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Preface to the Second Edition

'This book was first published in 1991. For this second edition 1 have
retained the basic structure of the book and have concentrated on up-
dating the sources and improving the style. The principal changes
have been made to Chapters 2, 3, 8 and the Appendix. As in the
original edition, I have tried to simplify the techniques of social
network analysis in order to make it accessible to newcomers. Those
who have some competence with mathematics generally fail to
appreciate the gulf that separates them from most practitioners, and
this may lead them to believe that the book over-simplifies. I have
never let my simplification result in distortion, and I hope that there
is enough in it to satisfy both the newcomer and the more advanced
researcher in need of information on current techniques.

Social network analysis gives itself easily to diagrammatic repre-
sentation, and the book includes a large number of diagrams. I have
emphasized the variety of diagrammatic forms, paying particular
attention to the multidimensional displays which offer the greatest
potential for the future development of social network analysis. One
of the major changes in this edition is the inclusion of a new section
on the new techniques of visualization and network representation
made possible by advances in computing. Technica] advances have
been so great in information technology that the range of software
available for social network analysis is radically different from that
available at the time of the first edition. I have completely rewritten
those parts of Chapter 3 that refer to computer techniques, and I
have, throughout the book, tried to reflect current developments. The
Appendix completely replaces that of the first edition and gives a
review of the current range of social network packages. Those who
wish to use these programs should, nevertheless, follow up the
sources given, as new programs are bound to become available over
the next few vears.

In the first edition, T acknowledged the help of those who, con-
sciously or inadvertently, helped in the preparation of the book since
I first became involved in social network analysis in 1975. 1 would
like to repeat their names here and add a few additional acknowl-
edgements. They are, in alphabetical order: Steve Borgatti, Tony
Coxon, Martin Everelt, Sigmund Grgnmo, Joel Levine, Beth Mintz,
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Clyde Mitchell, Rob Mokken, Mike Schwartz, John Stevens, Frans
Stokman and Barry Wellman. I am also grateful to students at the
Universities of Essex and Bergen who have participated in short
courses on social network analysis.

All researchers in this area will get great intellectual support from
Connections, the newsletter of the International Network for Social
Network Analysis. A major development in the last few years has
been the rapid advance in the use of the internet, and INSNA can
now be contacted through its website. Details of this and of the

SOCNET electronic mailing list can be found in the Appendix

(notes 11 and 12),

John Scott

1

Networks and Relations

‘Ihere has been a considerable growth of interest in the potential
that is offered by the relatively new techniques of social network
analysis. Unfortunately, this potential has been seen as unachicv-
tble for many researchers, who have found it difficult to come to
girips with the highly technical and mathematical language in which
intch discussion of these techniques has been cast. Those who have
wanted to take advantage of the techniques of social network
nnalysis have been practical researchers with substantive interests,
while texts and sources on these techniques have, by and large, been
produced by highly numerate specialists with a mathematical back-
pround. There has even been great difficulty in finding out about the
yvailable computer programs for social network analysis; and when

~ access to a program has been achieved, researchers often have little

practical guidance on its uses and applications.

My aim in this book is to try to bridge this gap between theory
and practice. I am not a specialist with a mathematical training, but
 researcher who came to social network analysis because of the
particular needs of data handling in a research project on corporate
power. Over the years, T have struggled to achieve a degree of
understanding of what the principal measures of network structure
involve, and I have attempted to translate the mathematics into
simpler language and to try to assess the relevance of particular
models for specific research needs. The aim of the book, therefore,
i to draw on this experience I order to present a syslemalic
summary of these measures with some illustrations of their uses. 1
have not attempted to présent a comprehensive treatise on strue-
tural analysis in sociology (see Berkowitz, 1982), nor have I aimed
at reviewing the large number of applications of social network
analysis which have been published {see Mizruchi and Schwartz,
1987, Wellman and Berkowitz, 1988). 1 have concentrated on
identifying the key concepts used in assessing network structure —
density, centrality, cliques and so on — and 1 have tried to translate
the mathematical discussions of these ideas into more comprehen-
sible terms.

It is of the utmost importance that researchers understand the
concepts that they use. There are, for example, a large number of
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different definitions of the ‘clique’ and of related ideas, and a
researcher cannot simply take a program ‘off the shelf” and assume
that its idea of the clique corresponds with that which the researcher
has in mind. It is for this reason that I emphasize, at a number of
points, that the choice of measures and of their application to
particular topics are matters that require the informed judgement of
the practising researcher. They are theoretical and empirical ques-
tions that cannot be avoided by a reltance on mathematical measures
that are only partly, if at all, understood. Only if the researcher has
a clear understanding of the logic of a particular measure can he or

she make an informed sociological judgement about its relevance for .

a particular piece of research.

Relations and Atéributes

The first task must be to define the kind of data for which social |
network analysis is most appropriate. Those who are interested in ¢
its applications will, undoubtedly, have some ideas about this

already: it is useful for investigations of kinship patterns, commun-
ity structnre, interlocking directorships and so forth. But it is .
essential that the common features of these types of data are |
understood more clearly. It is my contention that social network |

analysis is appropriate for ‘relational _gi}ta’, and that techmiques

developed for the analysis of other types of data are likely to be of

limited value for research which generates data of this kind.

The most general characteristic of social science data is that they :

are rooted in cultural values and symbols. Unlike the physical data

of the natural sciences, social science data are constituted through |
meanings, motives, definitions and typifications. As is well knowr, |

this means that the production of social science data involves
a process of interpretation. On the basis of such processes of
interpretation, social scientists have formulated distinct types of data,
to each of which distinct methiods of analysis are appropriate.

The principal types of data are ‘attribute data’ and ‘relational
data’.! Attribute data relate to the attitudes, opinions and behav- °

iour of agents, in so far as these are regarded as the properties,
qualities or characteristics that belong to them as individuals or
groups. The items collected through surveys and interviews, for
example, are often regarded simply as the attributes of particular
individuals that can be quantified and analysed through the many
available statistical procedures. The methods appropriate to attri-

bute data are those of variable analysis, whereby attributes are -
-measured as values of particular variables (income, occupation,

education etc.).

Networks and relations 3

Relational data, on the other hand, are the contacts, ties and
¢Onnections, the group attachments and meetings, which relate one
agent to another and so cannot be reduced to the properties of the
ilividual agents themselves. Relations are not the properties of
agents, but of systems of agents; these relations conmect pairs of
agents into larger relational systems. The methods appropriate to
¢lational data are those of network analysis, whereby the relations
are treated as expressing the linkages which run between agents.
While it is, of course, possible to undertake guantitative and |
statistical counts of relations, network analysis consists of a body of
(ualitative measures of network structure. '

Attribute and relational data are not the only types of social
science data, although they are the most widely .discussed in
fnethods texts. A third type comprises ideational data, which
ilescribe the meanings, motives, definitions and typifications them-
selves. Techniques for the analysis of ideational data are less well
developed than those for attribute and relational data, despite their
¢entrality to the social sciences. Typological analysis of the kind
outlined by Weber (1920-21} is the most fruitful approach here, but
these methods are in need of farther development (see Layder,
(992).2

Although there are distinct types of data (as set out in Figure 1.1)
cach with their own appropriate methods of analysis, there is
nothing specific about the methods of data collection which can be
used to produce them. There is, for example, nothing that distin-
guishes methods for the collection of attribute data from those for
the collection of relational data. The three types of data are often
collected "alongside one another .as integral aspects of the same
investigation. A study of political attitudes, for example, may seek to
link these to group memberships and community attachments; or an
investigation of interlocking directorships may seek to link these to
the size and profitability of the companies involved. In either case,

Style.of research Source of evidence Type of data Type of analysis

Survey research  Questionnaires, Attribute -— Variable

interviews analysis
Ethnographic QObservations —» |deational -— Typological
research ’ \ analysis-
Documentary Texis Relational -#—— Network
research

analysis

Figure 1.1- Types of data and analysis
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questionnaires, interviews, participant observation or documentary
sources can be consulted in order to generate the data.

Studies of friendship, for example, have tended to follow Moreno’s
(1934) lead in using questionnaires to investigate friendship choices.
In such studies, researchers simply ask respondents to identify their
friends, using such questions as ‘Please name your four closest
friends’. Methodological problems do, of course, arise with this
kind of research. An unlimited choice question has sometimes been

found to be difficult for respondents to answer, Some do not feel
that they have four friends to name, and many find the open -
An alternative |
approach is to use the roster choice method, in which respondents .
are asked ‘Which of the following would you regard as a friend?’ L
This requires considerable knowledge and preparation on the part of
the researcher, who must compile the list — the roster — with which

3

question  both time-consuming and tedious.

respondents are presented, but it has the advantage that it can be

adapted by asking respondents to rank or to rate their affiliations, so ;

indicating their ‘intensity’ or significance. In both cases, however,
these methodological problems of knowledge and respondent co-
operation are exactly the same as those that arise in collecting
information on attitudes and opinions.

Relational data are central to the principal concerns of the
sociological tradition, with its emphasis upon the investigation of

the structure of social action. Structures are built from relations, and
the structural concerns of sociology can be pursued through the

collection and analysis of relational data. Paradoxically, most of the

existing texts on rescarch methods and methods of data collection
instead on

give little attention” to this type of data, concentrd
the “use of "variable an

& analy$is for the investigation of attribuic data.

‘The formal, mathematical techniques of social network™ analysis,

the methods that are specifically geared to relational data, have
developed and have been discussed outside the mainstream of
research methods. Whilst they have made possible a number of
spectacular breakthroughs in structural analysis, they have been
largely inaccessible to many of those who would most wish to use
them.

Social network analysis developed, initially, in a relatively non-
technical form from the structural concerns of the great anthropolo-
gist Radcliffe-Brown. From the 1930s to the 1970s, an increasing
number of social anthropologists and sociologists began to build on
Radcliffe-Brown’s concept of ‘social structure’ and, in doing so,
began to take seriously the metaphors of the ‘fabric’ and ‘web’ of
social life. From these textile metaphors, aimed at understanding
the ‘interweaving’ and ‘interlocking’ relations through which social
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de¢tions were organized, the metaphor of the social ‘network’ came
ii the fore, and researchers began to investigate the ‘density’ and
Hexture’ of the social networks which they studied. From the 1950s,
However, a small group of specialists began to concern themselves
will devising more formal translations of the metaphor and, from
the ecarly 1970s, an avalanche of technical work and specialist
applications appeared. From these writings have emerged the key
vineepts of social network analysis, and it is time that the tech-
iilgues returned to the mainstream of data analysis and a wider
aphere of applications.

An Overview

This book is intended to be a guide or handbook to social network
inalysis, and not a text to be read through at one sitting. I have tried
{i- confine subsidiary points and abstruse technicalities to footnotes,
bt a certain amount of complexity necessarily remains in the main
{ext. I hope that this is at the absclute minimum. The newcomer to
social network analysis is advised to read Chapters 2 and 3, and then
10 skim through the remainder of the book, coming back to points
of difficulty later. Those readers with more familiarity with social
network analysis may prefer to reverse this procedure, scanning
Chapters 2 and 3 and then giving greater attention to a thorough
feview of Chapters 4-8, The chapters are best read in detail
whenever a particular technique is to be used in a specific investi-
pation. Although later chapters depend upon arguments raised in
carlier chapters, each can be treated as a reference source to return
o when attempting to use a particular technique,

Chapter 2 discusses the development of social network analysis, -
looking at its origins in the. social psychology of groups and at its
subsequent development in sociological and social anthropological
studies of factories and communities. The chapter concentrates on
the theoretical ideas that emerged in this work and shows how this
was connected with the growing technical complexity of the work
carried out from the 1970s. These late developments in social
network analysis are illustrated through two of the benchmark
studies of the early 1970s: Lee’s work on the search for an
abortionist {Lee, 1969) and Granovetter’s work on the search for a
job (Granovetter, 1974). In Chapter 3, I look at some of the issues
that arise in defining the boundaries of social networks and in
selecting relations for study. These discussions are used as a way of
introducing some of the necessary paraphernalia of social network
analysis. In particular, matrices and sociograms are introduced as
easy and intuitive ways of modelling relational data.
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Chapter 4 introduces the basic building blocks of social networks.
The chapter starts from a consideration of the fundamental socio-
metric idea of representing a network as a ‘graph’ of ‘points’ and
‘lines’, and it shows how these can be used to develop concepts such
as ‘distance’, ‘direction’ and ‘density’. In Chapter 5, I look at the
‘centrality” of points and the ‘centralization’ of whole networks,
building on the argument of Chapter 4 to show how it is possible to
move from local, ‘ego-centric’ measures to global, ‘socio-centric’

ones. Chapter 6 examines some of the principal ‘concepts proposed .

for the investigation of sub-groups within social networks — the

‘cliques” and ‘circles’ into which networks are divided. In Chapter 7
there is a shift of focus to the structure of the “positions’ that are
defined by social relations and to the ways in which these arficulate
into more complex ‘topological’ structures. Chapter 8 looks at the
formal approaches to the display of relational data, moving beyond
the simple sociogram to the production of multidimensional ‘maps’
of social structures. Finally, an Appendix gives an introduction to -
and comparison of the main computer programs for social network

analysis,
Chapters 4-8 each conclude with a consideration of the appli-

cation of the measures discussed in particular empirical studies. The

investigations that are reviewed cover such areas as kinship, com-

munity structure, corporate interlocks and elite power. The aim of |
these illustrations from leading researchers is to give a glimpse of |

the potential offered by social network analysis.

2 e L
The Development of Social Network Analysis

A number of very diverse strands have shaped the development of
present-day social network analysis. These strands have intersected
with one another in a complex and fascinating history, sometimes
fusing and other times diverging on to their separate paths. A clear
lingage for the mainstream of social network analysis can, never-
{heless, be constructed from this complex history. In this lineage
(hére are three main traditions: the sociometric analysts, who worked
ifi small groups and produced many technical advances with the
inethods of graph theory; the Harvard researchers of the 1930s, who
gxplored patterns of interpersonal relations and the formation of
'tligues’; and the Manchester anthropologists, who built on both of
these strands to investigate the structure of ‘community’ relations in
{tibal and village societies. These traditions were eventually brought
ipgether in the 1960s and 1970s, again at Harvard, when contem-
porary social network analysis was forged (Figure 2.1).

In the 1930s a group of German emigrés influenced by Wolfeang
Kohler’s ‘gestalt’ theory were working in the United States on
vognitive and social psychology. This work led to a considerable
gimount of research on the problems of sociometry and ‘group
dynamics’. Using laboratory methods or laboratory-like case studies,
they looked at group structure and at the flow of information and
ideas through groups. At the same time, anthropologists and sociolo-
gists at Harvard University were developing some of the ideas of
the British social anthropologist Radcliffe-Brown. Their work pro-
duced important factory and community studies that emphasized
the importance of informal, interpersonal relations in social systems.
In Britain, principally at Manchester University, a parallel line of
development from the work of Radcliffe-Brown emphasized the
analysis of conflict and contradiction and applied these ideas to the
study of African tribal societies and, a little later, to rural and small
{own Britain. Building on the earlier traditions, they made consider-
able advances in allying mathematics with substantive social theory.
Not until well' into the 1960s, however, did the final breakthrough to
a4 well-developed methodology of social network analysis occur. At
Harvard, Harrison White began to extend his investigations of the
mathematical basis of social structure, forging together some of
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Structural - functionai

Gestalt theory ‘/amropol ogy _
Field theory, Warner, \
sociometry Mayo Gluckman

| l

Group dynamics =————————» Homans

l \Bames Bott Nadel

- Mltcheil

Graph theory \
Harvard
siructuralists\~ /

Social network analysis

Figure 2.1 The lineage of social network analysis

the key insights of his North American predecessors and creating a
unique synthesis which was developed and enlarged by the students
that he trained. As these students moved through their careers to

Departments across the world, the arguments of White and the work
of the British researchers were united into a complex but increas-

ingly coherent framework of social network analysis.
In this chapter, I give a brief outline of the three main traditions of

social network analysis and the leading innovations of the Harrison |

White group at Harvard. This review will highlight the continuing

rooted in the central substantive concerns of sociology.

Sociometric Analysis and Graph Theory

The ‘gestalt’ tradition in psychology, associated principally with

the work of K&hler (see Kéhler, 1925), stresses the organized pat-
terns through which thoughts and perceptions are structured. These
organized patterns are regarded as ‘wholes’ or systems that have

properties distinct from those of their ‘parts’ and which, further-

- mote, determine the nature of those parts. The individual objects that
people perceive, for example, are seen. in the particular ways that

-Development of social network analysis 9

ey are because they are, literally, preconceived within the complex
aieh organized conceptual schemes of the human mind. The objects
n[ the world are not perceived independently of these mental

sehpmes but are, in a fundamental sense, constituted by them. Social
;uwuhology in this research tradition has stressed the social deter-
mination of these conceptual schemes and has, therefore, empha-
sived the influence of group organization and its associated social
#limate on individual perceptions.

{huring the 1930s, many of the leading gestalt theorists fled from
Muzi Germany and settled in the United States, where Kurt Lewin,
faeob Moreno (who had migrated in 1925) and Fritz Heider became
prominent, though rather different, exponents of a gestalt-influenced
sigigl psychology. Lewin established a Research Centre at the
Milssachusetts Institute of Technology, later moving it to Michigan,

© aiid this centre became the focus of research on social perception

ind group structure. Moreno, on the other hand, explored the

~ possibility of using psychotherapeutic methods to uncover the struc-
" fie of friendship choices. Using experimentation, controiled obser-

vition and questionnaires, he and his colleagues aimed to explore

. (e ways in which people’s group relations served as both limita-
‘ 1tlons and opportunities for their actions and, therefore, for their
' |1usonal psychological development. Although the word ‘socio-
*Inetric’ is particularly associated with Moreno, it is an apt descrip-

tlon of the general style of research that arose from the gestalt

¢ |ruclition.

Moreno’s work was firmly rooted in a therapeutic orientation
iowards interpersonal relations, reflecting his early medical training
and psychiatric practice in Vienna. His aim, elaborated in a major

¢ ook (Moreno, 1934) and in the founding of a jounal (Sociometry,

founded in 1937), was to investigate how psychological well-being
i related to the structural features of what he termed ‘social

. : . * configurations’. These configurations are the result of the concrete.
topics of debate in social network analysis, and I show how these are

patterns of mterpersonal choice, attraction, repulsion, friendship, and
other relations in which people are involved, and they are the basis

i upon which large-scale ‘social aggregates’, such as the economy and

the state, are sustained and reproduced over time. Moreno’s concern .

- lor the relationship between small-scale interpersonal configurations

and large-scale social aggregates is a very clear expression of some
of the leading ideas of classical German sociclogy, most notably
those developed in the works of Weber, Tonnies and Simmel..
Indeed, the latter’s so-called formal sociology directly anticipated
many sociometric concerns (Aron, 1964; Simmel, 1908).

Moreno’s chief innovation was to devise the ‘sociogram’ as a way. -
ol representing the formal properties of social configurations.! These:
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could be represented, he held, in diagrams analogous to those of
spatial geometry, with individuals represented by ‘points’ and their
social relationships to one another by ‘lines’. This idea is now
so well established and taken for granted that its novelty in the
1930s is difficult to appreciate. Before Moreno, people had spoken
of ‘webs’ of connection, the ‘social fabric’ and, on occasion, of
‘networks’ of relations, but no one had attempted to systematize this
metaphor into an analytical diagram.

For Moreno, social configurations had definite and discernible
structures, and the mapping of these structures into a sociogram
allowed a researcher to visualize the channels through which, for
example, information could flow from one person to another and
through which one individual could influence another. Moreno

argued that the construction of sociograms allowed rescarchers to .
identify leaders and isolated individunals, to uncover asymmelry and:
reciprocity, and to map chains of connection. One of his principal |
sociometric concepts was that of the sociometric ‘star’: the recipient:
of numerous and frequent choices from others and who, therefore,
held a position of great popularity and leadership. For Moreno, the
concept of the star pointed to an easily visualized picture of the

relations among group members, In Figure 2.2, for example, person
A is the recipient of friendship choices from all the other members :

of a group, yet A gives reciprocal friendship choices only (o persons ;

B and C. A is, therefore, the star of attraction within the group.

F

o *

Figure 2.2 = A sociogram: the sociometric star

Lewin’s early work on group behaviour was published in a book
that outlined his view that group behaviour was to be seen as.
determined by the field of social forces in which the group was

Development of social network analysis 11

lisented (Lewin, 1936). A social group, he argued, exists in a field:
s uocial ‘space’ that comprises the group together with its surround-
i environment. But the environment of the group is not seen as
sifitething purely external to -and independent of the group. The
siivironment that really matters to group members is the perceived
sivironment. The perceived environment is what writers in the sym-
hulic interactionist tradition called the ‘definition of the situation’,
apd its social meaning is actively constructed by group members
ti) the basis of their perceptions and experiences of the contexts
it which they act. The group and its environment are, therefore,
glements within a single field of relations, The structural properties
o this social space, Lewin argued, can be analysed through the
inathematical techniques of topology and set theory (Lewin, 1951).

‘fhe aim of ‘field theory’ is to explore, in mathematical terms, the

literdependence between group and environment in a system of
felations, a view that brought Lewin close to later developments in
peneral systems theory. (See Buckley, 1967 for an application of this
{rumework to sociology.)

In a topological approach, the social field is seen as compris-
ing ‘points’ connected by ‘paths’. The points, as in a sociogram,
fepresent individual persons, their goals, or their actions, while the
pths represent the interactional or causal sequences that connect
fhem. The field model, therefore, describes causal and interactional
Interdependencies in social configurations. The paths that run
hetween points tie them together, and the pattern of paths divides a
lield into a2 number of discrete ‘regions’. Each region is separated
tom the others by the absence of paths between them: paths run
within but not between the regions. The opportunities that individ-
iluls have to move about in their social world are determined by the
boundaries between the different regions of the field in which they
wre located. The constraints imposed by these boundaries are the
‘forces” that determine group behaviour. The total social field,
thercfore, is a field of forces acting on group members and shaping
their actions and experiences.

A further strand of cognitive psychology that made a major
coniribution to the development of theories of group dynamics was
(he work of Heider. His initial work was on the social psychology of
nltitudes and perception, and he was especially concerned with how
i person’s various attitudes towards others are brought into a state
of ‘balance’. The different attitudes that an individeal holds are
halanced in his or her mind when they do not produce a state of
psychological tension. Psychological balance, therefore, depends on
the holding of attitudes that are not contradictory with onc another.
Heider’s particnlar concern was with interpersonal balance, with the
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congruence (or lack of congruence) among attitudes to other people.
He was concerned, for example, with how a person who is emotion-
ally close to two other people might respond to any perceived
conflict or hostility between them. In such a situation, there is an
imbalance in the whole field of attitudes. Helder (1946) held that
attitudes can be seen, at their simplest, as positive or negative.
‘Balance’ exists among a set of attitudes when they are similar to
one another in their sign — all positive or all negative. If person A
likes person B, and person B likes person C, a state of balance exists
only if A also likes C. All the attitudes are ‘positive’. It is important
to note that, for Heider as for Lewin, this kind of analysis relates to
the way in which the world is perceived from the standpoint of a
focal individual: Heider was adopting an explicitly ‘phenomeno-

logical’ stance. From this point of view, the important thing is not :
the actual relation between B and C, but A’s perception (accurate or -
otherwise) of this relationship. ‘Balance’ refers to a psychological,
phenomenological state, and not to any actually existing relations in -

~ and formulae that describe the properties of the patterns formed by
~ the lines. In the work of Cartwright and Harary, the points in a graph

a social group.
While ficld theory, as a theoretical framework for social analysis,

proved an intellectual dead-end, Lewin’s advocacy of mathematical ©
models of group relations proved to be a fruitful foundation for later
work. Of particular importance in building on the insights of Lewin
was Cartwright, who, together with the mathematician Harary,
pioneered the application of graph theory to group behaviour |
{Cartwright and Zander, 1953; Harary and Norman, 1953. See aiso |
Bavelas, 1950). Graph theory had first been formulated by Konig °
(1936) but, like many works published in Germany in the 1930s, it
had litle immediate impact on the wider intellectual world. Tts °

significance for the mainstream of intellectual effort was appreciated

only in 1950, when his book was republished in the United States |
and its ideas were developed in the work of Harary and Norman :

(1953). These mathematical ideas made possible a crucial break-
through in the theory of group dynamics. This breakthrough con-

sisted of moving from the concept of cognitive balance in individual :

minds to that of interpersonal balance in social groups. Newcomb

{1953) was one of the first researchers to move in this direction,

arguing that there is a tendency for two people who are close to one
another to each adopt similar attitndes towards third parties or
events. Researchers could, therefore, build models of the systematic
interdependence between the attitudes held by different individuals
within a group. This claim was generalized in the theoretical
framework outlined by Cartwright and Harary (1956). In the hands
of these writers, the insights of Lewin, Moreno and Heider were
brought together into a novel and more powerful synthesis. (See aiso
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thary et al., 1965, which was under preparation from the mid-
1U50s.) The attempt to apply mathematics to the structure of group
isliions was not, of course, a new idea — as well as the work of
i awin there were other early contributions, using different mathe-
tical models, at the end of the 1940s (for example, Bavelas, 1948 .
it Festinger, 1949). Building on Lewin’s work, however, Cart-
wiglt, Zander and Harary evolved powerful models of group :
vithesion, social pressure, cooperation, power and leadership.
Cartwright and Harary (1956) had outlined the basic idea of
rgpresenting groups as collections of points connected by lines —
ilie basic insight of Moreno. The resulting sociogram or ‘graph’
régpresented the network of actual interpersonal relations among
ioup members and could be analysed, they argued, by using the
ituthematical ideas of graph theory. Graph theory has nothing to do
with the graphs of variables familiar to many people from school
mathematics. Instead, a graph is simply a set of lines Connectmg
jioints, and graph theory consists of a body of mathematical axioms

ropresented individuals and the lines showed their relations with one
another. The lines in a graph can be given signs (++ or —) to indicate
whether they refer to ‘positive’ or ‘negative’ relations, and they can
b given arrow heads to indicate the ‘direction’ of the relationships.
The direction attached to a line is a way of distinguishing, for
example, person A’s orientation to person B from B’s orientation to
A: person A may direct a positive relation to B (he likes B), while
jerson B may direct a negative relation to A (she hates A). This-

vonstruction of ‘signed’ and ‘directed’ graphs allowed Cartwright - -

and Harary to -analyse group structure from the standpoint of each of
ils members simultaneously, and not simply from the standpoint of a
particular focal individual. It was, therefore, a major move forward
in a strictly sociological direction.

The fundamental points that Cartwright and Harary were making
van most easily be understood by considering undirected graphs. In
m undirected graph, the relation of A to B is assumed to be identical
with the relation of B to A. This can occur, for example, because
(heir attitudes are perfectly reciprocated or because they have a
common involvement in the same activity. For this reason, the line
between any two points can be studied without considering its™
direction. In an undirected graph, ‘balance’ describes simply the
particular pattern of signs attached to the lines that make up the
graph. In Figore 2.3, for example, three different graphs of relations
umong three actors are shown. In graph (i), A and B have a positive
tclationship to one another and the whole graph is balanced because
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(i) : (i)
A - B A

(jit)

C.

Figure 2.3 Balanced and unbalanced structures

of the existence of positive relations between A and C and between
B and: C. In graph (ii), however, a negative relation between A and
C puts a strain on the positive relation between A and B, because of
the positive relation that exists between B and C: the graph is
unbalanced. Put simply, if my friend likes someone to whom I am
antagonistic, there is likely to be a strain in the relation between us.
I might be expected to respond to this by persuading my friend to
give up his or her liking of the third party, by altering my own
relation to that person, or by breaking the relationship with my
friend. Each participant in an unbalanced network will be under a
similar strain and so will be attempting to resolve the tensions that

they experience.> Group. relations are in a dynamic flux, with the

final balanced: outcome: — if-it is:achieved — resulting from the
actions and compromises of all the: participants involved. Responses
aimed at-restoring balance -to-the group can be mapped ‘in new
graphs with-different signs:attached to-the various lines. Graph (iii),
for example, represents: the situation-where A successfully persuades
B to dislike C, and so restores balance.

-Cartwright and; Harary argued. that complex social structures can
be seen as built from simple structures. More particularly, they are
composed. of overlapping ‘triads’ such as those depicted in: Figure
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1A, Simple triadic structures are the building blocks of larger social
structures, and the properties of complex networks of social relations
giit, they argue, be derived from an analysis of these building
filicks, In the simplest case, for example, a whole network is
bitlanced when all of its constituent triads are balanced.” While the
ilen of a balanced triad is, perhaps, fairly clear and comprehensible,
the idea that a large and complex network is ‘balanced’ is less so.
liideed, the claim might seem to be neither an interesting nor a
uielul piece of informgtion. This would, however, be an erroneous
gonclusion to draw. ﬂ very important finding, which has been
detived from the work of Cartwright and Harary, is that it _any
hulanced graph, no matter how large or complex, can be divided info
two sub-groups with rather interesting properties: the relations within
gmh of these sub -groups w1ll be positive, while those between the
(lpfmed “for "example, by relatlons of solidarity, will consist of
{wo cohesive sub-groupings between Wthh there is conflict. and
antagonism. Y

In the simple case where all the relations In a network are
jositive, one of these sub-groups will be an empty or null set: all
points will fall into a single group.” This will not be the case in more
vomplex balanced structures, and a division into sub-groups might
liighlight important & eatures of the network. So, the
ientification of a network as balanced oF unibalaneed is merely a
flist step in the move towards its ‘decomposition’ into its constituent
sub-groups. Much of the mathematical work concerned with. the
analysis of balance has centred on the attempt to discover such
(fecomposition techniques. The successful decomposition of a bal-
unced network would allow researchers to derive an understanding
of network structure simply from information about the relations
between individuals. This discovery has enormous implications for
the understanding of group structure, and James Davis (1967, 1968)
has been a leading figure in the attempt to discover the conditions
under which it might be possible to move towards more realistic
decomposition techniques that would allow researchers to identify
the existence of more than two sub-groups within a network.’

The concept of balance has been especially influential in experi-
mental stadies of group cooperation and leadership and has resulted
in one classic smdy of small group behaviowr in a natural setting
{(Festinger et al., 1959). Many of the ideas that emerged from the
sociometric tradition of small group research were, however, taken
up by researchers with an interest in general systems theory and in
the mathematical aspects of cybernetics and rational action. Indeed,
the first applications. of sociometric. ideas. to large-scale social
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systems were initiated by just such researchers. Initial studies
explored the spread of disease from one person to another through
chains of contacts, aiming at the derivation of predictive epidemio-
logical models of contagion. A leading figure in this work was
Rapoport, who elaborated on the formal implications of the studies
(Rapoport, 1952, 1958) and helped to stimulate an interest in
applying similar ideas to the transmission of ideas and innovations.
Although such work had been undertaken before, along with investi-

gations of the spread of rumour and gossip, the 1960s saw the first -

major works of this kind to use network concepts (Coleman et al.,
1966; Fararo and Sunshine, 1964).

Interpersonal Configurations and Cliques

Theoretical work in the sociometric tradition, I have argued, has
involved a considerable effort to uncover ways of decomposing
networks into their constituent sub-groups. This search for what
have variously been termed ‘cliques’, ‘clusters’, or ‘blocks’ has also
been a feature of the research tradition that developed at Harvard
University during the 1930s and 1940s. In this line of work, the
investigation of ‘informal relations’ in large-scale systems led to the
empirical discovery that these systems did, in fact, contain cohesive
sub-groupings. The task that the researchers then faced, and only
partly solved, was to discover techniques that could disclose the sub-
group structure of any social system for which relational data were
available,

Radcliffe-Brown and, through him, Durkheim were the major
influences on this tradition of research. Radcliffe-Brown’s ideas had
been especially influential among anthropologists in Australia, where
he had taught for a number of years. His influence was particularly
strong in the work of W. Lloyd Warner, who moved to Harvard in
1929 to join his fellow Australian, the psychologist Elton Mayo. The
two men worked together in a series of closely related investigations
of factory and community life in America, and they saw these

investigations as applications of the structural concerns of Radcliffe-

Brown. -

Mayo had moved from Australia to Harvard in 1926 in order to
take on a leading role in the newly developed research programine
of its business school. His principal contact with sociological ideas
was through the dominating influence of the biologist L.J. Hender-
son, who actively promoted -the work of Pareto among his Harvard
colleagues. Henderson held that this was the only appropriate basis
for a truly scientific sociology and that it was, furthermore, the only
viable political bulwark against revolutionary Marxism. Mayo’s
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jriychological concern for individual motivation was complemented
hy a growing awareness of what Pareto termed the ‘non-rational’
eomponents of action. Economic action, for Mayo, was not a purely
rational torm of action, but was structured also by non-rational
sentiments such as those of group solidarity. Pareto was also the
great exponent of elite theory, and Mayo saw that a managerial elite
that recognized this influence of group relations on economic
ihotivation could most succesifully control worker behaviour.
Warner’s contribution to the Harvard research programme, as
hefitted a trained field worker, showed a greater concern for detailed-
ivestigations of the actual patterns of group behaviour that could be
found in particular social settings. To Mayo’s theoretical and applied
concerns, Warner brought an empirical dimension. Despite these
differences - or, perhaps, because of them — the work that the two
began at Harvard was crucially important in the development of
social network analysis. Their careers overlapped there for only six
years, but their research proved massively influential. The major
projects that they and their colleagues undertook were investigations

of the Hawthorne electrical factory in Chicago and a study of the

New England community of ‘Yankee City’. :

The Hawthorne studies have become classics of social investiga-
tion, and they need little discussion here. (See the useful discussion
in Rose, 1975.) Brefly, a series of studies of worker efficiency had
been undertaken during the 1920s by managers in the Hawthome
works of the Western Electric Company in Chicago. These managers
were attempting to discover how alterations in the physical condi-
tions of work (heating, lighting, rest periods and so on) affected
productivity, and they discovered, to their considerable surprise, that
productivity increased almost regardless of the particular chinges
that were made. In an attempt to understand these paradoxical
results, the managers called on Mayo and his Harvard team for some
guidance in restructuring the research programme. Mayo concluded
that the crucial factor responsible for increased productivity had
been the very fact of participation in the research project: the
workers were pleased that their managers were taking an interest in
them, and their sense of involvement and integration into the life of
the factory motivated them to greater efforts.

With the advice of Wammer, the Hawthorne investigators began an
‘anthropological’ study, an observation of workgroup behaviour in a
natural setting in the factory. The scene of their observations was the
bank wiring room, and the team approached their research in the
factory in the same way that a social anthropologist would carry out
fieldwork in a village in an alien society. They recorded all that
they could observe of group behaviour, aiming to construct a full
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anthropological account. The particular importance of the -Haw-
thorne studies in the development of social network analysis lies in
their use of sociograms to report on group structure. Just as the kin-
ship structure of a village community might be illustrated by a
genealogical diagram, the Hawthorne teamn constructed sociograms
to illustrate the structure of informal relations within the work-
group.

The principal report on the Hawthome studies (Roethlisberger and

Dickson, 1939: 500ff.)% includes various sociograms constructed :
by the research team. They saw thesé as reflecting the ‘informal .
organization’ of the bank wiring room, as opposed to the formal
organization that was depicted in the managerial organization chart.
Sociograms were constructed to show each of a number of aspects

of group behaviour: involvement in games, controversy over the

opening of windows, job trading, helping, and friendships and

antagonisms. The Hawthorne study was the first major investigation

to use sociograms to describe the actual relations observed in real |

situations. In their diagrams, people are represented by circles and
their relationships by arrows. The similarity of these diagrams to
the sociograms subsequently developed by the group dynamics
researchers are obvious, but the researchers give no indication of
how they hit upon the idea of such diagrams. There is, for example,
no discussion of the evolving work of Moreno. It will be seen from
Figure 2.4, however, that the diagrams resemble not only the formal
organization charts which were used by managers, but also the
electrical wiring diagrams that would have been a very familiar
feature of the plant. It must be assumed that the influence of Warner
encouraged the researchers to adapt conventional anthropological
Kinship diagrams- by drawing on these other mﬂuences of the
orgamzatmnal setting.

0.

Figure 2.4 A Hawthodrne sociogram
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[n drawing the sociograms of the bank wiring group, certain
derieral conventions were followed, but these were artistic rather
iln sociological. The precise location of each circle on the page
Wi decided by the artist, the principal constraint being simply that
{fie members of any sub-group identified by the observers should be
ifruwn as close to one another as possible. Apart from this, purely
afilstic principles of clarity and simplicity governed the design: the
filmber of lines that cross one another, for example, should be as
sinall as possible, and the lines should not vary too much in length.
The sub-groups identified by the researchers — they called them
‘tliques™ = were those that the workers themselves recognized as
[niportant elements of their situation. Much as any anthropologist
filght use ‘native’ categories and conceptf as pointers to the
flructural features of group life, the workers® own terms were taken
ity indicators of the existence of ‘cliques’. *The group in front” and
'the group in back’ were identified from observations of group
behaviour and from group vocabulary as the two sub-groups within
the bank wiring group. There was no attempt to use the sociograms
themselves to identify sociometrically defined ‘cliques’; the socially
perceived sub-groups were simply mapped onto the sociograms.”
Having plotted group structure in this way, however, the researchers
made Iittle further use of the diagrams. They appear to lack any
theoretical understanding of how social networks might shape the
behaviour of individuals.

Warner, meanwhile, had begun a study of the small New England
city of Newburyport, which he gave the pseudonym ‘Yankee City’.
His fieldwork was carried out between 1930 and 1935, and the
research was conceived as a full-blown anthropological study of a
modern, urban community. As such, it combined observation with
the use of interviews and historical documents. The end of the main-
phase of fieldwork, however, coincided with a growing antagonism
between Warner and Mayo, and Warner left Harvard for Chicago
University, where his mentor, Radcliffe-Brown, was already a
visiting professor. Wamner and Radcliffe-Brown had two years
together at Chicago, a period when the analysis of the fieldwork
material from Yankee City would have been at its most intense.
Warner spent the rest of his career at Chicago, and it was from there
that he supervised and sponsored a number of related studies, most
importantly that of *Old City’ in the Deep South.®

Warner’s own early work had used the methods and ideas of
Durkheim and Radcliffe-Brown in the traditional manner to study an
Australian tribe, and it was through his contact with Mayo that he
first formulated the idea of applying anthropological methods to the
study of a modern urban community. Warner had originally intended
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to study the district of Chicago in which the Hawthorne works were
located, but the work of the Chicago school of sociologists forced
him to conclude that the district was ‘disorganized’ and so would
not be amenable to anthropological investigation (Park et al., 1925).
Warner felt that only in New England and in parts of the southern
States would he find the kind of established and integrated com-
munities that he wished to study.

Wamer's work shows a rich variety of theoretical influences. :
While the influence of Radcliffe-Brown was uppermost, he allied
this with an organismic, systems model of society which, undoubt- |
edly, shows the influence of Henderson’s interpretation of Pareto. |

This led Warner to emphasize such factors as stability, cohesion and
integration in the structuring of communities. But he also drew on

Simmel’s ideas of reciprocal relations and of the influence of

numbers on group life. It was, T have suggested, Simmel (1908) who
pioneered the analysis of dyads and triads as the building blocks of
social life. Foilowing the terminology of Simmel and other German
sociologists, also adopted by Moreno, Warner talked of social
configurations, holding that the social organization of 2 community
consists of a web of relations through which people interact with one
another.

The social configuration that comprises a modermn community,
argued Warner, consists of various types of sub-group, such as the
family, the church, classes and associations. Along31de these is also
association of people among whom there is a mdegree of group
feeling and intimacy and in which certain group norms of behaviour
have been established (Warner and Lunt, 1941: 32). A cligue is ‘an
intimate non-kin group, membership in which may vary in numbers
from two to thirty or more people’ (Warner and Lunt, 1941: 110).°
For Warner, therefore, the clique has the same social significance in
community studies as the informal group had in the Hawthorne
factory studies. The concept describes a particular configuration of
informal interpersonal relations.

The Yankee City researchers claimed that a large number of these
cliques could be identified in the city. The major cliques were
the groups that many Yankee City respondents referred to by such
terms as ‘our crowd’, ‘our circle’ and so on. Having discovered the
existence of these cliques from the comments made by those they
studied, Warner and his associates claimed that they were second in
importance only to the family in placing people in society. People
are integrated into communities through ‘informal’ and ‘personal’
relations of family and clique membership, not simply through the
‘formal’ relations of the economy and political system. Any person
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iny be-a member of several different cliques, and ‘such-overlapping.
it clique membership spreads out-into a network of interrelations
which integrate almost the entire population of a community in-a
ilngle vast system of clique relations’ (Warner and Lunt, 1941: 111):-
This is undoubtedly one of the earliest, if not the earliest use of o
fietwork terminology to describe the structuring of whole societies
inl() sub-groups.

“The Yankee City reports used various diagrams to model such
l_l_‘}ings as class structure and family organization, and it is hardly
#urprising that the researchers also constructed clique diagrams. To
tpresent the social structure that they described, they drew cliques
Ay:a series of Intersecting circles in a Venn diagram (Warner and
Lunt, 1941: 113), but they did not advance to any formal, structural
ialyses of these diagrams. In the second volume of the Yankee City

Ieport, however, there was an attempt to undertake what would now.

he termed a ‘positional analysis’ (Warner and Lunt; 1942 52, Figure
X). They presented a series of matrices that show the numbers of-
people occupying each of a number of structurally defined positions.

Figure 2.5 shows the format of one of these diagrams. Having
Identified six classes and 31 types of clique in Yankee City, Warner

and Lunt cross-classified class and cligue membership in a data
matrix. Each type of clique was defined by the predominant class
composition of its overall membership, and the cells of the mairix

Type of clique-

1 2 3 4 5 L. 31

1

2 (\e

O
0
&
3 o
<
Social class

4

5

6

Figure 2.5 - A matrix of cliques
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show the numbers of people in each class who were members of -

each of the 31 types of cligue.' From among the large number of
possible combinations — 6 times 31, or 186 — they argue that only 73
positions actually occurred. All the remaining cells in the matrix
were empty. By constructing similar matrices for class against each
of a number of other social groupings (types of formal association,

types of family efc.,) they were able to combine the matrices |
together, stacking them one on top of another, and they identified 89
structural positions in the overall, combined network." The particu-
lar procedure that they employed was rather cumbersome, and it is |
unnecessary to go further into its outmoded operation, but the :
Yankee City work remains interesting for its attempt to pioneer such

methods of formal structural analysis.

Colleagues of Warner began an investigation of ‘Old City’, in the
southern States, during 1936, and in this research they further
explored the idea of the ‘clique’ (Davis et al., 1941). In looking at
‘colored society’ in Old City, they followed Warner’s method of
seeing cliques as intersecting circles, mapping the overlapping
memberships of the most active cliques in a space defined by class
and age (Davis et al., 1941: 213, Figure 12). They referred to ‘social
space’ and its ‘two dimensions’, but there is no explicit mention of
any of the work of Lewin on topological field models. The major
innovation of this study was its attempt to explore the internal

structure of cliques. The researchers argued that a clique could be |
seen as comprising three layers:; a ‘core’ of those who participate |

together most often and most intimately, a ‘primary circle’ of those

who participate jointly with core members on some occasions but |
never as a group by themselves, and a ‘secondary circle’ of those

who participate only infrequently and so are ‘almost non-members’.
On the basis of their investigation of 60 cliques, using similar
techniques to those of the Yankee City researchers, they suggested a
number of structural hypotheses about the connections berween
cliques. They argued, for example, that peripheral, lower-class
members of a clique might be able to contact higher-class members
of another clique only through the higher-class core members of
their own clique. ‘
The ideas that emerged in the Hawthorne, Yankee City and Old
City research developed in parallel with those of the sociometric
tradition of small group research, but there is no evidence that the
leading figures in the two traditions were even aware of one
another’s work during the 1930s and 1940s. In the work of George
Homans, however, there occurred the first important intersection of
these two strands of research. Homans, a faculty member in the
Harvard sociology department, was dissatisfied with the grand
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theory of Harvard colleagues such as Parsons, which he féelt operated
it a much too abstract level of analysis, Homans felt that social
theory had to be built np from the foundations of a firm under-
stunding of small-scale social interaction. To this end, he began,
during the late 1940s, to try to synthesize the mass of small group
fesearch that had been undertaken in the United States. He aimed at
fiothing less than a theoretical synthesis of this work, drawing on the
pxperimental work of the social psychologists and the observational

work of sociologists and anthropologists. His theoretical synthesis

gentred around the idea that human activitics bring people into
Interaction with one another, that these interactions vary in their

frequency’, ‘duration’ and ‘direction’,’? and that interaction is the
“basis on which ‘sentiments’ develop among people. Homans saw
-‘Moreno’s sociometry as providing a methodological framework for
applying this theory fo particular social situations. To illustrate his
-‘ideas, he re-examined a number of earlier studies. :
. One section of the Old City report has achieved considerable fame

= among network analysts at least — because of its re-analysis by

Homans. In this section, Davis and his colleagues had used matrix

methods to look at the involvement of 18 women in 14 social events .
(Davis et al., 1941: ch. 7)."* Homans took these data, presented them
in matrix form, and set out one of the first published statements of
the method of ‘matrix re-arrangement’ in social network analysis.
(See also Festinger, 1949.) The Old City matrix shows 18 rows
(women) and 14 columns (events), with an ‘x” entry placed in a (fell
to represent the participation of a particular woman at a specific
event. The raw matrix, argued Homans, was not necessarily arranged
in any significant order — the columns, for example, were simply
arranged in the date order of the events. For this reason, t_he Crosses
appear to be disiributed at random across the matrix. A Te-
arrangement of the rows and columns of the matrix, bringing
together the events in which particular women predominate, would,
he believed, uncover important structural features of the clique. He
described his method as follows: .

we put in the center the columns representing events , , . at which a large
number of women were present, and we put toward the edges the
columns representing the events . . . at which only a few women were
present. As far as the lines [rows] are concerned, we put together toward
the top or bottom the lines representing those women that participated
most often together in social events. A great deal of reshuffling may have
to be done before any pattern appears. (Homans, 1951: 83)

Homans argued that this ‘reshuffling’ must go on until the
distribution of the crosses in the cells shows a clear pattern, _and he
produced a re-arranged matrix in which there. were clear signs of
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i division into two ‘cliques’ among the women: there were two
distnet clumps of crosses in the re-arranged matrix. Homans’s
methad is analogous to what has subsequently come to be called
‘block modelling’, but he made no use of any formal mathematical
methods. In fact, his re-arrangement seems (0 have been simply a
trial-and-error process that continued until he was able to spot an
apparently significant pattern.

