maximum
and minimum number of instances in the group, launch configuration, availability zones, .
optional load balancer to use with the group, etc. After creating an AutoScaling group, the
policies for scaling up and scaling down are defined. In this example, a scale up policy with
adjustment type ChangelnCapacity and scaling_ad justment = 1 is defined. Similarly a
scale down policy with adjustment type ChangeInCapacity and scaling_ad justment = —1

is defined. With the scaling policies defined, the next step is to create Amazon CloudWatch
alarms that trigger these policies. In this example, alarms for scaling up and scaling down
are created. The scale up alarm is defined using the CPUUtilization metric with the Average
statistic and threshold greater 70% for a period of 60 sec. The scale up policy created
previously is associated with this alarm. This alarm is triggered when the average CPU
utilization of the instances in the group becomes greater than 70% for more than 60 seconds.
The scale down alarm is defined in a similar manner with a threshold less than 50%.

Bahga & Madisetti, @ 2015







230 loT Physical Servers & Cloud Offerings

8.6.3 Amazon S3

msasammmmmwmmﬁmmma
mmm&@ﬁmmm scalable, fast, fully redundant and
affordable storage infrastructure. S3 can serve as amwdamuxﬁ{mmmhh'r .
systems for storing raw data, such as sensor data, log data, image, audio and video data.

Intualookatmmuxampﬂnwfmngss BuxszﬁshmthePyﬂ:onmdnﬁnrwloms |

waw @015



86 Amazon Web Services for loT 231

le to Amazon S3 cloud storage. In this example, a connection to $3 service is first
establis by calling boto.connect_s3 function. The AWS access key and AWS secret key
¢ passed to this function. This example defines two functions upload_to_s3_bucket_path

- 5?MJ0J3_W_M+ The upload_to_s3_bucket _path function uploads the file

1o the 53 bucket specified at the specified path. The upload_to_s3_bucker _root function
- uploads the file to the S3 bucket root. 3

8.6.4 Amazon RDS

Amazon RDS is a web service that allows you to create instances of MySQL, Oracle or
Microsoft SQL Server in the cloud. With RDS, developers can easily set up, operate, and
scale a relational database in the cloud. !

RDS can serve as a scalable datastore for [oT systems. With RDS, IoT system developers
can store any amount of data in scalable relational databases. Let us look at some examples of
using RDS. Box 8.27 shows the Python code for launching an Amazon RDS instance. In this
example, a connection to RDS service is first established by calling boto.rds.connect_to_region

Internet of Things - A Hands-On Approach




232 loT Physical Servers & Cloud Offerings

function, The RDS region, AWS access key and AWS secret key are passed to this function.
Afier connecting to RDS service, the conn.create_dbinstance function is called to launch a
new RDS instance. The input parameters to this function include the instance ID, database
(e.g. MySQLS.1), database name, security groups, etc. The program shown in Box 8.27
waits till the status of the RDS instance becomes available and then prints the instance
details such as .

Bahga & Madisetti, © 2015




x 8.28 shows the Python code for creating a MySQL table, writing and reading from
ble. This example uses the MySQLdb Python package. To connect to the MySQL RDS
ce. the MySQLdb.connect function is called and the end point of the RDS instance,
\se username, password and port are passed to this function. After the connection to the
instance is established, a cursor to the database is obtained by calling conn.cursor. Next,

a new database table named TemperatureData is created with Id as primary key and other
columns, After creating the table some values are inserted. To execute the SQL commands
@wm manipulation, the commands are passed to the cursor.execute function.

Internet of Things - A Hands-On Approach



234 . 10T Physical Servers & Cloud Offerings

8.6.5 Amazon DynamoDB !

Amazon DynamoDB is a fully-managed, scalable, high performance No-SQL database
service. DynamoDB can serve as a scalable datastore for IoT systems. With DynamoDB,
IoT system developers can store any amount of data and serve any level of requests for the
data. .

Let us look at some examples of using DynamoDB. Box 8.29 shows the Python code for
creating a DynamoDB table. In this example, a connection to DynamoDB service is first
established by calling : by 1
boto.dynamodb.connect _to_region. The DynamoDB region, AWS access key and AWS
secret key are passed to this function. After connecting to DynamoDB service, a schema
for the new table is created by calling conn.create_schema. The schema includes the
hash key and range key names and types. A DynamoDB table is then created by calling
conn.create_table function with the table schema, read units and write units as input

Bahga & Madisetti, © 2015




g@wm.wm Services for loT 235

Box 8.30 shows the Python code for writing and reading from a DynamoDB table. After
establishing a mmmmmnn service, the conn.get_table is mwm
an existing table. mmmmmmmmmmmw,
Body, Cm«dﬂymm mmﬂmmmwsmwmm

m%ummmmmnwmm
mmisﬁnallyctmﬁpdw ng item. put. To read data from Dynamo
mm:;ajmmumumﬁ&mmmmgmum

IMNW*AM!WW




236 loT Physical Servers & Cloud Offerings

Bahga & Madisetti, © 2015



';': - 8.6 Amazon Web Services for loT

on Kinesis is a fully managed commercial service that allows real-time processing of
g data, Kinesis scales automatically to handle high volume streaming data coming

plications running on Amazon EC2 instances or any other compute instance that can
to Kinesis. Kinesis is well suited for IoT systems that generate massive scale data

er, a partition key and the data blob. Data records in a Kinesis stream are distributed in
s. Each shard provides a fixed unit of capacity and a stream can have multiple shards.
shard of throughput allows capturing 1MB per second of data, at up to 1,000 PUT
ons per second and allows applications to read data at up to 2 MB per second.
8.31 shows a Python program for writing to a Kinesis stream, This example follows
lar structure as the controller program in Box 8.4 that sends temperature data from
ToT device to the cloud. In this example a connection to the Kinesis service is first
ished and then a new Kinesis stream is either created (if not existing) or described. The

Internet of Things - A Hands-On Approach



238 loT Physical Servers & Cloud Offerings

Bahga & Madisetti, © 2015



5 Amazon Web Services for loT

'8.32 shows a Python program for reading from a Kinesis stream.
or is obtained using the kinesis.get_shard_iterator function,
the position in the shard from which you want to start
ally. The data is read using the kinesis.get_records function
e data records from a shard. .




240 loT Physical Servers & Cloud Offerings

8.6.7 Amazon SQS

Amazon SQS offers a highly scalable and reliable hosted queue for storing messages as they
travel between distinct components of applications. SQS guarantees only that messages
arrive, not that they arrive in the same order in which they were put in the queue. Though,
at first look, Amazon SQS may seem to be similar to Amazon Kinesis, however, both are
intended for very different types of applications. While Kinesis is meant for real-time
applications that involve high data ingress and egress rates, SQS is simply a queue system
that stores and releases messages in a scalable manner.

SQS can be used in distributed IoT applications in which various application components
need to exchange messages. Let us look at some examples of using SQS. Box 8.33
shows the Python code for creating an SQS queue. In this example, a connection to
SQS service is first established by calling boto.sqs.connect_to_region. The AWS region,
access key and secret key are passed to this function. After connecting to SQS service,
conn.create_gueue is called to create a new queue with queue name as input parameter. The
function conn.get_all_qgueues is used to retrieve all SQS queues.

Bahga & Madisetti, © 2015




O

; Bmssdmmerymmmwﬁngmnsq&m Aﬂumaminswm
- SQS queue, the gueue.write is called with the message as input parame

Internet of Things - A Hands-On Approach



242 loT Physical Servers & Cloud Offerings

masswmmmmmm}nmmmmum
SQS queue, the gueue.read is called to read a message from a queue. { 4

Bahga & Madisett, © 2015

P




8.6 Amazon Web Services for loT 243

|

8.6.8 Amazon EMR

AmnmnEMRmawehseﬂmnﬂmtuﬁHzeaHadoapﬁamewmkmmnugm&mzonm
and Amazon S3. EMR allows processing of massive scale data, hence, suitable for lIoT
applications that generate large volumes of data that needs to be analyzed. Datapmuming
jobs are formulated with the MapReduce parallel data processing model.

MapRadumisapa:aﬂddahpmcamugmudulfmpmmgmﬂanﬂysisofm1w
scale data [85], MapReduce model has two phases: Map and Reduce. MapReduce programs
are written in a functional programming style to create Map and Reduce functions, The
input data to the map and reduce phases is in the form of key-value pairs.

Consider an IoT system that collects data from a machine (or sensor data) which is
logged in a cloud storage (such as Amazon S3) and analyzed on hourly basis to generate
alerts if a certain sequence occurred more than a predefined number of times. Since the
aulcuf&atainvol\redmuunhnpphnmumbemmm,h!apnedumumidmm&:-

processing such data.

Let us look at a MapReduce example that finds the number of occurrences of a sequence
r from a log. Box 8,36 shows the Python code for launching an Elastic MapReduce job. In this
example, amnuanMmhmm&meMﬁm
The AWS region, access key and secret key are passed to this function. After connecting
to EMR service, a jobflow step is created. There are two types of steps - streaming and

Internet of Things - A Hands-On Approach




T T T R T T

244 loT Physical Servers & Cloud Offerings

custom jar. To create a streaming job an object of the StreamingStep class is created by
specifying the job name, locations of the mapper, MWﬂWMﬂM
is then started using the conn.run_jobflow function with stre step object as input.

When the MapReduce job completes, the output can be m&mﬁmmmau
the S3 bucket specified while creating the streaming step.

Bahga & Madisettl, © 2015




i
1.

8.6 Amazon Web Services for loT 245

ox 8.37 shows the sequence count mapper program in Python. The mapper reads the
from standard input (stdin) and for each line in input in which the sequence occurs, the
ipper emits a key-value pair where key is the sequence and value is equal to 1. -

Box 8.38 shows the sequence count reducer program in Python. The key-value pairs

up the occurrences to compute the count for each sequence.

Internet of Things - A Hands-On Approach




246 loT Physical Servers & Cloud Offerings

8.7 SkyNet loT Messaging Platform
SkyNet is an open source instant messaging platform for Internet of Things. The SkyNet
API supports both HTTP REST and real-time WebSockets. SkyNet allows you to register
devices (or nodes) on the network. A device can be anything including sensors, smart home
devices, cloud resources, drones, etc. Each device is assigned a UUID and a secret token.
Devices or client applications can subscribe to other devices and receive/send messages.
Box 8.39 shows the commands to setup SkyNet on a Linux machine. Box 8.40 shows
a sample configuration for SkyNet. Box 8.41 shows examples of using SkyNet. The first
step is to create a device on SkyNet. The POST request to create a device returns the
UUID and token of the created device. The box also shows examples of updating a device,
retrieving last 10 events related to a device, subscribing to a device and sending a message
to a device. Box 8.42 shows the code for a Python client that performs various functions
mhumﬂnﬁﬂm:&vﬂmhgwﬂmmemham :

Bahga & Madisetti, @ 2015




‘8.7 SkyNet loT Messaging Platform 247

Internet of Things - A Hands-On Approach




248 loT Physical Servers & Cloud Offerings

Bahga & Madisett, © 2015







250 loT Physical Servers & Cloud Offerings

Summary

In this chapter you learned about various cloud computing services and their applications
for IoT. You learned about the WAMP protocol and the AutoBahn framework. WAMP is a
sub-protocol of Websocket which provides publish-subscribe and RPC messaging patterns.
You learned about the Xively Platform-as-a-Service that can be used for creating solutions
for Internet of Things. Xively platform comprises of a message bus for real-time message
management and routing, data services for time series archiving, directory services that
provides a searchable directory of objects and business services for device provisioning and
management. You learned how to send data to and retrieve data from Xively.

You learned about Django which is an open source web application framework for
developing web applications in Python. Django is based on the Model-Template-View
architecture. You also learned how to develop a Django application made up of model, view
and templates. You learned how to develop a RESTful web APL

You learned about various commercial cloud services offered by Amazon. Amazon
EC2 is a computing service from Amazon. You learned how to programmatically launch
an Amazon EC2 instance. Amazon AutoScaling allows automatically scaling Amazon
EC2 capacity up or down according to user defined conditions. You also learned how to
programmatically create an AutoScaling group, define AutoScaling policies and CloudWatch
alarms for triggering the AutoScaling policies. Amazon 53 is an online cloud-based
data storage from Amazon. You learned how to programmatically upload a file to an
53 bucket. Amazon RDS is a cloud-based relational database service. You learned how to
programmatically launch an RDS instance, view running instances, connect to an instance,
create a MySQL table, write and read from the table on the RDS instance. Amazon
DynamoDB is a No-SQL database service. You learned how to programmatically create
a DynamoDB table, write and read from a DynamoDB table. Amazon SQS is a scalable
queuing service from Amazon. You learned how to programmatically create an SQS queue,
write messages to a queue and read messages from a queue. Amazon EMR is a MapReduce
web service. You learned how to programmatically create an EMR job. Finally, you learned
about the SkyNet messaging platform for IoT.

Review Questions

What is the difference between a Xively data stream and a channel?

Describe the architecture of a Django application.,

What is the function of URL patterns in Django?

What is the purpose of an Amazon AutoScaling group? Describe the steps involved in
creating an AutoScaling group.

e =

Bahga & Madisetti, © 2015




8.7 SkyNet loT Messaging Platform 251

5. What is Amazon DynamoDB? Describe an application that can benefit from Amazon
DynamoDB,

. Describe the use of Amazon Kinesis for [oT.

. What are the uses of messaging queues? What are the message formats supported by
Amazon SQS?T

. What does a MapReduce job comprise of?

9. What protocols does the SkyNet messaging platform support?

=1 o

Internet of Things - A Hands-Cn Approach




' This Chapter Covers
InT case studies on:
e Smart Lighting
¢ Home Intrusion Detecuon
i Smart Parking :
| Weather Monitpﬁng System :
| » Weather Reporting Bot
| Air Pollution Mumtnnng
" @ Forest Fire Detection
e Smart Irrigation
‘e IoT Printer




254 Case Studies lllustrating loT Design

9.1 Introduction

In Chapter-2 you learned about the applications of Internet of Things for homes, cities,
environment, energy systems, retail, logistics, industry, agriculture and health. This chapter
provides concrete implementations of several of these applications helping you understand
how sophisticated applications are designed and deployed. The case studies are based on the
10T design methodology described in Chapter-5. The IoT device used for the case studies
is the Raspberry Pi mini-computer. The case studies are implemented in Python and use
the Django framework. You learned about basics of Python and Django in Chapters 6 and
8, respectively. However, principles you have learned are not limited to these particular
languages or platforms.

9.2 Home Automation

9.2.1 Smart Lighting

A design of a smart home automation system was described in Chapter-5 using the IoT
design methodology. A concrete

implementation of the system based on Django framework is described in this section. The
purpose of the home automation system is to control the lights in a typical home remutcl},r
using a web application.

The system includes auto and manual modes. In auto mode, the system measures the
light in a room and switches on the light when it gets dark. In manual mode, the system
provides the option of manually and remotely switching on/off the light.

Figure 9.1 shows the deployment design of the home automation system. As explained
in Chapter-5, the system has two REST services (mode and state) and a controller native
service. Figures 9.2 and 9.3 show specifications of the mode and state REST services of the
home automation system. The Mode service is a RESTful web service that sets mode to
auto or manual (PUT request), or retrieves the current mode (GET request) . The mode is
updated to/retrieved from the database. The State service is a RESTful web service that sets
the light appliance state to on/off (PUT request), or retrieves the current light state (GET
request). The state is updatbd to/retrieved from the status database.

Bahga & Madisetti, © 2015




9.2 Home Automation 255

Cloud

Monitaring Node i
performs analysis, stores data : il

Figure 9.1: Deployment design of the home automation IoT system

To start with the implementation of the system, we first map services to Django models.
Box 9.1 shows the model fields for the REST services (state - on/off and mode - auto/manual).

Internet of Things - A Hands-On Approach



256 Case Studies lllustrating loT Design

hers Dutput

has input

Figure 9.2; Service specification for home automation 10T system - mode service

Fas Output :

Figure 9.3: Service specification for home automation IoT system - state service

Bahga & Madisetti, © 2015




'M[MM@MM}MMWWWWW
MWMMMMMMWW mmmm-

hmmwmmmmmwmm

j_ngicfma&utufﬁlmdﬂﬂwsinnmg}em:. Box 9.3 shows the Django

ST services and home automation application. The ViewSets for the models

and StateViewSet) are included in the views file. 'I‘heapp]mmm{hum)
"_lﬂﬂ'intlmumnn.

Internet of Things - A Hands-On Approach



258 Case Studies lllustrating loT Design

.'|
1
]
3
F

Bm?4ab&wsﬂ1&ﬂﬂmf«&ekﬂﬂmﬂmu&hmmm&mm

Bahga & Madisetti, © 2015



9.2 Home Automation 259

Smcaﬂﬁstﬂsmwudmsﬂudafw&wsfmﬁeRE&Tmmm -
generate the URL configuration by simply registering the viewsets w&%r

Routers mmnﬂcallydmmhuwﬁwlmufmm application shoulﬁt__ the

Box#ﬁshnmﬂmcodefmmmmaotmphuﬁmhchumemmmaﬁmapgﬂcam

Internet of Things - A Hands-Cn Approach



260 Case Studies lllustrating loT Design

Figure 9.4 shows a screenshot of the home automation web application.

]

Figure 9.4: Home automation web application screenshot

Figure 9.5 shows a schematic diagram of the home automation IoT system. The devices
and components used in this example are Raspberry Pi mini computer, LDR sensor and relay
switch actuator. -

Figure 9.6 shows the specification of the controller native service that runs on Raspberry
Pi. When in auto mode, the controller service monitors the light level and switches the light
on/off and updates the status in the status database. When in manual mode, the controller
service, retrieves the current state from the database and switches the light on/off. A Python
implementation of the controller service is shown in Box 9.6.

Bahga & Madisetti, © 2015




9.2 Home Automation 261

Figure 9.5: Schematic diagram of the home automation ToT system showing the device,
sensor and actuator integrated |

Internet of Things - A Hands-On Approach




262 Case Studies lllustrating loT Design

Bahga & Madisetti, @ 2015




Internet of Things - A Hands-On Approach



264 Case Studies lllustrating loT Design

9.2.2 Home Intrusion Detection

You got an overview of home intrusion detection systems in Chapter-2. A concrete
implementation of a home intrusion detection system is described in this section. The
purpose of the home intrusion detection system is to detect intrusions using sensors (such as
PIR sensors and door sensors) and raise alerts, if necessary.

Figure 9.7 shows the process diagram for the home intrusion detection system. Each
room in the home has a PIR motion sensor and each door has a door sensor. These sensors
can detect motion or opening of doors, Eaﬂmmlamdnmgnlnwmdmm
detection or door opening events are stored and alerts are sent.

Figure 9.8 shows the domain model for the home intrusion detection system. The domain
model includes physical entities for room and door and the corresponding virtual entities.
The device in this example is a single-board mini computer which has PIR and door sensors
attached to it. The domain model also includes the services involved in the system.

Figure 9.9 shows the information model for the home intrusion detection system. The
information model defines the attributes of room and door virtual entities and their possible
values. The room virtual entity has an attribute "'motion’ nnﬂﬂlednur?irmﬂﬂmtrhﬂm
attribute 'state’.

The next step is to define the service specifications for the system. The services are
derived from the process specification and the information model. The system has three
services - (1) a RESTful web service that retrieves the current state of a door from the -

Bahga & Madisetti, © 2015




9.2 Home Automation

Gioaw ppaord E Dourciated i Motion srcscond /\ W i
v

t ——

Figure 9.7: Process specification of the home intrusion detection IoT system

Figure 9.8: Domain model of the home intrusion detection [oT system

Internet of Things - A Hands-On Approach




266 Case Studies lllustrating loT Design

Figure 9.9: Information model of the home intrusion detection IoT system

database or sets the current state of a door to open/closed, (2) A RESTful web service that
retrieves the current motion in a room or sets the motion of a room to yes/no, (3) a native
controller service that runs on the device and reads the PIR and door sensors and calls the |
REST services for updating the state of rooms and doors in the database. Figures 9.10,
Figures 9.11 and 9.12 show specifications of the web services and the controller service.

Figure 9.10: Service specification for the home intrusion detection loT system - door service

Bahga & Madisettl, © 2015



9.2 Home Automation 267

Figure 9.11: Service specification for the home intrusion detection IoT system - room service

Figure 9.12: Controller service of the home intrusion detection IoT system

Figure 9.13 shows the deployment design for the home intrusion detection system. Recall
that this is a level-2 loT system,

The functional view and the operational view specifications for home intrusion detection
system are shown in Figure 9.14. Various options pertaining to the system deployment and
operation and their mapping to the corresponding functional groups is shown in Figure 9.14.

Internet of Things - A Hands-On Approach




268 Case Studies lllustrating loT Design

Local

Menltering Node
performs analysls Cloud Storage

Figure 9.13: Deployment design for the home intrusion detection IoT system

The system uses Django framework for web application and REST service. The Django
web application is backed by a MySQL database. The IoT device used for this example is
Raspberry Pi along with the PIR and door sensors, Figure 9.15 shows a schematic diagram
of the home intrusion detection system and Figure 9.16 shows how the sensors are deployed
in a parking.