Figure 2.6 shows a simplified version of the kind of re-analysis
undertaken by Homans. The matrices show artificial data for the
participation of eight people in eight events. In matrix (i), the ‘x’
entries are scattered evenly across the whole mairix, but a re-
arrangement of the rows and columns into the order shown in matrix

{i) Original matrix

Events
2 3 4 5 6 7 8
Ann- X X X X.
Beth ' X X X X
Chris X X X X
Don X X X X
People g4 % X X X
Flo v X X X X
Gill X X X X
Hal X X X X
(ii) Re-arranged matrix
Events
1 3 5 7 2 4 6 8
Ann. X X X X
Chris X X X X
Ed X X X *
Gill X X X X
FeoPle peth ' ' X X X X
Don X X X X
Flo X X K X
Hal X X X X%

Figure 2.6 . Matrix re-arrangement -
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{li) brings out a structural opposition between two distinct sub-
geoups: Ann, Chris, Ed and Gill participate together in events 1, 3,
5 and 7, while Beth, Don, Flo and Hal participate jointly in events
4,4, 6 and 8. There are two separate sets of people and two specific
¢itegories of events. It can be appreciated that re-arrangement by
(tinl-and-error would not be such an easy task, even for such a small
mairix, when the data are not so tightly structured as in this artificial
¢xample. The real data on 18 women and 14 events would have
laken a considerable amount of time to analyse, There is, further-
fore, no certainty that the final results produced by Homans would
be the same as those produced by any other researcher, as there are
no criteria by which a ‘correct’ result can be identified. It is for these
reasons that later atternpts at this kind of analysis have involved a
search for programmable algorithms, so that computers can rellabiy
tindertake the task of re-arrangement.

To illustrate his position further, Homans re-analysed the
Hawthorne data on the bank wiring room. Using the sociograms
constructed by the observers, he looked at the cliques that
Roethlisberger and Dickson had identified (Homans, 1951: 66-70).
But Homans retained these original clique identifications, and did
not attempt a sociometric investigation of clique structure along the
lines of his analysis of the Old City data. He did imply, however,
albeit without elaboration, that the matrix re-arrangement method
had been wsed by the original Hawthome researchers (Homans,
[951: 84).14 _

The theoretical framework that Homans constructed to explain
group behaviour was an elaboration of the model of the early small
group researchers, in which the group is understood as a system
within an environment. He divided the structure of any group into an
‘internal system’, which expresses the sentiments that arise through
the interactions of its members, and an ‘external system’ through
which group activities are related to the problem of environmental
adaptation.”” The environment itself consists of the physical, tech-
nical and social contexts of group behaviour. Homans’s main
concern was with the internal system, which he saw as a more
scientific concept than that of the ‘informal organization® to which it
referred. His interest, therefore, was in the scientific elaboration of
the insights of research on informal organization by translating these
insights into propositions about the structure of internal systems.

To this end, he set up a number of hypotheses about the internal
system, starting from the assumption that people who interact
frequenily with one another will tend to like one another and that, as
the frequency of their interaction increases, so the degree of their
liking for one another will increase. If there are frequent interactions:
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il thi external system, because of such environmental constraints as
the dethuads inposed by supervisors and managers, then the mem-
bers of the workgroup will tend to develop sentiments of liking and
will engage in further interactions with one another, unrelated to the
needs of the external system. It is in this way, he argues, that the
internal system gets elaborated into complex social configurations
divisible into cliques.’®

Despite the power of Homans’s theoretical synthesis of socio-
metric and anthropological reseurch, there were few major advances
that were directly inspired by his work., Homans himself became
increasingly concerned to explore the explanation of social behay-
iour using behaviourist and rational choice models, and he became
identified with the framework of ‘exchange theory’ (Homans, 1961).
Robert Bales, a colleague of Homans, carried out some interesting
small group research (Bales, 1930}, but he did not use a sociometric
approach to his work and became increasingly linked with Parsonian
structural functionalism (Parsons et al., 1953). The work of many
who had confributed to the development of the idea of balance
returned to exclusively psychologistic concerns, and the influential
text of Festinger (1957) became an important charter statement in
directing these researchers back into the social psychology of
perception. The area of group dynamics all but stagnated, with most
advances being in the purely mathematical problems of balance,
cliques and clusters. While these mathematical explorations were to
prove important and fertile sources for the advances later made by
Harrison White, they had little impact on the shape of social
research during the 1950s and 1960s.

Networks: Total and Partial

It was in the work of a small group of active fieldworkers associ-
ated with the Department of Social Anthropology at Manchester
University — most notably, John Barnes, Clyde Mitchell and
Elizabeth Bott'” — that the framework of social network analysis
took a novel turn. The ‘Manchester’ anthropologists were even more
strongly influenced by Radcliffe-Brown than were their Harvard
counterparts, and they sought to develop his ideas in a novel
direction. Instead of emphasizing integration and cohesion, they
emphasized conflict and change. A central figure at Manchester was
Max Gluckman, who combined an interest in complex African
societies with a concern to develop a structural approach that
recognized the important part played by conflict and power in both
the maintenance and the transformation of social structures. For
Gluckman, conflict and power were integral elements of any social
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structure, and his analyses stressed the ever-present activities of
negotiation, bargaining and coercion in the production of social inte-
gration. Gluckman actively encouraged his colleagues and students
who were undertaking investigations of small scale interpersonal
communities to pursue these themes.

The dominance of the Parsonian approach to sociology and
ol cultural approaches in anthropology during the 1950s was an
important factor in directing the work of the Manchester school as a
distinctly critical tradition. Where classical sociologists had empha-
sized that actions were to be understood in terms of their location in
4 structure of social relations, Parsons held that actions must be
explained as expressions of internalized value orientations. The work
of the Manchester anthropologists, with its emphasis on seeing
structures as networks of relations, combined the formal techniques
of network analysis with substantive sociological concepts. This
proved an impressive and powerful mixture, which brought it close
to the emerging framework of conflict theory in sociology, but their
emphasis on interpersonal relations meant that it did not appear
as a full-blown alternative to Parsonian theory. For this reason,
social network analysis could not help but be seen as a specialized
method of study rather than a critical alternative to conventional
sociology.

The Manchester researchers, then, paid less attention to the
formally institutionalized norms and institutions of a society and
rather more to the actual configurations of relations that arise from
the exercise of conflict and power. The theoretical ideas inherited
from the past, geared to the understanding of simple, kinship-based
societies, were unable to handle these phenomena. It was in recog-
nition of this inadequacy that they began to try to systematize such
metaphorical notions as the ‘web’ and ‘network’ of social relations
to which such writers as Radcliffe-Brown had pointed.

Initially, these researchers began to employ the idea of a social
network simply in its metaphorical sense, but Barnes, in the early
1950s, took a lead in applying this idea in a more rigorous and
analytical way. His approach had a considerable influence on the
work of Bott, and the two began to explore more closely the work
that had been undertaken in the sociometric tradition. Their various
papers (Barnes, 1954, Bott, 1955, 1956) received a broad welcome
among social anthropologists, the concept of the social network
seeming to meet a need for appropriate concepts to use in under-
standing complex societies. Siegfried Nadel espoused this approach
in & set of lectures and an associated book (Nadel, 1957) that
became a programmatic charter statement from a leading figure in
the discipline. However, it was Clyde Mitchell who undertook the

-
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lasks outlined by Nadel and laid the basis for a systematic frame-
work of social network analysis. Mitchell turned to the mathematics
of graph theory that had emerged from the early sociometric
concerns, and he reformulated these ideas as the basis of a distinctly
sociological framework. Summarizing the ideas that had begun to
crystallize during the 1950s in his own work and that of his
colleagues (Mitchell, 1969), he set out a body of sociological
concepts that, he believed, could adequately grasp the structural
properties of social organization. Intrigningly, Mitchell's translation
of graph theory and sociometry into a socielogical framework led
him to a concentration on exactly those features of informal and
interpersonal organization that had been highlighted by Mayo,
Warner and Homans.

Barnes began his academic career at the Rhodes—Livingstone
Institute in Central Africa, a major research centre for many of the
Manchester anthropologists. After joining the Manchester Depart-
ment in 1949, he decided to undertake some fieldwork in a fishing
village in south-west Norway. Although it was a small village
community, Bremnes was an isolated locale structured  almost
exclusively through the kinship relations of its members. It was an
integral part of a complex and socially differentiated national
society, but it had its own economic, political, and other institutions,
which were only imperfectly co-ordinated into an integrated system.
Barnes was strongly drawn to the part played by kinship, friendship
and neighbouring in the production of community integration. These
primordial relations were not directly tied to territorial Iocales or to
formal economic and political structures. Instead, they formed a
distinct and relatively integrated sphere of informal, interpersonal
relations. Barnes claimed that ‘the whole of social life’ could be
seen as ‘a set of points some of which are joined by lines’ to form
a ‘total network’ of relations. The informal sphere of interpersonal
relations was to be seen as one part, a ‘partial network’, of this total
network (Barnes, 1954; 43),

Bott, a Canadian psychologist, had studied anthropology under
Lloyd Warner at Chicago, and it may be assumed that, like Barnes,
she had some familiarity with the Yankee City studies. She joined
the Tavistock Institute in 1950 and soon began some fieldwork on
British families. Bott was principally concerned with their kinship
relations, and she employed the concept of a ‘network’ as an
analytical device for investigating the varying forms taken by these
kinship relations. This work was published in two influential articles
and a book (Bott, 1955, 1956, 1957), and it was the basis of the PhD
that Bott received from the London School of Economics in 1956,
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The evolving theoretical framework of her study was undoubtedly
influenced by her colleagues at the Tavistock Institute, which had, in
1947, joined with the Research Centre for Group Dynamics at Ann
Arbor to publish the journal Human Relations. As a psychologist
with an interest in psychotherapy, Bott was aware of the work that
had been undertaken by Moreno. Indeed, both she and Barnes cited
Moreno in their own papers. The more immediate influence on
Bott’s work, however, was Lewin’s field theory, and even Barnes

wrote of the existence of distinct ‘fields’ of activity in Bremnes

society. Human Relations published articles by Lewin, Festinger;
Newcomb, Cartwright and other American leaders of small group
research, and it was there that both Bott and Bames published their
work on social networks. : ‘
Barnes had presented his initial ideas in seminars at Manchester
and Oxford during 1953. It was in 1954 that Bott learned of
Barnes’s work and adopted the term ‘network’ as the basis of her
own theoretical interpretations. By the time that Barnes’s article was
published, he was working under Raymond Firth at the London
School of Economics. Bott was already registered for her PhD, she
presented drafts of her own paper that year at both the LSE and at
Manchester. These biographical details are not given for purely
antiquarian reasons, nor are they given simply as illustrations of the
importance of academic networks. My concern is to show how a

. small number of key individuals were responsible, in a very short
- space of time, for constructing the basis of a major theoretical

innovation in British social anthropology. Once Barnes and Bott had

.. made their breakthrough, the way was open for further developments
. which would consolidate their advances with further lessons from

the American researchers.

A key voice in legitimating this direction of theoretical advance
was Siegfried Nadel. An Austrian psychologist, influenced by
Kohler and Lewin, Nadel had transferred to anthropological studies
in the early 1930s. In 1955 he presented a series of lectures on social
structure at the LSE. Barnes and Bott had been important influences
on the development of his work, and they were mentioned as both
commentators and friends in the Preface to the published version of
these lectures (Nadel, 1957). Nadel’s starting point was a definition
of structure as the articulation or arrangement of elements to form a
whole. By separating the forms of relations from their contents, he
argues, the general features of structures can be described ‘and they
can be investigated through a comparative method. To pursue the
aim of the construction of formal models, he advocated a mathemat-
ical approach to structure. Lo : Tl
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Social structure, according to Nadel, s ‘an overall system, net-
work or pattern” of relations (1957: 12), which the analyst abstracts
from (he coneretely observable actions of individuals. By ‘network’
he meant ‘the interlocking of relationships whereby the interactions
implicit in one determine those occurring in others” (Nadel, 1957:
16). A particular claim made by Nadel was the idea that ‘role’
should be seen as the central concept in sociological theory. Social
structures are structures of roles, and roles, together with their role
sets, are defined through networks of interdependent activities. Nadel
argued that algebraic and matrix methods should be applied to role
anulysis, but apact from one or two brief illustrations, he gave little
indication of how this was to be done, His early death, in 1956,
prevented him from contributing further to the advances that he had
signposted.

Mitchell and others associated with Manchester and the Rhodes—
Livingstone Institute attempted to systematize this view during the
1950s and 1960s. Indeed, Mitchell can be seen as the true inheritor
of Nadel's aspirations. Mitcheil’s codification of social network
analysis in 1969 generalized Barnes's conception of the sphere of
interpersonal relations into that of the ‘personal order’.’® The
personal order is the pattern of ‘personal links individuals have with
a set of peopie and the links these people have in turn among
themselves’ (Mitchell, 1969: 10). These patterns of interaction are,
for Mitchell, the sphere of network analysis. Such interpersonal
networks, he added, are built from two different ideal types of action
that combine in varying ways to form concrete interaction networks.
There is, first of all, ‘communication’, which involves the transfer of
information between individuals, the establishment of social norms,
and the creation of a degree of consensus. On the other hand, there
is the ‘instrumental” or purposive type of action, which involves the
transfer of material goods and services between people (1969:
36-9)." Any particular action will combine elements of both of
these ideal types, and so particular social networks will embody both
a flow of information and a transfer of resources and services.

Mitchell goes on to conceplualize the ‘total network’ of a society
as ‘the general ever-ramifying, ever-reticulating set of linkages that
stretches within and beyond the confines of any community or
orgagization’ (Mitchell, 1969: 12). In actual research, he argues, it is
always necessary to select particular aspects of the total network for
attention, and these aspects he conceptualizes as “partial networks’.
There are two bases on which such abstraction can proceed, though
Mitchell concentrates his own attention almost exclusively on one of
these. First, there is abstraction that is anchored around a particular
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individual so as to generate ‘ego-centred’ networks of social rela-

~ tions of all kinds. Second, is abstraction of the overall, ‘global’

features of networks in relation to a particular aspect of social
activity: political ties, kinship obligations, friendship or work rela-
tions etc. For Mitchell and for most of the Manchester researchers,
it was individually anchored partial networks that were to be the
focus of attention. In this kind of research, individuals are identified
and their direct and indirect links to others are traced. Such research
generates a collection of ego-centred networks, one for each of the
individuals studied. A similar approach was taken in Bott’s earlier
investigation of the ego-centred networks of husbands and wives,
where she measured the ‘connectedness’ of these networks and the
degree of overlap between marital partners’ networks.

Mitchell recognizes the importance of the second mode of
abstraction identified above — that which defines partial networks by
the ‘content’ or meaning of the relations involved -- but he sees this
also as needing to be anchored around particular individuals. The
‘partial networks® studied by sociologists and social anthropologists
are always ego-centred networks focused around particular types of
social relationship. Most such networks, Mitchell argues, are ‘multi-
stranded’ or ‘multiplex’: they involve the combination of a number
of meaningfully distinct relations. Thus, Barnes’s original notion of
the network, and that taken up by Bott, was a partial network in
which kinship, friendship and neighbourliness were combined into a
single, multi-stranded relationship that it was inappropriate to break
down into its constituent elements.

Interpersonal networks, Mitchell claimed, can be analysed through
a number of concepts that describe the quality of the relations
involved. These are the ‘reciprocity’, the ‘intensity’ and the ‘g_yﬁr_abil-
ity’ of the relations (Mitchell, 1969: 24-9), concepts that echo
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Homans’s distinctions' between ‘direction, frequency and intensity.
Some, but not all, relationships involve a transaction or exchange,
and so can be considered as ‘directed’ from one person to another.
An important measure of such relations, therefore, is the degree to
which the transaction or orientation is reciprocated. One person may,
for example, choose another as a friend, but this choice may not be
returned: the chooser may be ignored or spurned. Multi-stranded
relationships can involve a complex balance of compensating

er

g

relations, reciprocated and unreciprocated. Through these relations, .

financial aid, for example, might flow in one direction and E(_)w]itical
support in the other.?® ‘Durability” is a measure of how enduring are
the underlyifig relations and obligations that are activated in par-
ticolar transactions (Mitchell refers to Katz, 1966). Those that are
constantly being activated in interaction are highly durable, while
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those that persist only for one or two activities are highly transient:
While kinship obligations, for example, are very durable — they
generally last for the whole of one’s life — those that arise for a
particularly limited purpose are more likely to be transient. ‘Inten-
sity’ refers to the strength of the obligations involved in a relation.
This reflects either the strength of the commitment to these obliga-
tions or the multiplexity of the relationship: multi-stranded relation-
ships tend to be more intense because they are more diffuse in
character.?' _

Mitchell adds a further set of concepts, derived from a translation
of graph theory into sociological language. which can be used to
describe the texture of social networks. ‘Density’, for example, he
sees as the completeness of the network: the extent to which all
possible relations are actually present. This is what Barnes and Bott
had tried to describe with their notions of the ‘mesh’ and ‘con-
nectedness’ of networks. ‘Reachability’ refers to how easy it is for
all people to contact one another through a limited number of steps:
how easy is it, for example, for gossip, ideas, or resources 1o be
diffused through the network. To these concepts, Barnes {1969) has

added ‘cliques’ and ‘clusters’ as terms for identifying social group-

ings within networks, but these were not taken up in the empirical
studies collected together by Mitchell (1969).
» Institutionalized roles and statuses are the framework within

which interpersonal networks are constructed, but they exist only in

and through the reproduction of interpersonal networks. But Mitchell
and the Manchester tradition equivocated about whether the institu-
tional structure of roles is itself a part of network analysis or/is
separate from it. While some of the Manchester school saw the
institutional role structure as a network of relations that exists
alongside the interpersonal network, Mitchell often distinguished
networks of interpersonal relations from structures of institutional
relations. Mitchell’s discussion, therefore, tended towards a ‘resid-
ual’ definition of the social network: network analysis concerns only
the interpersonal sphere that is left behind after formal economic,
political and other roles are extracted (Whitten and Wolfe, 1973).
This proved to be highly significant for the subsequent development
of social network analysis in Britain, To the extent that he sees
social network analysis as a special method for the analysis of
interpersonal relations, Mitchell departs from Nadel’s aspiration for
a general framework of structural sociology rooted in formal net-
work analysis. This proved fateful for the development of social

network analysis in Britain, which largely failed to atfract adherents

from outside the areca of community studies.
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‘I'ne Harvard Breakthrough

The arguments of Mitchell, Barnes and Bott were extremely influen-
lial in Britain {(see Frankenberg, 1966), but their very success meant
that social network analysis came to be identified with the specific
ideas of the Manchester anthropologists. That is to say, network
analysis was seen to be concerned specifically with informal,
interpersonal relations of a ‘communal’ type, and the method was
seen as specifically concerned with the investigation of ego-centric
networks. As a result, the crucial breakthrough to the study of the
global properties of social networks in all fields of social life was
not made in Britain.

It was, in fact, at Harvard that the crucial breakthrough occurred.
A decade after Homans’s initial explorations, a trickle of papers
began to appear from Harrison White and his associates. These

pushed the analysis much further. Soon, the work of students and

colleagues of the authors of these papers produced a torrent of
papers that firmly established social network analysis as a method of
structural analysis.

The key elements in this breakthrough were- two parallel mathe-

| matical innovations (see the discussion in Berkowitz, 1982). The

first of these was the development of algebraic models of groups
using set theory to model kinship and other relationg in the spirit of
Lévi-Strauss. This led to a re-consideration of the early work in
graph theory and in other branches of mathematics and to the
attempt to use algebraic methods to conceptualize the concept of

. ‘role’ in social structure (Boyd, 1969; Lorrain and White, 1971;

“White, 1963). White’s continued explorations of ‘block modelling’
(see Chapter 7 below) can be seen as carrying forward the very
emphasis on role structure to which Nadel had poinied. The second
innovation was the development of multidimensional scaling, a

‘scaling’ technique for translating relationships into social ‘dis-_

tances’ and for mapping them in a social space. Very much in the
tradition of Lewin’s work on field theory, these developments
proved extremely powerful methods of analysis. (For applications in
sociology see Laumann, 1966 and Levine, 1972.)

The confluence of these two strands Jed to the important and
influential work of the mew Harvard group centred around White
(see Mullins, 1973). White had moved to Harvard from Chicago,
and his work retained important links with that of Davis and others,
who had elaborated on the basic sociometric views through the
1960s. The Harvard group developed as mathematically orientated
structural analysts, concerned with the modelling of social structures
of all kinds. There was no single theoretical focus to their work, the
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unifying idea being simply that of using algebraic ideas to model
deep and surface structure relations. It was network analysis as a
method that united them. The public reception of Granovetter’s
article (1973) popularized this viewpoint in American sociology and
helped to stimulate many other studies. Although it was not a highly
technical piece of mathematics - or, perhaps, because of this —
Granovetter’s work was of central importance as a charter statement
for popularizing and legitimating the position (see also Granovetter,
1982). Although many researchers continued to work in such areas
as the analysis of community structure, others were interested in
such phenomena as corporate interlocks and so helped to move
network analysis away from its focus on purely interpersonal
relations. In doing so, they stimulated numerous substantive applica-
tions of the techniques. Much of the effort of the Harvard group —
no longer based solely at Harvard — was focused in the International
Network for Social Network Analysis (INSNA), founded at Toronto,
which acted as a focus for the development of social network
analysis under the leadership of Wellman and Berkowitz, both
former students of White.?

Two classic studies by Granovetter and by Lee grew out of the
earliest discussions of the Harvard school. While they were not
explicitly algebraic in their approach, they became important exem-
plars for others. This was not least because they offered substantive
and analytical continuity with earlier sociometric work.

Granovetter’s work in Getting a Job (1974) started out from a
critical consideration of attempts by labour economists to explain
how people find work. In particular, he wanted to explore the ways
in which people acquire information about job opportunities through
the informal social contacts that they have. His interest was in the
kinds of links involved in the transmission of information, whether
these were ‘strong’ or ‘weak’, and how they were maintained over
time. To this end, he selected a sample of male professional,
technical and managerial workers in a suburb of Boston who had
changed their jobs during the previous five years. Granovetter found
that informal, personal contacts were the primary channels through
which individuals found out about job opportunities: 56 per cent of
his respondents relied on this means, and this was particularly true
for information about the higher-paying jobs. These results were not
especially striking, being broadly in line with earlier research, and
Granovetter set himself the task of identifying those who provided
information and the circumstances under which they passed it.

Granovetter showed that ‘rational’ choice was of little importance
in deciding methods for acquiring job information. Individuals did
not really compare the rewards and costs attached to different
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sources of information, and there was little active ‘search’ for jobs.
Instead, information was acquired accidentally, whenever contacts
volunteered it. The most important people in providing information
were work or work-related contacts. They were rarely family or
friends, and they tended to be people who were in different
occupations from the respondent. The probability that a person
would make a job change was dependent on the proportion of work
contacts who were in different occupations from him or herself,

To explain these findings, Granovetter drew on an information
diffusion model. Those people with job information were assumed to
pass this on to a certain proportion of their immediate contacts, who
passed it on, in turn, to a certain proportion of their contacts, and so
on. Assuming that the information attenuates over time as it passes
through subsequent links in the chain,® it is possible to track its
passage through a social network and to discover the number of
people who will acquire the information and their various locations
in the network. The acquisition of information, therefore, depends
upon, first, the motivation of those with information to pass it on,
and, second, the strategic location of a person’s contacts in. the
overall flow of information (Granovetter, 1974: 52).

It was at this point in his argument that Granovetter introduced his
now-famous argument on ‘the strength of weak ties’. The import-
ance of strong ties is well understood. Those to whom a person is
closest (family and close friends, workmates etc.) have many
overlapping contacts. They all tend to know and to interact with one -
another in numerous situations and so there is a tendency for them
to possess the same knowledge about job opportunities. Information
that reaches any one of them is more than likely to reach them all.
Conversely, they are less likely to be the sources of new information
from more distant parts of the network. The information received is
likely to be ‘stale’ information, already received from someone else.
It is through the relatively weak ties of less frequent contacts and of

_people in different work situations that new and different informa-

tion is likely to become available. What this means is that ‘acquaint-
ances are more likely to pass job information than close friends’
{Granovetter, 1974: 54). In almost all cases studied by Grano-
vetter, information came directly from an employer or one of the
employer’s direct contacts — there was, typically, a maximum of one
intermediary. Links through more than two intermediaries were very
rare. It was the short, weak chains of connection that were of
greatest significance in the receipt of useful job information.

A comparable, and slightly earlier study was Lee’s work in The
Search for an Abortionist (1969). Lee wanted to discover how
women acquired information about the opportunities for terminations
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in a sitnation where abortion is illegal. Doctors who undertake

illegal terminations cannot advertise and must often operate from.

hotel rooms rather than from clinics. Those who seek an abortion
must, therefore, try to obtain information from those of their friends
and acquainiances who may have had some experience with abortion

in the past, as these people are likely to have that information or to-

be able to put them in contact with others who can help.

To study this process, Lee contacted abortionists and women who
had had recent experience of an abortion. In constructing her sample
she was, interestingly, having to use information search techniques
that were similar to those used by the women themselves. Like

Granovetter, she used a mixture of interviews and questionnaires to.

gather her data. Having explored varions aspects of their life and
social background and their attitudes towards conception and abor-
tion, Lee turned to an examination of their search for an abortionist.
The search for an abortionist involved the making of informed
guesses about who might be able to help, either by providing the
name of an abortionist or mentioning a further contact who might
help. Lee found that women approached an average of 5.8 people
before successfully contacting an abortionist, the actual numbers of
contacts ranging from 1 to 31. A number of the contacts, of course,
were ‘dead ends’, and the ‘successful chains’ varied in length from
I to 7 steps, the average length being 2.8. Over three-quarters of the
successful chains involved two or fewer intermediaries (Lee, 1969;
ch. 5). Contacts tended not to be relatives or those in authority
(employers, teachers, etc.), and the most important channels were
female friends of the same age.

Both Granovetter and Lee explored network processes through the
use of simple frequency tabulations, making only qualitative com-
ments on the struciure of the network relations that they discovered.
Indeed, Lee argued that it is extremely difficult to trace the structure:
of overlapping personal networks in large-scale systems. Their
studies were, however, important as outgrowths of and contributions
to the systematic and analytical development of social network
analysis. Their studies showed the power of even the most basic of
social network methods, and they suggested an immense power for
the more rigorous techniques being developed by their Harvard
colleagues.

The power of social network analysis has become apparent in its use
as an orientating idea and specific body of methods. But the
application of formal mathematical ideas to the study of social
networks has encouraged some writers to suggest that social network
analysis offers the basis for a new theory of social structure, Barnes
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and Harary (1983), for example, have argued that it is possible to
advance from the use of formal concepis to the use of formal theory.
They argue that the promise of social network analysis can be
realized only if researchers move beyond the use of formal concepts
for purely descriptive purposes (see also Granovetter, 1979). Mathe-
matics consists of theorems that specify the determinate logical links
between formal concepts. Barnes and Harary argue that if the formal
concepts prove 10 be useful ways of organizing relational data, then
the theorems too should be applicable to those data. The application.
of theorems drawn from formal mathematics, then, ‘reveals real
world implications of the model that might otherwise have not been
noticed or utilized by the designer of the model’ (Barnes and Harary,
1983: 239). _
Some have gone further, and have suggested that developments in
social network analysis already point the way to novel frameworks
of sociological theory, or to the re-assertion of earlier theories.
Particularly influential, for example, have been advocates of an
exchange theoretical perspective on social networks (Cook, 1977,
1982; Emerson, 1962, 1964; Cook and Whitmeyer, 1992), which is
associated with wider ‘transactionalist’ approaches (Bailey, 1969,
Boissevain, 1974) and rational choice theories (Lin, 1982). (See alsg _
the discussions in Banck, 1973 and van Poucke, 1979.) Most“} &
recently, Emirbayer (1997; Emirbayer and Goodwin, 1994) has set |
out an argument for network analysis as the basis of a ‘relational-;
sociology’ that can replace approaches that have stressed culture‘%
and meaning, but is not linked to exchange or rational choice ¢
theories.* 7 d
Whether social network analysis will, in the long run, point to
the predominance of a particular theoretical -framework is not a
matter that will detain me in this book. It is undoubtedly the case
that social network analysis embodies a particular theoretical ori-
entation towards the struycture..ol-the-social world and that it is,
therefore, linked with tructiiral theories of actiom:yBut it seems
unlikely that any one siibstantivé Theory should be regarded as
embodying the essence of social network analysis. The point of view
that I will elaborate in this book is that social network analysis is an
orientation towards the social world that inheres in a particular set of
methods. It is not a_specific body, of formal or substantive social

theory. 4
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Handling Relational Data

Social network analysis emerged as a set of methods for the analysis
of social structures, methods that specifically allow an investigation
of the relational aspects of these structures. The use of these
methods, therefore, depends on the availability of relational rather
than attribute data. In this Chapter I will show how these relational
data can be collected, stored and prepared for social network
analysis. Many of the general considerations that arise in handling
relational data are not specific to this type of research. They are
those that arise with all social science data: gaining access, design-
ing questionnaires, drawing samples, dealing  with NON-IESPONSE,
storing data on computers and so on. These issues are adequately
covered in the many general and specialist texts on research

methods, and it is not necessary to cover the same. ground here, -

However, a number of specific problems do arise when research
concerns relational data. As these problems are not, in general,

covered in the existing texts on research methods, it is important to
review them here before going on to consider the techniques of

social network analysis themselves.

The Organization of Relational Data

All social research data, once collected, must be held in some kind
of data matrix (Galtung, 1967), a framework in which the raw or
coded data can be organized in a more or less efficient way. At its
simplest, a data matrix is a table of figures, a pattern of rows and
columns drawn on paper. When the data set is large or complex, the
data matrix may need to be stored on record cards or in a computer
file. Whatever the physical form taken, the logical structure of the
data matrix is always that of a table. In variable analysis, attribute
data can be organized in a case-by-variable matrix. Each case
studied (for example, each respondent) is represented by a row in the

matrix, while the columns refer to the variables on which their -

attributes are measured. Figure 3.1 shows a simple form of such a
data matrix, with illustrative variables. This is the way in which data
-are organized, on paper or in a computer, for most standard
statistical procedures. :
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Variables

Age Sex Income ... etc.

Cases

o N =
L)

eic.

Figure 3.1 A data matrix for variable analysis

The case-by-variable data matrix cannot be used for relational
data. These data must, instead, be seen in terms of a case-by-
affiliation matrix. The cases are still the particular agents that form
the units of analysis, but the affiliations are the organizations, events,
or activities in which these agents are involved. The columns of the
mafrix; then, refer to the affiliations in ferms of which the involve- .
ments, memberships, or participations of the aZoTs can
fled. From this case-by-affiliation matrix can be deriy ;
6n’ thé"direct and indirect connections among the ‘agenis. In Figure
3.2, for example, a simple case-by-affiliation matrix is shown for the
involvement of three people (labelled 1, 2 and 3) in three events
(labelled A, B and C). Where a specific individual participates in a
particular event, there is a ‘1’ in the corresponding cell of the
matrix; non-participation is shown by a ‘0" entry. It can be seen that
all three people participate in event A, but none of them is involved
in events B or C. Thus, the sociogram that can be drawn from this

Affiliations . 1
A B c
1 1 0 0
Cases 2 1 W) 0
3 1 0 0
2 3

Figure 3.2 A simple matrix and sociogram.
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matrix shows a simple triad of mutual contacts among the individ-
uals. The sociogram can be read as saying that each person meets
the other two at a particular event.

It can be quite difficult to construct sociograms for even
moderate-sized data sets. Lines will criss-cross one another at all
sorts of angles to form a thicket of connections, and any visual
appreciation of the structure is lost. Indeed, it may be quite
impossible, using conventional manual methods of drawing, to
construct a sociogram for a large network. For this reason, social
network analysts have attempted to find alternative ways of record-
ing the connections. Following the principle of the data matrix, the
solution that has been most widely adopted has been to construct a
case-by-case matrix in which each agent is listed twice — once in the
rows and once in the columns. The presence or absence of connec-
tions between pairs of agents is represented by ‘1’ or ‘0’ entries in
the appropriate cells of the matrix. This idea is not, perhaps, as
immediately comprehensible as the sociogram, and so it is worth-
while spelling it out at greater length.

Figure 3.3 shows the general form of data matrices for social

networks. The most general form for raw or coded data is what 1.

have called the case-by-affiliation matrix, in which agents are shown
in the rows and their affiliations in the columns. Such a matrix is
described as being two-mode or ‘rectangular’, because the rows and
columns refer to different sets of data. For this reason, the numbers
of rows and of columns in the matrix are generally different.’ From
this basic rectangular data matrix can be derived two square, or one-
mode matrices. In the case-by-case matrix both the rows and the
columns will represent the cases, and the individuat cells will show
whether or not particular pairs of individuals are related through a
common affiliation. This matrix, therefore, shows the actual relations

or ties among the agents. It is exactly equivalent to the sociogram in-

the information that it contains. The second square matrix shows
affiliations in botli its rows and its columns, with the individual cells
showing whether particular pairs of affiliations are linked through
common agents. This matrix, the affiliation-by-affiliation matrix, is
extremely important in network analysis and can often throw light
on important aspects of the social structure that are not apparent
from the case-by-case matrix.

Thus, a single rectangular matrix of two-mode data can be

transformed into two square matrices of one-mode data.” One of the
square matrices describes the rows of the original matrix and the
other describes its columns. Nothing is added to the original data,
the production of the two square matrices is a simple transformation

cof it. The rectangular matrix and the two square matrices are -
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" {i) Rectangular case-by-affiliation matrix

Affiliations
A B c D E

(i) Square case-by-case matrix (ili) Square affiliation-by-affiliation

matrix )
Cases ’ Affiliations
1 2 3 4 A B C D E
1 : A
2 B
Cases

3 Affiliations C
4 o .

E

Figure 3.3 Matrices for social networks

equivalent ways of representing the same relational data. In -social
network analysis the rectangular matrix is generally termed an
‘incidence’ matrix, while the square matrices are termed ad;%nfm&
Thatrices. These terms derive from graph theory, and they will be
explained more fully in the following chapter. For the moment, it is
sufficient merely to know the names, as they are the most generally
used terms for relational data matrices. Most techniques of network
analysis involve the direct manipulation of adjacency matrices, and
so involve a prior conversion of the original incidence matrix into its
two constituent adjacency matrices. It is critically important, there-
fore, that researchers understand the form of their data (whether it is

incidence or adjacency data) and the assumptions that underpm"

particular procedures of network .analysis.
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In those sitnations where a researcher collects two-mode data on
cases and their affiliations, then, it will generally be most appro-
priate to organize this information into an incidence matrix from
which the adjacency matrices used in network analysis can later be
derived. In some sitnations, however, it will be possible for a
researchér to collect relational data in a direct case-by-case form.
. This would be the situation with, for example, friendship choices
made within a small group. In this situation of what is called direct
sociometric choice data, the information can be immediately organ-
ized in an adjacency matrix. Without entering into all the complica-
tions, there is, in this situation, no corresponding incidence matrix
and no complementary adjacency matrix of affiliations. The reason
for this, of course, is that all the agents have merely a single
affiliation in common — the fact of having chosen one another as
friends.>

For many social network purposes, the distinction between cases
and affiliations may appear somewhat artificial. In a study of, say,
the involvement of 18 women in 14 social events, it would seem
only sensible to regard the women as the cases and the events as
their affiliations. Indeed, this would be in line with the normal
survey practice of treating the agents as the cases. But with such
phenomena as overlapping group memberships, for example, the
sitnation is far less clear-cut. This kind of research is interested in

the extent to which a group of organizations overlap in their

membership, with how similar they are in their patterns of recruit-
ment.- Both the groups and their members are agents in the socio-
logical sense, and so both have an equal right to be considered as the

‘cases’. The members may be treated as the cases, in which case the.

organizations of which they are members will be treated as their
affiliations; or the organizations may be treated as cases and the
members that they share will be seen as their affiliations. The choice
of which set of agents to treat as the cases for the purpose of
~ network analysis will depend simply on which is seen as being the
most significant in terms of the research design.

This decision will normally have been reflected in_prior sampling
decisions, If the organizations are assumed to be of the greatest
importance, then a sample of organizations will be selected for study
and the only people who will figure in the subsequent analysis will
be those who happen {0 he members of these organizations. In such
a research design, the organizations have a theoretical priority and it
would seem sensible to treat the members as indicating affiliations
between organizations. Asg far as the techniques of network analysis
are concerned, however, it makes no difference which of the two are
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regarded as the cases. The same procedures may be applied which-
ever choice is made, and it is the task of the researcher to decide
which of them may have a meaningful sociological interpretation.”

The distinction between; cases’, and_affiliations, " therefore, may
generally be regarded as a purely convel al feature of research
designs for network analysis. A further aspect of this convention is
to place the cases on the rows of the incidence matrix and the
affiliations on its columns. This is bhased on 'the conventions
employed in attribute analysis, where the cases are treated as rows
and the variables are treated as celumns. .

[f the data matrix is to be used as a basic organizational
framework for relational data, certain other conventions must also be
understood. These other conventions can be recommended as the
basis of best practice in network analysis, as they help to ensure
maximum clarity in research discussions. Most readers will be
familiar with the importance of conventions in basic mathematics. It
is conventional when drawing ordinary graphs of variables, for
example, to use the vertical axis for the dependent variable and to
label this as the ¢y’ axis. The horizontal axis is used for the
independent variable and is labelled as the ‘x’ axis. This convention

- prevents any confusion about how the graph is to be read and it

ensures that any statements made about the graph will be un-
ambiguous. The conventions surrounding the relational data matrix
have the same purpose.

In the discussion of matrices, it is conventional to designate the
number of rows in a matrix as ‘m’ and the number of columns as
‘w’, It is also customary to list the rows first when describing its size.
The overall size of a matrix can, therefore, be summarized by
referring to it as an m X n matrix. The incidence matrix of Figure
3.3, for example, is a 4 X 5 matrix. It is also conventional to refer to
the rows before the columns when describing the contents of any
particular cell, and to use the letter ‘e’ to refer to the actual value
contained in the cell. Thus, the value contained in the cell corres-
ponding to the intersection of row 3 with column 2 would be
designated as a(3,2). This can be generalized by using the conven-
tion of referring to the individual rows by ‘7’ and the columns by 5.
Thus, the general form for the content of a cell is a(i,j), where the
researcher may then go on to specify the relevant values for i and j.
These conventions are summarized in Figure 3.4. .

The usefulness of the mafrix approach to relational data.can best
be illustrated through a concrete example. Figure 3.5 contains some
artificial data on interlocking directorships among companies. An
interlocking directorship, or interlock, exists where a particular

person sits as a director .on the boards of two or more companies.
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Columns () ()
[Affiliations]

To

Rows
() ()
[Cases)

From

Figure 3.4 Marrix conventions: best practice

His or her presence on the two boards establishes a relation between
the companies. In many investigations of interlocking directorships,
it is the companies that are of central interest. For this reason, they
are generally treated as the cases and so they are shown as the rows
of the incidence matrix of Figure 3.5. The affiliations, shown in the
columns of this matrix, are the directors that the companies have, or
do not have, in common with one another. Each cell of the matrix
contains a binary digit, ‘1’ or ‘0°, which indicates the presence or
absence of each director on each company. Thus, company 1 has
four directors (A, B, C and D), and director A sits on the board of
company 2 as well as company 1. This means that there is an
interlock between company A and company B. Adjacency matrix (ii)
in the diagram shows the interlocks that exist among all companies.
In this matrix, each cell shows more than the mere presence or
absence of an interlock, it shows the number of directors in common

between a pair of .companies. The cells contain actual values, rather _

than simply binary: digits, because companies may have more than
one director in:common. Thus, company 1 and company 4 have just
one director in common (director C); while companies 2 and 3 have
two directors in: common.(directors B-and C). This can be confirmed
by examining the colomns. of the original incidence matrix, which
show that director C sits. on.companies 1 and 4, and that directors B
and C each sit on companies 2 and 3.

The simplest kind..of analysis of this adjacency matrix might

suggest that the strength  of .a relation can be measured by the

number of interlocks. that it involves. The strongest relations, then,
_exist between companies .} and 2 and between companies 1 and 3,
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(i} incidence matrix
Directors
A B C D E

1 1 1 1 1 0

201 1 1 o 1
Companies
3( 0 1 1 1 0

(iil) Adjacency matrix:

{ii) Adjacency matrix:
directors-by-directors

companies-by-companies

1 2 3 4 A B C D E
1| - 3 3 1 Al - 2 2 1 1
és - 2 2 Bl 2 - 3 2 A
3] 83 2 - 1 cle 38 - 2 2
4] 1 2 A - Dl 1 2 2 - 0

El 1 1 -2 0 -

(v) Sociogram: directors
A 2 B

Figure 3.5 Matrices for interlocking directorships

each of these relations involving three directors. The weakest links
would be those that involve just one director. The sociogram of
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companies indicates the structure of the matrix quite clearly, with
the numbers attached to the lines indicating the strength or ‘value’ of
the lines. This sociogram could equally well have been drawn in
other ways: for example, with the thickness of the lines representing
their value, or with the points connected by one, two, or three
parallel lines. Each method would convey the same information
about the structure of the matrix.

It will be recalled that it is possible to derive two adjacency
matrices from a single incidence matrix. In this example, it is
possible to derive not only the company-by-company adjacency
matrix but also a director-by-director adjacency matrix. This matrix
and its associated sociogram of directors, in Figure 3.5, show the
relations among the directors that exist when they sit on the same
company board. There is, for example, a strong relation between B
and C, who meet one another on three separate corporate boards (the

boards of companies 1, 2 and 3), and rather weaker, single board.

relations between A and D, between A and E, and between B and E.
The sociogram of directors also illustrates such sociometric ideas as
that D and E are relatively more ‘peripheral’ to the network than are
the other directors: they have fewer connections, their connections
are generally weaker, and they are not connected to one another.

The adjacency matrices shown in Figure 3.5 also illustrate some
further general considerations in social network analysis. First, it is
important to note something about the diagonal cells running from
the top left io the bottom right. In matrix analysis this particular
diagonal is referred to simply as ‘the diagonal’, because the cells are
different from all others in the matrix. In a square matrix the
diagonal cells show the relation between any particular case and
itself. In some sitnations this is a trivial relation that exists simply by
definition, while in others it may be an important feature of the
network, The cells on the diagonal of matrix (i) of Figure 3.5, for
example, refer to the relation of each company to itself. In this
example, these data would not have any particular meaning. The fact
that a company is connected to itself through all its directors is true
but trivial, as our concern is with inter-company relations. For this
reason, the diagonal cells contain no values and should be ignored in
the analysis. Many technical procedures in network analysis require
the researcher to specify whether diagonal values are to be included
or excluded, if this is at all ambiguous. For this reason, researchers
must always be aware of the status of the diagonals in their matrices
and will need to understand how particular procedures handle the
diagonal values,

Figure 3.5 also shows that the adjacency matrices are symmetrical

around their diagonals: the top half of each matrix is an identical,
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mirror image of its bottom half. The reason for this is that the data
describe an ‘undirected’ network, a network in which the relation of
company 1 to company 2, for example, is the same as the relation
of company 2 to company 1. The existence of a relation between
the two is considered independently of any question of whether the
relation involves the exercise of power and influence in one direc-
tion but not in the other. For this reason, all the relational informa-
tion in an adjacency matrix for an undirected network is contained in
the bottom half of the matrix alone; the top half is, strictly speaking,
redundant. Many analytical procedures in network analysis, there-
fore, require only the bottom half of the adjacency matrix and not
the full matrix. For undirected networks, no information is lost in
this method of analysis. :

Undirected data are the simplest and easiest type of relational data
to handle, and it is, perhaps, necessary to spend a little time in
discussing some of the more complex types of data. One of the most
important considerations in variable analysis is the level of measure-
ment that is appropriate for a variable. This is the question of
whether attribute data should be measured in nominal, ordinal, ratio,
or interval terms. From this decision flow many other decisions
about which particular analytical procedures can appropriately be
used for the data. Similar measurement problems arise with rela-
tional data, according to whether the data are ‘directed’ and/or
‘numbered’. Figure 3.6 uses these two dimensions to classify the
four main levels of measurement in relational data.

Directionality
Undirected Directed

Binary 1 3

Numeration

Valued 2 4

Figure 3.6 Levels of measurement in relational data

The simplest type of relational data (type 1) is that which is both
undirected and binary. This is the form taken by the data in the
incidence matrix of Figure 3.5. The adjacency malrices in that
Figure contain relational data. of type two: the relations. are un-
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directed but valued.’ T have already shown that the ‘valued’ data
(type 2) in the adjacency matrices of Figure 3.5 are derived from
the binary data of the original incidence matrix. Values typically
indicate the strength of a relation rather than its mere presence. The
signed data that were discussed in the previous chapter in connection
with theories of balance, are relational data where a *+° or ‘=’ is
attached to each line. These relations can be regarded as inter-
mediate between the binary and valued types. Such data show more
than simply the presence or absence of a relation, as the presence is
qualified by the addition of a positive or negative sign; but the
nature of the relation is indicated simply by the polarity and not by
an actual value. It is, of course, possible to combine a sign with a
value and to code relational data as varying from, say, —9 to +9. In
such a procedure, the value could not represent simply the number
of common affiliations between cases, as they cannot have a
negative number of affiliations in common, The values must, there-
fore, be some other measure of the strength or closeness of the
relation. Such a procedure would, of course, rest upon a sociological

argument that produced solid theoretical or empirical reasons for -

treating the data in this way.

Valued data can always be converted into binary data, albeit with
some loss of information, by using a cut-off value for ‘slicing’ or
dichotomizing the matrix. In a slicing procedure, the researcher

* chooses to consider only those relations with a value above a

particular level as being significant. Values above this level are
sliced off and used to construct a new matrix in which values at or

below this level are replaced by ‘0’ entries and values above it are-

replaced by ‘1’ entries. This procedure of slicing the data matrix is
a very important technique in network analysis, and will be dis-
cussed more fully in Chapter 5. Directed data can also take binary or
valued forms, and similar slicing procedures can be applied to
reduce valued and directed data (type 4) to binary and directed data
(type 3). It is also possible to reduce directed data to undirected data,
by the simple expedient of ignoring the direction. Thus, a researcher
may decide that the important thing to consider is the mere presence
or absence of a relation, and not its direction. In this case, then,
it makes sense 1o ignore the directionality of the data. A further
matrix convention may appropriately be mentioned at this point. In
adjacency matrices that contain directed data, the usual convention is
to present the direction of a relation as running “from’ a row element
‘10’ a column element. Thus, the entry in cell (3,6) of a directed
matrix would show the presence or strength of the relation directed
from person 3 to person 6. The relation directed from person 6 to
person 3 would be found in cell (6,3). This convention is shown in
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Figure 3.4. It is for this reason that a directed matrix is asymmetrical
around its diagonal, and that, therefore, the whole matrix must be
considered, and not simply its botiom half,

Complex types of relational data can always be reduced to more
simple types and, in the last instance, any type of relational data may
be treated as if it were undirected and binary (type 1). Techniques
appropriate to this type of data, therefore, have the widest applica-
tion of all the techniques of social network analysis. It is not, of
course, possible to undertake the reverse operation, converting
simple to complex data, unless additional information is available
over and above that contained in the original data matrix.®

Researchers must always take great care over the nature of their
relational data. They must, in particular, be sure that the level of
measurement used is sociclogically appropriate. The attempt to use
valued data in studies of interlocks, for example, rests upon assump-
tions about the significance of multiple directorships that may or
may not be appropriate. It might be assumed, for example, that the
number of directors in common between two companies is an
indicator of the sirength or closeness of a relation. Having four
directors in common, on this basis, would mean that two companies
are ‘closer’ than those that have only two directors in common. But
is this a valid sociological assumption? If it is not, the mathematical
procedure should not be used. Mathematics itself cannot provide an
answer for the researcher. The relevance of particular mathematical
concepts and models is always a matter for the informed soci(?—
logical judgement of the researcher. Even if it is decided that it is
reasonable to use valued data, the researcher must be alive to other
assumptions that might be contained in the mathematical procedures.
Does a procedure, for example, treat the values as ordinal or as ratio
variables? In the former case, a value of four would be regarded
simply as being stronger than a value of two; in the latter case the
relationship would be regarded as being twice as strong. The choice
of a level of measurement is, again, a sociological question and not
a mathematical one.

The Storage of Relational Data

The analysis of very small data sets is often quite straightforward.
An adjacency matrix and sociogram for a four- or five-person group,
for example, can easily be constiucted by hand. However, this
becomes more difficult when the size of the network is any greater
than this, When dealing with data sets that have more than about ten
cases and five affiliations, it is all but essential to use a computer.
Not only . does. computer processing save a considerable amount of
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time — the matrix re-arrangement undertaken by Homans in his
investigation of the involvement of 18 women in 14 social events,
for example, can be undertaken on a computer in a few seconds at
most - it also allows analyses to be undertaken that are simply not
possible by hand.

If relational data are properly stored, they can be managed and
manipulated more efficiently. The need to use computers for net-
work analysis, then, means that it is important to consider how the
logical structure of the data matrix can be translated into a computer
file. The first step is often to sort names of agents or events in order
to generate listings that can be analysed for their connections.
Research on interlocking directorships, for example, involves gen-
erating a list of directors in the target companies, sorting this into
alphabetical order, and then identifying those names that appear two
or more times. The most straightforward method for doing this is to
use a text editor or word processor (o create a data file, as the names
can be typed in as text and then sorted and edited. Many word
processors will allow data to be sorted into alphabetical or numerical
order as an aid to its analysis and manipulation.”

The most nsual result of this processing is data in ‘linked list’
format. In a linked list, each line of text in the file shows a case
followed by its affiliations. It might show, for example, the name of
a director followed by the names of all the companies of which he
or she is a director. However, this cannot usually be transformed
into an incidence matrix (as shown in Figure 3.3) simply with a
word processor. Unless the user wishes to undertake some difficult —
and error-prone — manual processing, it is useful to move the data
directly .into a social network analysis program such as vciner. In
this program, linked list data can be imported and can be invisibly
converted to an incidence matrix. The program also allows the new
data files to be directly edited in their original linked list format.

The linked list format of vciner is presented on the screen as a
spreadsheet, and a number of data processing tasks can, in fact, be
carried out with a spreadsheet program such as Excer. Indeed, a
spreadsheet can import linked lists directly from a word processor if
no social network program is available. While the spreadsheet is,
still, widely seen as a financial tool for accountants and stock market
analysts, it is essentially an electronic matrix manipulator. Even the
simplest of spreadsheets can be used to store and to organize
relational data, and they can be used to prepare these data in files
readable by many other specialist packages. Suitable spreadsheet
programs are s0 widely available that it is worth considering them as
a basic data storage and manipulation system for social network

_data. If the data have been converted from linked lists to matrices in
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binary or valued form, the spreadsheet can be used to calculate basic
statistical measures, such as row and column sums, frequency
distributions, correlations, and so on. Many of these measures can be
converted into screen graphics and then printed out. Frequency
distributions, for example, can be instantly plotted on a histogram or
bar chart. While the major mathematical functions built into spread-
sheets are the kind of financial and statistical procedures most
appropriate for variable analysis, a number of spreadsheet programs
include facilities for matrix mathematics that allow the calculation of
various structural properties of networks.?

Data stored on a spreadsheet can be manipulated very easily,
providing a solution to the practical problems of data preparation
that have often plagued network analysis. Virtnally all spreadsheets,
for example, will allow rows and columns to be sorted into
alphabetical or numerical order, automatically re-arranging the cor-
responding data. The spreadsheet’s ‘range’ options can be used to
specify particular parts of a matrix for copying to a new file. If, for
example, a matrix of friendship relations among people is stored in
a file, it is possible to select the male or the female data alone for
separate analysis, It is even possible to transform an incidence
matrix into its corresponding adjacency matrices. This kind of use of
a spreadsheet, however, is probably best attempted only if other
programs specifically designed for social network analysis are not
available. The principal use of the spreadsheet should be to store the
data and to carry out the straightforward data management functions
of re-arrangement and manipulation.’

The two most widely used social network packages — w&aﬁd
STRUCTURE — both store their data in simple matrix form, and it is

e iy mar et T

easy to transfer an appropriate file directly from a spreadsheet to
either of these packages.!® For most purposes, it is best to import
data into one of the specialist packages as early as possible, reading
it back into a spreadsheet only when attribute data have to be added
and used in statistical analyses. In these circumstances, in fact, it
may be preferable to export the data files to a specialist statistical
package such as spss.

One of the most powerful network analysis packages is GRADAP,
but this program uses data files in a format that is different from the
matrix- structure discussed so far. arapar can exchange data files
with spss, but it cannot handle direct input of the incidence and
adjacency matrices. Grapap data files can be produced in a spread-
sheet or a word processor, or in the spss text editor, but the format
is less intwmitive than the data matrix. GraDaP aims at a complete
translation of relational data into the terminology of graph theory,
and so requires that there be an explicit identification of the points
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and lines that comprise the data. Instead of an incidence matrix,
GRADAF Tequires that the adjacency matrices themselves be specified
in two separate files: a ‘point file’ that lists the cases, and a ‘line
file’ that lists each relation, A line is defined by the points at either
end of it. Where the researcher has direct sociometric choice data, or
where actual patterns of relations are observable in some way, this
poses lew problems. But where the data exist in linked lists or
incidence matrices, it can be quite difficult to produce the necessary
files. Even with the help of spreadsheet or database programs, a
considerable amount of manual processing is required to produce the
GRADAP files. ‘
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Figure 3.7 A crapar line file

Figure 3.7 shows the form of a Grapap line file for the data
contained in the incidence matrix of Figure 3.5. There are 12 inter-
locking directorships in this network — the total can be confirmed by
adding the values in the bottom half of the corresponding adjacency
matrix (ii) of Figure 3.5. Each interlock is counted as a separate
‘line’ for data input to GrRADAP, and s0 the line file contains 12
entries.!! Each.of the 12 lines is identified by the points that lie at its
‘tail’ and its ‘head’, and further information about the line (such as
the name of the director: responsible for it} can be added to the file.'
A comparison of Figures 3.7 and 3.5 will confirm that the GRADAP
line file contains. all the: information that is contained in the
incidence matrix;-and. this is the reason why crapap can, from its
line files, invisibly construct the two adjacency matrices.

Once a crapap file structure has been created, the program offers
. powerful data management facilities, acting almost like a specialist

Handling relational data 53

database management system for relational data. However, the
program requires a thorough knowledge of graph theory if it is to be
used for even the simplest of analyses. For the newcomer and the
occasional network analyst, therefore, UCINET, together with a word
processor, offers the best facilities. For the advanced user who is
able to use other programs to generate the line file, GrRaDaP has
many advantages. These programs are discussed more fully in the
Appendix.

The Selection of Relational Data

In the first two sections of this chapter I have looked at the nature of
relational data and at how it can be organized and managed for
network analysis. ‘Having clarified the ways in which the collected
data can be organized and stored, it is possible to examine some
remaining issues concerning the data collection process. I have
argued that few distinct problems arise in this area, but the question
of the selection of data is one that does pose considerable problems
for social network analysis. These selection problems concern the
boundedness of social relations and the possibility of drawing
relational data from samples. '

A common strategy in the study of small scale social networks
has been to identify all the members of a particular group and to
trace their various connections with one another. But this is a far
from straightforward matter. Social relations are social constructs,
produced on the basis of the definitions of the situation made by
group members. A relation of ‘close friendship’, for example, may
mean different things o different people, according to their concep-
tions of what it means to be ‘close’. The researcher who simply asks
respondents to identify their ‘close friends’ cannot be sure that
all respondents will have the same understanding of ‘closeness’.
Respondents with a restrictive definition of closeness will draw
narrow boundaries around themselves, while those with a more
inclusive conception of friendship will recognize more extensive
boundaries. The very boundaries of the group of close friends,
therefore, will vary from one person to another. Any boundaries
identified by the researcher through an aggregation of these .indi-
vidual perceptions may be wholly artificial — simple artefacts of
question wording. If, on the other hand, the researcher explicitly
defines ‘close’ — by, for example, frequency of interaction — he or
she will be imposing a definition- of closeness on the respondents
and the boundaries of friendship may, again, be artificial.

This issve is important, as rescarchers often have unrealistic views
about the boundaries of relational systems (Laumann et al., 1989), It




o

54 Social network analysis

is often assumed that the social relations of individuals will be
confined to the particular group or locale under investigation. To the
extent that connections outside this locale are ignored, the social
network studied will be an imperfect representation of the full
network. This is especially clear in the case of informal groups,
such as street gangs, where the boundaries of the group are loosely
drawn and where gang members’ activities streich well beyond its
core membership (Yablonsky, 1962). But the same is also true for
more formal groups. Kerr and Fisher (1957), for example, discussed
the ‘plant sociology’ that focuses its attention on the physical
boundaries of particular workshops and offices in isolation from the
wider economy. Such investigations isolate their research locale
from the larger regional, national and international systems in which
they are embedded. Research that is confined to the local work

situation may fail to identify those relations that extend beyond the

plant.

In a similar vein, Stacey (1969) has criticized locality studies for
their assumption that bonds of ‘communal’ solidarity are confined
within the local social system. She holds that they must be seen as
stretching out to entwine with the larger economic and political
systems. Similarly, Laumann et al. (1983: 31) have argued that a
locality study of the flow of money through a network ought not to
limit its attention to that geographical locality. Many of the most
important agencies in the circulation of money will lie outside the
locality: federal government agencies, regional and national banks,
multmational companies, and so on. If, as is likely, these are more
important to the flow of money than are the local organizations and
agencies, a ]ocahty—based research project faces the possibility of a
totally inadequate view of the structure of the relevant network of
transactions.

What these problems point fo is the fact that the determination
of network boundaries is not simply a matter of identifying the
apparently natural or obvious boundaries of the situation under
investigation. Although ‘natural’ boundaries may, indeed, exist, the
determination of boundaries in a research project is the outcome of
a theoretically informed decision about what is significant in the
sitnation under. investigation. A study of political relations, for
example, must recognize that what counts as ‘political’, how this is
to be distingnished . from. ‘economic’, ‘religious’ and other social
relations, and the choice of boundaries for the relevant political unit,
are all theoretically informed decisions. Researchers are involved in
a process of conceptual elaboration and model building, not a simple

. process of collecting pre-formed data.
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Assuming that relevant boundaries can be identified, the research
may proceed to define the target population for study. Two general
approaches to this task have been 1dentnf1ﬁgjdﬂ the ‘posi

) 13
the ‘reputational’ approaches.” In the ghogitional,
researchér”samples froii among the occiipants’ “of partlcular formally
defined positions or group memberships, First, the positions or
groups that are of interest are identified, and then their
Members are sanipled “Unless the population tifider investigation is
VerY‘smeill “this "is Tikely to require some kind of enumerated list that
covers the # bf the target population. EXafples -of this kind of
strategyWoll amples“dfawn from a school class, a village, a
workgroup, or from institutions suc:h as a pohtlcal ehte or corporate
directorate. A familiar problem w1th posmonal studles
determining “which ™ positions to inclade.” St __for
‘example, have oftén beén “criticized Tor their “identification of top :
positions in institutional hierarchies, especially when the. researcher

offers ILOJIﬂalﬂ_]USUﬁCH.IIOH -for the cut-off threshold used to d]S-"

ey
Ik

tlngmsh the . top from. other posmons in the institutional hierarchy.
This problem is, of course, a reflection of the Jg“enerai boundary

_problem_that has already been discussed, and it is important that !
oAk

fesearchers have theoretically and empirically justifiable reasons for /
the inclusion or exclusion of particular positions.

This sometimes involves an assumption that there are ‘natural’
sub-groups within the population. Research on business interlocks,
for example, has often focused attention on the ‘top 250 companies
in an economy." This research strategy involves the assumption that
the division between the 250th and the 2351st company forms a
natiital boundary between large-scale and medium-scale business.
However, such boundaries can Tarely be drawn with precision. There

is a continuous gradation in size from large to small, and, while it.

may be possible to identify the points.in the size distribution at
which the gradient alters, it will not geneérally be possible to draw
sharp boundaries. Indeed, most such research does not examine the
overall size distribution for shifts of gradient, but simply uses an
arbitrary and a priori cut-off threshold: while some researchers

~ investigate the top 250, others investigate the top 50, top 100, or top

500 slices of the distribution.’

In the positional approach the selection of cases for investigation
may sometimes follow from an earlier decision about the selection
of affiliations, A directorship, for example, can be regarded as a
person’s affiliation with a company, and a researcher may already
have decided to limit attention to a particular group of companies. In
such a situation, the selection of directors for study is determined by
the selection criteria used for the compames

A
i
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The reputational approach can be used where there are no
relevant positions, where there is no comprehensive hstmg available,
or where the knowledge of “the agénis themselves 18 crucial in
determining the boundaries of the population. In the reputational
approach, the researcher studies all or some of those named_ on _a list
of nominees produced by knowledgeable informants. Those included
on the hstdre those Who are teputed to be the members of the target
population. The informants are asked to nominate, for example
‘ i nity’, ‘people of high standing in
busifiess”, and so on, depending on the purposes of the research, and
these nominations are combined into a target population, The choice
of informants is, obviously, of crucial importance in the reputational

approach. The researcher must have good reasons to believe that the

informants will have a good knowledge of the target population and
are able to report this accurately. Whether or not this is the case will
often be known only when the research has been completed, and so
there is an element of circularity in the strategy. For this reasom,
rescarchers ought to endeavour to come up with theoretical and
empirical reasons for the choice of informant which are, so far as
is possible, independent of the particular social relations under
investigation.

This will not always be possible, and one particular variant of this
reputational strategy, using the so-called ‘spowballing’. technigue,
follows exactly the opposite procedure. In this approach, a small
number of informants are studied and each is asked to nominate
others for study. These nominees are, in turn, interviewed and are
asked for further nominations. As this procedure continues, the
group of interviewees builds up like a snowball. Eventually, few
additional nominees are identified in each round of interviews. In the
snowballing method, the social relation itself is used as a chain of
connection for building the group. By its very nature, however, a
snowball sample is likely to be organized around the connections of
the particular individuals who formed its starting point. For this
reason, the method of séléétion tends to determine _many_of the
relational features of the resulting social network. This network 1§
built from ™ the Felatiohs oo group "of -eonnected..agents and, as
! Laumann et al. remark; ‘it is scarcely informative to learn that a

i network constituted by a snowball sampling procedure is well-

¢ connected’ (1983: 22).

. A final strategy of selection, neither positional nor reputational,
occurs when the columns of the incidence matrix are true affiliations
and the researcher aims to select fhesc separately from the cases.

. Such research would be concerned with choosing, say, the activities.
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and_events in which people are involved, independently of any
|7031t10ns or organizations that may have been used to identify the
people themselves. In his study of New Haven, for example, Dahl
of selection. Involvement in decision-making, therefore, was seen as
an ‘affiliation’ for which people could be given a binary or numeric
value independently of whatever organizational positions they held.
This allowed Dahl, or so he believed, to assess the relative power of
different categories of agents, instead of assuming that power was an
agtomatic correlate of position. A similar strategy was that of Davis
{1941) and his colleagues in Deep South, where social events were
studied, resulting in a matrix showing the participation of 18 women
in 14 events. The problem in this kind of strategy, of course, is that
of how to justify the choice™of affiliations: have the most important

events been chosen, and ‘what s a-‘key issue’? Selection of true’
affiliations, therefore, involves precisely thé same problems as the
direct selection of cases. Activities and events can be chosen =
because they are regarded as objectively significant (a variant of the

positional approach) or because knowledgeable mformants believe
them to be important (a variant of the reputational approach).

I have written so far mainly of the selection of whole popula-
tions through complete or quasi-enumeration. But it may often be
necessary to use sample data, and these matters become more
complicated. Few sampling problems arise in small group studies,
where it is generally possible to undertake a complete enumeration

of all group members and of their relations with one another. When |

research on large-scale social systems is being undertaken, however,
a complete enumeration may not be a viable aim, and there will be
particularly intractable sampling problems. The sheer scale of the
resources needed will often preclude the complete enumeration of
large populations, but, even if such research proved possible — for
example, in a census of population — the scale of the resulting data
matrix would make any analysis impossible. As square adjacency
matrices must be constructed before most network analyses can be
undertaken, the data matrices can be quite enormous. Attribute data
for, say, 1000 cases and 50 variables would involve 50,000 entries in
a data matrix. Advances in computing have made such matrices
relatively easy to handle for most statistical purposes. In the case of
relational data, however, the case-by-case adjacency matrix for 1000
cases would contain 1,000,000 cells. In the case of a fairly small
village with a population of 5,000 people, the adjacency matrix
would contain 25,000,000 cells, which is beyond the capacity of
most available computers and software.!” For a national population

i
9
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running into the millions, the sheer quantity of data can hardly be
imagined, and the computing power required to handle this simply
does not exist outside the realms of science fiction.

It was, of course, similar problems that, in the pre-compufer age,
led to the development of sampling techniques that would allow,
say, a sample of 1000 to be used instead of a complete enumera-
tion of a population of many thousands. The statistical theory of
sampling sets out the conditions under which attribute data collected
from a sample of cases can be generalized into estimates for larger
populations. It might be assumed, therefore, that sampling from
large populations would provide a similar workable solution for
social network analysis. Figure 3.8 gives a schematic account of the
ideal sampling process in social network analysis. A particular
population of agents will be involved in a complex system of social
relations of all types that make up the total network. Within this
relational system, sociologists may identify such ‘partial’ networks
as thpse comprising economic relations, political relations, religious
relations, and so on. When a strategy of complete enumeration is
followed, the researcher can attempt to ensure that full information
is obtained on all the relevant relations, and so can construct
adequate models of the:ﬂ partial networks..

Population - Sample { %?fﬁgions
Total network
" = A | Economic ’ l Economic ,A}—
Partial = L1
. 5 . , ample
networks B Poil.(i(.:al . E . Poiitical B - networks
— C | Religious Refigious | C’
ote. etc.

 Figure 3.8 Networks and sampling: the ideal
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The task of sampling would appear to be obvious and straight-
{forward, involving nothing more than the general principles of
sampling in survey research: a representative sample of cases is
drawn from the population in question, their relations are investi-
gated, and sample networks are constructed that will be homologous
lo the partial systems that occur in the population as a whole. But
things are not, in fact, as simple as this. Th general principles. of

sampling are based on the application of 1l ory..of . probability
_to large ) of observations, there, are . well-established.
mathematical rules for the reliability data. There

“HEHO$UCH TIES Tor judging the quality of telational data derived
from a sample; and there are good reasons for assuming that
sampling may result in unreliable data. Although it is possible to
diaw a sample of 1000 cases for analysis and it might be possible to
find a computer and program capable of handling a 1000 X 1000
adjacency matrix, there is no guarantee that the structure of
this sample network would bear any relationship to the structurg

a®

of the corresponding partial network. A representative sample of } #

agents, does not, in itself, give a useful sample of relations (Alba; %"

1982; 44), e

It might seem, at first sight, that this is not a real problem. The
overall distribution of relations among agents and their ‘density’,'®
for example, might seem an easy matter to estimate from sample
data: the sample provides data on the network attributes of the
individual cases, and these can be used to calculate overall network
parameters. The density of the friendship ties in a country, for
example, could be assessed by asking a random sample of people
how many friends they have. If the sample is large enough, these
estimates ought to be reliable. But it is almost impossible to go
beyond such basic parameters o measure the more qualitative
aspects of network structure.

The reasons for this relate to the sparsity of the relational data that
can be obtained from a sample suryey of agents/ Even if there was
a perfect response rate and all respondents answered all the ques-
tions in full, many of the contacts named by respondents will not
themselves be members of the sample. This means that the number
of relations among members of the sample will be a very small sub-
set of all their relations, and there is no reason to believe that the
relations identified among the agents in the,..sample-r-wouldrthem:ﬁ
selves be arandom sample of alf-the relations of these siifié dgents.
With™a very Targe population;-siich as that of a national sfUdy, it"is
very unlikely that any member of a random sample will have any
kind of social relation-with-others-in-the.samé samiple. The probabil-
ity of 4 connection “éxistingbetiween two individuals drawn at
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random’ from a population of many millions is so low as to be
negligible. It is, therefore, uniikely that a researcher could say
anything at all about the relational structure of the national popula-
tion from a random sample. Burt (1983a) has made a rough estimate
that the amount of relational data lost through sampling is equal to
(100—k) per cent, where k is the sample size as a percentage of the
population. Thus, he argues that a 10 per cent sample involves the
loss of 90 per cent of the relational data — even a massive 50 per

cent sample would involve the joss of half of the data. Such a loss

of data makes the identification of cliques, clusters di

rafige Of oUhe stricioral fedtures Virtally impossible in conventional
---Sample “data can also lead to difficulties in arriving at basic

measures of the relational attributes of the particular individuals
studied, especially if there is any amount of non-response in the
survey. Imagine, for example, an attempt 10 estimate the sociometric
popularity of agents in a network in which there is a very small
number of very popular agents and a much larger number of less
popular ones.® Because they exist in very small numbers, a sample
is unlikely to include sufficient of the very popular agents to allow
any generalizations to be made about the overall patterns of popu-
larity in the network. This is akin to the problem of studying a small s
elite or dominant class through a national random sample survey. g
Unless the sample is very large indeed, they will not appear in
adequate numbers, and a very large sample defeats much of the
point of sampling. One way around this, of course, might be to use
_a stratified sample, in which popular agents have a higher probability
L of selection. The obvious difficulty with this, however, is that such
ta sampling strategy could be implemented only if the researcher
(already knew something about the distribution of popularity in the
;population.

", There seem, at present, to be three different responses
“$¢ sampling problems. The first is to abandon any attempt to measure
" the-slobal-properties of social networks and to restrict attention to
personal, ego-centric networks. This research strategy involves look-
ing at the unrestricted choices that people make, including those to
others not included in the sample, and calculating, for example, the
density and certain other ego-centric features of their contacts. As no

attempt is made to generalize about, for example, the density or -

‘close knit' texture of the overall network, sampling poses few

difficulties other than those that arise in any kind of social research.

This is the strategy used in studies of friendship and community

undertaken by Wellman (1979), Fischer (1982) and Willmott
- (1986, 1987). : Tl
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The second response is to use a form of snowballing. Frank
(1978a, 1979) argues that researchers should draw an initial sample
of cases and then collect information on all the contacts of the
sample members, regardless of whether these are members of the
original sample. These contacts are added to the sample and their
contacts are discovered in the same way. By extending this process
through a number of stages, more and more of the indirect contacts
of the members of the initial sample will be discovered. The
researcher must decide how far to continue this snowballing. This
will generally be to the point at which the number of additional
members added to the sample drops substantially, because names
that have aiready been included are being mentioned for the second
or third time. Frank has shown that such a snowballing method
allows a reasonable estimate to be made of such things as the
distribution of contacts and the numbers of dyads and triads. A
snowball_ﬁ§g@pk;,_,__va__gg_l;g:‘s;;_,r_js not a random sample: the structure
that is discovered is, in fact, ‘built in’ to a snowball ‘sampling
method~itselt. Bui this is precisely what i ecessary in order (o
avoid the sparsity of connections found in a random sample. The
assumption of the snowball sampling method is that the connected
segment of the network that forms the sample network is representa-
tive of all other segments of the network. The researcher, then, must
have some knowledge about the population and their relations in
order to make this assessment of representativeness. But snowballing
does, at the very least, make it possible to try to estimate which
features of the structure may be an artefact of the sampling method
itself and so to control for these in the analysis.” .

The third response to the sampling problem is that of Burt ©
(1983a), who has suggested a way of moving on to some of the
more qualifative features of social networks. In particular, Buart is
concerned with the identification of ‘positions’ or structural loca-
tions, such as roles. If it is assumed thal Agenls in a sirfilar strictural
~EATon T A network will have various social attributes in common,

then it is possible to use survey data on the typical relations between
agents with particular attributes as a way of estimating what
structural locations might exist in the network. From each respond-
ent it is necessary to obtain information about their social attribates
and the attributes of those to whom they are connected (inchuding
people outside the sample). Agents can then_be_grouped into sets of
agents with commonly occurring combinations_ of attributes, and
these sets can be arrahged into a sets-by-sets square matrix that-
shows the frequency of relations between members of the variou
categories. It might be discovered, for example, that 70 per cent'@
white men have black male friends, while only 20 per cent of wh
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women have black male friends. Such measures, argues Buri,
provide estimaies of the valued relations between social ‘roles’ that
could be expected to occur if the researcher had undertaken a
complete enumeration of all men and women in the population,

There are glimmers of what can be achieved in the study of large
scale social systems using sampling methods, Though it might seem,
at present, impossible to discover anything about such things as
cliques and clusters from sample data, it is to be hoped that further
advances in the techniques of network sampling will make this
poss1ble (Alba 1982: 46; Frank, 1988).

4

Points, Lines and Density

In the previous chapier I looked at the ways in which relational data
can be handled and managed in matrix form. Many fundamental
features of social networks can be analysed through the direct
manipulation of matrices — the transposing, adding and multiplying
of matrices all yield information on their structure. Matrix algebra,
however, is rather complex for most researchers (but see Meek and
Bradley, 1986). Although matrices are useful for the organization
and storage of relational data, specialist computer programs allow
an easier and more direct approach to network analysis. The
available packages implement a variety of amalytical procedures,
and any user of the programs must have some understanding of how
they work.

A common framework for social network analysis programs is the
mathematical approach of graph theory, which provides a formal
language for describing networks and their features. Graph theory
offers a translation of matrix data into formal concepts and
theorems that can be directly related to the substantive features of
social networks. If the sociogram is one way of representing
relational matrix data, the language of graph theory is another, and
mere general, way of doing this. While it is not the only mathemat-
ical theory that has been used for modelling social networks, it is a
starting point for many of the most fundamental ideas of social
network analysis.

It is the concepts of graph theory which figure as the principal
procedures in the vciNer and GRADAP programs, though the readily
accessible computer programs endeavour to keep as much of the
mathematics as possible hidden from the user. Data in matrix form

“can be read by the programs, and suitable graph theoretical

concepts can be explored without the researcher needing to know
anything at all about the mechanics of the theory or of matrix

‘algebra. Nevertheless, an understanding of graph theory will signifi-
-cantly help to improve the sophistication of a researcher’s analyses,
by ensuring that he or she chooses appropriate procedures. Indeed,

GRADAP’s data structure and management procedures require an
understanding of basic graph theoretical ideas.

i
!
I
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Graph theory concerns sets of elements and the relations among
these, the elements being termed points and the relations lines.!
Thus, a matrix describing the relations among a group of people can
be converted into a graph of points connected by lines. A socio-
gram, therefore, is a ‘graph’. So far, this should be very familiar
from what has already been discussed in Chapters 2 and 3. It is
important to be clear about the difference between this idea of a
‘graph’ and the graphs of variables used in statistics and other
branches of quantitative mathematics. These more familiar graphs —
we might term them ‘graphs of variables’ — plot, for example,
frequency data on axes that represent the variables. The graphs of
graph theory — ‘graphs of networks’ — express the qualitative
patterns of connection among points. Indeed, graph diagrams
themselves are of secondary importance in graph theory. As has
already been suggested, it is often very difficult to draw a clear and
comprehensible diagram for large sets of points with complex
patterns of connection. By expressing the properties of the graph in
a more absiract mathematical form, it is possible to dispense with:
the need to draw a sociogram and so make it easier to manipulate
very large graphs.

Nevertheless, the drawing of graph diagrams has always been of
great illustrative importance in graph theory, and many others will
be used in this book. Because of the visual simplicity of small
sociograms, I will begin with an introduction to the principles
involved in drawing graph diagrams before going on to introduce
. the basic concepts of graph theory.

Sociograms and Graph Theory

A graph diagram® aims to represent each row or column in an
incidence matrix — each of the cases or affiliations under investi-
gation — by a point on the paper. Once the appropriate adjacency
matrix has been derived, the ‘1’ and ‘0’ entries in the cells of the
matrix, representing the presence or absence of a relation, can be
indicated by the presence or absence of lines between the points. In
Figure 3.5, for example, the symmetrical 4 X 4 adjacency matrix of
companijes can be drawn as a four-point graph contajning six lmes
which corret;pond to the non-zero entries in the matrix,

In a graph, it is-the pattern of connections that is important, and
not the actual posmonmg of the points on the page. The graph
theorist has no interest in the relative position of two points on the
page, the lengths of the-lines that are drawn between them, or the
size of character used to-indicate the points. Graph theory does
~ involve concepts of length and location, for example, but these do
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not correspond (o those concepts of physical length and location
with which we are most familiar. It is usual in a graph diagram
to draw all the fines with the same physical length, wherever this is
possible, but this is a purely aesthetic convention and a matier of
practical convenience. Indeed, it is not always possible to maintain
this convention if the graph is to be drawn with any clarity. For this
reason, there is no one correct way to draw a graph. The graph
diagrams in Figure 4.1, for example, are equally valid ways of
drawing the same graph — all convey exactly the same graph
theoretical information.

The concepts of graph theory, then, are used to describe the

_ pattern of connections among points. The simplest of graph theoret-
: ical concepts refer to the properties of the individual points and lines
© from which a graph is constructed, and these are the building

blocks for more complex structural ideas. In this chapter I will
review these basic concepts and show how they can be used to give
an overview of both the ego-ventric and the global features of
networks. Subsequent chapters will explore some of the more
complex concepts.

1t is necessary first to consider the types of lines that can be used
in the construction of graphs. Lines can correspond to any of the
types of relational data distinguished in Figure 3.6: undirected,
directed, valued, or both directed and valued. The graphs in Figure
4.1 consisi of undirected lines. These graphs derive from a sym-
metrical data matrix where it is simply the presence or absence of a
relation that is of importance. If the relations are directed from one
agent to another, then they can be represented in a directed graph;
sometimes termed a ‘digraph’. A directed graph is represented in
drawn form by attaching an arrow head to each line, the direction of
the arrow indicating the direction of the relation. Figure 4.2 shows a
simple directed graph.

If, on the other hand, the intensity of the relation is an important
consideration and can be represented by a numerical value, the
researcher can construct a valued graph in which numerical values
are attached to each of the lines. T have already shown that a matrix
for a directed graph will not usually be symmetrical, as relations will
not normally be reciprocated. A matrix for a valued graph may or
may not be symmetrical, but it will contain values instead of simple
binary entries.’ An example of a valued graph is that in Figure 3.5.
One of the simplest and most widely used measures of intensity is
the multiplicity of a line. This is simply the number of separate
contacts which make up the relationship. K, for example, two
companies have two directors in common, the relation between the
companies can be represented by a line of multiplicity 2. If they -
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{i) Adjacency matrix A B C D E Row sum
Al — 1 Q 0 ] 2
B|1 - 1 1 1 4
Clo 1 - 1 o] 2
Djo 1 1 - 0 2
El1 1 - 2
Column sum 2 4 2 2 2

(ii) Alternative graph diagrams -

Nate The convention. of the
circle dlagrarn is ..
discussed in Chapter B

Figure 4.1 - A!tematwe drawmgs of a graph
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B
Row sum
A 1
B 1
A
C 2
Column surn 1 2 1
C

Figure 4.2 A directed graph and its matrix

have three directors in common, the interlocking directorship can be
seen as a line of multiplicity 3. The values in a graph can, of course,
relate to any other switable measure of intensity, such as, for

~example, the frequency of the relation.

The fundamental ideas of graph theory can most easily be
understood in relation to simple undirected and un-valued graphs.
A number of apparently straightforward words are used io refer to
graph theoretical terms, and it may appear pedantic to define these
at great length. But these definitional matters are important, as the
apparently simple words are used in highly specific and technical
ways. It is essential that their meanings are clarified if the power of
graph theory is to be understoed.

Two points that are connected by a line are said to be adjacent
to one another. Adjacency is the graph theoretical expression of the
fact that two agents represented by points are directly related’ or
connected with one another. Those points to which a particilar
point is adjacent are termed its neighbourhood, and the total
number of other points in its neighbourhood is termed its degree
(strictly, its ‘degree of connection’). Thus, the degree of a point is
a numerical measure of the size of its neighbourhood. The degree of
a point is shown by the number of non-zero entries for that point in
its row or column entry in the adjacency matrix. Where the data are
binary, as in Figure 4.1, the degree is simply the row or column sum
for that point.* Because each line in a graph connects two points —
it is ‘incident’ to two points — the total sum of the degrees of all the
points in a graph must equal twice the total number of lines in the
graph. The reason for this is that each line is counted twice when
calculating the degrees of the separate points. This can be confirmed
by examining Figure 4.1. In this graph, point B has a degree of 4
and all the other points have a degree of 2. Thus, the sum of the
degrees is 12, which is equal to twice the number of lines (six).
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Points may be directly connected by a line, or they may be
indirectly connected through a sequence of lines. A sequence of
lines in a graph is a ‘walk’, and a walk in which each point and each
line are distinct is called a path. The concept of the path is, after
those of the point and the line, one of the most basic of all graph
theoretical concepts. The length of a path is measured by the
number of lines that make it up. In Figure 4.1, for example, points
A and D are not directly connected by a line, but they are connected
through the path ABD, which has a length of 2. A particularly
important concept in graph theory is that of ‘distance’, but neither
distance nor length correspond to their everyday physical meanings.
The length of a path, I have said, is simply the number of lines it
contains - the number of ‘steps’ necessary to get from one point to
another. The distance between two points is the length of the
shortest path (the ‘geodesic’) that connects them.

A

B
4

o
D C

Figure 4.3 Lines and paths

Consider the simple graph in Figure 4.3. In this graph, AD is a
path of Iength 1 (it is a line), while ABCD is a path of length 3. The
walk ABCAD is not a path, as it passes twice through point A. It
can be seen that points A and D are connected by three distinct
paths: AD at length 1, ACD at length 2, and ABCD at length 3.5
The distance between A and D, however, is the length of the
shortest path between them, which, in-this case, is 1. The distance
between points B and D; on the other hand, is 2. Many of the more
complex graph theoretical measures take account only of geodesics
— shortest paths — while others consider all the paths in a graph.

These same concepts can be used with directed graphs, though
some modifications must be made to them. In a directed graph, lines
are directed to.or.from the various points. Each line must be
considered along with. its direction, and there will not be the
symmetry that exists in simple, undirected relational data. The fact

_that, for example, A -chooses.B.as a friend does not mean that there
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will be a matching friendship choice from B to A. For this reason,
the ‘degree’ of a point in a directed graph comprises two distinct
elements, called the °‘indegree’ and the ‘outdegree’. These are
defined by the direction of the lines that represent the social
relations. The indegree of a point is the total number of other points
that have lines directed towards it; and its outdegree is the total
number of other points to which it directs lines. The indegree of a
point, therefore, is shown by its column sum in the matrix of the
directed graph, while its outdegree is shown by its row sum. The
column sum of point B in Figure 4.2, for example, is 2, as it
‘receives’ two lines (from A and from (). The corresponding
sociogram shows clearly that its indegree is 2. The row sum for B,
on the other hand, is 1, reflecting the fact that it directs just one line,
to -point C.

A path in a directed graph is a sequence of lines in which all
the arrows point in the same direction. The sequence CAB in Figure
4.2, for example, is a path, but CBA is not: the changing direction
of the arrows means that it is not possible to ‘reach’ A from C by
passing through B.® It can be seen that the criteria for connection
are much stricter in a directed graph, as the researcher must take
account of the direction of the lines rather than simply the presence
or absence of a line. The distance between two points in a directed
graph, for example, must be measured only along the paths that can
be identified when direction is taken into account. When agents are
regarded as either ‘sources’ or ‘sinks’ for the ‘flow’ of resources or
information through a network, for example, it is sensible to take
serious account of this directional information in analysing the
graph of the network. Sometimes, however, the direction of the
lines can legitimately be ignored. If it is the mere presence or
absence of a line that is important, its direction being a relatively
unimportant factor, it is possible to relax the usual strict criteria of
connection and to regard any two points as connected if there is a
sequence of lines between them, regardless of the directions of the
arrows. In such an analysis it is usnal to speak of the presence of a -
‘semi-path’ rather than a path. CBA in Figure 4.2 is a semi-path.
Treating directed data as if they were undirected, therefore, means
that all the usual measures for undirected data may then be used.

Density: Ego-centric and Socio-centric

One of the most widely used, and perhaps over-used, concepts in
graph theory is that of ‘density’. This describes the general level of
linkage among the points in a graph. A ‘complete’ graph is one in
which all the points are .adjacent to one amother: each point is
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comnected directly to every other point. Such completion is very
rare, even in very small networks, and the concept of density is an
attempt to summarize the overall distribution of lines in order lo
measure how far from this state of completion the graph is. The
more poinis that are connected to one another, the more dense will
the graph be.

Density, then, depends upon two other parameters of network
structure: these are the ‘inclusiveness’ of the graph and the sum of
the degrees of its points. Inclusiveness refers to the number of
points that are included within the various connected parts of the
graph. Put in another way, the inclusiveness of a graph is the total
number of points minus the number of isolated points. The most
useful measure of inclusiveness for comparing various graphs is the
number of connected points expressed as a proportion of the total
number of points. Thus, a 20-point graph with five isolated points
would have an inclusiveness of (.75. An isolated point is incident

with no lines and so can contribute nothing to the density of the

graph. Thus, the more inclusive is the graph, the more dense will it
be. Those points that are connected to one another, however, will
vary in their degree of connection. Some points will be connected to
many other points, while others will be less well connecied. The
higher the degrees of the points in a graph, the more dense will it
be. In order to measure density, then, it is necessary (0 use a
formula that incorporates these two parameters. This involves
comparing the actual number of lines present in a graph with
the total number of lines that would be present if the graph were
complete.

The actual number of lines in a graph is a direct reflection of its
inclusiveness and the degrees of its points. This may be calculated
directly in small graphs, but in larger graphs it must be calculated
from the adjacency matrix. The number of lines in any graph is
equal to half the sum of the degrees. In Figure 4.1, as I have already
shown, half the sum of the row or column totals is six. The
maximum number of lines that could be present in this graph can
be easily calculated from the number of points that it contains. Each
point may be connected to all except one other point (itself), and
sc an undirected graph with » points can contain a maximum of
n(rn—1)/2 distinct lines. Calculating n(n—1) would give the total
number of pairs of points in the graph, but the number of lines
that could connect these points is half this total, as the line connect-

ing the pair A and B is the same as that connecting the pair B and

A. Thus, a graph with three points can have a maximum of three
lines connecting its' points; one with four points can have a
. maximum of six lines; one with five points can have a maximum of
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ten lines; and so on. It can be seen that the number of lines increases
at a much faster rate than the number of points. Indeed, this is one
of the biggest obstacles fo computing measures for large networks.
A graph with 250 points, for example, can contain up to 31,125 lines.

The density of a graph is defined as the number of lines in a
graph, expressed as a proportion of the maximum possible number
of lines. The formula for the density is

!
n(n—1)/2

where [ is the number of lines present.” This measure can vary from
0 to 1, the density of a complete graph being 1. The densities of
various graphs can be seen in Figure 4.4; cach graph contains four
points and so could contain a maximum of six kHnes. It can be seen
how the density varies with the inclusiveness and the sum of the

degrees.?

I I I L ] L ] L ] L ]

1 L L] L J

No. of 4 4 4 3 2 0
connected
points
Inclusiveness| 1.0 1.0 1.0 0.7 0.5 0
Sum of 12 8 6 4 2 0’
degrees i
No. of lines 6 4 3 2 1 0
Density 1.0 0.7 0.5 0.3 or 0

Figure 4.4 Density comparisons

In directed graphs the calculation of the density must be slightly
different. The matrix for directed data is asymmetrical, as a directed
line from A to B will not necessarily involve a reciprocated line
directed from B to A. For this reason, the maximum number of
lines that could be present in a directed graph is equal to the total
number of pairs that it contains. This is simply caleulated as n{n—1).
The density formula for a directed graph, therefore, is I/n{n—1).

Barnes (1974) has contrasted two approaches to social network
analysis. On the one hand is the approach of those who seek: to
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anchor social networks around particular points of reference (e.g.,
Mitchell, 1969) and which, therefore, advocates the investigation of
‘ego-centric’ networks. From such a standpoint, the analysis of
density would be concerned with the density of links surrounding
particular agents. On the other hand, Barnes sees the ‘socio-centric’
approach, which focuses on the pattern of connections in the
network as a whole, as being the distinctive contribution of social
network analysis. From this standpoint, the- density is that of the
overall network, and not simply the ‘personal networks’ of focal
agents. Barnes holds that the socio-centric approach is of central
importance, as the constraining power of a network on its members
is not mediated only through their direct links. It is the concaten-
ation of indirect linkages, through a configuration of relations with
properties that exist independently of particular agents, that should
be at the cenire of attention.