Let us now look at the implementation of the web application and services for the system.
Box 9.7 shows the model fields for the room and door REST service. After implementing
the Django model, we implement the model serializers that allows model instances to be
converted to native Python datatypes. Box 9.8 shows the serializers for room and door REST
services. -

Bahga & Madisetti, © 2015




9.2 Home Automation

wa)ss UONY9IOP OIS WOy 10F suoTEaYAds M3 [euoNEId0 P [FUONOUNS :pT'6 AMI

Internet of Things - A Hands-On Approach




270 Case Studies lllustrating loT Design

Figure 9.15: Schematic diagram of the home intrusion detection IoT system prototype,
showing the device and ultrasonic sensor

i

Bahga & Madisetti, © 2015




9.2 Home Automation 2M
PIR sensars

i e Mdr:: the . :

T o vevice I b

.rf \
POl R [ _________________________ é

i i o

i ; ............. .;-‘_Hi\l

! ) B .-:"__'I::irl'l

Figure 9.16: Deployment of sensors forihnmp intrusion detection system

Box 9.9 shows the Django views for REST services and ho.

application. The ViewSets for the models (RoomViewSet and Room
in the views file. The home view renders the content for the !
application home page that displays the status of each room. Nmﬁmmiamm-

Internet of Things - A Hands-On Approach




|
|
272 Case Studies lllustrating loT Design

the state REST service to obtain the state of a room.




x9.10 shows the URL patterns for the REST services and home intrusion detection
o mmmmwgmfmmmmwm
cally generate the URL configuration by simply registering the viewsets with a

1 shows the code for the Django template for the home intrusion detetion




274 Case Studies lllustrating loT Design

application. This template is rendered by the home view. Hm?l?;hm:mmm::f
mmmﬁmmmm e :




\nternet of Things - A Hands-On Approach



276 Case Studies lllustrating loT Design

A Python implementation of the controller service native service that runs on Raspberry
Pi, is shown in Box 9.12. The runController function is called every second and the readings
ﬁmmmmMmmmwm«ﬂummmnm
wbymammmhmmmm :

Bahga & Madisettl, © 2015




- e ——r

9.3 Cities

Ymgmmwmw&mﬁpﬂhgsymmmpml A concrete implementation
smart parking ToT system is described in this section. woee G
Mpmpuwdamﬂpnﬂngsysmhmmﬂumm#;_ :




278 Case Studies lllustrating loT Design

Figure 9.17: Home intrusion detection web application screenshot

the Internet to a server. : ;
Figure 9.18 shows the process diagram for the smart parking system. Each parking slot

humulumrﬁemﬂmm.wiﬂchcandatactthepmemeufavehicleinthaﬂm.

Each sensor is read at regular intervals and the state of the parking slot (empty or occupied)
is updated in a database.

Figure 9.19 shows the domain model for the smart parking system. The domain model
includes a physical entity for the parking slot and the corresponding virtual entity. The
device in this example is a single-board mini computer which has ultrasonic sensor attached
to it. The domain model also includes the services involved in the system.

Figure 9.20 shows the information model for the smart parking system. The information ~

model defines the attribute (state) of the parking slot virtual entity with two possible values
(empty or occupied).

The next step is to define the service specifications for the system. The services are
dmivedﬁnmthcprmussspedﬂuaﬁmmd&winfomuﬁnﬂmndﬂ.ﬁamnﬂpuﬁﬂ;swm
has two services - (1) a service that monitors the parking slots (using ultrasonic sensors) and

Bahga & Madisetti, () 2015




.I

9.3 Cities . 279

Slot empty Slot occupied

Figure 9.18: Process specification for the smart parking [oT system

updates the status in a database on the cloud (REST web service), (2) a service that retrieves
the current state of the parking slots (controller native service). Figures 9.21 and 9.22 show
specifications of the controller and state services of the smart parking system.

The functional view and the operational view specifications for smart parking system are
similar to the specifications for the home intrusion detection system shown in Figure 9.14.
The system uses Django framework for web application and REST service - both of which
you learned about from earlier chapters of this book. The Django web application is
supported by a MySQL database. The IoT device used for this example is Raspberry Pi
along with the ultrasonic sensors. Figure 9.23 shows how the sensors are deployed in a
parking and Figure 9.24 shows a schematic diagram of the smart parking system.

Let us now look at the implementation of the web application and services for the
smart parking system. Box 9.13 shows the model fields for the state REST service. After
implementing the Django model, we implement the model serializer which allows model

Internet of Things - A Hands-On Approach



280 Case Studies lllustrating loT Design

Figure 9.19: Domain model of the smart parking IoT system

instances to be converted to native Python datatypes. Box 9.14 shows the serializer for state
REST service.

Bahga & Madisetti, © 2015

et W s b o 5,




9.3 Cities

281

Figure 9.20: Information model of the smart parking IoT system

Figure 9.21: Controller service of the smart parking IoT system

Internet of Things - A Hands-On Approach



282 Case Studies lllustrating loT Design

Box 9.15 shows the Django views for REST services and smart parking application.
The ViewSets for the model (State ViewSet) are included in the views file. The home view
renders the content for the smart parking application home page that displays the status of
the parking slots. Notice that a request is sent to the state REST service to obtain the state of
a parking slot. The code shown in this example is for a trivial case of a one-slot parking.




Figure 9.23: Deployment of sensors for smart parking system

Internet of Things - A Hands-On Approach




284 Case Studies lllustrating loT Design

Figure 9.24; Schematic diagram of the smart parking [oT system prototype, showing the
device and ultrasonic sensor

Bahga & Madisetti, @ 2015




Box 9.16 shows the URL patterns for the REST service and smart parking application.
Sjﬂw&mmuudmﬁnfwaformGRESTmu, we can automatically
generate the URL configuration by mgplyreghudngthavimmmthummcm

Box 9.17 ahuwsthemdeﬁ:ﬂh&ﬂjw_oumphwfm&mmpuﬁn& _ m
template is rendered by the home view. : 2

Internet of Things - A Hands-On Approach



286 Case Studies lllustrating loT Design




9.3 Cities 287

Figure 9.25 shows a screenshot of the smart parking web application.

Figure 9.25: Samrt Parking web application screenshot

a
|

F

A Python implementation of the controller service native service that runs on Raspberry
Pi, is shown in Box 9.18. The runController function is called every second and the reading
of the ultrasonic sensor is obtained. If the distance returned by the sensor is less than a
threshold, the slot is considered to be occupied. The current state of the slot is then updated
by sending a PUT request to the state REST service. ' E

Internet of Things - A Hands-On Approach



Case Studies lllustrating loT Design




9.4 Environment 289

9.4 Environment

9.4.1 Weather Monitoring System
REST-based Implementation

A design of a weather monitoring IoT system was described in Chapter-5 using the loT
design methodology. A concrete implementation of the system based on Django framework
is described in this section. The purpose of the weather monitoring system is to collect
data on environmental conditions such as temperature, pressure, humidity and light in an
area using multiple end nodes. The end nodes send the data to the cloud where the data is
aggregated and analyzed.

Figure 9.26 shows the deployment design for the system. The system consists of multiple
nodes placed in different locations for monitoring temperature, humidity and pressure in
an area. The end nodes are equipped with various sensors (such as temperature, pressure,
humidity and light). The end nodes send the data to the cloud and the data is stored in a cloud
database. The analysis of data is done in the cloud to aggregate the data and make predictions.
A cloud-based application is used for visualizing the data. The centralized controller can
send control commands to the end nodes, for example, to configure the monitoring interval
on the end nodes.

Figure 9.27 shows a schematic diagram of the weather monitoring system. The devices
and components used in this example are Raspberry Pi mini computer, temperature and
humidity sensor (DHT22), pressure and temperature sensor (BMPO85) and LDR sensor. An
analog-to-digital (A/D) converter (MCP3008) is used for converting the analog input from
LDR to digital.

Figure 9.28 shows the specification of the controller service for the weather monitoring
system. The controller service runs as a native service on the device and monitors temperature,
pressure, humidity and light every 10 seconds. The controller service calls the REST service
to store these measurements in the cloud. This example uses the Xively Platform-as-a-Service
for storing data. In the setupController function, new Xively datastreams are created for
temperature, pressure, humidity and light data. The runController function is called every
10 seconds and the sensor readings are obtained.

Internet of Things - A Hands-On Approach



290 Case Studies lllustrating loT Design

Cloud

Multiple Monitoring Nodes

Contraller Cloud Storage &
‘Analysis

Figure 9.26: Deployment design of the weather monitoring IoT system




8.4 Environment

291

Internet of Things - A Hands-On Approach



292 Case Studies lllustrating loT Design

Figure 9.28: Controller service of the weather Wh‘l‘ system

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach



294 Case Studies lllustrating loT Design




Internet of Things - A Hands-On Approach



296 Case Studies lllustrating loT Design

ngmmmmmmmnmwmmmw splays the
mmmammmwwmmmmnﬁm i
mmmﬂmmmmmrm

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach



298 Case Studies lllustrating loT Design

Bahga & Madisetti, © 2015




T

MWMWMMIMMhMMMMfwm
mmmmymmmmm:wmmm&
from the Xively cloud. UGS

mmm@-&ﬂnnmhnw



300 Case Studies Illustrating loT Design

Figure 9.29 shows a screenshot of the weather monitoring web application.
WebSocket-based Implementation
The previous section described a REST-based implementation of the weather monitoring
memhmmsmwmhmMnmﬂmmiwimpmmdmwaﬂu
monitoring loT system based on WebSocket.

MWebmmmhmm%wmmmw
(WAMP) which is a sub-protocol of WebSocket. You learned about Autobahn, an open
source implementation of WAMP in Chapter 8. The deployment design for the WebSocket
implementation is the same as shown in Figure 9.26.

Figure 9.30 shows the communication between various components of the WebSocket
implementation. The controller in the WebSocket implementation is a WAMP application
component that runs over a WebSocket transport client on the IoT device. WAMP application
router runs on a WebSocket transport server on the server instance in the cloud. The role of
the Client on the device in this example is that of a Publisher, while the role of the Router

is that of a Broker. Publisher publishes messages to the topics managed by the Broker.

Subscribers subscribe to topics they are interested in with Brokers. Brokers route events

Bahga & Madisetti, © 2015

|
|
|
1
|




9.4 Environment 301

Weather Station

Figure 9.29: Screenshot of weather monitoring web application

incoming from Publishers to Subscribers that are subscribed to respective topics. Brokers
decouple the Publisher and Subscriber. In this example, the Publisher and Subscriber run
application code. The Publisher application component is the controller component, the
source code of which is shown in Box 9.22. The Subscriber application component is the
web frontend, the source code of which is shown in Box 9.23. The analytics component runs
on a separate instance and subscribes to the topics managed by the Broker. Box 9.25 shows
the code for a dummy analytics component. The communication between Publisher - Broker
and Broker - Subscribers happens over a WAMP-WebSocket session. '

Internet of Things - A Hands-Cn Approach




302 Case Studies lllustrating loT Design

Bahga & Madisetti, © 2015



Internet of Things - A Hands-On Approach



304 Case Studies lllustrating loT Design

Bahga & Madisetti, ©) 2015




Internet of Things - A Hands-On Approach



306 Case Studies lllustrating loT Design




< T AT T

1 ol dFanaey s I

Internet of Things - A Hands-On Approach



308 Case Studies lllustrating oT Design

9.4.2 Weather Reporting Bot
This case study is about a weather reporting bot which reports weather information by sending
tweets on Twitter. Figure 9.31 shows a schematic of the weather monitoring end-node. The
end-node is comprised of a Raspberry Pi mini-computer, temperature, humidity, pressure
and light sensors. In addition to the sensors, a USB webcam is also attached to the device,
Box 9.26 shows the Python code for the controller service that runs on the end-node.
the sensors, every 30 minutes. At at the same time an image is captured from the webcam
attached to the device. The sensor readings and the captured image is then sent as a tweet on
Twitter. To send tweets the controller service uses a Python library for Twitter called rweepy.

Hﬂ‘“ﬂﬁ.@ml!

PPy ST




9.4 Environment

- With tweepy you can use the Twitter REST API to send tweets. Before using the Twitter
- API, you would need to setup a Twitter developer account and then create a new application
- (with read-write permissions). Upon creating the application you will get the API key, API
mﬁaﬁdmm Mm&gmmﬂmMmmmm

Internet of Things - A Hands-On Approach




310 Case Studies lllustrating loT Design

Figure 9.31: Schematic diagram of a weather reporting bot end-node showing the device
and sensors

Bahga & Madisetti, © 2015



Internet of Things - A Hands-On Approach



312 Case Studies lllustrating loT Design

FigmaﬂBZshmammhMofatwwtsmﬂby&mwuﬂmrmpmﬁnsbﬁmem

9.43 mmm
IoT based air pollut mmcmmmmmdhmmmh@ i
famnmmwmuﬁngmmmﬂm This section provides
an implementation of an air pollution monitoring IoT system. The deployment design for
the system is similar to the deployment shown in Figure 9.26. The system design steps are
smmmmammmmmmmmmmmmg
the schematic design and the controller implementation is provided. }
The system consists of multiple nodes placed in different locations for monitoring air
pollution in an area. The end nodes are equipped with CO and NO; sensors. The end
nodes send the data to the cloud and the data is stored in a cloud database. A cloud-based
application is used for visualizing the data. '
Pigme?ﬂuhuwauchmﬂcdmgmmufmrpoﬁmmmﬁmdnsmmﬂ
node includes a Raspberry Pi mini-computer, MICS-2710 NO; sensor and MICS-5525 CO

Bahga & Madisetti, @ 2015




9.4 Environment 313

Weather Update at: 2014/06,/23 13:28:49 -
Temperature: 28 C, Humidity: 55 %,
Pressure: 95959.5 Pa, Light: 9500 lux

il

& o § Wiow mise photos and videos

Figure 9.32: Screenshot of a weather update tweeted by the weather reporting bot

sensor. An A/D converter (MCP3008) is used for converting the analog inputs from the

sensors to digital.

Box 9.27 shows the implementation of the native controller service for air pollution
monitoring system. The controller service runs as a native service on the device and obtains
the sensor readings every 10 seconds. The controller service calls the Xively REST service

to store these measurements in the cloud.

Internet of Things - A Hands-On Approach



314 Case Studies lllustrating loT Design

Figure 9.33: Schematic diagram of air pollution monitoring end-node showing the device
and sensors

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach



316 Case Studies lllustrating loT Design

Bahga & Madisetti, © 2015




9.4 Environment 317

9.44 Forest Fire Detection
ToT based forest fire detection systems use a number of monitoring
different locations in a forest. Each monitoring node collects mea

cmdinms{mmhummpmtmvandhmﬂdity}mpmdium

Internet of Things - A Hands-On Approach




318 Case Studies lllustrating loT Design

nodes and sends to the cloud.

Figure 9.34 shows a schematic diagram of forest fire detection end-node. The end node
includes a Raspberry Pi mini-computer and DHT-22 temperature and humidity sensor. An
XBee module is used for wireless communication between the end-node and the coordinator
node. Figure 9.35 shows a schematic diagram of the coordinator node.

Boxes 9.28 and 9.29 show the implementations of the native controller services for the
end node and coordinator node respectively. The controller service on the end node obtains -
the sensor readings every 10 seconds and writes the data to the XBee module which sends
the data to the coordinator node. The controller service on the coordinator node receives the
data from all end nodes and calls the Xively REST service to store these measurements in
the cloud. :

The XBee modules can be configured to communicate with each other using a Windows
based application called X-CTU [127]. All XBee modules should have the same network
ID and channel. The XBee module for the coordinator node has to be configured as a
coordinator and the rest of the modules have to be configured as end devices or routers. !

Bahga & Madisett, ©2015




9.4 Environment

318




320 Case Studies lllustrating loT Design

Figure 9.35: Schematic diagram of a forest fire detection com‘dmaturnn&a




9.4 Environment

Internet of Things - A Hands-On Approach






9.5 Agriculture

9.5.1 Smart lrrigation - B et

Smﬂhﬂgxﬂmn@ﬂiuﬁlﬂTdﬂﬁmmﬂmlmhmmmm*ﬂ
dmmmmmmmmaﬂwdwmwuhﬂgaﬁmmmm
the moisture levels go below a predefined threshold. Data on the moisture levels is also

collected in the cloud where it is analyzed to plan watering schedules.
An implementation of a smart irrigation system is describi
deployment design for the system is similar to the deployment sh
mmﬂwmmmﬁmm'
in a field. The end nodes send the data to the cloud and the da
database. A cloud-based application is used for visualizing the data. F

Internet of Things - A Hands-On Approach




324 Case Studies lllustrating loT Design

schematic diagram of smart irrigation system end-node. The end node includes a Raspberry
Pi mini-computer and soil moisture sensor. A solenoid valve is used to control the flow of
water through the irrigation pipe. When the moisture level goes below a threshold, the valve
is opened to release water. Box 9.30 shows the Python code for the controller native service
for the smart irrigation system.

Figure 9.36: Schematic diagram of a smart irrigation system end-node showing the device
and sensor

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach




326 Case Studies llustrating loT Design




&
i

m

9.6 Productivity Applications _ 327

9.6 Productivity Applications

9.6.1 loT Printer

This case study is about an ToT printer that prints a daily briefing every morning. The daily
briefing comprises of the current weather information, weather predictions for the day and
the user’s schedule for the day (obtained from the user’s Google Calendar account).

Printer

Internet
Connection

Figure 9.37: Connecting a printer to Raspberry Pi

Box 9.31 shows the code for the service that runs on the mini-computer which is

Internet of Things - A Hands-On Approach



328 Case Studies Illustrating loT Design

IPETRREE RS eee———

Bahga & Madisetti, © 2015 -



Bm.?.ﬂzs'anmm of a daily briefing printed by the IoT printer. .

Internet of Things - A Hands-On Approach



330 Case Studies lllustrating loT Design

Summary

In this chapter you learned about various applications of IoT and fully developed case studies.
This provided you with a solid foundation, hopefully, that will assist you in designing
and implementing various levels of 10T systems. From the smart lighting case study you
learned how to implement a level-1 loT system comprising of a local controller, device
mmmmwmmmmmmmmn
mmmmﬁ»mwmmmmm
domain model, information model, service specifications, functional and operational view
specifications for a level-2 10T system. From the weather monitoring system case study
you leamned about two alternative approaches of implementing the services for an loT
system - one based on REST and other based on WebSocket. The weather monitoring system
described is a level-6 IoT system with multiple independent end nodes which perform sensing
and send data to the cloud. The REST implementation was done using the Django REST
framework and the WebSocket implementation was done using the AutoBahn framework.
From the air pollution monitoring, forest fire detection and smart irrigation case studies you
hmdhmmmmtypunfmwnhmlﬂdwloemdmﬂum
data.

Bahga & Madisetti, © 2015




9.6 Productivity Applications 331

Lab Exercises

1.

Design and implement a fire alarm loT system, using a Raspberry Pi device, temperature,
C0; and CO sensors. Follow the steps below:

¢ Define the process specification of the system. The system should collect and

analyze the sensor data and send email alerts when a fire is detected.

e Define a domain model.

* Define service specifications.

e Design a deployment of the system. The system can be a level-1 1oT system,

¢ Define the functional and operational view specifications.

o Implement the web services and controller service.
For the fire alarm loT system in exercise-1, identify the configuration and state data.
Define a YANG module for the system.
Rework the home automation case study to make it a level-2 loT system.
Extend the functionality of the home intrusion detection loT system to send email
alerts when an intrusion is detected.
Exiend the functionality of the home intrusion detection IoT system by interfacing a
webcam. Implement a function in the controller to capture an image from the webcam
and send it as an attachment in the email alert when an intrusion is detected.
Box 9.25 shown the code for a dummy analytics component of weather monitoring
system. Implement the analytics component to compute the hourly maximum and
minimum values of temperature and humidity.
Implement the air pollution monitoring system using the WebSocket approach.
Implement the analytics component for the forest fire detection system.

Iinternet of Things - A Hands-On Approach



ADVANCED TOPICS

1A

e




This Chapter Covers

o Overview of MapReduce parnllel pmgrammmg modei

¢ Overview of Hadoop

e Case study on batch data analysis using Hadonp

e Case study on real-time data analysis using Hadoop

e Overview of Apache Oozie .

e Overview of Apache Spark

e Overview of Apache Storm

. Casc study on usmg Apache Storm for real time data annlysis




336 Data Analytics for loT

10.1 Introduction

The volume, velocity and variety of data generated by data-intensive [oT systems is so large
Muuwmmwmwmmmmmmmm
and data processing tools. Mﬂmsﬂﬁumbeduuwnhwm&ﬂu
computing mean, maximum, minimum, counts, etc.) or using machine leaming methods
such as clustering and classification. Clustering is used to grouping similar data items
together such that, data items which are more similar 1o each other (with respect to some
similarity criteria) than other data items are put in one cluster, Classification is used for
categorizing objects into predefined categories.

In this chapter, you will learn about various frameworks for data analysis including
Apache Hadoop, Apache Oozie, Apache Spark and Apache Storm. Case studies on batch
and real-time data analysis for a forest fire detection system are described. Before going into
the specifics of the data analysis tools, let us look at the IoT system and the requirements for
data analysis.

Figure 10.1 shows the deployment design of a forest fire detection system with multiple
end nodes which are deployed in a forest. The end nodes are equipped with sensors for
measuring temperature, humidity, light and carbon monoxide (CO) at various locations
in the forest. Each end node sends data independently to the cloud using REST-based
communication. The data collected in the cloud is analyzed to predict whether fire has
broken out in the forest.

Figure 10.2 shows an example of the data collected for forest fire detection. Each row
in the table shows timestamped readings of temperature, humidity, light and CO sensors.
By analyzing the sensor readings in real-time (each row of table), predictions can be made
about the occurrence of a forest fire. The sensor readings can also be aggregated on a
various timescales (minute, hourly, daily or monthly) to determine the mean, maximum and
minimum readings. This data can help in developing prediction models.

Figure 10.3 shows a schematic diagram of forest fire detection end node. The end node
is based on a Raspberry Pi device and uses DHT22 temperature and humidity sensor, light
dependent resistor and MICS5525 CO sensor. Box 10.1 shows the Python code for the native
controller service than runs on the end nodes. This example uses the Xively Paa$S for storing
data. In the setupController function new Xively datastreams are created for temperature,
humidity, light and CO data. The runController function is called every second and the
sensor readings are obtained. The Xively REST API is used for sending data to the Xively
cloud.

Bahga & Madisetti, © 2015




|

10.1 Introduction

337

Cloud

Local

Erﬁﬁiﬂlﬁm e

Batch dats analytics with Hadoop-Mapheduce

Bwerage, mirimum, maaimum
il for Wimperature, humidity, light and CO
I the day

Real-time dats

" maching lnarning

Figure 10.2: Data analysis for forest fire detection

Internet of Things - A Hands-On Approach



338 Data Analytics for loT

DHT22-
Ternparature &
Humidity Sensor

Figure 10.3: Schematic diagram of forest fire detection end node showing Raspberry Pi
device and sensors

Bahga & Madisetti, © 2015




" 10.1 Introduction 339

t.
i
k

Internet of Things - A Hands-On Approach




340 Data Analytics for loT




10.1 Introduction _ 3

Internet of Things - A Hands-On Approach



Data Analytics for loT

342




T

10.2 Apache Hadoop 343

10.2 Apache Hadoop

Apache Hadoop [130] is an open source framework for distributed batch processing of big
data. MapReduce is parallel programming model [85] suitable for analysis of big data.
MapReduce algorithms allow large scale computations to be parallelized across a large
cluster of servers.

10.2.1 MapReduce Programming Model
MapReduce is a widely used parallel data processing model for processing and analysis of
massive scale data [85]. MapReduce model has two phases: Map and Reduce. MapReduce
programs are written in a functional programming style to create Map and Reduce functions.
The input data to the map and reduce phases is in the form of key-value pairs. Run-time
systems for MapReduce are typically large clusters built of commodity hardware. The
MapReduce run-time systems take care of tasks such partitioning the data, scheduling of
jobs and communication between nodes in the cluster. This makes it easier for programmers
to analyze massive scale data without worrying about tasks such as data partitioning and
scheduling. Figure 10.4 shows the flow of data for a MapReduce job. MapReduce programs
take a set of input key-value pairs and produce a set of output key-value pairs. In the Map
phase, data is read from a distributed file system, partitioned among a set of computing
nodes in the cluster, and sent to the nodes as a set of key-value pairs, The Map tasks process
the input records independently of each other and produce intermediate results as key-value
pairs. The intermediate results are stored on the local disk of the node running the Map task.
When all the Map tasks are completed, the Reduce phase begins in which the intermediate
data with the same key is aggregated. An optional Combine task can be used to perform data
aggregation on the intermediate data of the same key for the output of the mapper before
transferring the output to the Reduce task.

MapReduce programs take advantage of locality of data and the data processing takes
place on the nodes where the data resides. In traditional approaches for data analysis, data

Internet of Things - A Hands-On Approach



344 Data Analytics for loT

is moved to the compute nodes which results in delay in data transmission between the
nodes in a cluster. MapReduce programming model moves the computation to where the
data resides thus decreasing the transmission of data and improving efficiency. MapReduce
programming model is well suited for parallel processing of massive scale data in which the
data analysis tasks can be accomplished by independent map and reduce operations.

Input Output

PR

= 8 sl ig_.u.-;|l.ﬂ_:

Figure 10.4: Data flow in MapReduce

10.2.2 Hadoop MapReduce Job Execution

In this section you will learn about the MapReduce job execution workflow and the steps
involved in job submission, job initialization, task selection and task execution. Figure 10.5
shows the components of a Hadoop cluster. A Hadoop cluster comprises of a Master node,
backup node and a number of slave nodes. The master node runs the NameNode and
JobTracker processes and the slave nodes run the DataNode and TaskTracker components of
Hadoop. The backup node runs the Secondary NameNode process. The functions of the key
processes of Hadoop are described as follows:

NameNode

NameNode keeps the directory tree of all files in the file system, and tracks where across
the cluster the file data is kept. It does not store the data of these files itself. Client
applications talk to the NameNode whenever they wish to locate a file, or when they want to

Bahga & Madisetti, © 2015

R R 8 A A

{
L
d
|




i

10.2 Apache Hadoop 345

add/copy/move/delete a file. The NameNode responds to the successful requests by returning
a list of relevant DataNode servers where the data lives. NameNode serves as both directory
namespace manager and ‘inode table’ for the Hadoop DFS. There is a single NameNode
running in any DFS deployment.

Secondary NameNode

HDFS is not currently a high availability system. The NameNode is a Single Point of Failure
for the HDFS Cluster. When the NameNode goes down, the file system goes offline. An
optional Secondary NameNode which is hosted on a separate machine creates checkpoints
of the namespace.

JobTracker
The JobTracker is the service within Hadoop that distributes MapReduce tasks to specific
nodes in the cluster, ideally the nodes that have the data, or at least are in the same rack.

TaskTracker

TaskTracker is a node in a Hadoop cluster that accepts Map, Reduce and Shuffle tasks from
the JobTracker. Each TaskTracker has a defined number of slots which indicate the number
of tasks that it can accept. When the JobTracker tries to find a TaskTracker to schedule a
map or reduce task it first looks for an empty slot on the same node that hosts the DataNode
containing the data. If an empty slot is not found on the same node, the JobTracker looks for
an empty slot on a node in the same rack.

DataNode

A DataNode stores data in an HDFS file system. A functional HDFS filesystem has more
than one DataNode, with data replicated across them. DataNodes connect to the NameNode
on startup. DataNodes respond to requests from the NameNode for filesystem operations.
Client applications can talk directly to a DataNode, once the NameNode has provided the
location of the data. Similarly, MapReduce operations assigned to TaskTracker instances
near a DataNode, talk directly to the DataNode to access the files. TaskTracker instances
can be deployed on the same servers that host DataNode instances, so that MapReduce
operations are performed close to the data.

10.2.3 MapReduce Job Execution Workflow

Figure 10.6 shows the MapReduce job execution workflow for Hadoop MapReduce framework.
The job execution starts when the client applications submit jobs to the Job tracker. The
JobTracker returns a JobID to the client application. The JobTracker talks to the NameNode
to determine the location of the data. The JobTracker locates TaskTracker nodes with.

Internet of Things - A Hands-On Approach



346 Data Analytics for loT

- HDFS components - MapReduce components

Figure 10.5: Components of a Hadoop cluster

available slots at/or near the data. The TaskTrackers send out heartbeat messages to the
JobTracker, usually every few minutes, to reassure the JobTracker that they are still alive.
These messages also inform the JobTracker of the number of available slots, so the JobTracker
can stay up to date with where in the cluster, new work can be delegated. The JobTracker
submits the work to the TaskTracker nodes when they poll for tasks. To choose a task for
a TaskTracker, the JobTracker uses various scheduling algorithms. The default scheduling
algorithm in Hadoop is FIFO (first-in, first-out). In FIFO scheduling a work queue is
maintained and JobTracker pulls the oldest job first for scheduling. There is no notion of the -
job priority or size of the job in FIFO scheduling.

The TaskTracker nodes are monitored using the heartbeat signals that are sent by the
TaskTrackers to JobTracker. The TaskTracker spawns a separate JVM process for each task
so that any task failure does not bring down the TaskTracker. The TaskTracker monitors
these spawned processes while capturing the output and exit codes. When the process

Bahga & Madisetti, © 2015




10.2 Apache Hadoop 347

Figure 10.6: Hadoop MapReduce job execution

finishes, successfully or not, the TaskTracker notifies the JobTracker. When a task fails
the TaskTracker notifies the JobTracker and the JobTracker decides whether to resubmit
the job to some other TaskTracker or mark that specific record as something to avoid. The
JobTracker can blacklist a TaskTracker as unreliable if there are repeated task failures. When
the job is completed, the JobTracker updates its status. Client applications can poll the
JobTracker for status of the jobs.

10.2.4 Hadoop Cluster Setup

In this section you will learn how to setup a Hadoop cluster. The Hadoop open source
framework is written in Java and has been designed to work with commodity hardware. The
Hadoop filesystem HDFS is highly fault-tolerant. While the preferred operating system
to host Hadoop is Linux, it can also be set up on Windows-like operating systems with a
Cygwin environment.

A multi-node Hadoop cluster configuration will be described in this section comprising
of one master node that runs the NameNode and JobTracker and two slave nodes that run
the TaskTracker and DataNode, The hardware used for the Hadoop cluster described in this
section consists of three Amazon EC2 (m1.Large) instances running Ubuntu Linux.

The steps involved in setting up a Hadoop cluster are described as follows:

Install Java
Hadoop requires Java 6 or later version. Box 10.2 lists the commands for installing Java 7.

Internet of Things - A Hands-On Approach



348 Data Analytics for loT

install Hadoop
To setup a Hadoop cluster, the Hadoop setup tarball is downloaded and unpacked on all the
nodes. The Hadoop version used for the cluster example in this section is 1.0.4. Box 10.3
lists the commands for installing Hadoop.

Bahga & Madisetti, © 2015




T T TR Inﬂ

10.2 Apache Hadoop 349

; Configuration parameters for MapReduce daemons —
mapred-gite.xml JobTracker and TaskTracker

Environment variables for Hadoop daemons
slaves | Listof nodes that run TaskTracker and DataNode

mapred-queue-acls.xml | Access control lists

Table 10.1: Hadoop configuration files

Networking

After unpacking the Hadoop setup package on all the nodes of the cluster, the next step is to
configure the network such that all the nodes can connect to each other over the network.
To make the addressing of nodes simple, assign simple host names to nodes (such master,
slavel and slave2). The fetc/hosts file is edited on all nodes and IP addresses and host names
of all the nodes are added.

Hadoop control scripts use SSH for cluster-wide operations such as starting and stopping
NameNode, DataNode, JobTracker, TaskTracker and other daemons on the nodes in the
cluster. For the control scripts to work, all the nodes in the cluster must be able to connect
to each other via a password-less SSH login. To enable this, public/private RSA key pair
is generated on each node. The private key is stored in the file /.ssh/id_rsa and public key

Internet of Things - A Hands-Cn Approach



350 Data Analytics for loT

is stored in the file /.ssh/id_rsa.pub. The public SSH key of each node is copied to the
/.ssh/authorized_keys file of every other node. This can be done by manually editing the
f.ssh!uuhodzdd_hysﬂlemnuhmdcmmiugtbanh-cow—idmmm The final step o
smmmmnmnwhoﬂ-hyﬁngupﬂanfeachM&mﬂnWﬂhuf
every other node. This is dumbywﬁnsﬁmnmchmdemmmmwﬂsﬂ

Configure Hadoop ' i
mmmWMpmmmm.mm.mMﬁm&mm
thﬁnmmpis.tumnﬁgurethﬂﬁadwpclumHadnopiﬂmnﬁgmduuingammhmﬁ
configuration files listed in Table 10.1. Boxes 10.4, 10.5, 10.6 and 10.7 show the sample
figuration settings for the Hadoop confi ion files e, xm], mapred-site.xml
hdfs-site.xml, masters/slaves files respectively.




Internet of Things - A Hands-On Approach



352 Data Analytics for loT

b & (O DI ot AT s &

NameNode ‘'master:54310°
LTl Fioa Jun DT 12084 UTE 093

Vemian: A, i

Camplie  Wed Dot 3081308 UTS 3HA3 Iy o
Upgredes:  Thas @ N0 appre In progiees.

B (T4 FBEYTiTE
Furanocs b r Jywes B == e
Clusier Bummary
§ Hisn and dirmolories, 1 backe = 7 teisl, Mo Bine b 3510 WD | 9006 M E)
g Capaciy T

OFE U 1 SMEDKB

e DS Lised H Aol

OFE R nng ¢ e on

OFE Used i %

O S Pl d T e %

L Moo H

Dmad Wodun 0

a

W miber of L n A gl e alnd Bl oo [

reamafioda Somge

Wivangs Olreciary L

!

Figure 10.7: Hadoop NameNode status page

Starting and Stopping Hadoop Cluster
Having installed and configured Hadoop the next step is to start the Hadoop cluster. Box 10.8
lists the commands for starting and stopping the Hadoop cluster.

If the Hadoop cluster is correctly installed, configured and started, the status of the
Hadoop daemons can be viewed using the administration web-pages for the daemons.
Hadoop publishes the status of HDFS and MapReduce jobs to an internally running web
server on the master node of the Hadoop cluster, The default addresses of the web Uls are as
follows:

NameNode - http://<NameNodeHostName>: 50070/

JobTracker - http://<JobTrackerHostName>:50030/

Figure 10.7 shows the Hadoop NameNode status page which provides information about
NameNode uptime, the number of live, dead, and decommissioned nodes, host and port
information, safe mode status, heap information, audit logs, garbage collection metrics, total
load, file operations, and CPU usage.

Figure 10.8 shows the MapReduce administration page which provides host and port
information, start time, tracker counts, heap information, scheduling information, current
running jobs, retired jobs, job history log, service daemon logs, thread stacks, and a cluster

Bahga & Madisetti, [© 2015




10.2 Apache Hadoop 353

* ¢ [Bannus o SO BT e = oA

master Hadoop Map/Reduce .'Aﬁl'ln'hhﬁﬁh

Wb LR

rrdt b i 7 13 D00 LT S

e 104 FTEEG

Comphad: Wed 03l 3 021358 LUTC BT by soreeia
v FHEHETIAS

Elﬂlrl—.-tl ml-hﬂ.ﬂﬂ-.l';.n

" 0 E

Schadulimg Information

]

Figure 10.8: Hadoop MapReduce administration page

& & €[ waadavadas compute L eaoauasom 0T dssndulsbiptataal e L VE st
MameNode ‘master:54310°

- [ R T e TE

L LH LA T

Gumptied  Wed (1w 138 LITC 201T by bistarts
Upgimben:  Trrm e e gt g

St e

Livw Cimineded | 1

[
e 8
[ ]

wwwvw 2 Ll TAT
wheved #|  nBewen TAT

T b Spavhs Hareop remaa 104

il ] b ot ]
L]
o

[
)
L3
[

it
i|i;=!
i

iHH

Figure 10.9: Hadoop HDFS status page showing live data nodes

utilization summary.

Figure 10.9 shows the status page of the live data nodes of the Hadoop cluster. The status
page shows two live data nodes — slavel and slave2.

Figure 10.10 shows the status page of the active TaskTrackers of the Hadoop cluster.
The status page shows two active TaskTrackers that run on the slavel and slave2 nodes of
the cluster. -

Internet of Things - A Hands-Cn Approach



354 Data Analytics for loT

= 0 D a2 campube-1 OO TN A msrire jan T b ewadE e E| S
M St e e = oo e a e e TN I rress Tt iDL T LT = TR RN
masier Hadoop Machine List
Active Tkl Trackers
T Torier
f s ot [ e [— [

3 i 5 1 1 f a 0 g v 1 |
w-—n 0 2 0 0 ik 0 0 1 O - '
N ——— ———— — - - e ———— — ———
R ——

Figure 10.10: Hadoop MapReduce status page showing active TaskTrackers

10.3 Using Hadoop MapReduce for Batch Data Analysis

Figure 10.11 shows a Hadoop MapReduce workflow for batch analysis of IoT data. Batch
analysis is done to aggregate data (computing mean, maximum, minimum, etc.) on various
timescales. The data collector retrieves the sensor data collected in the cloud database
and creates a raw data file in a form suitable for processing by Hadoop. For the forest
fire detection example, the raw data file consists of the raw sensor readings along with the
timestamps as shown below:

"2014-04-29 10:15:32",37,44,31,6

"2014-04-30 10:15:32",84,58,23,2

Batch Data Analytics Component
Hadoop MapReduce Workflow

Inpuk

Figure 10.11: Using Hadoop MapReduce for batch analysis of [oT data

Bahga & Madisetti, (€ 2015




10.3 Using Hadoop MapReduce for Batch Data Analysis 355

| Box 10.9 shows the map program for the batch analysis of sensor data. The map program

reads the data from standard input (stdin) and splits the data into timestamp and individual
~ sensor readings. The map program emits key-value pairs where key is a portion of the
ﬂmem{thatdzpmdsonthaﬁmdcmwhchﬂmdmiamhumwmﬁ

3
B
E
vﬂmhnmmaaepmmdmﬁ:gufmmms

Box 10.10 shows the reduce program for the batch analysis of sensor data. The key-value
pairs emitted by the map program are shuffled to the reducer and grouped by the key. The
reducer reads the key-value pairs grouped by the same key from standard input and computes
ﬂ::munnoftempuammhumidw]ugmmmmadmgs ey

Internet of Things - A Hands-On Approach



Data Analytics for loT

DT IR e g e | T T




E
|
|

10.3 Using Hadoop MapReduce for Batch Data Analysis 357

10.3.1 Hadoop YARN

Hadoop YARN is the next generation architecture of Hadoop (version 2.x). In the YARN
architecture, the original processing engine of Hadoop (MapReduce) has been separated
from the resource management (which is now part of YARN) as shown in Figure 10.12. This
makes YARN effectively an operating system for Hadoop that supports different processing
engines on a Hadoop cluster such as MapReduce for batch processing, Apache Tez [131] for
interactive queries, Apache Storm [134] for stream processing, etc.

Figure 10.13 shows the MapReduce job execution workflow for next generation Hadoop
MapReduce framework (MR2). The next generation MapReduce architecture divides the two
major functions of the JobTracker - resource management and job life-cycle management -
into separate components — ResourceManager and ApplicationMaster. The key components
of YARN are described as follows: ;

¢ Resource Manager (RM): RM manages the global assignment of compute resources

to applications. RM consists of two main services:
- Scheduler: Scheduler is a pluggable service that manages and enforces the
resource scheduling policy in the cluster.
— Applications Manager (AsM): AsM manages the running Application Masters
in the cluster. AsM is responsible for starting application masters and for
monitoring and restarting them on different nodes in case of failures.
o Application Master (AM): A per-application AM manages the application's life
cycle. AM is responsible for negotiating resources from the RM and working with the
NMs to execute and monitor the tasks.

o Node Manager (NM): A per-machine NM manages the user processes on that
machine. .

Internet of Things - A Hands-On Approach




358 Data Analytics for loT

Figure 10.12: Comparison of Hadoop 1.x and 2.x architectures

s Containers: Container is a bundle of resources allocated by RM (memory, CPL,
network, etc.). A container is a conceptual entity that grants an application the
privilege to use a certain amount of resources on a given machine to run a component
task. Each node has an NM that spawns multiple containers based on the resource
allocations made by the RM.

Figure 10.13 shows a YARN cluster with a Resource Manager node and three Node
Manager nodes. There are as many Application Masters running as there are applications
(jobs). Each application’s AM manages the application tasks such as starting, monitoring
and restarting tasks in case of failures. Each application has multiple tasks. Each task runs
in a separate container. Containers in YARN architecture are similar to task slots in Hadoop
MapReduce 1.x (MR1). However, unlike MR1 which differentiates between map and reduce
slots, each container in YARN can be used for both map and reduce tasks, The resource -
allocation model in MR1 consists of a predefined number of map slots and reduce slots. This
static allocation of slots results in low cluster utilization. The resource allocation model
of YARN is more flexible with introduction of resource containers which improve cluster
utilization.

To better understand the YARN job execution workflow let us analyze the interactions

Bahga & Madisetti, @ 2015



10.3 Using Hadoop MapReduce for Batch Data Analysis 359

s Job submission
-+ Node status
-~ --= Resource request
= -»  MapReduce status
o —  Container status request

Figure 10.13: Hadoop MapReduce Next Generation (YARN) job execution

between the main components on YARN, Figure 10.14 shows the interactions between a
Client and Resource Manager. Job execution begins with the submission of a new application
request by the client to the RM. The RM then responds with a unique application ID and
information about cluster resource capabilities that the client will need in requesting resources
for running the application’s AM. Using the information received from the RM, the client
constructs and submits an Application Submission Context which contains information such
as scheduler queue, priority and user information. The Application Submission Context also
contains a Container Launch Context which contains the application’s jar, job files, security
tokens and any resource requirements. The client can query the RM for application reports.
The client can also "force kill” an application by sending a request to the RM.