In the case of an ego-centric approach, an important qualification
must be made to the way in which density is measured. In an ego-
centric network it is usual to disregard the focal agent and his or her
direct contacts, concentrating only on the links that exist among
these contacts. Figure 4.5 shows the consequences of this. Socio-
gram (i) shows a network of five individuals anchored around ‘ego’.
The sociogram shows ego’s direct contacts and the relations that
exist among these contacts. There is a total of six lines, and the

0

A (i A

D _C
Density = 0.60

Density = 0.33.

. Figure 4.5  Ego-centric measures of density .
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density of the sociogram is 0.60. But the density is at this relatively
high level principally because of the four lines that connect ego to
A, B, C and D. These relations will exist almost by definition, and
should usually be ignored. If these data had, for example, been
obtained through a questionnaire that asked respondents to name
their four best friends, the high density would be an artifact of the
question wording. The relations to the four nominated contacts of
each respondent will swamp any information about the relations
among those who are named by each respondent. The significant fact
about sociogram (i) is that there are relatively few connections
among ego’s own contacts. In sociogram (ii), where ego’s direct
contacts are shown as dotted lines, there are two relations among A,

- B, C and D (shown as solid lines), and the four person network has

a density of 0.33. It should be clear that this is a more useful
measure of the density of the ego-centric network.’?

It is also possible to use the density measure with valued graphs,
though there is very little agreement about how this should be done.
The simplest solution, of course, would be to disregard the values of
the lines and to treat the graph as a simple directed or undirected
graph. This involves a considerable loss of information. It might
be reasonable, for example, to see lines with a high multiplicity as
contributing more to the density of the graph than lines with a low
multiplicity. This would suggest that the number of lines in a valued
graph might be weighted by their multiplicities: a line with multi-
plicity 3 might be counted as being the equivalent of three lines.
Simple muitiplication, then, would give a weighted total for the
actval number of lines in a graph. But the denominator of the
density formula is not so easy to calculate for valued graphs. The

" denominator, it will be recalled, is the maximum possible number of

lines that a graph could contain. This figure would need to be based
on some assumption about the maximum possible value that could
be taken by the multiplicity in the network in question. If the
maximum multiplicity is assumed to be 4, then the weighted
maximum number of lines would be equal to four times the figure
that would apply for a similar unvalued graph. But how might a
researcher decide on an estimate of what the maximum multiplicity
for a particular relation might be? One solution would be to take the
highest multiplicity actually found in the network and to use this as
the weighting (Barnes, 1969). There is, however, no particular
reason why the highest multiplicity actually found should corres-
pond to the theoretically possible maximum. In fact, a maximum
value for the multiplicity can be estimated only when the researcher
has some independent information about the nature of the relation-
ships under investigation. In the case of company interlocks,. for
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example, average board size and the number of directorships might
be taken as weightings. If the mean board size was five, for example,
and 1t is assumed that no person can hold more than two director-
ships, then the mean multiplicity would be 3 in a complete and fully
connected graph.

In the case of the company sociogram in Figure 3.5, for example,
the weighted total of lines measured on this basis would be 5 times
6, or 30. The actual total of weighted lines in the same sociogram,
produced by adding the values of all the lines, is 12, and so the
multiplicity-based density would be 12/30, or 0.4. This compares
with a density of 1.0 which would be calculated if the data were
treated as if they were unvalued. It must be remembered, however,
that the multiplicity-based calculation is based on an argument
about the assumed maximum number of directorships that a person
can hold. If it were assumed that a person could hold a maximum of
three directorships, for example, then the density of the company
sociogram would fall from 04 to 02. For other measures of
intensity, there is no obvious way of weighting lines.'

The density measure for valued graphs, therefore, is highly
sensitive to those assumptions that a researcher makes about the
data. A measure of density calculated in this way, however, is
totally incommensurable with a measure of density for unvalued
data. For this reasom, it is important that a researcher does not
simply use a measure because it is available in a standard program.
A researcher must always be perfectly clear about the assumptions
that are involved in any particular procedure, and must report these
along with the density measures calculated. The problem in handling
valued data may be even more complex if the values do not refer
to multiplicities,

A far more fundamental problem that affects all measures of
density must now be considered. This is the problem of the
dependence of the density on the size of a graph, which prevents
density measures being compared across networks of different sizes
(see Friedkin, 1981; Niemeijer, 1973; Snijders, 1981). Density, it
will be recalled, varies with the number of lines that are present in
a graph, this being compared with the nmumber of lines that would be
present in a complete graph. There are very good reasons to believe
that the maximum number of lines achievabie in any real graph may
be well below the theoretically possible maximum. If there is an
upper limit to the number of relations that each agent can sustain,
the total number of lines in the graph will be limited by the number

of agents. This limit on the total number of lines means that larger

graphs will, other things being equal, have lower densities than
. small graphs. This is linked, in particular, to the time constraints
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under which agents operate. Mayhew and Levinger (1976) argue that
there are limits on the amount of time that people can invest in
making and maintaining relations. The time that can be allocated to
any particular refation, they argue, is limited, and it will decline as
the number of contacts increases. Agents will, therefore, decide to
stop making new relations — new investments of time — when the
rewards decline and it becomes too costly. The number of contacts
that they can sustain, therefore, declines as the size of the network
increases. Time constraints, therefore, produce a limit to the number
of contacts and, therefore, to the density of the network. Mayhew
and Levinger have used models of random choice to suggest that the
maximum value for density that is likely to be found in actual
graphs is 0.5.1!

The ability of agents to sustain relations is also limited by the
particular kind of relation that is involved. A ‘loving’ relation, for
example, generally involves more emotional commitment than an
‘awareness’ relation, and it is likely that people can be aware of
many more people than they could love, This means that any net-
work of loving relations is likely to have ‘a lower density than any
network of awareness relations.

I suggested in Chapter 3 that density was one of the network
measures that might reasonably be estimated from sample data.
Now that the measurement of density has been more fully dis-
cussed, it is possible to look at this suggestion in greater detail. The
simplest and most straightforward way to measure the density of a
large network from sample data would be to estimate it from the
mean degree of the cases included in the sample. With a representa-
tive sample of a sufficient size, a measure of the mean degree would
be as reliable as any measure of population atiributes derived from
sample data, though I have suggested in the previous chapter. some
of the reasons why sample data may fail to reflect the full range of
relations. If the estimate was, indeed, felt to be reliable, it can be
used to calculate the number of lines in the network. The degree
sum - the sum of the degrees of all the points in the graph — is equal
to the estimated mean degree multiplied by the total number of cases
in the population. Once this sum is calculated, the number of lines is
easily calculated as half this figure. As the maximum possible
number of lines can always be calculated directly from the total
number of points (it is always equal to a(n—1)/2 in an undirected |
graph), the density of the graph can be estimated by calculating

(n X mean degree)/2
nin — 1)/2
which reduces to (n X mean degree)/n(n—1).
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Granovetter (1976) has gone further than this and has attempted
to provide a method of density estimation that can be used when the
researcher is uncertain about the reliability of the initial estimate of
the mean degree. In some situations there will be a high reliability
to this estimate. With company interlock data, for example, the
available directories of company information allow researchers to
obtain complete information on the connections of the sample
companies to all companies in the population, within the limits of
accuracy achieved by the directories. In such circumstances, an
estimate of mean degree would be reliable. In studies of acquaint-

ance, on the other hand, such reliability is not normally the case,

especially when the population is very large. Granovetter’s solution
is to reject a single large sample in favour of a number of smaller

samples. The graphs of acquaintance in each of the sub-samples (the

‘random sub-graphs’) can be examined for their densities, and
Granovetter shows that an average of the random sub-graph
densities results in a reliable estimate of the population network
density. Using standard -statistical theory, Granovetter has shown
that, for a population of 100,000, samples of between 100 and 200
cases will allow reliable estimates to be made. With a sample size of
100, five such samples would be needed; with a sample size of 200,
only two samples would be needed.!? These points have been further
explored in field research, which has confirmed the general strategy
(Erickson and Nosanchuck, 1983; Erickson et al., 1981).

Density is, then, an easily calculated measure for both undirected
and directed graphs, it can be used in both ego-centric and socio-
centric studies, and it can reliably be estimated from sample data. It
is hardly surprising that it has become one of the commonest
measures in” social network analysis. 1 hope that T have suggested,
however, some of the limits on its usefulness. It is a problematic
measure to use with valued data, it varies with the type of relation
and with the size of the graph, and, for this reason, it cannot be used
for comparisons across networks that vary significantly in size.
Despite these limitations, the measurement of density will, rightly,
retain its importance in social network analysis. If it is reported
along with such other measures as the inclusiveness and the network
size, it can continue to play a powerful role in the comparative study
of social networks.

Community Structure and Density

The power and utility of density analysis can be illustrated through
some concrete studies. Barry Wellman (1979, 1982), a member of
Harrison White’s original cohort of network analysts at Harvard,

Points, lines and density 77

has supervised a large study of community structure, in which
density plays a key role. He took as his starting point the long-
standing tradition of community studies, in which writers on
‘community” were generally concerned to investigate whether the
communal solidarities associated with small-scale, rural villages had
been able to withstand the modernizing forces of industrialization
and urbanization. Wellman wanted to use social network analysis to
see whether the development of modern society had resulted in the
disappearance of community and the emergence of urban anomie.
It had been pointed out by some critics of community studies that
social relations of all kinds had become detached from specific
localities, with relations having an increasingly national or inter-
national scope (see the discussion in Bulmer, 1985). Wellman’s
research aimed to investigate this issue for a particular urban area in
Toronto — East York — and, like Fischer (1977, 1982), he focused on
the question of whether ‘personal communities’ had stretched
beyond the bounds of the local neighbourhood itself.

East York is an inner city suburb of private houses and apartment
blocks and was, at the time of the research in 1968, occupied mainly
by skilled manual workers and routine white collar workers. The
fieldwork involved interviews with a random sample of 845 adults,
and a central question in the interview asked people to name their
six closest associates. They were then asked to say whether those
named were themselves close to one another (see also McCallister
and Fischer, 1978). The responses to these questions could be used
to construct ego-centric networks of infimate association for each
respondent. By asking about the connections among the persons
who were named by each respondent, Wellman was able to measure
the density of each personal network. The calculation of density
followed the strategy outlined earlier, and ignored links between
respondents and their intimates. That is, data were collected on ego
and his or her six intimate associates, but the densities of the ego-
centric networks were calculated for the links among the six
associates only.

Wellman discovered that many of the intimate associates (about
a half) were relatives of the respondents, but kin and non-kin
associates were all to be found across a wide geographical area. The
majority of all links were with people who Hved in the city itself,
though very few of these links were based in the immediate locality
of East York. A quarter of all the intimate associates who were
named lived outside the city, some living overseas. Having made a
number of these summary statements about the broad framework of:
people’s social networks, Wellman turned to the densities of these: .
networks. The mean density of the ego-centric personal networks of:
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the respondents was 0.33,”* only one-fifth of networks having a
density greater than (.50 (Wellman, 1979: 1215). A density of (.33
meant that five out of the 15 possible links among intimate
associates were actually present.'* Wellman discovered that the
densest networks fended to be those that were composed mainly of
kin, owing to the fact that it was more likely that the kin of the
respondents would maintain mutual contacts. Where kinship obliga-
tions were absent, such contacts were less likely to be maintained.

Density % of networks % of network members who are kin '_
0-0.25 471 36.4
0.26-0.50 31.7 56.9
0.51-0.75 79 56.9
0.76--1.00 13.3 73.7
100.0
(n = 824)

Figure 4.6 Density of personal nerworks

Wellman’s principal findings on personal networks are summar-
ized in Figure 4.6. He interprets these data as indicating that people

were involved in networks that were ‘sparsely knit” — i.e., networks .

of low -density. ‘Communal’ links were neither solidaristic nor
iocalized. People had others that they could rely on, but the low
density of their personal networks, their lack of mutual cross-
linkages, meant that such help was limited. These personal
networks were, nevertheless, important sources of help and sup-
port, on both an everyday basis and in emergencies: ‘East Yorkers
can almost always count on help from at least one of their intimates,
but they cannot count on such help from meost of them’ (Wellman,
1979: 1217). Those intimate associates who were less likely to give
help and support were more likely to be significant for sociability.
Helpers were more likely to be kin, while those who were most
important for sociability were more likely to be co-residents or
co-workers. e

To pursue some further issues, a follow-up study was undertaken
in which in-depth interviews were carried out, during 1977--8, with
34 of the original respondents. The aim was to get more ‘qualitative’
contextual data for the structural data of the earlier study. Although
the detailed results’ of this stage of the inguiry go beyond the
.immediate concerns of this chapter, some of the.directions pursued
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can uscfully be outlined. Wellman discovered that the interpersonal
networks of households were differentiated by gender divisions and
by the involvement of household members in paid work, The
research discovered, for example, a number of differences between
households where women were involved in paid employment and
those where they were involved only in domestic work, He dis-
covered that the social relations of a household and their access to

_ interpersonal support from their kin, friends, neighbours and co-

workers were most likely to be maintained by women rather than by
men. This was, in particular, true of households where women were
engaged solely in domestic work. Households where women were
involved in both domestic work and in paid employment had far less
dense networks of relations and were, therefore, able to cbtain less
support and fewer services from their contacts (Wellman, 1985).5
Wellman’s investigations used survey analysis o generate the
relational data that he used in the study, but similar ideas can be
used on other forms of relational data. Smith (1979), for example,
used historical data derived from documentary sources to investi-
gate communal patterns in an English village in the thirteenth
century. Smith’s data came from the records of the manor court of
Redgrave in Suffolk, these records showing such things as patterns
of landholding, property transactions and financial disputes among
the villagers. In total, he considered 13,592 relations among 575
individuals over the period 1259 to 1293, Initially, he analysed the
different types of relations and their frequency, which showed that
about two-thirds of the relations were ‘pledging’ relations. FThese

. were relations in which one person gave a specific legal commitment

in support of another person in relation to debt re-payments. and
other financial arrangements.

Smith’s concern was with the role of kinship and other local ties
in organizing these relations and in structuring communal relations.
Homans (1941) had previously undertaken a similar historical study
of communal solidarity, but had not applied any social network
concepts in his study. By contrast, Smith used the idea of the ego-
centric network as his principal orientating concept. The 425
Redgrave landholders of the year 1289 were divided into four
categories according to the size of their landholdings, and equal-
sized random samples were drawn from each category. This gave

. 112 individuals for analysis, and their documented relations with all

other people over the ten-year period from 1283 to 1292 were
extracted from the database. The personal, ego-centric networks of
the 112 people, taking account of the distance 1 relations, were then
analysed in terms of their social bases and geographical spread. The
distribution of the densities of the personal networks showed a
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curvilinear relation to landholding. Density increased steadily with
size of landholding among those with four acres of 1and or less, and
it decreased steadily with the size of holding for those with more
than four acres. Those with three or four acres, therefore, had the
densest personal networks, median density among these households
being between 0.2 and 0.4. They were also the most involved in
multiplex relations. It was, therefore, the middling landholders who
were best integrated into their village community. In the light of the
earlier discussion of the relation between network size and density,
it is interesting to note that Smith discovered a correlation of just
0.012 between the two measures. He concluded, therefore, that the
variations in network density which were observed were not a mere
artefact of network size, but reflected real variations in the quality of
interpersonal relations.

Taking account of all his network data, Smith rejects the idea of
a tightly knit organic community organized around kin and neigh-
bours. The network structure of the medieval village, at least so far
as Redgrave was concerned, was much looser than this image.
Neither were distant kin an especially important source of social
support:

those individuals who interacted most frequently with near neighbours
also inferacted most frequently with kin, although probably on most
occasions residing apart from them. These kin, however, tended to be

close: siblings, uncles, nephews, nicces, fathers and mothers, sons and .

daughters. (Smith, 1979; 244)

Wellman recognized that the ego-centric networks that he studied
in East York were linked into chains of connection through
overlapping associations: there was, he held, a ‘concatenation of
networks’ with personal networks being ‘strands in the larger
metropolitan web’ (Wellman, 1979: 1227). But he did not directly
investigate these global features of the socio-centric networks of
East York. Some pointers to this ‘concatenation’ are provided in
Grieco’s (1987) extension of the work of White (1970) and Grano-
vetter (1974). Grieco’s research concerned the giving and receiving
of information about job opportunities, and she showed that the
flow of help from particular individuals to their network contacts
produces an alteration in the global structure of the network. Where
information is received indirectly, from contacts at a distance of 2 or
more, there is a tendency for a new direct link, albeit a weak one, to
be established between the originator of the information and those
who received it (Grieco, 1987: 108ff.). The overall density of the
network, - therefore, increases, and some of these links may be
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solidified and strengthened through feelings of solidarity and ‘obliga-
tion. Thus, some of the initial increase in density will persist. When
others in the network acquire the ability to reciprocate for the help
that they have received they will, in turn, tend to create new direct
links and a further alteration in the density of the network. In this
way, changes at the individual level of ego-centric contacts result in
a continval transformation of the densny and the other socio-centric,
global features of the network. :
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Centrality and Centralization

The idea of the centrality of individuals and organizations in their
social networks was one of the earliest to be pursued by social

network analysts. The immediate origins of this idea are to be found

in the sociometric concept of the ‘star® — that person who is the most
‘popular’ in his or her group or who stands at the centre of
attention. The formal properties of centrality were initially investi-
gated by Bavelas (1950), and, since his pioneering work, a number
of competing concepts of cenirality- have been proposed. As a result
of this proliferation of formal measures of centrality, there is
considerable confusion in the area. What unites the majority of the
approaches to centrality is a concern for the relative centrality of the
various points in the graph — the question of so-called ‘point
centrality’. But from this common concern they diverge sharply. In
this chapter I will review a number of measures of point centrality,
focusing on the important distinction between ‘local’ and ‘global’
point centrality. A point is locally ceniral if it has a large number of
connections with the other points in its immediate environment — if,
for example, it has a large neighbourhood of direct contacts. A point
is globally central, on the other hand, when it has a position of
strategic significance in the overall structure of the network. Local
centrality is concerned with the relative prominence of a focal point
in its neighbourhood, while global centrality concerns prominence
within the whole network. _

Related to the measurement of point centrality is the idea of the
overall ‘centralization’ of a graph, and these two ideas have
sometimes been confused by the use of the same term to describe
them .both. Freeman’s important and influential study (1979), for
example, talks of both ‘point. centrality’ and ‘graph centrality’.
Confusion is most likely to be avoided if the term ‘centrality’ is
restricted to the idea of point centrality, while the term ‘centraliza-
tion” is used to refer to particular properties of the graph structure
-as- a whole. Centralization, therefore, refers not to the relative
prominence of points, but to the overall cohesion or integration of
the graph. Graphs may, for example, be more or less centralized
around particular points or sets of points. A number of different
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procedures have been suggested for the measurement of centraliza-
lion, contributing further to the confusion that besets this area.
[mplicit in the idea of centralization is that of the structural ‘centre’
of the graph, the point or set of points around which a centralized
graph is organized. There have been relatively few atiempts to
define the idea of the structural centre of a graph, and it will be
necessary to give some consideration to this.

Centrality: Local and Global

The concept of point centrality, 1 have argued, originated in the
sociometric concept of the ‘star’. A central point was one which was
‘at the centre’ of a number of connections, a point with a great many
direct contacts with other points. The simplest and most straight-
forward way to measure point centrality, therefore, is by the
degrees of the various points in the graph. The degree, it will be
recalled, is simply the number of other points to which a point is
adjacent. A point is central, then, if it has a high degree; the
corresponding agent is central in the sense of being ‘well-connected’
or ‘in the thick of things’. A degree-based measure of point centrality,
therefore, corresponds to the intuitive notion of how well connected
a point is within its local environment. Because this is calculated
simply in terms of the number of points to which a particular point is
adjacent, ignoring any indirect connections it may have, the degree
can be regarded as a measure of local centrality. The most system-
atic elaboration of this concept is to be found in Nieminen (1974).
Degree-based measures of local centrality can also be computed for
points in directed graphs, though in these situations each point will
have two measures of its local centrality, one corresponding to its
indegree and the other to its outdegree. In directed graphs, then, it
makes sense to distinguish between the ‘in-centrality’” and the ‘out-
centrality’” of the various points (Knoke and Burt, 1983).

A degree-based measure of point centrality can be extended
beyond direct connections to those at various path distances. In this
case, the relevant neighbourhood is widened to include the more
distant connections of the points. A point may, then, be assessed for
its local centrality in terms of both direct (distance 1) and distance 2
connections — or, indeed, whatever cut-off path distance is chosen.
The principal problem with extending this measure of point centra-
lity beyond distance 2 connections is that, in graphs with even a very
modest density, the majority of the points tend to be linked through
indirect connections at relatively short path distances. Thus, com-
parisons of local centrality scores at distance 4, for example, are
unlikely to be informative if most of the points are connected. (o



84  Social nerwork analysis

most other points at this distance. Clearly, the cut-off threshold
which is to be used is a matter for the informed judgement of the
researcher who is undertaking the investigation, but distance 1 and
distance 2 connections are likely to be the most informative in the
majority of studies.

. Ac | B | am [ukL]AlSmer
Local { Absolute 5 5 2 1 1
centrality | Relative 033 | 033 | 013 | 007 0.07
Globat centrality 43 33 37 48 57

Figure 5.1 Local and global centrality

It is important to recognize that the measurement of local
centrality does not involve the idea that there will be any unique

‘central’ point in the network. In Figure 5.1, for example, points A, -

B and C can each be seen as local centres: they each have a degree.
of 5, compared with degrees of 1 or 2 for all other points. Even if
point A had many more direct connections than points B and C it
would not be ‘the’ centre of the network: it lies physically towards
one ‘side’ of the chain of points, and its centrality is a purely ‘local’
phenomenon. The: degree, - therefore, is a measure of local centra-
lity, and a comparison of the-degrees of the various points in a graph
can show how well. .connected the points are with their local
ENVIFONMENTs.: woi ool 205 h

This measure of local centrality has, however, one major limi-
tation. This is . that comparisons of centrality scores can only -
meaningfully be made. among the members of the same: graph or
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between graphs that are the same size. The degree of a point
depends on, among other things, the size of the graph, and so
measures of local centrality cannot be compared when graphs differ
significantly in size. The use of the raw degree score may, therefore,
be misleading. A central point with a degree of 25 in a graph of 100
points, for example, is not as central as one with a degree of 25 in
a graph of 30 points, and neither can be easily compared with a
central point with a degree of 6 in a graph of 10 points. In an
attempt to overcome this problem, Freeman (1979) has proposed a
relative measure of local centrality in which the actual number of
connections is related to the maximum number that it could
sustain. A degree of 25 in a graph of 100 points, therefore, indicates
a relative local centrality of 0.25, while a degree of 25 in a graph of
30 points indicates a relative centrality of 0.86, and a degree of 6 in
a graph of 10 points indicates a relative centrality of 0.66.! Figure
5.1 shows that relative centrality can also be used to compare points
within the same network. It should also be clear that this idea can be
extended to directed graphs. A relative measure, therefore, gives a
far more standardized approach to the measurement of local
centrality.

The problem of comparison that arises with raw degree measures
of centrality is related to the problem of comparing densities
between different graphs, which was discussed in the previous
chapter. Both are limited by the question of the size of the graphs.
It will be recalled, however, that the density level also depends on
the type of relation that is being analysed. The density of an
‘awareness’ network, I suggested, would tend to be higher than that
of a ‘loving’ network. Because both density and point centrality are
computed from degree measures, exactly the same considerations
apply to measures of point centrality. Centrality measured in a
loving network, for example, is likely to be lower, other things being
equal, than centrality in an awareness network. Relative measures of
point centrality do nothing to help with this problem. Even if local
centrality scores are calculated in Freeman’s relative terms, they
should be compared only for networks which involve similar types
of relations.

Local centrality is, however, only one conceptualization of point
centrality, and Freeman (1979, 1980) has proposed a measure of
global centrality based around what he terms the ‘closeness’ of the
points. Local centrality measures, whatever- path distance is used,
arc expressed in terms of the number or proportion of peints to
which a point is connected. Freeman’s measure of global centrality
is expressed in terms of the distances among the various points. It
will be recalled that two points are connected by a path if there is a

©
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sequence of distinct lines connecting them, and the length of a path
is measured by the number of lines that make it up. In graph
theory, the length of the shortest path between two points is a
measure of the distance between them. The ‘shortest distance
between two points on the surface of the earth lies along the
geodesic that connects them, and, by analogy, the shortest path
between any particular pair of points in a graph is termed a
‘geodesic’. A point is globally central if it lies at short distances
from many other points. Such a point is ‘close’ to many of the other
points in the graph.

The simplest notion of closeness is, perhaps, that calculated from
the ‘sum distance’, the sum of the geodesic distances to all other
points in the graph (Sabidussi, 1966). If the matrix of distances
between points in an undirected graph is calculated, the sum distance
of a point is its column or row sum in this matrix (the two values are
the same). A point with a low sum distance is ‘close’ to a large
number of other points, and so closeness can be seen as the
reciprocal of the sum distance. In a directed graph, of course, paths
must be measured through lines that run in the same direction,
and, for this reason, calculations based on row and column sums will
differ. Global centrality in a directed graph, then, can be seen in
terms of what might be termed ‘in-closeness’ and ‘out-closeness’.

The tabie in Figure 5.1 compares a sum distance measure of
global centrality with degree-based measures of absolute and
relative local centrality. It can be seen that A, B and C are equally
central in local terms, but that B is more globally central than either
A or C. In global terms, G and M are less ceniral than B, but more
central than the locally central points A and C. These distinctions
made on the basis of the sum distances measure, therefore, confirm
the impression gained from a visual inspection of the graph. This is
also apparent in the measures for the less central points. All the

remaining points have a degree of 1, indicating low local centrality,

yet the sum distance measure clearly brings out the fact that J, K and
L are more central in global terms than are the other points with
degree 1. -

Freeman (1979) adds yet a further concept of point centrality,
which he terms the betweenness. This concept measures the extent
to which a particular point lies ‘between’ the various other points in
the graph: a-point of relatively low degree may play an important
‘intermediary’- role and so-be very central to the network. Points G
and M in Figure 5.1; for example, lie between a great many pairs of
points. The betweenness of a point measures the extent to which an
agent can play the part of a ‘broker’ or ‘gatekeeper’ with a potential
for control over others.? G could, therefore, be interpreted as an
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intermediary between the set of agents centred around B and that
centred around A, while M might play the same role for the sets of
B and C.

Freeman's approach to betweenness is built around the concept of
‘local dependency’. A point is dependent upon another if the paths
which connect it to the other points pass through this point. Burt
(1992) has described this in terms of ‘structural holes’. A structural
hole exists where two points are connected at distance 2, but not at
distance 1. The existence of a structural hole allows the third point
to act as a broker or intermediary. In Figure 5.1, for example, point
E is dependent on point A for access to all other parts of the graph,
and it is also dependent, though to a lesser extent, on points G, B, M
and C. _

Betweenness is, perhaps, the most complex of the measures of
point centrality to calculate. The ‘betweenness proportion” of a
point Y for a particular pair of points X and Z is defined as the
proportion of geodesics connecting that pair which passes throngh Y
— it measures the extent to which Y is ‘between’ X and Z.® The ‘pair
dependency’ of point X on point Y is then defined as the sum of the
betweenness proportions of Y for all pairs that involve X. The ‘local
dependency matrix’ contains these pair dependency scores, the
entries in the matrix showing the dependence of each row element
on each column element. The overall ‘betweenness’ of a point is
calculated as half the sum of the values in the columns of this
matrix, i.e., half the sum of all pair dependency scores for the points
represented by the columns. Despite this rather complex calculation,
the measure is intuitively meaningful, and it is easily computed with
the vciner and GRADAP programs.

In Freeman’s work, then, can be found the basis for a whole
family of point cenfrality measures: local centrality (degree),
betweenness, and global centrality (closeness). I have shown how
comparability between different social networks can be furthered by
calculating local centrality in relative rather than absolute terms, and
Freeman has made similar proposals for his other measures of
centrality. He has produced his own relative measure of between-
ness, and he has used a formuia of Beauchamp (1965) for a relative
closeness measure. All these measures, however, are based on raw
scores of degree and distance, and it is necessary to turn to Bonacich
(1972, 1987) for an alternative approach which uses weighted
scores. ‘

Bonacich holds that the centrality of a particular point cannot be
assessed in isolation from the centrality of all the other points to
which it is connected. A point that is connected to central points
has its own centrality boosted, and this, in turn, boosts the centrality
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of the other points to which it is connected (Bonacich, 1972). There
is, therefore, an inherent circularity involved in the calculation of
centrality. According to Bonacich, the local centrality of point i in a
graph, ¢, is calculated by the formula Ejrijcj, where 7, is the value of
the line connecting point i and point j and ¢; 18 the centrality of
point j. That is to say, the centrality of i equals the sum of its
connections to other points, weighted by the centrality of each of
these other points.*

Bonacich (1987) has subsequently generalized his initial approach,
as did Freeman, to a whole family of local and global measures. The
most general {ormuia for centrality, he argued, is ¢; = Zaryla + Bey.
In this formula, the centrality weighting is itself modified by the
two parameters o and B. @ is introduced simply as an arbitrary
standardizing constant which ensures that the final centrality meas-
ures will vary around a mean value of 1. B, on the other hand, is of
more substantive significance. It is a positive or negative value
which allows the researcher to set the path distances that are to be
used in the calculation of centrality.” Where 3 is set as equal to zero,
no indirect links are taken into account, and the measure of
centrality is a simple degree-based measure of local centrality.
Higher levels of B increase the path length, so allowing the
calculation to take account of progressively more distant connec-
tions. Bonacich claims that measures based on positive values of B
correlate highly with Freeman’s measure of closeness.

A major difficulty with Bonacich’s argument, however, is that the
values given to B are the results of arbitrary choices made by

researchers. It is difficult to know what theoretical reasons there .

might be for using one 8 level rather than another. While the
original Bonacich measure may be intitively comprehensible, the
generalized model is more difficult to interpret for values of B that
are greater than zero. On the other hand, the suggestion that the
value of B can be either positive or negative does provide a way
forward for the analysis of signed graphs. Bonacich himself suggests
that negative values correspond to ‘zero-sum’ relations, such as
those involved in the holding of money and other financial
resources. Positive values, on the other hand, correspond to ‘non-
zero-sum’ relations, such as those involving access to information.
I have discussed centrality principally in terms of the most central
points in a graph, but it should be clear that centrality scores also
allow the least central points to be identified. Those points with the
lowest centrality, however this is measured, can be regarded as the
peripheral points of the-graph. This is true, for example, for all the
points in-Figure 5.1 that have degree 1. They are locally peri-
_Pheral in so far as they are loosely connected into the network. The
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global centrality scores in Figure 5.1, however, show that 'points_J,
K and L are not as globally peripheral as the other points with

degree 1. .

Centralization and Graph Centres

[ have concentrated, so far, on the question of the centrality of
particular points. But it is also possible to examine the extent to
which a whole graph has a centralized structure. The concepts of
density and centralization refer to differing aspects of the overall
‘compactness’ of a graph. Density describes the general lt_avel Qf
cohesion in a graph; centralization describes the extent to whlgh thlS 3
cohesion is organized around particular focal points. Centralization
and density, therefore, are important complementary measures.

Figure 5.2 A highly centralized graph

Figure 5.2 shows a simplified model of a highly centralized g_raph:
the whole graph is organized, in important respects, around point A
as its focal point. How is this level of centralization to be measured?
Freeman (1979) has shown how. measures of point centrality can be
converted into measures of the overall level of centralization that
is found in different graphs. A graph centralization measure is-an
expression of how tightly the graph.is organized around: its: most
ceniral point. Freeman’s measures of centralization are attempts; 1o,
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isolate the various aspects of the simplified notion of centralization.
On this basis, he identifies three types of graph centralization,
rooted in the varying conceptions of point centrality that he has
defined.

The general procedure involved in any measure of graph central-
ization is to look at the differences between the centrality scores of
the most central point and those of all other points, Centralization,
then, is the ratio of the actual sum of differences to the maximum
possible sum of differences. The three different ways of operational-
izing this general measure that Freeman discusses follow from the
use of one or other of the three concepts of point centrality.
Freeman (1979) shows that all three measures vary from 0 to 1 and
that a value of 1 is achieved on all three measures for graphs
structured in the form of a ‘star’ or ‘wheel’. He further shows that a
value of 0 is obtained on all three measures for a ‘complete’ graph.
Between these two extremes lie the majority of graphs for real
social networks, and it is in these cases that the choice of one or
other of the measures will be hmportant in illuminating specific
structural features of the graphs. A degree-based measure of graph
centralization, for example, seems to be particularly sensitive to the
local dominance of points, while a betweenness-based measure is
rather more sensitive to the ‘chaining’ of points.

Assessing the centralization of a graph around a particular focal
point is the starting point for a broader understanding of centraliza-
tion. Measures of centralization can tell us whether a graph is
organized around its most central points, but they do not tell us

whether these central points comprise a distinct set of points that =

cluster together in a particular part of the graphk. The points in the
graph that are individually most ceniral, for example, may be
spread widely through the graph, and in such cases a measure of
centralization might not be especially informative. It is necessary,
therefore, to investigate whether there is-an identifiable ‘structural
cenlre’ to a graph. The structural centre of a graph is a single point
or a cluster of points that, like the centre of a circle or a sphere, is
the pivot of its organization,

This approach to what might be called ‘nuclear centralization’ has
been -outlined in an unpublished work of Stokman and Snijders.
Their approach is to define the set of points with the highest point
centrality’ scores as:the:‘centre’ of the graph. Having identified this
set, researchers can then examine the structure of the relations
between this set- of -points and all other points in the graph. A
schematic outline of the Stokman and Sm}ders approach is shown in
. Figure 5.3. : S .
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Figure 5.3 The structural centre of a graph

If all the points in a graph are listed in order of their point
centrality — Stokman and Snijders use local centrality — then the set
of points with the highest centrality is the centre. The boundary
between the centre and the rest of the graph is drawn wherever there
appears to be a ‘natural break’ in the distribution of centrality scores.
The decrease in the centrality score of each successive point may,
for example, show a sharp jump at a particular point in the
distribution, and this is regarded as the boundary between the centre
and its ‘margin’. The margin is the set of points that clusters close
to the cenire and that is, in turn, divided from the ‘peripheral’ points
by a further break in the distribution of centrality scores.

The Stokman and Snijders concept applies only to highly central-
ized graphs. - In a graph such as that in Figure 5.2, which is
centralized around a particular set of central points, as measured by
one of Freeman’s indicators, it may be very informative to try to
identify the sets defined by Stokman and Snijders. There will be an
inevitable arbitrariness in identifying the boundaries between centre,
margin and periphery. A solution to both of these problems, though
not one pursued by Stokman and Snijders, is to use some kind of
clique or cluster analysis to identify the boundaries of the structural
centre: if the most central points, for example, constitute a clearly
defined and well-bounded ‘clique’, then it may make sense to:regard
them as forming the nuclear centre of the graph.” But not all graphs
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will have such a hierarchical structure of concentric sets. Where the
central points do not cluster together as the nucleus of a centralized
graph, the Stokman and Snijders ‘centre’ will constitute simply a set
of locally central, though dispersed, points. In such circumstances, it
is not helpful (o use the term ‘centre’.

It is possibie to extend the analysis of centralization a little further
by considering the possibility that there might be an ‘absolute
centre’ to a graph. The absolute centre of a graph corresponds
closely to the idea of the centre of a circle or a sphere; it is the focal
point around which the graph is structured. The structural centre, as
a set of points, does not meet this criterion. The absolute centre
must be a single point. The centre of a circle, for example, is that
unique place which is equidistant from all points on its circum-
ference. By strict analogy, the absolute centre of a graph ought to be
equidistant from all points in the graph. This idea is difficult to
operationalize for a graph, and a more sensible idea would be to
relax the criterion of equidistance and to use, instead, the idea of
minimum distance. That is to say, the absolute centre is that point
which is ‘closest’ to all the other points in terms of path distance.,

Christofides (1975: ch. 5) has suggested using the distance matrix
to conceptualize and compute the absolute centre of a graph. The
first step in his argument follows a similar strategy to that used by
Freeman to measure ‘closeness’. Having constructed the distance

~matrix, which shows the shortest path distances between each pair of
points, he defines the eccentricity, or ‘separation’, of a point as its
maximum column (or row) entry in the matrix.? The eccentricity of

a point, therefore, is the length of the longest geodesic incident to it. .

Christofides’s first approximation to the idea of absolute centrality is
to call the point with the lowest eccentricity the absolute centre.
Point B in sociogram (i) of Figure 5.4 has an eccentricity of 1, and
all the other points in the graph have eccenfricity 2. In this
saciogram, then, point B, with the lowest eccentricity, is the absolute
centre.’ In other graphs, however, there may be no single point with
minimum eccentricity. There may be a number of points with
equally low eccentricity, and in these circumstances a second step is
needed. :

This second step in the identification of the absolute centre
involves searching for an imaginary point that has the lowest
possible eccentricity for the particular graph. The crucial claim here
is that, while the absolute centre of a graph will be found on one of
its constituent paths, this place may not correspond to any actual
point in the graph. Any graph will have an absolute centre, but in
some graphs this.centre will be an imaginary rather than an actual
point. - = o '
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This claim is not so strange as it might at first seem. All the points
in sociogram (ii) in Figure 5.4 have eccentricity 2, and so all are
equally ‘central’. It is possible, however, to conceive of an imagin-
ary point, Z, which is mid-way between points A and B, as in
sociogram {iii). ‘Point” Z is distance 0.5 from both A and B, and it
is distance 1.5 from points C, D and E. The artificial point Z is more
central than any of the actual points, as its eccentricity is 1.5. But it
is still not possible to find a single absolute centre for this socio-
gram. The imaginary point Z could, in fact, have been placed at the
mid-point of any of the lines in the sociogram with the same results,
and there is no other location for the imaginary point that would not
increase its minimum eccentricity. The best that can be said for this
graph, therefore, is that there are six possible locations for the
absolute centre, none of which corresponds to an actval point.
Moving to the second step of searching for an imaginary point as the
absolute centre, then, will redice the number of graphs for which
there is no unique absolute centre, but it does not ensure that a
single absolute centre can be identified for all graphs.'®

Thus, some graphs will have a unique absolute centre, while
others will have a number of absolute centres. Christofides provides
an algorithm that would identify, through iteration, whether a graph
contains a mid-point or actual point that is its unique absolute
centre.!! In sociogram (iv) of Figure 5.4, for example, there is a
unique absolute centre. Its ‘point’” Z has an eccentricity of 1.5,
compared with eccentricity scores of 2.5 for any other imaginary

mid-point, 2 for points A and B, and 3 for points C, D, E, F

and G.

A Digression on Absolute Density'?

The problem with the existing measures of density, as I showed in
the previous chapter, is that they are size-dependent. Density is a
measure that is difficult to use in comparisons of graphs of radically
different sizes. Density is relative to size. This raises the question of
whether it might not be possible to devise a measure of absolute
density that would be of more use in comparative studies. I cannot
give a comprehensive answer to that question here, but the idea of
the absolute centre of a graph does raise the possibility that other
concepts required for a measure of absolute density might be
formulated along similar lines. A concept of density modelled on
that used in physics for the study of solid bodies, for example,
would require measures of ‘radius’, ‘diameter’ and ‘circumference’,
all of which depend on the idea of the absolute centre.
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The radius of a circular or spherical object is the distance from its
centre to its circumference, on which are found its most distant
reachable points, Translating this into graph theoretical terms, the
cecentricity of the absolute centre of a graph can be regarded as the
‘radius’ of the graph. The ‘diameter’ of a graph, as will be shown in
the following chapter, is defined as the greatest distance between
any pair of its points. In sociogram (iv) of Figure 5.4, for example,
the radius is 1.5 and the diameter is 3, In this case, then, the
diameter is equal to twice the radius, as would be the case in the
conventional geometry of a circle or a sphere. This will not,
however, be true for all graphs.

In geometry there js a definite relationship between the area and
the volume of a body, these relationships being generalizable to
objects located in more than three dimensions. The area of a circle
is wr* and the volume of a sphere is 4mr*/3, where m is the ratio of
the circumference to the diameter. The general formula for the area
of a circle, therefore, is er?/d, and that for the volume of a sphere is
dcr’3d, where ¢ is the circumference, » is the radius and d is the
diameter. Applying this to the simple sociogram (iv) of Figure 5.4
would show that it has a volume of 4c(1.5)%9, or 1.5¢.”° But what
value is to be given to ¢ in this formula? If the diameter of a graph
is taken to be the length of the geodesic between its most distant
points (the longest geodesic), the circumference might most natur-
ally be seen as the longest possible path in the graph. In sociogram
(iv), this is the path of length 5 that connects point G to point F.
Thus, the ‘volume’ of the example sociogram is 7.5.

Relatively simple geometry has, therefore, enabled us to move a
part of the way towards a measure of the absolute density of a graph
in three dimensions. Density in physics is defined as mass divided
by volume, and so to complete the calculation a measure of the
‘mass’ of a graph is required. Mass in physics is simply the amount
of matter that a body contains, and the most straightforward graph
theoretical concept of mass is simply the number of lines that a
graph contains. In sociogram (iv) there are eight lines, and so its
absolute density would be 8/7.5, or 1.06.

Generalizing from this case, it can be suggested that the abseolute
density of a graph is given by the formula ¥/(4cr’/3d), where [ is the ¥
number of lines, Unlike the relative density measure discussed in the
previous chapter, this formula gives an absolute value that can be
compared for any and all graphs, regardless of their size. But one
important reservation must be entered: the value of the absolute
density measure is dependent on the number of dimensions in which
it is measured. The absolute density measure given here has been
calculated for graphs in three. dimensions. The concept could be
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generalized to higher dimensions, by using established formulae for
‘hyper-volumes’, but such an approach would require some agree-
ment about how to determine the dimensionality of a graph. This
issue will be approached again in Chapter 8§, drawing on the
arguments of Freeman (1983).%

" Bank Centrality in Corporate Networks

Studies of interlocking directorships among corporate enterprises are
far from new, but most of the studies that had been carried out prior
to the 1970s had made little use of the formal techniques of social
network analysis. Despite some lmited use of density measures and
cluster analysis, most of these studies took a strictly quantitative
approach, simply counting the numbers of directorships and inter-
locks among the companies. Levine’s influential paper (1972)
marked a shift in the direction of this research while, at about the
same time, Mokken and his associates in the Netherlands began a
pioneering study in the systematic use of graph theory to explore
corporate interlocks (Helmers et ai., 1975). The major turning point,
however, occurred in 1975, when Michael Schwartz and his students
presented their major conference paper that applied the concept of
centrality to corporate networks (Bearden et al., 1975). This long
paper circulated widely in cyclostyled form and, despite the fact that
it remains unpublished, it has been enormously influential. The work
of Schwartz’s group, and that which it has stimulated, provides a
compelling illustration of the conceptual power of the idea of point
centrality.

Michael Schwartz and Peter Mariolis had begun to build a

database of top American companies during the early 1970s, and
their efforts provided a pool of data for many subsequent studies
(see, for example, Mariokis, 1975; Sonquist and Koenig, 1975).
They gradually extended the database to include the top 500
industrial and the top 250 commercial and financial companies
operating in the United States in 1962, together with all new entrants
to this ‘top 750° for each successive year from 1963 to 1973. The
final database included the names of all the directors of the 1131
largest American companies in business during the period 1962-73:
a-total of 13,574 directors. This database is, by any standard, that for
a large social network. As such, it lends itself to the selection of
substantial sub-sets of data for particular years. One such sub-set is
the group of the 797 top enterprises of 1969 that were studied by
Mariolis (1975). ‘
The path-breaking paper of Schwartz and his colleagues (Bearde
et al, 1975) .drew on. the Schwartz-Mariolis database, and it
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nnalysed the data using Granovetter’s (1973) conceptual distinction
hetween strong and weak ties. The basis of their argument was that
ihose interlocks that involved the full-time executive officers of
the enterprises could be regarded as the ‘strong’ ties of the
vorporate network, while those that involved only the pari-time
non-executive directors were its ‘weak’ ties. The basis of this
(heoretical claim was that the interlocks that were carried by full-
lime executive officers were the most likely board-level links to have
i strategic salience for the enterprises concerned. For this reason,
they tended to be associated with intercorporate shareholdings and
trading relations between the companies.” Interlocks created by
non-executive directors, on the other hand, involved less of a time’
commitment and so had less strategic significance for the enterprises
concerned.

The top enterprises were examined for their centrality, wsing.
Bonacich’s (1972) measure. This, it will be recalled, is a measure in
which the centrality of a particular point could be measured by a
combination of its degree, the value of each line incident to it, and
the centrality of the other points to which it is connected. This is a
‘recursive’, circular measure that, therefore, requires a considerable
amount of computation. A network containing 750 enterprises, for
¢xample, will require the solution of 750 simultancous equations.
The first step in Bearden et al’s analysis was to decide on an.
appropriate measure for the value of the lines that connected the
enterprises. For the weak, undirected lines, Bearden et al. held that
the value of each should be simply the number of separate inter-
locks, weighted by the sizes of the two boards. This weighting rested
on the supposition that having a large number of interlocks was less
significant for those enterprises with large boards than it was for
those with small boards, The formula used in the calculation was
bij/\/didj, where b; is the number of interlocks between the two
companies ¢ and j, and d&; and d; are the sizes of their respective
boards. This formula allows Bonacich’s centrality measure to be
calculated on the basis of all the ‘weak ties’ in the graph.