Figure 10.15 shows the interactions between Resource Manager and Application Master.
Upon receiving an application submission context from a client, the RM finds an available
container meeting the resource requirements for running the AM for the application. On
finding a suitable container, the RM contacts the NM for the container to start the AM process
on its node. When the AM is launched it registers itself with the RM. The registration process

Internet of Things - A Hands-On Approach



360 Data Analytics for loT

, {3 New Application Request

i 2 @l Response (Application-ID)
]m; Submit Application
4 et Application Report
5 Application Report Response
[ & Force Kill Application

Figure 10.14: Client — Resource Manager interaction

i

e T

i@

S 4 negister Application Master
s @ Registration Response
T {3 Heartbeats

18" Allocate Request
78" application Response
{8 Finish Application Maszer

Figure 10.15; Resource Manager — Application Master interaction

consists of handshaking that conveys information such as the RPC port that the AM will be
listening on, the tracking URL for monitoring the application’s status and progress, etc. The -
registration response from the RM contains information for the AM that is used in calculating
and requesting any resource requests for the application’s individual tasks (such as minimum
and maximum resource capabilities for the cluster). The AM relays heartbeat and progress
information to the RM. The AM sends resource allocation requests to the RM that contains a
list of requested containers, and may also contain a list of released containers by the AM.

Bahga & Madisetti, © 2015




10.3 Using Hadoop MapReduce for Batch Data Analysis 361

/1 start Container
m Container Status Request

'3 Container Status Response

Figure 10.16: Application Master- Node Manager interaction

Upon receiving the allocation request, the scheduler component of the RM computes a list
of containers that satisfy the request and sends back an allocation response. Upon receiving
the resource list, the AM contacts the associated NMs for starting the containers. When the
job finishes, the AM sends a Finish Application message 10 the RM.

Figure 10.16 shows the interactions between the an Application Master and Node
Manager. Based on the resource list received from the RM, the AM requests the hosting NM
for each container to start the container, The AM can request and receive a container status
report from the Node Manager. ;

Setting up Hadoop YARN cluster

In the previous section you learned how to setup a Hadoop 1.x cluster. This section describes
the steps involved in setting up Hadoop YARN cluster. The initial steps of setting up the
hosts, installing Java and configuring the networking are the same as in Hadoop 1.x. The
ncxtstepistudnwniuadmcﬁadwaARNmppackagaandunpmkitnn all nodes as
follows:

Internet of Things - A Hands-On Approach



362 Data Analytics for loT

Addthﬂfoﬂuwmghucstuthe {.bashrec file:

Add the following lines to the etc/hadoop/yarn-env.sh file:

Next, create temporary folder in HADOOP_HOME:

Next, add the slave hum-tﬂ the etc/hadoop/slaves file on master machine: '

Ihcmthwmﬂttﬁa}h&oopobﬁﬁ@mumﬁlm Boxns.lﬂ'l'i 10.13, 1014 :
and 10.15 show the sample cmﬂgmﬂmwmngsfwtha}hdmpwnﬁmnmﬁlm- 1
cme-nitnxm],hdfs site.xml, maprad—situml, ram—site xmlﬁl:sreapmﬂvely

Bahga & Madisetti, © 2015




Internet of Things - A Hands-On Approach



Box 10.16 shows the commands for starting/stopping Hadoop YARN cluster.

Bahga & Madisetti, © 2015



10.3 Using Hadoop MapReduce for Batch Data Analysis 365

¢ » ¢ D sAIriT T So0Tshealthisp. N e e e )

|

E.

1i:

| Security in

| 21 Mless and vaciories, 4 blocks = 28 ot

| MWMHHNHHMHMMIMMHE“E

| seted] 2601 WD I 955 of Commited Nen hrory 28,19 MB. Max Non Heap Mesary s 130 MEL

Internet of Things - A Hands-On Approach




366 Data Analytics for loT

£ ¥ € |3 38T 1T ST9ER ke I T TR

YARN

Figures 10.17, 10.18 and 10.19 show the screenshots of the Hadoop Namenode,
cluster and job history server dashboards. '

10.4 Apache Oozie

In the previous section you learned about the Hadoop framework and how the MapReduce
Jjobs can be used for analyzing IoT data. Many IoT applications require more than one
MapReduce job to be chained to perform data analysis. This can be accomplished using
Apache Oozie system. Oozie is a workflow scheduler system that allows managing Hadoop
jobs. With Oozie, you can create workflows which are a collection of actions (such as
MapReduce jobs) arranged as Direct Acyclic Graphs (DAG). Control dependencies exists
between the actions in a workflow. Thus an action is executed only when the preceding
action is completed. An Oozie workflow specifies a sequence of actions that need to be
executed using an XML-based Process Definition Language called hPDL. Qozie supports
various types of actions such as Hadoop MapReduce, Hadoop file system, Pig, Java, Email ,
Shell , Hive, Sqoop, SSH and custom actions.

10.4.1 Setting up Oozie
Oozie requires a Hadoop installation and can be setup up on either a single node or a cluster
of two or more nodes. Before setting up Hadoop create a new user and group as follows:

Bahga & Madisetti, @ 2015




© Next, follow the steps for setting up Hadoop described in the previous section. Afier
setting up Hadoop install the packages required for seiting up Oozie as follows:

Next, download and build Oozie using the following commands:

E~
[
[ Mamdhm?md mm’andmpymehuiltbmmmmwﬂhjrﬂh
ﬁmm‘hadoopﬁbu mmmmmum iz :

Download Ext2Js to the ‘libext” directory. This is required for the Oozie web console:

PrepmtheﬂozinWARﬁInas follows:

Nﬂt.mmlibml-mmﬁfdﬂm:

Internet of Things - A Hands-On Approach



368 Data Analytics for loT

Next, create the OozieDB as follows:

Fmﬂymhfnﬂm&ngmmdmmm“

The status of Oozie can be checked from command line of the web console as follows!

To setup the Oozie client, copy the client tar file to the ‘oozie-client’ andaﬂdthﬁpuﬂlin
.bashre file as follows:

10.4.2 Oozie Workflows for loT Data Analysis

Let us look at an example of analyzing machine diagnosis data. Assuming that the data
received from a machine has the following structure (including time stamp and the status/error

code): i :

Bahga & Madisetti, © 2015




104 Apache Oozie ~ 369

~ The goal of the analysis job is to find the counts of each status/error code and produce
an output with a structure as shown below:

Figure 10.20 shows a representation of the Oozie workflow comprising of Hadoop
streaming MapReduce job action and Email actions that notify the success or failure of the
job.

Boxes 10.17 and 10.18 show the map and reduce programs which are executed in the
workflow. The map program parses the status/error code from each line in the input and
emits key-value pairs where key is the status/error code and value is 1. The reduce program
receives the key-value pairs emitted by the map program aggregated by the same key. For
each key, the reduce program calculates the count and emits key-value pairs where key is the
status/error code and the value is the count.

Internet of Things - A Hands-On Approach



Data Analytics for loT

370

IR o im @i L b e R e S8 e T e et Ly ey R e e s LI PO

Figure 10.20: Oozie workflow

Bahga & Madisetti, ©) 2015



lﬂiﬁshmsﬁaupwiﬂcn&mfmmﬂuﬁnwuﬁﬁwmmﬁwemm QOozie
4 Wummmmmmmw&m The values
#m“ﬂahluumpm&dnﬂinthejobmﬁhmmmmﬁ

Internet of Things - A Hands-On Approach



372

Data Analytics for loT

Bahga & Madisett, © 2015




Latusmwluoku-amccomplicﬂedwurkﬂuww&ichhumnanRﬁmm.
Extending the example described earlier in this section, let us say we want to find the
status/error code with the maximum count. The MapReduce job in the earlier workflow
mpmedmummfmmhmmmdmhmmdmkmph.wﬁchm
ﬂmnutpumfmeﬂmMapRadncejubmﬂwmaﬁmmm The map and reduce
for the second MapReduce job are shown in Boxes 10.21 and 10.22.

Hgmm,zimmmmmm&mmmmmm
: status/error code with maximum count. The specification of the workflow is shown in
| Box 10.23.

Internet of Things - A Hands-On Approach



374 Data Analytics for loT

Figure 10.21: Oozie workflow for computing machine status/error code with maximum
count




Internet of Things - A Hands-On Approach



376 Data Analytics for loT

Bahga & Madisetti, © 2015



Figure 10.22 shows a screenshot of the Oozie web console which can be used to monitor
the status of Oozie workflows.

10.5 Apache Spark
Apache Spark is yet another open source cluster computing framework for data analytics [121].
However, Spark supports in-memory cluster computing and promises to be faster than.

Internet of Things - A Hands-On Approach




378 Data Analytics for loT

< > e [Dstwonssiveaed .7 AR AL L, :

s ‘n..uiuu e ET
Ll Tra 8 3l BRI ONT  The, @33
4 ke T 000 06 OG0 QAT Thas, B Jo BO0A (RGORAL GMT  Thw, 823
whRE T, 000 S LA TR T Tra B B 734 G AT Th-1

Figure 10.22: Screenshot of Oozie web console

Hadoop. Spark supports various high-level tools for data analysis such as Spark Streaming
for streaming jobs, Spark SQL for analysis of structured data, MLIib machine learning library
for Spark, GraphX for graph processing and Shark (Hive on Spark). Spark allows real-time,
batch and interactive queries and provides APIs for Scala, Java and Python languages.

Figure 10.23: Spark tools

Figure 10.24 shows the components of a Spark cluster. Each Spark application consists
of a driver program and is coordinated by a SparkContext object. Spark supports various
cluster managers including Spark’s standalone cluster manager, Apache Mesos and Hadoop

Bahga & Madisettl, ) 2015




10.5 Apache Spark 379

YARN. The cluster manager allocates resources for applications on the worker nodes. The
executors which are allocated on the worker nodes run the application code as multiple tasks.
Applications are isolated from each other and run within their own executor processes on
the worker nodes. Spark provides data abstraction called resilient distributed dataset (RDD)
which is a collection of elements partitioned across the nodes of the cluster. The RDD
elements can be operated on in parallel in the cluster. RDDs support two types of operations
- transformations and actions. Transformations are used to create a new dataset from an
existing one. Actions return a value to the driver program after running a computation on the
dataset. Spark API allows chaining together transformations and actions.

Figure 10.24: Components of a Spark cluster

Spark comes with a spark-ec2 script (in the spark/ec2 directory) which makes it casy to
setup Spark cluster on Amazon EC2. With spark-ec2 script you can easily launch, manage
and shutdown Spark cluster on Amazon EC2. To start a Spark cluster use the following
command:

Spark cluster setup on EC2 is configured to use HDFS as its default filesystem. To
analyze contents of a file, the file should be first copied to HDFS using the following
commandl:

Internet of Things - A Hands-On Approach



380 Data Analytics for loT

analyzing data. To launch the Spark Python shell, run the following command:

The following commands show how to load a text file and count the number of lines from
the PySpark shell.

is applied to each element of the dataset. While the flatMap function can map each input

item to zero or more output items, the map function maps each input item to another item.
The transformations take as input, functions which are applied to the data elements. The

input functions can be in the form of Python lambda expressions or local functions. In the

wurdumm:aumphﬂarMapmkcsasinpmnlambdaexpmsiunthatspﬁumma

the file into words. The map transformation outputs key value pairs where key is a word
and value is 1. The reduceByKey transformation aggregates values of each key using the
function specified (add function in this example). Finally the collect action is used to return
all the elements of the result as an array.

Bahga & Madisetti, © 2015

Spaﬂsuppomasheﬂmnde“ﬁﬁwhiahym-mmmuﬁwlynmmmnﬂsﬂm -
When you launch a PySpark shell, a SparkContext is created in the variable called sc.
Let us now look at a standalone Spark application that computes word counts in a file. ;

Box 10.24 shows a Python program for computing word count. The program uses the map
and reduce functions. The flatMap and map transformation take as input a function which

i




[#
o
It
E
I'-
|

114

10.5 Apache Spark 381

Let us look at another Spark application for batch analysis of data. Taking the example
of analysis of forest fire detection sensor data described in the previous section, let us look at
a Spark application that aggregates the time-stamped sensor data and finds hourly maximum
values for temperature, humidity, light and CO. The Python code for the Spark application is
shown in Box 10.25. The sensor data is loaded as a text file. Each line of the text file contains
time-stamped sensor data. The lines are first split by applying the map transformation to
access the individual sensor readings. In the next step, a map transformation is applied
which outputs key-value pairs where key is a timestamp (excluding the minutes and seconds
part) and value is a sensor reading. Finally the reduceByKey transformation is applied to
find the maximum sensor reading.

Internet of Things - A Hands-On Approach



382 Data Analytics for loT

Bmlﬂ.lﬁuhawumumngkdmgwfmdﬂam 'I‘!uswtnﬁ -
sensor data from forest fire detection ToT system.




| Spark includes a machine learning library, MLlib, which includes implementations of
" machine learning algorithms for classification, regression, clustering, collaborative filtering
 and dimensionality reduction. Let us look at examples of using MLIib for clustering and
classifying data.
Box 10.27 shows an example of clustering data with k-means clustering algorithm. In
this example, the data is loaded from a text file and then parsed using the parseVector
m N:n, mmmuﬁmhmdmdmmmmmmm

. Box 10.28 shows an example of classifying data with Naive Bayes classification
algorithm. The training data in this example consists of labeled points where value in
the first column is the label. The parsePoint function parses the data and creates Spark

Internet of Things - A Hands-On Approach



384 Data Analytics for loT

Labeled Point objects. The labeled points are passed to the NaiveBayes object for training a
model. Fimﬂ};theéhsniﬁmﬁunisdmebypudngﬁwtﬂtmuuhbnhdpoim}wﬂ
trained model. -

10.6 Apache Storm

Apachesmmisa&amﬁwmtfordiahihmdmdfmlt-thmbﬁmmmpumﬁm [134].
Storm can be used for real-time processing of streams of data. Figure 10.25 shows the
components of a Storm cluster. A Storm cluster comprises of Nimbus, Supervisor and
Zookeeper. Nimbus is similar to Hadoop's JobTracker and is responsible for distributing code
around the cluster, launching works across the cluster and monitoring computation. A Storm
dumhummmmsupuﬁwnumeﬁ:hthameM.w f
nodes communicate with Nimbus through Zookeeper. Nimbus sends signals to Supervisor to
start or stop workers. Zookeeper is uhighperfmmudix&ihﬂud-mﬂimﬁmmﬁr

Bahga & Madisetti, © 2015



=y g—

CET

10.6 Apache Storm 385

maintaining configuration information, naming, providing distributed synchronization and
group services [135]. Zookeeper is required for coordination of the Storm cluster.

A computation job on the Storm cluster is called a “topology” which is a graph of
computation. A Storm topology comprises of a number of worker processes that are
distributed on the cluster. Each worker process runs a subset of the topology. A topology
is composed of Spouts and Bolts. Spout is a source of streams (sequence of tuples), for
example, a sensor data stream. The streams emitted by the Spouts are processed by the Bolts.
Bolis subscribe to Spouts, consume the streams, process them and emit new streams. A
topology can consists of multiple Spouts and Bolts. Figure 10,26 shows a Storm topology
with one Spout and three Bolts. Bolts 1 and 2 subscribe to the Spout and consume the
streams emitted by the Spout. The outputs of Bolts 1 and 2 are consumed by Bolt-3.

Figure 10.25: Components of a Storm cluster

10.6.1 Settingupa Storm Cluster

In this section you will learn how to setup a Storm cluster. The cluster setup explained in this
section comprises of three Ubuntu Linux instances for Nimbus, Zookeeper and Supervisor.
Before starting with the installation, make sure you have three instances running and they
can connect securely to each other with SSH. Change the hostnames of the instances to
“nimbus”, “zookeeper” and “supervisor’.

On the instance with hostname *zookeeper”, setup Zookeeper by following the instructions
in Box 10.29. :

Internet of Things - A Hands-On Approach



386

Figure 10.26: Example of a Storm topology ,1
R |

On the instances 'Wlth hostnames 'mhus“ and "supmrlaor" install 'Smh? fnllowing
thﬂinu.u'umimﬂmwniuﬂm 10.30.

Bahga & Madisetti, © 2015 1






388 Data Analytics for loT

After installing Storm, edit the configuration file and enter the IP addresses of the Nimbus
and Zookeeper nodes as shown in Box 10.31. You can then launch Nimbus and Storm UL The
Storm UI can be viewed in the broswer at the address http://<IP-address-of-Nimubs>:808
Figures 10.27 and 10.28 show screenshots of the Storm UL The commands for submitt
topologies to Storm are shown in Box 10.31.

10.7 Using Apache Storm for Real-time Data Analysis

Apache Storm can be used for real-time analysis of data. Figure 10.29 mmm
real-time unalysls of sensor data using Storm.

Bahga & Madisetti, @ 2015



’m} Using Apache Storm for Real-time Data Analysis as9

Storm Ul
Cluster Summary

iernien Pl Ul e Boparvioes L wizhy Piow G50 Talal nivds LT Tuakd

oig ta TP 1 n 4 A L | L]
Topology summary

hame ] LT ughme HEm ok Hur pmcu bz Hif® L8k

T e ACTHE Bl 3 w L

Supervisor summary

W Hani Ugline ‘ot Ll Wi

Bt baT b T Aan- SED-L TR 04 [ 43n akp ] o

Nimbus Configuration
. At e it : i e =
o ivpcalions pat

dpa gt

Figure 10.27: Screenshot of Storm Ul showing cluster, topology and supervisor summary

Storm Ul
Topology summary

i SSTREES.. o SRR MW . ol PO S ] o BB o
Tapology actlons
[ et [ Domrteni | Psbotones | 101 |

Topology stats .

Wndie . Enieed Traeterel Gomatels a0y ol e Fatles

i T xbeburns e e il i - i e R e BT
Spouts {All time)

W . Esan | Tmua Ersinad Trarafurred Compieis lrey |#ia} Acked Frilsa Lt errai
Groems iz e i e A U et S i e T

Bolts (Al time)

mclani 3 a Lt

Figure 10.28: Screenshot of Storm UT showing details of a topology

10.7.1 REST-based approach
This section describes an example of real-time sensor data analysis for forest fire detection
using a REST-based approach. The deployment design for the WebSocket implementation is

Internet of Things - A Hands-On Approach



390 Data Analytics for loT

Real-time Data Analytics Component

Apache Storm Topology

[
|
|
|
|
|
|

Figure 10.29: Using Apache Storm for real-time analysis of IoT data

shown in Figure 10.30(a).

The Storm topology used in this example comprises of one Spout and one Bolt. The
Spout retrieves the sensor data from Xively cloud and the emits streams of sensor readings.
The Bolt processes the data and makes the predictions using a Decision Tree based machine
learning classifier.

Decision Trees are a supervised learning method that use a tree created from simple
decision rules learned from the training data as a predictive model. The predictive model is
in the form of a tree that can be used to predict the value of a target variable based on several
attribute variables. Each node in the tree corresponds to one attribute in the dataset on which
the “split” is performed. Each leaf in a decision tree represents a value of the target variable.
The learning process involves recursively splitting on the attributes until all the samples in
the child node have the same value of the target variable or splitting further results in no
further information gain. To select the best attribute for splitting at each stage, different
metrics can be used.

Before the classifier can be used in the Bolt, the classifier has to be trained. Box 10.32
shows the Python code for training and saving the classifier. The classifier file is then
included in the Storm project. Figure 10.31 shows the decision tree generated for the forest
fire detection example. The tree shows the attributes on which splitting is done at each step
and the split values. Also shown in the figure are the error, total number of samples at each
node and the number of samples in each class (in the value array). For example, the first split
is done on the second column (attribute X[1] - Humidity) and the total number of samples in
the training set is 440. On the first split, there are 248 samples in first class and 192 samples
in the second class. :

Bahga & Madisetti, © 2015




- 107 Using Apache Storm for Real-time Data Analysis 391

: %
 Figure 10.30: Workflow for real-time IoT data analysis with Storm: () REST-based approach, (b) WebSocket-based

Internet of Things - A Hands-On Approach



Tnmd:r.savndDacmunTrweimﬂerforp:admuuns,thtmtsupistnmﬂm'
Storm project. Box IBSSMMmemﬂmnmmmm 1D.34 §
sbnwsuampleumﬁgm’&ﬂﬂmﬂl#ﬁn’thepmjmt

Bahga & Madisetti, © 2015



e

uu}—mm
m-um

iy
'ﬂll-l lil1
m‘?ﬁmm "“-1 ‘é
i i wahi = | & L1 =18, 0]

S = 17 1 e = 2

wsha =17, 0] |wue=l0 2]
wror = [LODOD
sarmples =
walug = [0,

Figure 10.31: Example of a generated decision tree for forest fire detection




| .' Box lﬂaﬁshnwnhePyﬁmncuduforﬂmSmBuk. msﬂmmmmmof
__:_"_j-dntmniﬁedhfﬂmSpnm. mmmmmm&mgm




ﬁﬁarthn&pnmandﬂultpmgmmm¢mdmnmtmpmmm
Box 10.37 shows the Java program for creating a topology. To create a topology an ob
the TepologyBuilder class is created. The Spout and Bolt are defined using the s
setBolt methods. These methods take as input a user-specified id, objects to
classes, and the amount of parallelism required. Storm has two modes of op
and distributed. In the local mode, Storm simulates worker nodes within a lo

The distributed mode runs on the Storm cluster. The program in Box 10.37 shows

for submitting topology to both local and distributed modes.
Withaﬂﬂmpmjmtﬁles:mawd.theﬂnalsmpmmbuﬁdm“mmspmjmh

shows the commands for building and running a Storm project.