A more complex formula was required to measure centrality in
terms of the strong ties. In this case, the measure of the value of
each line needed to take some account of the direction that was
attached to the lines in the graph. For those companies that were
the ‘senders’ of lines (the ‘tails’, in the terminology of the GraDap
program) the value of the lines was calculated by the number of
directors ‘sent’”, weighted by the board size of the ‘receiving’
company. The attempt in this procedure was to weight the line by
the salience of the interlock for the receiving board. Conversely, for
those companies that were the ‘receivers’ of interlocks (the ‘heads’),
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the number of directors received was weighted by the sender’s board
size.'8 For the final calculation of centrality scores, Bearden et al.
introduced a further weighting. Instead of taking simply the raw
weighted scores for the tails and the heads, they took 90 per cent of
the score for the senders and 10 per cent of the score for the
recipients. The reasoning behind this weighting of the scores was the
theoretical judgement that, in the world of corporate interlocking, it
is ‘more important to give than to receive’: the sending of a director
was. more likely to be a sign of corporate power than was the
receiving of a directorship. Thus, the arbitrary adjustment to the
centrality scores was introduced as a way of embodying this
judgement in the final results. It should be noted, however, that
centrality will not always be a sign of power. In some situations,
the prominent and most visible actors may be among the weakest
(Mizruchi, 1994: 331-2).

The Bonacich measure of centrality which was calculated for
the companies in the study correlated very highly, at 0.91, with the
degrees of the companies. Bearden et al, held, however, that the
more complex Bonacich measure was preferable because it had
the potential to highlight those enterprises that had a low degree but
which were, nevertheless, connected to highly central companies.
Such a position, they argued, may be of great importance in determin-
ing the structural significance of the companies in the economy.

Schwartz and his colleagues also used a further approach to

- centrality, which they termed ‘peak analysis’. This was later elabor-

ated by Mizruchi (1982) as the basis for an interpretation of the

development of the American corporate network during the twen-

tieth century. A point is a peak, it was argued, if it is more central
than any other point to which it is connected. Mintz and Schwartz
(1985} extend this idea by defining a bridge as a central point that
connects two or more peaks (see Figure 5.5). They further see a

Peak1 - - Peak 2

Cluster 2

Cluster.1-

Figure 5.5 - Peaks and bridges
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‘¢luster” as comprising all the direct contacts of a peak, except for
those that have a similar distance 1 connection to another peak.
"Ihus, peaks lie at the hearts of their clusters.!’

The results that were arrived at through the use of these tech-
niques for the measurement of point centrality have become widely
uccepted as indicating some of the most fundamental features of
intercorporate networks. In summary, Bearden et al. argued that the
American intercorporate network showed an overall pattern of ‘bank
centrality’: banks were the most central enterprises in the network,
whether measured by the strong or the weak ties. Bank centrality
was manifest in the co-existence of an extensive national interlock
network (structured predominantly by weak ties) and intensive
regional groupings (structured by the strong ties). Strong ties had a
definite regional base to them. The intensive regional clusters were
created by the strong ties of both the financial and the non-financial
enterprises, but the strong ties of the banks were the focal centres of
the network of strong ties. The intercorporate network of 1962, for
example, consisted of one very large connected component,'®
two small groupings each of four or five enterprises, and a large
number of pairs and isolated enterprises. Within the large connected
component, there were five peaks and their associated clusters. The
dominant element in the network of strong ties was a regional
cluster around the Continental Hlinois peak, which, with two other
Chicago banks, was connected with a group of 11 mid-Western
enterprises with extensive connections to a larger grouping of 132
enterprises. The remaining four peaks in the network of strong ties
were Mellon National Bank, J.P. Morgan, Bankers Trust and United
California Bank, their clusters varying in size from four to ten
enterprises.

Overlying this highly clustered network of strong, regional ties
was an extensive national network created by the weak ties that
linked the separate clusters together. This national network, Bearden
et al. argued, reflected the common orientation to business affairs
and a similarity of interests that all large companies shared. Inter-
locks among the non-executive directors expressed this commonality
and produced integration, unity and interdependence at the national
level (see also Useem, 1984). The great majority of the enterprises
were tied into a single large component in this network, most of the
remainder being isolates. Banks were, once more, the most central
enterprises, especially those New York banks that played a ‘national’
rather than a ‘regional’ role. It was the non-executive directors of the
banks who cemented together the overall national network.!®

Ed
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Components, Cores and Cliques

One of the most enduring concerns of those who have turned to
social network analysis has been the attempt to discover the various
‘cliques’ and cohesive sub-groups. into which 2 network can be
divided. The early researchers of the Hawthorne and Yankee City
studies, I have shown, saw the idea of the ‘clique’ as being their
central theoretical discovery. The argument was that people’s
informal social relations tied them into cohesive sub-groupings that
had their own norms, values, orientations and sub-cultures, and
that may run counter to the ‘official’ or formal social structure. The
cliques were, they held, among the most important sources of a
person’s identity and sense of belonging, and their existence was
widely recognized in the everyday terms — such as ‘our set” and
‘the group in the back’ — that people used to describe their social
world. ' .
Once analysts began to try to formalize the idea of the clique and
to devise mathematical measures of the number and cohesion of
" cliques, it was appreciated that the idea was not limited to informal
relations. There were also political cliques and factions, economic
cliques and interest groups, and so on. It was also recognized that
there were a number of different ways of operationalizing the
apparently simple idea of the ‘clique’: for example, cliques could be
seen as groups of mutually connected individuals or as pockets of
high density. Thus, a number of different theoretical models of sub-
groups emerged, variously described as ‘cliques’, ‘clusters’, ‘com-
ponents’, ‘cores” and ‘circles’. Apart from beginning with the letter
‘c’, these concepts have very little in common with one another. In
this chapter I shall discuss their varying theoretical bases, though I
will leave the issue of ‘cluster analysis’ until the following chapter.
The starting point for all of these measures of group structure is
the idea of & ‘sub-graph’. A sub-graph is any collection of points
selected from the whole. graph of a network, together with the lines
connecting those points: ‘Any aspect of the graph can be chosen for
identifying its. sub-graphs,  though not all of these criteria will be
substantively useful in:research. A random sample of points, for
example, could be treated as a sub-graph and its structural proper-
ties could be examined. But a random sub-graph is not, in general,
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likely to correspond to a meaningful social group. A more useful
approach to the identification of sub-graphs might be to divide the
members of a network by, say, gender and to investigate the
separate sub-graphs of men and women. Any such choice will
depend on the theoretical and empirical concerns of the researcher.
The general aim would simply be to define a meaningful category of
agents and to explore their distinct patterns of network formation.
From this point of view, therefore, the identification of sub-graphs
is no different from the initial identification of the graphs them-
selves. All the considerations of boundaries and sampling that
have been considered in earlier chapters will be equally relevant
here and no new issues are involved (see, for example, Frank,
1978b).

Clique and similar analyses nomnally adopt an alternative
approach to the study of sub-graphs. Their aim has been to
investigate the structural properties of the whole graph itself in order
to discover the ‘naturally existing’ sub-graphs into which it can be
divided. From this point of view, a sub-graph must have some
defining characteristic drawn from the mathematical principles of
graph theory: the connectedness of its points, the intensity of their
connection, and so on. It is a sub-graph that is maximal in relation
to a particular defining characteristic: it is the largest sub-graph that
can be formed in the graph without this defining quality disappear-
ing. The choice of a particular characteristic depends on the
researcher’s decision that a particular mathematical criterion can be
given a meaningful and useful sociological interpretation. Unfortu-
nately, this is rarely made explicit, and far too many researchers
assume that whatever mathematical procedures are available in
social network analysis programs must, almost by definition, be
useful sociological measures. My aim in this chapter is to uncover
the mathematical assumptions of the various available procedures so
that researchers can make an informed decision about those that
might be relevant to their particular investigations.

Components, Cycles and Knots

The simplest of the various sub-graph concepts is that of the
component, which is formally defined as a ‘maximal connected sub-
graph’. A sub-graph, like a graph, is ‘connected’ when all of its
points are linked to one another through paths: all points in a

-~

m

connected sub-graph can ‘reach’ one another through one or more

paths, but they have no connections outside the sub-graph. Within a
component, all points are connected through paths, but no paths
run to points outside the component. When the connected sub-
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graph is maximal, it is impossible to add any new members without
destroying the quality of connectedness. Isolated points, for exam-
ple, cannot be joined with an existing component, as they have no
connections to any of its members. The boundary of a component,
therefore, is identified by tracing through the paths from its potential
members to test for their connectedness.

A computer algorithm for identifying components might start
from a randomly chosen point and trace all the other points to which
it is directly connected. This same procedure can then be repeated
for each of these points in turn, and so the component gradually
increases in size through a ‘snowballing’ method. When no further
points can be added to the component, its full membership has been
identified. If any points remain outside the component, the same
procedure can be repeated for them, so as to see what other
components can be identified in the graph.

Components, then, are sets of points that are linked to one another
through continuous chains of connection. The paths connecting
points are traced through until the boundaries of the component are
discovered. A ‘connected graph’, of course, simply comprises a
single component. Other graphs typically consist of one or more
separate components, together with a number of isolated points (see
Figure 6.1). This idea is readily mterpretable in sociological terms.
The members of a component can, in principle, communicate with
one another, either directly or through chains of intermediaries,
Isolates, on the other hand, have no such opportunities. The pattern
of components found in a graph — their number and size — can, there-
fore, be taken as an indication of the opportunities and obstacles to
communication or the transfer of resources in the associated nel-
work. To this extent, then, they embody the ideas behind the
‘topological regions’ of the early field theorists. A basic step in
the structural description of a network, therefore, is to identify the
number and size of its components.

The simplest of algorithms to detect components in a graph would
search all possible paths in order to discover the geodesics between
points. The lengths of these geodesics will vary from a minimum of
1 {direct connection) to a maximum of n—1. In a graph of size 100,
for example, the maximum possible path length would be 99. In
large graphs, however, the longest geodesic in a component — its
‘diameter’ — is generally much shorter than this." However, the
diameter of a component will not generally be known before the
boundaries of the component have been identified, and so such an
algorithm must search all paths up to the maximum level of n—1 in

_the search for components, . : -
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Figure 6.1 Components in a network

Because such a procedure is very time-consuming and inefficient,
it is not practicable for most computing purposes. For this reason,
social network packages generally use an alternative procedure.
Components are discovered by building up ‘spanning trees’, using a
back-tracking method from chosen points. The algorithm looks for
any point that is connected to a starting point, and it‘ then 1901$s
for any point that is comnected to this additional point. Tms 1s
repeated until no further connections can be found. The algfm.thr_n
then back tracks along the chain that it has discovered until it is
able to make & connection to a new point. It continues in the same
way until it again comes to a halt. By repeated back-tracking of this
kind, the boundaries of a component are discovered very efficiently
and the procedure can search the remaining . points for other
components. - )

Components can be searched for in both undirected and directed
graphs, but there are important differences between the two
situations. In the case of directed graphs, two distinct types of
component can be identified: ‘strong components’ anc_l ‘weak
components’. A strong component is one in which the lines that ,
make up the paths are aligned in a continuous chain w.ithqut any
change of direction. Any paths that do not meet this criterion are
disregarded. The justification for this restriction is that the direction
of a line is assumed to-indicate the possible flow of some.resource
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or facility, such as money, power, or information. It is only when the
lines in a path run in a constant direction that this flow can continue
without interruption. A strong component, then, represents a set of
agents among whom such resources can easily and freely flow.

An alternative, weaker interpretation can also he placed on
directed lines. It can be assumed that the mere presence of a
relationship, regardless of its direction, allows some possibility for
communication. From this point of view, components can be
identified from the semi-paths in the graph. Components in a
directed graph that are identified in this way, disregarding the
direction of the lines that make up the paths and taking account
simply of the presence or absence of a connection, are termed weak
components.

The distinction between strong and weak components does not,
of course, exist in undirected graphs. In these situations the
researcher is dealing with what might be called ‘simple com-
ponents’: as no directions are attached to the lines, all paths
constitute acceptable connections. Computer algorithms for identi-
fying simple components in an undirected graph are, in principle,
identical to those for identifying weak components in a directed
graph. It is only when the question of direction has to be explicitly
dealt with that the algorithms differ.

The result of a component analysis is a view of the graph as
composed of one or more components (simple, weak or strong
components) and a number of isolated points. Dense graphs are
likely to show the dominance of a single large component, especially
where the analysis is concerned with simple or weak components. In
order to achieve a more fine-grained analysis, it is generally neces-
sary to attempt to probe the internal structore of components.

Evereit has proposed an extension of the component idea that
aims to achieve such a fine-grained view of the texture of dense
networks. His approach (1982, 1983a, b, 1984) is based on a graph
theoretical concept that he terms the ‘block’. There is a great deal of
confusion over the word ‘block’, as it has been used in a number of
radically different ways in social network analysis. To try to avoid
some of this confusion, I propose to make some terminological
innovations. For reasons that will soon become apparent, I shall
refer to Everett’s concept not as the ‘block’, but as the ‘cyclic
component’.?

The concept of the cyclic component depends on that of the cycle.
A c¢ycle is a path that returns to its own starting point, and, like a
path, a cycle can be of any length. The cycles in a graph can be
described by their length as 3-cycles, 4-cycles and so on. Putting
_this in its most general form, graph.theorists can identify. what
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Figure 6.2 Cyclic components

Everett terms k-cycles, where k is any specified cycle length. A
useful first step in the analysis of cycles is to decide on a maximum.
cycle length for consideration. Any cycle of greater length than this
is ignored. If a maximum cycle length of 4 is chosen, for example,
sociogram (i) in Figure 6.2 contains four cycles of length 4.
{ABCDA, BCDAB, CDABC and DABCD) and six cycles of
length 3 (ABDA, BDAB, DABD, BCDB, CDBC and DBCD). At a
maximum cycle length of 3, only the shorter cycles remain and
points A and C are not connected by any cycle. Everett goes on fo
define a bridge as a line that does not itself lie on a cycle but that
may connect two or more cycles.* Sociogram (ii) in Figure 6.2, for
example, contains, at maximum cycle length 4, the bridge BE.

A cyclic component can be defined as a set of intersecting cycles
connected by those lines or points that they have in common. The
scparate cyclic components of a graph, therefore, do not overlap
with one another, though théy may be connected by one or more
bridges. Sociogram (ii) in Figure 6.2, for example, is not itself a
cyclc component, it does, however, contain the cyclic components
{AB,CD} and {EJF,GH,LJ}. The latter set of points contains
the line FI, which is common to the cycles EFIHE and FGIIE. Tt can
be seen, therefore, that a cyclic component consists of a chain of
intersecting cycles, where the intersections are lines or points
common to the overlapping cycles.® The cyclic components of a
graph are identified by removing from a graph all those lines that are
bridges at the specified cycle length (termed the ‘k-bridges’). The
sets of points that remain are the cyclic components.

Where an analysis of simple, weak or strong components results
simply in the identification of components and isolates, an analysis
of cyclic components generally produces more complex results. This
is because the cyclic components will be connected to various points
that are not themselves members of cyclic components. Everett
{1982} has shown that the connected elements will fall into one of
five categories: - . S - : L
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I Cyclic components.

2 Hangers. These are points that are connected to a member of a
cyclic component, but which do not themselves lie on a cycle.
Hangers simply ‘hang’ on to a cyclic compenent.

3 Bridgers. The points that are ‘intermediaries’ or ‘waverers’
between two or more cyclic components, but which are not
members of any of them. A bridger, then, ‘hangs’ on to two or
more cyclic components.

4 Isolated trees. These are chains of points (including dyads) that
are not conmected to any cyclic component. The members of
these ‘trees’ are linked to one another in a non-cyclic way.¢

5 Iselates. Those points that have no connections at all, i.e., those
which have a degree of 0.

It can sometimes be difficult to give a substantive sociological
interpretation to long paths of connection. This is a particular
problem where long cycles tie large numbers of points together.
There is, for example, a tendency for connected graphs to comprise
a single, large cyclic component. Everett holds that, for most
purposes, it is realistic to limit an analysis to relatively short cycles
of length 3 or 4. At cycle length 3, for example, an analysis would
be concerned simply with cyclic components built out of triads, to
which a number of substantive interpretations can be given. At
cycle length 4, an analysis would be concerned with those cyclic
components that are built from either triads or ‘rectangles’. If a
researcher intends to use cycle lengths greater than 4, it is particu-
larly important that the substantive sociclogical interpretation that is
to be given to the mathematical structures should be both clear and
meaningful.

An analysis of cyclic components can also be undertaken for
directed graphs. The simplest way of doing this would be to
disregard the directions that are attached to the lines. Such an
analysis, based on the semi-paths in the graph, would identify ‘serni-
cycles’. These are cycles in which no account is taken of the
direction of the lines. This does, of course, involve some loss of
information, but the procedure allows the identification of what can
be termed weak cyclic components. In order to analyse stromg
cyclic components, the information on directionality must be
retained. Everett has recommended that this kind of analysis should,
in fact, also include some of the semi-cycles. In a directed cycle the

direction runs consistently through all the constituent lines. In °

Figure 6.3, for example, ABCA is a directed cycle. The path
ABDA, on the other hand, involves a reversal of direction between
_-A and D, and so is merely a semi-cycle. Everett defines a semi-cycle
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Figure 6.3 Cycles and semi-cycles

as being an ‘acceptable semi-cycle’ if points that do not lie on a
directed cycle are, nevertheless, connected by two or more distinct
directed paths. Thus, points A and D are not connected through a
directed cycle, but they are connected through the directed paths
ABD and AD. For this reason, ABDA is an acceptable semi-cycle.
In the identification of strong cyclic components, therefore, a
computer algorithm must search for both the directed cycles and the
acceptable semi-cycles of a graph. Using this procedure, all the
cycles in a directed graph will be identifiable as directed, aceeptable,
or unacceptable, and an analysis of strong components would take
account only of cycles of the first two types. Using these cycles
alone, the strong cyclic components of the graph can be identified,
and it will also be possible to distinguish between ‘hangers-on’ and
‘hangers-off’, according to the direction of the lines that connect
them. The hangers-on are those hangers that direct a line towards a
member of a strong cyclic component, while the hangers-off are
those hangers to whom a member of the component directs a line.”
An alternative way to probe the internal strocture of components
is to see whether there are particular points that have a pivotal
significance in holding components together. Hage and Harary
{1983) have approached this, like Everett, through a concept that
they designate as a ‘block’. In their case, however, this term refers
to those sub-graphs within simple components (or within the weak
components of a directed graph) that have no ‘cut-point’.’ A cut-
peint is one whose removal would increase the number of com-
ponents by dividing the sub-graph into two or more separate
sub-sets between which there are no connections. In the graph
component (i) shown in Figure 6.4, for example, point B is a cut-
point, as its removal would create the two disconnected components
shown in sociogram (ii). None of the other points is a cut-point.
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Thus, cut-points are pivotal points of articulation between the
clements that make up a component. These elements, together with
their cut-points, are what Hage and Harary described as the ‘blocks’.
Once again, I wish to avoid the conceptual confusion which results
from the varying usages given to the word ‘block’ and so, in what
follows, 1 shall use the more descriptive term ‘knot’. The component
in Figure 6.4, then, comprises the two knots {AB,C} and
{B,D.EF}. The various cut-points in a graph, therefore, will be
members of a number of knots, with the cut-points being the points
of overlap between the knots.?

(i {iiy
A A

F - F E F

Figure 6.4  Knots and cut-points

It is relatively easy to give a substantive sociological interpre-
tation to the idea of a cut-point. It can, for example, be seen as
indicating some kind of local centrality for the corresponding agent.
Hage and Harary (1983) have argued that knots (‘blocks’ in their
terminology) can be seen as being, for example, the most effective
systems of communication or exchange in a network (sec also Hage
and Harary, 1991 and 1998 for applications of this view). Because
they contain no cut-points, acts of communication and exchange
among the members of a knot are not dependent upon any one
member. There are always- alternative paths of communication
between all the points in a knot, and so the network that it forms is
both flexible and unstratified.

The Contours of Components

I‘have looked so far at procedures for the identification of various
_kinds of components, and I have reviewed some proposals for
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analysing the elements that make up these components (the knots
and cut-points) and those which lie outside the components (the
hangers, bridgers, trees and isolates). In this and in the following
section T will pursue the question of the internal structure of
components more systematically. In this section I will assess how
the ‘contours’ of components can be charted by identifying their
‘cores’, and in the following section I will look at the ‘cliques’ and
‘circles’ from which components are built.

I showed in Chapter 2 that the work of the Yankee City
researchers involved an attempt to identify the core and peripheral
members of what they called ‘cliques’. This procedure can more
usefully be applicd to the internal structure of components. The
contours of componenis can be-disclosed by a procedure that is
usually termed the ‘nesting’ of compenents, and that was briefly
discussed in Chapter 3.!° Nesting successive analyses of components
involves using progressively stronger cut-off criteria for drawing the
boundaries of components at each step of the analysis. When
combined into a single picture, the result of such a procedure is a
series of concentric bounded sets of points. The basic image in a
nested analysis is that of a contour map or of a set of Russian dolls,
each component being ‘nested’” within a larger component. A
component is visualized as having a core of especially cohesive or
intensely connected points, with the boundaries of the core being
gradually extended to include more and more points as the cut-off
level of cohesion or intensity is weakened. At the weakest level
of connection, all connected  points are included in a single
componernd. '

Figure 6.5 illustrates-a simple case of nesting. The points in set A
are the most tightly connected, and they comprise the core of their
componerit. The boundary of set B is drawn with a weaker criterion

Figure 6.5 Nested components
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of connection and so includes all the points of set A together with
the additional points that are connected at this weaker level. Finally,
set C has its boundary determined by the very weakest criterion of
connectedness and so includes all connected points. Sets D, E and F
in the second component can be interpreted in the same way. Thus,
each of the components in a graph can be de-composed into its core
clements and a contour diagram of the graph can be drawa.

Component detection algorithms treat all connections as binary
data, as indicating simply the presence or absence of a relation, A
valued graph, therefore, must be analysed by converting its actual
values into binary, 1 or 0, values. This is done by comparing entries
in the matrix for the valued graph with a ‘slicing” or ‘dichotomizing’
threshold.'" Entries above or below the specified threshold are
dichotomized info binary values: those above it are given the value
1, and those below it are given the value 0. These binary values can
then be used in the search for components. A valued adjacency
matrix might, for example, contain entries that show the multi-
plicities of the lines, and this matrix could be ‘sliced’ by choosing
progressively stronger levels of intensity. By studying the com-
ponents that are identified at each threshold level, the researcher can
construct a contour diagram of nested components such as that
shown in Figure 6.5. The boundaries of the components are drawn
as concentric loops, and the diagram shows the ‘peaks’ of high
intensity and the ‘plains’ of low intensity. :

Two alternative methods of nesting have been proposed: one
based on the use of the degrees of the points as a measure of
cohesion, and the other based on the wse of the multiplicities of the
lines ‘as a measure of intensity. The degree-based measure results in
the identification of ‘k-cores’, while the multiplicity-based measure
resuits in the identification of ‘m-cores’.!?

Seidman (1983) has proposed that the structure of components
can be studied by using a criterion of minimum degree to identify
areas of high and low cohesion. An analysis of the resulting &-core
structure of a graph, he argues, is an essential complement to the
measurement of density, which 1 have shown fails to grasp many of
the global features of graph structure, A k-core is a maximal sub-
graph in which each point is adjacent to at least k other points: all
the points within the k-core have a degree greater than or equal to
k' Thus, a simple component is a ‘lk-core’. All its points are
connected to one another and so have a degree of at least 1. To
identify a 2k-core, all' peoints with degree 1 are ignored and the
structure of connections among the remaining points is examined.
The 2k-core consists of those remaining connected points that have

_a degree of 2. A 3k-core is identified by deleting all points with a
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Figure 6.6 A 3k-core

degree of 2 or less, and so on. Figure 6.6 illustrates a 3%-core. In this
sub-graph, all points have a degree of at least 3. Although there are
two points with degree 4 (points B and J), there would be no 4%-core
in this graph, as a k-core must have at least £+ 1 members.

A k-core, then, is an area of relatively high cohesion within the
whole graph. But it is not necessarily a maximally cohesive sub-
graph — there may be areas of very high cohesion that are connected
to one another rather loosely. In Figure 6.6, for example, the
cohesive areas [{E,F,G,H;J.K,L.} and {A,B,C,D,E.I} arc connected
through the weaker links CE and IJ. K-cores, then, constituie areas

? of the component within which cohesive sub-groups, if they exist,

will be found.' . _ :

Seidman also shows how the overall fragmentation of a network
can be assessed by looking at what he calls the core collapse
sequence. The points in a k-core can be divided into two sets: those
that are in a k+1 core and those that are not. The latter group
Seidman terms the k-remainder. The remainder in any core com-
prises those points that will ‘disappear’ from the analysis when £ is
increased by 1. It is the disappearance of these less well-connected
points that causes the core to ‘collapse’ as k is increased. Seidman
proposes that the proportion of points that disappear from a core at
each increase in k can be arranged in a vector (a simple row of ¢
figures) that describes the structure of local density within - the
component.'® . : - " Lt s
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A
[
5 Value of k' Remainder Remainder as proportion
o] 0 ;
1 2 0.3
2 0 0
3 4 0.6
E D
4 No points left

[
F
Figure 6.7 Collapse of a k-core

This can be illustrated through the sociogram in Figure 6.7. All
six points are connected, and so the increase in & from 0 to 1
involves no loss of points. At k=1 all points are contained in a
core, but there is a remainder of 2 (points A and F) that will
disappear when k is increased to 2. At k = 2, points B, C, D and E
remain, each with a degree greater than or equal to 2. As these
points are, in fact, mutually connected at degree 3, there is no
remainder at k=2 When k is increased to 3, however, the
remainder is 4, as all points will disappear when k is increased (o

four. Arranging the sequence of remainders from &k = 0 in a vector

gives the following core collapse sequence: (0, 0.3, 0, 0.6).

The core collapse sequence gives a summary of the ‘clumpiness’
of the component. A slow and gradual collapse in the core, argues
Seidman, indicates an overall uniformity in the texture of the
network. An irregular sequence of values, as shown in Figure 6.6,
shows that' there are relatively dense areas surrounded by more
peripheral points. The persistence of zero values in the vector up to
high levels of k- indicates a uniformity of structure within the
component; the -appearance and persistence of zero values after low
levels of k indicates the existence of clumps of high density.

By contrast with-k—cores, which are based around the degrees of
the points, ‘m-cores’ are based around the multiplicities of the lines.
The notion of an‘m-core descrlbes the original nested components
discussed by the GrRaDAP group.'® An m-core can be defined as a
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maximal sub-graph in which each line has a multiplicity greater than >

or equal to m. An m-core is a chain of points connected by lines of
the specified multiplicity. As in the case of a k-core, a simple
component is a Im-core, as all of its points are connected with a
multiplicity of at least I. In a 2m-core, lines of multiplicity 1 are
ignored, and components are identified on the remaining lines. In a
3m-core, lines of multiplicity 1 and 2 are ignored, and so on. Figare
6.8 shows a simple 3m-core. All the points are connected through
paths of multiplicity greater than or equal to 3, the weaker connec-
tions of the points to those outside the core being disregarded. As
points B and C are connected by a line of multiplicity 4, they form
a two-member 4m-core. It is the nesting of cores within one another
that discloses the overall shape of the network.!”

D F

Figure 6.8 A 3m-core

Seidman’s idea of the core collapse sequence can be extended to
m-cores: indeed, the idea is far simpler to apply to them. This can

be illustrated with the sociogram in Figure 6.9. Lines are progress- -

ively removed as the value of m is increased, and the remainder at
each level of m is the number of points that will disappear when m
is increased to m+1. Two points disappear when m is increased
from 1 to 2, but no further points disappear until m reaches 4. If m
is increased to 3, all points will disappear, as the highest multiplicity
in the graph is 4. Thus, the m-core coliapse sequence for this
component is: (0, 0.28, 0, 0.28, 0.43).

To complete this section it is necessary to consider the analysis of
nesting in relation to cyclic components. Cyclic components can, of
course, be identified in valzed graphs by using am appropriate
‘slicing’ value. By varying the slicing criterion it is possible to arrive
at an analySIS of nested components — in this case, of nested cychc
components.'®

Taken together, the various extensions of the basic idea of the
simple component provide a powerful set of concepts for analysing

the level of fragmentation in a network. They supplement: the.
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Value of m m-cores Remainder  Remainders as proportion
0 {A,B,C,D,EF,G} 0 0
1 {A.B,C,D,E, F. G} 2 0.28
2 {A B CDE)} 0 0
3 {A,B,CDE} 2 0.28
4 {A, B, C) 3 0.43
5 No points left

Figure 6.9 Collapse of an m-core

measurement of density and help to overcome many of its limita-
tions by highlighting the overall shape of the network. A full outline
comparison of the global structures of networks of comparable size
would involve measures of the overall density of the networks and
their inclusiveness, the number and sizes of their components and
their densities, and the nested structures of the cornponents and their
core collapse sequences.

Cliques and their Intersections

The concepts discussed so far in this chapter have gone some way
towards formalizing the ideas of those early writers on social
networks who talked about the ‘cliques’ discovered in the Haw-
thorne works.and:in Yankee City. But I have not yet considered the
sociometric- concept of the clique itself, which has arisen in discus-
sions of the sociological applications of graph theory. There are a
number of competing - usages of the word ‘clique’, but the most
widely held view is that its-essential meaning is that of the ‘maximal
complete sub-graph” (Harary, 1969; Luce and Perry, 1949). That is
to say, a clique-is a-sub-set of points in which every possible pair of
points is directly connected by a line and the clique is not contained
.in any other clique.!?’As Figure 6.10 shows, a three member clique
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Figure 6.10 Cligues of varying sizes

contains three lines, a four member clique contains six lines, a five
member clique has ten lines, and so on.?° While a ‘component’ is

maximal and connected (all points are connected to one another -

through paths), a ‘clique’ is maximal and complete (all points are
adjacent to one another).

Doreian (1979: 51-2) has spelled out some of the formal proper-
ties of cliques. The basic consideration is that all cliques are
maximal sub-sets of points in which each point is in a direct and
reciprocal relation with all others. In an undirected graph all lines
are, by definition, reciprocal relations, and so a clique detection
procedure will consider all the lines in the graph. In directed graphs,
however, this is not the case: its matrix is asymmetrical, and only
the reciprocated lines should be considered. In directed graphs,
therefore, network analysis identifies what might be called strong
cliques. On the other hand, if the direction of the lines is dis-
regarded and simply the presence or absence of a relation is
considered, the analysis treats all Tines as if they were reciprocated
and results in the identification of weak cliques.?!

This concept of the maximal complete sub-graph is rather restric-
tive for real social networks, as such tightly knit groups are very
uncommon. For this reason, a number of extensions to the basic idea
have been proposed.” The earliest of these extensions was the
concept of the n-clique, which, it was claimed, is much closer to
people’s everyday understanding of the word ‘clique’. In this
concept, n is the maximum path length at which members of the
clique will be regarded as comnected. Thus, a l-clique is the
maximal complete sub-graph itself, the set in which all pairs of
points are directly connected at distance 1. A 2-clique, on the other
hand, is one in which the members are connected either directly (at
distance 1) or. indirectly through a common neighbour. (distance 2):
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1-clique 2-clique 3-clique

Figure 6.11 n-cligues of size 4

The value of n which is to be used in an analysis is chosen by the
researcher, and a progressive increase in the value of »n results in a
gradual relaxation of the criterion for clique membership (see Figure
6.11). A 3-clique, for example, is a looser grouping than a 2-clique.
The maximum value that can be given to n is one less than the total

number of points in the graph. In practice, however, most large”

connected graphs are joined into a single n-clique at much shorter
path lengths than this.

N-cligues can be identified through the relatively simple matrix
multiplication methods that are available in many spreadsheet pro-
grams or in specialist network analysis programs. Multiplying the
adjacency matrix by itself, for example, produces a matrix of path
distances. The square of the matrix shows all distance 2 connections,
the cube of the matrix shows distance 3 connections, and so on.
Matrix multiplication is, however, a rather inefficient method of
clique detection, and most specialist network analysis programs use
& variant of the back-tracking procedure used for component detec-
tion. Because of the ease with which this can be done, cligne
detection for undirected graphs is a feature that is built into most
social network analysis programs.?* It is possible to analyse -
cliques in a valued graph by applying a slicing criterion of the same
kind as was discussed in the previous section. Such an analysis
would generate a set of nested cliques for each level of n: nested

2-cliques, nested 3-cliques and so on.

There are two important limitations on the use of the n-clique
idea. The first and most important is that values of n greater than 2

can be difficult to-interpret sociologically. Distance 2 relations can

be straightforwardly interpreted as those which involve a common
neighbour who, for- example, may act as an intermediary or a
broker. Path lengths greater than 2; however, involve rather more
distant and weak links, While long, weak chains of connection may
be very important for:the overall structure of the network, as
. Granovetter and the: ‘small world’ analysts have argued, it is not at
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all clear that they are appropriate for the definition of cligues. The
very idea of a cligue seems to demand relatively close linkages. It is, »
therefore, difficult to justify the identification of n-cliques with
values of n other than 1 or 2.

M A {ii) A (iif) A
B C B c B c
D E
D E C E
F

Figure 6.12 ° Sub-graphs and 2-cligues

The second limitation on the use of the n-clique concept is the
fact that intermediary points on the paths of the sr-clique may not
themselves be members of the clique. For example, points: A, B, C,
D and E in graph (i) of Figure 6.12 form a 2-clique; but the distance
2 path that connects D and E runs through the non-member F. The
‘diameter’ of the clique — the path distance between its most distant
members — may, then, be greater than the value of n that is used to
define the clique. Thus, the set {A.B,C.D,E} comprises a 2-clique,
but it has a diameter of 3. Both Alba (1973, 1982) and Mokken
{1974) have taken up this problem and proposed some further
extensions to the idea of the a-cligue. Mokken has proposed that a
more useful concept is one that would limit the diameter of the n-
cliqgue to r. That is to say, the researcher accepts, for example,
distance 2 paths for the identification of clique members, but also
requires that the diameter of the clique be no greater than 2, This
concept he terms the n- clan Graphs (11) and (iii) in Figure 6.12 are,
unlike graph (i), 2-clans.*

A different extension of the basic clique idea is that of the k~plex,
proposed by Seidman and Foster (1978). Whereas the concept of
the r-clique involves increasing the permissible path lengths . that
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® (if)
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E F

Figure 6.13 A 3-cligue and a 3-plex

%

E F

define the clique, the concept of the &-plex involves reducing the
“ number of other points to which each point must be connected,
Thus, the points in a k-plex are connected at distance 1, but not all
points will be connected to one another. A k-plex is a set of points
in which each point is adjacent to all except k of the other points.”
Thus, if k=1, a 1-plex is equivalent to a 1-clique, and so it is a
maximal complete sub-graph. Each member of the 1-plex is con-
nected to #—1 other points, When £ is equal to 2, all members in the
2-plex are connected to at least n—2 of the other members, but the
2-plex may not be a 2-clique. In Figure 6.13, graph (i) is a 3-clique,
as all pairs of points are connected at distance 3 or less. It is not,
however, a 3-plex, as A, C, E and F are each connected to fewer
than three other members. Graph (ii) is both a 3-clique and a
3-plex.%. '

An important consideration in the analysis of kplexes.is that of
the minimum size which the researcher will regard as acceptable for
a plex. In particular, higher values of k¥ ought to lead to a higher cut-
off threshold for the size of acceptable k-plexes. When £ takes a low
value, k-plexes.can be relatively small, but higher levels of k will
~ produce trivial results unless the minimum size of the acceptable k-
plexes is increased. The reason for this is that small sub-graphs at
high levels of k will be only minimally cohesive. As a rule of thumb,
the minimurm size for: an. acceptable k-plex should be k42, Never-
theless, the concept of the k-plex, considered as a generalization of
the basic clique-idea, seems to grasp more of the idea of cohesion
than does the n-clique, especially when values of n higher than 2 are
~ used.”” As in the case.of n-cliques and components, the basic idea of
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4 k-plex can be extended to valued graphs by using a slicing
criterion to analyse ‘nested k-plexes’.

In any but the smallest graphs, there will be a considerable
amount of overlap among the varions rn-cliques and k-plexes of
which the graph is composed. Cligue-analyses {(of both r-cliques
and k-plexes) will tend to produce long lists of overlapping cliques,
and these results may be difficult to interpret. A relatively dense
network will tend to comprise a large number of overlapping
cliques, with many points being members of numerous different
cliques. A graph with 20 points and a high density, for example,
could contain approaching 2000 overlapping cliques. In these cir-
cumstances, the density of the overlap among cliques may be more
significant than the composition of the cliques themselves. Alba
(1982) has, therefore, proposed that social network analysts should
use concepts that explicitly recognize this fact of overlap. Drawing
on work undertaken with Kadushin and Moore (Alba and Kadushin,

1976; Alba and Moore, 1978; Kadushin, 1966, 1968), he argued that -

the concept of the ‘social circle’ can be used to grasp significant
structural features of social networks.

This idea was devised by Kadushin from the initial insights of
Simmel (1908}, who first outlined the importance of the ‘intersection
of social circles’. The cohesion of a social circle is not founded on
the direct ‘face-to-face” contacts of its members, but on the existence
of short chains of indirect conmections that weld them together,
Circles ‘emerge’ from interaction and may not be visible to their
participants, as their boundaries are only loosely defined by the
ramification of these indirect connections.

Alba’s contribution was to formalize the idea of the circle in
sociometric terms by relating it to other graph theoretical concepts.
His basic argument is that overlapping cliques can be aggregated
into circles if they have more than a ceriain proportion of their
members in common. Alba suggests that the most appropriate
procedure is to use a kind of ‘snowballing’” method in which cliques
are aggregated into progressively larger, and looser, circles. The
first step in an analysis of circles is to identify I-cliques of size 3
{triads) and then to merge into a circle all of those cliques that
differ by only one member. Put in a slightly different way, the
criterion for identifying circles in the first step is that cliques are
merged into a circle if two-thirds of their members are identical.
The result of this first step, then, mighi be one or more circles,
together with a number of separate cliques and isolated points. At
the second step the remaining cliques might be merged with those
circles with which there is a lower level of overlap. Alba suggests

-
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1-cliques: {A,B.C} {B,C,D} {B,D,E} {B,F.G} {B,G,E}
1st step circles:  {A,B,C,D,E} {B,F,G,E}
2nd step circles: {A.B,C,D,E,F,G}

Figure 6.14 Intersecting social circles

that a one-third overlap in membership might be appropriate in this
second step. The result of this aggregation will be a large circle or
a set of smaller circles surrounded by a periphery of less well-
connected cligues and points. Figure 6.14 shows a simplified
analysis of social circles. Two circles are identified at siep 1, but
they are merged into a single circle at step 2. As in so many graph
theoretical procedures, it is important to note that the level of
overlap that is chosen for aggregation is arbitrary. The levels
suggested by Alba were chosen on common-sense mathematical
grounds, and it will be necessary for researchers to decide whether
his suggestions make sense in specific applications.

- The measurement of circles, therefore, takes the extent of the
overlap between cliques as a measure of the distance between them.
The particular way in- which the cliques have been identified (as n-
cliques or k-plexes, for example) hardly matters in this procedure, as
the subtle differences in'the procedures rapidly disappear during the
process of aggregation In practice, the end result of an aggregation
into circles is barely affected by the initial cligue detectior method
. that is used.*® y : : S
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Components and Citation Circles

The sociology of science is one of the principle research areas in
which a number of studies have invoked the idea of the social
network. Crane’s study (1972) of the ‘invisible college’ was one of
the earliest pieces of research to use the idea of networks of
communication among scientists as a way of explaining the growth
of scientific knowledge. Crane’s study involved the use of question-
naires to obtain information on patterns of communication and
influence among rural sociologists, and she analysed such pheno-
mena as co-publication and advice on areas of research specializa-
tion. Her concern was to outline the size and significance of the
invisible college of collaborators in the research specialism, but few
sociometric concepts were used to uncover its internal structure.
Mullins {1973) adopted a different strategy. He looked at work in
theoretical sociology and tried to discover the sub-groups of
specialists that existed. Using material on education and career
appointments as well as co-publication, he constructed sociograms
for structural functionalist theory, small group theory, causal theory
and a number of other areas,” Unfortunately, the boundaries of the
research specialisms were not themselves derived from sociometric
analyses, and so Mullins’s work gives little idea of the overall
structure of components and cliques in theoretical sociology.
Gattrell’s work, however, is one of the few studies in this area to
have adopted a rigorous sociometric approach to the discovery of
network structure. Gattrell (1984a, b) has used the techniques of Q-
analysis (see n. 17 above) to disclose the structure of components in
research groups. It is unnecessary to discuss the details of this
complex procedure, as Gattrell used it simply in order to construct a
nested model of components, and his ideas can readily be translated
into the terminology of this chapter®® Gattrell identified a set of
geographical papers published between 1960 and 1978, which he
regarded as the key clements in the literature on spatial modelling.
Taking these papers as his population for study, he constructed a
network of citation relations from their bibliographies and foot-
notes, Where the author of paper A cites the author of paper B, for
example, a citation relation is directed from A to B. These citations
can, therefore, be compiled into a binary matrix of directed lines. As
the rows and columns of the matrix were ordered chronclogically,
by the date of publication, it was easy to assess any obvious shifts in
citation patterns, If, for example, authors cited only relatively recent
papers, the ‘1’ entries in the matrix would lie close to the diagonal.
The more scattered are the ‘1’ entries, the more widespread in time
are citations. Any clustering around the diagonal would show
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support for Price’s hypothesis (1965) of the ‘immediacy effect’ in
citation, but Gattrell found little support for this idea.

The main aim of Gattrell’s paper was to examine the component
structure of the citation data, and from his initial matrix he com-
piled two analyses. First, he analysed the structure of the network
of papers cited (the rows), and, second, he analysed the structure of
the citing papers (the columns). Two cited papers are regarded as
being connected to one another if they are each cited in the same
source, and a component comprises a set of papers that are con-
nected through a continuous chain of such connections.* Where
two cited papers have more than one of their citers in common,
they are connected at a higher level of multiplicity, and it is possible
to investigate the nesting of components at various levels of
multiplicity.

Gattrell found that, at the lowest level, 49 of the papers were
formed into a single large component. But at a multiplicity level of
6, this had shrunk to seven members. The seven papers in this
component formed the core of the network. At the heart of this

group were two highly cited papers by Hudson (1969) and Pedersen.

(1970). Hudson received 17 citations and Pedersen received 15
citations, but only eight of their citations were common to one
another. Thus, Hudson and Pedersen formed a component of size 2
at multiplicity 8 (calculated from Gattrell, 1984b: 447). Gattrell
concludes that:

The general picture . . . is of a small group of highly cited papers, to
which other literature is connected at lower . . . {multiplicity] levels.
A small component of papers concermned with hierarchical diffusion
emerges, and other papers are added to this nucleus as a result of their
being cited by some of the sources that cite the seminal papers. (Gattrell,
1984b: 448)

The analysis of components and their cores, then, allows the
investigation of the structure of influence in scientific research, such
investigations pointing to the important role played by scientific
cliques and circles in the promotion of particular ideas and
approaches. The analysis of nested components in citation patterns
highlights the ‘star’ cited papers and the extent to which there is any
consensus over their star rating. '

7

Positions, Roles and Clusters

The network concepts that have been discussed so far in this book
have mainly been concerned with the particular patterns of direct
and indirect contacts that agents are able to maintain with one
another. They have been concerned with such things as the abilities
of agents to join with one another in cohesive social groupings, their
abilities to influence the actions of those particular others to whom
they are connected, and so on. However, I have, at a number of
points, alluded to the analysis of ‘positions’ rather than individual
agents and their connections. Warner and Lunt (194Z), Tor example,
“attempted to mvesiigate (he formation of distinet social positions,
and Nadel (1957) argued that social roles were the central ¢lements
in social fietwork analysis. The Key concept in recent diSCUSSIOnNS of
this problem is the idea of ‘structural equivalence’. This involves a

concern for the general fypes of social Telations that are maintained

by particular categories of agents. While two people may have direct
connections to totally different individuals, the type of relations that
they have with these others may, nevertheless, be similar. Two y,
fathers, for example, will have different sets of children to whom :
they relate, but they might be expected to behave, in certain respects,
in similar “fatherly” ways towards them. The two men, that is to say,
are ‘structurally equivalent’ to_one apother. They occupy th_,_e\'s‘ame

social position — that of ‘father’ — and so are interchangeable™so

far as the Sociologicat-afialysis of fathers is concerned. The idea:
behind structural equivalence, therefore, is that of identifying those

uniformities of action that define social positions. Once the positions ~

have been identified, the networks of relations that exist between the
positions can be explored.
Social positions are occupied by agents who are ‘substitutable’

one for another, with respect to their relational ties (Burt, 1982;
Sailer, TThey are, in certain important respects, interchange-

able. Although social positions are manifest only in the particular ™~

relations that link specific agents, they cannot be reduced to these
concrete connections. They involve more enduring relations that
are reproduced over time. These endififig Telations among-social

‘positions-constitute a distinct area of structural analysis. -




124  Social network analysis

The Structural Equivalence of Points

It might appear, at first glance, that the analysis of structural
equivalence is simply the analysis of social roles, but this is not the
case. The example of the two fathers shows that the clearest cases of
structural equivalence are, indeed, those that arise when people

occupy nstitutionalized roles. The occupants of a clearly specified

cultural role comprise a structurally equivalent. category.of agents:

higy do- G similar things i yelation to similar others. But this is, of
course, true only -for fully institutionalized-roles. If?eople do not
act in conformity with standardized cultural expectatlons but
deviate or otfierwise vary in ‘the ways in which they perceive and
enact their roles, very few uniformities of action may be found. In

such circumstances, there will be no position of strucl;urally e_qmva-

neither. culturallyn:ec\cg_rnﬂed nog @enhﬁed._;n_sg_q@}_ly deﬁned roles.
Agents may occupy a distinct position in relation to other agents,
acting in similar ways towards them, even_though this fact is.not

recogmzed by the various partu:lpants Tndeed, this may be one of

the ways in which- TEW- roles éfnerge:-new forms of action arise and
relatlons between mofe or less clearly deﬁned categones of agents

T e T PR

1dent1f_y1ng emerge’nﬁoles
Tt is important, “therefore, to see the concept-of structural equiva-
lence as applying to social positions per se, and not simply o roles

“or proto-roles. A, social class,. for example, could be identified in

precisely these terms as a group of agents occupying an equivalent
position with respect to the distribution of economic resources and,
therefore, as having equivalent structurally determined interests and
life chances in relation to the members of other classes.