0.7 Using Apache Storm for Real-time Data Analysis




Data Analytics for loT

10.7.2 mmodw

The previous section described a REST-based implementation of the forest fire de
system. In this section you will learn about an alternative implementation of the T
based on the WebSocket approach. The WebSocket implementation is based on the

Bahga & Madisetl, © 2015



10.7 Using Apache Storm for Real-time Data Analysis 399

Application Messaging Protocol (WAMP) which is a sub-protocol of WebSocket. You
learned about AutoBahn, an open source implementation of WAMP in Chapter 8. The
deployment design for the WebSocket implementation is shown in Figure 10.30(b).

Box 10.39 shows the implementation of the native controller service that runs on the
Raspberry Pi device. The WAMP Publisher application is a part of the controller component.
The sensor data is published by the controller to a topic managed by the WAMP Broker.
The WAMP Subscriber component subscribes to the topic managed by the Broker. The
Subscriber component is a part of the cloud-based centralized controller, the source code
for which is shown in Box 10.40. The centralized controller stores the data in a MongoDB
database and also pushes the data to a ZeroMQ queue.

The analysis of data is done by a Storm cluster. A Storm Spout pulls the data to be
analyzed from the ZeroMQ queue and emits a stream of tuples. The stream is consumed and
processed by the Storm Bolt, Boxes lﬂﬁlmdlﬂéishwthewnfﬁem
Spout and Bolt for real-time analysis of data. The Storm Bolt uses a Decision Tree classifier

for making the predictions.

Internet of Things - A Hands-On Approach



400 Data Analytics for loT

Bahga & Madisett, @) 20



Internet of Things - A Hands-On Approach







'+ i
|
i

;E;Q‘?umg Apache Storm for Real-time Data Analysis 403
&)/




404 Data Analytics for loT

10.8 Structural Health Monitoring Case Study

Structural Health Monitoring (SHM) systems use a network of sensors to monitor the
vibration levels in the structures such as bridges and buildings. The data collected from these
sensors is analyzed to assess the health of the structures.

This section provides a case study of an SHM system that uses 3-axis accelerometer
sensors for measuring the vibrations in a structure. The accelerometer data is collected
and analyzed in the cloud. The deployment design for the WebSocket implementation is
shown in Figure 10.30(b). Figure 10.32 shows a schematic of the IoT device for monitoring
vibrations in a structure, comprising of Raspberry Pi board and ADXL345 accelerometer
module. :

Discrete Fourier Transform (DFT) is useful for converting a sampled signal from time
domain to frequency domain which makes the analysis of the signal easier. However, for
streaming vibration data in which the spectral content changes over time, using DFT cannot
reveal the transitions in the spectral content. Short Time Fourier Transform (STFT) is better
suited for revealing the changes in the spectral content corresponding to the SHM data. To
compute the STFT, windowed sections of the signal are first generated using a window
function and then the Fourier Transform of each windowed section is mmptrmd,

The STFT of a signal x|n| is given as

el
Xnw)= Y x[m]xwn—mle /" (10.1)
= —aa
where wn] is a window function, Commonly used window functions are Hann and
Hamming windows.

Alternatively, STFT can be interpreted as a filtering operation as follows,
X|n, k] = eI % (x[n) 5 wlne~ ¥ k) (10.2)

From STFT, the spectrogram of the signal can be computed which is useful for visualizing
the spectrum of frequencies in the signal and their variations with time. :

Bahga & Madisetti, @ 2015




[—

10.8 Structural Health Monitoring Case Study 405

Figure 10.32: Schematic diagram of IoT device for structural health monitoring

Spectogram = |X [n,K]|* (10.3)

Box 10.43 shows the implementation of the native controller service for the SHM system.
The controller comprises of the WAMP Publisher application which publishes the 3-axis
accelerometer data to a topic managed by the WAMP Broker. The WAMP Subscriber -

Internet of Things - A Hands-On Approach




406 Data Analytics f

component which is a part of the centralized controller subscribes to the topic m
bymaﬂmkwmﬁmmmmﬁmmnmmﬁshownmmmm
centralized controller. The centralized controller stores the vibration in a MongoDB da
and also pushes the data to a ZeroMQ queue. The data is analyzed by a Storm
Box 10.45 shows an implementation of _"-mmmmmmm :
queue and emits streams of tuples which are consumed by the Storm Bolt. Box 10.46
an implementation of the Storm Bolt which ¢ "”"I‘_’&om%fmﬁ-
data,







Data Analytics for IuT

408

Bahga & Madisetti, © 2015




Structural Health Monitoring Case Study




410 Data Analytics for loT

Summary

In this chapter you learned about various tools for analyzing loT data. loT systems can have
varied data analysis requirements. For some IoT systems, the volume of data is so huge that
analyzing the data on a single machine is not possible. For such systems, distributed batch
data analytics frameworks such as Apache Hadoop can be used for data analysis. For loT
systems which have real-time data analysis requirements, tools such as Apache Storm are
useful. For IoT systems which require interactive querying of data, tools such as Apache
Spark can be used. Hadoop is an open source framework for distributed batch processing
of massive scale data. Hadoop MapReduce provides a data processing model and an
execution environment for MapReduce jobs for large scale data processing. Key processes of
Hadoop include NameNode, Secondary NameNode, JobTracker, TaskTracker and DataNode.
NameNode keeps the directory tree of all files in the file system, and tracks where across the
cluster the file data is kept. Secondary NameNode creates checkpoints of the namespace,
JobTracker distributes MapReduce tasks to specific nodes in the cluster. TaskTracker accepts
Map, Reduce and Shuffle tasks from the JobTracker. DataNode stores data in an HDFS
file system. You learned how to setup a Hadoop cluster and run MapReduce jobs on the
cluster. You learned about the next generation architecture of Hadoop called YARN. YARN
is framework for job scheduling and cluster resource management. Key components of
YARN include Resource Manager, Application Master, Node Manager and Containers. You
learned about the Oozie workflow scheduler system that allows managing Hadoop jobs.
You learned about Apache Spark in-memory cluster computing framework. Spark supports
various high-level tools for data analysis such as Spark Streaming for streaming jobs, Spark
SQL for analysis of structured data, MLIib machine learning library for Spark, GraphX for
graph processing and Shark (Hive on Spark). Finally, you learned about Apache Storm
which is a framework for distributed and fault-tolerant real-time computation.

Lab Exercises

1. In this exercise you will create a multi-node Hadoop cluster on a cloud. Follow the
steps below:
¢ Create and Amazon Web Services account.

Bahga & Madisetti, © 2015



10.8 Structural Health Monitoring Case Study 411

E:. o From Amazon EC2 console launch two m1.small EC2 instances.

o When the instances start running, note the public DNS addresses of the instances.

» Connect to the instances using SSH.

o Run the commands given in Box 10.2 to install Java on each instance.

» Run the commands given in Box 10.3 to install Hadoop on each instance.

e Configure Hadoop. Use the templates for core-site.xml, hdfs-site.xml,
mapred-site.xml and master and slave files shown in Boxes 10.4 - 10.7.

e Start the Hadoop cluster using the commands shown in Box 10.8.

e In a browser open the Hadoop cluster status pages:
public-DNS-of-hadoop-master: 50030

2. In this exercise you will run a MapReduce job on a Hadoop cluster for aggregating
data (computing mean, maximum and minimum) on various timescales. Follow the

steps below:
e Generate synthetic data using the following Python program:

internet of Things - A Hands-Cin Approach




412 Data Analytics for loT

e Follow the steps in Exercise-1 to create a Hadoop cluster.
e Copy the synthetic data file to the Hadoop master instance. Use scp or copy or
wget to download files. Copy the data file to a folder named 'data’.
e Copy the synthetic data file from the Hadoop master node local filesystem to
HDFS:
bin/hadoop dfs -copyFromLocal data/ input
e Create mapper and reducer Python programs as shown in Boxes 10.9 and 10.10.
e Run MapReduce job using the commands given in Box 10.11.

3. Box 10.32 shows the Python code for training and saving Decision Tree classifier for
forest fire detection, Modify the code to train and save a Random Forest classifier.
Use the classifier in the Storm bolt for forest fire detection.

4. This exercise is about analyzing weather monitoring data using Apache Storm. For
the REST and WebSocket implementations of Weather Monitoring system described
in Chapter-9, design a Storm topology (including Spout and Bolt) for predicting
the current conditions from the weather data collected. The Storm topology should
analyze the weather data (temperature, humidity, pressure and light data) in real-time
and classify the current conditions to be one of the following - sunny, warm, hot, mild,
cool, chilly, cold, freezing, humid, dry. Follow the steps below: :

e Save the weather monitoring data to a text or CSV file and manually classify and
label the data (50-100 rows). For example:
#Format of labeled file:
#Label, Timestamp, Temperature, Humidity, Pressure, Light
Hot, 2014-06-25 10:47:44,38,56,102997,2000

e Using the labeled data, train and save the classifier. Try Decision Tree and
Random Forest classifiers. Use a program similar to the one shown in Box 10.32.

e Create a Storm project as shown in Box 10.33.

o Implement Spout and Bolt similar to the implementations shown in Boxes 10.35
and 10.36.

o Create a Storm topology with the Spout and Bolt created in the previous step
using an implementation similar to the one shown in Box 10.37.

e Build and run the Storm project using the commands shown in Box 10.38,

Bahga & Madisetti, © 2015



T e e

This Chapter Covers

 » Infrastructure automation & configuration management tools:

— Chef
e IoT code generator tool ' '




414 Tools for loT

11.1 Introduction

Managing IoT infrastructure and configuring and integrating various components can be
complex and challenging task. The complexity of infrastructure grows with increasing
number of components (such as load balancers, application server, database servers, etc.). To
minimize the manual effort required, a new paradigm of infrastructure-as-a-code has been
popularized by infrastructure automation and configuration management tools such as Chef
and Puppet.

In the infrastructure-as-a-code paradigm, the computing, storage and network infrastructure

is modeling using declarative modeling languages. A modular approach is adopted for
modeling the infrastructure to improve code re-usability. The infrastructure models are
compiled and run by infrastructure automation tools to generate the desired infrastructure.
[nfrastructure-as-a-code improves the repeatability of the infrastructure as the same code
always produces the same infrastructure. Modular code design along with the automation
capabilities improve the scalability of systems. Moreover, in the event of system failures or
catastrophic events, the entire infrastructure can be restored from the infrastructure code.

In this chapter you will learn about two popular infrastructure automation tools - Chef
and Puppet. Case studies on using these tools for generating infrastructures such as a
three-tier deployment, a Hadoop cluster and Storm cluster are described. This chapters also
provides case studies on [oT device management with NETCONF and YANG.

11.2 Chef

Chef is an infrastructure automation and configuration management framework. Chef adopts
the infrastructure-as-a-code paradigm and allows deploying, configuring and integrating
various infrastructure components. Figure 11.1 shows the components of the Chef framework.
The Chef server stores the information about the infrastructure. The infrastructure code is
organized into cookbooks. Cookbooks include recipes (which are written in Ruby language),
templates, attributes and resources. The fundamental unit of configuration in a recipe is a
resource (such as file, package, user, etc.). Recipes specify which resources to manage, how
to manage the resources and also the order in which the resources should be managed.

Chef recipes and cookbooks are authored on a Chef workstation and uploaded to the
Chef server. The nodes to be managed run the chef-client. The chef-client connects to the
server and obtains information on the desired state for the node. The chef-client performs
various tasks such as building the node object, synchronizing cookbooks and applying the
cookbooks to bring the node to the desired state.

Chef server comes in two flavors - Enterprise Server and Open Source Server. You can
setup either version on your own infrastructure (in-house or in the cloud) or use a Hosted

Bahga & Madisetti, (€ 2015



11.2 Chef 415

Enterprise Chef Server. Chef provides a free trial of the Hosted Enterprise Chef Server
which is a convenient way to get started with Chef. Figure 11.2 shows a screenshot of the

Hosted Chef Server.

Chef Server Nodes

crercior I "V v |

Mode
Ohject

Figure 11.1: Chef components

e — e —

Before we proceed with examples of using Chef, let us briefly look at the key concepts
of the Chef framework:

—r———— e

e Server: Server stores all the configuration data for the infrastructure including
cookbooks, recipes, roles, attributes, run lists and node objects.

« Node: Node can either be a cloud-based virtual machine instance, a physical node, a
virtual node or a network node (such as a switch or router).

e Cookbook: Cookbook is a collection of recipes, attributes, templates and resources.

e Recipe: Recipe is a configuration element written in Ruby language that specifies
various resources to be managed and how to manage the resources.

Internet of Things - A Hands-On Approach



416 Tools for loT

| Thank you for choosing Enterprise Chefl
Eollaw ilvess thres sieps 1o be on your way 1o using Emtarprise Chat

Dowmicad Saaner Ki Seq up yaur worksiation | Converge & Moce

What's naxt?
| Chel Daoerienbties Browan Casisnniy Cookiaaky Coatacr Shppan o RewunEn
Thee ype placn bt Farllaning i ki of seme of fa S0 Eut Eappar M s e @ iy a D W LA

!| e N gaaRiE. 1y w ¥ wini iy + M i daling Linl
I ) o i 0TS RpirE KR et i Erderpabin C | wian o » Wamn da Pk Pghinene

Figure 11.2: Screenshot of dashboard of hosted Chef server

« Resource: Resource is a fundamental unit of configuration ( such as a package, file,
user, etc). Recipes include information on resources to manage and the desired state
of the resources. [

 Provider: While resource specification tells which resource to manage and the desired
state of the resource, the specification is abstract in nature and does not describe the
steps to manage the resource. Provider describes the steps to bring the resource to the
desired state.

o Attributes: Attributes are used to provide specific details. Attributes are included in
cookbooks, roles, environments and node objects.

« Templates: Templates are included in cookbooks and are used for complex
configurations. Templates are written in ERB template language which is a feature of
Ruby. :

« Policy: Policy includes roles, environments and data-bags. Roles define the types
of servers or patterns that should be applied to all the nodes in a role. For example,
all nodes in a role - “Application Server” have the same configuration details (of
an application server). Data-bags are used to store sensitive information such as
usernames and passwords. Information stored in data-bags can be accessed by nodes
authenticated to the Chef server. Environments denote the processes and worflows
(e.g. development, staging, production, etc.).

o Run Lists: Run list is an ordered list of recipes and/or roles. The chef-client applies
the recipes and roles in the run list in the order in which they appear. Run lists are
stored on the Chef server as a part of the node object.

« Knife: Knife is a command line utility that provides interface between workstation
and server. Using knife you perform tasks such as creating and uploading cookbooks,.

Bahga & Madisetti, © 2015



11.3 Chef Case Studies 417

creating roles and environments, bootstrapping nodes, etc.

: 11.2.1 Setting up Chef

" To set up a Chef environment, you will need to set up Chef Server, Workstation and
Chef-client on nodes. For Chef Server, you can either setup the Open Source version on your
own node or use Hosted Enterprise Chef. For the examples in this Chapter, we recommend
signing up for a free trial of Hosted Enterprise Chef, When you create an account on Hosted
Enterprise Chef, you will be able to download a starter kit that includes the PEM certificates
that allow the workstation to authenticate with the Chef server. Setting up Chef on the
workstation is as simple as running a single command as follows (for Linux workstation):

; When you run the above command, Chef’s omnibus installer installs all you need to get
- started with Chef.

 With the Server and Workstation set up, the next step is to set up a node to manage with
- MYoucanuuc]uudbamlmde or a physical or virtual node. For the examples in this

we use Amazon EC2 instances as nodes.
~ Afier launching a new Amazon EC2 instance, note the IP address of the instance. The

[ gnstapmmhmtsttapthanude The bootstrapping process installs the Chef client and
'mmmthmr.{:hefserver Tbbmtstrapanﬁmamnﬂﬂnudmmnthnfﬂ]lmgkmie

 command on the Workstation:

" meﬁ]mqmyum EC2 keypair {PEM} Al ot s Workstsiion for bockiiioias 8
M'Ihﬂnpdenmmatynuspmfynmeumnfhmmmppmgwmbeuwdmfunhﬂ
ilam:uum You can also view the node with the same name in the Hosted Enterprise Chef

~ 11.3 Chef Case Studies

~ 11.3.1 Multi-tier Application Deployment

 In this section you will learn how to create a multi-tier deployment comprising of HAProxy
' load balancer, Django application server and MongoDB database server. Figure 11.3 shows
the steps in creating a three-tier deployment with Chef. In the first step the nodes for the
load balancer, application server and database server are provisioned. Next, the software .

Internet of Things - A Hands-On Approach



a1 Tools for loT

packages for HAProxy, Django and MongoDB are setup on the respective nodes. Finally the
nodes are integrated to setup the three-tier deployment.
The first step is to create a cookbook named threetierdeployment with the following

command:

from the workstation:

Aftubomnupﬂn;mmmdﬂ,mmdpenfwmmmm
HAProxy, Django and MongoDB. Box 11.1 shows the recipe for generating SSH ke
mdBuxllZM:ﬂnmcipeforooMuﬂnpﬂﬁchﬁnflﬂmduudm :
authorized key file on each node. Thiummnhataﬂnodumnhlemmmﬂ

;_
.i.
_l.
¥
&
i
:
i

-




11.3 Chef Case Studies 419

Box 113 MummeWy.mmman
name ‘haproxy’ with the action for the resource set to ‘install’. The recipe also defines a
template resource for the haproxy.cfg file. The ERB template file for haproxy.cfg is shown
in Box 11.4. =

Internet of Things - A Hands-On Approach




A ek IS . y TE" 3 s . i il | T o 5 ;
' , T DAY T A eSS T T T R

Bahga & Madisetti, @ 2015




11.3 Chef Case Studies 421

Internet of Things - A Hands-On Approach



Box 11.5 shwathemﬁpefmuutﬁngﬂ:-"_njmgu. 4

Box 11.6 shows the recipe for setting up MongoDB.

ek

Banga & Madiset, © 201



11.3 Chef Case Studies - 423

© After creating the recipes, the next step is to upload the cookbook. To upload the
book run the following command: :

) m next step is to create run lists for all the nodes as follows:

TF=-:I
';'_'f:g-__-u . the chef-client is run on all nodes from the workstation as follows:




424 Tools for loT

11.3.2 Hadoop Cluster ,
This section describes a case study on setting up a Hadoop cluster using Chef. You already
learned about the steps in setting up a Hadoop cluster in Chapter 10. Let us build on
knowledge. Figure 11.4 shows the steps involved in seiting up a Hadoop cluster with
In the first step the instances for Hadoop master and slave nodes are provisioned. Nex
Hadoop package is setup on the master and slave nodes. Finally, the Hadoop configuration
files are updated and the nodes are integrated to setup the cluster.
mﬁmtsmpummmamukbmknmadhadmpwiﬂnhﬂnﬂowmgmm

Next, launch two Amazon EC2 nodes (one master and one slave node) and boc
them using the following commands from the workstation:

ﬁﬂarbouﬂtslmppingﬂmnndus. create recipes for generating SSH keys, setting
installing Java and setting up Hadpop. Box 11. 1 shows the recipe for generating SS
andﬂox11Zshuwsthsmcxpefmcuﬂncuugthapubhckeysofﬂlmdesmd
authorized key file on each node. This ensures that all nodes are able to securely connect
each other. 3

Box 11.7 shows the Chef recipe for setting up hosts. In this recipe the ‘/etc/hosts’
is created using the template in Box 11.8. All IP addresses and host names of nodes in &
Chef role (*hadoop_cluster_role’) are added to the hosts file. "

Bahga & Madisett], © 201



.3 Chef Case

JouD) i Jsnpo doopey dn Sumeg 1] N3]

mvl ..t.

" Internet of Things - A Hands-On Approach




The recipe for installing Java-7 is shown in Box 11.9.




11.3 Chef Case Studies 427

Box 11. Iﬂlhﬂﬁlﬂuﬂlfndpcﬁlmllpm hﬂmm
mummmdndnﬂwpmmmmmﬂ

internet of Things - A Hands-On Approach



428 Tools for loT

mapred-site.xml) are created using the templates shown in Boxes 11.11, 11.12 and i

|

3

Bahga & Madisetti, @ 2015



11.3 Chef Case Studies 429




430 Tuuls-‘brﬁ-;la’f__

Box 11.14 shows Chefrecipe for mﬁhguprl-imnp master node. In this recipe ba
nmmaﬁdﬂawmnﬁmﬁmﬁcsmmmmems-ofﬂmmmmg ave
maﬁadhthmﬁhmnum11;15md11'.15ﬂmwm.mwmdmw y
used for configuring the Hadoop master node. A

#
i
¢
3
&
o
3
¥
g
£
i
3
<]
%




- 11.3 Chef Case Studies 431

b .i nmllt?mmmwmmammmmmmm
B ‘iﬁemmpeninlhﬁmokbmk.

 With the all the recipes for the Hadoop cookbook created the next siep s to de

11.18 and 11. iymmmmmmmmmm
__ mternnde The roles contain definitions of the run lists.

A T LR it e T L R U i P e
et S s T S e e ey e B g 1 BT oLk b LR

~ Internet of Things - A Hands-On Approach



1
:'Ii
b
:
s
)
::
:

The roles are then added to the run lists of the master and slave nodes as follows:

Finally, the chef-client is run on the master and slave nodes (from the workstation) as
follows: i ;

Bahga & Madisetti, @ 2015




8

11.3 Chef Case Studies

e e T
i i

1133 Storm Cluster
In this section you will learn how to setup an Apache Storm cluster with Chef. The first step
, hmm-mmwwﬁmfﬂmm

Hmhmhﬂuuﬁmmﬂﬂ!mdn{fwh‘mmmw-ﬂ
d ﬁmmmuwmmmm

After bootstrapping the nodes, create recipes for generating SSH keys, setting up hosts,
installing Java, setting up Zookeeper and setting up Storm. You can reuse the recipes for
generating SSH keys, setting up hosts, and installing Java from the Hadoop cookbook
described in the previous section. Box 11.20 shows the recipe for setting up Zookeeper.

.3..
i
!
E



434 . ToolsforloT |

Box 11.21 shows thummpafmmmngupmum. Inﬂnsronipe.ﬂwdmn&mnm :
first installed. NMMWEENMMQMMMMM The Storm package
isﬂwndnwnimdcdﬂdinmlhd. : A




11.3 Chef Case Studies 435

Internet of Things - A Hands-On Approach



436 Tools for loT

Wﬂmm&mfmmmmmmmmmtmﬁhﬁm
roles. Boxes 11.22, 11.23 and 11.mmmmmrmmupﬂwmm
utﬁngup-zmkeepﬁmdmgupSmmmm!, : :




i
|
|

11.3 Chef Case Studies _ 437

The Storm cookbook is then uploaded to the Chef server using the following command:

Tncréatemlesuu!hemﬁumthemlaﬂimmﬂlﬂfﬂﬂﬂm'w

Thnrnlusmthcnaddedtothcnmhstaufd&cﬂmhusjmkwperlﬂdﬂupmds@nu&u
asfollmrs

Finally, thﬂchnf—r:lmntisnmonthe :ﬂmbus z-oakeeper anﬂsupﬁ'vimrm Iﬁmﬂu
workstation) as follows:

Internet of Things - A Hands-On Approach



438 Tools for loT

11.4 Puppet

Puppet (like Chef) is also a configuration management tool that can be used to manage
configurations on a variety of platforms. Figure 11.5 shows the deployment model for Puppet.
Puppet is usually deployed in a client-server model. The server runs the Puppet Master and
the client runs the Puppet Agents. Like the Chﬁfsmer.thaPnppetMastermmmmsthn i
configuration information for the clients. The puppet agents connect to the master to obtain
information on the desired state. Puppet agents on the clients make changes if the current
state is different from the desired state. Puppet agents can be configured to automatically
check for new or updated configuration from the master at regular intervals. Like Chef,
Puppet also uses a declarative modeling language for defining the configurations.

Let us now look at the key concepts of Puppet:

s Resource: Resource is a fundamental unit of configuration. For example, file, user,
package, service, etc. Similar resources are grouped together into resource types.

¢ Resource Abstraction Layer (RAL): Resource descriptions in a configuration are
abstract in nature and not tied to a specific OS. RAL allows separation of resource
descriptions from their implementations. RAL consists of high-level modules (types)
and platform-specific implementations (providers).

e Class: Classes define a collection of resources which are managed together as a amgls
unit.

s Manifest: Manifests are Puppet programs (with .pp extension). Manifests include
various types of logic such as resource descriptions, classes, conditional statements,
etc. Manifests can be applied using the ‘puppet apply’ command, which enforces the
desired state as defined in the manifest file.

e Module: Instead of defining the entire logic in a single manifest file, Puppet a]luwa
you to split the logic in multiple files which are organized as a module. A module
consists of multiple files containing the class definitions. Classes group the resource
definitions. The classes defined in modules can be included in the manifest file which

-

Bahga & Madisetti, © 2015



11.4 Puppet 439

Figmell.ﬁ:?uppetmmerguﬁaxm

iuppiiedtobrmgﬁ:esymmsimnthndmedum
Box 11xmmmmm@wmmaﬁm‘

Internet of Things - A Hands-On Approach



440 Tools for loT

e A R T R

i

11.5 Puppet Case Study - mmwm :
Imhismﬂmymwmmmmmmulﬁ-ﬂummmof AP
load balancer, Django application server and MongoDB database server, with Puppet.

Mammmmmmmm&ﬂmmm
master node: . :




11.5 Puppet Case Study - Multi-tier Deployment 441

: soxnzsﬂmmmnmxydmmmammmﬁé
msuumgmmmdaﬁhmmmﬁgmmmmpmmg} 'nwwmﬁi
thenmﬂgurauunﬂkruhnwninnmlli‘l

'

Internet of Things - A Hands-On Approach



Box 11.28 mmmmmmmmmw orovide .I
and django. ;




11.5 Puppet Case Study - Multi-tier Deployment 443

Internet of Things - A Hands-On Approach



444 Tools for laT

To apply the Puppet module on the client nodes, run the Puppet agent on each client

node as follows;

11.6 NETCONF-YANG Case Studies

In Chapter-4 you learned about NETCONF and YANG. This section deacnbesdetaﬂd
case studies on [oT device management using NETCONF-YANG. Thbummldium@ g

Netopeer NETCONF tools which were described in Chapter-4. ,
Box 11.30 provides the commands for installing Netopeer tools.

Bahga & Madisetti, © 2015 :'j




11.6 NETCONF-YANG Case Studies 445

11.6.1 Steps for loT device Management with NETCONF-YANG
1. Create a YANG model of the system that defines the configuration and state data of the
system. ' .

2. Compile the YANG model with the ‘Inctool’ which comes with Libnetconf. The ‘Inctool’
generates a TransAPI module (callbacks C file) and the YIN file. The callbacks C file
contains the functions for making the changes on the device. YmﬁhMmm
representation of the YANG module.

3, Fill in the ToT device management code in the TransAPI module (callbacks C file).
This memmmmmmmmmmmm
4, Bui]dthﬂcnubthﬁhmmaﬁeﬁbmryﬁ]n(m]

Internet ai'l'l'lqu- - A Hands-On Approach



Tools for loT

7. mecmhmmmmmm&ﬁummeﬂmmmmmu
issued to change Mmﬂxmaﬁm.dm_gammﬁoHﬂMmmmmRPC on the loT
device.

11.6.2 Managing Smart Irrigation loT System with NETCONF-YANG

A case study on building a smart irrigation [oT system was described in Chapter-9. Th
smart irrigation system uses an 1oT device and soil moisture sensors to determine the amount
of moisture in the soil and release the flow ufwm&:wghmemmw_-
the moisture levels go below a predefined threshold. 11

Let us look at how NETCONF-YANG can be used for managing the smart i

Bahga & Madiseti, @ 2013



11.6 NETCONF-YANG Case Studies 447

system. Box 11.31 shows the YANG module for the smart irrigation system and Figure 11.6
shows a visual representation of the YANG module. The YANG module describes the
mmﬁhmﬁgmﬁmmdmdauufﬂmuymmfamuﬁmm
the irrigation and the notifications. Leaf nodes systemID, systemLocation and s
mmmwwwmwmammmrmmmmm
parameter. The RPC start-irrigation takes as input the irrigmmnnumianwhiehdm
the duration for which the irrigation is done. The irrigationDone notification notifies
status of irrigation,

Internet of Things - A Hands-Cn Approach



Tools for loT

448




11.6 NETCONF-YANG Case Studies 449

Internet of Things - A Hands-On Approach



Upon compiling the YANG module with the ‘Inctool’, the YIN and TransAPI module
mummnmn.azﬂnmamm(nmwﬂmm 3

mipﬂwqmmm

;.
b
{




11.6 NETCONF-YANG Case Studies 451

Internet of Things - A Hands-On Approach



452 Tools for IoT

Box 11,33 shows the TransAPT module file after implementing the functions in the

Bahga & Madisett, © 2015



11.6 NETCONF-YANG Case Studies 453

auto-generated file. The following additions are done to the auto-generated file:

1. A system status structure is added.

2. The ‘transapi_init()’ fmﬂmi&ﬂﬂedwhichiududﬂﬂwmimmwmmm
loaded. Note that the irrigation status is set to false (0) in this function.

3. The ‘get_state_data()’ mumummmmmmmmmu
defined in the data model. ;
4. The configuration callback function *callba gati
whnhumwbmmdnmpuhfmumww j

5. RPC message callback functions ‘rpc_start_irrigation()’ and ‘rpc_stop_irrigation()’ are
mmmmmw isimmmd. ,

Internet of Things - A Hands-On Approach



454 Tools for loT

. gamamm,@ms'



11.6 NETCONF-YANG Case Studies

Internet of Things - A Hands-On Approach '




. - T S S f P e s = — O T o ey Ty - — il
" P U T L T AR I ST N T [ memm v e e R e

Bahga & Madisetti, © 2015



11.6 NETCONF-YANG Case Studies

Internet of Things - A Hands-On Approach

]
F




Tools for loT

458

Bahga & Madisetti, © 2015




Pty S T T e S e LTS S RS T T R d e e P T P o e W e 1 A e T A T B R P e P - T P I

11.6 NETCONF-YANG Case Studies

Internet of Things - A Hands-On Approach

S e, = £ . = T T T e




460 Tools for loT




11.6 NETCONF-YANG Case Studies 461

mmmgmmmmhﬂaiamﬂﬂ and the binary (.s0
ﬂ#}mhﬁhdhmﬂuﬂetopmmummgﬂnﬁmmmmmwmﬁl
previous section. After loading the module, NETCONF commands can be issued from the
mwmﬁhFWmhmmﬁnmmmﬁmmnﬁgﬁmMmﬁ
command as follows:

To run the TransAPT module specific RPCs, the user-rpc command is used as follows:

Internet of Things - A Hands-On Approach



462 Tools for loT

11.6.3 Managing Home Intrusion Detection loT System with NETCONF-YANG
A case study on building a home intrusion detection system was described in Chapter-9. The
purpose of the home intrusion detection system is to detect intrusions using sensors (suchas
PIR sensors and door sensors) and raise alerts. it
Let us look at how NETCONF-YANG can be used for managing the intrusion detection
system. Box iIHMﬁHYANﬂm&ﬂcmmﬂm&uﬁmmmmﬁ' i
Figure 11.7 shows a visual representation of the YANG module.
MYMMe&mmmmmﬂhmﬁgmmmmm&ﬂw
system, RPCs for arming and disarming the system and the notifications, | &
Leaf nodes systemlD, systemLocation and systemStatus are non-configurable parameters,
The RPC arm-system sets the arming status to active, whereas the RPC disarm-system sets
the arming status to inactive. The systemArmed notification notifies the system
status.




11.6 NETCONF-YANG Case Studies 463

Internet of Things - A Hands-On Approach




Tools for loT

e S ol bt £ it e




11.6 NETCONF-YANG Case Studies

module,

Upon compiling the YANG module with the ‘Inctool’, the YIN and TransAPI module

files are generated. Box 11.35 shows a YIN version of the intrusion detection system YANG

internet of Things - A Hands-On Approach



Tools for 10T




)

11.6 NETCONF-YANG Case Studies

Internet of Things - A Hands-On Approach



468 Tools for loT

Box 11.36 shows the TransAPl module file after implementing the functions in the
auto-generated file. The following additions are done to the auto-generated file:

1. A system status structure is added.

2. The ‘transapi_init()" function is filled which includes the actions run after the module is
loaded. Note that the irrigation status is set to false (0) in this function.

3. The ‘get_state_data()’ function is filled with the code that generates state information as

4. The configuration callback function ‘callback_intrusiondetection_intrusiondetection()’
function is filled which is run when node in path
/intrusiondetection:intrusiondetection changes.

5. RPC message callback functions ‘rpc_arm_system()’ md‘tpc_dhmn_aymﬂ are filled
and the auxiliary function ‘armsystem()’ is implemented.

Bahga & Madisefti, © 2015




11.6 NETCONF-YANG Case Studies

Internet of Things - A Hands-On Approach

g



470 Tools for loT

waw.@m_'




11.6 NETCONF-YANG Case Studies 471

Internet of Things - A Hands-On Approach




Tools for loT

472




e

11.6 NETCONF-YANG Case Studies

473

Internet of Things - A Hands-On Approach



474 Tools for loT

Bahga & Madisetti, © 2015




~ 11.6 NETCONF-YANG Case Studies 475

§ mwmmmmmmuwmmmmm
uhddmuummmmwmmmm
- NETCONF commands can be issued from the Netopeer-cli. For example, to show the current

15 of the intrusion detection system, use the get command as follows:

E
!.
|
!
£

!,. : %mﬂtwﬂm specific RPCl.ihE user-rpc command i_nﬂfﬁ-




476 Tools for loT

11.7 loT Code Generator

The 10T Code Generator, developed by the authors, is a tool for generating IoT device,
services and application code similar to the examples in this book. IoT Code Generator is
included in the book website. To begin with, the user selects an IoT level for the system for
which the code is to be generated. The example shown in this section is of a level-1 [oT
system. The next step is to select an IoT device as shown in Figure 11.8.

In the next step, the sensors are selected as shown in Figure 11.9, .

After selecting the sensors, the storage option is selected and configured as shown in
Figures 11.10 and 11.11.

On completing the code generation wizard, the code generator generates the controller
and application code as shown in Figures 11.12 and 11.13.

The IoT Code Generator has a separate wizard for generating web services code. To
generate the services code, the service specifications are uploaded as a text file, in the format
described in the wizard. Figures 11.14 and 11.15 show the wizard for generating service
code.

On completing the service code generation wizard, the code generator generates the
service code as shown in Figure 11.16.

Summary

In this chapter you learned about various tools for IoT including tools for infrastructure
automation, configuration management and code generation. You learned about Chef, which
is an infrastructure automation and configuration management framework. Chef adopts the
infrastructure-as-a-code paradigm and allows deploying, configuring and integrating various
infrastructure components. You learned about the key components and concepts of Chef
including Chef Server, Node, Cookbook, Recipe, Resource, Provider, Attributes, Templates,
Policy, Run Lists and Knife. You learned how to develop and run Chef recipes. Puppet is
another configuration management tool like Chef. You learned about the key concepts of
Puppet including Resource, Resource Abstraction Layer, Class, Manifest and Module. You
leamed about the steps for loT device Management with NETCONF-YANG starting from
development of a YANG module, compilation of the module, implementation of TransAPI
module, loading modules into the NETCONF server and running NETCONF operations.
Finally, you learned about the IoT code generation tool which is distributed on this book's
website to support students and instructors.

Bahga & Madisetti, © 2015




11.7 loT Code Generator 477

Lab Exercises

1. Box 11.33 shows the code for the TransAPI C module for Smart Irrigation System.

i The rpc_start_irrigation function in this code is called when a NETCONF RPC is

sent from the client to the server to start irrigation. The logic that links the management
system with the actual device is implemented in the irrigate function. The irrigate

i function in the Box 11.33 provides a dummy code that pretends to turn on the irrigation.
Re-implement this function to interface with the actual IoT device described in section
9.5,

2. Write a YANG module for weather monitoring IoT system described in Chapter-9.

Implement a TransAPI for weather monitoring [oT system.

4, A forest fire detection system is described in Chapter-9. The system is a level-5 loT
system with multiple end-nodes and one coordinator node. In this exercise you will
design a management interface for the system. Follow the steps below:

o Identify the configuration and state data of the system and write YANG modules
for the end nodes and coordinator node.

¢ Using the Libnetconf and Netopeer tools compile the YANG modules and
generate the TransAPI module templates.

e Implement the callback functions in the TransAPI module files.

¢ Build the TransAPI modules. Load the YANG and TransAPI modules in the
NETCONF server.

5. This exercise is about system wide NETCONF transactions for the forest fire detection
system. Follow the steps below: :

e Use the YANG and Trans APl modules designed in the previons exercise for this
exercise,

¢ Clear the candidate datastores on the NETCONF server using the discard —
changes command from Netopeer-cli. This command reverts the candidate
configuration to the current running configuration.

e Lock the candidate data stores using the lock command from Netopeer-cli.

# Lock the running data stores.

¢ Copy running configurations to candidate datastores using the copy — config
command.

¢ Edit the candidate datastores using the edit — config command. Make some
changes in the existing configurations.

e Validate the candidate datastores using the validate command.

¢ Commit candidate configurations to running using the commit command.

e Unlock the candidate data stores using the unlock command.

Tk

!:i
Ef

 Internet of Things - A Hands-Cn Approach



478 Tools for loT

QT ot rication@201 20715 .
o NAMESDAcE “nep Jmetconfomntrel orghe'smantfrgeton®
¥ prefix
& description =ranG module for Smart Frgaten oT gatem®
* & revision Tt

& St Ergates Sateer”
B

o Presence “indiosbes the seivie & auoilgbie”
L "Towdeval cante nar for olf smert ergation patem abjects ™
» T systemiD

& Dype e
& config Yese

# mandatory true”

@ description -0 of the getem”
systemlLocation

]

*%

i
i

“The logat oo af the petam*

|

“ememgrel oo
wp®
& value -1

L]
‘s
3§

“The & peoverad up”

¢ deacription
& “rrgation & 0N
@ confiq Tels"
& mandatory e
& description rewaruble ndeotes the curnént stote of e natem *
» B molstureThreshold
* & bype wntii”
& range ‘v ror
@ default 2
@ description Tha oo control the sad mestore thrasbold above whih rrgetion
* & start-irrigatlon
@ description Turm oe the irpaton”
* [ input
8
¥ & Ope e

et 7
* 1

& description =Ts st costrols the fanston fir wh €4 srgetion & furmed oo

l‘ “Stoe Frigeton”
* & IrrigationDone
‘m'uummrrwmmnmr
-
irrigationStatus
* i Lype “rumersiion”
¥ @ ENUM “dene”
& description “The eyetion & dere *
T @ ENUM “concelied”
& description T ergetion wer fopped -
* & EMWM “wre”
& description The eraeton gotem v broken *
o description <indidtes the finol i gaton status*

Figure 11.6: Visual representation of YANG Module for smart irrigation loT system
Bahga & Madisetti, ©




11.7 loT Code Generator 479

# description “rAu maduls for itretien Cetaction w7 parem®

* @ revision enegsas
o description rtmaon Detedes Satem"

v OO
F‘dmmm‘:
@ type reg”
“ DESCrpUON "0 o doa sernier & the fons”
* 8 motionsensorD

] g
n & &fﬂhﬂﬂﬂ#mnmnm e
* [ Intrusiondetection
o DPESENCE “micites the sevves § oiahe”
@ GESCTIDHION Tao ime cotere: fo g S2¢ Pem oo ortec b= paters obac ©

* B systemiD

& deseription The sue= ¢ tmian
= gescripthon "neieres the potem s et

Figure 11.7: Visual representation of YANG Module of home intrusion detection loT system

Internet of Things - A Hands-On Approach



Tools for loT

m |
Level1
Generate Controller & App Code
Chesse Board
Amebi dnaE
T e L |
.:ri-l i |
4 St 4 |

Figure 11.8: Selecting an IoT device or single board mini-computer

A e i O At by ebed suipln pptene.

Figure 11.9: Selecting sensors

Bahga & Madisetti, © 2015




11.7 loT Code Generator

481

Level1
Generate Contraoller & App Code

4 Stop 4

Figure 11.10: Selecting storage option

Level-1
Generate Controller & App Code

Figure 11.11: Configuring storage

Internet of Things - A Hands-On Approach



482

Tools for loT

| import time

iaport datrtise
izpact EySglde
impact spider

#Inithalime WysQL

I Code Generator

Controller Cade

Ciownlogd contrafiern.ms

con = MySJLdb.oceneos. (howt = 'locelbese’, user = *Lotwsss’s

pasmwd = 'eddddl gy w "lat', puozt = ¥BDE|

Figure 11.12: Screenshot of IoT cede generator showing generated controller code

i impart fequesbs

| impasat Jwon
|

| def bemsiInguest):

Code Generator

App Code

Dierarioad viavws iy

| trom djmngs,shartousts Lepert render_to_responss

| from disnge, besplate impozt REguestostent

Figure 11.13: Screenshot of IoT code generator showing generated app code

Bahga & Madisetti, [© 2015




11.7 loT Code Generator

loT Code Generator

Level-1
Generate Services Code

1 etpa 1 | Upilond Service Spidfications
ydy sl 4 A Charas the npectio | i The

ST |
:2 i3 | (e i s b cheems i
{ taiehh A b | Subsrit nrvipl mElSeatione forvettes an 150N, F0 Eesrge |
3 - “aprm |
I‘I\du'-rm-‘:':r-snn';-

b

]

Figure 11.14: Generating services code with IoT code generator

loT Code Generator

Level-1
Generate Services Code

| Ciich Tintsh b genarais servioes cude.

| aelraner epca eaTe a0 the
5|r.|1.|-n.|mur—*._m__y\dp"wnnhtnullwuhnu"hmut |

) .