The starting point for all formal discussions of structural equiva-
lence has been the influential paper of Lorrain and White (1971).
They built their approach atound the concept of role, seeing the
occupants of each role as being structurally equivalent to ong
another. Structurally-equivalent-agents, they _argued.. play-the same\
part in the network or-have-similar-linkages to the OCC-_’_pant'S’O'f_Other

‘p051t19ns‘and 50 are_interchangeable one _ggmarmﬁr They will -

Have similar experiences or __QEJW 1es (Burt, 1987; Friedkin,
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1984; Mizruchi, 1993). Lorrain and White’s paper described some of
the limitations of graph theory as a “cotnplele. “model. for network
structure “and-outlined an—alteriidfive strategy based on d on_algebraic
ideas:~They—argued that ther approach had two major demmg
features that set it apart from other approaches 6 social network
‘analysis. Flrst all points and their connections were handled simul-

rernain w1th the ad]acency matrlx but undertook a combined analy-

sis of both _the rows and meoﬁih&eﬁglnakm01dence -

”LV—I_*‘_.

matrix. People and the drganizations of which they were members,
for example, could be analysed together rather than separately.

According to Lorrain and White, the overall pattern of connec-
tions in a network must be converted into a system of structurally
equivalent positions by aggregating the individual points into larger
sets of points. The underlying structure of the system is more
apparent in the relations that exist between the sets than it is in the
more numerous and more concrete relations that exist between the
individual agents who make up these sets. Figure 7.1 shows Lorrain
and White’s view of the ‘reduction’ of a complex network to its
‘block model’ or ‘tmage matrix’. The points of the original inci-
dence matrix are re-arranged through a method of cluster analysis to
form the structurally equivalent sets of the image matrix. In Figure
7.1, for example, the set M1 comprises those of the row points
which are regarded as being structurally equivalent to one another,
yet structurally divergent from those structurally equivalent points
that make up set M2. The most fundamental features of a network,

Points t
1 2 3 4 ...... N Sets M N2

1

2 M1

3

4 ————

‘Reduction’

5 or’ M2

. mapping
M

Rectangular

. Image malrix
M > N matrix

Figure 7.1 A network and its block model

.
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argued Lorrain and White, are apparent in the relations among the
sets, and the nature of these relations is shown by the values in the
cells — the blocks — of the image matrix. The aim of much of
‘White’s subsequent work was to- suggest how such block -models
might be produced.'

The concept of structural equivalence holds, in its strongest
sense, that the members of a set are identical with one another as
regards their relations to other members of the network. It is,
however, very unusual to find agents that are perfectly equivalent in
this strong sense. Most analysts of structural equivalence have,
therefore, argued that the criterion needs to be weakened if it is to be
of use in the study of real social networks. Instead of searching for
those agents that are identical in their social relations, the aim is to
identify those who are sufficiently similar to be regarded as structur-
ally equivalent. Whatever the chosen Theasure of similarity, the
researcher must decide on a cut-o eshold above which agents
are to be regarded as being sufficiently similar to be, in effect,
‘substitutable’ for one another. This ‘fuzzy’ measure of structural
equivalence is likely to be of greater use in real situations, though
the cut-off level for identifying equivalence is, of course, a decision
made by the researcher, and must be rigorously assessed for its
substantive validity.

The major areas of disagreement among writers on structural
be used, the method of clustering by which points are to be grouped
into sets, and the methods to be used for identifying the boundaries
of the sets. In the next section, I will briefly review the main
methods of cluster analysis which are available and, in the following
section, I will outline in greater detail two particular approaches to
structural equivalence. I will then return once more to the choice of
clustering method and measure of ‘similarity’ through considering
some alternative approaches.

Clusters: Agglomerative and Divisive

The words ‘cluster’ and- ‘clique” are-often used interchangeably, as
in the early discussions of sociometric ‘cliques’ in Old City and in
Yankee City. Even some recent methodological commentators have
not distinguished between the two ideas (see Lankford, 1974). 1
showed in the previous chapter, however, that the concept of the
clique can be given a strict sociometric definition from which a
whole family of related concepts can be derived. The concept of the
cluster needs also to be clearly defined as a separate and very
. distinct idea. The.intuitive idea of a. cluster corresponds to the idea
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of an area of relatively high density in a graph. This idea of the
cluster is applicable to relational and attribute data alike, and can be .
tHlustrated through scatter diagrams such as those in Figure 7.2. In a
scatter diagram, the individual cases arc plotted against the two
variables which comprise the axes of the diagram. The scatter of the
cases across the page gives an indication of how similar or different
they are from one another in terms of these variables.

In each of the diagrams of Figure 7.2 there are two distinct
¢lusters. In diagram (i), the clusters consist of points that are more
‘similar’ to one another than they are to other points. They form
arcas of high density in the overall scatter plot. While these clusters
are apparent by simple visual inspection, computerized procedures
are required for larger data sets. However, the researcher must then
choose a particular method of cluster analysis. Most available
methods would recognize the clusters in diagram (i), but not all
would recognize such clusters as those of diagram (ii). The points in
this diagram spread across elongated areas of the distribution, and
points at opposite ‘ends’ of each cluster are quite ‘distant’ from one
another. Clusters are defined in terms of their contiguity in the
diagram and their separation from other clusters, but not all clusters
will consist of points that are equally ‘close’ to one another in the
scatter plot. Most techniques of cluster analysis assume compact
‘spherical’ clusters and would have great difficulty in finding the
kinds of clusters depicted in diagram (ii).

Clearly, the boundaries of clusters cannot be drawn sharply.
Diagram (iii) in Figure 7.2, for example, shows what might appear
to be two large clusters, each of which contains a smaller cluster.
But an alternative view is to see only the smaller clumps of points
as being clusters. The composition of the clusters identified in a
cluster analysis will depend on the density level that is chosen by the -
researcher, and on the assumptions made by the particular clustering
method. '

This arbitrariness in determining the boundaries of clusters
indicates that clustering methods may be seen as using a variant of
the nesting procedure. There is a hierarchical structure to clusters,
which can be represented in ‘dendrograms’, or tree diagrams that
show the clusters that exist at each level of similarity. This idea is
illustrated in Figure 7.3. This diagram shows that points C and D are
linked into a cluster at the first step in the analysis, points G and H
are linked at the second step, points E and F at the third step, and
points A and B at the fourth step. If the analysis stopped at this
point, four clusters would have been identified. If the analysis is
moved to a fifth step, however, points E, F, G and H are alk

identified as being members of a single cluster: Similarly points Ay




128  Social network analysis

(6]
®
A
... o.o.
ee o bt
o0
e
{ii)
....
® 'Y
* % o®
e ®
L ®e
% o
°
o9
(i)
oo._
LI ] ¢ [ L]
o [ o o o
e« % ° * .
™ .‘_

Figure 7.2 Clusters -

B, C.and D are clustered together at step six. Finally, at step seven,
all points are:-aggregated into the same cluster. The number and
composition of clusters found in any mvesugatmn will depend on
_the step at which the analysis is stopped.
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Although these ideas have been illustrated through the more
familiar type of attribute data, they are equally applicable to
relational data. Here, for example, points might be clustered accord-
ing to their path distance or density within a sociometric graph. The
members of a cluster might be those that are similar to one another
in terms of some graph theoretical criterion of closeness or distance
from other poins.

There are two principal families of cluster analysis methods: ‘the
agglomerative” and the “divisive’ (Bailey, 1976; Everitt, 1974). Each
is hierarchical, in the serise that it ‘nests’ small clusters within larger
clusters, but the principles that are used in constructing a hierarchy
of clusters vary between the two cases. The discussion above was
couched in terms of an agglomerative model in which individual
points are gradually aggregated into larger and larger sets. Points are
compared for their ‘similarity’ or ‘distance’ from one another, and
are grouped together with those to which they are closest or most
similar. Agglomerative methods can be of the “single linkage’ or the
‘complete linkage’ type (Johnsom, 1967). In a single linkage

method, points are fused into a cluster with their nearest neighbours.

In a study of interlocking directorships, for example, enterprises
might be merged into clusters on the basis of the number of directors
that they have in common. Initially, the two closest points are fused

into a cluster and later steps fuse successively more distant points
and clusters. Two clusters would be fused, for example, if their most -
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similar members were closer to one another than were any other
pair of points in the set. A complete linkage method follows the
same general approach, but measures the similarity between two
clusters not by their closest but by their remotest members.? While
the single linkage method tends to ‘chain’ points together into
existing clusters, the complete linkage method is more likely to
initiate new clusters at early stages in the analysis. The single
linkage method, therefore, is less likely to identify the compact and
homogeneous clusters of the kind found through complete linkage.
In emphasizing the connections between clusters, the single linkage
method can mask the existence of important divisions in the network
(Alba, 1982: 55-6).

With both methods of agglomerative cluster analysis, it is for the
analyst to decide on the level of similarity at which clusters are to be
identified. In a connected graph, all points will, eventually, fuse into
a single cluster, so the number and size of clusters identified will
depend upon the cut-off threshold that is chosen. It follows that the
choice of a cut-off threshold, as in so many arcas of social network
analysis, is a matter for the informed judgement of the researcher,
though some measures of goodness of fit have been suggested as
aids in this task.

In a divisive, or partitioning approach, the opposite strategy is
followed. Starting from the graph as a whole, regarded as a single
cluster, sub-sets are split off at reducing levels of similarity. There
are two approaches to divisive clustering, the ‘single attribute’ and
the ‘all attribute’ methods. Single attribute methods begin by
differentiating those points that possess a particular indicator or
value from those that do not, and the initial chuster is spht into two

on the basis of the possession or non-possession of this. indicator.

The same procedure is followed within each cluster at subsequent
steps, in order to sub-divide each of them further.® The single
attribute procedure, therefore, consists of a series of binary splits
aimed at producing mutually exclusive sets of points. In an all

-attribute method, on the other hand, the first and subsequent splits

are based on the average similarity of a set of points to all other
points in the graph.

The methods of cluster analysis may seem a little vague in the
abstract, but I hope that their general principles are clear. It should
be apparent that the clusters that are identified in a particular graph
will depend upon the choice of the method and the choice of the
measure of similarity on which it works. The implications of this can
be pursued by considering a partwular approach that builds on the

. work of Lorrain and ‘White (1971).
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Block Models: concor and BURT

The first workable algorithm for investigating structural equivalence
along the lines that had been suggested by Lorrain and White was
formulated by Breiger and Schwartz, two of White’s students, who
independently rediscovered the matrix clustering method proposed
by McQuitty (1968).* Their algorithm, called concor (standing for
‘convergence of iterated correlations’), involves a rather complex
and cumbersome procedure, although its general principles are
fairty straightforward. The cowcor algorithm operates on socio-
metric incidence matrices of cases and affiliations, and can be
applied to the rows, to the columns, or simultaneously to both the

-rows and the columns of the matrix. Its general logic can, however,

best be understood by following through the steps involved in an
analysis of the rows alone. Such an analysis investigates the
structural equivalences among the cases.

The first step in the analysis is to calculate the correlations
between all pairs of cases in the matrix, measuring this by the
similarity of the values that are contained in the row entries. For
cach pair of cases it is possible to measure their ‘similarity’ by the
value of the Pearson correlation coefficient: two cases with exactly
the same pattern of affiliations would show a correlation of +1,
while a pair with completely different patterns of affiliation would
have a correlation of - i. The result of this first step is a square
case-by-case correlation matrix, a particular form of the adjacency
matrix. The second step involves the use of a clustering procedure to

-group the cases into structurally equivalent sets, according to their

measured similarity. If rows were either perfectly correlated or
completely un-correlated, such a grouping would be €asy. All values
in the correlation matrix would be either +1 or —1, and a strong
criterion of structural equivalence could be used to divide the matrix
into two sets. The matrix would fall into two sets that were
completely connected internally but had no connections with one
another. Such a clustering would be possible for the data shown in
Figure 2.6. As this kind of patterning is not normally the case with
real data, a clustering method that works on a wider range of
correlation values must be used as the basis for identifying ‘fuzzy’
sets of equivalent points.

concor achieves a fuzzy clustering by converting the raw corrcla-
tions mto a tighter pattern. It does this by calculating, for each pair
of cases, the correlation between their scores in the correlation
matrix that has been constructed. That is, the correlations among the ..
correlations scores are calculated and they are entered into a new
correlation matrix. This process is repeated over and-over again. for
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each successive matrix — correlating the correlations of the correla-
tions, and so on. Repeated correlations of this kind have been found
to produce, eventually, a matrix in which all the cells will contain
values of either +1 or —1. The iterated (repeated) correlations
converge to a simple pattern and the rows can be partitioned into
two clusters in much the same way as if a strong criterion of
structural equivalence were being used. Each cluster constitutes a set
of structurally equivalent cases,

Each of the two clusters can be divided into its constituent
elements by using precisely the same method. To achieve this, the
algorithm returns to the original matrix of raw values and divides
this into two separate matrices, one for each of the clusters that
have been identified, As in the first round of iterations, the raw
group memberships within one of the clusters are converted into
correlations, the correlations are correlated, and so on, until a
pattern of +1 and —1 entries emerges within the cluster. At this
point the cluster can be partitioned once more and the whole process
repeated. Division and sub-division of clusters in this way can
proceed for as long as the researcher wishes, though the larger the
number of clusters, the more difficult it may be to interpret the final
results.”

While the researcher must make an arbitrary decision about when
to stop the process of division and sub-division within clusters, the
emergence of a pattern of +1 and -1 values at each step does mean
that there is a relatively unambiguous approximation to a strong
criterion for identifying structural equivalence. The partitioning of
the cases depends simply on the actual values that are produced in
the final matrix.® Unfortunately, the reason why such a pattemn
should emerge is far from clear. This means that there is an
unspecified, and partly obscure clustering principle at work in the
concor algorithm. Tt is the algorithm #tself that, for reasons that
are not entirely clear, produces the conversion of the raw data into
structural equivalence categories. The clusters identified by concor,
therefore, are just as ‘fuzzy’ as those that might be produced through
a procedure that does not result in such an elegant pattern,

This process of partitioning into clusters can be repeated for the
columns of the original incidence matrix, so as to produce a separate
grouping of the affiliations. If the cases were individuals and the
affiliations were the organizations of which they were members, a
partitioning of the organizations would cluster them according io
similarities in their patterns of recruitment. For both the rows and
the columns of the original incidence matrix, then, concor can
produce a hierarchical = partitioning into structurally equivalent
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clusters — ‘discrete mutually exclusive and exhaustive categories’
(Knoke and Kuklinski, 1982: 73).

The clusters identified in these ways can be constructed into re-
arranged image matrices of the type illustrated in Figure 7.1. It is
possible to produce a square image matrix for the adjacency matrix
of the cases or for the adjacency matrix of the affiliations. Each of
the cells in the image matrix — they are termed the ‘blocks’ —
contains a measure of the density of the connections between pairs
of sets. If all density values were either 1 or O, the pattern of
relations would be clear. The ‘zero-blocks” (the cells with density 0)
would represent ‘holes’ in the network, the complete absence of
connections; and the distribution of cells with density 1 would show
the bastc structure of the network. Such density patterns rarely occur
in real data, and so a block modelling has to convert the actual range
of density values into two categories of ‘high’ and ‘low’ values as
approximations to the 1-blocks and zero-blocks. In the image matrix,
the high values — those which are above a specified threshold value
- are tepresented by 1, while low values are represented by 0. The
most commonly used method for defining blocks with a high density _
is to take the average density of the whole matrix as a cut-off point:
values at or above the mean are regarded as ‘high’, while those
below it are ‘low’. But this procedure, like so many in network
analysis, involves a discretionary choice on the part of the
researcher, and this choice must be grounded in theoretical or
empirical considerations. It cannot be justified on any purely formal,
mathematical principles alone. Friedkin (1998: 8) has also criticized
the reliance on density as the sole measure of block formation. '

Exactly the same procedure can be used to produce a block model
for a combined analysis of the rows and columns. concor will
produce a clustering of the rows and a clustering of the columns and
will then combine these into a single image matrix of the original
rectangular incidence matrix.

Once a block model, an image graph containing only 1 and 0
values in its cells, has been produced, the researcher must attempt

 to interpret it. Interpretations of block models produced from

rectangular, incidence matrices are extremely difficult to make, and
Breiger and his associates, the originators of block modelling, have
published no detailed analyses of such models. In the earliest
analysis of an incidence matrix, Breiger, Boorman and Arabie
(1975) re-analysed the Deep South data collected by Davis and his
colleagues (1941) on the participation of 18 women in 14 social
events.” To analyse these data, they computed separate row and
column sofutions and combined them into the block model shown in
Figure 74. Lo o
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Events
A B
1 0 1
Women
2 1 0

Figure 7.4 A simple block model

It can be seen that women in cluster 1 tend to meet in the evenits
of cluster B and that women in cluster 2 tend to meet at the events
of cluster A. The two clusters of women correspond closely to the
two ‘cliques’ that had been identified by Homans (1951) in his
commentary on the original data, but Breiger et al. did not go
beyond this observation. Although they discuss the composition of
the clusters, they give no attention to the pattern of block densities
in the image matrix. In the same paper, they also re-analysed
Levine’s rectangular matrix of banks and corporations (Levine,
1972), but they again simply compare the separate row and column
analyses with Levine’s own analysis.

This failure on the part of the inventors of block modelling to
analyse an incidence matrix in any detail suggests the existence of a
fundamental difficulty in achieving the concurrent treaiment of both
rows and columns that was anticipated by Lorrain and White. A
rectangular image matrix, if it is fairly simple, may give an initial
and schematic overview of the network, but more detailed analyses
can only be pursued by analysing the rows and the columns
separately. An incidence matrix, then, must be analysed principally
through the comnstruction of separate block models for each of its
constituent adjacency mairices. In these block models, those cells on
the diagonal that contained a ‘1’ would correspond to some kind of
clique or social circle of the type discussed in the previous chapter.
The other cells would show the presence or absence of connections
between the various cliques and the other clusters that make up
the graph.® ‘

Breiger has shown how the concor method can be applied in one
of the ceniral areas of social analysis. Using data on social mobility
from Britain (Glass, 1954) and the United States (Blau and Duncan,

. 1967; Featherman and Hauser, 1978), he constructed a model of
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class structare in which the classes were defined as sets of occupa-
tions identifiable in a matrix of occupational mobility rates (Breiger,
1981, 1982). He sees this as an extension of Weber’s (1920-21)
claim that ‘a structure of social classes exists only when the mobility
chances of individuals within the classes cluster in such a way as to
create a common nexus -of social interchange’ (Breiger, 1982: 18.
See also Scott, 1996: ch. 2). concor, he suggests, can be used to
identify class boundaries. Breiger used inter-generational mobility
matrices for adult males, the American matrices being 17 X 17
directed matrices of occupational categories and the British being
8 X 8 directed matrices. In each matrix, the cells contained the
numbers of individuals moving from one category (o another, the
rows showed the ‘origins’ and the columns showed the ‘destina-
tions’. For the United States, Breiger (1981) concluded that there
was a stable structure of eight classes over the period 1962-73,
while for Britain he concluded that the earlier data (they related to
1949) could best be seen as reflecting a three-class structure. The
central class boundaries in Britain separated manuoal from non-
manual and the salaried ‘middle class’ from lower-level clerical and
administrative jobs.

By far the easiest of matrices to analyse through block modelling
are adjacency matrices with directed data — matrices where, for
example, the rows represent relations ‘sent’ and the columns
represent relations ‘received’. A useful aid to the interpretation of
this kind of data is the construction of arrow diagrams that show the
relations among the clusters. This can be illustrated with the
matrices in Figure 7.5, which show some hypothetical data on power
relations.? In these matrices, the power relations are directed from
rows to columns. The row eniries in the original matrx, for
example, would show over which other agents a particutar agent
exercises power. Conversely, the column entries would show to
which other agents a particular agent is subordinate in a power
relation. In the block models, agents are clustered according to both
their exercise of power and their subordination to power, and the 1
and O entries in the image matrices show the densities of the power
relations among the clusters.

In model (1) of Figure 7.5, members of cluster 1 exercise power
over one another and also over members of cluster 2. This is shown
by the entries of ‘1’ in the relevant blocks. Members of cluster 2,
however, exercise no power whatsoever, being completely subordi-
nate to the power of those in cluster 1. This structure is summarized
in the corresponding arrow diagram. In model (if), on the other hand,
there are two separate and self-regulating categories (clusters 1 and
3), and members of these clusters jointly exercise power over the
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Figure 7.3 Hierarchical block models

members of closter 2. Finally, in model (iii), cluster 1 dominates

both cluster 2 and cluster 3, but there is little mutual exercise of
power among the members of cluster 1 itself — the individual
members of cluster 1 are each relatively autonomous agents.
Undirected matrices are, except in the most simple cases, rather
more difficult to interpret, as the lack of any direction to the
relations means that it is not possible to construct arrow diagrams to
show their structures. Few such analyses have been published, and
the application of block modelling to real and complex data sets of
various kinds'is. essential if the value of the procedure is to be
demonstrated.'® . - '
A fundamental problem with the concor algorithm, as I have
already suggested, is that it is not known exactly why it produces its
.solutions.. The mathematical reasons. for the convergence to a
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distribution of 1 and ( entries are uncertain, and so an assessment of
the validity of the results is difficult to make. This might seem to be
a fairly damning criticism, but the fact that it does work and that it
does seem to produce plausible models of small social networks
helps to offset this criticism somewhat. There is, however, another
difficulty, which suggests a further limitation on its applicability:
coNCoOR can identify structurally equivalent positions only within the
components and sub-groups of a graph. If, for example, power
relations were divided into distinct components within the network,

concor would not group together those who were dominant in the

separate components as a single cluster of ‘dominant’ agents. Their
equivalence as occupants of a position of dominance is masked, so
far as comcor is concerned, by their sociometric division into
separate components. Similarly, when a component is internally
divided into relatively distinct cliques and circles, concor will tend to
identify only the dominant members within each of the sub-groups.

[
—

O Social circles

Figure 7.6  Structural equivalence and social circles

" Structurally equivalent positions

This can be illustrated through Figure 7.6, which shows a network
in which A, B, C and D are structurally equivalent as dominant
agents, and B, F, G and H are structurally equivalent as subordinate
agents. An adequate clustering of the network into structurally:
equivalent positions should identify two clusters {ABCD} and

{EFGH]}. If, however, the agents are divided into two distinet social
circles, as shown, concor will tend to identify four clusters: instead: -
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{AB}, {CD}, {EF} and {GH]}. The conclusion to be drawn is that
the concor algorithm combines structural equivalence with conven-
tional sociometric measures and so fails to produce a thoroughgoing
analysis of structural equivalence.

These limitations of the concor procedure have led Ronald Burt
to advocate a different approach to structural equivalence, one
which aims to avoid concor’s reliance on uncertain mathematical
procedures. His approach differs from that of concor both in the
measure of similarity that is used and in the method of clustering.
Having examined concor in some detail, it will be fairly easy to
understand how Burt’s procedure operates and in what respects it is
an improvement on coNcor. Burt’s procedure is implemented in his
program STRUCTURE, and in order to distinguish it from the other
procedures available in that program 1 shall term it ‘BurT’.!!

BURT uses a similarity measure based on path distances between
pairs of points. Where concor looked only at similarity in terms of
direct contacts, BurT takes account also of indirect connections
through paths of distance 2 or more in order to arrive at calculations
of the minimum path distances between all pairs of points. The Burt
measure of path distance also assumes that the strength of a relation
declines with both the path distance and the significance of the path
for the agent’s overall patiern of contacts. This measure is based on
the assumption that agents with large numbers of contacts are able to
give less attention to their more distant ones.'? Thus, the similarity
measure used in BURT is a weighted distance measure.”

Structurally equivalent agents, in the strong sense, are those
whose points are separated by zero distance. They are perfectly
similar and substitutable. Burt has recognized that this strong
criterion cannot be applied to most real data, and so he argued for
the identification of weak structural equivalence through the use of
a cut-off threshold of distance below which points would be
regarded as structorally equivalent (Burt, 1980: 101ff.). While
CONCOR’S arbitrariness derives from an obscure mathematical pro-
cedure, BURT’s arbitrariness has the virtue of being grounded in the
informed judgement of the specialist researcher. BURT performs a
hierarchical clustering of the distance matrix, using Johnson's
(1967) aggregative single linkage method, and the researcher reads
off the clusters that'are found, if any, at the chosen cut-off level of
distance. S

Once a clustering has been produced by the surT procedure, the
investigation can proceed with the construction of a block model. If
the densities in the image matrix are replaced by entries of 1 or 0,
using the density of the whole network as a cut-off threshold, the
. resulting block model can be analysed in the same way as those
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derived from a conNcor analysis. An image matrix that shows the
density of connections among the clusters is a simplified mapping, a
‘homomeorphic  reduction’, of the concrete pattern of relations
between agents, and Burt terms this a ‘social topology’.

Burt argues that the departure from a strict measure of strong
structural equivalence means that any analysis must be treated
merely as a hypothetical model. Without some kind of statistical test
of significance, he argues, researchers would be free to choose
whichever cut-off threshold will produce the results that correspond
most closely to their preconceptions. A significance test helps to
introduce a degree of impartiality and objectivity to the assessment
of block models. Burt’s recommended test involves an examination
of each cluster in order to measure how closely associated each
of its members is with the other occupants of the cluster. The
best solution, he argues, is that which optimizes this measure of
association.'*

Towards Regular Structural Equivalence

The concor and BURT procedures are probably the most widely used
methods for identifying structural equivalence, but a number of
alternatives have been suggested. Although some of these have
become relatively easily available, they have rarely been applied to
real data, and their long-term value still remains to be assessed.
Where cowcor takes account only of path distances of length 1
and BurT takes account of all connections, regardless of their path
length, Sailer (1978) has proposed a proceduore in which the
researcher is given the choice of a path length to use. A path
distance is chosen, and the similarity of connections between pairs
of poinis is calcolated at that chosen level. Sailer’s measure, then,
which he terms simply ‘substitatability’, i1s based on the ‘neighbour-
hood” of points. The degree of similarity between two points is
measured in proportional rather than absolute terms, the number of
contacts that they have in common at the specified path length being
standardized by each point’s adjacency. That is, the overlap between
contacts is measured by the number of common connections
expressed as a proportion of each point’s total number of connec-
tions at that distance. Each point, therefore, can be given a standar-
dized measure of its similarity to each of the other points. Complete
overlap in contacts produces a standardized score of 1, while
complete absence of overlap gives a score of 0."° As in the coNcor
procedure, Sailer sees this as simply a first step in an iterative
process. The matrix of similarities is treated as an initial estimate of
the ‘substitutability” of points, and the continued. repetition. of the

A
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method on each new set of estimates results in a convergence to a

solution in which all values are cither ‘1° or ‘0°. In this way, then,

a block model can be produced for analysis. Sailer’s procedure,
however, fails to overcome the principal limitation of the concor
and BurT methods, which is that they cannot adequately handle
networks that are divided into components or tight sub-groups of the
kind illustrated in Figure 7.6 (see also Carrington and Heil, 1981;
Wu, 1984).

An interesting attempt to overcome this sociometric limitation is
REGE, an algorithm that is intended to detect ‘regular’ structural
equivalence. This is defined as those equivalences that are regular
across all the various sub-groups of a network (Reitz and White,
1989; White and Reitz, 1983; Winship and Mandel, 1984). The
concept of regular equivalence is closer to the idea of the sub-
stitutability of agents by role or by function within a social system.
Where concor and BURT see points as being structurally equivalent
when they have identical links to all the other points in the graph,
REGE 5¢es points as equivalent if they have similar links to points
that are thernselves structurally equivalent. Two points are regularly
equivalent in relation to another set of points if the relation of one
point to the points in that set is similar to the relation between the
other point and the set. Each point has an identical relation. with a
counterpart in the same set, though this relation need not be with the
same point or points. This can be illustrated by the obvious fact that
all fathers are related to children, but they are not all related to the
same children, White and Reitz argue, therefore, that the block
models produced by reGE are homomorphic reductions, but not
necessarily isomorphic reductions of their corresponding graphs.

The way in which rReGe works can best be understood through the
case of a directed matrix, although it is very difficult to understand
the details of the procedure. The algorithin uses a partitioning
method that looks at direct connections and also at the contacts of
points ‘adjacent to each pair. It begins by making estimates of the

equivalence values between all pairs of connected points. These

estimates "are all initially set at 1, and they are revised with each
round of calculation, which involves computing revised estimates of
equivalences from the smallest in- and outdegrees for each pair of
points. At the end of each round, therefore, there is a new matrix of
estimated equivalences between pairs of points. The proeedure is,
ideally, continued until the revised estimates of equivalence no
longer alter; that is, the computations are no longer resulting in any
greater precision for the estimates. In practice, the researcher can
choose to stop when it appears that further calculations will make
 little difference to the estimates. Bt has been suggested that the

R e
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version of rece implemented in UcINET produces optimum estimates
after three rounds of calculation (see also Borgatti and Everett, 1989;
Borgatti et al., 1989).

This approach can be used only on directed data, though Doreian
(1987) has suggested an adaptation that allows undirected data to be
analysed. With a symmetrical matrix, as Dorcian shows, the initial
cstimates are not altered by the calculation: the algorithm simply
identifies all connected points as being regularly equivalent. Such
matrices can be analysed only if they are divided into two asym-
metrical matrices, which can then be jointly analysed by REGE.
Doreian suggests using centrality scores to make this division,
though Everett and Borgatti (1990) have suggested that any graph
theoretical attribute could be used. If cenfrality is used, for example,
one matrix would consist of the relations directed from more to less.
central points, while the other matrix contains the relations d1rected
from less to more central points.

Bespite its limitations, rece is the first structural equivalence
procedure to offer a true approximation to the regular structural
equivalence described by Lorrain and White (1971). The substan-
tive assumptions that it makes about the data are, however,
obscured by complex mathematics, and 1t is difficult for a non-
mathematician to assess whether these assumptions are valid and
realistic. As with concor, the fact that it does appear to work as
expected on small-scale data is a powerful argument in its favour,
but researchers must be aware that they are taking a certain amount
on {rust,

The aspiration of writers such as Nadel, it will be recalled, was to
build a framework of sociclogical analysis in which positional
analysis would complement more traditional sociometric concerns
with cliques and components. The approaches o structural equiva-
lence that have culminated in rEGe have eschewed graph theory and
§0 remain at one remove from these sociomeiric concerns. The
approach of ‘graph role analysis’, on the other hand, tries to use the
structural position of points as measured in graph theory as a basis
for a measure of structural similarity (Zegers and ten Berghe, 1985)!
The procedure uses local dependency or geodesic matrices to
calculate correlations between pairs of actors.!® Structural equiva-
lence is assessed in terms of how similar these measures are for the
various points. A pair of points with, for example, similarly high
betweenness scores might be recognized as being structurally
equivalent in certain important respects. In order to avoid the
obvious problem of regarding points as structurally equivalent only
il they lie between the same points, the algorithm can compuie
whether they lie between points that are themselves similar in their
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betweenness scores. The particularly interesting feature of this
procedure is that it begins to build a bridge between the relatively
well understood concepts of graph theory and the rather less well
understood measures of structural equivalence. Instead of conflating
the approaches, as in concor, it aims to theorize and to articulate
their interdependence.'’

Interlocks and Participations

Burt has pursued a long-standing interest in the question of inter-
locking directorships in the business world, but he has eschewed
conventional clique-based approaches to their investigation. His
earliest paper on this question (Burt, 1979) set out his aspiration to
discover the linkages that occur between profitability and the struc-
tural location of enterprises in the corporate system, and his develop-
ment of the idea of structural equivalence was specifically geared
towards this issue of structural location.

His starting point was the hypothesis that many interlocks can be
understood as ‘cooptive mechanisms’ through which enterprises
absorb into their own leadership those people from other enter-
prises who might threaten their continued operations. Thus, the
suppliers who create market ‘uncertainty’ are objects of ‘cooptive
interlocks’ by those to whom they supply goods or capital, Financial
institutions, for this reason, are of particular importance in corporate
interlocking: ‘The use of money as a general resource makes the
actions of financial corporations a source of significant uncertainty,
so that firms would be expected to establish cooptive interlocks with
financial corporations so as to secure access to money when it is
needed’ (Burt, 1979: 416).

Drawing on his earlier discussions of ‘positional’ concepts (Burt,

1976, 1977a, b), Burt saw the firms that operated in each sector
of the economy as structurally equivalent to one another — the
economic sectors comprised positions in a social topology. Using
input-output data at the sectoral level for the United States in 1967,
Burt attempted to show in which inter-sector exchanges there existed
the degree of uncertainty that would make cooptive interlocking a
rational strategy. That is to say, he was interested in seeing whether
the structure of constraining economic transactions was reflected in
a parallel structure of interlocks. The idea of ‘constraint’ between
sectors was operationalized in terms of competitive pressures: enter-
prises were more constrained by their transactions with oligopolistic
sectors than they were by those with competitive sectors, Market
constraint reduced the structural autonomy of enterprises, and inter-
. locking reduces the effects of - this constraint and so. transforms the
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¢conomic environment in which enterprises operate. Burt holds that
‘structure in the two networks is a symbiotic phenomena [sicl:

market structure patterning interlock structure and interfock structure

repatterning market structure’ (Burt, 1979: 433; see also Bur{ et al.,
1980; Burt, 1982: chs 4 and 8).

Burt's data comprised two parallel directed adjacency matrices,
in which the rows and columns corresponded to economic sectors.
One matrix contained information on the economic (ransactions
between sectors, while the other showed their patterns of inter-
locking. The results of a block modelling of these data have not
been directly reported, but Burt concluded that the two networks
did mirror one another and that it was possible to identify a
‘directorate tie market’ — a structure of interlocks that provided a
‘non-market” context for the regulating of commercial transactions
(Burt, 1983b, ¢)."®

Both the power and the limitations of the concor procedure are
apparent in an investigation of corporate shareholding which I
undertook (Scott, 1986). The 250 largest British companies in 1976
were selected for study, and their largest shareholders were identi-
fied from their share registers. This allowed the construction of a
250 X 250 incidence matrix of cross-shareholdings among the com-
panies. In this matrix, the rows showed the companies as -share-
holders and the columns showed them as the targets of shareholding
relations: shareholdings were directed from rows to columns. It was
found that only 69 of the companies held controlling blocks of
shares in other large companies, and that only 140 of them were
targets of shareholdings by these 69. Thus, the effective data set was
a 69 X 140 matrix. Centrality analysis showed that the Prudential
Assurance was the most central shareholding participant, it having
shareholdings in 88 of the 140 target enterprises. Similarly, Boots
was found to be the most ‘blue chip’ of the targets — 18 of its 20
largest shareholders were among the 69 leading companies.

The main purpose of the analysis was to uncover some of the
global features of the intercorporate network, using the concor
algorithm. The controlling companies were regarded as the major
agents in the economy, and the research aimed to uncover whether
they formed a unified group or were divided into rival and
soHdaristic coalitions. Analysis of components gave little indication
that the enterprises were organized into coalitions, and the conclu- .
sion was drawn that the network was not fragmented into distinct
corporate groupings. CONCOR, however, disclosed the existence of a
number of structural positions in the network, among which
hierarchical relations could be identified. A joint row and column
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Figure 7.7 The structure of financial hegemony in Britain
{1976)

analysis suggested the existence of five sets of enterprises, which are
shown in the arrow diagram of Figure 7.7."

In Figure 7.7 the arrows indicate the direction of the sharcholding
links between the various sets that comprise the positions in the
network. Sets 1, 2 and 4 together comprise the ‘hegemonic con-
trollers’ of the economy, with set 1 being the dominant element in
this grouping. Set 1 contained 20 enterprises and included large
public sector corporations and merchant banks, and its members
were the major shareholding participants in three of the other sets.
It owed its position at the top of the corporate hierarchy to the fact
that its members were controlled by wealthy families and by the
state rather than by other companies. Set 2 contained 11 enterprises
that were involved in one another’s capital (indicated by the self-
referencing arrows) and that were important participants in control-
ling sets 3, 4-and 5. Set 4 was rather similar to set 2 (comprising
clearing banks, insurance companies and large private sector indus-
trials), but it was distinguished by the fact that its members were
less likely to-be involved. in joint control of the companies and
consortiums -that: made up’ set 3.- Set 5, containing 91 enterprises

comprised the subordinate enterpnses that had vm:ually no role in.

. the control of other enterprises. .
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As the British network was not internally fragmented, concor
was very effective in disclosing the structurally equivalent positions
occupied by corporate enterprises. Using similar data for JFapan,
however, it was found to be less useful. The Japanese economy was
strongly divided into discrete components, each of which operated as
cohesive business groupings. These are the familiar kigyoshudan of
the Japanese business system (Scott, 1991, 1997). Although there
were structurally equivalent categories of dominant and subordinate
enterprises, concor divided these along the lines of the business
groups (Scott, 1986; 186ff.). No single set of structurally equivalent
hegemonic controllers was identified by concor. Seven sets were
identified in the network, three of them corresponding to the well-
known Sumitomo, Mitsui and Mitsubishi business groups, and
within each set could be seen a hierarchical division into hegemonic
and subordinate enterprises. Thus, the Japanese economy looked
very much like Figure 7.6, with the structurally equivalent positions
being cross-cut by the social circles that represented the ma]or
business groupmgs
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8

Dimensions and Displays

The sociogram — the network diagram — was one of the earliest of
techniques for formalizing social network analysis, and the drawing
of sociograms has remained a crucial means for the development
and illustration of social network concepts. They have been used
exlensively throughout this book for just that purpose. Centrality, for
cxample, can be illustrated by sociograms in which a central point is
the ‘hub’ of a series of radiating ‘spokes’ which comnect it to the
more peripheral points. But the conventional sociogram has certain
limitations as a method of representing and displaying relational
data. Principal among these is that its use is limited by the
difficulties of drawing large graphs on a sheet of paper. With more
than 10 or 20 points, even with networks having a relatively low
density, the number of cross-cutting connections results in an un-
interpretable thicket of lines.

In an attempt to overcome this limitation, various ad hec exten-
sions to the idea of the sociogram have been used as researchers
have sought to complement their mathematical measures with some
kind of diagrammatic representation. One common technique has

¢ been to construct the sociogram around the circumference of a
circle, so that the pattern of lines becomes more visible (Grieco,
1987: 30). Figure 8.1 shows one example of this method from Scott
and Hughes (1980). The circle is used simply as an arbitrary visual
framework for organizing the data, and the order in which the points
are arranged around the circle is determined only by the attempt to
ensure a minimum of overlap among the lines that connect them.
The researcher engages in a trial-and-error process of drafting and
re-drafting until an aesthetically satisfactory solution is achieved.!

Such diagrams can often make the structure of a set of relations
clearer, but they remain a rather arbitrary arrangement and they
embody no specific mathematical properties. The points are arranged
in arbitrary positions, and the drawn lengths of the various lines
reflect this arbitrary arrangement. McGrath et al. (1997) have shown
how sensitive data interpretation is to the particular visual configura-
tion that is presented. In an experimental study, people could be led
to identify differing numbers of sub-groups in the same network

_ simply by presenting them with different spatial arrangements. This
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suggests that great care must be taken in choosing both the spatial
framework and the criteria by which points are located within it.

McGrath et al. conclude that if the researcher wishes to infer
something about the actual sociometric properties of a network then
the physical distance between points should correspond as closely as
possible to the graph theoretical distances between them. This
reinforces the long-standing desire of social network analysts to
move away from metaphorical and illustrative diagrams and to
produce more rigorous maps of social structure that, like geo-
graphical maps, retain the mathematical properties of the graph and
allow new features to be discovered. Such maps would have the
further advantage of making the data comprehensible and more
meaningful to those who read the research reports.

The mathematical approach termed ‘multidimensional scaling’
embodies all the advantages of the conventional sociogram and its
extensions (such as the circle diagram), but results in something
much closer to a ‘map’ of the space in which the network is
embedded. This is a very important advance, and one that returns
to some of the central insights of field theory. Just as a two-
dimensional map of the British Isles, for example, may allow its
users to make new discoveries about the country, so long as they are
familiar with the principles of map reading, so a sociogram produced
through multidimensional scaling may allow the generation of new
knowledge about the network under investigation.

Distance, Space and Metrics

The basic idea behind multidimensional scaling (MDS) is that of
using the concepts of space and distance to map relational data.?
Any model of space and distance in which there are known and
determinate relations among its properties is termed a ‘metric’. A
metric framework has rather interesting characteristics so far as the
mapping of relational data is concerned. If a configuration of points
and lines can be made into a metric map, then it is possible to
measure ‘distances’ and ‘directions’ in ways that differ from those
of graph theory. In graph theory, the distance between two points is
measured by the number of lines in the path that connects them.
Distance, then, is measured as ‘path distance’. The metric concept of
distance is much closer to the everyday understanding of physical
distance. In a ‘Euclidean’ metric, for example, the ‘distance’ from A
to B, which is exactly the same as the distance from B to A, is
measured by the most direct route that can be taken between them.’
It is a distance that follows a route ‘as the crow flies’, and that may
be across ‘open space’ and need not — indeed, it normally will not —
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—— —— Euclidean distance

B . C

Figure 8.2 Euclidean distance

follow a graph theoretical path. In Figure 8.2, for example, the pat_h
distance between A and D is 3 lines, while the Buclidean metfic
distance is 2 centimetres. '

MDS, at its simplest, is an attempt to convert graph measures
such as path distance into metric measures analogous to physical
distance.* Although the term ‘Buclidean’ may be unfamiliar and,
indeed, rather daunting, it describes simply the most familiar, every-
day concept of distance and space. It is, therefore, a partiCL‘lial‘ly
convenient model to use in social network analysis. A Euclidean:
map of social relations can be understood by analogy with atlases,
maps and other familiar spatial models of everyday life. ,

MDS can take graph theoretical measures of the ‘closeness (_)f
points and can express these relations of closeness and distance 1t
metric terms. This involves, more formally, the use of ‘proxlmlFY
data’ to construct a metric configuration of points. The first step 111
such an analysis is to produce a case-by-case proximity matrix from
graph theoretical measures. In this matrix, the values in each cell
show how ‘similar’ or ‘different’ a pair of points are from one
another. Proximity measures for relational data would includ‘_a such
things as the number or frequency of contacts between individuals,
the size of shareholding relations beiween enterprises, the number (_)f
members in common between organizations, and so on. The metrc
properties of many of these values will be obscure, and it may'HOt
be known whether a particular measure conforms to the assumptions
of a Euclidean metric. For this reason, they are often converted 1nto
correlation coefficients, which are known to conform to a Euclidean
metric. Two points with identical patterns of connection in a grap_h
will be perfectly correlated, and so the proximity measure for this
pair will be 1. Such a measure is termed a similarity measure, 4§
high values on the proximity measure indicate ‘closeness’. Il}_thl,s
case, the proximity matrix is said to contain data on ‘similarit,lﬁsl .
The other principal type of proximity measure is ‘dissimilarity’,
which low values indjcate closeness. It is vitally important for. -
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researchers to be clear about whether they are using ‘similarities’ or
‘dissimilarities’ as the operation of particular MDS procedures may
differ in each case.® Whichever type of data is used, the aim is to
produce a metric configuration in which the patiern of metric
distances corresponds to the pattern of proximities.

The way in which MDS can be used can most easily be illustrated
by considering the mapping of a network of towns onto the two-
dimensional page of an atlas. A matrix of road mileages between
towns contains proximity measures of mileage that can easily be
converted into centimetre distances between points on the page of
the atlas. This ‘scaling” would give a two-dimensional configuration
in which distances are located along East/West and North/South
dimensions. Such a map might not, however, have a perfect corres-
pondence with the actual arrangement of towns in the country being
mapped. Roads rarely follow the shortest and straightest routes
between towns, and so road mileages will not be true Euclidean
distances. Similarly, the map would take no account of the third
dimension of height: the actual roads go up hill and down dale rather
than running across perfectly flat plains. The atlas map, nevertheless,
gives a reasonable and useful approximation, and its ‘lack of fit’
with any better solution can be assessed.

The construction of a simple physical map, then, gives a good
insight into the outcome of a multidimensional scaling of relational
data. The ways in which MDS works on relational data can also be
understood by examining the geometrical principles that are used in
map construction. These geometrical principles can be seen in the
very simple case of drawing a map to show the correct spatial
arrangement and locations of three towns from a knowledge only of
the distances between them. This task corresponds, in fact, to a
classic problem in old-fashioned school geometry, which was to
draw a triangle when only the lengths of the three sides are known.

The solution to this geometrical problem is to see the comers of
the triangle as the centres of circles whose radii correspond to the
distances between the corners. Consider, for example, the case of a
triangle with sides AB (length 3 cm), BC (length 4 cm) and AC
(fength 5 cm). The first step in constructing this triangle would be to
draw any one of the lines, say AB. This line can be drawn at any
position on the paper. Since it is known that AC measures 5 cm, it
can be inferred that C must lie somewhere on the circumference of
a circle that is centred on' A and that has a radius of 5 cm. It is also
known that C must lie on the circumference of a circle that- is
centred on B and. that has a radius of 4 cm. The second step in
constructing the triangle, therefore, is to draw these two circles and
_ to identify the place at which they intersect. C.can be positioned at
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Figure 8.3 Constructing a metric model

the point of intersection, because it is only at this point that all three

known distances will be comrect. There are, in fact, two points of
intersection, as shown in Figure 8.3, and so there are two possible
locations for point C. For the moment it is sufficient simply to
choose one of the two intersection points to represent the location of
C. It does not matter which of these points is chosen, as the triangle

ABC' is simply a mirror reflection of the triangle ABC. Here, then;

is the solution to the problem of mapping three towns. If A, B-and

C represent the towns, and the given lengths of .the lines AB;BC -
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and AC represent the scaled mileages between them, then the
triangle ABC is a simple two-dimensional map of the locations of
the towns.

But what would have happened if C' had been chosen instead of
C as the location for the third town? Would ABC' have been equally
acceptable as a map? The triangle ABC' is simply an ‘upside-down’
version of the original map, and so there is no need to choose
between ABC and ABC' as maps of the three towns. The choice
does not matter in the slightest when one configuration is simply a
perfect reflection of the other. Which configuration is taken as being
the most useful will depend only upon the convenience of the user
of the map. A physical map and its mirror image contain exactly the
same information.

The same geometrical procedure can also be used for four or more
points, If it is known that a point D lies 3 cm from B, 6 cm from A
and 5 cm from C, its position can be plotted by drawing three
additional circles centred on A, B and C. Once the initial choice of
location has been made for point C, the position of D is uniquely
determined by a single point of intersection for all these circles. (See
Figure 8.3.) As a general principle, then, there is a unique configura-
tion for a two-dimensional map once the positions of its first three
points have been fixed.®

This piece of school geometry can be seen as giving a two-
dimensional solution for the location of a set of points in a metric
space. From the distance matrix shown in Figure 8.3, the two-
dimensional configuration can be constructed. The two dimensions
are the conventional horizonial (left/right} and vertical (up/down)
dimensions of a flat piece of paper. In producing a map for an atlas,
the configuration of points would normally be moved to a position in
which the most northerly point is towards the top of the page and the
most westerly point is towards the left of the page. In this way, the
horizontal and vertical dimensions represent the known East/West
and North/South dimensions. In MDS, this movement of the con-
figuration is termed a ‘rotation’. Only in the case of conventional
mapping, however, does rotation generally involve aligning the
configuration to known dimensions. More typically with the results
of MDS, rotation is aimed at the discovery of meaningful dimensions.
I shall return to this question of rotation later in the chapter. .

MDS operates, in effect, in a very similar way to that I have
described in this simple geometrical case. Although computer pro-
grams for MDS. do-not normally use such an inefficient method as
the construction of'¢ircles,; the end result is the same. The earliest
forms of MDS were developed from Torgerson’s (1952) pioneering
. work on psychometric ‘scaling: In metric MDS, as I have shown,
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proximity data are used as if they were Fuclidean distances. If
dissimilarity measures are used, as in the case of the road mileage
example, principles similar to the geometrical ones that I have
described could be used to produce a metric map of the data. The
raw data are treated as distance measures and they are plotted, to
scale, on the final map. Algorithms for MDS use geometrical
principles to ensure a ‘fit’ between the given proximity data and the
final configuration of points in the map. The variety of approaches to
metric MDS differ mainly in the details of their methods for
generalizing the procedure to three or more dimensions.

Principal Components and Factors

An approach that conforms closely to this metric method of multi-
dimensional scaling is principal components analysis (PCA). Princi-
pal components analysis is, in some texts, called “factor analysis’,
though there are important differences between PCA and classical
factor analysis. For present purposes, however, this distinction is not
especially important, and the availability of principal components
analysis as part of the factor analysis routine in SPSS has made it a
widely used method of data analysis (Daunitrey, 1976; Goddard and
Kirby, 1976; Kim and Mueller, 1978; Kline, 1994).” The technique
developed from early attitude and intelligence scaling methods,
where researchers sought some underlying factor common to a
number of specific measures of attainment or afttitude. ‘General
intelligence’, for example, was seen as a. ‘factor’ underlying per-
formance on a number of specific tests of logical reasoning. By
extension, there may be two or more distinct ‘factors’ underlying
any given set of data. PCA developed as a way of analysing a case-
by-variable attribute matrix in order to discover one or more factors
or components common to the variables. Tt is an attempt to use raw
data to discover a set of coordinates or axes (the factors or
dimensions) that can be used to plot a scatter diagram of the data.
When relaticnal data in a case-by-affiliation matrix are used, the
scatter map is such that the spatial distance and compass direction
from one point to another convey some real information about their
relative positions.

The method of PCA can most easily be understood through its
operation on a case-by-variable matrix of attribute data. A simple
PCA algorithm would first convert the case-by-variable matrix into. a
variable-by-variable matrix that showed the correlations among the

variables (the columns of the original matrix). Thus, the new matrix |

shows how well, or how badly, the variables are associated with one
another. The next step is to search the matrix for those variables that :
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are highly correlated with one another and to replace them with a
constructed, artificial variable that measures their correlation with
one another. Thus, a set of variables that are all mutually correlated
at or above a specified level would be replaced by the constructed
variable. This constructed variable is termed the first principal
component. The next step would be to look for another set of
variables that are correlated highly with one another, but that are not
correlated with the first set. The constructed variable that replaces
this set is the second principal component. By continuing in this
way, principal components analysis aims to identify a set of un-
correlated principal components that, taken together, account for all
the variation to be found in the data. Such a complete analysis would
continue until all possible components have been identified. Through
this procedure, the original variable-by-variable correlation matrix
is, in effect, converted into a varizble-by-component correlation
matrix.

The first principal component is the one that stands for the most
highly correlated set of variables. The second principal component
is, by definition, un-correlated with the first: it is ‘orthogonal’ to it.
This independence means that the two components can be drawn at
right-angles to one another as the axes of a two-dimensional scatter
diagram. The same general principle holds for larger numbers of
components, each dimension being orthogonal to, or un-correlated
with, any of the others. It is, of course, more difficult to draw or to
visualize three-dimensional scatter diagrams, and diagrams with
more than three dimensions simply cannot be drawn. Nevertheless,
the logic of the approach is the same, regardless of how many
principal components are identified. It is normal in principal com-
ponents analysis to search for the smallest number of principal
components that is capable of explaining a high proportion. of the
variance in the data. In practice, any stopping point that falls short of
a complete account of the variance is arbitrary, and it is normal for
a researcher to stop when any additional principal component adds
little more to the variance than has already been explained.

The starting point for PCA, therefore, is a variable-by-variable
correlation matrix, constructed from the original case-by-variable
matrix. From this matrix a variable-by-component matrix is con-
structed in which the cell entries show the ‘loadings’ computed for
each variable against each component. The principal components are
used as axes for a scatter diagram and the loadings are used to plot
the position of each variable within these axes.

A complication arises from the possibility of ‘rotation’, which was
touched on in the simple geometrical example discussed earlier. The
purpose of the rotation of a configuration is to give a clearer picture
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of its structure. If the scatter of poinls seems to spread in a particular
direction across the space, for example, it would make sense to
rotate the configuration until the greatest spread in the poinis is i
aligned with the first component. In Figure 8.4, for example,
diagram (ii} shows a rotation of the configuration to give a better
alignment with the axes than in the un-rotated diagram (i). More
generally, rotation procedures aim to produce a positioning of the
configuration that gives the best possible alignment with the main
axes. The outcome of a rotation program is a new variable-by-
component matrix that contains a revised set of loadings for eac

variable. :

(i) Uf'l-ro_taled solution

1st principal
component

2nd principal compongnt
{ii) Rotated solution

®
.. .
O
® .
[
e
1st principal ®
component ° L
. .
9

2nd principal component

Figure 8.4 Rotation .
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I have described the usual procedure of a PCA, which results in a

scattering of the variables in a space defined by a set of dimensions.
An alternative procedure, following a similar method, results in a
scattering of the cases. In this procedure, the first step is to transpose
the original case-by-variable matrix and to compute a case-by-case
correlation matrix. From there on, the procedure is identical,
although the units of analysis are cases instead of variables. The
final result is a case-by-component matrix of loadings, from which a
scattering of cases can be plotted. In some texts, this case-by-case
analysis is termed ‘Q-mode’ principal components analysis in order
to distinguish it from the usuval, variable-by-variable ‘R-mode’
analysis.®

This distinction between Q-mode and R-mode analyses is mainly
relevant when handling attribute data. The important point to bear in
mind is that PCA in its normal, ‘R-mode’ operates on the columns
of the original matrix. Thus, an investigation of a sociometric case-
by-affiliation incidence matrix would result in an analysis of the
affiliations. If the researcher wished to investigate the structure of
relations among the cases, it would be necessary to transpose the
matrix, so making the cases into the columns of the matrix, as in a
Q-mode PCA. A persons-by-organizations ‘incidence matrix, for
example, can be directly analysed to produce an organizations-by-
components matrix, or it can be transposed and analysed to yield a
persons-by-components matrix.

In a direct analysis of such an incidence matrix of people and
organizations, a PCA algorithm would investigate the organizations
in order to find those that are most similar in terms of their
membership. As with concor, the correlation coefficient is used as
a measure of proximity, The sets of similar organizations that are
discovered are replaced by principal components, and the various
organizations can be plotted as points in a space defined by the axes
that correspond to the components. The Euclidean distance between
the points in this scaiter diagram would be a measure of the
closeness of the organizations. A transposition of the original
incidence matrix would allow an analysis of the cases to be made.
As wag seen with concor and the other block modelling procedures
discussed in the previous chapter, the ‘column solution’ and the ‘row
solution’ produced from the same input data would be the ‘dual’ of
one another. They are different but complementary representations
of the same data.

It is possible to analyse an adjacency matrix using PCA, though
with the symmetrical data matrix for undirected relations the row

and column solutions would be identical with one another. In the.

case of a directed- adjacency matrix, however, the two solutions
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would differ; one of them would correspond to the network created
by the ‘sending’ of relations and the other to the network involving
the ‘receiving’ of relations.’

Non-metric Methods

There are a number of limitations on the use of metric MDS and
PCA in investigations of relational data. Many relational data sets
are binary in form, indicating simply the presence or absence of a
relation, and this type of data cannot be directly used to measure
proximity. As I have shown, binary data must first be converted into
measures, such as cormrelation coefficients, which do have metric
properties. But this data conversion procedure may lead researchers
to make un-warranted assumptions about their relational data. Even
when the raw input data are valued, metric assumptions may not be
appropriate. In particular, the use of ratio or interval measurement
may not be appropriate. Two companies with four directors in
common, for example, may not be twice as close to one another as
two companies that have just two directors in common. While it may
be realistic to consider the former as being ‘closer” than the latter, it
is difficult to be certain about how much closer they might be.
Fortunately, some powerful MDS techniques have been developed
that do not require the direct input of metric data, and these methods
can be used in a much wider range of circumstances than their
metric counterparts.'”

These techniques of non-metric MDS, often called smallest space
analysis, have become more widely available in standard computer
packages. Non-metric MDS procedures work on a symmetrical
adjacency matrix in which the cells show the similarities or dissim-
ilarities among cases, using either correlation coefficients or actual
valued data. The procedure does not convert these values directly
into Euclidean distances, but takes account only of their rank order.
That is to say, the data are treated as measures at the ordinal level.
The non-metric procedures seck a solution in which the rank
ordering. of the distances is the same as the rank ordering of the
original values.

This procedure can be illustrated with the data in Figure 8.5. The
first step is to sort the cell values of the original matrix into
descending order (from high to low). A new matrix is then con-
structed in which the original cell values are replaced by their ranks
in the sorted distribution of values. In Figure 8.5, for example, the
dissimilarity between A and B is the highest value in the original
matrix and so is replaced by.a value of 1 in the ordinal data matrix.
The dissimilarity between A and C is the lowest of the six values,

-~
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(i) Original matrix (dissimilarities) (ii) Matrix with ordinal data

A B C D A B C D
Af O Al -
B|ls 0 Bl 1 -
cl10 40 0 cle 3 -
Dj30 5 2 0 D|la 2 5 -

{iii) Loadings: two-dimensional solution

Dim. 1 Dim. 2
A 0575 0.404
B —-0.993 0114
Cc 0.195 0177
b 0.222 —0.695

Figure 8.5 Data for non-metric multidimensional scaling

and so this is replaced by a value of 6 in the ordinal data matrix. It
is then mecessary to construct a matrix of BEuclidean distances that
have the same rank ordering as the original cell values.

These Euclidean distances can be used to draw a metric scatter
plot similar to those produced by PCA. In this case, the rank order
of the distances is the same as the rank order of the proximities, but
no assumptions are made about the nature of the proximity data
themselves. If the proximity measures did have metric properties;
the procedure would, of course, produce a final matrix in which the
values exactly matched those of the original matrix, allowing only
for the scaling down of all values by the same amount. This is not
the case in Figure 8.5, as the original data were not metric. While a
variant of the simple geomefrical method cannot be applied to the
original data, it can be used on the values in the final matrix. The
final matrix shows the ‘best fit’ metric distances for the non-metric
data, and panel (iii) shows the loadings of the four points against the
two dimensions: of a two-dimensional solution.

How, then, canthe- matrix .of Euclidean distances be calculated?
The usual ‘algorithm begins. by computing a ‘guess’ of what these
distances might be; This guess forms the initial or trial configura-
tion, and the rank order.of its distances is compared with that of the
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proximities. Successive trial-and-error refinements of the initial
estimates lead to progressively better trial configurations. A con-
[iguration is accepted as an improvement over its predecessor if
there is a better match between the distance and the proximity rank
orderings. Eventually, one of the trial configurations will be found to
have the best achievable fit with the original data.

In order to begin, therefore, a suitable trial configuration must be
produced. The initial configuration itself can be randomly generated
or, if something of the structure of the network is already known,
estimated distances can be supplied by the researcher. The choice of
method is immaterial, as the initial configuration is simply a starting
point for the analysis and its accuracy, or inaccuracy, has no bearing
upon the rest of the analysis. The only disadvantage of using a
randomly chosen starting point is that the analysis may take slightly
longer to complete, as a larger number of steps may be necessary
before the final configuration is discovered. In fact, the widely used
Minissa algorithm normally produces an initial configuration from a
principal components analysis.!!

How is it known when a satisfactory final configuration has been
produced? The rank ordering of the distances in the initial configura-
tion must be compared with that for the original proximity data in
order to see the disparity in ranking for each pair of points. This
comparison shows in which direction, and by how much, the various
points must be moved relative to one another in order to reduce the
disparities. Where there is a large positive disparity in rank, for
example, the points must be moved closer together than in the trial
configuration. This comparison of disparitics takes place with each
successive configuration. The results of each step can be plotted into
a diagram such as Figure 8.6 (i). In this diagram, termed a Shepard
diagram after its inventor, the rank order of distances in a trial
configuration are plotted against the rank order of dissimilarities in
the original data. If the points are scattered widely about the
diagram, there is a bad fit; but if they are clustered close to the 45°
line, then the fit is better. A perfect fit is achieved when the points
follow exactly the 45° line.'? Gradually, by constant adjustment to
reduce the disparities, a configuration is produced in which no
changes can be made that do not worsen the fit. When this point has
been reached, perhaps after quite a large number of steps, the best
possible fit with the original data has been achieved.

I have so far written as if the number of dimensions is un-
problematic. Indeed, the simple illustration in Figure 8.5 assumed a
two-dimensional solution. In practice, the researcher must decide on
the mumber of dimensions that should be used to plot the data. A’
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(i) A Shepard diagram

Line of good fit

Dissimilarity
ranks

- Computed distance ranks

(il) A stress diagram

Stress

Number of dimensions .

Figure 8.6 Goodness of fit in non-metric multidimensional
scaling o

Shepard diagram can be drawn for each dimensional solution, and a

‘best fit' configuration can be discovered. There will, for example,

be _a. best. fit. in two dimensions and another best fit in - three
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Jimensions. The Shepard diagrams give no indication of which
solution is to be preferred.

Non-metric MDS does not, itself, determine the appropriate
iiumber of dimensions. The researcher must undertake a number of
unaiyses for varying numbers of dimensions and then try to discover
which of various dimensional solutions gives the best overall fit with
{he original data. This can be achieved by calculating a statistic
valled the ‘stress’. This measures the average spread of points
around the line of good fit in the Shepard diagram. By plotting the
slress value for each dimensional solution, a diagram similar to that

in Figure 8.6 will be produced. It can be seen that the stress initially

decreases as the number of dimensions is increased, but that an
‘clbow’ point is eventoally arrived at, and further increases in the
number of dimensions produce no significant reductions in stress.
When this plateau level has been reached, the best possible dimen-
sional solution has been achieved. Further dimensions may reduce
ihe stress, but not to any appreciable extent.

In addition to this comparison of stress values, it is also necessary
io take account of the absolute level of stress in the preferred
solution. If no solution is able to bring the stress below about 10 per
cent, argues Kruskal (1964a), then the results should not be regarded
us giving an adequate fit to the original data. Kruskal suggests that
3 per cent or lower indicates a good fit, while 10 per cent could still
be regarded as a ‘fair’ fit. Stress values approaching 20 per cent are
‘poor’. The stress value for the two-dimensional solution of the data
in Figure 8.5 is 0.

The idea of ‘dimensions’ in a metric space is not the only concept
of dimensionality that has been proposed in social network analysis.
Atkin (1974) has proposed an idea of dimensionality based on his Q-
analysis. In Q-analysis, the dimensionality of a point is one less than
its row or column solution in the incidence matrix. According to
Atkin, this figure gives the number of dimensions that are needed to
represent the point adequately. Thus, a director who sits on the
boards of four companies, for example, must be represented in three
dimensions. From this point of view, however, cach case in a
network will have its own dimensionality, and these may differ from
the dimensionality of the whole network.

While this approach has the virtue of being rooted in ideas close
io those of graph theory, its value in relation to more familiar ideas
i$ uncertain. Freeman (1983), therefore, has rejected the Q-analytic

idea of the dimensionality of a graph and proposes, instead, to:
combine graph theory with the geometrical dimensions discovered::
through MDS. The dimensionality of a graph, he argues, is the
minimum number of dimensions that are necessary to embed the
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graph in a space with a good fit. His criterion of good fit is, how-
ever, stronger than that of Kruskal, and involves the achievement of
a stress value of 0.

The two-dimensional scatter plot drawn on a flat sheet of paper is
familiar and comprehensible, but the number of dimensions that
gives the best fit, at an adequate absolute level, will often be more
than two. In these cases, it is not possible to draw the final
configuration on a flat sheet of paper. Perspective drawing or
cartographical techniques may be used to indicate a third dimension,
but such representations can rarcly be more than illustrative. (See the
work of Levine, 1972, discussed below.} A substantial improvement
over pencil and paper methods is to use computer graphics (o
display a three-dimensional configuration, but this procedure runs
into similar problems if more than three dimensions have to be used.
The most common solution for results in larger numbers of dimen-
sions is to display on paper successive two-dimensional ‘slices’
through the configuration: In a three-dimensional solution, for exam-
ple, the configuration can be represented on paper as three scparate
two-dimensional views of the overall configuration: dimension 1
with dimension 2, dimension 2 with dimension 3, and dimension
1 with dimension 3.

Using the output from an MDS program, a configuration of points
can be plotied within a space defined by the number of dimensions
discovered. Tt is then that the process of interpretation can begin.
There are two issues for interpretation: the meaning of the dimen-
sions and the significance of the spatial arrangement of the points. In
an atlas map, for example, the dimensions can, in general, be treated
unambiguously as the East/West and North/South dimensions of
ordinary geographical space. With models of social networks, how-
ever, the initial task of the analyst will be to arrive at a sociological
interpretation of the dimensions. It may be decided, for example,
that one dimension reflects the economic resources of individuals,
while another reflects their political affiliations. Rotation of the
configuration- may often help in interpreting the dimensions. It is
also pecessary to give some meaning to the spatial arrangement of
the points themselves. A common procedure is to group the points
together, using the output from a cluster analysis of the original data.
Points within clusters are encircled by contour lines, and a hier-
archical clusiering approach would allow the construction of a
contour map of the points. A cluster analysis of Euclidean distances
of the kind proposed by Burt, for example, could be used to plot the
clusters on a Euclidean MDS solution. Alternatively, the results of

multiplicity- and degree-based analyses of graph components and

their cores can:.be mapped onto an MDS solution. Whereas the
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‘contour maps’ of nested components that were discussed in Chapter
6 were drawn in arbitrary positions on the page, those associated
with an MDS solution may represent a more ‘natural’ arrangement
of the data. Figure 8.7 shows a simple example of this procedure.

Dimension
t

Dimension 2

Figure 8.7 A multidimensional scaling configuration

Having produced such a diagram as that shown in Figure 8.7, a
researcher can search for some characteristic common to the points
in the cluster, as these are the distinct neighbourhoods of the space.
Thus, a full interpretation involves identifving the clusters and then
using the dimensions to give some meaning to their position . in
relation to one another. It should be noted that this process of
interpretation is a creative and imaginative act on the part of the
researcher. It is not something that can be produced by a computer
alone. The researcher remains in control of the process and is
responsible for arriving at any interpretations that are to be placed
upon the resuits. Indeed, there is no guarantee that the dimehsions
will be capable of substanfive interpretation: they may be mere
artefacts of the methods of sampling or analysis. There has been
much debate in psychology, for example, over the question:of
whether 1Q testing reflects a real factor of general 1ntelhgence or
SImply reproduces features of the process of testing. - i
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Advances in Network Visualization

MDS and associated technologies have done much to integrate the
concepts of graph theory with spatial ideas. However, the results of
these analyses — particularly for large social networks — can often
show simply a dense thicket of points and lines that cannot easily be
visually inspected. For this reason, a number of social network
analysts have explored the possibilities of marrying MDS with
powerful techniques of structural modelling that can help to visual-
ize and explore network structure in more intnitive ways.

One of the earliest attempts to do this was that of Klovdahl (1981,
1986, 1989), whose viEw-NET program drew on molecular modelling
methods and aimed to use simple three-dimensional ‘ball and stick’
representations of points and lines. The output from this program,
however, has not yet generated easily interpretable representations of
large networks.

Krempel (1994) has tried to move beyond this by developing
methods for simplifying complex structures and so highlighting their
essential features, His method involves the use of a simple — and

arbitrarily chosen — geometric shape as a framework for orgamzmg
the features of a network. The circle diagram illustrated in Figure
8.1 is, of course, a simple example of this kind of procedure, and
Krempel uvses the circle as the basis of his own work. Krempel
generalizes this approach by devising an algorithm that uses graph
theoretical measures to produce a best fit for the relational data to
the circle shape — much as a regression line gives the best linear fit
for a scatter of points. Thus, measures of distance or centrality can
be used in place of aesthetic criteria to determine the location of
points around a circle. Where the data comsist of more or less
distinct sub-graphs, these can each be analysed as separate circles
within a larger circle. The known shape of. the circle gives the mind
a familiar structure for interpreting the overall features of the actual
network.'® Krempel sees this procedure as producing an ‘underlying
structure’ for a particular configuration of relations.

This procedure offers great possibilities for large-scale data sets. It
is possible to compress the lower-level circles of an analysis into
macro-points that represent a whole sub-graph. A sociogram of the
macro-points can then be produced, giving a simplified and clearer
medel, A researcher can choose any particular part of this socio-
gram for fuller investigation and can decompress a macro-point in
order to examine its internal structure. A Krempel diagram, then, is
a hierarchy of nested circles, with the amount of detail shown

depending on. which: of the circles are compressed and which are

decompressed.
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Freeman (1996a) has tried to develop some general principles for
network visnalization, and he has devised and adapted a number of
physical science methods for wse in the analysis of social net-
works. He holds that, at the very least, points and lines should be
colour-coded or otherwise distinguished in order to bring out their
relational properties, that the layout should be organized around the
inost important  structural features of the data, and that time-
(lependent aspects of a network should be brought out by animation
procedures.

Freeman’s particular interest is in using molecular modelling
techniques from chemistry on social network data. In these tech-
niques, points and lines are represented by three-dimensional balls
and sticks, and a number of programs are available that allow this to
be undertaken by computer rather than as a physical model. He has
made a great deal of use of mMoviEMoL, an animation program that
shows dynamic changes in structures (chemical or social) over time.
This program, however, limits the placement of points, as it assumes
that the laws of chemistry should govern where points are located.
At present, it is difficult to modify it for social network data, though
Freeman (1996b) has found it to be useful in analysing changes in
small networks.

A more flexible modelling program is maGe.!* This allows for
greater flexibility in the placing of points (for example, by taking an
MDS output file) and can plot lines by their intensity or multiplicity:
By using the program in conjunction with web-based VRML view-
ers (integral to or easily added to web browsers such as Internet
Explorer and Netscape), it is possible to rotate a network model
around its various dimensions and to zoom in and ont to explore it
in greater detail. MAGE is also able to show some changes over time,
though it does this as a sequence of stills rather than as a continuous
flow. It is possible that further developments could involve morphing
procedures to produce something approaching a true animation.

Elites, Communities and Influence

One of the earliest uses of multidimensional scaling to be under-
taken in sociology was the 1960 community stady carried out by
Edward Laumann (1966). This study has subsequently been enlarged
and extended through a series of related investigations of community
power and elite structure. The research originated in Laumann’s
Harvard doctoral thesis, which was produced under the supervision
of Homans and showed the influence of both Parsons and Hatrison
White. The research brought together the advanced sociometric
concerns of the Harvard researchers with the general- theoretical
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framework of Parsonian systems theory, directing these methods and
theories to the investigation of community structure. The particular
direction that was taken in data analysis, however, derived from the
work of Louis Guttman, whom Laumann met at Michigan. It was
through the influence of Guttman that Laumann decided to use the
techniques of non-metric MDS to analyse his relational data.
Laumann’s starting point was Bogardus’s notion of ‘social dis-
tance’, which was developed in various papers from the 1920s
onwards (see the summary in Bogardus, 1959). Laumann interprets
the idea of social distance as referring to the patterns of differential
association that are found among the occupants of occupational
positions, It is an ‘objective’ measure of how much, or how little,

the occupants of various social positions associate with one another .

in community life. Laumann contrasts this ‘objective’ concept of
social distance with the ‘subjective’ feelings of social distance that
~ agents may experience and that are expressed in their adoption of
positive or negative attitudes towards one another. Thus, Lasmann’s
work is firmly within the tradition of thought that moved sociometric
concerns from the psychological, or ‘subjeciive’ level to the socio-
logical level of relational association. His aim was to arrive at an
operational measure of ‘objective’ social distance and then (o use
MDS to convert this into a metric map of the social structure.
Laumann drew a sample of white male residents in two urban
areas in Boston, Massachusetts, aiming to achieve a high degree of

occupational diversity in his sample. His concern was to undertake a’

positional study of the kind discussed in the last chapter, as his units
of analysis were to be the occupational positions rather than the
individuals themselves. The responses of occupants of each occupa-
tional position to his questions on such matters as friendship choices,
kinship- and neighbouring, were aggregated to produce summary
measures for each position.

The initial analysis involved the use of five occupational categories:
top professional and business, semi-professional and middle business,
clerical and small business, skilled manual, and semi- and un-skilled
manual. These five social positions were used in the construction of
a number of position-by-attribute incidence matrices containing
frequency data, and these data matrices were analysed as conven-
tional contingency. tables. This statistical analysis showed that
friendship choices were largely confined to occupational equals,
whiie other social relations were more l1kely to involve people in
different occupational positions.

The truly innovatory part of Laumann’s work, however, was his
use of MDS to discover whether there was a hierarchy inherent in
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patterns of differential association (Lanmann, 1966: ch. 6). Conven-
tional studies of the occupational hierarchy were based on ‘prestige’
rankings, where popular assessments of the standing of particular
occupations were used as measures of their status. Lanmann rejected
such approaches for their reliance on ‘subjective’ appraisals, and he
sought to use actual patterns of assoclation — of social distance — to
construct a hierarchy, Fifty-five occupational positions taken from
ihe Duncan (1961) index were used and were constructed into a
35 X 55 incidence, or ‘joint occwrrence’ matrix for each of seven
social relations. The separate matrices were summed into a single
incidence matrix of differential association, and the standardized
frequency values in the matrix were treated as similarity measures.
The greater the frequency with which members of one occupational
position interacted with members of another, the ‘closer’ they were
lo one another in social space.'

The results from Laumann’s analysis suggested that a three-
dimensional solution gave the best fit with the original data. The 55
occupational positions were plotted in a three-dimensional space,
and contour lines were drawn around those that were close to one
another on the Duncan prestige index (Laumann, 1966: Figure 6.3,
which gives a fold-out picture of the configuration). Little in the way.
of detailed information is given about this rather arbitrary clustering,
which seems to build in the very ‘prestige’ assumptions that
Laumann was seeking to escape. Nevertheless, his interpretation of
the model is informative. He sees the first, and most important,
dimension as one of prestige. Scores on this dimension correlated at
(1.824 with the Duncan index, It seems that patterns of differential
association did, indeed, follow the pattern described in earlier
studies of prestige. But the pattern could not be understood in simple
one-dimensional terms. The other two dimensions were, however,
less easy to interpret, and Lawmann failed to produce any satis-
factory interpretation for his second dimension. The third dimension
he tentatively saw as contrasting entrepreneurial occupations with
salaried and bureaucratic occupations.

This approach to community structure was extended in Laumann’s
fater study of Detroit, undertaken in 1966 (Laumann, 1973). Laumann
aimed to explore the friendship relations that existed between
various social positions, using a sample of 1013 white males. This
work continued the positional focus of the earlier research, but
¢xtended it from occupational positions to other social positions.
This style of research had much in common with Warner’s pioneer-
ing positional studies, but Parsons (1951) was the spe(:lﬁc theoretical
point of reference:- - . : S .
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The main analyses were those of the ethno-religious and occupa-
tional networks of friendship. Laumann initially analysed ethnicity
and religion separately, but discovered that a better MDS solution
was achieved if they were combined into a single relation. Twenty-
two ethnic groups and 15 religious groups were combined into 27
ethno-religious groups, for which dissimilarity measures were caicu-

lated from the friendship choices of their members. His three- .

dimensional solution (Laumann, 1973; Figure 3.3) showed a strong
first dimension, which separated out the Protestants, the Catholics
and the Jews. The second dimension seemed to measure economic
standing, and it correlated well with family income, while the third
dimension measured frequency of church attendance. Thus, the
ethno-religious groups were structured by the three dimensions of

religion, income and church attendance. Catholics, for example,

were differentiated into high and low income groups and were,
independently, differentiated by the frequency of their church attend-
ance. The identifiable clusters of positions in the social space
frequently had an ethnic basis to them.

The occupational analysis in Laumann’s study involved 16 occu-
pational groups, and a two-dimensional solution was found to give
the best fit. His discussion of these data largely confirms the results
of the earlier study. The first dimension, he again concluded, was
status or prestige (it correlated with income and educational attain-
ment), and a second dimension divided the entrepreneunrial from the
bureaucratic.

Working with Pappi, Laumann has further extended his analysis
of community siructure to the level of the ‘elite’, drawing on the
work of Hunter (1953) and Dahl (1961) and their investigations of
community power (Laumann and Pappi, 1973, 1976). They studied
the small town of Julich in western Germany, to which they gave the
pseudonym ‘Altneustadt’. This was a rapidly expanding town during
the 1950s and 1960s, and communal divisions had emerged between
established and newcomer groups, divisions that had their political
foci in, respectively, the Christian Democratic Union and the Social
Democratic Party. The study was, again, positional in approach,
Although individual occupants of positions were sampled, it was the
relations between the positions that were important. The social
positions on which they focussed were the ‘highest positions of
authority’ in each of the Parsonian A, G, I and L institutional sub-
systems. Forty-six. occupants of these positions were interviewed,
each being asked to name which of the other 45 they considered to
be most influential in the town. There was a high degree of
consensus over thisr ‘Herr K’ received 46 votes as the most
influential person and, as he had nominated himself for this position,-
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the researchers clearly had to take the diagonal of the data matrix
seriously. Laumann and Pappi looked at interactions among the 46
people in three kinds of social relationship: business and pro-
fussional relations, ‘social, expressive’ relations (e.g., those rooted in
education, religion and residence) and community affairs relations
(political coalitions and alignments).

Sociometric choices were plotted for each of these relations, but,
as the researchers were interested in the presence or absence of a
relation rather than in its direction, these were converted into
symmetrical matrices. The geodesic matrices were used for non-
metric MDS, and two-dimensional solutions were produced for each
type of relation. The interpretation placed upon the resulting struc-
tures was that location towards the cenire of the configuration of
points could be taken as an indicator of ‘mtegrative centrality” in the
community structure. Taking the ‘community affairs’ networlk,
which showed the political structure of the community, the central
zone of the structure comprised an ‘inner circle’ of influentials in the
power structure. Figure 8.8 shows a simplified version of the
Laumann and Pappi map of the community power structure in
Julich. Points are seen as arranged in zones of decreasing centrality,
and lines of political division could be drawn that separated those
groups with opposed views on each of five key community issues.
This combination of centrality with issue division resulted in the
identification of a number of distinct segments in the community
power structure.

MDS has proved a useful technique for furthering certain types of
investigations of community power and highlighting the existence of
local elites. It has also been used most impressively- in an investiga-
tion of national-level elites. Where Laumann and Pappi uvsed a
reputational method for discovering local elites, Levine (1972) has
used interlocking directorships in business to identify a national
economic elite.

Levine was one of the original network investigators in the new
wave of Harvard researchers and he pioneered the use of MDS
rather than graph theory as a technique for social network analysis,
Using data from the 1966 Patman enquiry into bank operations in
the United States, he investigated the top 100 industrial corporations
nnd their connections with 14 banks in three cities. Seventy of these
industrials had bank interlocks and so Levine constructed a 70 X 14
incidence matfrix to show the number of directors in common
between each pair of enterprises. The number of directors: in
common was taken as a measure of ‘preference’, or similarity,
between the enterprises.. The incidence matrix was analysed in order
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® Centre of configuration

I Zones of decreasing centrality

Lines of issue division

Figure 8.8 Community elite structure

to produce a joint space in which both the banks and the industrials
could be located. :

The results from Levine’s analysis showed that a three-
dimensional solution gave the best fit with the original data, and
Levine was able to give a sociological interpretation to two of these
dimensions. The first,and most important dimension appeared to
reflect a regional structuring of the data, separating out the New
York, Pittsburgh and Chicago enterprises. No interpretation could be
given to the second dimension, but Levine held that the third
dimension separated: the banks from the industrials. His results are
summarized in‘Figure 8.9, - '

Levine’s view was:that the structure could be seen as forming 2
sphere around the-centre of the joint space. The structure of the
sphere comprises an. onion-like arrangement of layers or concentric
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Figure 8.9 Multidimensional scaling and bank interlocks . -
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shells. Looking along the third dimension, industrial enterprises are
located on various inner shells of this sphere while banks are located
on outer shells in the same dimension. This pattern is shown in
diagram (i) of Figure 8.9. The exact location of the enterprises on
the shells was described by the first and second dimensions, showing
that both banks and industrials were regionally differentiated around
their respective shells.

The centre of this spherical configuration, argued Levine, is the
position that would be occupied by isolated enterprises — those
without any interlocks. These enterprises were excluded from his
data set and so, in the final configuration, the centre was empty.'¢
Those clusters of industrial enterprises that were interlocked with
particular banks — the groups that Marxist writers have described as
financial interest groups — can be seen as sectors or ‘wedges’ in the
sphere, as shown in diagram (ii) of Figure 8.9. If a line is drawn
from each bank to the centre of the sphere, each line, or vector,” is
the central axis of that bank’s sector of the sphere. The distance in
space that an industrial enterprise lies from the bank, measured
along this vector, is an indication of its closeness to the bank, and

the angle between this vector and that which connects the industrial

company to the centre of the sphere is a measure of how peripheral
the industrial is within its wedge.

Although describing the overall configuration of bank—industry
interlocks as a sphere, Levine also described the wedges associated
with each bank as their ‘spheres of influence’. The rationale for this
terminology was that the two terms relate to differing viewpoints on
the same structure. Viewed from the standpoint of each bank, there
are spheres of connection around them. Looking at its interlocked
enterprises from the standpoint of the apex of the conical wedge that
it forms (see Figure 8.9), a bank would see these enterprises as
arrayed in a circular pattern around it. But these bank spheres of
influence intersect with one another in such a way as to produce
the overall spherical configuration of the joint space. Looking at the
overall structure, the bank spheres appear as conical wedges of the
larger sphere of intercorporate relations. Levine equates this differ-
ence in viewpoint with the difference between a geocentric and a
heliocentric view of the stellar universe. Instead of remaining at the
level of the ego-centric spheres of particular banks, Levine proposes
a shift of viewpoint to see the socio-centric features of the overall
structure itself. '

The final question considered by Levine was that of how best
to represent his three-dimensional configuration on a flat two-
dimensional sheet of paper. Figure 8.9 used the trick of perspective
drawing to. achieve' this, but the limitations of this method have
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already been indicated. To improve his presentation, Levine turned
(o the cartographic projection methods used by geographers to map
the three-dimensional structure of the earth onto a flat surface. He
rejected the idea of using any of the two-dimensional views pro-
duced by the MDS procedure itself, as these produced particularly
undesirable distortions. Such views are based on a ‘parallel pro-
jection’, a view from infinity. This projection is rarely used by
cdrtographers because of the distortions that it involves. This is
shown in Figure 8.10, where the peak and base of a mountain appear
a8 separate points in a parallel projection. In a parallel projection the
vertical separation of the peak and the base produces a horizontal
and lateral separation of them in the resulting map.

Peak and base
Peak |- ————— " Peak
Base[ ———=—— (Base
Earth, with mountain cn
its surface
Paralie! Eoint_
projection projection

Figure 8.10 Alfernative projections

To solve this problem, Levine proposed a form of ‘point pro-
jection’ from the centre itself. In cartography, this is termed a
gnomonic projection. In this projection, all points on the same radius.
are mapped to the same position on the page. Thus, as shown in’
Figure 8.10, the peak and base of a mountain appear as a qmgl_c_g_ _
point. An adequate representation of Levine’s data would .show-__
clearly the association - between particular banks and their. linked:
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industrials — they should appear as clear clusters on the page. A
gnomonic projection, argues Levine, satisfies this requirement. Each
bank appears at the dead centre of its cluster, and the industrials on
the inner shells of the sphere are brought closer to those banks on
the outer shells to which they are connected. In this way, the
separate ‘bank spheres of influence’ are retained in the map of the
overall structure. The gnomonic projection of the configuration is
shown in Levine (1972: Figure 10).

Levine’s work serves as an important indicator of both the promise
and the achievement of the methods of social network analysis. It
was one of the pioneering studies, carried out by one of the first
generation of the new group of Harvard network analysts, yet it
remains, perhaps, the most advanced example of how social network
analysis can proceed in a substantive application. In Levine’s work,
ego-centric and socio-centric concerns are integrated into a coherent
model of the embeddedness of networks in a multidimensional
space. It points the way forward in offering a framework in which
the principal concepts of graph theory — density, centrality and social
circles of all kinds — can be allied with positional concepts
describing regional and industrial sectors and can be displayed in
sophisticated and easily comprehended diagrams. My aim in this
ook has been to offer some clarification of the leading theoretical
ideas that must figure in this kind of methodological and theoretical
synthesis.

APPENDIX

Social Network Packages

At a number of places in this book I have mentioned the availability of different
procedures in social network analysis software. The purpose of this Appendix is to
turn to the main programs which are easily accessible to researchers and to try to
indicate their principal features. I will discuss, from a user’s point of view, the four
major packages that are available for personal computers: GRADAP, STRUCTURE,
UCINET and PArEk.

GRADAP

GRADAP is the ‘Graph Definition and Analysis Package’. It was originally developed
for use on certain CDC Cyber mainframe computers, but a PC version was produced
in 1988, Minor improvements have been made to the program, but essentially the
same version is still available.! The program runs on a minimum specification PC,
but requires a mathematical co-processor (integral on most 486 and all Pentium
machines). The program runs with a minfmal memory requirement as i builds
overlay files on the hard disk. It runs directly from DOS or in a DOS window in
Windows (any version). The manual is comprehensive, but its 580 pages manage to
avoid telling the wser in simple terms how to actually run the program.

GRADAP is not interactive, but runs in batch mode. The program was designed to
be compatible with spss data files and conunand language, and it operates in very
much the same way as spss, with an input ‘program file” and separate data files. The
instructions and data are read from input files, and, if all goes well, the user is
presented with the opening screen and a lot of hard disk activity before being
informed that the run has been completed. {Rather confusingly, the opening screen
says that it is ‘loading’ the program, even when analysis is well under way.) The
input command file contains the instructions for running the program’s procedures.
The commands are written in a style that follows closely the language and syntax of
spss. The command file has separate ‘PROCEDURE’, ‘OpTioN" and ‘staTisTics’ lines to
specify exactly which analyses are to be undertaken.

The results are written to a new output file. This is a normal text file that can be
printed or viewed on the screen. GRaDAP operates in the wide 132 column format,
rather than the 80 column screen format, and so it is necessary to print in a small
(and non-proportional} font if the output is to be readable. The output fife contains
all the calculations and listings that were requested in the input command file.

The basic data required for a GraDAP analysis comprise a point set and a line set.
The first comprises a list of the points in the network, together with information on
their characteristics (the ‘pointinfos’}. Examples of pointinfos would be the names of
the people represented by the points or their responses to items on a guestionnaire or
interview schedule. The line set lists each line by the two points at its ends, allowing
a direction to be assigned by identifying one point as the ‘head’ and the other as the
‘tail’. As. in the point set, ‘lineinfos’ can be added to each line, showing, for
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example, the type of relation, its place and duration, and so on. Further details on the
format of the Grapar data files can be found in Chapter 3 above.

For any analysis to be possible, the graph must be built up from the point and line
data. The user declares a name for the graph and refers to it by this name. Behind
the scenes, Grapap converts the raw data into internal system files — five for each
graph. These are given the DOS extension “.GSF’, but they need not normally
concern the user once they have been created.? Once this graph file has been created,
further analysis can be carried out on the same graph system files by using the
command ‘USE GRAPH aame’ in an input command file, where ‘name’ is the name
given to the graph. When this command is used, Grapap automaticafly invokes the
system files and operates on them. The system files can be backed up or archived
with the command ‘SAVE GrRaPH name’. This writes the system files to a single large
file. Working system files can be reconstructed from this file by using the command
‘GET GRAPH name’ .’

The main general purpose procedures for undertaking social network analysis in
GRADAP ar¢ SUBGRAPHS, CENTRALITY, ADJACENCY and pistance. The chosen pro-
cedure must be named in an input comunand file after the graph and task have been
specified, or immediately following another completed procedure. The PROCEDURE
line specifies the particular analyses that are required. Tt is followed by an orrion
line and, in some cases, a STATISTICS line that specifies exactly how the particular
precedure is to be implemented.

SUBGRAPHS comprises a set of routines for the identification of cliques, com-
ponents and ‘blocks’ (i.e., cyclic components), in directed and in undirected graphs,
and the user can set various minimum sizes and distances. The available options
make it possible to specify how detailed the output should be and where it should be
listed. For each sub-graph that is identified, the ontput normally shows its size and
density and, if chosen, a list of its members.

CENTRALITY is used to calculate the local and global centralities of the various
points and the density and overall centralization of the whole network. A number of
alternative measures of point centrality and graph centralization can be chosen.
Using the stamistics line allows such topics as spread and attenuanon to be
explored.

ADIACENCY constructs the adjacency matrix, taking account of the multiplicity of
the lines, and the available options specify whether the matrix itself is listed along

with details on the neighbourhood of each point and, in directed graphs, the’

indegrees and outdegrees of the points. The staTisTics line for this procedure allows
the user to specify how points are to be sorted for output (for example, by name or
by reference number).