Figure 11.15: Generating services code with IoT code generator

Internet of Things - A Hands-On Approach




484

Tools for loT

loT Code Generator

modals.py

Download models.py

Erem djasgo.dh impert models

olass Boomimodels. Model) |
seses = modela, Charfield|sax_lengrs=50)

nase = pocdele, CharTisld {max_length=sd)

cless Stete |podele Model:

mane = models. CharField (max_length=3g|

Figure 11.16: Screenshot of IoT code generator showing generated code for services

Bahga & Madisetti, © 2013




Setting up Raspberry Pi

The examples and exercises in this book have been developed and tested on Raspberry Pi.
This appendix provides the instructions for setting up New Out of Box Software (NOOBS)
onto an SD card. To get started, download the latest version of NOOBS from:
http://www.raspberrypi.org/downloads .

You will need an SD card of 8GB or more space. Format the SD card as FAT using the
the SD Card Association’s formatting tool (https://www.sdcard.org/downloads/formatter_4)

Extract the NOOBS zip to the SD card root. Insert the SD card into the SD card slot
on Raspberry Pi. Connect a monitor to the HDMI port of Raspberry Pi and a mouse and
keyboard to the USB ports. Then power up the Raspberry Pi. On first boot, you will see
an options windows as shown in Figure A1.1. This window provides various options for
operating systems including Raspbian Linux, Arch Linux, Pidora, RISC OS and RaspBMC.
Select Raspbian and click install. After the installation is complete restart Raspberry Pi.
After boot you will see the Raspbian desktop as shown in Figure A1.2.

For most examples in this book, you will not require a separate display for Raspberry
Pi. We recommend either accessing Raspberry Pi using VNC or SSH from your computer
which does away with the need for a separate monitor. To use VNC server for accessing
Raspberry Pi, make sure the Raspberry Pi is on the same network as your computer. Box



486 Appendix-A - Setting up Raspberry Pi

Figure Al.1: NOOBS options on booting from SD card

Al.1 provides the commands to install and run VNC server on Raspberry Pi.

On your Wmduwstlnux computer install the VNC viewer
(http://www.realvnc.com/download/viewer). Find the IP address of Raspberry Pi by checking
the connected devices on your router or by manually scanning the addresses. Connect to the
Raspberry Pi using VNC viewer as shown in Figure A1.3.

You can also connect to Raspberry Pi from your computer by SSH as follows:
ssh pi@<Raspberry-IP-Address>

The default username on Raspbian is ‘pi’ and password is ‘raspberry’.

Bahga & Madisetti, © 2015




Appendix-A - Setting up Raspberry Pi

487

1@

ELE

Figure A1.2: Raspbian desktop on Raspberry Pi

VHNC Viewer

—— Ve

VNC Server: | 192.160.1.4:1 |l
P

Encryption: ILat VNC Server choose

Figure Al.3: Connecting to Raspberry Pi with VNC viewer

Internet of Things - A Hands-On Approach



Setting up Ubuntu Virtual Machine

The examples and exercises in this book have been developed and tested on Ubuntu Linux.
This appendix provides the instructions for setting up an Ubuntu Linux virtual machine
within other operating systems such as Windows, To set an Ubuntu virtual machine, the
VirtualBox [132] software is used. VirtualBox is a virtualization software that allows you to
run an entire operating system inside another operating system. VirtualBox runs on Windows,
Linux, Macintosh, and Solaris hosts.

Download and install VirtualBox on your local machine. Also download the latest
Ubuntu disk image (ISO file) from the Ubuntu website [133]. Launch VitnalBox and then
click on the New button to create a new virtual machine. Then enter a name for the virtual
machine and choose the operating system as shown in Figure A2.1.

Then select the amount of memory to be allocated for the virtual machine.

Allocate a quarter of the RAM on your local machine for a good user experience as
shown in Figure A2.2, For examples, if you have 4GB of RAM on your local machine, then
allocate 1GB for the virtual machine.

Next, create a new virtual hard disk as shown in Figure A2.3. Select the virtual disk
image (VDI) hard drive file type as shown in Figure A2 4. Then choose the fixed size storage
for the hard disk as shown in Figure A2.5, :



490 Appendix-B - Setting up Ubuntu VM

Hﬁmandupemingsymn

Please choose & descriptive name for the new virtual machine and select the
nuufwm“mmi.bﬁmmﬁuumdm
will be used twoughout VrtuaBox o identify this machine,

7

Neme: My Ubunty 11.10

Figure A2.1: Creating a virtual machine with VitualBox

Next select the size of the virtual hard drive as shown in Figure A2.6. For Ubuntu, a
virtual hard drive of atleast 4GB is required.

Create the virtual hard disk and then open the settings. In the storage section, click on
the “Choose a virtual CD/DVD disk file” and add the downloaded Ubuntu disk image (150
file) as shown in Figure A2.7.

In the list of virtual machines, in the main window of VirtualBox, double-click your
virtual machine to start it as shown in Figure A2.8. When the Ubuntu boots up you will see
an option to install Ubuntu as shown in Figure A29.

Click on the Install Ubuntu button and select the installation type as shown in Figure
A2.10. Choose the Erase disk option and start the installation as shown in Figures A2.11 and
A2.12.

When the installation completes, you will get a message to restart as shown in Figure
A2.13. Restart the Ubuntu virtual machine, Ubuntu will boot and present the login screen.
Enter the username and password you provided while installation to login.

Bahga & Madisetti, © 2015



Appendix-B - Setting up Ubuntu VM 491

‘Memory size

Select the amount of memary (RAM) in megabytes to be allocated to the
virtual machine,

The recommended memary size 5 512 MB.

BEFEF R R
4MB

Figure A2.2: Selecting the memory size

Hard drive

If yeu wish you can add a virtual hard drive to fhe new machine. You can
elther create a new hard drive file or sslect one from the Bt or from anather

location usng the folder icon.

1f you need a more complex storage set-up you can skip this step and make
the changes o the maching settings once the machine is created.

The recommended size of the hard drive is B.00 GB.
) Do ot add a virtual hard drive

@ Create a virtual hard drive now

) Use an existing virtual hard drive file

&

bl 110 vl Dol 80068 T v] @

Figure A2.3: Creating a new virtual hard disk

Internet of Things - A Hands-On Approach



492

Appendix-B - Setting up Ubuntu VM

Hard drive file type

Please chobse the type of fle that you moukd ke to use for the new woiual haed drive. T
o o ot resed T e it with oS winiaskeaton Seftne vou DO lesve e sting

& VD! (Vraliox Disk mage)
12 wiled [Vl Machine Disk)
3 WD [virtuasl Hard] ik}

71 HOD (Paraliels Hand k)

1 QED [GEMU enhanced disk)
2 QODW (ML Copry-Orv-iiibe)

Figure A2.4: Selecting hard drive file type

Storage on physical hard drive

Plekor choose whe ey B nes Wit haed drive fie should grow 2s @ e used [dyrasscly
alocnted) o if 2 should be crested Bl s maaimum e (Rued soe).

A dynamicolly allocabed hard drive fle vl only use space on your physical hard drive as
tlmhmmﬂﬂi.“tdmm“mm
SRR &

A fosed wire hard dreve fle mary sk longer 0 S2Bte 0N some Syites Dot 8 often faster
o s,

71 Dyrasically sllecsied
@ Fomd wre

Figure A2.5: Choosing storage type

Bahga & Madisetti, © 2015



Appendix-B - Setting up Ubuntu VM 493

File location and size

Please type the name of the new virtual hard drive flle into the box below or dick an the
felder icon to select & dffenent foider o create the fie n.

oy U 1,10 @ |

Selert the sire of the virtual hard dreve o megabytes, This sze s the kit on the amount of
fie clats thart & virfual machine will be able to store on the hard drive,

‘T“_ﬂ'_  ama

A.00 MB .00 T8

Figure A2.6: Choosing virtual hard drive size

Figure A2.7: Adding Ubuntu disk image to virtual machine

Internet of Things - A Hands-COn Approach



Appendix-B - Setting up Ubuntu VM

- -—-m
- R e e R

l o L

—— =='--i
= I
el | g R W e l
e
R e R X
o [
- el nsd i
L —

= SRR -

Figure A2.8: VirtualBox main window showing the Ubuntu virtual machine

Figure A2.9: Ubuntu virtual machine running in VirtualBox

Bahga & Madisetti, © 2015



Appendix-B - Setting up Ubuntu VM

495

QL

5 " orwibrguhs

hl.._-lll‘_- LA e W rhoms

T EAE]

Figure A2.10: Selecting installation type.

Figure A2.11: Starting installation

Internet of Things - A Hands-On Approach



Figure A2.12: Installation in progress

Wolgdeipwri crra iy msmmt v D osscsm cofy moarle

e bt
i

Figure A2.13: Installation complete message

Bahga & Madisetti, © 2015




Setting up Django on Amazon EC2

This section provides instructions for setting up Django on an Amazon EC2 instance. To
launch a new instance open the Amazon EC2 console and click on the launch instance button.

This will open a wizard where you can select the AMI with which you want to launch
the instance as shown in Figure A3.1. Select an Ubuntu AMI. When you launch an instance
you specify the instance type in the launch wizard as shown in Figure A3.2. In the instance
details page you also specify the number of instances to launch based on the selected AMI
and availability zones for the instances.

Next you specify the advanced instance options and storage device configuration shown
in Figures A3.3 and A3 .4, Proceed with the default options. In the next step you specify the
meta-data tags for the instance as shown in Figure A3.5. These tags are used to simplify the
administration of EC2 instances.

Figure A3.6 shows the security groups page of the instance launch wizard. This page
allows you to choose an existing security group or create a new security group. Security
groups are used to open or block a specific network port for the launched instances. Create
a new security group called and open ports 80 (HTTP), 8000 (Django server), 22 (SSH).
Figure A3.7 shows the summary of instance to be launched. Clicking on the launch button
launches the instance.



498 Appendix-C - Setting up Django

i Chaass WAl ) Chas iwmaw T b Conllgan el i AddBimegs A Tigmsews 0 Ceviges Seoey Dl T R
Livved il et

1: Choose an Amazon Machine (AMI)
el g Fen concsies e wifteers condiga sion. TR s weE o sl wers | o e i
-qu------w.-—ﬂi---
4 Lwaslml ANl 3
| 6 s i AN B [VSR] - i PO T -
e BT mh-h-ml“““-nﬂlﬁl
— e, Wy, At Pyt ey T, SR
YO
; iy e Eeryeiee Linus 10 (HVi) - ank b0
B e it gy (1) [ TS e p— ’

D TOE L Beterprias Sarver 1L ap (MU, SS0 Vot Type | ave-iett e -
U e e S0 Ui Beerpies B 1] Sevans Pack 3 (0VN). BE Sl Pugoss [ B0 vele Typs.
S | R -+ ke nmmmnly metg vy b S s

[} et rver Liel LW [l ENT Wndeiver Trpe e Sl -
b SR S LD L1 . 6 S e P (30 VR P S s b
[ e L E T ) b
P es o b by
o T -

Figure A3.1: Amazon EC2 instance launch wizard showing AMIs

| Ewmes S ) ComssmvmsssBype | Corfmeowess 4 dsSmeay 0 Bgemes ) Gedge meydey 0 Reiew

Step 2: Choose an Instance Typs

Amanos £C3 providas & Wit bl of Fmancs Y90 spbnin i 8 e see anam, Suimnoss e Vel Server el can (U apuicasons. Thay heve vpng
rntimmbers o DR mwmwcy ienge sl nemArkEy Digmaly el (P Vin P Reslelly 15 Oha9R e g 18 B Vo
EIEE TRETE e a om de  e pn coemeleg el

Mﬂm“mlmﬂu_““l-m_“

| | ot At e s £ fi)

Figure A3.2: Amazon EC2 instance launch wizard showing instance details

The status of the launched instance can be viewed in the EC2 console as shown in Figure
A3.8, When an instance is launched its state is pending. It takes a couple of minutes for the

Bahga & Madisetti, © 2015




Appendix-C - Setting up Django 499

Lihaove i 1.Cwwid Wiess Ty A Esalgewinmisres 4 AkiSiwm  ATegmmws L Donlgws el 1. Apewe

3 Configure Instance Detalls
oy the MERCY 1 o FREURGMEME. VoL BN lnch e maiadon Kor e SATE AL ISQUME SRR INEARoe 1 e AT OF IV ke Boang magrn o
Rt manageTent ol iz the ke, Wil o

urberol instanees ()

Parchasing eptios. ({)

[rer
L L bfet B3 TAO(LTE 0300 | wemani 58 ¢ | ETRER e subne
Publla P (] ooy sesign n puble I e 1 jor e

ol ()

Shaldawn besavies 1
Enabis lrminalin paesien

s T

iH

Tenancy (1}

bl mm
1 ;-;-,.:-_'.::_I':,.n;-;.'u;:n.n:m..;_.":'."...-\.'. Uil

T AT R

Figure A3.3: Amazon EC2 instance launch wizard showing advanced instance options

L CemmAMi  LCMeraweeTpe  SCmbunimens A MmEeg G Tagrmas L Cxbus bendy o F e

Siep 4 Add Storage
ins NPRRDE il b Isrche win e ol BkagE dnvios SeBege You can atach ardiiovel BRS wPamies BA RERIES Hare voAaees 1 youl PEREE,
i s SRR of e 126l wohursd. Yo £AR &80 ach adinonal TRS woivms ket MuRCWRE 42 INSAnes. Bl rol imiarcs s sakmel LisTi ot Aot

) i = Anamn EC2

Figure A3.4: Amazon EC2 instance launch wizard showing storage device configuration

instance to come into the running state. When the instance comes into the running state, it is
assigned a public DNS, private DNS, public IP and private IP. We will use the public DNS
to securely connect to the instance using SSH.

Internet of Things - A Hands-Cn Approach



500 Appendix-C - Setting up Django

T e e T e . L ¢

Step 5 Tag Instance
A b CONR O e ke vk, 8 BT, R i duie & el ey o Fimaen el wnas - Welmeies Lann pees abowl gl v seaion 100

Figure A3.5: Amazon EC2 instance launch wizard showing instance tags

[Ra T I LI = by Py e D Rty Sy e

i o el i b i i sk
Bl e e L i 0 e B AP 18 e e B, o ssaTple, § yea s
l““ﬁﬂ_“ﬂ_.! 5. ""“-ﬂm“:‘_i_“;ﬁ

A = T |

il e 00 D] sl 7 0 L L ARG niry

Figure A3.6: Amazon EC2 instance launch wizard showing security groups

Bahga & Madisetti, © 2015 :




Appendix-C - Setting up Django 501

BRI L ekt A L I i
Step T: Review Instance Launch
= AM| Deails ;

) U B A LT (VL S50 Ve Typs - anksiadiie

Uy Bev L4 B3 LTE QYA EIBD el it BB 0T Wiioras Ty, Bisigs

R

Figure A3.7. Amazon EC2 instance launch wizard showing summary of instance to be
launched :

P e R R S R B T A T 5 Hiaet
e | Fashion [Dpnge)  Publio 9 Bl 44 [ B-1-}
ML i e CRECRITEFE
oomnstpron. | iponp et gl a0 o
Fridera £ har ko -
Iﬂ!- nardy Pubiw B BELOA el
siwce g e L
Privass B 1500 LS sk rverad Ay Db L
Fyms B E73 30001 Sacawty groups s L vies e
VRO LA A da el bR T
[ELE S T
Anbamil  ma B P - !
Hebeort inctucas o . -

Figure A3.8: Amazon EC2 console showing the launched instance

Internet of Things - A Hands-On Approach




502 Appendix-C - Setting up Django

Connect to the EC2 instance from your local machine using:
ssh -i myKeyPair.pem ubuntu@publicDNS

where publicDNS is the Public DNS of the instance you created.

Box A3.1 provides the commands for installing Django and verifying the Django installation.

Box A3.2 provides the commands for creating a blank Django project and running
Django server. mmmmwwmmmummm
project page as shown in Figure A3.10. :

Bahga & Madisetti, © 2015




Appendix-C - Setting up Django 503

Of course, you haver ssiually done By work yet, Horo's what fo do red:

. |rmﬂmu_au_|.ﬂnmmmhmuumﬂm
. mpmw*mw—p M :.'urnpp Imp_

Figure A3.10: Django default project page

Setting up Django on Google Compute Engine

This section provides instructions on setting up Django on a Google Compute Engine
instance. Figure A3.11 shows a screenshot of the new instance launch page of Google
Compute Engine console. After launching the instance, connect to the instance from your
local machine using:

geutil getproject —project="myProject” —cache_flag_values

geutil ssh django-instance

geutil addfirewall django —description="Incoming HTTP" -allowed="tcp: Bﬂm

Run the commands in Box A3.1 to install Django on the GCE instance. Open the instance
IP address with port 8000 (http://<instance-IP>:8000) in a browser. You will be able to see
the Django default project page.

Setting up Django on Windows Azure Virtual Machines

This section provides instructions for setting up Django on a Windows Azure Virtual
Machines instance. Figure A3.12 shows a screenshot of the new instance launch wizard of
Windows Azure Virtual Machines. After launching the instance, connect to the instance
from your local machine using:

ssh <azure-instance-ip>

Enter the username and password you specified while creating the instance to connect
to the instance. Run the commands in Box A3.1 to install Django on the Azure VM instance.
Open the instance IP address with port 8000 (http://<instance-IP>:8000) in a browser. You
will be able to see the Django default project page.

Internet of Things - A Hands-On Approach



504 Appendix-C - Setting up Django

!
| .m ;
I Google Cioud Console i
ccrms [ ]
' o
' AP & i Crmain a roer inalarcs Summary
P rramsdieres & P - o - il e
Biling AL T L ==L ,,,,.I “"_.-"
- Cmpcriybon Uy Opiege e
i Rapted | Desbéan G iLigs T 1| (whewi b
wurops wmnil & |
. R T T T E g T T o - |
App Engme [ L T R T — mmﬂﬂﬂ |
poTReg ' i
c I L el
o o - - Dot et fr v g
Dl okt e vharge sl
e
AR
e &SRR S e e———_—
kit g L . LA
L el B i oo L_-‘:'::?._-. st e d e s Jad el it
e Bootsouroe & “ﬂhﬂh (8
Ousins Addmonal disks & Ha dises I fene swnpe-me i ]
l g
2onnd Rorage
l Ol Dsaruinrs "
Gl BOL MNetworking
Bigtuery Moy G deleull =
@ - .. .. . - A
[T — ] * '
Project Access
ANRIKATONE e wibsn pous Culinog Con BOeil o0 Daodge o sentsen
= the e prabol You DR Gonol e dalaull socass sng e e beiaw, Laarn '
mare
Adnar ks | el L}
Campuls -m_ 8
Brrmgs Fall ; ]
sk Ll x ¥

Figure A3.11: Launching a new instance from Google Compute Engine console

Bahga & Madisetti, © 2015




Appendix-C - Setting up Django 505

Figure A3.12: Launching a new instance from Windows Azure console

Taking Django to Production

Although Django comes with a built-in lightweight web-server, it is suited for development
purposes only and not recommended for production environments.

The recommended method for taking Django to production is to deploy Django with
Apache and mod_wsgi. mod_wsgi is an Apache module which can host any Python
WSGI application, including Django [129]. mod_wsgi is suitable for use in hosting high
performance production web sites. Box A3.3 shows the commands for installing Apache
server with mod-wsgi on an Ubuntu machine.

‘sudo aptitude install apache? apache2.2-comnon

Internet of Things - A Hands-On Approach



506 Appendix-C - Setting up Django

To provide mod_wsgi the access to a Django application, a wsgi configuration file inside
the Django project directory is required. Box A3.4 shows a sample WSGI configuration for '
a Django project.

Box A3.5 shows a sample WSGI configuration for Apache server. In this configuration
the WSGIScriptAlias directive tells Apache that all requests below the base URL path
specified (e.g. / is the root URL) should be handled by the WSGI application defined in that
file. :

After configuring the http.conf and wsgi.py files, Apache server must be restarted
(fetc/init.d/apache? restart). If all the configurations are in place, restarting the Apache server
would deploy the Django application using mod_wsgi and ready for production.

Bahga & Madisetti, © 2015



[1] Tan G Smith, The Internet of Things 2012 New Horizons, IERC - Internet of Things
European Research Cluster, 2012,

[2] IEEE 802.3 Working Group, http:ffwww.iﬂeeﬂﬂz.o;gfl Retrieved 2014.

[3] IEEE 802.11 Working Group, http:/www.ieee802.0rg/11, Retrieved 2014.