Finally, pisTance constructs the distance matrix and derives such measures as the
‘reachability’ of points ead their sum, median and mean distances from other points.
The statisTics line determines how the matrix is to be sorted and whether the
diameter and . various. other parameters for the network as a whole are to be
calculated. .

The adjacency and distance matrices can be printed to files for analysis by other
packages, such as those.concerned with multidimensional sealing or cluster analysis.
These procedures themselves.are not available in the Grapap program. The program
is, however, compatible with dBase and mGres database formats.

For all its power, OrADAP is somewhat cumbersome and is not cspec1ally user--
friendly. H has. all the disadvantages of having been a pioneer, and it is unfortunate
that its developers have been unable to produce a newer version of the program. It

s
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i, however, systematically rooted in graph theery and offers a wide range of
mensures with intuitively understandable listed output,

STRUCTURE

#IRUCTURE began its life in 1975, when Ronald Burt produced it for his own work
uk structural autonomy. He has since expanded the original program inio a powerful
silite of programs.* It is currently available in two different forms: a Basic Edition,
which runs on zlmost any PC, and a Virtual Memory Edition, which requires a 386
1 better computer with 1 Mb RAM and 5 Mb free disk space. The Basic Edition of
{lic program is limited in the size of network (85 actors) that it can handle because
it works exclusively in RAM, whereas the Virtual Memory Edition swaps data back
unel forth to the hard disk and so can deal with much larger networks (999 actors
with 53 Mb free work space on your hard disk). With the growth in the size of hard
dtisks in recent years, the Virtual Memory Edition should be a possibility for many
users, On-line and printed manuals are available. There is an assisTANT program for
wsg in preparing command files and the 5eprT program for handling data files. _

Like GRADAP, STRUCTURE runs in batch mode, rather than interactively, and so it is
necessary to set up an input command file, a data file and an output file. '[’i'mT Basic
program is loaded by typing ‘struc’ at the DOS prompt — there is no Windows
vorsion — and then, when prompted, entering the name of the input command file.
‘T'his file tells sTrRucTURE Which data file to use, the particular analyses to perform,
und the name of the output file in which the results are to be stored. To run the
Virtual Memory Edition, it is necessary to type “vsTRuc’, and this presents the user
with a menu system that allows a degree of interactive use.

The command file is simply a text file that can be produced in any text editor, with
% word processor, or with assistant, The file comprises a number of separate
gommand lines, and the AssisTanT program helps to compile these. (It alse has in-
built procedures for help in testing equivalence hypotheses and undertz_lking Monte
Carlo analyses.) The core lines in a command file are those that contain the DaTA,
NETwORK and anaLyze commands. These name the data file, describe the data, and
set out the particular procedures to use in the analysis. At its simplest, then, a
command file contains just these three lines. Mere complex analyses can be uader-
tuken by building sequences of these three lines, each anaLvzE command 'te}ling the
[rogram to carry out the analysis requested. An anarLyze command on its own,
however, simply performs default calculations, and the line will normally be
preceded by specific commands and options. The main procedures are CLIQUES,
rowER, rositions and auTonomy and the options include those for calculating
density and other graph parameters. Data files are simple matrices and can b.e
produced like a command file or with a spreadsheet or database package that is
capable of writing an output matrix. It is also possible t0 use GRADAP Fo produce
matrices for direct input to structure. The rEpiT program, however, is a useful
aliernative to this. )

The program itself is based around Burt’s ideas on cohesion, structural equiva-
lence, prominence, range and brokerage. This means that it departs semewhat from
ihe assumptions of graph theory that underpin GraDaP and vciner. The posiTioNs
command, for example, is used to undertake analyses of structural equivalence,
while auToNomMy explores structural autonomy and constraint.” The program can also
be run in an error-detection mode that checks the syntax of commands and the
{ormat of the data files. This prevents the program from going into a lengthy run and
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then crashing because of a syntax error deep in the command file. T have not fully
tested the program for speed on varying networks, but the Basic Edition is faster
than the Virtual Memory Edition on small networks. This differance is largely
because of the time that is taken up in setting-up the virtial memory files. There is,
then, a slight time penalty in using the Virtual Memory Edition on small data sets,
but this is more than outweighed by the possibilities that it offers for analysing large
data sets.

STRUCTURE is easy to use and well supported, but it lacks the comprehensive range
of graph theoretical procedures found in the other programs. It makes up for this in
the power of its specialized procedures for positional analysis.

UCINET

vciNeT was produced by a group of network analysts at the University of California,
Irvine (UCI). The current development team is Stephen Borgatti, Martin Everett and
Linton Freeman.b It began as a set of modules written in BASIC, progressed to an
integrated DOS program, and is now available as a Windows program. It is a general
purpose, casy to use, program that covers the basic graph theoretical concepts,
positional analysis and moltidimensional scaling. It is, in my opinion, the best of the
currently available programs and the one that is most accessible for the novice user.
The program will run on virtually any modern PC, so long as it has at least 1.5 Mb
of RAM. Memory is important, as the program operates in virtual memory wherever
appropriate, trading off speed against the ability to handle large data sets. It can’
handle up to 300 points for basic clique procedures, though procedures such as
multidimensional scaling can be run only on smaller networks.

vemET 5.0 data files are the same as those for Version 4.0, but they differ slightly
from those used by Version 3.0. These data files are in matrix format and consist of
simple alphanumeric files, The rows in a data file represent the rows in an incidence
or adjacency matrix, but a header row contains details on the number of rows and
columns and the labels to be used for them. The program contains in-built pro-
cedures for converting earlier vciNer data files, and it will also comvert STRUCTURE
and NeEGOPY files into vemNer format, In addition to exporting in various forrnats,
a number of conversion utilities are provided to allow vcmer to feed, almost
seamlessly, into other social network analysis programs.

As well as a series of commands for file management and setting program options,
the menu bar has four principal options: bATA, TRANSFORM, NETWORK and TOOLS. The
Data and TRANSFORM options together allow most of the basic data management
tasks to be carried out: inputting, transforming and exporting are alt handled in this
way. ‘

The easiest way to produce data files is by using the intuitive and built-in,
spreadsheet-style data entry system, which is aceessible from the paTa menu or from
a button on the tool bar: This uses a linked list format that shows, for each point, the
code numbers of all the other points to which it is cornected. As well as entering and
editing through the ucmer spreadsheet, it is possible to import (and export) data
from ExceL workshee(s. The data file can be edited after the initial data entry, and
various permutations and: transformations can be performed on it so as to identify
subsets for further -analysis, For example, the rows and the columns can be
permutated, sorted, or transposed, or the weightings of lines can be altered. This
latter procedure — termed. ‘dichotomizing’ the matrix — makes it easy to prepare a
series of data files for use in the analysis of, for example, nested components; -
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The principal social neiwork analysis procedures are found under the NETWORK
mienu, where there are sub-rnenus for COHESION, COMPONENTS, CENTRALITY, SU'B
(iIROUPS, ROLES & POSITIONS, and various more specialized procedures. COHESION gives
uccess to basic line calculations of paths, distances and geodesics, and a separate
PrROPERTIES menu allows the calculation of density. centraLITY is the venue for all
the various measures of degree, closeness, betweenness and other appreaches to
centrality and prominence. The sUBGROUPS menu gives access to a numi_aer of
powerful techniques for the detection of r-cliques, n-clans and k-plexes, while the
COMPONENTS option detects simple components, cyclic components and k-cores.
Complementing these graph theoretical measures are the measures for structural
cquivalence that are found under roLes & postTrons. Here it is possible to run both
concor and rEGe, as well as other algorithms for positional amalysis. Finally, the
‘rooLs option is used for metric and non-metric multidimensional scaling, cluster
analyses, factor analysis and correspondence analysis. The output from thf:_se;
procedures can be plotted on screen as scatter diagrams or .dendro_grams. Thfase will
be quite suitable for many purposes, though proper visual inspection of sociograms
means transferring the output into a more specialist program.

PAJEK

rasek — the word is Slovenian for spider — was specifically devised to handle very
large data sets. Produced by Vladimir Batagelj and Andrej Mrvar, it was releas;d at
the end of 1996 and has been periodicaily up-dated. As development is still in
progress, it is still not in official release form.” ) _
The program is a Windows program that displays its results and workings in a
main window and various subsidiary windows. The equivalent to the paTA and
TRANSFORM oOptions in UcINET are called FLEs and nNET in pasex. The FiLEs menu has
options to read, edit or sort data files — which are similar in format to uciNer data
files — and can be either the adjacency matrices themselves or the results of
purtitioning or clustering the data. Using commands available from n~et, the
networks can be transposed or reduced. This is also the place where the command to
detect components is hidden away. A number of other menus aflow a varie-ty of
partitioning and clustering options that are specifically desigm.zd to reduce the size of
very large networks and make them more amenable to analysis. A large network can
be analysed and partitioned, for example, and then the partitions can each be
analysed separately and in greater detail. )
pasgk does not contain the vast array of network measures contained in UCINET or
GRADAP, but it does allow some powerful processing of large networks, For many
users, however, the most interesting parts of the program will be the various options_
found under the prRaw menu. k is here that the user can gain access to procedures for
the two-dimensional and three-dimensional drawing of sociograms on screen. PAJEK
uses a spring embedding procedure, similar to MDS, and the resulting sociogrm"ﬂ can
be coloured and labelled to bring out its central characteristics. Options are available
to spin and rotate the sociogram for inspection from a variety of .angles, alnd pcfin;sj
can be moved easily by dragging with the mouse. All aspects of these manipulations
¢an be controlled in great detail. The sociograms created can be exported in a variety
of formats, including Postscript (for printing), MOL for molecular modelling and
VRML for web viewing, ‘
Although the documentation of the program is rather limited, paEk ‘WIll be
extremely useful to those who are analysing large data sets (thousands of points cun,
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apparently, be handled efficiently) and those who are locking for an easy and
accessible way to produce network visualizations, The program has massive poten-
tial for fumre development. One particularly striking feature is the macro facility, an
advance on the command files of Grapar and UCINET, that allows operations to be
recorded and stored for later use. This points the way for other programs that will,
increasingly, have to build in at least a rudimentary macro language for controlling
the way that the program operates.

Other Software

KRACKPLOT Devised by David Krackhardt, together with Cathleen McGrath and
Jim Blythe, the program is distributed by Analytical Technologies.® Data input files
can be produced by converting vcmner files or directly in a text editor, It is
specifically designed to draw data on screen and can produce circle diagrams and
MDS displays. Points can be labelled and they can be moved under mouse control.
Sociograms can be displayed, printed, or saved in GIF format.

NETIMAGE Produced by Linton Freeman® It is a small program that produces
camera-ready images of graphs. It comes as a series of programs that allow it to run
under Windows, UNIX or LINUX. When the main program is run, a window
displays the sociogram. Datz input can be UCINET output files or simple text files.

NEGOPY  This is one of the original network analysis programs, produced by Bill
Richards.'® It runs under DOS or from Windows. The program handles up to 1000
points and 20,000 lines. It specializes in the detection of sub-graphs that have
similarities with both cliques and positions. A related program from the same source
(MuLTiNer) allows various forms of structural equivalence and specializes in the
handling of ego-centric data. A version is under preparation that will allow the
import of uciNeT and KrackpLOT files.

Conclusion

Ultimately, the choice of which of the main programs to use will be a matter of
personal preference, and, perhaps, of personal finance. GRADAP seems to handle fairly
large data sets on basic computers more essily, and it is based around the familiar
tenets of graph theory. strRUcTURE is slightly more user-friendly, thanks to the
ASSISTANT program, and it allows for simulation testing using ‘Monte Carlo’ runs,
but it has only a limited range of gemeral purpose procedures. pAIEK is stil in its
development stage, but handles very large data sets, and is easy to use. UCiNer has
many powerful features, and the current version, running interactively under
Windows, is fast and efficient with a very wide range of measures available,

New programs are appearing all the time, often based around innovative — and
sometimes unfamiliar ~ methods and measures. Tt is well worth checking these out,
so long as you are clear about, what they are trying to do. Most can be discovered
from the INSNA home page and following through its connections.!! Many new
programs are announced through the SOCNET information service.'?

Notes

Notes to Chapter I Networks and Relations o

| This distinction draws on earlier arguments of Wellman (1980) and of Berkowitz
and Heil (1980). . _

2 But see also the interesting attempts of Abell (1986) to apply the tec.:hl_nques _of

graph theory to the analysis of sequential patterns of action. While this is not, in

itself, an example of social network analysis, graph theory is fundamental to the

analysis of social networks. .

The choice of four friends to name, though common, is quite a:bltr&r){. The

general point applies no matter how many friends may be specified in the

questton.

-

Notes to Chapter 2 The Development of Social Network

Analysis _

1 Moreno first used his sociogram at a conference in 1933. Its use was reported in

the New York Times of 3 April 1933. .

2 Balance theory rests on the assumption that individuals will find imbalance
uncomfortable and so will act to establish or re-establish some kind of balarllce.
This psychological assumption is, of course, contestable, Graph tl_'leory. itself is a
purely mathematical framework and its application does not require this psycho-
logical assumption. _
The position outlined in Cartwright and Harary (1956) is more complex thztn tl'us:
as they define balance not simply in terms of triads, but in terms of any ‘cycle
of lines. The notion of a cycle is explored further in Chapter 6 below. The lzfter
work of Davis (1967) showed, in fact, that balance could be assessed by taking
accoant only of triads, which have, he argued, a structural significance of the
kind recognized by Simmel. .
4 This might be taken to support the idea that all cohesive groups deﬁnelthelr
identities by contrasting themselves with an ocut-group of aliens or cutsiders,
whether real or imaginary. See Erikson (1966). i
Davis misleadingly talks of these sub-groups as ‘cliques’ and ‘clusters’, but they
are neither cliques nor clusters in the sense that it has become customary o
define these terms. For this reason, I have used the general term sub-group to
outline his position. The terms clique and cluster will be defined in Chapters G
and 7. ' i
6 Mayo’s. own wider-reaching accounts of the work can be found in Mayo (1933,

1945).

7 As w)ill be apparent from my discussion in Chapter 6, the substant‘ive concept of
‘clique’ used by the Hawthorne researchers is different from, and far looser .thﬂn.
concepts defined in purely sociometric terms. :

¥ The Arensherg. and Kimball (1940) study of rural Ireland had afso. been

L]
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12
13
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supervised by Warner at Harvard and was closely related to the Yankee City
study.

As remarked in note 5, this idea does not correspond to the sociometric concept
of the clique. Warner’s sociological idea might as appropriately be termed a
social ‘set’ or a ‘crowd’.

This is not a purely circular process, as it is possible to have individuals from
each of the six classes who were, for example, members of a clique with pre-
dominantly class 1 membership.

From this positional analysis of stacked matrices they proceed to the construction
of image graphs — again, a pioneering and undeveloped aitempt at techniques that
would not become common place for another 30 years. Developments of this
approach are discussed in Chapter 7 below.

Homans uses the word ‘order’ instead of the more meaningful term *direction’.
Their analysis of 18 women is, in fact, merely an illustrative selection from their
data on over 60 cliques in Old City.

Homans’s presence at Harvard, where many of the original researchers still
worked, means that some credence must be given to this statement. It is
contradicted, however, by the actual report of Roethlisberger and Dickson
(1939).

Despite his opposition to Parsons’s theoretical position, the distinction between
the ‘internal’ and the *external’ is very similar to that employed by Parsens and
which became the basis of a distinction between the external ‘A’ and ‘G’
functions and the internal ‘T" and ‘L.’ functions. As I note below, Parsons drew
his concepts from reflections on the small group research of Robert Bales
(1950).

Homans builds further on this model by introducing hypotheses about norms,
status and leadership. Some of this is illustrated through case studies, but none is

- specifically sociometric.

17

18

19

20

21

22

23

Bott was not a member of the Department, but was a close associate of its
members.

‘Interpersenal order’ is probably a better term, as the phrase ‘personal network’
can easily be confused with that of the ego-centric network. The latier idea is
discussed below and in Chapter 4.

This is the same distinction as is found in Parsons and in much sociology of the
1950s and 1960s. See the related view in Lockwood’s discussion of Parsons in
Lockweod (1956). The distinction was re-discovered by Habermas (1968). Tt was
also related to Homans’s distinction between the internal and external systems.
This view of multiplexity and the ‘stacking’ or combining of relational data has
been central te Mitchell’s mathematical concerns.

Mitchell also gives brief mention to the ‘frequency’ of a relation, but this is best
seen as a measure of activation rather than of the relations themselves.

INSNA is an’international group for the exchange of information and mutual
intellectual support. It publishes a newsletter, Connections, and was involved
in the foundation of the journal Social Networks. lts website can be found at
http:/iwww.heinz.cmu.edu/project/INSNA This site holds back copies of the
newsletter and links to other social network sites.

This model of attenuation- is based on the well-known observation that a
whispered message- passed along a line of people will gradually become
distorted. In Grancvetter’s model, the amount of information that flows is
reduced with..each step in the chain, so those who are far removed from the
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source are unlikely to receive much accurate information about the job oppor-
funity.

24 It is preferable to see the relational or structural approach of network analysis as

complementary to cultural approaches, rather than as something that can incor-
porate and replace them. See White (1992a, 1993), and the discussion between
White and Brint (Brint, 1992; White, 19920b).

Notes to Chapter 3 Handling Relational Data

I Even if it is physically ‘square’, having the same number of rows and columns,
it is logically rectangular.

2 There can, of course, be three-mode or, more generally, n-mode data, depending

on the number of separate sets of points that there are. There are, however, no
readily available and tested methods for handling these more complicated forms
of data.

3 The incidence matrix is, in effect, a one-column vector,

4 Compuiational procedures that operate directly on an incidence matrix are an

exception to this argument. Some of these procedures analyse the rows and some
the columns of the matrix, while others analyse both the rows and the columns
simultaneously. In such cases, it is necessary to make sure that the appropriate
set of agenis is made the target of the analysis. If the particular procedure
analyses only the columns (as is ofien the case), the matrix may need to be
transposed in order to analyse the agents which have been designated as ‘cases’
in the original matrix. Certain other exceptions to this claim that the distinction
between cases and affiliations is arbitrary will be noted in later chapters.

5 The ‘binary’ data referred to here and throughout the book involves the use of

binary digits to indicate the presence or absence of a relation. This does not
involve any attempt to represent the strength of a relation as a binary value.
Thus, & relation that has a value of 3 (there are three common affiliations
between the two cases) is represented in binary form simply as ‘1 (a relation is
present) and not as the binary numeral 11. This should not normally cause any
confusion, and s¢ I follow the normal practice of referring simply to the
distinction between binary and valued data.

6 If complex data have been reduced to simpler data, it is possible to return to the
original data and to transform them into a different form of simpler data.
However, it is not possible to convert raw undirected data, for example, into
valued or directed data without drawing on information about values or direction
which was not coded into the original, undirected matrix,

7 Most word processors save their documents in a proprietary format, and it will be
necessary to save the file in text or ASCII format. Such a file contains nothing
but the codes corresponding to letters and numbers. See Roistacher (1979).

8 The numbers and letters that are used to refer to the cells of the spreadsheet need
not be used as data labels, especially if the data are separately labelled and
amnotated. The numbers and letters are there simply so that there is an
unambiguous way to refer to any cell in the spreadsheet. Unfortunately the
convention on spreadsheets is the opposite of that for matrices: in referring to the
cells of a spreadsheet, columns come before rows. Such is life! :

9 Some tasks can be undertaken with a database program such as access, though
these are not especially suitable for social network analysis purposes. I is
important to note that the relational database is not, as it might appear, a database
for relational data. The word ‘relational’ is being used in two distinct senses.”
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Some of the principles of database construction are well covered in Brent
(1985).

10 strucTurE and ucmEeT require header lines that describe the format of the data.
These lines are added above the data, before exporting it, to give information
about the number of rows and columns and the type of data.

11 There is a slight ambiguity over the meaning of the word ‘line’ in graph theory.
The relation between company | and company 2, for example, can be described
as consisting of three lines (each created by a different director) or of a single
line with a ‘value’ of 3 attached to it. The second usage is preferable for most
purposes.

12 The distinction between ‘tail’ and ‘head’ is arbitrary in undirected networks. In
directed networks, lines are described as directed from the tail to the head: the
head of the line is where the arrow head of the sociogram points. Figure 3.4
shows that the tail comesponds to the row elements and the head to the column
elements.

13 These terms have been widely used in discussions of elites (Scott, 1999). It was
Laumann et al. (1983) who recently showed their more general relevance to the
issue of sampling.

i4 See the systematic comparisons on this basis in Stokman et al. (1985).

15 When a positional approach is used and all cases above a cut-off threshold are
selected for study, we are not dealing with a sample in the sirict sense. Taking
all cases that qualify might be termed guasi-enumeration. Tt is not a complete
enumeration, as links to those outside the “slice’ are ignered. For a proposal on
data selection in large-scale corporate networks which avoids this problem, see
Berkowitz et al. (1979).

16 The directors do not constitufe an independently drawn sample, and this
cireularity precludes the use of many conventional statistical tests, which assume,
for example, the probability sampling of cases.

17 paigx, discussed in the Appendix, makes great promises for the handlmg of very
large data sets.

18 Density, which will be discussed more fully in the following chapter, can be

calculatéd from the mean number of connections held by agents in a network.

19 The question of popularity in sociometric studies is one form of the measurement
of ce,ntrallty in network analysis. This measure will be discussed in
Chapter 5.

20 The initial choice of respondents is, of course, important in a snowball sample 1f
-bias-is to be avoided.

Notes to Chapter 4 Points, Lines and Density

1 Points are sometimes referred to as ‘vertices™ or ‘nodes’, and lines are some-
times termed ‘edges’. or -‘arcs’: . There is no real advantage in using these
alternative words, and so I retain the simplest usage.

2 ‘Graph diagram’. is ‘the general term, ‘sociogram’ is the term used for 4 graph
diagram of a -social network as opposed to that drawn, for example. for an
electrical wiring-network, As-this book is concerned with sociological applica-
tions of graph. theory; I shall- sometimes use the two terms interchangeably.

3 A valued graph: is sometimes, rather misleadingly, called a ‘network’. This
terminology is best.avoided, as all graphs should be seen as models of networks.
Some writers distinguish ‘signed graphs’, where the relations are characterized as

- .positive or negative; as. was.seen in the case of balance theory in Chapter 2. It
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scems more appropriate, however, 1o see the signed graph as a kind of valued

graph in which the values are positive or negative binary digits. Alternatively, it

could be seen as the compound graph censtructed from two simple graphs, one
with positive values and one with negative values.

In a square matrix, the row sum and the column sum for a particular point will

be the same. If only the lower half of the matrix is available, the row and column

sums cammot be calculated unless the remaining values are included. Those social
network programs which accept data as a lower half matrix will perform these
adjustments automatically.

Schoolteachers taught us that all measurements must have a unit attached to

them. In graph theory, the ‘line’ is generally the unit. That is, we could say that

the distance between two poinis is ‘three lines’. This unit is not, however,
normally given.

6 Note, however, that points C and A are directly connected by a line.

7 To complete the interrelated formulae, the actual number of lines is equal to half
the sum of the degrees, and so density can also be expressed as Zd/n(n—1),
where d, is the degree of point i.

8 Inclusiveness, the proportion of points which are actually connected, can some-
times be more meaningfuily expressed as a percentage, but this is not approprlate
for small numbers.

9 See the recent discussions of this question in Sharkey (1989, 1990) and Timms
(1990).

[0 The Grapap program allows a calculation of density based on multiplicity
weightings, but it has no other density measures for valued graphs.

[1 More general arguments on the significance of size can be found in Blau (1977a,
b), Rytina (1982) and Rytina and Morgan (1982).

{2 Morgan and Rytina (1977) outline some problems and limitations with [hls
approach, and Granovetier (1977) has replied to them.

|3 Wellman gives his calculations as percentage figures, and I have converted them
to the base defined earlier in this chapter.

4 Wellman assumed that all relations were symmetrical: if a respondent said that
intimate A was close to intimate B, then it was assumed also that intimate B was
close to intimate A. Note that this analysis deals only with relations as perceived
by respondents, and not, necessarily, with the actual links among intimate
associates. The work, therefore, is directly in line with some of the phenomeno-
logical assumptions of the earliest studies of balance theory.

|5 A British study which looks at reciprocity in support through kinship networks is
Werbner (1990).

_—

w

Notes to Chapter 5 Centrality and Centralization

| This relative measure is calculated by the formula degree/(n—1), as every point
can be connected to a maximum of n—1 other points.

2 See also Marsden (1982). Burt has developed the idea of the intermediary as the
tertius gaudens, the third party that benefits from the conflict or separation of two
others. Anthonisse (1971) has proposed a measure called the ‘rush’, which is
closely related to Freeman’s notion of betwsenness. The rush measure is
implemented in the GRaDAP package.

3 As a proportion, this varies from 0 to 1, with a score- of 1 showing tlmt thu pzul
of points are completely dependent on Y for their connections.

4 The measurement of centrality, then, depends upon the. solution of a-sot of
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simultaneous equations. This measure was originally applied in Bearden et al.
(1975), where r; was measured by the number of interlocks between two
companies. This research is discussed later in this chapter.

3 B is a weighting attached to the raw measured centrality score, it is not a

multiplier,

6 See also the application of the idea in Stokman et al. (1983).

7 It is possible that the ‘positional’ approaches discussed in Chapter 7 could be

allied with the Stokman and Snijders approach tc produce more reliable

discriminations.

In a directed graph the ‘in’ and ‘out’ distances will differ and so the maximum

colurnn entry will be the ‘in-separation’ and the maximum row entry will be the

‘out-separation’. '

9 Note that, in this case, point B is also equidistant from alt other points. This will
not be the case in al graphs.

10 Note that, while it may not be possible to identify a unique absolute centre, ail
the actual or imaginary centres identified through Christofides’s procedure will
have the same mathematical propertiés. It is, therefore, possible to use the idea of
the absolute centre in calculating other measures.

11 I a graph has a unique actual point of minimum eccentricity, then this will be its

“absolute centre. If there '_are two such points with equal eccentricity, as in

* saciogram (iv) of Figure 5.4, then there will be a unique absolute centre located
mid-way between them. If there are more than two poi.nté with minimum
eccentricity, then there may be no unique absolute centre to the graph. Unfortu-
nately, the Christofides algorithm is not available in any of the standard social
network analysis packages. )

12 This digression is not essential for the newcomer to social network analysis, who

~ may prefer to proceed directly to the next section.

13 In two dimensions, it could be said that its area would be ¢(1.5)%/3, or 0.75¢.

14 Fhe rdtio of the circumference to the diameter of a circle is a constant, w. The
ratio of the circumference to the diameter in a graph, as those concepts have been
defined here, does not appear to be a constant.

I have glossed over the issue of the units in which the volume of a graph is to
be measured. As all distances in graph theory are measured in ‘lines’; this should
be the basis of the measure. Volume would, then, be measured in ‘cubic lines’.

15 The distinction between strong and weak ties in corporate networks was later
systematized in the work of Stokman et al. (1985) as that between ‘primary’ and
‘loose” interlocks.

16 It is arguable that, in this second case, the weighting should also have been based
on the size of the recipient board, as the weighting is an attempt to measure the
salience of the interlock for the board to- which the directors are sent, Further
considerations of the Bonacich measure can be found in Mizruchi and Bunting
(1981) and in Mariolis and.Jones-{1982), o

17 This idea of a cluster wilk be:examined in Chapter 7.

18 The idea of a ‘component’: as a connected part of a graph will be more formally

- defined in the next.chapter. For the purposes of the present discussion, its general
meaning should- be clear. .

19 A comparative survey of thlS and related work can be found in Scott (1997).
Useful theoretical discussions are Mizruchi and Galaskiewicz (1994)-and. Brass
and Burckhardt (1992). Mizruchi (1992) prov1des a related - extension of this
work into corporate political donations.

oo
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Notes to Chapter 6 Components, Cores and Cliques

This is cne of the implications of the so-called ‘small world’ phenomenon. See
Milgram (1967), Erickson (1978), Lin et al (1978), Kilworth and Bernard
(1979).

Everett {1982) suggests that his approach to ‘blocking’ is similar to that used

in analyses of structural equivalence. In fact, the procedures are radically

different and must be distinguished. Structural equivalence is dlscuseed in the
following chapter.

As with the identification of paths, there may be a number of identical cycles,

depending on which point is made the starting point for naming the cycle. In

counting the number of cycles in a graph, this double counting must be reckoned
with. In what follows, I shall not normally distinguish the identical cycles and
will name them simply by an arbitrarily chosen starting point. Sociogram (i) of

Figure 6.2, for example, has only three distinct cycles: ABCDA, ABDA and

BCDB. .

4 Bverel claims that his concept of a bridge is similar to that used by Granovetter
(1973) to describe the ‘weak’ ties which connect ‘strongly’ tied sub-groups.

5 It should be noted that all pairs of points in a cyclic component will be connected
through a cycle, though many of these may be longer than the cycle length used
to define the cyclic component. The cyclic component {E,F,G,H.LJ} in Figure
6.2 is built from 4-cycles, but points E and J, for example, are connected only
through a cycle of length 6.

6 This is important, as a cycle in an undirected graph must connect at least three
points. Thus, a dyad can never be a cyclic component.

7 In case the analysis still results in the identification of a single large component,
Everett argues for the use of a further ad hoc procedure for fragmenting the
structure of the graph. He argues that it is possible, for example, to take account
onty of reciprocated directed lines, where A directs a line to B and B directs a
line to A. These are the strongest lines in the graph, and an analysis which takes
account of these alone should, he argues, identify the strongest structural features
of the graph. This procedure is implemented in vcNer by reading a directed
(asymmetrical) matrix as if it were undirected. The program disregards all
unreciprocated lines.

& This idea of the ‘block’, unlike that of Everett, is based on earlier usage in graph
theory.

9 Where a knot consists simply of two points connected by a line, the line is
termed a ‘bridge’ between the other knots of which its points are members. This
notion of a bridge is very different from that of Everett and from the idea that
was introduced by Schwartz and his colleagues and that was discussed in the
previous chapter. It is an unfortunate fact in social network analysis that words
are 50 often used in contradictory ways to describe different concepts.

(o)

(F8]

10 The term ‘nested components’ was first introduced by the crapap team for a

particular procedure, but it has a far wider application.

The term ‘slicing’ is the most descriptive of the procedure involved, though
‘dichotomizing’ is the term used in the uciNer manual. Everett refers to the
procedure as ‘compression’,

—

|12 I am here generalizing Seidman's concept (1983) of the core in such a way that

the general concept is no-longer defined by Seidman’s & parametm This is-
elaborated in the following discussion. . :
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It is important to note that the degree in this procedure is measured only in
relation to the other members of the core, not in the graph as a whole.

1 shall examine the cohesive sub-groups themselves in the following section.
Seidman specifically points to the parallels between his concepiualization of k-
cores and Granovetter’s work (1973) on weak ties.

Note that while the minimum degree (k) is calculated only for points within the
core, the proportion of points disappearing is based on the total number of points
in the graph as a whole. This ensures that the vector is, to a certain extent,
standardized for the size of the graph.

1 have invented the term ‘m-core’ to parallel Seidman’s notion of the k-core. This
terminology alsc has the advantage of keeping clear the distinction between the
companent itself and the cores of which it is composed.

‘What I have termed m-cores are the basis of Atkin’s methed of Q-analysis,
developed as an alternative to graph theory. In Q-analysis, it is possible to
construct a matrix of Q-nearness, in which the Q-nearness of two points is,
confusingly, one less than the multipkicity of the line connecting them. Thus, a
component of points which are all 2-near to one another would correspond to a
3m-core (see Atkin, 1974, 1977, 1981; Beaumont and Gaitrell, 1982; Doreian,
1980, 1981, 1983). The application of Q-analysis is discussed in the Appendix of
Scott (1986).

In the terminology which has evolved in this chapter, these would be k-cyclic m-
cores, where k is the cycle length and m is the multiplicity.

A pair of connected points is a clique in only a trivial sense, and clique analysis
should normaily be concerned only with cliques of size 3 or more.

The formula linking the sumber of points to the number of lines is that which is
used to identify the total possible number of lines in calculating density. It is
n(n—1)2, where n is the number of points. This defines the sequence of so-
called ‘triangular numbers’.

In practice, a number of clique detection programs smlply wﬂl not work on
directed graphs. The terminclogy of strong and weak cliques is an innovation of
my own, designed to parallel the distinction between strong and weak compo-
nents. ) ‘

A further reason for relaxing the strict idea of clique membership was that,
during the 1940s and 1930s, it proved difficult to discover algorithms that could
identify them in an efficient way. Greater mathematicat knowledge and i 1mprove-
ments in computing have now removed this obstacle.

There was a fault in vemver Release 3.0 which meant that its clique detection
algorithm simply did not work. This was rectified in later refease 5. The program
croup reads vemer files and has a number of clique detection procedures.

A technique for the identification of n-clans is available in vcmver. Mokken
(1974) also introduced the ‘concept of the »-club, a component with maximum
diameter n."This can usefully be seen as a further extension of the idea of the

“simple compenent, though-little’ analysis in this direction has been attempted.

Note that 2 weak componeént is both an n-clan and an s-club in which the value
of n is just large enough to connect the maximum number of points. '
The coneept of the k-plex is constructed along similar lines to that of the k-core,
also developed by Seidman, both concepts being degree-based. Unfortunately,
the letter k does not mean the same thing in the two concepts. In a k-core it is
the minimum degree of points in the core; in a k-plex.it is the number of points
to which a point need not be.connected. o S
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In fact; graph (ii) is a 2-clique rather than merely a 3-clique.

Seidman and Foster develop a further concept, following Mokken’s suggestion of
limiting the diameters of sub-graphs. They extend the k-plex idea and identify
what they call a ‘diameter-# k-plex’. This is defined as a group in which each
point is connected to at least k— 1 of the other points at a distance of n or less.
The concept of a diameter-2 k-plex, in particular, seems a very fruitful extension
to the clique idea. Unfortunately, the ¥ measure is, again, used in a different
sense, and so comparisons must be made with care. (See Seidman and Foster,
1978: 69-70.)

The identification of circles might be seen, in a general sense, as a particular kind
of clustering method, But in this book I have restricted the idea of the cluster to
those sub-graphs which are found through specific hierarchical methods. Circles,
cliques and plexes group points on the basis of the degree of their mutual
connections, while hierarchical clustering methods take account of their whole
patiern of connections to the rest of the metwork. In this sense, hierarchical
clustering is closely linked to the identification of structural equivalence, which
is reviewed in the following chapter.

Chapter 10 in Muilins (1973) is a study of social network analysts. It includes a
data matrix but no sociogram,

In fact, Gattrell goes beyond this, but I do not intend to pursue these issues here.
The interested reader can consult Beaumoni and Gattrelf (1982) and then read
Gaitrell’s studics. ‘

It is important to note that this does not mean that every paper is directly
connected to every other in the component. He is not concerned with cliques.
The data simply show the existence of a chain of connections.

Notes to Chapter 7 Positions, Roles and Clusters

1

As in so many areas of social network analysis, there are confusing problems of
terminology here. Reseachers following Lorrain and White have used the word
“block’ to refer both to the sets or clusters of points and to the cells of the image
matrix. Further confusion arises from the fact, pointed out in Chapter 6, that
graph theorists have used the word ‘block’ to refer to a number of ‘totally
different and un-related ideas. Having eschewed the word “block’ in that chapter,

I limit its use in this chapter to describe the cells of image matrices. The sets of
points, for reasons set out in the following section, I refer to as ‘clusters’.

There are other forms of agglomerative cluster analysis, but these are the most
common. An intermediate approach is the median distance method used in the
ucLus algorithm, This iakes neither the smallest nor the greatest distance
between clusters as a measure of similarity. Instead it takes the median distance.

Anderberg (1973) has provided an intermediate ‘average linkage’ method. See
also Allen (1980).

Some writers suggest using x? to select the criterion at each step.

The most elaborated account of this method can be found in Boorman and White
(1976), Breiger et al. {1975) and White et al. (1976).. The original method was
discussed in McQuitty (1968) and McQuitty and Clark (1968).

It has also been suggested that it is unfruitful to divide the matrix into sets that
contain fewer than three points, as. in most matrices a set of size 2 will be only

a trivial case of structural equivalence. oy
In practice, it has been found that the process can be halted before. all vﬂlueq-_. :
converge to +1 or —1, It has been suggested that little is gained: from. the uxml o




190  Social network analysis

computing time in setting the convergence criterion higher than +0.9 and —0.9.
The version of concor implemented in vever allows the investigator to make
this choice of convergence criterion. When such a decision is made, however, an
arbitrary element is, of course, introduced into the procedure.

7 The Breiger et al. (1975) analysis relates not to the original Davis et al. data
(1941), but to the re-analysis of the original data given in Homans (1951).

8 When the actual density of a block is 1.0, the block will be a 1-clique. When it
is less than 1, however, the block will not form a 1-cligue, and it may not even
form an n-clique. This is hardly surprising, as coNcor is specifically presented as
an alternative to clique detection methods. If concor simply identified cliques,
its cumbersome procedures would hardly be worthwhile.

9 More complex, but comparable, real data sets are discussed in Breiger (1979).

10 Further sources on concor -and block models can be found in Light and Mullins
(1979), Arabie et-al. (1978) and Schwartz (1977). concor is extended in
Bonacich and McConaghy (1979). See also Carrington et al. (1980).

11 This discussion draws on Burt {1980, 1982) and Burt and Schott (1990). White’s
latest work has moved in a similar conceptual direction to Burt. See White
(1992a, b).

12 Burt terms this the ‘frequency decay’ assumption. The STRUCTURE program
allows alternative assumptions to be used at the choice of the researcher,

13 purt calculates ‘Fuclidean’ distances, which I shall discuss in the folowing
chapter.

14 The actual test recommended by Burt involves performing a principal compo-
nents analysis on the ‘co-variance matrix’ of each cluster. The loading of a point
on the first component is taken as a measure of its association with the other
members of the cluster. This test may seem a little obscure unless the methods of
principal components analysis are understood. They are discussed in the follow-
ing chapter, and readers may prefer to return to this section after reading the
relevant part of that chapter. Burt’s approach is criticized in Faust and Romney
{1985).

15 As each point has a different number of contacts, the matrix of similarities will
not be symmetrical.

16 The correlation calculated is not a normal Pearson correlation coefficient, but one
which incorporates some of the Euclidean assumptions of Burt’s method.

17 For an attempt to specify the relations between structural equivalence and
conventional graph theoretical concerns, see Everett et al. (1990).

18 Burt has combined structural equivalence with multidimensional scaling (MDS)
to produce a topology of United States markets in Burt (1988) and Burt and

. Carlton (1989). MDS will be discussed in the following chapter.
19 A small sixth set with very weak links to the rest of the network is excluded.

Notes to Chapter 8 - Dimensions and Displays

I krackrror, described in the Appendix, has a procedure for constructing these
circle diagrams, though the order in which the points are arranged has still to be
determined by:the researcher. -

2 Multidimensional scaling can also be used to disclose features of attribute data,
but this is beyond the scope of this book.

3 Euclidean metries have additional properties that need not detain us here.
Basically, a Euclidean: metric allows the use of all the familiar additive arithmetic

. -operations {addition,: subtraction, multiplication and division) and it conforms to
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the principles of conventional school geomefry (e.g. Pythagorus’s theorem).
Metric models other than the Euclidean have been proposed, but they have not
been especially important in social network amalysis. One such model is the
curved space ‘Reimannian’ metric, in ‘which Pythagoras’s and other familiar
theorems do not apply.
This characterizes metric multidimensional scaling. The slightly different non-
metric approach to multidimensional scaling is discussed later in this Chapter. A
procedure that, for most practical purposes, seems to produce similar results to
MDS is spring embedding {Kamada and Kawai, 1989). Although this is used in
the paseK program (see Appendix), its basis has not yet been worked through in
the secondary literature.
‘Dissimilarities’ are sometimes termed ‘differences’.
There is an exactly similar problem of reflection with respect to the position of
A. If the original line had been drawn as BA rather than AB (i.e., running in the
opposite direction), ABC would be reflected around the line BC. The curious
reader may experiment for her- or himself.
It is important not to confuse the concept of ‘component’ used in principal
components analysis with the graph theoretical idea of a ‘component’. In graph
theory a component is a particular kind of segment in a graph; in principal com-
ponents analysis, a component is a ‘dimension’ or ‘factor’.
It is important not to confuse Q-mode analysis with the Q-analysis of Atkin
which was touched on in Chapter 6 and to which I refer later in this chapter.
With a non-symmetrical adjacency matrix it is often possible to produce a
combined row and column solution that shows the joint space occupied by the
cases.
See Coxon (1982) and Kruskal and Wish (1978). The original sources on non-
metric multidimensional scaling include Shepard (1962), Kruskal (1964a, b},
Guttman (1968) and Lingoes and Roskam (1973).
As an initial configuration is simply generated for testing, its source does not
matter. Thus, a metric procedure can be vsed to generate this initial configura-
tion,
Strictly speaking, this is an over-simplification, but it corresponds to the general
principles used in testing goodness of fit. The most general principle is that the
relation between the data ranks and the distance ranks be ‘monotonic’ — ie., the
line moves up and to the tight in a constant way, though not necessarily at 45°
to the axes.
vemeer and KRAcKpLoT are able to consiruct simple cifcle diagrams, but
Krempel’s own algorithm is not yet generally available.
UCINET comes with conversion procedures for transforming its own output data
files into the format required by Mace and by many other molecular modelling
programs.
Although square, the matrix was asymmetrical, as the columns were the
occupations of respondents and the rows were the occupations of those with
whom they claimed to interact. The data were, in this sense, directed from
columns to rows. Laumans, therefore, used the asymmetric variant of the
Guttman—Lingoes program, the version normally used for rectangular incidence
matrices. :
Note that it is fundamentally incorrect to try to equate ‘centrality” in the sphere
with any of the ideas of network centrality discussed in Chapter 5. In fact, the
‘centre’ in Levine's analysis is exactly the opposite of that discussed in relation
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to the work of Laumann and Pappi. The reason for this is that Levine used
stmilarity data, while Laumann and Pappi used dissimilarities. In Levine's
analysis, the centre is the zero point of least similarity. Paradoxically, Levine’s
‘centre’ contains the most ‘peripheral’ points, and the position of the banks
towards the outer layers of the sphere supports the Bearden et al. (1973) view of
bank centrality,

17 A vector, in this context, is simply a line drawn through the configuration.

Notes to Appendix Social Network Packages
GRADAF, Release 2.10 (dated 10 February 1992). Available from tec ProGAMMA,
PO Box 841, 9700AV, Groningen, The Netherlands; fax: +31-50-363687; e-mail
gamma.post@gamma.rug.nl. Price $795 for disks and manual, Further informa-
tion on GRapAP can be found through the internet on hitp://www.gamma.rug.nl/
files/p315.html

2 The grADAP comunands use the general term ‘graph’ to refer to the whole
collection of files associated with a particular data set. This allows them all to be
referenced by a single name. The term is, however, stretched beyond its technical
meaning in graph theory, where it refers to the mathematical model of a network.
GRADAP’s concept might better be referred to as a ‘graph file’.

3 ‘unrLoap’ can be used in place of ‘save’, and ‘RELoAD’ in place of ‘GET’.

4 strucTurg, Basic Edition, Release 4.2. Available from Center for the Social
Sciences, 420 West 118th Sireet, 8th Floor, Columbia University, NY 10027,
USA, free of charge. The Basic Edition can be downloaded from http://
www.columbia.eduw/cu/css/download.htm, and the on-line manual can be down-
loaded from Burt’s web site at Chicage University: http://www.nchicago.edu/fac/
ronald.burt/teaching/stnzcmanual.pdf

5 These ideas are discussed in Burt (1982),

6 vemner Version 5.0 (dated February 1999). Available from Analytical Tech-
nology, 11 Ohlin Lane, Harvard, MA 01451, USA; fax: +978-456-7373. Price
$150 ($100 upgrade from Version 4.0; $40 to students). The ucver website is at
http:Heclectic.ss.uci.edw/~linfucinet. htmt

7 paek can be downloaded free from http://vlado.mat.uni-lj.si/viado/vlado.htm
Brief manuals can also be downloaded. Batageli can be contacted at the
Pepartment of Mathematics, University of Ljubljana, Jadranska 19, 1000 Lubjl-
jana, Slovenia; fax: -+386-66-217-281; e-mail vladimir batagelj@uni-1j.si )

8 For address see note 6 above. Version 3.0 costs $125 ($39 for students).
Information can be obtained from bttp://www.heinz.cmu.edu/~krack '

9 The official name uses upper and lower case and spells the name NetImage. It
can be downloaded free from http:/ftarski.ss.uei.edu/netirn.html

10 Version 4.302 (November 1993). A small demo and the full manual can
be downloaded free of charge, and the full program can be ordered from
http://www.sfu.ca/~richards/negopy.htm

11 The INSNA, home pagc is at http:/fwww heinz.cmu.edu/project/INSNA

12 To subscnbe to this service send an e-mail to listserv@nervm.nerde.ufl.edu The
message should,_.say__a_lmply ‘SUBSCRIBE SOCNET Your Name’, replacing

. “Your Name’ with your.own name..
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