[4] TEEE 802.16 Working Group, http://www.ieee802.0rg/16/, Retrieved 2014,

[5] IEEE 802.11 Working Group, http://www.icee802.0rg/15/, Retrieved 2014

[6] Internet Protocol Specification, http://www.ietf.org/rfc/rfc791.xt, Retrieved 2014,

[7] Internet Protocol, Version 6 (IPv6) Specification, https:/fwww.ietf.org/rfc/rfe2460.txt,
Retrieved 2014.

[8] Compression Format for IPv6 Datagrams over IEEE B02.15.4-Based Networks,
http://datatracker.ietf.org/doc/rfc6282, Retrieved 2014.

[9] Transmission Control Protocol, www.ietf.org/rfc/rfc793.txt, Retrieved 2014,

[10] User Datagram Protocol, www.ietf.org/rfc/rfc768.txt, Retrieved 2014.



508 BIBLIOGRAPHY

[11] Hypertext Transfer Protocol - HTTP/1.1 , http:/ftools.ietf.org/himl/rfc2616, Retrieved
2014,

[12) Constrained Application Protocol (CoAP), http://tools.ietf.org/html/draft-ietf-core-coap-18,
Retrieved 2014,

[13] The WebSocket Protocol, http:/tools.ietf org/html/rfc6455, Retrieved 2014.

[14] MQ  Telemetry Transport (MQTT) V3.1 Protocol Specification,
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html,
Retrieved 2014.

[15] Extensible Messaging and Presence  Protocol (XMPP): Core,
hitp:/fiools.ietf.org/tml/rfc6120, Retrieved 2014.

[16] Data Distribution Service for Real-time Systems, OMG Available Specification,
hutp:/fwww.omg.org/spec/DDS/1.2/PDF/, Retrieved 2014.

[17] AMQP v1.0, hup://www.amgp.org/sites/amqp.org/files/amqp.pdf, Retrieved 2014.

[18] IPSO Alliance Interop Committee, The IPSO Application Framework,
http://www.ipso-alliance.org/wp-content/media/drafi-ipso-app-framework-04.pdf, 2012.

[19] T.P. Huynh, Y.K. Tan, K.J. Tseng , Energy-aware wireless sensor network with ambient
intelligence for smart LED lighting system control, IECON 2011.

[20] S. Bhardwaj, T. Ozcelebi, R. Verhoeven, J. Lukkien, Smart indoor solid state lighting
based on a novel illumination model and implementation, Transactions on
Consumer Electronics, Vol. 57, Iss. 4, 2011,

[21] OpenRemote, http://www.openremote.org, Retrieved 2014.
[22] Nest, hup://www.nest.com, Retrieved 2014,

[23] M. Wang, G. Zhang, C. Zhang, J. Zhang, C. Li, An loT-based Appliance Control System
for Smart Homes, ICICIP 2013,

[24] A. Maiti, S. Sivanesan, Cloud controlled intrusion detection and burglary prevention
stratagems in home automation systems, BCFIC, 2012.

[25] Mong-Fong Homg, Bo-Chao Chang, Bei-Hao Su, An Intelligent Intrusion Detection
Svstem Based on UPnP Technology for Smart Living, 1ISDA 2008.

Bahga & Madisetti, © 2015

i
1
!



BIBLIOGRAPHY 509

[26] S. Nivedhitha, A.P. Padmavathy, U.S. Susaritha, M.G. Madhan, Development of
Multipurpose Gas Leakage and Fire Detector with Alarm System, TIIEC, 2013.

[27] International Energy Agency, Light's Labour's Lost, OECD/IEA, 2006.

[28] M. Castrol, A.J. Jaral, A FG. Skarmeta, Smart Lighting selutions for Smart Cities,
27th International Conference on Advanced Information Networking and Applications
Workshops, 2013,

[29] E. Polycarpou, L. Lambrinos, E. Protopapadakis, Smart parking solutions for urban
areas, WoWMoM, 2013,

[30] S.V. Srikanth, Pramod P. J, Dileep K. P, Tapas S, Mahesh U. Patil, Sarat Chandra
Babu N, Design and Implementation of a prototype Smart PARKing (SPARK) System
using Wireless Sensor Nétworks, International Conference on Advanced Information
Networking and Applications Workshops, 2009.

[31] M. Karpiriski, A. Senart, V. Cahill, Sensor networks for smart roads, PerCom
Workshops, 2006.

[32] H. Zhang, J. Guo, X. Xie, R. Bie, Y, Sun, Environmental Effect Removal Based
Structural Health Monitoring in the Internet of Things, International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013

[33] Changki Mo, J. Davidson, Energy harvesting J‘echrw.-!ag:’es for structural health
monitoring applications IEEE Conference on Technologies for Sustainability (SusTech),
2013.

[34] A. Cammarano, D. Spenza, C. Petrioli, Energy-harvesting WSNis for structural health
monitoring of underground train tunnels INFOCOM, 2013.

[35] S. Dey, A. Chakraborty, S. Naskar, P. Misra, Smart city surveillance: Leveraging
benefits of cloud data stores TEEE 37th Conference on Local Computer Networks
Workshops, 2012. ' .

[36] A. Attwood, M. Merabti, P. Fergus, O. Abuelmaatti, Smart Cities Critical Infrastructure
Response Framework, Developments in E-systems Engineering, 2011

[37] S. Djahel, M. Salehie, L. Tal, P. Jamshidi, Adaptive Traffic Management for Secure and
Efficient Emergency Services in Smart Cities PerCom 2013,

[38] AirPi, http://airpi.es, Retrieved 2014.

Internet of Things - A Hands-COn Approach



510 BIBLIOGRAPHY

[39] A. Foina, A. El-Deeh, PeWeMoS - Pervasive Weather Monitoring System, ICPCA,

2008.

[40] M. Masinde, A. Bagula, M. Nzioka, SenseWeather: Based weather monitoring system
for Kenya, IST-Africa Conference and Exhibition (IST-Africa), 2013.

[41] A. Kadri, E. Yaacoub, M. Mushtaha, A. Abu-Dayya. Wireless sensor network for
real-time air pollution monitoring, ICCSPA, 2013,

[42] AR. Al-Ali, L. 7ualkernan, F. Aloul, A Mobile GPRS-Sensors Array for Air Pollution
Monitoring, TEEE Sensors Journal, 2010.

[43] H.H. Eldien, Noise mapping in urban environments: Application af Suez city center,

ICCIE, 2009,

[44] L. Ruge, B. Altakrouri, A. Schrader, SoundOfTheCity - Continuous noise monitoring
for a healthy city, PerComW, 2013.

[45] M. Hefeeda, M. Bagheri, Wireless Sensor Networks for Early Detection of Forest Fires,

MOBHOC, 2007.

i, I. Li, A Novel Accurate Forest Fire Detection System

[46] Y. Liu, Y. Gu, G. Chen, Y.
rks, International Conference on Mobile Ad-hoc and Sensor

Using Wireless Sensor Netwo
Networks, 2011.

[47] J. Lee ; J.E. Kim ; D. Kim : PK. Chong ; J. Kim ; P. Jang RFMS: Real-time Flood
Monitoring System with wireless sensor networks, MASS, 2008.

(48] Ni-Bin Chang, Da-Hai Guo, Urban Flash Flood Monitoring, Mapping and Forecasting
via a Tailored Sensor Network System ICNSC, 2006.

[49] Q. Ou, Y. Zhen, X. Li, Y. Zhang, L. Zeng, Application of Internet of Things in
Smart Grid Power Transmission, International Conference on Mobile, Ubiquitous, and

Intelligent Computing, 2012.

[50] OpenPDC, http://openpde.codeplex.com

Analyzing Massive Machine Maintenance Data in a Computing

[51] A.Bahga, V. Madisetti,
Distributed Systems, Vol. 23, Iss. 10, Oct 2012,

Cloud, TEEE Transactions on Parallel &

[52] ER. Yu, P. Zhang, W. Xiao, P. Choudhury, Communication systems for grid integration

of renewable energy resources, [EEE Network, Vol 25, Iss 5, 2011.

Bahga & Madisetti, © 2013




BIBLIOGRAPHY 511

[53] M.D. Mills-Harris, A. Soylemezoglu, C. Saygin, RFID data-based inventory
management of time-sensitive materials, IECON, 2005

[54] P. Pourghomi, G. Ghinea, Managing NFC payment applications through cloud
computing, Intemnational Conference for Internet Technology And Secured Transactions,
2012,

[55] Marc Pasquet, J. Reynaud, C. Rosenberger, Secure payment with NFC mobile phone in
the SmartTouch project, International Symposium on Collaborative Technologies and
Systems, 2008,

[56] Cultivar RainCloud, http://ecultivar.com/rain-cloud-product-project/, Retrieved 2014.

[57] C. Akshay, N. Karnwal, K.A. Abhfeeth, R. Khandelwal, T. Govindraju, D, Ezhilarasi,
Y. Sujan, Wireless sensing and control for precision Green house management, ICST,
2012.

[58] A. Goel, V. Gruhn, A Fleet Monitoring System for Advanced Tracking of Commercial
Vehicles, IEEE International Conference on Systems, Man and Cybernetics, 2006.

[59] S.T.S. Bukkapatnam, R. Komanduri, Container Integrity and Condition Monitaring
using RF Vibration Sensor Tags, IEEE International Conference on Automation Science
and Engineering, 2007.

[60] S.H.Chen, ].F. Wang, Y. Wei, J. Shang, S.Y. Kao, The Implemeniation of Real-Time
On-line Vehicle Diagnostics and Early Fault Estimation System, ICGEC, 2011.

[61] A.Bahga, V. Madisetti, On a Cloud-Based Information Technology Framework for
Data Driven Intelligent Transportation Systems, Journal of Transportation Technologies,
Vol. 3, No. 2, April 2013,

[62] R. Claes, T. Holvoet and D. Weyns, A Decentralized Approach for Anticipatory
Vehicle Routing Using Delegate Multiagent Systems, IEEE Transactions on Intelligent
Transportation Systems, Vol. 12 No. 2, 2011.

[63] D. A. Steil, I. R. Pate, N. A. Kraft, R. K. Smith, B. Dixon, L. Ding and A. Parrish,
Patrol Routing Expression, Execution, Evaluation, and Engagement, IEEE Transactions
on Intelligent Transportation Systems, Vol. 12 Ne. 1, 2011.

[64] E. Schmitt and H. Jula, Vehicle Route Guidance Systems: Classification and
Comparison, Proceedings of IEEE ITSC, Toronto, 2006.

Internet of Things - A Hands-On Approach




512 BIBLIOGRAPHY

[65] A. Pandian, A. Ali, A review of recent trends in machine diagnosis and prognosis
algorithms, World Congress on Nature & Biologically Inspired Computing, 2009.

[66] Y. Xiang, R. Piedrahita, R.P. Dick, M. Hannigan, Q. Lv, L. Shang, A Hybrid Sensor
System for Indoor Air Quality Monitoring, IEEE International Conference on Distributed
Computing in Sensor Systems, 2013.

[67] S.Bhattacharya, S. Sridevi, R. Pitchiah, Indeor air quality monitoring using wireless
sensor network, International Conference on Sensing Technology, 2012.

[68] Sony Smartwatch, hup:ﬂwww.snnynwbﬂe.mnﬁﬁpmductsfammﬁedsmnnwntcw.
Retrieved 2014.

[69] Google Glass, www.google.com/glass, Retrieved 2014,

[70] Nike Hyperdunk+ Shoes, hitp://www.nike.com/us/en_us/c/
basketball/nike-basketball-hyperdunk-plus, Retrieved 2014.

[71] Nike Fuelband, http://www.nike.com/us/en_us/c/nikeplus-fuelband, Retrieved 2014.

[72] J.M.L.P. Caldeira, J.J.P.C. Rodrigues, P. Lorenz, Toward ubiquitous maobility solutions
for body sensor networks on healthcare, TEEE Communications Magazine, 2012.

[73] W.Y. Chung, Y.D. Lee, S.J. Jung A wireless sensor network compatible wearable
u-healthcare monitoring system using imtegrated ECG, accelerometer and Sp0O2,
International Conference of the IEEE Engineering in Medicine and Biology Society,
2008,

[74) Fitbit, hup://www.fitbit.com/, Retrieved 2014.

[75] loT-A, Converged Architectural Reference Model for the IoT v2.0, http://www.iot-a.eu,
Retrieved 2014,

[76] A.Bahga, V. Madisetti, A Cloud-Based Approach to Interoperable Electronic Health
Records (EHRs), IEEE Journal of Biomedical and Health Informatics, Vol. 17, Iss. 5,

Sep 2013.

[77] Peter Mell, Timothy Grance, The NIST Definition of Cloud Computing, NIST Special
Publication 800-145, Sep 2011.

(78] Amazon Elastic Compute Cloud, http:/faws.amazom.com/ec2, 2012.

Bahga & Madisetti, © 2015

T



BIBLIOGRAPHY 513

[79] Google Compute Engine, https://developers.google.com/compute/, Retrieved 2014,
[80] Windows Azure, http://www.windowsazure.com/, Retrieved 2014.
[81] Google App Engine, http:/fappengine.google.com, 2012,

[82] Network Functions Virtualization, hnp:ﬁwww.etsi.nrghechnu]ugiesaclustershechnolﬂgiemfv,
Retrieved 2014,

[83] OpenFlow Switch Specification, https://www.opennetworking.org, Retrieved 2014.
[84] S. Ghemawat, H. Gobioff, S. Leung, The Google File System, SOSP 2003.

[85] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters,
OSDI 2004,

[86] Apache Storm, http://storm-project.net, Retrieved 2014.
[87] The Python Standard Library, http://docs.python.org/2/library/, Retrieved 2014.

[88] Roy T. Fielding, Richard N. Taylor, Principled Design of the Modern Web Architecture,
ACM Transactions on Internet Technology (TOIT), 2002. -

[89] Django REST framework, http:/dj ango-rest-framework.org/, Retrieved 2014.

[90] Mark Devaney, Bill Cheetham, Case-Based Reasoning for Gas Turbine Diagnostics,
18th International FLAIRS Conference, 2005.

[91] Harry Timmerman, SKF WindCon Condition Monitoring System for Wind Turbines,
New Zealand Wind Energy Conference, 2009.

[92] CSA Trusted Cloud Initiative, https:fhusearch.clnudsecuﬂtya]ﬁame.urgﬁcif. 2013.
[93] Keberos, http://web.mit.eduwkerberos/, 2013.

[94] TOTP: Time-Based One-Time Password Algorithm http://tools.ietf.org/html/rfc6238,
2013,

[95] OAuth community site, http://oauth.net/, 2013.
[96] The OAuth 2.0 Authorization Framework, http://tools.ietf.org/tml/rfc6749, 2013.
[97] Python OAuth2, https://github.com/simplegeo/python-oauth2, 2013.

Internet of Things - A Hands-On Approach



514 BIBLIOGRAPHY

[98] A. Bahga, V. Madisetti, Performance Evaluation Approach for Multi-tier Cloud
Applications, Journal of Software Engineering and Applications, Vol. 6, No. 2, pp.
74-83, Mar 2013.

[99] A.Bahga, V. Madisetti, Rapid Prototyping of Advanced Cloud-Based Systems,
Computer, vol. 46, iss. 11, Nov 2013,

[100] AutoBahn, http://autobahn.ws/, Retrieved 2014,

[101] Amazon Web Services, http://aws.amazon.com, Retrieved 2014,

[102] Google Cloud Platform, hitps://cloud.google.com, Retrieved 2014.

[103] Microsoft Windows Azure, hitp://www.windowsazure.com, Retrieved 2014.
[104] Raspberry Pi, hitp://www.raspberrypi.org, Retrieved 2014,

[105] pcDuino, hitp://www.pcduino.com, Retrieved 2014.

[106] BeagleBone Black, www.beagleboard.org, Retrieved 2014.

[107] Cubieboard, http://cubieboard.org, Retrieved 2014. |
[108] boto, http://boto.readthedocs.org/en/latest/, Retrieved 2014.

[109] Python JSON package, http://docs.python.org/library/json.html, Retrieved 2014.
[110] Python email package, http://docs.python.org/2/library/email, Retrieved 2014.
[111] Python HTTPLib, http://code. google.com/p/httplib2, Retrieved 2014, '
[112] Python URLLIb, http://docs.python.org/2/howto/urllib2.html, Retrieved 2014.
[113) Python SMTPLib, http://docs.python.org/2/library/smtplib.html, Retrieved 2014.
[114] NumPy, http://www.numpy.org/, Retrieved 2014,

[115] Scikit-learn, hitp://scikit-learn.org/stable/, Retrieved 2014.

[116] Django, https://docs.djangoproject.com/en/1.5/, Retrieved 2014,

[117] Django Models, https://docs.djangoproject.com/en/ 1.5/topics/db/models/, Retrieved
2014.

Bahga & Madisetti, © 2015



BIBLIOGRAPHY 515

[118] Django Views, https://docs.djangoproject.com/en/1 Shopics/hitp/views/, Retrieved
2014.

[119] Django Templates, https://docs.djangoproject.com/en/1.5/ref/templates/builtins/,
Retrieved 2014,

[120] Django URL dispatcher, https://docs.djangoproject.com/en/1.5/topics/http/urls/,
Retrieved 2014.

[121] Apache Spark, http://spark.apache.org, Retrieved 2014.

[122] Overview of the 2002 IAB Network Management Workshop,
http://tools.ietf.org/Mtml/rfc3535, Retrieved 2014.

[123] NETCONF Configuration Protocol, http://tools.ietf.org/html/rfc4741, Retrieved 2014,

[124] YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF), http://tools.ietf.org/html/rfc6020, Retrieved 2014.

[125] Netopeer, hitps://code.google.com/p/netopeer/, Retrieved 2014.
[126] libnetconf, https://code.google.com/p/libnetconf/, Retrieved 2014.

[127] XCTU, hitp://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modulcs
/xctu, Retrieved 2014.

[128] Xively-JS, http://xively.github.io/xively-js/, Retrieved 2014.

[129] http://code.google.com/p/modwsgi/, Retrieved 2014,

[130] Apache Hadoop, hitp://hadoop.apache.org/, Retrieved 2014.

[131] Apache Tez, http://tez.apache.org/, Retrieved 2014,

[132] VirtualBox, https://www.virtualbox.org/, Retrieved 2014.

[133] Ubuntu, https://www.ubuntu.com, Retrieved 2014,

[134] Storm, http://storm.incubator.apache.org/, Retrieved 2014.

[135] Zookeeper, http://zookeeper.apache.org/, Retrieved 2014.

[136] NETCONF-Central, http://www.netconf-central.org/, Retrieved 2014,
[137] YANG-Central, http://www.netconfcentral.org/, Retrieved 2014,

Internet of Things - A Hands-On Approach



Internet of Things (loT) refers to physical and virtual objects that have unigue identities and are
connected to the internet to facllitate intelligent applications that make energy, logistics,
industrial control, retail, agriculture and many other domalins ‘smarter’. loT is a new revolution of
the internet that is rapidly gathering momentum, driven by the advancements in sensor
networks, mobile devices, wireless communications, networking and cloud technologies.
Experts forecast that by year 2020 there will be a total of 50 billion devices/things connected to
the internet.

This book is written as a textbook foreducational programs at colleges and universities. It can
also be used by loT vendors and service providers for training their program developers. The
authors have used an immersive ‘hands on’ approach, similar to the one adopted in the
companion book, Cloud Computing: A Hands-on Approach, to help readers gain expertise In
developing working code for real-world loT applications.

Additional support is available at the book's website: waww. internet-of-things-book. com

Organisation

The book is organized inte three main parts. Part | covers the building blocks of Internet of
Things (loT) and their characteristics. Domain specific loT and their real-world
applications are described along with a generic design methodology and an 10T system
management approach using NETCONF-YANG, Part |l introduces the reader to the
programming aspects of IoT with a view to developing rapid prototypes of complex o]
applications. A primer on Pythan, the programming language ysed in this book, is included
to bring readers to a common level of expertise. Packages, frameworks and cloud services
including WAMP-AutoBahn, Xively cloud and Amazon Web Services that can be used to
develop 10T systems are described. The Raspberry Pl device has been chosen for the
examples in this book. Case studies with complete source code for various loT domains
such as home automation, smart environment, smart cities, logistics, retail, smart energy,
smart agriculture, industrial control and smart health are described. Part |1l introduces
the reader to advanced taples on loT, including loT data analytics and tools for loT.
Case studies on collecting and analyzing data generated by loTin the cloud are described

Arshdeep Bahga is a research scientist at Georgia Institute of Technology. His research interests
include cloud computing and big data analytics. Arshdeep has authored several scientific
publicationsin peer-reviewed journalsin the areas of cloud computing and big data.

Vijay Madisetti is a professor of computer engineering at Georgia Institute of Technology.

He is a Fellow of IEEE and has recelved the 2006 Terman Medal from the American Society of
Engineering Education and HP Corporation.

www. universitiespress.com

@ - e
D - gl |11

Universities Press
Bahga and Madisetti: Internet of Things: A Hands-on Approach




